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Abstract

This thesis aims to advance the theory and practice of data-driven dynamic decision making,
by synergizing ideas from machine learning and operations research. Throughout this thesis,
we focus on three aspects: (i) developing new, practical algorithms that systematically
empower data-driven dynamic decision making, (ii) identifying and utilizing key problem
structures that lead to statistical and computational efficiency, and (iii) contributing to a
general understanding of the statistical and computational complexity of data-driven dynamic
decision making, which parallels our understanding of supervised machine learning and also
accounts for the crucial roles of model structures and constraints for decision making.

Specifically, the thesis consists of three parts.
Part I of this thesis develops methodologies that automatically translate advances in

supervised learning into effective dynamic decision making. Focusing on contextual bandits,
a core class of online decision-making problems, we present the first optimal and efficient
reduction from contextual bandits to offline regression. A remarkable consequence of our
results is that advances in offline regression immediately translate to contextual bandits,
statistically and computationally. We illustrate the advantages of our results through new
guarantees in complex operational environments and experiments on real-world datasets. We
also extend our results to more challenging setups, including reinforcement learning in large
state spaces. Beyond the positive results, we establish new fundamental limits for general,
unstructured reinforcement learning, emphasizing the importance of problem structures in
reinforcement learning.

Part II of this thesis develops a framework that incorporates offline data into online
decision making, motivated by practical challenges in business and operations. In the context
of dynamic pricing, the framework allows us to rigorously characterize the value of data and
the synergy between online and offline learning in data-driven decision making. The theory
provides important insights for practice.

Part III of this thesis studies classical online decision-making problems in new settings
where the decision maker may face a variety of long-term constraints. Such constraints are
motivated by societal and operational considerations, and may limit the decision maker’s
ability to switch between actions, consume resources, or query accumulated data. We
characterize the statistical and computational consequences brought by such long-term
constraints, i.e., how the complexity of the problem changes with respect to different levels
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of constraints. The results provide precise characterizations on various intriguing trade-offs
in data-driven dynamic decision making.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems
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Chapter 1

Introduction

The increasing availability of data and advances in machine learning have the potential

to revolutionize the way organizations make decisions. However, such potential is heavily

constrained now. While supervised machine learning traditionally excels at making predictions

based on passively observed, well-distributed data, modern organizations often face tasks

that require dynamic decision making over time (e.g., online recommendation and resource

allocation tasks in operations research), which typically generate sequential data that exhibit

distribution shift over time, making the effective integration of machine learning and decision

making difficult. Moreover, many real-world organizations have to operate under various

regulations and practical constraints, which cannot be captured by classical machine learning

frameworks. Such discrepancies present significant challenges in the development of modern

data-driven dynamic decision-making systems, both in theory and practice.

The high-level goal of this thesis is to address these challenges to advance the development

of modern data-driven dynamic decision-making systems. This requires extending the

boundaries of machine learning by making the advances therein (e.g., function approximation,

scalable computing, state-of-the-art estimators) more applicable to decision making, as well

as expanding the scope of operations research by developing new decision-making models

that incorporate modern machine learning and its salient features as key components, such

that the use and value of data and learning can be systematically analyzed and optimized.

Motivated by the high-level goal, this thesis seeks to advance the theory and practice

of data-driven dynamic decision making, by synergizing ideas from machine learning and

operations research. Throughout this thesis, we focus on three aspects: (i) developing general,

flexible algorithms that systematically empower data-driven dynamic decision making, (ii)
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identifying and utilizing key problem structures that lead to statistical and computational

efficiency, and (iii) contributing to a general understanding of the statistical and computational

complexity of data-driven dynamic decision making, which parallels our understanding of

supervised machine learning and also accounts for the crucial roles of model structures and

constraints for decision making.

Specifically, the thesis consists of three parts.

Part I of this thesis (Chapters 2 to 4) develops methodologies that automatically translate

advances in supervised learning into effective dynamic decision making. Focusing on contex-

tual bandits, a core class of online decision-making problems, we present the first optimal and

efficient reduction from contextual bandits to offline regression. A remarkable consequence of

our results is that advances in offline regression immediately translate to contextual bandits,

statistically and computationally. We illustrate the advantages of our results through new

guarantees in complex operational environments and experiments on real-world datasets. We

also extend our results to more challenging setups, including reinforcement learning in large

state spaces. Beyond the positive results, we establish new fundamental limits for general,

unstructured reinforcement learning, emphasizing the importance of problem structures in

reinforcement learning.

Part II of this thesis (Chapter 5) develops a framework that incorporates offline data

into online decision making, motivated by practical challenges in business and operations. In

the context of dynamic pricing, the framework allows us to rigorously characterize the value

of data and the synergy between online and offline learning in data-driven decision making.

The theory provides important insights for practice.

Part III of this thesis (Chapters 6 and 7) studies classical online decision-making problems

in new settings where the decision maker may face a variety of long-term constraints. Such

constraints are motivated by societal and operational considerations, and may limit the

decision maker’s ability to switch between actions, consume resources, or query accumulated

data. We characterize the statistical and computational consequences brought by such long-

term constraints, i.e., how the complexity of the problem changes with respect to different

levels of constraints. The results provide precise characterizations on various intriguing

trade-offs in data-driven dynamic decision making.

18



1.1 Overview of Part I (Chapters 2 to 4)

Machine learning, from its foundation, has largely focused on (offline) supervised learning,

i.e., making predictions based on passively observed, well-distributed data. Many modern

decision-making tasks (e.g., online product recommendation, personalized medicine), however,

require making dynamic, effective decisions based on sequential data which critically depend

on the (limited) feedback of the decisions. Such discrepancy presents significant challenges in

the development of more powerful and impactful data-driven decision-making systems, both

in theory and practice.

The stream of works in Part I of this thesis seeks to address the complications of data-

driven decision making beyond offline supervised learning, and provide practical algorithms

to systematically empower data-driven decision making by utilizing the advances in offline

supervised learning. Fundamental limits are established when positive results are not possible.

The results in this stream of works resolve several important open problems in the (broad)

field of reinforcement learning (RL).

Chapter 2: The first optimal reduction from general contextual bandits to offline

regression The contextual bandit problem is a fundamental framework for online data-

driven decision making (as well as an important special case of online RL), with diverse

applications ranging from electronic commerce to healthcare; see Li et al. (2010), Tewari and

Murphy (2017) for illustrations on its practical importance. Focusing on contextual bandits,

Chapter 2 develops general, principled approaches that enable the simple plug-in of any

efficient offline supervised learning estimators to improve the statistical and computational

efficiency of contextual bandit algorithms, in a provably optimal manner.

In more detail, Chapter 2 studies the general (stochastic) contextual bandit problem

under the realizability assumption, i.e., the expected reward, as a function of contexts and

actions, belongs to a general function class ℱ . Building on an intriguing algorithmic strategy

called inverse gap weighting (Abe and Long 1999, Foster and Rakhlin 2020), we present a fast

and simple algorithm for the general contextual bandit problem, which utilizes access to an

offline regression oracle that is capable of solving the offline prediction/estimation problem

associated with the function class ℱ . We show that the algorithm achieves the statistically

optimal regret with only 𝑂(log 𝑇 ) calls to the offline regression oracle across all 𝑇 rounds

(whenever the offline regression oracle attains the optimal offline estimation error). The

19



number of oracle calls can be further reduced to 𝑂(log log 𝑇 ) if 𝑇 is known in advance. Our

results provide the first universal and optimal reduction from contextual bandits to offline

regression, solving an important open problem in the contextual bandit literature. A direct

consequence of our results is that any advances in offline regression immediately translate to

contextual bandits, statistically and computationally. This leads to faster algorithms and

improved regret guarantees for broader classes of contextual bandit problems.

Chapter 2 is based on the following paper:

• David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler

optimal algorithm for contextual bandits under realizability. Mathematics of Operations

Research, 47(3), 1904-1931, 2022.

Chapter 3: Refined (more adaptive) algorithms and guarantees, with extensions

to RL In the classical multi-armed bandit problem, instance-dependent algorithms attain

improved performance on “easy” problems with a gap between the best and second-best arm.

Such adaptive guarantees are favored in various practical applications, where the potentially

“nice” structures of the underlying models can be utilized to accelerate learning. Are similar

guarantees possible for contextual bandits? In Chapter 3 (a follow-up work of both (Foster

and Rakhlin 2020) and (Simchi-Levi and Xu 2022)), we extend the inverse gap weighting

techniques and the general analysis based on offline regression oracles to obtain refined

instance-dependent algorithms and guarantees for contextual bandits. We conduct extensive

experiments on over 500 real-world datasets, and find that the refined algorithms typically

enjoy superior performance (compared with existing benchmarks), especially on challenging

datasets with many actions.

Beyond the algorithmic contributions, we introduce a family of complexity measures

that are both sufficient and necessary for contextual bandit models to allow for sharp

instance-dependent guarantees. Turning our focus to reinforcement learning with function

approximation, we develop new oracle-efficient algorithms for (structured) reinforcement

learning with rich observations that obtain optimal gap-dependent sample complexity.

Chapter 3 is based on the following paper:

• Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-

dependent complexity of contextual bandits and reinforcement learning: A disagreement-

based perspective. arXiv preprint arXiv:2010.03104, 2020.
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(Extended abstract appeared in Conference on Learning Theory 2021)

Chapter 4: Fundamental limits for offline RL with value function approximation

The previous examples illustrate that for certain classes of data-driven decision-making

problems (which are special cases of structured RL problems), the simple/nice structures of

the underlying models allow us to reduce the decision-making problems to offline supervised

learning problems (and to achieve refined guarantees when possible). The structures of

models are in fact crucial — in a general RL problem where the underlying Markov decision

process (MDP) does not admit simple or nice structures, RL can be fundamentally harder

than supervised learning.

Recently, there is a growing interest in establishing information-theoretic hardness results

for RL, which can help us understand what elements of RL could make it fundamentally

difficult. Chapter 4 contributes to this research direction by establishing a strong hardness

result for offline RL; the offline RL setting is different from the online RL setting discussed

previously, but is equally important as it finds broad applications in safety-critical domains

like healthcare and autonomous driving. Our result shows that in the value function

approximation setting, offline (unstructured) RL is fundamentally harder than supervised

learning, resolving a well-known open problem in the field (Chen and Jiang 2019). Technically,

this negative result is not directly comparable to the positive results discussed before (due to

the different RL settings). But conceptually, it highlights the insights that the structures of

underlying models are crucial to make data-driven decision-making problems tractable (and

to make the powerful reduction to supervised learning possible).

Chapter 4 is based on the following paper:

• Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline

reinforcement learning: Fundamental barriers for value function approximation. arXiv

preprint arXiv:2111.10919, 2021.

(Extended abstract appeared in Conference on Learning Theory 2022)

The importance of model structures also motivates me to utilize the expertise of operation

research to advance the development of reinforcement learning, which I will describe in

Chapter 8 (future research).
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1.2 Overview of Part II (Chapter 5)

A central goal of the previous research theme (Section 1.1) is to make online decision making

as easy as offline supervised learning. In the second research theme, we aim to synergize

online decision making and offline supervised learning to improve upon both.

As we mentioned, offline supervised learning deals with the problem of finding a predictive

function based on the entire training data set. In contrast to the offline learning setting

where the entire training data set is directly available before the algorithm is applied, online

decision making deals with a setting where data become available in a sequential manner

that may depend on the actions taken by the algorithm. While offline learning assumes

access to offline data (but not online data) and online decision making assumes access to

online data (but not offline data), in reality, a broad class of real-world problems incorporate

both aspects: there is an offline historical data set (based on historical actions) at the time

that the decision maker starts an online decision-making process.

Chapter 5: Online pricing with offline data — new framework and insights

Currently, there is no standard framework for the above type of “hybrid” learning problems,

as classical online and offline learning theory have different settings and goals. While

establishing a framework that bridges all aspects of offline learning and online decision

making is generally a very complicated task, in Chapter 5, we propose a new framework that

bridges the gap between offline learning and online decision making in the context of dynamic

pricing — a representative revenue management setting. As we will discuss in Chapter 5,

our framework captures the essence of many dynamic pricing problems that sellers face in

reality, and is highly relevant to revenue management practice.

Through our framework, we characterize the joint effect of the size, location and dispersion

of the offline data on the optimal instance-dependent regret of the online pricing process.

Specifically, the size, location and dispersion of the offline data are measured by the number

of historical samples, the distance between the average historical price and the optimal price,

and the standard deviation of the historical prices, respectively. We also design an adaptive

algorithm to achieve the optimal instance-dependent regret. Our results reveal surprising

transformations of the optimal regret rate with respect to the size of the offline data, which

we refer to as phase transitions — the phenomena provide insights on the value of (more)

offline data. In addition, our results demonstrate that the location and dispersion of the
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offline data have an intrinsic effect on the optimal regret, and we quantify this effect via the

inverse-square law — the law provides insights on the synergy of online and offline learning.

Numerical experiments demonstrate the promising empirical performance of our algorithms,

as well as the value of pre-existing offline data for dynamic pricing.

Chapter 5 is based on the following paper:

• Jinzhi Bu, David Simchi-Levi, and Yunzong Xu. Online pricing with offline data: Phase

transition and inverse square law. Management Science, 68(12), 8568-8588, 2022.

(Preliminary version appeared in International Conference on Machine Learning 2020)

1.3 Overview of Part III (Chapters 6 to 7)

Another research theme of this thesis is to study classical online decision-making problems in

new settings where the decision-making process is subject to a variety of long-term budget

constraints. Such budget constraints are motivated by operational practice, and may limit

the policy’s ability to switch between actions, consume resources, or query accumulated

data. We are particularly interested in the statistical consequences brought by such budget

constraints, i.e., how the statistical complexity (measured by the optimal regret rate) of the

problem changes with respect to different budget levels.

Chapter 6: Phase transitions in bandits with switching constraints In Chapter 6,

we consider the classical stochastic multi-armed bandit problem with a constraint that limits

the total cost incurred by switching between actions to be no larger than a given switching

budget. This model, referred to as bandits with switching constraints, is highly relevant to

real-word applications where there are strict limits on the learner’s switching behavior. A

concrete application in practice is dynamic pricing with demand learning, where sellers often

limit the number of price changes — sellers limit the number of price changes either because

of implementation constraints, or for fear of confusing customers and receiving negative

customer feedback.

We prove matching upper and lower bounds on the optimal (i.e., minimax) regret, and

provide efficient rate-optimal algorithms. Surprisingly, the optimal regret of this problem

exhibits a non-conventional growth rate in terms of the time horizon and the number of

arms. Consequently, we discover surprising phase transitions regarding how the optimal
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regret rate changes with respect to the switching budget: when the number of arms is fixed,

there are equal-length phases, where the optimal regret rate remains (almost) the same

within each phase and exhibits abrupt changes between phases; when the number of arms

grows with the time horizon, such abrupt changes become subtler and may disappear, but a

generalized notion of phase transitions involving certain new measurements still exists. The

results enable us to fully characterize the trade-off between the regret rate and the incurred

switching cost in the stochastic multi-armed bandit problem, contributing new insights to

this fundamental problem. Under the general switching cost structure, the results reveal

interesting connections between bandit problems and graph traversal problems, such as the

shortest Hamiltonian path problem.

Numerical experiments demonstrate the practicality and effectiveness of our algorithms.

Chapter 6 is based on the following paper:

• David Simchi-Levi and Yunzong Xu. Phase transitions in bandits with switching

constraints. Management Science, forthcoming, 2023.

(Preliminary version appeared in Neural Information Processing Systems 2019)

Chapter 7: Extensions to bandits with knapsacks and network revenue man-

agement In Chapter 7, we consider an additional type of budget constraints — the

(multi-dimensional) knapsack constraints introduced in the blind network revenue man-

agement and the bandits with knapsacks frameworks. We generalize previous results by

considering the “integrated” impact of switching constraints and knapsack constraints on the

stochastic bandit problem, and obtain interesting findings: a piecewise-constant function

of the switching budget proves to completely characterize the optimal regret rate, which

surprisingly depends on the dimension of knapsack constraints.

Chapter 7 is based on the following paper:

• David Simchi-Levi, Yunzong Xu, and Jinglong Zhao. Blind network revenue manage-

ment and bandits with knapsacks under limited switches. Available at SSRN 3479477,

2019.

(Latest version revised in 2023)

24



Chapter 2

Optimal and Efficient Reduction from

Contextual Bandits to Offline Regression

2.1 Introduction

The contextual bandit problem is a fundamental framework for online decision making and

interactive machine learning, with diverse applications ranging from healthcare (Tewari and

Murphy 2017, Bastani and Bayati 2020) to electronic commerce (Li et al. 2010, Agarwal

et al. 2016). It has been extensively studied in computer science, operations research, and

statistics literature.

Broadly speaking, approaches to contextual bandits can be classified into two categories

(see Foster et al. 2018): realizability-based approaches which rely on weak or strong assump-

tions on the model representation, and agnostic approaches which are completely model-free.

While many different contextual bandit algorithms (realizability-based or agnostic) have

been proposed over the past twenty years, most of them suffer from either theoretical or

practical issues (see Bietti et al. 2018). Existing realizability-based algorithms building on

upper confidence bounds (e.g., Filippi et al. 2010, Abbasi-Yadkori et al. 2011, Chu et al.

2011, Li et al. 2017) and Thompson sampling (e.g., Agrawal and Goyal 2013, Russo et al.

2018) rely on strong assumptions on the model representation and are only tractable for

specific parametrized families of models like generalized linear models. Meanwhile, agnostic

algorithms that make no assumption on the model representation (e.g., Dudík et al. 2011,

Agarwal et al. 2014) may lead to overly conservative exploration in practice (Bietti et al.

2018), and their reliance on an offline cost-sensitive classification oracle as a subroutine
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typically causes implementation difficulties as the oracle itself is computationally intractable

in general. At this moment, designing a provably optimal contextual bandit algorithm that

is applicable for large-scale real-world deployments is still widely deemed a very challenging

task (see Agarwal et al. 2016, Foster and Rakhlin 2020).

Recently, Foster et al. (2018) propose an approach to solve contextual bandits with general

model representations (i.e., general function classes) using an offline regression oracle — an

oracle that can typically be implemented efficiently and has wide availability for numerous

function classes due to its core role in modern machine learning. Specifically, motivated

by the work of Krishnamurthy et al. (2019) which initiates such a key idea, Foster et al.

(2018) assume access to a weighted least squares regression oracle, which is deemed highly

practical as it has a strongly convex loss function and is amenable to gradient-based methods.

As Foster et al. (2018) point out, designing offline-regression-oracle-based algorithms is a

promising direction for making contextual bandits practical, as they seem to combine the

advantages of both realizability-based and agnostic algorithms: they are general and flexible

enough to work with any given function class, while using a more realistic and reasonable

oracle than the computationally-expensive classification oracle. Indeed, according to multiple

experiments and extensive empirical evaluations conducted by Foster et al. (2018) and Bietti

et al. (2018), the algorithm of Foster et al. (2018) “works the best overall” among existing

contextual bandit approaches.

Despite its empirical success, the algorithm of Foster et al. (2018) is, however, theoretically

sub-optimal — it could incur ̃︀Ω(𝑇 ) regret in the worst case. Whether the optimal regret

of contextual bandits can be attained via an offline-regression-oracle-based algorithm is

listed as an open problem in Foster et al. (2018). In fact, this problem has been open

to the bandit community since 2012 — it dates back to Agarwal et al. (2012), where the

authors propose a computationally inefficient contextual bandit algorithm that achieves the

optimal ̃︀𝑂(√︀𝐾𝑇 log |ℱ|) regret for a general finite function class ℱ , but leave designing

computationally tractable algorithms as an open problem.

More recently, Foster and Rakhlin (2020) propose an algorithm that achieves the optimal

regret for contextual bandits by assuming access to an online regression oracle (which is not

an offline oracle and has to work with an adaptive adversary). Their finding that contextual

bandits can be reduced to online regression is novel and important, and their result is also

very general: it requires only the minimal realizability assumption, and holds true even when
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the contexts are chosen adversarially. However, compared with access to an offline regression

oracle, access to an online regression oracle is a much stronger (and relatively restrictive)

assumption. In particular, practical algorithms for online regression are only known for

specific function classes. Whether the optimal regret of contextual bandits can be attained

via a reduction to an offline regression oracle is listed as an open problem again in Foster

and Rakhlin (2020).

2.1.1 Our Contributions

In this paper, we study the following question repeatedly mentioned in the contextual

bandit literature (Agarwal et al. 2012, Foster et al. 2018, Foster and Rakhlin 2020): Is

there an offline-regression-oracle-based algorithm that achieves the optimal regret for general

(stochastic) contextual bandits?

We answer this question in the affirmative by providing the first optimal black-box

reduction from contextual bandits to offline regression, with only the minimal realizability

assumption. The significance of this result is that it reduces contextual bandits, a prominent

online decision-making problem, to offline regression, a very basic and common supervised

learning task that serves as the building block of modern machine learning. A consequence of

this result is that any advances in solving offline regression problems translate to contextual

bandits, statistically and computationally. Note that such online-to-offline reductions are

highly nontrivial for online learning problems in general; in fact, a generic reduction from

fully adversarial online learning to offline learning is not possible (Hazan and Koren 2016).

Our reduction is accomplished by providing a surprisingly fast and simple algorithm

(which builds on and connects the approaches of Abe and Long 1999, Agarwal et al. 2014,

Foster and Rakhlin 2020) and proving strong theoretical guarantees for this algorithm. For a

general finite function class ℱ , our algorithm achieves the optimal ̃︀𝑂(√︀𝐾𝑇 log |ℱ|) regret

with only 𝑂(log 𝑇 ) calls to an offline least squares regression oracle over 𝑇 rounds. The

number of oracle calls can be further reduced to 𝑂(log log 𝑇 ) if 𝑇 is known. Notably, this

can be understood as a “triply exponential” improvement over previous work: (i) compared

with the previously known regret-optimal algorithm of Agarwal et al. (2012) for this setting,

which requires enumerating over ℱ at each round, our algorithm accesses the function

class only through a least squares regression oracle, thus typically avoids an exponential

computational cost at each round; (ii) compared with the classification-oracle-based algorithm
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of Agarwal et al. (2014) which requires ̃︀𝑂(
√︀
𝐾𝑇/ log |ℱ|) calls to a computationally expensive

classification oracle, our algorithm requires only 𝑂(log 𝑇 ) calls to a simple regression oracle,

which implies an exponential improvement (in the number of oracle calls) over existing

provably optimal oracle-efficient algorithms, even when we ignore the difference between

regression and classification oracles; (iii) when the number of rounds 𝑇 is known in advance,

our algorithm can further reduce the number of oracle calls to 𝑂(log log 𝑇 ), which is an

exponential improvement by itself. Our algorithm is thus highly practical; see Table 2.1 for

a detailed comparison with existing work.

Table 2.1: Algorithms’ performance with general finite ℱ and i.i.d. contexts. Advantages
are marked in bold.

Algorithm Regret rate Computational complexity
Regressor Elimination optimal Ω(|ℱ|)
(Agarwal et al. 2012) intractable
ILOVETOCONBANDITS optimal ̃︀𝑂(

√︀
𝐾𝑇/ log |ℱ|) calls to an

(Agarwal et al. 2014) offline classification oracle
RegCB suboptimal 𝑂(𝑇 3/2) calls to an
(Foster et al. 2018) offline least squares oracle
SquareCB optimal 𝑂(𝑇 ) calls to an
(Foster and Rakhlin 2020) online regression oracle
FALCON / FALCON+ optimal 𝑂(log𝑇 ) or 𝑂(log log𝑇 ) calls to an
(this paper) offline regression oracle*

* Not restricted to least squares; strictly easier to solve than online regression. See §2.3 for details.

We then extend all of the above results to the general setting where (i) the function

class ℱ can be infinite, and (ii) the offline regression oracle is not necessarily a least squares

oracle. For this general setting, our reduction can be stated as follows: for any function class

ℱ , given an arbitrary offline regression oracle with an arbitrary offline estimation error (or

excess risk) guarantee, we provide a fast and simple contextual bandit algorithm whose regret

can be bounded by a function of the offline estimation error, through only 𝑂(log 𝑇 ) calls (or

𝑂(log log 𝑇 ) calls if 𝑇 is known) to the offline regression oracle. We show that our algorithm

is statistically optimal as long as the offline regression oracle is statistically optimal. Notably,

the above results provide a universal and optimal “converter” from results of offline regression

with general function classes to results of contextual bandits with general function classes.

This leads to improved algorithms with tighter regret bounds for many existing contextual
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bandit problems, as well as practical algorithms for many new contextual bandit problems,

e.g., contextual bandits with certain types of neural networks, and contextual bandits with

heavy-tailed rewards.

The analysis of our algorithm is particularly interesting. Unlike existing analysis of

other realizability-based algorithms in the literature, we do not directly analyze the decision

outcomes of our algorithm — instead, we find a dual interpretation of our algorithm as

sequentially maintaining a dense distribution over all (possibly improper) policies, where a

policy is defined as a deterministic decision function mapping contexts to actions. We analyze

how the realizability assumption enables us to establish uniform-convergence-type results for

some implicit quantities in the universal policy space, regardless of the huge capacity of the

universal policy space. Note that while the dual interpretation itself is not easy to compute

in the universal policy space, it is only applied for the purpose of analysis and has nothing

to do with our original algorithm’s implementation. Through this lens, we find that our

algorithm’s dual interpretation satisfies a series of sufficient conditions for optimal contextual

bandit learning. Our identified sufficient conditions for optimal contextual bandit learning

in the universal policy space build on the previous work of Dudík et al. (2011), Agarwal

et al. (2012) and Agarwal et al. (2014) — the first one is colloquially referred to as the

“monster paper” by its authors due to its complexity, and the third one is titled as “taming

the monster” by its authors due to its improved computational efficiency. Since our algorithm

achieves all the conditions required for regret optimality in the universal policy space in a

completely implicit way (which means that all the requirements are automatically satisfied

without explicit computation), our algorithm comes with significantly reduced computational

cost compared with previous work (thanks to the realizability assumption), and we thus title

our paper as “bypassing the monster.”

Overall, our algorithm is fast and simple, and our analysis is quite general. We believe

that the algorithm has the potential to be implemented on a large scale, and our analysis

may contribute to deeper understanding of contextual bandits. We will go over the details in

the rest of this article.

2.1.2 Learning Model

The general stochastic contextual bandit problem can be stated as follows. Let 𝒜 be a

finite set of 𝐾 actions and 𝒳 be an arbitrary space of contexts (e.g., a feature space). The
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interaction between the learner and nature happens over 𝑇 rounds, where 𝑇 is possibly

unknown. At each round 𝑡, nature samples a context 𝑥𝑡 ∈ 𝒳 and a context-dependent reward

vector 𝑟𝑡 ∈ [0, 1]𝒜 according to a fixed but unknown (joint) distribution 𝒟, with component

𝑟𝑡(𝑎) denoting the reward for action 𝑎 ∈ 𝒜; the learner observes 𝑥𝑡, picks an action 𝑎𝑡 ∈ 𝒜,

and observes the reward for her action 𝑟𝑡(𝑎𝑡). Notably, the learner’s reward 𝑟𝑡(𝑎𝑡) depends

on both the context 𝑥𝑡 and her action 𝑎𝑡, and is a partial observation of the full reward

vector 𝑟𝑡. Depending on whether there is an assumption about nature’s reward model, prior

literature studies the contextual bandit problem in two different but closely related settings.

Agnostic setting. Let Π ⊂ 𝒜𝒳 be a class of policies (i.e., decision functions) that map

contexts 𝑥 ∈ 𝒳 to actions 𝑎 ∈ 𝒜, and 𝜋⋆ = argmax𝜋∈Π E(𝑥,𝑟)∼𝒟[𝑟(𝜋(𝑥))] be the optimal

policy in Π that maximizes the expected reward. The learner’s goal is to compete with the

(in-class) optimal policy 𝜋⋆ and minimize her (empirical cumulative) regret after 𝑇 rounds,

which is defined as
𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋⋆(𝑥𝑡))− 𝑟𝑡(𝑎𝑡)).

The above setting is called agnostic in the sense that it imposes no assumption on nature.

Realizable setting. Let ℱ be a class of predictors (i.e., reward functions), where each

predictor is a function 𝑓 : 𝒳 × 𝒜 → [0, 1] trying to approximate the true reward function

𝑓⋆ defined by 𝑓⋆(𝑥, 𝑎) = E[𝑟𝑡(𝑎) | 𝑥𝑡 = 𝑥], ∀𝑥 ∈ 𝒳 , 𝑎 ∈ 𝒜. The standard realizability

assumption (Chu et al. 2011, Agarwal et al. 2012, Foster et al. 2018) is as follows:

Assumption 2.1 (Realizability). The true reward function is contained in ℱ , i.e., 𝑓⋆ ∈ ℱ .

Given a predictor 𝑓 ∈ ℱ , the associated reward-maximizing policy 𝜋𝑓 always picks the

action with the highest predicted reward, i.e., 𝜋𝑓 (𝑥) = argmax𝑎∈𝒜 𝑓(𝑥, 𝑎). The learner’s goal

is to compete with the globally optimal policy 𝜋𝑓⋆ and minimizes her (empirical cumulative)

regret after 𝑇 rounds, which is defined as

𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆(𝑥𝑡))− 𝑟𝑡(𝑎𝑡)).

The above setting is called realizable in the sense that it assumes that nature can be well-

specified by a predictor in ℱ . In this paper, we consider a general ℱ , which can be a class of

parametric functions, nonparametric functions, regression trees, neural networks, etc.

We make some remarks on the above two settings from a pure modeling perspective. First,
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the agnostic setting does not require realizability and is more general than the realizable

setting. Indeed, given any function class ℱ , one can construct an induced policy class

Πℱ = {𝜋𝑓 | 𝑓 ∈ ℱ}, thus any realizable contextual bandit problem can be reduced to an

agnostic contextual bandit problem. Second, the realizable setting has its own merit, as

the additional realizability assumption enables stronger performance guarantees: once the

realizability assumption holds, the learner’s competing policy 𝜋𝑓⋆ is guaranteed to be globally

optimal (i.e., no policy can be better than 𝜋𝑓⋆), thus small regret necessarily means large

total reward. By contrast, in the no-realizability agnostic setting, the “optimal policy in Π” is

not necessarily an effective policy if there are significantly more effective polices outside of Π.

More comparisons between the two settings regarding theoretical tractability, computational

efficiency and practical implementability will be provided in §2.1.3.

2.1.3 Related Work

Contextual bandits have been extensively studied for two decades; see Chapter 18 of Lattimore

and Szepesvári (2020) and Chapter 8 of Slivkins (2019) for detailed surveys. Here we mention

some important and closely related work.

Agnostic Approaches

Papers studying contextual bandits in the agnostic setting aim to design general-purpose and

computationally-tractable algorithms that are provably efficient for any given policy class

Π while avoiding the computational complexity of enumerating over Π (as the size of Π is

usually extremely large). The primary focus of prior literature is on the case of general finite

Π, as this is the starting point for further studies of infinite (parametric or nonparametric) Π.

For this case, the EXP4-family algorithms (Auer et al. 2002b, McMahan and Streeter 2009,

Beygelzimer et al. 2011) achieve the optimal 𝑂(
√︀
𝐾𝑇 log |Π|) regret but requires Ω(|Π|)

running time at each round, which makes the algorithms intractable for large Π. In order

to circumvent the Ω(|Π|) running time barrier, researchers (e.g., Langford and Zhang 2008,

Dudík et al. 2011, Agarwal et al. 2014) restrict their attention to oracle-based algorithms

that access the policy space only through an offline optimization oracle — specifically, an
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offline cost-sensitive classification oracle that solves

argmax
𝜋∈Π

𝑡∑︁
𝑠=1

𝑟𝑠(𝜋(𝑥𝑠)) (2.1)

for any given sequence of context and reward vectors (𝑥1, 𝑟1), · · · , (𝑥𝑡, 𝑟𝑡) ∈ 𝒳 × R𝒜
+. An

oracle-efficient algorithm refers to an algorithm whose number of oracle calls is polynomial

in 𝑇 over 𝑇 rounds.

The first provably optimal oracle-efficient algorithm is the Randomized UCB algorithm of

Dudík et al. (2011), which achieves the optimal regret with ̃︀𝑂(𝑇 6) calls to the cost-sensitive

classification oracle. A breakthrough is achieved by the ILOVETOCONBANDITS algorithm in the

celebrated work of Agarwal et al. (2014), where the number of oracle calls is significantly

reduced to ̃︀𝑂(
√︀
𝐾𝑇/ log |Π|). The above results are fascinating in theory because they enable

a “online-to-offline reduction” from contextual bandits to cost-sensitive classification, which is

highly non-trivial for online learning problems in general. However, the practicability of the

above algorithms is heavily restricted due to their reliance on the cost-sensitive classification

oracle (2.1), as this task is computationally intractable even for simple policy classes (Klivans

and Sherstov 2009, Agrawal and Devanur 2016) and typically involves solving NP-hard

problems. As a result, the practical implementations of the above classification-oracle-based

algorithms typically resort to heuristics (Agarwal et al. 2014, Bietti et al. 2018). Moreover,

the above algorithms are memory hungry: since they must feed augmented versions of

the dataset (rather than the original version of the dataset) into the oracle, they have to

repeatedly create auxiliary data and store them in memory. Therefore, these approaches may

not perform well in practice (Bietti et al. 2018), and are generally impractical for large-scale

real-world deployments (Foster et al. 2018, Foster and Rakhlin 2020).

Realizibility-Based Approaches

In contrast to the agnostic setting where research primarily focuses on designing general-

purpose algorithms that work for any given Π, a majority of research in the realizable

setting tends to design specialized algorithms that work well for a particular parametrized

family of ℱ . Two of the dominant strategies for the realizable setting are upper confidence

bounds (e.g., Filippi et al. 2010, Abbasi-Yadkori et al. 2011, Chu et al. 2011, Li et al.

2017, 2019) and Thompson sampling (e.g., Agrawal and Goyal 2013, Russo et al. 2018).
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While these approaches have been practically successful in several scenarios (Li et al. 2010),

their theoretical guarantees and computational tractability critically rely on their strong

assumptions on ℱ , which restrict their usage in other scenarios (Bietti et al. 2018).

To our knowledge, Agarwal et al. (2012) is the first paper studying contextual bandits with

a general finite ℱ , under the minimal realizability assumption. They propose a elimination-

based algorithm, called Regressor Elimination, that achieves the optimal ̃︀𝑂(
√︀
𝐾𝑇 log |ℱ|)

regret. However, their algorithm is computational inefficient, as it enumerates over the whole

function class and requires Ω(|ℱ|) computational cost at each round (note that the size of ℱ

is typically extremely large). The computational issues of Agarwal et al. (2012) are addressed

by Foster et al. (2018), who propose an oracle-efficient contextual bandit algorithm RegCB,

which always accesses the function class through a weighted least squares regression oracle

that solves

argmin
𝑓∈ℱ

𝑡∑︁
𝑠=1

𝑤𝑠(𝑓(𝑥𝑠, 𝑎𝑠)− 𝑦𝑠)
2 (2.2)

for any given input sequence (𝑤1, 𝑥1, 𝑎1, 𝑦1), · · · , (𝑤𝑡, 𝑥𝑡, 𝑎𝑡, 𝑦𝑡) ∈ R+ × 𝒳 × 𝒜 × R. As

Foster et al. (2018) mention, the above oracle can often be solved efficiently and is very

common in machine learning practice — it is far more reasonable than the cost-sensitive

classification oracle (2.1). However, unlike Regressor Elimination, the RegCB algorithm

is not minimax optimal — its worst-case regret could be as large as ̃︀Ω(𝑇 ). Whether the

optimal ̃︀𝑂(
√︀
𝐾𝑇 log |ℱ|) regret is attainable for an offline-regression-oracle-based algorithm

remains unknown in the literature.

More recently, Foster and Rakhlin (2020) propose an algorithm that achieves the optimal

regret for contextual bandits using an online regression oracle. Their algorithm, called

SquareCB, builds on the A/BW algorithm of Abe and Long (1999) (see also the journal version

Abe et al. 2003) originally developed for linear contextual bandits — specifically, SquareCB

replaces the “Widrow-Hofff predictor” used in the A/BW algorithm by a general online regression

predictor, then follows the same probabilistic action selection strategy as the A/BW algorithm.

Foster and Rakhlin (2020) show that by using this simple strategy, contextual bandits can be

reduced to online regression in a black-box manner. While the implication that contextual

bandits are no harder than online regression is important and insightful, online regression

with a general function class itself is a challenging problem. Note that an online regression

oracle has to provide robust guarantees for an arbitrary data sequence generated by an
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adaptive adversary, which may cause implementation difficulties when the function class

ℱ is complicated — while there is a beautiful theory characterizing the minimax regret

rate of online regression with general function classes (Rakhlin and Sridharan 2014), to our

knowledge computational efficient algorithms are only known for specific function classes.

For example, consider the case of a general finite ℱ , the online algorithm given by Rakhlin

and Sridharan (2014) actually requires Ω(|ℱ|) computational cost at each round. Therefore,

beyond the existing results of Foster and Rakhlin (2020), a more thorough “online-to-offline

reduction” from contextual bandits to offline regression is highly desirable.

2.1.4 Technical Challenges and Our Approach

Before we proceed to present our results, we would like to illustrate the key technical hurdles

of using offline regression oracles to achieve the optimal regret for contextual bandits. We

will then briefly explain how our approach overcomes these technical hurdles.

As was pointed out before, three excellent papers Agarwal et al. (2012), Foster et al.

(2018), Foster and Rakhlin (2020) have made important progress towards solving contextual

bandits via regression approaches. Understanding the gap between the existing results and

our desired result is important for understanding the key technical hurdles. Below we discuss

three challenges.

Computational hurdle. Agarwal et al. (2012) propose a provably optimal but compu-

tational inefficient algorithm for contextual bandits with a general finite ℱ . At each round

𝑡, their algorithm maintains a subset ℱ𝑡 ⊂ ℱ based on successive elimination and solves

a complicated optimization problem over ℱ𝑡. Here, the key difficulty of using an offline

regression oracle is that one cannot reformulate the complicated optimization problem over

ℱ𝑡 to a simple optimization problem like least squares regression, as the objective function is

far more complicated than a sum of squares. This is also why using a square loss regression

oracle is more challenging than using the offline cost-sensitive classification oracle (2.1) —

one can understand the latter as a 0-1 loss oracle.

Statistical hurdle associated with constructing confidence bounds. Foster et al.

(2018) propose a computationally efficient confidence-bounds-based algorithm using an offline

weighted least squares oracle. However, their algorithm only has statistical guarantees under

some strong distributional assumptions. An important reason is that confidence-bounds-based

algorithms typically rely on the ability of constructing shrinking confidence intervals on each
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context. While this is possible for a simple ℱ like a linear class, it is impossible for a general

ℱ . Here, the difficulty originates from the fact that all the statistical learning guarantees

for offline regression with a general ℱ require one to take an expectation over contexts. In

other words, effective per-context statistical guarantees are generally impossible for an offline

regression oracle.

Statistical hurdle associated with analyzing dependent actions. Foster and

Rakhlin (2020) propose an optimal and efficient contextual bandit algorithm assuming

access to an online regression oracle, which is quite different from an offline regression

oracle. Statistically, the difference between offline and online regression oracles is that, offline

regression oracles only assume statistical guarantees for an i.i.d. data sequence (see §2.3 for

our definition of a general offline regression oracle), while online regression oracles assume

statistical guarantees for an arbitrary data sequence possibly generated by an adaptive

adversary. Evidently, access to an online regression oracle is a stronger assumption than

access to an offline regression oracle. As Foster and Rakhlin (2020) mention, their algorithm

requires an online regression oracle because “the analysis critically uses that the regret bound

(of the online regression oracle) holds when the actions 𝑎1, . . . , 𝑎𝑇 are chosen adaptively, since

actions selected in early rounds are used by SquareCB to determine the action distribution

at later rounds.” That is, the technical hurdle of using an offline regression oracle here

is that the algorithm’s action sequence is not i.i.d. — since offline regression oracles are

designed for i.i.d. data, it is unclear how one can deal with dependent actions when one only

has access to an offline regression oracle. We note that this hurdle lies at the heart of the

“exploration-exploitation trade-off” — essentially, any efficient algorithm’s actions must be

highly dependent, as they are simultaneously used for exploration and exploitation.

Our Resolution

We address the three technical hurdles in §2.1.4 in a surprisingly elegant way. Specifically, we

derive an algorithm that accesses the offline regression oracle in a mostly “naive” way, without

constructing any explicit optimization problems or confidence bounds, thus gets around the

first two hurdles simultaneously; further, we overcome the third hurdle by establishing a

framework to analyze our algorithm and prove its statistical optimality — in particular,

we face the complex dynamics of evolving dependent actions, but analyze them through a

different lens (the “dual interpretation” in §2.4), and establish a series of sufficient conditions
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for optimal contextual bandit learning under this lens. The final algorithm is simple, but the

ideas behind it are highly non-trivial and are supported by novel analysis. The algorithmic

details will be presented in §2.2 and §2.3 and the key ideas will be explained in §2.4.

Our approach builds on (and reveals connections between) two lines of research in the

contextual bandit literature: (i) a celebrated theory of optimal contextual bandit learning

in the agnostic setting using a (seemingly unavoidable) classification oracle, represented by

Dudík et al. (2011) (the “monster paper”) and Agarwal et al. (2014) (“taming the monster”);

(ii) a simple probabilistic selection strategy mapping the predicted rewards of actions to the

probabilities of actions, pioneered by Abe and Long (1999) (see also Abe et al. 2003) and

extended by Foster and Rakhlin (2020). In particular, we rethink the philosophy behind

Dudík et al. (2011) and Agarwal et al. (2014), reform it with our own understanding of

the value of realizability, and come up with a new idea of “bypassing” the classification

oracle under realizability — our algorithm is essentially a consequence of this new idea; see

§2.4.6. Interestingly, our derived algorithm turns out to use essentially the same probabilistic

selection strategy as Abe and Long (1999) and Foster and Rakhlin (2020) — this is surprising,

as the idea behind the derivation of our algorithm is very different from the ideas behind Abe

and Long (1999) and Foster and Rakhlin (2020). This suggests that this simple probabilistic

selection strategy might be more intriguing and more essential for bandits than previously

understood, and we believe that it is worth further attention from the bandit community.

We hope that our work, together with Abe and Long (1999) and Foster and Rakhlin (2020),

can provide diverse perspectives on how to understand this strategy.

As a final remark, we emphasize that compared with each line of research that we

mention above, our approach has new contributions beyond them which seem necessary for

our arguments to hold. We will elaborate on such new contributions in the rest of our article.

2.1.5 Organization and Notation

The rest of the paper is organized as follows. For pedagogical reasons, we first present our

results in the case of a general finite ℱ in §2.2, where we introduce our algorithm and state

its theoretical guarantees. In §2.3, we extend our results to the general setting and discuss

several important consequences. In §2.4, we present our regret analysis and explain the

ideas behind our algorithm. We conclude our paper in §2.5. All the proofs of our results are

deferred to the appendix.
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Throughout the paper, we use 𝑂(·) to hide constant factors, and ̃︀𝑂(·) to hide polylog(𝑇 )

factors. Given 𝒟, let 𝒟 denote the marginal distribution over 𝒳 . We use 𝜎(𝑌 ) to denote the

𝜎-algebra generated by a random variable 𝑌 , and use ℬ(𝐸) to denote the Borel 𝜎-algebra

on a set 𝐸. An action selection kernel 𝑝 : ℬ(𝒜) × 𝒳 → [0, 1] is defined as a probability

kernel such that 𝑝(𝑎 | 𝑥) specifies the probability of selecting action 𝑎 ∈ 𝒜 given context

𝑥 ∈ 𝒳 ; let 𝒫 be the space of all action selection kernels. We use N to denote the set of all

positive integers, and R+ to denote the set of all non-negative real numbers. Without loss of

generality, we assume that |ℱ| ≥ 4.

2.2 Algorithm and Guarantees

Following previous work (Dudík et al. 2011, Agarwal et al. 2012, 2014), we start with the

case of a general finite ℱ , as this is the starting point for further studies of an infinite ℱ . For

this case, the “gold standard” is an algorithm that achieves ̃︀𝑂(
√︀
𝐾𝑇 log |ℱ|) regret with the

total number of oracle calls being polynomial/sublinear in 𝑇 (see Agarwal et al. 2012, Foster

et al. 2018). As for the oracle, we assume access to the following least squares regression

oracle that solves

argmin
𝑓∈ℱ

𝑡∑︁
𝑠=1

(𝑓(𝑥𝑠, 𝑎𝑠)− 𝑦𝑠)
2 (2.3)

for any input sequence (𝑥1, 𝑎1, 𝑦1), · · · , (𝑥𝑡, 𝑎𝑡, 𝑦𝑡) ∈ 𝒳×𝒜×[0, 1]. Without loss of generality1,

we assume that the oracle (2.3) always returns the same solution for two identical input

sequences. Note that the above least squares oracle (2.3) is a concrete optimization oracle

and is simpler than the weighted one (2.2) assumed in Foster et al. (2018), as it does not

need to consider the weights.

We remark that our reduction is not restricted to this setup — in §2.3, we will extend all

our results to the general setting where both ℱ and the offline regression oracle are generic.

Still, the above setup is good for illustrating our results, and allows direct comparisons to

the “gold standard.”

1If the oracle is allowed to return a random solution (when there are multiple optimal solutions), then we
can simply incorporate such randomness into the history when we define ϒ𝑡 in Appendix A.1.1, and all our
proofs will still hold.
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2.2.1 The Algorithm

We present our algorithm, “FAst Least-squares-regression-oracle CONtextual bandits”

(FALCON), in Algorithm 2.1 (a generalized version of this algorithm will be provided in

§2.3). The algorithm is very simple and follows the same general template as the A/BW

algorithm of Abe and Long (1999) and the SquareCB algorithm of Foster and Rakhlin (2020),

with the main difference lying in using a different oracle to generate predictions. We also

add a few useful ingredients, including an epoch schedule and a changing learning rate. See

the description of the algorithm below.

Algorithm 2.1 FAst Least-squares-regression-oracle CONtextual bandits (FALCON)
input epoch schedule 0 = 𝜏0 < 𝜏1 < 𝜏2 < · · · , confidence parameter 𝛿, tuning parameter 𝑐

1: for epoch 𝑚 = 1, 2, . . . do
2: Let 𝛾𝑚 = 𝑐

√︀
𝐾𝜏𝑚−1/ log(|ℱ| log(𝜏𝑚−1)𝑚/𝛿) (for epoch 1, 𝛾1 = 1).

3: Compute ̂︀𝑓𝑚 = argmin𝑓∈ℱ
∑︀𝜏𝑚−1

𝑡=1 (𝑓(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2 via the offline least squares

oracle.
4: for round 𝑡 = 𝜏𝑚−1 + 1, · · · , 𝜏𝑚 do
5: Observe context 𝑥𝑡 ∈ 𝒳 .
6: Compute ̂︀𝑓𝑚(𝑥𝑡, 𝑎) for each action 𝑎 ∈ 𝒜. Let ̂︀𝑎𝑡 = max𝑎∈𝒜 ̂︀𝑓𝑚(𝑥𝑡, 𝑎). Define

𝑝𝑡(𝑎) =

⎧⎨⎩
1

𝐾+𝛾𝑚( ̂︀𝑓𝑚(𝑥𝑡,̂︀𝑎𝑡)− ̂︀𝑓𝑚(𝑥𝑡,𝑎))
, for all 𝑎 ̸= ̂︀𝑎𝑡,

1−
∑︀

𝑎̸=̂︀𝑎𝑡 𝑝𝑡(𝑎), for 𝑎 = ̂︀𝑎𝑡.
7: Sample 𝑎𝑡 ∼ 𝑝𝑡(·) and observe reward 𝑟𝑡(𝑎𝑡).

Our algorithm runs in an epoch schedule to reduce oracle calls, i.e., it only calls the

oracle at certain pre-specified rounds 𝜏1, 𝜏2, 𝜏3, . . . . For 𝑚 ∈ N, we refer to the rounds from

𝜏𝑚−1+1 to 𝜏𝑚 as epoch 𝑚. As a concrete example, consider 𝜏𝑚 = 2𝑚, then for any (possibly

unknown) 𝑇 , our algorithm runs in 𝑂(log 𝑇 ) epochs. As another example, when 𝑇 is known,

consider 𝜏𝑚 =
⌊︁
2𝑇 1−2−𝑚

⌋︁
, then our algorithm runs in 𝑂(log log 𝑇 ) epochs. We allow very

general epoch schedules; in particular, calling the oracle more frequently does not affect the

regret analysis.

At the start of each epoch 𝑚, our algorithm makes two updates. First, it updates a

(epoch-varying) learning rate 𝛾𝑚 ≃
√︀
𝐾𝜏𝑚−1/ log(|ℱ|/𝛿), which aims to strike a balance

between exploration and exploitation. Second, it computes a “greedy” predictor ̂︀𝑓𝑚 from

ℱ that minimizes the empirical square loss
∑︀𝜏𝑚−1

𝑡=1 (𝑓(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2. This predictor can

be computed via a single call to the offline least squares regression oracle — notably,

min𝑓∈ℱ
∑︀𝜏𝑚−1

𝑡=1 (𝑓(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2 is almost the best way that we can imagine for our oracle
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to be called, with no augmented data generated, no weights maintained, and no additional

optimization problem constructed.

The decision rule in epoch 𝑚 is then completely determined by 𝛾𝑚 and ̂︀𝑓𝑚. For each

round 𝑡 in epoch 𝑚, given a context 𝑥𝑡, the algorithm uses ̂︀𝑓𝑚 to predict each action’s reward

and finds a greedy action ̂︀𝑎𝑡 that maximizes the predicted reward. Yet the algorithm does

not directly select ̂︀𝑎𝑡 — instead, it randomizes over all actions according to a probabilistic

selection strategy that picks each action other than ̂︀𝑎𝑡 with probability roughly inversely

proportional to how much worse it is predicted to be as compared with ̂︀𝑎𝑡, as well as roughly

inversely proportional to the learning rate 𝛾𝑚. The effects of this strategy are twofold. First,

at each round, by assigning the greedy action the highest probability and each non-greedy

action a probability roughly inverse to the predicted reward gap, we ensure that the better

an action is predicted to be, the more likely it will be selected. Second, across different

epochs, by controlling the probabilites of non-greedy actions roughly inverse to the gradually

increasing learning rate 𝛾𝑚, we ensure that the algorithm “explores more” in the beginning

rounds where the learning rate is small, and gradually “exploits more” in later rounds where

the learning rate becomes larger — this is why we view our learning rate as a sequential

balancer between exploration and exploitation.

Algorithmic components and comparisons with literature. FALCON is a very

simple algorithm, and can be viewed as a combination of three algorithmic components:

(i) an epoch schedule, (ii) the greedy use of an offline least squares regression oracle, and

(iii) a probabilistic selection strategy that maps reward predictions to action probabilities,

controlled by an epoch-varying learning rate. While each component alone is not new in the

literature, the combination of the above three components has not been considered in the

literature, and it is far from obvious that this particular combination should be effective. In

fact, it is quite surprising that such a simple algorithm would work well for general contextual

bandits. While there is definitely more to this algorithm than meets the eye (we will explain

the essential idea behind FALCON in §2.4.5 and §2.4.6), let us first give a few quick comments

on component (ii) and (iii), and compare them to existing literature.

We start from component (iii). As we mention before, the idea of mapping the predicted

action rewards to action probabilities via an “inverse proportional to the gap” rule is not

new: such a probabilistic selection strategy is firstly proposed by Abe and Long (1999) in

their study of linear contextual bandits, and recently adopted by Foster and Rakhlin (2020)
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in their reduction from contextual bandits to online regression. Compared with the existing

strategy used in Abe and Long (1999) and Foster and Rakhlin (2020), the strategy that

we use here has a notable difference: while the above two papers adopt a constant learning

rate 𝛾 that does not change in the running process of their algorithms, we appeal to an

epoch-varying (or time-varying) learning rate 𝛾𝑚 ≃
√︀
𝐾𝜏𝑚−1/ log(|ℱ|/𝛿) that gradually

increases as our algorithm proceeds. This epoch-varying learning rate plays a important

role in our statistical analysis, as the proof of our regret guarantee relies on an inductive

argument which requires the learning rate to change carefully with respect to epochs and

gradually increase over time; see §2.4.4.

Remark. While such an epoch-varying learning rate is not necessary when 𝑇 is known in

advance and the oracle calls are “frequent” enough, an epoch-varying learning rate brings

certain benefits to the algorithm: first, in the case of unknown 𝑇 , it is required; second,

in the case of known 𝑇 , it is necessary whenever one seeks to control the total number of

oracle calls within 𝑜(log 𝑇 ) (a fixed learning rate could lead to sub-optimal regret in this

setting); third, in our analysis it always leads to tighter regret bounds with better dependence

on logarithmic factors. As a result, it seems that an epoch-varying learning rate always

dominates a fixed learning rate in our problem.

Component (ii) of our algorithm is particularly interesting. Indeed, our algorithm makes

predictions in a surprisingly simple and straightforward way: it always picks the greedy

predictor and directly applies it on contexts without any modification — that is, in terms of

making predictions, the algorithm is fully greedy. This seems to contradict the conventional

idea that greedy-prediction-based algorithms are typically sub-optimal (e.g., Langford and

Zhang 2008), and is in sharp contrast to previous elimination-based algorithms (e.g., Dudík

et al. 2011, Agarwal et al. 2012) and confidence-bounds-based algorithms (e.g., Abbasi-

Yadkori et al. 2011, Chu et al. 2011) ubiquitous in the bandit literature, which spend a lot of

efforts and computation resources maintaining complex confidence intervals, version spaces,

or distributions over predictors. Even when one thinks about the algorithms of Abe and Long

(1999) and Foster and Rakhlin (2020) which are similar to ours, one can find that they appeal

to more robust predictors: Abe and Long (1999) appeal to the “Widrow-Hofff predictor”

(equivalent to an online gradient descent oracle) and Foster and Rakhlin (2020) appeal to a

general online regression oracle. Both of their analysis critically relies on the online nature

of their oracles, i.e., the oracles can efficiently minimize regret against an adaptive adversary

40



— essentially, this means that a portion of the heavy lifting regarding the exploration-

exploitation trade-off is taken care of by the online oracles, not the algorithms. While

seemingly counter-intuitive, we claim that making “naive” greedy predictions is sufficient

for optimal contextual bandit learning, which means that our oracle does not care about

the exploration-exploitation trade-off at all. This surprising finding suggests that a rigorous

analysis of our algorithm should contain some new ideas beyond existing bandit literature.

Indeed, we will provide a quite interesting analysis of our algorithm in §2.4, which seem to

be conceptually novel.

Remark. Readers who are interested in the difference between an offline oracle and an

online oracle may compare the regret analysis approach in this paper with the approaches

in Abe and Long (1999) and Foster and Rakhlin (2020). The analysis of Abe and Long

(1999) and Foster and Rakhlin (2020) is essentially per-round analysis: at each round, the

instantaneous bandit regret is upper bounded by the instantaneous online regression regret,

with no structure shared across different rounds, so the final regret bound follows from taking

a sum over all rounds. By contrast, our analysis has to deal with the shared structure across

different rounds, i.e., we have to figure out how the exploration that occurred in early rounds

benefits the exploitation in later rounds.

2.2.2 Theoretical Guarantees

We show that the simple algorithm FALCON enjoys strong performance guarantees.

Statistical optimality. Define 𝑚(𝑇 ) := min{𝑚 ∈ N : 𝑇 ≤ 𝜏𝑚}, which is the total

number of epochs that Algorithm 2.1 executes. The regret guarantee of Algorithm 2.1 is

stated in Theorem 2.1. The proof is deferred to Appendix A.1. We will elaborate on the key

ideas of the analysis in §2.4.

Theorem 2.1. Consider an epoch schedule such that 𝜏𝑚 ≤ 2𝜏𝑚−1, ∀𝑚 > 1 and 𝜏1 ≤ 2. Let

𝑐 = 1/30. For any 𝑇 ∈ N, with probability at least 1− 𝛿, the regret of Algorithm 2.1 after 𝑇

rounds is at most

𝑂
(︁√︀

𝐾𝑇 log(|ℱ|𝑚(𝑇 )/𝛿)
)︁
.

When 𝜏𝑚 = 2𝑚, the above upper bound is 𝑂
(︁√︀

𝐾𝑇 log(|ℱ| log 𝑇/𝛿)
)︁
, which removes a

superfluous
√
log 𝑇 factor in the regret upper bound of Agarwal et al. (2012) (attained by an

inefficient algorithm), and matches the lower bound proved by Agarwal et al. (2012) up to a
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constant or
√
log log 𝑇 factor. The FALCON algorithm is thus statistically optimal.

Computational efficiency. Consider the epoch schedule 𝜏𝑚 = 2𝑚, ∀𝑚 ∈ N. For

any possibly unknown 𝑇 , our algorithm runs in 𝑂(log 𝑇 ) epochs, and in each epoch our

algorithm only calls the oracle once. Therefore, our algorithm’s computational complexity is

𝑂(log 𝑇 ) calls to a least squares regression oracle across all 𝑇 rounds (plus 𝑂(𝐾) additional

cost per round). This leads to potential advantages over existing algorithms. Note that

ILOVETOCONBANDITS requires ̃︀𝑂(√︀𝐾𝑇/ log(|ℱ|/𝛿)) calls to an offline cost-sensitive classifi-

cation oracle, and SquareCB requires 𝑂(𝑇 ) calls to an online regression oracle — compared

with our algorithm, both of them require considerably more calls to more complicated oracles

(as far as a general finite ℱ is concerned). Also, since a general finite ℱ is not a convex

function class, RegCB requires 𝑂(𝑇 3/2) calls to a weighted least squares regression oracle for

this setting — this is also much slower than our algorithm.

When the total number of rounds 𝑇 is known to the learner, we can make the computa-

tional cost of FALCON even lower. For any 𝑇 ∈ N, consider an epoch schedule 𝜏𝑚 =
⌊︁
2𝑇 1−2−𝑚

⌋︁
,

∀𝑚 ∈ N (similar to Cesa-Bianchi et al. 2014). Then FALCON will run in 𝑂(log log 𝑇 ) epochs,

calling the oracle for only 𝑂(log log 𝑇 ) times over 𝑇 rounds. In this case, we still have the

same regret guarantee (up to a log log 𝑇 factor); see Corollary 2.1 below. The proof can be

found in Appendix A.1.6.

Corollary 2.1. For any 𝑇 ∈ N, consider an epoch schedule 𝜏𝑚 =
⌊︁
2𝑇 1−2−𝑚

⌋︁
, ∀𝑚 ∈ N and

let 𝑐 = 1/30. With probability at least 1− 𝛿, the regret of Algorithm 2.1 after 𝑇 rounds is at

most

𝑂
(︁√︀

𝐾𝑇 log(|ℱ| log 𝑇/𝛿) log log 𝑇
)︁
.

2.3 General Offline Regression Oracles

We now extend our results to the general setting where ℱ is generic (possibly infinite).

While we can still assume a least squares regression oracle as before (which corresponds to

the empirical risk minimization (ERM) procedure under square loss in offline supervised

learning), for different ℱ , some other types of offline regression procedures (e.g., regularized

least squares like Ridge and Lasso, or logistic regression) may be preferred. Moreover, even

for a function class where least squares regression is preferred, one may not want to solve the

square loss minimization problem exactly, and an oracle that allows optimization error may
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be preferred. Therefore, in this section, we state our results in a more general way: we assume

access to an arbitrary offline regression oracle with a generic statistical learning guarantee,

and design an algorithm that makes calls to this arbitrary oracle and utilizes its statistical

learning guarantees. Recall that the goal of this paper is to accomplish an online-to-offline

reduction from contextual bandits to offline regression. So ultimately, we want to provide a

universal and optimal “offline-to-online converter,” such that existing machinery of supervised

learning with general function classes can be automatically translated into contextual bandits

with general function classes.

In what follows, we introduce the notion of a general offline regression oracle.

Given a general function class ℱ , a general offline regression oracle associated with ℱ ,

denoted by OffRegℱ , is defined as a procedure that generates a predictor ̂︀𝑓 : 𝒳 × 𝒜 → R

based on input data2 and ℱ (note that ̂︀𝑓 need not be in ℱ). In statistical learning theory,

the quality of ̂︀𝑓 is typically measured by its “out-of-sample error,” i.e., its expected error on

random and unseen test data. We make the following generic assumption on the statistical

learning guarantee of OffRegℱ .

Assumption 2.2. Let 𝑝 be an arbitrary action selection kernel (see §2.1.5 for the definition).

Given 𝑛 training samples of the form (𝑥𝑖, 𝑎𝑖; 𝑟𝑖(𝑎𝑖)) independently and identically drawn

according to (𝑥𝑖, 𝑟𝑖) ∼ 𝒟, 𝑎𝑖 ∼ 𝑝(· | 𝑥𝑖), the offline regression oracle OffRegℱ returns a

predictor ̂︀𝑓 : 𝒳 ×𝒜 → R. For any 𝛿 > 0, with probability at least 1− 𝛿, we have

E𝑥∼𝒟,𝑎∼𝑝(·|𝑥)

[︁
( ̂︀𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎))2

]︁
≤ ℰℱ ,𝛿(𝑛).

The offline learning guarantee ℰℱ ,𝛿(𝑛) is a function that decreases with 𝑛, which bounds

the squared 𝐿2 distance between ̂︀𝑓 and 𝑓⋆ on the test data (generated from the same

distribution as the training data). Under realizability (i.e., 𝑓⋆ ∈ ℱ), this squared distance

corresponds to the estimation error or excess risk of ̂︀𝑓 (under square loss, or more broadly,

strongly convex loss3). Note that characterizing sharp estimation error / excess risk bounds

and designing efficient algorithms to attain such bounds are among the most central tasks in

2Without loss of generality, assume that OffRegℱ always returns the same predictor for two identical
input sequences.

3The estimation error / excess risk is defined as E[ℓ( ̂︀𝑓(𝑥, 𝑎), 𝑟(𝑎))] − inf𝑓∈ℱ E[ℓ(𝑓(𝑥, 𝑎), 𝑟(𝑎))] for a
general loss function ℓ. When ℓ is the square loss, it is equal to E[( ̂︀𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎))2] under realizability.
Moreover, any excess risk bound under a strongly convex loss such as the log loss implies an upper bound on
E[( ̂︀𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎))2] under realizability.
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statistical learning.

The above notion of the offline regression oracle, though being very natural, appears to

be new in the contextual bandit literature. In particular, it is not restricted to the least

squares oracle (thus finds broader applications), and it is strictly easier to implement than

the online regression oracle of Foster and Rakhlin (2020) which has to deal with sequential

data generated by an adaptive adversary. Indeed, any oracle satisfying the requirement of

Foster and Rakhlin (2020) can be easily converted to an oracle that satisfy our Assumption

2.2.

Reducing contextual bandits to the above general offline regression oracle brings many

important advantages, which will be discussed after our reduction is presented; see §2.3.2.

2.3.1 Algorithm and Guarantees

We provide an algorithm, called FALCON+, in Algorithm 2.2. The key differences between

Algorithm 2.2 and Algorithm 2.1 lie in step 2 and step 3. In step 2, we define a new

epoch-varying learning rate based on the offline learning guarantee of OffRegℱ — this is

a direct generalization of the learning rate defined in Algorithm 2.1. In step 3, instead of

feeding all the previous data into the oracle, we only feed the data in epoch 𝑚− 1 into the

oracle. We make two comments here. First, while we do not feed all the previous data into

the oracle any more, this is still a greedy-type call to the offline oracle, as we do not make

any exploration consideration in this step. Second, the strategy of only feeding the data in

the last epoch into the oracle is purely due to technical reasons (i.e., Assumption 2.2 requires

i.i.d. data), as we want to avoid a more complicated discussion of martingales. Note that as

a consequence of this strategy, our algorithm must run in gradually increasing epochs, e.g.,

𝜏𝑚 = 2𝑚 or 𝜏𝑚 =
⌊︁
2𝑇 1−2−𝑚

⌋︁
.

Recall that 𝑚(𝑇 ) is the total number of epochs that Algorithm 2.2 executes. The regret

guarantee of Algorithm 2.2 is stated in Theorem 2.2. The proof of Theorem 2 is deferred to

Appendix A.1.

Theorem 2.2. Consider an epoch schedule such that 𝜏𝑚 ≥ 2𝑚 for 𝑚 ≤ 𝑚(𝑇 ) and let

𝑐 = 1/2. Without loss of generality, assume that 𝛾1 ≤ · · · ≤ 𝛾𝑚(𝑇 ). For any 𝑇 ∈ N, with
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Algorithm 2.2 FAst generaL-offline-regression-oracle CONtextual bandits (FALCON+)
input epoch schedule 0 = 𝜏0 < 𝜏1 < 𝜏2 < · · · , confidence parameter 𝛿, tuning parameter 𝑐

1: for epoch 𝑚 = 1, 2, . . . do
2: Let 𝛾𝑚 = 𝑐

√︁
𝐾/ℰℱ ,𝛿/(2𝑚2)(𝜏𝑚−1 − 𝜏𝑚−2) (for epoch 1, 𝛾1 = 1).

3: Feed (only) the data in epoch 𝑚− 1, i.e.,

(𝑥𝜏𝑚−2+1, 𝑎𝜏𝑚−2+1; 𝑟𝜏𝑚−2+1(𝑎𝜏𝑚−2+1)), · · · , (𝑥𝜏𝑚−1 , 𝑎𝜏𝑚−1 ; 𝑟𝜏𝑚−1(𝑎𝜏𝑚−1))

into the offline regression oracle OffRegℱ and obtain ̂︀𝑓𝑚 (for epoch 1, ̂︀𝑓1 ≡ 0).
4: for round 𝑡 = 𝜏𝑚−1 + 1, · · · , 𝜏𝑚 do
5: Observe context 𝑥𝑡 ∈ 𝒳 .
6: Compute ̂︀𝑓𝑚(𝑥𝑡, 𝑎) for each action 𝑎 ∈ 𝒜. Let ̂︀𝑎𝑡 = max𝑎∈𝒜 ̂︀𝑓𝑚(𝑥𝑡, 𝑎). Define

𝑝𝑡(𝑎) =

⎧⎨⎩
1

𝐾+𝛾𝑚( ̂︀𝑓𝑚(𝑥𝑡,̂︀𝑎𝑡)− ̂︀𝑓𝑚(𝑥𝑡,𝑎))
, for all 𝑎 ̸= ̂︀𝑎𝑡,

1−
∑︀

𝑎̸=̂︀𝑎𝑡 𝑝𝑡(𝑎), for 𝑎 = ̂︀𝑎𝑡.
7: Sample 𝑎𝑡 ∼ 𝑝𝑡(·) and observe reward 𝑟𝑡(𝑎𝑡).

probability at least 1− 𝛿, the regret of Algorithm 2.2 after 𝑇 rounds is at most

𝑂

⎛⎝√
𝐾

𝑚(𝑇 )∑︁
𝑚=2

√︁
ℰℱ ,𝛿/(2𝑚2)(𝜏𝑚−1 − 𝜏𝑚−2)(𝜏𝑚 − 𝜏𝑚−1)

⎞⎠ . (2.4)

The above regret bound is general and it typically has the same rate as𝑂
(︁√︁

𝐾ℰℱ ,𝛿/ log 𝑇 (𝑇 )𝑇
)︁
.

Therefore, given an arbitrary offline regression oracle with an arbitrary estimation error guar-

antee ℰℱ ,𝛿(·), we know that our algorithm’s regret is upper bounded by𝑂
(︁√︁

𝐾ℰℱ ,𝛿/ log 𝑇 (𝑇 )𝑇
)︁
.

Example 2.1 (Statistical Optimality of FALCON+). Consider a general, potentially nonpara-

metric function class ℱ whose empirical entropy is 𝑂(𝜀−𝑝), ∀𝜀 > 0 for some constant 𝑝 > 0.

Yang and Barron (1999) and Rakhlin et al. (2017) provide several offline regression oracles

that achieve the optimal ℰℱ(𝑛) = 𝑂(𝑛−2/(2+𝑝)) estimation error rate. By letting 𝜏𝑚 = 2𝑚

for 𝑚 ∈ N, the regret of FALCON+ is upper bounded by 𝑂(𝑇
1+𝑝
2+𝑝 log 𝑇 ) when one ignores the

dependence on 𝐾. Combined with an ̃︀Ω(𝑇 1+𝑝
2+𝑝 ) lower bound proved in Foster and Rakhlin

(2020), we know that FALCON+ is rate-optimal as long as the offline regression oracle is

rate-optimal. We thus accomplish a universal and optimal reduction from contextual bandits

to offline regression. We note that the above result also helps characterize the minimax

regret rate of stochastic contextual bandits with a general, potentially nonparametric ℱ .

Note that Foster and Rakhlin (2020) have already provided such a characterization, under
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a tensorization assumption (see their Section 3 for details). We remove this assumption,

as the 𝑂(𝑇
1+𝑝
2+𝑝 log 𝑇 ) upper bound implied by our Theorem 2.2 recovers Theorem 3 of Foster

and Rakhlin (2020), without assuming tensorization.

Example 2.2 (Linear Contextual Bandits). Consider the linear contextual bandit setting of

Chu et al. (2011) with stochastic contexts. This corresponds to setting ℱ to be the linear class

ℱ = {(𝑥, 𝑎) ↦→ 𝜃⊤𝑥𝑎 | 𝜃 ∈ R𝑑, ‖𝜃‖2 ≤ 1},

where 𝑥 = (𝑥𝑎)𝑎∈𝒜, 𝑥𝑎 ∈ R𝑑 and ‖𝑥𝑎‖2 ≤ 1. In this case, by using the least squares regression

oracle, FALCON+ achieves the regret 𝑂(
√︀
𝐾𝑇 (𝑑+ log 𝑇 )). Compared with the best known

upper bound for this problem, poly(log log𝐾𝑇 )𝑂(
√
𝑇𝑑 log 𝑇 log𝐾) in Li et al. (2019), the

regret bound of FALCON+ has worse dependence on 𝐾 (which seems to come from the employed

sampling strategy), but saves a
√
log 𝑇 factor, which means that FALCON+ improves the best

known regret upper bound for this problem when 𝐾 << 𝑇 . To the best of our knowledge,

this is the first time that an algorithm gets over the Ω(
√
𝑇𝑑 log 𝑇 ) barrier for this problem

— notably, our new upper bound even “breaks” the Ω(
√
𝑇𝑑 log 𝑇 log𝐾) lower bound proved

in Li et al. (2019). The caveat here is that Li et al. (2019) study the setting where contexts

are chosen by an oblivious adversary, while we are considering the setting where contexts are

stochastic. Our finding that the Ω(
√
𝑇𝑑 log 𝑇 ) barrier does not exist for linear contextual

bandits with stochastic contexts is quite interesting.

Example 2.3 (Contextual Bandits with Neural Networks). Deriving provable performance

guarantees for neural networks is an active area of research. Here we use a recent result of

Farrell et al. (2021) to illustrate how estimation error bounds for deep neural networks can

be translated into contextual bandits. Specifically, let ℱ = 𝒢𝐾 , 𝒢 be the class of Multi-Layer

Perceptrons (MLP) as described in Section 2.1 of Farrell et al. (2021), and 𝑓⋆(𝑥, 𝑎) = 𝑔⋆𝑎(𝑥)

for 𝑥 ∈ 𝒳 , 𝑎 ∈ 𝒜. Assume that 𝒟 is a continuous distribution on [−1, 1]𝑑 and 𝑔⋆1, . . . , 𝑔
⋆
𝐾 lie

in a Sobolev ball with smoothness 𝛽 ∈ N. By Theorem 1 of Farrell et al. (2021), the deep

MLP-ReLU network estimator attains ̃︀𝑂(𝑛− 𝛽
𝛽+𝑑 ) estimation error. Consequently, FALCON+

attains ̃︀𝑂(𝑇
𝛽+2𝑑
2𝛽+2𝑑 ) regret by using this estimator as the offline regression oracle (we omit the

dependence on 𝐾 here). The above result is new, but cannot be directly compared with existing

results on “neural contextual bandits” (e.g., Zhou et al. 2020), as the model assumptions are

very different.
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In general, one can set ℱ to be any parametric or nonparametric function class, e.g.,

high-dimensional parametric class, Lipschitz function class, reproducing kernel Hilbert space,

and regression-tree-based or random-forest-based class. For any function class ℱ , we can

obtain a practical algorithm achieving the optimal regret for the corresponding contextual

bandit problem, as long as we can find a computationally-efficient and statisitcally-optimal

offline regression oracle. This usually leads to faster algorithms with improved regret bounds.

In particular, our regret upper bounds’ dependence on 𝑇 is usually better than previous upper

bounds in the literature, thanks to the fact that we lose very little in terms of dependence on

𝑇 when we directly convert an offline estimation error bound to a regret bound. Moreover,

our results enable people to tackle broader classes of new contextual bandit problems, such

as contextual bandits with heavy-tailed rewards, which will be discussed shortly.

2.3.2 Discussion

We discuss some interesting observations regarding our Assumption 2.2 and Theorem 2.2,

which further demonstrate the generality of our results.

Exact solutions to ERM are not required. An important advantage of Assumption

2.2 is that it does not pose any restriction on how the predictor ̂︀𝑓 is generated, thus does

not require one to use ERM or exactly solve ERM. This implies that the offline predictor̂︀𝑓 can be obtained by running iterative optimization algorithms like (stochastic) gradient

descent, and its computation can be implemented in an online/streaming fashion on large

datasets, which is an important consideration in modern machine learning practice. In other

words, ̂︀𝑓 can be computed via various methods, and the optimization error of ̂︀𝑓 is already

included in the offline learning guarantee ℰℱ ,𝛿(𝑛).

Exact realizability is not required. Another observation is that some approximation

error can also be included in ℰℱ ,𝛿(𝑛), which enables one to consider some relaxed notions of

realizability. Note that the proof of Theorem 2.2 does not rely on the realizability assumption

— the proof only relies on Assumption 2.2, which is well-defined even if 𝑓⋆ /∈ ℱ . This means

that Algorithm 2.2 and the regret bound (2.4) do not really require 𝑓⋆ ∈ ℱ — all they need is

a known guarantee ℰℱ ,𝛿(𝑛) which correctly upper bounds the population 𝐿2 distance between̂︀𝑓 and 𝑓⋆. As a consequence, our results readily extend to the setting where realizability

only holds approximately up to a known misspecification error 𝜖 (Van Roy and Dong 2019,

Lattimore et al. 2020, Foster and Rakhlin 2020). Specifically, suppose that 𝑓⋆ /∈ ℱ but there
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exists a function 𝑓 ∈ ℱ that is close to 𝑓⋆ in the sense that sup𝑥,𝑎 |𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)| ≤ 𝜖,

then we can deduce that

E[( ̂︀𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎))2] ≤ 𝜖2 + E[( ̂︀𝑓(𝑥, 𝑎)− 𝑟(𝑎))2]− inf
𝑓∈ℱ

E[(𝑓(𝑥, 𝑎)− 𝑟(𝑎))2]⏟  ⏞  
estimation error

This means that one can take ℰℱ ,𝛿(𝑛) to be 𝜖2 plus an upper bound on estimation error

which goes to zero with 𝑛 (note that one can still get sharp ̃︀𝑂(𝑛−𝑝)-type estimation error

bounds via offline regression in the misspecified setting; see Rakhlin et al. 2017). Plugging

the above choice of ℰℱ ,𝛿(𝑛) into Algorithm 2.2 and the general regret bound (2.4), one can

easily obtain the regret bound in the misspecified setting, which is typically equal to the

regret bound in the well-specified setting plus an additive term of 𝑂(𝜖
√
𝐾𝑇 ). While this

additive term is linear in 𝑇 , it is not surprising and is consistent with existing results in such

a setting (e.g., Theorem 5 of Foster and Rakhlin 2020), as the model is misspecified while

the regret is still evaluated against the globally optimal policy 𝜋𝑓⋆ .

It is worth noting that the misspecification error 𝜖 may be unknown in practice. The

challenge of adapting to an unknown 𝜖 is addressed by follow-up work of our paper; see §2.5

for a discussion of follow-up work.

Rewards can be unbounded/heavy-tailed. We note that the assumption 𝑟𝑡 ∈ [0, 1]𝒜

is not essential to our reduction, if we only want to bound the regret in expectation rather

than with high probability. Specifically, to obtain the same results on the expected regret,

we only need the following condition on the reward distribution:

E𝑥∼𝒟[ sup
𝑎,𝑎′∈𝒜

(𝑓⋆(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎′))] ≤
√
𝐾, (2.5)

which is very weak — in the special case of multi-armed bandits, it means “the gap between

the mean rewards of two actions is no greater than
√
𝐾.” Note that (2.5) only concerns

the conditional mean 𝑓⋆(𝑥, 𝑎) rather than the reward distribution, thus allows the “random

noise” in the reward to have an arbitrary distribution. Moreover, (2.5) allows the scale of

𝑓⋆(𝑥, 𝑎) to be arbitrarily large and unknown (as it only concerns the gap), thus enables

ℱ to contain unbounded functions. As a consequence, recent advances on “fast rates” for

offline unbounded/heavy-tailed regression (see Mendelson 2014 and Section 8 of Xu and

Zeevi 2020a) can be translated into contextual bandits. Here, the merit of our reduction
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is that different assumptions on the reward distribution only affect our results through the

offline learning guarantee ℰℱ ,𝛿(𝑛) in Assumption 2.2, thus the associated offline regression

challenges are “separated” from contextual bandits. Note that while heavy-tailed noise is

very well-studied in offline regression, it is rarely studied in contextual bandits, especially

with general function classes. Our reduction provides a simple way to obtain such results.

Robustness to delayed and batched feedback. In practical applications of contextual

bandits (e.g., clinical trials, recommendation systems), the feedback to the learner is typically

not immediate and may arrive in batches (Chapelle and Li 2011). In Perchet et al. (2016)

and Gao et al. (2019), a “batched bandit” model is developed, where the the learner must

split her learning process into a small number of batches due to several practical constraints.

Since FALCON / FALCON+ only requires processing the feedback associated with each epoch

after this epoch ends, our algorithm naturally handles delayed and batched feedback. In

particular, Theorem 2.2 is directly applicable to the batched version of stochastic contextual

bandits with general function classes, and implies that 𝑂(log log 𝑇 ) batches are sufficient for

one to achieve the optimal regret rate of 𝑇 , which significantly generalizes existing results

on batched bandits. We note that the ability to handle delayed and batched feedback is an

important advantage of adopting an epoch schedule and using an offline regression oracle

rather than an online regression oracle, as online regression is known to require immediate

feedback, and the increase of regret due to delayed rewards is generally much larger in

adversarial models than in stochastic models (see Lattimore and Szepesvári 2020).

2.4 Regret Analysis

In this section, we elaborate on how our simple algorithm achieves the optimal regret. While

we present our analysis based on Algorithm 2.1 and Theorem 2.1, everything is essentially

the same for Algorithm 2.2 and Theorem 2.2. We first analyze our algorithm (through an

interesting dual interpretation) and provide in §2.4.1 to §2.4.4 a proof sketch of Theorem

2.1. Then, in §2.4.5, we explain the key idea behind our algorithm, and in §2.4.6, we show

how this idea leads to the algorithm.

For ease of presentation, in this section we assume that |𝒳 | < ∞ but allows |𝒳 | to be

arbitrarily large. Focusing on such a setting enables us to highlight important ideas and key

insights without the need to invoke measure theoretic arguments (which are necessary for
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infinite/uncountable 𝒳 ). We remark that all our results hold for general uncountable 𝒳 ; see

Appendix A.1.7 for more details.

Since some notations appearing in Algorithm 2.1 are shorthand and do not explicitly

reveal the dependence between different quantities (e.g., ̂︀𝑎𝑡 and 𝑝𝑡(·) should be written as

a function and a conditional distribution explicitly depending on the random context 𝑥𝑡),

we introduce some new notations which can describe the decision generating process of

Algorithm 2.1 in a more systematic way. For each epoch 𝑚 ∈ N, given the learning rate

𝛾𝑚 ∈ R+ and the greedy predictor ̂︀𝑓𝑚 : 𝒳 ×𝒜 → [0, 1] (which are uniquely determined by

the data from the first 𝑚− 1 epochs), we can explicitly represent the algorithm’s decision

rule using 𝛾𝑚 and ̂︀𝑓𝑚. Specifically, for any 𝑥 ∈ 𝒳 , define ̂︀𝑎𝑚(𝑥) := max𝑎∈𝒜 ̂︀𝑓𝑚(𝑥, 𝑎) and

𝑝𝑚(𝑎 | 𝑥) :=

⎧⎪⎨⎪⎩
1

𝐾+𝛾𝑚( ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥,𝑎))
, for all 𝑎 ̸= ̂︀𝑎𝑚(𝑥),

1−
∑︀

𝑎̸=̂︀𝑎𝑚(𝑥) 𝑝𝑚(𝑎 | 𝑥), for 𝑎 = ̂︀𝑎𝑚(𝑥).
Then 𝑝𝑚(· | ·) is a well-defined action selection kernel (see §2.1.5) that completely characterizes

the algorithm’s decision rule in epoch 𝑚. Specifically, at each round 𝑡 in epoch 𝑚, the

algorithm first observes a random context 𝑥𝑡, then samples its action 𝑎𝑡 according to the

conditional distribution 𝑝𝑚(· | 𝑥𝑡). Note that 𝑝𝑚(· | ·) depends on all the randomness up to

round 𝜏𝑚−1 (including round 𝜏𝑚−1), which means that 𝑝𝑚(· | ·) depends on 𝑝1(· | ·), 𝑝2(· |

·), . . . , 𝑝𝑚−1(· | ·), and will affect 𝑝𝑚+1(· | ·), 𝑝𝑚+2(· | ·), . . . in later epochs.

2.4.1 A Tale of Two Processes

The conventional way of analyzing our algorithm’s behavior at round 𝑡 in epoch 𝑚 is to

study the following original process:

1. Nature generates 𝑥𝑡 ∼ 𝒟.

2. Algorithm samples 𝑎𝑡 ∼ 𝑝𝑡(·).

The above process is however tricky to analyze, because the algorithm’s sampling strategy

over actions, 𝑝𝑡(·) = 𝑝𝑚(· | 𝑥𝑡), depends on the new random context 𝑥𝑡, and cannot be

evaluated in advance before observing 𝑥𝑡.

A core idea of our analysis is to find a way to examine the algorithm’s behavior at round

𝑡 before observing 𝑥𝑡. To this end, we look at the following virtual process at round 𝑡 in
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epoch 𝑚:

1. Algorithm samples 𝜋𝑡 ∼ 𝑄𝑚(·), where 𝜋𝑡 : 𝒳 → 𝒜 is a policy, and 𝑄𝑚(·) : 𝒜𝒳 → [0, 1]

is a probability distribution over all policies in 𝒜𝒳 .

2. Nature generates 𝑥𝑡 ∼ 𝒟.

3. Algorithm selects 𝑎𝑡 = 𝜋𝑡(𝑥𝑡) deterministically.

The merit of the above process is that the algorithm’s sampling procedure over policies,

𝑄𝑚(·), is independent of the new context 𝑥𝑡. While the algorithm still has to select an action

based on 𝑥𝑡 in step 3, this is completely deterministic and easier to analyze. Note that

at round 𝑡, 𝑄𝑚(·) is a stationary distribution which has already been determined at the

beginning of epoch 𝑚.

The second process is however a virtual process because it is not how our algorithm

directly proceeds. An immediate question is whether we can always find a distribution over

policies 𝑄𝑚(·), such that our algorithm behaves exactly the same as the virtual process in

epoch 𝑚? Recall that the algorithm’s decision rule in epoch 𝑚 is completely characterized

by the action selection kernel 𝑝𝑚(· | ·). In fact, any action selection kernel 𝑝𝑚(· | ·) can be

translated into an “equivalent” distribution over policies 𝑄𝑚(·), enabling us to study our

algorithm’s behavior through the virtual process. We complete this translation in §2.4.2.

2.4.2 Action Selection Kernel as a Randomized Policy

We define the universal policy space as Ψ := 𝒜𝒳 , which contains all possible policies. For

any 𝑝𝑚(· | ·), we can construct a (unique) product probability measure 𝑄𝑚(·) on Ψ such that

𝑄𝑚(𝜋) =
∏︀
𝑥∈𝒳 𝑝𝑚(𝜋(𝑥) | 𝑥) for all 𝜋 ∈ Ψ (see Lemma A.3 in the appendix). This 𝑄𝑚(·)

ensures that for every 𝑥 ∈ 𝒳 , 𝑎 ∈ 𝒜,

𝑝𝑚(𝑎 | 𝑥) =
∑︁
𝜋∈Ψ

I{𝜋(𝑥) = 𝑎}𝑄𝑚(𝜋). (2.6)

That is, for any arbitrary context 𝑥, the algorithm’s action generated by 𝑝𝑚(· | 𝑥) is

probabilistically equivalent to the action generated by 𝑄𝑚(·) through the virtual process in

§2.4.1. Since 𝑄𝑚(·) is a dense distribution over all deterministic policies in the universal

policy space, we refer to 𝑄𝑚(·) as the “equivalent randomized policy” induced by 𝑝𝑚(· | ·).
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Since 𝑝𝑚(· | ·) is completely determined by 𝛾𝑚 and 𝑓𝑚, we know that 𝑄𝑚(·) is also completely

determined by 𝛾𝑚 and 𝑓𝑚.

We emphasize that our algorithm does not compute 𝑄𝑚(·), but implicitly maintains 𝑄𝑚(·)

through 𝛾𝑚 and ̂︀𝑓𝑚. This is important, as even when 𝒳 is known to the learner, computing

the product measure 𝑄𝑚(·) requires Ω(|𝒳 |) computational cost which is intractable for large

|𝒳 |. Remember that all of our arguments based on 𝑄𝑚(·) are only applied for the purpose

of statistical analysis and have nothing to do with the algorithm’s original implementation.

2.4.3 Dual Interpretation in the Universal Policy Space

Through the lens of the virtual process, we find a dual interpretation of our algorithm: it

sequentially maintains a dense distribution 𝑄𝑚(·) over all the policies in the universal policy

space Ψ, for epoch 𝑚 = 1, 2, 3 . . . . The analysis of the behavior of our algorithm thus could

hopefully reduce to the analysis of an evolving sequence {𝑄𝑚}𝑚∈N (which is still non-trivial

because it still depends on all the interactive data). All our analysis from now on will be

based on the above dual interpretation.

As we start to explore how {𝑄𝑚}𝑚∈N evolves in the universal policy space, let us first

define some implicit quantities in this world which are useful for our statistical analysis —

they are called “implicit” because our algorithm does not really compute or estimate them at

all, yet they are all well-defined and implicitly exist as long as our algorithm proceeds.

Define the “implicit reward” of a policy 𝜋 ∈ Ψ as

ℛ(𝜋) := E𝑥∼𝒟 [𝑓⋆(𝑥, 𝜋(𝑥))]

and define the “implicit regret”4 of a policy 𝜋 ∈ Ψ as

Reg(𝜋) := ℛ(𝜋𝑓⋆)−ℛ(𝜋).

At round 𝑡 in epoch 𝑚, given a predictor ̂︀𝑓𝑚, define the “predicted implicit reward” of a

policy 𝜋 ∈ Ψ as ̂︀ℛ𝑡(𝜋) := E𝑥∼𝒟

[︁ ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))]︁
4Note that this is an “instantaneous” quantity in [0, 1], not a sum over multiple rounds.
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and define the “predicted implicit regret” of a policy 𝜋 ∈ Ψ as5

̂︂Reg𝑡(𝜋) := ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚)− ̂︀ℛ𝑡(𝜋).

The idea of defining the above quantities is motivated by the celebrated work of Agarwal

et al. (2014), which studies policy-based optimal contextual bandit learning in the agnostic

setting (in which setting the above quantities are not implicit but play obvious roles and are

directly estimated by their algorithm). There are some differences in the definitions though.

For example, Agarwal et al. (2014) define the above quantities for all policies 𝜋 in a given

finite policy class Π, while we define the above quantities for all policies in the universal

policy space Ψ (which is strictly larger than Π). Also, Agarwal et al. (2014) define ̂︀ℛ𝑡(𝜋)

and ̂︂Reg𝑡(𝜋) based on the inverse propensity scoring estimates, while we define them based

on a single predictor. We will revisit these differences later.

After defining the above quantities, we make a simple yet powerful observation, which is

an immediate consequence of (2.6): for any epoch 𝑚 ∈ N and any round 𝑡 in epoch 𝑚, we

have

E(𝑥𝑡,𝑟𝑡)∼𝒟,𝑎𝑡∼𝑝𝑚(·|𝑥𝑡)

[︁
𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | 𝛾𝑚, ̂︀𝑓𝑚]︁ = ∑︁

𝜋∈Ψ
𝑄𝑚(𝜋)Reg(𝜋),

see Lemma A.4 in the appendix. This means that (under any possible realization of 𝛾𝑚, ̂︀𝑓𝑚)

the expected instantaneous regret incurred by our algorithm is equal to the “implicit regret” of

the randomized policy 𝑄𝑚 (as a weighted sum over the implicit regret of every deterministic

policy 𝜋 ∈ Ψ). Since Reg(𝜋) is a fixed deterministic quantity for each 𝜋 ∈ Ψ, the above

equation indicates that to analyze our algorithm’s expected regret in epoch 𝑚, we only

need to analyze the distribution 𝑄𝑚(·). This property shows the advantage of our dual

interpretation: compared with the original process in §2.4.1 where it is hard to evaluate our

algorithm without 𝑥𝑡, now we can evaluate our algorithm’s behavior regardless of 𝑥𝑡.

2.4.4 Optimal Contextual Bandit Learning in the Universal Policy Space

We proceed to understand how 𝑄𝑚(·) evolves in the universal policy space. We first state an

immediate observation based on the equivalence of 𝑝𝑚(· | ·) and 𝑄𝑚(·) given by equation

5Note that in §2.1.2 we have defined 𝜋𝑓 as the reward-maximizing policy induced by a reward function 𝑓 ,
i.e., 𝜋𝑓 (𝑥) = argmax𝑎∈𝒜 𝑓(𝑥, 𝑎) for all 𝑥 ∈ 𝒳 . Also note that not all policies in Ψ can be written as 𝜋𝑓 for
some 𝑓 ∈ ℱ .
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(2.6).

Observation 2.1. For any deterministic policy 𝜋 ∈ Ψ, the quantity E𝑥∼𝒟

[︁
1

𝑝𝑚(𝜋(𝑥)|𝑥)

]︁
is

the expected inverse probability that “the decision generated by the randomized policy 𝑄𝑚 is

the same as the decision generated by the deterministic policy 𝜋,” over the randomization

of context 𝑥. This quantity can be intuitively understood as a measure of the “decisional

divergence” between the randomized policy 𝑄𝑚 and the deterministic policy 𝜋.

Now let us utilize the closed-form structure of 𝑝𝑚(· | 𝑥) in our algorithm and point out

a most important property of 𝑄𝑚(·) stated below (see Lemma A.5 and Lemma A.6 in the

appendix for details).

Observation 2.2. For any epoch 𝑚 ∈ N and any round 𝑡 in epoch 𝑚, for any possible

realization of 𝛾𝑚 and ̂︀𝑓𝑚, 𝑄𝑚(·) is a feasible solution to the following “Implicit Optimization

Problem” ( IOP):

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)̂︂Reg𝑡(𝜋) ≤ 𝐾/𝛾𝑚, (2.7)

∀𝜋 ∈ Ψ, E𝑥∼𝒟

[︂
1

𝑝𝑚(𝜋(𝑥) | 𝑥)

]︂
≤ 𝐾 + 𝛾𝑚̂︂Reg𝑡(𝜋). (2.8)

We give some interpretations for the “Implicit Optimization Problem” (IOP) defined above.

(2.7) says that 𝑄𝑚 controls its predicted implicit regret (as a weighted sum over the predicted

implicit regret of every policy 𝜋 ∈ Ψ, based on the predictor ̂︀𝑓𝑚) within 𝐾/𝛾𝑚. This can

be understood as an “exploitation constraint” because it require 𝑄𝑚 to put more mass on

“good policies” with low predicted implicit regret (as judged by the current predictor ̂︀𝑓𝑚).

(2.8) says that the decisional divergence between 𝑄𝑚(·) and any policy 𝜋 ∈ Ψ is controlled

by the predicted implicit regret of policy 𝜋 (times a learning rate 𝛾𝑚 and plus a constant

𝐾). This can be understood as an “adaptive exploration constraint,” as it requires that 𝑄𝑚

behaves similarly to every policy 𝜋 ∈ Ψ at some level (which means that there should be

sufficient exploration), while allowing 𝑄𝑚 to be more similar to “good policies” with low

predicted implicit regret and less similar to “bad policies” with high predicted implicit regret

(which means that the exploration can be conducted adaptively based on the judgement

of the predictor ̂︀𝑓𝑚). Combining (2.7) and (2.8), we conclude that 𝑄𝑚 elegantly strikes a

balance between exploration and exploitation — it is surprising that this is done completely

implicitly, as the original algorithm does not explicitly consider these constraints at all.
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There are still a few important tasks to complete. The first task is to figure out what

exactly the decisional divergence E𝑥∼𝒟

[︁
1

𝑝𝑚(𝜋(𝑥)|𝑥)

]︁
means. We give an answer in Lemma

A.7, which shows that with high probability, for any epoch 𝑚 ∈ N and any round 𝑡 in epoch

𝑚, for all 𝜋 ∈ Ψ,

| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)| ≤
√
𝐾

2𝛾𝑚

√︃
max

1≤𝑛≤𝑚−1
E𝑥∼𝒟

[︂
1

𝑝𝑛(𝜋(𝑥) | 𝑥)

]︂
.

That is, the prediction error of the implicit reward of every policy 𝜋 ∈ Ψ can be bounded by

the (maximum) decisional divergence between 𝜋 and all previously used randomized policies

𝑄1, . . . , 𝑄𝑚−1. This is consistent with our intuition, as the more similar a policy is to the

previously used randomized policies, the more likely that this policy is implicitly explored in

the past, and thus the more accurate our prediction on this policy should be. We emphasize

that the above inequality relies on our specification of the learning rate 𝛾𝑚: we can bound

the prediction error using 1/𝛾𝑚 because 1/𝛾𝑚 is proportional to 1/
√
𝜏𝑚−1 and proportional

to
√︀

log |ℱ| — the first quantity 1/
√
𝜏𝑚−1 is related to the length of the history, and the

second quantity
√︀
log |ℱ| is related to the generalization ability of function class ℱ . This is

the first place that our proof requires an epoch-varying learning rate.

The second task is to further bound (the order of) the prediction error of the implicit

regret of every policy 𝜋, as the implicit regret is an important quantity that can be directly

used to bound our algorithm’s expected regret (see §2.4.3). We do this in Lemma A.8, where

we show that with high probability, for any epoch 𝑚 ∈ N and any round 𝑡 in epoch 𝑚, for

all 𝜋 ∈ Ψ,

Reg(𝜋) ≤ 2̂︂Reg𝑡(𝜋) + 5.15𝐾/𝛾𝑚,

̂︂Reg𝑡(𝜋) ≤ 2Reg(𝜋) + 5.15𝐾/𝛾𝑚

through an inductive argument. While this is a uniform-convergence-type result, we would like

to clarify that this does not mean that there is a uniform convergence of |Reg(𝜋)− ̂︂Reg𝑡(𝜋)|
for all 𝜋 ∈ Ψ, which is too strong and unlikely to be true. Instead, we use a smart design of

Reg(𝜋)−2̂︂Reg𝑡(𝜋) and ̂︂Reg𝑡(𝜋)−2Reg(𝜋) (the design is motivated by Lemma 13 in Agarwal

et al. 2014), which enables us to characterize the fact that the predicted implicit regret of

“good policies” are becoming more and more accurate, while the predicted implicit regret

of “bad policies” do not need to be accurate (as their orders directly dominate 𝐾/𝛾𝑚). We
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emphasize that the above result relies on the fact that our learning rate 𝛾𝑚 is gradually

increasing from 𝑂(1) to 𝑂(
√
𝑇 ), as we use an inductive argument and in order to let the

hypothesis hold for initial cases we have to let 𝛾𝑚 be very small for small 𝑚. This is the

second place that our proof requires a epoch-varying learning rate.

We have elaborated on how our algorithm implicitly strikes a balance between exploration

and exploitation, and how our algorithm implicitly enables some nice uniform-convergence-

type results to happen in the universal policy space. This is already enough to guarantee

that the dual interpretation of our algorithm achieves optimal contextual bandit learning

in the universal policy space. The rest of the proof is standard and can be found in the

appendix.

2.4.5 Key Idea: Bypassing the Monster

For readers who are familiar with the research line of optimal contextual bandits learning in

the agnostic setting using an offline cost-sensitive classification oracle (represented by Dudík

et al. 2011, Agarwal et al. 2014), they may find a surprising connection between the IOP

(2.7) (2.8) that we introduce in Observation 2.2 and the so-called “Optimization Problem”

(OP) in Dudík et al. (2011) and Agarwal et al. (2014) — in particular, if one takes a look at

the OP defined in page 4 of Agarwal et al. (2014), one will find that it is almost the same as

our IOP (2.7) (2.8), except for two fundamental differences:

1. The OP of Dudík et al. (2011) and Agarwal et al. (2014) is defined on a given finite

policy class Π, which may have an arbitrary shape. As a result, to get a solution to OP,

the algorithm must explicitly solve a complicated (non-convex) optimization problem

over a possibly complicated policy class — this requires a considerable number of calls

to a cost-sensitive classification oracle, and is the major computational burden of Dudík

et al. (2011) and Agarwal et al. (2014). Although Agarwal et al. (2014) “tame the

monster” and reduce the computational cost by only strategically maintaining a sparse

distribution over policies in Π, solving OP still requires ̃︀𝑂(√︀𝐾𝑇/ log |Π|) calls to the

classification oracle and is computationally expensive — the monster is still there.

By contrast, our IOP is defined on the universal policy space Ψ, which is a nice

product space. The IOP can thus be viewed as a very “slack” relaxation of OP which is

extremely easy to solve. In particular, as §2.4 suggests, the solution to IOP can have
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a completely decomposed form which enables our algorithm to solve it in a complete

implicit way. This means that our algorithm can implicitly and confidently maintain

a dense distribution over all policies in Ψ, while solving IOP in closed forms at no

computational cost — there is no monster any more as we simply bypass it.

2. In Dudík et al. (2011) and Agarwal et al. (2014), the quantities ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋) are

explicitly calculated based on the model-free inverse propensity scoring estimates. As

a result, their regret guarantees do not require the realizability assumption.

By contrast, in our paper, the quantities ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋) are implicitly calculated

based on a single greedy predictor ̂︀𝑓 — we can do this because we have the realizability

assumption (or relaxed notions of realizability) which enables us to learn the reward

model and obtain an ̂︀𝑓 that is close to 𝑓⋆ (see also Assumption 2.2). As a result, we

make a single call to the offline regression oracle here, and this is the main computational

cost of our algorithm.

A possible question could then be that, given the fact that the main computational

burden of Dudík et al. (2011) and Agarwal et al. (2014) is solving OP, why can’t they simply

relax OP as we do in our IOP? The answer is that without the realizability assumption, they

have to rely on the capacity control of their policy space, i.e., the boundedness of |Π|, to

obtain their statistical guarantees. Indeed, as their ̃︀𝑂(
√︀
𝐾𝑇 log |Π|) regret bound suggests,

if one let Π = 𝒜𝒳 , then the regret could be as large as Ω(|𝒳 |). Specifically, their analysis

requires the limited capacity (or complexity) of Π in two places: first, a generalization

guarantee of the inverse propensity scoring requires limited |Π|; second, since they have to

explicitly compute ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋) without knowing the true context distribution 𝒟, they

try to approximate it based on the historical data, which also requires limited |Π| to enable

statistical guarantees.

Our algorithm bypasses the above two requirements simultaneously: first, since we use

model-based regression rather than model-free inverse propensity scoring to make predictions,

we do not care about the complexity of our policy space in terms of prediction (i.e., the

generalization guarantee of our algorithm is governed by the capacity of ℱ rather than Ψ);

second, since our algorithm does not require explicit computation of ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋), we

do not care about what 𝒟 looks like. Essentially, all of these nice properties originate from

the realizability assumption. This is how we understand the value of realizability: it does
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not only (statistically) give us better predictions, but also (computationally) enables us to

remove the restrictions in the policy space , which helps us to bypass the monster.

2.4.6 The Birth of FALCON

The idea behind “bypassing the monster,” as explained in §2.4.5, is exactly what leads to

the derivation of the FALCON algorithm. The derivation is interesting because it reveals deep

connections between the celebrated OP studied by Dudík et al. (2011), Agarwal et al. (2014)

and the intriguing probabilistic selection strategy studied by Abe and Long (1999) and

Foster and Rakhlin (2020). Before we close this section, we describe how FALCON was derived.

We hope that this derivation process can provide new perspectives on previous work, and

motivate further discovery of new algorithms for other bandit and reinforcement learning

problems.

1. We conduct a thought experiment, considering how ILOVETOCONBANDITS (Agarwal et al.

2014) can solve our problem without the realizability assumption, given an induced

policy class Π = {𝜋𝑓 | 𝑓 ∈ ℱ}.

2. ILOVETOCONBANDITS uses an inverse propensity scoring approach to calculate the pre-

dicted reward and predicted regret of policies. This can be thought as using a model-free

approach (different from our §2.4.3) to calculate ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋) for 𝜋 ∈ Π.

3. The computational burden in the above thought experiment is to solve OP over Π,

which requires repeated calls to a cost-sensitive classification oracle.

4. When we have realizability, we can use a regression oracle to obtain a predictor ̂︀𝑓𝑚 and

use it to calculate ̂︀ℛ𝑡(𝜋) and ̂︂Reg𝑡(𝜋) for 𝜋 ∈ Ψ (if 𝒟 is known). Here, we can operate

on the set of all policies rather than only on Π, as generalization is governed by the

capacity of ℱ .

5. An early technical result of Lemma 4.3 in Agarwal et al. (2012) is very interesting.

It shows that when one tries to solve contextual bandits using regression approaches,

one should try to bound a quantity like “the expected inverse probability of choosing

the same action” — note that a very similar quantity also appears in OP in Agarwal

et al. (2014). This suggests that an offline-regression-oracle-based algorithm should try

to satisfy some requirements similar to OP. (Lemma 4.3 in Agarwal et al. (2012) also
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motivates our Lemma A.7. But our Lemma A.7 goes a significant step beyond Lemma

4.3 in Agarwal et al. (2012) by unbinding the relationship between a predictor and a

policy and moving forward to the universal policy space.)

6. Motivated by 3, 4, and 5, we relax the domain of OP from Π to Ψ, and obtain the

relaxed problem IOP. Since the new domain Ψ = 𝒜𝒳 is a product space, we consider

the per-context decomposed version of IOP, i.e., a problem “conditional on a single 𝑥”:

∑︁
𝜋(𝑥)∈𝒜

𝑝𝑚(𝜋(𝑥) | 𝑥)𝛾𝑚
(︁ ̂︀𝑓𝑚(𝜋 ̂︀𝑓𝑚(𝑥))− ̂︀𝑓𝑚(𝜋(𝑥)))︁ ≤ 𝐾,

∀𝜋(𝑥) ∈ 𝒜, 1

𝑝𝑚(𝜋(𝑥) | 𝑥)
≤ 𝐾 + 𝛾𝑚

(︁ ̂︀𝑓𝑚(𝜋 ̂︀𝑓𝑚(𝑥))− ̂︀𝑓𝑚(𝜋(𝑥)))︁ .
Clearly, there is a closed-form solution to the above problem: the conditional probability

of selecting an action 𝜋(𝑥) should be inversely proportional to the predicted reward

gap of 𝜋(𝑥) times 𝛾𝑚. This leads to FALCON’s decision generating process in epoch 𝑚.

2.5 Concluding Remarks

In this paper, we propose the first provably optimal offline-regression-oracle-based algorithm

for general contextual bandits, solving an important open problem in the contextual bandit

literature. Our algorithm is surprisingly fast and simple, and our analysis is quite general. We

hope that our findings can motivate future research on contextual bandits and reinforcement

learning. We discuss some follow-up work and future directions below.

Follow-up work. Since the first version of our paper appeared on arXiv (Simchi-Levi

and Xu 2020), there have been several developments directly inspired by our work. Here

we mention several extensions of our results. Xu and Zeevi (2020b) extend our results to

the practical setting of infinite actions. Foster et al. (2020) build on our results to achieve

instance-dependent guarantees of contextual bandits, and further extend the results to

reinforcement learning. Wei and Luo (2021) extend our results to non-stationary contextual

bandits; their approach to deal with non-stationarity is quite general and finds broader

applications. Sen et al. (2021) extend our results to a combinatorial action model where

one need to select more than one action per round. Krishnamurthy et al. (2021) extend

our results to the setting where the model is misspecified and the misspecification error is

unknown.
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Future directions. Going forward, our work motivates many interesting research

questions. First, in Example 2.2 (linear contextual bandits), our regret bound has worse

dependence on 𝐾 compared with LinUCB (Chu et al. 2011). This seems like a limitation of the

employed probabilistic selection strategy, i.e., it does not fully utilize the special properties

of some function classes to obtain improved dependence on 𝐾. Understanding this issue

better, and more broadly, understanding how to characterize and achieve the regret’s optimal

dependence on 𝐾 for general function classes, is important from both theoretical and practical

points of view. Second, our work establishes new connections between policy-based (agnostic)

and value-function-based (realizable) contextual bandits. We hope that the techniques and

perspectives developed in this paper can find broader applications in reinforcement learning

with function approximation. Finally, our work successfully reduces a prominent online

decision making problem to a well-studied offline supervised learning problem. Can similar

online-to-offline reductions be achieved in other practical learning settings?

60



Chapter 3

Instance-Dependent Complexity of

Contextual Bandits and Reinforcement

Learning

3.1 Introduction

How can we adaptively allocate measurements to exploit problem structure in the presence

of rich, high-dimensional, and potentially stateful contextual information? In this paper,

we investigate this question in the contextual bandit problem and its stateful relative, the

problem of reinforcement learning with rich observations.

The contextual bandit is a fundamental problem in sequential decision making. At each

round, the learner receives a context, selects an action, and receives a reward ; their goal

is to select actions so as to maximize the total long-term reward. This model has been

successfully deployed in news article recommendation (Li et al. 2010, Agarwal et al. 2016),

where actions represent articles to display and rewards represent clicks, and healthcare

(Tewari and Murphy 2017, Bastani and Bayati 2020), where actions represent treatments to

prescribe and rewards represent the patient’s response. Reinforcement learning with rich

observations (Krishnamurthy et al. 2016, Jiang et al. 2017) is a substantially more challenging

generalization in which the learner’s actions influence the evolution of the contexts, and

serves as a stylized model for reinforcement learning with function approximation.

For both settings, our aim is to develop instance-dependent algorithms that adapt to gaps

between actions in the underlying reward function to obtain improved regret. In the classical
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(non-contextual) multi-armed bandit problem, this issue has enjoyed extensive investigation

beginning with the work of Lai and Robbins (1985). Here, it is well-understood that when

the mean reward function admits a constant gap between the best and second-best action,

well-designed algorithms can obtain logarithmic (in 𝑇 , the number of rounds) regret, which

offers significant improvement over the worst-case minimax rate of
√
𝑇 . Subsequent work has

developed a sharp understanding of optimal instance-dependent regret, both asymptotically

and with finite samples (Burnetas and Katehakis 1996, Garivier et al. 2016, Kaufmann et al.

2016, Lattimore 2018, Garivier et al. 2019). Beyond the obvious appeal of lower regret,

instance-dependent algorithms are particularly compelling for applications such as clinical

trials—where excessive randomization may be undesirable or unethical—because they identify

and eliminate suboptimal actions more quickly than algorithms that only aim for worst-case

optimality.

We take the first step towards developing a similar theory for contextual bandits and

reinforcement learning with general function approximation. We focus on the “realizable” or

“well-specified” setting in which the learner has access to a class of regression functions ℱ

that is flexible enough to capture the true reward function or value function. Our aim is

to develop learning-theoretic guarantees for rich, potentially nonparametric function classes

that 1) scale only with the statistical capacity of the class, and 2) are efficient in terms of

basic computational primitives for the class.

For contextual bandits, instance-dependent regret bounds are not well-understood.

Positive results are known for simple classes of functions such as linear classes (Dani et al.

2008, Abbasi-Yadkori et al. 2011, Hao et al. 2019) or nonparametric Lipschitz/Hölder classes

(Rigollet and Zeevi 2010, Perchet and Rigollet 2013, Hu et al. 2020). On the other hand,

for arbitrary finite function classes, it is known that gap-dependent regret bounds are not

possible in general (Foster and Rakhlin 2020). One line of work develops algorithms which

attain instance-dependent bounds for general classes under additional structural assumptions

or distributional assumptions (Russo and Van Roy 2013, Bietti et al. 2018, Foster et al.

2018), but it is not clear whether these assumptions are fundamental (in particular, they

are not required to obtain minimax rates). For reinforcement learning, the situation is more

dire: while instance-dependent rates have been explored in the finite state/action setting

(Burnetas and Katehakis 1996, Tewari and Bartlett 2008, Ok et al. 2018, Simchowitz and

Jamieson 2019), very little is known for the general setting with high dimensional states and
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function approximation.

Beyond the basic issue of what instance-dependent rates can be achieved for general

function classes, an important question is whether they can be achieved efficiently, using

practical algorithms. A recent line of work (Foster et al. 2018, Foster and Rakhlin 2020,

Simchi-Levi and Xu 2022, Xu and Zeevi 2020b) develops algorithms that are efficient in

terms calls to an oracle for (offline/online) supervised regression. A secondary goal in this

work is to develop practical instance-dependent algorithms based on this primitive.

Altogether, our central questions are:

1. For contextual bandits and reinforcement learning with rich observations, what proper-

ties of the function class enable us to adapt to the gap, and what are the fundamental

limits?

2. Can we adapt to the gap efficiently?

3. More ambitiously, can we get the best of both worlds : Adapt to the gap and obtain the

minimax rate simultaneously?

3.1.1 Main Results

For contextual bandits, we address each of the above research questions. We introduce

a family of new complexity measures which are both necessary (in a certain sense) and

sufficient to obtain fast gap-dependent regret bounds. We introduce new oracle-efficient

algorithms which adapt to the gap and to these complexity measures whenever possible,

while also obtaining the minimax rate. Notably, our algorithms only access the hypothesis

class through calls to a weighted least squares regression oracle, which makes our algorithms

highly practical (as they can be combined with any out-of-the-box algorithm for supervised

regression for the model of interest). In a large-scale empirical evaluation, we find that our

approach often gives superior results for challenging exploration problems.

Moreover, we prove new structural results which—in conjunction with our lower bounds—

tie together a number of complexity measures previously proposed in contextual bandits,

reinforcement learning, and active learning and provide new insight into their role in de-

termining the optimal instance-dependent regret. See Figure 3-1 for an illustration of the

relationship between all the complexity measures (three old, three new) studied in this paper.
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Figure 3-1: Relationship between complexity measures.

Building on our contextual bandit results, we further provide disagreement-based guar-

antees for episodic reinforcement learning with function approximation in a model called

the block MDP (Krishnamurthy et al. 2016, Du et al. 2019b), which is an important type

of contextual decision process (Jiang et al. 2017). Specifically, we extend the value function

disagreement coefficient that we introduced in the contextual bandit setup to the block MDP

setup, and develop a new instance-dependent algorithm that adapts to the gap in the optimal

value function to attain improved sample complexity. Our algorithm is oracle-efficient, and

attains a tight gap-dependent PAC-RL guarantee whenever the (generalized) value function

disagreement coefficient is bounded. Overall, our results for RL are somewhat less complete,

but we believe they suggest a number of exciting new directions for future research.

3.1.2 Notation

We adopt non-asymptotic big-oh notation: For functions 𝑓, 𝑔 : 𝒳 → R+, we write 𝑓 = 𝑂(𝑔)

(resp. 𝑓 = Ω(𝑔)) if there exists some constant 𝐶 > 0 such that 𝑓(𝑥) ≤ 𝐶𝑔(𝑥) (resp.

𝑓(𝑥) ≥ 𝐶𝑔(𝑥)) for all 𝑥 ∈ 𝒳 . We write 𝑓 = ̃︀𝑂(𝑔) if 𝑓 = 𝑂(𝑔 · polylog(𝑇 )), 𝑓 = ̃︀Ω(𝑔) if

𝑓 = Ω(𝑔/polylog(𝑇 )), and 𝑓 = ̃︀Θ(𝑔) if 𝑓 = ̃︀𝑂(𝑔) and 𝑓 = ̃︀Ω(𝑔). We use 𝑓 ∝ 𝑔 as shorthand

for 𝑓 = ̃︀Θ(𝑔). For a vector 𝑥 ∈ R𝑑, we let ‖𝑥‖2 denote the euclidean norm and ‖𝑥‖∞ denote

the element-wise ℓ∞ norm. For an integer 𝑛 ∈ N, we let [𝑛] denote the set {1, . . . , 𝑛}. For a

set or a sequence 𝑆, we let Unif(𝑆) denote the uniform distribution over all the elements in

𝑆 (note that a sequence allows identical elements to appear multiple times). For a set 𝒳 , we

let Δ(𝒳 ) denote the set of all probability distributions over 𝒳 . Given a policy 𝜋 : 𝒳 → 𝒜,

we occasionally overload notation and write 𝜋(𝑥, 𝑎) = I{𝜋(𝑥) = 𝑎}.
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3.1.3 Organization

Section 3.2 and Section 3.3 give high-level overviews for our contextual bandit and reinforce-

ment learning results, respectively. Due to space constraints, detailed discussion and formal

statements for certain results are deferred to Appendix B.1 and Appendix B.2.

3.2 Instance-Dependent Complexity of Contextual Bandits

In this section we give a brief overview of our main results for contextual bandits. Please refer

to Appendix B.1 for a more thorough tour of the results, including full theorem statements,

additional discussion and examples, and a survey of related work.

3.2.1 Contextual Bandit Setup

We consider the following stochastic contextual bandit protocol. At each round 𝑡 ∈ [𝑇 ],

the learner observes a context 𝑥𝑡 ∈ 𝒳 , selects an action 𝑎𝑡 ∈ 𝒜, then observes a reward

ℓ𝑡(𝑎𝑡) ∈ [0, 1]. We assume that contexts are drawn i.i.d. from a fixed but unknown distribution

𝒟, and that each reward function ℓ𝑡 : 𝒜 → [0, 1] is drawn independently from a fixed but

unknown context-dependent distribution Pℓ(· | 𝑥𝑡). We consider finite actions, with 𝐴 := |𝒜|.6

We assume that the learner has access to a class of value functions ℱ ⊂ (𝒳 ×𝒜 → [0, 1])

(e.g., regression trees or neural networks) that is flexible enough to model the true reward

distribution. In particular, we make the following standard realizability assumption (Chu

et al. 2011, Agarwal et al. 2012, Foster et al. 2018).

Assumption 3.1 (Realizability). There exists a function 𝑓⋆ ∈ ℱ such that 𝑓⋆(𝑥, 𝑎) =

E[ℓ(𝑎) | 𝑥].

For each regression function 𝑓 ∈ ℱ , let 𝜋𝑓 (𝑥) = argmax𝑎∈𝒜 𝑓(𝑥, 𝑎) denote the induced

policy (with ties broken arbitrarily, but consistently), and let Π = {𝜋𝑓 | 𝑓 ∈ ℱ} be the

induced policy class. The goal of the learner is to ensure low regret to the optimal policy:

Reg =
𝑇∑︁
𝑡=1

ℓ𝑡(𝜋
⋆(𝑥𝑡))−

𝑇∑︁
𝑡=1

ℓ𝑡(𝑎𝑡), (3.1)

where 𝜋⋆ := 𝜋𝑓⋆ . For simplicity, we assume that argmax𝑎∈𝒜 𝑓
⋆(𝑥, 𝑎) is unique for all 𝑥, but

our results extend when this is not the case.
6We refer to each pair (𝒟,P𝑟) for the contextual bandit problem as an instance.
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Reward gaps and instance-dependent regret bounds Consider the simple case where

ℱ is finite. For general finite classes ℱ under Assumption 3.1, the minimax rate for contextual

bandits is Θ(
√︀
𝐴𝑇 log|ℱ|) (Agarwal et al. 2012). The main question we investigate is to

what extent this rate can be improved when the instance has a uniform gap7 in the sense

that for all 𝑥 ∈ 𝒳 ,

𝑓⋆(𝑥, 𝜋⋆(𝑥))− 𝑓⋆(𝑥, 𝑎) ≥ Δ ∀𝑎 ̸= 𝜋⋆(𝑥). (3.2)

For multi-armed bandits, the minimax rate is Θ(
√
𝐴𝑇 ), but instance-dependent algorithms

can achieve a logarithmic regret bound of the form Reg ≤ 𝑂
(︀𝐴 log 𝑇

Δ

)︀
when the gap is Δ, and

this is optimal (Garivier et al. 2019). Moving to contextual bandits, a natural guess would

be that we can achieve

E[Reg] = ̃︀𝑂(1) · 𝐴 log|ℱ|
Δ

. (3.3)

This is impossible in a fairly strong sense: Foster and Rakhlin (2020) show that exist function

classes ℱ for which any algorithm must have8

E[Reg] = Ω(1) · |ℱ|
Δ
.

Since ℱ is exponentially large for most models, polynomial dependence on |ℱ| is unacceptable.

The natural question then, and the one we address, is what structural properties of ℱ allow

for bounds of the form (3.3) that scale only logarithmically with the size of the value function

class. We present our main results for the special case of finite classes for simplicity, but

our lower bounds and structural results concern infinite classes, and our algorithms make no

assumption on the structure.

3.2.2 An Efficient, Instance-Dependent Algorithm

Our main algorithm, AdaCB, is presented in Algorithm 3.1. Exploration in AdaCB is based

on a probability selection strategy introduced by Abe and Long (1999) (see also Abe et al.

(2003)) and extended to contextual bandits with general function classes by Foster and

Rakhlin (2020) and Simchi-Levi and Xu (2022) for online and offline regression oracles,

respectively. We utilize a general version of the Abe-Long strategy which we refer to by the
7This is sometimes referred to as the Massart noise condition, which has been widely studied in statistical

learning theory in the context of obtaining faster rates for classification.
8Foster and Rakhlin (2020) prove this lower bound for adversarial contexts. Our Theorem B.2 implies an

analogous lower bound for stochastic contexts.
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more descriptive name “inverse gap weighting” (IGW). The strategy is parameterized by a

learning rate 𝛾 and a subset 𝒜′ ⊆ 𝒜 of actions. Given a context 𝑥 and reward predictor̂︀𝑓 ∈ ℱ , we define a probability distribution IGW𝒜′,𝛾(𝑥; ̂︀𝑓) ∈ Δ(𝒜) by

(︁
IGW𝒜′,𝛾(𝑥; ̂︀𝑓))︁

𝑎
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

|𝒜′|+𝛾( ̂︀𝑓(𝑥,̂︀𝑎)− ̂︀𝑓(𝑥,𝑎)) , for all 𝑎 ∈ 𝒜′/{̂︀𝑎},
1−

∑︀
𝑎∈𝒜′/{̂︀𝑎} 𝑝𝑡(𝑎), for 𝑎 = ̂︀𝑎,

0, for 𝑎 /∈ 𝒜′,

(3.4)

where ̂︀𝑎 := argmax𝑎∈𝒜′ ̂︀𝑓(𝑥, 𝑎). Both Foster and Rakhlin (2020) and Simchi-Levi and Xu

(2022) apply this strategy with 𝒜′ = 𝒜, and with the learning rate 𝛾 selected either constant

or following a fixed non-adaptive schedule. Building on this approach, AdaCB follows the

same general template as the FALCON algorithm of Simchi-Levi and Xu (2022), but with

two key differences. First, rather than applying the IGW scheme to all actions, we restrict

only to actions 𝑎 which are “plausible” in the sense that they are induced by a version space

ℱ𝑚 maintained (implicitly) by the algorithm. Second, we choose the learning rate 𝛾𝑚 in

a data-driven fashion, i.e., we adaptively update the learning rate based on our empirical

estimation of the “hardness” of the underlying problem instance. We refer to Appendix B.1.1

for more a detailed explanation of the design considerations behind AdaCB.

3.2.3 Disagreement-Based Guarantees

Our analysis of AdaCB shows that variants of the disagreement coefficient, a key parameter in

empirical process theory and active learning (Alexander 1987, Hanneke and Yang 2015), play

a fundamental role in determining the optimal gap-dependent regret bounds for contextual

bandits with rich function classes.

Our most basic results concern a parameter we call the policy disagreement coefficient,9

defined as

𝜃pol
𝒟,𝜋⋆(Π, 𝜀0) = sup

𝜀≥𝜀0

P𝒟(𝑥 : ∃𝜋 ∈ Π𝜀 : 𝜋(𝑥) ̸= 𝜋⋆(𝑥))

𝜀
, (3.5)

where Π𝜀 := {𝜋 ∈ Π : P𝒟(𝜋(𝑥) ̸= 𝜋⋆(𝑥)) ≤ 𝜀}; when 𝒟 and 𝜋⋆ are clear from context we

abbreviate to 𝜃pol(Π, 𝜀0). This parameter, sometimes called Alexander’s capacity function,

9In fact, for binary actions the policy disagreement coefficient is the same as the usual disagreement
coefficient from active learning (Hanneke and Yang 2015); we adopt the name policy disagreement coefficient
only to distinguish from other parameters we introduce.
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Algorithm 3.1 AdaCB (Adaptive Contextual Bandits)
input: Function class ℱ . Number of rounds 𝑇 .
initialization:

- 𝑀 = ⌈log2 𝑇 ⌉. // Number of epochs.

- Define 𝜏𝑚 = 2𝑚, 𝑡𝑚 = (𝜏𝑚+ 𝜏𝑚−1)/2 and 𝑛𝑚 = 𝜏𝑚− 𝜏𝑚−1 for 𝑚 ∈ [𝑀 ] // Epoch schedule.

and 𝜏0 = 0, 𝑡0 = 0, and 𝑛0 = 1/2.
- Set 𝛿 = 1/𝑇 . // Failure probability.

- 𝛽𝑚 = 16(𝑀 −𝑚+ 1) log(2|ℱ|𝑇 2/𝛿) for 𝑚 ∈ [𝑀 ] // Confidence radius.

- 𝜇𝑚 = 64 log(4𝑀/𝛿)/𝑛𝑚−1 for 𝑚 ∈ [𝑀 ] // Smoothing parameter.

notation:

-
∑︀0

𝑡=1[. . .] := 0 and E𝑥∼𝒟1 [. . .] := 1.
- For ℱ ′ ⊂ ℱ , define

𝒜(𝑥;ℱ ′) = {𝑎 ∈ 𝒜 : 𝜋𝑓 (𝑥) = 𝑎 for some 𝑓 ∈ ℱ ′}, // Candidate action set.

𝑤(𝑥;ℱ ′) = I{|𝒜(𝑥;ℱ ′)| > 1} · max
𝑎∈𝒜(𝑥;ℱ ′)

sup
𝑓,𝑓 ′∈ℱ ′

⃒⃒
𝑓(𝑥, 𝑎)− 𝑓 ′(𝑥, 𝑎)

⃒⃒
. // Confidence width.

algorithm:
1: for epoch 𝑚 = 1, 2, . . . ,𝑀 do
2: Compute the predictor ̂︀𝑓𝑚 = argmin𝑓∈ℱ

∑︀𝜏𝑚−1

𝑡=1 (𝑓(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2.

3: Define

ℱ𝑚 =

{︃
𝑓 ∈ ℱ

⃒⃒⃒ 𝑡𝑚−1∑︁
𝑡=1

(𝑓(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2 ≤ inf

𝑓 ′∈ℱ

𝑡𝑚−1∑︁
𝑡=1

(𝑓 ′(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2 + 𝛽𝑚

}︃
.

4: Compute the instance-dependent scale factor: if 𝑚 > 1,

𝜆𝑚 =

⎧⎪⎨⎪⎩
E𝑥∼𝒟𝑚 [I{|𝒜(𝑥;ℱ𝑚)|>1}]+𝜇𝑚√

E𝑥∼𝒟𝑚−1
[I{|𝒜(𝑥;ℱ𝑚−1)|>1}]+𝜇𝑚−1

, Option I: Policy-based exploration,

I
{︂
E𝑥∼𝒟𝑚 [𝑤(𝑥;ℱ𝑚)] ≥

√
𝐴𝑇 log(|ℱ|/𝛿)
𝑛𝑚−1

}︂
, Option II: Value-based exploration,

where 𝒟𝑚 = Unif(𝑥𝑡𝑚−1+1, . . . , 𝑥𝜏𝑚−1); else, 𝜆1 = 1 (Option I) or 0
(Option II).

5: Compute the learning rate:

𝛾𝑚 = 𝜆𝑚 ·

√︃
𝐴𝑛𝑚−1

log(2|ℱ|𝑇 2/𝛿)
.

6: for round 𝑡 = 𝜏𝑚−1 + 1, · · · , 𝜏𝑚 do
7: Observe context 𝑥𝑡 ∈ 𝒳 .
8: Compute the candidate action set

𝒜𝑡 = 𝒜(𝑥𝑡;ℱ𝑚).

9: Compute ̂︀𝑓𝑚(𝑥𝑡, 𝑎) for each action 𝑎 ∈ 𝒜𝑡. Let ̂︀𝑎𝑡 = max𝑎∈𝒜𝑡
̂︀𝑓𝑚(𝑥𝑡, 𝑎). Define

𝑝𝑡 = IGW𝒜𝑡,𝛾𝑚(𝑥𝑡;
̂︀𝑓𝑚). // Inverse gap weighting; see Eq. (3.4).

10: Sample 𝑎𝑡 ∼ 𝑝𝑡 and observe reward 𝑟𝑡(𝑎𝑡).
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dates back to Alexander (1987), and was rediscovered and termed the disagreement coefficient

in the context of active learning by Hanneke (2007, 2011). In empirical process theory and

statistical learning, the disagreement coefficient grants control over the fine-grained behavior

of VC classes (Giné and Koltchinskii 2006, Raginsky and Rakhlin 2011, Zhivotovskiy and

Hanneke 2016), and primarily determines whether certain logarithmic terms can appear

in excess risk bounds for empirical risk minimization (ERM) and other algorithms under

low-noise conditions. In active learning, the disagreement coefficient plays a more critical

role, as it provides a sufficient (and weakly necessary) condition under which one can achieve

label complexity logarithmic in the target precision (Hanneke 2007, 2011, Raginsky and

Rakhlin 2011, Hanneke 2014, Hanneke and Yang 2015).

Informally, the policy disagreement coefficient measures how likely we are to encounter a

context on which some near-optimal policy disagrees with 𝜋⋆. Low disagreement coefficient

means that all the near-optimal policies deviate from 𝜋⋆ only in a small, shared region

of the context space, while large disagreement coefficient means that the points on which

disagreement occurs are more prevalent throughout the context space (w.r.t 𝒟), so that

many samples are required to rule out all of these policies.

We show that AdaCB (Algorithm 3.1) adapts to the gap whenever the policy disagreement

coefficient is bounded; see Section 3.2.2 for details. We show that AdaCB achieves the

following instance-dependent guarantee stated in terms of 𝜃pol(Π, 𝜀).

Theorem B.1. For all instances, AdaCB (Algorithm 3.1 with Option I) ensures that

E[Reg] = ̃︀𝑂(1) ·min
𝜀>0

max

{︂
𝜀Δ𝑇,

𝜃pol(Π, 𝜀) ·𝐴 log |ℱ|
Δ

}︂
(3.6)

with no prior knowledge of Δ or 𝜃pol(Π, 𝜀).

Theorem B.1 is a best-of-both-worlds guarantee. In the worst case, we have 𝜃pol(Π, 𝜀) ≤

1/𝜀, so that (3.6) becomes ̃︀𝑂(√︀𝐴𝑇 log|ℱ|), the minimax rate. However, if 𝜃pol(Π, 𝜀) =

polylog(1/𝜀), then (3.6) ensures that

E[Reg] = ̃︀𝑂(1) · 𝐴 log|ℱ|
Δ

,

so that AdaCB enjoys logarithmic regret. We emphasize that while Theorem B.1 concerns

finite classes, this is only a stylistic choice: AdaCB places no assumption on the structure of
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ℱ , and the analysis trivially generalizes by replacing log|ℱ| with standard learning-theoretic

complexity measures such as the pseudodimension.

While this is certainly encouraging, it is not immediately clear whether the rate in (3.6)

is fundamental. To this end, we prove that dependence on the disagreement coefficient is

qualitatively necessary.

Theorem B.2. For any 𝐴 ∈ N, Δ > 0, 𝜀 > 0, and functional 𝜃pol(Π, 𝜀), there exists a

function class ℱ with 𝐴 actions and a distribution over realizable instances with uniform gap

Δ such that any algorithm has

E[Reg] = ̃︀Ω(1) · min
𝜀>0

max

{︂
𝜀Δ𝑇,

𝜃pol(Π, 𝜀) ·𝐴 log|ℱ|
Δ

}︂
.

Detailed variants of Theorem B.1 and Theorem B.2, as well as examples, can be found in

Appendix B.1.2.

3.2.4 Scale-Sensitive Guarantees and the Value Function Disagreement

Coefficient

Theorem B.2 shows that the regret bound (3.6) attained by AdaCB cannot be improved

without further assumptions on ℱ . However, it leaves the possibility of more refined

complexity measures that are tighter than 𝜃pol(Π, 𝜀) for most instances, yet coincide on the

construction that realizes the lower bound in Theorem B.2. To this end, we introduce a

second complexity measure, the value function disagreement coefficient, which can exploit

the scale-sensitive nature of the value function class ℱ to provide tighter bounds. The value

function disagreement coefficient is defined as

𝜃val
𝒟;𝑓⋆(ℱ ,Δ0, 𝜀0) =

sup
Δ>Δ0,𝜀>𝜀0

sup
𝑝:𝒳→Δ(𝒟)

Δ2

𝜀2
P𝒟,𝑝

(︁
∃𝑓 ∈ ℱ : |𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)| > Δ, ‖𝑓 − 𝑓⋆‖𝒟,𝑝 ≤ 𝜀

)︁
, (3.7)

where ‖𝑓‖2𝒟,𝑝 := E𝑥∼𝒟,𝑎∼𝑝(𝑥)[𝑓
2(𝑥)]. We abbreviate 𝜃val(ℱ ,Δ0, 𝜀0) ≡ 𝜃val

𝒟;𝑓⋆(ℱ ,Δ0, 𝜀0) when

the context is clear. The key difference from the policy disagreement coefficient is that

rather than using a binary property (𝜋(𝑥) ̸= 𝜋⋆(𝑥)) to measure disagreement, we use a more

refined scale-sensitive notion: Two functions 𝑓 and 𝑓⋆ are said to Δ-disagree on (𝑥, 𝑎) if

|𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)| > Δ, and the value function disagreement coefficient simply measures
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how likely we are to encounter a context for which a value function that is 𝜀-close to 𝑓⋆ in 𝐿2

distance Δ-disagrees from it (for a worst-case action distribution). This refined view leads to

tighter guarantees for common function classes. For example, when ℱ is a linear function

class, i.e. ℱ =
{︀
(𝑥, 𝑎) ↦→ ⟨𝑤, 𝜑(𝑥, 𝑎)⟩ | 𝑤 ∈ R𝑑

}︀
for a fixed feature map 𝜑(𝑥, 𝑎), the policy

disagreement coefficient is only bounded for sufficiently regular distributions, whereas the

value function disagreement coefficient is always bounded by 𝑑 (Proposition B.1).

We show that AdaCB, with a slightly different parameter configuration, can adapt to

value function disagreement coefficient in a best-of-both-worlds fashion.

Theorem B.3. For all instances, AdaCB with Option II ensures that

E[Reg] = ̃︀𝑂(1) · min

{︂√︀
𝐴𝑇 log|ℱ|, 𝜃

val(ℱ ,Δ/2, 𝜀𝑇 ) ·𝐴 log|ℱ|
Δ

}︂
,

where 𝜀𝑇 ∝
√︀
log|ℱ|/𝑇 .

In Appendix B.1.3 we show (Theorem B.4) that this dependence on 𝜃val(ℱ ,Δ, 𝜀) is

qualitatively necessary, meaning that AdaCB is adapts near-optimally without additional

assumptions.

Beyond contextual bandits, our scale-sensitive generalization of the disagreement coeffi-

cient is new to both empirical process theory and active learning to our knowledge, and may

be of independent interest.

3.2.5 Distribution-Free Guarantees and Structural Results

While the distribution-dependent nature of our disagreement-based upper bounds can lead to

tight guarantees for benign distributions, it is natural to ask: For what classes Π (resp. ℱ) can

we ensure the policy (resp. value) disagreement coefficient is bounded for any distribution 𝒟?

Hanneke and Yang (2015) show that the policy disagreement coefficient is always bounded by

a combinatorial parameter for Π called the (policy) star number.10 An immediate consequence

(via Theorem B.1) is that AdaCB enjoys logarithmic regret even in the distribution-free setting

for classes with bounded policy star number. More interestingly, in Appendix B.1.4 we show

(Theorem B.6) that for any class Π, bounded policy star number is necessary to obtain

10In fact, the star number exactly coincides with the worst-case value of the disagreement coefficient over
all possible distributions and scale parameters.
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logarithmic regret in the worst-case (with respect to both 𝒟 and the class ℱ realizing Π).

Thus, we have the following characterization.

Theorem (informal). For any policy class Π, bounded policy star number is necessary and

sufficient to obtain logarithmic regret in the distribution-free setting.

Compared to our disagreement-based lower bounds, which rely on specially designed

function classes, this lower bound holds for any policy class.

This characterization motivates us to define a scale-sensitive analogue of the star number

called the value function star number. The value function star number is a new combinatorial

parameter even within the broader literature on active learning and empirical process theory,

and we show (Theorem B.7) that it bounds the value function disagreement coefficient for all

choices of the context distribution 𝒟 and scale parameter 𝜀. We then show (Theorem B.8) that

a weak version of the value function disagreement coefficient is necessary to obtain logarithmic

regret for worst-case context distributions, leading to the following characterization.

Theorem (informal). For any value function class ℱ , bounded value function star number

is (weakly) necessary and sufficient to obtain logarithmic regret in the distribution-free setting.

We refer the reader to Appendix B.1.4 for formal statements for these results.

3.2.6 On the Eluder Dimension

The value function star number is closely related to—and in particular always upper bounded

by—the (value function) eluder dimension of Russo and Van Roy (2013). The eluder

dimension was introduced to prove regret bounds for the generalized UCB algorithm and

Thompson sampling for contextual bandits with adversarial contexts, and more recently

has been used to analyze algorithms for reinforcement learning with function approximation

(Osband and Van Roy 2014, Wen and Van Roy 2017, Ayoub et al. 2020, Wang et al.

2020b). An immediate consequence of our (disagreement coefficient) ≤ (star number) ≤

(eluder dimension) connection is that boundedness of the eluder dimension suffices to obtain

logarithmic regret with AdaCB. Unlike the star number though, bounded eluder dimension

is not required for the stochastic setting we consider. However, building on our previous

lower bounds, we show (Theorem B.9) that a weak version of the eluder dimension is

necessary to obtain logarithmic regret under adversarial contexts, and give a tighter analysis
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of the generalized UCB algorithm to show that it attains this rate (however, this is not a

best-of-both-worlds guarantee).

Theorem (informal). For any value function class ℱ , bounded value function eluder

dimension is (weakly) necessary and sufficient to obtain logarithmic regret in the adversarial

setting.

This result places the eluder dimension on more solid footing and shows that while it is

not required for minimax rates, it plays a fundamental role for instance-dependent rates. See

Appendix B.1.5 for a formal statement.

Instance-Dependent Guarantees: A Comprehensive Picture The relationship

between all of our complexity measures, old and new, is summarized in Figure 3-1. Beyond

expanding the scope of settings for which logarithmic regret is achievable, we hope our

structural results and lower bounds provide a new lens through which to understand existing

algorithms and instance-dependent rates, and provide new clarity.

As a disclaimer, we mention that the primary goal of this work is to understand how

contextual information shapes the optimal instance-dependent rates for contextual bandits.

We believe that this question is challenging and interesting even in the finite-action regime

(in fact, even when 𝐴 = 2!) and as such, we do not focus on obtaining optimal dependence

on 𝐴 in our upper or lower bounds, nor do we handle infinite actions. Fully understanding

the interplay between contexts and actions is a fascinating open problem, and we hope to

see this addressed in future work.

3.2.7 Efficiency and Empirical Performance

Computational efficiency AdaCB is an oracle-efficient algorithm. That is, it accesses

the value function class ℱ only through a weighted least squares regression oracle capable of

solving problems of the form

Oracle(ℋ) = argmin
𝑓∈ℱ

∑︁
(𝑤,𝑥,𝑎,𝑦)∈ℋ

𝑤(𝑓(𝑥, 𝑎)− 𝑦)2 (RO)

for a given set ℋ of examples (𝑤, 𝑥, 𝑎, 𝑦) where 𝑤 ∈ R+ specifies the example weight. This

makes the algorithm practical, as it can be combined with any out-of-the-box algorithm for

supervised regression for the model of interest. We refer to Section 4 of the full version of our
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paper—Foster et al. (2020)—for a detailed description on how AdaCB can be implemented

with the above regression oracle.

Empirical performance We replicated the large-scale empirical contextual bandit evalua-

tion setup of Bietti et al. (2018), which compares a number of state-of-the art general-purpose

contextual bandit algorithms across more than 500 datasets. We found that our new algo-

rithm, AdaCB, typically gives comparable or superior results to existing baselines, particularly

on challenging datasets with many actions. We refer to Section 5 of the full version of our

paper—Foster et al. (2020)—for the detailed experimental results.

3.3 Instance-Dependent Complexity of Reinforcement Learn-

ing

We now give a high-level overview of our guarantees for reinforcement learning in the Block

MDP model. Detailed results, including full theorem statements and pseudocode for the

main algorithm can be found in Appendix B.2.

3.3.1 Block MDP Setup

Building on our contextual bandit results, we provide disagreement-based guarantees for

episodic reinforcement learning with function approximation in a model called the block

MDP (Krishnamurthy et al. 2016, Du et al. 2019b), which is an important type of contextual

decision process (Jiang et al. 2017).

The block MDP may be thought of as a generalization of the contextual bandit problem.

Each round of interaction is replaced by an episode of length 𝐻. While the initial context 𝑥1

(now referred to as a state) in each episode is drawn i.i.d. as in the contextual bandit, the

evolution of the subsequent states 𝑥2, . . . , 𝑥𝐻 is influenced by the learner’s actions. Now,

without further assumptions, this is simply a general MDP, and function approximation

provides no benefits in the worst-case. To allow for sample-efficient learning guarantees, the

block MDP model assumes there is an unobserved latent MDP with 𝑆 states, and that each

observed state 𝑥ℎ is drawn from an emission distribution for the current latent state 𝑠ℎ.

When 𝐻 = 1 and 𝑆 = 1, this recovers the contextual bandit, and in general the goal is to

use an appropriate value function class ℱ to attain sample complexity guarantees that are
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polynomial in 𝑆, but not |𝒳 | (which, as in the contextual bandit, is typically infinite and

high-dimensional).

More formally, the block MDP setup we consider is a layered episodic Markov decision

process with horizon 𝐻, state space 𝒳 = 𝒳1 ∪ · · · ∪𝒳𝐻 (with 𝒳𝑖 ∩𝒳𝑗 = ∅), and action space

𝒜 with |𝒜| = 𝐴. We proceed in 𝐾 episodes. Within each episode we observe rewards and

observations through the following protocol, beginning with 𝑥1 ∼ 𝜇.

• For ℎ = 1, . . . ,𝐻:

– Choose action 𝑎ℎ.

– Observe reward 𝑟ℎ and next state 𝑥ℎ+1 ∼ 𝑃 ⋆ℎ (· | 𝑥ℎ, 𝑎ℎ).

Note that for this setting we use the subscript ℎ on e.g., 𝑥ℎ, to refer to the layer within a fixed

episode, whereas for contextual bandits we use the subscript 𝑡 to refer to the round/episode

itself. We always use ℎ for the former setting and 𝑡 for the latter to distinguish.

As mentioned above, the state space is potentially rich and high-dimensional, and

dependence on |𝒳 | is unacceptable. Hence, to enable sample-efficient reinforcement learning

guarantees with function approximation, the block MDP model assumes the existence of a

latent state space 𝒮 = 𝒮1 ∪ · · · ∪ 𝒮𝐻 , and assumes that each state 𝑥 ∈ 𝒳 can be uniquely

attributed to a latent state 𝑠 ∈ 𝒮. More precisely, we assume that for each ℎ, 𝑃 ⋆ℎ factorizes,

so that we can view 𝑥ℎ+1 as generated by the process 𝑠ℎ+1 ∼ 𝑃 ⋆ℎ (· | 𝑥ℎ, 𝑎ℎ), 𝑥ℎ+1 ∼ 𝜓(𝑠ℎ+1),

where 𝜓 : 𝒮 → Δ(𝒳 ) is an (unknown) emission distribution, and 𝑠ℎ+1 is the latent state for

layer ℎ+ 1. We make the following standard decodability assumption (Krishnamurthy et al.

2016, Jiang et al. 2017, Du et al. 2019b).

Assumption 3.2 (Decodability). For all 𝑠 ̸= 𝑠′, supp(𝜓(𝑠)) ∩ supp(𝜓(𝑠′)) = ∅.

This assumption implies that the optimal policy 𝜋⋆ depends only on the current context

𝑥ℎ. We write the optimal 𝑄-function for layer ℎ as 𝑄⋆ℎ(𝑥, 𝑎) and let 𝑉 ⋆
ℎ (𝑥) = max𝑎∈𝒜𝑄

⋆
ℎ(𝑥, 𝑎)

be the optimal value function.

Function approximation and gaps As in the contextual bandit setting, take as given

a class of functions ℱ that attempts to model the optimal value function. We let ℱℎ ⊆

(𝒳 ×𝒜 → [0, 𝐻]) be the value function class for layer ℎ (with ℱ = ℱ1 × · · · × ℱℎ), and we

make the following optimistic completeness assumption (Jin et al. 2020, Wang et al. 2019,

2020b).
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Assumption 3.3. For all ℎ and all functions 𝑉 : 𝒳ℎ+1 → [0, 𝐻], we have that

(𝑥, 𝑎) ↦→ E[𝑟ℎ + 𝑉 (𝑥ℎ+1) | 𝑥ℎ = 𝑥, 𝑎ℎ = 𝑎] ∈ ℱℎ.

Assumption 3.3 implies that 𝑄⋆ℎ ∈ ℱℎ, generalizing the realizability assumption (As-

sumption 3.1) but it is significantly stronger, as it requires that the function class contains

Bellman backups for arbitrary functions.

3.3.2 An Efficient, Instance-Dependent Algorithm

We develop a new instance-dependent and oracle-efficient algorithm called RegRL (Algo-

rithm B.1 in Appendix B.2.1) which adapts to the gap in the optimal value function 𝑄⋆

to attain improved sample complexity. Define Δ(𝑥, 𝑎) = 𝑉 ⋆
ℎ (𝑥)−𝑄⋆ℎ(𝑥, 𝑎), and define the

worst-case gap as

Δ = min
𝑠

inf
𝑥∈supp(𝜓(𝑠))

min
𝑎

{Δ(𝑥, 𝑎) | Δ(𝑥, 𝑎) > 0}.

Algorithm B.1 attains a tight gap-dependent PAC guarantee for reinforcement learning in

the Block MDP model whenever an appropriate Block MDP analogue of the value function

disagreement coefficient 𝜃val introduced in Section 3.2 is bounded (Appendix B.2.2).

Theorem B.12 (informal). For all instances, RegRL (Algorithm B.1) finds an 𝜀-suboptimal

policy using poly(𝑆,𝐴,𝐻,𝜃val) · log|ℱ|
𝜀·Δ episodes.

See Appendix B.2.1 and Appendix B.2.2 for pseudocode and a full theorem statement.

The theorem has two key features. First, when 𝜃val = ̃︀𝑂(1), the scaling of 𝜀 and Δ in the

term log|ℱ|
𝜀·Δ is optimal even for in the special case of contextual bandits, and improves over

the minimax rate, which scales as 1
𝜀2

. Second, and perhaps more importantly, RegRL is

computationally efficient, and only requires a regression oracle for the value function class.

Previous works require stronger oracles and typically do not attain optimal dependence

on 𝜀, but are not fully comparable in terms of statistical assumptions (Krishnamurthy

et al. 2016, Jiang et al. 2017, Dann et al. 2018, Du et al. 2019a,b, Misra et al. 2019, Feng

et al. 2020, Agarwal et al. 2020a); see Appendix B.2.3 for a detailed comparison. At a

conceptual level, the design and analysis of RegRL use several new techniques that leverage

our disagreement-based perspective, and we hope that they will find broader use.
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3.4 Concluding Remarks

We have developed efficient, instance-dependent algorithms for contextual bandits and

reinforcement learning with function approximation. We showed that disagreement coefficients

and related combinatorial parameters play a fundamental role in determining the optimal

instance-dependent rates, and that algorithms that adapt to these parameters can be simple

and practically effective. We hope that our techniques will find broader use, particularly for

the reinforcement learning setting.
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Chapter 4

Fundamental Barriers for Offline

Reinforcement Learning with Value Function

Approximation

4.1 Introduction

In offline reinforcement learning, we aim to evaluate or optimize decision making policies

using logged transitions and rewards from historical experiments or expert demonstrations.

Offline RL has great promise for decision making applications where actively acquiring

data is expensive or cumbersome (e.g., robotics (Pinto and Gupta 2016, Levine et al. 2018,

Kalashnikov et al. 2018)), or where safety is critical (e.g., autonomous driving (Sallab et al.

2017, Kendall et al. 2019) and healthcare (Gottesman et al. 2018, 2019, Wang et al. 2018, Yu

et al. 2019, Nie et al. 2021)). In particular, there is substantial interest in combining offline

reinforcement learning with function approximation (e.g., deep neural networks) in order

to encode inductive biases and enable generalization across large, potentially continuous

state spaces, with recent progress on both model-free and model-based approaches (Ross and

Bagnell 2012, Laroche et al. 2019, Fujimoto et al. 2019, Kumar et al. 2019, Agarwal et al.

2020b). However, existing algorithms are extremely data-intensive, and offline RL methods—

to date—have seen limited deployment in the aforementioned applications. To enable

practical deployment going forward, it is paramount that we develop a strong understanding

of the statistical foundations for reliable, sample-efficient offline reinforcement learning with

function approximation, as well as an understanding of when and why existing methods
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succeed and how to effectively collect data.

Compared to the basic supervised learning problem, offline reinforcement learning with

function approximation poses substantial algorithmic challenges due to two issues: distribution

shift and credit assignment. Within the literature on value function approximation (or,

approximate dynamic programming), all existing methods require both (1) distributional

conditions, which assert that the logged data has good coverage (addressing distribution

shift), and (2) representational conditions, which assert that the function approximator is

flexible enough to represent value functions induced by certain policies (addressing credit

assignment). Notably, sample complexity analyses for standard offline RL methods (e.g.,

fitted Q-iteration) require representation conditions considerably more restrictive than what

is required for supervised learning (Munos 2003, 2007, Munos and Szepesvári 2008, Antos

et al. 2008), and these methods can diverge when these conditions do not hold (Gordon

1995, Tsitsiklis and Van Roy 1996, 1997, Wang et al. 2021a). Despite substantial research

effort, it is not known whether these conditions constitute fundamental limits or whether the

algorithms can be improved. Resolving this issue would serve as a stepping stone toward

developing a theory for offline reinforcement learning that parallels our understanding of

supervised (statistical) learning.

The lack of understanding of fundamental limits in offline reinforcement learning was

highlighted by Chen and Jiang (2019), who observed that all existing finite-sample analyses

for offline RL algorithms based on concentrability (Munos 2003)—the most ubiquitous notion

of data coverage—require representation conditions significantly stronger than realizability, a

standard condition from supervised learning which asserts that the function approximator

can represent optimal value functions. Chen and Jiang (2019) conjectured that realizability

and concentrability alone do not suffice for sample-efficient offline RL and noted that proving

such a result seemed to be out of reach for existing lower bound techniques. Subsequent

progress led to positive results for sample-efficient offline RL under coverage conditions

stronger than concentrability (Xie and Jiang 2021) and impossibility results under weaker

coverage conditions (Wang et al. 2020a, Zanette 2021), but the original conjecture remained

open.

Contributions We provide information-theoretic lower bounds which show that, in gen-

eral, concentrability and realizability together are not sufficient for sample efficient offline
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reinforcement learning. Our first result concerns the standard offline RL setup, where the

data collection distribution is only required to satisfy concentrability, and establishes a

sample complexity lower bound scaling polynomially with the size of the state space. This

result resolves the conjecture of Chen and Jiang (2019) in the positive. For our second

result, we further restrict the data distribution to be induced by a policy (i.e., admissible),

and show that any algorithm requires sample complexity either polynomial in the size of

the state space or exponential in other problem parameters. Together, our results establish

that sample-efficient offline RL in large state spaces is not possible unless more stringent

conditions, either distributional or representational, hold.

Our lower bound constructions are qualitatively different from previous approaches and

hold even when the number of actions is constant and the value function class has constant

size. Our first lower bound highlights the role of a phenomenon we call strong over-coverage

(first documented by Xie and Jiang (2021)), wherein the data collection distribution is

supported over spurious states that are not reachable by any policy. Despite the irrelevance

of these states for learning in the online setting, their inclusion in the offline dataset creates

significant uncertainty. Our second lower bound discovers a weak variant of over-coverage,

wherein the data collection distribution is induced by running an exploratory policy in

particular time steps, but many of the states supported by this distribution are not reachable

in other time steps, creating spurious correlations. Our work shows that both the strong and

weak over-coverage phenomena serve as fundamental, information-theoretic barriers for the

design of offline reinforcement learning algorithms.

4.1.1 Offline Reinforcement Learning Setting

Markov decision processes We consider the infinite-horizon discounted reinforcement

learning setting. Formally, a Markov decision process 𝑀 = (𝒮,𝒜, 𝑃,𝑅, 𝛾, 𝑑0) consists of a

(potentially large/continuous) state space 𝒮, action space 𝒜, probability transition function

𝑃 : 𝒮 ×𝒜 → Δ(𝒮), reward function 𝑅 : 𝒮 ×𝒜 → [0, 1], discount factor 𝛾 ∈ [0, 1), and initial

state distribution 𝑑0 ∈ Δ(𝒮). Each (randomized) policy 𝜋 : 𝒮 → Δ(𝒜) induces a distribution

over trajectories (𝑠0, 𝑎0, 𝑟0), (𝑠1, 𝑎1, 𝑟1), . . . via the following process. For ℎ = 0, 1, . . . :

𝑎ℎ ∼ 𝜋(𝑠ℎ), 𝑟ℎ = 𝑅(𝑠ℎ, 𝑎ℎ), and 𝑠ℎ+1 ∼ 𝑃 (𝑠ℎ, 𝑎ℎ), with 𝑠0 ∼ 𝑑0. We let E𝑀,𝜋[·] and P𝑀,𝜋(·)

denote expectation and probability under this process, respectively.

The expected return for policy 𝜋 is defined as 𝐽𝑀 (𝜋) := E𝑀,𝜋
[︀∑︀∞

ℎ=0 𝛾
ℎ𝑟ℎ
]︀
, and the value
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function and 𝑄-function for 𝜋 are given by

𝑉 𝜋
𝑀 (𝑠) := E𝑀,𝜋

[︀∑︀∞
ℎ=0 𝛾

ℎ𝑟ℎ | 𝑠0 = 𝑠
]︀
, and 𝑄𝜋𝑀 (𝑠, 𝑎) := E𝑀,𝜋

[︀∑︀∞
ℎ=0 𝛾

ℎ𝑟ℎ | 𝑠0 = 𝑠, 𝑎0 = 𝑎
]︀
.

It is well-known that there exists a deterministic policy 𝜋⋆𝑀 : 𝒮 → 𝒜 that maximizes 𝑉 𝜋
𝑀 (𝑠)

for all 𝑠 ∈ 𝒮 simultaneously and thus also maximizes 𝐽𝑀 (𝜋). Letting 𝑉 ⋆
𝑀 := 𝑉

𝜋⋆𝑀
𝑀 and

𝑄⋆𝑀 := 𝑄
𝜋⋆𝑀
𝑀 , we have 𝜋⋆𝑀 (𝑠) = argmax𝑎∈𝒜𝑄

⋆
𝑀 (𝑠, 𝑎) for all 𝑠 ∈ 𝒮. Finally, we define the

occupancy measure for policy 𝜋 via 𝑑𝜋𝑀 (𝑠, 𝑎) := (1− 𝛾)
∑︀∞

ℎ=0 𝛾
ℎP𝑀,𝜋(𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎). We

drop the dependence on the model 𝑀 when it is clear from context.

Offline policy learning In the offline policy learning (or, optimization) problem, we do

not have direct access to the underlying MDP and instead receive a dataset 𝐷𝑛 of tuples

(𝑠, 𝑎, 𝑟, 𝑠′) with 𝑟 = 𝑅(𝑠, 𝑎), 𝑠′ ∼ 𝑃 (𝑠, 𝑎), and (𝑠, 𝑎) ∼ 𝜇 i.i.d., where 𝜇 ∈ Δ(𝒮 × 𝒜) is the

data collection distribution. The goal of the learner is to use the dataset 𝐷𝑛 to learn an

𝜀-optimal policy ̂︀𝜋, that is:

𝐽(𝜋⋆)− E[𝐽(̂︀𝜋)] ≤ 𝜀,

where the expectation E[·] is over the draw of 𝐷𝑛 and any randomness used by the algorithm.

In order to provide sample-efficient learning guarantees that do not depend on the size

of the state space, value function approximation methods take advantage of the following

conditions.

• Realizability. This condition asserts that we have access to a class of candidate

value functions ℱ ⊆ (𝒮 × 𝒜 → R) (e.g., linear models or neural networks) such

that 𝑄⋆ ∈ ℱ . Realizability (that is, a well-specified model) is the most common

representation condition in supervised learning and statistical estimation (Bousquet

et al. 2004, Wainwright 2019) and is also widely used in contextual bandits (Agarwal

et al. 2012, Foster et al. 2018).

• Concentrability. Call a distribution 𝜈 ∈ Δ(𝒮 × 𝒜) admissible for the MDP 𝑀 if

there exists a (potentially stochastic and non-stationary11) policy 𝜋 and index ℎ such

that 𝜈(𝑠, 𝑎) = P𝜋[𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎]. This condition asserts that there exists a constant

11A non-stationary policy is a sequence {𝜋ℎ}ℎ≥0, which generates a trajectory via 𝑎ℎ ∼ 𝜋ℎ(𝑠ℎ).
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𝐶conc <∞ such that for all admissible 𝜈,

⃦⃦⃦⃦
𝜈

𝜇

⃦⃦⃦⃦
∞

:= sup
(𝑠,𝑎)∈𝒮×𝒜

{︂
𝜈(𝑠, 𝑎)

𝜇(𝑠, 𝑎)

}︂
≤ 𝐶conc. (4.1)

Concentrability is a simple but fairly strong notion of coverage which demands that

the data distribution uniformly covers all reachable states.

Under these conditions, an offline RL algorithm is said to be sample-efficient if it learns an

𝜀-optimal policy with poly(𝜀−1, (1− 𝛾)−1, 𝐶conc, log|ℱ|) samples. Notably, such a guarantee

depends only on the complexity log|ℱ| for the value function class, not on the size of the

state space.12

Are realizability and concentrability sufficient? While realizability and concentrability

are appealing in their simplicity, these assumptions alone are not known to suffice for sample-

efficient offline RL. The most well-known line of research (Munos 2003, 2007, Munos and

Szepesvári 2008, Antos et al. 2008, Chen and Jiang 2019) analyzes offline RL methods such

as fitted Q-iteration under the stronger representation condition that ℱ is closed under

Bellman updates (“completeness”),13 and obtains poly(𝜀−1, (1− 𝛾)−1, 𝐶conc, log|ℱ|) sample

complexity. Completeness is a widely used assumption, but it is substantially more restrictive

than realizability and can be violated by adding a single function to ℱ . Subsequent years

have seen extensive research into algorithmic improvements and alternative representation

and coverage conditions, but the question of whether realizability and concentrability alone

are sufficient remains open.

4.1.2 Main Results

The first of our main results is an information-theoretic lower bound which shows that

realizability and concentrability are not sufficient for sample-efficient offline RL.

Theorem 4.1 (Main theorem). For all 𝑆 ≥ 9 and 𝛾 ∈ (1/2, 1), there exists a family of

MDPs ℳ with |𝒮| ≤ 𝑆 and |𝒜| = 2, a value function class ℱ with |ℱ| = 2, and a data

distribution 𝜇 such that:
12For infinite function classes (|ℱ| = ∞), one can replace log |ℱ| with other standard measures of statistical

capacity, such as Rademacher complexity or metric entropy. For example, when ℱ is a class of 𝑑-dimensional
linear functions, log |ℱ| can be replaced by the dimension 𝑑, which is an upper bound on the metric entropy.

13Precisely, 𝒯 ℱ ⊆ ℱ , where 𝒯 is the Bellman operator : [𝒯 𝑓 ](𝑠, 𝑎) := 𝑅(𝑠, 𝑎) + E𝑠′∼𝑃 (𝑠,𝑎)[max𝑎′ 𝑓(𝑠
′, 𝑎′)].
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1. We have 𝑄𝜋 ∈ ℱ for all 𝜋 : 𝒮 → Δ(𝒜) (all-policy realizability) and 𝐶conc ≤ 16

(concentrability) for all models in ℳ.

2. Any algorithm using less than 𝑐 · 𝑆1/3 samples must have 𝐽(𝜋⋆)− E[𝐽(̂︀𝜋)] ≥ 𝑐′/(1− 𝛾)

for some instance in ℳ, where 𝑐 and 𝑐′ are absolute numerical constants.

This result shows that even though realizability and concentrability are satisfied, any

algorithm requires at least Ω(𝑆1/3) samples to learn a near-optimal policy. Since 𝑆 can

be arbitrarily large, this establishes that sample-efficient offline RL in large state spaces is

impossible without stronger representation or coverage conditions and resolves the conjecture

of Chen and Jiang (2019).

In fact, the theorem establishes hardness under a substantially stronger representation

condition than realizability—all policy realizability—which requires that 𝑄𝜋 ∈ ℱ for every

policy 𝜋, rather than just for 𝜋⋆. When one has the ability to interact with the MDP starting

from the data collection distribution 𝜇 (e.g., via a generative model), it is known that all

policy realizability and concentrability suffice for approximate policy iteration methods (An-

tos et al. 2008, Lattimore et al. 2020). However, the offline RL setting does not permit

interaction, and so Theorem 4.1 yields a separation between offline RL and online RL

with a generative model (and an exploratory distribution). The lower bound construction

can also be extended to related settings, including policy evaluation and linear function

approximation; see Section 4.2.4 for discussion.

Theorem 4.1 relies on a strong version of the over-coverage phenomenon, where the data

distribution contains states not visited by any admissible policy.14 The issue of over-coverage

was first noted by Xie and Jiang (2021), who observed that it can lead to pathological behavior

in certain algorithms. Our result shows—somewhat surprisingly—that this phenomenon is

a fundamental barrier that applies to any value approximation method. In particular, we

show that over-coverage causes spurious correlations across reachable and unreachable states

which leads to significant uncertainty in the dynamics when the number of states is large.

Theorem 4.1 has constant suboptimality gap for 𝑄⋆, which rules out gap-dependent regret

bounds as a path toward sample-efficient offline RL. We focus on policy optimization and

infinite-horizon RL for concreteness, but the lower bound readily extends to the finite-horizon

setting (in fact, with 𝐻 = 3), and provides, to our knowledge, the first impossibility result
14Note that while the states may not be reachable for a given MDP in the family ℳ, in our construction,

all states are reachable for some MDP in the family.
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for offline RL with constant horizon.

A lower bound for admissible data distributions Up to this point, we have considered

the most ubiquitous formulation of the offline RL problem, in which 𝜇 ∈ Δ(𝒮 × 𝒜) is

an arbitrary distribution over state-action pairs. Theorem 4.1 exploits this formulation

by placing mass on states not reachable by any policy, leading to a strong version of the

over-coverage phenomenon. Our next result shows concentrability and realizability are still

insufficient for sample-efficient offline RL even when the data distribution 𝜇 is admissible, in

the sense that it is induced by a policy or mixture of policies. While strong over-coverage is

impossible in this setting, the lower bound relies on a weak notion of over-coverage in which

𝜇 places significant mass on low-probability states.

Theorem 4.2 (Lower bound for admissible data). For any 𝑆 ≥ 9, 𝛾 ∈ (1/2, 1), and 𝐶 ≥ 64,

there exists a family of MDPs ℳ with |𝒮| = 𝑆 and |𝒜| = 2, a value function class ℱ with

|ℱ| = 2, and a data distribution 𝜇 which is a mixture of admissible distributions, such that:

1. We have 𝑄𝜋 ∈ ℱ for all 𝜋 : 𝒮 → Δ(𝒜) (all-policy realizability) and 𝐶conc ≤ 𝐶

(concentrability) for all models in ℳ.

2. Any algorithm using less than 𝑐 ·min
{︀
𝑆1/3/(log𝑆)2, 2𝐶/32, 21/(1−𝛾)

}︀
samples must have

𝐽(𝜋⋆)− E[𝐽(̂︀𝜋)] ≥ 𝑐′ for some instance in ℳ, where 𝑐 and 𝑐′ are absolute numerical

constants.

Compared to Theorem 4.1, which shows that for general data distributions any algorithm

must have sample complexity polynomial in the number of states even when concentrability

is constant, Theorem 4.2 shows that, for admissible data distributions,15 any algorithm must

have sample complexity that is either polynomial in the number of states or exponential in

concentrability (or the effective horizon (1−𝛾)−1). This result is incomparable to Theorem 4.1

since, it is quantitatively slightly weaker from a sample complexity perspective, but stronger

in that applies to admissible data distributions. Since admissible distributions are perhaps

more natural in practice, Theorem 4.2 serves as a strong impossibility result.

While we cannot rely on strong over-coverage to prove Theorem 4.2, we are still able to

create spurious correlations between a set of states that are useful for estimation and the
15The fact that the data collection distribution is a mixture, is not critical for the result. It can be weakened

to a single admissible distribution with realizability (rather than all-policy realizability).
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remaining states, which are less useful. Indeed, our construction embeds a structure used in

the proof of Theorem 4.1 in a nested fashion, so that even an admissible data distribution

provides insufficient information to disentangle this correlation and learn a near-optimal

policy.

4.1.3 Related Work

We close this section with a detailed discussion of some of the most relevant related work.

Lower bounds While algorithm-specific counterexamples for offline reinforcement learning

algorithms have a long history (Gordon 1995, Tsitsiklis and Van Roy 1996, 1997, Wang

et al. 2021a), information-theoretic lower bounds are a more recent subject of investigation.

Wang et al. (2020a) (see also Amortila et al. (2020)) consider the setting where ℱ is

linear (i.e., 𝑄⋆(𝑠, 𝑎) = ⟨𝜑(𝑠, 𝑎), 𝜃⟩, where 𝜑(𝑠, 𝑎) ∈ R𝑑 is a known feature map). They

consider a weaker coverage condition tailored to the linear setting, which asserts that

𝜆min

(︀
E(𝑠,𝑎)∼𝜇

[︀
𝜑(𝑠, 𝑎)𝜑(𝑠, 𝑎)⊤

]︀)︀
≥ 1

𝑑 , and they show that this condition and realizability

alone are not strong enough for sample-efficient offline RL. The feature coverage condition

is strictly weaker than concentrability, so this does not suffice to resolve the conjecture

of Chen and Jiang (2019). Instead, the conceptual takeaway is that the feature coverage

condition can lead to under-coverage and may not be the right assumption for offline RL. This

point is further highlighted by Amortila et al. (2020) who show that in the infinite-horizon

setting, the feature coverage condition can lead to non-identifiability in MDPs with only

two states, meaning one cannot learn an optimal policy even with infinitely many samples.

Concentrability places stronger restrictions on the data distribution and underlying dynamics

and always implies identifiability when the state and action space are finite. Establishing

impossibility of sample-efficient learning under concentrability and realizability requires very

new ideas (which we provide in this paper, via the notion of over-coverage).

The results of Wang et al. (2020a) and Amortila et al. (2020) are extended by Zanette

(2021), who provides a slightly more general lower bound for linear realizability. The results of

Zanette (2021) cannot resolve the conjecture of Chen and Jiang (2019) either, because for the

family of MDPs constructed therein, no data distribution can satisfy concentrability, which

means that the failure of algorithms can still be attributed to the failure of concentrability

rather than the hardness under concentrability. There is also a parallel line of work providing
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lower bounds for online reinforcement learning with linear realizability (Du et al. 2020a,

Weisz et al. 2021, Wang et al. 2021b), which are based on very different constructions and

techniques.

Compared to the offline RL lower bounds above (Wang et al. 2020a, Amortila et al. 2020,

Zanette 2021), our lower bounds have a less geometric, more information-theoretic flavor,

and share more in common with lower bounds for sparsity and support testing in statistical

estimation (Paninski 2008, Verzelen and Villers 2010, Verzelen and Gassiat 2018, Canonne

2020). While previous work considers a relatively small state space but large horizon and

feature dimension, we grow the state space, leading to polynomial dependence on 𝑆 in our

lower bounds; the horizon is somewhat immaterial in our construction.

Another interesting feature is that while previous lower bounds (Wang et al. 2020a,

Amortila et al. 2020, Zanette 2021) are based on deterministic MDPs, our constructions

critically use stochastic dynamics, which is a necessary departure from a technical perspective.

Indeed, for any family of deterministic MDPs, any data distribution satisfying concentrability

(if such a distribution exists) would enable sample-efficient learning, simply because all MDPs

in the family have deterministic dynamics, and the Bellman error minimization algorithm in

Chen and Jiang (2019) succeeds under concentrability and realizability when the dynamics

are deterministic.16 Therefore, any construction involving deterministic MDPs (Wang et al.

2020a, Amortila et al. 2020, Zanette 2021) cannot be used to establish impossibility of

sample-efficient learning under concentrability and realizability.

Upper bounds Classical analyses for offline reinforcement learning algorithms such as FQI

(Munos 2003, 2007, Munos and Szepesvári 2008, Antos et al. 2008) provide sample complexity

upper bounds in terms of concentrability under the strong representation condition of Bellman

completeness. The path-breaking recent work of Xie and Jiang (2021) provides an algorithm

which requires only realizability, but uses a stronger coverage condition (“pushforward

concentrability”) which requires that 𝑃 (𝑠′ | 𝑠, 𝑎)/𝜇(𝑠′) ≤ 𝐶 for all (𝑠, 𝑎, 𝑠′). Our results imply

that this condition cannot be substantially relaxed.

A complementary line of work, primarily focusing on policy evaluation (Uehara et al.

2020, Xie and Jiang 2020, Jiang and Huang 2020, Uehara et al. 2021), provides upper

bounds that require only concentrability and realizability, but assume access to an additional
16Deterministic dynamics allow one to avoid the well-known double sampling problem and in particular

cause the conditional variance in Eq. (3) of Chen and Jiang (2019) to vanish.
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weight function class that is flexible enough to represent various occupancy measures for the

underlying MDP. These results scale with the complexity of the weight function class. In

general, the complexity of this class may be prohibitively large without prior knowledge; this

is witnessed by our lower bound construction.

4.1.4 Preliminaries

For any 𝑥 ∈ R, let (𝑥)+ := max{𝑥, 0}. For an integer 𝑛 ∈ N, we let [𝑛] denote the set

{1, . . . , 𝑛}. For a finite set 𝒳 , Unif(𝒳 ) denotes the uniform distribution over 𝒳 , and Δ(𝒳 )

denotes the set of all probability distributions over 𝒳 . For probability distributions P and Q

over a measurable space (Ω,F ) with a common dominating measure, we define the total

variation distance as 𝐷TV(P,Q) = sup𝐴∈F |P(𝐴) − Q(𝐴)| = 1
2

∫︀
|𝑑P − 𝑑Q| and define the

𝜒2-divergence as 𝐷𝜒2(P ‖Q) := EQ
[︀(︀

𝑑P
𝑑Q − 1

)︀2]︀
=
∫︀
𝑑P2

𝑑Q − 1 when P ≪ Q and +∞ otherwise.

4.2 Fundamental Barriers for Offline Reinforcement Learning

In this section we present the lower bound construction for Theorem 4.1 and prove the

result, then discuss consequences. The proof of Theorem 4.2—which can be viewed as a

generalization of this result, but is somewhat more involved—is deferred to Appendix C.5,

with an overview given in Section 4.3.17

4.2.1 Construction: MDP Family, Value Functions, and Data Distribution

We first provide our lower bound construction, which entails specifying the MDP family ℳ,

the value function class ℱ , and the data distribution 𝜇.

All MDPs in ℳ belong to a parameterized MDP family with shared transition and

reward structure. In what follows, we first describe the structure of the parameterized family

(Section 4.2.1) and provide intuition behind why this structure leads to statistical hardness

(Section 4.2.1). We then provide a specific collection of parameters that gives rise to the hard

family ℳ (Section 4.2.1) and complete the construction by specifying the value function

class ℱ and data distribution 𝜇 (Section 4.2.1).

17Compared to the first version of this paper (arXiv preprint v1), the current version uses a slight
modification to the Theorem 4.1 construction. The only purpose of this change is to emphasize similarity to
the construction for Theorem 4.2.
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Figure 4-1: The MDPs in ℳ are parametrized by three scalars 𝛼, 𝛽, 𝑤 and a subset of states
𝐼. The state space consists of an initial state s, a large number of intermediate states 𝒮1,
and four self-looping terminal states {𝑊,𝑋, 𝑌, 𝑍}. From the initial state s, action 1 (in red)
transitions to state 𝑊 , while action 2 (in blue) transitions to a subset of intermediate states
𝐼 ⊂ 𝒮1 with equal probability. In all intermediate states and terminal states, actions 1 and
2 have the same effect, with transitions denoted in black. Among the intermediate states,
𝐼 ⊂ 𝒮1 (the gray ones) are the planted states which transition with probability 𝛼 to state 𝑋
and 1− 𝛼 to state 𝑌 , and the remaining 𝒮1 ∖ 𝐼 (the striped ones) are the unplanted states
which transition with probability 𝛽 to 𝑍 and (1− 𝛽) to 𝑌 . There are combinatorially many
choices for 𝐼. Only terminal states can generate non-zero rewards: the rewards of the states
𝑊 , 𝑋, 𝑌 and 𝑍 are 𝑤, 1, 0 and 𝛼/𝛽, respectively.

MDP Parameterization

Let the discount factor 𝛾 ∈ (0, 1) be fixed, and let 𝑆 ∈ N be given. Assume without loss of gen-

erality that 𝑆 > 5 and that (𝑆−5)/4 is an integer. We consider the parameterized MDP family

illustrated in Figure 4-1. Each MDP takes the form 𝑀𝛼,𝛽,𝑤,𝐼 = (𝒮,𝒜, 𝑃𝛼,𝛽,𝐼 , 𝑅𝛼,𝛽,𝑤, 𝛾, 𝑑0),

and is parametrized by two probability parameters 𝛼, 𝛽 ∈ (0, 1), a reward parameter 𝑤 ∈ [0, 1],

and a subset of states 𝐼. All MDPs in the family {𝑀𝛼,𝛽,𝑤,𝐼} share the same state space 𝒮,

action space 𝒜, discount factor 𝛾, and initial state distribution 𝑑0, and differ only in terms

of the transition function 𝑃𝛼,𝛽,𝐼 and the reward function 𝑅𝛼,𝛽,𝑤.

State space We consider a state space 𝒮 := {s} ∪ 𝒮1 ∪ {𝑊,𝑋, 𝑌, 𝑍}, where s is the single

initial state (occurring at ℎ = 0), 𝑊,𝑋, 𝑌, 𝑍 are four self-looping terminal states, and 𝒮1 is a

collection of intermediate (i.e., neither initial nor terminal) states which may occur between

the initial state and the terminal states {𝑋,𝑌, 𝑍}. The number of intermediate states is

𝑆1 := |𝒮1| = 𝑆 − 5 which ensures |𝒮| = 𝑆.

Action space Our action space is given by 𝒜 = {1, 2}. For the initial state s, the two

actions have distinct effects, while for all other states in 𝒮 ∖ {s} both actions have identical

effects. As a result, the value of a given policy only depends on the action it selects in s. For
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the sake of compactness, we use the symbol a as a placeholder to denote either action when

taken in 𝑠 ∈ 𝒮 ∖ {s}, since the choice is immaterial.18

Transition operator For an MDP 𝑀𝛼,𝛽,𝑤,𝐼 , we let 𝐼 ⊂ 𝒮1 parameterize a subset of the

intermediate states. We call each 𝑠 ∈ 𝐼 a planted state and 𝑠 ∈ 𝐼 := 𝒮1 ∖ 𝐼 an unplanted

state. The dynamics 𝑃𝛼,𝛽,𝐼 for 𝑀𝛼,𝛽,𝑤,𝐼 are determined by 𝐼 and the parameters 𝛼, 𝛽 ∈ (0, 1)

as follows (cf. Figure 4-1):

• Initial state s. We define 𝑃𝛼,𝛽,𝐼(s, 1) = Unif({𝑊}) and 𝑃𝛼,𝛽,𝐼(s, 2) = Unif(𝐼). That

is, from the initial state s, choosing action 1 makes the MDP transitions to state 𝑊

deterministically (see the red arrow in Figure 4-1), while choosing 2 makes the MDP

transitions to each planted state in 𝐼 with equal probability (see the blue arrow in

Figure 4-1); unplanted states are not reachable.

• Intermediate states. Transitions from states in 𝒮1 are defined as follows.

– For each planted state 𝑠 ∈ 𝐼, define

𝑃𝛼,𝛽,𝐼(𝑠, a) = 𝛼Unif({𝑋}) + (1− 𝛼)Unif({𝑌 }).

– For each unplanted state 𝑠 ∈ 𝐼, define

𝑃𝛼,𝛽,𝐼(𝑠, a) = 𝛽Unif({𝑍}) + (1− 𝛽)Unif({𝑌 }).

That is, the MDP transitions stochastically to either {𝑋,𝑌 } or {𝑍, 𝑌 }, depending on

whether the source state 𝑠 ∈ 𝒮1 is planted or unplanted; see the black straight arrows

in Figure 4-1.

• Terminal states. All states in {𝑊,𝑋, 𝑌, 𝑍} self-loop indefinitely. That is 𝑃𝛼,𝛽,𝐼(𝑠, a) =

Unif({𝑠}) for all 𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍}.

Reward function The initial and intermediate states have no reward, i.e., 𝑅𝛼,𝛽,𝑤(𝑠, 𝑎) =

0,∀𝑠 ∈ {s} ∪ 𝒮1, ∀𝑎 ∈ 𝒜. Each of the self-looping terminal states {𝑊,𝑋, 𝑌, 𝑍} has a fixed

18It is conceptually simpler to consider a construction where only a single action is available in 𝒮 ∖ {s} and
𝒮1, but this is notationally more cumbersome.
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reward determined by the parameters 𝛼, 𝛽 and 𝑤. In particular, we define 𝑅𝛼,𝛽,𝑤(𝑊, a) = 𝑤,

𝑅𝛼,𝛽,𝑤(𝑋, a) = 1, 𝑅𝛼,𝛽,𝑤(𝑌, a) = 0, and 𝑅𝛼,𝛽,𝑤(𝑍, a) = 𝛼/𝛽.

Initial state distribution All MDPs in 𝑀𝛼,𝛽,𝑤,𝐼 start at s deterministically (that is, the

initial state distribution 𝑑0 puts all the probability mass on s). Note that since 𝑑0 does not

vary between instances, it may be thought of as known to the learning algorithm.

Intuition Behind the Construction

The family of MDPs ℳ that witnesses our lower bound is a subset of the collection {𝑀𝛼,𝛽,𝑤,𝐼}.

Before specifying the family precisely, we give intuition as to why this MDP structure leads

to statistical hardness for offline reinforcement learning.

Evidently, for any MDP 𝑀𝛼,𝛽,𝑤,𝐼 , there is only a single effective decision that the learner

needs to make: to choose action 1 in s (whose value is completely determined by 𝑤) or to

choose action 2 in s (whose value is completely determined by 𝛼). In our construction of

the MDP family (to be specified shortly), we keep 𝑤 fixed over all MDPs (i.e., we make it

known to the learner), so the only challenge left to the learner is to learn the value of 𝛼 of

the underlying MDP. As we will explain, this seemingly simple task is surprisingly hard,

leading to the hardness of offline reinforcement learning. The hardness arises as a result of

two general principles, planted subset structure and (strong) over-coverage.

Planted Subset Structure The intermediate states in 𝒮1 are partitioned into planted

and unplanted states. Each planted state in 𝐼 (the planted subset) transitions to 𝑋 and 𝑌

with probability 𝛼 and 1− 𝛼 respectively, while each unplanted state in 𝐼 transitions to 𝑍

and 𝑌 with probability 𝛽 and 1− 𝛽 respectively. We call such a structure the planted subset

structure, which has two important features:

• The choice of 𝐼 ⊂ 𝒮1 is combinatorial in nature (for example, the number of all planted

subsets of size 𝑆1/2 is
(︀
𝑆1

𝑆1/2

)︀
, which is exponential in 𝑆1).

• Planted and unplanted states have the same value, which only depends on 𝛼. This holds

because the rewards of 𝑋,𝑌, 𝑍 are 1, 0, 𝛼/𝛽 respectively (note that 𝛼 · 1 = 𝛽 · (𝛼/𝛽)).

As a result, the choice of 𝐼 ⊂ 𝒮1 does not affect the value function at all.

The first feature serves as the basis for statistical hardness and leads to the appearance of

the state space size in the sample complexity lower bound. For intuition as to why, suppose
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we are given a batch dataset of independent examples in which a state in 𝒮1 is selected

uniformly at random and we observe a sample from the next state distribution. One can

show that basic statistical inference tasks such as estimating the size |𝐼| of the planted subset

require poly(𝑆1) samples, as this entails detecting the subset based on data generated from

a mixture of planted and unplanted states. For example, it is well known that testing if

a distribution is uniform on a set 𝐼 ⊂ [𝑁 ] with |𝐼| = Θ(𝑁) versus uniform on all of [𝑁 ]

requires poly(𝑁) samples (see e.g., Paninski 2008, Ingster and Suslina 2012, Canonne 2020,

Section 5.1).

Building on this hardness, we can show that any algorithm requires at least poly(𝑆1)

samples to reliably estimate the transition probability parameter 𝛼 if 𝛽 and |𝐼| are unknown.

Intuitively, this arises because the only way to avoid estimating |𝐼| (which is hard) as a means

to estimate 𝛼 is to directly look at the marginal distribution over {𝑋,𝑌, 𝑍}. However, the

marginal distribution is uninformative for estimating 𝛼 when there is uncertainty about 𝛽

and |𝐼|. For example, the marginal probability of transitioning to 𝑋 is 𝛼|𝐼|/𝑆1, from which

𝛼 cannot be directly recovered if |𝐼| is unknown.

The takeaway is that while estimating 𝛼 would be trivial if the dataset only consisted of

transitions generated from planted states, estimating this parameter when states are drawn

uniformly from 𝒮1 is very difficult because an unknown subset comes from unplanted states.

This is relevant because—as we will show—in our construction, any near-optimal policy

learning algorithm must have the ability to recover the value of 𝛼.

The second feature, that all states in 𝒮1 share the same value, is also essential. Since the

choice of 𝐼 ⊂ 𝒮1 does not affect the value function at all, this feature allows us to consider

exponentially many choices of 𝐼 while ensuring that realizability is satisfied with a value

function class ℱ of constant size. Thus, the poly(|𝒮|) factor in our lower bound cannot be

attributed to any other problem parameter, such as log |ℱ|.

(Strong) Over-coverage It remains to show that the hardness described above can be

embedded in the offline RL setting, since (i) we must ensure concentrability is satisfied, and

(ii) the learner observes rewards, not just transitions. Returning to Figure 4-1, we observe

that the transitions from the initial state s are such that all planted states in 𝐼 are reachable,

but the unplanted states in 𝒮1 ∖ 𝐼 are not reachable by any policy. In particular, since all

unplanted states are unreachable, any state that can only be reached from unplanted states
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is also unreachable, and hence we can achieve concentrability (4.1) without covering such

states. This allows us to choose the data distribution 𝜇 to be (roughly) uniform over all

states except for the unreachable state 𝑍. This choice satisfies concentrability, but renders

all reward observations uninformative (cf. Section 4.2.1). As a consequence, we show that

the task described in Section 4.2.1, i.e., detecting 𝛼 based on transition data, is unavoidable

for any algorithm with non-trivial offline RL performance.

The key principle at play here is the over-coverage phenomenon (in particular, the strong

version, where 𝜇 is supported over unreachable states). Per the discussion above, we know

that if the data distribution 𝜇 were supported only over reachable states for a given MDP,

all “time step 1” examples (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐷𝑛 would have 𝑠 ∈ 𝐼, which would make estimating

𝛼 trivial. Our construction for 𝜇 is uniform over all states in 𝒮1, and hence satisfies over-

coverage, since it is supported over a mix of planted states and spurious (unplanted) states not

reachable by any policy. This makes estimating 𝛼 challenging because—due to correlations

between planted and unplanted states—no algorithm can accurately estimate 𝛼 or recover

the planted states until the number of samples scales with the number of states. We

emphasize, however, that while strong over-coverage makes the construction for Theorem 4.1

comparatively simple, the weak variant of over-coverage (where all states are reachable, but

the offline data distribution creates a spurious correlation by favoring unplanted states) still

presents a fundamental barrier and is the mechanism behind Theorem 4.2.

Specifying the MDP Family

Using the parameterized MDP family {𝑀𝛼,𝛽,𝑤,𝐼}, we construct the hard family ℳ for our

lower bound by selecting a specific collection of values for the parameters (𝛼, 𝛽, 𝑤, 𝐼). Define

ℐ𝜃 := {𝐼 : |𝐼| = 𝜃𝑆1} for all 𝜃 ∈ (0, 1) such that 𝜃𝑆1 is an integer. We define two sub-families

of MDPs,

ℳ1 :=
⋃︁
𝐼∈ℐ𝜃1

{𝑀𝛼1,𝛽1,𝑤,𝐼}, and ℳ2 :=
⋃︁
𝐼∈ℐ𝜃2

{𝑀𝛼1,𝛽1,𝑤,𝐼},

where 𝑤 := 𝛾(𝛼1 + 𝛼2)/2 is fixed for all MDPs, ℳ1 is specified by (𝜃1, 𝛼1, 𝛽1) = (1/2, 1/4, 3/4),

and ℳ2 is specified by (𝜃2, 𝛼2, 𝛽2) = (1/4, 1/2, 1/2).19 Finally, we define the hard family ℳ

19Recall that we assume without loss of generality that 𝑆1/4 is an integer.
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via

ℳ := ℳ1 ∪ℳ2.

Let us discuss some basic properties of the construction that are used to prove the lower

bound.

• For all MDPs in ℳ, the rewards of the terminal states 𝑊,𝑋, 𝑌 are the same. This

means there is no uncertainty in the reward function outside of state 𝑍, which has

𝑅𝛼1,𝛽1,𝑤(𝑍, a) = 𝛼1/𝛽1 = 1/3 when 𝑀 ∈ ℳ1 and 𝑅𝛼2,𝛽2,𝑤(𝑍, a) = 𝛼2/𝛽2 = 1 when

𝑀 ∈ ℳ2. As we mentioned, the reward of 𝑍 (= 𝛼/𝛽) is chosen to ensure that all

states in 𝒮1 have the same value (= 𝛾𝛼/(1− 𝛾)), given the choice for (𝛼, 𝛽).

• All MDPs in ℳ1 (resp. ℳ2) differ only in the choice of 𝐼 ⊂ 𝒮1. This property, along

with the aforementioned fact that all states in 𝒮1 have the same value 𝛾𝛼1/(1 − 𝛾)

(resp. 𝛾𝛼2/(1− 𝛾)), ensures that 𝑄⋆𝑀 is the same for all 𝑀 ∈ ℳ1 (resp. 𝑀 ∈ ℳ2).

Furthermore, our choice for 𝑤 ∈ (𝛾𝛼1, 𝛾𝛼2) ensures that the optimal action in s is

action 1 (resp. action 2) for all MDPs in ℳ1 (resp. ℳ2).

• Our choice for (𝜃1, 𝛼1, 𝛽1) and (𝜃2, 𝛼2, 𝛽2) ensures that the marginal distribution of 𝑠′

under the process 𝑠 ∼ Unif(𝒮1), 𝑠′ ∼ 𝑃 (𝑠, a) is the same for all 𝑀 ∈ ℳ. This property

is motivated by the hard inference task described in Section 4.2.1, which requires an

uninformative marginal distribution.

The exact numerical values for the MDP parameters chosen above are not essential to

the result. Any tuple (𝜃1, 𝛼1, 𝛽1; 𝜃2, 𝛼2, 𝛽2;𝑤) can be used to establish a result similar to

Theorem 4.1, as long as it satisfies certain properties described in Appendix C.1.

Finishing the Construction: Value Functions and Data Distribution

We complete our construction by specifying a value function class ℱ that satisfies (all-policy)

realizability and a data distribution 𝜇 that satisfies concentrability (4.1).
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Value function class Define functions 𝑓1, 𝑓2 : 𝒮 × 𝒜 → R as follows; differences are

highlighted in blue:

𝑓1(𝑠, 𝑎) :=
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8𝛾

2, 𝑠 = s, 𝑎 = 1

1
4𝛾

2, 𝑠 = s, 𝑎 = 2

1
4𝛾, 𝑠 ∈ 𝒮1

3
8𝛾, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

1
3 , 𝑠 = 𝑍

and 𝑓2(𝑠, 𝑎) :=
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
8𝛾

2, 𝑠 = s, 𝑎 = 1

1
2𝛾

2, 𝑠 = s, 𝑎 = 2

1
2𝛾, 𝑠 ∈ 𝒮1

3
8𝛾, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

1, 𝑠 = 𝑍

.

(4.2)

The following result is elementary; see Appendix C.2 for a detailed calculation.

Proposition 4.1. For all 𝑀 ∈ ℳ1, we have 𝑄𝜋𝑀 = 𝑓1 for all 𝜋 : 𝒮 → Δ(𝒜). For all

𝑀 ∈ ℳ2, we have 𝑄𝜋𝑀 = 𝑓2 for all 𝜋 : 𝒮 → Δ(𝒜).

It follows that by choosing ℱ := {𝑓1, 𝑓2}, all-policy realizability holds for all 𝑀 ∈ ℳ.

Note that the all-policy realizability condition (𝑄𝜋𝑀 ∈ ℱ for all 𝑀 ∈ ℳ and for all policies 𝜋)

is substantially stronger than the standard realizability condition (𝑄⋆𝑀 ∈ ℱ for all 𝑀 ∈ ℳ),

as it requires 𝑄𝜋 ∈ ℱ for every policy rather than just for 𝜋⋆. Since the conjecture of

Chen and Jiang (2019) only asks for a construction that satisfies standard realizability, by

considering all-policy realizability, we are proving a stronger hardness result. This is possible

because in our construction, different actions have identical effects on all states except for the

initial state s; as a result, 𝑄𝜋 does not depend on 𝜋 at all (in other words, our construction

ensures that 𝑄𝜋 is always the same as 𝑄⋆).

Data distribution Recall that the learner is provided with an i.i.d. dataset 𝐷𝑛 =

{(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1 where (𝑠𝑖, 𝑎𝑖) ∼ 𝜇, 𝑠′𝑖 ∼ 𝑃 (· | 𝑠𝑖, 𝑎𝑖), and 𝑟𝑖 = 𝑅(𝑠𝑖, 𝑎𝑖) (here 𝑃 and 𝑅 are

the transition and reward functions for the underlying MDP). We define the data collection

distribution via:

𝜇 :=
1

8
Unif({s} × {1, 2}) + 1

2
Unif(𝒮1 × {1, 2}) + 3

8
Unif({𝑊,𝑋, 𝑌 } × {1, 2}).
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This choice for 𝜇 forces the learner to suffer from the hardness described in Section 4.2.1.

Salient properties include: (i) both planted and unplanted states in 𝒮1 are covered, and

(ii) the state 𝑍 is not covered. Property (i) results in strong over-coverage, which makes

estimating the parameters of the underlying MDP from transitions statistically hard, while

property (ii) hides the difference between the rewards of 𝑍 for the two-subfamilies of MDPs

and hence makes all reward observations uninformative.

We now verify the concentrability condition (4.1):

- For time step ℎ = 0, for any 𝜋 : 𝒮 → Δ(𝒜), the distribution of (𝑠0, 𝑎0) is 𝑑0 × 𝜋. It

follows that ⃦⃦⃦⃦
𝑑0 × 𝜋

𝜇

⃦⃦⃦⃦
∞

≤ 1
1
8 · 1

2

= 16.

- For time step ℎ = 1, for any 𝜋 : 𝒮 → Δ(𝒜), the distribution of (𝑠1, 𝑎1) is Unif(𝐼)× 𝜋.

We conclude that ⃦⃦⃦⃦
Unif(𝐼)× 𝜋

𝜇

⃦⃦⃦⃦
∞

≤
1

𝑆1/4

1
2 · 1

𝑆1
· 1
2

= 16,

where we have used that |𝐼| ≥ 𝑆1/4.

- For time step ℎ ≥ 2, for any 𝜋 : 𝒮 → Δ(𝒜), the distribution of (𝑠ℎ, 𝑎ℎ) (denoted by

𝑑𝜋ℎ) is supported on {𝑊,𝑋, 𝑌 } × {1, 2}. Therefore, we have

⃦⃦⃦⃦
𝑑𝜋ℎ
𝜇

⃦⃦⃦⃦
∞

≤ 1
3
8 · 1

3 · 1
2

= 16.

We conclude that the construction satisfies concentrability with 𝐶conc = 16.

4.2.2 Proof of Theorem 4.1

Having specified the lower bound construction, we proceed to prove Theorem 4.1. For any

MDP 𝑀 ∈ ℳ, we know from (4.2) that the optimal policy 𝜋⋆𝑀 has

𝜋⋆𝑀 (s) =

⎧⎪⎨⎪⎩
1, if 𝑀 ∈ ℳ1

2, if 𝑀 ∈ ℳ2

,
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and that 𝑄⋆𝑀 has a constant gap in value between the optimal and suboptimal actions in the

initial state s:

𝑄⋆𝑀 (s, 𝜋⋆𝑀 (s))−𝑄⋆𝑀 (s, 𝑎) ≥ 1

8

𝛾2

1− 𝛾
, ∀𝑎 ̸= 𝜋⋆𝑀 (s). (4.3)

This implies that any policy 𝜋 : 𝒮 → Δ(𝒜) with high value must choose action 1 in s with

high probability when 𝑀 ∈ ℳ1, and must choose action 2 in s with high probability when

𝑀 ∈ ℳ2. As a result, any offline RL algorithm with non-trivial performance must reliably

distinguish between 𝑀 ∈ ℳ1 and 𝑀 ∈ ℳ2 using the offline dataset 𝐷𝑛. In what follows we

make this intuition precise.

For each 𝑀 ∈ ℳ, let P𝑀𝑛 denote the law of the offline dataset 𝐷𝑛 when the underlying

MDP is 𝑀 , and let E𝑀𝑛 be the associated expectation operator. We formalize the idea

of distinguishing between 𝑀 ∈ ℳ1 and 𝑀 ∈ ℳ2 using Lemma 4.1, which reduces the

task of proving a policy learning lower bound to the task of upper bounding the total

variation distance between two mixture distributions P1
𝑛 := 1

|ℳ1|
∑︀

𝑀∈ℳ1
P𝑀𝑛 and P2

𝑛 :=

1
|ℳ2|

∑︀
𝑀∈ℳ2

P𝑀𝑛 .

Lemma 4.1. Let 𝛾 ∈ (0, 1) be fixed. For any offline RL algorithm which takes 𝐷𝑛 =

{(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1 as input and returns a stochastic policy ̂︀𝜋𝐷𝑛 : 𝒮 → Δ(𝒜), we have

sup
𝑀∈ℳ

{︀
𝐽𝑀 (𝜋⋆𝑀 )− E𝑀𝑛 [𝐽𝑀 (̂︀𝜋𝐷𝑛)]}︀ ≥ 𝛾2

16(1− 𝛾)

(︀
1−𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀)︀
.

Lemma 4.1 implies that if the difference between the average dataset generated by all

𝑀 ∈ ℳ1 and that generated by all 𝑀 ∈ ℳ2 is sufficiently small, no algorithm can reliably

distinguish 𝑀 ∈ ℳ1 and 𝑀 ∈ ℳ2 based 𝐷𝑛, and hence must have poor performance on

some instance. See Appendix C.3 for a proof.

We conclude by bounding 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
. Since directly calculating the total variation

distance is difficult, we proceed in two steps. We first design an auxiliary reference measure

P0
𝑛, and then bound 𝐷TV

(︀
P1
𝑛,P0

𝑛

)︀
and 𝐷TV

(︀
P2
𝑛,P0

𝑛

)︀
separately. For the latter step, we move

from total variation distance to 𝜒2-divergence and bound 𝐷𝜒2

(︀
P1
𝑛 ‖P0

𝑛

)︀
(resp. 𝐷𝜒2

(︀
P2
𝑛 ‖P0

𝑛

)︀
)

using a mix of combinatorial arguments and concentration inequalities. This constitutes the

most technical portion of the proof, and formalizes the intuition about hardness of estimation

under planted subset structure described in Section 4.2.1. Our final bound on the total

variation distance (proven in Appendix C.4) is as follows.
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Lemma 4.2. For all 𝑛 ≤ 3
√︀
(𝑆 − 5)/20, we have

𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 1/2.

Theorem 4.1 immediately follows by combining Lemma 4.1 and Lemma 4.2.

4.2.3 Discussion

Having proven Theorem 4.1, we briefly interpret the result and discuss some additional

consequences. We refer to Section 4.2.4 for extensions and further discussion.

Separation between online and offline reinforcement learning In the online rein-

forcement learning setting, the learner can execute any policy in the underlying MDP and

observe the resulting trajectory. Our results show that in general, the separation between

the sample complexity of online RL and offline RL can be arbitrarily large, even when

concentrability is satisfied. To see this, recall that in the online RL setting, we can evaluate

any fixed policy to precision 𝜀 using poly((1−𝛾)−1) ·𝜀−2 trajectories via Monte-Carlo rollouts.

Since the class ℳ we construct essentially only has two possible choices for the optimal

policy and has suboptimality gap 𝛾2

1−𝛾 , we can learn the optimal policy in the online setting

using poly((1 − 𝛾)−1) trajectories, with no dependence on the number of states. On the

other hand, Theorem 4.1 shows that the sample complexity of offline RL for this family can

be made arbitrarily large.

Linear function approximation The observation above is particularly salient in the

context of linear function approximation, where ℱ =
{︀
(𝑠, 𝑎) ↦→ ⟨𝜑(𝑠, 𝑎), 𝜃⟩ : 𝜃 ∈ R𝑑

}︀
for

a known feature map 𝜑(𝑠, 𝑎). Our lower bound construction for Theorem 4.1 can be

viewed as a special case of the linear function approximation setup with 𝑑 = 2 by choosing

𝜑(𝑠, 𝑎) = (𝑓1(𝑠, 𝑎), 𝑓2(𝑠, 𝑎)). Consequently, our results show that the separation between the

complexity of offline RL and online RL with linearly realizable function approximation can

be arbitrarily large, even when the dimension is constant. This strengthens one of the results

of Zanette (2021), which provides a linearly realizable construction in which the separation

between online and offline RL is exponential with respect to dimension.
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Why aren’t stronger coverage or representation conditions satisfied? While our

construction satisfies concentrability and realizability, it fails to satisfy stronger coverage and

representation conditions for which sample-efficient upper bounds are known. This is to be

expected, (or else we would have a contradiction!) but understanding why is instructive.

Here we discuss connections to some notable conditions.

Pushforward concentrability. The stronger notion of concentrability that 𝑃 (𝑠′ | 𝑠, 𝑎)/𝜇(𝑠′) ≤

𝐶 for all (𝑠, 𝑎, 𝑠′), which is used in Xie and Jiang (2021), fails to hold because the state 𝑍

is not covered by 𝜇. This presents no issue for standard concentrability because 𝑍 is not

reachable starting from s.

Completeness. Bellman completeness requires that the value function class ℱ has 𝒯𝑀ℱ ⊆ ℱ

for all 𝑀 ∈ ℳ, where 𝒯𝑀 is the Bellman operator for 𝑀 . We show in (4.2) that the set

of optimal Q-value functions {𝑄⋆𝑀}𝑀∈ℳ is small, but completeness requires that the class

remains closed even when we mix and match value functions and Bellman operators from

ℳ1 and ℳ2, which results in an exponentially large class in our construction. To see why,

first note that by Bellman optimality, we must have {𝑄⋆𝑀}𝑀∈ℳ ⊆ ℱ if ℱ is complete.

We therefore also require 𝒯𝑀 ′𝑄⋆𝑀 ∈ ℱ for 𝑀 ∈ ℳ1 and 𝑀 ′ ∈ ℳ2. Unlike the optimal

Q-functions, which are constant across 𝒮1, the value of [𝒯𝑀 ′𝑄⋆𝑀 ](𝑠, a) for 𝑠 ∈ 𝒮1 depends on

whether 𝑠 ∈ 𝐼 or 𝑠 ∈ 𝒮1 ∖ 𝐼, where 𝐼 is the collection of planted states for 𝑀 ′.20 As a result,

there are
(︀
𝑆1

|𝐼|
)︀

possible values for the Bellman backup, which means that the cardinality of ℱ

must be exponential in 𝑆.

4.2.4 Extensions

Theorem 4.1 presents the simplest variant of our lower bound for clarity of exposition. In

what follows we sketch some straightforward extensions.

• Policy evaluation. Our lower bound immediately extends from policy optimization to

policy evaluation. Indeed, letting 𝜋⋆1 and 𝜋⋆2 denote the optimal policies for ℳ1 and

ℳ2 respectively, we have |𝐽𝑀 (𝜋⋆1)− 𝐽𝑀 (𝜋⋆2)| ∝
𝛾2

1−𝛾 for all 𝑀 ∈ ℳ, and we know that

𝐽𝑀 (𝜋⋆1) is constant across all 𝑀 ∈ ℳ. It follows that any algorithm which evaluates

policy 𝜋⋆2 to precision 𝜀 · 𝛾2

1−𝛾 with probability at least 1 − 𝛿 for sufficiently small

20Recall that 𝑓1 is the optimal Q-function for any 𝑀 ∈ ℳ1 and consider 𝒯𝑀′𝑓1 where 𝑀 ′ ∈ ℳ2 has
planted set 𝐼. For 𝑠 ∈ 𝐼, we have [𝒯𝑀′𝑓1](𝑠, a) = (1/2 · 1 + 1/2 · 0)𝛾 = 𝛾/2 while for 𝑠 ∈ 𝒮1 ∖ 𝐼, we have
[𝒯𝑀′𝑓1](𝑠, a) = (1/2 · (1/3) + 1/2 · 0)𝛾 = 𝛾/6.
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numerical constants 𝜀, 𝛿 > 0 can be used to select the optimal policy with probability

(1− 𝛿), and thus guarantee 𝐽(𝜋⋆)− E[𝐽(𝜋̂)] ≲ 𝛿 𝛾2

1−𝛾 . Hence, such an algorithm must

use 𝑛 = Ω(|𝒮|1/3) samples by our policy optimization lower bound.

To formally cast this setup in the policy evaluation setting, we take Π = {𝜋⋆2} as the

class of policies to be evaluated, and we require a value function class ℱ such that

𝑄𝜋𝑀 ∈ ℳ for all 𝜋 ∈ Π, 𝑀 ∈ ℳ. By Proposition 4.1, it suffices to select ℱ =
{︀
𝑓1, 𝑓2

}︀
.

• Learning an 𝜀-suboptimal policy. Theorem 4.1 shows that for any 𝛾 ∈ (1/2, 1),

𝑛 ≳ 𝑆1/3 samples are required to learn a (1 − 𝛾)−1-optimal policy. We can extend

the construction to show that more generally, for any 𝜀 ∈ (0, 1), 𝑛 ≳ 𝑆1/3

𝜀 samples are

required to learn an 𝜀 · (1− 𝛾)−1-optimal policy. We modify the MDP family 𝑀𝛼,𝛽,𝑤,𝐼

by adding a single dummy state t with a self-loop and zero reward. The initial state

distribution is changed so that 𝑑0(t) = 1− 𝜀 and 𝑑1(s) = 𝜀. That is, with probability

1− 𝜀, the agent begins in t and stays there forever, collecting no reward, and otherwise

the agent begins at s and proceeds as in the original construction. Analogously, we

replace the original data distribution 𝜇 with 𝜇′ := (1− 𝜀)𝛿t + 𝜀𝜇, where 𝛿t is a point

mass on t. This preserves the concentrability bound 𝐶conc ≤ 16. This modification

rescales the optimal value functions, and the conclusion of Lemma 4.1 is replaced by

sup
𝑀∈ℳ

{︀
𝐽𝑀 (𝜋⋆𝑀 )− E𝑀𝑛 [𝐽𝑀 (̂︀𝜋𝐷𝑛)]}︀ ≥ 𝜀 · 𝛾2

16(1− 𝛾)

(︀
1−𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀)︀
.

On the other hand, since samples from the state t provide no information about the

underlying instance, the effective number of samples is reduced to 𝜀𝑛. One can make

this intuition precise and prove that 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 3/4 whenever 𝜀𝑛 ≤ 𝑐 · 𝑆1/3 for a

numerical constant 𝑐. Combining this with the previous bound yields the result.

• Linear function approximation. As discussed above, Theorem 4.1 can be viewed as a

special case of linear function approximation with 𝑑 = 2 and 𝜑(𝑠, 𝑎) = (𝑓1(𝑠, 𝑎), 𝑓2(𝑠, 𝑎)).

Compared with recent lower bounds in the linear setting (Wang et al. 2020a, Zanette

2021), this result is significantly stronger in that (a) it considers a stronger coverage

condition, (b) holds with constant dimension and constant effective horizon, and (c)

scales with the number of states, which can be arbitrarily large.

Lastly, it should be clear at this point that our lower bound construction extends to the
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finite-horizon setting with 𝐻 = 3 by simply removing the self-loops from the terminal states.

The only difference is that the optimal Q-value functions require a new calculation since

rewards are no longer discounted.

4.3 Proof Overview for Theorem 4.2

In this section we present a high-level overview of the construction and proof for Theorem 4.2.

We defer the complete proof, as well as additional discussion, to Appendix C.5. The proof is

based on a extension of the construction used in Theorem 4.1. We still use the concept of

planted and unplanted states, but since the data collection distribution must be admissible,

we cannot rely on strong over-coverage to create spurious correlations. In particular, a naïve

adaptation would require that the unplanted states are reachable with sufficient probability,

which would necessitate that state 𝑍 is supported by 𝜇 with sufficient probability. The

resulting construction would not lead to a meaningful lower bound, as the reward information

from 𝑍 can be used to learn the optimal policy.

To avoid this issue, we modify the construction in Theorem 4.1 to replace 𝑍 with another

“layer” of states with planted subset structure (see Appendix C.5.1 and Footnote 61 for the

precise definition of a layer). By repeating this several times, we obtain a family of MDPs

with 𝐿 > 1 layers of planted subset structure, connected in the manner displayed in Figure

4-2 (see Appendix C.5.1 for the details). Specifically, taking action 2 (in blue) from the initial

state s, the 𝑙th layer is selected with probability ∝ 1/2𝑙, and we transit uniformly to the

states in the 𝑙th layer. In each layer, the planted states behave similarly to the construction

for Theorem 4.1, transitioning to terminal states 𝑋 and 𝑌 with specific probabilities that

are chosen such that the marginal distribution provides no information. However, except for

at the last layer, the unplanted states do not transition directly to the terminal state 𝑍, but

rather to the planted states of the next layer. Overall, 𝑍 can be reached with only 𝑂(1/2𝐿)

probability.

Similar to our previous construction, the new multi-layer construction ensures that every

MDP in the family differs only in terms of the reward of 𝑍 and the transition probabilities

for planted and unplanted states. Moreover, while the state 𝑍 is no longer unreachable, we

know that since all policies only reach 𝑍 with exponentially small (in 𝐿) probability, we can

satisfy concentrability with a data collection distribution that places exponentially small
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Figure 4-2: Illustration of the MDP family used to prove Theorem 4.2, with 𝐿 = 3 layers of
the planted subset structure (note that in general, we take 𝐿 > 3). The rewards of the states
𝑊 , 𝑋, 𝑌 and 𝑍 are 𝑤, 1, 0 and 𝛼/(1− 𝐿𝛼), respectively, where 𝑤 and 𝛼 are parameters of
the MDP family.

mass on 𝑍 (which—if it appeared in the dataset—would reveal the optimal policy). As a

result, we have that with high probability, all reward observations in the dataset provide

no information. Intuitively, this allows us to apply an inductive argument to show that one

cannot learn the value function.21 As the base case, when the reward for 𝑍 is unobserved

(which happens with high probability), the 𝐿th layer resembles an instance of the construction

used to prove Theorem 4.1. Then, going backwards, if one cannot estimate the (𝑙+1)st layer,

we can view the 𝑙th layer as an instance of the previous construction to show that one cannot

estimate the value of this layer as well. This induction relies on the delicate design of the

data collection distribution 𝜇, which is supported on both planted and unplanted states, but

nevertheless exhibits a weak notion of over-coverage resulting in spurious correlations. The

argument also requires gradually decreasing the difference in the value function (between the

two MDP families) from the 𝐿th layer to the first layer; however, we can ensure that the rate

of decrease is very slow, which leads to statistical hardness.

On a technical level, after constructing the MDP family, many of the calculations are

similar to those used to prove Theorem 4.1. Analogously to Lemma 4.1, we lower bound

the suboptimality of any algorithm by the total variation distance between two mixture

distributions. Then we bound this TV distance by constructing auxiliary reference measures

and passing to the 𝜒2-divergence, analogously to Lemma 4.2. Finally, since we rely on a

similar planted subset structure, the 𝜒2-divergence calculation shares many technical elements

21The inductive argument is discussed here mainly for providing intuition. The proof in Appendix C.5 is
more direct and does not involve a formal inductive argument.
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with the proof of Lemma 4.2.

4.4 Concluding Remarks

We have proven that concentrability and realizability alone are not sufficient for sample-

efficient offline reinforcement learning, resolving the conjecture of Chen and Jiang (2019).

Our results establish that sample-efficient offline RL requires coverage or representation

conditions beyond what is required for supervised learning and show that over-coverage is a

fundamental barrier for offline RL.

For future research, an immediate question is whether it is possible to circumvent our lower

bound by considering trajectory-based data rather than (𝑠, 𝑎, 𝑟, 𝑠′) tuples. More broadly,

while our results elucidate the role of concentrability and realizability, it remains to obtain a

sharp, distribution-dependent characterization for the sample complexity of offline RL with

general function approximation. Such a characterization would need to recover our result

and previous results—both positive and negative—as special cases.
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Chapter 5

Online Pricing with Offline Data

5.1 Introduction

Classical statistical learning theory distinguishes between offline learning and online learning.

Offline learning deals with the problem of finding a predictive function based on the entire

training data set. The performance of an offline learning algorithm is typically measured by

its generalization error (also known as the out-of-sample error) or sample complexity (see,

e.g., Hastie et al. 2005). In contrast to the offline learning setting where the entire training

data set is directly available before the offline learning algorithm is applied, online learning

deals with a setting where data become available in a sequential manner that may depend

on the actions taken by the online learning algorithm. The performance of online learning

algorithms is typically measured by the regret22. While offline learning assumes access to

offline data (but not online data) and online learning assumes access to online data (but

not offline data), in reality, a broad class of real-world problems incorporate both aspects:

there is an offline historical data set (based on historical actions) at the time that the learner

starts an online learning process.

Currently, there is no standard framework for the above type of learning problems, as

classical offline learning theory and online learning theory have different settings and goals.

While establishing a framework that bridges all aspects of offline learning and online learning

is generally a very complicated task, in this paper, we propose a framework that bridges

22In this paper, when we discuss online learning, we focus more on the literature of stochastic online
learning, where the online sequential data arrive in a stochastic manner. There is a vast literature of online
learning focusing on the non-stochastic setting where the online sequential data arrive in an adversarial
manner (see Cesa-Bianchi and Lugosi 2006), which is not the emphasis of this paper.
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the gap between offline learning and online learning in a specific problem setting, which,

however, already captures the essence of many dynamic pricing problems that sellers face in

practice.

5.1.1 The Model: Online Pricing with Offline Data

In this paper, we study the Online Pricing with Offline Data (OPOD) problem. Consider a

firm selling a single product with an infinite amount of inventory over a selling horizon of

𝑇 periods. In each period 𝑡 = 1, 2, . . . , 𝑇 , the seller chooses a price 𝑝𝑡 from a given interval

[𝑙, 𝑢] ⊂ [0,∞) to offer to its customers, and then observes random demand 𝐷𝑡. We assume

that the demand in each period is a linear function of the price plus some random noise.

Specifically, for each 𝑡 ≥ 1,

𝐷𝑡 = 𝛼⋆ + 𝛽⋆𝑝𝑡 + 𝜀𝑡, (5.1)

where 𝛼⋆ and 𝛽⋆ are two unknown demand parameters in the known interval [𝛼min, 𝛼max] ⊆

(0,∞) and [𝛽min, 𝛽max] ⊆ (−∞, 0) respectively, and {𝜀𝑡}𝑇𝑡=1 are i.i.d. random variables with

zero mean and unknown distribution. We assume that 𝜀𝑡 is an 𝑅2-sub-Gaussian random

variable, i.e., there exists a constant 𝑅 > 0 such that E[𝑒𝑥𝜀𝑡 ] ≤ 𝑒
𝑥2𝑅2

2 for any 𝑥 ∈ R. For

notational convenience, let 𝜃⋆ := (𝛼⋆, 𝛽⋆) and Θ† := [𝛼min, 𝛼max]× [𝛽min, 𝛽max], and we use

𝜃 := (𝛼, 𝛽) to denote any possible vector in parameter space Θ†.

The seller’s single-period expected revenue is the price 𝑝 offered to the customer multiplied

by the associated expected demand. To emphasize the dependence on the parameter values,

for any 𝜃 = (𝛼, 𝛽) ∈ Θ†, we define the expected revenue function 𝑟(𝑝; 𝜃) as 𝑟(𝑝; 𝜃) =

𝑝(𝛼+ 𝛽𝑝), ∀𝑝 ∈ [𝑙, 𝑢]. Let 𝜓(𝜃) be the price that maximizes 𝑟(𝑝; 𝜃) over the interval [𝑙, 𝑢],

i.e., 𝜓(𝜃) = argmax
{︀
𝑟(𝑝; 𝜃) : 𝑝 ∈ [𝑙, 𝑢]

}︀
, and use 𝑝⋆ to denote the true optimal price, i.e.,

𝑝⋆ = 𝜓(𝜃⋆). Let 𝑟⋆(𝜃) be the optimal expected revenue under demand parameter 𝜃, i.e.,

𝑟⋆(𝜃) = 𝜓(𝜃)(𝛼+ 𝛽𝜓(𝜃)). Without loss of generality,23 we assume that for any 𝜃 ∈ Θ†, the

optimal price is an interior point of price range [𝑙, 𝑢], and therefore 𝜓(𝜃) = 𝛼
−2𝛽 .

Historical prices and offline data. In reality, the seller does not know the true demand

model, but has to learn such information from the historical data. In this paper, we assume

that the seller has some pre-existing offline data before the start of the online learning process.
23This is because for any 𝜃 ∈ Θ†, 𝛼

−2𝛽
∈ [ 𝛼min

−2𝛽min
, 𝛼max
−2𝛽max

], and we can choose 𝑙 and 𝑢 such that
[ 𝛼min
−2𝛽min

, 𝛼max
−2𝛽max

] ⊂ [𝑙, 𝑢], which guarantees that 𝛼
−2𝛽

is an interior point of interval [𝑙, 𝑢].
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The offline data set contains 𝑛 independent samples: {(𝑝1, 𝐷̂1), (𝑝2, 𝐷̂2), . . . , (𝑝𝑛, 𝐷̂𝑛)}, where

𝑝1, 𝑝2, . . . , 𝑝𝑛 are 𝑛 fixed prices, and each 𝐷̂𝑖 is a demand observation under historical price

𝑝𝑖, drawn independently according to the underlying linear demand model (5.1). Therefore,

for each 1 ≤ 𝑖 ≤ 𝑛, 𝐷̂𝑖 = 𝛼⋆ + 𝛽⋆𝑝𝑖 + 𝜀𝑖 for some i.i.d. random variables {𝜀𝑖}𝑛𝑖=1 with the

same distribution as that of {𝜀𝑡}𝑇𝑡=1.

Pricing policies and performance metrics. For each 𝑡 ≥ 0, let 𝐻𝑡 be the vector of

information available at the beginning of period 𝑡+ 1, i.e.,

𝐻𝑡 = (𝑝1, 𝐷̂1, . . . , 𝑝𝑛, 𝐷̂𝑛, 𝑝1, 𝐷1, . . . , 𝑝𝑡, 𝐷𝑡).

A pricing policy is defined as a sequence of functions 𝜋 = (𝜋1, 𝜋2, . . .), where each 𝜋𝑡

is a measurable function which maps the realization of 𝐻𝑡 (and possibly some external

randomness) to a feasible price in [𝑙, 𝑢]. Let Π be the set of all pricing policies. For any

policy 𝜋 ∈ Π, the regret of 𝜋, denoted by 𝑅𝜋𝜃⋆(𝑇 ), is defined as the difference between the

optimal expected revenue generated by the clairvoyant policy that knows the exact value of

𝜃⋆ and the expected revenue generated by pricing policy 𝜋, i.e.,

𝑅𝜋𝜃⋆(𝑇 ) = 𝑇 · 𝑟⋆(𝜃⋆)− E𝜋𝜃⋆
[︁ 𝑇∑︁
𝑡=1

𝑟(𝑝𝑡; 𝜃
⋆)
]︁
,

5.1.2 Research Question, Observations and Challenges

This paper is inspired by the objective of bridging the gap between offline learning and online

learning. The following question naturally arises whenever the offline data are incorporated

into the online decision making: how do the offline data affect the statistical complexity

of online learning? To address this question, the first challenge is to identify the key

characteristics of the offline data that intrinsically affect the complexity of the online learning

task.

Intuitively, the size of the offline data, measured by the number of historical samples 𝑛,

and the dispersion of the offline data, measured by the standard deviation of historical prices

𝜎, i.e., 𝜎 =
√︁∑︀𝑛

𝑖=1(𝑝𝑖 −
1
𝑛

∑︀𝑛
𝑗=1 𝑝𝑗)

2, provide two important metrics that enable quantifying

the amount of information collected before the online learning process starts. As 𝑛 becomes

larger, or 𝜎 increases, the seller can form a better estimation for the unknown demand

parameters using offline regression, and the regret may decrease accordingly.
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Another crucial, and more intriguing metric of the offline data, is the location of the

offline data, which is measured by 𝛿 = | 1𝑛
∑︀𝑛

𝑖=1 𝑝𝑖− 𝑝⋆|, i.e., the distance between the average

historical price and the optimal price 𝑝⋆. We refer to 𝛿 as the generalized distance, as it

intuitively quantifies how far the offline data set is “away” from the (unknown) optimal

decision. This is a crucial metric that uniquely appears when offline data are incorporated

into the online learning process. Indeed, if there are no offline data available before the start

of the online learning process, then there is no 𝛿 at all. Also, if the offline data are only

used for estimation or prediction, with no need of online decision making, i.e., the seller is

purely interested in estimating the model parameters from the offline data and does not

need to make any online pricing decisions, then 𝛿 does not affect her estimation accuracy.

Surprisingly, as we prove in this paper, when the offline data are incorporated into online

learning, this metric will play a fundamental role.

Besides identifying the above three characteristics of the offline data, a key challenge is

to precisely quantify the effects of these offline data characteristics on the online learning

task. Specifically, we seek to understand to what extent these three metrics of the offline

data influence the behavior and growth rate of the best-achievable regret bound. On the

algorithmic side, we also seek to design a simple, intuitive and easy-to-implement pricing

policy that exploits the values of both the pre-existing offline data and sequentially-revealed

online data, and achieves a tight regret bound with respect to the selling horizon 𝑇 , as well

as the three metrics of the offline data, i.e., 𝑛, 𝜎, 𝛿. Moreover, since the generalized distance

𝛿 is completely unknown to the seller, the algorithm itself cannot use any information about

𝛿, which implies a more challenging task of designing a learning algorithm whose performance

is as good as if 𝛿 were known.

5.1.3 Main Results and Technical Highlights

In this paper, we address the above challenges in two settings: (i) single-historical-price

setting where all the historical prices are identical, i.e., 𝜎 = 0, and (ii) multiple-historical-price

setting where the historical prices can be different, i.e., 𝜎 > 0. We next summarize our main

results and technical highlights. Throughout this paper, we use ̃︀𝒪(·) and ̃︀Ω(·) to present

upper and lower bounds on the growth rate up to logarithmic factors, and ̃︀Θ(·) to characterize

the rate when the upper and lower bounds match (up to logarithmic factors). In addition,

we use 𝐴 ≲ 𝐵 and 𝐴 ≳ 𝐵 to denote 𝐴 = ̃︀𝒪(𝐵) and 𝐴 = ̃︀Ω(𝐵) respectively. More formal
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definitions of these notations are provided in §5.1.5. For any 𝑎, 𝑏 ∈ R, 𝑎 ∧ 𝑏 = min{𝑎, 𝑏} and

𝑎 ∨ 𝑏 = max{𝑎, 𝑏}.

Single-historical-price setting. For the single-historical-price setting, we develop a

learning algorithm called Online and Offline–OFU (O3FU) algorithm, where OFU refers to

the principle of Optimism in the Face of Uncertainty, which arises from multi-armed bandits

and is widely used in the literature on bandits (see, e.g., Dani et al. 2008, Abbasi-Yadkori

et al. 2011). In general, this principle suggests taking actions based on an optimistic guess of

the reward associated with each action in each period. We show that the regret of O3FU

algorithm has an upper bound ̃︀𝒪(︀√𝑇 ∧ 𝑇 log 𝑇
(𝑛∧𝑇 )𝛿2

)︀
. Although this upper bound depends on

the unknown quantity 𝛿, the algorithm itself does not require any information about 𝛿. In

addition, we prove an information-theoretic lower bound which matches the upper bound,

showing that the regret bound cannot be further improved by other algorithms (in a certain

sense); we define such an unimprovable regret bound as the optimal (instance-dependent)

regret for the OPOD problem in the single-historical-price setting. We summarize its rate in

Table 5.1. In particular, when 𝑛 = 0, or 𝑛 = ∞ and 𝛿 is a constant independent of 𝑇 , the

results in the leftmost and rightmost cases with 𝛿 ≳ 𝑇−1/4 in Table 5.1 recover those in

Keskin and Zeevi (2014).

Multiple-historical-price setting. For the general setting that the historical prices

may be different, we modify O3FU algorithm by adding a preliminary step that detects

whether a corner case 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
happens or not, and propose the Modified O3FU

(M-O3FU) algorithm. We prove that M-O3FU algorithm achieves the regret upper bound̃︀𝒪(
√
𝑇 ∧ 𝑇 log 𝑇

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ), except for a corner case where the upper bound becomes ̃︀𝒪(𝑇𝛿2).24 In

addition, we prove an information-theoretic lower bound that matches the upper bound for

both cases, showing that our regret bound cannot be further improved (in a certain sense);

we define such an unimprovable regret bound as the optimal (instance-dependent) regret for

the OPOD problem in the multiple-historical-price setting. We summarize its rate in Table 5.2.

Sufficient condition for self-exploration. As a byproduct, we provide a sufficient

condition for the myopic (i.e., greedy) policy to self-explore in the online learning process.

Specifically, if the variance of historical prices is sufficiently large, and the average historical

price is found to be bounded away from the confidence interval for the optimal price

24This corner case rarely happens because it requires the generalized distance 𝛿 to be very small and the
price variance 𝑛𝜎2 to be very large, such that there is no need of online learning. See the discussion in §5.4.2.
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constructed from offline regression, then the myopic policy, the one that always charges the

optimal price associated with the least-square estimate obtained in each round, achieves

the optimal regret under mild conditions. This result generates additional insights for the

performance guarantee of the myopic policy with the help of offline data, and also provides

analytical support for the wide use of such policies in practice.

Methodology contributions. From a technical perspective, the tight upper and lower

bounds that we obtain in this paper are both instance-dependent regret bounds, which

are much stronger and more challenging to prove than the traditional worst-case regret

bounds. To prove the instance-dependent upper bound, we conduct a period-by-period

trajectory analysis, and develop novel inductive arguments, integrated with the specific

property guaranteed by OFU principle, to obtain a sharp characterization on the distance

between the algorithm’s price and the average historical price. To prove the instance-

dependent lower bound, we reduce the OPOD problem to a hybrid of estimation and hypothesis

testing problems, which requires constructing an instance-dependent prior distribution and

an instance-dependent hypothesis set, respectively. To the best of our knowledge, these are

the first tight and general instance-dependent regret bounds obtained in (i) the linear-demand

online pricing problem, and (ii) a continuous-armed bandit problem where the optimal action

may not be an extremal point (in contrast to the extremal-point requirement in Dani et al.

2008 and Abbasi-Yadkori et al. 2011).

5.1.4 Key Insights: Phase Transitions and Inverse-Square Law

The characterization of the optimal instance-dependent regret also leads to two important

implications on the value of offline data. First, when the offline sample size 𝑛 changes,

the optimal regret rate exhibits significantly different decaying patterns, and we refer to

such significant transitions between the regret-decaying patterns as phase transitions25. For

example, when 𝜎 = 0 and 𝛿 ≳ 𝑇− 1
4 (see Table 1), the optimal regret rate remains at the

level of ̃︀Θ(
√
𝑇 ) whenever 𝑛 ≲

√
𝑇
𝛿2

, and then gradually decays according to ̃︀Θ( 𝑇
𝑛𝛿2

) when
√
𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 , and finally stays at the level of ̃︀Θ( log 𝑇
𝛿2

) when 𝑛 ≳ 𝑇 . Second, in the regular

case, the optimal regret is inversely proportional to the square of the standard deviation

𝜎 and generalized distance 𝛿, which is referred to as the inverse-square law. The optimal
25We borrow this terminology from statistical physics; see Domb (2000). See also the discussion of phase

transitions in the optimal stopping problem studied by Correa et al. (2022), and in the multi-armed bandit
problem studied by Simchi-Levi and Xu (2023).
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regret’s dependence on 𝜎 is consistent with our intuition, as more dispersive historical prices

indicate more information gained before the online learning process starts, and therefore a

smaller regret. The optimal regret’s dependence on 𝛿 is more intriguing, as it suggests that

the closer the historical prices are to the optimal price, the worse the optimal regret will

be. In fact, this is a consequence of the tradeoff between exploration (i.e., experimenting to

improve estimates of the unknown demand model) and exploitation (i.e., leveraging current

estimates to maximize revenue). Specifically, whenever an algorithm tries to learn the true

demand model, it has to make substantial efforts in charging various prices “far away” from

the average historical price. Therefore, when 𝛿 is small, such a deviation will also lead to a

significant gap with the optimal price, leading to greater revenue loss. These two findings

contribute new insights to the fundamental problem of dynamic pricing with demand learning.

Table 5.1: Optimal regret for the single-historical-price setting.

𝛿 ≳ 𝑇− 1
4

offline sample size 0 ≤ 𝑛 ≲
√
𝑇
𝛿2

√
𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑛 ≳ 𝑇

optimal regret ̃︀Θ(
√
𝑇 ) ̃︀Θ( 𝑇

𝑛𝛿2
) ̃︀Θ( log 𝑇

𝛿2
)

𝛿 ≲ 𝑇− 1
4

offline sample size 𝑛 ≥ 0

optimal regret ̃︀Θ(
√
𝑇 )

Table 5.2: Optimal regret for the multiple-historical-price setting.

𝛿 ≳ 𝑇− 1
4 and 𝜎 ≲ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇
𝛿2

√
𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑇 ≲ 𝑛 ≲ 𝑇𝛿2

𝜎2 𝑛 ≳ 𝑇𝛿2

𝜎2

optimal regret ̃︀Θ(
√
𝑇 ) ̃︀Θ( 𝑇

𝑛𝛿2
) ̃︀Θ( 1

𝛿2
) ̃︀Θ( 𝑇

𝑛𝜎2 )

𝛿 ≳ 𝑇− 1
4 and 𝜎 ≳ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇
𝜎2 𝑛 ≳

√
𝑇
𝜎2

optimal regret ̃︀Θ(
√
𝑇 ) ̃︀Θ( 𝑇

𝑛𝜎2 )

𝛿 ≲ 𝑇− 1
4

offline sample size 0 ≤ 𝑛 ≲
√
𝑇
𝜎2

√
𝑇
𝜎2 ≲ 𝑛 ≲ 1

𝛿2𝜎2 𝑛 ≳ 1
𝛿2𝜎2

optimal regret ̃︀Θ(
√
𝑇 ) ̃︀Θ(𝑇𝛿2) ̃︀Θ( 𝑇

𝑛𝜎2 )
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5.1.5 Organization and Notation

This paper is organized as follows. In §5.2, we review the relevant literature. In §5.3 and §5.4,

we study the OPOD problem in the single-historical-price setting and multiple-historical-price

setting respectively. We conduct a numerical study in §5.5, and discuss the self-exploration

of the myopic policy in §5.6. In §5.7, we summarize our paper with extensions and future

research directions. Most of the technical proofs are deferred to the appendix.

Throughout the paper, all the vectors are column vectors unless otherwise specified. For

any 𝑚 ∈ N, we use [𝑚] to denote the set {1, 2, . . . ,𝑚}. For any column vector 𝑥 ∈ R𝑛 and

positive semi-definite matrix 𝐴 ∈ R𝑛×𝑛, ||𝑥|| := (
∑︀𝑛

𝑖=1 𝑥
2
𝑖 )

1
2 , and ||𝑥||𝐴 :=

√
𝑥⊤𝐴𝑥. The

notations 𝒪(·), Ω(·) and Θ(·) are applied to hide constant factors, and ̃︀𝒪(·), ̃︀Ω(·) and ̃︀Θ(·)

are applied to hide both constant and logarithmic factors. That is, 𝑓(𝑇 ) = 𝒪(𝑔(𝑇 )) means

that there exists a constant 𝐶 > 0 such that 𝑓(𝑇 ) ≤ 𝐶𝑔(𝑇 ) for any 𝑇 , and 𝑓(𝑇 ) = ̃︀𝒪(𝑔(𝑇 ))

means that there exist constants 𝐶 and 𝜆 > 0, such that 𝑓(𝑇 ) ≤ 𝐶𝑔(𝑇 )(log 𝑇 )𝜆 for any

𝑇 . In addition, 𝑓(𝑇 ) = Ω(𝑔(𝑇 )) (resp. 𝑓(𝑇 ) = ̃︀Ω(𝑔(𝑇 ))) means 𝑔(𝑇 ) = 𝒪(𝑓(𝑇 )) (resp.

𝑔(𝑇 ) = ̃︀𝒪(𝑓(𝑇 ))), and 𝑓(𝑇 ) = Θ(𝑔(𝑇 )) (resp. 𝑓(𝑇 ) = ̃︀Θ(𝑔(𝑇 ))) means 𝑓(𝑇 ) = 𝒪(𝑔(𝑇 )) and

𝑓(𝑇 ) = Ω(𝑔(𝑇 )) (resp. 𝑓(𝑇 ) = ̃︀𝒪(𝑔(𝑇 )) and 𝑓(𝑇 ) = ̃︀Ω(𝑔(𝑇 ))).
5.2 Related Literature

5.2.1 Dynamic Pricing with Online Learning

When there are no offline data, the OPOD problem becomes a pure online learning problem,

i.e. dynamic pricing with an unknown linear demand model, and belongs to a broad

category referred to as the online pricing problems. Online pricing problems have generated

great interest in recent years in the operations research and management science (OR/MS)

community; see den Boer (2015) for a comprehensive survey. In particular, there is a vast

literature (e.g., den Boer and Zwart 2013, den Boer 2014, Keskin and Zeevi 2014, Wang et al.

2014, Keskin and Zeevi 2016, Qiang and Bayati 2016, Nambiar et al. 2019, Ban and Keskin

2021, den Boer and Keskin 2022) studying dynamic pricing problems with an unknown

linear (or generalized linear) demand model, which is arguably one of the most fundamental

demand models for pricing. All of the existing papers purely focus on online learning. In this

paper, we take the fundamental problem of dynamic pricing with a linear demand model

as our baseline, but significantly extend it by incorporating offline data into online decision
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making.

Keskin and Zeevi (2014) is the most relevant paper to this work. The authors consider

dynamic pricing with an unknown linear demand model, studying an important question of

how knowing an exact point at the demand curve (i.e., the exact expected demand under a

single price) in advance helps reduce the optimal regret. Depending on whether the seller

knows this exact point or not, they prove that the best achievable regret is Θ(log 𝑇 ) and̃︀Θ(
√
𝑇 ) respectively. Compared with their work, the OPOD problem studied in this paper

seems more relevant to practice, and is more general in theory. Practically, while firms will

never know the true expected demand under a given price exactly (which requires infinitely

many demand observations), they usually have some pre-existing offline data (which are

finitely many) prior to the online learning process. Theoretically, the results in Keskin and

Zeevi (2014) (for the single-product setting) can be viewed as two special cases of our results

when (i) 𝑛 = 0; and (ii) 𝜎 = 0, 𝑛 = ∞, and 𝛿 = Θ(1), with an additional assumption

that 𝛿 is lower bounded by a known constant (as their algorithms for case (ii) rely on this

knowledge). Since 𝛿 is completely unknown and can be small in our setting (and in reality),

their algorithms and analysis do not apply here. In fact, the principle of our algorithm design

and the approach of our regret analysis are very different from theirs.

There is also a stream of literature in Bayesian learning, where the decision maker is

assumed to have a known prior distribution for the unknown parameter, and can update

her belief on the prior distribution from online observations. For recent works on dynamic

pricing with Bayesian learning, we refer the interested readers to Harrison et al. (2012) and

Agrawal et al. (2017) that focus on the worst-case regret, and to Ferreira et al. (2018) and

Miao and Chao (2020) that focus on the Bayesian regret. While the prior distribution in

Bayesian learning can be estimated using offline data, the modeling approach and results

of these papers are very different from this work. First, in Bayesian learning, it is usually

assumed that the decision maker knows the exact prior distribution, which typically belongs

to some specific parametric family. By contrast, in this work, we do not assume any prior

distribution or impose any parametric assumption on the distribution of demand parameter,

but directly incorporate offline data into online learning. Second, as a main contribution of

this paper, we characterize the effects of the size, dispersion and location of the offline data

on the statistical complexity of online learning, which are not discussed in and not the focus

of the current literature on Bayesian learning.
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5.2.2 Multi-Armed Bandits

Our paper is also related to the literature of multi-armed bandits (MAB). In the classical

𝐾-armed bandit problem, the decision maker chooses one of the 𝐾 arms in each round and

observes a random reward generated from some unknown distribution associated with the

arm being played, with the goal of minimizing the regret; see Lattimore and Szepesvári (2020)

for more references on this topic. In most of the literature on bandit problems (see, e.g.,

Auer et al. 2002a, Dani et al. 2008, Rusmevichientong and Tsitsiklis 2010, Abbasi-Yadkori

et al. 2011, Filippi et al. 2010), the decision maker has to start from scratch (i.e., with no

historical information). By contrast, a few papers study bandit problems in settings where

the algorithms may utilize different types of historical information; see, e.g., Shivaswamy

and Joachims (2012), Bouneffouf et al. (2019), Hsu et al. (2019), Ye et al. (2020), Bastani

et al. (2022), Gur and Momeni (2022), of which Shivaswamy and Joachims (2012) and Gur

and Momeni (2022) are the most relevant to this paper.

Shivaswamy and Joachims (2012) study the MAB problem with offline observations of

rewards collected before the online learning algorithm starts; we refer to their problem as

“MAB with offline data”. While our idea of incorporating offline data into an online learning

problem is similar to theirs, there are significant differences between the two papers in terms

of model settings, main results and analytical techniques. First, Shivaswamy and Joachims

(2012) study the MAB problem with discrete and finitely many arms, while our model builds

on the literature of online pricing problems (see §5.2.1 for references), where the prices are

continuous and infinitely many, and the rewards are nonlinear with respect to prices. The

properties and results for these two classes of problems are very different. Second, under the

well-separated condition, Shivaswamy and Joachims (2012) prove some regret upper bounds

that change from 𝒪(log 𝑇 ) to 𝒪(1) when the amount of offline observations of rewards for

each arm exceeds Ω(log 𝑇 ), with no regret lower bound proven and hence no discussion of

phase transitions. In comparison, we characterize the optimal regret via matching upper

and lower bounds, and figure out surprising phase transitions of the optimal regret rate as

the offline sample size changes. Moreover, we also discover the inverse square law, which

does not appear in the previous literature. Third, while Shivaswamy and Joachims (2012)

use a conventional approach in bandit literature to upper-bound the regret via the so-called

sub-optimality gap, since we are bounding the regret via 𝜎 and 𝛿, we present different regret
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analysis that may be of independent interest.

In a recent paper by Gur and Momeni (2022), a generalized MAB formulation is studied,

where some additional information may become available before each online decision is made.

Their formulation includes “MAB with offline data” as a special case. Under the general

formulation, the authors characterize the optimal regret as a function of the information

arrival process, and study the effect of the characteristics of this process on the algorithm

design and the best achievable regret bound. Since their formulation and analysis crucially

rely on the model setting of discrete and finitely many arms, the results, techniques, and

insights of our paper and their paper are significantly different.

Interestingly, by specializing the regret lower bound in Gur and Momeni (2022) to the

problem of “MAB with offline data”, and combining this lower bound with the regret upper

bound in Shivaswamy and Joachims (2012), one can obtain a characterization of the optimal

regret for this problem under some mild conditions, which also leads to phase transitions not

discussed before. The phase transitions are very different from the phase transitions that

we discover in OPOD. We provide more discussions on this observation and the differences in

Appendix D.7.

5.3 Single Historical Price

In this section, we study the single-historical-price setting: where all the 𝑛 historical prices

are identical to 𝑝. As pointed out in Harrison et al. (2012) and Keskin and Zeevi (2014),

in finance industry, for many consumer lending products, banks often keep a fixed interest

rate over some periods of time before they conduct price experimentation. Similarly, in the

retail industry, there are many scenarios where the seller charges a fixed price based on the

manufacturer’s suggestion, branding or competitors’ price before using a dynamic pricing

strategy. Thus, we start with this simple but important single-historical-price setting in

this section. We first design a learning algorithm with a per-instance regret upper bound in

§5.3.1, and then characterize the regret lower bound in §5.3.2. Some important implications

are discussed in §5.3.3.
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5.3.1 O3FU Algorithm and Regret Upper Bound

Our proposed algorithm Online and Offline–Optimism in the Face of Uncertainty (O3FU) is

constructed based on the celebrated Optimism in the Face of Uncertainty (OFU) principle,

which effectively addresses the exploration-exploitation dilemma inherent in many online

learning problems (see, e.g., §7.1 of Lattimore and Szepesvári 2020 for a reference). For any

𝑡 ≥ 0, we define a confidence radius 𝑤𝑡 that will be used to construct a confidence ellipsoid

for the demand parameter at the end of period 𝑡, and the expression of 𝑤𝑡 is as follows:

𝑤𝑡 = 𝑅

√︂
2 log

(︁1
𝜖

(︀
1 + (1 + 𝑢2)(𝑡+ 𝑛)/𝜆

)︀)︁
+
√︁
𝜆(𝛼2

max + 𝛽2min), (5.2)

where 𝜖 and 𝜆 will be specified in the description of the algorithm. The choice of 𝑤𝑡 is based

on the high-probability confidence bound developed in Theorem 2 of Abbasi-Yadkori et al.

(2011), which will also be used throughout our regret analysis. The pseudo-code of O3FU

algorithm is provided in Algorithm 5.1.

Algorithm 5.1 O3FU Algorithm
Input: historical price 𝑝, offline demand data 𝐷̂1, 𝐷̂2, . . . , 𝐷̂𝑛, support of unknown
parameters Θ†, price range [𝑙, 𝑢], regularization parameter 𝜆 = 1 + 𝑢2, {𝑤𝑡}𝑡≥1 defined in
(5.2) with 𝜖 = 1

𝑇 2

Initialization: 𝑉0,𝑛 = 𝜆𝐼 + 𝑛[1 𝑝]T[1 𝑝], 𝑌0,𝑛 = (
∑︀𝑛

𝑖=1 𝐷̂𝑖)[1 𝑝]
T

1: for 𝑡 ∈ [𝑇 ] do
2: if 𝑡 = 1 then
3: Charge price 𝑝1 = 𝑙 · I{𝑝 > 𝑢+𝑙

2 }+ 𝑢 · I{𝑝 ≤ 𝑢+𝑙
2 }, and observe demand realization

𝐷1

4: Compute 𝑉1,𝑛 = 𝑉0,𝑛 + [1 𝑝1]
T[1 𝑝1], 𝑌1,𝑛 = 𝑌0,𝑛 +𝐷1[1 𝑝1]

T, 𝜃1 = 𝑉 −1
1,𝑛 𝑌1,𝑛

5: Compute confidence ellipsoid 𝒞1 =
{︀
𝜃 ∈ R2 : ||𝜃 − 𝜃1||𝑉1,𝑛 ≤ 𝑤1

}︀
6: else
7: If 𝒞𝑡−1 ∩ Θ† ≠ ∅, let (𝑝𝑡, 𝜃𝑡) ∈ argmax𝑝∈[𝑙,𝑢],𝜃∈𝒞𝑡−1∩Θ† 𝑝(𝛼 + 𝛽𝑝); otherwise, let
𝑝𝑡 = 𝑝1

8: Charge price 𝑝𝑡, and observe demand realization 𝐷𝑡

9: Update 𝑉𝑡,𝑛 = 𝑉𝑡−1,𝑛 + [1 𝑝𝑡]
T[1 𝑝𝑡], 𝑌𝑡,𝑛 = 𝑌𝑡−1,𝑛 +𝐷𝑡[1 𝑝𝑡]

T, 𝜃𝑡 = 𝑉 −1
𝑡,𝑛 𝑌𝑡,𝑛

10: Update confidence ellipsoid 𝒞𝑡 =
{︀
𝜃 ∈ R2 : ||𝜃 − 𝜃𝑡||𝑉𝑡,𝑛 ≤ 𝑤𝑡

}︀
.

In O3FU algorithm, when 𝑡 = 1, the price is chosen from boundary points {𝑙, 𝑢},

depending on which one has a larger distance from historical price 𝑝. The choice of such

an initial price is not unique, and any price that is bounded away from 𝑝 by a constant

distance will also work. For each 𝑡 ≥ 2, we first maintain a confidence ellipsoid 𝒞𝑡−1
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for the unknown parameter 𝜃⋆, and then O3FU algorithm selects an optimistic estimator

𝜃𝑡 ∈ argmax𝜃∈𝒞𝑡−1∩Θ† max𝑝∈[𝑙,𝑢] 𝑝(𝛼+ 𝛽𝑝), and charges price 𝑝𝑡 = argmax𝑝∈[𝑙,𝑢] 𝑝(𝛼̃𝑡 + 𝛽𝑡𝑝),

which is optimal with respect to estimator 𝜃𝑡. Note that when max𝑝∈[𝑙,𝑢] 𝑝(𝛼 + 𝛽𝑝), as a

function of 𝜃 ∈ 𝒞𝑡−1 ∩Θ†, has multiple maximizers, 𝜃𝑡 can be set as any maximizer. Figure

5-1 shows how O3FU algorithm works, where the three blue curves depict the expected

revenues with three different parameters belonging to set 𝒞𝑡−1 ∩ Θ† (we only draw three

curves for illustration), and the red curve is the upper envelope of all the possible candidate

revenue curves, which is also the revenue function associated with the demand parameter 𝜃𝑡,

i.e., 𝑟(𝑝; 𝜃𝑡).

Figure 5-1: Revenue curves under three different parameters (blue), and the optimistic
revenue (red).

Intuitively, if we knew that generalized distance 𝛿 would be large, then trying prices far

away from 𝑝 is beneficial for both exploration and exploitation. By contrast, if we knew

that 𝛿 would be small, then striking a balance between exploration and exploitation would

be very important, because choosing prices close to 𝑝 is only effective for exploitation but

not for exploration. Of course, the seller does not know the true value of 𝛿, which makes

designing a learning algorithm that achieves the right balance between exploration and

exploitation a more challenging task. O3FU algorithm achieves this objective by maximizing

the optimistic revenue, which is defined as max𝜃∈𝒞𝑡−1∩Θ† 𝑝(𝛼+ 𝛽𝑝), and can be treated as

the estimated revenue plus a “bonus” of exploration. In fact, as implied from equation (19.8)

in Lattimore and Szepesvári (2020), when 𝒞𝑡−1 ⊆ Θ†, we have max𝜃∈𝒞𝑡−1∩Θ† 𝑝(𝛼 + 𝛽𝑝) =

𝑝(𝛼̂𝑡−1 + 𝛽𝑡−1𝑝) + 𝑤𝑡−1

√︁
[1 𝑝]𝑉 −1

𝑡−1,𝑛[1 𝑝]
⊤. Therefore, exploitation and exploration are

both incorporated into the objective function through the first term and the second term,

respectively.
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It’s worth noting that our O3FU algorithm is parameter-free in the sense that it does not

need to use any information about 𝛿. In addition, while O3FU algorithm takes 𝑇 as input,

one can easily extend the current algorithm to work with unknown 𝑇 using the standard

doubling trick (see, e.g., Lattimore and Szepesvári 2020) and construct an anytime algorithm

that does not need to know 𝑇 .

We now provide an upper bound on the regret of O3FU algorithm.

Theorem 5.1. Let 𝜋 be O3FU algorithm. Then there exists a finite constant 𝐾1 > 0 such

that for any 𝑇 ≥ 1, 𝑛 ≥ 0 and 𝑝 ∈ [𝑙, 𝑢], and for any possible value of 𝜃⋆ ∈ Θ†,

𝑅𝜋𝜃⋆(𝑇 ) ≤ 𝐾1 ·
(︁√

𝑇 ∧ 𝑇 log 𝑇

(𝑛 ∧ 𝑇 )𝛿2
)︁
· log 𝑇.

Theorem 5.1 provides a regret upper bound ̃︀𝒪(
√
𝑇 ∧ 𝑇 log 𝑇

(𝑛∧𝑇 )𝛿2 ) that depends on the problem

instance through the value of 𝛿, which is therefore called the instance-dependent upper bound.

If 𝛿 is a constant, when 𝑛 = 0 or 𝑛 = ∞, i.e., there are no offline data or infinitely many

offline data under price 𝑝, the upper bound reduces to ̃︀𝒪(
√
𝑇 ) and ̃︀𝒪(log 𝑇 ) respectively.

If 𝛿 is not a constant, with an order shrinking to zero as 𝑇 grows, the regret upper bound

is then inversely proportional to 𝛿2. We summarize the regret upper bound under different

(𝑛, 𝛿) combinations in Table D.1 of Appendix D.8.

We next outline the key ideas to prove Theorem 5.1 and leave the detailed analysis

to Appendix D.1.1. From the statement of Theorem 5.1, it suffices to show an instance-

independent upper bound ̃︀𝒪(
√
𝑇 ) and an instance-dependent upper bound ̃︀𝒪( 𝑇

(𝑛∧𝑇 )𝛿2 ). The

instance-independent bound can be proved using similar arguments from stochastic linear

bandits, e.g., Abbasi-Yadkori et al. (2011), by noting that the expected revenue is the

inner product of the unknown parameter [𝛼 𝛽] and the action vector [𝑝 𝑝2]. Showing the

instance-dependent bound is the novel part in our proof, which relies on the following crucial

lemma.

Lemma 5.1. Suppose 𝑇 ≥ 𝑇0, 𝛿 ≥
√

2(𝛼2
max+𝛽

2
max)𝑤𝑇

𝛽2
max𝑛

1/4 , and 𝜃⋆ ∈ 𝒞𝑡 for each 𝑡 ∈ [𝑇 ], then two

sequences of events {𝑈𝑡,1}𝑇𝑡=1 and {𝑈𝑡,2}𝑇𝑡=2 also hold, where

𝑈𝑡,1 =
{︁
|𝑝𝑡 − 𝑝| ≥ min

{︁
1−

√
2

2
,
𝐶0

2

}︁
· 𝛿
}︁
,

𝑈𝑡,2 =
{︁
||𝜃𝑡 − 𝜃⋆||2 ≤ 𝐶2 ·

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2

}︁
,
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and 𝐶0 =
𝑙|𝛽max|
𝑢|𝛽min| , 𝐶1 = 4(𝐶0 + 1)2𝐶−2

0

(︀
1 + (4𝑢+ 1)2

)︀
, 𝐶2 = max

{︁
4(𝑢− 𝑙)2, 2𝐶1, 4((4𝑢+

1)2 + 1)(min{𝐶
2
0
4 , (1−

√
2
2 )2})−1

}︁
, 𝑇0 = min

{︁
𝑡 ∈ N : 𝑤𝑡 ≥

√
𝐶1𝛽

2
max(2(𝛼

2
max + 𝛽2max))

−1/2
}︁
.

Lemma 5.1 is interpreted as follows. When the optimal price has a certain distance from

historical price 𝑝, i.e., 𝛿 ≥
√

2(𝛼2
max+𝛽

2
max)𝑤𝑇

𝛽2
max𝑛

1/4 , given that the demand parameter 𝜃⋆ belongs

to the confidence ellipsoid 𝒞𝑡 in each period 𝑡, the algorithm’s pricing sequence {𝑝𝑡}𝑇𝑡=1 is

also uniformly bounded away from 𝑝 proportional to the unknown quantity 𝛿 (as implied by

events {𝑈𝑡,1}𝑇𝑡=1), and will gradually approach the true optimal price in a rate of 𝒪(
𝑤2
𝑡

(𝑛∧𝑡)𝛿2 )

(as implied by events {𝑈𝑡,2}𝑇𝑡=2). This implies that the algorithm can “adaptively” explore

to a suitable degree, to create an efficient “collaboration” between the online prices and the

historical price, while concurrently approaching the unknown optimal price. This property is

nontrivial and cannot be implied from the existing analysis of the OFU-type algorithms. To

prove this lemma, we conduct a period-by-period trajectory analysis of the random pricing

sequence generated by our algorithm. Specifically, we find that the occurrence of 𝑈𝑡,2 relies

on the joint occurrence of 𝑈1,1, . . . , 𝑈𝑡−1,1, while the occurrence of 𝑈𝑡,2 (combined with the

specific structure of the optimistic revenue curve) in turn leads to the occurrence of 𝑈𝑡,1.

We thus introduce novel induction-based arguments to prove Lemma 5.1; see details in

Appendix D.1.2. The induction-based arguments also explain why we set the initial price in

the algorithm to be a boundary point (or any price that has a constant distance from 𝑝),

since this enables 𝑈1,1 to occur.

We remark that for the stochastic linear bandit problem with a polytope action set,

Abbasi-Yadkori et al. (2011) prove an instance-dependent upper bound of 𝒪( log 𝑇Δ ), where

Δ is defined as the sub-optimality gap between the rewards of the best and second best

extremal points of the action set. We emphasize that their result and analysis cannot be

applied to prove our instance-dependent upper bound due to the following reasons. First,

the instance-dependent upper bound in our problem is developed to capture the effect of

the generalized distance 𝛿 on the regret bound, which does not exist in the stochastic linear

bandit problem. Second, the instance-dependent upper bound in Abbasi-Yadkori et al. (2011)

relies on two strong conditions: (i) their algorithm only selects actions among the extremal

points of the action set, and (ii) every sub-optimal action taken by their algorithm is bounded

away from the optimal action by a reward gap Δ. Such conditions only hold under their

setting and assumptions. Our problem, however, has a quadratic objective function, with

the optimal price being an interior point of the interval [𝑙, 𝑢], which requires the algorithm’s
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actions to converge to the optimal action. As a result, the sub-optimality gap Δ becomes

zero, and standard arguments based on Δ do not work.

5.3.2 Lower Bound on Regret

In this subsection, we establish a lower bound on the performance of any algorithm for the

OPOD problem with a single historical price. We first introduce the following set of admissible

policies denoted by Π∘, which includes all the policies whose regret is guaranteed to bẽ︀𝒪(
√
𝑇 ) for any possible value of demand parameter 𝜃⋆, i.e.,

Π∘ =
{︁
𝜋 ∈ Π : sup

𝜃⋆∈Θ†
𝑅𝜋𝜃⋆(𝑇 ) ≤ 𝐾0

√
𝑇 (log 𝑇 )𝜆0

}︁
, (5.3)

where 𝐾0 > 0 and 𝜆0 ≥ 0 are arbitrary constants. Intuitively, Π∘ excludes those “bad”

policies that are not robust and suffer from large worst-case regret, e.g., a policy that never

explores and always chooses 𝑝, incurring zero regret when 𝛿 = 0 but linear regret when

𝛿 = Θ(1). Restricting our attention to Π∘ (which O3FU and many existing algorithms

obviously belong to) ensures that the considered policies are reasonable enough. Note that

Π∘ is specified by a pair of (𝐾0, 𝜆0), but for simplicity, when there is no ambiguity, we drop

the dependence on (𝐾0, 𝜆0) in the notation. To facilitate our discussion, let 𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿) be

defined as the regret for admissible policy 𝜋 ∈ Π∘ when the demand parameter is 𝜃 = (𝛼, 𝛽),

i.e., 𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿) = 𝑇 · 𝑟⋆(𝜃)−E𝜋𝜃 [
∑︀𝑇

𝑡=1 𝑟(𝑝𝑡; 𝜃)]. We also denote 𝒟 as the generic distribution

of {𝜀𝑖}𝑛𝑖=1 and {𝜀𝑡}𝑇𝑡=1, and ℰ(𝑅) as the class of sub-Gaussian distributions with parameter

𝑅.

The following theorem provides a regret lower bound for any admissible policy in terms

of the generalized distance 𝛿. For any generalized distance 𝛿, we define an instance-dependent

environment class {𝜃 ∈ Θ† : |𝑝− 𝜓(𝜃)| ∈ [(1− 𝜉)𝛿, (1 + 𝜉)𝛿]}, which is the set of all possible

values of the demand parameter whose associated optimal prices are Θ(𝛿)-distance away

from 𝑝 (here 𝜉 can be any fixed constant in (0, 1)). This environment class highlights the role

of 𝛿 as a key instance-dependent quantity, and enables us to establish an instance-dependent

regret lower bound that holds for all possible values of 𝛿; see Theorem 5.2 (note that the

environment class appears under the sup operator in the LHS of (5.4)).

Theorem 5.2. There exists a positive constant 𝐾2 such that for any admissible policy
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𝜋 ∈ Π∘, for any 𝜉 ∈ (0, 1), 𝑇 ≥ 2 and 𝑛 ≥ 0, and for any 𝛿 ∈ [0, 𝑢− 𝑙],

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝑝−𝜓(𝜃)|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿) ≥

⎧⎨⎩ 𝐾2 ·
(︁
(
√
𝑇 ∧ 𝑇

(𝑛∧𝑇 )𝛿2 ) ∨ log 𝑇
)︁
, if 𝛿 ≳ 𝑇− 1

4 ;

𝐾2 ·
(︁
(𝑇𝛿2) ∨

√
𝑇

(log 𝑇 )𝜆0

)︁
, if 𝛿 ≲ 𝑇− 1

4 .

(5.4)

Remark 5.1. We emphasize that finding a “right” definition of the instance-dependent

environment class is important for capturing the true role of 𝛿 in determining the instance-

dependent regret. While there may be other ways to specify the environment class, they may

fail to accurately reflect the instance-dependent complexity of the OPOD problem. For example,

if one sets the environment class to be the entire parameter space Θ†, then one can obtain a

single lower bound for the worst-case regret (independent of 𝛿); however, such a definition

is too conservative and does not fully capture the value of offline data. Another seemingly

natural way to specify the environment class is to consider {𝜃 ∈ Θ† : |𝜓(𝜃)− 𝑝| = 𝛿}, which

is the set of all possible values of the demand parameter whose associated optimal price has a

distance from 𝑝 exactly equal to 𝛿. However, this definition cannot preclude certain speculative

behavior of algorithms, and would result in an unrealistic regret bound that cannot be attained

by any single algorithm. We refer to Appendix D.4 for more details regarding the limitations

of the above two definitions of the environment class.

We explain Theorem 5.2 as follows. First, when 𝛿 ≳ 𝑇− 1
4 , the regret lower bound is

Ω((
√
𝑇 ∧ 𝑇

(𝑛∧𝑇 )𝛿2 ) ∨ log 𝑇 ), and in particular, if 𝛿 is a constant and 𝑛 = ∞, the regret lower

bound reduces to Ω(log 𝑇 ), which recovers Theorem 3 in Keskin and Zeevi (2014) for their

incumbent-price setting. Second, when 𝛿 ≲ 𝑇− 1
4 , the regret lower bound is always ̃︀Ω(√𝑇 ),

regardless of offline sample size 𝑛. The intuition is as follows. When restricting attention to

Π∘, we exclude those “unreasonable” policies that seldom explore but make pricing decisions

in a naive way, e.g., the one that always chooses price 𝑝 + 𝛿, because the regret of such

policies cannot always be upper bounded by ̃︀𝒪(
√
𝑇 ) for any possible value of 𝜃⋆. In this case,

any admissible policy 𝜋 ∈ Π∘ should be able to make sufficient exploration to distinguish

between different demand curves. However, to achieve this, the policy must deviate from 𝑝,

which is less informative since the seller already has collected some data under this price, to

gain more information about the true demand curve. When 𝛿 is very small, charging prices

away from 𝑝 leads to a significant gap relative to the optimal price, and therefore a large
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regret bound. We summarize the regret lower bound under different (𝑛, 𝛿) combinations in

Table D.2 of Appendix D.8.

We next highlight the key steps in proving Theorem 5.2 and leave the detailed analysis to

Appendix D.1.3. The proof idea is to reduce the OPOD problem to a hybrid of an estimation

problem (see Step 1) and a hypothesis testing problem (see Step 2).

Step 1. In this step, we prove that when 𝜀 follows a normal distribution, for any pricing

policy 𝜋 ∈ Π (not necessarily in Π∘),

sup
𝜃∈Θ†:|𝑝−𝜓(𝜃)|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿) = Ω
(︁(︀√

𝑇 ∧
(︀ 𝑇

𝛿−2 + (𝑛 ∧ 𝑇 )𝛿2
)︀)︀

∨ log(1 + 𝑇𝛿2)
)︁
.

(5.5)

To prove (5.5), we consider an “auxiliary” estimation problem for the optimal price 𝜓(𝜃), and

appeal to the multivariate van Trees inequality (cf. Gill and Levit 2001) to construct a lower

bound for the Bayesian regret. In particular, when applying the van Trees inequality, we

need to carefully choose a suitable instance-dependent prior distribution 𝑞(·) whose Fisher

information grows at an appropriate rate with respect to 𝛿, and upper-bound the resulting

Fisher information of the sequential estimators {𝑝𝑡}𝑇𝑡=1 in different cases. Then we can rightly

control the growth rate of the Bayesian regret.

Step 2. In the second step, we show that when 𝜀 follows a normal distribution and

𝛿 ≲ 𝑇− 1
4 (log 𝑇 )−

1
2
𝜆0 , for any admissible policy 𝜋 ∈ Π∘, there exists 𝜃 ∈ Θ† satisfying

|𝜓(𝜃)− 𝑝| ∈ [(1− 𝜉)𝛿, (1 + 𝜉)𝛿] such that

𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿) = Ω
(︁ √

𝑇

(log 𝑇 )𝜆0

)︁
. (5.6)

The proof of (5.6) is based on arguments using Kullback-Leibler divergence and Bretagnolle-

Huber inequality (Theorem 2.2 in Tsybakov 2009), whose key idea is as follows. We construct

two problem instances with parameters 𝜃1 and 𝜃2 such that (i) the two demand curves under

𝜃1 and 𝜃2 intersect at price 𝑝; (ii) the optimal prices under 𝜃1 and 𝜃2 are 𝑝+ 𝛿 and 𝑝+ 𝛿+Δ

respectively, with Δ = Θ(𝑇− 1
4 (log 𝑇 )

1
2
𝜆0). For any pricing policy 𝜋 ∈ Π∘, it has to perform

well under both constructed problem instances, i.e., the regret upper bound is ̃︀𝒪(
√
𝑇 ) under

either instance, and therefore should be able to distinguish between the demand environments

under 𝜃1 and 𝜃2. Moreover, any policy with the goal of separating 𝜃1 and 𝜃2 should charge
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prices significantly different from the intersected price 𝑝, i.e., the KL-divergence between the

two probability measures under 𝜃1 and 𝜃2 induced by policy 𝜋 is large. Nevertheless, since

the optimal price associated with 𝜃1 is 𝑝+ 𝛿, which is extremely close to 𝑝, the policy will

incur large regret when the underlying parameter is in fact 𝜃1. Therefore, the regret under

𝜃1 is always lower bounded by Ω(
√
𝑇

(log 𝑇 )𝜆0
) no matter how large 𝑛 is.

5.3.3 Phase Transitions and Inverse-Square Law

In this subsection, we discuss two important implications. By comparing Theorems 5.1

and 5.2, one can easily verify that the regret upper bound ̃︀𝒪(
√
𝑇 ∧ 𝑇 log 𝑇

(𝑛∧𝑇 )𝛿2 ) achieved by

O3FU algorithm, after ignoring the logarithm factor, is unimprovable within the class of all

admissible policies under the instance-dependent environment class considered in Theorem 5.2.

Motivated by this result, for Π∘ with 𝜆0 ≥ 1, we define the optimal (instance-dependent)

regret 𝑅⋆(𝑇, 𝑛, 𝛿) as

𝑅⋆(𝑇, 𝑛, 𝛿) = inf
𝜋∈Π∘

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇 ). (5.7)

Thus, 𝑅⋆(𝑇, 𝑛, 𝛿) characterizes the statistical complexity of the OPOD problem in the sense

that no algorithm in the admissible policy class can perform better than this rate when the

true optimal price is allowed to center around 𝑝 within Θ(𝛿). We state this result in the

following corollary.

Corollary 5.1. The optimal regret defined in (5.7) for the single-historical-price setting is

𝑅⋆(𝑇, 𝑛, 𝛿) = ̃︀Θ(︂√𝑇 ∧
(︂
𝑇

𝑛𝛿2
∨ log 𝑇

𝛿2

)︂)︂
.

The characterization of the optimal regret leads to two important implications. First, the

decaying patterns of the optimal regret rate are different when offline sample size 𝑛 belongs

to different ranges. To better illustrate this phenomenon, we first consider the well-separated

case where 𝛿 is a constant independent of 𝑇 . This case frequently happens in reality as

it suggests that the seller’s historical price is suboptimal and quite different from the true

optimal price. In this case, as 𝑛 increases, the optimal regret rate first remains at the level

of ̃︀Θ(
√
𝑇 ) when 𝑛 ≲

√
𝑇 , then gradually decays according to ̃︀Θ(𝑇𝑛 ) when

√
𝑇 ≲ 𝑛 ≲ 𝑇 , and

finally reaches ̃︀Θ(log 𝑇 ) when 𝑛 ≳ 𝑇 . This is depicted in Figure 5-2, from which we can
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clearly see that there are three ranges of 𝑛, i.e., 0 < 𝑛 ≲
√
𝑇 ,

√
𝑇 ≲ 𝑛 ≲ 𝑇 and 𝑛 ≳ 𝑇 ,

referred to as the first, second and third phase respectively, and the optimal regret shows

different properties in different phases. We refer to the significant transitions between the

regret-decaying patterns of different phases as phase transitions.

Figure 5-2: Phase transitions for the single-historical-price setting with constant 𝛿.

In contrast to the well-separated case where the phase transitions do not depend on

the value of 𝛿, in the general case where 𝛿 may be very small, we cannot simply ignore the

effect of 𝛿 in the optimal regret, and as a result, the number of phases and the thresholds of

the offline sample size that define different phases are closely related to the magnitude of

𝛿. As illustrated in Figure 5-3, when 𝛿 = ̃︀Ω(𝑇− 1
4 ), similar to the well-separated case, there

are three phases defined by two thresholds of 𝑛: the optimal regret remains at the level of̃︀Θ(
√
𝑇 ) in the first phase, and gradually decays according to ̃︀Θ( 𝑇

𝑛𝛿2
) in the second phase,

and stays at the level of ̃︀Θ( log 𝑇
𝛿2

) in the third phase. When 𝛿 = ̃︀𝒪(𝑇− 1
4 ), there is no phase

transition, and the optimal regret rate is always ̃︀Θ(
√
𝑇 ).

Figure 5-3: Phase transitions for the single-historical-price setting with general 𝛿. Left figure:
𝛿 ≳ 𝑇− 1

4 ; right figure: 𝛿 ≲ 𝑇− 1
4 .
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Second, Corollary 5.1 also characterizes the impact of the location of offline data relative

to the optimal price on the optimal regret, which can be stated in the following inverse-square

law : whenever offline data take effect, i.e., 𝛿 = ̃︀Ω(𝑇− 1
4 ), and 𝑛 is in the second phase or the

third phase, the optimal regret is inversely proportional to the square of generalized distance

𝛿. Therefore, the factor 𝛿−2 is intrinsic in the regret bound. Seemingly counter-intuitive, the

inverse-square law indicates that the closer the historical price is to the optimal price, the

more difficult it is to learn the demand parameter, and the larger the optimal regret will be.

In fact, this is a consequence of the exploration-exploitation trade-off. In the presence of

offline data, a “good” learning algorithm needs to deviate from historical price 𝑝 to conduct

price experimentation. However, when 𝛿 is extremely small, such a deviation will also lead

to a significant gap with the optimal price, and therefore incurs greater revenue loss to the

seller. In an extreme case when the historical price happens to be the optimal price, i.e.,

𝛿 = 0, even if 𝑛 = ∞, the optimal regret is always ̃︀Θ(
√
𝑇 ).

5.4 Multiple Historical Prices

In this section, we consider the multiple-historical-price setting, where the 𝑛 historical prices

can be different. In this case, 𝜎 can be strictly positive and will play an important role to

further reducing the complexity of the online learning task.

5.4.1 M-O3FU Algorithm and Regret Upper Bound

In this subsection, we develop a learning algorithm for the multiple-historical-price setting.

We first make the following observations.

(i) If 𝑛𝜎2 ≳
√
𝑇 and 𝛿 ≲ 𝑇− 1

4 , then the offline data provide so much information that

there is no need for online learning. In fact, by simply running linear regression on the

offline data, we can obtain the estimate 𝜃0 for the true demand parameter with the

squared estimation error of 𝒪( 1
𝑛𝜎2 ), i.e., E[||𝜃0 − 𝜃⋆||2] = 𝒪( 1

𝑛𝜎2 ), which means that

by simply charging price 𝜓(𝜃0) in each online period, we achieve the regret of 𝒪( 𝑇
𝑛𝜎2 ).

Note that this 𝒪( 1
𝑛𝜎2 )-type estimation error cannot be further improved in the online
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process by policies within Π∘, since when 𝑇𝛿2 ≲
√
𝑇 ≲ 𝑛𝜎2, we have

E[𝐽(𝑝1, . . . , 𝑝𝑛, 𝑝1, . . . , 𝑝𝑇 )] ≤ 2
(︁
E[𝐽(𝑝1, . . . , 𝑝𝑛)] +

𝑇∑︁
𝑡=1

E[(𝑝𝑡 − 𝑝⋆)2] + 𝑇 (𝑝1:𝑛 − 𝑝⋆)2
)︁

≲ 𝑛𝜎2, (5.8)

where 𝐽(𝑥1, 𝑥2, . . . , 𝑥𝑘) :=
∑︀𝑘

𝑖=1(𝑥𝑖−
1
𝑘

∑︀𝑘
𝑗=1 𝑥𝑗)

2 for any sequence {𝑥𝑖}𝑘𝑖=1 and 𝑘 ≥ 1.

This suggests that in the online process, exploration is “useless” in the sense that it

cannot bring any theoretical improvement (in terms of reducing the order of estimation

error) beyond offline regression. Therefore, if the algorithm knew that conditions

𝑛𝜎2 ≳
√
𝑇 and 𝛿 ≲ 𝑇− 1

4 hold, then there is no exploration-exploitation trade-off at all.

(ii) If in addition to the conditions in (i), a further extreme condition 𝛿2 ≲ 1
𝑛𝜎2 occurs,

then even the above offline-regression-based approach may still be conservative: if an

algorithm knew that 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
, then by simply charging 𝑝1:𝑛 in every online

period, it achieves the regret of 𝒪(𝑇𝛿2), which is even better than 𝒪( 𝑇
𝑛𝜎2 ). We refer to

𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
as the corner case, and its complement as the regular case.

(iii) However, since the algorithm does not know the value of 𝛿 in advance, it does not know

whether it is in the corner case (i.e., whether 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
is true) in advance. If

the conditions in (i) do not hold, then the algorithm still needs online exploration; if

the condition in (ii) does not hold, then the algorithm still needs offline regression.

Motivated by the above observations, we design the following Modified O3FU (M-O3FU)

algorithm. With an abuse of terminology, we refer to O3FU algorithm in this section as

the one proposed in §5.3.1 after natural modification to the multiple-historical-price setting

by letting 𝑉0,𝑛 = 𝜆𝐼 +
∑︀𝑛

𝑖=1[1 𝑝𝑖]
⊤[1 𝑝𝑖], 𝑌0,𝑛 =

∑︀𝑛
𝑖=1 𝐷̂𝑖[1 𝑝𝑖]

⊤, and 𝑝1 = 𝑙 · I{𝑝1:𝑛 >

𝑢+𝑙
2 }+ 𝑢 · I{𝑝1:𝑛 ≤ 𝑢+𝑙

2 }.

We next make several highlights about M-O3FU algorithm. First, in comparison with

O3FU algorithm, before the start of the online learning process, M-O3FU algorithm takes a

preliminary step that tests whether the distance between 𝑝1:𝑛 and interval {𝜓(𝜃) : 𝜃 ∈ 𝒞0}

is smaller than a constant times the length of interval {𝜓(𝜃) : 𝜃 ∈ 𝒞0}. The goal of this

step is to test whether condition 𝛿2 ≲ 1
𝑛𝜎2 holds or not. If this condition is inferred to hold

based on the empirical observation, and in addition, 𝑛𝜎2 ≥
√
𝑇 , the algorithm keeps using
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Algorithm 5.2 M-O3FU Algorithm
Input: offline data {(𝑝𝑖, 𝐷̂𝑖)}𝑛𝑖=1, support of demand parameters Θ†, price range [𝑙, 𝑢],
regularization parameter 𝜆 = 1 + 𝑢2, {𝑤𝑡}𝑡≥0 defined in (5.2) with 𝜖 = 1

𝑇 2 ∧ 1
𝑛𝜎2 , parameter

𝐾 > 1
Initialization: 𝑉0,𝑛 = 𝜆𝐼 +

∑︀𝑛
𝑖=1[1 𝑝𝑖]

T[1 𝑝𝑖], 𝑌0,𝑛 =
∑︀𝑛

𝑖=1 𝐷̂𝑖[1 𝑝𝑖]
T, 𝜃0 = 𝑉 −1

0,𝑛 𝑌0,𝑛,
𝒞0 = {𝜃 ∈ Θ† : ||𝜃 − 𝜃0||𝑉0,𝑛 ≤ 𝑤0}

1: if min𝜃∈𝒞0 |𝑝1:𝑛−𝜓(𝜃)|
max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| ≤ 𝐾, and 𝑛𝜎2 ≥

√
𝑇 then

2: Charge price 𝑝𝑡 = 𝑝1:𝑛 for each 𝑡 ∈ [𝑇 ]
3: else
4: Run O3FU Algorithm.

𝑝1:𝑛 for each online period. Otherwise, the algorithm simply runs O3FU algorithm. Second,

parameter 𝜖 defined in 𝑤𝑡 is modified from 1
𝑇 2 (used in O3FU) to 1

𝑇 2 ∧ 1
𝑛𝜎2 , which guarantees

that 𝜃⋆ belongs to each confidence ellipsoid 𝒞𝑡 with sufficiently high probability, and the

revenue loss incurred when 𝜃⋆ does not belong to some confidence ellipsoid can be bounded

by 𝒪( 𝑇
𝑛𝜎2 ∧ 1

𝑇 ).

The following theorem provides an upper bound on the regret of M-O3FU algorithm.

Theorem 5.3. Let 𝜋 be M-O3FU algorithm. Then there exists a finite constant 𝐾3 > 0 such

that for any 𝑇 ≥ 1, 𝑛 ≥ 0, 𝜎 ≥ 0 and 𝑝1:𝑛 ∈ [𝑙, 𝑢], and for any possible value of 𝜃⋆ ∈ Θ†, we

have

𝑅𝜋𝜃⋆(𝑇 ) ≤

⎧⎨⎩ 𝐾3 ·
(︀
𝑇𝛿2 + 1

)︀
, if 𝛿2 ≲ 1

𝑛𝜎2 ≲ 1√
𝑇
;

𝐾3 ·
(︁(︀√

𝑇 log 𝑇
)︀
∧ 𝑇 (log 𝑇 )2

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 + 1
)︁
, otherwise.

Theorem 5.3 shows that the regret upper bound has different forms in two different cases.

When 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
, M-O3FU algorithm achieves the regret upper bound 𝒪(𝑇𝛿2 + 1),

which matches the ideal regret bound in the above item (ii) discussed at the beginning of this

subsection. Otherwise, the regret upper bound becomes ̃︀𝒪(
√
𝑇 ∧ 𝑇

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 +1). Compared

with the upper bound in Theorem 5.1, there is an additional term 𝑛𝜎2 in the denominator

capturing the effect of the dispersion of offline data. We summarize the regret upper bound

under different (𝑛, 𝜎, 𝛿) combinations in Table D.3 of Appendix D.8.

The proof of Theorem 5.3 can be found in Appendix D.2.1. Similar to the proof of

Theorem 5.1, we also need an important technical lemma stated as follows.

Lemma 5.2. Suppose we run O3FU algorithm from 𝑡 = 1 with given input offline data
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{(𝑝𝑖, 𝐷̂𝑖)}𝑛𝑖=1, 𝜎 ≤ 𝛿, 𝛿 ≥ max{
√

2(𝛼2
max+𝛽

2
max)

𝛽2
max

𝑇 1/4𝑤𝑇
𝑛1/2 ,

√
𝐶1𝑇

−1/4}, and 𝜃⋆ ∈ 𝒞𝑡 for each

𝑡 ∈ [𝑇 ], then two sequences of events {𝑈𝑡,3}𝑇𝑡=1 and {𝑈𝑡,4}𝑇𝑡=2 also hold, where

𝑈𝑡,3 =
{︁
|𝑝𝑡 − 𝑝1:𝑛| ≥ min

{︀
1−

√
2

2
,
𝐶0

2

}︀
· 𝛿
}︁
,

𝑈𝑡,4 =
{︁
||𝜃𝑡 − 𝜃⋆||2 ≤ 𝐶3

𝑤2
𝑡−1

𝑛𝜎2 + (𝑛 ∧ (𝑡− 1))𝛿2

}︁
,

and 𝐶0 and 𝐶1 are defined in Lemma 5.1, and 𝐶3 = max
{︁
8(𝑢 − 𝑙)2, 4𝐶1, 2max{2(

√
2 +

1)2, 4
𝐶2

0
} · ((4𝑢+ 1)2 + 1)

}︁
.

Similar to Lemma 5.1, Lemma 5.2 is also proved based on induction arguments. Besides,

we need to use the following lower bound on the sum of squared price deviations:

𝐽(𝑝1, . . . , 𝑝𝑛, 𝑝1, . . . , 𝑝𝑡) ≥ 𝐽(𝑝1, . . . , 𝑝𝑛) +
𝑛

𝑛+ 𝑡

𝑡∑︁
𝑠=1

(𝑝𝑠 − 𝑝1:𝑛)
2, (5.9)

where 𝐽(𝑥1, 𝑥2, . . . , 𝑥𝑘) :=
∑︀𝑘

𝑖=1(𝑥𝑖 −
1
𝑘

∑︀𝑘
𝑗=1 𝑥𝑗)

2 for any sequence {𝑥𝑖}𝑘𝑖=1 and 𝑘 ≥ 1.

We can interpret 𝐽(𝑥1, 𝑥2, . . . , 𝑥𝑘) as the information metric capturing the variation for a

sequence {𝑥𝑖}𝑘𝑖=1. Then inequality (5.9) bounds the information accumulated up to period 𝑡

from below, through the pre-existing offline information, plus the information due to the

deviation of the algorithm’s prices from the average historical price. The proof of Lemma 5.2

is provided in Appendix D.2.2.

5.4.2 Lower Bound on Regret

In this subsection, we establish a lower bound on the best-achievable regret for the OPOD

problem among the class of admissible policies Π∘ defined in a similar way to (5.3). Again,

we denote 𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿, 𝜎) as the regret incurred by policy 𝜋 ∈ Π∘ under the demand parameter

𝜃.

Theorem 5.4. There exists a positive constant 𝐾4 such that for any admissible policy

𝜋 ∈ Π∘, for any 𝜉 ∈ (0, 1), 𝑇 ≥ 2, 𝑛 ≥ 0 and 𝜎 ≥ 0, and for any 𝛿 ∈ [0, 𝑢− 𝑙],

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝑝1:𝑛−𝜓(𝜃)|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿, 𝜎) ≥

⎧⎨⎩ 𝐾4 · 𝑇𝛿2, if 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
;

𝐾4 ·
(︁ √

𝑇
(log 𝑇 )𝜆0

∧ 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2

)︁
, otherwise.
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Similar to Theorem 5.2, the instance-dependent environment class is defined as the set

of instances whose associated optimal prices are away from 𝑝1:𝑛 by a distance Θ(𝛿). Since

M-O3FU algorithm achieves the regret upper bound 𝒪(
√
𝑇 log 𝑇 ) for any value of 𝜃⋆ ∈ Θ†

(thus belongs to the admissible policy class Π∘ with 𝜆0 ≥ 1), Theorem 5.4 demonstrates

that for both the corner and regular cases, the regret rate achieved by M-O3FU algorithm

in Theorem 5.3 cannot be further improved by any policy in Π∘. The proof of Theorem

5.4 is provided in Appendix D.2.4, which is a generalization to that of Theorem 5.2. We

also summarize the regret lower bound under different (𝑛, 𝜎, 𝛿) combinations in Table D.4 of

Appendix D.8.

5.4.3 Phase Transitions and Generalized Inverse-Square Law

Motivated from the matching upper and lower bounds (after ignoring logarithm factors) in

Theorems 5.3 and 5.4 respectively, we define the optimal instance-dependent regret for the

OPOD problem in the multiple-historical-price setting as follows:

𝑅⋆(𝑇, 𝑛, 𝛿, 𝜎) = inf
𝜋∈Π∘

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝1:𝑛|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇, 𝑛, 𝛿, 𝜎), (5.10)

where a slight difference compared with (5.7) is the modification from the single historical

price 𝑝 to the average historical price 𝑝1:𝑛.

Combining Theorem 5.3 and Theorem 5.4, we are able to characterize the optimal regret

of the OPOD problem for the multiple-historical-price setting.

Corollary 5.2. The optimal regret defined in (5.10) for the multiple-historical-price setting

is

𝑅⋆(𝑇, 𝑛, 𝛿, 𝜎) =

⎧⎨⎩ ̃︀Θ(︁√𝑇 ∧ 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2

)︁
, for the regular case;̃︀Θ(︀𝑇𝛿2)︀, for the corner case.

Recall that in the single-historical-price setting, the threshold ̃︀Θ(𝑇− 1
4 ) of 𝛿 plays an

important role in characterizing the behavior of the optimal regret rate. This threshold̃︀Θ(𝑇− 1
4 ) also plays a role in the optimal regret rate of the multiple-historical-price setting.

When 𝛿 ≳ 𝑇− 1
4 , there are significant differences for the behaviors of the optimal regret

rate, depending on whether 𝜎 is less than, equal to or greater than 𝛿. This is illustrated in
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Figure 5-4: Multiple-historical-price setting with 𝛿 ≳ 𝑇− 1
4 and different 𝜎.

Figure 5-5: Phase transitions for the multiple-historical-price setting with 𝛿 ≳ 𝑇− 1
4 . Left

figure: 𝜎 = 𝑜(𝛿); right figure: 𝜎 = Ω(𝛿).

Figure 5-4, where the green, red and blue curves depict the above three cases respectively. If

𝜎 = 𝑜(𝛿), as shown in the green curve, the optimal regret rate exhibits four decaying patterns

as 𝑛 changes between different ranges. Specifically, the optimal regret rate first remains

at ̃︀Θ(
√
𝑇 ) when 𝑛 ≲

√
𝑇
𝛿2

, and then decreases according to ̃︀Θ( 𝑇
𝑛𝛿2

) when
√
𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 .

After that, the optimal regret rate stays at ̃︀Θ( log 𝑇
𝛿2

) when 𝑇 ≲ 𝑛 ≲ 𝑇𝛿2

𝜎2 , and finally, it

decreases according to ̃︀Θ( 𝑇
𝑛𝜎2 ) when 𝑛 ≳ 𝑇𝛿2

𝜎2 . If 𝜎 = Θ(𝛿) or 𝜎 = Ω(𝛿) as shown in the

red or blue curve, the optimal regret rate exhibits two phases: it remains at the level of̃︀Θ(
√
𝑇 ) when 𝑛 ≲

√
𝑇
𝜎2 , and decays according to ̃︀Θ( 𝑇

𝑛𝜎2 ) when 𝑛 ≳
√
𝑇
𝜎2 . Therefore, when 𝜎

gradually increases, depending on its magnitude compared with 𝛿, the number of phases of

the optimal regret rate also experiences the change from four phases to two phases, and the

entire patterns of the phase transitions of the optimal regret rate also change accordingly.

Corollary 5.2 also reveals a generalized inverse-square law. Specifically, the optimal
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regret is inversely proportional to the square of both 𝛿 and 𝜎, which quantifies the effect of

the location and dispersion of the offline data on the optimal regret. The intuition for the

dependence of the optimal regret on 𝛿 is similar to the single-historical-price setting. For

the dependence of the optimal regret on 𝜎, as the historical prices become more dispersive,

i.e., 𝜎 increases, the seller can obtain a more accurate estimate for the unknown demand

parameter from offline regression, which helps to further reduce the optimal regret of the

online learning process.

It’s also worth noting that the thresholds of the offline sample size that define different

phases of the optimal regret depend on both 𝛿 and 𝜎. When 𝜎 = 𝒪(𝛿) and 𝛿 = ̃︀Ω(𝑇− 1
4 ),

the first threshold of 𝑛 that defines the first and second phases, i.e., ̃︀Θ(
√
𝑇
𝛿2

), decreases in

𝛿. When 𝜎 = Ω(𝛿) and 𝛿 = ̃︀Ω(𝑇− 1
4 ), the threshold of 𝑛 that defines the first and second

phases, i.e., ̃︀Θ(
√
𝑇
𝜎2 ), decreases in the standard deviation 𝜎. This implies that more offline

data will be required to overcome the challenges caused by a shorter generalized distance 𝛿

or a smaller standard deviation 𝜎.

When 𝛿 ≲ 𝑇− 1
4 , Corollary 5.2 indicates that there are three phases of the optimal

regret rate as 𝑛 changes. When 𝑛 ≲
√
𝑇
𝛿2

, the optimal regret remains at ̃︀Θ(
√
𝑇 ). When

√
𝑇
𝛿2

≲ 𝑛 ≲ 1
𝛿2𝜎2 , the optimal regret experiences a sudden drop from ̃︀Θ(

√
𝑇 ) to ̃︀Θ(𝑇𝛿2).

When 𝑛 ≳ 1
𝛿2𝜎2 , the optimal regret decays according to ̃︀Θ( 𝑇

𝑛𝜎2 ). Such transitions of the

optimal regret with different 𝑛 are illustrated in Figure 5-6. In particular, the second phase

corresponds to the corner case defined in §5.4.1. In this case, smaller 𝛿 leads to lower optimal

regret, which is in contrast to the inverse-square law in the regular case. This is because

in the corner case, as discussed in §5.4.1, there is no need for online learning and therefore

no exploration-exploitation trade-off, and the policy that always charges 𝑝1:𝑛 incurs very

small regret. In this case, the closer the average historical price is to the optimal price, the

smaller the optimal regret will be. By contrast, the inverse-square law in the regular case is

a consequence of the exploration-exploitation trade-off.

5.5 Numerical Experiments

In this section, we test the performance of our algorithm on synthetic data sets. We define the

relative regret for a given learning algorithm 𝜋 as 𝑇𝑝⋆·(𝛼⋆+𝛽⋆𝑝⋆)−
∑︀𝑇
𝑡=1 E𝜋𝜃⋆ [𝑝𝑡(𝛼

⋆+𝛽⋆𝑝𝑡)]

𝑇𝑝⋆·(𝛼⋆+𝛽⋆𝑝⋆) × 100%,

and the following three problem instances are tested:
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Figure 5-6: Phase transitions for the multiple-historical-price setting with 𝛿 ≲ 𝑇− 1
4 .

(1) 𝜃⋆ = [2.6,−1.8], [𝛼min, 𝛼max] = [2.5, 3.5], [𝛽min, 𝛽max] = [−2,−1.3], [𝑙, 𝑢] = [0.1, 2],

𝑅 = 2.2;

(2) 𝜃⋆ = [3.7,−3.15], [𝛼min, 𝛼max] = [3.5, 5], [𝛽min, 𝛽max] = [−3.2,−2.5], [𝑙, 𝑢] = [0.5, 1.3],

𝑅 = 2.5;

(3) 𝜃⋆ = [2.9,−2.6], [𝛼min, 𝛼max] = [2.8, 3.5], [𝛽min, 𝛽max] = [−2.8,−1], [𝑙, 𝑢] = [0.2, 2],

𝑅 = 1.8.

and 𝜀 follows a normal distribution with standard deviation 𝑅. For each of the above instance,

we repeat the experiments for 500 times, and the results are computed after averaging over

the 500 experiments. Under the multiple-historical-price setting, we test a simplified version

of M-O3FU algorithm by directly running O3FU, without checking the preliminary condition.

Thus, throughout this section, we simply call our algorithm “O3FU algorithm.”

First, we compare our O3FU algorithm with the modified Constrained Iterated Least

Squares (CILS) algorithm. When there are no offline data, we adopt CILS algorithm directly

from Keskin and Zeevi (2014). When there are offline data, no existing learning algorithm in

prior literature is directly suitable for this setting, so we make a natural modification to the

original CILS by incorporating offline data into the least-square estimation. In both cases,

we set the tuning parameter 𝜅 in CILS to be 0.1 following Keskin and Zeevi (2014), and

also 0.5 which seems to lead to the best performance of CILS. Figures 5-7 and 5-8 show the

performances of O3FU and CILS algorithms for the settings when there are no offline data,

and when there are 𝑛 = 1000 offline demand data under a single historical price (specifically,

we set 𝑝 = 1.8, 0.9, 1 for instances (1)-(3) respectively). As seen from Figure 5-7, without
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Figure 5-7: Comparison between O3FU and CILS when there are no offline data.
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Figure 5-8: Comparison between O3FU and CILS when there are 𝑛 = 1000 offline demand
data.
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Figure 5-9: 95% confidence-region comparison between O3FU and CILS with 𝜅 = 0.5.

offline data, O3FU performs better than CILS with 𝜅 = 0.1 and comparably to CILS with

𝜅 = 0.5 as 𝑇 becomes larger. Figure 5-8 reveals that with the help of offline data, the regret

of O3FU algorithm is significantly reduced for all 𝑇 under all instances. By contrast, for

CILS algorithms, the impact of offline data on the empirical regret is not obvious and heavily

relies on the tuning parameter and specific problem instance. For CILS with 𝜅 = 0.1, the

improvement of the relative regret is clear under instance (3), but rather minimal under

instances (1) and (2). For CILS with 𝜅 = 0.5, the regret only decreases a little under instance

(3), and even becomes larger under instances (1) and (2). Therefore, compared with CILS

algorithms, O3FU algorithm better exploits the value of offline data and is more robust to

different problem instances.

Second, Figure 5-9 plots the 95% confidence region of O3FU algorithm and CILS algorithm

with 𝜅 = 0.5, for both cases when there are no offline data and when there are 𝑛 = 1000

offline data. The left figure shows that while CILS with properly tuned parameter performs

slightly better than O3FU on average when there are no offline data, the standard deviation of

CILS among the 500 simulations is much larger than O3FU. This implies that O3FU is more

stable than CILS. The right figure shows that with offline data, O3FU always outperforms

CILS, in terms of both the average regret and standard deviation. Since O3FU algorithm has

highly stable performance, we believe that it should be preferable in many real-life business

settings.

Third, we investigate the effect of offline sample size 𝑛 on the empirical regret of O3FU

algorithm. In Figure 5-10, we plot the relative regret of O3FU algorithm given different

amount of offline data (with 𝑛 ranging from 20 to 12000), under the single-historical-price

setting (with 𝑝 = 1.8, 0.9, 1 for instances (1)-(3) respectively). The x-axis is depicted on a log
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Figure 5-10: 𝑇 = 104-period relative regret for the single-historical-price setting with different
𝑛.
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Figure 5-11: 𝑇 = 104-period relative regret for the single-historical-price setting with different
𝛿.
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Figure 5-12: 𝑇 = 104-period relative regret for the multiple-historical-price setting with
different 𝜎.
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scale. We can see clearly that for each problem instance, as the offline sample size increases,

the relative regret decreases, which is consistent with the phase transitions implied from our

theoretical results.

Finally, we investigate the effects of generalized distance 𝛿 and price dispersion 𝜎 on the

empirical regret of our algorithm. Figure 5-11 shows the relative regret of O3FU algorithm

given 𝑛 = 500 offline demand observations under historical price 𝑝⋆ + 𝛿 with different 𝛿, and

Figure 5-12 shows the relative regret of O3FU algorithm given 250 offline demand observations

under historical price 𝑝1:𝑛 − 𝜎, and 250 offline demand observations under historical price

𝑝1:𝑛 + 𝜎 with different 𝜎, where 𝑝1:𝑛 = 0.8, 0.8, 0.7 for instances (1)-(3) respectively. As seen

from Figure 5-11 and 5-12, when 𝛿 or 𝜎 increases, the empirical regret of our algorithm

decays, which also matches the inverse-square law.

Remark 5.2. We remark that the empirical evidence for the phase transitions and inverse-

square law is not always observed under every problem instance. This is because according to

its definition through the supremum over some instance-dependent environment class, the

optimal regret should be attained at some “hard" instances, and so do its implications of the

phase transitions and inverse-square law. Besides, when discussing the optimal regret rate

and its implications, we require 𝑇 to be sufficiently large, and ignore all the constant factors.

Our choices of instances (1)-(3) capture the aforementioned hard instances, and also avoid

that the problem falls into the regimes where constant factors significantly affect the overall

regret rate.

5.6 Further Discussion: Offline Data and Self-Exploration

In M-O3FU algorithm proposed in §5.4.1, there is a preliminary step testing whether
min𝜃∈𝒞0 |𝑝1:𝑛−𝜓(𝜃)|

max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| ≤ 𝐾 holds or not. We find that this step also has an important

implication in practice: min𝜃∈𝒞0 |𝑝1:𝑛−𝜓(𝜃)|
max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾 is actually a sufficient condition for

self-exploration in our OPOD problem. That is, with high probability, when this condition

holds, the myopic (i.e., greedy) policy can achieve the optimal regret without any active

exploration.

The myopic policy is defined as follows. Let 𝒞0 = {𝜃 ∈ Θ† : ||𝜃 − 𝜃LS
0 ||2𝑉0,𝑛 ≤ 𝑤2

0}, where

𝑉0,𝑛 = 𝜆𝐼 +
∑︀𝑛

𝑖=1[1 𝑝𝑖]
⊤[1 𝑝𝑖], 𝜃LS

0 = argmin𝜃∈Θ†
∑︀𝑛

𝑖=1((𝐷̂𝑖 − 𝛼− 𝛽𝑝𝑖)
2 + 𝜆(𝛼2 + 𝛽2)), and

𝑤0 = 𝑅
√︀
2 log((𝑇 2 ∨ 𝑛𝜎2)(1 + (1 + 𝑢2)𝑛/𝜆)) +

√︁
𝜆(𝛼2

max + 𝛽2min). Let {𝑝myopic
𝑡 }𝑡≥1 be the
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sequence of prices charged by the myopic policy. For 𝑡 = 1, 𝑝myopic
𝑡 = 𝜓(𝜃LS

0 ), and for each

𝑡 ≥ 2, we first compute the least-square estimator 𝜃LS
𝑡−1 based on offline data and all the

available online data within confidence ellipsoid 𝒞0:

𝜃LS
𝑡−1 = argmin

𝜃∈𝒞0

(︁ 𝑛∑︁
𝑖=1

(𝐷̂𝑖 − 𝛼− 𝛽𝑝𝑖)
2 +

𝑡−1∑︁
𝑠=1

(𝐷𝑠 − 𝛼− 𝛽𝑝𝑠)
2 + 𝜆(𝛼2 + 𝛽2)

)︁
,

and then let 𝑝myopic
𝑡 = 𝜓(𝜃LS

𝑡−1). The next proposition shows that the myopic policy is

guaranteed to be optimal if certain condition holds.

Proposition 5.1. Suppose 𝑛𝜎2 ≥
√
𝑇 . Then with probability at least 1 − 1

𝑇 2 ∧ 1
𝑛𝜎2 , the

following event holds: if min𝜃∈𝒞0 |𝑝1:𝑛−𝜓(𝜃)|
max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾 for some 𝐾 > 1, then the myopic policy

ensures that the regret is ̃︀𝒪( 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ).

The intuition of Proposition 5.1 is as follows. Note that the key step to prove the

instance-dependent upper bound ̃︀𝒪( 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ) in Theorem 5.3 is to show events {𝑈𝑡,3}𝑇𝑡=1

and {𝑈𝑡,4}𝑇𝑡=2 in Lemma 5.2 hold. Since the myopic policy charges prices based on estimator

𝜃LS
𝑡−1 ∈ 𝒞0 in each period 𝑡, and 𝒞0 contains 𝜃 with high probability, under the condition in

Proposition 5.1, we can easily verify that the myopic price 𝑝myopic
𝑡 is bounded away from 𝑝1:𝑛

by a distance proportional to 𝛿. In other words, event 𝑈𝑡,3 in Lemma 5.2 is automatically

satisfied for each period 𝑡, and in this case, when 𝜃⋆ ∈ 𝒞𝑡 = {𝜃 ∈ Θ† : ||𝜃 − 𝜃LS
𝑡 ||2𝑉𝑡,𝑛 ≤ 𝑤2

𝑡 },

we can further show that event 𝑈𝑡,4 also holds. Therefore, the myopic policy ensures that

the regret is ̃︀𝒪( 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ).

We also make several remarks about Proposition 5.1. First, the interpretation of proba-

bility “1− 1
𝑇 2 ∧ 1

𝑛𝜎2 ” is similar to the interpretation of “95%” in a 95% confidence interval.

Such a probabilistic statement is common in frequentist statistics, when one wants to make

some inference (e.g., myopic policy is optimal or not) based on some empirical observations

(e.g., min𝜃∈𝒞0 |𝜓(𝜃)−𝑝1:𝑛|
max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾). Second, if the regular case happens, i.e., 𝑛𝜎2 ≳

√
𝑇 and

𝛿2 ≳ 1
𝑛𝜎2 , one can easily verify that the empirical condition described in Proposition 5.1

always holds. In this case, the myopic algorithm always ensures ̃︀𝒪( 𝑇
𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ) regret. Nev-

ertheless, verifying the condition 𝛿2 ≳ 1
𝑛𝜎2 requires knowing the true parameter 𝜃⋆ in advance,

which is not practical in reality. Thus, we make a probabilistic statement in Proposition 5.1

about the regret bound under an empirical condition that can be directly verified by the

algorithm. Third, the choice of 1− 1
𝑇 2 ∧ 1

𝑛𝜎2 is not essential in Proposition 5.1. In fact, one
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can achieve any higher probability bound that is arbitrarily close to 1 by defining a larger

confidence ellipsoid 𝒞0, although in that case, the condition min𝜃∈𝒞0 |𝜓(𝜃)−𝑝1:𝑛|
max𝜃1,𝜃2∈𝒞0 |𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾 will

be more difficult to be satisfied.

In reality, myopic policies are commonly adopted in many industries, since they are

quite easy to explain to managers, and relatively simple to implement in practice. See

the discussion of myopic policies in, e.g. Harrison et al. (2012), Keskin and Zeevi (2014),

Qiang and Bayati (2016). However, due to the lack of active exploration, myopic policies

typically suffer from incomplete learning, thus usually have poor theoretical performance

in dynamic pricing. Proposition 5.1 shows how offline data may help myopic policies to

achieve self-exploration in dynamic pricing: when there are enough dispersive offline data,

then with high probability, as long as 𝑝1:𝑛 is bounded away from offline confidence interval of

𝑝⋆, the issue of incomplete learning could be resolved, and the myopic policy could achieve

self-exploration.

5.7 Concluding Remarks

In this paper, we investigate the impact of offline data on online learning in the context of

dynamic pricing. In contrast to previous literature that involves only offline data or only

online data, we consider a more practical problem involving both offline data and online

data, aiming to understand whether and how the pre-existence of offline data would benefit

the online learning process. For both single-historical-price and multiple-historical-price

settings, we design a learning algorithm based on the OFU principle with a provable instance-

dependent regret upper bound, and establish a regret lower bound that matches the upper

bound up to logarithmic factors. Two important and nontrivial implications implied by our

results are phase transitions and the inverse-square law, characterizing the joint effect of

the size, location, and dispersion of the offline data on the optimal regret. The numerical

experiments demonstrate the effectiveness, robustness and stability of our algorithm, and

reveal the empirical evidence for phase transitions and the inverse-square law. Besides, we

also develop a sufficient condition for the myopic policy to achieve the optimal regret in the

regular case.

We discuss two extensions of this paper. First, while we focus on the linear demand

model in this paper, the regret upper bounds developed in Theorems 5.1 and 5.3 can be
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extended to the generalized linear model 𝐷𝑡 = 𝑔(𝛼⋆ + 𝛽⋆𝑝𝑡) + 𝜀𝑡 for some link function 𝑔(·),

under certain smoothness conditions. In particular, these conditions guarantee that the

regret in each single period 𝑡 for any given policy 𝜋 is of the same order as the quadratic

estimation error E𝜋𝜃⋆ [(𝜓(𝜃⋆)− 𝑝𝜋𝑡 )
2], and that Lemmas 5.1 and 5.2 continue to hold. We refer

the interested readers to Appendix D.5 for more details. Second, we assume that historical

prices are fixed constants in this paper. In reality, offline pricing decisions can also be made

based on the previous prices and sales observations according to some offline pricing policy, in

which case offline data will be generated in an adaptive way. By modifying the performance

metric to the expected regret conditioned on the observed offline price trajectory, we can

extend our results to the setting with adaptive offline data. This extension is discussed in

Appendix D.6.

This paper also suggests various directions for future research. First, with the development

of information technology, firms have access to more detailed data that record customer

information and product characteristics. It will be interesting to incorporate such contextual

information into the model, and study context-based dynamic pricing with online learning

and offline data. In this case, it’s important to understand how the definition of the location

metric of offline data should be modified accordingly. Second, we believe that the framework

of online learning with offline data is quite general and widely applicable, and it will be also

interesting to explore how to extend such a framework to derive new results and insights for

other data-driven operational problems, e.g., pricing under substitutable products, bandit

with knapsack constraints, inventory control with demand learning, etc. Third, by leveraging

the location metric of offline data, this paper develops the instance-dependent regret bound,

which goes beyond the traditional worst-case regret and is new to the literature on dynamic

pricing with demand learning. It will be valuable to explore whether other types of instance-

dependent bounds can be developed for dynamic pricing and revenue management problems

by utilizing certain historical information.

139



140



Chapter 6

Bandits with Switching Constraints

6.1 Introduction

The multi-armed bandit (MAB) problem is one of the most fundamental problems in online

machine learning, with diverse applications ranging from pricing and online advertising

to clinical trails. Over the past several decades, it has been a very active research area

spanning different disciplines, including computer science, economics, operations research,

and statistics.

In a traditional multi-armed bandit problem, the learner (i.e., decision-maker) is allowed

to switch freely between actions, and an effective learning policy may incur frequent switching

— indeed, the learner’s task is to balance the exploration-exploitation trade-off, and both

exploration (i.e., acquiring new information) and exploitation (i.e., optimizing decisions based

on up-to-date information) require switching. However, in many real-world scenarios, it is

costly to switch between different alternatives, and a learning policy with limited switching

behavior is preferred. The learner thus has to consider the cost of switching in her learning

task.

In this paper, we introduce the Bandits with Switching Constraints (BwSC) problem.

We note that most previous research in multi-armed bandits has modeled the switching

cost as a penalty in the learner’s objective, and hence the learner’s switching behavior is

a complete output of the learning algorithm. However, in many real-world applications,

there are strict limits on the learner’s switching behavior, which should be modeled as a hard

constraint, and hence the learner’s allowable level of switching is an input to the algorithm.

In addition, while most prior research assumes specific structures on switching costs (e.g.,
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unit or homogeneous costs), in reality, switching between different pairs of actions may

incur heterogeneous costs that do not follow any parametric form. These gaps motivate

us to propose the BwSC framework, which includes a hard constraint imposed on the total

switching cost.

In addition to its strong modeling power and practical significance, the BwSC problem

is theoretically important, as it is a natural framework to study the fundamental trade-off

between the best achievable regret rate and the maximum incurred switching cost in the

classical multi-armed bandit problem. In particular, it enables characterizing important

switching patterns associated with any effective exploration-exploitation policies. Thus, the

study of the BwSC problem leads to a series of new results for the classical multi-armed

bandit problem.

6.1.1 Motivating Examples

The BwSC framework has numerous applications, including dynamic pricing, online assortment

optimization, online marketplaces, clinical trails, labor markets, supply chain management,

etc. We describe some representative examples below.

Dynamic pricing with demand learning. Dynamic pricing with demand learning has

proven its effectiveness in revenue management (den Boer 2015). However, it is well known

that in practice, sellers often face business constraints that prevent them from conducting

extensive price experimentation and making frequent price changes; see Cheung et al. (2017),

Chen and Chao (2019) and Chen et al. (2020) for discussions of multiple practical reasons.

The seller’s sequential decision-making problem can be modeled as a BwSC problem, where

changing from each price to another price incurs some cost, and there is a limit on the total

cost incurred by price changes. In particular, under different switching cost structures (which

can be flexibly specified in BwSC), the total cost to be limited can have various practical

interpretations: e.g., the total number of price changes, the total distance of price movements

(Koren et al. 2017), or the total number of price increases (which is relevant to sellers who

prefer markdown pricing (Jia et al. 2021)).

Promotion and assortment strategies in retail and financial services. Similar to

the example of dynamic pricing, many retailers and financial service providers have started

to use online learning techniques to dynamically adjust their promotion strategies (e.g.,

deals, referral programs, sign-up bonus offers) or product assortments based on sequentially
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collected data. In many scenarios, frequent changes of public offerings not only increase

operational and marketing costs (e.g., inventory and advertising costs) but also lead to

customer dissatisfaction and negative public image (Simchi-Levi et al. 2008). The sequential

promotion planning problem, and the sequential assortment planning problem (with a fixed

number of assortment candidates26), can both be modeled as BwSC. The application of

assortment planning also provides an example of general switching costs: if the seller wants to

limit the total number of product changes rather than assortment changes, then a fine-grained

definition of the switching costs between assortments is required (Dong et al. 2020).

Sequential experiments in online marketplaces. Consider an online e-commerce

platform (e.g., Uber, Airbnb) choosing a mechanism (e.g., a surge pricing algorithm, a

listing ranking rule) among several alternatives. It is common practice for platforms to

conduct sequential experiments of mechanisms using bandit approaches to optimize long-

term revenue. However, frequent changes of mechanisms may be highly undesirable for a

marketplace, because not only the platform (e.g., Uber) but also the market participants

(e.g., drivers and riders) may suffer from switching costs: each time the platform announces

a new mechanism, the market participants will make efforts to adapt to the new mechanism

(e.g., if Uber announces that trips completed during select hours each day earn extra rewards,

then a driver may be incentivized to change his work schedule (Scheiber 2017)); as a result,

market participants will get annoyed when they find that the mechanism changes frequently

(which means that they have to re-develop their business strategies frequently (Kerr 2015)).

Therefore, platforms usually have to limit their number of mechanism changes in sequential

experiments.

6.1.2 Problem Formulation

We now introduce our model. Consider a (stochastic) 𝐾-armed bandit problem where a

learner chooses actions from a fixed set [𝐾] = {1, . . . ,𝐾}. There is a total of 𝑇 rounds

(𝑇 ≥ 𝐾). In each round 𝑡 ∈ [𝑇 ], the learner first chooses an action 𝑎𝑡 ∈ [𝐾], then observes

and collects a reward 𝑋𝑡(𝑎𝑡) ∈ R. For each action 𝑘 ∈ [𝐾], the reward of action 𝑘 is

i.i.d. drawn from an (unknown) distribution 𝒟𝑘 with (unknown) expected value 𝜇𝑘. We

26Here we refer to the setting that a retailer chooses one assortment from a few assortment candidates
(which captures many retailers’ practice under complicated business constraints). A different setting in
literature allows one to consider exponentially many assortment candidates under an MNL choice model, see
Agrawal et al. (2019), Dong et al. (2020).
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assume that the distributions 𝒟1, . . . ,𝒟𝐾 are standardized sub-Gaussian.27 Without loss of

generality, we assume sup𝑖,𝑗∈[𝐾] |𝜇𝑖 − 𝜇𝑗 | ∈ [0, 1].

In the BwSC problem, the learner incurs a switching cost 𝑐𝑖,𝑗 ≥ 0 each time she switches

from action 𝑖 to action 𝑗 (𝑖, 𝑗 ∈ [𝐾]).28 In particular, 𝑐𝑖,𝑖 = 0 for 𝑖 ∈ [𝐾]. There is a

pre-specified switching budget 𝑆 ≥ 0 representing the maximum amount of switching costs

that the learner can incur in total. Once the total switching cost exceeds the switching

budget 𝑆, the learner cannot switch her actions any more. The learner’s goal is to maximize

the expected total reward over 𝑇 rounds.

Admissible Policies

Let 𝜋 denote the learner’s (non-anticipating) learning policy; specifically, 𝜋 is a sequence

(𝜋1, . . . , 𝜋𝑇 ), where 𝜋𝑡 establishes a probability kernel acting from the (measurable) space

of historical actions and observations before round 𝑡 to the (measurable) space of actions

at round 𝑡. Let 𝑎𝑡 denote the (random) action selected by policy 𝜋 at round 𝑡, and 𝑋𝑡(𝑎𝑡)

denote the (random) reward observed by policy 𝜋 at round 𝑡 (note that both 𝑎𝑡 and 𝑋𝑡(𝑎𝑡)

depend on the underlying distributions 𝒟 = (𝒟1, . . . ,𝒟𝐾)). Let P𝜋𝒟 denote the law of the

random variables
(︀
𝑎1, 𝑋

𝑡(𝑎1)
)︀
, . . . ,

(︀
𝑎𝑇 , 𝑋

𝑇 (𝑎𝑇 )
)︀
, and let E𝜋𝒟[·] be the associated expectation

operator.

According to our model, we only need to restrict our attention to the 𝑆-switching-budget

policies, which take 𝑆, 𝐾 and 𝑇 as input and are defined below.29

Definition 6.1. A policy 𝜋 is said to be an 𝑆-switching-budget policy if for all 𝒟,

P𝜋𝒟

[︃
𝑇−1∑︁
𝑡=1

𝑐𝑎𝑡,𝑎𝑡+1 ≤ 𝑆

]︃
= 1.

Let Π𝑆 denote the set of all 𝑆-switching-budget policies, which is also the admissible

policy class of the BwSC problem.

27This is a standard assumption in the stochastic bandit literature. Note that the class of sub-Gaussian
distributions is sufficiently wide as it contains Gaussian, Bernoulli and all bounded distributions.

28We allow 𝑐𝑖,𝑗 = ∞, which means that switching from 𝑖 to 𝑗 is prohibited. We also allow 𝑐𝑖,𝑗 ̸= 𝑐𝑗,𝑖, which
means that the switching costs are asymmetric.

29Even if the learner does not intentionally pick an 𝑆-switching-budget policy at the beginning, the
switching constraint will force the learner’s policy to be an 𝑆-switching-budget policy.
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Regret and Optimal Regret

The performance of a learning policy is measured against a clairvoyant policy that maximizes

the expected total reward given foreknowledge of the environment (i.e., underlying distri-

butions) 𝒟. Let 𝑘⋆ = argmax𝑘∈[𝐾] 𝜇𝑘 and 𝜇⋆ = max𝑘∈[𝐾] 𝜇𝑘. If a clairvoyant knows 𝒟 in

advance, then she would choose the “optimal” action 𝑘⋆ for every round and her expected total

reward would be 𝑇𝜇⋆. We define the regret of policy 𝜋 as the worst-case difference between

the expected performance of the optimal clairvoyant policy and the expected performance of

policy 𝜋:

𝑅𝜋(𝑇 ) := sup
𝒟

{︃
𝑇𝜇⋆ − E𝜋𝒟

[︃
𝑇∑︁
𝑡=1

𝑋𝑡(𝑎𝑡)

]︃}︃
= sup

𝒟

{︃
𝑇𝜇⋆ − E𝜋𝒟

[︃
𝑇∑︁
𝑡=1

𝜇𝑎𝑡

]︃}︃
,

which is a non-negative function of the policy 𝜋, the number of actions 𝐾, and the horizon

(i.e., number of rounds) 𝑇 ; occasionally, we will use the notation 𝑅𝜋(𝐾,𝑇 ) to highlight its

dependence on 𝐾. Furthermore, the optimal (i.e., minimax) regret of BwSC is defined as

𝑅⋆𝑆(𝑇 ) := inf
𝜋∈Π𝑆

𝑅𝜋(𝑇 ),

which is a non-negative function of the switching budget 𝑆, the number of actions 𝐾, and

the horizon 𝑇 ; occasionally, we will use the notation 𝑅⋆𝑆(𝐾,𝑇 ) to highlight its dependence

on 𝐾. Note that the optimal regret is an intrinsic quantity that can help us to characterize

the statistical complexity of the BwSC problem.

Remark. There are two notions of regret in the stochastic bandit literature. The 𝑅𝜋(𝑇 )

regret that we consider is called the distribution-independent (or worst-case) regret, as it

does not depend on 𝒟. On the other hand, one can also define the distribution-dependent

(or instance-dependent) regret 𝑅𝜋𝒟(𝑇 ) = 𝑇𝜇⋆ − E𝜋𝒟
[︁∑︀𝑇

𝑡=1 𝜇𝑎𝑡

]︁
that depends on 𝒟. Unlike

the classical MAB problem where there are policies that simultaneously achieve near-optimal

bounds under both regret notions, in the BwSC problem, due to the limited switching

budget, finding a policy that simultaneously achieves near-optimal bounds under both

regret notions is usually impossible. Thus in the main body of the paper, we focus on the

distribution-independent regret. However, in Appendix E.1, we extend our results to the

distribution-dependent regret.
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Research Questions

Two fundamental tasks in the study of bandits are: (i) to understand the growth rate of the

optimal regret (i.e., “optimal regret rate”) as 𝑇 grows, or as both 𝐾 and 𝑇 grow, and (ii) to

design efficient algorithms that attain near-optimal regret. In this paper, we seek to address

both of these challenges for BwSC. Moreover, motivated by the relationship between BwSC

and MAB,30 we seek to understand how the switching constraint fundamentally affects the

statistical nature of bandits. Altogether, our central questions are:

1. What is the statistical complexity (i.e., optimal regret rate) of BwSC?

2. Can we design practical algorithms to attain the optimal regret rate?

3. How does the optimal regret rate of BwSC changes with respect to the switching budget

𝑆, and how is it affected by the structure of switching costs (𝑐𝑖,𝑗)?

6.1.3 Main Results and Technical Highlights

The main contributions of this paper lie in fully addressing the above three research questions

for BwSC under the unit switching cost structure, partially addressing the three questions for

BwSC under the general switching cost structure, and discovering surprising “phase transition”

behavior of the optimal regret (under both unit and general switching cost structures). We

devise a series of efficient algorithms which attain sharp regret upper bounds, and introduce

a highly non-trivial five-step method which provides matching (or nearly matching) lower

bounds. As a by-product, we develop a new information-theoretic inequality, namely the

Generalized Reverse Fano-Type inequality, which plays a critical role in our five-step method.

We summarize our main results and technical contributions as follows.

Effective algorithms for the U-BwSC problem. We first study the BwSC problem

under the most fundamental switching cost structure — the unit switching cost structure:

𝑐𝑖,𝑗 = 1 for all 𝑖 ̸= 𝑗. The problem is referred to as the unit-switching-cost BwSC problem (or

U-BwSC for short), and can be interpreted as “MAB with limited number of switches.” As a

preliminary attempt, we present a simple and intuitive algorithm, called LS-SE, which builds

on the “batched elimination” framework recently developed by Perchet et al. (2016) and Gao

30Note that BwSC and MAB share the same definition of 𝑅𝜋(𝑇 ), and the only difference between BwSC and
MAB is the existence of a switching constraint 𝜋 ∈ Π𝑆 , determined by (𝑐𝑖,𝑗) ∈ R𝐾×𝐾

≥0 and 𝑆 ∈ R≥0 (when
𝑆 = ∞, BwSC degenerates to MAB).
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et al. (2019), and ensures the following regret:

̃︀𝒪(1) ·𝐾1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) , (6.1)

where 𝑞(𝑆,𝐾) :=
⌊︁
𝑆−1
𝐾−1

⌋︁
is the quotient of the Euclidian division of (𝑆 − 1) by (𝐾 − 1).31

The LS-SE algorithm, though being very simple, has several drawbacks, including a

potentially large waste of the switching budget, and overly low adaptivity (i.e., it learns from

data in an overly infrequent manner; see Section 6.3.2). To overcome these drawbacks, we

design a new algorithm, AdaLS, which builds on and improves upon LS-SE by (i) adopting a

novel hybrid and randomized exploration strategy and (ii) deciding when to make switches

in a more data-driven fashion. These two features enable AdaLS to make better use of the

switching budget and enjoy higher adaptivity.

We show that AdaLS attains an improved regret bound of

̃︀𝒪(1) ·max

⎧⎨⎩(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾) , 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

⎫⎬⎭, (6.2)

where 𝑟(𝑆,𝐾) := (𝑆 − 1)%(𝐾 − 1) is the remainder of the Euclidean division of (𝑆 − 1) by

(𝐾 − 1).32 Since 0 ≤ 𝑟(𝑆,𝐾) ≤ 𝐾 − 2, the rate of (6.2) is at most 𝐾
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) ,

which is the same as (6.1), and at least max

{︂
𝐾−1𝑇

1

2−2−𝑞(𝑆,𝐾) ,𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

}︂
,

which can be much smaller than (6.1) when 𝐾 is large, as the first term in “max” has a

sharp 𝐾−1 factor and the second term in “max” has a smaller order of 𝑇 . This implies that

AdaLS reduces the regret of LS-SE by a multiplicative factor of at least Ω(1) and at most

𝒪(𝐾3/2). See Table 6.1 for detailed illustrations and comparisons of regret bounds (6.1) and

(6.2), and Section 6.3.2 for more explanations.

Tight lower bound for the U-BwSC problem. The AdaLS algorithm, though being

a significantly refined version of the LS-SE algorithm, still seems to leave plenty of room for

improvement. In particular, it only improves the regret rate when 𝐾 is permitted to grow

with 𝑇 , failing to directly improve the regret’s dependence on the most important parameter

𝑇 when 𝐾 = ̃︀𝒪(1). Several challenging questions remain open: Is it possible to directly

improve the regret in terms of 𝑇? Can the dependence on 𝐾 be further improved? What is

31See https://en.wikipedia.org/wiki/Euclidean_division for a definition of the Euclidian division. We use
⌊·⌋ to denote the floor function; see Section 6.1.4 for details.

32We use % to denote the modulo operation; see Section 6.1.4 for details.
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the fundamental limit of the U-BwSC problem? We settle these questions by establishing

a strong (and quite surprising) information-theoretic lower bound that directly match the

upper bound (6.2) for any 𝑆, any 𝐾, and any 𝑇 — specifically, we show that no admissible

policy can avoid a regret lower bound of

̃︀Ω(1) ·max

⎧⎨⎩(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾) , 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

⎫⎬⎭, (6.3)

which implies that AdaLS is optimal up to logarithmic factors. The proof of the lower bound

is highly non-trivial. The methodological contributions in the lower bound proof will be

elaborated shortly.

The tight lower bound proved for U-BwSC also motivate new insights about the classical

MAB. In particular, it implies that Ω(𝐾 log log 𝑇 ) switches are necessary to achieve ̃︀𝒪(
√
𝐾𝑇 )

(near-optimal) regret in MAB, which appears to be a fundamental yet new result.

Phase transitions associated with the optimal regret. Combining (6.2) and (6.3),

we completely characterize the optimal regret of the U-BwSC problem. The characterization

reveals surprising findings: when𝐾 = ̃︀𝒪(1), the quotient function 𝑞(𝑆,𝐾) (as a floor function)

uniquely determines the optimal regret rate; when 𝐾 grows with 𝑇 in a non-negligible way,

the remainder function 𝑟(𝑆,𝐾) also affects the optimal regret rate through the dependence

on 𝐾, but only when 𝑟(𝑆,𝐾) is large enough such that 𝑟(𝑆,𝐾) = 𝐾 − 𝑜(𝐾). To the best

of our knowledge, this is the first example of an online learning setting where (i) a floor

function naturally arises in the exponent of 𝑇 in the optimal regret, and (ii) the optimal

regret exhibits a non-conventional growth rate which is surprisingly characterized by an

Euclidean division.

As a consequence of these findings, we discover surprising phase transitions regarding

how the optimal regret rate changes with respect to the switching budget 𝑆, which can be

summarized by the following two cases: when 𝐾 is fixed (and 𝑇 grows), there are equal-length

phases defined by 𝑆, where the optimal regret rate remains the same (up to logarithmic

factors) within each phase and exhibits abrupt changes between phases; when 𝐾 grows with

𝑇 in a non-negligible manner, such abrupt changes become subtler and may disappear, but a

generalized form of phase transitions involving the “budget-to-arm ratio” (BAR) still exist.

We will provide a rigorous and detailed treatments of phase transitions in Section 6.3.4.

Extensions to general switching cost structures. We extend the results obtained in
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the U-BwSC problem to the general BwSC problem. Specifically, we study two types of general

switching cost structures (with one being symmetric and the other being asymmetric): (i) the

general symmetric switching cost structure (corresponding to the G-BwSC problem), where

𝑐𝑖,𝑗 = 𝑐𝑗,𝑖 (𝑖 ̸= 𝑗) can be any non-negative real number; and (ii) the departure cost structure

(corresponding to the D-BwSC problem), where 𝑐𝑖,𝑗 = 𝑐𝑖 for all 𝑗 ̸= 𝑖 and 𝑐𝑖 can be any

non-negative real number, i.e., the switching cost between any pair of actions only depends

on the action that the learner departs from. For both G-BwSC and D-BwSC, we design

efficient algorithms, and prove corresponding lower bounds on regret. Under the condition

of 𝐾 = ̃︀𝒪(1), we show that our regret upper and lower bounds almost match for G-BwSC,

and exactly match for D-BwSC (both in terms of the dependence on 𝑇 ); the optimal regret

again exhibits phase transitions. Our results in this part make conceptual contributions by

revealing an interesting connection between bandit problems and graph traversal problems.

Methodological contributions in the lower bound analysis. As we mentioned,

the proof of the lower bound (6.3) requires significant technical effort, and contains several

technical highlights of this paper. In particular, to show that the quotient function 𝑞(𝑆,𝐾)

necessarily appears in the exponent of 𝑇 and the remainder function 𝑟(𝑆,𝐾) necessarily

affects the order of 𝐾 through the (𝐾 − 𝑟(𝑆,𝐾)) term, we develop a host of new techniques,

largely from first principles, to characterize how the switching constraint affects the learning

dynamics of an arbitrary admissible policy, and how concrete classes of certain learning

dynamics (represented by risky events) lead to fundamental performance limits. These

techniques are integrated in a five-step proof program called RECAP.

As an aside, we establish a new information-theoretic inequality, namely the Generalized

Reverse Fano-Type (GRF) inequality, which is of independent interest. We believe that the

GRF inequality, together with the ideas and techniques arising in the RECAP method, can

find broader applications in learning theory and statistics. We refer the interested reader to

Appendix E.4 for a detailed introduction of the GRF inequality and the RECAP method.

Comparison with Results on “Batched Bandits”

The U-BwSC problem is closely related to the “batched (multi-armed) bandit” problem

(Perchet et al. 2016, Gao et al. 2019). Here, we explain the major differences between our

results and the results on batched bandits.

The 𝑀 -batched bandit problem is defined as follows: given a classical MAB, assumes that
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the learner must split her learning process into 𝑀 batches and is only able to observe data

(i.e., realized rewards) from a given batch after the entire batch is completed. This implies

that all actions within a batch are determined at the beginning of this batch. Here 𝑀 can

be viewed as a quantity measuring the learner’s adaptivity, i.e., her ability to learn from

her data and adapt to the environment. An 𝑀 -batch policy is defined as a policy that only

observes the available data for 𝑀 − 1 times through the entire horizon. Perchet et al. (2016)

study the above problem in the two-armed case. They propose an 𝑀 -batch policy with̃︀Θ(︁𝑇 1

1−21−𝑀
)︁

regret, and show that no 𝑀 -batch policy can attain a better regret rate under

the “static grid” restriction which requires the policy to pre-determine the batch sizes before

the learning process. Gao et al. (2019) extend their algorithm and results to the general

𝐾-armed case, and show that even without the “static grid” restriction (i.e., even when the

batch sizes can be adaptively chosen in a batch-by-batch manner), no 𝑀 -batch policy can

attain a better regret rate. The statistical complexity of the batched bandit problem is thus

completely characterized.

The batched bandit problem and the U-BwSC problem are two closely related but

fundamentally different problems: while the batched bandit problem explicitly limits the

number of times of making observations (i.e., adaptivity), the U-BwSC problem only limits

the number of times of action changes, and (importantly!) allows unlimited number of times

of making observations. As we shall see in Section 6.3.5, the U-BwSC model can be seen as a

strict relaxation of the batched bandit model, in the sense that the admissible policy class of

U-BwSC is much richer and contains more efficient policies. This difference allows U-BwSC to

enjoy a fundamentally smaller optimal regret rate when 𝐾 is large; see Section 6.3.5 for a

detailed discussion on the relationship and difference of the two problems.

We note that existing results and techniques of batched bandits cannot provide a satisfying

solution to the U-BwSC problem, neither in terms of designing rate-optimal algorithms nor

in terms of establishing fundamental limits. While it is relatively easier to obtain an 𝑆-

switching-budget policy by modifying a (𝑞(𝑆,𝐾) + 1)-batch policy (see Section 6.3.1 and the

LS-SE algorithm), such approach suffers from several drawbacks and is generally sub-optimal

when 𝐾 is large, as an 𝑆-switching-budget policy can utilize data more frequently than a

(𝑞(𝑆,𝐾) + 1)-batch policy and achieve better regret (see Section 6.3.2). As a result, we have

to develop new algorithmic ideas to design a more advanced algorithm (the AdaLS algorithm)

to achieve the optimal regret rate of the U-BwSC problem.
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More importantly, since U-BwSC is more relaxed than the batched bandit problem, a

regret lower bound for the batched bandit problem cannot imply a regret lower bound

for U-BwSC. Therefore, we need to establish new lower bounds for U-BwSC, which also

imply lower bounds for the batched bandit problem. In fact, from an information-theoretic

perspective, when we aim for lower bounds, dealing with a switching constraint (which does

not impose any constraint on the number of queries of information) is considerably more

challenging than dealing with a batch constraint (which directly restricts the ability to inquire

information): the challenge is that an 𝑆-switching-budget policy can continuously gain new

information at every round; as a result, it may be difficult to establish sharp impossibility

results for such a policy via standard information-theoretic arguments. We address this

challenge by establishing the RECAP method from first principles. We remark that the lower

bound results in our paper are strong. Indeed, existing lower bounds of Perchet et al. (2016)

and Gao et al. (2019) can be seen as corollaries of our lower bound (6.3); see Section 6.3.5.

6.1.4 Organization and Notation

The rest of the paper is organized as follows. In Section 6.2, we review other related literature.

In Section 6.3, we discuss the unit-switching-cost model. In Section 6.4, we discuss two

general-switching-cost models. In Section 6.5, we numerically test our algorithms. We

conclude the paper in Section 6.6.

Let N (resp. N>0) be the set of all non-negative (resp. positive) integers. For all

𝑛1, 𝑛2 ∈ N such that 𝑛1 ≤ 𝑛2, we use [𝑛1] to denote the set {1, . . . , 𝑛1}, and use [𝑛1 : 𝑛2]

(resp. (𝑛1 : 𝑛2]) to denote the set {𝑛1, 𝑛1+1, . . . , 𝑛2} (resp. {𝑛1+1, . . . , 𝑛2}). For all 𝑥 ≥ 0,

we use ⌊𝑥⌋ to denote the largest integer less than or equal to 𝑥. For ease of presentation, we

define ⌊𝑥⌋ = 0 for all 𝑥 < 0. For all 𝑚 ∈ N, 𝑛 ∈ N>0, we define 𝑚%𝑛 := 𝑚− 𝑛⌊𝑚/𝑛⌋ (i.e.,

the remainder of the Euclidean division of 𝑚 by 𝑛). For all 𝑚,𝑛 ∈ R, let 𝑚∨𝑛 := max{𝑚,𝑛}

and 𝑚 ∧ 𝑛 := min{𝑚,𝑛}. Throughout the paper, we adopt non-asymptotic big-oh notation:

for functions 𝑓, 𝑔 : 𝒳 → R≥0, we write 𝑓 = 𝒪(𝑔) (resp. 𝑓 = Ω(𝑔)) if there exists some

constant 𝐶 > 0 such that 𝑓(𝑥) ≤ 𝐶𝑔(𝑥) (resp. 𝑓(𝑥) ≥ 𝐶𝑔(𝑥)) for all 𝑥 ∈ 𝒳 . We write

𝑓 = ̃︀𝒪(𝑔) if 𝑓 = 𝒪(𝑔 · polylog(𝑇 )), 𝑓 = ̃︀Ω(𝑔) if 𝑓 = Ω(𝑔/polylog(𝑇 )), and 𝑓 = ̃︀Θ(𝑔) if

𝑓 = ̃︀𝒪(𝑔) and 𝑓 = ̃︀Ω(𝑔). We use 𝑓 ≍ 𝑔 as shorthand for 𝑓 = ̃︀Θ(𝑔). We write 𝑓 = 𝑜(𝑔) if

lim𝑥→∞ 𝑓(𝑥)/𝑔(𝑥) = 0.
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6.2 Related Literature

6.2.1 Stochastic MAB with Switching Costs

The stochastic MAB problem has been extensively studied for more than fifty years. It is

well known that the optimal distribution-dependent regret is Θ(𝐾 log 𝑇 ) (Lai and Robbins

1985) and the optimal distribution-independent regret is Θ(
√
𝐾𝑇 ) (Auer et al. 2002a). We

point out two excellent surveys Lattimore and Szepesvári (2020) and Slivkins (2019) for

more reference about this topic.

There is rich literature focusing on stochastic MAB with switching costs.33 Most of the

papers model the switching cost as a penalty in the learner’s objective, i.e., they measure

a policy’s regret and incurred switching cost using the same metric and the objective is to

minimize the sum of these two terms34 (e.g., Agrawal et al. 1988, 1990, Brezzi and Lai 2002,

Cesa-Bianchi et al. 2013; there are other variations with discounted rewards: Banks and

Sundaram 1994, Asawa and Teneketzis 1996, Bergemann and Välimäki 2001, see Jun 2004

for a survey). Though this conventional “switching penalty” model has attracted significant

research interest in the past, it has two limitations. First, under this model, the learner’s

total switching cost is an output determined by the algorithm. However, in many real-world

applications, there are strict limits on the learner’s total switching cost, which should be

modeled as a hard constraint, and hence the learner’s switching budget should be an input

that helps determine the algorithm. In particular, while the algorithm in Cesa-Bianchi et al.

(2013) developed for the “switching penalty” model can achieve ̃︀𝒪(
√
𝐾𝑇 ) (near-optimal)

regret with 𝒪(𝐾 log log 𝑇 ) switches, if the learner wants a policy that always incurs finite

switching cost independent of 𝑇 , then prior literature does not provide an answer. Second,

the “switching penalty” model has fundamental weakness in studying the trade-off between

the regret rate and the incurred switching cost in stochastic MAB — since the log log 𝑇 -type

bound on the incurred switching cost of a policy is negligible compared with the
√
𝑇 -type

bound on its best achievable regret, when adding the two terms up, the term associated with

incurred switching cost is always dominated by the regret (in terms of the growth rate), thus

no trade-off can be identified. As a result, to the best of our knowledge, prior literature
33It is worth noting that there is also a vast literature on adversarial MAB with switching costs. In

particular, Dekel et al. (2014) prove a striking ̃︀Ω(𝐾1/3𝑇 2/3) lower bound for this problem, indicating a
fundamental difference between the roles of switching costs in stochastic MAB and in adversarial MAB.

34If the “total regret plus total switching cost” is guaranteed to be small, then the “total reward minus
total switching cost” is guaranteed to be large.
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has not characterized the fundamental trade-off between the regret rate and the incurred

switching cost in stochastic MAB.

The BwSC framework addresses the issues associated with the “switching penalty” model

in several ways. First, it introduces a hard constraint on the total switching cost, enabling us

to design good policies that guarantee limited switching cost. While 𝒪(𝐾 log log 𝑇 ) switches

has proven to be sufficient for a learning policy to achieve near-optimal regret in MAB,

in BwSC, we are mostly interested in the setting of horizon-independent or 𝑜(𝐾 log log 𝑇 )

switching budget, which is highly relevant in practice. Second, by focusing on rewards in

the objective function and incurred switching cost in the switching constraint, the BwSC

framework enables the characterization of the fundamental trade-off between regret and

maximum incurred switching cost in MAB. Third, while most prior research assumes specific

structures on switching costs (e.g., unit or homogeneous costs), BwSC allows general switching

costs, which makes it a powerful modeling framework.

6.2.2 Online Learning with Limited Switches.

This paper is not the first one to study online learning problems with limited switches.35 In

Indeed, a few authors have realized the practical significance of limited switching budget. For

example, Cheung et al. (2017) consider a dynamic pricing model where the demand function

is unknown but belongs to a known finite set, and a pricing policy is allowed to make at

most 𝑚 price changes. Their constraint on the total number of price changes is motivated by

collaboration with Groupon, a major e-commerce marketplace in North America. In such an

environment, Groupon limits the number of price changes, either because of implementation

constraints, or for fear of confusing customers and receiving negative customer feedback.

They propose a pricing policy that guarantees 𝒪(log(𝑚) 𝑇 ) (or 𝑚 iterations of the logarithm)

regret with at most 𝑚 price changes, and report that in a field experiment, this pricing

policy with a single price change increases revenue and market share significantly. Chen and

Chao (2019) study the joint pricing and inventory control problem with unknown demand

and limited price changes. Assuming that the demand function is drawn from a parametric

35Here, “online learning with limited switches” refers to online learning problems with constraints on
the learner ’s number of changes of decisions. There is another line of research studying (non-stationary)
online learning problems with constraints on nature’s number of changes of environments (e.g., Herbster
and Warmuth 1998, Jun et al. 2017). Though this line of research focuses on completely different learning
challenges (i.e., non-stationarity), it is conceptually relevant as it shares the same flavor of characterizing the
regret using a “budget for making changes.”
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class of functions, they develop a finite-price-change policy based on maximum likelihood

estimation (MLE) that achieves the optimal regret rate. Chen et al. (2020) also study the

dynamic pricing and inventory control problem with limited price changes, but in a more

challenging setting with censored demand. They prove matching upper and lower bounds on

the optimal regret, and devise an MLE-based policy to achieve the optimal regret rate.

We note that all of Cheung et al. (2017), Chen and Chao (2019), Chen et al. (2020) focus

on specific revenue management problems, and their results rely on certain assumptions

that are specialized to their models. The BwSC model in our paper has a different flavor,

in the sense that it is very generic and relies on very few assumptions, but can only handle

discrete actions. The results and techniques of our paper are thus very different from the

above papers. Also, the switching constraint in the BwSC problem is more general than the

price-change constraints in previous models.

In the Bayesian bandit setting, Guha and Munagala (2013) (see also Guha and Munagala

2009) study the “bandits with metric switching costs” problem that allows a constraint

involving metric switching costs. Using competitive ratio as the performance metric and

assuming Bayesian priors, they develop a 4-approximation algorithm for the problem. The

competitive ratio is measured against an optimal online policy that does not know the true

distributions. As pointed out by the authors, the optimal online policy can be directly

determined by a dynamic program, so the main challenge in their model is a computational

one. Our work is different, as we are using regret as our performance metric, and we

are competing with an optimal clairvoyant policy that knows the true distributions — a

much stronger benchmark. Our problem thus involves both statistical and computational

challenges. In fact, the algorithm in Guha and Munagala (2013) cannot avoid a linear regret

when applied to the BwSC problem.

In the adversarial bandit setting, Altschuler and Talwar (2021) study the adversarial MAB

problem with limited number of switches, which can be viewed as an adversarial counterpart

of the U-BwSC problem. For any policy that makes no more than 𝑆 ≤ 𝑇 switches, they

prove that the optimal regret is ̃︀Θ(𝑇
√
𝐾/

√
𝑆). Since we are considering a different setting

from them (our problem is stochastic while their problem is adversarial), the results and

techniques in our paper are fundamentally different from their paper. In particular, while

any fixed-switching-budget policy cannot avoid linear regret in the adversarial setting, in

the stochastic setting, a fixed number of switches may already guarantee sublinear regret

154



(assuming 𝐾 is fixed). Moreover, while the optimal regret rate in Altschuler and Talwar

(2021) decreases smoothly as 𝑆 increases from 0 to 𝑇 , in the stochastic setting, we identify

surprising behavior of the optimal regret rate as 𝑆 increases from 0 to Θ(𝐾 log log 𝑇 ), which,

to the best of our knowledge, has not been identified in the bandit literature before.

6.3 Unit Switching Costs

In this section, we consider the unit-switching-cost BwSC problem (abbreviated as U-BwSC),

where 𝑐𝑖,𝑗 = 1 for all 𝑖 ≠ 𝑗. In this case, since every switch incurs a unit cost, the switching

budget 𝑆 can be interpreted as the maximum number of switches that the learner can make

in total. Without loss of generality, in this section we assume that 𝑆 is a non-negative integer,

and refer to an 𝑆-switching-budget policy as an 𝑆-switch policy. Note that the U-BwSC

problem can be simply interpreted as “MAB with limited number of switches.”

The section is organized as follows. In Section 6.3.1, we present a simple and intuitive

algorithm and an initial upper bound on regret. In Section 6.3.2, we propose a refined

algorithm that attains an improved upper bound on regret. In Section 6.3.3, we establish a

matching lower bound on regret, indicating that the algorithm in Section 6.3.2 is rate-optimal.

In Section 6.3.4, we discuss several surprising findings in U-BwSC, namely “phase transitions”

of the optimal regret. In Section 6.3.5, we discuss the relationship between limited switches

and limited adaptivity in bandit problems.

Algorithmic notation. We adopt the following notation to facilitate the descriptions

of our algorithms. For any execution of an algorithm, for any action 𝑖 ∈ [𝐾], for any round

𝑡 ∈ [𝑇 ], let 𝑁𝑖(𝑡) denote the number of plays of action 𝑖 up to round 𝑡 (inclusive), 𝜇𝑖(𝑡)

denote the average observed reward of action 𝑖 up to round 𝑡 (for notational convenience, we

define 𝜇𝑖(0) = −∞), and

UCB𝑖(𝑡) := 𝜇𝑖(𝑡) +

√︃
6 log 𝑇

𝑁𝑖(𝑡)
, LCB𝑖(𝑡) := 𝜇𝑖(𝑡)−

√︃
6 log 𝑇

𝑁𝑖(𝑡)
(6.4)

denote the upper confidence bound and lower confidence bound of action 𝑖 up to round 𝑡,

respectively.
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6.3.1 The LS-SE Algorithm

As a preliminary attempt, we provide a simple and intuitive algorithm for U-BwSC, namely

the Limited-Switch Successive Elimination (LS-SE) algorithm; see Algorithm 6.1 for details.36

The algorithm builds on the “batched elimination” framework recently developed by Perchet

et al. (2016) and Gao et al. (2019) for the batched bandit problem, which splits the 𝑇

rounds into a given number of pre-determined batches and successively eliminates “poorly

performing” actions (based on confidence bounds) in a batch-by-batch manner; the key

ingredient of this framework is a delicate batch schedule (i.e., splitting rule) that strikes a

balance between exploration and exploitation given a limited number of batches (cf. Section

4 of Perchet et al. 2016). Since we are studying a different problem, directly applying a

batched bandit algorithm to the U-BwSC problem may not work — in batched bandits, the

number of batches is a given constraint, while in U-BwSC, the switching budget is the given

constraint. We thus add two ingredients into the LS-SE algorithm: (i) an index 𝑞(𝑆,𝐾)

suggesting how many batches should be used to split the entire horizon, and (ii) a switching

rule ensuring that the total number of switches across all 𝐾 actions cannot exceed the budget

𝑆.

Intuition about LS-SE. The algorithm divides the 𝑇 rounds into 𝑞(𝑆,𝐾) + 1 =⌊︁
𝑆−1
𝐾−1

⌋︁
+ 1 epochs in advance, where an epoch corresponds to a batch in batched bandits.

Note that there is no adaptivity within each epoch: decisions are determined at the beginning

of the epoch and do not depend on the rewards observed in this epoch. The epoch schedule

follows the batch schedules given by Perchet et al. (2016) and Gao et al. (2019), with slight

differences in the dependence on 𝐾.37 Combined with the celebrated successive elimination

strategy (see Line 9) in bandits, this schedule ensures that exploration and exploitation

are balanced and the (worst-case) regret incurred during each epoch is at the same level

(more specifically, the schedule ensures that 𝑡1 ≍ 𝑡2√
𝑡1/𝐾

≍ · · · ≍ 𝑇√
𝑡𝑞(𝑆,𝐾)/𝐾

, where 𝑡𝑙√
𝑡𝑙−1/𝐾

approximately controls the worst-case regret incurred during epoch 𝑙). In addition, our two

new ingredients (the index and the switching rule) guarantee the following properties:

36Note that in Line 4 and Line 7 of Algorithm 6.1, 𝑡𝑙−𝑡𝑙−1

|𝐴𝑙|
might be fractional. For ease of presentation,

we defer the rigorous treatment of such (minor) rounding issues to Appendix E.2. The same principle applies
to Algorithm 6.3.

37The batch schedule of Perchet et al. (2016) does not involve 𝐾 because they only study the two-armed case.
The batch schedule of Gao et al. (2019) does not involve 𝐾 because they allow sup𝑖,𝑗∈[𝐾]|𝜇𝑖 − 𝜇𝑗 | ∈ [0,

√
𝐾].

Our epoch schedule is optimized for the (usual) setting of sup𝑖,𝑗∈[𝐾]|𝜇𝑖 − 𝜇𝑗 | ∈ [0, 1] and leads to better
regret in this setting.
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Algorithm 6.1 Limited-Switch Successive Elimination (LS-SE)
Input: Switching budget 𝑆, number of actions 𝐾, horizon 𝑇 .
Initialization: Compute 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
. Divide the entire time horizon 𝑇 into 𝑞(𝑆,𝐾)+1

epochs: (𝑡0 : 𝑡1], (𝑡1 : 𝑡2], . . . , (𝑡𝑞(𝑆,𝐾) : 𝑡𝑞(𝑆,𝐾)+1], where the endpoints are defined by 𝑡0 = 0
and

𝑡𝑗 =

⌊︃
𝐾

1− 2−2−(𝑗−1)

2−2−𝑞(𝑆,𝐾) 𝑇
2−2−(𝑗−1)

2−2−𝑞(𝑆,𝐾)

⌋︃
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1.

Let 𝐴1 = [𝐾]. Let 𝑎0 be a random action in [𝐾].
Policy:
1: for 𝑙 = 1, . . . , 𝑞(𝑆,𝐾) do
2: if 𝑎𝑡𝑙−1

∈ 𝐴𝑙 then
3: for 𝑖 = 𝑎𝑡𝑙−1

and then 𝑖 ∈ 𝐴𝑙 ∖ {𝑎𝑡𝑙−1
} do ◁ starting from 𝑖 = 𝑎𝑡𝑙−1

is critical
4: Choose action 𝑖 for 𝑡𝑙−𝑡𝑙−1

|𝐴𝑙| consecutive rounds.
5: else
6: for 𝑖 ∈ 𝐴𝑙 do
7: Choose action 𝑖 for 𝑡𝑙−𝑡𝑙−1

|𝐴𝑙| consecutive rounds.
8: Mark the last chosen action as 𝑎𝑡𝑙 .
9: Elimination: compute UCB𝑖(𝑡𝑙) and LCB𝑖(𝑡𝑙) for all 𝑖 ∈ 𝐴𝑙 and let ◁ learn from data

𝐴𝑙+1 =

{︂
𝑖 ∈ 𝐴𝑙 | UCB𝑖(𝑡𝑙) ≥ max

𝑗∈𝐴𝑙
LCB𝑗(𝑡𝑙)

}︂
.

10: For 𝑙 = 𝑞(𝑆,𝐾) + 1, find an action 𝑖 ∈ 𝐴𝑙 that maximizes 𝜇𝑖(𝑡𝑙−1). Keep choosing this
action until round 𝑇 .

• Limited switches within each epoch: In epoch 𝑙, only |𝐴𝑙|−1 ≤ 𝐾−1 switches happen.

• At most one switch between two consecutive epochs: If the last action chosen in epoch

𝑙 remains in 𝐴𝑙+1 (𝑙 < 𝑞(𝑆,𝐾)), then it will be the first action chosen in epoch 𝑙 + 1,

and no switch occurs between these two epochs. If the last action chosen in epoch 𝑙 is

eliminated from 𝐴𝑙+1, then epoch 𝑙 + 1 starts from another action in 𝐴𝑙+1, and one

switch occurs between these two epochs.

• No switch within the last epoch: In the last epoch, only the empirical best action is

chosen.

• At most 𝑆 switches in 𝑇 rounds: by combining the above three properties with 𝑞(𝑆,𝐾) =⌊︁
𝑆−1
𝐾−1

⌋︁
, one can show that the total number of switches is at most 𝑞(𝑆,𝐾)(𝐾−1)+1 ≤ 𝑆.

We show that LS-SE is indeed an 𝑆-switch policy, and ensures the following upper bound

on regret. The proof is standard38 and deferred to Appendix E.7.

38The regret analysis of LS-SE is similar to the analysis of Gao et al. (2019); we present it for completeness.
A difference is that we obtain slightly better dependence on 𝐾 under the condition sup𝑖,𝑗∈[𝐾]|𝜇𝑖−𝜇𝑗 | ∈ [0, 1].
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Proposition 6.1. Let 𝜋 be the LS-SE policy, then 𝜋 ∈ Π𝑆. There exists an absolute constant

𝐶 ≥ 0 such that for all 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 𝐾,

𝑅𝜋(𝐾,𝑇 ) ≤ 𝐶(log𝐾 log 𝑇 )𝐾
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) ,

where 𝑞(𝑆,𝐾) =
⌊︁
𝑆−1
𝐾−1

⌋︁
.

Remark. Proposition 6.1 implies that for the classical MAB problem, 𝒪(𝐾 log log 𝑇 ) times

of switches are sufficient for a learner to achieve the optimal ̃︀𝒪(
√
𝐾𝑇 ) regret, which recovers

a well-known result of Cesa-Bianchi et al. (2013) (see also Perchet et al. 2016, Gao et al.

2019).

6.3.2 The AdaLS Algorithm

The LS-SE algorithm, though being very simple, has several drawbacks that may degrade its

performance. Specifically:

• The LS-SE policy does not make full use of its switching budget. Consider the case

of 𝑆 = 2𝐾 − 2. Since 𝑞(2𝐾 − 2,𝐾) =
⌊︁
2𝐾−3
𝐾−1

⌋︁
= 1 = 𝑞(𝐾,𝐾), the LS-SE policy will

just run as if it could only make 𝐾 switches, despite the fact that it can actually make

2𝐾 − 2 switches — in this case, nearly half of the switching budget will never be used.

Intuitively, an effective learning policy should make full use of its switching budget. It

seems that by tracking and allocating the switching budget in a more careful way, one

can achieve lower regret.

• The LS-SE policy has (unnecessarily) low adaptivity. Note that the LS-SE policy is a

batched policy that utilizes data in a very restrictive way: it only learns from data at

the end of each epoch, for at most 𝑞(𝑆,𝐾) =
⌊︁
𝑆−1
𝐾−1

⌋︁
times. For example, consider the

case of 𝑆 = 2𝐾 − 2. The LS-SE policy will observe the data only once throughout the

entire horizon. This is a waste of a policy’s information acquisition ability in BwSC,

where the learner is more flexible than in batched bandits, and can observe data at

every round. Intuitively, data should be utilized to save switches and reduce regret,

and one would expect that an effective policy will have a higher degree of adaptivity,

that is, it should learn from the available data and adapt to the environment more

frequently than LS-SE.
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To overcome the above drawbacks, we design a new algorithm, namely the Adaptive

Limited-Switch (AdaLS) algorithm; see Algorithm 6.2 for details. AdaLS builds on and

improves upon LS-SE by (i) adopting a novel hybrid and randomized exploration strategy

and (ii) deciding when to make switches in a more data-driven fashion. These two features

enable AdaLS to make better use of its switching budget and enjoy higher adaptivity (i.e.,

learn from data more frequently). We explain the key ideas of AdaLS below.

Two key indices. At initialization, AdaLS performs the Euclidian division of (𝑆 − 1)

by (𝐾 − 1) and obtains two key indices: the quotient 𝑞(𝑆,𝐾) and the remainder 𝑟(𝑆,𝐾) ∈

{0, · · · ,𝐾 − 2}. While the quotient 𝑞(𝑆,𝐾) is already used by LS-SE to determine the

number of epochs (which ensures that LS-SE makes at most 𝑞(𝑆,𝐾)(𝐾 − 1) + 1 switches),

the remainder 𝑟(𝑆,𝐾) = 𝑆 − 1− 𝑞(𝑆,𝐾)(𝐾 − 1) is a new index that reflects the “abandoned

switching budget” of LS-SE, i.e., the amount of switching budget that will never be used

by LS-SE. Intuitively, the larger 𝑟(𝑆,𝐾) is, the more AdaLS can (hopefully) improve upon

LS-SE by making better use of the switching budget.

Random partition of the action set. An important goal of AdaLS is to make better

use of the switching budget when 𝑟(𝑆,𝐾) is large. This is however a non-trivial task: since

𝑟(𝑆,𝐾) ≤ 𝐾 − 2, the additional switching budget does not allow for visiting all actions in

[𝐾]; that is, we may only conduct additional exploration for a subset of actions in [𝐾], and

the selection of this subset requires careful consideration. We address this issue by utilizing

the idea of randomization: at initialization, we randomly split [𝐾] into two subsets 𝐴(1)
1 and

𝐴
(2)
1 , with |𝐴(1)

1 | = 𝐾 − ̂︀𝑟(𝑆,𝐾) and |𝐴(2)
1 | = ̂︀𝑟(𝑆,𝐾) (we will explain the configuration of̂︀𝑟(𝑆,𝐾) shortly). Then, in the execution of the policy, we treat the actions in 𝐴(1)

1 and 𝐴(2)
1

differently, allowing the actions in 𝐴(2)
1 to be explored more frequently than the actions in

𝐴
(1)
1 . Specifically, before the last switch (where we commit to a single action; see Line 16),

we allow AdaLS to switch to each action in 𝐴
(1)
1 for at most 𝑞(𝑆,𝐾) times, while allowing

it to switch to each action in 𝐴
(2)
1 for at most 𝑞(𝑆,𝐾) + 1 times (as a comparison, LS-SE

switches to every action in [𝐾] for at most 𝑞(𝑆,𝐾) times before the last switch). By lettinĝ︀𝑟(𝑆,𝐾) = max{𝑟(𝑆,𝐾)+1− 𝑞(𝑆,𝐾), 0}, we enable AdaLS to make good use of the switching

budget while never going over it: if ̂︀𝑟(𝑆,𝐾) > 0 (i.e., 𝑟(𝑆,𝐾) is large enough), then AdaLS

will make up to 𝑞(𝑆,𝐾)(𝐾−̂︀𝑟(𝑆,𝐾))+ (𝑞(𝑆,𝐾)+1)̂︀𝑟(𝑆,𝐾)−1+1 = 𝑆 switches; otherwise,

AdaLS will behave similar to LS-SE and make up to 𝑞(𝑆,𝐾)(𝐾 − 1) + 1 < 𝑆 switches. See

Appendix E.3 for an illustration of how AdaLS makes switches. We remark that it is crucial
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Algorithm 6.2 Adaptive Limited-Switch Policy (AdaLS)
Input: Switching budget 𝑆, number of actions 𝐾, horizon 𝑇 , tuning parameter 𝜆 = 1/2.
Initialization: Compute 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1). Define ̂︀𝑟(𝑆,𝐾) =

max{𝑟(𝑆,𝐾) + 1− 𝑞(𝑆,𝐾), 0}. Define 𝑇 (1)
0 = 𝑇

(2)
0 = 0, 𝑡(1)0 = 𝑡

(2)
0 = 0 and

𝑡
(1)
𝑗 =

⌊︂
(𝐾 − ̂︀𝑟(𝑆,𝐾))

1− 2−21−𝑗

2−2−𝑞(𝑆,𝐾) 𝑇
2−21−𝑗

2−2−𝑞(𝑆,𝐾)

⌋︂
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1,

𝑡
(2)
𝑗 =

⌊︂
𝐾

1− 2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1 𝑇
2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1

⌋︂
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 2.

Let 𝐴1 = [𝐾]. Let 𝐴(2)
1 be a subset of 𝐴1 obtained by uniformly sampling ̂︀𝑟(𝑆,𝐾) actions from 𝐴1

without replacement (thus |𝐴(2)
1 | = ̂︀𝑟(𝑆,𝐾)). Let 𝐴(1)

1 = 𝐴1 ∖ 𝐴(2)
1 . Let 𝑎0 be a random action in

𝐴
(1)
1 .

Policy:
1: for 𝑙 = 1, . . . , 𝑞(𝑆,𝐾) do

2: Starting from an arbitrary action in 𝐴
(2)
𝑙 , choose each action in 𝐴

(2)
𝑙 for 𝑛(2)𝑙 = ⌊ 𝑡

(2)
𝑙 −𝑇 (1)

𝑙−1

|𝐴𝑙| ⌋
consecutive rounds. Mark the last round as 𝑇 (2)

𝑙 .
3: if 𝑎

𝑇
(1)
𝑙−1

∈ 𝐴
(1)
𝑙 then

4: for 𝑖 = 𝑎
𝑇

(1)
𝑙−1

and then 𝑖 ∈ 𝐴
(1)
𝑙 ∖ {𝑎

𝑇
(1)
𝑙−1

} do ◁ starting from 𝑖 = 𝑎
𝑇

(1)
𝑙−1

is critical

5: Choose action 𝑖 for 𝑛(2)𝑙 consecutive rounds. Mark the last round as 𝑇 (1)
𝑙,𝑖 .

6: if UCB𝑖(𝑇
(1)
𝑙,𝑖 ) ≥ max𝑗∈𝐴𝑙 LCB𝑗(𝑇

(1)
𝑙,𝑖 ) then ◁ learn from data

7: Choose action 𝑖 for additional max

{︂
⌊𝜆𝑡

(1)
𝑙 −𝑇 (2)

𝑙

|𝐴(1)
𝑙 |

⌋ − 𝑛
(2)
𝑙 , 0

}︂
consecutive rounds.

8: else
9: for 𝑖 ∈ 𝐴

(1)
𝑙 do

10: The same steps as Lines 5 to 7. ◁ learn from data
11: Mark the last round as 𝑇 (1)

𝑙 , and mark the last chosen action as 𝑎
𝑇

(1)
𝑙

.

12: Elimination: compute UCB𝑖(𝑇
(1)
𝑙 ) and LCB𝑖(𝑇

(1)
𝑙 ) for all 𝑖 ∈ 𝐴𝑙, and let ◁ learn from data

𝐴
(1)
𝑙+1 =

{︂
𝑖 ∈ 𝐴

(1)
𝑙 | UCB𝑖(𝑇 (1)

𝑙 ) ≥ max
𝑗∈𝐴𝑙

LCB𝑗(𝑇
(1)
𝑙 ), UCB𝑖(𝑇

(1)
𝑙,𝑖 ) ≥ max

𝑗∈𝐴𝑙
LCB𝑗(𝑇

(1)
𝑙,𝑖 )

}︂
,

𝐴
(2)
𝑙+1 =

{︂
𝑖 ∈ 𝐴

(2)
𝑙 | UCB𝑖(𝑇 (1)

𝑙 ) ≥ max
𝑗∈𝐴𝑙

LCB𝑗(𝑇
(1)
𝑙 )

}︂
,

and 𝐴𝑙+1 = 𝐴
(1)
𝑙+1 ∪𝐴

(2)
𝑙+1.

13: for 𝑙 = 𝑞(𝑆,𝐾) + 1 do

14: Starting from an arbitrary action in 𝐴
(2)
𝑙 , choose each action in 𝐴

(2)
𝑙 for 𝑛(2)𝑙 = ⌊ 𝑡

(2)
𝑙 −𝑇 (1)

𝑙−1

|𝐴𝑙| ⌋
consecutive rounds. Mark the last round as 𝑇 (2)

𝑙 .
15: Elimination: compute UCB𝑖(𝑇

(2)
𝑙 ) and LCB𝑖(𝑇

(2)
𝑙 ) for all 𝑖 ∈ 𝐴𝑙, and let ◁ learn from data

𝐴
(2)
𝑙+1 =

{︂
𝑖 ∈ 𝐴

(2)
𝑙 | UCB𝑖(𝑇 (2)

𝑙 ) ≥ max
𝑗∈𝐴𝑙

LCB𝑗(𝑇
(2)
𝑙 )

}︂
.

If 𝐴(2)
𝑙+1 is non-empty, let 𝐴𝑙+1 = 𝐴

(2)
𝑙+1; otherwise, let 𝐴𝑙+1 = 𝐴

(1)
𝑙 .

16: Find an action 𝑖 ∈ 𝐴𝑙+1 that maximizes 𝜇𝑖(𝑇
(2)
𝑙 ). Keep choosing this action until round 𝑇 .
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to determine 𝐴(1)
1 and 𝐴(2)

1 randomly rather than deterministically, as randomization enables

better worst-case performance.

Hybrid exploration scheme. At initialization, we define two series of time points

(𝑡
(1)
𝑗 )

𝑞(𝑆,𝐾)+1
𝑗=1 and (𝑡

(2)
𝑗 )

𝑞(𝑆,𝐾)+2
𝑗=1 , which provide (rough) guidance on how we should balance

the exploration and exploitation for actions in 𝐴(1)
1 and 𝐴(2)

1 . These two series are similar

but different from the series (𝑡𝑗)
𝑞(𝑆,𝐾)+1
𝑗=1 defined in Algorithm 6.1 due to (i) we allow AdaLS

to switch to the actions in 𝐴(2)
1 more frequently and (ii) we need to consider the interplay

between the two classes of actions. Then, AdaLS runs in 𝑞(𝑆,𝐾) + 1 epochs. In each epoch

𝑙 ∈ [𝑞(𝑆,𝐾)], AdaLS first explores each action in 𝐴
(2)
𝑙 (which consists of all uneliminated

action in 𝐴(2)
1 ) for an equal number of rounds (see Line 2), then explores each action in 𝐴(1)

𝑙

(which consists of all uneliminated action in 𝐴(1)
1 ) for a data-dependent number of rounds

(see Line 3 to Line 10), and finally conducts elimination to determine 𝐴(1)
𝑙+1 and 𝐴

(2)
𝑙+1 (see

Line 12). At the last epoch 𝑞(𝑆,𝐾) + 1, AdaLS will first explore all actions in 𝐴(2)
𝑞(𝑆,𝐾)+1 (see

Line 14), then conducts elimination, and finally commits to a single action (see Line 16).

Notably, in every elimination step of AdaLS, the confidence bounds of different actions are

at different scales, because they were explored non-uniformly. Compared with LS-SE where

each uneliminated action is uniformly explored in epoch 𝑙 ∈ [𝑞(𝑆,𝐾)], the exploration scheme

of AdaLS requires more delicate design (which is multi-scale in nature) because we need to

ensure that the elimination based on confidence bounds with different scales are effective.

Higher adaptivity via more frequent queries to the data. A significant difference

between AdaLS and LS-SE is that AdaLS utilizes data more frequently and is not a batched

policy — while AdaLS runs in 𝑞(𝑆,𝐾) + 1 epochs, each epoch does not correspond to a

batch because actions selected during epoch 𝑙 depends on the latest data collected during

epoch 𝑙 (see Lines 6, 10 and 15, where AdaLS utilizes the latest data to determine whether to

switch or not). Moreover, the actual epoch schedule (𝑇
(1)
𝑙 )

𝑞(𝑆,𝐾)+1
𝑙=1 is also data-dependent,

i.e., AdaLS decides when to start and end each epoch only after gradual access to the data.

Such additional adaptivity is critical for AdaLS to achieve better performance; otherwise, one

cannot have careful control over the exploration and may over-explore the actions in 𝐴(1)
1 (as

they are visited relatively less frequently).

We provide a rigorous analysis of AdaLS, verify that it is an 𝑆-switch policy, and show

that it attains an improved regret bound; see the statement in Theorem 6.1. The proof of

Theorem 6.1 (which closely follows the intuition that we provide above) is considerably more
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challenging than Proposition 6.1; see Appendix E.8 for details.

Theorem 6.1. Let 𝜋 be the AdaLS policy, then 𝜋 ∈ Π𝑆. There exists an absolute constant

𝐶 ≥ 0 such that for all 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 𝐾,

𝑅𝜋(𝐾,𝑇 ) ≤ 𝐶(log 𝑇 )2·max

⎧⎨⎩(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾) , 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

⎫⎬⎭,
where 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1).

To illustrate the regret guarantee given by Theorem 6.1, we use it to calculate the exact

regret rates (in terms of both 𝐾 and 𝑇 ) of AdaLS under different concrete values of 𝑆; see

Table 6.1 for details. As benchmarks, we also calculate the exact regret rates of LS-SE using

Proposition 6.1, and compare the regret of LS-SE and AdaLS under each single value of 𝑆;

see the detailed comparisons in Table 6.1.

We make two observations. First, AdaLS shares the same regret rate as LS-SE when

𝐾 − 𝑟(𝑆,𝐾) = Ω(𝐾); see the second column in Table 6.1, where the regret rate of both

AdaLS and LS-SE is 𝐾
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) (within logarithmic factors). This implies that

AdaLS does not attain a fundamentally better rate than LS-SE when 𝐾 = ̃︀𝒪(1) or when

𝑟(𝑆,𝐾) is not close to 𝐾. Second, AdaLS can attain a significantly better regret rate when

𝑟(𝑆,𝐾) = 𝐾 − 𝑜(𝐾); see the last two columns in Table 6.1, where the regret rate of AdaLS

is always better than LS-SE. Note that the closer 𝑟(𝑆,𝐾) is to 𝐾, the better AdaLS’s regret

rate can be. In particular, when 𝑟(𝑆,𝐾) = 𝐾 − 2 (i.e, when 𝑆 is a multiple of 𝐾 − 1),

AdaLS attains a rate of 𝐾−1𝑇
1

2−2−𝑞(𝑆,𝐾) ∨𝐾1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1 — if the first term

dominates, then AdaLS improves upon the regret of LS-SE by a multiplicative factor of̃︀Θ(𝐾
2− 1

2−2−𝑞(𝑆,𝐾) ); if the second term dominates (which is not uncommon when 𝐾 is large),

then the regret of AdaLS has a better growth rate in 𝑇 , which enables it to perform arbitrarily

better than LS-SE when 𝑇 → ∞.

Remark. We make two remarks for Table 6.1. First, for brevity, we only present the

regret rates for 𝑆 ∈ [0, 4𝐾 − 4] in Table 6.1 — regret rates for larger 𝑆 follows the same

pattern. Second, since it is quite easy to show algorithm-specific lower bounds for LS-SE and

AdaLS which match the upper bounds in Proposition 6.1 and Theorem 6.1 respectively (up

to logarithmic factors), we directly use ̃︀Θ (rather than ̃︀𝒪) to describe the regret of LS-SE

and AdaLS; of course, the algorithm-specific lower bounds for LS-SE and LS-SE do not imply
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Table 6.1: Regret of LS-SE and AdaLS under different switching budgets. Here 𝜖 ∈ (0, 1) is
an arbitrary constant independent of 𝐾 and 𝑇 (it can be arbitrarily close to 0, as long as it
is fixed).

𝑆 ∈ {0, 1, . . . ,𝐾 − 1}
𝑆 0, 1, . . . , (1− 𝜖)(𝐾 − 1) 𝐾 − 1− ̃︀Θ(︀𝐾𝛿

)︀
, 𝛿 ∈ (0, 1) 𝐾 − 1

LS-SE ̃︀Θ(𝑇 ) ̃︀Θ(𝑇 ) ̃︀Θ(𝑇 )

AdaLS ̃︀Θ(𝑇 ) ̃︀Θ(︁𝐾𝛿−1𝑇 ∨𝐾 1
3𝑇

2
3

)︁ ̃︀Θ(︁𝐾−1𝑇 ∨𝐾 1
3𝑇

2
3

)︁
𝑆 ∈ {𝐾, . . . , 2𝐾 − 2}
𝑆 𝐾,𝐾 + 1, . . . , (1− 𝜖)(2𝐾 − 2) 2𝐾 − 2− ̃︀Θ(𝐾𝛿), 𝛿 ∈ (0, 1) 2𝐾 − 2

LS-SE ̃︀Θ(︁𝐾 1
3𝑇

2
3

)︁ ̃︀Θ(︁𝐾 1
3𝑇

2
3

)︁ ̃︀Θ(︁𝐾 1
3𝑇

2
3

)︁
AdaLS ̃︀Θ(︁𝐾 1

3𝑇
2
3

)︁ ̃︀Θ(︁𝐾 4
3 𝛿−1𝑇

2
3 ∨𝐾 3

7𝑇
4
7

)︁ ̃︀Θ(︁𝐾−1𝑇
2
3 ∨𝐾 3

7𝑇
4
7

)︁
𝑆 ∈ {2𝐾 − 1, . . . , 3𝐾 − 3}
𝑆 2𝐾 − 1, 2𝐾, . . . , (1− 𝜖)(3𝐾 − 3) 3𝐾 − 3− ̃︀Θ(𝐾𝛿), 𝛿 ∈ (0, 1) 3𝐾 − 3

LS-SE ̃︀Θ(︁𝐾 3
7𝑇

4
7

)︁ ̃︀Θ(︁𝐾 3
7𝑇

4
7

)︁ ̃︀Θ(︁𝐾 3
7𝑇

4
7

)︁
AdaLS ̃︀Θ(︁𝐾 3

7𝑇
4
7

)︁ ̃︀Θ(︁𝐾 10
7 𝛿−1𝑇

4
7 ∨𝐾 7

15𝑇
8
15

)︁ ̃︀Θ(︁𝐾−1𝑇
4
7 ∨𝐾 7

15𝑇
8
15

)︁
𝑆 ∈ {3𝐾 − 2, . . . , 4𝐾 − 4}
𝑆 3𝐾 − 2, 3𝐾 − 1, . . . , (1− 𝜖)(4𝐾 − 4) 4𝐾 − 4− ̃︀Θ(𝐾𝛿), 𝛿 ∈ (0, 1) 4𝐾 − 4

LS-SE ̃︀Θ(︁𝐾 7
15𝑇

8
15

)︁ ̃︀Θ(︁𝐾 7
15𝑇

8
15

)︁ ̃︀Θ(︁𝐾 7
15𝑇

8
15

)︁
AdaLS ̃︀Θ(︁𝐾 7

15𝑇
8
15

)︁ ̃︀Θ(︁𝐾 22
15 𝛿−1𝑇

8
15 ∨𝐾 15

31𝑇
16
31

)︁ ̃︀Θ(︁𝐾−1𝑇
8
15 ∨𝐾 15

31𝑇
16
31

)︁
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fundamental limits for other algorithms (which can be arbitrarily more complicated) —

proving an universal algorithm-independent lower bound is the task of Section 6.3.3.

6.3.3 Lower Bound on Regret

The AdaLS algorithm, though being a significantly refined version of the LS-SE algorithm,

still seems to leave plenty of room for improvement. For example, while AdaLS has higher

adaptivity than LS-SE, it learns from data for at most 𝐾𝑞(𝑆,𝐾) + 1 times, leaving an open

question of whether one can utilize even more adaptivity to achieve lower regret. Moreover,

as discussed in Section 6.3.2, AdaLS only improves the regret with the help of 𝐾, failing to

directly improve the regret’s dependence on the most important parameter 𝑇 when 𝐾 = ̃︀𝒪(1).

This motivates the following natural questions: Is it possible to directly improve the regret

in terms of 𝑇? Can the dependence on 𝐾 be further improved? What is the fundamental

limit of the U-BwSC problem?

We answer the above questions by establishing a strong (and quite surprising) information-

theoretic lower bound on the regret incurred by any admissible policy; see Theorem 6.2.

The lower bound directly match the upper bound in Theorem 6.1, indicating that AdaLS is

optimal up to logarithmic factors. Notably, our lower bound holds for any 𝐾, any 𝑆, any 𝑇 ,

thus is substantially stronger than a specific lower bound demonstrated for special choices of

𝑆,𝐾, 𝑇 .

Theorem 6.2. There exists an absolute constant 𝐶 > 0 such that for all 𝐾 > 1, 𝑆 ≥ 0, 𝑇 ≥

2𝐾 and for all policy 𝜋 ∈ Π𝑆,

𝑅𝜋(𝐾,𝑇 ) ≥ 𝐶

log 𝑇
·max

⎧⎨⎩(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾) , 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

⎫⎬⎭,
where 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1).

As we introduced in Section 6.1.3, the proof of Theorem 6.2 is non-trivial, and will be

elaborated on in a separate section (Appendix E.4). Combining Theorem 6.1 and Theorem 6.2,

we completely characterize the optimal regret of U-BwSC as follows.
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Corollary 6.1. For all 𝑆 ≥ 0,𝐾 > 1, 𝑇 ≥ 2𝐾, we have

𝑅⋆𝑆(𝐾,𝑇 ) = ̃︀Θ(1)·max

⎧⎨⎩(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾) , 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

⎫⎬⎭.
If 𝐾 = ̃︀𝒪(1), then we have 𝑅⋆𝑆(𝑇 ) = ̃︀Θ(︂𝑇 1

2−2−𝑞(𝑆,𝐾)

)︂
.

On the Necessity of Switching in MAB

The lower bound in Theorem 6.2 also leads to new results for the classical MAB problem.

Corollary 6.2. The following properties hold for the classical MAB: (i) Θ(𝐾 log log 𝑇 )

switches are necessary and sufficient for achieving ̃︀𝒪(
√
𝐾𝑇 ) regret, (ii) for any fixed 𝑁 ∈ N>0,

𝑁(𝐾−1)+1 switches are necessary and sufficient for achieving ̃︀𝒪(𝐾
1− 1

2−2−𝑁 𝑇
1

2−2−𝑁 ) regret,

and (iii) Ω(𝐾) switches are necessary for achieving sublinear regret.

Note that the number of switches stated in Corollary 6.2 refers to the maximum number

of switches that a policy can make. While Cesa-Bianchi et al. (2013) has proposed policies

that achieve ̃︀𝒪(
√
𝐾𝑇 ) (near-optimal) regret with 𝒪(𝐾 log log 𝑇 ) switches, no prior work has

answered the question of how many switches are necessary for a near-optimal learning policy

in MAB. To the best of our knowledge, this paper is the first to show Ω(𝐾 log log 𝑇 ) lower

bound on the number of switches.

6.3.4 Phase Transitions

Corollary 6.2 provides a non-asymptotic (i.e., finite-time) characterization on the optimal

regret of the U-BwSC problem. While such non-asymptotic characterization is very general

(e.g., it holds for arbitrary 𝑆,𝐾, 𝑇 and does not rely on any assumption on their orders),

if we want to obtain deeper insights on the optimal regret’s growth rate (which is easier to

understand when defined as concrete limiting behavior), then the asymptotic regime may be

more appropriate in terms of making our statements rigorous and precise. In this subsection,

we use asymptotics to rigorously define the optimal regret rate, and characterize the trade-off

between the optimal regret rate and the switching budget. As we shall see, the trade-off

reveals surprising phase transitions39 (to be defined shortly). For ease of presentation, all
39The terminology of phase transitions originates from physics (see, e.g., Domb 2000), and has been used

in various fields in probability theory and statistics. We note that most of rigorous definitions of phase
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the “rates” defined in this subsection do not involve logarithmic factors.

Phase Transitions in the Fixed-𝐾 Asymptotic Regime

We first consider the most natural asymptotic regime where we let the time horizon 𝑇 → ∞

and keep the number of arms 𝐾 fixed; we refer to this regime as the “fixed-𝐾” asymptotic

regime. For any fixed switching budget 𝑆 ≥ 0, we are interested in the growth rate of the

optimal regret 𝑅⋆𝑆(𝑇 ) as 𝑇 → ∞. Following the convention of statistics and machine learning

(see, e.g., Tsybakov 2009), we define the optimal regret rate (i.e., minimax rate) as the power

function that best approximates 𝑅⋆𝑆(𝑇 ) as 𝑇 → ∞; see below.

Definition 6.2. For any fixed 𝐾 > 1, 𝑆 ≥ 0, there exists a unique constant 𝑝 ∈ [0, 1] such

that

lim
𝑇→∞

𝑅⋆𝑆(𝑇 )

𝑇 𝑝+𝜖
= 0, lim

𝑇→∞

𝑅⋆𝑆(𝑇 )

𝑇 𝑝−𝜖
= ∞, ∀𝜖 > 0.

We call 𝑇 𝑝 the optimal regret rate under switching budget 𝑆, and 𝑝 the optimal regret rate

exponent.

Note that an equivalent definition is to directly let 𝑝 := lim𝑇→∞
log𝑅⋆𝑆(𝑇 )

log 𝑇 and let the

power function 𝑇 𝑝 be the optimal regret rate (see Hu et al. 2020).

By Corollary 6.2, 𝑅⋆𝑆(𝑇 ) = ̃︀Θ(︂𝑇 1

2−2−⌊(𝑆−1)/(𝐾−1)⌋

)︂
when 𝐾 is fixed. To the best of our

knowledge, this is the first time that a floor function naturally arises in the exponent of 𝑇 in

the optimal regret of an online learning problem. Consequently, we know that the optimal

regret rate under switching budget 𝑆 is 𝑇
1

2−2−⌊(𝑆−1)/(𝐾−1)⌋ , which exhibits surprising phase

transitions described below.

Definition 6.3 (Phases & Transition Points). In the fixed-𝐾 regime, we call the interval

[(𝑗 − 1)(𝐾 − 1) + 1, 𝑗(𝐾 − 1) + 1) the 𝑗-th phase, and call 𝑗(𝐾 − 1) + 1 the 𝑗-th transition

point (𝑗 ∈ N>0).

Observation 6.1 (Phase Transitions). As 𝑆 increases from 0 to infinity, 𝑆 will leave the

𝑗-th phase and enter the (𝑗 +1)-th phase at the 𝑗-th transition point (𝑗 ∈ N>0). Each time 𝑆

arrives at a transition point, the optimal regret rate will change abruptly, and then remain

the same until 𝑆 arrives at the next transition point.

transitions in probability theory and statistics require asymptotics; see, e.g., Wainwright (2009), Bayati et al.
(2015).
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Table 6.2: Optimal regret rate under different switching budgets for a fixed 𝐾.

𝑆 [0,𝐾) [𝐾, 2𝐾 − 1) [2𝐾 − 1, 3𝐾 − 2) [3𝐾 − 2, 4𝐾 − 3) [4𝐾 − 3, 5𝐾 − 4) [5𝐾 − 4, 6𝐾 − 5)

Rate 𝑇 𝑇 2/3 𝑇 4/7 𝑇 8/15 𝑇 16/31 𝑇 32/63

Phase transitions are illustrated in Table 6.2. This phenomenon seems counter-intuitive,

as it suggests that in the fixed-𝐾 regime, increasing switching budget would not help reduce

the best achievable regret rate, as long as the budget does not reach the next transition

point. Moreover, the abrupt change happens at each transition point is very interesting —

at this point, a minimal difference in the switching budget can fundamentally change the

statistical nature of the problem. Along with phase transitions, we also observe an interesting

property: the length of each phase is always equal to 𝐾 − 1. This property is elegant and

reveals some favorable features of the U-BwSC problem: as we will show in Section 6.4, this

property does not hold under the general switching cost structure.

Remark. While phase transitions are intriguing and theoretically interesting, we would

like to make some comments on the scope of the above reuslts. First, one should keep in mind

that for any 𝑆, the above analysis concerns the growth rate (i.e. scaling behavior) of 𝑅⋆𝑆(𝑇 )

as 𝑇 grows (which is a statistical property), rather than the numerical value of 𝑅⋆𝑆(𝑇 ) for a

specific 𝑇 . In particular, we are less interested in describing how 𝑅⋆𝑆(𝑇 ) changes with respect

to 𝑆 for a fixed, specifically chosen 𝑇 ; instead, we seek to understand how the minimax rate

of the problem (which reflects the “learnability” of the problem when the sample size grows)

changes with respect to 𝑆. Second, phase transitions are more relevant to practice when 𝑆

belongs to the first 4 or 5 phases. Indeed, the regret rate exponent in Table 6.2 decreases

dramatically as 𝑆 goes over more phases — when 𝑆 is relatively large, the difference between

two phases may be too small to make the rate reduction happens in the “ideal” asymptotic

world really make a difference in reality. Recall that in the non-asymptotic regime where 𝑆

can depend on 𝑇 , 𝒪(log log 𝑇 ) switches are sufficient for one to achieve ̃︀𝒪(
√
𝑇 ) regret —

this also indicates that the most interesting transitions should happen when 𝑆 is small.

Phase Transition in the Growing-𝐾 Asymptotic Regime

We now consider a second asymptotic regime which allows 𝐾 to grow with 𝑇 in a moderate

rate, which corresponds to the “growing-dimension” asymptotic regime in statistics (Portnoy

1984, 1988). Specifically, we consider the following “growing-𝐾” asymptotic regime: 𝐾,𝑇 →
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∞ and 𝐾/𝑇𝛼 → 𝑐 for some 𝛼 ∈ (0, 1), 𝑐 ∈ (0,∞). By Corollary 6.2, Ω(𝐾) switches are

necessary for achieving sublinear regret in MAB; thus, in the “growing-𝐾” regime of U-BwSC,

a fixed 𝑆 cannot avoid Ω(𝑇 ) regret, and the values of 𝑆 that we are most interested in should

range from Ω(𝐾) to 𝑜(𝐾 log log 𝑇 ). This indicates that in the growing-𝐾 regime, 𝑆 should

be naturally understood as “a function of 𝐾”: the dependence between 𝑆 and 𝐾 is necessary,

while 𝑆/𝐾 should have no or extremely small dependence on 𝑇 . We thus only consider

𝑆 such that 𝑆/𝐾 → 𝜃 for some constant 𝜃 ∈ [0,∞), and we call 𝜃 := lim𝐾→∞ 𝑆/𝐾 the

“budget-to-arm ratio” (BAR). The optimal regret rate in the “growing-𝐾” regime can be then

defined similar to Definition 6.2 (with 𝐾 and 𝑆 scales proportional to 𝑇 ), or equivalently by

calculating 𝑝 := lim𝑇→∞
log𝑅⋆𝑆(𝐾,𝑇 )

log 𝑇 and denote 𝑇 𝑝 as the optimal regret rate.

The first finding in the growing-𝐾 regime is that the (original form of) phase transitions

described in Section 6.3.4 may not hold any more, and the existence of “abrupt rate changes”

depends on the magnitude of 𝐾 relative to 𝑇 . To see this, let us focus on a small range of 𝑆

at the end of the first phase and at the start of the second phase: 𝑆 = 𝐾 − 1− ̃︀Θ(𝐾𝛿) with

𝛿 ∈ (0, 1), 𝑆 = 𝐾 − 1 and 𝑆 = 𝐾. By Table 6.1 and simple calculation, the corresponding

optimal regret rate exponents for them are max
{︀
1− 𝛼(1− 𝛿), 𝛼+2

3

}︀
, max

{︀
1− 𝛼, 𝛼+2

3

}︀
and

𝛼+2
3 respectively. By letting 𝛿 move smoothly from 1 to 0, one can find that the optimal

regret rate exponent associated with 𝑆 = 𝐾 − 1 − Θ(𝐾𝛿) smoothly decays from 1 to

max
{︀
1− 𝛼, 𝛼+2

3

}︀
: while 𝑆 is always in the first phase defined in Section 6.3.4, the optimal

regret rate does not “remain the same” any more. Moreover, whether there is an abrupt

change when 𝑆 moves from 𝐾 − 1 to 𝐾 depends on the magnitude of 𝛼. If 𝛼 < 1
4 , then there

is still an abrupt change in the optimal regret rate (e.g., if 𝛼 = 0.1, then the rate jumps from

𝑇 0.9 to 𝑇 0.7); if 𝛼 ≥ 1
4 , then the optimal regret rate under 𝑆 = 𝐾−1 remains unchanged when

𝑆 reaches the next transition point. One can keep conducting such analysis for other phases,

and find similar examples on the ending range of each phase where 𝑟(𝑆,𝐾) = 𝐾 − 𝑜(𝐾) —

interestingly, these are also the ranges that AdaLS significantly improves the regret; see the

last two columns in Table 6.1.

The second finding in the growing-𝐾 regime is that when we consider how the optimal

regret rate changes with respect to the budget-to-arm ratio 𝜃 (rather than 𝑆), we can still

discover phase transitions similar to Section 6.3.4. Indeed, the counter-examples described in

the above paragraphs correspond to the ranges of 𝑆 where the remainder function 𝑟(𝑆,𝐾)

moves from 𝐾 − 𝑜(𝐾) to 𝐾 − 2 to 0, i.e., the ranges where 𝑆 moves from 𝑁(𝐾 − 1)− 𝑜(𝐾)
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to 𝑁(𝐾− 1) to 𝑁(𝐾− 1)+1 for some integer 𝑁 ∈ N>0. All valid 𝑆 in these ranges have the

property that the BAR 𝜃 = lim𝐾→∞ 𝑆/𝐾 = 𝑁 ∈ N>0. This indicates that the complicated

behavior of the optimal regret rate described in the above paragraph might only happen in

scenarios where the BAR 𝜃 is exactly a positive integer. In fact, for all 𝑆 such that 𝜃 exists

and 𝜃 is not an integer (e.g., consider 𝑆 = ⌊2.5𝐾⌋, then 𝜃 = 2.5 is not an integer), one can

find that the (unique) optimal regret rate exponent is 𝛼+ 1
2−2−⌊𝜃⌋ (1− 𝛼), which contains a

floor function. Consequently, we can define the interval (𝑗− 1, 𝑗) as the 𝑗-th phase (𝑗 ∈ N>0)

for 𝜃, and discover phase transitions of the optimal regret rate as illustrated in Table 6.3.

A difference in this new notion of phase transitions is that in the growing-𝐾 regime, each

“transition point” 𝑗 ∈ N>0 can be associated with infinitely many optimal regret rates which

interpolate between the rates of the previous and the next phase (see the previous paragraph

for the example of 𝜃 = 1).

Table 6.3: Optimal regret rate under different BAR 𝜃 when 𝐾 grows as 𝑇𝛼.

𝜃 [0, 1) 1 (1, 2) 2 (2, 3) 3 (3,4)

Rate 𝑇 − 𝑇 (2+𝛼)/3 − 𝑇 (4+3𝛼)/7 − 𝑇 (8+7𝛼)/15

6.3.5 Relationship Between Limited Switches and Limited Adaptivity

In this subsection, we discuss the relationship between limited switches and limited adaptivity

in bandit problems. As discussed in Section 6.1.3, in the U-BwSC problem, the constraint is

on the number of switches and is defined in the “action world,” hence the learner has full

adpativity. By contrast, in the batched bandit problem, the constraint is on adaptivity and

is defined in the “observation world,” hence the learner has full switching power. Since the

two constraints in the two problems are defined in two different “worlds,” the relationship

between the two problems is interesting.

We first claim that the U-BwSC problem can be seen as a strict relaxation of the batched

bandit problem (no matter with the “static grid” restriction, like Perchet et al. 2016, or

without such a restriction, like Gao et al. 2019), in the sense that U-BwSC admits more

flexible policies and can enjoy a fundamentally better optimal regret rate. The LS-SE

and AdaLS algorithms help establish this claim. First, one can easily show that any 𝑀 -

batch policy that achieves certain regret in the 𝑀 -batch 𝐾-armed bandit problem can be

transformed, using the LS-SE ingredients and randomization, to an 𝑆-switch policy that
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achieves exactly the same regret in the 𝑆-switch 𝐾-armed U-BwSC problem, as long as

𝑞(𝑆,𝐾) = 𝑀 − 1, i.e., 𝑆 ∈ [(𝑀 − 1)(𝐾 − 1) + 1 : 𝑀(𝐾 − 1)]. This implies that the

admissible policy class of the 𝑆-switch U-BwSC problem essentially contains the admissible

policy class of the (𝑞(𝑆,𝐾) + 1)-batch bandit problem as a subset. Moreover, since an

𝑆-switch policy can utilize data much more flexibly than an (𝑞(𝑆,𝐾) + 1)-batch policy

(see Section 6.3.2), (𝑞(𝑆,𝐾) + 1)-batch algorithms necessarily suffer from sub-optimal rates

for U-BwSC in general. Note that the regret lower bound for the (𝑞(𝑆,𝐾) + 1)-batch

bandit problem is ̃︀Ω(︂𝐾1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾)

)︂
40, which is a fundamental limit for all

(𝑞(𝑆,𝐾) + 1)-batch algorithms; AdaLS’s regret bound (6.2) surpasses this limit, indicating

that the admissible policy class of U-BwSC indeed contains lower-regret policies, and U-BwSC

can have a fundamentally better optimal regret rate.

On the other hand, the performance improvement that one can benefit from the above

relaxation also has a limit, as demonstrated by our lower bound (Theorem 6.2). In fact, one

can find that the optimal regret rate of the 𝑆-switch U-BwSC (Corollary 6.2) interpolates

between the optimal regret rates of the (𝑞(𝑆,𝐾) + 1)-batch and the (𝑞(𝑆,𝐾) + 2)-batch

bandit problems; moreover, when 𝐾 = ̃︀𝒪(1), the optimal regret rate of the 𝑆-switch U-BwSC

coincides with the optimal regret rate of the (𝑞(𝑆,𝐾) + 1)-batch bandit problem. The above

findings provide very useful managerial insights:

1. The switching constraint is a more relaxed constraint than the batch constraint, and

enables better performance guarantees when 𝐾 is large.

2. Limiting switches (in the “action” world) implicitly limits adaptivity (in the “observation”

world), in the sense that the optimal 𝑆-switch policy’s regret rate lies between the optimal

(𝑞(𝑆,𝐾)+1)-batch and (𝑞(𝑆,𝐾)+2)-batch policies’ regret rates; when 𝐾 = ̃︀𝒪(1), the regret

rate of the optimal 𝑆-switch policy and the optimal (𝑞(𝑆,𝐾) + 1)-batch policy coincide (up

to logarithmic factors).

Finally, we would like to point out that our lower bound result (Theorem 6.2) is the-

oretically stronger and more general than the lower bounds for batched bandits. Indeed,

since any 𝑀 -batch policy can be transformed to an equivalent ((𝑀 − 1)(𝐾 − 1) + 1)-switch

policy, any lower bound proved for U-BwSC implies a lower bound for batched bandits. In
40This is shown in Gao et al. (2019) with slight difference dependence on 𝐾 as they allow sup𝑖,𝑗 |𝜇𝑖 − 𝜇𝑗 | =√
𝐾. Since our setting is sup𝑖,𝑗 |𝜇𝑖 − 𝜇𝑗 | ∈ [0, 1], we write the associated “right” dependence on 𝐾 for ease of

comparison.
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particular, by plugging 𝑆 = (𝑀 − 1)(𝐾 − 1) + 1 in Theorem 6.2 (this value of 𝑆 actually

corresponds to the “easier-to-prove” part of Theorem 6.2, as it is the start of a “phase”), one

recovers the minimax lower bound result of Gao et al. (2019) as a corollary (the order of

𝐾,𝑇 will be the same under their conditions).

6.4 General Switching Costs

We now proceed to the general setting of BwSC, where 𝑐𝑖,𝑗 can be any non-negative real

number and even ∞ (𝑖 ̸= 𝑗) . For this general setting, a new and fundamental resarch

question is how the structure of switching costs (𝑐𝑖,𝑗) affects the statistical nature of BwSC.

Since this question is interesting and challenging even when 𝐾 = ̃︀𝒪(1), in this section, we

only seek to derive algorithms and regret bounds that are effective when 𝐾 = ̃︀𝒪(1). We

believe that the techniques developed in Section 6.3 should be helpful for one to obtain

refined algorithms and results (for general switching costs) when 𝐾 is large, but we leave

it for future work. In what follows, we consider two switching cost structures: a general

symmetric one in Section 6.4.1 and an asymmetric one in Section 6.4.2.

6.4.1 Symmetric Switching Costs

We first consider the general symmetric switching cost structure where 𝑐𝑖,𝑗 = 𝑐𝑗,𝑖 for all

𝑖, 𝑗 ∈ [𝐾]. The corresponding BwSC problem is referred to as the G-BwSC problem. To start

with, we need to enhance the framework of Section 6.1.2 to better represent the switching

costs. We do this by representing switching costs via a weighted graph. Let 𝐺 = (𝑉,𝐸) be a

(weighted) complete graph, where 𝑉 = [𝐾] (i.e., each vertex corresponds to an action), and

the edge between 𝑖 and 𝑗 is assigned a weight 𝑐𝑖,𝑗 (∀𝑖 ̸= 𝑗). We call the weighted graph 𝐺

the switching graph. In this subsection, we assume the switching costs satisfy the triangle

inequality: ∀𝑖, 𝑗, 𝑙 ∈ [𝑘], 𝑐𝑖,𝑗 ≤ 𝑐𝑖,𝑙 + 𝑐𝑙,𝑗 . We relax this assumption in Appendix E.5.1.

The results in Section 6.3 suggest that a simple and effective learning strategy (when

𝐾 = ̃︀𝒪(1)) is to repeatedly visit all actions for many times and then commit to the best

action, in a manner similar to LS-SE. This indicates that in the G-BwSC problem, one should

consider how to repeatedly visit all vertices in the switching graph, in a most economical way

to stay within budget. This implies a connection between G-BwSC and the celebrated shortest

Hamiltonian path problem. Motivated by this connection, we propose the Hamiltonian-
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Switching Successive Elimination (HS-SE) algorithm, and present it in Algorithm 6.3. The

algorithm enhances the original LS-SE algorithm by adding an additional ingredient: a

pre-specified switching order determined by the shortest Hamiltonian path of the switching

graph 𝐺. Note that while the shortest Hamiltonian path problem is NP-hard, solving this

problem is entirely an “offline” step in the HS-SE algorithm, i.e., for a given switching graph,

the learner only needs to solve this problem once. We also comment that one may use the

techniques presented in Section 6.3.2 to design a refined algorithm (analogous to AdaLS) that

achieves better performance; however, we leave this for future work, as the simple HS-SE

algorithm is already sufficient for revealing important properties of G-BwSC when 𝐾 = ̃︀𝒪(1).

Algorithm 6.3 Hamiltonian-Switching Successive Elimination (HS-SE)
Input: Switching budget 𝑆, switching graph 𝐺, horizon 𝑇 .
Initialization: Let 𝐴1 = [𝐾]. Find a shortest Hamiltonian path in 𝐺: 𝑖1 → · · · → 𝑖𝐾 .
Denote the total weight of the shortest Hamiltonian path as 𝐻. Compute 𝑞′(𝑆,𝐺) =⌊︁
𝑆−max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗

𝐻

⌋︁
. Divide the entire time horizon 𝑇 into 𝑞′(𝑆,𝐺) + 1 epochs: (𝑡0 : 𝑡1], (𝑡1 :

𝑡2], . . . , (𝑡𝑞′(𝑆,𝐺) : 𝑡𝑞′(𝑆,𝐺)+1], where the endpoints are defined by 𝑡0 = 0 and

𝑡𝑗 =

⌊︃
𝐾

1− 2−2−(𝑗−1)

2−2−𝑞′(𝑆,𝐺) 𝑇
2−2−(𝑗−1)

2−2−𝑞′(𝑆,𝐺)

⌋︃
, ∀𝑗 = 1, . . . , 𝑞′(𝑆,𝐺) + 1.

Policy:
1: for 𝑙 = 1, . . . , 𝑞′(𝑆,𝐺) do
2: if 𝑙 is odd then
3: for 𝑖 = 𝑖1, . . . , 𝑖𝐾 do ◁ along the direction of 𝑖1 → · · · → 𝑖𝐾
4: If 𝑖 ∈ 𝐴𝑙 (i.e., uneliminated), choose action 𝑖 for 𝑡𝑙−𝑡𝑙−1

|𝐴𝑙| consecutive rounds.

5: else
6: for 𝑖 = 𝑖𝐾 , . . . , 𝑖1 do ◁ along the direction of 𝑖𝐾 → · · · → 𝑖1 (the reverse of the

above)
7: If 𝑖 ∈ 𝐴𝑙 (i.e., uneliminated), choose action 𝑖 for 𝑡𝑙−𝑡𝑙−1

|𝐴𝑙| consecutive rounds.

8: Elimination: compute UCB𝑖(𝑡𝑙) and LCB𝑖(𝑡𝑙) for all 𝑖 ∈ 𝐴𝑙 and let ◁ learn from data

𝐴𝑙+1 =

{︂
𝑖 ∈ 𝐴𝑙 | UCB𝑖(𝑡𝑙) ≥ max

𝑗∈𝐴𝑙
LCB𝑗(𝑡𝑙)

}︂
.

9: For 𝑙 = 𝑞′(𝑆,𝐺) + 1, find an action 𝑖 ∈ 𝐴𝑙 that maximizes 𝜇𝑖(𝑡𝑙−1). Keep choosing this
action until round 𝑇 .

Let 𝐻 denote the total weight of the shortest Hamiltonian path of 𝐺. It is not difficult

to verify that HS-SE is an 𝑆-switching-budget policy and ensures the following upper bound

on regret; see Appendix E.9 for a proof.
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Theorem 6.3. Let 𝜋 be the HS-SE policy, then 𝜋 ∈ Π𝑆. There exists an absolute constant

𝐶 ≥ 0 such that for all 𝐺 (with 𝐻 > 0), 𝐾 = |𝐺|, 𝑆 ≥ 0, 𝑇 ≥ 𝐾,

𝑅𝜋(𝑇 ) ≤ 𝐶(log𝐾 log 𝑇 )𝐾
1− 1

2−2−𝑞′(𝑆,𝐺) 𝑇
1

2−2−𝑞′(𝑆,𝐺) ,

where 𝑞′(𝑆,𝐺) =
⌊︁
𝑆−max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗

𝐻

⌋︁
.

In Theorem 6.4, we provide a lower bound that is very close to the above upper bound.

The proof of Theorem 6.4 builds on the proof of Theorem 6.2, but has two notable differences:

(i) it involves several new techniques to deal with the general switching cost structure, and

(ii) it pays less attention to the dependence on 𝐾; see Appendix E.13 for details.

Theorem 6.4. There exists an absolute constant 𝐶 > 0 such that for all 𝐺 (with 𝐻 > 0),

𝐾 = |𝐺|, 𝑆 ≥ 0, 𝑇 ≥ 2𝐾 and for all policy 𝜋 ∈ Π𝑆,

𝑅𝜋(𝐾,𝑇 ) ≥ 𝐶

𝐾 log 𝑇
· 𝑇

1

2−2−𝑞′′(𝑆,𝐺) ,

where 𝑞′′(𝑆,𝐺) =
⌊︁
𝑆−max𝑖∈[𝐾] min𝑗 ̸=𝑖 𝑐𝑖,𝑗

𝐻

⌋︁
.

Let us focus on the case of 𝐾 = ̃︀𝒪(1) and compare the upper and lower bounds

given by Theorem 6.3 and Theorem 6.4. When the switching costs satisfy the condition

max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗 = max𝑖∈[𝐾]min𝑗 ̸=𝑖 𝑐𝑖,𝑗 , we have 𝑞′(𝑆,𝐺) = 𝑞′′(𝑆,𝐺), thus the two bounds

directly match (up to polylog(𝑇 )). This reveals an interesting fact: when max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗 =

max𝑖∈[𝐾]min𝑗 ̸=𝑖 𝑐𝑖,𝑗 , the optimal regret rate of G-BwSC is completely characterized by the

floor function
⌊︁
𝑆−max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗

𝐻

⌋︁
, which further depends on 𝐻. The fact implies that the

length of the shortest Hamiltonian path is indeed a fundamental quantity associated with

the G-BwSC problem, and conveys an important message: the structure of switching costs

may affect the optimal regret rate of BwSC through some key quantities associated with

graph traversal problems. We now provide a concrete switching cost structure satisfying the

condition max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗 = max𝑖∈[𝐾]min𝑗 ̸=𝑖 𝑐𝑖,𝑗 below.

Example 6.1 (Isolated Action Model). Consider a set of 𝐾 − 1 “close” or “similar” ac-

tions {1, · · · ,𝐾 − 1}, and another “isolated” action 𝐾, such that 𝑐𝐾,1 = · · · = 𝑐𝐾,𝐾−1 ≥

max𝑖,𝑗∈[𝐾−1] 𝑐𝑖,𝑗 (i.e., action 𝐾 is isolated from other actions such that its distance to every

other action is a large constant). This model always satisfies the condition max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗 =
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max𝑖∈[𝐾]min𝑗 ̸=𝑖 𝑐𝑖,𝑗, and subsumes the unit-switching-cost model as a special case. As an ex-

ample, in promotion planning, 1, · · · ,𝐾− 1 can be different variants of a standard promotion

strategy, while 𝐾 can be an aggressive clearance strategy.

When the condition max𝑖,𝑗∈[𝐾] 𝑐𝑖,𝑗 = max𝑖∈[𝐾]min𝑗 ̸=𝑖 𝑐𝑖,𝑗 is not satisfied, for any switching

graph 𝐺, the upper and lower bounds still match for a wide range of 𝑆:

[︂
0, 𝐻 +max

𝑖∈[𝑘]
min
𝑗 ̸=𝑖

𝑐𝑖,𝑗

)︂⋃︁{︃ ∞⋃︁
𝑛=1

[︂
𝑛𝐻 + max

𝑖,𝑗∈[𝑘]
𝑐𝑖,𝑗 , (𝑛+ 1)𝐻 +max

𝑖∈[𝑘]
min
𝑗 ̸=𝑖

𝑐𝑖,𝑗

)︂}︃
.

Even when 𝑆 is not in this range, we still have 𝑞′(𝑆,𝐺) ≤ 𝑞′′(𝑆,𝐺) ≤ 𝑞′(𝑆.𝐺) + 1 for any

𝐺 and any 𝑆, which means that the difference between the two indices is at most 1 and

the upper and lower bounds are always close. In fact, it can be shown that as 𝑆 increases,

the gap between the upper and lower bounds decreases doubly exponentially. Therefore, the

HS-SE algorithm is quite effective for the G-BwSC problem when 𝐾 = ̃︀𝒪(1).

6.4.2 Asymmetric Switching Costs: The Departure Cost Structure

We now consider another switching cost structure that allows asymmetry. Since the general

asymmetric case is only more complicated than the case studied in Section 6.4.1, we consider

a special case of asymmetric switching costs: there exists 𝑐 = (𝑐1, . . . , 𝑐𝐾) ∈ R𝐾≥0 such that

𝑐𝑖,𝑗 = 𝑐𝑖 for all 𝑖 ∈ [𝐾], 𝑗 ̸= 𝑖. That is, the switching cost between any pair of actions

only depends on the action that the learner departs from. We refer to this switching cost

structure as the departure cost structure (with 𝑐𝑖 called the departure cost of action 𝑖), and

the corresponding BwSC problem as the D-BwSC problem. As we shall see, for this fairly

general problem, we can fully characterize the optimal regret when 𝐾 = ̃︀𝒪(1).

We provide an algorithm (AS-SE) for the D-BwSC problem; see Algorithm 6.4. The

algorithm follows the same main steps of HS-SE, but has some important differences in the

initialization step: it calculates the key actions 𝑖1, 𝑖𝐾 and the key index 𝑞(𝑆, 𝑐) differently.

We provide some intuition for this new configuration. First, we can still construct a switching

graph 𝐺 associated with the switching costs, but this time being a directed graph. Since 𝑖𝐾

is the action with the maximum departure cost (denoted by 𝑐(1)), the path 𝑖1 → · · · → 𝑖𝐾 is

a shortest Hamiltonian path of the switching graph 𝐺. The choice of 𝑖𝐾 is thus consistent

with HS-SE. However, since the switching costs are asymmetric now, one cannot guarantee

that the reverse path 𝑖𝐾 → · · · → 𝑖1 also has a small length. In Algorithm 6.4, based on the
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departure cost structure, we optimize the reverse path by letting 𝑖1 be the action with the

second largest departure cost (denoted by 𝑐(2)). The determination of the key index 𝑞(𝑆, 𝑐)

is a little more complicated, as we need to consider the alternation of two directions; thanks

to the departure cost structure, it is easy to compute.

Algorithm 6.4 Asymmetric-Switching Successive Elimination (AS-SE)
Input: Switching budget 𝑆, switching costs 𝑐, horizon 𝑇 .
Initialization: Let 𝐴1 = [𝐾]. Find an action 𝑖𝐾 ∈ argmax𝑖∈[𝐾] 𝑐𝑖 and an ac-
tion 𝑖1 ∈ argmax𝑖∈[𝐾]∖{𝑖1} 𝑐𝑖. Let (𝑖2, . . . , 𝑖𝐾−1) be an arbitrary permutation of
[𝐾] ∖ {𝑖1, 𝑖𝐾}. Let Σ =

∑︀𝐾
𝑖=1 𝑐𝑖, 𝑐(1) = 𝑐𝑖𝐾 and 𝑐(2) = 𝑐𝑖1 . Compute 𝑞(𝑆, 𝑐) =

max
{︁
1 + 2

⌊︁
𝑆−Σ

2Σ−𝑐(1)−𝑐(2)

⌋︁
, 2
⌊︁

𝑆−𝑐(2)
2Σ−𝑐(1)−𝑐(2)

⌋︁}︁
. Divide the entire time horizon 𝑇 into 𝑞(𝑆, 𝑐)+1

epochs: (𝑡0 : 𝑡1], (𝑡1 : 𝑡2], . . . , (𝑡𝑞(𝑆,𝑐) : 𝑡𝑞(𝑆,𝑐)+1], where 𝑡0 = 0 and

𝑡𝑗 =

⌊︃
𝐾

1− 2−2−(𝑗−1)

2−2−𝑞(𝑆,𝑐) 𝑇
2−2−(𝑗−1)

2−2−𝑞(𝑆,𝑐)

⌋︃
, ∀𝑗 = 1, . . . , 𝑞(𝑆, 𝑐) + 1.

Policy: The same as Lines 1 to 9 of Algorithm 6.3.

Theorem 6.5. When 𝐾 = ̃︀𝒪(1), the optimal regret of D-BwSC is ̃︀Θ(︂𝑇 1

2−2−𝑞(𝑆,𝑐)

)︂
, where

𝑞(𝑆, 𝑐) is given by Algorithm 6.4. Furthermore, the AS-SE algorithm attains this regret rate.

Theorem 6.5 shows that when 𝐾 = ̃︀𝒪(1), the optimal regret rate of D-BwSC can be

completely characterized by the key index 𝑞(𝑆, 𝑐), and AS-SE is rate-optimal. This reveals

surprising phase transitions similar to Section 6.3.4; the difference is that each phase may not

have an equal length anymore. See Table 6.4 for an illustration (the quantities Σ, 𝑐(1), 𝑐(2)

are given in Algorithm 6.4).

Table 6.4: Optimal regret rate (of D-BwSC) under different switching budgets for fixed 𝐾
and 𝑐.

𝑆 [0,Σ) [Σ, 2Σ− 𝑐(1)) [2Σ− 𝑐(1), 3Σ− 𝑐(1) − 𝑐(2)) [3Σ− 𝑐(1) − 𝑐(2), 4Σ− 2𝑐(1) − 𝑐(2))

Rate 𝑇 𝑇 2/3 𝑇 4/7 𝑇 8/15

6.5 Numerical Experiments

In this section, we conduct numerical experiments to show the practicality and effectiveness of

our algorithms. We focus on a U-BwSC setting where the reward distribution is 𝒩 (Δ, 1) for the

optimal action and is 𝒩 (0, 1) for all other actions. We consider 𝐾 = 8, 𝑇 ∈ {10000, 50000},
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and Δ ∈ {0.1, 0.2, 0.3, . . . , 1}. The ten choices of Δ correspond to ten different types of

underlying environments. For each 𝑇 , for each Δ, we generate 1000 i.i.d. synthetic datasets;

hence for each 𝑇 , there are 10000 synthetic datasets in total. We consider 15 different

switching budgets ranging from 8 to 22.

We test the performance of four algorithms on the synthetic datasets. The four algorithms

include the LS-SE and AdaLS (𝜆 = 0.5) algorithms proposed in Section 6.3, and two natural

heuristics which serve as benchmarks: (1) running the celebrated UCB algorithm (e.g.,

the UCB1 algorithm of Auer et al. 2002a) until the number of switches exceeds 𝑆 — we

denote this heuristic by UCB, and (2) separating exploration and exploitation (see Algorithm

1.1 of Slivkins 2019) and only making 𝐾 − 1 switches during exploration — this heuristic

corresponds to LS-SE with 𝑆 = 𝐾, and is denoted by E&E. Our implementations of LS-SE and

E&E use randomization to decide the order to explore uneliminated actions in each epoch. For

practical purposes, the confidence bounds in (6.4) are modified to UCB𝑖(𝑡) := 𝜇𝑖(𝑡) +
√︁

𝛾 log 𝑇
𝑁𝑖(𝑡)

and LCB𝑖(𝑡) := 𝜇𝑖(𝑡)−
√︁

𝛾 log 𝑇
𝑁𝑖(𝑡)

, with 𝛾 being a tuning parameter. In our experiments, we set

𝛾 = 0.1 after fine tuning.

We first fix 𝑇 = 10000. For each switching budget 𝑆 ∈ [8 : 22], we test the performance

of the four algorithms on the 10000 synthetic datasets, and compute the empirical average-

case regret by taking an average of the empirical regret incurred over 10000 datasets. The

performance of the four algorithms under different switching budgets are presented in Parts

(a1) and (a2) of Figure 6-1. The quantity 𝑞 appearing in Figure 6-1 stands for the quotient

index 𝑞(𝑆,𝐾).

We make the following observations from Parts (a1) and (a2) of Figure 6-1. First, both

LS-SE and AdaLS perform better than the two heuristics (UCB and E&E). UCB performs

significantly worse than other algorithms, while AdaLS performs the best overall. Second,

the performance of LS-SE only depends on the quotient index 𝑞(𝑆,𝐾), irrespective of the

remainder index 𝑟(𝑆,𝐾). As a result, LS-SE only improves upon E&E when 𝑆 is large

enough such that 𝑞(𝑆,𝐾) ≥ 2. By contrast, AdaLS uniformly improves upon both E&E and

LS-SE for all 𝑆 ∈ [8 : 22]. The superiority of AdaLS demonstrates the value of adaptivity in

achieving better empirical performance. In particular, learning from data more frequently and

adpatively determining the epoch sizes seem to help a lot in our experiments. Third, although

AdaLS is already quite adaptive and designed to behave differently for different 𝑟(𝑆,𝐾), it still

seems to face some performance barriers when 𝑞(𝑆,𝐾) is fixed, even when 𝑟(𝑆,𝐾) is large
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𝑞 = 1

𝑞 = 1

𝑞 = 2

𝑞 = 2

𝑞 = 1 𝑞 = 2

𝑞 = 1 𝑞 = 2

×

Figure 6-1: Empirical average-case regret v.s. the switching budget 𝑆, for the four considered
algorithms. The regret of UCB has to be plotted separately because it is too large.

(e.g., when 𝑆 = 14 or 21); in our experiments, the most significant performance improvements

of AdaLS are observed when there is a new increment in 𝑞(𝑆,𝐾) (e.g., when 𝑆 = 15 or 22).

Such phenomena are very interesting and can be related to the phase transitions (under a

fixed 𝐾) discussed in Section 6.3.4.

We then repeat the experiments for 𝑇 = 50000 to have robustness checks; see the results

plotted in Parts (b1) and (b2) of Figure 6-1. The previous observations still hold. Finally,

we repeat all of the above experiments for 𝐾 = 4 (a smaller 𝐾) and 𝐾 = 16 (a larger 𝐾) for

additional robustness checks. The detailed results are deferred to Appendix E.6.

Remark. Although the numerical performance barriers of AdaLS under fixed 𝑞(𝑆,𝐾)

can be related to phase transitions, they should not be seen as direct evidence of phase

transitions, because (i) phase transitions concern the optimal worst-case regret optimized

over all algorithms, while we only compute the empirical average-case regret (averaged

over specific instances) of some specific algorithms, and (ii) phase transitions concern the

growth rate of the optimal regret as 𝑇 grows, rather then the numerical value of the regret

under a fixed 𝑇 . One might hope to design better numerical experiments to make phase
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transitions show up numerically, though it seems some real new idea is needed for designing

such experiments (the naive way to numerically compute the optimal regret rate requires

enumerations over all possible algorithms and all instances for a wide range of 𝑇 , which is

computationally intractable).

6.6 Concluding Remarks

We study the stochastic multi-armed bandit problem with a constraint on the total cost

incurred by switching between actions. Under different switching cost structures, we prove

matching (or almost matching) upper and lower bounds on regret and provide near-optimal

algorithms for the problem. The results enable us to fully characterize the trade-off between

the regret rate and the incurred switching cost in the stochastic multi-armed bandit problem,

contributing new insights to this fundamental problem. Under the general switching cost

structure, the results reveal interesting connections between bandit problems and graph

traversal problems, such as the shortest Hamiltonian path problem.
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Chapter 7

Blind Network Revenue Management and

Bandits with Knapsacks Under Limited

Switches

7.1 Introduction

In this work, we study the classical price-based blind network revenue management (BNRM)

problem (Besbes and Zeevi 2012) and its extensions to the bandits with knapsacks (BwK)

problem (Badanidiyuru et al. 2018). In the BNRM problem, a firm is endowed with finite

inventory of multiple resources to sell over a finite time horizon. The starting inventory is

unreplenishable and exogenously given. The firm can control its sales through sequential

decisions on the prices offered, which come from a discrete set of candidates41. The firm’s

objective is to maximize its expected cumulative revenue.

We consider the setup in which demand is stochastic, independent and time homogeneous

over the time horizon. Yet the distributional information is unknown to the firm, and has to

be sequentially learned over the selling horizon. Such a setup is well studied in the literature,

see Besbes and Zeevi (2012), Badanidiyuru et al. (2018), Ferreira et al. (2018). In such a

setup, there are two sources of trade-offs that the firm needs to consider.

1. The exploitation-exploration trade-off. The firm must trade-off between exploitation

decisions which utilize the learned information to maximize the expected revenue as if

it was in the distributionally-known setup, and exploration decisions which discover the
41In this work, we focus on the discrete price setup of the BNRM problem, instead of the continuous price

setup. We explain this distinction in Section 7.2.
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demand distributions of the less certain price decisions, regardless of how rewarding

they are. Exploitation decisions tend to favor the more rewarding price decisions

(with respect to resource constraints), while exploration decisions tend to favor the

less discovered price decisions. Intuitively, the optimal policy alternates between

exploitation and exploration decisions based on the information learned from the

realized demands. Such a trade-off has been extensively studied in the literature of

multi-armed bandit (MAB) and dynamic pricing with demand learning; see Bubeck

and Cesa-Bianchi (2012), den Boer (2015), Slivkins (2019), Lattimore and Szepesvári

(2020) for some overviews and book chapters.

2. The revenue-inventory trade-off. Even when the demand distribution has been perfectly

learned, the firm faces a trade-off between revenue-centric decisions which maximize

immediate expected revenue irrespective of resource constraints, and inventory-centric

decisions which maximize the revenue from the remaining inventory. Revenue-centric

decisions tend to be myopic and favor the revenue-maximizing items, while inventory-

centric decisions tend to be conservative and favor the highly stocked items. Intuitively,

the optimal policy alternates between revenue-centric and inventory-centric decisions

based on the remaining inventory and the remaining time periods. Such a trade-off

(when separated from the exploration-exploitation trade-off) has been extensively

studied in the literature of network revenue management and stochastic control; see

Bertsekas (1995), Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003),

Phillips (2005), Talluri and Van Ryzin (2006) for some overviews and book chapters.

The revenue-inventory trade-off becomes even more challenging when it is integrated

with the exploration-exploitation trade-off; see Besbes and Zeevi (2012), Badanidiyuru

et al. (2018), Agrawal (2019) for more discussions.

In the face of the above two trade-offs, any optimal policy must adjust its decisions

and instantaneously switch between actions over the time horizon. However, not all firms

have the infrastructure to query the realized demand in real-time, to adjust their decisions

instantaneously, or to switch between actions as freely as possible. Because changing the

posted prices is too costly for many firms (Levy et al. 1998, Zbaracki et al. 2004, Stamatopoulos

et al. 2020, Bray and Stamatopoulos 2022), and frequent price changes may confuse the

customers (Jørgensen et al. 2003). A common practice for many firms is that they restrict
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the number of price changes to be within a budgeted number (Netessine 2006, Chen et al.

2015, Cheung et al. 2017, Perakis and Singhvi 2019, Chen et al. 2020, Simchi-Levi and Xu

2023).

Motivated by this challenge, we analyze the impact of limited switches on the above

two trade-offs. In this paper, we primarily consider the classical blind network revenue

management (BNRM) problem as described above. We incorporate an additional constraint of

limited switching budget into the classical BNRM model and formulate a new problem: blind

network revenue management under limited switches (BNRM-LS). For the BNRM-LS problem,

we establish tight upper and lower bounds on the optimal regret, and design limited-switch

algorithms that achieve the optimal regret rate. Our results reveal a characterization of

the optimal regret rate as a function of the switching budget, which further depends on the

number of resources.

Moreover, we extend our results to the more general bandits with knapsacks setup

(Badanidiyuru et al. 2018, Slivkins and Vaughan 2014) (see Appendices F.1 and F.2). The

bandits with knapsacks setup generalizes the blind network revenue management setup in

the sense that the reward (revenue) and the costs (consumption of resources) can have an

arbitrary relationship, i.e., they are not necessarily connected through demand variables.

7.1.1 Contributions

To the best of our knowledge, this paper is one of the first papers to study online learning

problems with both resource and switching constraints. In this paper, we formulate and

study the BNRM-LS problem, which extends the classical BNRM model by taking into account

an additional hard constraint of limited switching budget.

In Appendices F.1 and F.2, we extend our results to the bandits with knapsacks under

limited switches (BwK-LS) problem, which generalizes the classical bandits with knapsacks

(BwK) problem.

The main contributions of this paper lie in fully characterizing the statistical complexity of

the BNRM-LS problem (as well as the generalization to the BwK-LS problem in the appendix),

and providing optimal and efficient algorithms that are relevant to practice. We show

matching upper and lower bounds on the optimal regret, and design novel limited-switch

algorithms to achieve such regret. We use big 𝑂,Ω,Θ notation to hide constant factors,

and use ̃︀𝑂, ̃︀Ω, ̃︀Θ notation to hide both constant and logarithmic factors. Using the above
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Figure 7-1: Optimal regret rate exponent lim𝑇→∞ log𝑅⋆(𝑇 )/ log 𝑇 as a function of switching
budget 𝑠 in the BNRM-LS problem. Here 𝑅⋆(𝑇 ) stands for the optimal (i.e., minimax) regret.

notation, our main results can be summarized as follows.

1. We provide a computationally efficient limited-switch algorithm and show that the

regret is upper bounded by ̃︀𝑂(︂𝑇 1

2−2−𝜈(𝑠,𝑑)

)︂
, where 𝜈(𝑠, 𝑑) =

⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
. Here 𝑠 stands

for the switching budget, 𝑑 for the number of resources, and 𝐾 for the number of price

vectors in the BNRM-LS setup (the number of arms in the BwK-LS setup).

2. We provide matching lower bounds (i.e., impossibility results) on the optimal regret.

Specifically, for any algorithm with switching budget 𝑠, we construct a class of BNRM

instances such that the algorithm must suffer ̃︀Ω(︂𝑇 1

2−2−𝜈(𝑠,𝑑)

)︂
expected revenue loss

on one of these instances.

3. Combining the above upper and lower bounds, we show that the optimal regret is in the

order of ̃︀Θ(︂𝑇 1

2−2−𝜈(𝑠,𝑑)

)︂
. Notably, the optimal regret rate is completely characterized

by a piece-wise constant function of the switching budget 𝑠, which further depends on

the number of resources 𝑑. See Figure 7-1 for an illustration.

Our results lead to the following two implications. First, our results show that a total

number of Θ(log log 𝑇 ) switching budget is necessary and sufficient to achieve the optimal̃︀Θ(
√
𝑇 ) regret for the classical BNRM problem (and the BwK problem as well). Compared

with existing optimal algorithms for BNRM and BwK which require Ω(𝑇 ) switching cost in
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the worst case, our algorithm achieves a doubly exponential (and best possible) improvement

on the switching cost.

Second, our results reveal a separation on the optimal regret between the resource-

constrained problem (BNRM) and the resource-unconstrained problem (MAB). Under the

standard regime where 𝑇 and 𝐵min are in the same order, prior literature has demonstrated

that both MAB and BNRM have the same optimal regret rate ̃︀Θ(
√
𝑇 ). Our paper shows that

when there is a switching budget, the resource-constrained problems can exhibit larger regret

rates than the resource-unconstrained problems. We explicitly characterize how the optimal

regret rate depends on the number of resource constraints (given any switching budget). If we

fix all the other problem primitives unchanged and only add in one more resource constraint,

then the optimal regret rate is going to be larger (or the same), illustrating that resource

constraints can indeed increase the optimal regret — they make the problem “harder.”

In addition, we conduct experiments to examine the performance of our algorithms in a

numerical setup that is widely used in the literature42. Compared with benchmark algorithms

from the literature (Besbes and Zeevi 2012, Badanidiyuru et al. 2018, Ferreira et al. 2018),

our proposed algorithms achieve promising performance with clear advantages on the number

of incurred switches. Our numerical results also provide practical suggestions to firms on

how to design their switching budgets. The detailed numerical results can be found in the

full version of our paper (Simchi-Levi et al. 2019).

7.1.2 Challenges and Approaches

Algorithmic Techniques

We note that it is the co-existence of both resource and switching constraints that make

our problems particularly challenging. Indeed, when there is no resource constraint, the

topic of switching cost has been well-studied in the online learning literature (for both

limited and unlimited switching budgets setups); see Agrawal et al. (1988, 1990), Guha and

Munagala (2009), Cesa-Bianchi et al. (2013), Cheung et al. (2017), Perakis and Singhvi

(2019), Chen and Chao (2019), Chen et al. (2020), Dong et al. (2020), Simchi-Levi and

Xu (2023) for various models and results. In particular, prior literature has established

42The setup is a BNRM setup without any switching constraint. We note that when there is a (hard)
switching constraint, most existing algorithms would incur Ω(𝑇 ) regret, and our algorithms are obviously
better.
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an “epoch-based elimination” framework (see, e.g., Perchet et al. 2016, Gao et al. 2019)

which enables researchers to design optimal algorithms for MAB with switching constraints

(Simchi-Levi and Xu 2023). The epoch-based elimination framework divides the time horizon

into multiple pre-determined epochs; at each epoch, the algorithm constructs confidence

bounds for (the expected reward of) each action, eliminates actions that are obviously

sub-optimal, and then uniformly explores each remaining action for an equal number of

periods.

However, the above framework cannot be directly applied to BNRM and BwK due to the

following two reasons. First, it is hard to eliminate actions in BNRM and BwK, as each action’s

“value” to the decision maker depends on the remaining inventory and is changing over time

(this is because resource constraints are long-term constraints, see Agrawal (2019)). Second,

unlike in MAB, uniform exploration over actions is not a good idea in BNRM and BwK, as

“choosing actions uniformly” could be arbitrarily worse than “choosing actions non-uniformly”

in terms of exploitation, due to the existence of resource constraints (this is because the

collected reward is no longer a linear combination of individual actions’ rewards, and the

decision maker is competing with an optimal dynamic policy rather than an optimal fixed

action).

To address the above challenges, we develop a novel “two-stage linear programming”

(2SLP) approach in Section 7.4.1, which provides guidance on how to conduct efficient

elimination and exploration. This approach has two features. First, the elimination and

exploration is conduced over action combinations rather than individual actions. Second,

the complicated optimization tasks involved in computing the elimination and exploration

strategies are reduced to solving (𝐾 + 1) simple linear programs in two stages. The 2SLP

approach builds on and improves upon the algorithmic principle of Balanced Exploration

(Badanidiyuru et al. 2018), which is the first optimal algorithm proposed for BNRM and

BwK but unfortunately suffers from a severe drawback of computationally inefficiency43.

Since the 2SLP approach is computationally fast, easy to modify, and provides the first

practical generalization of the celebrated successive elimination principle from MAB to BNRM

and BwK, we believe this approach is of independent interests and has the potential to be

a meta-algorithm for efficiently solving more complex resource-constrained online learning

43Due to this reason, Balanced Exploration is only considered to be a proof of concept rather than an
implementable algorithm (see Remark 4.2 of Badanidiyuru et al. 2018), and has been much less favored in
literature compared with subsequent algorithms developed based on primal-dual and UCB principles.
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problems.

It is worth mentioning that, without developing 2SLP as a new algorithmic principle

for BNRM and BwK, it is not apparent whether one can directly modify existing BNRM and

BwK algorithms to obtain efficient limited-switch algorithms. Note that Badanidiyuru et al.

(2018) and Immorlica et al. (2019) design computationally efficient algorithms for BwK using

adversarial online learning subroutines, which does not seem to work for our purpose as

adversarial online learning is shown to require frequent switches (Dekel et al. 2014, Altschuler

and Talwar 2021). Note also that by incorporating the delayed update techniques (Auer

et al. 2002a) into the UCB-type algorithms (Agrawal and Devanur 2014), one may design

a modified UCB-type algorithm that achieves ̃︀Θ(
√
𝑇 ) regret using 𝑂(log 𝑇 ) switches. This

guarantee is exponentially worse than our guarantee, as our algorithm achieves ̃︀Θ(
√
𝑇 ) regret

using only 𝑂(log log 𝑇 ) switches.

Lower Bound Techniques

Our lower bound proof builds on the “tracking the cover time” argument of Simchi-Levi and

Xu (2023), which establish regret lower bounds for MAB with a single switching constraint

by tracking carefully-defined stopping times and constructing hard MAB instances based on

(algorithm-dependent) realizations of the stopping times. Extending the argument of Simchi-

Levi and Xu (2023) from their resource-unconstrained setting to the resource-constrained

setting of BNRM-LS is non-trivial, due to the following two reasons. First, the argument of

Simchi-Levi and Xu (2023) critically utilizes the fact that the regret is measured against

a single fixed action, but in BNRM-LS the regret is measured against a complex dynamic

policy (which itself requires switches). Second, the analysis of Simchi-Levi and Xu (2023)

is not sensitive to the number of resource constraints 𝑑 at all, but in order to match the

upper bound of BNRM-LS, we need to establish a strengthened lower bound that gradually

increases with 𝑑. We address the above two challenges by developing an LP-based analysis

framework to construct hard BNRM instances with specially-designed resource constraints

and demand structures, and measuring several revenue gaps based on clean event analysis of

the demand realization process.

It is worth mentioning that no prior work in BNRM and BwK has tried to construct

hard instances that involve multiple (> 1) resource constraints44. Moreover, prior lower

44One reason is that using zero or one resource constraint is already sufficient for their purposes.
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bound constructions that involve a single resource constraint (Badanidiyuru et al. 2018,

Sankararaman and Slivkins 2020) are all in the BwK setup instead of the BNRM setup. Since

BwK is more general than BNRM, constructing lower bound examples for BNRM is more

challenging than for BwK. All prior constructions break the specific reward-cost structure of

BNRM, thus failing to provide lower bounds for BNRM. Compared with prior work, our lower

bound instance construction is considerably more complicated, as we have to deal with 𝑑

resource constraints and we cannot break the BNRM structure.

7.1.3 Organization and Notation

We develop our results in the following manner. In Section 7.2 we start with the classical

discrete price BNRM model and then introduce its limited switching budget variant BNRM-LS.

In Section 7.3 we introduce the deterministic linear program, and present the results in

the (simple) distributionally-known case. While the techniques and results in this case are

standard, they build intuitions for our main results. In Section 7.4 we introduce our main

results in the distributionally-unknown case. We prove matching upper and lower bounds

on the optimal regret and provide optimal and efficient algorithms that achieve the optimal

regret. We conclude the paper in Section 7.5. All the extensions to the BwK-LS problem are

deferred to Appendices F.1 and F.2.

The theoretical results that we present are complemented by an extensive numerical

study, which can be found in the full version of our paper (Simchi-Levi et al. 2019).

Let N, R, R>0 and R≥0 be the set of positive integers, real numbers, positive real numbers

and non-negative real numbers, respectively. For any 𝑁 ∈ N, define [𝑁 ] = {1, 2, ..., 𝑁}. We

use bold font letters for vectors, where we do not explicitly indicate how large the dimension

is. For any vector 𝑥 ∈ R𝐾 , let ‖𝑥‖0 =
∑︀

𝑘∈[𝐾] 1{𝑥𝑘 ≠ 0} be the 𝐿0 norm of 𝑥, i.e. the

number of non-zero elements in vector 𝑥. For any vector 𝑥 ∈ R𝐾 and any 𝑘 ∈ [𝐾], let

(𝑥)𝑘 be the 𝑘th element of vector 𝑥. For any positive real number 𝑥 ∈ R>0, let ⌊𝑥⌋ be the

largest integer that is smaller or equal to 𝑥; for any non-positive real number 𝑥 ∈ R ∖ R>0,

let ⌊𝑥⌋ = 0. For any set 𝑋, let Δ(𝑋) be the set of all probability distributions over 𝑋. We

use big 𝑂,Ω,Θ notation to hide constant factors, and use ̃︀𝑂, ̃︀Ω, ̃︀Θ notation to hide both

constant and logarithmic factors.
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7.2 Problem Formulation

From now on in the main paper, we introduce the blind network revenue management (BNRM)

model, and defer introducing the bandits with knapsacks (BwK) model to Appendix F.1.

The BNRM problem is the online learning version of the classical price-based network revenue

management (NRM) problem. The NRM problem is a (full-information) stochastic control

problem which originates from the airline industry (Gallego and Van Ryzin 1997, Talluri and

Van Ryzin 1998), and has been extensively studied in the revenue management literature

(Jasin 2014, Adelman 2007, Topaloglu 2009, Ma et al. 2020) with diverse applications. The

BNRM problem extends the classical NRM problem by assuming that the demand distribution

is unknown and has to be sequentially learned over time.

The NRM problem and the BNRM problem have two distinct setups: a discrete price setup

and a continuous price setup. In this work, we focus on the discrete price setup. We refer to

Chen et al. (2019), Chen and Shi (2019), Miao and Wang (2021) for detailed discussions on

the continuous price setup.

BNRM Setup

Let there be a discrete, finite time horizon with 𝑇 periods. Time starts from period 1 and

ends in period 𝑇 . Let there be 𝑛 different products generated by 𝑑 different resources. Each

resource is endowed with finite initial inventory 𝐵𝑖 ∈ R≥0, ∀𝑖 ∈ [𝑑], and 𝐵min = min𝑖∈[𝑑]𝐵𝑖.

Let 𝐴 = (𝑎𝑖𝑗)𝑖∈[𝑑],𝑗∈[𝑛] be the consumption matrix. Each entry 𝑎𝑖𝑗 ∈ R≥0 stands for the

amount of inventory 𝑖 ∈ [𝑑] used, if one unit of product 𝑗 ∈ [𝑛] is sold. Let 𝐴𝑖 denote the

𝑖-th row of 𝐴. Let 𝑎max = max𝑖,𝑗 𝑎𝑖𝑗 to be some bounded constant.

In each period 𝑡, a decision maker can post prices for the 𝑛 products by selecting a price

vector from a finite set of 𝐾 price vectors 𝑃 := {𝑝1, ...,𝑝𝐾}, which we denote using 𝑧𝑡 ∈ [𝐾].

A price vector is 𝑝𝑘 = (𝑝1,𝑘, ..., 𝑝𝑛,𝑘), and 𝑝𝑗,𝑘 ∈ [0, 𝑝max] is the price for product 𝑗 under

𝑝𝑘. This captures situations where a few price points have been pre-determined by market

standards, e.g., a common menu of prices that end in $9.99: $69.99, $79.99, $99.99.

Given price (vector) 𝑝𝑘, the demand for each product 𝑗 ∈ [𝑛] is an unknown but bounded

random variable45, 𝑄𝑗,𝑘 := 𝑄𝑗(𝑝𝑘) ∈ [0, 1], which has to be sequentially learned over time.

Let 𝑞𝑗,𝑘 := E[𝑄𝑗,𝑘] denote the unknown mean demand for product 𝑗 under price 𝑝𝑘, and

45All our results can be easily extended to the more general sub-Gaussian random variables.
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𝑄 = (𝑄𝑗,𝑘)𝑗∈[𝑛],𝑘∈[𝐾], 𝑞 = (𝑞𝑗,𝑘)𝑗∈[𝑛],𝑘∈[𝐾]. For each unit of demand generated for product

𝑗 ∈ [𝑛] under price vector 𝑝𝑘, the decision maker generates 𝑝𝑗,𝑘 revenue by depleting 𝑎𝑖𝑗 units

of each inventory 𝑖 ∈ [𝑑]. If no demand is generated, all the remaining inventory is carried

over into the next period. The selling process stops immediately when the total cumulative

demand of any resource exceeds its initial inventory; see Section F.1.2 for discussions of

alternative stopping rules. We use ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄) to stand for a BNRM problem

instance.

The objective of the decision maker is to maximize the expected total cumulative revenue

(collected before exhausting the resources) over 𝑇 periods. The performance is measured by

the regret, which is defined as the worst-case expected revenue loss compared with a clairvoyant

decision maker who knows the true demand distributions (but not the realizations). The

revenue maximization problem is equivalent to a regret minimization problem.

Regime for Regret Analysis

We derive non-asymptotic bounds on the regret of policies in terms of the number of time

periods 𝑇 . For all of our results (except Theorem 7.1, which we will discuss a different

scaling regime), we adopt the following regret analysis regime: there exists an arbitrary

constant 𝑏 > 0, such that 𝐵min ≥ 𝑏𝑇 . In other words, we do not assume any specific form of

dependence between 𝑇 and 𝐵. We only require that inventory is not too scarce compared to

the time horizon. This regime generalizes the standard linear scaling regime in the network

revenue management literature; see, e.g., Gallego and Van Ryzin (1997), Liu and Van Ryzin

(2008), Besbes and Zeevi (2012), Jasin (2014), Ferreira et al. (2018), Chen et al. (2019),

Chen and Shi (2019), Bumpensanti and Wang (2020).

Following the literature, we assume 𝑛, 𝑝max, 𝑎max are all absolute constants that do not

depend on 𝑇 or 𝐵. The other parameters 𝐾 and 𝑑 do not depend on 𝑇 or 𝐵, either. Yet we

write out our regret bounds’ exact dependence on 𝐾 and 𝑑 in our main Theorems and all

the proofs, for better managerial insights. Obtaining regret upper and lower bounds that are

tight in the orders of 𝐾 and 𝑑 is an interesting future direction. For ease of presentation, we

also assume that 𝑑 < 𝐾 − 1. Note that this assumption is only for the purpose of avoiding

repeatedly using the notation min{𝑑,𝐾 − 1}; all our results straightforwardly extend to the

general case without assuming 𝑑 < 𝐾 − 1 by replacing 𝑑 with min{𝑑,𝐾 − 1} and replacing

𝜈(𝑠, 𝑑) with
⌊︁
𝑠−min{𝑑,𝐾−1}−1{𝑑<𝐾−1}

𝐾−1

⌋︁
.
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New Constraint to BNRM

We model the business constraint of limited price changes as a hard constraint, and define

the blind network revenue management under limited switches (BNRM-LS) problem as the

BNRM problem with an extra constraint of limited switches. Specifically, on top of the initial

resource capacities, the decision maker is initially endowed with a fixed number of switching

budget 𝑠, to change the price vector from one to another. When two consecutive price vectors

are different, i.e., 𝑧𝑡 ≠ 𝑧𝑡+1, one unit of switching budget is consumed. For example, if there

is only one product, a sequence of prices ($79.99, $89.99, $79.99, $89.99) uses two distinct

prices, and makes three price changes. When there is no switching budget remaining, the

decision maker cannot change the price vector anymore, and has to keep using the last price

vector used. There are other ways to model the business constraint of limited switches, but

all are beyond the scope of this paper. We can view the BNRM problem as the BNRM-LS

problem under an infinite switching budget. Since a limited switching budget restricts the

family of admissible policies, any admissible algorithm for the BNRM-LS problem is also an

admissible algorithm for the BNRM problem.

The Impact of Limited Switches

The BNRM problem is extensively studied in the literature, with multiple algorithms developed,

e.g., the explore-then-exploit algorithm in Besbes and Zeevi (2012), the Balanced Exploration

algorithm in Badanidiyuru et al. (2018), the primal-dual algorithms in Badanidiyuru et al.

(2018) and Immorlica et al. (2019), the UCB-type algorithm in Agrawal and Devanur (2014),

and the Thompson Sampling algorithm in Ferreira et al. (2018). Under the standard linear

scaling regime where 𝑇 and 𝐵min are in the same order, it has been shown that the optimal

regret rate of the BNRM problem is ̃︀Θ(
√
𝑇 ), which is the same as the optimal regret rate of

the classical MAB problem. Existing results thus characterize a relatively complete picture of

the statistical complexity and algorithmic principles for stochastic online learning problems

with resource constraints.

The new constraint of limited switches, however, has not been explored in the BNRM and

BwK literature. Notably, all existing near-optimal algorithms for BNRM and BwK require

frequently switching between actions — they all incur Ω(𝑇 ) switching cost over 𝑇 periods.

The only exception is the explore-then-exploit algorithm of Besbes and Zeevi (2012), which
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controls its number of switches (i.e., price changes) within 𝐾 + 𝑑, but unfortunately suffers

from Ω(𝑇 2/3) regret rate — much worse than ̃︀Θ(
√
𝑇 ). Prior to our work, general algorithms

and regret bounds applicable for an arbitrarily given switching budget remain unknown.

7.3 Warm-Up: Network Revenue Management Under Limited

Switches

Before we proceed to consider the learning problem, we study the distributionally known

case to build better intuitions. In such case, the distributions of 𝑄 are known to the decision

maker, and the learning problem reduces to a stochastic control problem. In this section,

since the distributions are known, the regret of any policy (with limited switching budget)

refers to the expected revenue loss compared to the optimal policy endowed with unlimited

switching budget.46 Our techniques and results in this section are standard, yet serve as a

foundation of Section 7.4.

For any problem instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄), we adopt the general notation

𝜋 : R𝑑× [𝑠]× [𝑇 ] → Δ([𝐾]) to denote any policy with full information of 𝑄, which suggests a

(possibly randomized) price vector to use given the remaining inventory, remaining switching

budget, and the remaining periods. For any 𝑠 ∈ N, let Π[𝑠] be the set of policies that change

prices for no more than 𝑠 times on this problem instance ℐ. For any 𝑠, 𝑠′ ∈ N such that

𝑠 ≤ 𝑠′, we know that Π[𝑠] ⊆ Π[𝑠′]. Let Π[∞] be the set of all admissible policies. Let

Rev(𝜋) be the expected revenue that policy 𝜋 generates on this problem instance ℐ. Let

𝜋⋆[𝑠] ∈ argmax𝜋∈Π[𝑠] Rev(𝜋) be one of the optimal dynamic policies with switching budget

𝑠, and 𝜋⋆[∞] be one of the optimal dynamic policies with an infinite switching budget (i.e.,

without a switching constraint).

7.3.1 The Deterministic Linear Program

For any problem instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄), the literature have extensively studied

the following deterministic linear program (DLP) in the NRM setup. See Gallego and

46Unlike the learning problem where the regret is defined by taking a worst case over 𝑄, the regret
considered in this section is instance-dependent because 𝑄 is already given.
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Van Ryzin (1997), Cooper (2002), Maglaras and Meissner (2006), Liu and Van Ryzin (2008).

JDLP = max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘 𝑞𝑗,𝑘 𝑥𝑘 (7.1)

s.t.
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑] (7.2)

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇 (7.3)

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾] (7.4)

It is well known that in the NRM setup, the above DLP serves as an upper bound on the

expected revenue of any policy, even an optimal policy with an infinite switching budget (i.e.,

𝜋⋆[∞]). When 𝐵min = Ω(𝑇 ), it is well known that the gap between the expected revenue

obtained by the optimal policy and the DLP upper bound is bounded by 𝑂(
√
𝑇 ) for all

instances, i.e., Rev(𝜋⋆[∞]) = JDLP −𝑂(
√
𝑇 ).

Let the set of optimal solutions to the DLP be

𝑋⋆ = arg max
𝑥∈R𝐾

{(7.1) |(7.2), (7.3), (7.4) are satisfied}.

For any vector 𝑥 ∈ R𝐾 , let ‖𝑥‖0 =
∑︀

𝑘∈[𝐾] 1{𝑥𝑘 ̸= 0} be the 𝐿0 norm of 𝑥, i.e. the number

of non-zero elements in vector 𝑥. Let Λ = min{‖𝑥‖0 |𝑥 ∈ 𝑋⋆ } be the least number of

non-zero variables of any optimal solution. Let 𝒳 = argmin{‖𝑥‖0 |𝑥 ∈ 𝑋⋆ } be the set of

such solutions. For any 𝑥⋆ ∈ 𝒳 , let 𝒵(𝑥⋆) = {𝑘 ∈ [𝐾] |𝑥⋆ ̸= 0} ⊆ [𝐾] be the subset of

dimensions that are non-zero in 𝑥⋆. Note that Λ is an instance-dependent quantity such

that Λ ≤ 𝑑+ 1, where 𝑑+ 1 is the number of all constraints (resource constraints and time

constraint) in the linear program. When DLP is non-degenerate, then equality holds and

Λ = 𝑑+ 1.

In Sections 7.3.2 and 7.3.3 we show that for any problem instance, the instance-dependent

quantity (Λ − 1) is a critical threshold for the switching budget 𝑠: if 𝑠 ≥ Λ − 1, then the

optimal regret is ̃︀𝑂(
√
𝑇 ); if 𝑠 < Λ− 1, then the optimal regret is Θ(𝑇 ).
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7.3.2 Lower Bound

In this subsection, we show that when the switching budget is below Λ− 1 (at most Λ− 2),

then a linear regret rate is inevitable. Recall that Π[Λ− 2] stands for the family of admissible

policies that make no more than Λ− 2 price changes.

Theorem 7.1. Let 𝑏 ∈ R𝑑>0 be any arbitrary vector of positive constants. For any NRM

instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄) with 𝐵 = 𝑇 · 𝑏, 𝑑 ≥ 0, 𝐾 > 𝑑+ 1, 𝑛 ≥ 1, there is an

associated Λ number (defined in Section 7.3.1), such that any policy 𝜋 ∈ Π[Λ− 2] earns an

expected revenue:

Rev(𝜋) ≤ JDLP − 𝑐 · 𝑇,

where 𝑐 > 0 is some distribution-dependent constant that is independent of 𝑇 .

As a direct implication of Theorem 7.1, we combine the inequality in Theorem 7.1 with

the known fact that Rev(𝜋⋆[∞]) ≥ JDLP −𝑂(
√
𝑇 ) and have Rev(𝜋) ≤ Rev(𝜋⋆[∞])− Ω(𝑇 ).

That is, the regret scales linearly with (𝑇,𝐵) when other parameters are fixed.

The lower bound established in Theorem 7.1 holds for any 𝑄. Such a result is much

stronger than the worst-case type results which only require finding a single 𝑄 that makes

the statement hold.

We outline three key steps here. The detailed proof can be found in the full version of our

paper (Simchi-Levi et al. 2019). We first identify a clean event, such that the realized demands

are close to the expected demands that the LP suggests. This clean event happens with high

probability (1− 2
𝑇 3 ). In the second step, conditioning on such event, the maximum amount

of revenue we generate is no more than 𝑂(
√
𝑇 ) compared to what the LP suggests; and the

minimum amount of inventory demanded is no less than 𝑂(
√
𝑇 ) compared to what the LP

suggests, resulting in no more than 𝑂(
√
𝑇 ) of realized revenue. In the third step, we show

that the regret from insufficient price changes scales in the order of Ω(𝑇 ), which dominates

the 𝑂(
√
𝑇 ) amount revenue due to randomness. Such clean event analysis, originating from

the online learning literature to prove upper bounds (Badanidiyuru et al. 2018, Slivkins 2019,

Lattimore and Szepesvári 2020), was recently used in Arlotto and Gurvich (2019) to prove

lower bounds.
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7.3.3 Upper Bound

In this subsection, we show that when the switching budget is greater or equal to Λ− 1, then

the regret is ̃︀𝑂(√𝑇 ). Such a sub-linear guarantee is achieved by tweaking the well-known

static control policy in the network revenue management literature (Gallego and Van Ryzin

1997, Cooper 2002, Maglaras and Meissner 2006, Liu and Van Ryzin 2008, Ahn et al. 2021).

We tweak the static control policy, so that with high probability the selling horizon never

stops earlier than the last period 𝑇 . See Algorithm 7.1 below47. This is achieved by selecting

the value of 𝛾 in the first step of Algorithm 7.1. Similar ideas have been used in Hajiaghayi

et al. (2007), Ma et al. (2021), Balseiro et al. (2021) to prove asymptotic results in different

setups.

Algorithm 7.1 Tweaked LP Policy for the NRM Problem
Input: ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄).
Policy:
1: Define 𝛾 = 1− 2 𝑎max

𝐵min

√
𝑛𝑇 log 𝑇 .

2: Solve the DLP as defined by (7.1), (7.2), (7.3), and (7.4). Find an optimal solution with
the least number of non-zero variables, 𝑥⋆ ∈ 𝒳 .

3: Arbitrarily choose any permutation 𝜎 : [Λ] → 𝒵(𝑥⋆) from all (Λ)! possibilities.
4: Execute: Set the price vector to be 𝑝𝜎(1) for the first 𝛾 · 𝑥⋆𝜎(1) periods, then 𝑝𝜎(2) for the

next 𝛾 · 𝑥⋆𝜎(2) periods, ..., and finally 𝑝𝜎(Λ) for the last 𝑇 − 𝛾 ·
∑︀Λ−1

𝑙=1 𝑥
⋆
𝜎(𝑙) periods.

We explain the third step permutation. Suppose 𝒵(𝑥⋆) = {1, 3, 4}. In this case, Λ = 3

and there are 6 permutations. There are 6 possible policies as suggested in Algorithm 7.1.

While some of these policies may have better empirical performance than others, they all

achieve ̃︀𝑂(
√
𝑇 ) regret.

Theorem 7.2. Let 𝑏 > 0 be an arbitrary constant. For any NRM instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄)

with 𝑇 ≥ 1, 𝑑 ≥ 0,𝐾 > 𝑑 + 1 and 𝐵min/𝑇 ≥ 𝑏, any policy 𝜋 as defined in Algorithm 7.1

satisfies 𝜋 ∈ Π[Λ− 1] and earns an expected revenue:

Rev(𝜋) ≥ JDLP −max{𝑐/𝑏, 𝑐′𝑑}
√
𝑛3
√︀
𝑇 log 𝑇

≥ Rev(𝜋⋆[∞])−max{𝑐/𝑏, 𝑐′𝑑}
√
𝑛3
√︀
𝑇 log 𝑇

where 𝑐, 𝑐′ > 0 are some absolute constants.

47In Algorithm 7.1, we assume that 𝑥⋆𝑘, ∀𝑘 ∈ [𝐾] are integers, because rounding issues incur a regret of at
most (𝑑 ·max𝑘 𝑝

T
𝑘 · 𝑞𝑘), which is negligible compared with

√
𝑇 .
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As we will see in Section 7.4, since the loss from an unknown distribution is in the order

of ̃︀Ω(√𝑇 ), the ̃︀𝑂(√𝑇 ) regret from Algorithm 7.1 suffices to serve as a sub-routine in the

last epoch of the main algorithm. Even though there are many advanced techniques that

improve the ̃︀𝑂(
√
𝑇 ) result, they are beyond the scope of this paper.

7.4 Blind Network Revenue Management Under Limited Switches

In this section, we study the BNRM-LS problem, introduce an efficient algorithm, and provide

matching upper and lower bounds of the optimal regret. We start with some definitions.

Admissible Policies and Clairvoyant Policies

In this section, we distinguish between a BNRM instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄) and a

BNRM problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴) based on whether the underlying demand distri-

butions 𝑄 are specified or not. Consider a BNRM problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴). Let 𝜑

denote any non-anticipating learning policy; specifically, 𝜑 consists of a sequence of (possibly

randomized) decision rules (𝜑𝑡)𝑡∈[𝑇 ], where each 𝜑𝑡 establishes a probability kernel acting

from the space of historical actions and observations in periods 1, . . . , 𝑡 − 1 to the space

of actions at period 𝑡. For any 𝑠 ∈ N, let Φ[𝑠] be the set of learning policies that change

price vectors for no more than 𝑠 times almost surely under all possible demand distributions

𝑄. For any 𝑠, 𝑠′ ∈ N such that 𝑠 ≤ 𝑠′, Φ[𝑠] ⊆ Φ[𝑠′]. Let Φ[∞] be the set of all admissible

learning policies. Let Rev𝑄(𝜑) be the expected revenue that a learning policy 𝜑 generates

under demand distributions 𝑄.

As we have defined in Section 7.2, 𝜋 refers to a clairvoyant policy with full distributional

information about the true distributions 𝑄. For any 𝑠 ∈ N, let Π𝑄[𝑠] be the set of clairvoyant

policies that change price vectors for no more than 𝑠 times under the true distributions

𝑄. For any 𝑠, 𝑠′ ∈ N such that 𝑠 ≤ 𝑠′, Π𝑄[𝑠] ⊆ Π𝑄[𝑠
′]. Let Π𝑄[∞] be the set of all

admissible clairvoyant policies. Let Rev𝑄(𝜋) be the expected revenue that a clairvoyant

policy 𝜋 ∈ Π𝑄 generates under distributions 𝑄. Let 𝜋⋆𝑄[𝑠] ∈ arg sup𝜋∈Π𝑄[𝑠] Rev(𝜋) be one

optimal clairvoyant policy with switching budget 𝑠, and 𝜋⋆𝑄 be one of the optimal dynamic

policies with an infinite switching budget (i.e., without a switching constraint).
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Performance Metrics

The performance of an 𝑠-switch learning policy 𝜑 ∈ Φ[𝑠] is measured against the performance

of the optimal 𝑠-switch clairvoyant policy 𝜋⋆𝑄[𝑠]. Specifically, for any BNRM problem 𝒫

and switching budget 𝑠, we define the 𝑠-switch regret of a learning policy 𝜑 ∈ Φ[𝑠] as the

worst-case difference between the expected revenue of the optimal 𝑠-switch clairvoyant policy

𝜋⋆𝑄[𝑠] and the expected revenue of policy 𝜑:

𝑅𝜑𝑠 (𝑇 ) = sup
𝑄

{︀
Rev𝑄(𝜋⋆𝑄[𝑠])− Rev𝑄(𝜑)

}︀
.

We also measure the performance of policy 𝜑 against the performance of the optimal

unlimited-switch clairvoyant policy 𝜋⋆𝑄. Specifically, we define the overall regret of a learning

policy 𝜑 ∈ Φ[𝑠] as the worst-case difference between the expected revenue of the optimal

unlimited-switch clairvoyant policy 𝜋⋆𝑄 and the expected revenue of the policy 𝜑:

𝑅𝜑(𝑇 ) = sup
𝑄

{︀
Rev𝑄(𝜋⋆𝑄)− Rev𝑄(𝜑)

}︀
.

Intuitively, the 𝑠-switch regret 𝑅𝜑𝑠 (𝑇 ) measures the “informational revenue loss” due to not

knowing the demand distributions, while the overall regret 𝑅𝜑(𝑇 ) measures the “overall

revenue loss” due to not knowing the demand distributions and not being able to switch

freely. Clearly, the overall regret 𝑅𝜑(𝑇 ) is always larger than the 𝑠-switch regret 𝑅𝜑𝑠 (𝑇 ).

Interestingly (and quite surprisingly), as we will show later, for all 𝑠, 𝑅𝜑(𝑇 ) and 𝑅𝜑𝑠 (𝑇 ) are

always in the same order in terms of the dependence on 𝑇 .

7.4.1 Upper Bound

We propose a computationally efficient algorithm that provides an upper bound on both the

𝑠-switch regret and the overall regret. Our algorithm, called Limited-Switch Learning via

Two-Stage Linear Programming (LS-2SLP), is described in Algorithm 7.2.

The design of our algorithm builds on the insights from the LS-SE algorithm proposed in

Simchi-Levi and Xu (2023), the Balanced Exploration algorithm proposed in Badanidiyuru

et al. (2018), and the Tweaked LP policy defined in Algorithm 7.1. To address the fundamental

challenges inherent in our problems (as illustrated in Section 7.1.2), we go beyond the above

algorithms and develop novel ingredients for efficient exploration and exploitation under
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both resource and switching constraints. We provide more details and insights below.

Description of the Algorithm

Our algorithm runs in an epoch schedule which generalizes and improves the epoch schedule

of the LS-SE algorithm (Simchi-Levi and Xu 2023). Specifically, our LS-2SLP algorithm first

computes a key index 𝜈(𝑠, 𝑑) based on the switching budget 𝑠, the number of actions 𝐾, and

(importantly) the number of resource constraints 𝑑, then computes a series of fixed time

points {𝑡𝑙}
𝜈(𝑠,𝑑)+1
𝑙=1 according to formula (7.5) (see also Perchet et al. 2016, Gao et al. 2019

for the use of such formulas in MAB), which provides important guidance on how to divide

the 𝑇 selling periods into 𝜈(𝑠, 𝑑) + 1 epochs. Compared with the LS-SE algorithm which

directly uses the pre-determined sequence {𝑡𝑙}
𝜈(𝑠,𝑑)+1
𝑙=1 as its epoch schedule, our algorithm

exhibits two notable differences in determining the epoch schedule. First, the parameter

𝜈(𝑠, 𝑑) takes account of the number of resource constraints 𝑑. Second, our algorithm uses

an adaptive epoch schedule {𝑇𝑙}
𝜈(𝑠,𝑑)+1
𝑙=1 rather than the pre-determined schedule {𝑡𝑙}

𝜈(𝑠,𝑑)+1
𝑙=1

— in particular, our algorithm decides the length of the next epoch only after the current

epoch ends, and the length would be determined by both {𝑡𝑙}
𝜈(𝑠,𝑑)+1
𝑙=1 and the data collected

so far. Such an adaptive epoch schedule is crucial for our algorithm to achieve the desired

theoretical guarantee48.

During each epoch except for the last one, our algorithm strikes a balance between

exploration and exploitation via a Two-Stage Linear Programming (2SLP) scheme. Specif-

ically, our algorithm first builds high-probability upper and lower confidence bounds on

the purchase probability of each price vector, based on the demand data collected so far.

Then, the algorithm solves a first-stage pessimistic LP, which is a “pessimistic” variant of

the DLP studied in Section 7.3, with the reward of each action being as underestimated as

possible and the consumption of each action being as overestimated as possible. Intuitively,

the optimal value of this pessimistic LP serves as a conservative estimate on how much

accumulated revenue should be generated by a “plausible enough” policy. The algorithm

then moves to the second stage, where it solves 𝐾 linear programs. For any 𝑗 ∈ [𝐾], the 𝑗th

48We provide a more detailed explanation for this point. Almost all existing BNRM and BwK literature
assumes a “null arm” with zero reward and zero costs and allows the algorithms to repetitively switch to
the null arm. While such an assumption is completely fine (and without loss of generality) in the classical
BNRM/ BwK setting, the behavior of repetitively switching to a null arm would cause a waste of switching
budget in our limited-switch setting, and this would make the algorithm suboptimal. In order to bypass the
need to switch to a null arm, our algorithm has to plan for an “early stopping” of each epoch, which requires
the epoch schedule to be adaptive.
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Algorithm 7.2 Limited-Switch Learning via Two-Stage Linear Programming (LS-2SLP)
Input: Problem parameters (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴); switching budget 𝑠; discounting factor 𝛾.
Initialization: Calculate 𝜈(𝑠, 𝑑) =

⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
. Define 𝑡0 = 0 and

𝑡𝑙 =

⌊︃
𝐾

1− 2−2−(𝑙−1)

2−2−𝜈(𝑠,𝑑) 𝑇
2−2−(𝑙−1)

2−2−𝜈(𝑠,𝑑)

⌋︃
, ∀𝑙 = 1, . . . , 𝜈(𝑠, 𝑑) + 1. (7.5)

Set 𝛾 = 1− 3
𝑎max

√
𝑑𝑛 log[𝑑𝐾𝑇 ] log 𝑇

𝐵min
𝑡1.

Notation: Let 𝑇𝑙 denote the ending period of epoch 𝑙 (which will be determined by the algorithm).
Let 𝑧𝑡 denote the algorithm’s selected price vector at period 𝑡. Let 𝑧0 be a random price
vector in {𝑝1, . . . ,𝑝𝐾}.
Policy:
1: for epoch 𝑙 = 1, . . . , 𝜈(𝑠, 𝑑) do
2: if 𝑙 = 1 then
3: Set 𝑇0 = 𝐿rew

𝑘 (0) = 𝐿cost
𝑖,𝑘 (0) = 0 and 𝑈 rew

𝑘 (0) = 𝑈 cost
𝑖,𝑘 (0) = ∞, ∀𝑖 ∈ [𝑑],∀𝑘 ∈ [𝐾].

4: else
5: Let 𝑛𝑘(𝑇𝑙−1) be the total number of periods that price vector 𝑝𝑘 is chosen up to

period 𝑇𝑙−1, and 𝑞𝑗,𝑘(𝑇𝑙−1) be the empirical mean demand of product 𝑗 sold at price

vector 𝑝𝑘 up to period 𝑇𝑙−1. Calculate ∇𝑘(𝑇𝑙−1) =
√︁

log[(𝑑+1)𝐾𝑇 ]
𝑛𝑘(𝑇𝑙−1)

and⎧⎨⎩𝑈
rew
𝑘 (𝑇𝑙−1) = min

{︁∑︀
𝑗∈[𝑛] 𝑝𝑗,𝑘𝑞𝑗,𝑘(𝑇𝑙−1) + ||𝑝𝑘||2∇𝑘(𝑇𝑙−1), 𝑈

rew
𝑘 (𝑇𝑙−2)

}︁
,

𝐿rew
𝑘 (𝑇𝑙−1) = max

{︁∑︀
𝑗∈[𝑛] 𝑝𝑗,𝑘𝑞𝑗,𝑘(𝑇𝑙−1)− ||𝑝𝑘||2∇𝑘(𝑇𝑙−1), 𝐿

rew
𝑘 (𝑇𝑙−2)

}︁
,

∀𝑘 ∈ [𝐾],

⎧⎨⎩𝑈
cost
𝑖,𝑘 (𝑇𝑙−1) = min

{︁∑︀
𝑗∈[𝑛] 𝑎𝑖𝑗𝑞𝑗,𝑘(𝑇𝑙−1) + ||𝐴𝑖||2∇𝑘(𝑇𝑙−1), 𝑈

cost
𝑖,𝑘 (𝑇𝑙−2)

}︁
,

𝐿cost
𝑖,𝑘 (𝑇𝑙−1) = max

{︁∑︀
𝑗∈[𝑛] 𝑎𝑖𝑗𝑞𝑗,𝑘(𝑇𝑙−1)− ||𝐴𝑖||2∇𝑘(𝑇𝑙−1), 𝐿

cost
𝑖,𝑘 (𝑇𝑙−2)

}︁
,

∀𝑖 ∈ [𝑑], ∀𝑘 ∈ [𝐾].

6: Solve the first-stage pessimistic LP:

JPES𝑙 = max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

𝐿rew
𝑘 (𝑇𝑙−1)𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

𝑈 cost
𝑖,𝑘 (𝑇𝑙−1)𝑥𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀𝑘 ∈ [𝐾]
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7: For each 𝑗 ∈ [𝐾], solve the second-stage exploration LP:

𝑥𝑙,𝑗 = arg max
(𝑥1,...,𝑥𝐾)

𝑥𝑗

s.t.
∑︁
𝑘∈[𝐾]

𝑈 rew
𝑘 (𝑇𝑙−1)𝑥𝑘 ≥ JPES𝑙∑︁

𝑘∈[𝐾]

𝐿cost
𝑖,𝑘 (𝑇𝑙−1)𝑥𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾]

8: For all 𝑘 ∈ [𝐾], let 𝑁 𝑙
𝑘 =

(𝑡𝑙−𝑡𝑙−1)
𝑇

∑︀𝐾
𝑗=1

1
𝐾 (𝑥𝑙,𝑗)𝑘. Let 𝑧𝑇𝑙−1+1 = 𝑧𝑇𝑙−1

. Starting from
this action, choose each price vector 𝑝𝑘 for 𝛾𝑁 𝑙

𝑘 consecutive periods, 𝑘 ∈ [𝐾] (we overlook
the rounding issues here, which are easy to fix in regret analysis). Stop the algorithm
once time horizon is met or one of the resources is exhausted (in which case we stop the
algorithm by keeping selling at the last price vector).

9: End epoch 𝑙. Mark the last period in epoch 𝑙 as 𝑇𝑙.
10: For epoch 𝜈(𝑠, 𝑑) + 1 (the last epoch), let 𝑞𝑗,𝑘(𝑇𝜈(𝑠,𝑑)) be the empirical mean demand of

product 𝑗 sold at price vector 𝑝𝑘 up to period 𝑇𝜈(𝑠,𝑑). Solve the following deterministic
LP

max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘 𝑞𝑗,𝑘(𝑇𝜈(𝑠,𝑑)) 𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘(𝑇𝜈(𝑠,𝑑)) 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],

and find an optimal solution with the least number of non-zero variables, 𝑥⋆𝑞. Let

𝑁
𝜈(𝑠,𝑑)+1
𝑘 =

(𝑇−𝑡𝜈(𝑠,𝑑))
𝑇 (𝑥⋆𝑞)𝑘 for all 𝑘 ∈ [𝐾]. First let 𝑧𝑇𝜈(𝑠,𝑑)+1 = 𝑧𝑇𝜈(𝑠,𝑑) . Start from

this action, choose each price vector 𝑝𝑘 for 𝛾𝑁𝜈(𝑠,𝑑)+1
𝑘 consecutive periods, 𝑘 ∈ [𝐾] (we

overlook the rounding issues here, which are easy to fix in regret analysis). Stop the
algorithm once time horizon is met or one of the resources is exhausted (in which case
we stop the algorithm by keeping selling at the last price vector). End epoch 𝜈(𝑠, 𝑑) + 1.
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linear program considers how to execute each action, with an objective of exploring action

𝑗 as many periods as possible, subject to 𝑑 constraints on the inventory consumption, and

an extra constraint on generating at least as much revenue as the pessimistic LP suggests

— such a constraint ensures that the exploration of action 𝑗 cannot be too extensive to

hurt the revenue. Contrary to the pessimism in the first stage, all the constraints in the

second stage are specified in an “optimistic” manner, with the reward of each action being

as overestimated as possible and the consumption of each action being as underestimated

as possible — by doing so, the 𝑗th linear program implicitly encourages exploring action 𝑗

more (while still keeping its solution approximately plausible enough). Finally, our algorithm

makes decisions by exploring each arm in a “balanced” fashion, i.e., it computes an average

of the 𝐾 linear programming solutions obtained in the second stage, and then determines

the total number of periods to execute each action in this epoch based on the average.

In the very last epoch, our algorithm implements Algorithm 7.1 to conduct pure ex-

ploitation, by using the empirical distributions estimated from the data as the stochastic

distributions of 𝑄. It is worth noting that, in the special case of 𝜈(𝑠, 𝑑) = 1, there are only two

epochs, and the LS-2SLP algorithm becomes essentially the same as the explore-then-exploit

algorithm in Besbes and Zeevi (2012), with some slight difference such as the epoch schedule’s

dependence on 𝐾.

Discussion of the 2SLP Scheme

The 2SLP scheme builds on the insights from the Balanced Exploration algorithm (Badanidiyuru

et al. 2018), which extends the celebrated successive elimination idea by choosing over

mixtures of actions (rather than individual actions) and ensuring that the choice is “balanced”

across actions. The Balanced Exploration algorithm is however computationally inefficient,

as it conducts elimination over mixtures of actions in an explicit and exact manner (which

requires one to solve infinite linear programs), and requires an “approximate optimization

over a (complicated) infinite-dimensional set” step for which the authors do not provide an

implementation.

The 2SLP approach bypasses the computational difficulty inherent in Balanced Exploration

by making the elimination procedure implicit and relaxed, and reducing the hard optimiza-

tion tasks to simply solving (𝐾 + 1) linear programs (which is kind of surprising). Such

improvements are brought by our design of the first-stage pessimistic LP and the second-stage
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exploration LP’s. Interestingly, the 2SLP approach starts with pessimism in the first stage

and turns to optimism in the second stage — such a combination of pessimism and optimism

seems novel and may be of independent interest (as a comparison, the UCB-type algorithm

in Agrawal and Devanur (2014) is fully optimistic).

Theoretical Guarantees

The LS-2SLP algorithm is indeed a limited-switch algorithm. During each epoch except for

the last one, the LS-2SLP policy chooses at most 𝐾 actions, thus making at most 𝐾 − 1

switches between them. During the last epoch (when the algorithm does purely exploitation),

since there are 𝑑+ 1 constraints in the deterministic LP, the optimal solution contains at

most 𝑑+ 1 non-zero solutions. Yet the last action executed during the second last epoch

is not necessarily among the non-zero solutions, thus it requires at most 𝑑 + 1 switches.

There are 𝜈(𝑠, 𝑑) = ⌊ 𝑠−𝑑−1
𝐾−1 ⌋ epochs before the last exploitation epoch, so there are at most

𝜈(𝑠, 𝑑) · (𝐾 − 1) + (𝑑 + 1) ≤ 𝑠 switches, satisfying the definition of the 𝑠-switch learning

policy.

We establish the following upper bound on the regret incurred by the LS-2SLP policy.

Theorem 7.3. Let 𝜑 be the LS-2SLP policy as suggested by Algorithm 7.2. Let 𝑏 > 0 be

an arbitrary constant. For any BNRM problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴) with 𝑇 ≥ 1, 𝑑 ≥

0,𝐾 > 𝑑+ 1 and 𝐵min/𝑇 ≥ 𝑏, 𝜑 is guaranteed to be a 𝑠-switch learning policy, and the regret

incurred by 𝜑 satisfies

𝑅𝜑𝑠 (𝑇 ) ≤ 𝑅𝜑(𝑇 ) ≤
(︂
max{𝑐/𝑏, 𝑐′} · 𝑛

√︀
𝑛𝑑 log[𝑑𝐾𝑇 ]𝐾

1− 1

2−2−𝜈(𝑠,𝑑) log 𝑇

)︂
· 𝑇

1

2−2−𝜈(𝑠,𝑑) ,

where 𝜈(𝑠, 𝑑) =
⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
, and 𝑐, 𝑐′ > 0 are some absolute constants.

It is worth noting that the above upper bound holds in a non-asymptotic sense: it holds

for all finite 𝑇 and 𝐵, as long as 𝐵min/𝑇 is lower bounded by a positive constant 𝑏. The

detailed proof can be found in the full version of our paper (Simchi-Levi et al. 2019).

7.4.2 Lower Bound

In this subsection, we prove a matching lower bound, which holds for both the 𝑠-switch

regret and the overall regret. This lower bound is based on the construction of a family of
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problem instances in the BNRM-LS setup, combined with non-trivial information-theoretic

arguments. Note that our lower bound is established for all 𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑠 (under certain

weak conditions), which is substantially stronger (and more challenging to prove) than a

single lower bounds demonstrated for specific values of 𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑠.

Theorem 7.4. Let 𝑏 > 0 be an arbitrary constant. For any 𝑇 ≥ 1, 𝑑 ≥ 0,𝐾 ≥ 2(𝑑+ 1), 𝑛 ≥

𝐾(𝑑 + 1) and 𝐵 such that 𝐵min/𝑇 ≥ 𝑏, there exist 𝑃,𝐴, such that for the BNRM problem

𝒫 = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴), for any switching budget 𝑠 ≥ 0 and any 𝜑 ∈ Φ[𝑠],

𝑅𝜑(𝑇 ) ≥ 𝑅𝜑𝑠 (𝑇 ) ≥
(︂
min{𝑐𝑏, 𝑐′} · (𝑑+ 1)−3𝐾

− 3
2
− 1

2−2−𝜈(𝑠,𝑑) (log 𝑇 )−
5
2

)︂
· 𝑇

1

2−2−𝜈(𝑠,𝑑) ,

where 𝜈(𝑠, 𝑑) =
⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
, and 𝑐, 𝑐′ > 0 are some absolute constants.

The proof of Theorem 7.4 is non-trivial. We outline the proof idea below. The complete

proof can be found in the full version of our paper (Simchi-Levi et al. 2019).

Proof Idea. We construct a BNRM problem 𝒫 as follows. Let 𝑏 = 𝐵/𝑇 (i.e., 𝑏1 =

𝐵1/𝑇, . . . , 𝑏𝑑 = 𝐵𝑑/𝑇 ). Let there be 𝑛 ≥ 𝐾(𝑑 + 1) products. Let the 𝑑 × 𝑛 consumption

matrix 𝐴 be

2 ·
[︀
0𝑑×1 diag(𝑏1, . . . , 𝑏𝑑) 0𝑑×1 diag(𝑏1, . . . , 𝑏𝑑) · · · 0𝑑×1 diag(𝑏1, . . . , 𝑏𝑑)⏟  ⏞  

𝐾 times

0𝑑×(𝑛−𝐾(𝑑+1))

]︀
,

where diag(𝑏1, . . . , 𝑏𝑑) stands for the 𝑑 × 𝑑 diagonal matrix whose diagonal entries are

𝑏1, . . . , 𝑏𝑑. For any 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐾], let the price be

𝑝𝑗,𝑘 =

⎧⎪⎨⎪⎩
1, if 𝑗 = (𝑘 − 1)(𝑑+ 1) + 1,

0, otherwise.

Based on the above BNRM problem 𝒫 , we will construct different BNRM instances by specifying

different demand distributions 𝑄.

We prove Theorem 7.4 even when we restrict 𝑄 to Bernoulli demand distributions. Recall

that we use 𝑞𝑗,𝑘 = E[𝑄𝑗,𝑘] to stand for the mean value of the distribution𝑄𝑗,𝑘. When restricted

to Bernoulli distributions, such a 𝑞𝑗,𝑘 uniquely describes the distribution of 𝑄𝑗,𝑘. Thus

every 𝑞 ∈ [0, 1]𝑛×𝐾 uniquely determines a BNRM instance ℐ𝑞 := (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴, 𝑠; 𝑞).

Specifically, we parameterize 𝑞 by matrix 𝜇 = (𝜇𝑖,𝑘)𝑖∈[2],𝑘∈[𝐾] ∈ [−1
2 ,

1
2 ]

2×𝐾 , such that for all
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𝑘 ∈ [𝐾] and 𝑗 ∈ [𝑛],

𝑞𝑗,𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 + 𝜇1,𝑘, if 𝑗 = (𝑘 − 1)(𝑑+ 1) + 1,

1
2 − 𝜇2,𝑘, else if 𝑗 = (𝑘 − 1)(𝑑+ 1) + (𝑘 − 1)%(𝑑+ 1) + 1,

1
2 + 𝜇2,𝑘, else if 𝑗 = (𝑘 − 1)(𝑑+ 1) + 𝑘%(𝑑+ 1) + 1,

1
2 , else if 𝑗 ∈ [(𝑘 − 1)(𝑑+ 1) + 1, 𝑘(𝑑+ 1)],

0, else,

where % stands for the modulo operation (which returns the non-negative remainder of a

division). In the lower bound proof, we will assign different values to 𝜇 to construct different

BNRM instances. Below we will use ℐ𝜇 := (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴, 𝑠;𝜇) to stand for a BNRM

instance, which highlights the dependence on 𝜇. Let DLP𝜇 denote the DLP as defined by

(7.1), (7.2), (7.3), (7.4), on instance ℐ𝜇:

JDLP𝜇 = max
𝑥

∑︁
𝑘∈[𝐾]

(︂
1

2
+ 𝜇1,𝑘

)︂
𝑥𝑘

s.t. 𝑏𝑖

⎛⎝1

2

∑︁
𝑘∈[𝐾]

𝑥𝑘 + 𝜇2,𝑘
∑︁

𝑘′:𝑘′%(𝑑+1)=𝑖

𝑥𝑘′ − 𝜇2,𝑘
∑︁

𝑘′′:𝑘′′%(𝑑+1)=𝑖+1

𝑥𝑘′′

⎞⎠ ≤ 𝑏𝑖𝑇

2
, ∀ 𝑖 ∈ [𝑑],

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇,

𝑥𝑘 ≥ 0, ∀𝑘 ∈ [𝐾].

In our analysis, we conduct a thorough analysis of the above type of linear programs, and

show that for a family of properly structured 𝜇, DLP𝜇 is always non-degenerate — this

means that Λ, the least number of non-zero components of any optimal solution to DLP𝜇, is

equal to 𝑑+ 1. By Theorem 7.1 (which is proved via a clean event analysis of the demand

realization process in the distributionally-known setting), for any such BNRM instance ℐ𝜇,

even for a clairvoyant policy that knows 𝜇 in advance, it needs to make at least 𝑑 switches to

guarantee a sublinear regret (note that 𝜇 is treated as a fixed quantity independent of 𝑇 in

this statement); in our analysis, we strengthen the above statement and show that even when

𝜇 is not fixed and can depend on 𝑇 , any policy still needs to make at least 𝑑 switch to avoid

a large (non-asymptotic) revenue loss. Moreover, since a learning policy 𝜑 does not know the

value of 𝜇 in advance, it has to make much more switches than the clairvoyant policy to learn

𝜇. In the rest of the proof, we take into account the effect of unknown demand distributions
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and show a lower bound for both 𝑅𝜑(𝑇 ) and 𝑅𝜑𝑠 (𝑇 ), under any switching budget 𝑠 — the

basic idea is that any limited-switch learning policy faces some fundamental difficulties in

distinguishing similar but different 𝜇, which necessarily leads to certain worst-case revenue

loss, and we can measure it using certain linear programs.

Specifically, for any 𝑠-switch learning policy 𝜑 ∈ Φ[𝑠], we construct a class of BNRM

instances by adversarially choosing a class of 𝜇, such that policy 𝜑 must incur an expected

revenue loss of ̃︀Ω(︂𝑇 1

2−2−𝜈(𝑠,𝑑)

)︂
under one of the constructed instances. A challenge here is

that 𝜑 is an arbitrary and abstract 𝑠-switch policy — we need more information about 𝜑 to

design 𝜇. We address this challenge by developing an enhanced version of the “tracking the

cover time” argument. The “tracking the cover time” argument was originally proposed in

Simchi-Levi and Xu (2023) to establish regret lower bounds for MAB with limited switches

(which can be viewed as a special case of our problem when 𝑑 = 0) by tracking carefully-

defined stopping times and constructing hard MAB instances based on (algorithm-dependent)

realizations of the stopping times. Since we are proving a larger regret lower bound here

(our lower bound gradually increases as 𝑑 increases), we have to utilize the structure of

resource constraints and incorporate their “complexity” into the construction of hard instances

which lead to our lower bound. We thus develop novel techniques beyond Simchi-Levi and

Xu (2023), i.e., incorporating the complexity of resource constraints into the “tracking the

cover time” argument (which requires us to strategically design 𝜇 and utilize several LP

benchmarks); see the complete proof in the full version of our paper (Simchi-Levi et al. 2019).

7.4.3 Remarkable Implications

𝑂(log log 𝑇 ) Switches are Sufficient for Optimal BNRM and BwK

Plugging 𝑠 = (𝐾 − 1)⌈log2 log2 𝑇 ⌉ + 𝑑 + 1 into Algorithm 7.2 (resp. Algorithm F.1) and

Theorem 7.3 (resp. Theorem F.1), we obtain an algorithm that achieves the optimal ̃︀Θ(
√
𝑇 )

regret for the classical BNRM (resp.BwK) problem, while using only 𝑂(log log 𝑇 ) switching

budget. Note that Ω(log log 𝑇 ) switching budget is necessary for obtaining the ̃︀Θ(
√
𝑇 ) regret

even in the simpler MAB setting, see Simchi-Levi and Xu (2023). Our algorithm and result

thus show that a total number of Θ(log log 𝑇 ) switching budget is necessary and sufficient to

achieve the optimal ̃︀Θ(
√
𝑇 ) regret for the classical BNRM (resp. BwK) problem. Compared

with existing optimal algorithms that require Ω(𝑇 ) switching cost in the worst case, our
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algorithm achieves a doubly exponential improvement on the switching cost.

Regret Impact of Resource Constraints

Combining Theorem 7.3 and Theorem 7.4, we can see that for any switching budget 𝑠, the

optimal regret of the BNRM-LS problem is in the order of ̃︀Θ(︃𝑇 1

2−2
−⌊ 𝑠−𝑑−1

𝐾−1 ⌋
)︃

. This suggests

that given a fixed switching budget 𝑠, an increase in the number of resources 𝑑 may result in

an increase in the order of the optimal regret. To the best our knowledge, this is the first

result of such kind that explicitly characterizes how the dimension of the resource constraints

makes a stochastic online learning problem “harder”. In other words, an increase in the

number of resources increases the required number of switches to achieve a given regret rate.

Note that both the classical MAB problem and the BNRM problem studied in the literature

essentially exhibit the same optimal regret rate in the order of ̃︀Θ(
√
𝑇 ), where the regret rate

is not affected by the dimension of the resource constraints. Our results indicate a separation

of the optimal regret rates associated with the dimension of the resource constraints, due to

the existence of a switching constraint.

Managerial Implications

There are two managerial implications regarding our algorithm. First, the length of each

epoch is increasing, i.e., more of the price changes occur early in the selling season. This

implication suggests managers should be more cautious in the earlier phase of the selling

season. Informally, this is because in the earlier epochs, we do not want to incur huge regret

by sticking to each price vector for too long. Later on for each epoch, we have relatively

better understanding of the underlying demand distributions, so we can be more confident

in choosing some effective price vectors for a longer duration of time. Second, our algorithm

crucially relies on constructing upper and lower confidence bounds for both revenue and cost

of each price vector. We then use such confidence bounds to solve some linear programs,

which would suggest which prices to use. Practitioners should keep in mind that for an

inventory-constrained problem, it is not necessarily the ratio between revenue and cost, but

both revenue and cost that matter.

204



7.5 Concluding Remarks

In this paper we have studied the blind network revenue management problem under the

constraint that the decision maker cannot change the price vector for more than a certain

number of times. We characterize the best-achievable regret as a function of the switching

budget, and provide optimal and efficient algorithms that are relevant to practice. Real-world

decision makers can benefit from our study and achieve better performance when they

simultaneously face demand uncertainty, resource constraints, and switching constraints.

We conclude this paper by acknowledging two limitations of our paper which could lead

to future research questions. First, if we compare Theorem 7.3 and Theorem 7.4, there is

a gap in the dependence on 𝐾 (the number of price vectors). It is an interesting future

research question to close this gap. In the “MAB under limited switches” setting, Simchi-Levi

and Xu (2023) introduced various techniques to obtain regret bounds that are tight in 𝐾.

However, those techniques do not directly extend to our setting, due to the existence of

resource constraints.

Second, we note that in Theorem 7.4 the choices of the parameters are not fully general.

We allow for general choices of 𝐵 (the initial inventory) and 𝑛 (the number of products),

but we cannot allow for general choices of 𝑃 (the price vectors) and 𝐴 (the consumption

structure). It is an interesting future research question to discuss how general choices of 𝑃

and 𝐴 would impact the hardness of the BNRM problem.
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Chapter 8

Conclusion and Future Plan

This thesis aims to advance the theory and practice of data-driven dynamic decision making,

by synergizing ideas from machine learning and operations research. Throughout this thesis,

we focus on three aspects: (i) developing new, practical algorithms that systematically

empower data-driven dynamic decision making, (ii) identifying and utilizing key problem

structures that lead to statistical and computational efficiency, and (iii) contributing to a

general understanding of the statistical and computational complexity of data-driven dynamic

decision making, which parallels our understanding of supervised machine learning and also

accounts for the crucial roles of model structures and constraints for decision making.

Moving forward, there are many interesting future research directions. This chapter

highlights three of them, which involve both methodological development and practical

implementation.

Towards more tractable RL by exploiting model structures via operations re-

search At the end of Section 1.1, we emphasized the importance of problem structures in

RL. Operations research has long-established expertise of leveraging fine-grained problem

structures to optimize decisions, and has provided us with sophisticated understanding of

various complex, stochastic models (e.g., inventory models, queueing networks, transportation

systems). Turning our focus to RL (where model parameters are unknown), since generic,

unstructured RL can be fundamentally harder than supervised learning (c.f. Chapter 4),

some natural questions arise: Can we utilize the expertise of OR to identify broad classes

of structured MDPs, whose associated RL tasks can be reduced to supervised learning or

similarly tractable tasks? Can we develop a systematic understanding of the roles of different
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model structures in determining the statistical and computational complexity of RL?

Bridging online decision making and offline causal inference A crucial challenge of

(offline) causal inference, beyond (offline) supervised learning, is the requirement of predicting

counterfactual outcomes for different treatments/interventions. A natural extension of the

“online decision making with offline data” framework that we developed in Chapter 5 is

“online decision making with observational data,” where the offline data are observational in

the sense that the collection of such data is not well-controlled and there may be unobserved

confounding that makes discovering the ground truth more challenging. Given the close

relationship between offline causal inference and offline RL, the aspiration to bridge online

decision making and offline causal inference can also be expressed as bridging online RL and

offline RL. There are many interesting questions: Can we utilize the pre-existence of (possibly

multi-source and confounded) offline observational data to improve online decision making?

In a reverse direction, can we use a few online experiments/interactions to help with difficult

offline causal inference/offline RL tasks?

Broader impact of data-driven decision making in our society To build impactful

data-driven decision-making systems that can operate in the long run, the societal conse-

quences of data-driven decision making cannot be overlooked. This motivates the study of

the societal aspects of data-driven decision making. Some interesting topics may lie in the

interfaces between machine learning and fairness, sustainability, economics, social sciences,

etc. A promising direction is to combine data-driven decision making with mechanism design,

with a long-term goal of developing better data-driven decision-making systems that can

significantly benefit our society.
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Appendix A

Supplementary Material for Chapter 2

A.1 Proof of Theorems 2.1 and 2.2

Since Theorem 2.2 is almost a strict generalization of Theorem 2.1 (and Corollary 2.1), we prove
them together by conducting a unified analysis. To ensure that the notations are compatible, in
some lemmas we will state our results under two different setups, each of which provides consistent
definitions of ( ̂︀𝑓𝑚)𝑚∈N and (𝛾𝑚)𝑚∈N and makes consistent assumptions.

Setup A.1. We consider the learning model in §2.2, where |ℱ| <∞, 𝑓⋆ ∈ ℱ , and all rewards are
[0, 1]-bounded. In this setup, ( ̂︀𝑓𝑚)𝑚∈N and (𝛾𝑚)𝑚∈N are given by Algorithm 2.1 with 𝑐 = 1/30.

Setup A.2. We consider the learning model in §2.3 and do not make any assumption on ℱ , 𝑓⋆, or
the reward distribution. We only assume Assumption 2.2 and condition (2.5) for now (as a result,
we allow 𝑓⋆ /∈ ℱ , and allow rewards to be unbounded/heavy-tailed). In this setup, ( ̂︀𝑓𝑚)𝑚∈N and
(𝛾𝑚)𝑚∈N are given by Algorithm 2.2 with 𝑐 = 1/2. Moreover, we assume that 𝜏𝑚 ≥ 2𝑚 for 𝑚 ∈ N;
for such epoch schedules, it is essentially without loss of generality to assume that (𝛾𝑚)𝑚∈N are
non-decreasing.

As we can see, Setup A.2 involves a much more general learning model. However, Setup A.1
allows ( ̂︀𝑓𝑚)𝑚∈N to be generated with data reuse (i.e., one can feed the data collected in all previous
epochs into the offline regression oracle) and does not require the epoch length to grow geometrically.
One can understand Setup A.1 as an example of utilizing martingale concentration results (Lemma
A.1) obtained under additional model assumptions to show some additional properties.

Before we start our proof of Theorem 2.1 (under Setup A.1) and Theorem 2.2 (under Setup A.2),
we make an important remark regarding our presentation. In the main part of this section (Appendix
A.1.1 to Appendix A.1.6), we give a detailed proof (of both theorems) which closely follows the proof
sketch in Section 2.4, under the condition that |𝒳 | < ∞. Such a condition enables us to give an
insightful proof without the need to worry about measurability issues. However, when 𝒳 is infinite or
(more generally) uncountable, one has to deal with the measurability issues arising from the presence
of uncountable probability spaces. While rigorous discussions of measurability issues are usually
omitted in the contextual bandit literature (for brevity or for simplicity), we feel that a discussion
of such issues is important here due to our extensive use of the universal policy space 𝒜𝒳 , which
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would easily contain non-measurable policies when 𝒳 is uncountable. Therefore, in the last part of
this section (Appendix A.1.7), we consider general uncountable 𝒳 and present a simple fix to the
associated measurability issues, showing that our results are indeed general.

A.1.1 Definitions

For notational convenience, we make some definitions. Some of the definitions have appeared in the
main article. For all 𝑡 = 1, . . . , 𝑇 , we let ϒ𝑡 := 𝜎((𝑥1, 𝑟1, 𝑎1), · · · , (𝑥𝑡, 𝑟𝑡, 𝑎𝑡)) denote the sigma-algebra
generated by the history up to round 𝑡 (inclusive), and let 𝑚(𝑡) := min{𝑚 ∈ N : 𝑡 ≤ 𝜏𝑚} denote
the epoch that round 𝑡 belongs to. Let Ψ := 𝒜𝒳 be the universal policy space (which is defined via
taking the Cartesian product). For any action selection kernel 𝑝 and any policy 𝜋 ∈ Ψ, define

𝑉 (𝑝, 𝜋) := E𝑥∼𝒟

[︂
1

𝑝(𝜋(𝑥) | 𝑥)

]︂
,

𝒱𝑡(𝜋) := max
1≤𝑚≤𝑚(𝑡)−1

{𝑉 (𝑝𝑚, 𝜋)}.

For any 𝜋 ∈ Ψ, define
ℛ(𝜋) := E𝑥∼𝒟 [𝑓⋆(𝑥, 𝜋(𝑥))] ,

̂︀ℛ𝑡(𝜋) := E𝑥∼𝒟

[︁ ̂︀𝑓𝑚(𝑡)(𝑥, 𝜋(𝑥))
]︁
,

Reg(𝜋) := ℛ(𝜋𝑓⋆)−ℛ(𝜋),

̂︂Reg𝑡(𝜋) := ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚(𝑡)
)− ̂︀ℛ𝑡(𝜋).

A.1.2 High-probability Events

Lemma A.1 and Lemma A.2 present some basic concentration results.

Lemma A.1. Consider Setup A.1. For all 𝑚 ≥ 2, with probability at least 1− 𝛿/(2𝑚2), we have:

𝜏𝑚−1∑︁
𝑡=1

E𝑥𝑡,𝑎𝑡
[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | ϒ𝑡−1

]︁
=

𝜏𝑚−1∑︁
𝑡=1

E𝑥𝑡,𝑟𝑡,𝑎𝑡
[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))

2 − (𝑓⋆(𝑥𝑡, 𝑎𝑡)− 𝑟𝑡(𝑎𝑡))
2 | ϒ𝑡−1

]︁
≤ 100 log

(︂
2|ℱ|𝑚2 log2(𝜏𝑚−1)

𝛿

)︂
≤ 225 log

(︂
|ℱ|𝑚 log(𝜏𝑚−1)

𝛿

)︂
=

𝐾

4𝛾2𝑚
.

Therefore (by a union bound), the following event Γ1 holds with probability at least 1− 𝛿/2:

Γ1 :=

{︃
∀𝑚 ≥ 2,

1

𝜏𝑚−1

𝜏𝑚−1∑︁
𝑡=1

E𝑥𝑡,𝑎𝑡
[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | ϒ𝑡−1

]︁
≤ 𝐾

4𝛾2𝑚

}︃
.

Lemma A.1 follows from Lemma 4.1 (see equation (4.1) therein) and Lemma 4.2 in Agarwal
et al. (2012), and we omit the proof here (compared to their proof, we just slightly change the way of
taking union bounds, and plug in the definition of 𝛾𝑚).
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Lemma A.2. Consider Setup A.2. For all 𝑚 ≥ 2, with probability at least 1− 𝛿/(2𝑚2), we have:

∀𝑡 ∈ {𝜏𝑚−2 + 1, · · · , 𝜏𝑚−1},

E𝑥𝑡,𝑎𝑡
[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | ϒ𝑡−1

]︁
≤ ℰℱ,𝛿/(2𝑚2)(𝜏𝑚−1 − 𝜏𝑚−2) =

𝐾

4𝛾2𝑚
.

Therefore (by a union bound), the following event Γ2 holds with probability at least 1− 𝛿/2:

Γ2 :=

{︂
∀𝑚 ≥ 2 and 𝑡 in epoch 𝑚, E𝑥𝑡,𝑎𝑡

[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | ϒ𝑡−1

]︁
≤ 𝐾

4𝛾2𝑚

}︂
.

Proof of Lemma A.2. Note that Algorithm 2.2 always sends (𝑥𝑡, 𝑎𝑡; 𝑟𝑡(𝑎𝑡))-type data to OffRegℱ ,
where (𝑥𝑡, 𝑟𝑡) ∼ 𝒟 and 𝑎𝑡 ∼ 𝑝𝑚(𝑡)−1(· | 𝑥𝑡). By Assumption 2.2 and the specification of Algorithm
2.2, we have ∀𝑡 ∈ {𝜏𝑚−2 + 1, · · · , 𝜏𝑚−1},

E𝑥𝑡,𝑎𝑡
[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | ϒ𝑡−1

]︁
= E𝑥𝑡∼𝒟,𝑎𝑡∼𝑝𝑚−1(·|𝑥𝑡)

[︁
( ̂︀𝑓𝑚(𝑥𝑡, 𝑎𝑡)− 𝑓⋆(𝑥𝑡, 𝑎𝑡))

2 | 𝑝𝑚−1

]︁
≤ ℰℱ,𝛿/(2𝑚2)(𝜏𝑚−1 − 𝜏𝑚−2) = 𝐾/(4𝛾2𝑚),

where the inequality simply follows from Assumption 2.2. □

A.1.3 Per-Epoch Properties of the Algorithm

We start to utilize the specific properties of our algorithm’s action selection kernels to prove our
regret bound. We start with some per-epoch properties that always hold for our algorithm regardless
of its performance in other epochs. All results in this part hold for both Setup A.1 and Setup A.2.

As we mentioned in the main article, a starting point of our proof is to translate the action
selection kernel 𝑝𝑚(· | ·) into an equivalent distribution over policies 𝑄𝑚(·). Lemma A.3 provides a
justification of such translation by showing the existence of an equivalent 𝑄𝑚 for every 𝑝𝑚(· | ·).

Lemma A.3. Fix any epoch 𝑚 ∈ N. The action selection scheme 𝑝𝑚(· | ·) is a valid probability
kernel ℬ(𝒜)×𝒳 → [0, 1]. There exists a probability measure 𝑄𝑚 on Ψ such that

∀𝑎 ∈ 𝒜,∀𝑥 ∈ 𝒳 , 𝑝𝑚(𝑎 | 𝑥) =
∑︁
𝜋∈Ψ

I{𝜋(𝑥) = 𝑎}𝑄𝑚(𝜋).

Proof of Lemma A.3. This proof is straightforward when |𝒳 | < ∞. Since (𝒜,ℬ(𝒜), 𝑝𝑚(· | 𝑥)) is
a probability space for each 𝑥 ∈ 𝒳 , by the existence and uniqueness of finite product probability
measures, there exists a unique probability measure 𝑄𝑚 :=

∏︀
𝑥∈𝒳 𝑝𝑚(· | 𝑥) on (Ψ, (ℬ(𝒜))𝒳 ) =

(𝒜𝒳 ,ℬ(𝒜)𝒳 ) with the property that

𝑄𝑚

(︃∏︁
𝑥∈𝒳

𝐸𝑥

)︃
=
∏︁
𝑥∈𝒳

𝑝𝑚(𝐸𝑥 | 𝑥)

whenever one has 𝐸𝑥 ∈ ℬ(𝒜) for all 𝑥 ∈ 𝒳 . For any 𝑎0 ∈ 𝒜, 𝑥0 ∈ 𝒳 , by letting 𝐸𝑥0
= {𝑎0} and

𝐸𝑥 = 𝒜 for all 𝑥 ̸= 𝑥0, we have 𝑝𝑚(𝑎0 | 𝑥0) = 𝑄𝑚({𝜋 : 𝜋(𝑥0) = 𝑎0}) =
∑︀
𝜋∈Ψ I{𝜋(𝑥0) = 𝑎0}𝑄𝑚(𝜋).

Remark. In fact, Lemma A.3 generally holds for an arbitrary (possibly uncountable) 𝒳 , if the
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equation 𝑝𝑚(𝑎 | 𝑥) =
∑︀
𝜋∈Ψ I{𝜋(𝑥) = 𝑎}𝑄𝑚(𝜋) in the statement is replaced by its more general form

𝑝𝑚(𝑎 | 𝑥) = E𝜋∼𝑄𝑚 [I{𝜋(𝑥) = 𝑎}]. Such a result can be easily obtained by applying the Kolmogorov
extension theorem (see, e.g., Theorem 2.4.4 in Tao 2011). □

We call the 𝑄𝑚 determined in the proof of Lemma A.3 the “equivalent randomized policy”
induced by 𝑝𝑚(· | ·). Lemma A.4 states a key property of 𝑄𝑚: the expected instantaneous regret
incurred by 𝑝𝑚(· | ·) is equal to the implicit regret of the randomized policy 𝑄𝑚. Thus, to analyze
our algorithm’s expected regret, we only need to analyze the induced randomized policies’ implicit
regret.

Lemma A.4. Fix any epoch 𝑚 ∈ N, for any round 𝑡 in epoch 𝑚, we have

E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | ϒ𝑡−1] =
∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)Reg(𝜋).

Proof of Lemma A.4. By Lemma A.3, we have

E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | ϒ𝑡−1] = E𝑥𝑡,𝑎𝑡 [𝑓⋆(𝑥𝑡, 𝜋𝑓⋆(𝑥𝑡))− 𝑓⋆(𝑥𝑡, 𝑎𝑡) | ϒ𝑡−1]

= E𝑥∼𝒟,𝑎∼𝑝𝑚(·|𝑥) [𝑓
⋆(𝑥, 𝜋𝑓⋆(𝑥))− 𝑓⋆(𝑥, 𝑎)]

= E𝑥

[︃∑︁
𝑎∈𝒜

𝑝𝑚(𝑎 | 𝑥) (𝑓⋆(𝑥, 𝜋𝑓⋆(𝑥))− 𝑓⋆(𝑥, 𝑎))

]︃

= E𝑥

[︃∑︁
𝑎∈𝒜

∑︁
𝜋∈Ψ

I{𝜋(𝑥) = 𝑎}𝑄𝑚(𝜋) (𝑓⋆(𝑥, 𝜋𝑓⋆(𝑥))− 𝑓⋆(𝑥, 𝑎))

]︃

= E𝑥

[︃∑︁
𝜋∈Ψ

𝑄𝑚(𝜋) (𝑓⋆(𝑥, 𝜋𝑓⋆(𝑥))− 𝑓⋆(𝑥, 𝜋(𝑥)))

]︃
=
∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)E𝑥 [𝑓⋆(𝑥, 𝜋𝑓⋆(𝑥))− 𝑓⋆(𝑥, 𝜋(𝑥))]

=
∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)Reg(𝜋).

□

Lemma A.5 states another key property of 𝑄𝑚. It says that 𝑄𝑚 controls its predicted implicit
regret (relative to the greedy policy based on ̂︀𝑓𝑚) within 𝐾/𝛾𝑚. Note that the controlled error 𝐾/𝛾𝑚
is gradually shrinking as the algorithm finishes more epochs.

Lemma A.5. Fix any epoch 𝑚 ∈ N, for any round 𝑡 in epoch 𝑚, we have

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)̂︂Reg𝑡(𝜋) ≤ 𝐾

𝛾𝑚
.
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Proof of Lemma A.5. We have

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)̂︂Reg𝑡(𝜋) = ∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)E𝑥∼𝒟

[︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))
]︁

= E𝑥∼𝒟

[︃∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)
(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))

)︁]︃

= E𝑥∼𝒟

[︃∑︁
𝑎∈𝒜

∑︁
𝜋∈Ψ

I{𝜋(𝑥) = 𝑎}𝑄𝑚(𝜋)
(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝑎)

)︁]︃

= E𝑥∼𝒟

[︃∑︁
𝑎∈𝒜

𝑝𝑚(𝑎 | 𝑥)
(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝑎)

)︁]︃
.

Given any context 𝑥 ∈ 𝒳 ,

∑︁
𝑎∈𝒜

𝑝𝑚(𝑎 | 𝑥)
(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝑎)

)︁
=

∑︁
𝑎̸=̂︀𝑎𝑚(𝑥)

̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝑎)

𝐾 + 𝛾𝑚

(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝑎)
)︁

≤ 𝐾 − 1

𝛾𝑚
.

Lemma A.5 follows immediately. □

Lemma A.6 states another key per-epoch property of our algorithm. For any deterministic
policy 𝜋 ∈ Ψ, the quantity 𝑉 (𝑝𝑚, 𝜋) = E𝑥∼𝒟

[︁
1

𝑝𝑚(𝜋(𝑥)|𝑥)

]︁
is the expected inverse probability that

the algorithm’s decision generated by 𝑝𝑚 (i.e., the decision generated by the randomized policy
𝑄𝑚) is the same as the decision generated by the deterministic policy 𝜋, over the randomization of
context 𝑥. This can be intuitively understood as a measure of the “decisional divergence” between
the randomized policy 𝑄𝑚 and the deterministic policy 𝜋. Lemma A.6 states that this divergence
can be bounded by the predicted implicit regret of policy 𝜋.

Lemma A.6. Fix any epoch 𝑚 ∈ N, for any round 𝑡 in epoch 𝑚, for any policy 𝜋 ∈ Ψ,

𝑉 (𝑝𝑚, 𝜋) ≤ 𝐾 + 𝛾𝑚̂︂Reg𝑡(𝜋).
Proof of Lemma A.6. For any policy 𝜋 ∈ Ψ, given any context 𝑥 ∈ 𝒳 ,

1

𝑝𝑚(𝜋(𝑥) | 𝑥)

⎧⎨⎩= 𝐾 + 𝛾𝑚

(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))
)︁
, if 𝜋(𝑥) ̸= ̂︀𝑎𝑚(𝑥);

≤ 1
1/𝐾 = 𝐾 = 𝐾 + 𝛾𝑚

(︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))
)︁
, if 𝜋(𝑥) = ̂︀𝑎𝑚(𝑥).

Thus

𝑉 (𝑝𝑚, 𝜋) = E𝑥∼𝒟

[︂
1

𝑝𝑚(𝜋(𝑥) | 𝑥)

]︂
≤ 𝐾 + 𝛾𝑚 E𝑥∼𝒟

[︁ ̂︀𝑓𝑚(𝑥,̂︀𝑎𝑚(𝑥))− ̂︀𝑓𝑚(𝑥, 𝜋(𝑥))
]︁

= 𝐾 + 𝛾𝑚̂︂Reg𝑡(𝜋)
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for every round 𝑡 in epoch 𝑚. □

A.1.4 Bounding the Prediction Error of Implicit Rewards

Lemma A.7 relates the prediction error of the implicit reward of any policy 𝜋 at round 𝑡 to the value
of 𝒱𝑡(𝜋). Recall that Γ1 and Γ2 are defined in Appendix A.1.2.

Lemma A.7. Assume Γ1 (resp. Γ2) holds under Setup A.1 (resp., Setup A.2). For any round
𝑡 > 𝜏1, for any 𝜋 ∈ Ψ,

| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)| ≤
√︀
𝒱𝑡(𝜋)

√
𝐾

2𝛾𝑚(𝑡)
.

Proof of Lemma A.7. Fix any policy 𝜋 ∈ Ψ, and any round 𝑡 > 𝜏1. By the definitions of ̂︀ℛ𝑡(𝜋) and
ℛ(𝜋), we have ̂︀ℛ𝑡(𝜋)−ℛ(𝜋) = E𝑥∼𝒟

[︁ ̂︀𝑓𝑚(𝑡)(𝑥, 𝜋(𝑥))− 𝑓⋆(𝑥, 𝜋(𝑥))
]︁
.

Given a context 𝑥, define
Δ𝑥 = ̂︀𝑓𝑚(𝑡)(𝑥, 𝜋(𝑥))− 𝑓⋆(𝑥, 𝜋(𝑥)),

then ̂︀ℛ𝑡(𝜋)−ℛ(𝜋) = E𝑥∼𝒟[Δ𝑥]. For all 𝑠 = 1, 2, . . . , 𝜏𝑚(𝑡)−1, we have

E𝑎𝑠|𝑥𝑠

[︂(︁ ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠)
)︁2

| ϒ𝑠−1

]︂
=
∑︁
𝑎∈𝒜

𝑝𝑚(𝑠)(𝑎 | 𝑥𝑠)
(︁ ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎)− 𝑓⋆(𝑥𝑠, 𝑎)

)︁2
≥ 𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠)

(︁ ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝜋(𝑥𝑠))− 𝑓⋆(𝑥𝑠, 𝜋(𝑥𝑠))
)︁2

= 𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠) (Δ𝑥𝑠)
2
. (A.1)

Thus for both 𝑠0 = 1 and 𝑠0 = 𝜏𝑚(𝑡)−2 + 1, we have

𝒱𝑡(𝜋)
𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

E𝑥𝑠,𝑎𝑠
[︁
( ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠))

2 | ϒ𝑠−1

]︁
(i)

≥
𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

𝑉 (𝑝𝑚(𝑠), 𝜋)E𝑥𝑠,𝑎𝑠
[︁
( ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠))

2 | ϒ𝑠−1

]︁

=

𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

E𝑥𝑠
[︂

1

𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠)

]︂
E𝑥𝑠 E𝑎𝑠|𝑥𝑠

[︂(︁ ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠)
)︁2

| ϒ𝑠−1

]︂
(ii)

≥
𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

(︃
E𝑥𝑠

[︃√︃
1

𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠)
E𝑎𝑠|𝑥𝑠

[︂(︁ ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠)
)︁2

| ϒ𝑠−1

]︂]︃)︃2

(iii)

≥
𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

(︃
E𝑥𝑠

[︃√︃
1

𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠)
𝑝𝑚(𝑠)(𝜋(𝑥𝑠) | 𝑥𝑠) (Δ𝑥𝑠)

2

]︃)︃2

=

𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

(E𝑥𝑠 [|Δ𝑥𝑠 |])
2

(iv)

≥
𝜏𝑚(𝑡)−1∑︁
𝑠=𝑠0

| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)|2 = (𝜏𝑚(𝑡)−1 − 𝑠0 + 1)| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)|2,
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where (i) follows from the definition of 𝒱𝑡(𝜋), (ii) follows from the Cauchy-Schwarz inequality, (iii)
follows from (A.1), and (iv) follows from the convexity of the ℓ1 norm.

If we are in Setup A.1 and Γ1 holds, then by letting 𝑠0 = 1, we have

| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)| ≤
√︀
𝒱𝑡(𝜋)

⎯⎸⎸⎷∑︀𝜏𝑚(𝑡)−1

𝑠=1 E𝑥𝑠,𝑎𝑠
[︁
( ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠))2 | ϒ𝑠−1

]︁
𝜏𝑚(𝑡)−1

≤
√︀
𝒱𝑡(𝜋)

√
𝐾

2𝛾𝑚(𝑡)
,

where the last inequality follows from the definition of Γ1. If we are in Setup A.2 and Γ2 holds, then
by letting 𝑠0 = 𝜏𝑚(𝑡)−2 + 1, we have

| ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)| ≤
√︀

𝒱𝑡(𝜋)

⎯⎸⎸⎷∑︀𝜏𝑚(𝑡)−1

𝑠=𝜏𝑚(𝑡)−2+1 E𝑥𝑠,𝑎𝑠
[︁
( ̂︀𝑓𝑚(𝑡)(𝑥𝑠, 𝑎𝑠)− 𝑓⋆(𝑥𝑠, 𝑎𝑠))2 | ϒ𝑠−1

]︁
𝜏𝑚(𝑡)−1 − 𝜏𝑚(𝑡)−2

≤
√︀
𝒱𝑡(𝜋)

√
𝐾

2𝛾𝑚(𝑡)
,

where the last inequality follows from the definition of Γ2. □

A.1.5 Bounding the Prediction Error of Implicit Regret

Lemma A.8 establishes an important relationship between the predicted implicit regret and the true
implicit regret of any policy 𝜋 at round 𝑡. This lemma ensures that the predicted implicit regret of
“good policies” are becoming more and more accurate, while the predicted implicit regret of “bad
policies” do not need to have such property.

Recall that Γ1 and Γ2 are defined in Appendix A.1.2.

Lemma A.8. Assume that Γ1 (resp. Γ2) holds under Setup A.1 (resp. Setup A.2). Let 𝑐0 := 5.15.
For all epochs 𝑚 ∈ N, all rounds 𝑡 in epoch 𝑚, and all policies 𝜋 ∈ Ψ,

Reg(𝜋) ≤ 2̂︂Reg𝑡(𝜋) + 𝑐0𝐾/𝛾𝑚,

̂︂Reg𝑡(𝜋) ≤ 2Reg(𝜋) + 𝑐0𝐾/𝛾𝑚.

Proof of Lemma A.8. We prove Lemma A.8 via induction on 𝑚. We first consider the base case
where 𝑚 = 1 and 1 ≤ 𝑡 ≤ 𝜏1. In this case, since 𝛾1 = 1, we know that ∀𝜋 ∈ Ψ,

Reg(𝜋) ≤ 1 ≤ 𝑐0𝐾/𝛾1, ̂︂Reg𝑡(𝜋) ≤ 1 ≤ 𝑐0𝐾/𝛾1; (under Setup A.1)

Reg(𝜋) ≤
√
𝐾 ≤ 𝑐0𝐾/𝛾1, ̂︂Reg𝑡(𝜋) = 0 ≤ 𝑐0𝐾/𝛾1. (under Setup A.2)

Note that we use condition (2.5) for Setup A.2 here. Thus the claim holds in the base case.

For the inductive step, fix some epoch 𝑚 > 1. We assume that for all epochs 𝑚′ < 𝑚, all rounds
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𝑡′ in epoch 𝑚′, and all 𝜋 ∈ Ψ,

Reg(𝜋) ≤ 2̂︂Reg𝑡′(𝜋) + 𝑐0𝐾/𝛾𝑚′ , (A.2)

̂︂Reg𝑡′(𝜋) ≤ 2Reg(𝜋) + 𝑐0𝐾/𝛾𝑚′ . (A.3)

We first show that for all rounds 𝑡 in epoch 𝑚 and all 𝜋 ∈ Ψ,

Reg(𝜋) ≤ 2̂︂Reg𝑡(𝜋) + 𝑐0𝐾/𝛾𝑚.

We have

Reg(𝜋)− ̂︂Reg𝑡(𝜋) = (ℛ(𝜋𝑓⋆)−ℛ(𝜋))− ( ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚)− ̂︀ℛ𝑡(𝜋))

≤ (ℛ(𝜋𝑓⋆)−ℛ(𝜋))− ( ̂︀ℛ𝑡(𝜋𝑓⋆)− ̂︀ℛ𝑡(𝜋))

≤ | ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)|+ | ̂︀ℛ𝑡(𝜋𝑓⋆)−ℛ(𝜋𝑓⋆)|

≤
√︀
𝒱𝑡(𝜋)

√
𝐾

2𝛾𝑚
+

√︀
𝒱𝑡(𝜋𝑓⋆)

√
𝐾

2𝛾𝑚

≤ 𝒱𝑡(𝜋)
5𝛾𝑚

+
𝒱𝑡(𝜋𝑓⋆)
5𝛾𝑚

+
5𝐾

8𝛾𝑚
(A.4)

where the first inequality is by the optimality of 𝜋 ̂︀𝑓𝑚 for ̂︀ℛ𝑡(·), the second inequality is by the
triangle inequality, the third inequality is by Lemma A.7, and the fourth inequality is by the AM-GM
inequality. By the definitions of 𝒱𝑡(𝜋),𝒱𝑡(𝜋𝑓⋆) and Lemma A.6, there exist epochs 𝑖, 𝑗 < 𝑚 such that

𝒱𝑡(𝜋) = 𝑉 (𝑝𝑖, 𝜋) = E𝑥∼𝒟

[︂
1

𝑝𝑖(𝜋(𝑥) | 𝑥)

]︂
≤ 𝐾 + 𝛾𝑖̂︂Reg𝜏𝑖(𝜋),

𝒱𝑡(𝜋𝑓⋆) = 𝑉 (𝑝𝑗 , 𝜋𝑓⋆) = E𝑥∼𝒟

[︂
1

𝑝𝑗(𝜋𝑓⋆(𝑥) | 𝑥)

]︂
≤ 𝐾 + 𝛾𝑗̂︂Reg𝜏𝑗 (𝜋𝑓⋆).

Combining the above two inequalities with (A.3), we have

𝒱𝑡(𝜋)
5𝛾𝑚

≤
𝐾 + 𝛾𝑖̂︂Reg𝜏𝑖(𝜋)

5𝛾𝑚
≤ 𝐾 + 𝛾𝑖(2Reg(𝜋) + 𝑐0𝐾/𝛾𝑖)

5𝛾𝑚
≤ (1 + 𝑐0)𝐾

5𝛾𝑚
+

2

5
Reg(𝜋), (A.5)

𝒱𝑡(𝜋𝑓⋆)
5𝛾𝑚

≤
𝐾 + 𝛾𝑗̂︂Reg𝜏𝑗 (𝜋𝑓⋆)

5𝛾𝑚
≤ 𝐾 + 𝛾𝑗(2Reg(𝜋𝑓⋆) + 𝑐0𝐾/𝛾𝑗)

5𝛾𝑚
=

(1 + 𝑐0)𝐾

5𝛾𝑚
, (A.6)

where the last inequality in (A.5) follows from 𝛾𝑖 ≤ 𝛾𝑚 and the last inequality in (A.6) follows from
Reg(𝜋𝑓⋆) = 0. Combining (A.4), (A.5) and (A.6), we have

Reg(𝜋) ≤ 5

3
̂︂Reg𝑡(𝜋) + 2𝑐0𝐾

3𝛾𝑚
+

1.71𝐾

𝛾𝑚
≤ 2̂︂Reg𝑡(𝜋) + 𝑐0𝐾

𝛾𝑚
. (A.7)

We then show that for all rounds 𝑡 in epoch 𝑚 and all 𝜋 ∈ Ψ,

̂︂Reg𝑡(𝜋) ≤ 2Reg𝑡(𝜋) + 𝑐0𝐾/𝛾𝑚.
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Similar to (A.4), we have

̂︂Reg𝑡(𝜋)− Reg(𝜋) = ( ̂︀ℛ(𝜋 ̂︀𝑓𝑚)− ̂︀ℛ𝑡(𝜋))− (ℛ(𝜋𝑓⋆)−ℛ(𝜋))

≤ ( ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚)− ̂︀ℛ𝑡(𝜋))− (ℛ(𝜋 ̂︀𝑓𝑚)−ℛ(𝜋))

≤ | ̂︀ℛ𝑡(𝜋)−ℛ(𝜋)|+ | ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚)−ℛ(𝜋 ̂︀𝑓𝑚)|
≤
√︀
𝒱𝑡(𝜋)

√
𝐾

𝛾𝑚
+

√︁
𝒱𝑡(𝜋 ̂︀𝑓𝑚)√𝐾

𝛾𝑚

≤ 𝒱𝑡(𝜋)
5𝛾𝑚

+
𝒱𝑡(𝜋 ̂︀𝑓𝑚)
5𝛾𝑚

+
5𝐾

8𝛾𝑚
. (A.8)

By the definition of 𝒱𝑡(𝜋 ̂︀𝑓𝑚) and Lemma A.6, there exist epoch 𝑙 < 𝑚 such that

𝒱𝑡(𝜋 ̂︀𝑓𝑚) = 𝑉 (𝑝𝑙, 𝜋 ̂︀𝑓𝑚) = E𝑥∼𝒟

[︃
1

𝑝𝑙(𝜋 ̂︀𝑓𝑚 |𝑥)
]︃
≤ 𝐾 + 𝛾𝑙̂︂Reg𝜏𝑙(𝜋 ̂︀𝑓𝑚).

Using (A.3), 𝛾𝑙 ≤ 𝛾𝑚, (A.7) and ̂︂Reg𝑡(𝜋 ̂︀𝑓𝑚) = 0, we have

𝒱𝑡(𝜋 ̂︀𝑓𝑚)
5𝛾𝑚

≤
𝐾 + 𝛾𝑙̂︂Reg𝜏𝑙(𝜋 ̂︀𝑓𝑚)

5𝛾𝑚
≤
𝐾 + 𝛾𝑙(2Reg(𝜋 ̂︀𝑓𝑚) + 𝑐0𝐾/𝛾𝑙)

5𝛾𝑚
≤ (1 + 𝑐0)𝐾

5𝛾𝑚
+

2

5
Reg(𝜋 ̂︀𝑓𝑚)

≤ (1 + 𝑐0)𝐾

5𝛾𝑚
+

2

5

(︂̂︂Reg𝑡(𝜋 ̂︀𝑓𝑚) + 𝑐0𝐾

𝛾𝑚

)︂
=

(1 + 3𝑐0)𝐾

5𝛾𝑚
. (A.9)

Combining (A.5), (A.8) and (A.9), we have

̂︂Reg𝑡(𝜋) ≤ 7

5
Reg(𝜋) +

4𝑐0𝐾

5𝛾𝑚
+

1.03𝐾

𝛾𝑚
≤ 2Reg(𝜋) +

𝑐0𝐾

𝛾𝑚
.

Thus we complete the inductive step, and the claim proves to be true for all 𝑚 ∈ N. □

A.1.6 Bounding the True Regret

In this part, we put everything together and finally prove Lemma A.10, which holds for both Setups
A.1 and A.2, and simultaneously implies Theorem 2.1, Corollary 2.1, and Theorem 2.2. Moreover,
Lemma A.10 implies that bounded rewards are not required if we only want to bound the expected
regret.

Lemma A.9. Recall that Γ1 and Γ2 are defined in Appendix A.1.2. Assume that Γ1 (resp. Γ2) holds
under Setup A.1 (resp. Setup A.2). For every epoch 𝑚 ∈ N,

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)Reg(𝜋) ≤ 7.15𝐾/𝛾𝑚.
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Proof of Lemma A.9. Fix any epoch 𝑚 ∈ N. Since 𝜏𝑚−1 + 1 belongs to epoch 𝑚, we have

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)Reg(𝜋) ≤
∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)

(︂
2̂︂Reg𝜏𝑚−1+1(𝜋) +

𝑐0𝐾

𝛾𝑚

)︂
= 2

∑︁
𝜋∈Ψ

𝑄𝑚(𝜋)̂︂Reg𝜏𝑚−1+1(𝜋) +
𝑐0𝐾

𝛾𝑚

≤ (2 + 𝑐0)𝐾

𝛾𝑚
,

where the first inequality follows from Lemma A.8, and the second inequality follows from Lemma
A.5. We then take in 𝑐0 = 5.15. □

Lemma A.10. For any 𝑇 ∈ N, the expected regret of our algorithm after 𝑇 rounds is at most∑︀𝑇
𝑡=𝜏1+1 7.15𝐾/𝛾𝑚(𝑡) +

√
𝐾𝜏1 + 𝑇𝛿/2. Furthermore, if all rewards are [0, 1]-bounded, then with

probability at least 1− 𝛿, the regret after 𝑇 rounds is at most

𝑇∑︁
𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) + 𝜏1 +
√︀
8𝑇 log(2/𝛿).

Proof of Lemma A.10. Fix 𝑇 ∈ N. Since Γ1 (resp. Γ2) holds under Setup A.1 (resp. Setup A.2) with
probability at least 1− 𝛿/2, by Lemma A.4 and Lemma A.9, we can bound the expected regret:

E

[︃
𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡))

]︃
= E

[︃
𝑇∑︁
𝑡=1

E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | ϒ𝑡−1]

]︃

= E

[︃
𝑇∑︁
𝑡=1

∑︁
𝜋∈Ψ

𝑄𝑚(𝑡)(𝜋)Reg(𝜋)

]︃
≤

𝑇∑︁
𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) +
√
𝐾𝜏1 + 𝑇𝛿/2.

We now assume 𝑟𝑡 ∈ [0, 1]𝐾 and turn to the high-probability bound. For each round 𝑡 ∈ {1, . . . , 𝑇},
define 𝑀𝑡 := 𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡)−

∑︀
𝜋∈Ψ𝑄𝑚(𝑡)(𝜋)Reg(𝜋). By Lemma A.4 we have

E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | ϒ𝑡−1] =
∑︁
𝜋∈Ψ

𝑄𝑚(𝑡)(𝜋)Reg(𝜋), E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑀𝑡 | ϒ𝑡−1] = 0,

Since |𝑀𝑡| ≤ 2, 𝑀𝑡 is a martingale difference sequence. By Azuma’s inequality,

𝑇∑︁
𝑡=1

𝑀𝑡 ≤ 2
√︀

2𝑇 log(2/𝛿) (A.10)

with probability at least 1 − 𝛿/2. By Lemma A.1 (resp. Lemma A.2), with probability at least
1− 𝛿/2, the event Γ1 (resp. Γ2) holds. By a union bound, with probability at least 1− 𝛿,

𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡))≤
𝑇∑︁
𝑡=1

∑︁
𝜋∈Ψ

𝑄𝑚(𝑡)(𝜋)Reg(𝜋) +
√︀

8𝑇 log(2/𝛿)

≤
𝑇∑︁

𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) + 𝜏1 +
√︀
8𝑇 log(2/𝛿)
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where the first inequality follows from (A.10), and the second inequality follows from Lemma A.9. □

Finally, we assume that all rewards are [0, 1]-bounded and use Lemma A.10 to derive Theorem
2.1, Corollary 2.1, and Theorem 2.2.

Proof of Theorem 2.1. We are in Setup A.1, and we have 𝜏𝑚 ≤ 2𝑚, ∀𝑚 ∈ N and 𝜏𝑚 ≤ 2𝜏𝑚−1, ∀𝑚 > 1.
By Lemma A.10, with probability at least 1− 𝛿,

𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡))≤
𝑇∑︁

𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) + 𝜏1 +
√︀
8𝑇 log(2/𝛿)

= 215

𝑚(𝑇 )∑︁
𝑚=2

√︃
𝐾 log(|ℱ| log(𝜏𝑚−1)𝑚/𝛿)

𝜏𝑚−1
(𝜏𝑚 − 𝜏𝑚−1) + 𝜏1 +

√︀
8𝑇 log(2/𝛿)

(i)

≤ 215
√︀
𝐾 log(|ℱ|𝑚(𝑇 )2/𝛿)

𝑚(𝑇 )∑︁
𝑚=2

𝜏𝑚 − 𝜏𝑚−1√︀
𝜏𝑚/2

+
√︀

8𝑇 log(2/𝛿) + 𝜏1

(ii)

≤ 215
√︀
2𝐾 log(|ℱ|𝑚(𝑇 )2/𝛿)

𝑚(𝑇 )∑︁
𝑚=2

∫︁ 𝜏𝑚

𝜏𝑚−1

𝑑𝑥√
𝑥
+
√︀
8𝑇 log(2/𝛿) + 𝜏1

= 215
√︀

2𝐾 log(|ℱ|𝑚(𝑇 )2/𝛿)

∫︁ 𝜏𝑚(𝑇 )

𝜏1

𝑑𝑥√
𝑥
+
√︀
8𝑇 log(2/𝛿) + 𝜏1

≤ 430
√︁
2𝜏𝑚(𝑇 )𝐾 log(|ℱ|𝑚(𝑇 )2/𝛿) +

√︀
8𝑇 log(2/𝛿) + 𝜏1

(iii)

≤ 860
√︀
𝐾𝑇 log(|ℱ|𝑚(𝑇 )2/𝛿) +

√︀
8𝑇 log(2/𝛿) + 𝜏1,

where (i) follows from log(𝜏𝑚−1) ≤ 𝑚 − 1 ≤ 𝑚(𝑇 ) and 𝜏𝑚 ≤ 2𝜏𝑚−1, (ii) follows from an integral
bound, and (iii) follows from 𝜏𝑚(𝑇 ) ≤ 2𝜏𝑚(𝑇 )−1 < 2𝑇 . We thus finish our proof of Theorem 2.1. □

Proof of Corollary 2.1. We are in Setup A.1, and we have 𝜏𝑚 =
⌊︁
2𝑇 1−2−𝑚

⌋︁
, ∀𝑚 ∈ N. Without loss

of generality, assume that 𝑇 > 1000.

By Lemma A.10, with probability at least 1− 𝛿, we have

𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡)) ≤
𝑇∑︁

𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) + 𝜏1 +
√︀
8𝑇 log(2/𝛿)

= 215

𝑚(𝑇 )∑︁
𝑚=2

√︃
𝐾 log(|ℱ|𝑚 log(𝜏𝑚−1)/𝛿)

𝜏𝑚−1
(𝜏𝑚 − 𝜏𝑚−1) + 𝜏1 +

√︀
8𝑇 log(2/𝛿)

≤ 215
√︀
𝐾 log(|ℱ|𝑚(𝑇 ) log 𝑇/𝛿)

𝑚(𝑇 )∑︁
𝑚=2

𝜏𝑚 − 𝜏𝑚−1√
𝜏𝑚−1

+
√︀
8𝑇 log(2/𝛿) + 𝜏1

≤ 215
√︀
𝐾 log(|ℱ|𝑚(𝑇 ) log 𝑇/𝛿)

𝑚(𝑇 )∑︁
𝑚=2

𝜏𝑚√
𝜏𝑚−1

+
√︀
8𝑇 log(2/𝛿) + 𝜏1

≤ 215
√︀
𝐾 log(|ℱ|𝑚(𝑇 ) log 𝑇/𝛿)

(︁
2
√
𝑇
)︁
(𝑚(𝑇 )− 1) +

√︀
8𝑇 log(2/𝛿) + 2

√
𝑇 ,
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where the last inequality follows from

𝜏𝑚√
𝜏𝑚−1

≤ 𝜏𝑚√︀
(𝜏𝑚−1 + 1)/2

≤ 2𝑇 1−2−𝑚

𝑇
1
2 (1−2−𝑚+1)

= 2
√
𝑇 , ∀𝑚 > 1

and 𝜏1 ≤ 2
√
𝑇 . Corollary 2.1 follows from the fact that 𝑚(𝑇 ) = 𝑂(log log 𝑇 ). □

Proof of Theorem 2.2. We are in Setup A.2, and we have assumed that all rewards are [0, 1]-bounded.

By Lemma A.10, with probability at least 1− 𝛿, we have

𝑇∑︁
𝑡=1

(𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡)) ≤
𝑇∑︁

𝑡=𝜏1+1

7.15𝐾/𝛾𝑚(𝑡) + 𝜏1 +
√︀
8𝑇 log(2/𝛿)

= 14.3

𝑚(𝑇 )∑︁
𝑚=2

√︁
𝐾ℰℱ,𝛿/(2𝑚2)(𝜏𝑚−1 − 𝜏𝑚−2)(𝜏𝑚 − 𝜏𝑚−1) + 𝜏1 +

√︀
8𝑇 log(2/𝛿),

where we directly plug in the definition of 𝛾𝑚. □

Remark. Note that the entire proof of Theorem 2.2 holds without assuming 𝑓⋆ ∈ ℱ . Therefore,
the extension to the misspecified setting described in §2.3.2 (where the misspecification error is
known) is straightforward.

A.1.7 Dealing with Uncountable Context Spaces

We have proved Theorem 2.1 and Theorem 2.2 under the condition that |𝒳 | < ∞ (note that we
allow |𝒳 | to be arbitrarily large in this setting, as the regret bound does not depend on |𝒳 |). The
main role of the condition |𝒳 | <∞ is that it makes all policies of the form 𝜋 : 𝒳 → 𝒜 automatically
measurable with respect to 𝒟, enabling us to define ℛ(·), ̂︀ℛ𝑡(·),Reg(·),̂︂Reg𝑡(·) for all policies 𝜋 ∈ 𝒜𝒳

without worrying about any measurability issues. Since everything is well-defined in the universal
policy space, we are able to provide an illuminating analysis in this space, which not only explains the
value and role of realizability (or relaxed notions of realizability) but also establishes new connections
among several research lines of contextual bandits.

Nevertheless, to ensure that Theorem 2.1 and Theorem 2.2 indeed hold for a generic, possibly
uncountable 𝒳 , we need to deal with the potential measurability issues associated with 𝒜𝒳 when 𝒳
is arbitrary. In what follows, we discuss such issues and give a simple resolution.

Before we proceed, we make two remarks. First, to ensure that the contextual bandit problem
that we study is meaningful, some basic conditions are required, e.g., the true reward function 𝑓⋆

should be measurable with respect to 𝒟 for each fixed 𝑎 ∈ 𝒜, and the regression oracle should
always generate predictors with such a property. Such conditions are necessary for the regret of the
algorithm to be well-defined, and are directly assumed here.

Second, in terms of our analysis, the only issue that is worthy of special attention when 𝒳 is
uncountable is that, not all policies in Ψ = 𝒜𝒳 are guaranteed to be measurable with respect to
𝒟 (as a consequence, ℛ(·), ̂︀ℛ𝑡(·),Reg(·),̂︂Reg𝑡(·) may not be “everywhere defined” on Ψ). All other
issues, such as the existence and properties of 𝑄𝑚(·), can be easily addressed by standard tools from
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measure theory (e.g., Theorem 2.4.4 of Tao 2011).

We now focus on the key issue that Ψ may contain non-measurable policies (when 𝒳 is un-
countable). It turns out that the affect of this issue on our previous analysis is mostly “notational.”
Namely, since ℛ(·), ̂︀ℛ𝑡(·),Reg(·),̂︂Reg𝑡(·) are not necessarily well-defined for all 𝜋 ∈ Ψ, Lemma A.7
and Lemma A.8—which involves the universal quantifier “for all 𝜋 ∈ Ψ”—require slight modifications.

There are multiple ways to address such an issue. We provide a a simple resolution below, which
works for general uncountable 𝒳 and generates additional insights about our proof.

The resolution is based on the following observation: while ℛ(𝜋) = E𝑥∼𝒟 [𝑓⋆(𝑥, 𝜋(𝑥))] is not
guaranteed to be well-defined for an arbitrary deterministic policy 𝜋 ∈ Ψ, the quantity ℛ(𝑄𝑚) =

E𝑥∼𝒟 E𝜋∼𝑄𝑚 [𝑓⋆(𝑥, 𝜋(𝑥))] is always well-defined, as the algorithm’s adopted randomized policy 𝑄𝑚(·)
in epoch 𝑚 is “measurable.” Thus, we can directly define ℛ(𝑄) = E𝑥∼𝒟 E𝜋∼𝑄 [𝑓⋆(𝑥, 𝜋(𝑥))] for all
“measurable” randomized policies 𝑄(·), and similarly define ̂︀ℛ𝑡(𝑄),Reg(𝑄),̂︂Reg𝑡(𝑄). This would
enable us to restate Lemma A.7 and Lemma A.8 by replacing “for all deterministic policies 𝜋 ∈ Ψ”
with “for all measurable randomized policies 𝑄,” and there would be no measurability issues any
more. Moreover, observing that an action selection kernel 𝑝 : ℬ(𝒜)×𝒳 → [0, 1] exactly corresponds
to a “measurable” randomized policy (as the definition of a probability kernel clearly requires 𝑝(𝐸 | 𝑥)
to be measurable with respect to 𝒟 for any fixed 𝐸 ∈ ℬ(𝒜)), we can actually directly use the kernel
𝑝(· | ·) to denote a “measurable” randomized policy, which would lead to a new version of our proof
without explicit use of the notation 𝑄𝑚(·) or 𝑄(·).

Specifically, the new general proof proceeds as follows. Recall that 𝒫 is the space of all action
selection kernels, which corresponds to the space of all measurable randomized policies. Analogous to
Appendix A.1.1, for all (measurable) randomized policies 𝑝, 𝑝′ ∈ 𝒫 and 𝑡 = 1, . . . , 𝑇 , define

𝑉 (𝑝, 𝑝′) := E𝑥∼𝒟,𝑎∼𝑝′(·|𝑥)

[︂
1

𝑝(𝑎 | 𝑥)

]︂
, 𝒱𝑡(𝑝) := max

1≤𝑚≤𝑚(𝑡)−1
{𝑉 (𝑝𝑚, 𝑝)},

ℛ(𝑝) := E𝑥∼𝒟,𝑎∼𝑝(·|𝑥) [𝑓
⋆(𝑥, 𝑎)] , ̂︀ℛ𝑡(𝑝) := E𝑥∼𝒟,𝑎∼𝑝(·|𝑥)

[︁ ̂︀𝑓𝑚(𝑡)(𝑥, 𝑎)
]︁
,

Reg(𝑝) := ℛ(𝜋𝑓⋆)−ℛ(𝑝), ̂︂Reg𝑡(𝑝) := ̂︀ℛ𝑡(𝜋 ̂︀𝑓𝑚(𝑡)
)− ̂︀ℛ𝑡(𝑝),

where 𝑉 (𝑝, 𝑝′) is the “decisional divergence” between two randomized policies 𝑝 and 𝑝′. Analogous to
Appendix A.1.3, we can show that in each epoch 𝑚 ∈ N, the algorithm’s adopted randomized policy
𝑝𝑚 ∈ 𝒫 is a solution to the following “Implicit Optimization Problem”:

̂︂Reg𝑡(𝑝𝑚) ≤ 𝐾/𝛾𝑚,

∀𝑝 ∈ 𝒫, E𝑥∼𝒟,𝑎∼𝑝(·|𝑥)

[︂
1

𝑝𝑚(𝑎 | 𝑥)

]︂
≤ 𝐾 + 𝛾𝑚̂︂Reg𝑡(𝑝).

Analogous to Lemma A.7 to Lemma A.8, we have the following guarantees.

Lemma A.11. Assume Γ1 (resp. Γ2) holds under Setup A.1 (resp., Setup A.2). For all rounds
𝑡 > 𝜏1, for all (measurable) randomized policies 𝑝 ∈ 𝒫,

| ̂︀ℛ𝑡(𝑝)−ℛ(𝑝)| ≤
√︀
𝒱𝑡(𝑝)

√
𝐾

2𝛾𝑚(𝑡)
.
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Lemma A.12. Assume that Γ1 (resp. Γ2) holds under Setup A.1 (resp. Setup A.2). Let 𝑐0 := 5.15.
For all epochs 𝑚 ∈ N, all rounds 𝑡 in epoch 𝑚, and all (measurable) randomized policies 𝑝 ∈ 𝒫,

Reg(𝑝) ≤ 2̂︂Reg𝑡(𝑝) + 𝑐0𝐾/𝛾𝑚,

̂︂Reg𝑡(𝑝) ≤ 2Reg(𝑝) + 𝑐0𝐾/𝛾𝑚.

Lemma A.11 and Lemma A.12 are almost identical to Lemma A.7 and Lemma A.8, except for the
slight difference that “for all 𝜋 ∈ Ψ” is replaced with “for all 𝑝 ∈ 𝒫,” which ensures that there are no
measurability issues (as ℛ(·), ̂︀ℛ𝑡(·),Reg(·),̂︂Reg𝑡(·) are “everywhere defined” on 𝒫). We then easily
have E𝑥𝑡,𝑟𝑡,𝑎𝑡 [𝑟𝑡(𝜋𝑓⋆)− 𝑟𝑡(𝑎𝑡) | ϒ𝑡−1] = Reg(𝑝𝑚(𝑡)) ≤ 7.15𝐾/𝛾𝑚(𝑡), and Theorem 2.1 and Theorem
2.2 immediately follow. The above proof is essentially the same as the proof that we provide in
Appendix A.1.1 to Appendix A.1.6, but under a different set of notations.
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Appendix B

Supplemental Material for Chapter 3

B.1 Details for Results of Contextual Bandits

In this section of the appendix, we overview the motivation behind the design of AdaCB, and give
regret bounds for the algorithm based on the policy and value function disagreement coefficients,
as well as matching lower bounds. We then show how to relate these quantities to other structural
parameters for the distribution-free and adversarial settings, and instantiate our bounds for concrete
settings of interest.

The proofs of the results mentioned in this section can be found in the full version of our paper
(Foster et al. 2020).

B.1.1 Overview of AdaCB

AdaCB (Algorithm 3.1) operates in a doubling epoch schedule. Letting 𝜏𝑚 = 2𝑚 with 𝜏0 = 0, each
epoch 𝑚 ≥ 1 consists of rounds 𝜏𝑚−1 + 1, . . . , 𝜏𝑚, and there are 𝑀 = ⌈log2 𝑇 ⌉ epochs in total.
At the beginning of each epoch 𝑚, we compute an estimator ̂︀𝑓𝑚 for the Bayes regression function
𝑓⋆ by performing least-squares regression on data collected so far (Line 2). We also maintain a
version space ℱ𝑚, which is the set of all plausible predictors that cannot yet be eliminated based
on square loss confidence bounds (Line 3). Based on ℱ𝑚, we select the learning rate 𝛾𝑚 for the
current epoch adaptively by estimating a parameter called the instance-dependent scale factor (𝜆𝑚)
which is closely related to the policy disagreement coefficient (Option I) and the value function
disagreement coefficient (Option II). Then, when a context 𝑥𝑡 in epoch 𝑚 arrives, AdaCB first
computes the candidate action set 𝒜𝑡 := 𝒜(𝑥𝑡;ℱ𝑚) (Line 8), which is the set of actions that are
optimal for some predictor 𝑓 ∈ ℱ𝑚, and thus could plausibly be equal to 𝜋⋆(𝑥𝑡). The algorithm then
sets 𝑝𝑡 = IGW𝒜𝑡,𝛾𝑚(𝑥𝑡;

̂︀𝑓𝑚) (Line 9), samples 𝑎𝑡 ∼ 𝑝𝑡, and proceeds to the next round.

The adaptive learning rate 𝛾𝑚 balances the algorithm’s efforts between exploration and exploita-
tion: a larger learning rate leads to more aggressive exploitation (following the least-squares predictor̂︀𝑓𝑚), while a smaller learning rate leads to more conservative exploration over the candidate action
set. AdaCB’s learning rate 𝛾𝑚 (Line 5) has two components: the instance-dependent scale factor 𝜆𝑚,
which is adaptively determined by the collected data; and a non-adaptive component propositional to√︀
𝐴𝑛𝑚−1/ log |ℱ|, where 𝑛𝑚−1 is the length of the epoch 𝑚− 1. While the non-adaptive component
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is the same as the learning rate in FALCON and is sufficient if one only aims to achieve the minimax
regret, the adaptive factor 𝜆𝑚, combined with the action elimination procedure above, is essential for
AdaCB to achieve near-optimal instance-dependent regret. We offer two different schemes to select
𝜆𝑚: The first adapts to the policy disagreement coefficient, while the second adapts to the value
function disagreement coefficient.

• Option I (policy-based exploration). This option selects 𝜆𝑚 as a sample-based approximation
to the quantity

P𝒟(|𝒜(𝑥,ℱ𝑚)| > 1)/
√︀

P𝒟(|𝒜(𝑥,ℱ𝑚−1)| > 1),

where P𝒟(|𝒜(𝑥,ℱ𝑚)| > 1) and P𝒟(|𝒜(𝑥,ℱ𝑚−1)| > 1) are disagreement probabilities (i.e., the
probability that we encounter a context on which we cannot yet determine the true optimal
action) for epoch 𝑚 and epoch 𝑚 − 1, respectively. Intuitively, this configuration asserts
that we should adaptively discount the learning rate if either 1) the current disagreement
probability is small, or 2) the disagreement probability is decreasing sufficiently quickly across
epochs. This scheme is natural because if we expect that no exploration is required for a large
portion future contexts, then we have flexibility to perform more thorough exploration on other
contexts where the true optimal action cannot yet be determined. This accelerates AdaCB’s
exploration of more effective policies.

• Option II (value-based exploration). While the disagreement probability used in Option

I is a useful quantity that provides information on the hardness of the problem instance, it
does not fully utilize the value function structure. In particular, it is only sensitive to the
occurrence of disagreement on each context, but is not sensitive to the scale of disagreement
(i.e., how much it would cost if we chose a disagreeing action) on each context. This motivates
Option II, which is based on a refined confidence width 𝑤(𝑥;ℱ𝑚) that accounts for both the
occurrence and the scale of disagreement. Specifically, 𝑤(𝑥;ℱ𝑚) measures the worst-case cost
of exploring a sub-optimal action in the candidate action set for 𝑥, and Option II selects 𝜆𝑚
as a sample-based approximation to the quantity

I{E𝒟[𝑤(𝑥;ℱ𝑚)] ≥
√︀
𝐴𝑇 log |ℱ|/𝑛𝑚−1}.

In other words, we adaptively zero out the learning rate and perform uniform exploration
if E𝒟[𝑤(𝑥;ℱ𝑚)] is smaller than an epoch-varying threshold. This is reasonable because if
E𝒟[𝑤(𝑥;ℱ𝑚)] is small, then the average cost of exploration is small for the underlying instance,
so we should take advantage of this and explore as much as possible.

Finally, since 𝒟 is unknown, to obtain 𝜆𝑚 we compute an empirical approximation to E𝒟[·] using
sample splitting. That is, we use separate sample to compute ℱ𝑚 and to approximate 𝒟 to ensure
independence; this is reflected in the sample splitting schedule {𝑡𝑚}𝑀𝑚=1 in AdaCB. The smoothing
parameter 𝜇𝑚 is designed to correct the approximation error incurred by this procedure.

We make a few additional remarks. First, the learning rate and confidence width parameters
in Algorithm 3.1 (and consequently our main theorems) consider a general finite class ℱ . This
is only a stylistic choice: AdaCB works as-is for general function classes, with the dependence on
log |ℱ| in these parameters replaced by standard learning-theoretic complexity measures such as
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the pseudodimension; see Appendix B.1.7. Second, Algorithm 3.1 takes 𝑇 as input. One can
straightforwardly extend Algorithm 3.1 to work with unknown 𝑇 using the standard doubling trick.
Finally, we emphasize that Option I and Option II are designed based on different techniques
and lead to different instance-dependent guarantees. Designing a single option that simultaneously
achieving the goals of Option I and Option II is an interesting future direction.

Oracle efficiency AdaCB can be implemented efficiently with a weighted least squares regression
oracle Oracle (see equation (RO) in the full version of our paper (Foster et al. 2020)) as follows.

• At each epoch 𝑚, call Oracle to compute the square loss empirical risk minimizer ̂︀𝑓𝑚.

• For any given context 𝑥, the candidate action set 𝒜(𝑥;ℱ𝑚) can be computed using either ̃︀𝑂(𝐴)

oracle calls when ℱ is convex or ̃︀𝑂(𝐴𝑇 2) oracle calls for general (in particular, finite) classes.

• For Option II, the function 𝑤(𝑥;ℱ𝑚) can be computed in a similar fashion to 𝒜(𝑥;ℱ𝑚) using̃︀𝑂(𝐴) or ̃︀𝑂(𝐴𝑇 2) oracle calls in the convex and general case, respectively.

Altogether, since 𝒜(𝑥;ℱ𝑚) and 𝑤(𝑥;ℱ𝑚) are computed for 𝑂(1) different contexts per round
amortized, the algorithm requires 𝑂(𝐴𝑇 ) calls to Oracle overall when ℱ is convex. The reduction is
described in detail in the full version of our paper (Foster et al. 2020).

B.1.2 Disagreement-Based Guarantees

We are now ready to state our first main regret guarantee for AdaCB, which is based on the policy
disagreement coefficient (3.5). The theorem also includes a more general result in terms of an
intermediate quantity we call the cost-sensitive policy disagreement coefficient, which we define by

𝜃csc(Π, 𝜀0) = sup
𝜀≥𝜀0

P𝒟(𝑥 : ∃𝜋 ∈ Πcsc
𝜀 : 𝜋(𝑥) ̸= 𝜋⋆(𝑥))

𝜀
, (B.1)

where Πcsc
𝜀 = {𝜋 ∈ Π : 𝑅(𝜋⋆)−𝑅(𝜋) ≤ 𝜀} for 𝑅(𝜋) := E[𝑟(𝜋(𝑥))].49 The cost-sensitive policy

disagreement coefficient grants finer control over the cost-sensitive structure of the problem and—
beyond leading to our main gap-based result—leads to instance-dependent guarantees even when the
instance does not have uniform gap.

Theorem B.1 (Full Version). For any instance with uniform gap Δ, Algorithm 3.1 with Option I

ensures that
E[Reg] = ̃︀𝑂(1) ·min

𝜀>0
max

{︂
𝜀Δ𝑇,

𝜃pol(Π, 𝜀)𝐴 log |ℱ|
Δ

}︂
+ ̃︀𝑂(1). (B.2)

More generally, Algorithm 3.1 with Option I ensures that for every instance, without any gap
assumption,

E[Reg] = ̃︀𝑂(1) ·min
𝜀>0

max {𝜀𝑇,𝜃csc(Π, 𝜀)𝐴 log |ℱ|}+ ̃︀𝑂(1). (B.3)

Let us describe some key features of Theorem B.1.

49The acronym CSC refers to cost-sensitive classification.
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• Whenever 𝜃pol(Π, 𝜀) ≤ polylog(1/𝜀), we may choose 𝜀 ∝ 1/𝑇 in (B.2) so that

E[Reg] = ̃︀𝑂(1) · 𝐴 log|ℱ|
Δ

.

For example, for the classical multi-armed bandit setup where 𝒳 is a singleton, we have
𝜃pol(Π, 𝜀) = 1, recovering the usual instance-dependent rate (up to logarithmic factors). We
give some more examples where logarithmic regret can be attained in a moment.

• More generally, since the function 𝜀 ↦→ 𝜀Δ𝑇 is increasing in 𝜀 and 𝜃pol(Π, 𝜀) is decreasing, the
best choice for the bound (B.2) (up to constant factors) is the critical radius 𝜀𝑇 that satisfies
the balance

𝜀𝑇Δ𝑇 ∝ 𝜃pol(Π, 𝜀𝑇 )𝐴 log|ℱ|
Δ

. (B.4)

For example, if 𝜃pol(Π, 𝜀) ∝ 𝜀−𝜌 for some 𝜌 ∈ (0, 1), then choosing

𝜀𝑇 ∝ (𝐴 log|ℱ|(Δ2𝑇 )−1)
1

1+𝜌

leads to

E[Reg] = ̃︀𝑂(1) · (𝐴 log|ℱ|)
1

1+𝜌 · 𝑇
𝜌

1+𝜌

Δ
1−𝜌
1+𝜌

.

The critical radius also plays an important role in the proof of Theorem B.1.

• With no assumption on the gap or 𝜃pol, we may always take 𝜃csc(Π, 𝜀) ≤ 1/𝜀, so that (B.3)
implies the minimax rate

√︀
𝐴𝑇 log|ℱ|.

The general bound (B.3) can be seen to imply (B.2), since Πcsc
𝜀 ⊆ Π𝜀/Δ whenever the gap is Δ. More

generally, the cost-sensitive policy disagreement coefficient can also lead to instance-dependent regret
bounds under other standard assumptions which go beyond the uniform gap; these are discussed at
the end of the section.

Optimality We now show that the regret bound attained by AdaCB in Theorem B.1 is near-
optimal, in the sense that it cannot be improved beyond log factors without making additional
assumptions on the class ℱ or the contextual bandit instance.

Formally, we model a contextual bandit algorithm A as a sequence of mappings A𝑡 : (𝒳 ×𝒜×
[0, 1])𝑡−1 ×𝒳 → Δ(𝒜), so that

A𝑡(𝑥𝑡; (𝑥1, 𝑎1, ℓ1(𝑎1)), . . . , (𝑥𝑡−1, 𝑎𝑡−1, ℓ𝑡−1(𝑎𝑡−1))) (B.5)

is the algorithm’s action distribution after observing context 𝑥𝑡 at round 𝑡.

For a given function class ℱ , we define

Mpol(ℱ , 𝜀, 𝜃) = inf
A

sup
(𝒟,P𝑟)

{︀
E[Reg] | 𝑓⋆ ∈ ℱ , 𝜃pol(Π, 𝜀) ≤ 𝜃

}︀
(B.6)

to be the constrained minimax complexity, which measures the worst-case performance of any
algorithm (B.5) across all instances realizable by ℱ for which the policy disagreement coefficient at
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scale 𝜀 is at most 𝜃.50

Our main lower bound shows that there exists a function class ℱ for which the constrained
minimax complexity matches the upper bound (B.2).

Theorem B.2 (Full Version). Let parameters 𝐴,𝐹 ∈ N and Δ ∈ (0, 1/4) be given. For any 𝜀 ∈ (0, 1)

and 1 ≤ 𝜃 ≤ min{1/𝜀, 𝑒−2𝐴/𝐹}, there exists a function class ℱ ⊆ (𝒳 → 𝒜) with 𝐴 actions and
|ℱ| ≤ 𝐹 such that:

• All 𝑓 ∈ ℱ have uniform gap Δ.

• The constrained minimax complexity is lower bounded by

Mpol(ℱ , 𝜀, 𝜃) = ̃︀Ω(1) · min

{︂
𝜀Δ𝑇,

𝜃𝐴 log𝐹

Δ

}︂
,

where ̃︀Ω(·) hides factors logarithmic in 𝐴 and 𝜀−1.

This lower bound has a simple interpretation: The term 𝜀Δ𝑇 is the regret incurred if we commit
to playing a particular policy 𝜋 ∈ Π𝜀 for any “simple” instance in which the gap is no larger than
𝑂(Δ) for all actions, while the term 𝜃pol(Π,𝜀)𝐴 log |ℱ|

Δ is the cost of exploration to find such a policy.

The first implication of this lower bound is that without an assumption such as the disagreement
coefficient, logarithmic regret is impossible even when the gap is constant; this alone is not surprising
since Foster and Rakhlin (2020) already showed a similar impossibility for non-stochastic contexts,
but Theorem B.2 strengthens this result since it holds for stochastic contexts. More importantly,
the lower bound shows that the tradeoff in Theorem B.1 is tight as a function of Δ, 𝜀, 𝐴, log|ℱ|, and
𝜃pol, so additional assumptions are required to attain stronger instance-dependent regret bounds for
specific classes. We explore such assumptions in the sequel.

We mention one important caveat: Compared to instance-dependent lower bounds for multi-armed
bandits (e.g., Garivier et al. (2019)), the quantification for Theorem B.2 is slightly weaker. Rather
than lower bounding the regret for any particular instance (assuming uniformly good performance
in a neighborhood), we only show existence of a particular realizable instance with gap for which
the regret lower bound holds. We suspect that strengthening the lower bound in this regard will be
difficult unless one is willing to sacrifice dependence on log𝐹 .

Examples The (policy) disagreement coefficient has been studied extensively in active learning,
and many bounds are known for different function classes and distributions of interest. We refer to
Hanneke (2014) for a comprehensive survey and summarize some notable examples here (restricting
to the binary/two-action case, which has been the main focus of active learning literature).

• When ℱ is a 𝑑-dimensional linear function class, 𝜃pol(Π, 𝜀) ≤ ̃︀𝑂(𝑑1/2 log(1/𝜀)) whenever 𝒟 is
isotropic log-concave (Balcan and Long 2013). More generally, 𝜃pol(Π, 𝜀) = 𝑜(1/𝜀) as long as
𝒟 admits a density (Hanneke 2014).

50We leave implicit that rewards are restricted to the range [0, 1]. In fact, for our lower bound it suffices to
only consider reward distributions P𝑟 for which 𝑟(𝑎) is Bernoulli with mean 𝑓⋆(𝑥, 𝑎) given 𝑥 in (B.6).
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• 𝜃pol(Π, 𝜀) = polylog(1/𝜀) whenever ℱ is smoothly parameterized by a subset of euclidean
space, subject to certain regularity conditions (Friedman 2009). This includes, for example,
axis-aligned rectangles.

• When Π is a class of depth-limited decision trees, we have 𝜃pol(Π, 𝜀) = polylog(1/𝜀) (Balcan
et al. 2010).

For an example which leverages the more general parameter 𝜃csc, Langford and Zhang (2008) give
logarithmic regret bounds for finite-class contextual bandits based on a different notion of gap called
the policy gap defined by Δpol = 𝑅(𝜋⋆)−max𝜋 ̸=𝜋⋆ 𝑅(𝜋), where 𝑅(𝜋) = E𝑥,𝑟[𝑟(𝜋(𝑥))]. It is simple to
see that 𝜃csc(Π, 𝜀) ≤ Δ−1

pol, so that Theorem B.1 gives E[Reg] ≤ ̃︀𝑂(︁𝐴 log|ℱ|
Δpol

)︁
, which improves upon

the gap dependence of their result.

B.1.3 Scale-Sensitive Guarantees

We now give instance-dependent regret guarantees based on the value function disagreement coefficient,
which is defined via

𝜃val(ℱ ,Δ0, 𝜀0) = sup
Δ>Δ0,𝜀>𝜀0

sup
𝑝:𝒳→Δ(𝒟)

Δ2

𝜀2
P𝒟,𝑝

(︁
∃𝑓 ∈ ℱ : |𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)| > Δ, ‖𝑓 − 𝑓⋆‖𝒟,𝑝 ≤ 𝜀

)︁
.

(B.7)

Compared to the policy disagreement coefficient, the value function disagreement coefficient
is somewhat easier to bound directly when the value function class ℱ has simple structure. For
example, when ℱ is linear, we can bound 𝜃val in terms of the dimension for any distribution with a
simple linear algebraic calculation.

Proposition B.1. Let 𝜑(𝑥, 𝑎) ∈ R𝑑 be a fixed feature map, and let ℱ = {(𝑥, 𝑎) ↦→ ⟨𝑤, 𝜑(𝑥, 𝑎)⟩ | 𝑤 ∈ 𝒲},
where 𝒲 ⊆ R𝑑 is any fixed set. Then for all 𝒟, Δ, 𝜀,

𝜃val(ℱ ,Δ, 𝜀) ≤ 𝑑.

Furthermore, if ℱ = {(𝑥, 𝑎) ↦→ 𝜎(⟨𝑤, 𝜑(𝑥, 𝑎)⟩) | 𝑤 ∈ 𝒲}, where 𝜎 : R → R is any fixed link function
with 0 < 𝑐𝑙 ≤ 𝜎′ ≤ 𝑐𝑢 almost surely, we have

𝜃val(ℱ ,Δ, 𝜀) ≤
(︂
𝑐𝑢
𝑐𝑙

)︂2

· 𝑑.

More generally—as we show in the next section—the value function disagreement coefficient is
always bounded by the so-called eluder dimension for ℱ , allowing us to leverage existing results for
this parameter (Russo and Van Roy 2013). However, the value function disagreement coefficient
can be significantly tighter because—among other reasons—it can leverage benign distributional
structure.

We now show that AdaCB can simultaneously attain the minimax regret bound and adapt to the
value function disagreement coefficient.
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Theorem B.3 (Full Version). For any instance, Algorithm 3.1 with Option II ensures that

E[Reg] = ̃︀𝑂(1) ·min

{︂√︀
𝐴𝑇 log|ℱ|, 𝜃

val(ℱ ,Δ/2, 𝜀𝑇 )𝐴 log|ℱ|
Δ

}︂
+𝑂(1), (B.8)

where 𝜀𝑇 ∝
√︀
log(|ℱ|𝑇 )/𝑇 .

This rate improves over the minimax rate asymptotically whenever 𝜃val(ℱ ,Δ/2, 𝜀) = 𝑜(1/𝜀), and
is logarithmic whenever 𝜃val(ℱ ,Δ/2, 𝜀) = polylog(1/𝜀).

As with our policy disagreement-based result, we complement Theorem B.3 with a lower bound.
To state the result, we define

Mval(ℱ ,Δ, 𝜀, 𝜃) = inf
A

sup
(𝒟,P𝑟)

{︀
E[Reg] | 𝑓⋆ ∈ ℱ , 𝜃val(ℱ ,Δ, 𝜀) ≤ 𝜃

}︀
, (B.9)

which is the value-based analogue of the constrained minimax complexity (B.6). Our main lower
bound is as follows.

Theorem B.4. Let parameters 𝐴,𝐹 ∈ N and Δ ∈ (0, 1/4) be given. For any 𝜀 ∈ (Δ, 1) and
0 ≤ 𝜃 ≤ min

{︀
Δ2/𝜀2, 𝑒−2𝐹/𝐴

}︀
, there exists a function class ℱ : 𝒳 → 𝒜 with 𝐴 actions and |ℱ| ≤ 𝐹

such that:

• All 𝑓 ∈ ℱ have uniform gap Δ.

• The constrained minimax complexity is lower bounded by

Mval(ℱ ,Δ/2, 𝜀, 𝜃) = ̃︀Ω(1) · min

{︂
𝜀2

Δ
𝑇,
𝜃𝐴 log𝐹

Δ

}︂
, (B.10)

where ̃︀Ω(·) hides factors logarithmic in 𝐴 and Δ/𝜀.

As with Theorem B.2, the lower bound (B.10) has a simple interpretation: The term 𝜀2

Δ 𝑇 is an
upper bound on the regret of any policy 𝜋𝑓 for which the predictor 𝑓 is within 𝐿2-radius 𝜀 of 𝑓⋆

(under gap Δ), and the term 𝜃val(ℱ,Δ/2,𝜀)𝐴 log |ℱ|
Δ is the exploration cost to find such a predictor.

The most important implication of Theorem B.4 is as follows: Suppose that 𝜃val(ℱ ,Δ/2, 𝜀) =
polylog(1/𝜀). Then by taking 𝜀𝑇 ∝ (𝐴 log |ℱ|/𝑇 ) 1

2+𝜌 for any 𝜌 > 0, we conclude that for sufficiently
large 𝑇 , any algorithm on the lower bound instance must have

E[Reg] = ̃︀Ω(1) · 𝜃val(ℱ ,Δ/2, 𝜀𝑇 )𝐴 log |ℱ|
Δ

.

This implies that the instance-dependent term in (B.8) is nearly optimal in this regime, in that the
parameter 𝜀𝑇 =

√︀
log|ℱ|/𝑇 used by the algorithm can at most be increased by a sub-polynomial

factor. In general, however, (B.8) does not exactly match the tradeoff in (B.10), but we suspect that
AdaCB can be improved to close the gap.51

51With a-priori knowledge of 𝜃val, this is fairly straightforward.
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B.1.4 Distribution-Free Guarantees

The disagreement coefficients introduced in the previous section depend strongly on the context
distribution 𝒟. On one hand, this is a desirable feature, since it means we may pay very little
to adapt to the gap Δ for benign distributions. On the other hand, in practical applications, we
may not have prior knowledge of how favorable 𝒟 is, or whether we should expect to do any better
than the minimax rate. A natural question then is for what function classes we can guarantee
logarithmic regret for any distribution 𝒟. An important result of Hanneke and Yang (2015) shows
that in the binary setting, the policy disagreement coefficient is always bounded by a combinatorial
parameter called the (policy) star number. We give distribution-free results based on two multiclass
generalizations of this parameter

Definition B.1 (Policy star number (weak)). For any policy 𝜋⋆ and policy class Π, let the weak
policy star number spol𝜋⋆ (Π) denote the largest number 𝑚 such that there exist contexts 𝑥(1), . . . , 𝑥(𝑚)

and policies 𝜋(1), . . . , 𝜋(𝑚) such that for all 𝑖,

𝜋(𝑖)(𝑥(𝑖)) ̸= 𝜋⋆(𝑥(𝑖)), and 𝜋(𝑖)(𝑥(𝑗)) = 𝜋⋆(𝑥(𝑗)) ∀𝑗 ̸= 𝑖.

Definition B.2 (Policy star number (strong)). For any policy 𝜋⋆ and policy class Π, let the strong
policy star number spol𝜋⋆ (Π) denote the largest number 𝑚 such that there exist context-action pairs
(𝑥(1), 𝑎(1)), . . . , (𝑥(𝑚), 𝑎(𝑚)) and policies 𝜋(1), . . . , 𝜋(𝑚) such that for all 𝑖,

𝜋(𝑖)(𝑥(𝑖)) = 𝑎(𝑖) ̸= 𝜋⋆(𝑥(𝑖)), and 𝜋(𝑖)(𝑥(𝑗)) = 𝜋⋆(𝑥(𝑗)) ∀𝑗 ̸= 𝑖 : 𝑥(𝑗) ̸= 𝑥(𝑖).

These definitions are closely related: It is simple to see that

spol𝜋⋆ (Π) ≤ spol𝜋⋆ (Π) ≤ (𝐴− 1) · spol𝜋⋆ (Π), (B.11)

and that both of these inequalities can be tight in the worst case. To obtain distribution-free bounds
based on the star number, we recall the following key result of Hanneke and Yang (2015).52

Theorem B.5 (Star number bounds disagreement coefficient (Hanneke and Yang 2015)). For all
policies 𝜋⋆,

sup
𝒟

sup
𝜀>0

𝜃pol
𝒟,𝜋⋆(Π, 𝜀) ≤ spol𝜋⋆ (Π). (B.12)

This result immediately implies that AdaCB enjoys logarithmic regret for any function class with
bounded policy star number.

Corollary B.1 (Distribution-free bound for AdaCB). For any function class ℱ , AdaCB with Option

I has

E[Reg] = ̃︀𝑂(︃spol𝜋⋆ (Π) ·𝐴 log|ℱ|
Δ

)︃
. (B.13)

52Technically, the original theorem in Hanneke and Yang (2015) only holds the binary case, but the
multiclass case here follows immediately by applying the theorem with the collection of binary classifiers
ℋ = {𝑥 ↦→ I{𝜋(𝑥) ̸= 𝜋⋆(𝑥)} | 𝜋 ∈ Π}.
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One slightly unsatisfying feature of our lower bounds based on the disagreement coefficient
(Theorem B.2/Theorem B.4) is that they are worst-case in nature, and rely on an adversarially
constructed policy class. Our next theorem shows that (B.13) is near-optimal for any policy class Π

(albeit, in the worst case over all value function classes ℱ inducing Π). This means that if we take
the policy class Π as a given rather than the value function class ℱ , bounded policy star number is
both necessary and sufficient for logarithmic regret.

Theorem B.6. Let a policy class Π, 𝜋⋆ ∈ Π, and gap Δ ∈ (0, 1/8) be given. Then there exists a
value function class ℱ such that

1. Π = {𝜋𝑓 | 𝑓 ∈ ℱ}, and in particular some 𝑓⋆ ∈ ℱ has 𝜋⋆ = 𝜋𝑓⋆ .

2. Each 𝑓 ∈ ℱ has uniform gap Δ.

3. For any algorithm with E[Reg] ≤ Δ𝑇

16spol
𝜋⋆

(Π)
for all instances realizable by ℱ , there exists an

instance with 𝑓⋆ as the Bayes reward function such that

E[Reg] = Ω

(︃
spol𝜋⋆ (Π)

Δ

)︃
. (B.14)

This bound scales with the strong variant of the policy disagreement coefficient rather than the
(smaller) weak variant, but does not directly scale with the number of actions. Hence, the dependence
matches the upper bound of AdaCB in (B.13) whenever the second inequality in (B.11) saturates
(since spol𝜋⋆ (Π) can itself scale with the number of actions). We suspect that the lower bound is tight
and that the upper bound can be improved to scale with spol𝜋⋆ (Π), with no explicit dependence on the
number of actions.

Unlike the upper bound (B.13), the lower bound (B.14) does not scale with log|ℱ|. This does
not appear to be possible to resolve without additional assumptions, as there are classes for which
(B.14) is tight (consider 𝑑 independent multi-armed bandit problems), as well as classes for which
(B.13) is tight (cf. Theorem B.2). Similar issues arise in lower bounds for active learning (Hanneke
and Yang 2015). However in the full version of Theorem B.6 (Theorem D.1 of Foster et al. (2020)),
we are able to strengthen the lower bound to roughly Ω

(︁
spol
𝜋⋆

(Π)+log|ℱ|
Δ

)︁
for Natarajan classes.

Scale-Sensitive Guarantees for the Distribution-Free Setting

We now extend our development based on the star number to give distribution-free upper bounds on
the value function disagreement coefficient. Compared to the policy-based setting, where we were
able to simply appeal to upper bounds from Hanneke and Yang (2015), scale-sensitive analogues of
the star number have not been studied in the literature to our knowledge. This leads us to introduce
the following definition.

Definition B.3 (Value function star number). Let šval𝑓⋆(ℱ ,Δ) be the length of the longest sequence of
context-action pairs (𝑥(1), 𝑎(1)), . . . , (𝑥(𝑚), 𝑎(𝑚)) such that for all 𝑖, there exists 𝑓 (𝑖) ∈ ℱ such that

|𝑓 (𝑖)(𝑥(𝑖), 𝑎(𝑖))− 𝑓⋆(𝑥(𝑖), 𝑎(𝑖))| > Δ, and
∑︁
𝑗 ̸=𝑖

(𝑓 (𝑖)(𝑥(𝑗), 𝑎(𝑗))− 𝑓⋆(𝑥(𝑗), 𝑎(𝑗)))2 ≤ Δ2.
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The value function star number is defined as sval𝑓⋆(ℱ ,Δ0) := supΔ>Δ0
šval𝑓⋆(ℱ ,Δ).

When the function class ℱ is {0, 1}-valued, the value function star number coincides with the
policy star number, i.e. sval𝑓⋆(ℱ , 1) = spol𝑓⋆ (ℱ). In general though, for a given class ℱ , the policy star
number for the induced class can be arbitrarily large compared to the value function star number.53

Proposition B.2. For every 𝑑 ∈ N, there exists a class ℱ and 𝑓⋆ ∈ ℱ such that supΔ sval𝑓⋆(ℱ ,Δ) ≤ 5

and spol𝜋⋆ (Π) ≥ 𝑑.

Generalizing the result of Hanneke and Yang (2015), we show that the value function star number
bounds the value function disagreement coefficient for all distributions and all scale levels.

Theorem B.7 (Value function star number bounds disagreement coefficient). For any uniform
Glivenko-Cantelli class ℱ and 𝑓⋆ : 𝒳 ×𝒜 → [0, 1],

sup
𝒟

sup
𝜀>0

𝜃val
𝒟;𝑓⋆(ℱ ,Δ, 𝜀) ≤ 4(sval𝑓⋆(ℱ ,Δ))2, ∀Δ > 0. (B.15)

Compared to the bound for the policy star number (Theorem B.5), Theorem B.7 is worse by a
quadratic factor when specialized to discrete function classes. Improving (B.15) to be linear in the
star number is an interesting technical question. The assumption that ℱ is uniform Glivenko-Cantelli
is quite weak and arises for technical reasons: compared to the policy star number, which always
bounds the VC/Natarajan dimension, boundedness of the value function star number is not sufficient
to ensure that ℱ enjoys uniform convergence.

The main takeaway from Theorem B.7 is that AdaCB with Option II guarantees

E[Reg] = ̃︀𝑂(︃ (sval𝑓⋆(ℱ ,Δ/2))2 ·𝐴 log|ℱ|
Δ

)︃
, (B.16)

for any distribution. Following our development for the policy star number, we now turn our attention
to establishing the necessity of the value function star number for gap-dependent regret bounds. Our
lower bound depends on the following “weak” variant of the parameter.

Definition B.4 (Value function star number (weak variant)). For any Δ ∈ (0, 1) and 𝜀 ∈ (0,Δ/2),
define sval𝑓⋆(ℱ ,Δ, 𝜀) be the length of the largest sequence of points 𝑥(1), . . . , 𝑥(𝑚) such that for all 𝑖,
there exists 𝑓 (𝑖) ∈ ℱ , such that

1. 𝑓 (𝑖)(𝑥(𝑖), 𝜋𝑓(𝑖)(𝑥(𝑖))) ≥ max𝑎 ̸=𝜋
𝑓(𝑖)

(𝑥(𝑖)) 𝑓
(𝑖)(𝑥(𝑖), 𝑎) + Δ and 𝜋𝑓(𝑖)(𝑥(𝑖)) ̸= 𝜋⋆(𝑥(𝑖)).

2. max𝑎|𝑓 (𝑖)(𝑥(𝑖), 𝑎)− 𝑓⋆(𝑥(𝑖), 𝑎)| ≤ 2Δ

3.
∑︀
𝑗 ̸=𝑖max𝑎|𝑓 (𝑖)(𝑥(𝑗), 𝑎)− 𝑓⋆(𝑥(𝑗), 𝑎)|2 < 𝜀2.

Relative to the basic value function star number, the key difference above is that we allow a
separate scale parameter to control the sum constraint in Item 3 above. This is important to prevent

53Interestingly, this construction also shows that in general, the value function star number for ℱ can be
arbitrarily small compared to the fat-shattering dimension. This is somewhat counterintuitive because the
star number for a policy class always upper bounds its VC dimension.
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passive information leakage in our lower bound construction, but we suspect this condition can be
relaxed to more closely match Definition B.3. Our main lower bound is as follows.54

Theorem B.8. Let a function class ℱ and 𝑓⋆ ∈ ℱ with uniform gap Δ be given. Let 𝜀𝑇 ∈ (0,Δ/4)

be the largest solution to the equation55

𝜀2𝑇𝑇 ≤ sval𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 ). (B.17)

Then there exists a distribution 𝒟 such that for any algorithm with E[Reg] ≤ 2−6 Δ𝑇
sval
𝑓⋆

(ℱ,Δ/2,𝜀𝑇 )
on all

instances realizable by ℱ , there exists an instance with 𝑓⋆ as the Bayes reward function such that

E[Reg] = Ω

(︃
sval𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 )

Δ

)︃
. (B.18)

As mentioned before, we suspect that the linear scaling in (B.18) is correct and that (B.16) can
be improved to match. The dependence on the additional scale parameter 𝜀𝑇 is more subtle, and
requires further investigation.

B.1.5 Adversarial Contexts and the Eluder Dimension

The eluder dimension (Russo and Van Roy 2013) is another combinatorial parameter which was
introduced to analyze the regret for general function class variants of the UCB algorithm and
Thompson sampling for contextual bandits with adversarial contexts.56 We recall the definition
here.57

Definition B.5 (Value function eluder dimension). Let ěval𝑓⋆(ℱ ,Δ) be the length of the longest sequence
of context-action pairs (𝑥(1), 𝑎(1)), . . . , (𝑥(𝑚), 𝑎(𝑚)) such that for all 𝑖, there exists 𝑓 (𝑖) ∈ ℱ such that

|𝑓 (𝑖)(𝑥(𝑖), 𝑎(𝑖))− 𝑓⋆(𝑥(𝑖), 𝑎(𝑖))| > Δ, and
∑︁
𝑗<𝑖

(𝑓 (𝑖)(𝑥(𝑗), 𝑎(𝑗))− 𝑓⋆(𝑥(𝑗), 𝑎(𝑗)))2 ≤ Δ2. (B.19)

The value function eluder dimension is defined as eval𝑓⋆(ℱ ,Δ0) = supΔ>Δ0
ěval(ℱ ,Δ).

The only difference between the value function star number and the value function eluder
dimension is whether the sum in (B.19) takes the form “

∑︀
𝑗 ̸=𝑖” or “

∑︀
𝑗<𝑖”; the latter reflects the

stronger sequential structure present when contexts are adversarial. It is immediate that

sval𝑓⋆(ℱ ,Δ) ≤ eval𝑓⋆(ℱ ,Δ). (B.20)

However, the separation between the two parameters can be arbitrarily large in general.
54To avoid technical conditions involving the boundary of the interval [0, 1], we allow for unit Gaussian

rewards with means in [0, 1] for this lower bound.
55There is always at least one solution to (B.17), since we can take 𝜀𝑇 = 0.
56In the adversarial context setting we allow the contexts 𝑥1, . . . , 𝑥𝑇 to be chosen by an adaptive adversary,

but we still assume that 𝑟𝑡 ∼ P𝑟(· | 𝑥𝑡) at each round.
57This definition differs slightly from that of Russo and Van Roy (2013), and in fact is always smaller (yet

still sufficient to analyze UCB and Thompson sampling). The original definition allows Δ in (B.19) to vary
as a function of the index 𝑖.
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Proposition B.3. For every 𝑑 ∈ N and Δ ∈ (0, 1) there exists ℱ and 𝑓⋆ ∈ ℱ such that
supΔ′ sval𝑓⋆(ℱ ,Δ′) ≤ 2 and eval𝑓⋆(ℱ ,Δ/2) ≥ 𝑑.

While (B.20) shows that boundedness of the eluder dimension is sufficient for AdaCB achieve
logarithmic regret for stochastic contexts (via (B.16)), Proposition B.3, shows that it may lead to
rather pessimistic upper bounds. This is not surprising, since the eluder dimension was designed to
accomodate adversarially chosen contexts. The next result, which is a small refinement of the analysis
of Russo and Van Roy (2013), shows that bounded eluder dimension indeed suffices to guarantee
logarithmic regret for the adversarial setting; we defer a precise description of the algorithm to the
proof.

Proposition B.4. For the adversarial context setting, the general function class UCB algorithm—
when configured appropriately—guarantees that

E[Reg] = ̃︀𝑂(︃eval𝑓⋆(ℱ ,Δ/2) · log|ℱ|
Δ

)︃
(B.21)

for any instance with uniform gap Δ.

Paralleling our results for the value function star number, we show that boundedness of a weak
variant of the value function eluder dimension is required for logarithmic regret with adversarial
contexts.

Definition B.6 (Value function eluder dimension (weak variant)). For any Δ ∈ (0, 1) and 𝜀 ∈
(0,Δ/4), define eval𝑓⋆(ℱ ,Δ, 𝜀) be the length of the largest sequence of contexts 𝑥(1), . . . , 𝑥(𝑚) such that
for all 𝑖, there exists 𝑓 (𝑖) ∈ ℱ , such that

1. 𝑓 (𝑖)(𝑥(𝑖), 𝜋𝑓(𝑖)(𝑥(𝑖))) ≥ max𝑎̸=𝜋
𝑓(𝑖)

(𝑥(𝑖)) 𝑓
(𝑖)(𝑥(𝑖), 𝑎) + Δ and 𝜋𝑓(𝑖)(𝑥(𝑖)) ̸= 𝜋⋆(𝑥(𝑖)).

2. max𝑎|𝑓 (𝑖)(𝑥(𝑖), 𝑎)− 𝑓⋆(𝑥(𝑖), 𝑎)| ≤ 2Δ

3.
∑︀
𝑗<𝑖max𝑎|𝑓 (𝑖)(𝑥(𝑗), 𝑎)− 𝑓⋆(𝑥(𝑗), 𝑎)|2 < 𝜀2.

Our main lower bound here shows that—with the same caveats as Theorem B.8—the scaling in
(B.21) is near-optimal.58

Theorem B.9. Let a function class ℱ and 𝑓⋆ ∈ ℱ with uniform gap Δ be given. Let 𝜀𝑇 ∈ (0,Δ/4)

be the largest solution to the equation

𝜀2𝑇𝑇 ≤ eval𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 ). (B.22)

Then there exists a distribution 𝒟 such that for any algorithm with E[Reg] ≤ 2−6 Δ𝑇
eval
𝑓⋆

(ℱ,Δ/2,𝜀𝑇 )
on

all instances realizable by ℱ , there exists an a sequence {𝑥𝑡}𝑇𝑡=1 and instance with 𝑓⋆ as the Bayes
reward function such that

E[Reg] = Ω

(︃
eval𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 )

Δ

)︃
. (B.23)

58As with Theorem B.8, we allow for unit Gaussian rewards with means in [0, 1] for this lower bound.
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Relating the eluder dimension to the disagreement coefficient An immediate conse-
quence of Theorem B.7 and (B.20) is that we always have 𝜃val(ℱ ,Δ, 𝜀) ≤ 𝑂(eval(ℱ ,Δ)2). While this
bound scales quadratically, we can show through a more direct argument that the value function
disagreement coefficient grows at most linearly with the eluder dimension.

Theorem B.10 (Value function eluder dimension bounds disagreement coefficient). For any uniform
Glivenko-Cantelli class ℱ and 𝑓⋆ : 𝒳 ×𝒜 → [0, 1],

sup
𝒟

sup
𝜀>0

𝜃val
𝒟;𝑓⋆(ℱ ,Δ, 𝜀) ≤ 4eval𝑓⋆(ℱ ,Δ), ∀Δ > 0. (B.24)

This result strongly suggests that the quadratic dependence on the value function star number in
Theorem B.7 can be improved.

The Policy Eluder Dimension

Previous work which uses the eluder dimension to analyze algorithms for contextual bandits and
reinforcement learning (Russo and Van Roy 2013, Osband and Van Roy 2014, Ayoub et al. 2020,
Wang et al. 2020b) only works with the value function-based formulation in Definition B.5. In light
of our results for the disagreement coefficient and star number, we propose the following policy-based
variant of the eluder dimension.

Definition B.7 (Policy eluder dimension). For any policy 𝜋⋆ and policy class Π, let the policy
eluder dimension epol𝜋⋆ (Π) denote the largest number 𝑚 such that there exist context-action pairs
(𝑥(1), 𝑎(1)), . . . , (𝑥(𝑚), 𝑎(𝑚)) and policies 𝜋(1), . . . , 𝜋(𝑚) such that for all 𝑖,

𝜋(𝑖)(𝑥(𝑖)) = 𝑎(𝑖) ̸= 𝜋⋆(𝑥(𝑖)), and 𝜋(𝑖)(𝑥(𝑗)) = 𝜋⋆(𝑥(𝑗)) ∀𝑗 < 𝑖 : 𝑥(𝑗) ̸= 𝑥(𝑖)

Of course, we immediately have that

spol𝜋⋆ (Π) ≤ epol𝜋⋆ (Π). (B.25)

We are not yet aware of any upper bounds based on the policy eluder dimension, but we can show
that boundedness of this parameter is indeed necessary for logarithmic regret in the adversarial
context setting (in a worst-case sense).

Theorem B.11. Consider the adversarial context setting. Let a policy class Π, 𝜋⋆ ∈ Π, and gap
Δ ∈ (0, 1/8) be given. Then there exists a value function class ℱ such that:

1. Π = {𝜋𝑓 | 𝑓 ∈ ℱ}, and in particular some 𝑓⋆ ∈ ℱ has 𝜋⋆ = 𝜋𝑓⋆ .

2. Each 𝑓 ∈ ℱ has uniform gap Δ.

3. For any algorithm with E[Reg] ≤ Δ𝑇

32epol
𝜋⋆

(Π)
for all instances realizable by ℱ , there exists a

sequence {𝑥𝑡}𝑇𝑡=1 and instance with 𝑓⋆ as the Bayes reward function such that

E[Reg] = Ω

(︃
epol𝜋⋆ (Π)

Δ

)︃
. (B.26)
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B.1.6 Discussion

Proof Techniques

Policy disagreement-based upper bound (Theorem B.1) Our proof of Theorem B.1
builds on the regret analysis framework established in Simchi-Levi and Xu (2022), which interprets
IGW as maintaining a distribution over policies in the universal policy space 𝒜𝒳 , and shows that
the induced distribution of policies is a solution to an implicit optimization problem which (when
configured appropriately) provides a sufficient condition for minimax contextual bandit learning.
Following this framework, we also view AdaCB’s sequential IGW procedure as implicitly maintaining
a sequence of distributions over policies, but with an additional key property: the support of the
implicit distribution over policies is adaptively shrinking. This is enabled by AdaCB’s elimination
procedure and is essential to our instance-dependent analysis. We show that the implicit distribution
over policies given by AdaCB is a solution to a novel data-driven implicit optimization problem,
which, when configured appropriately by adaptively selecting the learning rate with Option I,
provides a sufficient condition for optimal policy disagreement-based instance-dependent contextual
bandit learning. Our proof introduces several new techniques to instance-dependent analysis of
contextual bandits, including using disagreement-based indicators and disagreement probability to
obtain faster policy convergence rates. We also remark that the selection of the adaptive learning rate
is non-trivial, and we derive the schedule Option I by carefully balancing key quantities appearing
in our analysis. See Foster et al. (2020) for the detailed proof.

Value function disagreement-based upper bound (Theorem B.3) The proof of
Theorem B.3 consists of two steps. In the first step, we build on the minimax analysis framework of
Simchi-Levi and Xu (2022) and show that AdaCB with Option II always guarantees the minimax
rate. A new trick that we use here is to carefully track the adaptive value of 𝜆𝑚 and use it to infer
the exploration cost under the current instance. In the second step, we establish the 𝜃val·𝐴 log |ℱ|

Δ -type
instance-dependent upper bound for regret. The analysis is driven by a key inequality (Lemma C.21
of Foster et al. (2020)), which provides a sharp upper bound on E𝒟[𝑤(𝑥;ℱ𝑚)] in terms of the ratio
𝜃val

Δ . Beyond giving a means to bound the (expected) instantaneous regret in terms of 𝜃val and Δ,
this allows us to adaptively maintain an estimated lower bound for 𝜃val

Δ based on empirical data. We
then use an induction argument to show that the specification of 𝛾𝑚 in Option II enables AdaCB to
enjoy a near-optimal instance-dependent guarantee.

Lower bounds Our lower bounds build on the work of Raginsky and Rakhlin (2011), which
provides information-theoretic lower bounds for passive and active learning in terms of the disagree-
ment coefficient. As in this work, we rely on a specialized application of the Fano method using the
reverse KL-divergence, but with some refinements to make the technique more suited for regret lower
bounds. For Theorem B.2, we also incorporate improvements to the method suggested by Hanneke
(2014) to obtain the correct dependence on log|ℱ|.

Value function star number bounds disagreement coefficient (Theorem B.7) The
proof of Theorem B.7 is somewhat different from the proof of the analogous policy-based result
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by Hanneke and Yang (2015). The key step toward proving Theorem B.7 is to prove an empirical
analogue of the result that holds whenever 𝒟 is uniform over a finite sequence of examples. This
result is given in Lemma E.1 of the full version of our paper (Foster et al. 2020), and is motivated
by a property of the eluder dimension established in Proposition 3 of Russo and Van Roy (2013),
with their “

∑︀
𝑗<𝑖”-based definition changed to our “

∑︀
𝑗 ̸=𝑖”-based definition. The proof of our result is

trickier, however, as our “
∑︀
𝑗 ̸=𝑖”-based definition breaks several combinatorial properties utilized in

the proof of Russo and Van Roy (2013). We address this challenge by proving a new combinatorial
lemma (Lemma E.3 of Foster et al. (2020)), which is fairly general and may be interesting on its own
right. Nevertheless, our upper bound is quadratic in sval𝑓⋆(ℱ ,Δ) rather than linear, and we hope that
this dependence can be improved in future work.

Related Work

Gap-dependent regret bounds for contextual bandits have not been systematically studied at the
level of generality we consider here, and we are not aware of any prior lower bounds beyond the linear
setting. Most prior work has focused on structured function classes such as linear (Dani et al. 2008,
Abbasi-Yadkori et al. 2011, Hao et al. 2019) and nonparametric Lipschitz/Hölder classes (Rigollet
and Zeevi 2010, Perchet and Rigollet 2013, Hu et al. 2020).

Our work draws inspiration from Krishnamurthy et al. (2017), who defined variants of the
disagreement coefficient which depend on scale-sensitive properties of the class ℱ in the context of
cost-sensitive multiclass active learning. Compared to these results, the key difference is that our
value function disagreement coefficient is defined in terms of the 𝐿2 ball for the class ℱ rather than
the excess risk ball for the induced policy class. This change is critical to ensure that the value
function disagreement coefficient is bounded by the value function star number, and in particular
that it is always bounded for linear classes.

Our work also builds on Foster et al. (2018), who give instance-dependent guarantees for the
generalized UCB algorithm and an action elimination variant for general function classes based on
the cost-sensitive multiclass disagreement coefficients introduced in Krishnamurthy et al. (2017).
We improve upon this result on several fronts: 1) As mentioned above, our notion of value function
disagreement coefficient is tighter, and is always bounded by the value function star number and
value function eluder dimension 2) we attain optimal dependence on the gap, 3) our algorithms are
guaranteed to attain the minimax rate in the worst case, and 4) we complement these results with
lower bounds.

Lastly, we mention that while there are no prior lower bounds for contextual bandits based on
the eluder dimension, Wen and Van Roy (2017) give an eluder-based lower bound for reinforcement
learning with deterministic transitions and known rewards. This result is closer in spirit to our
disagreement-based lower bounds (Theorems B.2 and B.4), is it applies to a carefully constructed
function class rather than holding for all function classes, and mainly serves to demonstrate the
worst-case tightness of a particular upper bound.
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B.1.7 Extensions

We conclude this section by presenting some basic extensions of our contextual bandit results,
including extensions of our regret bounds to handle infinite classes and weaker noise conditions.

Infinite function classes As we have mentioned, Algorithm 3.1, Theorem B.1 and Theorem B.3
trivially extend to infinite ℱ , with the dependence on log |ℱ| in the algorithm’s parameters and the
regret bounds replaced by standard learning-theoretic complexity measures such as the pseudodimen-
sion, (localized) Rademacher complexity, or metric entropy. This is because the analysis of AdaCB

(see Appendix C of Foster et al. (2020)) does not rely on any complexity assumptions for ℱ , except
for Lemma C.1 of Foster et al. (2020), which uses a standard uniform martingale concentration
bound for the square loss to show that the empirical risk minimizer ̂︀𝑓𝑚 has low excess risk at each
epoch. Therefore, to extend our results to infinite ℱ , one only needs to replace Lemma C.1 of Foster
et al. (2020) with an analogous uniform martingale concentration inequality for infinite classes. Such
results have already been established in the literature, see, e.g., Krishnamurthy et al. (2017) and
Foster et al. (2018).

Alternative noise conditions Beyond uniform gap, AdaCB can also adapt to the Tsybakov
noise condition (Mammen and Tsybakov 1999, Tsybakov 2004, Audibert and Tsybakov 2007, Rigollet
and Zeevi 2010, Hu et al. 2020), as the following proposition shows.

Proposition B.5 (Regret under the Tsybakov noise condition). Suppose there exist constants
𝛼, 𝛽 ≥ 0 such that

P𝒟

(︂
𝑓⋆(𝑥, 𝜋⋆(𝑥))− max

𝑎̸=𝜋⋆(𝑥)
𝑓⋆(𝑥, 𝑎) ≤ 𝛾

)︂
≤ 𝛽𝛾𝛼, ∀𝛾 ≥ 0.

Then Algorithm 3.1 with Option I ensures that

E[Reg] = ̃︀𝑂(1) ·min
𝜀>0

max

{︂
𝜀𝑇,
(︀
𝜃pol(Π, 𝜀)𝐴 log |ℱ|

)︀ 1+𝛼
2+𝛼 𝑇

1
2+𝛼

}︂
+ ̃︀𝑂(1).

Tightening the value function disagreement coefficient The supremum over the action
distribution 𝑝 in the definition (B.7) of the value function disagreement coefficient is more pessimistic
than what is actually required to analyze AdaCB. Consider the following action distribution-dependent
definition:

𝜃val
𝒟,𝑝;𝑓⋆(ℱ ,Δ0, 𝜀0) = sup

Δ>Δ0,𝜀>𝜀0

Δ2

𝜀2
P𝒟,𝑝

(︁
∃𝑓 ∈ ℱ : |𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)| > Δ, ‖𝑓 − 𝑓⋆‖𝒟,𝑝 ≤ 𝜀

)︁
.

(B.27)
The regret bound in Theorem B.3 can be tightened to depend on sup𝑝∈𝒫 𝜃val

𝒟,𝑝;𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 ), where 𝒫
is a set of action distributions with favorable properties that can lead to tighter bounds. In particular,
the proof of Theorem B.3 implies that for any instance with uniform gap Δ, if 𝜃val

𝒟,𝑝;𝑓⋆(ℱ ,Δ/2, 𝜀𝑇 ) ≤ 𝜃

for all 𝑝 such that 𝑝(𝜋⋆(𝑥)|𝑥) ≥ 𝐴−1 for all 𝑥, then AdaCB with Option II ensures that

E[Reg] = ̃︀𝑂(1) ·min

{︂√︀
𝐴𝑇 log|ℱ|, 𝜃𝐴 log|ℱ|

Δ

}︂
+𝑂(1).
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The following result shows that this property leads to dimension-independent bounds for sparse
linear function classes.

Proposition B.6. Consider the function class ℱ =
{︀
(𝑥, 𝑎) ↦→ ⟨𝑤, 𝜑(𝑥, 𝑎)⟩ | 𝑤 ∈ R𝑑, ‖𝑤‖0 ≤ 𝑠

}︀
,

where ‖𝜑(𝑥, 𝑎)‖∞ ≤ 1. Define Σ⋆ = E𝒟
[︀
𝜑(𝑥, 𝜋⋆(𝑥))𝜑(𝑥, 𝜋⋆(𝑥))⊤

]︀
, and let 𝜆re = inf𝑤 ̸=0,‖𝑤‖0≤2𝑠⟨𝑤,Σ⋆𝑤⟩/‖𝑤‖

2
2

be the restricted eigenvalue. Then ∀Δ, 𝜀 > 0,

𝜃val
𝒟,𝑝;𝑓⋆(ℱ ,Δ, 𝜀) ≤ 2𝛼−1𝜆−1

re 𝑠

for all 𝑝 such that 𝑝(𝜋⋆(𝑥)|𝑥) ≥ 𝛼 for all 𝑥.

As a concrete example, if 𝜑(𝑥, 𝜋⋆(𝑥)) ∼ Unif({±1}𝑑) we have 𝜆re = 1, so that the bound is
indeed dimension-independent.

Handling multiple optimal actions For simplicity, we assume that argmax𝑎∈𝒜 𝑓
⋆(𝑥, 𝑎) is

unique for all 𝑥 in the main body of the paper. When such assumption does not hold, we keep the
original definition of 𝜋⋆(𝑥) (which makes 𝜋⋆(𝑥) unique for each 𝑥 ∈ 𝒳 ), while defining

𝜋⋆set(𝑥) := {𝑎 ∈ 𝒜 | 𝑓⋆(𝑥, 𝑎) = max
𝑎′∈𝒜

𝑓⋆(𝑥, 𝑎′)}, ∀𝑥 ∈ 𝒳 .

We then make the following modifications to our framework. First, we modify the uniform gap
condition (3.2) to require that for all 𝑥 ∈ 𝒳 ,

𝑓⋆(𝑥, 𝜋⋆(𝑥))− 𝑓⋆(𝑥, 𝑎) ≥ Δ ∀𝑎 /∈ 𝜋⋆set(𝑥).

Second, we modify the definition of policy disagreement coefficient to

𝜃pol
𝒟,𝜋⋆(Π, 𝜀0) = sup

𝜀≥𝜀0

P𝒟(𝑥 : ∃𝜋 ∈ Π𝜀 : 𝜋(𝑥) ̸= 𝜋⋆(𝑥))

𝜀
,

where Π𝜀 := {𝜋 ∈ Π : P𝒟(𝜋(𝑥) /∈ 𝜋⋆set(𝑥)) ≤ 𝜀}. By doing so, all our guarantees for AdaCB extend to
the general setting where argmax𝑎∈𝒜 𝑓

⋆(𝑥, 𝑎) may not be unique for some 𝑥 ∈ 𝒳 .

B.2 Details for Results of Reinforcement Learning

In this section, we give disagreement-based guarantees for reinforcement learning with function
approximation in the block MDP setting (cf. Section 3.3.1). The proofs of the results mentioned in
this section can be found in the full version of our paper (Foster et al. 2020).

Before proceeding, let us introduce some additional notation.

Additional notation For any Markov policy 𝜋(𝑥), let Q𝜋
ℎ(𝑥, 𝑎) = E

[︁∑︀𝐻
ℎ′≥ℎ 𝑟ℎ′ | 𝑥ℎ = 𝑥, 𝑎ℎ = 𝑎

]︁
be the corresponding Q-function. We likewise define V𝜋

ℎ(𝑥) = max𝑎∈𝒜 Q𝜋(𝑥, 𝑎), as well as V𝜋 =

E𝑥1
[V𝜋

1 (𝑥1)] and 𝑉 ⋆ = E𝑥1
[𝑉 ⋆1 (𝑥1)]. Next, for any function 𝑉 : 𝒳 → R we define the transition

operator by
[𝑃 ⋆ℎ𝑉 ](𝑥, 𝑎) = E[𝑉 (𝑥ℎ+1) | 𝑥ℎ = 𝑥, 𝑎ℎ = 𝑎].

239



We also define the Bayes reward function as

𝑓⋆(𝑥, 𝑎) = E[𝑟ℎ | 𝑥ℎ = 𝑥, 𝑎ℎ = 𝑎]

for each 𝑥 ∈ 𝒳ℎ. Finally, let ℱ = ℱ1 ×ℱ2 × · · · × ℱ𝐻 be the full regression function class, and define
𝐹max = maxℎ|ℱℎ|.

B.2.1 The Algorithm

Our main reinforcement learning algorithm, RegRL, is presented in Algorithm B.1. The algorithm
follows the optimistic least-squares value iteration framework (Jin et al. 2020, Wang et al. 2019,
2020b), with a few key changes that allow us to prove guarantees based on a suitable notion of
value function disagreement coefficient rather than stronger complexity measures such as the eluder
dimension. The most interesting aspect of the algorithm is a feature we call the star hull upper
confidence bound : Compared to the classical UCB approach, which computes an optimistic 𝑄-function
by taking largest predicted reward amongst all value function in an 𝐿2 ball around an empirical risk
minimizer, we add an additional step which first “lightly convexifies” this set. This step is based on
techniques from the literature on aggregation in least squares (Audibert 2008, Liang et al. 2015), and
leads to more stable predictions.

In more detail, the algorithm proceeds in 𝐾 iterations.59 In each iteration 𝑘, we compute an
optimistic Q-function Q(𝑘) such that

Q(𝑘)

ℎ (𝑥, 𝑎) ≥ 𝑄⋆ℎ(𝑥, 𝑎) for all 𝑥, 𝑎, ℎ. (B.28)

We then take the greedy argmax policy defined by 𝜋(𝑘)(𝑥) = argmax𝑎∈𝒜 Q(𝑘)

ℎ (𝑥, 𝑎) for 𝑥 ∈ 𝒳ℎ, and
gather 𝐻 trajectories as follows: For each ℎ, we roll in to layer ℎ with 𝜋(𝑘), then choose actions
uniformly at random for the rest of the episode. These trajectories are used to refine our value
function estimates for subsequent iterations, with the ℎth trajectory used for estimation at layer ℎ.
Choosing actions uniformly ensures that the data gathered from these trajectories is useful regardless
of the action distribution in subsequent iterations.

Let us now elaborate on the upper confidence bound computation. Let iteration 𝑘 and layer ℎ
be fixed, and suppose we have already computed Q(𝑘)

ℎ+1 and V(𝑘)

ℎ+1(𝑥) := max𝑎∈𝒜 Q(𝑘)

ℎ+1(𝑥, 𝑎). The
first step, following the usual optimistic LSVI schema, is to estimate a value function for layer ℎ by
regressing onto the empirical Bellman backups from the next layer (Line 5):

̂︀𝑓 (𝑘)

ℎ = argmin
𝑓∈ℱℎ

∑︁
𝑗<𝑘

(︀
𝑓(𝑥(𝑗,ℎ)

ℎ , 𝑎(𝑗,ℎ)

ℎ )−
(︀
𝑟(𝑗,ℎ)

ℎ +V(𝑘)

ℎ+1(𝑥
(𝑗,ℎ)

ℎ+1)
)︀)︀2

; (B.29)

here the (𝑗, ℎ) superscript on (𝑥(𝑗,ℎ)

ℎ , 𝑎(𝑗,ℎ)

ℎ , 𝑟(𝑗,ℎ)

ℎ , 𝑥(𝑗,ℎ)

ℎ+1) indicates that the example was collected in the
ℎth trajectory at iteration 𝑗. Assumption 3.3 ensures that this regression problem is well-specified.

59We use the term “iteration” distinctly from the term “episode”, as each iteration consists of multiple
episodes.
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Let 𝒵(𝑘)

ℎ =
{︀
(𝑥(𝑗,ℎ)

ℎ , 𝑎(𝑗,ℎ)

ℎ )
}︀
𝑗<𝑘

, and define

‖𝑓 − 𝑓 ′‖2𝒵 =
∑︁

(𝑥,𝑎)∈𝒵

(𝑓(𝑥, 𝑎)− 𝑓 ′(𝑥, 𝑎))
2
. (B.30)

At this point, the usual optimistic value function for layer ℎ (cf. Russo and Van Roy (2013), Foster
et al. (2018) for contextual bandits and Jin et al. (2020), Wang et al. (2019, 2020b) for RL) is defined
as

Qℎ(𝑥, 𝑎) = sup
{︁
𝑓(𝑥, 𝑎) | 𝑓 ∈ ℱℎ,

⃦⃦
𝑓 − ̂︀𝑓 (𝑘)

ℎ

⃦⃦
𝒵(𝑘)
ℎ

≤ 𝛽ℎ

}︁
,

where 𝛽ℎ is a confidence parameter. As observed in Jin et al. (2020), Wang et al. (2020b), however,
this UCB function can be unstable, leading to issues with generalization when we use it as a target
for least squares at layer ℎ− 1. Our approach to address this problem is to expand the supremum
above to include the star hull of ℱℎ centered at ̂︀𝑓 (𝑘)

ℎ . Define the star hull of ℱℎ centered at 𝑓 ∈ ℱℎ by

star(ℱ , 𝑓) =
⋃︁
𝑓 ′∈ℱ

conv({𝑓 ′, 𝑓}) = {𝑡(𝑓 ′ − 𝑓) + 𝑓 | 𝑓 ′ ∈ ℱ , 𝑡 ∈ [0, 1]}. (B.31)

We define the star hull upper confidence bound (Line 6) by

Q(𝑘)

ℎ (𝑥, 𝑎) = sup
{︁
𝑓(𝑥, 𝑎) | 𝑓 ∈ star(ℱℎ, ̂︀𝑓 (𝑘)

ℎ ),
⃦⃦
𝑓 − ̂︀𝑓 (𝑘)

ℎ

⃦⃦
𝒵(𝑘)
ℎ

≤ 𝛽ℎ

}︁
. (B.32)

When ℱℎ is convex this coincides with the usual upper confidence bound, but in the star hull
operation convexifies ℱℎ along rays emanating from ̂︀𝑓 (𝑘)

ℎ . This small amount of convexification (note
that star(ℱℎ, 𝑓) is still non-convex if, e.g., ℱℎ is a finite class), ensures that Q(𝑘)

ℎ (𝑥, 𝑎) is Lipschitz
as a function of the confidence radius 𝛽ℎ, which stabilizes the predictions and facilitates a tight
generalization analysis.

Oracle efficiency RegRL is oracle-efficient, and can be implemented using an offline regression
oracle as follows.

• At each iteration, the empirical risk minimizer in Line 5 can be computed with a single oracle
call.

• For any (𝑥, 𝑎) pair, the star hull UCB function in Line 6 can be computed by reduction to a
regression oracle. In particular, to compute an 𝜀-approximate UCB:

– For convex function classes, 𝑂(log(1/𝜀)) calls are required.

– For general (in particular, finite) classes, ̃︀𝑂(𝜀−3) oracle calls are required. The key idea
here is that we can reduce ERM over the star hull to ERM over the original class.

See Section 4 of the full version of our paper (Foster et al. 2020) for more details.
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Algorithm B.1 RegRL
input: Value function classes ℱ1, . . . ,ℱ𝐻 . Number of iterations 𝐾.
initialization:

- Let 𝛿 = 1/𝐾𝐻. // Failure probability.

- Let 𝛽2𝐻 = 400𝐻2 log(𝐹max𝐻𝐾𝛿
−1) // Confidence radius.

and 𝛽2ℎ = 1
2𝛽

2
ℎ+1 + 604𝐻2𝐴2𝜃val

ℎ+1(ℱℎ+1, 𝛽ℎ+1𝐾
−1/2)2 log2(𝐻𝐾𝑒) log(2𝐹max𝐻𝐾𝛿

−1) +

700𝐻2𝑆 log(2𝑒𝐾) for all 1 ≤ ℎ ≤ 𝐻 − 1.

algorithm:

1: for iteration 𝑘 = 1, . . . ,𝐾 do
2: Set V(𝑘)

𝐻+1(𝑥) = 0.
3: Define 𝒵 (𝑘)

ℎ =
{︀
(𝑥(𝑗,ℎ)

ℎ , 𝑎(𝑗,ℎ)

ℎ )
}︀
𝑗<𝑘

.
4: for ℎ = 𝐻, . . . , 1 do
5: Set ̂︀𝑓 (𝑘)

ℎ = argmin𝑓∈ℱℎ
∑︀

𝑗<𝑘

(︀
𝑓(𝑥(𝑗,ℎ)

ℎ , 𝑎(𝑗,ℎ)

ℎ )−
(︀
𝑟(𝑗,ℎ)ℎ +V(𝑘)

ℎ+1(𝑥
(𝑗,ℎ)

ℎ+1)
)︀)︀2.

// Compute optimistic value function via star-hull upper confidence

bound.

6: Define

Q(𝑘)

ℎ (𝑥, 𝑎) = sup
{︁
𝑓(𝑥, 𝑎) | 𝑓 ∈ star(ℱℎ, ̂︀𝑓 (𝑘)

ℎ ),
⃦⃦
𝑓 − ̂︀𝑓 (𝑘)

ℎ

⃦⃦
𝒵(𝑘)
ℎ

≤ 𝛽ℎ

}︁
.

7: 𝜋(𝑘)(𝑥) := argmax𝑎∈𝒜Q(𝑘)

ℎ (𝑥, 𝑎) for all 𝑥 ∈ 𝒳ℎ.
8: V(𝑘)

ℎ (𝑥) := max𝑎∈𝒜Q(𝑘)

ℎ (𝑥, 𝑎).

9: for ℎ = 1, . . . ,𝐻 do
10: Gather trajectory (𝑥(𝑘,ℎ)

1 , 𝑎(𝑘,ℎ)

1 , 𝑟(𝑘,ℎ)1 ), . . . , (𝑥(𝑘,ℎ)

𝐻 , 𝑎(𝑘,ℎ)

𝐻 , 𝑟(𝑘,ℎ)𝐻 ) by rolling in with
𝜋(𝑘)

for layers 1, . . . , ℎ−1 and selecting actions uniformly for layers ℎ, . . . ,𝐻 .
11: return 𝜋(𝑘) for 𝑘 ∼ Unif([𝐾]).

B.2.2 Main Result

We now state the main guarantee for RegRL. Our guarantee depends on the following “per-state” gap
and worst-case gap:

Δ(𝑠) = min
𝑎

inf
𝑥∈supp(𝜓(𝑠))

{Δ(𝑥, 𝑎) | Δ(𝑥, 𝑎) > 0},

Δmin = min
𝑠

Δ(𝑠),

where we recall that Δ(𝑥, 𝑎) := 𝑉 ⋆ℎ (𝑥) − 𝑄⋆ℎ(𝑥, 𝑎). We adapt the value function disagreement
coefficient to the block MDP setting as follows. Let 𝜋unif be the policy that selects actions uniformly
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from 𝒜. For each latent state 𝑠 ∈ 𝒮ℎ, we define

𝜃val
𝑠 (ℱℎ, 𝜀0) = sup

𝑓⋆∈ℱℎ
sup
𝜀≥𝜀0

1

𝜀2
E𝑥∼𝜓(𝑠),𝑎∼𝜋unif

sup
{︁
|𝑓(𝑥, 𝑎)− 𝑓⋆(𝑥, 𝑎)|2 | 𝑓 ∈ ℱℎ, ‖𝑓 − 𝑓⋆‖𝑠 ≤ 𝜀

}︁
,

(B.33)

where ‖𝑓‖2𝑠 := E𝑥∼𝜓(𝑠),𝑎∼𝜋unif
[𝑓2(𝑥, 𝑎)]. This notion is closely related to the value function disagree-

ment coefficient (B.7) for the contextual bandit setting via Markov’s inequality, with the context
distribution 𝒟 replaced by the latent state’s emmission distribution 𝜓(𝑠). We additionally define the
total disagreement for layer ℎ by

𝜃val
ℎ (ℱℎ, 𝜀) =

∑︁
𝑠∈𝒮ℎ

𝜃val
𝑠 (ℱℎ, 𝜀),

and define 𝜃val
max(ℱ , 𝜀) = maxℎmax𝑠∈𝒮ℎ 𝜃

val
𝑠 (ℱℎ, 𝜀).

Our main theorem bounding the error of RegRL is as follows. As with our contextual bandit
results, we focus on finite classes ℱ for simplicity, but the result trivially extends to general function
classes.

Theorem B.12. Algorithm B.1 guarantees that

𝑉 ⋆ − E[V𝜋] = ̃︀𝑂(︂𝜃val
max(ℱ , 𝛽𝐻𝐾−1/2)3 ·𝐻5𝐴3𝑆2 log|ℱ|

Δmin𝐾

)︂
,

and does so using at most 𝐻𝐾 trajectories. More generally, the algorithm guarantees that

𝑉 ⋆ − E[V𝜋] = ̃︀𝑂(︂𝐶ℳ · 𝐻
2𝐴3 maxℎ 𝜃

val
ℎ (ℱ , 𝛽ℎ𝐾−1/2)2 log|ℱ|+𝐻3𝑆𝐴

𝐾

)︂
,

where 𝐶ℳ :=
∑︀𝐻
ℎ=1

∑︀
𝑠∈𝒮ℎ

𝜃val
𝑠 (ℱℎ,𝛽ℎ𝐾−1/2)

Δ(𝑠) .

Let us describe a few key features of this theorem and interpret the result.

• First, if 𝜃val
max(ℱ , 𝜀) ∝ polylog(1/𝜀) (e.g., for a linear function class), then—ignoring other

parameters—we can attain an 𝜀-optimal policy using 1
Δmin𝜀

trajectories. This fast rate improves
over the minimax optimal 𝜀−2 rate, and is optimal even for bandits. This is the first fast rate
result we are aware of for reinforcement learning in block MDPs.

• In light of the results in Appendix B.1 this implies that one can attain the fast 1
Δmin𝜀

rate
whenever the value function star number for ℱ is bounded.

• More generally, if 𝜃val
max(ℱ , 𝜀) ∝ 𝜀−𝜌 for 𝜌 < 2/3, then (Δ𝜀)−

2
2−3𝜌 trajectories suffice for an

𝜀-optimal policy. However, the guarantee becomes vacuous once 𝜌 ≥ 2/3. In other words,
bounded disagreement coefficient is essentially for the algorithm to have low error, and it does
not necessarily attain the minimax rate if this fails to hold. Achieving a best-of-both-worlds
guarantee similar to our results for contextual bandits is an interesting direction for future
work.
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• To the best of our knowledge this is the first oracle-efficient algorithm that attains near-optimal
statistical performance in terms of 𝜀 for block MDPs. Of course, this is only achieved in the
low-noise regime where Δmin > 0, and when 𝜃val

max(ℱ , 𝜀) ∝ polylog(1/𝜀).

We emphasize that while the dependence on all of the parameters in Theorem B.12 can almost
certainly be improved, we hope this result will open the door for further disagreement-based algorithms
and analysis techniques in reinforcement learning.

B.2.3 Discussion

Proof Techniques

The proof of Theorem B.12 has two main components. The first part of the proof shows that with
high probability, for all iterations 𝑘 and layers ℎ, the set ℱ (𝑘)

ℎ :=
{︀
𝑓 ∈ ℱℎ | ‖𝑓 − ̂︀𝑓 (𝑘)

ℎ ‖𝒵(𝑘)
ℎ

≤ 𝛽ℎ
}︀

contains the Bellman backup
[︀
𝑃 ⋆ℎV

(𝑘)

ℎ+1

]︀
(𝑥, 𝑎) + 𝑓⋆(𝑥, 𝑎) of the value function from the next layer,

which ensures that Q(𝑘)

ℎ is optimistic in the sense of (B.28) and leads to exploration. Then, in the
second part, we prove a regret decomposition which shows that whenever the optimistic property
holds, the suboptimality of 𝜋(𝑘) is controlled by the gap Δ and the value function disagreement
coefficient 𝜃val.

The first part of the proof (Appendix G of Foster et al. (2020)) boils down to showing that the
empirical risk minimizer in ̂︀𝑓 (𝑘)

ℎ in (B.29) has favorable concentration properties. This is highly non-
trivial because the targets V(𝑘)

ℎ+1 in (B.29) depend on the entire dataset, which breaks the independence
assumptions required to apply standard generalization bounds for least squares. Instead, following Jin
et al. (2020), Wang et al. (2020b), we opt for a uniform generalization bound which holds uniformly
over all possible choices of V(𝑘)

ℎ+1. To do so, we must show that V(𝑘)

ℎ+1 is approximated by a relatively
low complexity function class, which we accomplish as follows. First, we show that—thanks to a
certain Lipschitz property granted by the star hull—Q(𝑘)

ℎ+1 is well approximated by a function

̃︀Q(𝑘)

ℎ+1(𝑥, 𝑎) := sup
{︁
𝑓(𝑥, 𝑎) | 𝑓 ∈ star(ℱℎ+1, ̂︀𝑓 (𝑘)

ℎ+1),
⃦⃦
𝑓 − ̂︀𝑓 (𝑘)

ℎ+1

⃦⃦
ℒ(𝑘)
ℎ+1

≤ ̃︀𝛽ℎ+1

}︁
,

where ̃︀𝛽ℎ+1 ≈ 𝛽ℎ+1, and where

‖𝑓‖2ℒ(𝑘)
ℎ+1

:=
∑︁
𝑗<𝑘

E
𝑥ℎ+1∼𝜓(𝑠(𝑗,ℎ+1)

ℎ+1 ),𝑎∼𝜋unif
[𝑓2(𝑥, 𝑎)]

is the latent state norm, which measures the expected squared error conditioned on the sequence of
latent states ℒ(𝑘)

ℎ+1 := (𝑠(1,ℎ+1), . . . , 𝑠(𝑘−1,ℎ+1)) encountered in the trajectories gathered for layer ℎ+ 1.
This approximation argument is rather non-trivial, and involves a recursion across all layers that
we manage using the disagreement coefficient. With this taken care of, the next step is to use the
block MDP structure to argue that ̃︀Q(𝑘)

ℎ+1 has low complexity. To see this, observe that ̃︀Q(𝑘)

ℎ+1 is
completely determined by the center ̂︀𝑓 (𝑘)

ℎ+1 and the latent state sequence above. Since the latent state
constraint does not depend on the ordering of the latent states, we can use a counting argument to
show that there are at most |ℱ|𝐾𝑂(𝑆) possible choices for ̃︀Q(𝑘)

ℎ+1 overall. This suffices to prove the
desired concentration guarantee.
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The second part of the proof (Appendix F of Foster et al. (2020)) proceeds as follows. Define the
Bellman surplus as

E(𝑘)

ℎ (𝑥, 𝑎) = Q(𝑘)

ℎ (𝑥, 𝑎)−
(︀
𝑓⋆(𝑥, 𝑎) + [𝑃 ⋆ℎV

(𝑘)

ℎ+1](𝑥, 𝑎)
)︀
,

which measures the width for our upper confidence bound. We use a “clipped” regret decomposition
from Simchowitz and Jamieson (2019) to show that whenever the concentration event from the first
part of the proof holds, the suboptimality of 𝜋(𝑘) is controlled by the confidence widths:

𝑉 ⋆ −V𝜋(𝑘)

≲
𝐻∑︁
ℎ=1

∑︁
𝑠∈𝒮ℎ

P𝜋(𝑘)(𝑠ℎ = 𝑠) ·
E𝑥ℎ∼𝜓(𝑠ℎ),𝑎ℎ∼𝜋unif

[︀
E(𝑘)

ℎ (𝑥ℎ, 𝑎ℎ)
2
]︀

Δ(𝑠)
.

In particular, let 𝑛(𝑘,ℎ)(𝑠) denote the number of times the latent state 𝑠 was encountered in the layer
ℎ trajectories prior to iteration 𝑘. Our key observation is that bounded disagreement coefficient
implies that for each state 𝑠,

E𝑥ℎ∼𝜓(𝑠),𝑎ℎ∼𝜋unif

[︀
E(𝑘)

ℎ (𝑥ℎ, 𝑎ℎ)
2
]︀
≲ 𝜃val

𝑠 · 𝛽2
ℎ

𝑛(𝑘,ℎ)(𝑠)
.

In other words, the disagreement coefficient controls the rate at which the confidence width shrinks.
Moreover, since the width for latent state 𝑠 is proportional to the number of times we have visited
the state (even though the algorithm cannot observe this quantity), we can bound the overall
suboptimality across all iterations using similar arguments to those employed in the tabular setting
(Azar et al. 2017, Simchowitz and Jamieson 2019).

Related Work

Our result is closely related to that of Wang et al. (2020b), who gave regret bounds for a variant of
optimistic LSVI based on the eluder dimension of ℱ . Compared to this result, we require the additional
block MDP assumption and finite actions, but our bounds scale with the value function disagreement
coefficient, which can be arbitrarily small compared to the eluder dimension (Proposition B.3). On
the technical side, their algorithm stabilizes the upper confidence bounds using a sensitivity sampling
procedure, whereas we address this issue using the star hull. Ayoub et al. (2020) give similar eluder
dimension-based guarantees for a model-based algorithm, though the notion of eluder dimension is
somewhat stronger, and it is not clear whether this algorithm can be made oracle-efficient.

Reinforcement learning with function approximation in block MDPs has been the subject of
extensive recent investigation (Krishnamurthy et al. 2016, Jiang et al. 2017, Dann et al. 2018, Du
et al. 2019a,b, Misra et al. 2019, Feng et al. 2020, Agarwal et al. 2020a). In terms of assumptions,
we require the rather strong optimistic completeness condition, but do not require any reachability
conditions or any clusterability-type assumptions that facilitate the use of unsupervised learning.
The main advantages of our results are 1) we require only a basic regression oracle for the value
function class, and 2) we attain the optimal 𝜀−1 fast rate in the presence of the gap and bounded
disagreement coefficient.

We should also mention that the gap for 𝑄⋆ has been used in a number of recent results on

245



reinforcement learning with function approximation (Du et al. 2019a, 2020a,b), albeit for a somewhat
different purpose. These results use the gap to prove that certain “non-optimistic” algorithms succeed,
whereas we use it to beat the minimax rate.

Lastly, we note that the value function disagreement coefficient is similar to the “low variance”
parameter used in Du et al. (2019a) to give guarantees for reinforcement learning with linear function
approximation, but can be considerably smaller when applied to block MDPs. For example, in the
trivial case in which each emission distribution 𝜓(𝑠) is a singleton, the value function disagreement
coefficient is automatically bounded by 1, while the low variance assumption may not be satisfied
unless the latent MDP is near-deterministic.
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Appendix C

Suppmentary Material for Chapter 4

C.1 General Scheme to Construct Hard Families of Instances

Recall that Section 4.2.1 gives specific numerical values for the parameters that define the model
class ℳ used in our lower bound construction. The precise values are not critical for our proof, and
in this section we give general conditions on the parameters under which one can derive a similar
lower bound. In doing so, we also provide some intuition behind the specific choice of parameters
used for Theorem 4.1.

In more detail, for any tuple of parameters (𝜃1, 𝛼1, 𝛽1; 𝜃2, 𝛼2, 𝛽2;𝑤), we consider the family of
MDPs ℳ given by

ℳ1 :=
⋃︁

𝐼∈ℐ𝜃1

𝑀𝛼1,𝛽1,𝑤,𝐼 , ℳ2 :=
⋃︁

𝐼∈ℐ𝜃2

𝑀𝛼2,𝛽2,𝑤,𝐼 , ℳ := ℳ1 ∪ℳ2.

There are 7 independent scalars in the tuple, all of which lie in [0, 1]: 𝜃1, 𝛼1, 𝛽1, 𝜃2, 𝛼2, 𝛽2, 𝑤; note
that the parameter 𝑤 is shared between ℳ1 and ℳ2. The family ℳ above can be used to derive a
hardness result similar to Theorem 4.1 as long as the following three general equality and inequality
constraints are satisfied.

• All 𝑀 ∈ ℳ have the same marginal distribution for 𝑠′ under the process 𝑠 ∼ Unif(𝒮1),
𝑠′ ∼ 𝑃 (𝑠, a):

𝜃1𝛼1 = 𝜃2𝛼2, and (1− 𝜃1)𝛽1 = (1− 𝜃2)𝛽2. (C.1)

This ensures that the learner cannot trivially test whether 𝑀 ∈ ℳ1 or ℳ2 using marginals,
which is tacitly used in the proof of Lemma 4.2.

• The parameters 𝜃1, 𝛼1, 𝛽1, 𝜃2, 𝛼2, 𝛽2 are bounded away from 0 and 1:

𝜃1, 𝛼1, 𝛽1, 𝜃2, 𝛼2, 𝛽2 ∈ (0, 1). (C.2)

In particular, the distance from the boundary should be a constant independent of 1
|𝒮| and 𝛾.

• In state s (i.e., the only state where the two actions have distinct effects), action 1 is strictly
better (resp. worse) than action 2 if 𝑀 ∈ ℳ1 (resp. 𝑀 ∈ ℳ2), which means 𝑤/(1 − 𝛾) =
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𝑄⋆𝑀 (s, 1) > 𝑄⋆𝑀 (s, 2) = 𝛾𝛼1(1 − 𝛾) (resp. 𝑤/(1 − 𝛾) = 𝑄⋆𝑀 (s, 1) < 𝑄⋆𝑀 (s, 2) = 𝛾𝛼2(1 − 𝛾)).
This means

𝛾𝛼1 < 𝑤 < 𝛾𝛼2. (C.3)

The final lower bound depends on this separation quantitatively.

Any tuple simultaneously satisfying Eqs. (C.1) to (C.3) is sufficient for our proof (modulo numerical
differences). Naturally, the numerical values for the function class ℱ defined in (4.2) must be changed
accordingly so that the class contains 𝑄⋆ for both ℳ1 and ℳ2.

C.2 Computation of Value Functions (Proposition 4.1)

In this section, we verify Proposition 4.1, which asserts that for all 𝜋, 𝑄𝜋𝑀 = 𝑓1 for all 𝑀 ∈ ℳ1 and
𝑄𝜋𝑀 = 𝑓2 for all 𝑀 ∈ ℳ2, where 𝑓1 and 𝑓2 are defined in (4.2). Note that the calculation we present
here is based on the precise values for the parameters (𝜃1, 𝛼1, 𝛽1; 𝜃2, 𝛼2, 𝛽2;𝑤) given in Section 4.2.1,
not the general scheme given in Appendix C.1.
Proof of Proposition 4.1. Suppose 𝑀 ∈ ℳ1. Let 𝐼𝑀 denote the planted subset associated with 𝑀 .
First, for any self-looping terminal state 𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍}, since all actions in 𝒜 have identical effects,
we have

𝑉 𝜋𝑀 (𝑠) = 𝑄𝜋𝑀 (𝑠, a) =

∞∑︁
ℎ=0

𝛾ℎ𝑅𝛼1,𝛽1,𝑤(𝑠, a) =
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
8𝛾, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

1
3 , 𝑠 = 𝑍

for all 𝜋 : 𝒮 → Δ(𝒜), where we utilize the fact that 𝑅𝛼1,𝛽1,𝑤(𝑊, a) = 𝑤 = 𝛾(𝛼1 + 𝛼2)/2 = 3𝛾/8 and
𝑅𝛼1,𝛽1,𝑤(𝑍, a) = 𝛼1/𝛽1 = 1/3.

Next, for any intermediate state 𝑠 ∈ 𝒮1, since all actions in 𝒜 have identical effects, we have

𝑉 𝜋𝑀 (𝑠) = 𝑄𝜋𝑀 (𝑠, a) = 𝑅𝛼1,𝛽1,𝑤(𝑠, a) + 𝛾E𝑠′∼𝑃𝛼1,𝛽1,𝑤,𝐼𝑀
(𝑠,a)[𝑉

𝜋
𝑀 (𝑠′)]

=

⎧⎨⎩0 + 𝛾[𝛼1𝑉
𝜋
𝑀 (𝑋) + (1− 𝛼1)𝑉

𝜋
𝑀 (𝑌 )], 𝑠 ∈ 𝐼𝑀

0 + 𝛾[𝛽1𝑉
𝜋
𝑀 (𝑍) + (1− 𝛽1)𝑉

𝜋
𝑀 (𝑌 )], 𝑠 ∈ 𝒮1 ∖ 𝐼𝑀

=

⎧⎨⎩
𝛾

1−𝛾 (
1
4 × 1 + 3

4 × 0), 𝑠 ∈ 𝐼𝑀

𝛾
1−𝛾 (

3
4 × 1

3 + 1
4 × 0), 𝑠 ∈ 𝒮1 ∖ 𝐼𝑀

=
𝛾

1− 𝛾

1

4

for all 𝜋 : 𝒮 → Δ(𝒜).
Thus, for the initial state s, we have

𝑄𝜋𝑀 (s, 1) = 𝑅𝛼1,𝛽1,𝑤(s, 1) + 𝛾E𝑠′∼𝑃𝛼1,𝛽1,𝑤,𝐼𝑀
(s,1)[𝑉

𝜋
𝑀 (𝑠′)] = 0 + 𝛾𝑉 𝜋𝑀 (𝑊 ) =

𝛾2

1− 𝛾

3

8
,

𝑄𝜋𝑀 (s, 2) = 𝑅𝛼1,𝛽1,𝑤(s, 2) + 𝛾E𝑠′∼𝑃𝛼1,𝛽1,𝑤,𝐼𝑀
(s,2)[𝑉

𝜋
𝑀 (𝑠′)] = 0 + 𝛾E𝑠′∼Unif(𝐼𝑀 )𝑉

𝜋
𝑀 (𝑠′) =

𝛾2

1− 𝛾

1

4
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for all 𝜋 : 𝒮 → Δ(𝒜).

Therefore, 𝑄𝜋𝑀 (𝑠, 𝑎) = 𝑓1(𝑠, 𝑎) for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜, for all 𝜋 : 𝒮 → Δ(𝒜).

Now suppose 𝑀 ∈ ℳ2. Let 𝐼𝑀 denote the planted subset associated with 𝑀 . For any self-looping
terminal state 𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍}, since all actions in 𝒜 have identical effects, we have

𝑉 𝜋𝑀 (𝑠) = 𝑄𝜋𝑀 (𝑠, a) =

∞∑︁
ℎ=0

𝛾ℎ𝑅𝛼2,𝛽2,𝑤(𝑠, a) =
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3
8𝛾, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

1, 𝑠 = 𝑍

for all 𝜋 : 𝒮 → Δ(𝒜), where we utilize the fact that 𝑅𝛼2,𝛽2,𝑤(𝑊, a) = 𝑤 = 𝛾(𝛼1 + 𝛼2)/2 = 3𝛾/8 and
𝑅𝛼2,𝛽2,𝑤(𝑍, a) = 𝛼2/𝛽2 = 1. For any intermediate state 𝑠 ∈ 𝒮1, since all actions in 𝒜 have identical
effects, we have

𝑉 𝜋𝑀 (𝑠) = 𝑄𝜋𝑀 (𝑠, a) = 𝑅𝛼2,𝛽2,𝑤(𝑠, a) + 𝛾E𝑠′∼𝑃𝛼2,𝛽2,𝑤,𝐼𝑀
(𝑠,a)[𝑉

𝜋
𝑀 (𝑠′)]

=

⎧⎨⎩0 + 𝛾[𝛼2𝑉
𝜋
𝑀 (𝑋) + (1− 𝛼2)𝑉

𝜋
𝑀 (𝑌 )], 𝑠 ∈ 𝐼𝑀

0 + 𝛾[𝛽2𝑉
𝜋
𝑀 (𝑍) + (1− 𝛽2)𝑉

𝜋
𝑀 (𝑌 )], 𝑠 ∈ 𝒮1 ∖ 𝐼𝑀

=

⎧⎨⎩
𝛾

1−𝛾 (
1
2 × 1 + 1

2 × 0), 𝑠 ∈ 𝐼𝑀

𝛾
1−𝛾 (

1
2 × 1 + 1

2 × 0), 𝑠 ∈ 𝒮1 ∖ 𝐼𝑀

=
𝛾

1− 𝛾

1

2

for all 𝜋 : 𝒮 → Δ(𝒜). Thus, for the initial state s, we have

𝑄𝜋𝑀 (s, 1) = 𝑅𝛼2,𝛽2,𝑤(s, 1) + 𝛾E𝑠′∼𝑃𝛼2,𝛽2,𝑤,𝐼𝑀
(s,1)[𝑉

𝜋
𝑀 (𝑠′)] = 0 + 𝛾𝑉 𝜋𝑀 (𝑊 ) =

𝛾2

1− 𝛾

3

8
,

𝑄𝜋𝑀 (s, 2) = 𝑅𝛼2,𝛽2,𝑤(s, 2) + 𝛾E𝑠′∼𝑃𝛼2,𝛽2,𝑤,𝐼𝑀
(s,2)[𝑉

𝜋
𝑀 (𝑠′)] = 0 + 𝛾E𝑠′∼Unif(𝐼𝑀 )𝑉

𝜋
𝑀 (𝑠′) =

𝛾2

1− 𝛾

1

2

for all 𝜋 : 𝒮 → Δ(𝒜). It follows that 𝑄⋆𝑀 (𝑠, 𝑎) = 𝑓2(𝑠, 𝑎) for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜, for all 𝜋 : 𝒮 → Δ(𝒜).
□

C.3 Proof of Lemma 4.1

We now prove Lemma 4.1. Before proceeding, let us note that this lemma is proven only for the
precise values for the parameters (𝜃1, 𝛼1, 𝛽1; 𝜃2, 𝛼2, 𝛽2;𝑤) given in Section 4.2.1. One could establish
a more general lemma using the generic parameters introduced in Appendix C.1, but this would
require changing the numerical constants appearing in the statement.

We begin the proof by lower bounding the regret for any MDP in the family ℳ. For any
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𝑖 ∈ {1, 2}, any MDP 𝑀 ∈ ℳ𝑖, and any policy 𝜋 : 𝒮 → Δ(𝒜), we have

𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (𝜋) = 𝑄⋆𝑀 (s, 𝜋⋆𝑀 (s))−𝑄𝜋𝑀 (s, 𝜋(s))

= 𝑄⋆𝑀 (s, 𝜋⋆𝑀 (s))−𝑄⋆𝑀 (s, 𝜋(s))

= 𝑄⋆𝑀 (s, 𝑖)−𝑄⋆𝑀 (s, 𝜋(s))

≥ 𝛾2

8(1− 𝛾)
P(𝜋(s) ̸= 𝑖), (C.4)

where the second equality follows because s is the only state where different actions have distinct
effects, and the last inequality follows from (4.3).

Now, consider any fixed offline reinforcement learning algorithm which takes the offline dataset
𝐷𝑛 as an input and returns a stochastic policy ̂︀𝜋𝐷𝑛 : 𝒮 → Δ(𝒜). For each 𝑖 ∈ {1, 2}, we apply (C.4)
to all MDPs in ℳ𝑖 and average to obtain

1

|ℳ𝑖|
∑︁

𝑀∈ℳ𝑖

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)] ≥ 𝛾2

8(1− 𝛾)

1

|ℳ𝑖|
∑︁

𝑀∈ℳ𝑖

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 𝑖).

Applying the inequality above for 𝑖 = 1 and 𝑖 = 2 and combining the results, we have

max
𝑀∈ℳ

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)]
≥ 1

2|ℳ1|
∑︁

𝑀∈ℳ1

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)] + 1

2|ℳ2|
∑︁

𝑀∈ℳ2

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)]
≥ 𝛾2

16(1− 𝛾)

{︃
1

|ℳ1|
∑︁

𝑀∈ℳ1

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 1) +
1

|ℳ2|
∑︁

𝑀∈ℳ2

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 2)

}︃

≥ 𝛾2

16(1− 𝛾)

(︃
1−𝐷TV

(︃
1

|ℳ1|
∑︁

𝑀∈ℳ1

P𝑀𝑛 ,
1

|ℳ2|
∑︁

𝑀∈ℳ2

P𝑀𝑛

)︃)︃
,

where the last inequality follows because P(𝐸) +Q(𝐸𝑐) ≥ 1−𝐷TV(P,Q) for any event 𝐸.

C.4 Proof of Lemma 4.2

This proof is organized as follows. In Appendix C.4.1, we introduce a reference measure and move
from the total variation distance to the 𝜒2-divergence. This allows us to reduce the task of upper
bounding 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
to the task of upper bounding two manageable density ratios (Eqs. (C.6)

and (C.7) in the sequel). We develop several intermediate technical lemmas related to the density
ratios in Appendix C.4.2, and in Appendix C.4.3 we put everything together to bound the density
ratios, thus completing the proof of Lemma 4.2.

For the statement of Lemma 4.2 and the main subsections of this section (Appendices C.4.1
and C.4.3), we only consider the specific values for the parameters (𝜃1, 𝛼1, 𝛽1; 𝜃2, 𝛼2, 𝛽2;𝑤) given in
Section 4.2.1. However, in Appendix C.4.2, which contains intermediate technical lemmas, results
are presented under a slightly more general setup, as explained at the beginning of the subsection.
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C.4.1 Introducing a Reference Measure and Moving to 𝜒2-Divergence

Directly calculating the total variation distance 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
is challenging, so we design an auxillary

reference measure P0
𝑛 which serves as an intermediate quantity to help with the upper bound. The

reference measure P0
𝑛 lies in the same measurable space as P1

𝑛 and P2
𝑛, and is defined as follows:

P0
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1) :=

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅0(𝑠𝑖,𝑎𝑖)}𝑃0(𝑠
′
𝑖 | 𝑠𝑖, 𝑎𝑖), ∀ {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1,

where

𝑅0(𝑠, a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑠 ∈ {s} ∪ 𝒮1,

𝑤 = 3𝛾/8, 𝑠 =𝑊,

1, 𝑠 = 𝑋,

0, 𝑠 = 𝑌,

0, 𝑠 = 𝑍,

and

𝑃0(· | s, 1) :=𝑊, w.p. 1,

𝑃0(· | s, 2) := Unif(𝒮1),

∀𝑠 ∈ 𝒮1 : 𝑃0(· | 𝑠, a) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋, w.p. 𝜃1𝛼1,

𝑌, w.p. 1− 𝜃1𝛼1 − (1− 𝜃1)𝛽1,

𝑍, w.p. (1− 𝜃1)𝛽1,

∀𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍} : 𝑃0(· | 𝑠, a) := 𝑠, w.p. 1.

The reference measure P0
𝑛 can be understood as the law of 𝐷𝑛 when the data collection distribution is

𝜇 and the underlying MDP is 𝑀0 := (𝒮,𝒜, 𝑃0, 𝑅0, 𝛾, 𝑑0). Note that although we define the transition
operator 𝑃0 above based on the tuple (𝜃1, 𝛼1, 𝛽1), substituting in (𝜃2, 𝛼2, 𝛽2) leads to the same
operator — this is guaranteed by an important feature of our construction: the families ℳ1 and ℳ2

in our construction satisfy the constraint (C.1), so that 𝜃1𝛼1 = 𝜃2𝛼2 and (1− 𝜃1)𝛽1 = (1− 𝜃2)𝛽2.

In what follows, we provide more explanations on the design of the transition operator 𝑃0 and
the reward function 𝑅0.

Properties and Intuition of 𝑃0 There are two ways to understand 𝑃0. Operationally, 𝑃0 is
simply the pointwise average transition operator of the MDPs in ℳ1 or ℳ2, in the sense that

∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 : 𝑃0(· | 𝑠, 𝑎) =
1

|ℳ1|
∑︁

𝑀∈ℳ1

𝑃𝑀 (· | 𝑠, 𝑎) = 1

|ℳ2|
∑︁

𝑀∈ℳ2

𝑃𝑀 (· | 𝑠, 𝑎),

where 𝑃𝑀 is the transition operator associated with each MDP 𝑀 . More conceptually, 𝑃0 is
the transition operator obtained by performing state aggregation using the value function class
ℱ = {𝑓1, 𝑓2}, where states with the same values for both 𝑓1 and 𝑓2 are viewed as identical and
constrained to share dynamics (which is induced by averaging over the data collection distribution).
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Properties and Intuition of 𝑅0 Outside of state 𝑍, the reward function 𝑅0 is the same as
the reward function of any MDP in ℳ, i..e.,

∀𝑠 ̸= 𝑍, 𝑎 ∈ 𝒜 : 𝑅0(𝑠, 𝑎) = 𝑅𝑀 (𝑠, 𝑎), ∀𝑀 ∈ ℳ,

where 𝑅𝑀 is the transition operator associated with each MDP 𝑀 . The value of 𝑅0(𝑍, a) is
immaterial, as the data collection distribution 𝜇 is not supported on (𝑍, a) (in other words, different
values of 𝑅0(𝑍, a) lead to essentially the same reference measure P0

𝑛); we choose 𝑅0(𝑍, 𝑎) = 0 for
concreteness.

Moving to 𝜒2-Divergence Equipped with the definition of the reference measure P0
𝑛, we

proceed to bound 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
. By the triangle inequality for the total variation distance, we have

𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 𝐷TV

(︀
P1
𝑛,P0

𝑛

)︀
+𝐷TV

(︀
P2
𝑛,P0

𝑛

)︀
≤ 1

2

√︁
𝐷𝜒2(P1

𝑛 ‖P0
𝑛) +

1

2

√︁
𝐷𝜒2(P2

𝑛 ‖P0
𝑛), (C.5)

where the last inequality follows from the fact that 𝐷TV(P,Q) ≤ 1
2

√︀
𝐷𝜒2(P ‖Q) for any P,Q (see

Proposition 7.2 or Section 7.6 of Polyanskiy (2020)).

In what follows, we derive simplified expressions for 𝐷𝜒2(P1
𝑛 ‖P0

𝑛) and 𝐷𝜒2(P2
𝑛 ‖P0

𝑛). We first
expand and simplify 𝐷𝜒2(P1

𝑛,P0
𝑛), then obtain a similar expression for 𝐷𝜒2(P2

𝑛 ‖P0
𝑛).

For each MDP 𝑀 ∈ ℳ, let 𝑃𝑀 and 𝑅𝑀 denote the associated transition and reward functions.
Observe that our construction for 𝑃𝑀 , 𝑅𝑀 , and 𝜇 (see Section 4.2.1) ensures that for any (𝑠, 𝑎, 𝑟, 𝑠′) ∈
𝒮×𝒜×[0, 1]×𝒮 with 𝜇(𝑠, 𝑎)1{𝑟=𝑅0(𝑠,𝑎)}𝑃0(𝑠

′ | 𝑠, 𝑎) = 0, we have 𝜇(𝑠, 𝑎)1{𝑟=𝑅𝑀 (𝑠,𝑎)}𝑃𝑀 (𝑠′ | 𝑠, 𝑎) = 0.
As a result, we have P𝑀𝑛 ≪ P0

𝑛 for any 𝑀 ∈ ℳ, which implies that P1
𝑛,P2

𝑛 ≪ P0
𝑛. Hence, we can

expand the 𝜒2-divergence as

𝐷𝜒2(P1
𝑛 ‖P0

𝑛)

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼P0
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

P𝑀𝑛 ({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)

P0
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)

)︃2
⎤⎦− 1

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼P0
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

∏︀𝑛
𝑖=1 𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅𝑀 (𝑠𝑖,𝑎𝑖)}𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)∏︀𝑛

𝑖=1 𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅0(𝑠𝑖,𝑎𝑖)}𝑃0(𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)

)︃2
⎤⎦− 1

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼P0
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

∏︀𝑛
𝑖=1 𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)∏︀𝑛

𝑖=1 𝑃0(𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)

)︃2
⎤⎦− 1

=
1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼P0
𝑛

[︂∏︀𝑛
𝑖=1 𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)𝑃𝑀 ′(𝑠′𝑖 | 𝑠,𝑎𝑖)∏︀𝑛

𝑖=1 𝑃
2
0 (𝑠

′
𝑖 | 𝑠𝑖, 𝑎𝑖)

]︂
− 1

=
1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

(︂
E(𝑠,𝑎)∼𝜇,𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︂𝑛
− 1, (C.6)

where the third equality follows because (i) 𝑅𝑀 (𝑠, 𝑎) = 𝑅0(𝑠, 𝑎),∀𝑀 ∈ ℳ,∀𝑎 ∈ 𝒜,∀𝑠 ≠ 𝑍, and (ii)
state 𝑍 is not covered by 𝜇. Indeed, since the reward function for every MDP in ℳ is the same
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as 𝑅0 for all (𝑠, 𝑎) covered by 𝜇, the rewards 𝑟1, . . . , 𝑟𝑛 in 𝐷𝑛 are completely uninformative in our
construction—they have the same distribution regardless of the underlying MDP. This is why the
final expression for 𝐷𝜒2(P1

𝑛 ‖P0
𝑛) in (C.6) is completely independent of the reward distribution for

both measures.

Using an identical calculation, we also have

𝐷𝜒2(P2
𝑛 ‖P0

𝑛) =
1

|ℳ2|2
∑︁

𝑀,𝑀 ′∈ℳ2

(︂
E(𝑠,𝑎)∼𝜇,𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︂𝑛
− 1. (C.7)

Equipped with these expressions for the 𝜒2-divergence, the next step in the proof of Lemma 4.2
is to upper bound the right-hand side for Eqs. (C.6) and (C.7). This is done in Appendix C.4.3, but
before proceeding we require several intermediate technical lemmas.

C.4.2 Technical Lemmas for Density Ratios

In this subsection, we state a number of technical lemmas which can be used to bound the density
ratio appearing inside the square in Eqs. (C.6) and (C.7) for generic MDPs 𝑀𝛼,𝛽,𝑤,𝐼 with 𝐼 ∈ ℐ𝜃.
The lemmas hold for any choice of (𝜃, 𝛼, 𝛽), and are independent of the reward parameter 𝑤. For
this general setup, we work with a variant of the reference operator 𝑃0 defined based on the values
(𝜃, 𝛼, 𝛽) via

𝑃0(· | s, 1) :=𝑊, w.p. 1,

𝑃0(· | s, 2) := Unif(𝒮1),

∀𝑠 ∈ 𝒮1 : 𝑃0(· | 𝑠, a) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑋, w.p. 𝜃𝛼,

𝑌, w.p. 1− 𝜃𝛼− (1− 𝜃)𝛽,

𝑍, w.p. (1− 𝜃)𝛽,

∀𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍} : 𝑃0(· | 𝑠, a) := 𝑠, w.p. 1.

In Appendix C.4.3, we instantiate the results from this subsection with (𝜃𝑖, 𝛼𝑖, 𝛽𝑖) for 𝑖 ∈ {1, 2}.
Recall that per the discussion in Appendix C.4.1, our specific parameter choices for the families ℳ1

and ℳ2 induce the same reference operator 𝑃0.

Lemma C.1. For all 𝐼, 𝐼 ′ ∈ ℐ𝜃, (2𝜃 − 1)+𝑆1 ≤ |𝐼 ∩ 𝐼 ′| ≤ 𝜃𝑆1.

Proof of Lemma C.1. Since |𝐼| = |𝐼 ′| = 𝜃𝑆1, we have |𝐼 ∩ 𝐼 ′| ≤ |𝐼| = 𝜃𝑆1 and

|𝐼 ∩ 𝐼 ′| = |𝐼|+ |𝐼 ′| − |𝐼 ∪ 𝐼 ′| ≥ |𝐼|+ |𝐼 ′| − 𝑆1 = (2𝜃 − 1)𝑆1.

Since |𝐼 ∩ 𝐼 ′| ≥ 0 trivially, the result follows. □

The next lemma controls the density ratio for states in 𝒮1. To state the result compactly, we
define

𝜑𝜃,𝛼,𝛽 := 𝜃2
(︂

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)

)︂
. (C.8)
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Since Lemma C.2 is stated for any given 𝜃, 𝛼, 𝛽, we use 𝑃𝐼 to denote 𝑃𝛼,𝛽,𝐼 to keep notation compact.

Lemma C.2. For all 𝐼, 𝐼 ′ ∈ ℐ𝜃, we have

E𝑠∼Unif(𝒮1),𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝐼(𝑠

′ | 𝑠, a)𝑃𝐼′(𝑠′ | 𝑠, a)
𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
= 1 + 𝜑𝜃,𝛼,𝛽 ·

(︂
|𝐼 ∩ 𝐼 ′|
𝜃2𝑆1

− 1

)︂
.

Proof of Lemma C.2. For any 𝐼, 𝐼 ′ ∈ ℐ𝜃, we observe that

E𝑠∼Unif(𝒮1),𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝐼(𝑠

′ | 𝑠, a)𝑃𝐼′(𝑠′ | 𝑠, a)
𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
= E𝑠∼Unif(𝒮1)

⎡⎣ ∑︁
𝑠′∈{𝑋,𝑌,𝑍}

𝑃𝐼(𝑠
′ | 𝑠, a)𝑃𝐼′(𝑠′ | 𝑠, a)
𝑃0(𝑠′ | 𝑠, a)

⎤⎦.
To proceed, we calculate the value of the ratio 𝑃𝐼(𝑠

′|𝑠,a)𝑃𝐼′ (𝑠
′|𝑠,a)

𝑃0(𝑠′|𝑠,a) for each possible choice for 𝑠 ∈ 𝒮1

and 𝑠′ ∈ {𝑋,𝑌, 𝑍} in Table C.1 below.

𝑠′ = 𝑋 𝑠′ = 𝑌 𝑠′ = 𝑍

𝑠 ∈ 𝐼 ∩ 𝐼 ′ 𝛼/𝜃 (1− 𝛼)2/(𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)) 0
𝑠 ∈ (𝐼 ∪ 𝐼 ′) ∖ (𝐼 ∩ 𝐼 ′) 0 (1− 𝛼)(1− 𝛽)/(𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)) 0

𝑠 /∈ (𝐼 ∪ 𝐼 ′) 0 (1− 𝛽)2/(𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)) 𝛽/(1− 𝜃)

Table C.1: Value of 𝑃𝐼(𝑠
′|𝑠,2)𝑃𝐼′ (𝑠′|𝑠,2)
𝑃0(𝑠′|𝑠,2) for all possible pairs (𝑠, 𝑠′).

Define 𝑡 := |𝐼 ∩ 𝐼 ′|. From Lemma C.1, we must have 𝑡 ∈ [(2𝜃 − 1)+𝑆1, 𝜃𝑆1]. We also have
|𝐼 ∪ 𝐼 ′| = |𝐼|+ |𝐼 ′| − |𝐼 ∩ 𝐼 ′| = 2𝜃𝑆1 − 𝑡. Hence, the event in the first row of Table C.1 occurs with
probability |𝐼 ∩ 𝐼 ′|/𝑆1 = 𝑡/𝑆1, the event in the second row occurs with probability |(𝐼 ∪ 𝐼 ′) ∖ (𝐼 ∩
𝐼 ′)|/𝑆1 = (2𝜃𝑆1 − 2𝑡)/𝑆1 and the event in the third row occurs with probability |𝑆1 ∖ (𝐼 ∪ 𝐼 ′)|/𝑆1 =

((1− 2𝜃)𝑆1 + 𝑡)/𝑆1. Using these values, we obtain

E𝑠∼Unif(𝒮1)

⎡⎣ ∑︁
𝑠′∈{𝑋,𝑌,𝑍}

𝑃𝐼(𝑠
′ | 𝑠, a)𝑃𝐼′(𝑠′ | 𝑠, a)
𝑃0(𝑠′ | 𝑠, a)

⎤⎦
=

𝑡

𝑆1
·
(︂
𝛼

𝜃
+

(1− 𝛼)2

𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)

)︂
+

(︂
2𝜃 − 2𝑡

𝑆1

)︂
· (1− 𝛼)(1− 𝛽)

𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)

+

(︂
1− 2𝜃 +

𝑡

𝑆1

)︂
·
(︂

(1− 𝛽)2

𝜃(1− 𝛼) + (1− 𝜃)(1− 𝛽)
+

𝛽

1− 𝜃

)︂
=

𝑡

𝑆1

(︂
(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝛼

𝜃
+

𝛽

1− 𝜃

)︂
+

2𝜃(𝛽 − 𝛼)(1− 𝛽) + (1− 𝛽)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+

(1− 2𝜃)𝛽

1− 𝜃

=
𝑡

𝑆1

(︂
(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝛼

𝜃
+

𝛽

1− 𝜃

)︂
+

2𝜃(𝛽 − 𝛼)(1− 𝛽) + (1− 𝛽)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+ 𝛽 − 𝜃𝛽

1− 𝜃

=

(︂
𝑡

𝑆1
− 𝜃2

)︂(︂
(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝛼

𝜃
+

𝛽

1− 𝜃

)︂
+ 𝜃2 · (𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽⏟  ⏞  
(i)

+ 𝜃2 · 𝛼
𝜃⏟  ⏞  

(ii)

+ 𝜃2 · 𝛽

1− 𝜃⏟  ⏞  
(iii)

+
2𝜃(𝛽 − 𝛼)(1− 𝛽) + (1− 𝛽)2

𝜃(𝛽 − 𝛼) + 1− 𝛽⏟  ⏞  
(i)

+ 𝛽⏟ ⏞ 
(ii)

− 𝜃𝛽

1− 𝜃⏟  ⏞  
(iii)

.

Grouping the terms in the second line together, we find that (i) = 𝜃(𝛽 − 𝛼) + 1− 𝛽, (ii) = 𝜃𝛼+ 𝛽,
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and (iii) = −𝜃𝛽, and by summing,
(i) + (ii) + (iii) = 1.

Hence, the above expression is equal to(︂
𝑡

𝑆1
− 𝜃2

)︂(︂
(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝛼

𝜃
+

𝛽

1− 𝜃

)︂
+ 1

=

(︂
𝑡

𝑆1
− 𝜃2

)︂(︂
(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)

)︂
+ 1.

Recalling the definition of 𝜑𝜃,𝛼,𝛽 , this completes the proof. □

The next lemma bounds the magnitude of 𝜑𝜃,𝛼,𝛽 in terms of the parameter 𝜃.

Lemma C.3. For any 𝛼, 𝛽, 𝜃 ∈ (0, 1), we have

𝜃2|𝛼− 𝛽| ≤ 𝜑𝜃,𝛼,𝛽 ≤ 𝜃

1− 𝜃
max{𝛼, 𝛽} ≤ 𝜃

1− 𝜃
.

Proof of Lemma C.3. Recall that 𝜑𝜃,𝛼,𝛽 = 𝜃2
(︁

(𝛽−𝛼)2
𝜃(𝛽−𝛼)+1−𝛽 + 𝜃(𝛽−𝛼)+𝛼

𝜃(1−𝜃)

)︁
. We consider two cases.

Case 1: 𝛼 ≤ 𝛽. Assume 𝛼 < 𝛽, as the result is immediate if 𝛼 = 𝛽. We have

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
≥ 0 +

𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
≥ 𝜃(𝛽 − 𝛼)

𝜃(1− 𝜃)
=
𝛽 − 𝛼

1− 𝜃
> |𝛼− 𝛽|

and

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
=

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝛽 − 𝛼

1− 𝜃
+

𝛼

𝜃(1− 𝜃)

≤ 𝛽 − 𝛼

𝜃
+
𝛽 − 𝛼

1− 𝜃
+

𝛼

𝜃(1− 𝜃)

=
𝛽

𝜃(1− 𝜃)
,

where the inequality above follows since 𝜃(𝛽 − 𝛼) + 1− 𝛽 > 𝜃(𝛽 − 𝛼) > 0.
Case 2: 𝛼 > 𝛽. We have

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
≥ 0 +

𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
≥ 𝜃(𝛽 − 𝛼) + 𝛼− 𝛽

𝜃(1− 𝜃)
=
𝛼− 𝛽

𝜃
> |𝛼− 𝛽|

and

(𝛽 − 𝛼)2

𝜃(𝛽 − 𝛼) + 1− 𝛽
+
𝜃(𝛽 − 𝛼) + 𝛼

𝜃(1− 𝜃)
=

(𝛼− 𝛽)2

1− 𝛽 − 𝜃(𝛼− 𝛽)
+
𝛽 − 𝛼

1− 𝜃
+

𝛼

𝜃(1− 𝜃)

≤ (𝛼− 𝛽)2

(𝛼− 𝛽)− 𝜃(𝛼− 𝛽)
+
𝛽 − 𝛼

1− 𝜃
+

𝛼

𝜃(1− 𝜃)

=
𝛼

𝜃(1− 𝜃)
,

where the inequality uses that 1− 𝛽 > 𝛼− 𝛽 > 𝜃(𝛼− 𝛽).
The lemma immediately follows. □
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The final lemma in this subsection controls the density ratio for the initial state s when action 2
is chosen. Again, we use 𝑃𝐼 to denote 𝑃𝛼,𝛽,𝐼 to keep notation compact.

Lemma C.4. For any 𝐼, 𝐼 ′ ∈ ℐ𝜃, we have

E𝑠′∼𝑃0(·|s,2)

[︂
𝑃𝐼(𝑠

′ | s, 2)𝑃𝐼′(𝑠′ | s, 2)
𝑃 2
0 (𝑠

′ | s, 2)

]︂
=

|𝐼 ∩ 𝐼 ′|
𝜃2𝑆1

.

Proof of Lemma C.4. Let 𝐼, 𝐼 ′ ∈ ℐ𝜃 be given and observe that

E𝑠′∼𝑃0(·|s,2)

[︂
𝑃𝐼(𝑠

′ | s, 2)× 𝑃𝐼′(𝑠
′ | s, 2)

𝑃 2
0 (𝑠

′ | s, 2)

]︂
= E𝑠′∼Unif(𝒮1)

[︂
1{𝑠′∈𝐼∩𝐼′}

𝜃2

]︂
=

|𝐼 ∩ 𝐼 ′|
𝜃2𝑆1

.

□

C.4.3 Completing the Proof

To keep notation compact, define

𝑔𝜃,𝛼,𝛽(𝑡;𝑛) :=

(︂(︂
𝑡

𝜃2𝑆1
− 1

)︂
8𝜑𝜃,𝛼,𝛽 + 1

16
+ 1

)︂𝑛
.

For all 𝑀 ∈ ℳ, 𝑃𝑀 (· | 𝑠, 𝑎) and 𝑃0(· | 𝑠, 𝑎) differ only when (𝑠, 𝑎) = (s, 2) or (𝑠, 𝑎) ∈ 𝒮1 × 𝒜,
so—recalling the value of 𝜇—we have

1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

(︃
E(𝑠,𝑎)∼𝜇,
𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︃𝑛

=
1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

(︃
1

2
E𝑠∼Unif(𝒮1),
𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝑀 (𝑠′ | 𝑠, a)𝑃𝑀 ′(𝑠′ | 𝑠, a)

𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
+

1

16
E𝑠′∼𝑃0(·|s,2)

[︂
𝑃𝑀 (𝑠′ | s, 2)𝑃𝑀 ′(𝑠′ | s, 2)

𝑃 2
0 (𝑠

′ | s, 2)

]︂
+

7

16

)︃𝑛

=
1(︀
𝑆1

𝜃1𝑆1

)︀2 ∑︁
𝑡

∑︁
𝐼,𝐼′∈ℐ𝜃1 :|𝐼∩𝐼′|=𝑡

(︂
1

2

(︂(︂
𝑡

𝜃21𝑆1
− 1

)︂
𝜑𝜃1,𝛼1,𝛽1

+ 1

)︂
+

1

16

𝑡

𝜃21𝑆1
+

7

16

)︂𝑛
,

where we have used the expressions for the density ratio from Lemmas C.2 and C.4. We further
simplify to

=
1(︀
𝑆1

𝜃1𝑆1

)︀2 ∑︁
𝑡

∑︁
𝐼,𝐼′∈ℐ𝜃1 :|𝐼∩𝐼′|=𝑡

(︂(︂
𝑡

𝜃21𝑆1
− 1

)︂
8𝜑𝜃1,𝛼1,𝛽1

+ 1

16
+ 1

)︂𝑛

=

𝜃1𝑆1∑︁
𝑡=(2𝜃1−1)+𝑆1

(︀
𝜃1𝑆1

𝑡

)︀(︀
𝑆1−𝜃1𝑆1

𝜃1𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ (︂(︂
𝑡

𝜃21𝑆1
− 1

)︂
8𝜑𝜃1,𝛼1,𝛽1 + 1

16
+ 1

)︂𝑛

=

𝜃1𝑆1∑︁
𝑡=(2𝜃1−1)+𝑆1

(︀
𝜃1𝑆1

𝑡

)︀(︀
𝑆1−𝜃1𝑆1

𝜃1𝑆1−𝑡
)︀(︀

𝑆1

𝜃1𝑆1

)︀ 𝑔𝜃1,𝛼1,𝛽1
(𝑡;𝑛),
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where the second equality uses Lemma C.1. Applying the same calculation for ℳ2, we also have that

1

|ℳ2|2
∑︁

𝑀,𝑀 ′∈ℳ2

(︂
E(𝑠,𝑎)∼𝜇,𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︂𝑛

=

𝜃2𝑆1∑︁
𝑡=(2𝜃2−1)+𝑆1

(︀
𝜃2𝑆1

𝑡

)︀(︀
𝑆1−𝜃2𝑆1

𝜃2𝑆1−𝑡
)︀(︀

𝑆1

𝜃2𝑆1

)︀ 𝑔𝜃2,𝛼2,𝛽2
(𝑡;𝑛).

Therefore, to upper bound the right-hand sides of Eqs. (C.6) and (C.7), we only need to upper bound
the quantity

𝜃𝑆1∑︁
𝑡=(2𝜃−1)+𝑆1

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ 𝑔𝜃,𝛼,𝛽(𝑡;𝑛), (C.9)

for both (𝜃, 𝛼, 𝛽) = (𝜃1, 𝛼1, 𝛽1) and (𝜃, 𝛼, 𝛽) = (𝜃2, 𝛼2, 𝛽2). To upper bound this quantity, we use the
following two lemmas.

Lemma C.5 (Monotonicity of 𝑔𝜃,𝛼,𝛽). For any 𝜃, 𝛼, 𝛽 ∈ (0, 1) and any 𝑛 ∈ N, the function
𝑡 ↦→ 𝑔𝜃,𝛼,𝛽(𝑡;𝑛) is non-decreasing for 𝑡 ∈ [(2𝜃 − 1)+𝑆1, 𝜃𝑆1].

Proof of Lemma C.5. By Lemma C.2, we have
(︁

𝑡
𝜃2𝑆1

− 1
)︁
𝜑𝜃,𝛼,𝛽+1 ≥ 0 for all 𝑡 ∈ [(2𝜃−1)+𝑆1, 𝜃𝑆1],

and hence(︂
𝑡

𝜃2𝑆1
− 1

)︂
8𝜑𝜃,𝛼,𝛽 + 1

16
+ 1 =

1

2

(︂(︂
𝑡

𝜃2𝑆1
− 1

)︂
𝜑𝜃,𝛼,𝛽 + 1

)︂
+

1

16

𝑡

𝜃2𝑆1
+

7

16
≥ 0

for all 𝑡 ∈ [(2𝜃−1)+𝑆1, 𝜃𝑆1]. This ensures that we are in the domain where 𝑥 ↦→ 𝑥𝑛 is non-decreasing.
Next, by Lemma C.3, we know that 𝜑𝜃,𝛼,𝛽 ≥ 0, so the coefficient on 𝑡 is non-negative. It follows that
𝑔𝜃,𝛼,𝛽(𝑡;𝑛) is non-decreasing in 𝑡 ∈ [(2𝜃 − 1)+𝑆1, 𝜃𝑆1]. □

Lemma C.6 (Hypergeometric tail bound). For any 𝜃 ∈ {𝜃1, 𝜃2} and 𝜖 ∈ (0, 𝜃2𝑆1), we have

∑︁
𝑡≥(𝜃+𝜖)·𝜃𝑆1

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ ≤ exp(−2𝜖2𝜃𝑆1). (C.10)

Proof of Lemma C.6. Let Hyper(𝑡;𝐾,𝑁,𝑁 ′) :=
(︀
𝐾
𝑡

)︀(︀
𝑁−𝐾
𝑁 ′−𝑡

)︀
/
(︀
𝑁
𝑁 ′

)︀
denote the hypergeometric prob-

ability mass function, which corresponds to the probability that exactly 𝑡 balls are blue when 𝑁 ′

balls are sampled without replacement from a jar containing 𝑁 total balls, 𝐾 of which are blue (see,

e.g., Chapter 2.1.4 of Rice (2006) for background). We observe that the term
(𝜃𝑆1𝑡 )(

𝑆1−𝜃𝑆1
𝜃𝑆1−𝑡 )

( 𝑆1𝜃𝑆1)
arising in

Eqs. (C.9) and (C.10) is precisely Hyper(𝑡; 𝜃𝑆1, 𝑆1, 𝜃𝑆1), which corresponds to the process in which
we sample 𝜃𝑆1 balls without replacement from a jar with 𝑆1 balls, 𝜃𝑆1 of which are blue.

We now apply a classical tail bound for hypergeometric random variables.

Lemma C.7 (Hoeffding (1963)). Let 𝑋 ∼ Hyper(𝐾,𝑁,𝑁 ′) and define 𝑝 = 𝐾/𝑁 . Then for any
0 < 𝜖 < 𝑝𝑁 ′, we have

Pr[𝑋 ≥ (𝑝+ 𝜖)𝑁 ′] ≤ exp
(︀
−2𝜖2𝑁 ′)︀.
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Instantiating this bound with Hyper(𝜃𝑆1, 𝑆1, 𝜃𝑆1) (since 𝜃𝑆1 is an integer), we have 𝑝 = 𝜃 and

∑︁
𝑡≥(𝜃+𝜖)·𝜃𝑆1

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ = Pr[𝑋 ≥ (𝜃 + 𝜖) · 𝜃𝑆1] ≤ exp(−2𝜖2𝜃𝑆1).

□

Returning to the quantity in (C.9), for any (𝜃, 𝛼, 𝛽) ∈ {(𝜃1, 𝛼1, 𝛽), (𝜃2, 𝛼2, 𝛽2)} and any 𝜖 ∈
(0, 𝜃2𝑆1) we can split the sum and upper bound as follows:

𝜃𝑆1∑︁
𝑡=(2𝜃−1)+𝑆1

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ 𝑔𝜃,𝛼,𝛽(𝑡;𝑛)

≤
⌊(𝜃+𝜖)𝜃𝑆1⌋∑︁

𝑡=0

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀ 𝑔𝜃,𝛼,𝛽(𝑡;𝑛) + exp(−2𝜖2𝜃𝑆1) · 𝑔𝜃,𝛼,𝛽(𝜃𝑆1;𝑛)

≤

⎛⎝⌊(𝜃+𝜖)𝜃𝑆1⌋∑︁
𝑡=0

(︀
𝜃𝑆1

𝑡

)︀(︀
𝑆1−𝜃𝑆1

𝜃𝑆1−𝑡
)︀(︀

𝑆1

𝜃𝑆1

)︀
⎞⎠𝑔𝜃,𝛼,𝛽((𝜃 + 𝜖)𝜃𝑆1;𝑛) + exp(−2𝜖2𝜃𝑆1) · 𝑔𝜃,𝛼,𝛽(𝜃𝑆1;𝑛)

≤ 𝑔𝜃,𝛼,𝛽((𝜃 + 𝜖)𝜃𝑆1;𝑛) + exp(−2𝜖2𝜃𝑆1) · 𝑔𝜃,𝛼,𝛽(𝜃𝑆1;𝑛), (C.11)

where the first two inequalities follow from Lemmas C.5 and C.6 and the last uses that the sum in
the penultimate line is at most 1. We further calculate

𝑔𝜃,𝛼,𝛽((𝜃 + 𝜖)𝜃𝑆1;𝑛) =

(︂(︂
(𝜃 + 𝜖)𝜃𝑆1

𝜃2𝑆1
− 1

)︂
8𝜑𝜃,𝛼,𝛽 + 1

16
+ 1

)︂𝑛
=

(︂
𝜖

𝜃

8𝜑𝜃,𝛼,𝛽 + 1

16
+ 1

)︂𝑛
≤
(︂

𝜖

2(1− 𝜃)𝜃
+ 1

)︂𝑛
, (C.12)

where the inequality follows from Lemma C.3. Similarly, we have

exp(−2𝜖2𝜃𝑆1) · 𝑔𝜃,𝛼,𝛽(𝜃𝑆1;𝑛) = exp(−2𝜖2𝜃𝑆1) ·
(︂(︂

𝜃𝑆1

𝜃2𝑆1
− 1

)︂
8𝜑𝜃,𝛼,𝛽 + 1

16
+ 1

)︂𝑛
≤ exp

(︀
−2𝜖2𝜃𝑆1

)︀
·
(︂(︂

1

𝜃
− 1

)︂
8𝜃/(1− 𝜃) + 1

16
+ 1

)︂𝑛
≤ exp

(︀
−2𝜖2𝜃𝑆1

)︀
·
(︂
1 +

1

2𝜃

)︂𝑛
= exp

(︀
𝑛 ln(1 + 1/(2𝜃))− 2𝜖2𝜃𝑆1

)︀
≤ exp

(︀
𝑛/(2𝜃)− 2𝜖2𝜃𝑆1

)︀
, (C.13)

where the first inequality follows from Lemma C.3 and the last inequality uses that log(1 + 𝑥) ≤ 𝑥.

Combining Eqs. (C.6), (C.7), (C.9) and (C.11) to (C.13) and instantiating the bounds for
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(𝜃1, 𝛼1, 𝛽1) and (𝜃2, 𝛼2, 𝛽2), we have

𝐷𝜒2(P1
𝑛 ‖P0

𝑛) ≤ inf
𝜖∈(0,𝜃21𝑆1)

{︂(︂
𝜖

2(1− 𝜃1)𝜃1
+ 1

)︂𝑛
+ exp

(︀
𝑛/(2𝜃1)− 2𝜖2𝜃1𝑆1

)︀}︂
− 1.

𝐷𝜒2(P2
𝑛 ‖P0

𝑛) ≤ inf
𝜖∈(0,𝜃22𝑆1)

{︂(︂
𝜖

2(1− 𝜃2)𝜃2
+ 1

)︂𝑛
+ exp

(︀
𝑛/(2𝜃2)− 2𝜖2𝜃2𝑆1

)︀}︂
− 1.

Let 𝑐 ∈ (0, 1/2) be an arbitrary constant. For each 𝑖 ∈ {1, 2}, we set 𝜖 = 2𝑐 · (1−𝜃𝑖)𝜃𝑖
𝑛 (which belongs

to (0, 𝜃2𝑖 𝑆1) because 𝜖 < 𝜃𝑖 since 𝑛 ≥ 1 and 𝜃𝑖𝑆1 ≥ 1 by assumption). Then we have(︂
𝜖

2(1− 𝜃𝑖)𝜃𝑖
+ 1

)︂𝑛
≤
(︁
1 +

𝑐

𝑛

)︁𝑛
≤ 𝑒𝑐 ≤ 1 + 2𝑐, ∀𝑖 ∈ {1, 2},

and
𝐷𝜒2(P𝑖𝑛 ‖P0

𝑛) ≤ 2𝑐+ exp

(︂
𝑛

2𝜃𝑖
− 8𝑐2𝜃𝑖

(1− 𝜃𝑖)
2𝜃2𝑖

𝑛2
𝑆1

)︂
, ∀𝑖 ∈ {1, 2}.

In particular, whenever 𝑆1 ≥ max𝑖∈{1,2}
𝑛3

8𝑐2𝜃4𝑖 (1−𝜃𝑖)2
, we have

𝐷𝜒2(P𝑖𝑛 ‖P0
𝑛) ≤ 2𝑐+ exp(−𝑛/(2𝜃𝑖)), ∀𝑖 ∈ {1, 2}.

Plugging in the values 𝜃1 = 1/2, 𝜃2 = 1/4 and setting 𝑐 = 1/10, we have that whenever 𝑛 ≥ 5

and 𝑆1 > 6400𝑛3,
𝐷𝜒2(P𝑖𝑛 ‖P0

𝑛) ≤
1

5
+ exp(−𝑛) ≤ 1

4
, ∀𝑖 ∈ {1, 2}.

Combining this with (C.5), we have that 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤
√︀
1/4 = 1/2, which proves the lemma.

C.5 Theorem 4.2: Lower Bound Construction and Proof

We restate Theorem 4.2 below for convenience.

Theorem (Lower bound for admissible data). For any 𝑆 ≥ 9, 𝛾 ∈ (1/2, 1), and 𝐶 ≥ 64, there exists
a family of MDPs ℳ with |𝒮| = 𝑆 and |𝒜| = 2, a value function class ℱ with |ℱ| = 2, and a data
distribution 𝜇 which is a mixture of admissible distributions, such that:

1. We have 𝑄𝜋 ∈ ℱ for all 𝜋 : 𝒮 → Δ(𝒜) (all-policy realizability) and 𝐶conc ≤ 𝐶 (concentrability)
for all models in ℳ.

2. Any algorithm using less than 𝑐·min
{︀
𝑆1/3/(log𝑆)2, 2𝐶/32, 21/(1−𝛾)

}︀
samples must have 𝐽(𝜋⋆)−

E[𝐽(̂︀𝜋)] ≥ 𝑐′ for some instance in ℳ, where 𝑐 and 𝑐′ are absolute numerical constants.

C.5.1 Lower Bound Construction

We begin by specifying the structure of the MDPs in the family ℳ used to prove Theorem 4.2. Let
𝛾 ∈ (0, 1) be fixed, and let 𝑆 ∈ N be given. Let 𝐿 ∈ N be an integer parameter whose value will be
chosen at the end of the proof (Appendix C.5.4). Define 𝐿div :=

∑︀𝐿
𝑙=1(2𝐿+ 1− 𝑙)(𝐿+ 2− 𝑙) ≤ 4𝐿3,
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and assume without loss of generality that 𝑆 > 5 and that (𝑆 − 5)/𝐿div is an integer.60 We
consider a parameterized class of MDPs illustrated in Figure 4-2. Each MDP takes the form
𝑀𝐿,𝛼,𝑤,𝐼 = {𝒮,𝒜, 𝑃𝐿,𝛼,𝐼 , 𝑅𝐿,𝛼,𝑤, 𝛾, 𝑑0}, and is parametrized by the integer 𝐿 ∈ N, a vector of
subsets 𝐼 = (𝐼1, . . . , 𝐼𝐿) where 𝐼 𝑙 ⊆ 𝒮, and scalars 𝛼 ∈ (0, 1/𝐿) and 𝑤 ∈ [0, 1]. All MDPs in the
family {𝑀𝐿,𝛼,𝑤,𝐼} share the same state space 𝒮, action space 𝒜, discount factor 𝛾, and initial state
distribution 𝑑0, and differ only in terms of the transition function 𝑃𝐿,𝛼,𝐼 and the reward function
𝑅𝐿,𝛼,𝑤.

State space We consider a layered61 state space 𝒮 = {s} ∪ 𝒮1 ∪ · · · ∪ 𝒮𝐿 ∪ {𝑊,𝑋, 𝑌, 𝑍}, where s

is the initial state, 𝒮1, . . . ,𝒮𝐿 are 𝐿 layers of intermediate (i.e., neither initial nor terminal) states,
and {𝑊,𝑋, 𝑌, 𝑍} are self-looping terminal states. The number of intermediate states in layer 𝑙 ∈ [𝐿]

is 𝑆𝑙 := 𝑆−5
𝐿div

(2𝐿+ 1− 𝑙)(𝐿+ 2− 𝑙), which ensures that |𝒮| =
∑︀𝐿
𝑙=1 𝑆𝑙 + 5 = 𝑆.62

Action space Our action space is given by 𝒜 = {1, 2}. For the initial state s, the two actions
have distinct effects, while for all other states in 𝒮 ∖ {s} both actions have identical effects. As a
result, the value of a given policy only depends on the action it selects in s. As in the proof of
Theorem 4.1, we use the symbol a as a placeholder to denote either action when taken in 𝑠 ∈ 𝒮 ∖ {s},
since the choice is immaterial.

Transition operator For each MDP 𝑀𝐿,𝛼,𝑤,𝐼 , recalling 𝐼 = (𝐼1, . . . , 𝐼𝐿), we let 𝐼 𝑙 ⊆ 𝒮𝑙

parameterize a subset of the 𝑙th-layer intermediate states. We call each 𝑠 ∈ 𝐼 𝑙 an 𝑙th-layer planted
state and call 𝑠 ∈ 𝐼

𝑙
:= 𝒮𝑙 ∖ 𝐼 𝑙 an 𝑙th-layer unplanted state. The dynamics 𝑃𝐿,𝛼,𝐼 for 𝑀𝐿,𝛼,𝑤,𝐼 are

determined by 𝐿, 𝛼 ∈ (0, 1/𝐿), and 𝐼 as follows (cf. Figure 4-2):

• Initial state s. For the dynamics from the initial state s, we define

𝑃𝐿,𝛼,𝐼(s, 1) = Unif({𝑊}),

and

𝑃𝐿,𝛼,𝐼(s, 2) =
1

2
·

(︃
𝐿∑︁
𝑙=1

(︂
1

2𝑙
Unif(𝒮𝑙)

)︂
+

1

2𝐿
Unif({𝑍})

)︃
+

1

2
· Unif({𝑋,𝑌 }).

That is, from the initial state s, choosing action 1 always leads to state 𝑊 in the next time step
(see the red arrow in Figure 4-2), while choosing 2 leads to all states in 𝒮1∪· · ·∪𝒮𝐿∪{𝑋,𝑌, 𝑍}
(i.e., 𝒮 ∖ {s,𝑊}) with certain probability (see the blue arrow in Figure 4-2, but note that
transitions from s to {𝑋,𝑌 } are not displayed).

60If (𝑆−5)/𝐿div is not an integer, then we can simply construct the MDPs using 𝑆 := ⌊(𝑆−5)/𝐿div⌋𝐿div+5
states and then add 𝑆 − 𝑆 arbitrary states that are not reachable by any policy. Since we are considering the
case where 𝜇 is admissible, those non-reachable states do not affect the sample complexity of any algorithm
(as they do not affect 𝐷𝑛 at all). It is easy to show that the conclusion of Theorem 4.2 still holds.

61Importantly, one should distinguish the concept of “layer” (which we use to simply refer to a group of
states) and the concept of “time step” (which indexes the sequential evolution of the MDP). A state in layer
𝑙 ∈ [𝐿] may be reached in any time step. For example, in Figure 4-2, states in 𝐼3 (which belongs to layer
3) can be reached in both time step 1 (through the blue arrow) and time step 2 (from 𝐼

2), but cannot be
reached in time step 3.

62The precise value of 𝑆𝑙 given here is not essential to our proof. Its primarily serves to avoid a rounding
issue that arises in Appendix C.5.2, which can also be addressed through other methods.
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• Intermediate states. Transitions from states in 𝒮1, . . . ,𝒮𝐿 are defined as follows.

– For each 𝑙th-layer planted state 𝑠 ∈ 𝐼 𝑙 ⊆ 𝒮𝑙, define

𝑃𝐿,𝛼,𝐼(𝑠, a) =
𝛾𝐿−𝑙𝛼

1− (𝑙 − 1)𝛼
Unif({𝑋}) +

(︂
1− 𝛾𝐿−𝑙𝛼

1− (𝑙 − 1)𝛼

)︂
Unif({𝑌 }).

– For each 𝑙th-layer unplanted states 𝑠 ∈ 𝐼
𝑙 ⊆ 𝒮𝑙, define

𝑃𝐿,𝛼,𝐼(𝑠, a) =
1− 𝑙 · 𝛼

1− (𝑙 − 1)𝛼
Unif(𝐼 𝑙+1) +

𝛼

1− (𝑙 − 1)𝛼
Unif({𝑌 }),

with the convention that 𝐼𝐿+1 := {𝑍}.

Since we restrict to 𝛼 ≤ 1/𝐿, one can verify that these are valid probability distributions.

• Terminal states. All states in {𝑊,𝑋, 𝑌, 𝑍} self-loop indefinitely. That is 𝑃𝐿,𝛼,𝐼(𝑠, a) =

Unif({𝑠}) for all 𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍}.

Reward function The initial and intermediate states have no reward, i.e., 𝑅𝐿,𝛼,𝑤(𝑠, 𝑎) = 0,∀𝑠 ∈
{s} ∪ 𝒮1 · · · ∪ 𝒮𝐿,∀𝑎 ∈ 𝒜. Each of the self-looping terminal states in {𝑊,𝑋, 𝑌, 𝑍} has a fixed
reward determined by the parameters 𝐿, 𝛼 and 𝑤. In particular, we define 𝑅𝐿,𝛼,𝑤(𝑊, a) = 𝑤,
𝑅𝐿,𝛼,𝑤(𝑋, a) = 1, 𝑅𝐿,𝛼,𝑤(𝑌, a) = 0, and 𝑅𝐿,𝛼,𝑤(𝑍, a) = 𝛼/(1− 𝐿𝛼).

Initial state distribution All MDPs in {𝑀𝐿,𝛼,𝑤,𝐼} start at s deterministically (that is, the
initial state distribution 𝑑0 places all its probability mass on s). Since 𝑑0 does not vary between
instances, it should be thought of as known to the learning algorithm.

C.5.2 Specifying the MDP Family ℳ

We leave 𝐿 ∈ N (we interpret N to not include 0) as a free parameter until the end of Appendix C.5,
where we will give a concrete 𝐿 that leads to Theorem 4.2. Given 𝐿 ∈ N, let 𝛼1 := 1

2𝐿 and 𝛼2 := 1
𝐿+1 .

For 𝛼 ∈ (0, 1), define

𝑉𝛼 :=

𝐿∑︁
𝑙=1

1

2𝑙+1

𝛾𝐿−(𝑙−1)𝛼

1− (𝑙 − 1)𝛼
+

1

2𝐿+1

𝛼

1− 𝐿𝛼
+

1

2
, (C.14)

which has 0 < 𝑉𝛼1
< 𝑉𝛼2

< 1, and let 𝑤 :=
𝑉𝛼1

+𝑉𝛼2

2 . Define ℐ𝜃 := {𝐼 : |𝐼 𝑙| = 𝜃𝑙𝑆𝑙} for any
𝜃 = (𝜃1, . . . , 𝜃𝐿) ∈ (0, 1)𝐿 such that 𝜃𝑙𝑆𝑙 is an integer for all 𝑙 ∈ [𝐿]. We define two sub-families of
MDPs via

ℳ1 :=
⋃︁

𝐼∈ℐ
𝜃(1)

{𝑀𝐿,𝛼1,𝑤,𝐼}, and ℳ2 :=
⋃︁

𝐼∈ℐ
𝜃(2)

{𝑀𝐿,𝛼2,𝑤,𝐼},

where ℳ1 is specified by 𝛼1 and 𝜃(1) = (𝜃(1)

1 , . . . , 𝜃(1)

𝐿 ) with

𝜃(1)

𝑙 :=
𝛼2

1− (𝑙 − 1)𝛼2
, ∀𝑙 ∈ [𝐿],
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and ℳ2 is specified by 𝛼2 and 𝜃(2) = (𝜃(2)

1 , . . . , 𝜃(2)

𝐿 ) with

𝜃(2)

𝑙 :=
𝛼1

1− (𝑙 − 1)𝛼1
, ∀𝑙 ∈ [𝐿].

Finally, we define the hard family ℳ via

ℳ = ℳ1 ∪ℳ2.

Note for this construction, that 𝜃(1) is defined in terms of 𝛼2 and vice-versa, which is a crucial to
the proof. In addition, recall that we assume without loss of generality that 𝑆−5

𝐿div
is an integer, which

implies that 𝜃(𝑖)

𝑙 𝑆𝑙 =
𝑆−5
𝐿div

(2𝐿− (𝑙− 1))(𝐿+ 1− (𝑙− 1))𝜃(𝑖)

𝑙 is always an integer for any 𝑖 ∈ {1, 2} and
𝑙 ∈ [𝐿].

C.5.3 Finishing the Construction: Value Functions and Data Distribution

Value function class Define functions 𝑓1, 𝑓2 : 𝒮×𝒜 → R as follows, recalling that 𝑤 :=
𝑉𝛼1

+𝑉𝛼2

2

(differences are highlighted in blue):

𝑓1(𝑠, 𝑎) :=
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾𝑤, 𝑠 = s, 𝑎 = 1

𝛾𝑉𝛼1 , 𝑠 = s, 𝑎 = 2

𝛾𝐿−(𝑙−1)𝛼1

1−(𝑙−1)𝛼1
, 𝑠 ∈ 𝒮𝑙, 𝑙 ∈ [𝐿]

𝑤, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

𝛼1

1−𝐿𝛼1
, 𝑠 = 𝑍

, (C.15)

𝑓2(𝑠, 𝑎) :=
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾𝑤, 𝑠 = s, 𝑎 = 1

𝛾𝑉𝛼2
, 𝑠 = s, 𝑎 = 2

𝛾𝐿−(𝑙−1)𝛼2

1−(𝑙−1)𝛼2
, 𝑠 ∈ 𝒮𝑙, 𝑙 ∈ [𝐿]

𝑤, 𝑠 =𝑊

1, 𝑠 = 𝑋

0, 𝑠 = 𝑌

𝛼2

1−𝐿𝛼2
, 𝑠 = 𝑍

. (C.16)

The following result is an elementary calculation. See Appendix C.8 for a detailed calculation.

Proposition C.1. For all 𝜋 : 𝒮 → Δ(𝒜), we have 𝑄𝜋𝑀 = 𝑓1 for all 𝑀 ∈ ℳ1 and 𝑄𝜋𝑀 = 𝑓2 for all
𝑀 ∈ ℳ2.

It follows that by choosing ℱ = {𝑓1, 𝑓2}, all-policy realizability holds for all 𝑀 ∈ ℳ.

Data distribution Recall that in the offline RL setting, the learner is provided with an i.i.d.
dataset 𝐷𝑛 = {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1 where (𝑠𝑖, 𝑎𝑖) ∼ 𝜇, 𝑠′𝑖 ∼ 𝑃 (· | 𝑠𝑖, 𝑎𝑖), and 𝑟𝑖 = 𝑅(𝑠𝑖, 𝑎𝑖). To ensure
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admissibility of 𝜇, we consider the exploratory policy 𝜋0 given by

𝜋0(𝑠) = Unif(𝒜), ∀𝑠 ∈ 𝒮.

We define the data collection distribution 𝜇 via:

𝜇(𝑠, 𝑎) :=
1

2
𝑑𝜋0
0 (𝑠, 𝑎) +

1

2
𝑑𝜋0
1 (𝑠, 𝑎),

which, by construction, is a mixture of admissible distributions as desired. As a reminder, we
use the notation 𝑑𝜋ℎ ∈ Δ(𝒮 × 𝒜) to denote the occupancy measure of 𝜋 at time step ℎ, that is
𝑑𝜋ℎ(𝑠, 𝑎) := P𝜋(𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎), where the dependence on the MDP 𝑀 is suppressed.

In general, this choice of 𝜇 will depend on the underlying MDP 𝑀 ∈ ℳ through 𝑑𝜋0
1 . However,

for our specific construction, we calculate that

𝜇(·, a) = 1

2
𝑑0 +

1

2

(︂
1

2
𝑃𝐿,𝛼,𝐼(s, 1) +

1

2
𝑃𝐿,𝛼,𝐼(s, 2)

)︂
=

1

2
𝑑0 +

1

4
Unif({𝑊}) + 1

4

(︃
1

2
·

(︃
𝐿∑︁
𝑙=1

(︂
1

2𝑙
Unif(𝒮𝑙)

)︂
+

1

2𝐿
Unif({𝑍})

)︃
+

1

2
· Unif({𝑋,𝑌 })

)︃

=
1

8

(︃
𝐿∑︁
𝑙=1

(︂
1

2𝑙
Unif(𝒮𝑙)

)︂
+

1

2𝐿
Unif({𝑍})

)︃
+

1

2
Unif({s}) + 1

4
Unif({𝑊}) + 1

8
Unif({𝑋,𝑌 }),

which is in fact independent of the choice of 𝑀 ∈ ℳ.

In addition, by a straightforward calculation, we see that this choice of 𝜇 leads to the following
bound on the concentrability coefficient. See Appendix C.8 for a detailed calculation.

Proposition C.2. We have 𝐶conc ≤ 32𝐿 for all models in ℳ.

C.5.4 Proof of Theorem 4.2

Recall that for each 𝑀 ∈ ℳ, we let P𝑀𝑛 denote the law of the offline dataset 𝐷𝑛 when the underlying
MDP is 𝑀 , and we let E𝑀𝑛 be the associated expectation operator. Lemma C.8, stated below, reduces
the task of proving a policy learning lower bound to the task of upper bounding the total variation
distance between the mixture distributions P1

𝑛 := 1
|ℳ1|

∑︀
𝑀∈ℳ1

P𝑀𝑛 and P2
𝑛 := 1

|ℳ2|
∑︀
𝑀∈ℳ2

P𝑀𝑛 .

Lemma C.8. Consider any fixed 𝛾 ∈ (0, 1) and 𝐿 ∈ N>1. For any offline RL algorithm which takes
𝐷𝑛 = {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1 as input and returns a stochastic policy ̂︀𝜋𝐷𝑛 : 𝒮 → Δ(𝒜), we have

sup
𝑀∈ℳ

{︀
𝐽𝑀 (𝜋⋆𝑀 )− E𝑀𝑛 [𝐽𝑀 (̂︀𝜋𝐷𝑛)]}︀ ≥ 𝛾𝐿

16𝐿

𝛾

(1− 𝛾)

(︀
1−𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀)︀
.

See Appendix C.6 for the proof of Lemma C.8. We conclude the proof of Theorem 4.2 by
bounding the total variation distance 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
. Because directly calculating the total variation

distance is difficult, we proceed in two steps. We first design two auxiliary reference measures Q1
𝑛

and Q2
𝑛, and then bound 𝐷TV

(︀
P1
𝑛,Q1

𝑛

)︀
, 𝐷TV

(︀
P2
𝑛,Q2

𝑛

)︀
and 𝐷TV

(︀
Q1
𝑛,Q2

𝑛

)︀
separately. For the latter

step, as in the proof of Theorem 4.1, we move from total variation distance to 𝜒2-divergence, which
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we bound using similar arguments. Our final bound on the total variation distance, which is proven
in Appendix C.7, is as follows.

Lemma C.9. Consider any fixed 𝛾 ∈ (0, 1) and 𝐿 ∈ N. For all 𝑛 ≤ 3
√︀

(𝑆 − 5)/(20𝐿2), we have

𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 1/2 + 𝑛/(8 · 2𝐿).

Theorem 4.2 immediately follows by choosing

𝐿 :=

⌊︂
min

{︂
𝐶

32
,

1

1− 𝛾
, log2(𝑆)

}︂⌋︂
and combining Lemma C.8 and Lemma C.9. With this choice of 𝐿, Lemma C.9 implies that
𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 5/8 whenever 𝑛 ≤ 𝑐 · min

{︀
𝑆1/3/(log𝑆)2, 2𝐶/32, 21/(1−𝛾)

}︀
for a sufficiently small

numerical constant 𝑐, and we have 𝐶conc ≤ 𝐶 as desired by Proposition C.2. Finally, whenever
𝛾 ≥ 1/2, using our choice for 𝐿 within Lemma C.8 gives

sup
𝑀∈ℳ

{︀
𝐽𝑀 (𝜋⋆𝑀 )− E𝑀𝑛 [𝐽𝑀 (̂︀𝜋𝐷𝑛)]}︀ ≥ Ω(1) · 𝛾

𝐿

𝐿

𝛾

(1− 𝛾)
= Ω(1)

where we use the fact that

𝛾𝐿

𝐿(1− 𝛾)
≥ 𝛾1/(1−𝛾)

(1/(1− 𝛾))(1− 𝛾)
= 𝛾1/(1−𝛾) ≥ (1/2)2

when 𝛾 ∈ [1/2, 1).

C.6 Proof of Lemma C.8

We begin the proof by lower bounding the regret for any MDP in the family ℳ. For any 𝑖 ∈ {1, 2},
any MDP 𝑀 ∈ ℳ𝑖, and any policy 𝜋 : 𝒮 → Δ(𝒜), we have

𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (𝜋) = 𝑄⋆𝑀 (s, 𝜋⋆𝑀 (s))−𝑄𝜋𝑀 (s, 𝜋(s))

= 𝑄⋆𝑀 (s, 𝜋⋆𝑀 (s))−𝑄⋆𝑀 (s, 𝜋(s))

= 𝑄⋆𝑀 (s, 𝑖)−𝑄⋆𝑀 (s, 𝜋(s))

=
𝛾

1− 𝛾

|𝑉𝛼1 − 𝑉𝛼2 |
2

P(𝜋(s) ̸= 𝑖)

≥ 𝛾𝐿

24𝐿

𝛾

(1− 𝛾)
P(𝜋(s) ̸= 𝑖), (C.17)

where the inequality follows because

|𝑉𝛼1 − 𝑉𝛼2 | =
𝐿∑︁
𝑙=1

1

2𝑙−1

(︂
𝛾𝐿−(𝑙−1)𝛼1

1− (𝑙 − 1)𝛼1
− 𝛾𝐿−(𝑙−1)𝛼2

1− (𝑙 − 1)𝛼2

)︂
+

1

2𝐿+1

(︂
𝛼1

1− 𝐿𝛼1
− 𝛼2

1− 𝐿𝛼2

)︂
≥ 1

2
𝛾𝐿|𝛼1 − 𝛼2| =

𝛾𝐿

2𝐿

(︂
1

𝐿+ 1
− 1

2𝐿

)︂
≥ 𝛾𝐿

12𝐿
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when 𝐿 ≥ 2.

Now, consider any fixed offline reinforcement learning algorithm which takes the offline dataset
𝐷𝑛 as an input and returns a stochastic policy ̂︀𝜋𝐷𝑛 : 𝒮 → Δ(𝒜). For each 𝑖 ∈ {1, 2}, we apply (C.17)
to all MDPs in ℳ𝑖 and average to obtain

1

|ℳ𝑖|
∑︁

𝑀∈ℳ𝑖

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)] ≥ 𝛾𝐿

24𝐿

𝛾

(1− 𝛾)

1

|ℳ𝑖|
∑︁

𝑀∈ℳ𝑖

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 𝑖).

Applying the inequality above for 𝑖 = 1 and 𝑖 = 2 and combining the results, we have

max
𝑀∈ℳ

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)]
≥ 1

2|ℳ1|
∑︁

𝑀∈ℳ1

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)] + 1

2|ℳ2|
∑︁

𝑀∈ℳ2

E𝑀𝑛 [𝐽𝑀 (𝜋⋆𝑀 )− 𝐽𝑀 (̂︀𝜋𝐷𝑛)]
≥ 𝛾𝐿

48𝐿

𝛾

(1− 𝛾)

{︃
1

|ℳ1|
∑︁

𝑀∈ℳ1

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 1) +
1

|ℳ2|
∑︁

𝑀∈ℳ2

P𝑀𝑛 (̂︀𝜋𝐷𝑛(s) ̸= 2)

}︃

≥ 𝛾𝐿

48𝐿

𝛾

(1− 𝛾)

(︃
1−𝐷TV

(︃
1

|ℳ1|
∑︁

𝑀∈ℳ1

P𝑀𝑛 ,
1

|ℳ2|
∑︁

𝑀∈ℳ2

P𝑀𝑛

)︃)︃
,

where the last inequality follows because P(𝐸) +Q(𝐸𝑐) ≥ 1−𝐷TV(P,Q) for any event 𝐸.

C.7 Proof of Lemma C.9

This proof is organized as follows. In Appendix C.7.1, we introduce two reference measures and move
from the total variation distance to the 𝜒2-divergence. This allows us to reduce the task of upper
bounding 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
to the task of upper bounding two manageable density ratios (Eqs. (C.20)

and (C.21) in the sequel). We develop several intermediate technical lemmas related to the density
ratios in Appendix C.7.2, and in Appendix C.7.3 we put everything together to bound the density
ratios, thus completing the proof of Lemma C.9.

C.7.1 Introducing Reference Measures and Moving to 𝜒2-Divergence

Directly calculating the total variation distance 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
is challenging, so we design two auxillary

reference measures Q1
𝑛 and Q2

𝑛 which serves as intermediate quantities to help with the upper bound.
The reference measures Q1

𝑛,Q2
𝑛 lies in the same measurable space as P1

𝑛 and P2
𝑛, and are defined as

follows:

Q1
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1) :=

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅1(𝑠𝑖,𝑎𝑖)}𝑃0(𝑠
′
𝑖 | 𝑠𝑖, 𝑎𝑖), ∀ {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1,

Q2
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1) :=

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅2(𝑠𝑖,𝑎𝑖)}𝑃0(𝑠
′
𝑖 | 𝑠𝑖, 𝑎𝑖), ∀ {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1,
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where

𝑅1(𝑠, a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑠 ∈ {s} ∪ 𝒮0 ∪ · · · ∪ 𝒮𝐿,

𝑤, 𝑠 =𝑊,

1, 𝑠 = 𝑋,

0, 𝑠 = 𝑌,

𝛼1

1−𝐿𝛼1
, 𝑠 = 𝑍,

, 𝑅2(𝑠, a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑠 ∈ {s} ∪ 𝒮0 ∪ · · · ∪ 𝒮𝐿,

𝑤, 𝑠 =𝑊,

1, 𝑠 = 𝑋,

0, 𝑠 = 𝑌,

𝛼2

1−𝐿𝛼2
, 𝑠 = 𝑍,

and

𝑃0(s, 1) = Unif({𝑊}),

𝑃0(s, 2) =
1

2
·

(︃
𝐿∑︁
𝑙=1

(︂
1

2𝑙
Unif(𝒮𝑙)

)︂
+

1

2𝐿
Unif({𝑍})

)︃
+

1

2
· Unif({𝑋,𝑌 }),

∀𝑠 ∈ 𝒮𝑙, ∀𝑙 ∈ [𝐿] : 𝑃0(𝑠, a) =
(1− 𝑙𝛼1)(1− 𝑙𝛼2)

(1− (𝑙 − 1)𝛼1)(1− (𝑙 − 1)𝛼2)
Unif(𝑆𝑙+1)

+
𝛾𝐿−𝑙𝛼1𝛼2

(1− (𝑙 − 1)𝛼1)(1− (𝑙 − 1)𝛼2)
Unif({𝑋})

+

(︂
1− (1− 𝑙𝛼1)(1− 𝑙𝛼2)

(1− (𝑙 − 1)𝛼1)(1− (𝑙 − 1)𝛼2)
− 𝛾𝐿−𝑙𝛼1𝛼2

(1− (𝑙 − 1)𝛼1)(1− (𝑙 − 1)𝛼2)

)︂
Unif({𝑌 }),

∀𝑠 ∈ {𝑊,𝑋, 𝑌, 𝑍} : 𝑃0(𝑠, a) = Unif({𝑠}).

The reference measure Q1
𝑛 is the law of 𝐷𝑛 when the data collection distribution is 𝜇 and the

underlying MDP is 𝑀1 := (𝒮,𝒜, 𝑃0, 𝑅1, 𝛾, 𝑑0). Notably, 𝑀1 shares the same reward function with
all MDPs in ℳ1, and differs from the MDPs in ℳ1 only in terms of the transition operator 𝑃0.

There are two ways to understand 𝑃0. Operationally, 𝑃0 is simply the pointwise average transition
operator of the MDPs in ℳ1, in the sense that

∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 : 𝑃0(· | 𝑠, 𝑎) =
1

|ℳ1|
∑︁

𝑀∈ℳ1

𝑃𝑀 (· | 𝑠, 𝑎),

where 𝑃𝑀 is the transition operator associated with each MDP 𝑀 . For this reason, we call 𝑀1

the average MDP associated with ℳ1. More conceptually, 𝑃0 is the transition operator obtained
by performing state aggregation using the value function class ℱ = {𝑓1, 𝑓2}, where states with the
same values for both 𝑓1 and 𝑓2 are viewed as identical and constrained to share dynamics (which is
induced by averaging over the data collection distribution).

Similarly, the reference measure Q2
𝑛 can be understood as the law of 𝐷𝑛 when the data collection

distribution is 𝜇 and the underlying MDP is 𝑀2 := (𝒮,𝒜, 𝑃0, 𝑅2, 𝛾, 𝑑0), where 𝑀2 is the average
MDP associated with ℳ2. An important property is that 𝑀1 and 𝑀2 share the same transition
operator 𝑃0 and differs only in terms of the reward on state 𝑍. This is a consequence of our
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construction, as when we construct ℳ1 and ℳ2 we strive to ensure that

∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 :
1

|ℳ1|
∑︁

𝑀∈ℳ1

𝑃𝑀 (· | 𝑠, 𝑎) = 𝑃0(· | 𝑠, 𝑎) =
1

|ℳ2|
∑︁

𝑀∈ℳ2

𝑃𝑀 (· | 𝑠, 𝑎),

and there is no uncertainty in the reward function outside of state 𝑍.

𝑊

s

𝒮1

𝑋

𝑌

𝛾2𝛼1𝛼2

𝒮2

𝑋

𝑌

(1−𝛼1)(1−𝛼2)

𝛾𝛼1𝛼2
(1−𝛼1)(1−𝛼2)

𝒮3

𝑋

𝑌

(1−2𝛼1)(1−2𝛼2)
(1−𝛼1)(1−𝛼2)

𝛼1𝛼2
(1−2𝛼1)(1−2𝛼2)

𝑍

(1−3𝛼1)(1−3𝛼2)
(1−2𝛼1)(1−2𝛼2)

Figure C-1: Illustration of the average MDP with 𝐿 = 3.

Figure C-1 illustrates the average MDPs 𝑀1 and 𝑀2 (the only difference between 𝑀1 and 𝑀2

is the reward on state 𝑍, which is not displayed). Note that for each 𝑙 ∈ [𝐿], all intermediate states
in 𝒮𝑙 have the same dynamics, so the planted subset structure is erased by averaging/aggregating.

Starting with the triangle inequality for the total variation distance, we have

𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 𝐷TV

(︀
P1
𝑛,Q1

𝑛

)︀
+𝐷TV

(︀
P2
𝑛,Q2

𝑛

)︀
+𝐷TV

(︀
Q1
𝑛,Q2

𝑛

)︀
≤ 1

2

√︁
𝐷𝜒2(P1

𝑛 ‖Q1
𝑛) +

1

2

√︁
𝐷𝜒2(P2

𝑛 ‖Q2
𝑛) +𝐷TV

(︀
Q1
𝑛,Q2

𝑛

)︀
, (C.18)

where the second inequality follows from the fact that 𝐷TV(P,Q) ≤ 1
2

√︀
𝐷𝜒2(P ‖Q) for any P,Q (see

Proposition 7.2 or Section 7.6 of Polyanskiy (2020)).

The next lemma shows that the total variation distance between Q1
𝑛 and Q2

𝑛 is small. Intuitively,
this is because the average MDPs 𝑀1 and 𝑀2 only differ in the reward on state 𝑍, but the data
distribution 𝜇’s coverage of on 𝑍 is very small.

Lemma C.10. For all 𝑛 <∞, we have 𝐷TV

(︀
Q1
𝑛,Q2

𝑛

)︀
≤ 𝑛𝜇(𝑍, a) = 𝑛/(8× 2𝐿).

Proof of Lemma C.10. Let ℛ := {1, 0, 𝛼1/(1−𝐿𝛼1), 𝛼2/(1−𝐿𝛼2), 𝑅(𝑊, a)}, then 𝑅(𝑠, 𝑎) ∈ ℛ for all
(𝑠, 𝑎) ∈ 𝒮 ×𝒜. Since |𝒮|, |𝒜|, |ℛ| <∞, the realization of the offline dataset 𝐷𝑛 = {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1
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only has finitely many possible outcomes, and we have

𝐷TV

(︀
Q1
𝑛,Q2

𝑛

)︀
=

1

2

∑︁
(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)∈𝒮×𝒜×ℛ×𝒮, ∀𝑖∈[𝑛]

⃒⃒
Q1
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)−Q2

𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)
⃒⃒

=
1

2

∑︁
(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)∈𝒮×𝒜×ℛ×𝒮, ∀𝑖∈[𝑛]

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)𝑃0(𝑠
′
𝑖 | 𝑠𝑖, 𝑎𝑖)

⃒⃒⃒⃒
⃒
𝑛∏︁
𝑖=1

1{𝑟𝑖=𝑅1(𝑠𝑖,𝑎𝑖)} −
𝑛∏︁
𝑖=1

1{𝑟𝑖=𝑅2(𝑠𝑖,𝑎𝑖)}

⃒⃒⃒⃒
⃒

=
1

2

∑︁
(𝑠𝑖,𝑎𝑖,𝑟𝑖)∈𝒮×𝒜×ℛ, ∀𝑖∈[𝑛]

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)

⃒⃒⃒⃒
⃒
𝑛∏︁
𝑖=1

1{𝑟𝑖=𝑅1(𝑠𝑖,𝑎𝑖)} −
𝑛∏︁
𝑖=1

1{𝑟𝑖=𝑅2(𝑠𝑖,𝑎𝑖)}

⃒⃒⃒⃒
⃒

=
∑︁

(𝑠𝑖,𝑎𝑖)∈𝒮×𝒜, ∀𝑖∈[𝑛]

1{∃𝑖∈[𝑛] s.t. 𝑠𝑖=𝑍}

𝑛∏︁
𝑖=1

𝜇(𝑠𝑖, 𝑎𝑖)

= P𝑠1,...,𝑠𝑛∼𝜇({∃𝑖 ∈ [𝑛] s.t. 𝑠𝑖 = 𝑍}) = P𝑠1,...,𝑠𝑛∼𝜇({𝑠1 = 𝑍} ∪ · · · ∪ {𝑠𝑛 = 𝑍}) ≤ 𝑛𝜇({𝑍}),

where the first equality follows from the well-known identity between the total variation distance and
the 𝐿1 norm and the last inequality follows from a union bound. □

Using Lemma C.10, we have

𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 1

2

√︁
𝐷𝜒2(P1

𝑛 ‖Q1
𝑛) +

1

2

√︁
𝐷𝜒2(P2

𝑛 ‖Q2
𝑛) + 𝑛𝜇(𝑍, a). (C.19)

Note that 𝜇(𝑍, a) = 1/8 · 1/2𝐿 which produces the final term in the bound in Lemma C.9.

We now turn our focus to the 𝜒2-divergence, which we expand as

𝐷𝜒2(P1
𝑛 ‖Q1

𝑛)

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼Q1
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

P𝑀𝑛 ({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)

Q1
𝑛({(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖)}𝑛𝑖=1)

)︃2
⎤⎦− 1

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼Q1
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

∏︀𝑛
𝑖=1 𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅𝑀 (𝑠𝑖,𝑎𝑖)}𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)∏︀𝑛

𝑖=1 𝜇(𝑠𝑖, 𝑎𝑖)1{𝑟𝑖=𝑅1(𝑠𝑖,𝑎𝑖)}𝑃0(𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)

)︃2
⎤⎦− 1

= E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼Q1
𝑛

⎡⎣(︃ 1
|ℳ1|

∑︀
𝑀∈ℳ1

∏︀𝑛
𝑖=1 𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)∏︀𝑛

𝑖=1 𝑃0(𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)

)︃2
⎤⎦− 1

=
1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

E{(𝑠𝑖,𝑎𝑖,𝑟𝑖,𝑠′𝑖)}𝑛𝑖=1∼Q1
𝑛

[︂∏︀𝑛
𝑖=1 𝑃𝑀 (𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)𝑃𝑀 ′(𝑠′𝑖 | 𝑠𝑖, 𝑎𝑖)∏︀𝑛

𝑖=1 𝑃
2
0 (𝑠

′
𝑖 | 𝑠𝑖, 𝑎𝑖)

]︂
− 1

=
1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

(︃
E (𝑠,𝑎)∼𝜇,
𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︃𝑛
− 1, (C.20)

where the third equality follows from 𝑅𝑀 (𝑠, 𝑎) = 𝑅1(𝑠, 𝑎),∀𝑀 ∈ ℳ,∀𝑎 ∈ 𝒜,∀𝑠 ∈ 𝒮.
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Using an identical calculation, we also have

𝐷𝜒2(P2
𝑛 ‖Q2

𝑛) =
1

|ℳ2|2
∑︁

𝑀,𝑀 ′∈ℳ2

(︃
E (𝑠,𝑎)∼𝜇,
𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︃𝑛
− 1. (C.21)

Equipped with these expressions for the 𝜒2-divergence, the next step in the proof of Lemma C.9
is to upper bound the right-hand side for Eqs. (C.20) and (C.21). This is done in Appendix C.7.3,
but before proceeding we require several intermediate technical lemmas.

C.7.2 Technical Lemmas for Density Ratios

For this subsection only, we focus on MDPs in ℳ1 and suppress the subscript indexing the subfamily,
i.e., we use 𝜃 for 𝜃(1) and 𝛼 for 𝛼1. Exactly the same calculations apply for ℳ2, which we will use
in the next section. To simplify the presentation and re-use lemmas from Appendix C.4.2, it will be
helpful to define the following notation:

𝛼 = (𝛼1, . . . , 𝛼𝐿), 𝛼𝑙 =
𝛾𝐿−𝑙𝛼

1− (𝑙 − 1)𝛼

𝛽 = (𝛽1, . . . , 𝛽𝐿), 𝛽𝑙 = 1− 𝛼𝑙

Additionally recall that

𝜃 = (𝜃1, . . . , 𝜃𝐿), 𝜃𝑙 =
𝛼

1− (𝑙 − 1)𝛼

These vectors parametrize the MDP transitions in the following sense: Let 𝐼 ∈ ℐ𝜃 denote the choice
of planted states for each layer. Then for 𝑙 ∈ [𝐿] we have:

𝑠 ∈ 𝐼 𝑙 : 𝑃𝐿,𝛼,𝐼(𝑠, a) = 𝛼𝑙Unif({𝑋}) + 𝛽𝑙Unif({𝑌 })

𝑠 ∈ 𝐼 𝑙 : 𝑃𝐿,𝛼,𝐼(𝑠, a) = (1− 𝜃𝑙)Unif(𝐼 𝑙+1) + 𝜃𝑙Unif({𝑌 })

where 𝐼𝐿+1 = {𝑍}.
To state the results compactly, we define

𝜑𝑙𝜃,𝛼,𝛽 := 𝜃2𝑙

(︂
(𝛽𝑙 − 𝛼𝑙)

2

𝜃𝑙(𝛽𝑙 − 𝛼𝑙) + 1− 𝛽𝑙
+
𝜃𝑙(𝛽𝑙 − 𝛼𝑙) + 𝛼𝑙

𝜃𝑙(1− 𝜃𝑙)

)︂
. (C.22)

We also use 𝑃𝐼 to denote 𝑃𝐿,𝛼,𝐼 .

We will bound the density ratio terms for each layer separately. First we control the 𝐿th layer.

Lemma C.11. For any 𝐼,𝐽 ∈ ℐ𝜃, we have

E𝑠∼Unif(𝒮𝐿),
𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝐼(𝑠

′ | 𝑠, a)𝑃𝐽 (𝑠
′ | 𝑠, a)

𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
= 1 + 𝜑𝐿𝜃,𝛼,𝛽 ·

(︂
|𝐼𝐿 ∩ 𝐽𝐿|
𝜃2𝐿𝑆𝐿

− 1

)︂
.

We omit the proof, which is identical to that of Lemma C.2. Next we turn to intermediate layers.
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Lemma C.12. For any 𝐼,𝐽 ∈ ℐ𝜃, for any 𝑙 ∈ [𝐿− 1], we have

E𝑠∼Unif(𝒮𝑙),
𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝐼(𝑠

′ | 𝑠, a)𝑃𝐽 (𝑠
′ | 𝑠, a)

𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
≤ 1 + 𝜑𝑙𝜃,𝛼,𝛽 ·

(︂
|𝐼 𝑙 ∩ 𝐽 𝑙|
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

(︂
|𝐼 𝑙+1 ∩ 𝐽 𝑙+1|
𝜃2𝑙+1𝑆𝑙+1

− 1

)︂
+

.

Proof of Lemma C.12. For any 𝐼,𝐽 ∈ ℐ𝜃, for any 𝑙 ∈ [𝐿− 1], we observe that

E𝑠∼Unif(𝒮𝑙),
𝑠′∼𝑃0(·|𝑠,a)

[︂
𝑃𝐼(𝑠

′ | 𝑠, a)𝑃𝐽 (𝑠
′ | 𝑠, a)

𝑃 2
0 (𝑠

′ | 𝑠, a)

]︂
= E𝑠∼Unif(𝒮𝑙)

⎡⎣ ∑︁
𝑠′∈{𝑋,𝑌 }∪(𝐼𝑙+1∩𝐽𝑙+1)

𝑃𝐼(𝑠
′ | 𝑠, a)𝑃𝐽 (𝑠

′ | 𝑠, a)
𝑃0(𝑠′ | 𝑠, a)

⎤⎦.
To proceed, we calculate the value of the ratio 𝑃𝐼(𝑠

′|𝑠,a)𝑃𝐽 (𝑠′|𝑠,a)
𝑃0(𝑠′|𝑠,a) for each possible choice for 𝑠 ∈ 𝒮1

and 𝑠′ ∈ {𝑋,𝑌 } ∪ (𝐼 𝑙+1 ∩ 𝐽 𝑙+1) in Table C.2 below.

𝑠′ = 𝑋 𝑠′ = 𝑌 𝑠′ ∈ 𝐼 𝑙+1 ∩ 𝐽 𝑙+1

𝑠 ∈ 𝐼 𝑙 ∩ 𝐽 𝑙 𝛼𝑙/𝜃𝑙 𝛽2𝑙 /(𝜃𝑙𝛽𝑙 + (1− 𝜃𝑙)𝛼𝑙) 0

𝑠 ∈ (𝐼 𝑙 ∪ 𝐽 𝑙) ∖ (𝐼 𝑙 ∩ 𝐽 𝑙) 0 𝛽𝑙𝛼𝑙/(𝜃𝑙𝛽𝑙 + (1− 𝜃𝑙)𝛼𝑙) 0

𝑠 /∈ (𝐼 𝑙 ∪ 𝐽 𝑙) 0 𝛼2
𝑙 /(𝜃𝑙𝛽𝑙 + (1− 𝜃𝑙)𝛼𝑙)

𝛽𝑙
(1−𝜃𝑙) ·

|𝐼𝑙+1∩𝐽 𝑙+1|
𝜃2𝑙+1𝑆𝑙+1

Table C.2: Value of 𝑃𝐼(𝑠
′|𝑠,a)𝑃𝐼′ (𝑠

′|𝑠,a)
𝑃0(𝑠′|𝑠,a) for all possible pairs (𝑠, 𝑠′).

Define 𝑡𝑙 := |𝐼 𝑙 ∩ 𝐽 𝑙|. From Lemma C.1, we must have 𝑡𝑙 ∈ [(2𝜃𝑙 − 1)+𝑆𝑙, 𝜃𝑙𝑆𝑙]. We also
have |𝐼 𝑙 ∪ 𝐽 𝑙| = |𝐼 𝑙| + |𝐽 𝑙| − |𝐼 𝑙 ∩ 𝐽 𝑙| = 2𝜃𝑙𝑆𝑙 − 𝑡𝑙. Hence, the event in the first row of Table C.2
occurs with probability |𝐼 𝑙 ∩ 𝐽 𝑙|/𝑆𝑙 = 𝑡𝑙/𝑆𝑙, the event in the second row occurs with probability
|(𝐼 𝑙 ∪ 𝐽 𝑙) ∖ (𝐼 𝑙 ∩ 𝐽 𝑙)|/𝑆𝑙 = (2𝜃𝑙𝑆𝑙 − 2𝑡𝑙)/𝑆𝑙 and the event in the third row occurs with probability
|𝑆𝑙 ∖ (𝐼 𝑙 ∪ 𝐼 𝑙)|/𝑆 = ((1− 2𝜃𝑙)𝑆𝑙 + 𝑡𝑙)/𝑆𝑙. Using these values and performing a similar calculation to
the one in the proof of Lemma C.2, we obtain

E𝑠∼Unif(𝒮𝑙)

⎡⎣ ∑︁
𝑠′∈{𝑋,𝑌 }∪(𝐼𝑙+1∩𝐽𝑙+1)

𝑃𝐼(𝑠
′ | 𝑠, a)𝑃𝐽 (𝑠

′ | 𝑠, a)
𝑃0(𝑠′ | 𝑠, a)

⎤⎦
= 1 + 𝜑𝑙𝜃,𝛼,𝛽

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

(︂
1− 2𝜃𝑙 +

𝑡𝑙
𝑆𝑙

)︂
𝛽𝑙

1− 𝜃𝑙

(︂
𝑡𝑙+1

𝜃2𝑙+1𝑆𝑙+1
− 1

)︂
≤ 1 + 𝜑𝑙𝜃,𝛼,𝛽

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

(︂
𝑡𝑙+1

𝜃2𝑙+1𝑆𝑙+1
− 1

)︂
+

,

where the last inequality follows from (2𝜃𝑙 − 1)𝑆𝑙 ≤𝑡𝑙 ≤ 𝜃𝑙𝑆𝑙 (which implies 0 ≤1−2𝜃𝑙+𝑡𝑙/𝑆𝑙 ≤ 1−𝜃𝑙)
and 0 ≤𝛽𝑙 ≤ 1. □

C.7.3 Completing the Proof

For now, let us also focus on a single MDP subfamily ℳ1 and suppress the family indices associated
with 𝛼 and (𝜃,𝛼,𝛽). As above the same calculations apply to ℳ2. To keep notation compact, for
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any 𝑑 ∈ Δ(𝒮 ×𝒜), define

DR𝑀,𝑀 ′(𝑑) := E (𝑠,𝑎)∼𝑑,
𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂
.

Consider any 𝑀,𝑀 ′ ∈ ℳ1. For any 𝜋 : 𝒮 → Δ(𝒜), by Lemmas C.11 and C.12, we have

𝐿∑︁
𝑙=1

1

2𝑙
DR𝑀,𝑀 ′(Unif(𝒮𝑙)× 𝜋) ≤

𝐿∑︁
𝑙=1

1

2𝑙
+

𝐿∑︁
𝑙=1

1

2𝑙
𝜑𝑙𝜃,𝛼,𝛽

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

𝐿∑︁
𝑙=2

1

2𝑙−1

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

≤ 1− 1

2𝐿
+

𝐿∑︁
𝑙=1

1

2𝑙
𝜑𝑙𝜃,𝛼,𝛽

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

𝐿∑︁
𝑙=2

1

2𝑙−1

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

≤ 1− 1

2𝐿
+

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽 + 2

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

. (C.23)

Note that 𝑃𝑀 (· | 𝑠, 𝑎) and 𝑃𝑀 ′(· | 𝑠, 𝑎) differ from 𝑃0(· | 𝑠, 𝑎) only when (𝑠, 𝑎) = (s, 2) or 𝑠 ∈
({s} ∪ 𝒮1 ∪ · · · ∪ 𝒮𝐿), so, recalling the value of 𝜇, we have

E(𝑠,𝑎)∼𝜇,𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂
=

1

8

𝐿∑︁
𝑙=1

1

2𝑙
DR𝑀,𝑀 ′(Unif(𝒮𝑙)× 𝜋0) +

1

8

1

2𝐿
DR𝑀,𝑀 ′(Unif({𝑍})× 𝜋0)

+
1

2
DR𝑀,𝑀 ′(Unif({s})× 𝜋0) +

1

4
DR𝑀,𝑀 ′(Unif({𝑊})× 𝜋0) +

1

8
DR𝑀,𝑀 ′(Unif({𝑋,𝑌 })× 𝜋0)

≤ 1

8

(︃
1− 1

2𝐿
+

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽 + 2

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃
+

1

8

1

2𝐿
+

1

2
+

1

4
+

1

8

= 1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

,

where the first inequality follows from (C.23). As a result, we have

1

|ℳ1|2
∑︁

𝑀,𝑀 ′∈ℳ1

(︃
E(𝑠,𝑎)∼𝜇,
𝑠′∼𝑃0(·|𝑠,𝑎)

[︂
𝑃𝑀 (𝑠′ | 𝑠, 𝑎)𝑃𝑀 ′(𝑠′ | 𝑠, 𝑎)

𝑃 2
0 (𝑠

′ | 𝑠, 𝑎)

]︂)︃𝑛

≤

⎛⎝ 𝐿∏︁
𝑙=1

1(︀
𝑆𝑙
𝜃𝑙𝑆𝑙

)︀2
⎞⎠ ∑︁
𝑡1,...,𝑡𝐿

∑︁
𝐼,𝐼′∈ℐ𝜃 :|𝐼𝑙∩𝐼′𝑙 |=𝑡𝑙

(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃𝑛

= E𝑡𝑙∼Hyper(𝜃𝑙𝑆𝑙,𝑆𝑙,𝜃𝑆𝑙), ∀𝑙∈[𝐿]

[︃(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃𝑛]︃
, (C.24)

where Hyper(·, ·, ·) denotes the hypergeometric distribution (cf. Lemma C.6 for background).

By Lemma C.6, for any 𝑙 ∈ [𝐿], the event

𝐸𝑙 := {𝑡𝑙 ≥ (𝜃𝑙 + 𝜖𝑙)𝜃𝑙𝑆𝑙}.
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happens with probability at most exp
(︀
−2𝜖2𝑙 𝜃𝑙𝑆𝑙

)︀
. Hence, the event

𝐸bad := {∃𝑙 ∈ [𝐿], 𝑡𝑙 ≥ (𝜃𝑙 + 𝜖𝑙)𝜃𝑙𝑆𝑙} =

𝐿⋃︁
𝑙=1

𝐸𝑙

happens with probability at most
∑︀𝐿
𝑙=1 exp

(︀
−2𝜖2𝑙 𝜃𝑙𝑆𝑙

)︀
. Conditional on 𝐸clean := 𝐸𝑐bad, i.e., the

complement of 𝐸bad, we have(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃𝑛
≤

(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝜖𝑙
𝜃𝑙

)︂)︃𝑛

≤

(︃
1 +

𝐿∑︁
𝑙=1

1/(8(1− 𝜃𝑙)) + 1/4

2𝑙

(︂
𝜖𝑙
𝜃𝑙

)︂)︃𝑛

≤

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙(1− 𝜃𝑙)
𝜖𝑙

)︃𝑛
.

Here we are using the bound 𝜑𝑙𝜃,𝛼,𝛽 ≤ 1
1−𝜃𝑙 , which follows from Lemma C.3. On the other hand,

under 𝐸bad, we have(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃𝑛
≤

(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
1

𝜃𝑙
− 1

)︂)︃𝑛

≤

(︃
1 +

𝐿∑︁
𝑙=1

1/(8(1− 𝜃𝑙)) + 1/4

2𝑙

(︂
1− 𝜃𝑙
𝜃𝑙

)︂)︃𝑛

≤

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙

)︃𝑛
,

where the first inequality follows from 𝑡𝑙 ≤ 𝜃𝑙𝑆𝑙. Hence we have

E𝑡𝑙∼Hyper(𝜃𝑙𝑆𝑙,𝑆𝑙,𝜃𝑆𝑙), ∀𝑙∈[𝐿]

[︃(︃
1 +

𝐿∑︁
𝑙=1

𝜑𝑙𝜃,𝛼,𝛽/8 + 1/4

2𝑙

(︂
𝑡𝑙
𝜃2𝑙 𝑆𝑙

− 1

)︂
+

)︃𝑛]︃

≤

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙(1− 𝜃𝑙)
𝜖

)︃𝑛
+

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙

)︃𝑛
· P𝑡𝑙∼Hyper(𝜃𝑙𝑆𝑙,𝑆𝑙,𝜃𝑆𝑙), ∀𝑙∈[𝐿](𝐸bad)

≤

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙(1− 𝜃𝑙)
𝜖𝑙

)︃𝑛
+

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙

)︃𝑛 𝐿∑︁
𝑙=1

exp
(︀
−2𝜖2𝑙 𝜃𝑙𝑆𝑙

)︀
=

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙(1− 𝜃𝑙)
𝜖𝑙

)︃𝑛
+

𝐿∑︁
𝑙=1

exp

⎛⎝𝑛 log
⎛⎝1 +

𝐿∑︁
𝑗=1

1

2𝑗+1𝜃𝑗

⎞⎠− 2𝜖2𝑙 𝜃𝑙𝑆𝑙

⎞⎠
=

(︃
1 +

𝐿∑︁
𝑙=1

1

2𝑙+1𝜃𝑙(1− 𝜃𝑙)
𝜖𝑙

)︃𝑛
+

𝐿∑︁
𝑙=1

exp

⎛⎝𝑛 𝐿∑︁
𝑗=1

1

2𝑗+1𝜃𝑗
− 2𝜖2𝑙 𝜃𝑙𝑆𝑙

⎞⎠ (C.25)
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Combining Eqs. (C.20), (C.24) and (C.25) (note that we are focusing on ℳ1), we have

𝐷𝜒2(P1
𝑛 ‖Q1

𝑛) ≤ inf
𝜖𝑙∈(0,𝜃2𝑙 𝑆𝑙),

∀𝑙∈[𝐿]

⎧⎨⎩
(︃
1 +

𝐿∑︁
𝑙=1

𝜖𝑙
2𝑙+1𝜃𝑙(1− 𝜃𝑙)

)︃𝑛
+

𝐿∑︁
𝑙=1

exp

⎛⎝𝑛 𝐿∑︁
𝑗=1

1

2𝑗+1𝜃𝑗
− 2𝜖2𝑙 𝜃𝑙𝑆𝑙

⎞⎠⎫⎬⎭− 1,

Let 𝑐 ∈ (0, 1/2) be an arbitrary constant. We set 𝜖𝑙 = 2𝑐 · (1−𝜃𝑙)𝜃𝑙
𝑛 (which belongs to (0, 𝜃2𝑙 𝑆𝑙) because

𝜖𝑙 < 𝜃𝑙 since 𝑛 ≥ 1 and 𝜃𝑙𝑆𝑙 ≥ 1 by assumption) for all 𝑙 ∈ [𝐿]. Then we have(︃
1 +

𝐿∑︁
𝑙=1

𝜖𝑙
2𝑙+1(1− 𝜃𝑙)𝜃𝑙

)︃𝑛
≤
(︁
1 +

𝑐

𝑛

)︁𝑛
≤ 𝑒𝑐 ≤ 1 + 2𝑐,

and

𝐷𝜒2(P1
𝑛 ‖Q1

𝑛) ≤ 2𝑐+

𝐿∑︁
𝑙=1

exp

⎛⎝𝑛 𝐿∑︁
𝑗=1

1

2𝑗+1𝜃𝑗
− 8𝑐2

(1− 𝜃𝑙)
2𝜃3𝑙

𝑛2
𝑆𝑙

⎞⎠.
In particular, whenever 𝑆𝑙 ≥ 𝑛3

4𝑐2𝜃3𝑙 (1−𝜃𝑙)2
1

min𝑗∈[𝐿] 𝜃𝑗
, we have

𝐷𝜒2(P1
𝑛 ‖Q1

𝑛) ≤ 2𝑐+ exp

⎛⎝𝑛 𝐿∑︁
𝑗=1

1

2𝑗+1𝜃𝑗
− 2𝑛

1

min𝑗∈[𝐿] 𝜃𝑗

⎞⎠ ≤ 2𝑐+ exp(−𝑛).

Since 𝜃𝑙 = 𝛼
1−(𝑙−1)𝛼 and the parameter 𝛼 ∈ [ 1

2𝐿 ,
1

𝐿+1 ] for the MDP family ℳ1, we have 𝜃𝑙 ∈
[ 1
2𝐿 ,

1
2 ] for all 𝑙 ∈ [𝐿]. Setting 𝑐 = 1/10. Whenever 𝑛 ≥ 5 and 𝑆 − 5 > 3200𝑛3𝐿6, we have

𝑆𝑙 =
𝑆−5
𝐿div

(2𝐿+ 1− 𝑙)(𝐿+ 2− 𝑙) > 1600𝑛3𝐿4 for all 𝑙 ∈ [𝐿] (recall that 𝐿div ≤ 4𝐿3), and hence

𝐷𝜒2(P1
𝑛 ‖Q1

𝑛) ≤
1

5
+ exp(−𝑛) ≤ 1

4
.

Using the same calculation, whenever 𝑛 ≥ 5 and 𝑆 − 5 > 800𝑛3𝐿6, it holds that

𝐷𝜒2(P2
𝑛 ‖Q2

𝑛) ≤
1

5
+ exp(−𝑛) ≤ 1

4
.

Combining th above two inequalities with (C.19), we have 𝐷TV

(︀
P1
𝑛,P2

𝑛

)︀
≤ 1/2 + 𝑛/(8 · 2𝐿), which

proves the lemma.

C.8 Proofs of Propositions C.1 and C.2

Proof of Proposition C.1. Since for all states in 𝒮 ∖ {s} the two actions in 𝒜 have identical effects,
we have 𝑄𝜋(𝑠, 𝑎) = 𝑄⋆(𝑠, 𝑎) for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜 and for all 𝜋 : 𝒮 → Δ(𝒜). Hence we only need to
show 𝑄⋆𝑀 = 𝑓1 for all 𝑀 ∈ ℳ1 and 𝑄⋆𝑀 = 𝑓2 for all 𝑀 ∈ ℳ2.

Consider an arbitrary 𝑀 = 𝑀𝐿
𝐼,𝛼,𝑤 ∈ ℳ. First, for any self-looping terminal state 𝑠 ∈
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{𝑊,𝑋, 𝑌, 𝑍}, we have

𝑉 ⋆𝑀 (𝑠) = 𝑄⋆𝑀 (𝑠, a) =

∞∑︁
ℎ=0

𝛾ℎ𝑅𝐿,𝛼,𝑤(𝑠, a) =
1

1− 𝛾
·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑤, 𝑠 =𝑊,

1, 𝑠 = 𝑋,

0, 𝑠 = 𝑌,

𝛼
1−𝐿𝛼 , 𝑠 = 𝑍.

Next, for 𝑙 = 𝐿, . . . , 1, for any 𝑙th-layer intermediate state 𝑠 ∈ 𝒮𝑙, by the Bellman optimality equation,
we have

𝑉 ⋆𝑀 (𝑠) = 𝑄⋆𝑀 (𝑠, a) = 𝑅𝐿,𝛼,𝑤(𝑠, a) + 𝛾E𝑠′∼𝑃𝐿𝐼,𝛼,𝑤(𝑠,a)[𝑉
⋆
𝑀 (𝑠′)]

=

⎧⎨⎩0 + 𝛾
[︀
𝛾𝐿−𝑙𝛼𝑉 ⋆𝑀 (𝑋) + 0

]︀
, 𝑠 ∈ 𝐼 𝑙

0 + 𝛾
[︁

(1−𝑙𝛼)
1−(𝑙−1)𝛼E𝑠′∼Unif(𝐼𝑙+1)𝑉

⋆
𝑀 (𝑠′) + 0

]︁
, 𝑠 ∈ 𝐼

𝑙

=

⎧⎨⎩
𝛾

1−𝛾
𝛾𝐿−𝑙𝛼

1−(𝑙−1)𝛼 , 𝑠 ∈ 𝐼 𝑙

𝛾
1−𝛾

𝛾𝐿−𝑙𝛼
1−(𝑙−1)𝛼 , 𝑠 ∈ 𝐼

𝑙

=
𝛾

1− 𝛾

𝛾𝐿−𝑙𝛼

1− (𝑙 − 1)𝛼
.

For the initial state s, we have

𝑄⋆𝑀 (s, 1) = 𝑅𝐿,𝛼,𝑤(s, 1) + 𝛾[𝑉 ⋆𝑀 (𝑊 )] =
𝛾𝑤

1− 𝛾
,

𝑄⋆𝑀 (s, 2) = 𝑅𝐿,𝛼,𝑤(s, 2) + 𝛾E𝑠′∼𝑃𝐿𝐼,𝛼,𝑤(𝑠,2)[𝑉
⋆
𝑀 (𝑠′)] =

𝛾𝑉𝛼
1− 𝛾

.

Therefore, 𝑄⋆𝑀 = 𝑓1 if 𝑀 ∈ ℳ1, and 𝑄⋆𝑀 = 𝑓2 if 𝑀 ∈ ℳ2. □

Proof of Proposition C.2. We now verify the concentrability condition (4.1).

Consider any 𝑀 ∈ ℳ1. For any (𝑠, 𝑎) ∈ 𝒮 ×𝒜, we have

sup
𝜈 is admissible

𝜈(𝑠, 𝑎) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑠 ∈ {s,𝑊,𝑋, 𝑌 }, 𝑎 ∈ 𝒜,
1
2 · 1

2𝐿
, if 𝑠 = 𝑍, 𝑎 ∈ 𝒜,

(maximized when ℎ = 1)
1
2 · 1

2𝑙
1
𝑆𝑙
, if 𝑠 ∈ 𝐼

𝑙
, 𝑎 ∈ 𝒜, 𝑙 ∈ [𝐿],

(maximized when ℎ = 1)
1
2 · 1

2
1
𝑆1
, if 𝑠 ∈ 𝐼1, 𝑎 ∈ 𝒜,

(maximized when ℎ = 1)

max

{︂
1
2 · 1

2𝑙
1
𝑆𝑙
, 12 · 1

2𝑙−1

1−(𝑙−1)𝛼2

1−(𝑙−2)𝛼2

1−(𝑙)𝛼1

1−(𝑙−1)𝛼1

1

𝜃
(1)
𝑙 𝑆𝑙

}︂
, if 𝑠 ∈ 𝐼 𝑙, 𝑎 ∈ 𝒜, 2 ≤ 𝑙 ≤ 𝐿,

(maximized over ℎ = 1, 2)
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Recall the definition of 𝜇 in Appendix C.5.3. We have

𝜇(𝑠, 𝑎) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
16 · 1

2 , if 𝑠 ∈ {s,𝑊,𝑋, 𝑌 }, 𝑎 ∈ 𝒜,
1
8 · 1

2𝐿
· 1
2 , if 𝑠 = 𝑍, 𝑎 ∈ 𝒜,

1
8 · 1

2𝑙
1
𝑆𝑙

· 1
2 , if 𝑠 ∈ 𝐼

𝑙
, 𝑎 ∈ 𝒜, 𝑙 ∈ [𝐿],

1
8 · 1

2
1
𝑆1

· 1
2 , if 𝑠 ∈ 𝐼1, 𝑎 ∈ 𝒜,

1
8 · 1

2𝑙
1
𝑆𝑙

· 1
2 , if 𝑠 ∈ 𝐼 𝑙 · 1

2 , 𝑎 ∈ 𝒜, 2 ≤ 𝑙 ≤ 𝐿

Combining the above two inequalities, we have

sup
𝜈 is admissible

⃦⃦⃦⃦
𝜈

𝜇

⃦⃦⃦⃦
∞

≤ min
2≤𝑙≤𝐿

(︀
8 · 2𝑙𝑆𝑙 · 2

)︀1
2
· 1

2𝑙−1

1− (𝑙 − 1)𝛼2

1− (𝑙 − 2)𝛼2

1− (𝑙)𝛼1

1− (𝑙 − 1)𝛼1

1

𝜃
(1)
𝑙 𝑆𝑙

= min
2≤𝑙≤𝐿

16

𝜃
(1)
𝑙

=
16

𝜃
(1)
2

=
16(1− 𝛼2)

𝛼2
≤ 32𝐿,

where the last inequality follows from 𝛼2 ≥ 1/(2𝐿).
Similarly, consider any 𝑀 ∈ ℳ2, we have

sup
𝜈 is admissible

⃦⃦⃦⃦
𝜈

𝜇

⃦⃦⃦⃦
∞

≤ 32𝐿.

We conclude that the construction satisfies concentrability with 𝐶conc ≤ 32𝐿. □
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Appendix D

Supplementary Material for Chapter 5

D.1 Proofs of Statements in Section 5.3

D.1.1 Proof of Theorem 5.1

As preparations, we introduce two results from Abbasi-Yadkori et al. 2011, which will be used in the
analysis.

Lemma D.1 (Lemma 11 in Abbasi-Yadkori et al. 2011). Let {𝑋𝑡 : 𝑡 ≥ 1} be a sequence in R𝑑, 𝑉
be a 𝑑 × 𝑑 positive definite matrix and define 𝑉𝑡 = 𝑉 +

∑︀𝑡
𝑠=1𝑋𝑠𝑋

T
𝑠 . If ||𝑋𝑡||2 ≤ 𝐿 for all 𝑡 and

𝜆min(𝑉 ) ≥ max{1, 𝐿2}, then

𝑇∑︁
𝑡=1

||𝑋𝑡||2𝑉 −1
𝑡−1

≤ 2
(︁
𝑑 log

Tr(𝑉 ) + 𝑇𝐿2

𝑑
− log det𝑉

)︁
.

Lemma D.2 (Theorem 2 in Abbasi-Yadkori et al. 2011). For any 0 < 𝜖 < 1, any 𝑡 ≥ 1,

P

(︃
||𝜃⋆ − 𝜃𝑠||𝑉𝑠,𝑛 ≤ 𝑅

√︂
2 log

(︁1 + (1 + 𝑢2)(𝑠+ 𝑛)/𝜆

𝜖

)︁
+
√︁
𝜆(𝛼2

max + 𝛽2
min),∀1 ≤ 𝑠 ≤ 𝑡

)︃
≥ 1− 𝜖.

We now divide the proof for Theorem 5.1 into two steps by proving the instance-independent
upper bound 𝒪(

√
𝑇 log 𝑇 ) and the instance-dependent upper bound 𝒪(𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2 ).

Step 1. In this step, we prove that the regret of O3FU algorithm is 𝒪(
√
𝑇 log 𝑇 ). Let 𝑥𝑡 = [1 𝑝𝑡]

𝑇

for each 𝑡 ≥ 1. For any 𝑡 ≥ 2, suppose 𝜃⋆ ∈ 𝒞𝑡−1 (note that in this case, 𝒞𝑡−1 ∩Θ† ̸= ∅, and thus, 𝜃𝑡
is well-defined), then we have

𝜓(𝜃⋆)(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑝𝑡(𝛼
⋆ + 𝛽⋆𝑝𝑡) ≤ 𝑝𝑡(𝛼̃𝑡 + 𝛽𝑡𝑝𝑡)− 𝑝𝑡(𝛼

⋆ + 𝛽⋆𝑝𝑡)

≤ 𝑢||𝑥𝑡||𝑉 −1
𝑡−1,𝑛

· ||𝜃𝑡 − 𝜃⋆||𝑉𝑡−1,𝑛

≤ 2𝑢||𝑥𝑡||𝑉 −1
𝑡−1,𝑛

· 𝑤𝑡−1 (D.1)

where the first inequality follows from the definition of (𝑝𝑡, 𝜃𝑡) in O3FU algorithm, the second
inequality follows from Cauchy-Schwarz inequality, and the last inequality follows from 𝜃⋆, 𝜃𝑡 ∈ 𝒞𝑡−1.
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Therefore,

𝑇∑︁
𝑡=2

(︀
𝜓(𝜃⋆)(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑝𝑡(𝛼

⋆ + 𝛽⋆𝑝𝑡)
)︀
≤

⎯⎸⎸⎷(𝑇 − 1)

𝑇∑︁
𝑡=2

(︀
𝜓(𝜃⋆)(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑝𝑡(𝛼⋆ + 𝛽⋆𝑝𝑡)

)︀2
≤ 2𝑢

⎯⎸⎸⎷(𝑇 − 1)𝑤2
𝑇−1

𝑇∑︁
𝑡=2

||𝑥𝑡||2𝑉 −1
𝑡−1,𝑛

, (D.2)

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows
from inequality (D.1) and the fact that 𝑤𝑡 increases in 𝑡.

Then we use Lemma D.1 to bound the term
∑︀𝑇
𝑡=1 ||𝑥𝑡||2𝑉 −1

𝑡−1,𝑛

. To apply Lemma D.1, let 𝑑 = 2,

𝐿 =
√
1 + 𝑢2, 𝜆 = 1 + 𝑢2,

𝑋𝑡 =
[︁ 1
𝑝𝑡

]︁
, 𝑉 = 𝜆𝐼 + 𝑛

[︃
1 𝑝

𝑝 𝑝2

]︃
, 𝑉𝑡 = 𝑉 +

𝑡∑︁
𝑠=1

[︃
1 𝑝𝑠

𝑝𝑠 𝑝2𝑠

]︃
.

Then we have

𝑇∑︁
𝑡=1

||𝑥𝑡||2𝑉 −1
𝑡−1,𝑛

≤ 2
(︁
2 log

(2𝜆+ 𝑛(1 + 𝑝2)) + 𝑇 (1 + 𝑢2)

2
− log

(︀
𝜆(𝜆+ 𝑛(1 + 𝑝2))

)︀)︁
≤ 2 log

(︁ (1 + 𝑢2)(2 + 𝑛+ 𝑇 )2

4(1 + 𝑙2)(1 + 𝑛)

)︁
,

which, combined with inequality (D.2), the definition of 𝑤2
𝑇 = 𝒪(log 𝑇 ), implies that when 𝜃⋆ ∈ 𝒞𝑡−1

for any 𝑡 ≥ 2,

𝑇∑︁
𝑡=2

(︀
𝜓(𝜃⋆)(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑝𝑡(𝛼

⋆ + 𝛽⋆𝑝𝑡)
)︀
= 𝒪

(︀√
𝑇 log 𝑇

)︀
. (D.3)

Then the regret of O3FU algorithm is upper bounded as follows:

𝑇∑︁
𝑡=2

E
[︀
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
]︀

=

𝑇∑︁
𝑡=2

E
[︁(︀
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
)︀
· 1{∀2≤𝑠≤𝑡,𝜃⋆∈𝒞𝑠}

]︁
+

𝑇∑︁
𝑡=2

E
[︁
(−𝛽⋆)(𝜓(𝜃⋆)− 𝑝𝑡)

2 · 1{∃2≤𝑠≤𝑡,𝜃⋆ /∈𝒞𝑠}

]︁
= 𝒪(

√
𝑇 log 𝑇 ) + |𝛽min|(𝑢− 𝑙)2

𝑇∑︁
𝑡=2

1

𝑇 2

= 𝒪(
√
𝑇 log 𝑇 ),

where the second identity follows from inequality (D.3) and Lemma D.2 with 𝜖 = 1
𝑇 2 for any 𝑡 ≥ 2.

Step 2. In this step, we prove that the regret of O3FU algorithm is also 𝒪(𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2 ). It suffices

to show the case when 𝛿 ≥ 2
√
𝛼2

max+𝛽
2
max√

2𝛽2
max

· 𝑤𝑇
𝑛1/4 , since otherwise, 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2 ≳ 𝑇
√
𝑛(log 𝑇 )2

(𝑛∧𝑇 ) log 𝑇 ≳
√
𝑇 log 𝑇 ,

and the upper bound in Theorem 5.1 becomes 𝒪(
√
𝑇 log 𝑇 ), which is already proven in Step 1.

Note that it suffices to bound the term
∑︀𝑇
𝑡=2 E[||𝜃⋆ − 𝜃𝑡||2]. Since 𝑇0 defined in Lemma 5.1 is an
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absolute constant, the result is trivial when 𝑇 ≤ 𝑇0. We then consider 𝑇 ≥ 𝑇0.

𝑇∑︁
𝑡=2

E[||𝜃⋆ − 𝜃𝑡||2] =
𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∀2≤𝑠≤𝑡,𝜃⋆∈𝒞𝑠}

]︁
+

𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∃2≤𝑠≤𝑡,𝜃⋆ /∈𝒞𝑠}

]︁
≤

𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{𝑈𝑡,2}

]︁
+

𝑇∑︁
𝑡=2

(︀
(𝛼max − 𝛼min)

2 + (𝛽max − 𝛽min)
2
)︀ 1

𝑇 2

≤ 𝐶2

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
+ ((𝛼max − 𝛼min)

2 + (𝛽max − 𝛽min)
2)

1

𝑇
,

where the first inequality follows from the proof of Lemma 5.1 and the concentration inequality in
Lemma D.2 with 𝜖 = 1

𝑇 2 for any 𝑡 ≥ 2. It is easy to verify that when 𝑛 < 𝑇 ,

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
=

𝑛∑︁
𝑡=1

𝑤2
𝑡

𝑡𝛿2
+

𝑇−1∑︁
𝑡=𝑛+1

𝑤2
𝑡

𝑛𝛿2
= 𝒪

(︁ (log 𝑇 )2
𝛿2

)︁
+𝒪

(︁𝑇 log 𝑇

𝑛𝛿2

)︁
= 𝒪

(︁𝑇 (log 𝑇 )2
(𝑛 ∧ 𝑇 )𝛿2

)︁
,

and when 𝑛 ≥ 𝑇 ,

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
=

𝑇−1∑︁
𝑡=1

𝑤2
𝑡

𝑡𝛿2
= 𝒪

(︁ log 𝑇 log 𝑇

𝛿2

)︁
= 𝒪

(︁𝑇 (log 𝑇 )2
(𝑛 ∧ 𝑇 )𝛿2

)︁
.

Combining both cases of 𝑛 < 𝑇 and 𝑛 ≥ 𝑇 , we have
∑︀𝑇
𝑡=2

𝑤2
𝑡−1

(𝑛∧(𝑡−1))𝛿2 = 𝒪(𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2 ), which completes
the proof. □

D.1.2 Proof of Lemma 5.1

When 𝑡 = 1, since 𝑝1 = 𝑙 · I{𝑝 > 𝑢+𝑙
2 }+ 𝑢 · I{𝑝 ≤ 𝑢+𝑙

2 }, then |𝑝1 − 𝑝| ≥ 𝑢−𝑙
2 ≥ 1

2𝛿. Thus, when 𝑡 = 1,
𝑈𝑡,1 holds.

We next prove the following result: under the assumptions of Lemma 5.1, suppose for each
1 ≤ 𝑠 ≤ 𝑡− 1 (for a fixed 2 ≤ 𝑡 ≤ 𝑇 ), the event 𝑈𝑠,1 holds, then 𝑈𝑡,1 and 𝑈𝑡,2 also hold. To this end,
let Δ𝛼𝑡 = 𝛼̃𝑡 −𝛼⋆, Δ𝛽𝑡 = 𝛽𝑡 − 𝛽⋆, and 𝛾𝑡 = Δ𝛼𝑡

Δ𝛽𝑡
(when Δ𝛽𝑡 ̸= 0). Since 𝜃⋆ ∈ 𝒞𝑡−1 and 𝜃𝑡 ∈ 𝒞𝑡−1, we

have ||𝜃𝑡 − 𝜃⋆||2𝑉𝑡−1,𝑛
≤ 2
(︀
||𝜃𝑡 − 𝜃𝑡−1||2𝑉𝑡−1,𝑛

+ ||𝜃⋆ − 𝜃𝑡−1||2𝑉𝑡−1,𝑛

)︀
≤ 2𝑤2

𝑡−1, which is equivalent to

𝜆
(︀
(Δ𝛼𝑡)

2 + (Δ𝛽𝑡)
2
)︀
+ 𝑛

(︀
Δ𝛼𝑡 +Δ𝛽𝑡𝑝

)︀2
+

𝑡−1∑︁
𝑠=1

(︀
Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑠

)︀2 ≤ 2𝑤2
𝑡−1. (D.4)

We next divide the proof into three cases.

Case 1: Δ𝛽𝑡 = 0. In this case, (D.4) becomes (Δ𝛼𝑡)
2(𝜆+ 𝑛+ 𝑡− 1) ≤ 2𝑤2

𝑡−1, and

||𝜃⋆ − 𝜃𝑡||2 = (Δ𝛼𝑡)
2 + (Δ𝛽𝑡)

2 = (Δ𝛼𝑡)
2 ≤

2𝑤2
𝑡−1

𝑛+ 𝑡− 1
. (D.5)

Therefore, (D.5) implies that

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1

𝑛 ∧ (𝑡− 1)
≤

2(𝑢− 𝑙)2𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
,

279



and

|𝑝− 𝑝𝑡| ≥ |𝑝− 𝜓(𝜃⋆)| − |𝑝𝑡 − 𝜓(𝜃⋆)|

≥ |𝑝− 𝜓(𝜃⋆)| −
√︀
𝛼2
max + 𝛽2

max√
2𝛽2

max

· 𝑤𝑡−1√
𝑛+ 𝑡− 1

≥ |𝑝− 𝜓(𝜃⋆)| − |𝜓(𝜃⋆)− 𝑝|
2𝑛

1
4

≥ 1

2
𝛿,

where the second inequality follows from (D.5) and Lipschitz continuity of the function 𝜓(·): |𝜓(𝜃1)−
𝜓(𝜃2)| ≤ 1

2𝛽2
max

√︀
𝛼2
max + 𝛽2

max · ||𝜃1 − 𝜃2||, and the third inequality holds since the assumption

𝛿 ≥ 2
√
𝛼2

max+𝛽
2
max√

2𝛽2
max

· 𝑤𝑇
𝑛1/4 implies

𝑤𝑡−1√
𝑛+ 𝑡− 1

≤ 𝑤𝑇√
𝑛
≤

√
2𝛽2

max𝑛
1
4

2
√︀
𝛼2
max + 𝛽2

max ·
√
𝑛
𝛿. (D.6)

Case 2: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| ≥ 4𝑢+ 1. In this case, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝜆(1 + 𝛾2𝑡 ) + 𝑛(𝛾𝑡 + 𝑝)2 +
∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝑛(𝛾𝑡 + 𝑝)2
≤

4𝑤2
𝑡−1

𝑛
, (D.7)

where the first inequality holds since ||𝜃⋆ − 𝜃𝑡||2 = (Δ𝛽𝑡)
2(1 + 𝛾2𝑡 ), and from (D.4), we have

(Δ𝛽𝑡)
2 ≤

2𝑤2
𝑡−1

𝜆(1 + 𝛾2𝑡 ) + 𝑛(𝛾𝑡 + 𝑝)2 +
∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

,

and the last inequality follows from 1+𝛾2𝑡 ≤ 2(𝛾𝑡+ 𝑝)
2, which is easily verified by noting (𝛾𝑡+2𝑝)2 ≥

(|𝛾𝑡| − 2𝑝)2 ≥ (2𝑝+ 1)2 ≥ 2𝑝2 + 1. Then, (D.7) implies that

||𝜃⋆ − 𝜃𝑡||2 ≤
4(𝑢− 𝑙)2𝑤2

𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
,

and

|𝑝− 𝑝𝑡| ≥ |𝑝− 𝜓(𝜃⋆)| − |𝑝𝑡 − 𝜓(𝜃⋆)| ≥ |𝑝− 𝜓(𝜃⋆)| −
√︀
𝛼2
max + 𝛽2

max

2𝛽2
max

2𝑤𝑡−1√
𝑛

≥ (1−
√
2

2
)𝛿,

where the second inequality follows from Lipschitz continuity of 𝜓(·) and (D.7), and the third
inequality follows from (D.6).

Case 3: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| < 4𝑢+ 1. Recall the following definitions of 𝐶0, 𝐶1 and 𝑇0 in Lemma 5.1:

𝐶0 =
𝑙|𝛽max|
𝑢|𝛽min|

, 𝐶1 =
4(𝐶0 + 1)2

𝐶2
0

(︀
1 + (4𝑢+ 1)2

)︀
, 𝑇0 = min

{︁
𝑡 ∈ N : 𝑤𝑡 ≥

√
𝐶1𝛽

2
max√︀

2(𝛼2
max + 𝛽2

max)

}︁
.
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Subcase 3.1: 1 + 𝛾2𝑡 ≤ 𝐶1
(𝛾𝑡+𝑝)

2

𝛿2 . In this subcase, since

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝑛(𝛾𝑡 + 𝑝)2
≤

2𝐶1𝑤
2
𝑡−1

𝑛𝛿2
,

then we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝐶1𝑤

2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
.

In addition, since 𝑇 ≥ 𝑇0, it follows that

|𝑝𝑡 − 𝑝| ≥ |𝜓(𝜃⋆)− 𝑝| − |𝑝𝑡 − 𝜓(𝜃⋆)|

≥ |𝜓(𝜃⋆)− 𝑝| −
√︀
𝛼2
max + 𝛽2

max

2𝛽2
max

√
2𝐶1𝑤𝑡−1√

𝑛𝛿

≥ |𝜓(𝜃⋆)− 𝑝| −
√
𝐶1𝛽

2
max

2
√︀

2(𝛼2
max + 𝛽2

max)𝑤𝑇
𝛿

≥ 1

2
𝛿,

where in the third inequality, we utilize the fact that 𝛿 ≥ 2
√
𝛼2

max+𝛽
2
max√

2𝛽2
max

· 𝑤𝑇
𝑛1/4 , and the last inequality

follows from 𝑇 ≥ 𝑇0 and the definition of 𝑇0.

Subcase 3.2: 1 + 𝛾2𝑡 > 𝐶1
(𝛾𝑡+𝑝)

2

𝛿2 . In this subcase, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(𝛾
2
𝑡 + 1)

𝑛(𝛾𝑡 + 𝑝)2 +
∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

≤
4𝑤2

𝑡−1(𝛾
2
𝑡 + 1)∑︀(𝑡−1)∧𝑛

𝑠=1 (𝑝𝑠 − 𝑝)2

≤
4𝑤2

𝑡−1((4𝑢+ 1)2 + 1)

(𝑛 ∧ (𝑡− 1)) ·min{(1−
√
2
2 )2,

𝐶2
0

4 } · 𝛿2
,

where the second inequality holds since

𝑛(𝛾𝑡 + 𝑝)2 +

𝑡−1∑︁
𝑠=1

(𝛾𝑡 + 𝑝𝑠)
2 ≥

𝑛∧(𝑡−1)∑︁
𝑠=1

(︀
(𝛾𝑡 + 𝑝𝑠)

2 + (𝛾𝑡 + 𝑝)2
)︀
≥ 1

2

𝑛∧(𝑡−1)∑︁
𝑠=1

(𝑝𝑠 − 𝑝)2,

and the last inequality follows from |𝛾𝑡| ≤ 4𝑢+ 1 and the inductive assumption:

∀1 ≤ 𝑠 ≤ 𝑡− 1, |𝑝𝑠 − 𝑝| ≥ min{1−
√
2

2
,
𝐶0

2
} · 𝛿.

Now, it suffices to bound the term |𝑝𝑡 − 𝑝|. If we can prove the following inequality:

|𝛾𝑡 + 𝑝𝑡| ≥ 𝐶0|𝛾𝑡 + 𝜓(𝜃⋆)|, (D.8)
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then |𝑝𝑡 − 𝑝| can be bounded as follows:

|𝑝𝑡 − 𝑝| ≥ |𝑝𝑡 + 𝛾𝑡| − |𝛾𝑡 + 𝑝|

≥ 𝐶0|𝛾𝑡 + 𝜓(𝜃⋆)| − |𝛾𝑡 + 𝑝|

≥ 𝐶0(|𝜓(𝜃⋆)− 𝑝| − |𝛾𝑡 + 𝑝|)− |𝛾𝑡 + 𝑝|

= 𝐶0|𝜓(𝜃⋆)− 𝑝| − (𝐶0 + 1)|𝛾𝑡 + 𝑝|

≥
(︁
𝐶0 − (𝐶0 + 1)

√︀
1 + (4𝑢+ 1)2√

𝐶1

)︁
|𝜓(𝜃⋆)− 𝑝|

≥ 𝐶0

2
𝛿,

where the second inequality follows from (D.8), the fourth inequality follows from the assumption
of Subcase 3.2, i.e., 1 + 𝛾2𝑡 > 𝐶1

(𝛾𝑡+𝑝)
2

𝛿2 and |𝛾𝑡| ≤ 4𝑢+ 1, and the last inequality follows from the
definition of 𝐶1.

Finally, we prove inequality (D.8). We define

𝐴1 = 𝑝𝑡(𝛼̃𝑡 + 𝛽𝑡𝑝𝑡), 𝐴2 = 𝑝𝑡(𝛼
⋆ + 𝛽⋆𝑝𝑡), 𝐴3 = 𝜓(𝜃⋆)(𝛼̃𝑡 + 𝛽𝑡𝜓(𝜃

⋆)), 𝐴4 = 𝜓(𝜃⋆)(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆)).

Recall that 𝑝𝑡 and 𝜓(𝜃⋆) are the maximizers of the following maximization problem:

𝑝𝑡 = arg max
𝑝∈[𝑙,𝑢]

𝑝(𝛼̃𝑡 + 𝛽𝑝), 𝜓(𝜃⋆) = arg max
𝑝∈[𝑙,𝑢]

𝑝(𝛼⋆ + 𝛽⋆𝑝),

then we have the following relationships for 𝐴𝑖, 1 ≤ 𝑖 ≤ 4:

𝐴1 ≥ 𝐴3, (D.9)

𝐴1 ≥ 𝐴4 ≥ 𝐴2. (D.10)

To show inequality (D.8), we consider the following two cases when 𝐴3 ≥ 𝐴2 and 𝐴3 < 𝐴2. If
𝐴3 ≥ 𝐴2, then we have

|Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑡| =
𝐴1 −𝐴2

𝑝𝑡
≥ |𝐴4 −𝐴3|

𝑝𝑡
=
𝜓(𝜃⋆)

𝑝𝑡
|Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)| ≥ 𝑙

𝑢
|Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)|, (D.11)

where the first inequality follows from 𝐴3, 𝐴4 ∈ [𝐴2, 𝐴1]. Without loss of generality, we assume that
Δ𝛽𝑡 > 0, since otherwise, we can redefine Δ𝛼𝑡 and Δ𝛽𝑡 as 𝛼⋆ − 𝛼̃𝑡 and 𝛽⋆ − 𝛽𝑡 respectively, and the
proof will be similar. Therefore, by dividing Δ𝛽𝑡 on both sides of (D.11), we get inequality (D.8). If
𝐴3 < 𝐴2,

|Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑡| =
𝐴1 −𝐴2

𝑝𝑡
≥ 𝐴4 −𝐴2

𝑝𝑡
=

−𝛽⋆(𝜓(𝜃⋆)− 𝑝𝑡)
2

𝑝𝑡
=

−𝛽⋆𝜓(𝜃⋆)
−𝛽𝑡𝑝𝑡

· −𝛽𝑡(𝜓(𝜃
⋆)− 𝑝𝑡)

2

𝜓(𝜃⋆)

≥ 𝑙|𝛽max|
𝑢|𝛽min|

· 𝐴1 −𝐴3

𝜓(𝜃⋆)
≥ 𝑙|𝛽max|
𝑢|𝛽min|

· 𝐴4 −𝐴3

𝜓(𝜃⋆)
=
𝑙|𝛽max|
𝑢|𝛽min|

· |Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃
⋆)|, (D.12)

where the second identity and the second inequality follow from the property of quadratic functions.
By dividing Δ𝛽𝑡 (> 0 by assumption) on both sides of (D.12), inequality (D.8) holds. It is also
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worth noting that from the above arguments, inequality (D.8) holds universally due to the specific
property of OFU principle and quadratic structure of the objective function, and does not depend on
any inductive assumption.

Combining Cases 1–3, we conclude that

|𝑝𝑡 − 𝑝| ≥ min
{︁
1−

√
2

2
,
𝐶0

2

}︁
· 𝛿,

||𝜃⋆ − 𝜃𝑡||2 ≤ max
{︁
4(𝑢− 𝑙)2, 2𝐶1,

4((4𝑢+ 1)2 + 1)

min{𝐶
2
0

4 , (1−
√
2
2 )2}

}︁
·

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2
,

i.e., 𝑈𝑡,1 and 𝑈𝑡,2 hold, which completes the inductive arguments. □

D.1.3 Proof of Theorem 5.2

As preparation, we first present the multivariate van Trees inequality, which will be used in Step 1
of the proof for Theorem 5.2. For simplicity, we focus on the estimation problem for a real-valued
function when stating the multivariate van Trees inequality, which is sufficient for our use, and we
refer the interested readers to Gill and Levit (2001) for the more general version on estimating a
vector-valued function.

Lemma D.3 (Multivariate van Trees Inequality, Theorem 1, Gill and Levit (2001)). Consider
estimating a real-valued function 𝜓(𝜃) with parameter 𝜃 being an 𝑠-dimensional vector. Suppose we
are given 𝑛 i.i.d. observations 𝑋1, 𝑋2, . . . , 𝑋𝑛 drawn from a common distribution with probability
density function 𝑓(𝑥, 𝜃). Suppose 𝜃 is in the compact set Θ ⊆ R𝑠, the prior probability density
function of 𝜃 is denoted by 𝜆(𝜃), and 𝐶(𝜃) is an 𝑠-dimensional row vector. If 𝑓(𝑥, 𝜃), 𝜆(𝜃), 𝐶(𝜃)
satisfy certain regularity conditions (see Assumptions in Section 4 of Gill and Levit (2001)), and in
particular, 𝜆(𝜃) is positive in the interior of Θ and zero on its boundary, then for any estimator 𝜓𝑛
based on 𝑋1, 𝑋2, . . . , 𝑋𝑛,

E𝜆
[︀
E𝜃
[︀
(𝜓𝑛 − 𝜓(𝜃))2

]︀]︀
≥

(E𝜆[Tr(𝐶(𝜃)(𝜕𝜓𝜕𝜃 )
⊤)])2̃︀ℐ(𝜆) + 𝑛 · E𝜆[Tr(𝐶(𝜃)ℐ(𝜃)(𝐶(𝜃))⊤)]

,

where Tr(𝐴) denotes the trace for a square matrix 𝐴, and ̃︀ℐ(𝜆) = ∫︀
Θ

(︁∑︀𝑠
𝑘=1

𝜕
𝜕𝜃𝑘

(︀
𝐶𝑘(𝜃)𝜆(𝜃)

)︀)︁
1

𝜆(𝜃)𝑑𝜃.

It suffices to consider the case when 𝜀 follows a normal distribution with standard deviation 𝑅.
Without loss of generality, we assume 𝜉 = 1

2 , and the analysis can be easily extended to general
𝜉 ∈ (0, 1).

Step 1. As the first step, we will prove the following result: for any pricing policy 𝜋 ∈ Π,

sup
𝜃∈Θ0(𝛿)

𝑅𝜋𝜃 (𝑇 ) = Ω
(︁(︀√

𝑇 ∧
(︀ 𝑇

𝛿−2 + (𝑛 ∧ 𝑇 )𝛿2
)︀)︀

∨ log(1 + 𝑇𝛿2)
)︁
, (D.13)

where Θ0(𝛿) =
{︀
𝜃 ∈ Θ† : 𝜓(𝜃)− 𝑝 ∈ [ 𝛿2 , 𝛿]

}︀
. When 𝛿 ≥ 𝑙𝑅

16|𝛽min|

√︁
|𝛽max|
2𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 , the above

(D.13) implies the desired lower bound in Theorem 5.2. In what follows, we will prove three lower
bounds for sup𝜃∈Θ0(𝛿)𝑅

𝜋
𝜃 (𝑇 ): Ω(log(1+𝑇𝛿

2)), Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑇𝛿2 ), and Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝛿2 ), which, when
combined together, imply the lower bound in (D.13).

283



Before invoking the multivariate van Trees inequality in Lemma D.3, we first note that since
Θ0(𝛿) = {𝜃 ∈ Θ† : − 𝛼

2𝑝+𝛿 ≤ 𝛽 ≤ − 𝛼
2𝑝+2𝛿}, there exist some positive constants 𝑥0, 𝑦0, 𝜖 such that

Θ1(𝛿) := [𝑥0 − 1
2𝜖𝛿, 𝑥0 +

3
2𝜖𝛿]× [−𝑦0 − 3

2𝜖𝛿,−𝑦0 +
1
2𝜖𝛿] ⊆ Θ0(𝛿). Then we define a prior distribution

for 𝜃 on Θ1(𝛿) as follows:

𝑞(𝑥, 𝑦) =
1

(𝜖𝛿)2
cos2

(︁𝜋(𝑥− 2𝑥0+𝜖𝛿
2 )

2𝜖𝛿

)︁
· cos2

(︁𝜋(𝑦 + 2𝑦0+𝜖𝛿
2 )

2𝜖𝛿

)︁
, ∀(𝑥, 𝑦) ∈ Θ1(𝛿). (D.14)

In addition, we have the following inequality:

sup
𝜃∈Θ0(𝛿)

𝑅𝜋𝜃 (𝑇 ) ≥ sup
𝜃∈Θ1(𝛿)

𝑅𝜋𝜃 (𝑇 ) = sup
𝜃∈Θ1(𝛿)

𝑇∑︁
𝑡=1

(−𝛽) ·
𝑇∑︁
𝑡=1

E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

≥ |𝛽max| ·
𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
, (D.15)

where the first inequality holds since Θ1(𝛿) ⊆ Θ0(𝛿), the identity follows from the property of
quadratic function and optimality of 𝜓(𝜃), and the second inequality holds since 𝑞(𝜃) is a probability
density distribution defined on Θ1(𝛿). Note that the reason for which we consider a subset of Θ0(𝛿)

is that the Fisher information defined on the rectangle, i.e., Θ1(𝜃), will be easier to calculate later.

Then for each 𝑡 ≥ 2, by letting 𝑛 = 1, 𝑋1 = (𝜀1, . . . , 𝜀𝑛, 𝜀1, . . . , 𝜀𝑡−1), 𝜓𝑛 = 𝑝𝑡, 𝜆(·) = 𝑞(·) in
Lemma D.3, we have

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

(E𝑞[𝐶(𝜃)T 𝜕𝜓𝜕𝜃 ])
2

ℐ(𝑞) + E𝑞[E𝜋𝜃 [𝐶(𝜃)Tℐ𝜋𝑡−1(𝜃)𝐶(𝜃)]]
, (D.16)

where 𝐶(𝜃) is any two-dimensional vector to be specified, and

ℐ(𝑞) =
∫︁
(𝜃1,𝜃2)∈Θ1(𝛿)

2∑︁
𝑖=1

2∑︁
𝑗=1

𝜕

𝜕𝜃𝑖

(︀
𝐶𝑖(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 𝜕

𝜕𝜃𝑗

(︀
𝐶𝑗(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 1

𝑞(𝜃1, 𝜃2)
𝑑𝜃1𝑑𝜃2,

and ℐ𝜋𝑡−1(𝜃) is the Fisher information matrix defined as

ℐ𝜋𝑡−1(𝜃) =
1

𝑅2
E𝜋𝜃

[︃
𝑛+ 𝑡− 1 𝑛𝑝+

∑︀𝑡−1
𝑠=1 𝑝𝑠

𝑛𝑝+
∑︀𝑡−1
𝑠=1 𝑝𝑠 𝑛𝑝2 +

∑︀𝑡−1
𝑠=1 𝑝

2
𝑠

]︃
.

We next start from (D.16), and prove the three lower bounds by specifying different 𝐶(𝜃) and
bounding the resulting E𝑞[𝐶(𝜃)T 𝜕𝜓𝜕𝜃 ], ℐ(𝑞), and E𝑞[E𝜋𝜃 [𝐶(𝜃)Tℐ𝜋𝑡−1(𝜃)𝐶(𝜃)]] in the RHS of (D.16).

To prove the first lower bound Ω(log(1 + 𝑇𝛿2)), let 𝐶(𝜃) = (−𝑝, 1) in (D.16), then we have

𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

𝑇∑︁
𝑡=2

𝑅2𝑐1

𝑅2ℐ(𝑞) +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝑝)2]]

≥
𝑇∑︁
𝑡=2

𝑅2𝑐1
𝑅2ℐ(𝑞) + (𝑡− 1)(𝑢− 𝑙)2

,

where 𝑐1 =
(︀
min𝜃∈Θ†

𝛼+𝛽𝑝
2𝛽2

)︀2. Since 𝐶(𝜃) = (−𝑝, 1) is independent of 𝜃, by changing variables in the
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integrals, we have

ℐ(𝑞) = 𝜋

2𝜖2𝛿2

∫︁ 𝜋
2

−𝜋
2

∫︁ 𝜋
2

−𝜋
2

2∑︁
𝑖=1

2∑︁
𝑗=1

𝜕

𝜕𝜃𝑖

(︀
𝐶𝑖(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 𝜕

𝜕𝜃𝑗

(︀
𝐶𝑗(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 1

𝑞(𝜃1, 𝜃2)
𝑑𝜃1𝑑𝜃2,

where 𝑞(𝜃1, 𝜃2) = cos2(𝜃1) · cos2(𝜃2). Since the integral in the RHS of the above equation is a constant
independent of 𝛿, we have ℐ(𝑞) = Θ(𝛿−2), it then follows from (D.15) that

sup
𝜃∈Θ0(𝛿)

𝑇∑︁
𝑡=1

𝑅𝜋𝜃 (𝑇 ) ≥ |𝛽max| · sup
𝜃∈Θ1(𝛿)

𝑇∑︁
𝑡=1

E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2] = Ω(log(1 + 𝑇𝛿2)).

To prove the second lower bound Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑇𝛿2 ), let 𝐶(𝜃) = (−𝑝, 1) in (D.16) again, then we
obtain

𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

𝑇∑︁
𝑡=2

𝑅2𝑐1

𝑅2ℐ(𝑞) +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝑝)2]]

≥
𝑇∑︁
𝑡=2

𝑅2𝑐1

𝑅2ℐ(𝑞) + 2(𝑡− 1)𝛿2 +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝜓(𝜃))2]]

≥ 𝑅2𝑐1(𝑇 − 1)

𝑅2ℐ(𝑞) + 2𝑇𝛿2 +
∑︀𝑇
𝑡=1 E𝑞[E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]]

, (D.17)

where the second inequality holds since (𝑝𝑠−𝑝)2 ≤ 2(𝑝𝑠−𝜓(𝜃)))2+2(𝑝−𝜓(𝜃))2 ≤ 2(𝑝𝑠−𝜓(𝜃))2+2𝛿2.
It is easily verified that the inequality 𝑥2 + 𝑏𝑥+ 𝑐 ≥ 0 for 𝑏 > 0, 𝑐 < 0, 𝑥 ≥ 0 implies

𝑥 ≥ 1√
2 + 1

min
{︀√︀

|𝑐|, 2|𝑐|
𝑏

}︀
. (D.18)

Applying (D.18) to the inequality (D.17), we obtain from (D.15) that

sup
𝜃∈Θ0(𝛿)

𝑇∑︁
𝑡=1

𝑅𝜋𝜃 (𝑇 ) ≥ |𝛽max| ·
𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥ Ω(

√
𝑇 ∧ 𝑇

ℐ(𝑞) + 𝑇𝛿2
) = Ω(

√
𝑇 ∧ 𝑇

𝛿−2 + 𝑇𝛿2
),

where in the identity, we utilize the fact that ℐ(𝑞) = Θ(𝛿−2).

To prove the third lower bound Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝛿2 ), we choose another vector 𝐶(𝜃) = (−𝜓(𝜃), 1),
and the inequality (D.16) becomes

𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

𝑇∑︁
𝑡=2

𝑅2𝛼2
min/(4𝛽

2
min)

2

𝑅2ℐ(𝑞) +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝜓(𝜃))2]] + 𝑛𝛿2

≥ 𝑅2𝛼2
min/(4𝛽

2
min)

2(𝑇 − 1)

𝑅2ℐ(𝑞) +
∑︀𝑇
𝑡=1 E𝑞[E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]] + 𝑛𝛿2

,

which, combined with (D.15) and (D.18), implies that

sup
𝜃∈Θ0(𝛿)

𝑅𝜋𝜃 (𝑇 ) ≥ |𝛽max|
𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥ Ω(

√
𝑇 ∧ 𝑇

ℐ(𝑞) + 𝑛𝛿2
). (D.19)
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By definition,

ℐ(𝑞) = 𝜋

2𝜖2𝛿2

∫︁ 𝜋
2

−𝜋
2

∫︁ 𝜋
2

−𝜋
2

2∑︁
𝑖=1

2∑︁
𝑗=1

𝜕

𝜕𝜃𝑖

(︀
𝐶𝑖(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 𝜕

𝜕𝜃𝑗

(︀
𝐶𝑗(𝜃1, 𝜃2) · 𝑞(𝜃1, 𝜃2)

)︀
· 1

𝑞(𝜃1, 𝜃2)
𝑑𝜃1𝑑𝜃2,

where 𝐶(𝜃1, 𝜃2) =
(︀ 2𝜖𝛿𝜃1

𝜋 +𝑥0+
𝜖𝛿
2

2(
2𝜖𝛿𝜃2
𝜋 −𝑦0− 𝜖𝛿

2 )
, 1
)︀
. Since both 𝐶(·) and 𝐶(𝜃) are bounded by constants indepen-

dent of 𝛿, it is easily verified that the integral in the RHS of the above identity can be bounded by
constant independent of 𝛿. Therefore, ℐ(𝑞) = Θ(𝛿−2), and from inequality (D.19), we have

sup
𝜃∈Θ0(𝛿)

𝑅𝜋𝜃 (𝑇 ) = Ω(
√
𝑇 ∧ 𝑇

𝛿−2 + 𝑛𝛿2
).

Step 2. In this step, we complete the proof by showing that when 𝛿 ≤ 𝑙𝑅
16|𝛽min|

√︁
|𝛽max|
2𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 ,

for any admissible policy 𝜋 ∈ Π∘, there exists 𝜃 ∈ Θ† satisfying |𝜓(𝜃)− 𝑝| ∈ [ 12𝛿,
3
2𝛿] such that

𝑅𝜋𝜃 (𝑇 ) = Ω
(︁ √

𝑇

(log 𝑇 )𝜆0

)︁
. (D.20)

Our proof of (D.20) is based on the concept of KL divergence, which is a quantitative measure of
distance between two distributions. The definition is given as follows. For any two distributions 𝑃1

and 𝑃2, the KL divergence is

𝐾𝐿(𝑃1, 𝑃2) = E𝑋∼𝑃1

[︁
log

𝑃1(𝑋)

𝑃2(𝑋)

]︁
.

We now consider two vectors of demand parameters 𝜃1 and 𝜃2 satisfying the following conditions:

− 𝛼1

2𝛽1
= 𝑝+ 𝛿, − 𝛼2

2𝛽2
= 𝑝+ 𝛿 +Δ, (𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)𝑝 = 0.

where Δ > 0 is to be determined. For any policy 𝜋 ∈ Π∘, let 𝑃𝜋1 and 𝑃𝜋2 be the following two
probability measures induced by the common policy 𝜋 and two parameters 𝜃1 and 𝜃2 respectively:

𝑃𝜋𝑖 (𝐷̂1, . . . , 𝐷̂𝑛, 𝐷1, . . . , 𝐷𝑇 ) =

𝑛∏︁
𝑡=1

(︁ 1

𝑅
𝜑
(︀𝐷̂𝑡 − (𝛼𝑖 + 𝛽𝑖𝑝)

𝑅

)︀)︁
·
𝑇∏︁
𝑡=1

(︁ 1

𝑅
𝜑
(︀𝐷𝑡 − (𝛼𝑖 + 𝛽𝑖𝑝𝑡)

𝑅

)︀)︁
, 𝑖 = 1, 2,

where 𝜑(𝑥) = 1√
2𝜋

exp(−𝑥2

2 ) is the probability density function of the standard normal distribution.
From the definition of KL divergence, we have

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) =

(𝛽1 − 𝛽2)
2

2𝑅2

(︁
𝑛
(︀𝛼1 − 𝛼2

𝛽1 − 𝛽2
+ 𝑝
)︀2

+

𝑇∑︁
𝑡=1

E𝜋𝜃1 [(
𝛼1 − 𝛼2

𝛽1 − 𝛽2
+ 𝑝𝑡)

2]
)︁

=
2𝛽2

2Δ
2

(𝑝+ 2𝛿)2𝑅2

𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝑝)2]

≤ 4𝛽2
minΔ

2

𝑙2𝑅2

(︀ 𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2] + 𝑇𝛿2

)︀
. (D.21)
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Since 𝑅𝜋𝜃1(𝑇 ) = (−𝛽1)
∑︀𝑇
𝑡=1 E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))

2], it follows that

𝑅𝜋𝜃1(𝑇 ) ≥ |𝛽max|
(︁ 𝑙2𝑅2

4𝛽2
minΔ

2
𝐾𝐿(𝑃𝜋1 , 𝑃

𝜋
2 )− 𝑇𝛿2

)︁
. (D.22)

We next establish a lower bound on 𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) and choose a suitable Δ such that the RHS

of (D.22) can be further lower bounded by Ω(
√
𝑇

(log 𝑇 )𝜆0
). Before proceeding, we define two disjoint

intervals 𝐼1 = [𝑝+ 𝛿 − 1
4Δ, 𝑝+ 𝛿 + 1

4Δ], and 𝐼2 = [𝑝+ 𝛿 + 3
4Δ, 𝑝+ 𝛿 + 5

4Δ]. For each 𝑡 ≥ 1, let 𝑋𝑡 be
the following Bernoulli random variable: 𝑋𝑡 = 1 if 𝑝𝑡 ∈ 𝐼1 and 𝑋𝑡 = 0 otherwise. Then we have

𝑅𝜋𝜃1(𝑇 ) +𝑅𝜋𝜃2(𝑇 ) ≥ |𝛽max|
𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2] + |𝛽max|

𝑇∑︁
𝑡=1

E𝜋𝜃2 [(𝑝𝑡 − 𝜓(𝜃2))
2]

≥ 1

16
|𝛽max|Δ2

𝑇∑︁
𝑡=1

(︀
𝑃𝜋1 (𝑝𝑡 /∈ 𝐼1) + 𝑃𝜋2 (𝑝𝑡 /∈ 𝐼2)

)︀
≥ 1

16
|𝛽max|Δ2

𝑇∑︁
𝑡=1

(︀
𝑃𝜋1 (𝑋𝑡 = 0) + 𝑃𝜋2 (𝑋𝑡 = 1)

)︀
≥ 1

32
|𝛽max| · 𝑒−𝐾𝐿(𝑃

𝜋
1 ,𝑃

𝜋
2 ) · 𝑇Δ2, (D.23)

where the third inequality holds since 𝐼1 and 𝐼2 are disjoint, and the last inequality follows from the
Bretagnolle-Huber inequality (Theorem 2.2 in Tsybakov (2009)). Since 𝜋 ∈ Π∘,

𝑅𝜋𝜃1(𝑇 ) +𝑅𝜋𝜃2(𝑇 ) ≤ 2𝐾0

√
𝑇 (log 𝑇 )𝜆0 ,

which together with inequality (D.23) implies

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) ≥ log(

√
𝑇Δ2) + log

(︀ |𝛽max|
64𝐾0

)︀
− 𝜆0 log log 𝑇.

Thus, combining the above inequality with (D.22) and letting Δ2 = 64𝐾0𝑒(log 𝑇 )𝜆0

|𝛽max|
√
𝑇

, we have

𝑅𝜋𝜃1(𝑇 ) ≥ |𝛽max|

(︃
𝑙2𝑅2

4𝛽2
minΔ

2

(︁
log(

√
𝑇Δ2) + log

(︀ |𝛽max|
64𝐾0

)︀
− 𝜆0 log log 𝑇

)︁
− 𝑇𝛿2

)︃

= |𝛽max|
(︁ 𝑙2𝑅2|𝛽max|
256𝛽2

min𝐾0𝑒
·

√
𝑇

(log 𝑇 )𝜆0
− 𝑇𝛿2

)︁
≥ 𝑙2𝑅2𝛽2

max

512𝛽2
min𝐾0𝑒

·
√
𝑇

(log 𝑇 )𝜆0
,

where the second inequality follows from the choice of Δ and 𝛿 ≤ 𝑙𝑅
16|𝛽min|

√︁
|𝛽max|
2𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 .

Thus, 𝑅𝜋𝜃1(𝑇 ) = Ω(
√
𝑇

(log 𝑇 )𝜆0
).

Combining Step 1 and Step 2, we conclude that for any admissible policy 𝜋 ∈ Π∘, there exists
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𝜃 ∈ Θ† satisfying |𝜓(𝜃)− 𝑝| ∈ [ 12𝛿,
3
2𝛿], such that

𝑅𝜋𝜃 (𝑇 ) =

⎧⎨⎩ Ω
(︀
(
√
𝑇 ∧ 𝑇

(𝑛∧𝑇 )𝛿2 ) ∨ log 𝑇
)︀
, if 𝛿 > 𝑙𝑅

16|𝛽min|

√︁
|𝛽max|
2𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 ;

Ω
(︀
(𝑇𝛿2) ∨

√
𝑇

(log 𝑇 )𝜆0

)︀
, if 𝛿 ≤ 𝑙𝑅

16|𝛽min|

√︁
|𝛽max|
2𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 ,

which completes the proof of Theorem 5.2. □

D.2 Proofs of Statements in Section 5.4

D.2.1 Proof of Theorem 5.3

To prove Theorem 5.3, we first show that O3FU algorithm (after a natural modification to the
multiple-historical-price setting) achieves the regret upper bound 𝒪(

√
𝑇 log 𝑇 ) and 𝒪

(︀ 𝑇 (log 𝑇 )2

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 +1
)︀

in the following Step 1 and Step 2 respectively. Then in Step 3, we use the results in Steps 1-2 to
show that M-O3FU algorithm achieves the desired upper bound.

Step 1. In this step, we prove the regret upper bound 𝒪(
√
𝑇 log 𝑇 ) for O3FU algorithm.

Lemma D.2 and inequalities (D.1) and (D.2) continue to hold by replacing each 𝑉𝑡−1,𝑛 with 𝜆𝐼 +∑︀𝑛
𝑖=1[1 𝑝𝑖]

⊤[1 𝑝𝑖] +
∑︀𝑡−1
𝑠=1[1 𝑝𝑠]

⊤[1 𝑝𝑠]. To apply Lemma D.1 to the RHS of the inequality (D.2), we
just let 𝑑 = 2, 𝐿 =

√
1 + 𝑢2, 𝜆 = 1 + 𝑢2,

𝑋𝑡 =
[︁ 1
𝑝𝑡

]︁
, 𝑉 = 𝜆𝐼 +

𝑛∑︁
𝑖=1

[︃
1 𝑝𝑖

𝑝𝑖 𝑝2𝑖

]︃
, 𝑉𝑡 = 𝑉 +

𝑡∑︁
𝑠=1

[︃
1 𝑝𝑠

𝑝𝑠 𝑝2𝑠

]︃
.

Then we get

𝑇∑︁
𝑡=1

||𝑥𝑡||2𝑉 −1
𝑡−1,𝑛

≤ 2
(︁
2 log

(2𝜆+
∑︀𝑛
𝑖=1(1 + 𝑝2𝑖 )) + 𝑇 (1 + 𝑢2)

2
− log

(︀
𝜆(𝜆+

𝑛∑︁
𝑖=1

(1 + 𝑝2𝑖 ))
)︀)︁

≤ 2 log
(︁ (1 + 𝑢2)(2 + 𝑛+ 𝑇 )2

4(1 + 𝑙2)(1 + 𝑛)

)︁
. (D.24)

The remaining proof remains the same as Theorem 5.1, and is therefore omitted.

Step 2. In this step, we prove the regret upper bound 𝒪
(︀ 𝑇 (log 𝑇 )2

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 + 1
)︀

for O3FU algorithm.
Note that it suffices to consider the case when 𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2 = Ω(

√
𝑇 log 𝑇 ), since otherwise,

𝒪((
√
𝑇 log 𝑇 )∧ 𝑇 (log 𝑇 )2

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ) = 𝒪(
√
𝑇 log 𝑇 ), which is already proven in Step 1. Under the assumption

𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2 = Ω(
√
𝑇 log 𝑇 ), we consider the following two cases: (1) 𝑛𝜎2 ≲ (𝑛 ∧ 𝑇 )𝛿2; (2)

𝑛𝜎2 ≳ (𝑛 ∧ 𝑇 )𝛿2.
Case 1. 𝑛𝜎2 ≲ (𝑛 ∧ 𝑇 )𝛿2. In this case, the following three inequalities hold: (i) 𝑛𝛿2 ≳

√
𝑇 log 𝑇 ;

(ii) 𝜎 ≲ 𝛿; and (iii) 𝛿 ≳ 𝑇−1/4(log 𝑇 )
1
2 . The reason is as follows. Suppose (i) does not hold, we

have 𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2 ≲
√
𝑇 log 𝑇 , leading to contradiction with 𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2 = Ω(

√
𝑇 log 𝑇 ).

Suppose (ii) does not hold, then we have 𝑛𝜎2 ≳ 𝑛𝛿2 ≳ (𝑛 ∧ 𝑇 )𝛿2, leading to contradiction with the
assumption of Case 1. Finally, suppose (iii) does not hold, then we have (𝑛 ∧ 𝑇 )𝛿2 ≲

√
𝑇 log 𝑇 ,

leading to contradiction with 𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2 = Ω(
√
𝑇 log 𝑇 ). Thus, when Case 1 happens, the

conditions of Lemma 5.2, i.e., 𝜎 ≲ 𝛿 and 𝛿 ≳ max{𝑇 1
4𝑤𝑇𝑛

− 1
2 , 𝑇− 1

4 }, are satisfied. By applying
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Lemma 5.2, we have

𝑇∑︁
𝑡=2

E[||𝜃⋆ − 𝜃𝑡||2] =
𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∀2≤𝑠≤𝑡,𝜃⋆∈𝒞𝑠}

]︁
+

𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∃2≤𝑠≤𝑡,𝜃⋆ /∈𝒞𝑠}

]︁
≤

𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{𝑈𝑡,4}

]︁
+

𝑇∑︁
𝑡=2

(︀
(𝛼max − 𝛼min)

2 + (𝛽max − 𝛽min)
2
)︀ 1

𝑇 2

≤ 𝐶3

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
+ ((𝛼max − 𝛼min)

2 + (𝛽max − 𝛽min)
2)

1

𝑇
,

where the first inequality follows from the proof of Lemma 5.2 and the concentration ineqality in
Lemma D.2 with 𝜖 = 1

𝑇 2 ∧ 1
𝑛𝜎2 ≤ 1

𝑇 2 . When 𝑛 ≥ 𝑇 , we have

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
≤ 𝑤2

𝑇

𝑇−1∑︁
𝑡=1

1

𝑡𝛿2 + 𝑛𝜎2

= 𝒪
(︀ log 𝑇 · log(𝑇𝛿2 + 𝑛𝜎2)

𝛿2
)︀

= 𝒪
(︁ 𝑇 (log 𝑇 )2

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2

)︁
,

where the second identity follows from 𝑛𝜎2 ≲ 𝑇𝛿2. When 𝑛 < 𝑇 , we have

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
=

𝑛∑︁
𝑡=1

𝑤2
𝑡

𝑡𝛿2 + 𝑛𝜎2
+

𝑇−1∑︁
𝑡=𝑛+1

𝑤2
𝑡

𝑛𝛿2 + 𝑛𝜎2

= 𝒪
(︁ log 𝑇 · log(𝑛𝛿2 + 𝑛𝜎2)

𝛿2

)︁
+𝒪

(︁ 𝑇 log 𝑇

𝑛𝛿2 + 𝑛𝜎2

)︁
= 𝒪

(︁ 𝑇 (log 𝑇 )2

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2

)︁
.

Case 2. 𝑛𝜎2 ≳ (𝑛 ∧ 𝑇 )𝛿2. In this case, to prove the upper bound 𝒪
(︀ 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2

)︀
, we first

establish the following lemma, whose proof is deferred to Appendix D.2.3.

Lemma D.4. Suppose 𝜃⋆ ∈ 𝒞𝑡 for each 𝑡 ∈ [𝑇 − 1], then for each 2 ≤ 𝑡 ≤ 𝑇 ,

||𝜃⋆ − 𝜃𝑡||2 ≤ 2
(︀
(4𝑢+ 1)2 + 1

)︀𝑤2
𝑡−1

𝑛𝜎2
.

Based on the above Lemma D.4, we have

𝑇∑︁
𝑡=2

E[||𝜃⋆ − 𝜃𝑡||2] =
𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∀𝑠∈[𝑡−1],𝜃⋆∈𝒞𝑠}

]︁
+

𝑇∑︁
𝑡=2

E
[︁
||𝜃⋆ − 𝜃𝑡||2 · 1{∃𝑠∈[𝑡−1],𝜃⋆ /∈𝒞𝑠}

]︁
≤ 2((4𝑢+ 1)2 + 1)

𝑇∑︁
𝑡=2

𝑤2
𝑡−1

𝑛𝜎2
+
(︀
(𝛼max − 𝛼min)

2 + (𝛽max − 𝛽min)
2
)︀ 𝑇∑︁
𝑡=2

1

𝑇 2
∧ 1

𝑛𝜎2

= 𝒪
(︁𝑇 log 𝑇

𝑛𝜎2

)︁
= 𝒪

(︁ 𝑇 log 𝑇

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2

)︁
,
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where the inequality follows from Lemma D.2 with 𝜖 = 1
𝑇 2 ∧ 1

𝑛𝜎2 and Lemma D.4, and in the last
identity, we utilize 𝑛𝜎2 ≳ (𝑛 ∧ 𝑇 )𝛿2.

Step 3. In this step, we use the results in Step 1 and Step 2 to show that M-O3FU algorithm
achieves the regret upper bound 𝒪

(︀
𝑇𝛿2 +1

)︀
in the corner case, i.e., when 𝛿2 ≲ 1

𝑛𝜎2 ≲ 1√
𝑇

holds, and

𝒪
(︀
(
√
𝑇 log 𝑇 ) ∧ 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2 + 1
)︀

in the regular case, i.e., when 𝛿2 ≲ 1
𝑛𝜎2 ≲ 1√

𝑇
does not hold.

Recall that 𝜃0 is the least-square estimator from offline regression, and it follows from Lemma D.2
that with probability 1−𝜖, ||𝜃⋆−𝜃0||2𝑉0,𝑛

≤ 𝑤2
0 holds, where 𝑤0 = 𝑅

√︁
2 log 𝑛+1

𝜖 +
√︀

(1 + 𝑢2)(𝛼2
max + 𝛽2

min).
Since 𝜆min(𝑉0,𝑛) ≥ 2

(1+2𝑢−𝑙)2𝑛𝜎
2 from Lemma 2 in Keskin and Zeevi (2014), it can be verified that

when 𝜃⋆ ∈ 𝒞0, there exists some constant 𝐿0 > 0, such that the length of interval {𝜓(𝜃) : 𝜃 ∈ 𝒞0}
is 𝐿0

2
√
𝑛𝜎2

. In other words, P(max𝜃1,𝜃2∈𝒞0
|𝜓(𝜃1) − 𝜓(𝜃2)| ≤ 𝐿0

2
√
𝑛𝜎2

) ≥ P(𝜃⋆ ∈ 𝒞0) ≥ 1 − 𝜖. Let
𝒫0 = {𝜓(𝜃) : 𝜃 ∈ 𝒞0}, and 𝐴 be the event

{︀
min𝜃∈𝒞0

|𝜓(𝜃)− 𝑝1:𝑛| ≤ 𝐾𝐿0

2
√
𝑛𝜎2

}︀
for some pre-determined

constant 𝐾 > 1.

Corner case: 𝛿2 ≤ 𝐾2𝐿2
0

4𝑛𝜎2 and 𝑛𝜎2 ≥
√
𝑇 . In this case, if 𝜃⋆ ∈ 𝒞0, we have

min
𝜃∈𝒞0

|𝜓(𝜃)− 𝑝1:𝑛| ≤ |𝜓(𝜃⋆)− 𝑝1:𝑛| ≤
𝐾𝐿0

2
√
𝑛𝜎2

,

and therefore, P(𝐴) ≥ P(𝜃⋆ ∈ 𝒞0) ≥ 1− 𝜖, and when 𝐴 holds, M-O3FU algorithm will use the price
𝑝1:𝑛 for any 1 ≤ 𝑡 ≤ 𝑇 due to 𝑛𝜎2 ≥

√
𝑇 . Thus,

𝑅𝜋𝜃⋆(𝑇 ) = P(𝐴) ·
𝑇∑︁
𝑡=1

E
[︁
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
⃒⃒⃒
𝐴
]︁
+ P(𝐴∁) ·

𝑇∑︁
𝑡=1

E
[︁
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
⃒⃒⃒
𝐴∁
]︁

≲ 𝑇𝛿2 + 𝜖
√
𝑇 log 𝑇

≲ 𝑇𝛿2 + 1,

where the first inequality holds since when 𝐴 does not hold, M-O3FU algorithm directly applies
O3FU algorithm, and incurs the regret 𝒪(

√
𝑇 log 𝑇 ) from the result in Step 1, the second inequality

holds since 𝜖
√
𝑇 log 𝑇 = ( 1

𝑇 2 ∧ 1
𝑛𝜎2 )

√
𝑇 log 𝑇 ≲ 1.

Regular case 1: 𝛿2 ≤ 𝐾2𝐿2
0

4𝑛𝜎2 and 𝑛𝜎2 <
√
𝑇 . In this case, since 𝑛𝜎2 <

√
𝑇 , M-O3FU algorithm

runs O3FU algorithm from the beginning, and the regret is bounded by 𝒪
(︀
(
√
𝑇 log 𝑇 )∧( 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2 +

1)
)︀

from the results in Steps 1 and 2.

Regular case 2: 𝐾2𝐿2
0

4𝑛𝜎2 ≤ 𝛿2 ≤ 𝐾2𝐿2
0

𝑛𝜎2 . In this case, the condition min𝜃∈𝒞0
|𝜓(𝜃)− 𝑝1:𝑛| ≤ 𝐾𝐿0

2
√
𝑛𝜎2

can either hold or not. If the condition holds and 𝑛𝜎2 ≥
√
𝑇 , the regret is 𝒪(𝑇𝛿2). Since in this case,

𝑇𝛿2 ≲ 𝑇
𝑛𝜎2 ≲

√
𝑇 and 𝑛𝜎2 ≳

√
𝑇 ≳ 𝑇𝛿2 ≳ (𝑛∧𝑇 )𝛿2, we have 𝒪(𝑇𝛿2) = 𝒪((

√
𝑇 log 𝑇 )∧ 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2 +

1). If the condition does not hold, the regret is still bounded by 𝒪((
√
𝑇 log 𝑇 ) ∧ 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2 + 1).

Regular case 3: 𝛿2 > 𝐾2𝐿2
0

𝑛𝜎2 . In this case, when 𝜃 ∈ 𝒞0, we have

min
𝜃∈𝒞0

|𝜓(𝜃)− 𝑝1:𝑛| ≥ |𝑝1:𝑛 − 𝜓(𝜃⋆)| − |Proj𝒫0
(𝑝1:𝑛)− 𝜓(𝜃⋆)| ≥ 𝐾𝐿0√

𝑛𝜎2
− 𝐿0

2
√
𝑛𝜎2

>
𝐾𝐿0

2
√
𝑛𝜎2

,

where the first inequality follows from the triangle inequality (Proj𝒫0
(𝑝1:𝑛) denotes the projection of

𝑝1:𝑛 to set 𝒫0), the second inequality holds since the length of 𝒫0 is 𝐿0

2
√
𝑛𝜎2

and 𝜃⋆ ∈ 𝒞0, and the last
inequality follows from 𝐾 > 1. In this case, 𝜃⋆ ∈ 𝒞0 implies 𝐴∁. Therefore, with probability 1− 𝜖,
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P(𝐴∁) ≥ 1− 𝜖. Thus, if 𝑛𝜎2 ≥
√
𝑇 , the regret is upper bounded as follows:

𝑅𝜋𝜃⋆(𝑇 ) = P(𝐴) ·
𝑇∑︁
𝑡=1

E
[︁
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
⃒⃒⃒
𝐴
]︁
+ P(𝐴∁) ·

𝑇∑︁
𝑡=1

E
[︁
𝑟⋆(𝜃⋆)− 𝑟(𝑝𝑡; 𝜃

⋆)
⃒⃒⃒
𝐴∁
]︁

≲
1

𝑇 2
· 𝑇𝛿2 + (

√
𝑇 log 𝑇 ) ∧ 𝑇 (log 𝑇 )2

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2

≲ 1 + (
√
𝑇 log 𝑇 ) ∧ 𝑇 (log 𝑇 )2

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2
,

where the first inequality holds since 𝜖 = 1
𝑇 2 ∧ 1

𝑛𝜎2 ≤ 1
𝑇 2 . If 𝑛𝜎2 <

√
𝑇 , M-O3FU algorithm runs

O3FU algorithm from the beginning, and the regret is bounded by 𝒪((
√
𝑇 log 𝑇 )∧ 𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2+𝑛𝜎2 + 1).
□

D.2.2 Proof of Lemma 5.2

When 𝑡 = 1, since 𝑝1 = 𝑙 · I{𝑝1:𝑛 > 𝑢+𝑙
2 }+ 𝑢 · I{𝑝1:𝑛 ≤ 𝑢+𝑙

2 }, then |𝑝1 − 𝑝1:𝑛| ≥ 𝑢−𝑙
2 ≥ 1

2𝛿. Thus,
when 𝑡 = 1, 𝑈𝑡,3 holds.

We next prove the following result: under the conditions of Lemma 5.2, suppose for each
1 ≤ 𝑠 ≤ 𝑡 − 1 (for a fixed 2 ≤ 𝑡 ≤ 𝑇 ), the event 𝑈𝑠,3 holds, then 𝑈𝑡,3 and 𝑈𝑡,4 also hold. Let
Δ𝛼𝑡 = 𝛼̃𝑡 − 𝛼⋆, Δ𝛽𝑡 = 𝛽𝑡 − 𝛽⋆, and 𝛾𝑡 = Δ𝛼𝑡

Δ𝛽𝑡
(when Δ𝛽𝑡 ̸= 0). Note that the following generalized

version of the inequality (D.4) holds:

𝜆
(︀
(Δ𝛼𝑡)

2 + (Δ𝛽𝑡)
2
)︀
+

𝑛∑︁
𝑖=1

(︀
Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑖

)︀2
+

𝑡−1∑︁
𝑠=1

(︀
Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑠

)︀2 ≤ 2𝑤2
𝑡−1. (D.25)

Similar to the proof of Lemma 5.1, we also divide the proof into three cases.

Case 1: Δ𝛽𝑡 = 0. In this case, (D.25) becomes (Δ𝛼𝑡)
2(𝜆+ 𝑛+ 𝑡− 1) ≤ 2𝑤2

𝑡−1, and

||𝜃⋆ − 𝜃𝑡||2 = (Δ𝛼𝑡)
2 + (Δ𝛽𝑡)

2 = (Δ𝛼𝑡)
2 ≤

2𝑤2
𝑡−1

𝑛+ 𝑡− 1
. (D.26)

Therefore, combining 𝜎 ≤ 𝑢− 𝑙, 𝛿 ≤ 𝑢− 𝑙, and (D.26), we obtain

||𝜃⋆ − 𝜃𝑡||2 ≤
4(𝑢− 𝑙)2𝑤2

𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
.

In addition, (D.26) also implies

|𝑝1:𝑛 − 𝑝𝑡| ≥ |𝑝1:𝑛 − 𝜓(𝜃⋆)| − |𝑝𝑡 − 𝜓(𝜃⋆)| ≥ |𝑝1:𝑛 − 𝜓(𝜃⋆)| −
√︀
𝛼2
max + 𝛽2

max

2𝛽2
max

·
√
2𝑤𝑡−1√

𝑛+ 𝑡− 1
≥ 1

2
𝛿,

where the second inequality follows from (D.26) and Lipschitz continuity of the function 𝜓(·), and

the last inequality holds since from the assumption of 𝛿 ≥
√

2(𝛼2
max+𝛽

2
max)

𝛽2
max

· 𝑇
1/4𝑤𝑇
𝑛1/2 , we have

𝑤𝑡−1√
𝑛+ 𝑡− 1

≤ 𝑤𝑇√
𝑛
≤ 𝛽2

max√︀
2(𝛼2

max + 𝛽2
max)

𝛿. (D.27)
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Case 2: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| ≥ 4𝑢+ 1. In this case, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝜆(1 + 𝛾2𝑡 ) +
∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)2 +

∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝑛(𝛾𝑡 + 𝑝1:𝑛)2
≤

4𝑤2
𝑡−1

𝑛
, (D.28)

where the second inequality holds since
∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)

2 ≥ 𝑛(𝛾𝑡 + 𝑝1:𝑛)
2, and the last inequality

follows from 1+ 𝛾2𝑡 ≤ 2(𝛾𝑡 + 𝑝1:𝑛)
2, which is easily verified by noting (𝛾𝑡 +2𝑝1:𝑛)

2 ≥ (|𝛾𝑡| − 2𝑝1:𝑛)
2 ≥

(2𝑝1:𝑛 + 1)2 ≥ 2𝑝21:𝑛 + 1. Then, (D.28) implies

||𝜃⋆ − 𝜃𝑡||2 ≤
8(𝑢− 𝑙)2𝑤2

𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
,

and in addition,

|𝑝1:𝑛 − 𝑝𝑡| ≥ |𝑝1:𝑛 − 𝜓(𝜃⋆)| − |𝑝𝑡 − 𝜓(𝜃⋆)| ≥ |𝑝1:𝑛 − 𝜓(𝜃⋆)| −
√︀
𝛼2
max + 𝛽2

max

2𝛽2
max

2𝑤𝑡−1√
𝑛

≥ (1−
√
2

2
)𝛿,

where the last inequality follows from (D.27).

Case 3: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| < 4𝑢+ 1. Recall the definitions of 𝐶0 and 𝐶1:

𝐶0 =
𝑙|𝛽max|
𝑢|𝛽min|

, 𝐶1 =
4(𝐶0 + 1)2

𝐶2
0

(1 + (4𝑢+ 1)2).

Subcase 3.1: 1 + 𝛾2𝑡 ≤ 𝐶1
(𝛾𝑡+𝑝1:𝑛)

2

𝛿2 . In this subcase, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝑛(𝛾𝑡 + 𝑝1:𝑛)2
≤

2𝐶1𝑤
2
𝑡−1

𝑛𝛿2
.

From the assumption of 𝜎 ≤ 𝛿, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
4𝐶1𝑤

2
𝑡−1

𝑛𝛿2 + 𝑛𝜎2
≤

4𝐶1𝑤
2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
,

and in addition,

|𝑝𝑡 − 𝑝1:𝑛| ≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| − |𝑝𝑡 − 𝜓(𝜃⋆)|

≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| −
√︀
𝛼2
max + 𝛽2

max

2𝛽2
max

√
2𝐶1𝑤𝑡−1√

𝑛|𝜓(𝜃⋆)− 𝑝1:𝑛|

≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| −
√
𝐶1

2𝑇 1/4

≥ 1

2
𝛿,

where the third inequality follows from (D.27), and in the last inequality, we utilize the assumption
of 𝛿 ≥

√
𝐶1𝑇

−1/4.
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Subcase 3.2: 1 + 𝛾2𝑡 > 𝐶1
(𝛾𝑡+𝑝1:𝑛)

2

𝛿2 . In this subcase, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(𝛾
2
𝑡 + 1)

𝜆(𝛾2𝑡 + 1) +
∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)2 +

∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

≤
2𝑤2

𝑡−1((4𝑢
2 + 1)2 + 1)∑︀𝑛

𝑖=1(𝛾𝑡 + 𝑝𝑖)2 +
∑︀𝑡−1
𝑠=1(𝛾𝑡 + 𝑝𝑠)2

.

To proceed, we establish the following inequality:

𝑛∑︁
𝑖=1

(𝛾𝑡 + 𝑝𝑖)
2 +

𝑡−1∑︁
𝑠=1

(𝛾𝑡 + 𝑝𝑠)
2 ≥ 𝑛𝜎2 + (𝑛 ∧ (𝑡− 1))min

{︁
(1−

√
2

2
)2,

𝐶2
0

4

}︁
· (𝜓(𝜃⋆)− 𝑝1:𝑛)

2. (D.29)

Note that
∑︀𝑛
𝑖=1(𝛾𝑡+𝑝𝑖)

2+
∑︀𝑡−1
𝑠=1(𝛾𝑡+𝑝𝑠)

2 is convex in 𝛾𝑡 and is minimized at 𝛾𝑡 = −
∑︀𝑛
𝑖=1 𝑝𝑖+

∑︀𝑡−1
𝑠=1 𝑝𝑠

𝑛+𝑡−1 .
We have

𝑛∑︁
𝑖=1

(𝛾𝑡 + 𝑝𝑖)
2 +

𝑡−1∑︁
𝑠=1

(𝛾𝑡 + 𝑝𝑠)
2 ≥

𝑛∑︁
𝑖=1

(𝑝𝑖 −
∑︀𝑛
𝑖=1 𝑝𝑖 +

∑︀𝑡−1
𝑠=1 𝑝𝑠

𝑛+ 𝑡− 1
)2 +

𝑡−1∑︁
𝑠=1

(𝑝𝑠 −
∑︀𝑛
𝑖=1 𝑝𝑖 +

∑︀𝑡−1
𝑠=1 𝑝𝑠

𝑛+ 𝑡− 1
)2

= Var((𝑝1, . . . , 𝑝𝑛), (𝑝1, . . . , 𝑝𝑡−1)),

where ((𝑝1, . . . , 𝑝𝑛), (𝑝1, . . . , 𝑝𝑡−1)) ∈ R(𝑛+𝑡−1)×1. Define

𝑓(𝑝1, . . . , 𝑝𝑡−1) := Var((𝑝1, . . . , 𝑝𝑛), (𝑝1, . . . , 𝑝𝑡−1)).

Then

𝑓(𝑝1, . . . , 𝑝𝑡−1) = ‖((𝑝1, . . . , 𝑝𝑛), (𝑝1, . . . , 𝑝𝑡−1))‖22 −

[︁
1⊤(𝑛+𝑡−1)×1((𝑝1, . . . , 𝑝𝑛), (𝑝1, . . . , 𝑝𝑡−1))

]︁2
(𝑛+ 𝑡− 1)

= ‖(𝑝1, . . . , 𝑝𝑛)‖22 + ‖(𝑝1, . . . , 𝑝𝑡−1)‖22 −

[︁
1⊤𝑛×1(𝑝1, . . . , 𝑝𝑛) + 1⊤(𝑡−1)×1(𝑝1, . . . , 𝑝𝑡−1)

]︁2
𝑛+ 𝑡− 1

,

thus

𝜕𝑓(𝑝1, . . . , 𝑝𝑡−1)

𝜕(𝑝1, . . . , 𝑝𝑡−1)
= 2(𝑝1, . . . , 𝑝𝑡−1)− 2

[︀
1⊤𝑛 (𝑝1, . . . , 𝑝𝑛) + 1⊤𝑡−1(𝑝1, . . . , 𝑝𝑡−1)

]︀
𝑛+ 𝑡− 1

1(𝑡−1)×1,

𝜕2𝑓(𝑝1, . . . , 𝑝𝑡−1)

𝜕(𝑝1, . . . , 𝑝𝑡−1)2
= 2

(︃
𝐼(𝑡−1) −

1(𝑡−1)×11
⊤
(𝑡−1)×1

𝑛+ 𝑡− 1

)︃
⪰ 0.

Therefore, we know that 𝑓(𝑝1, . . . , 𝑝𝑡−1) is convex in (𝑝1, . . . , 𝑝𝑡−1) and is minimized at

(𝑝1, . . . , 𝑝𝑡−1) = 𝑝1:𝑛1(𝑡−1)×1.
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By the Taylor series of 𝑓(𝑝1, . . . , 𝑝𝑡−1) at point 𝑝1:𝑛1(𝑡−1)×1, we have

𝑓(𝑝1, . . . , 𝑝𝑡−1)− 𝑓
(︀
𝑝1:𝑛1(𝑡−1)×1

)︀
=
(︀
(𝑝1, . . . , 𝑝𝑡−1)− 𝑝1:𝑛1(𝑡−1)×1

)︀⊤ [︃
𝐼(𝑡−1) −

1(𝑡−1)×11
⊤
(𝑡−1)×1

𝑛+ 𝑡− 1

]︃ (︀
(𝑝1, . . . , 𝑝𝑡−1)− 𝑝1:𝑛1(𝑡−1)×1

)︀

=‖(𝑝1, . . . , 𝑝𝑡−1)− 𝑝1:𝑛1(𝑡−1)×1‖22 −

(︁∑︀𝑡−1
𝑠=1(𝑝𝑠 − 𝑝1:𝑛)

)︁2
𝑛+ 𝑡− 1

=

𝑡−1∑︁
𝑠=1

(𝑝𝑠 − 𝑝1:𝑛)
2 −

(︁∑︀𝑡−1
𝑠=1(𝑝𝑠 − 𝑝1:𝑛)

)︁2
𝑛+ 𝑡− 1

≥ 𝑛

𝑛+ 𝑡− 1

𝑡−1∑︁
𝑠=1

(𝑝𝑠 − 𝑝1:𝑛)
2

≥ 𝑛(𝑡− 1)

(𝑛+ 𝑡− 1)
·min

{︁
(1−

√
2

2
)2,

𝐶2
0

4

}︁
· 𝛿2,

where the last inequality is by the induction assumption that 𝑈𝑠,2 =
{︁
|𝑝𝑠−𝑝1:𝑛| ≥ min

{︀
1−

√
2
2 ,

𝐶0

2

}︀
·𝛿
}︁

holds for 𝑠 = 1, . . . , 𝑡− 1. Using also the fact that 𝑓
(︀
𝑝1:𝑛1(𝑡−1)×1

)︀
= Var(𝑝1, . . . , 𝑝𝑛) = 𝑛𝜎2, we have

𝑛∑︁
𝑖=1

(𝛾𝑡 + 𝑝𝑖)
2 +

𝑡−1∑︁
𝑠=1

(𝛾𝑡 + 𝑝𝑠)
2 ≥ 𝑓(𝑝1, . . . , 𝑝𝑡−1) ≥ 𝑛𝜎2 + (𝑛 ∧ (𝑡− 1))min

{︁
(1−

√
2

2
)2,

𝐶2
0

4

}︁
· 𝛿2.

Therefore, we have proven (D.29) and can conclude that

||𝜃𝑡 − 𝜃⋆||2 ≤ 2max
{︀
2(
√
2 + 1)2,

4

𝐶2
0

}︀
· ((4𝑢+ 1)2 + 1) ·

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
.

Now, it suffices to bound the term |𝑝𝑡 − 𝑝1:𝑛|. We still have (D.8) (which we proved in the
single-historical-price setting), i.e., the following inequality:

|𝛾𝑡 + 𝑝𝑡| ≥ 𝐶0|𝛾𝑡 + 𝜓(𝜃⋆)|, (D.30)

thus

|𝑝𝑡 − 𝑝1:𝑛| ≥ |𝑝𝑡 + 𝛾𝑡| − |𝛾𝑡 + 𝑝1:𝑛|

≥ 𝐶0|𝛾𝑡 + 𝜓(𝜃⋆)| − |𝛾𝑡 + 𝑝1:𝑛|

≥ 𝐶0(|𝜓(𝜃⋆)− 𝑝1:𝑛| − |𝛾𝑡 + 𝑝1:𝑛|)− |𝛾𝑡 + 𝑝1:𝑛|

= 𝐶0|𝜓(𝜃⋆)− 𝑝1:𝑛| − (𝐶0 + 1)|𝛾𝑡 + 𝑝1:𝑛|

≥
(︁
𝐶0 − (𝐶0 + 1)

√︀
1 + (4𝑢+ 1)2√

𝐶1

)︁
|𝜓(𝜃⋆)− 𝑝1:𝑛|

≥ 𝐶0

2
𝛿,

where the second inequality follows from (D.30), the fourth inequality follows from the assumption
of Subcase 3.2, i.e., 1 + 𝛾2𝑡 > 𝐶1

(𝛾𝑡+𝑝1:𝑛)
2

𝛿2 and |𝛾𝑡| ≤ 4𝑢+ 1, and the last inequality follows from the
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definition of 𝐶1.

Therefore, combining the above three cases, we conclude that

|𝑝1:𝑛 − 𝜓(𝜃⋆)| ≥ min
{︁
1−

√
2

2
,
𝐶0

2

}︁
· 𝛿,

||𝜃⋆ − 𝜃𝑡||2 ≤ max
{︁
8(𝑢− 𝑙)2, 4𝐶1, 2max

{︀
2(
√
2 + 1)2,

4

𝐶2
0

}︀
· ((4𝑢+ 1)2 + 1)

}︁
·

𝑤2
𝑡−1

(𝑛 ∧ (𝑡− 1))𝛿2 + 𝑛𝜎2
,

i.e., 𝑈𝑡,3 and 𝑈𝑡,4 hold, which completes the inductive arguments. □

D.2.3 Proof of Lemma D.4

Since 𝜃⋆ ∈ 𝒞𝑡 for each 𝑡 ∈ [𝑇 ], and 𝜃𝑡 ∈ 𝒞𝑡 for each 2 ≤ 𝑡 ≤ 𝑇 , the inequality (D.25) still holds. For
each 2 ≤ 𝑡 ≤ 𝑇 , we bound ||𝜃⋆ − 𝜃𝑡||2 by considering the following three cases.

Case 1: Δ𝛽𝑡 = 0. In this case, (D.25) becomes (Δ𝛼𝑡)
2(𝜆+ 𝑛+ 𝑡− 1) ≤ 2𝑤2

𝑡−1, and

||𝜃⋆ − 𝜃𝑡||2 = (Δ𝛼𝑡)
2 ≤

2𝑤2
𝑡−1

𝑛
≤

2(𝑢− 𝑙)2𝑤2
𝑡−1

𝑛𝜎2
,

where the second inequality holds since 𝜎 ≤ 𝑢− 𝑙.

Case 2: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| ≥ 4𝑢+ 1. In this case, we have

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)2

≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )

𝑛(𝛾𝑡 + 𝑝1:𝑛)2
≤

4𝑤2
𝑡−1

𝑛
≤

4(𝑢− 𝑙)2𝑤2
𝑡−1

𝑛𝜎2
,

where the second inequality holds since
∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)

2 ≥ 𝑛(𝛾𝑡 + 𝑝1:𝑛)
2. and the third inequality

follows from 1 + 𝛾2𝑡 ≤ 2(𝛾𝑡 + 𝑝1:𝑛)
2.

Case 3: Δ𝛽𝑡 ̸= 0, |𝛾𝑡| < 4𝑢+ 1. In this case,

||𝜃⋆ − 𝜃𝑡||2 ≤
2𝑤2

𝑡−1(1 + 𝛾2𝑡 )∑︀𝑛
𝑖=1(𝛾𝑡 + 𝑝𝑖)2

≤
2((4𝑢+ 1)2 + 1)𝑤2

𝑡−1∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝1:𝑛)2

=
2((4𝑢+ 1)2 + 1)𝑤2

𝑡−1

𝑛𝜎2
,

where the second inequality holds since
∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝1:𝑛)

2 = min𝑥∈R(𝑝𝑖 + 𝑥)2 ≤
∑︀𝑛
𝑖=1(𝑝𝑖 + 𝛾𝑡)

2.

Therefore, combining the above three cases, we obtain ||𝜃⋆− 𝜃𝑡||2 ≤ 2((4𝑢+1)2 +1) · 𝑤
2
𝑡−1

𝑛𝜎2 , which
completes the proof. □

D.2.4 Proof of Theorem 5.4

Similar to the proof of Theorem 5.2, we consider normal random noise with standard deviation 𝑅,
and for simplicity, we assume 𝜉 = 1

2 . The proof is divided into two major steps.

Step 1. In the first step, we prove the following result: for any pricing policy 𝜋,

sup
𝜃∈Θ0(𝛿)

𝑅𝜋𝜃 (𝑇, 𝑛, 𝜎, 𝛿) = Ω
(︁√

𝑇 ∧ 𝑇

𝛿−2 + 𝑛𝜎2 + (𝑛 ∧ 𝑇 )𝛿2
)︁
, (D.31)

where Θ0(𝛿) =
{︀
𝜃 ∈ Θ† : 𝜓(𝜃)− 𝑝1:𝑛 ∈ [ 𝛿2 , 𝛿]

}︀
. When (i) 𝛿 > 𝑙𝑅

32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 ; or (ii)

𝛿 ≤ 𝑙𝑅
32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 and 𝑛𝜎2 > 𝑙2𝑅2|𝛽max|

512𝛽2
min𝐾0𝑒

√
𝑇

(log 𝑇 )𝜆0
, (D.31) provides the desired lower
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bound in Theorem 5.4.

To prove (D.31), it suffices to show that sup𝜃∈Θ0(𝛿)𝑅
𝜋
𝜃 (𝑇, 𝑛, 𝜎, 𝛿) is lower bounded by Ω(

√
𝑇 ∧

𝑇
𝛿−2+𝑛𝜎2+𝑛𝛿2 ) and Ω(

√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝜎2+𝑇𝛿2 ). The proofs of these two bounds are similar to (D.13)
in the proof of Theorem 5.2, and we only highlight the difference here. For the first lower bound
Ω(

√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝜎2+𝑛𝛿2 ), by defining a similar prior distribution 𝑞 as (D.14) and letting 𝐶(𝜃) = (𝜓(𝜃), 1),
we have

𝑇∑︁
𝑡=1

E𝑞[E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]] ≥
𝑇∑︁
𝑡=2

𝑅2𝛼2
min/(4𝛽

2
min)

𝑅2ℐ(𝑞) +
∑︀𝑛
𝑖=1 E𝑞[(𝑝𝑖 − 𝜓(𝜃))2] +

∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝜓(𝜃))2]]

≥
𝑇∑︁
𝑡=2

𝑅2𝛼2
min/(4𝛽

2
min)

𝑅2ℐ(𝑞) + 2𝑛𝜎2 + 2𝑛𝛿2 +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝜓(𝜃))2]]

≥ (𝑇 − 1)𝑅2𝛼2
min/(4𝛽

2
min)

𝑅2ℐ(𝑞) + 2𝑛𝜎2 + 2𝑛𝛿2 +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝜓(𝜃))2]]

,

where the second inequality follows from
∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝⋆𝜃)

2 ≤ 2
∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝1:𝑛)

2 + 2𝑛(𝑝1:𝑛 − 𝑝⋆𝜃)
2 ≤

2𝑛𝜎2+2𝑛𝛿2. Since ℐ(𝑞) = Θ(𝛿−2), the first lower bound Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝜎2+𝑛𝛿2 ) can be proved. For the
second lower bound Ω(

√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝜎2+𝑇𝛿2 ), letting 𝐶(𝜃) = (−𝑝1:𝑛, 1) and applying the multivariate
van Trees inequality to the prior distribution 𝑞 defined in (D.14), we have

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

(E𝑞[𝐶(𝜃)T 𝜕𝜓𝜕𝜃 ])
2

ℐ(𝑞) + E𝑞[𝐶(𝜃)Tℐ𝜋𝑡−1(𝜃)𝐶(𝜃)]

≥ 𝑅2(𝛼min + 𝛽min𝑝1:𝑛)
2/(4𝛽2

min)

𝑅2ℐ(𝑞) +
∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝1:𝑛)2 +

∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝑝1:𝑛)2]]

≥ 𝑅2(𝛼min + 𝛽min𝑝1:𝑛)
2/(4𝛽2

min)

𝑅2ℐ(𝑞) + 𝑛𝜎2 + 2(𝑡− 1)𝛿2 + 2
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝑝⋆𝜃)

2]]
,

where the second inequality follows from (𝑝𝑠 − 𝑝1:𝑛)
2 ≤ 2(𝑝𝑠 − 𝑝⋆𝜃)

2 + 2(𝑝1:𝑛 − 𝑝⋆𝜃)
2. Again noting

that ℐ(𝑞) = Θ(𝛿−2), we conclude that the regret is lower bounded by Ω(
√
𝑇 ∧ 𝑇

𝛿−2+𝑛𝜎2+𝑇𝛿2 ).

Step 2. In this step, we complete the proof by showing that when 𝛿 ≤ 𝑙𝑅
32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0

and 𝑛𝜎2 ≤ 𝑙2𝑅2|𝛽max|
512𝛽2

min𝐾0𝑒

√
𝑇

(log 𝑇 )𝜆0
, for any admissible policy 𝜋 ∈ Π∘, there exists 𝜃 ∈ Θ† satisfying

|𝜓(𝜃)− 𝑝1:𝑛| ∈ [ 12𝛿,
3
2𝛿] such that

𝑅𝜋𝜃 (𝑇 ) = Ω

(︃ √
𝑇

(log 𝑇 )𝜆0

)︃
. (D.32)

The proof of the above (D.32) is similar to (D.20) in the proof of Theorem 5.2. For completeness, the
details are illustrated as follows. We first define two two vectors of demand parameters 𝜃1 = (𝛼1, 𝛽1)

and 𝜃2 = (𝛼2, 𝛽2) as follows:

− 𝛼1

2𝛽1
= 𝑝1:𝑛 + 𝛿, − 𝛼2

2𝛽2
= 𝑝1:𝑛 + 𝛿 +Δ, 𝛼1 − 𝛼2 + (𝛽1 − 𝛽2)𝑝1:𝑛 = 0, (D.33)

where Δ > 0 is to be determined. We consider 𝑃𝜋1 , 𝑃𝜋2 as the two probability measures induced by
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the common policy 𝜋 and two demand parameters 𝜃1 and 𝜃2 respectively. That is, for each 𝑖 = 1, 2,

𝑃𝜋𝑖 (𝐷̂1, . . . 𝐷̂𝑛, 𝐷1, . . . , 𝐷𝑇 ) =

𝑛∏︁
𝑡=1

(︁ 1

𝑅
𝜑
(︀𝐷̂𝑡 − (𝛼𝑖 + 𝛽𝑖𝑝𝑡)

𝑅

)︀)︁
·
𝑇∏︁
𝑡=1

(︁ 1

𝑅
𝜑
(︀𝐷𝑡 − (𝛼𝑖 + 𝛽𝑖𝑝𝑡)

𝑅

)︀)︁
.

It is easily verified that the KL divergence between 𝑃𝜋1 and 𝑃𝜋2 is

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) =

1

2𝑅2

(︁ 𝑛∑︁
𝑖=1

(︀
(𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)𝑝𝑖

)︀2
+

𝑇∑︁
𝑡=1

E𝜋𝜃1
[︀(︀
(𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)𝑝𝑡

)︀2]︀)︁
=

(𝛽1 − 𝛽2)
2

2𝑅2

(︁ 𝑛∑︁
𝑖=1

(︀
𝑝𝑖 − 𝑝1:𝑛

)︀2
+

𝑇∑︁
𝑡=1

E𝜋𝜃1
[︀(︀
𝑝𝑡 − 𝑝1:𝑛

)︀2]︀)︁
=

2𝛽2
2Δ

2

(𝑝1:𝑛 + 2𝛿)2𝑅2

(︁
𝑛𝜎2 +

𝑇∑︁
𝑡=1

E𝜋𝜃1
[︀(︀
𝑝𝑡 − 𝑝1:𝑛

)︀2]︀)︁
≤ 2𝛽2

minΔ
2

𝑙2𝑅2

(︁
𝑛𝜎2 + 2

𝑇∑︁
𝑡=1

E𝜋𝜃1
[︀(︀
𝑝𝑡 − 𝜓(𝜃1)

)︀2]︀
+ 2𝑇𝛿2

)︁
,

where the second identity follows from (D.33) and the third identity holds since (𝛽1−𝛽2)2 =
4𝛽2

2Δ
2

(𝑝1:𝑛+2𝛿)2

due to (D.33). Therefore, we have

𝑅𝜋𝜃1(𝑇 ) ≥ |𝛽max| ·
𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2] ≥ |𝛽max| ·

(︁ 𝑙2𝑅2

4𝛽2
minΔ

2
𝐾𝐿(𝑃𝜋1 , 𝑃

𝜋
2 )−

𝑛𝜎2

2
− 𝑇𝛿2

)︁
. (D.34)

On the other hand, we have

1

32
𝑒−𝐾𝐿(𝑃

𝜋
1 ,𝑃

𝜋
2 ) · 𝑇Δ2 ≤

𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2] +

𝑇∑︁
𝑡=1

E𝜋𝜃2 [(𝑝𝑡 − 𝜓(𝜃1))
2]

≤ 1

|𝛽max|
2𝐾0

√
𝑇 (log 𝑇 )𝜆0 , (D.35)

where the first inequality follows from Theorem 2.2 in Tsybakov (2009), the second inequality follows
from the assumption on the policy 𝜋. Therefore, (D.35) implies

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) ≥ log

(︁ √
𝑇 |𝛽max|Δ2

64𝐾0(log 𝑇 )𝜆0

)︁
.

Thus, by letting Δ2 = 64𝐾0𝑒(log 𝑇 )𝜆0

|𝛽max|
√
𝑇

, from (D.34), the regret can be lower bounded by

𝑅𝜋𝜃1(𝑇 ) ≥ |𝛽max| ·
(︁ 𝑙2𝑅2

4𝛽2
minΔ

2
log
(︁ √

𝑇Δ2

64𝐾0(log 𝑇 )𝜆0

)︁
− 𝑛𝜎2

2
− 𝑇𝛿2

)︁
= |𝛽max| ·

(︁ 𝑙2𝑅2|𝛽max|
256𝛽2

min𝐾0𝑒
·

√
𝑇

(log 𝑇 )𝜆0
− 𝑛𝜎2

2
− 𝑇𝛿2

)︁
≥ 𝑙2𝑅2𝛽2

max

512𝛽2
min𝐾0𝑒

·
√
𝑇

(log 𝑇 )𝜆0
,
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where the second inequality follows from the definition of Δ, 𝛿 ≤ 𝑙𝑅
32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0

and 𝑛𝜎2 ≤ 𝑙2𝑅2|𝛽max|
512𝛽2

min𝐾0𝑒

√
𝑇

(log 𝑇 )𝜆0
. Therefore, 𝑅𝜋𝜃1(𝑇 ) = Ω(

√
𝑇

(log 𝑇 )𝜆0
).

Combining Step 1 and Step 2, we conclude that for any admissible policy 𝜋 ∈ Π∘, there exists
𝜃 ∈ Θ† satisfying |𝜓(𝜃)− 𝑝1:𝑛| ∈ [(1− 𝜉)𝛿, (1 + 𝜉)𝛿], such that

𝑅𝜋𝜃 (𝑇 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω
(︁√

𝑇 ∧ 𝑇
𝛿−2+(𝑛∧𝑇 )𝛿2+𝑛𝜎2

)︁
, if 𝛿 > 𝑙𝑅

32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 ;

Ω
(︀
𝑇𝛿2 ∧ 𝑇

𝑛𝜎2

)︀
, if 𝛿 ≤ 𝑙𝑅

32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 and 𝑛𝜎2 > 𝑙2𝑅2|𝛽max|

512𝛽2
min𝐾0𝑒

√
𝑇

(log 𝑇 )𝜆0
;

Ω(
√
𝑇

(log 𝑇 )𝜆0
), if 𝛿 ≤ 𝑙𝑅

32|𝛽min|

√︁
|𝛽max|
𝐾0𝑒

𝑇− 1
4 (log 𝑇 )−

1
2𝜆0 and 𝑛𝜎2 ≤ 𝑙2𝑅2|𝛽max|

512𝛽2
min𝐾0𝑒

√
𝑇

(log 𝑇 )𝜆0
,

which implies Theorem 5.4. □

D.3 Proof of Proposition 5.1 in Section 5.6

Suppose 𝜃⋆ ∈ 𝒞0 and min𝜃∈𝒞0
|𝜓(𝜃)−𝑝1:𝑛|

max𝜃1,𝜃2∈𝒞0
|𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾, we have the following inequalities for each 𝑡 ≥ 1:

|𝑝myopic
𝑡 − 𝑝1:𝑛| ≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| − |𝜓(𝜃⋆)− 𝑝myopic

𝑡 | ≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| − max
𝜃1,𝜃2∈𝒞0

|𝜓(𝜃1)− 𝜓(𝜃2)|

≥ |𝜓(𝜃⋆)− 𝑝1:𝑛| −
1

𝐾
min
𝜃∈𝒞0

|𝜓(𝜃)− 𝑝1:𝑛| ≥ (1− 1

𝐾
) · 𝛿, (D.36)

where the first inequality follows from the triangle inequality, the second inequality holds since
𝜃⋆ ∈ 𝒞0, 𝑝myopic

𝑡 = 𝜓(𝜃LS
𝑡−1), and 𝜃LS

𝑡−1 ∈ 𝒞0 by its definition, and the last inequality holds since
𝜃⋆ ∈ 𝒞0. That is to say, events {𝑈𝑡,3 : 𝑡 ≥ 1} defined in Lemma 5.2 are automatically satisfied if
ignoring the constant factor under assumptions 𝜃 ∈ 𝒞0 and min𝜃∈𝒞0

|𝜓(𝜃)−𝑝1:𝑛|
max𝜃1,𝜃2∈𝒞0

|𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾.

We next bound the estimation error ||𝜃⋆ − 𝜃LS
𝑡 ||2 for each 𝑡 ≥ 0. Suppose 𝜃⋆ ∈ 𝒞𝑡, i.e.,

||𝜃⋆ − 𝜃LS
𝑡 ||2𝑉𝑡,𝑛 ≤ 𝑤2

𝑡−1, and therefore, ||𝜃⋆ − 𝜃LS
𝑡 ||2 ≤ 𝑤2

𝑡−1

𝜆min(𝑉𝑡,𝑛)
. Then it suffices to bound the

minimum eigenvalue of 𝑉𝑡,𝑛 from below by Ω
(︀
(𝑛 ∧ 𝑡)𝛿2 + 𝑛𝜎2

)︀
. Note that

𝜆min(𝑉𝑡,𝑛) = min
(𝑥1,𝑥2)∈R2:𝑥2

1+𝑥
2
2=1

{︃
𝑛∑︁
𝑖=1

(𝑥1 + 𝑝𝑖𝑥2)
2 +

𝑡∑︁
𝑠=1

(𝑥1 + 𝑝𝑠𝑥2)
2

}︃
+ 𝜆.

Let (𝑥⋆1, 𝑥
⋆
2) be the optimal solution to the above optimization problem. Then we consider the

following cases: |𝑥⋆2| ≥ 1
2(1+2𝑢) and |𝑥⋆2| < 1

2(1+2𝑢) .

Case 1: |𝑥⋆2| ≥ 1
2(1+2𝑢) . In this case, we have

𝜆min(𝑉𝑡,𝑛) =

𝑛∑︁
𝑖=1

(𝑥⋆1 + 𝑝𝑖𝑥
⋆
2)

2 +

𝑡∑︁
𝑠=1

(𝑥⋆1 + 𝑝𝑠𝑥
⋆
2)

2 + 𝜆

=

𝑛∑︁
𝑖=1

(︀
𝑥⋆1 + 𝑝1:𝑛𝑥

⋆
2)

2 + (𝑥⋆2)
2

𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑝1:𝑛)
2 +

𝑡∑︁
𝑠=1

(𝑥⋆1 + 𝑝𝑠𝑥
⋆
2)

2 + 𝜆

≥ (𝑥⋆2)
2
𝑛∧𝑡∑︁
𝑠=1

(𝑝1:𝑛 − 𝑝𝑠)
2 + (𝑥⋆2)

2𝑛𝜎2 + 𝜆

≥ 1

4(1 + 2𝑢)2

(︁(︀
1− 1

𝐾

)︀2 · (𝑛 ∧ 𝑡) · 𝛿2 + 𝑛𝜎2
)︁
+ 𝜆, (D.37)
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where the first inequality follows from 𝑎2 + 𝑏2 ≥ 1
2 (𝑎− 𝑏)2, the second inequality follows from the

assumption that |𝑥⋆2| ≥ 1
2(1+2𝑢) , and the last inequality follows from (D.36).

Case 2: |𝑥⋆2| < 1
2(1+2𝑢) . In this case, since (𝑥⋆1)

2 + (𝑥⋆2)
2 = 1, we must have (𝑥⋆1)

2 ≥ 1− 1
4(1+2𝑢)2 ,

and therefore,

𝜆min(𝑉𝑡,𝑛) ≥
𝑛∑︁
𝑖=1

(︁
(𝑥⋆1)

2 + 2𝑥⋆1𝑥
⋆
2𝑝𝑖

)︁
+ 𝜆 ≥ 𝑛

(︀
(𝑥⋆1)

2 − 𝑢

1 + 2𝑢

)︀
+ 𝜆

≥ 𝑛
(︀
1− 1

4(1 + 2𝑢)2
− 𝑢

1 + 2𝑢

)︀
+ 𝜆 ≥ 1

2
𝑛+ 𝜆

≥ 1

4(𝑢− 𝑙)2

(︁
(𝑛 ∧ 𝑡)𝛿2 + 𝑛𝜎2

)︁
+ 𝜆, (D.38)

where the second inequality follows from 2𝑥⋆1𝑥
⋆
2𝑝𝑖 ≥ −2𝑢|𝑥⋆2| ≥ − 𝑢

1+2𝑢 due to |𝑥⋆1| ≤ 1 and |𝑥⋆2| ≤
1

2(1+2𝑢) , the third inequality holds since 1
4(1+2𝑢)2 + 𝑢

1+2𝑢 ≤ 1
2(1+2𝑢) +

𝑢
1+2𝑢 = 1

2 .

Combining inequalities (D.37) and (D.38), when 𝜃 ∈ 𝒞𝑡 for each 𝑡 ≥ 0, if min𝜃∈𝒞0
|𝜓(𝜃)−𝑝1:𝑛|

max𝜃1,𝜃2∈𝒞0
|𝜓(𝜃1)−𝜓(𝜃2)| >

𝐾, we have

𝜆min(𝑉𝑡,𝑛) ≥ min
{︁ 1

4(1 + 2𝑢)2
(1− 1

𝐾
)2,

1

4
(𝑢− 𝑙)2

}︁
·
(︁
(𝑛 ∧ 𝑡)𝛿2 + 𝑛𝜎2

)︁
+ 𝜆,

and thus,

||𝜃⋆ − 𝜃LS
𝑡 ||2 ≤

(︀
min{ 1

4(1 + 2𝑢)2
(1− 1

𝐾
)2,

1

4
(𝑢− 𝑙)2}

)︀−1 𝑤2
𝑡−1

(𝑛 ∧ 𝑡)𝛿2 + 𝑛𝜎2
.

Therefore, the regret of the myopic policy is upper bounded as follows:

𝑇∑︁
𝑡=1

𝜓(𝜃⋆)
(︀
𝛼⋆ + 𝛽⋆𝜓(𝜃⋆)

)︀
− 𝑝myopic

𝑡

(︀
𝛼⋆ + 𝛽⋆𝑝myopic

𝑡

)︀
≤ |𝛽min| ·

𝑇∑︁
𝑡=1

(︀
𝜓(𝜃⋆)− 𝜓(𝜃LS

𝑡−1)
)︀2

≤ |𝛽min|(𝛼2
max + 𝛽2

max)

4𝛽4
max

𝑇∑︁
𝑡=1

||𝜃⋆ − 𝜃LS
𝑡−1||2

≤ |𝛽min|(𝛼2
max + 𝛽2

max)

4𝛽4
max

𝑇∑︁
𝑡=1

(︀
min{ 1

4(1 + 2𝑢)2
(1− 1

𝐾
)2,

1

4
(𝑢− 𝑙)2}

)︀−1 𝑤2
𝑡−1

(𝑛 ∧ 𝑡)𝛿2 + 𝑛𝜎2

= 𝒪
(︁ 𝑇 log 𝑇

(𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎2

)︁
.

Note that from Lemma D.2, by letting 𝜖 = 1
𝑇 2 ∧ 1

𝑛𝜎2 , we have with probability 1− 1
𝑇 2 ∧ 1

𝑛𝜎2 , 𝜃 ∈ 𝒞𝑡
for all 0 ≤ 𝑡 ≤ 𝑇 . Thus, with probability 1− 1

𝑇 2 ∧ 1
𝑛𝜎2 , if the condition min𝜃∈𝒞0

|𝜓(𝜃)−𝑝1:𝑛|
max𝜃1,𝜃2∈𝒞0

|𝜓(𝜃1)−𝜓(𝜃2)| > 𝐾

holds, the myopic policy achieves the regret ̃︀𝒪( 𝑇
(𝑛∧𝑇 )𝛿2+𝑛𝜎2 ). □
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D.4 On the Definition of the Optimal Regret

In §5.3 and §5.4, we define the optimal regret as

𝑅⋆(𝑇, 𝑛, 𝛿, 𝜎) = inf
𝜋∈Π∘

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝1:𝑛|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇 ),

where the environment class is chosen as {𝜃 ∈ Θ† : |𝜓(𝜃)− 𝑝1:𝑛| ∈ [(1− 𝜉)𝛿, (1 + 𝜉)𝛿]}. In this section
of the appendix, we give some justifications on this definition of the instance-dependent environment
class.

D.4.1 Comparison to the “Worst-Case” Environment Class

One possible way to define the environment class is to allow the demand parameter 𝜃 ∈ Θ† to vary
over the entire set Θ†. This corresponds to the optimal worst-case regret (also known as the minimax
regret):

𝑅wc(𝑇, 𝑛, 𝜎) = inf
𝜋∈Π∘

sup
𝒟∈ℰ(𝑅),𝜃∈Θ†

𝑅𝜋𝜃 (𝑇 ).

As a byproduct of our results, we can easily characterize the rate of the optimal worst-case regret.

Corollary D.1. Consider the OPOD problem. Then

𝑅wc(𝑇, 𝑛, 𝜎) = ̃︀Θ(
√
𝑇 ∧ 𝑇

𝑛𝜎2
).

Corollary D.1 shows that when 𝑛𝜎2 is within ̃︀𝒪(
√
𝑇 ), the optimal worst-case regret is always̃︀Θ(

√
𝑇 ), and when 𝑛𝜎2 exceeds ̃︀Ω(√𝑇 ), the optimal worst-case regret decays according to ̃︀Θ( 𝑇

𝑛𝜎2 ).
This demonstrates that the offline data may help to reduce the worst-case regret, but only when
they are dispersive enough, i.e., 𝑛𝜎2 ≳

√
𝑇 . For example, in the single-historical-price setting with

𝜎 = 0, even if the seller has infinitely many offline data, i.e., 𝑛 = ∞, the best achievable worst-case
regret is still ̃︀Θ(

√
𝑇 ), and does not improve over the classical setting where there is no offline data.

This suggests that the optimal worst-case regret may fail to fully and precisely reflect the value of
the offline data (especially when they are not so dispersive), and the goal of achieving the optimal
worst-case regret may be too weak. Indeed, the worst case seldom happens in reality and the decision
makers are more interested in the actually incurred regret. The offline data thus should play a more
powerful role, not only to reduce the regret in the (rare) worst-case scenario, but also to reduce the
regret in a per-instance way. The value of the offline data should also be characterized more precisely.

Observing that the definition of the optimal worst-case regret and the choice of the environment
class Θ† are too conservative, we consider a less conservative environment class by restricting
|𝜓(𝜃)− 𝑝1:𝑛| to have the same order as 𝛿 (note that our algorithm does not need to known 𝛿). The
resulting ̃︀Θ(

√
𝑇 ∧ 𝑇

𝑛𝜎2+(𝑛∧𝑇 )𝛿2 ) optimal instance-dependent regret significantly improves the ̃︀Θ(
√
𝑇 )

optimal worst-case regret when 𝛿 is large enough, thus better characterizing the value of offline data.
Our results imply that the location of the offline data is an important metric that intrinsically affects
the statistical complexity of the OPOD problem. To the best of knowledge, our results provide the
first tight and general instance-dependent regret bounds for the dynamic pricing problem with an
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unknown linear demand model63, with the help of offline data.

D.4.2 Comparison to the “Local” Environment Class

Another possible way to define the instance-dependent regret is to choose the environment class as
the set of all the demand parameters 𝜃 ∈ Θ† such that |𝜓(𝜃)− 𝑝1:𝑛| exactly equals the generalized
distance 𝛿, i.e., {𝜃 ∈ Θ† : |𝜓(𝜃)− 𝑝1:𝑛| = 𝛿}. This leads to the following definition of the local optimal
regret :

𝑅loc(𝑇, 𝑛, 𝛿, 𝜎) = inf
𝜋∈Π∘

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝1:𝑛|=𝛿

𝑅𝜋𝜃 (𝑇 ).

With this definition, we can establish the following result on 𝑅loc(𝑇, 𝑛, 𝜎, 𝛿) when 𝜎 = 0 and 𝛿 = Θ(1),
whose proof is deferred to Appendix D.4.3.

Proposition D.1. Consider the OPOD problem with a single historical price 𝑝. When 𝛿 = Θ(1), we
have

𝑅loc(𝑇, 𝑛, 𝛿) := 𝑅loc(𝑇, 𝑛, 𝛿, 0) =

{︃ ̃︀Θ(
√
𝑇 ), if 𝑛 ≲

√
𝑇 ;̃︀Θ(log 𝑇 ), if 𝑛 ≳

√
𝑇 .

Note that when
√
𝑇 ≲ 𝑛 ≲ 𝑇 , the local optimal regret 𝑅loc(𝑇, 𝑛, 𝛿) = ̃︀Θ(log 𝑇 ) is significantly

smaller than the optimal instance-dependent regret 𝑅⋆(𝑇, 𝑛, 𝛿) = ̃︀Θ(𝑇𝑛 ). But why does this happen?
The caveat is that the rate of 𝑅loc(𝑇, 𝑛, 𝛿) is meaningless in the sense that it cannot be uniformly
achieved by any single algorithm! That is to say, if we consider multiple different values of 𝛿, e.g., 𝛿 =
1, 𝛿 = 1.1, 𝛿 = 1.11, . . ., while 𝑅loc(𝑇, 𝑛, 1) = ̃︀Θ(log 𝑇 ), 𝑅loc(𝑇, 𝑛, 1.1) = ̃︀Θ(log 𝑇 ), 𝑅loc(𝑇, 𝑛, 1.11) =̃︀Θ(log 𝑇 ), . . ., they are actually achieved by different algorithms that are specially designed for
𝛿 = 1, 𝛿 = 1.1, 𝛿 = 1.11, . . . respectively, and there is no algorithm that can achieve 𝑅loc(𝑇, 𝑛, 𝛿) =̃︀Θ(log 𝑇 ) for all of 𝛿 = 1, 𝛿 = 1.1, 𝛿 = 1.11, . . . simultaneously.

To see this, we give a concrete algorithm 𝜋̃ ∈ Π∘ that achieves the regret of 𝒪(log 𝑇 ) for
some specific value of 𝛿 = 𝛿0 but incurs the regret of Ω(

√
𝑇 ) for 𝛿 = 𝛿0 + 𝑇− 1

4 . The algorithm
is named as “Speculator(𝛿0)” and is presented in Algorithm D.1. When 𝛿 = 1, and 𝑛 =

√
𝑇 , the

Speculator(1) algorithm incurs the regret of 𝒪(log 𝑇 ) in the first stage and constant regret in the
second stage. However, when 𝛿 = 1 + 𝑇− 1

4 , the Speculator(1) algorithm must incur the regret of
Ω(𝑇 × (𝑇− 1

4 )2) = Ω(
√
𝑇 ) in the second stage, since with high probability, the algorithm mistakenly

charges 𝑝+ 𝛿0 or 𝑝− 𝛿0 for the whole second stage.

In fact, with the above definition of the local optimal regret, any learning algorithm faces the
above dilemma, i.e., its regret is not universally optimal when 𝛿 changes, and the reason is as follows.
Using KL-divergence arguments, we can show that when 𝑛 = Θ(

√
𝑇 ), for any 𝛿 = Θ(1) and any

policy 𝜋, the sum of the local instance-dependent regrets under 𝛿 and 𝛿 +Θ(𝑇− 1
4 ) is lower bounded

63We note that Broder and Rusmevichientong (2012), Keskin and Zeevi (2014) and Qiang and Bayati (2016)
provide ̃︀Θ(log 𝑇 ) regret bounds for this dynamic pricing problem under certain separability assumptions.
However, they do not obtain a regret bound that directly depends on the instance parameters in a tight way.
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Algorithm D.1 Speculator(𝛿0): an algorithm that bets 𝛿 = 𝛿0

Input: specific guess 𝛿0, historical price 𝑝, offline demand data 𝐷̂1, 𝐷̂2, . . . , 𝐷̂𝑛, support of
unknown parameters Θ†, support of feasible price [𝑙, 𝑢], length of the selling horizon 𝑇

1: while 𝑡 ∈ [⌊
√
𝑇 ⌋] do

2: Treat the prices 𝑝+ 𝛿0 and 𝑝− 𝛿0 as two arms, and run the UCB algorithm for the
two-armed bandits;

3: Construct the confidence interval 𝐶 for the optimal price based on the least square
regression on both the offline and online data

4: if 𝑝+ 𝛿0 ∈ 𝐶 (or 𝑝− 𝛿0 ∈ 𝐶) then
5: Charge the price 𝑝+ 𝛿0 (or 𝑝− 𝛿0) when 𝑡 = [⌊

√
𝑇 ⌋] + 1, . . . , 𝑇 ;

6: else
7: Charge the myopic price from the least square estimation when 𝑡 = [⌊

√
𝑇 ⌋]+1, . . . , 𝑇 .

by Ω(
√
𝑇 ), i.e.,

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝|=𝛿

𝑅𝜋𝜃 (𝑇 ) + sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝜓(𝜃)−𝑝|=𝛿+Θ(𝑇
− 1

4 )

𝑅𝜋𝜃 (𝑇 ) = Ω(
√
𝑇 ),

which implies that for any policy 𝜋, under at least one problem instance, i.e., 𝛿 or 𝛿 + Θ(𝑇− 1
4 ),

the regret is greater than Ω(
√
𝑇 ). The huge gap between Ω(

√
𝑇 ) and Θ(log 𝑇 ) implies that when

𝑛 = Θ(
√
𝑇 ), the optimal rate of 𝑅loc(𝑇, 𝑛, 𝛿) defined in Proposition D.1 cannot be achieved by a

single learning algorithm for different values of 𝛿. Thus, 𝑅loc(𝑇, 𝑛, 𝛿) fails to be a valid complexity
measure for the OPOD problem. In fact, the statistical complexity of an online pricing problem heavily
relies on the fact that there are infinitely many continuous and “indistinguishable” prices. If we
directly define the environment class as {𝜃 ∈ Θ† : |𝜓(𝜃) − 𝑝| = 𝛿}, then the resulting 𝑅loc(𝑇, 𝑛, 𝛿)

becomes too “sensitive and specific” to two discrete prices 𝑝+ 𝛿 and 𝑝− 𝛿, leaving chances for an
algorithm that “bets 𝛿 = 𝛿0” to perform “abnormally well” when 𝛿 happens to be 𝛿0. By contrast,
under the definition of the optimal regret 𝑅⋆(𝑇, 𝑛, 𝛿) in §5.3 and §5.4, we can design a learning
algorithm that uniformly achieves the optimal regret rate for any possible value of 𝛿.

D.4.3 Proof of Proposition D.1 in Appendix D.4.2

The proof will be divided into proving the regret lower bound and regret upper bound respectively.

Lower bound: Case 1. We first prove that when 𝑛 ≤ 𝑅2𝑙2|𝛽max|
256𝛽2

min𝐾0𝑒𝛿2

√
𝑇 , for any admissible

policy 𝜋 ∈ Π∘, and any 𝜃 ∈ Θ† with 𝛼
−2𝛽 = 𝑝 + 𝛿, the regret is lower bounded by Ω(

√
𝑇 ). To see

this, we construct two problem instances 𝜃1 = (𝛼1, 𝛽1) and 𝜃2 = (𝛼2, 𝛽2) satisfying the following
conditions:

− 𝛼1

2𝛽1
= 𝑝+ 𝛿, − 𝛼2

2𝛽2
= 𝑝+ 𝛿 +Δ, (𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)(𝑝+ 𝛿) = 0.

where the value of Δ is to be specified. That is, the optimal price under the two problem instances is
𝑝+ 𝛿 and 𝑝+ 𝛿 +Δ respectively, and the two demand functions intersect at the price 𝑝+ 𝛿. Using
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similar arguments in inequality (D.21), we have

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) ≤

2𝛽2
minΔ

2

𝑅2𝑙2

(︁
𝑛𝛿2 +

𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2]
)︁
.

In addition, by defining the two disjoint intervals 𝐼1 = [𝑝+ 𝛿 − 1
4Δ, 𝑝+ 𝛿 + 1

4Δ] and 𝐼2 = [𝑝+ 𝛿 +
3
4Δ, 𝑝+ 𝛿+

5
4Δ], and using similar arguments to inequality (D.23), we have the following lower bound

on the sum of regret under 𝜃1 and 𝜃2:

𝑅𝜋𝜃1(𝑇 ) +𝑅𝜋𝜃2(𝑇 ) ≥
1

32
|𝛽max| · 𝑒−𝐾𝐿(𝑃

𝜋
1 ,𝑃

𝜋
2 ) · 𝑇Δ2.

Since 𝜋 ∈ Π∘, we further have

𝐾𝐿(𝑃𝜋1 , 𝑃
𝜋
2 ) ≥ log(

√
𝑇Δ2) + log

(︁ |𝛽max|
64𝐾0

)︁
.

Thus, by letting Δ2 = 64𝐾0𝑒√
𝑇 |𝛽max|

, we have

𝑅𝜋𝜃1(𝑇 ) ≥ |𝛽max|
𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2]

≥ |𝛽max|
(︁ 𝑅2𝑙2

2𝛽2
minΔ

2
·
(︀
log(

√
𝑇Δ2) + log

|𝛽max|
64𝐾0

)︀
− 𝑛𝛿2

)︁
= |𝛽max|

(︁ 𝑅2𝑙2|𝛽max|
128𝛽2

min𝐾0𝑒

√
𝑇 − 𝑛𝛿2

)︁
≥ 𝑅2𝑙2𝛽2

max

256𝛽2
min𝐾0𝑒

√
𝑇 ,

where the equation follows from the choice of Δ, and the last inequality holds since 𝑛 ≤ 𝑅2𝑙2|𝛽max|
256𝛽2

min𝐾0𝑒𝛿2

√
𝑇 .

Lower bound: Case 2. We then prove when 𝑛 > 𝑅2𝑙2|𝛽max|
256𝛽2

min𝐾0𝑒𝛿2

√
𝑇 , for any policy 𝜋 (not

necessarily in the admissible policy class), max𝜃∈Θ†:𝜓(𝜃)−𝑝=𝛿 𝑅
𝜋
𝜃 (𝑇 ) = Ω(log 𝑇 ). Since 𝜓(𝜃) = − 𝛼

2𝛽 ,
the constraint for 𝜃 becomes {(−2𝛽(𝑝+ 𝛿), 𝛽) : 𝛽 ∈ [𝛽min ∨ 𝛼max

−2(𝑝+𝛿) , 𝛽max ∧ 𝛼min

−2(𝑝+𝛿) ]}. In this case,
the problem is reduced to a single-dimensional problem, and it suffices to prove that there exists
some 𝛽 ∈ [𝛽min ∨ 𝛼max

−2(𝑝+𝛿) , 𝛽max ∧ 𝛼min

−2(𝑝+𝛿) ], such that 𝑅𝜋𝜃 (𝑇 ) = Ω(log 𝑇 ), where 𝜃 = (−2𝛽(𝑝+ 𝛿), 𝛽).

To this end, we invoke again the van Trees inequality in Lemma (D.3), by letting 𝐶(𝜃) = (−𝑝 1),
and 𝑞(·) : R → R+ be an absolutely continuous density on 𝛽 ∈ [𝛽min ∨ 𝛼max

−2(𝑝+𝛿) , 𝛽max ∧ 𝛼min

−2(𝑝+𝛿) ] with
positive value on (𝛽min ∨ 𝛼max

−2(𝑝+𝛿) , 𝛽max ∧ 𝛼min

−2(𝑝+𝛿) ) and zero on the boundary {𝛽min ∨ 𝛼max

−2(𝑝+𝛿) , 𝛽max ∧
𝛼min

−2(𝑝+𝛿)}. In this case, similar to the first lower bound in Step 1 of the proof of Theorem 5.2, we
obtain the following inequality for 𝜃 = (−2𝛽(𝑝+ 𝛿), 𝛽):

𝑇∑︁
𝑡=1

E𝑞
[︀
E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2]

]︀
≥

𝑇∑︁
𝑡=2

𝑅2𝑐′1

𝑅2ℐ(𝑞) +
∑︀𝑡−1
𝑠=1 E𝑞[E𝜋𝜃 [(𝑝𝑠 − 𝑝)2]]

≥
𝑇∑︁
𝑡=2

𝑅2𝑐′1
𝑅2ℐ(𝑞) + (𝑡− 1)(𝑢− 𝑙)2

,

where 𝑐′1 = (min𝜃∈Θ†:𝜓(𝜃)=𝑝+𝛿
𝛼+𝛽𝑝
2𝛽2 )2, and ℐ(𝑞) is defined in Lemma (D.3). Since both 𝑐′1 and ℐ(𝑞)
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are constants (recall that 𝛿 is assumed to be a constant), then we have

max
𝛽∈[𝛽min∨ 𝛼max

−2(𝑝+𝛿)
,𝛽max∧

𝛼min
−2(𝑝+𝛿)

]
𝑅𝜋𝜃 (𝑇 ) = Ω(log 𝑇 ),

which completes the proof.

Upper bound. When 𝑛 <
√
𝑇 , from Theorem 5.1, O3FU algorithm is admissible and achieves

the regret upper bound 𝒪(
√
𝑇 ), which matches the lower bound proven in the above Case 1. In the

following, we first prove that when 𝑛 ≥
√
𝑇 , Speculator(𝛿0) achieves the regret upper bound 𝒪(

√
𝑇 )

for any 𝜃 ∈ Θ†, and therefore is admissible. Then we will prove that when 𝛿 = 𝛿0, Speculator(𝛿0)
achieves the regret upper bound 𝒪(log 𝑇 ).

When 𝜃⋆ is arbitrary, 𝛿 = |𝜓(𝜃⋆)− 𝑝| is also arbitrary and not necessarily equals 𝛿0, the regret in
the first

√
𝑇 periods is 𝒪(

√
𝑇 ) due to at most a constant loss in each period. In addition, it can be

easily verified that the sum of squared dispersion for 𝑛 offline prices and ⌊
√
𝑇 ⌋ online prices is lower

bounded by Ω(
√
𝑇 ). Specifically, from (5.9), for 𝑝1 = . . . = 𝑝𝑛 = 𝑝 and 𝑝𝑡 ∈ {𝑝+ 𝛿0, 𝑝− 𝛿0} for each

𝑡 ∈ [⌊
√
𝑇 ⌋], we have

𝐽(𝑝1, . . . , 𝑝𝑛, 𝑝1, . . . , 𝑝⌊
√
𝑇⌋) ≥ 𝐽(𝑝1, . . . , 𝑝𝑛) +

𝑛

𝑛+
√
𝑇

⌊
√
𝑇⌋∑︁

𝑠=1

(𝑝𝑠 − 𝑝1:𝑛)
2 =

𝑛⌊
√
𝑇 ⌋

𝑛+ ⌊
√
𝑇 ⌋
𝛿20 ≳

√
𝑇𝛿20 .

Therefore, 𝜆min(𝑉⌊
√
𝑇⌋,𝑛) = Ω(

√
𝑇 ), and the squared radius of the confidence interval 𝐶 is at most

Θ( 1
𝜆min(𝑉⌊

√
𝑇⌋,𝑛)

) = Θ(
√
𝑇 ). Since the true optimal price lies in 𝐶 with high probability, it follows that

for any price within 𝐶, its squared deviation from the optimal price in each period ⌊
√
𝑇 ⌋+ 1, . . . , 𝑇

is no more than 1√
𝑇

, and therefore, the cumulative revenue loss in periods ⌊
√
𝑇 ⌋ + 1, . . . , 𝑇 is no

more than 𝒪(
√
𝑇 ).

When 𝛿 = 𝛿0, from Theorem 5 in Abbasi-Yadkori et al. (2011), the regret of Speculator(𝛿0) in
the first ⌊

√
𝑇 ⌋ periods is upper bounded by ̃︀𝒪(log 𝑇 ). In the remaining periods from ⌊

√
𝑇 ⌋+ 1 to 𝑇 ,

since the optimal price is either 𝑝+ 𝛿0 or 𝑝− 𝛿0, which belongs to the confidence interval 𝐶 with
high probability, by construction, Speculator(𝛿0) chooses the optimal price from period ⌊

√
𝑇 ⌋+ 1 to

𝑇 with high probability. Note that the squared length of 𝐶 is Θ( 1√
𝑇
), so 𝑝+ 𝛿0 and 𝑝− 𝛿0 cannot

belong to 𝐶 at the same time. In this case, it can be verified that the regret from period ⌊
√
𝑇 ⌋+ 1

to 𝑇 is upper bounded by ̃︀𝒪(log 𝑇 ). □

D.5 Extension to Generalized Linear Model

In this section of the appendix, we discuss the extension of our regret upper bounds to the generalized
linear model. For simplicity, we focus on the single-historical-price setting, and leave the discussion
on the multiple-historical-price setting to the interested readers. Consider the following demand
model:

𝐷𝑡 = 𝑔(𝛼⋆ + 𝛽⋆𝑝𝑡) + 𝜀𝑡, (D.39)
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where 𝑔(·) is an increasing function whose form is known to the seller (we refer to 𝑔(·) as the link
function), (𝛼⋆, 𝛽⋆) is the unknown demand parameter in the compact set Θ†, and {𝜖𝑡}𝑡≥1 is a
sequence of i.i.d. sub-Gaussian random variables. We also assume that the conditional probability of
𝐷𝑡 given 𝑝𝑡 is from the exponential family, which is a standard assumption in the literature; see, e.g.,
Filippi et al. (2010). Since the expected demand function is the composition of the link function
𝑔(·) : R → R and the linear function 𝑝 ↦→ 𝛼⋆ + 𝛽⋆𝑝, the above equation (D.39) is referred to as the
generalized linear model (GLM). Similar as before, we let 𝜃 := (𝛼, 𝛽), 𝑟(𝑝; 𝜃) := 𝑝 · 𝑔(𝛼 + 𝛽𝑝) and
𝜓(𝜃) := argmax𝑝∈[𝑝,𝑝] 𝑟(𝑝; 𝜃). The definition of the regret 𝑅𝜋𝜃⋆(𝑇 ) for any given policy 𝜋 remains the
same.

We make the following assumptions on the optimal price 𝜓(𝜃), the expected revenue 𝑟(𝑝; 𝜃), and
the link function 𝑔(·).

Assumption D.1. There exist constants 𝐿0 > 0, 0 < 𝜆1 < 𝜆2 and 0 < 𝐿1 < 𝐿2, such that

(a) |𝜓(𝜃1)− 𝜓(𝜃2)| ≤ 𝐿0 · ||𝜃1 − 𝜃2|| for any 𝜃1, 𝜃2 ∈ Θ†;

(b) 𝜆1 · (𝜓(𝜃)− 𝑝)
2 ≤ 𝑟 (𝜓(𝜃); 𝜃)− 𝑟 (𝑝; 𝜃) ≤ 𝜆2 · (𝜓(𝜃)− 𝑝)

2 for any 𝑝 ∈ [𝑝, 𝑝] and 𝜃 ∈ Θ†;

(c) 𝑔(𝑥) is twice differentiable in 𝒳 := {𝛼+ 𝛽𝑝 : (𝛼, 𝛽) ∈ Θ†, 𝑝 ∈ [𝑝, 𝑝]}, with 𝐿1 ≤ 𝑔′(𝑥) ≤ 𝐿2 for
any 𝑥 ∈ 𝒳 , and bounded second-order derivative in 𝒳 .

Condition (a) requires that the optimal price 𝜓(𝜃) is Lipschitz continuous in Θ† with Lipschitz
constant 𝐿0, which is satisfied if 𝜓(·) is differentiable and the norm of its gradient is upper bounded.
Condition (b) is satisfied if for any 𝜃 ∈ Θ†, the optimal price 𝜓(𝜃) is an interior point of [𝑝, 𝑝], and
the second-order derivative of 𝑟(𝑝; 𝜃), with respect to 𝑝, exists, and is lower bounded by 𝜆1 and
upper bounded by 𝜆2. Condition (c) is similar to Assumptions 1 and 2 in Li et al. (2017) on the
generalized linear contextual bandit, and our condition is slightly stronger to make sure that our
instance-dependent upper bound holds. Note that under condition (c), condition (b) can also be
satisfied if for any 𝜃 ∈ Θ†, 𝜓(𝜃) is an interior point of [𝑝, 𝑝], and the expected revenue, as a function
of the mean demand, is concave whose second-order derivative is lower bounded by 𝜆1 and upper
bounded by 𝜆2. Note that the concavity of the expected revenue with respect to the mean demand
(instead of the price) is more commonly assumed in the literature of revenue management; see, e.g.,
Wang et al. (2014). All of conditions (a)-(c) can be satisfied by the commonly used linear model
(i.e., 𝑔(𝑥) = 𝑥), logit model (i.e., 𝑔(𝑥) = 𝑒𝑥

1+𝑒𝑥 ), and exponential model (i.e., 𝑔(𝑥) = 𝑒𝑥).
The algorithm for the generalized linear model (D.39) can be modified from O3FU as follows. Let

𝜃𝑡 be the following maximum likelihood estimator (instead of the least-squares estimator in O3FU):

𝜃𝑡 := argmax
𝜃=(𝛼,𝛽)∈Θ†

𝑛
(︁
𝐷̂𝑖 · (𝛼+ 𝛽𝑝)−𝑚(𝛼+ 𝛽𝑝)

)︁
+

𝑡∑︁
𝑠=1

(︀
𝐷𝑠 · (𝛼+ 𝛽𝑝𝑠)−𝑚(𝛼+ 𝛽𝑝𝑠)

)︀
,

where 𝑚(·) is the function such that 𝑚(𝛼 + 𝛽𝑝) = 𝑔′(𝛼 + 𝛽𝑝) for any (𝛼, 𝛽) ∈ Θ† and 𝑝 ∈ [𝑙, 𝑢].
Then we let (𝑝𝑡, 𝜃𝑡) := argmax𝑝∈[𝑙,𝑢],𝜃=(𝛼,𝛽)∈𝒞𝑡−1

𝑝 · 𝑔(𝛼+ 𝛽𝑝). Besides, for the confidence ellipsoid
𝒞𝑡−1, the confidence radius 𝑤𝑡 needs to be modified accordingly by applying the high-probability
confidence bound in Lemma 3 of Li et al. (2017). We refer to this modified algorithm as O3FU-GLM.

The following proposition establishes a similar regret upper bound for O3FU-GLM to O3FU in
Theorem 5.3.
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Proposition D.2. Let 𝜋 be O3FU-GLM algorithm for the OPOD problem. Then there exists a finite
constant 𝐾5 > 0 such that for any 𝑇 ≥ 1, 𝑛 ≥ 0 and 𝑝 ∈ [𝑙, 𝑢], and for any possible value of 𝜃⋆ ∈ Θ†,
we have

𝑅𝜋𝜃⋆(𝑇 ) ≤ 𝐾5

(︁√
𝑇 ∧ 𝑇 log 𝑇

(𝑛 ∧ 𝑇 )𝛿2
)︁
· log 𝑇.

Proof of Proposition D.2. Under Assumption D.1, Proposition D.2 can be proven under a similar
framework to Theorem 5.1. We next only highlight the main differences and omit the detailed
verification.

First, to prove the instance-independent upper bound ̃︀𝒪(
√
𝑇 log 𝑇 ), we first note the following

upper bound on the regret of algorithm O3FU-GLM: when 𝜃⋆ ∈ 𝒞𝑡−1,

𝜓(𝜃⋆) · 𝑔(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑝𝑡 · 𝑔(𝛼⋆ + 𝛽⋆𝑝𝑡) ≤ 𝑝𝑡 · 𝑔(𝛼̃𝑡 + 𝛽𝑡𝑝𝑡)− 𝑝𝑡 · 𝑔(𝛼⋆ + 𝛽⋆𝑝𝑡) ≤ 𝑢 · 𝐿2|(𝜃𝑡 − 𝜃⋆)⊤𝑥𝑡|,

where 𝑥𝑡 = [1 𝑝𝑡]
⊤, the first inequality follows from 𝜃⋆ ∈ 𝒞𝑡−1, 𝜓(𝜃⋆) ∈ [𝑙, 𝑢] and the definition of

(𝑝𝑡, 𝜃𝑡), and the second inequality follows from condition (c) of Assumption D.1 and the mean value
theorem. With the above inequality, the regret upper bound ̃︀𝒪(

√
𝑇 log 𝑇 ) can be proven similar to

Step 1 of Theorem 5.1. In particular, to bound the probability for the event {𝜃⋆ ∈ 𝒞𝑡}𝑡≥1, Lemma 3
in Li et al. (2017) established for the generalized linear contextual bandit will be useful, and plays a
similar role to Theorem 2 in Abbasi-Yadkori et al. (2011) established for the linear contextual bandit,
which is applied in our previous proof.

Second, to prove the instance-dependent upper bound ̃︀𝒪(𝑇 (log 𝑇 )2

(𝑛∧𝑇 )𝛿2 ), we first note that the regret
of O3FU-GLM is upper bounded by the cumulative estimation error for the true parameter 𝜃⋆ as
follows:

𝑇∑︁
𝑡=2

E𝜋𝜃⋆
[︁
𝑟
(︀
𝜓(𝜃⋆); 𝜃⋆

)︀
− 𝑟
(︀
𝑝𝑡; 𝜃

⋆
)︀]︁

≤ 𝜆2

𝑇∑︁
𝑡=1

E𝜋𝜃⋆
[︁(︀
𝜓(𝜃⋆)− 𝑝𝑡

)︀2]︁ ≤ 𝜆2𝐿0

𝑇∑︁
𝑡=1

E𝜋𝜃⋆
[︀
||𝜃⋆ − 𝜃𝑡||2

]︀
,

where the two inequalities hold due to condition (b) and condition (a) in Assumption D.1 respectively.
With the above inequality, it suffices to establish Lemma 5.1 for O3FU-GLM. To this end, we also
start from the same inequality to (D.4) in Step 2 of the proof of Lemma 5.1, and discuss the same three
cases. For Case 1, Case 2 and Case 3.1, the proof is similar under condition (a) in Assumption D.1
that 𝜓(·) is Lipschitz continuous. For Case 3.2, the crucial step is to show inequality (D.8), whose
proof can be modified by invoking conditions (b) and (c) in Assumption D.1. Specifically, we refine
𝐴1, 𝐴2, 𝐴3 and 𝐴4 as

𝐴1 = 𝑝𝑡 · 𝑔(𝛼̃𝑡 + 𝛽𝑡𝑝𝑡), 𝐴2 = 𝑝𝑡 · 𝑔(𝛼⋆ + 𝛽⋆𝑝𝑡),

𝐴3 = 𝜓(𝜃⋆) · 𝑔(𝛼̃𝑡 + 𝛽𝑡𝜓(𝜃
⋆)), 𝐴4 = 𝜓(𝜃⋆) · 𝑔(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆)),

and inequalities in (D.9) and (D.10) continue to hold, i.e.,

𝐴1 ≥ 𝐴3, 𝐴1 ≥ 𝐴4 ≥ 𝐴2.
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For the case when 𝐴3 ≥ 𝐴2, inequality (D.11) will be modified to

|Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑡| ≥
1

𝐿2
· 𝐴1 −𝐴2

𝑝𝑡

≥ 1

𝐿2
· |𝐴4 −𝐴3|

𝑝𝑡

=
1

𝐿2
· 𝜓(𝜃

⋆)

𝑝𝑡
·
⃒⃒⃒
𝑔(𝛼⋆ + 𝛽⋆𝜓(𝜃⋆))− 𝑔(𝛼̃𝑡 + 𝛽𝑡𝜓(𝜃

⋆))
⃒⃒⃒

≥ 𝐿1

𝐿2
· 𝜓(𝜃

⋆)

𝑝𝑡
|Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)|

≥ 𝐿1

𝐿2
· 𝑙
𝑢
|Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)|,

where the first inequality follows from |𝑔(𝑥) − 𝑔(𝑦)| ≤ 𝐿2|𝑥 − 𝑦| guaranteed by condition (c) of
Assumption D.1 and the mean value theorem, the second inequality holds since 𝐴3, 𝐴4 ∈ [𝐴2, 𝐴1],
and the third inequality holds due to |𝑔(𝑥) − 𝑔(𝑦)| ≥ 𝐿1|𝑥 − 𝑦| guaranteed by condition (c) of
Assumption D.1 and the mean value theorem. For the case when 𝐴3 < 𝐴2, inequality (D.12) will be
modified to

|Δ𝛼𝑡 +Δ𝛽𝑡𝑝𝑡| ≥
1

𝐿2
· 𝐴1 −𝐴2

𝑝𝑡

≥ 1

𝐿2
· 𝐴4 −𝐴2

𝑝𝑡

=
1

𝐿2
· 𝑟(𝜓(𝜃

⋆); 𝜃⋆)− 𝑟(𝑝𝑡; 𝜃
⋆)

𝑝𝑡

≥ 𝜆1
𝐿2

· (𝜓(𝜃
⋆)− 𝑝𝑡)

2

𝑝𝑡

≥ 𝜆1
𝐿2𝜆2𝑝𝑡

· |𝐴1 −𝐴3|

≥ 𝜆1
𝐿2𝜆2𝑝𝑡

· |𝐴4 −𝐴3|

≥ 𝜆1𝐿1

𝐿2𝜆2
· 𝜓(𝜃

⋆)

𝑝𝑡
· |Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)|

≥ 𝜆1𝐿1

𝐿2𝜆2
· 𝑙
𝑢
· |Δ𝛼𝑡 +Δ𝛽𝑡𝜓(𝜃

⋆)|,

where the third and fourth inequalities follow from condition (b) in Assumption D.1, the fifth
inequality follows from the assumption that 𝐴3 < 𝐴2, and the sixth inequality follows from condition
(c) in Assumption D.1 and the mean value theorem. The remaining analysis for Case 3.2 is similar,
whose details are therefore omitted. □

D.6 Extension to Adaptive Offline Data

In this section of the appendix, we extend our main results to the setting that in the offline stage, the
seller’s pricing decisions are made adaptively based on the previous price and sales data according to
some possibly unknown policy 𝜋̂. Therefore, for each 𝑖 = 2, . . . , 𝑛, 𝑝𝑖 may depend on the previous
data 𝑝1, 𝐷̂1, . . . , 𝑝𝑖−1, 𝐷̂𝑖−1.

307



When the offline data are generated adaptively according to some possibly unknown policy 𝜋̂,
the historical price 𝑝𝑖 is a function of 𝑝1, 𝐷̂1, . . . , 𝑝𝑖−1, 𝐷̂𝑖−1, for each 𝑖 = 2, . . . , 𝑛, which contains
uncertainty arising from the random noise, and therefore is a random variable. Nevertheless, in many
practical scenarios, the seller’s primary concern is to understand the effect of this particular pricing
sequence {𝑝1, . . . , 𝑝𝑛} on the online learning process. Thus, we will measure the performance of a
learning algorithm via the conditional expected revenue given the realization of 𝑝1, . . . , 𝑝𝑛, and study
the impact of this exact sequence on the online learning process.

Specifically, for any pricing policy 𝜋, let 𝑅𝜋𝜃⋆(𝑇, 𝑝1, . . . , 𝑝𝑛) be defined as the conditional regret
as follows:

𝑅𝜋𝜃⋆(𝑇, 𝑝1, . . . , 𝑝𝑛) = E𝜋𝜃⋆
[︀
𝑇𝑟⋆(𝜃⋆)−

𝑇∑︁
𝑡=1

𝑝𝑡(𝛼
⋆ + 𝛽⋆𝑝𝑡)

⃒⃒
𝑝1, . . . , 𝑝𝑛

]︀
.

For any pricing policy 𝜋, it is said to be admissible if there exists some constant 𝐾0 > 0 such that
𝑅𝜋𝜃⋆(𝑇, 𝑝1, . . . , 𝑝𝑛) ≤ 𝐾0

√
𝑇 log 𝑇 , for any 𝑇 ≥ 1, 𝑛 ≥ 0, 𝜃⋆ ∈ Θ†, and 𝑝1, . . . , 𝑝𝑛 ∈ [𝑙, 𝑢]. Let Π̂∘

be the set of all admissible policies. For notation convenience, we also define 𝛿 = |𝑝1:𝑛 − 𝜓(𝜃⋆)|,
and 𝜎̂ =

√︁
1
𝑛

∑︀𝑛
𝑖=1(𝑝𝑖 − 𝑝1:𝑛)2, both of which depend on the realizations of 𝑝1, . . . , 𝑝𝑛. We provide

matching upper and lower bounds on regret in Proposition D.3, which indicates that M-O3FU
algorithm remains optimal even for adaptive offline data.

Proposition D.3. Consider the OPOD problem with the offline data generated from some possibly
unknown policy 𝜋̂.

(a) Let 𝜋 be M-O3FU algorithm. For any sample path of historical prices 𝑝1, . . . 𝑝𝑛, 𝑇 ≥ 1, 𝑛 ≥ 1,
and any possible value of 𝜃⋆ ∈ Θ†,

𝑅𝜋𝜃⋆(𝑇, 𝑝1, . . . , 𝑝𝑛) =

⎧⎨⎩ ̃︀𝒪(︀𝑇𝛿2 + 1
)︀
, if 𝛿2 ≲ 1

𝑛𝜎̂2 ≲ 1√
𝑇
;̃︀𝒪(︀√𝑇 ∧ 𝑇

(𝑛∧𝑇 )𝛿2+𝑛𝜎̂2

)︀
, otherwise.

(b) For any pricing policy 𝜋, 𝑇 ≥ 2, 𝑛 ≥ 1, 𝛿 ∈ [0, 𝑢− 𝑙], and realization of 𝑝1, . . . , 𝑝𝑛 ∈ [𝑙, 𝑢],

sup
𝒟∈ℰ(𝑅);

𝜃∈Θ†:|𝑝1:𝑛−𝜓(𝜃)|∈[(1−𝜉)𝛿,(1+𝜉)𝛿]

𝑅𝜋𝜃 (𝑇, 𝑝1, . . . , 𝑝𝑛) =
̃︀Ω(√𝑇 ∧ 𝑇

𝛿−2 + (𝑛 ∧ 𝑇 )𝛿2 + 𝑛𝜎̂2
).

If for any value of 𝜃 ∈ Θ†, E𝜋̂𝜃 [𝛿(𝜃)] ≲ 𝑇− 1
4 (log 𝑇 )−

1
2 and E𝜋̂𝜃 [𝑛𝜎̂2] ≲

√
𝑇

log 𝑇 (where the expectation
is taken over 𝑝1, 𝑝2, . . . , 𝑝𝑛), then for any admissible policy 𝜋 ∈ Π̂∘, 𝑇 ≥ 2, 𝑛 ≥ 1, 𝜃⋆ ∈ Θ†,
E𝜋̂[𝑅𝜋𝜃 (𝑇, 𝑝1, . . . , 𝑝𝑛)] = ̃︀Ω(√𝑇 ).

Proof of Proposition D.3. The proof is similar to Theorem 5.3 and Theorem 5.4, and we only
highlight the differences and omit detailed analysis.

(a) Similar to the proof of Theorem 5.3, we need to show the two upper bounds 𝒪(
√
𝑇 log 𝑇 )

and 𝒪( 𝑇 (log 𝑇 )2

𝑛𝜎̂2+(𝑛∧𝑇 )𝛿2
).

To see the first upper bound, if conditioning on the realization of 𝑝1, . . . , 𝑝𝑡, the upper bound
on
∑︀𝑇
𝑡=1 ||𝑥𝑡||2𝑉 −1

𝑡−1,𝑛

, i.e., (D.24), and the concentration inequality in Lemma D.2 still hold, then
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we can apply similar arguments to Step 1 in the proof of Theorem 5.3 to obtain the first upper
bound 𝒪(

√
𝑇 log 𝑇 ). To this end, we notice that the upper bound (D.24) is derived from Lemma

D.1, and in the statement of Lemma D.1, the sequence {𝑋𝑡 : 𝑡 ≥ 1} and the matrix 𝑉 can be
arbitrary. Therefore, for any given realization of 𝑝1, . . . , 𝑝𝑛, by letting 𝑉 = 𝜆𝐼 +

∑︀𝑛
𝑖=1 𝑥𝑖𝑥

⊤
𝑖 , we

have similar upper bound on
∑︀𝑇
𝑡=1 ||𝑥𝑡||2𝑉 −1

𝑡−1,𝑛

. Moreover, the key ingredient to prove Lemma D.2 in
Abbasi-Yadkori et al. (2011) is their Theorem 1. For any given realization of 𝑝1, . . . , 𝑝𝑛, Theorem
1 in Abbasi-Yadkori et al. (2011) continues to hold, and therefore, the bound for the conditional
probability given 𝑝1, . . . 𝑝𝑛 in Lemma D.2 also holds.

To see the second upper bound, it suffices to establish the concentration inequality in Lemma
D.2, the sample-path inequality in Lemma 5.2 and Lemma D.4. As discussed above, given realization
of 𝑝1, . . . , 𝑝𝑛, Lemma D.2 continues to hold. In both Lemma 5.2 and Lemma D.4, we conduct the
sample-path analysis and treat each quantity as an arbitrary and deterministic number. Therefore,
conditioning on the realization of 𝑝1, . . . , 𝑝𝑡, Lemma 5.2 and Lemma D.4 also continue to hold.

(b) We divide the proof for the lower bound into two steps.

Lower bound: Step 1. In this step, similar to (D.31), we prove for any policy 𝜋,

sup
𝜃∈Θ0(𝛿,𝑝1,...,𝑝𝑛)

𝑅𝜋𝜃 (𝑇, 𝑝1, . . . , 𝑝𝑛) = Ω
(︁√

𝑇 ∧ 𝑇

𝛿−2 + 𝑛𝜎̂2 + (𝑛 ∧ 𝑇 )𝛿2
)︁
, (D.40)

where Θ0(𝛿, 𝑝1, . . . , 𝑝𝑛) =
{︀
𝜃 ∈ Θ† : 𝜓(𝜃)− 𝑝1:𝑛 ∈ [ 12𝛿, 𝛿]

}︀
. Here we highlight the dependence of set

Θ0 on 𝑝1, . . . , 𝑝𝑛.

To see (D.40), we first note that since 𝑙 ≤ 𝑝1:𝑛 ≤ 𝑢, Θ′
0(𝛿) := {𝜃 ∈ Θ† : 𝜓(𝜃)−𝑢 ≥ 1

2𝛿, 𝜓(𝜃)−𝑙 ≤ 𝛿}
must be a subset of Θ0(𝛿, 𝑝1, . . . , 𝑝𝑛). From the definition of Θ′

0(𝛿), there exist some positive constants
𝑥0, 𝑦0, 𝜖 such that Θ1(𝛿) := [𝑥0 − 1

2𝜖𝛿, 𝑥0 +
3
2𝜖𝛿] × [𝑦0 − 1

2𝜖𝛿, 𝑦0 +
3
2𝜖𝛿] ⊆ Θ′

0(𝛿). Then we define
a prior distribution 𝑞(·) for the unknown parameter 𝜃 on the set Θ1(𝛿), whose expression is the
same as (D.31). The remaining proof is similar to that of (D.31) as long as when applying the van
Trees inequality, we consider the expectation E𝑞[E𝜋𝜃 [(𝑝𝑡 − 𝜓(𝜃))2|𝑝1, . . . , 𝑝𝑛]] by conditioning on the
realization of 𝑝1, . . . , 𝑝𝑛. In particular, although the Fisher information function ℐ(𝑞) depends on the
historical prices 𝑝1, . . . , 𝑝𝑛, since the support of 𝑞(·) is independent of 𝑝1, . . . , 𝑝𝑛 and the function
𝐶(𝜃) and its derivative are bounded, we can verify that ℐ(𝑞) = Θ(𝛿−2) with the hidden constant
independent of the realization of 𝑝1, . . . , 𝑝𝑛.

Lower bound: Step 2. In this step, we complete the proof by showing that when E𝜋̂𝜃 [𝛿(𝜃)] ≲
𝑇− 1

4 (log 𝑇 )−
1
2 and E𝜋̂𝜃 [𝑛𝜎̂2] ≲

√
𝑇

log 𝑇 , then for any admissible policy 𝜋 ∈ Π̂∘,

E𝑝1,...,𝑝𝑛 [𝑅𝜋𝜃 (𝑇, 𝑝1, . . . , 𝑝𝑛)] = Ω(

√
𝑇

log 𝑇
). (D.41)

To show (D.41), for any given realization of 𝑝1, . . . , 𝑝𝑛, we define two parameters 𝜃1 and 𝜃2 satisfying

− 𝛼1

2𝛽1
= 𝑝1:𝑛 + 𝛿, − 𝛼2

2𝛽2
= 𝑝1:𝑛 + 𝛿 +Δ, 𝛼1 − 𝛼2 = −(𝛽1 − 𝛽2)𝑝1:𝑛,
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where Δ > 0 is to be determined. Then we define two random variables

𝑋 = (𝐷̂1, . . . , 𝐷̂𝑛, 𝐷1, . . . , 𝐷𝑛, 𝑝1, . . . , 𝑝𝑛)

and 𝑌 = (𝑝1, . . . , 𝑝𝑛). For any policy 𝜋, let P𝜋𝑖 (𝑋,𝑌 ) be the joint distribution of (𝑋,𝑌 ), P𝜋𝑖 (𝑋|𝑌 )

be the conditional probability measure of 𝑋 given 𝑌 , and P𝜋𝑖 (𝑋) be the marginal distribution of 𝑋,
each of which is associated with the policy 𝜋 and demand parameter 𝜃𝑖, 𝑖 = 1, 2. Then we have

E𝑌∼P𝜋1
[︀
𝐾𝐿

(︀
P𝜋1 (𝑋|𝑌 ),P𝜋2 (𝑋|𝑌 )

)︀]︀
≤ 𝐾𝐿(P𝜋1 (𝑋,𝑌 ),P𝜋2 (𝑋,𝑌 ))

=
1

2𝑅2

(︁ 𝑛∑︁
𝑖=1

E𝜋̂𝜃1 [
(︀
(𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)𝑝𝑖

)︀2
] +

𝑇∑︁
𝑡=1

E𝜋̂,𝜋𝜃1
[︀(︀
(𝛼1 − 𝛼2) + (𝛽1 − 𝛽2)𝑝𝑡

)︀2]︀)︁
≤ (𝛽1 − 𝛽2)

2

2𝑅2

(︁
𝑛E𝜋̂𝜃1 [𝜎̂

2] + 2

𝑇∑︁
𝑡=1

E𝜋̂,𝜋𝜃1
[︀(︀
𝑝𝑡 − 𝜓(𝜃1)

)︀2]︀
+ 2𝑇E𝜋̂𝜃1 [𝛿

2(𝜃1)]
)︁
, (D.42)

where the first inequality holds since from the chain rule of KL divergence, 𝐾𝐿
(︀
P𝜋1 (𝑋,𝑌 ),P𝜋2 (𝑋,𝑌 )

)︀
=

𝐾𝐿
(︀
P𝜋1 (𝑌 ),P𝜋2 (𝑌 )

)︀
+ E𝑌∼P𝜋1

[︀
𝐾𝐿

(︀
P𝜋1 (𝑋|𝑌 ),P𝜋2 (𝑋|𝑌 )

)︀]︀
, and 𝐾𝐿

(︀
P𝜋1 (𝑌 ),P𝜋2 (𝑌 )

)︀
≥ 0.

On the other hand, by applying Theorem 2.2 in Tsybakov (2009) and using the fact that 𝜋 is
admissible, we have

1

32
𝑒−𝐾𝐿(P

𝜋
1 (𝑋|𝑌 ),P𝜋2 (𝑋|𝑌 )) · 𝑇Δ2 ≤

𝑇∑︁
𝑡=1

E𝜋𝜃1 [(𝑝𝑡 − 𝜓(𝜃1))
2|𝑝1, . . . , 𝑝𝑛] +

𝑇∑︁
𝑡=1

E𝜋𝜃2 [(𝑝𝑡 − 𝜓(𝜃1))
2|𝑝1, . . . , 𝑝𝑛]

≤ 2𝐾0

√
𝑇 log 𝑇. (D.43)

Taking the expectation over 𝑌 on both sides of (D.43), we conclude from Jensen’s inequality that

E𝑌∼P𝜋1 [𝐾𝐿(P
𝜋
1 (𝑋|𝑌 ),P𝜋2 (𝑋|𝑌 ))] ≥ log

(︀ √
𝑇Δ2

64𝐾0 log 𝑇

)︀
,

With inequalities (D.42), the remaining analysis is similar to Step 2 in the proof of Theorem 5.4 and
therefore is omitted. □

D.7 Multi-Armed Bandits with Offline Data

In this section of the appendix, we discuss “MAB with offline data” and show the optimal regret rate
exhibits phase transitions by deploying results from Shivaswamy and Joachims (2012) and Gur and
Momeni (2022). We also compare the MAB problem with the OPOD problem studied in this paper.

Consider a 𝐾-armed bandit, where the seller chooses arms from set {1, 2, . . . ,𝐾} for each period
𝑡 ∈ [𝑇 ]. The distribution of reward for each arm 𝑖 is sub-Gaussian, denoted by 𝒟𝑖, with the mean
value 𝜇𝑖, 𝑖 ∈ [𝐾]. Let 𝑖⋆ be the arm with the highest mean reward, i.e., 𝜇𝑖⋆ = max{𝜇𝑖 : 𝑖 ∈ [𝐾]}, Δ𝑖

be the sub-optimality gap for each arm 𝑖 ̸= 𝑖⋆, i.e., Δ𝑖 = 𝜇𝑖⋆ − 𝜇𝑖, and Δ be a lower bound such that
0 < Δ ≤ min{Δ𝑖 : 𝑖 ∈ [𝐾], 𝑖 ≠ 𝑖⋆}. We denote 𝒮 = (Δ,𝒟1, . . . ,𝒟𝐾) as the class that includes any
possible latent rewards distributions with the lower bound Δ.
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We assume that before the start of online learning, there are some pre-existing offline data, which
consists of 𝐻𝑖 observations of random rewards for each arm 𝑖 ∈ [𝐾]. The decision maker can use
the offline data as well as online data to make online decisions. For any given latent distributions
of rewards 𝒟 := (𝒟1,𝒟2, . . . ,𝒟𝐾), we define the regret of any learning policy 𝜋 as the worst-case
difference between the expected rewards generated by the optimal clairvoyant policy and the policy 𝜋:
𝑅𝜋(𝑇 ) = sup𝒮

{︀
𝑇𝜇𝑖⋆ − E𝜋𝒟

[︀∑︀𝑇
𝑡=1 𝜇𝜋𝑡

]︀}︀
, where the operator E𝜋𝒟[·] denotes the expectation induced

by the policy 𝜋 and the latent distribution 𝒟. The optimal regret is defined as 𝑅⋆(𝑇 ) = inf𝜋 𝑅
𝜋(𝑇 ),

which naturally depends on the number of offline observations 𝐻1, 𝐻2, . . . ,𝐻𝐾 , and therefore, is also
denoted as 𝑅⋆(𝑇,𝐻1, . . . ,𝐻𝐾).

We first present the upper and lower bounds on the optimal regret for the 𝐾-armed bandit with
offline data in the following proposition, where the regret upper bound is provided in Theorem 2 of
Shivaswamy and Joachims (2012), and the regret lower bound is implied from Theorem 1 of Gur and
Momeni (2022).

Proposition D.4. There exist positive constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 such that the optimal regret satisfies

𝑅⋆(𝑇,𝐻1, . . . ,𝐻𝐾) ≤
𝐾∑︁
𝑖=1

Δ𝑖

(︁(︀8 log(𝑇 +𝐻𝑖)

Δ2
𝑖

−𝐻𝑖

)︀+
+ 𝐶1

)︁
, (D.44)

𝑅⋆(𝑇,𝐻1, . . . ,𝐻𝐾) ≥ 𝐶2

𝐾∑︁
𝑖=1

Δ
(︁ log 𝑇

Δ2
− 𝐶3𝐻𝑖 +

1

Δ2
log

𝐶4Δ
2

𝐾

)︁+
. (D.45)

Note that the regret lower bound in (D.45) is nontrivial only when Δ ≳ 𝑇− 1
2 . Combining (D.44)

and (D.45), we discover the following phase transitions for 𝐾-armed bandits under the assumption of
Δ = Ω(𝑇− 1

2 ): the optimal regret rate in 𝐾-armed bandits decreases from Θ( log 𝑇Δ ) to constant when
the number of offline observations for each arm exceeds Θ( log 𝑇Δ2 ). See Figure D-1 for illustration.

Figure D-1: Phase transition in 𝐾-armed bandits with offline data when Δ = Ω(𝑇− 1
2 ).

There are three key differences between the 𝐾-armed bandit with offline data and the OPOD

problem considered in this paper. First, in the 𝐾-armed bandit, the phase transition of the optimal
regret only occur when the amount of offline data for each arm exceeds the threshold Θ( log 𝑇Δ2 ); in
other words, the offline data need to be balanced among different arms. By contrast, in the OPOD

problem, even when there is only one historical price, i.e., 𝜎 = 0, the optimal regret rate can drop
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from ̃︀Θ(
√
𝑇 ) to ̃︀Θ( log 𝑇𝛿2 ) as the amount of offline data 𝑛 increases. The reason is that in 𝐾-armed

bandit, different arms are independent, and the knowledge about the reward of one arm does not help
to understand that of another. However, in dynamic pricing, the demands under different prices are
connected with each other by the parametric assumption of the linear demand function. Therefore,
knowing even one point at the demand curve can lead to a significant decrease in the optimal regret
rate (see our Corollary 5.1 when 𝑛 = ∞, or the incumbent price setting in Keskin and Zeevi 2014).
Second, in the 𝐾-armed bandit, the optimal regret rate only shows two phases. In the first phase
when the amount of the offline data is small, i.e., min{𝐻𝑖 : 𝑖 ∈ [𝐾]} = 𝑂( log 𝑇Δ2 ), the optimal regret is
always Θ( log 𝑇Δ ) and the offline data do not help to reduce the optimal regret. In the second phase
when the amount of the offline data is large, i.e., min{𝐻𝑖 : 𝑖 ∈ [𝐾]} = Ω( log 𝑇Δ2 ), the optimal regret
becomes a constant. In the OPOD problem, however, the optimal regret gradually changes as the size
of the offline data increases, experiencing different phase transitions depending on the magnitude of 𝜎
and 𝛿. Third, under the so-called “well-separated” condition in bandits, where the sub-optimality gap
Δ is a constant independent of 𝑇 , the 𝐾-armed bandit exhibits weak phase transition in the sense
that the drop of the optimal regret rate is within log 𝑇 . By comparison, under our well-separated
condition , i.e., 𝛿 is a constant independent of 𝑇 , the OPOD problem shows strong phase transitions in
the sense that the drops of the optimal regret rate in multiple phases are measured in 𝑇𝜅 for some
𝜅 > 0, which are much more significant even if we ignore the logarithmic factor.

D.8 Tables in Sections 5.3 and 5.4

Table D.1: Regret upper bound in Theorem 5.1 for the single-historical-price setting.

Case 1: 𝛿 ≳ 𝑇− 1
4 (log 𝑇 )

1
2

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝛿2

√
𝑇 log 𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑛 ≳ 𝑇

upper bound 𝒪(
√
𝑇 log 𝑇 ) 𝒪(𝑇 (log 𝑇 )

2

𝑛𝛿2
) 𝒪( (log 𝑇 )

2

𝛿2
)

Case 2: 𝛿 ≲ 𝑇− 1
4 (log 𝑇 )

1
2

offline sample size 𝑛 ≥ 0

upper bound 𝒪(
√
𝑇 log 𝑇 )
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Table D.2: Regret lower bound in Theorem 5.2 for the single-historical-price setting.

Case 1: 𝛿 ≳ 𝑇− 1
4

offline sample size 0 < 𝑛 ≲
√
𝑇
𝛿2

√
𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑛 ≳ 𝑇

lower bound Ω(
√
𝑇 ) Ω( 𝑇

𝑛𝛿2
∨ log 𝑇 ) Ω( 1

𝛿2
∨ log 𝑇 )

Case 2: 𝑇− 1
4 (log 𝑇 )−

1
2 ≲ 𝛿 ≲ 𝑇− 1

4

offline sample size 𝑛 > 0

lower bound Ω(𝑇𝛿2)

Case 3: 𝛿 ≲ 𝑇− 1
4 (log 𝑇 )−

1
2

offline sample size 𝑛 > 0

lower bound Ω(
√
𝑇

log 𝑇 )

Table D.3: Regret upper bound in Theorem 5.3 for the multiple-historical-price setting.

Case 1: 𝛿 ≳ 𝑇− 1
4 (log 𝑇 )

1
2 and 𝜎 ≲ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝛿2

√
𝑇 log 𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑇 ≲ 𝑛 ≲ 𝑇𝛿2

𝜎2 𝑛 ≳ 𝑇𝛿2

𝜎2

upper bound 𝒪(
√
𝑇 log 𝑇 ) 𝒪(𝑇 (log 𝑇 )

2

𝑛𝛿2
) 𝒪( (log 𝑇 )

2

𝛿2
) 𝒪(𝑇 (log 𝑇 )

2

𝑛𝜎2 + 1)

Case 2: 𝛿 ≳ 𝑇− 1
4 (log 𝑇 )

1
2 and 𝜎 ≳ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝜎2 𝑛 ≳

√
𝑇 log 𝑇
𝜎2

upper bound 𝒪(
√
𝑇 log 𝑇 ) 𝒪(𝑇 (log 𝑇 )

2

𝑛𝜎2 + 1)

Case 3: 𝛿 ≲ 𝑇− 1
4 (log 𝑇 )

1
2

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝜎2

√
𝑇 log 𝑇
𝜎2 ≲ 𝑛 ≲ (log 𝑇 )2

𝜎2𝛿2
𝑛 ≳ (log 𝑇 )2

𝜎2𝛿2

upper bound 𝒪(
√
𝑇 log 𝑇 ) 𝒪(𝑇𝛿2 + 1) 𝒪(𝑇 (log 𝑇 )

2

𝑛𝜎2 + 1)
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Table D.4: Regret lower bound in Theorem 5.4 for the multiple-historical-price setting.

Case 1: 𝛿 ≳ 𝑇− 1
4 (log 𝑇 )

1
2 and 𝜎 ≲ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝛿2

√
𝑇 log 𝑇
𝛿2

≲ 𝑛 ≲ 𝑇 𝑇 ≲ 𝑛 ≲ 𝑇𝛿2

𝜎2 𝑛 ≳ 𝑇𝛿2

𝜎2

lower bound Ω(
√
𝑇

log 𝑇 ) Ω( 𝑇
𝑛𝛿2

) Ω( 1
𝛿2
) Ω( 𝑇

𝑛𝜎2 )

Case 2: 𝛿 ≳ 𝑇− 1
4 (log 𝑇 )

1
2 and 𝜎 ≳ 𝛿

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝜎2 𝑛 ≳

√
𝑇 log 𝑇
𝜎2

lower bound Ω(
√
𝑇

log 𝑇 ) Ω( 𝑇
𝑛𝜎2 )

Case 3: 𝑇− 1
4 (log 𝑇 )−

1
2 ≲ 𝛿 ≲ 𝑇− 1

4 (log 𝑇 )
1
2

offline sample size 0 ≤ 𝑛 ≲ 1
𝜎2𝛿2

𝑛 ≳ 1
𝜎2𝛿2

lower bound Ω(
√
𝑇

log 𝑇 ) Ω( 𝑇
𝑛𝜎2 )

Case 4: 𝛿 ≲ 𝑇− 1
4 (log 𝑇 )−

1
2

offline sample size 0 ≤ 𝑛 ≲
√
𝑇 log 𝑇
𝜎2

√
𝑇 log 𝑇
𝜎2 ≲ 𝑛 ≲ 1

𝜎2𝛿2
𝑛 ≳ 1

𝜎2𝛿2

lower bound Ω(
√
𝑇

log 𝑇 ) Ω(𝑇𝛿2) Ω( 𝑇
𝑛𝜎2 )
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Appendix E

Supplementary Material for Chapter 6

E.1 Results on Distribution-Dependent Regret Bounds

For simplicity, we only present the results of distribution-dependent regret bounds for the U-BwSC

problem. Extensions to general switching cost structures are analogous to Section 6.4 of the main
article.

To achieve tight distribution-dependent regret bounds, we propose the LS-SE2 algorithm and the
AdaLS2 algorithm, which are stated in Algorithm E.1 and Algorithm E.2 respectively. Note that the
difference between the new algorithms and the original algorithms in Section 6.3 is only on the epoch
schedules (which are optimized for distribution-dependent regret).

Algorithm E.1 Limited-Switch Successive Elimination 2(LS-SE2)
Input: Switching budget 𝑆, number of actions 𝐾, horizon 𝑇 .
Initialization: Compute 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
. Divide the entire time horizon 𝑇 into 𝑞(𝑆,𝐾)+1

epochs: (𝑡0 : 𝑡1], (𝑡1 : 𝑡2], . . . , (𝑡𝑞(𝑆,𝐾) : 𝑡𝑞(𝑆,𝐾)+1], where the endpoints are defined by 𝑡0 = 0
and

𝑡𝑗 =
⌊︁
𝐾

1− 𝑗
𝑞(𝑆,𝐾)+1𝑇

𝑗
𝑞(𝑆,𝐾)+1

⌋︁
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1.

Let 𝐴1 = [𝐾]. Let 𝑎0 be a random action in [𝐾].

Policy: The same as Lines 1 to 10 of Algorithm 6.1.

For any environment 𝒟, let 𝑘⋆ = argmax𝑘∈[𝐾] 𝜇𝑘 denote the optimal action, and Δ = Δ(𝒟) =

min𝑘 ̸=𝑘⋆ |𝜇𝑘⋆ − 𝜇𝑘| > 0 denote the gap between the rewards of the optimal action and the best
sub-optimal action. We have the following upper and lower bounds on regret.

Proposition E.1. Let 𝜋 be the LS-SE2 policy. There exists an absolute constant 𝐶 ≥ 0 such that
for all 𝒟, for all 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 𝐾,

𝑅𝜋𝒟(𝐾,𝑇 ) ≤ 𝐶
(︁
𝐾1− 1

𝑞(𝑆,𝐾)+1 log𝐾
)︁ 𝑇 1

𝑞(𝑆,𝐾)+1 log 𝑇

Δ
,

where 𝑞(𝑆,𝐾) =
⌊︁
𝑆−1
𝐾−1

⌋︁
.
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Algorithm E.2 Adaptive Limited-Switch Policy 2 (AdaLS2)
Input: Switching budget 𝑆, number of actions 𝐾, horizon 𝑇 , tuning parameter 𝜆 = 1/2.
Initialization: Compute 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1). Definê︀𝑟(𝑆,𝐾) = max{𝑟(𝑆,𝐾) + 1− 𝑞(𝑆,𝐾), 0}. Define 𝑇 (1)

0 = 𝑇
(2)=0
0 , 𝑡(1)0 = 𝑡

(2)
0 = 0 and

𝑡
(1)
𝑗 =

⌊︁
(𝐾 − ̂︀𝑟(𝑆,𝐾))

1− 𝑗
𝑞(𝑆,𝐾)+1𝑇

𝑗
𝑞(𝑆,𝐾)+1

⌋︁
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1,

𝑡
(2)
𝑗 =

⌊︁
𝐾

1− 𝑗
𝑞(𝑆,𝐾)+2𝑇

𝑗
𝑞(𝑆,𝐾)+2

⌋︁
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 2.

Let 𝐴1 = [𝐾]. Let 𝐴(2)
1 be a subset of 𝐴1 obtained by uniformly sampling ̂︀𝑟(𝑆,𝐾) actions

from 𝐴1 without replacement (thus |𝐴(2)
1 | = ̂︀𝑟(𝑆,𝐾)). Let 𝐴(1)

1 = 𝐴1 ∖ 𝐴(2)
1 . Let 𝑎0 be a

random action in 𝐴(1)
1 .

Policy: The same as Lines 1 to 16 of Algorithm 6.2.

Theorem E.1. Let 𝜋 be the AdaLS2 policy. There exists an absolute constant 𝐶 ≥ 0 such that for
all 𝒟, for all 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 𝐾,

𝑅𝜋𝒟(𝐾,𝑇 ) ≤ 𝐶(log𝐾 log 𝑇 ) ·max

{︃
(𝐾 − 𝑟(𝑆,𝐾))

2− 1
𝑞(𝑆,𝐾)+1

𝐾

𝑇
1

𝑞(𝑆,𝐾)+1

Δ
, 𝐾1− 1

𝑞(𝑆,𝐾)+1
𝑇

1
𝑞(𝑆,𝐾)+1

Δ

}︃
,

where 𝑞(𝑆,𝐾) =
⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1).

Theorem E.2. There exists an absolute constant 𝐶 > 0 such that for all 𝐾 > 1, 𝑆 ≥ 0, 𝑇 ≥ 2𝐾 and
for all policy 𝜋 ∈ Π𝑆,

sup
Δ∈[0,1]

Δ𝑅𝜋𝒟(𝐾,𝑇 ) ≥
𝐶

log 𝑇
·max

{︃
(𝐾 − 𝑟(𝑆,𝐾))

2− 1
𝑞(𝑆,𝐾)+1

𝐾
𝑇

1
𝑞(𝑆,𝐾)+1 , 𝐾1− 1

𝑞(𝑆,𝐾)+2𝑇
1

𝑞(𝑆,𝐾)+2

}︃
,

where 𝑞(𝑆,𝐾) =
⌊︁
𝑆−1
𝐾−1

⌋︁
and 𝑟(𝑆,𝐾) = (𝑆 − 1)%(𝐾 − 1).

Note that the upper bound in Theorem E.1 and the lower bound in Theorem E.2 match in the
minimax sense (up to logarithmic factors), which implies that the AdaLS2 algorithm can be considered
as near-optimal. We thus characterize the distribution-dependent complexity of the U-BwSC problem.
We also note that when 𝑆 = Ω(𝐾 log 𝑇 ), both LS-SE2 and AdaLS2 algorithms recover the well-known
𝒪
(︁
𝐾 log 𝑇

Δ

)︁
distribution-dependent regret bound of the classical MAB (up to a log𝐾 factor), which is

shown to be rate-optimal (Lai and Robbins 1985).

We omit the proofs of above results: the proof of Proposition E.1 resembles the proof of
Proposition 6.1 in Appendix E.7, the proof of Theorem E.1 resembles the proof of Theorem 6.1 in
Appendix E.8, and the proof of Theorem E.2 resembles the proof of Theorem 6.2 in Appendix E.12.
The difference is mainly on the partition of epochs.

Besides results on regret upper and lower bounds, we also establish Corollary E.1, which can be
viewed as a counterpart of Corollary 6.2 in Section 6.3.3 of the main article.
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Corollary E.1. For any 𝐾 > 1, for any environment 𝒟, let Δ = min
𝑘∈[𝐾],𝑘 ̸=𝑘⋆

|𝜇𝑘⋆ − 𝜇𝑘| denote the

gap between the mean rewards of the optimal action and the best sub-optimal action.

1. 𝑁(𝐾 − 1) + 1 switches are necessary and sufficient for uniformly achieving ̃︀𝒪(𝐾𝑇
1

𝑁+1 /Δ)

distribution-dependent regret for all 𝒟 in the 𝐾-armed MAB (𝑁 ∈ Z>0).

2. Ω( 𝐾 log 𝑇
log log 𝑇 ) switches are necessary for uniformly achieving ̃︀𝒪(𝐾 log 𝑇/Δ) distribution-dependent

regret for all 𝒟 in the 𝐾-armed MAB.

E.2 Rounding Issues of Algorithms

We present a more rigorous version of Algorithm 6.1, which takes care of the rounding issues
in Line 4 and Line 7 of Algorithm 6.1. The key idea is to maintain a “after-rounding” epoch
schedule (𝑇𝑗)

𝑞(𝑆,𝐾)+1
𝑗=0 which is slightly different from the original epoch schedule (𝑡𝑗)

𝑞(𝑆,𝐾)+1
0 ; see

Algorithm E.3. In the proof of Theorem 6.1, we will directly analyze Algorithm E.3.
We remark that the main algorithm of our article, the AdaLS algorithm (Algorithm 6.2), has

already taken care of the rounding issues (using a similar idea). The other two algorithms HS-SE and
AS-SE omit the rounding issues — they can be easily modified to incorporate the rounding issues,
using exactly the same idea as Algorithm E.3.

Algorithm E.3 Limited-Switch Successive Elimination (LS-SE)
Input: Switching budget 𝑆, number of actions 𝐾, horizon 𝑇 .
Initialization: Compute 𝑞(𝑆,𝐾) =

⌊︁
𝑆−1
𝐾−1

⌋︁
. Define 𝑡0 = 0 and

𝑡𝑗 =

⌊︃
𝐾

1− 2−2−(𝑗−1)

2−2−𝑞(𝑆,𝐾) 𝑇
2−2−(𝑗−1)

2−2−𝑞(𝑆,𝐾)

⌋︃
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1.

Let 𝐴1 = [𝐾]. Let 𝑎0 be a random action in [𝐾]. Let 𝑇0 = 0.
Policy:
1: for 𝑙 = 1, . . . , 𝑞(𝑆,𝐾) do
2: if 𝑎𝑇𝑙−1

∈ 𝐴𝑙 then
3: for 𝑖 = 𝑎𝑇𝑙−1

and then 𝑖 ∈ 𝐴𝑙 ∖ {𝑎𝑇𝑙−1
} do ◁ starting from 𝑖 = 𝑎𝑇𝑙−1

is critical

4: Choose action 𝑖 for
⌊︁
𝑡𝑙−𝑇𝑙−1

|𝐴𝑙|

⌋︁
consecutive rounds.

5: else
6: for 𝑖 ∈ 𝐴𝑙 do
7: Choose action 𝑖 for

⌊︁
𝑡𝑙−𝑇𝑙−1

|𝐴𝑙|

⌋︁
consecutive rounds.

8: Mark the last round as 𝑇𝑙, and mark the last chosen action as 𝑎𝑇𝑙 . ◁ record 𝑇𝑙
9: Elimination: compute UCB𝑖(𝑇𝑙) and LCB𝑖(𝑇𝑙) for all 𝑖 ∈ 𝐴𝑙 and let ◁ learn from data

𝐴𝑙+1 =

{︂
𝑖 ∈ 𝐴𝑙 | UCB𝑖(𝑇𝑙) ≥ max

𝑗∈𝐴𝑙
LCB𝑗(𝑇𝑙)

}︂
.

10: For 𝑙 = 𝑞(𝑆,𝐾) + 1, find an action 𝑖 ∈ 𝐴𝑙 that maximizes 𝜇𝑖(𝑇𝑙−1). Keep choosing this
action until round 𝑇 . Let 𝑇𝑞(𝑆,𝐾)+1 := 𝑇 .
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E.3 Illustration of AdaLS

We use the example of 𝑆 = 2𝐾 − 2 to illustrate how AdaLS utilizes the switching budget more
efficiently than LS-SE. In this case, 𝑞(𝑆,𝐾) = 1 and 𝑟(𝑆,𝐾) = 𝐾 − 2. The LS-SE algorithm will
observe the data only once throughout the entire horizon, and makes at most 𝐾 switches.

How does AdaLS behave in this case? At initialization, AdaLS computes ̂︀𝑟(𝑆,𝐾) = max{𝑟(𝑆,𝐾)+

1−𝑞(𝑆,𝐾), 0} = 𝐾−2+1−1 = 𝐾−2. The algorithm then randomly splits [𝐾] into two subsets 𝐴(1)
1

and 𝐴(2)
1 , with |𝐴(1)

1 | = 𝐾 − ̂︀𝑟(𝑆,𝐾) = 2 and |𝐴(2)
1 | = ̂︀𝑟(𝑆,𝐾) = 𝐾 − 2. Then, in the execution of the

policy, AdaLS treats the actions in 𝐴(1)
1 and 𝐴(2)

1 differently, allowing the actions in 𝐴(2)
1 to be explored

more frequently than the actions in 𝐴(1)
1 . Specifically, in the first epoch, AdaLS explores all actions

in [𝐾] and makes 𝐾 − 1 switches; then, in the second epoch, AdaLS first explores all uneliminated
actions in 𝐴(2)

1 (which incurs at most (𝐾 − 2)− 1 = 𝐾 − 3 switches), and finally commits to a single
action (which incurs at most 1 switch). Note that AdaLS may also incur a switch between the first
and second epochs, so its total number of switches is at most (𝐾 − 1) + 1 + (𝐾 − 3) + 1 = 2𝐾 − 2.
Clearly, compared with LS-SE which only makes 𝐾 switches, AdaLS makes much better use of the
switching budget in this case.

E.4 Reverse Fano-Type Inequalities and Lower Bound Analysis

This section provides an overview of the methodological contributions associated with our proof of
Theorem 6.2. We first introduce the GRF inequality, then present our lower bound approach.

E.4.1 Reverse Fano-Type Inequalities

Fano’s inequality is a fundamental information-theoretical tool for developing algorithm-independent
impossibility results in statistics and machine learning. In one of its most classical forms, it states
that for any sequence of 𝑁 ≥ 2 probability measures P1, . . .P𝑁 on the same measurable space (Ω,ℱ),
and any sequence of events 𝐸1, · · · , 𝐸𝑁 forming a partition of Ω, it holds that

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≤
1
𝑁

∑︀𝑁
𝑖=1𝐷KL(P𝑖 ‖ Q) + log 2

log𝑁
, (E.1)

where Q is an arbitrary measure on (Ω,ℱ), and 𝐷KL(· ‖ ·) stands for the KL divergence. Fano’s
inequality has important consequences for various problems in various fields; see Scarlett and Cevher
(2019) for a survey. For example, in multiple hypothesis testing, by considering events of the form
𝐸𝑖 = {𝜓 = 𝑖} where 𝜓 : Ω → [𝑁 ] is a test, (E.1) provides a sharp lower bound on the average error
probability 1

𝑁

∑︀𝑁
𝑖=1 P𝑖(𝜓 ̸= 𝑖) for any test 𝜓.

Many variants of Fano’s inequality have been derived in the literature; see Scarlett and Cevher
(2019) and Gerchinovitz et al. (2020) for overviews. However, to our knowledge, existing literature
does not provide a reverse version of (E.1), i.e., an inequality that establishes a sharp lower bound on
1
𝑁

∑︀𝑁
𝑖=1 P𝑖(𝐸𝑖) for any 𝐸1, . . . , 𝐸𝑁 forming a partition, which corresponds to a sharp upper bound

on 1
𝑁

∑︀𝑁
𝑖=1 P𝑖(𝜓 ̸= 𝑖) for any test 𝜓 in multiple hypothesis testing. While there are indeed some

existing inequalities sometimes referred to as “reverse Fano’s inequalities” in the literature (e.g., Chu

318



and Chueh 1966, Tebbe and Dwyer 1968), and some other related inequalities are implied by the recent
work of Gerchinovitz et al. (2020), these inequalities either fail to lower bound 1

𝑁

∑︀𝑁
𝑖=1 P𝑖(𝐸𝑖) for any

𝐸1, . . . , 𝐸𝑁 forming a partition, or suffer from sub-optimal dependence on 𝑁 ; see Appendix E.11.1
for detailed discussions. We fill this gap by developing a reverse version of (E.1) and significantly
generalizing it to a much stronger version, i.e., the GRF inequality; see Proposition E.2. The proof
builds on the general framework developed by Gerchinovitz et al. (2020), with some new techniques
to obtain better dependence on 𝑁 via localized versions of Pinsker’s inequality; see Appendix E.11.

Proposition E.2 (Generalized Reverse Fano-Type Inequality). Let 𝐷(· ‖ ·) be the KL divergence
or the reverse KL divergence (see Appendix E.11 for definitions). Let (Ω1,ℱ1), . . . , (Ω𝑁 ,ℱ𝑁 ) be
an arbitrary sequence of measurable spaces. For any 𝑖 ∈ [𝑁 ], let P𝑖 and Q𝑖 be arbitrary probability
measures on (Ω𝑖,ℱ𝑖), and 𝐸𝑖 ∈ ℱ𝑖 be an arbitrary event. We have

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≥
1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖)−

⎯⎸⎸⎷2 · 1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖) ·
1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖). (E.2)

Proposition E.2 is fairly general and enjoys several advantages: (i) it acts in the reverse direction
of (E.1), thus enables new applications, (ii) the events 𝐸1, . . . , 𝐸𝑁 do not need to form a partition,
(iii) the probability measures P1, . . .P𝑁 can be defined on different measurable spaces, (iv) 𝐷(· ‖ ·)
can be the reverse KL divergence, and (v) the probability measures Q1, · · · ,Q𝑁 can vary with events
and do not need to be fixed. All of the above advantages will be utilized in our lower bound analysis.

E.4.2 The Five-Step Approach to Establish Theorem 6.2

Given any 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 2𝐾, we focus on the setting of 𝒟𝑘 = 𝒩 (𝜇𝑘, 1), ∀𝑘 ∈ [𝐾],
where 𝒩 (𝜇𝑘, 1) denotes the Gaussian distribution with mean 𝜇𝑘 and variance 1. Since in this
setting the underlying environment (i.e., reward distributions) 𝒟 is completely specified by a vector
𝜇 = (𝜇1, · · · , 𝜇𝐾) ∈ R𝐾 , for simplicity, we directly use the vector 𝜇 to represent the environment.

Notation. For any environment 𝜇, let 𝑋𝑡
𝜇(𝑘) ∼ 𝒩 (𝜇𝑘, 1) denote the i.i.d. random reward of

each action 𝑘 at round 𝑡 (𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ]). For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, for any
𝑡 ∈ [𝑇 ], we use 𝑎𝑡 and 𝑋𝑡

𝜇(𝑎𝑡) to denote the random action selected by and the random reward
observed by policy 𝜋 at round 𝑡 under environment 𝜇, respectively. Let P𝜋𝜇 denote the law of the
random variables

(︀
𝑎1, 𝑋

1
𝜇(𝑎1)

)︀
, . . . ,

(︀
𝑎𝑇 , 𝑋

𝑇
𝜇 (𝑎𝑇 )

)︀
, and let E𝜋𝜇 be the associated expectation operator.

Let 𝑅𝜋𝜇(𝑇 ) := 𝑇𝜇⋆ − E𝜋𝜇
[︁∑︀𝑇

𝑡=1 𝜇𝑎𝑡

]︁
be policy 𝜋’s distribution-dependent regret under environment

𝜇.

Outline. Since the desired lower bound (6.3) becomes the standard ̃︀Ω(√𝐾𝑇 ) lower bound when
𝑆 = Ω(𝐾 log log 𝑇 ) (see Appendix E.12), we focus on the more interesting case of 𝑆 = 𝒪(𝐾 log log 𝑇 ).
For any such 𝑆,𝐾, 𝑇 , we seek to explicitly construct a family of environments Φ, such that for any
𝑆-switch policy 𝜋 ∈ Π𝑆 , the “average-case regret” 1

|Φ|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ) is lower bounded by (6.3) — this

implies that the worst-case regret 𝑅𝜋(𝑇 ) is also lower bounded by (6.3). In our proof, we construct
two classes of environments to show the two parts in the “max” of (6.3) respectively. In this section,

we focus on the more challenging part — the ̃︀Ω(︃ (𝐾−𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾 𝑇
1

2−2−𝑞(𝑆,𝐾)

)︃
lower bound.
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Our lower bound proof program consists of five steps:

1. Risky Events

2. Combinatorial arguments and lower bounds under a single environment

3. Alternative environments, bad events, and lower bound reductions (we construct Φ here)

4. Probability space changing tricks

5. Applying the GRF inequality

Based on the initials of the first four steps, we call the program RECAP. We provide an overview of
each step below. The detailed proof can be found in Appendix E.12.

Step 1: risky events. We first define a stopping time 𝜏 , which is the first round that the
learner’s number of switches reaches 𝑆. We then define a class of risky events as follows: for any
𝑘 ∈ [𝐾], let

𝐸
(1)
1,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
1 : 𝑡

(1)
1

]︁}︁
,

𝐸
(1)
𝑗,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

]︁}︁
, ∀𝑗 ∈ [2 : 𝑞(𝑆,𝐾)],

𝐸
(1)
𝑞(𝑆,𝐾)+1,𝑘

:=
{︁

action 𝑘 is not chosen in period
[︁
𝑡
(1)
𝑞(𝑆,𝐾) : ⌊(𝑡

(1)
𝑞(𝑆,𝐾) + 𝑇 )/2⌋

]︁}︁
,

𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘

:=
{︁
𝜏 ≤ ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝜏 − 1

]︁}︁
.

By doing so, we get (𝑞(𝑆,𝐾) + 2)𝐾 risky events (of the form 𝐸
(1)
𝑗,𝑘 ) in total. Note that the time

points (𝑡
(1)
𝑗 )

𝑞(𝑆,𝐾)+1
𝑗=1 are fixed and given in (E.45), which are closely related to but slightly different

from the time points (𝑡
(1)
𝑗 )

𝑞(𝑆,𝐾)+1
𝑗=1 defined in Algorithm 6.2; see Footnote 65. Moreover, the events

(𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘)

𝐾
𝑘=1 are defined based on the stopping time 𝜏 . Such delicate design based on 𝜏 is novel

and crucial; see the remark in Appendix E.12.1.

The risky events characterize some important patterns that are “unavoidable” (in a certain sense,
as we shall see in Step 2) for any 𝑆-switch policy under any environment. They are considered
“risky” because, while they may not directly lead to large regret under an arbitrary environment,
each of them would lead to larger regret under a specifically chosen environment (i.e.., the alternative
environment in Step 3) which will be included in our environment class Φ.

Step 2: combinatorial arguments and lower bounds under a single environment.
In this step, we prove a key result (Lemma E.1) using non-trivial combinatorial and probabilistic
arguments. The arguments extensively exploit the properties of the switching constraint.

Lemma E.1. For any 𝑆-switch policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ 𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
= ̃︀Ω(︂𝐾 − 𝑟(𝑆,𝐾)

𝐾

)︂
.

Lemma E.1 implies the following fact: under any single environment 𝜇, the average probability
of the risky events is ̃︀Ω(︁𝐾−𝑟(𝑆,𝐾)

𝐾

)︁
. That is, the occurrence of a risky event is “probabilistically

unavoidable” for any 𝑆-switch policy under any single environment. This result precisely characterize
the potential weakness of an 𝑆-switch policy and reveals fundamental properties of the switching
constraint.
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Step 3: alternative environments, bad events, and lower bound reductions. In
this step, we construct our environment class Φ :=

{︁
𝜇

(1)
𝑗,𝑘 | 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾]

}︁
, which con-

sists of (𝑞(𝑆,𝐾) + 2)𝐾 judiciously chosen alternative environments. Each alternative environ-
ment 𝜇

(1)
𝑗,𝑘 is designed to make the risky event 𝐸(1)

𝑗,𝑘 become a bad event whose occurrence implies
large regret. We can then reduce the task of proving a lower bound on the “average-case regret”
1
|Φ|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ) to the task of proving a lower bound on the “average-case bad event probability”

1
(𝑞(𝑆,𝐾)+2)𝐾

∑︀
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︀
𝑘∈[𝐾] P

(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
, where P(1)

𝑗,𝑘 := P𝜋
𝜇

(1)
𝑗,𝑘

denotes the alternative measure

associated with policy 𝜋 and alternative environment 𝜇
(1)
𝑗,𝑘.

Specifically, our construction of alternative environments is as follows. Let 0 = (0, . . . , 0) ∈ R𝐾

be the reference environment. For any 𝑗 ∈ [𝑞(𝑆,𝐾 + 2)], define a reward gap

Δ
(1)
𝑗 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑗 = 1,

1
2(𝑞(𝑆,𝐾)+2)

√︂
𝐾−𝑟(𝑆,𝐾)

𝑡
(1)
𝑗−1

, if 𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 1],

− 1
2(𝑞(𝑆,𝐾)+2)

√︂
𝐾−𝑟(𝑆,𝐾)

𝑡
(1)

𝑞(𝑆,𝐾)

, if 𝑗 = 𝑞(𝑆,𝐾) + 2.

For any 𝑗 ∈ [𝑞(𝑆,𝐾)+2], 𝑘 ∈ [𝐾], define an alternative environment 𝜇(1)
𝑗,𝑘 :=

(︁
𝜇
(1)
𝑗,𝑘;1, . . . , 𝜇

(1)
𝑗,𝑘;𝐾

)︁
∈ R𝐾

where

𝜇
(1)
𝑗,𝑘;𝑖 :=

⎧⎨⎩Δ
(1)
𝑗 , if 𝑖 = 𝑘,

0, otherwise.

Note that each alternative environment only differs from the reference environment in one coordinate.

In Lemma E.9, we show that the risky event 𝐸(1)
𝑗,𝑘 is indeed a bad event under environment

𝜇
(1)
𝑗,𝑘, in the sense that its occurrence implies that the regret is larger than a universal quantity

ℛbad(𝑆,𝐾, 𝑇 ) = ̃︀Ω(︁(𝐾 − 𝑟(𝑆,𝐾))
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾)

)︁
. Thus, in order to prove the desired

lower bound on 1
|Φ|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ), it suffices to prove the following statement:

𝑝(1) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
= ̃︀Ω(︂𝐾 − 𝑟(𝑆,𝐾)

𝐾

)︂
, (E.3)

Step 4: probability space changing tricks. Let Q := P𝜋0 denote the reference measure. By
applying Lemma E.1 to the reference environment 0, we have

𝑞(1) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q
(︁
𝐸

(1)
𝑗,𝑘

)︁
= ̃︀Ω(︂𝐾 − 𝑟(𝑆,𝐾)

𝐾

)︂
,

Therefore, in order to show (E.3), it suffices to show that 𝑝(1) is close to 𝑞(1). Note that 𝑝(1) is
the average of the sequence

{︁
P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁}︁
, where a sequence of events

{︁
𝐸

(1)
𝑗,𝑘

}︁
are evaluated by a

sequence of varying alternative measures
{︁
P(1)
𝑗,𝑘

}︁
, while 𝑞(1) is the average of the sequence

{︁
Q
(︁
𝐸

(1)
𝑗,𝑘

)︁}︁
,

where the same sequence of events
{︁
𝐸

(1)
𝑗,𝑘

}︁
are evaluated by a single and fixed reference measure Q.

Intuitively, we just need a “change of measure”/information-theoretic argument — if the alternative
measures

{︁
P(1)
𝑗,𝑘

}︁
are “close enough” to the reference measure Q, then 𝑝(1) is close to 𝑞(1).
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Unfortunately, it turns out that the divergence between
{︁
P(1)
𝑗,𝑘

}︁
and Q is too large to make

the above argument work. An important reason is that such an argument directly deals with the
underlying measures

{︁
P(1)
𝑗,𝑘

}︁
and Q, thus completely overlooks the special structures of the risky

event sequence
{︁
𝐸

(1)
𝑗,𝑘

}︁
. Therefore, we need to integrate the structural properties of risky events into

our argument. We develop probability space changing tricks to address this challenge. Specifically, we
design two sequences of artificial measures

{︁
P′
𝑗,𝑘

}︁
and

{︁
Q′
𝑗,𝑘

}︁
based on the structural properties of{︁

𝐸
(1)
𝑗,𝑘

}︁
, such that (i) each P′

𝑗,𝑘 (resp. Q′
𝑗,𝑘) is the restriction of P(1)

𝑗,𝑘 (resp. Q) to a carefully-chosen

𝜎-algebra ℱ ′
𝑗,𝑘 which tightly contains 𝐸(1)

𝑗,𝑘 , and (ii) the reverse KL divergence between P′
𝑗,𝑘 and

Q′
𝑗,𝑘 is small enough. We can then represent 𝑝(1) and 𝑞(1) as the averages of

{︁
P′
𝑗,𝑘(𝐸

(1)
𝑗,𝑘 )
}︁

and{︁
Q′
𝑗,𝑘(𝐸

(1)
𝑗,𝑘 )
}︁
, and bound the difference between 𝑝(1) and 𝑞(1) by showing that

{︁
P′
𝑗,𝑘

}︁
and

{︁
Q′
𝑗,𝑘

}︁
are “close enough.”

Step 5: applying the GRF inequality. In the last step, we apply the GRF inequality to
provide a tight lower bound on 𝑝(1) in terms of 𝑞(1), thus completes the proof of (E.3) (and eventually
Theorem 6.2). We remark that we thoroughly utilize the five advantages of the GRF inequality in this
step: (i) we need to lower bound 𝑝(1) rather than lower bound 1− 𝑝(1) (the latter is what classical
Fano-type inequalities do), (ii) our events

{︁
𝐸

(1)
𝑗,𝑘

}︁
(or their complements) do not form a partition,

(iii) our measures
{︁
P′
𝑗,𝑘

}︁
are defined on different measurable spaces, (iv) we need to use the reverse

(rather than the standard) KL divergence to evaluate the “closeness” between
{︁
P′
𝑗,𝑘

}︁
and

{︁
Q′
𝑗,𝑘

}︁
, as

we need to fix the reference environment to characterize the policy’s behavior, and (v) the artificial
reference measures

{︁
Q′
𝑗,𝑘

}︁
are not fixed.

E.5 Explanations for Section 6.4.1

This section contains some additional explanations for our results in Section 6.4.1.

E.5.1 Relaxing the Triangle Inequality Assumption in Section 6.4.1

Consider an arbitrary switching graph 𝐺 with 𝐾 = |𝐺| > 1. In the following, we show that, even
without the triangle inequality assumption, a modified version of the results in Section 6.4.1 still
hold.

Construction of a New Switching Graph that Satisfies the Triangle Inequality

Assume that the switching costs associated with 𝐺 do not satisfy the triangle inequality. We then
run the Floyd-Warshall algorithm (see Cormen et al. 2009) on 𝐺 to efficiently find the shortest paths
between all pairs of vertices. For any 𝑖, 𝑗 ∈ [𝐾] such that 𝑖 ̸= 𝑗, let 𝑝𝑖,𝑗 = 𝑖 → · · · → 𝑗 denote the
shortest path between 𝑖 and 𝑗, and 𝑐′𝑖,𝑗 denote the total weight of the shortest path between 𝑖 and 𝑗.
We construct a new switching graph 𝐺′ = (𝑉,𝐸′) — the vertices in 𝐺′ are the same as 𝐺, while the
edge between 𝑖 and 𝑗 in 𝐺′ is assigned a weight 𝑐′𝑖,𝑗 , which is the total weight of the shortest path
between 𝑖 and 𝑗 in 𝐺. Obviously, 𝐺′ is a switching graph whose switching costs satisfy the triangle
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inequality. Therefore, for BwSC problems defined with 𝐺′, we can apply the HS-SE policy, and the
regret upper and lower bounds in Theorem 6.3 and Theorem 6.4 in Section 6.4.1 hold.

Modification of the HS-SE policy

In this part we assume that 𝐾 = 𝒪(1).
For any G-BwSC problem defined with switching graph 𝐺 (whose switching costs do not satisfy

the triangle inequality) and switching budget 𝑆, we construct a new switching graph 𝐺′ according to
Appendix E.5.1, and construct a new G-BwSC problem defined with switching graph 𝐺′ and switching
budget 𝑆. Let 𝜋′ denote the HS-SE policy running on the new G-BwSC problem. Obviously 𝜋′ is a
𝑆-switching budget policy for the new problem. We construct 𝜋 by modifying 𝜋′, aiming to obtain an
𝑆-switching-budget policy for the original G-BwSC problem. Let 𝜋 switch (on 𝐺) following 𝜋′ (on 𝐺′):
every time 𝜋′ switches from 𝑖 to 𝑗 on 𝐺′, let 𝜋 switch according to the path 𝑝𝑖,𝑗 = 𝑖→ · · · → 𝑗 on 𝐺,
visiting each vertex in 𝑝𝑖,𝑗 once (since in the HS-SE policy, every uneliminated action is chosen for at
least Ω(𝑇 1/2) consecutive rounds in each epoch, while 𝑝𝑖,𝑗 contains at most 𝐾 = 𝑜(

√
𝑇 ) vertices, we

know that 𝜋′ is a valid policy). Since the total weight of 𝑝𝑖,𝑗 is 𝑐′𝑖,𝑗 and 𝜋′ is an 𝑆-switching-budget
policy for 𝐺′, we know that 𝜋 is an 𝑆-switching-budget policy for 𝐺.

E.5.2 Computation of the Offline Step in the HS-SE Policy

The HS-SE policy is practical — for any given switching graph 𝐺, the policy only involves solving
the shortest Hamiltonian path problem once, which can be finished offline. Thus, the computational
complexity of the shortest Hamiltonian path problem does not affect the online decision-making
process of the HS-SE policy.

Moreover, under the condition that the switching costs satisfy the triangle inequality, the shortest
Hamiltonian path problem can be reduced to the celebrated metric traveling salesman problem
(metric TSP), see Lawler (1985). This means that we can directly apply many commercial solvers
for the TSP to solve (or approximately solve) the shortest Hamiltonian path problem efficiently.
The reduction also indicates that any approximation algorithm designed for the metric TSP can be
adapted to be an approximation algorithm for the shortest Hamiltonian path problem. In particular,
the celebrated Christofides algorithm for the metric TSP (Christofides 1976) can be used to compute
a good approximation of 𝐻 in polynomial time.

E.6 Additional Numerical Experiments

The experiments in Section 6.5 were conducted for 𝐾 = 8. In this section, we repeat the experiments
for 𝐾 = 4 (a smaller 𝐾) and 𝐾 = 16 (a larger 𝐾). For 𝐾 = 4, we consider 𝑆 ∈ [4 : 12] (nine different
switching budgets); for 𝐾 = 16, we consider 𝑆 ∈ {18, 23, 30, 31, 38, 45, 46} (seven different switching
budgets). The choices of 𝑇 and Δ and the experimental setup are the same as before.

The numerical results for 𝐾 = 4 are shown in Figure E-1. The numerical results for 𝐾 = 16 are
shown in Figure E-2. As we can see, the observations that we made for 𝐾 = 8 in Section 6.5 continue
to hold. Therefore, our experiments for 𝐾 = 4 and 𝐾 = 16 verify the insights that we get from the
experiments for 𝐾 = 8.

323



            

 

   

   

   

   

   

   

   

   

   

   

 
 
 
  
  
 
   

 
 
  
 
  
 
 
 
 
  
 
 
  
 

                                             

   

     

     

            

 

    

    

    

    

    

    

    

    

    

    

 
 
 
  
  
 
   

 
 
  
 
  
 
 
 
 
  
 
 
  
 

                                                   

   

            

 

   

   

   

   

   

   

   

    

 
 
 
  
  
 
   

  
  
 
 
  

 
 
 
  
 
 
  
 

                                             

   

     

     

            

 

   

 

   

   

   

   

 
 
 
  
  
 
   

  
  
 
 
  

 
 
 
  
 
 
  
 

                                                       

𝑞 = 1 𝑞 = 1𝑞 = 3 𝑞 = 3

𝑞 = 1 𝑞 = 1𝑞 = 3 𝑞 = 3

×

Figure E-1: Empirical average-case regret v.s. the switching budget 𝑆, under 𝐾 = 4. The
regret of UCB has to be plotted separately because it is too large.

Finally, we would like to make two additional comments on our experiment results. First, while
our experiments show the significant advantages of AdaLS and LS-SE when 𝑇 is sufficiently large, we
find that AdaLS and LS-SE may not always outperform E&E when we set 𝑇 to be very small. This
is understandable: although AdaLS and LS-SE provably enjoy a smaller regret rate than E&E when
𝑞(𝑆,𝐾) ≥ 2, when 𝑇 is too small to make the “rate advantage” play a role, the empirical performance
of AdaLS and LS-SE may not necessarily be better than E&E.64 Second, while AdaLS is rate-optimal
and performs the best overall in our experiments, as we can observe from Figs. 6-1, E-1 and E-2, its
empirical regret can be non-monotone with respect to 𝑆 — in our experiments, we find that it may
(slightly) “over explore” on some instances when 𝑟(𝑆,𝐾) becomes larger (possibly because it wants
to ensure the optimal worst-case regret rate, which imposes higher requirements on it). Whether
there exists a rate-optimal algorithm that (almost) always ensures non-increasing empirical regret as
𝑆 increases is an interesting open question.

64Moreover, when we try to evaluate the magnitude of 𝑇 and to decide whether it is large enough to make
the theoretical rate advantage of certain algorithms show up, we should evaluate 𝑇 relative to the magnitude
of 𝐾.
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×

Figure E-2: Empirical average-case regret v.s. the switching budget 𝑆, under 𝐾 = 16. The
regret of UCB has to be plotted separately because it is too large.
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E.7 Proof of Proposition 6.1

Note that our proof is based on the more rigorous version of LS-SE — Algorithm E.3.

E.7.1 LS-SE is Indeed an 𝑆-Switch Policy

From round 1 to round 𝑇1, LS-SE makes 𝐾 − 1 switches. For 1 ≤ 𝑙 ≤ 𝑞(𝑆,𝐾)− 1, from round 𝑇𝑙 to
round 𝑇𝑙+1:

• If the last action in epoch 𝑙 remains uneliminated in epoch 𝑙+ 1, then it will be the first action
in epoch 𝑙 + 1, and no switch occurs between round 𝑇𝑙 and round 𝑇𝑙 + 1. Since LS-SE makes
at most 𝐾 − 1 switches within epoch 𝑙 + 1, i.e., from round 𝑇𝑙 + 1 to round 𝑇𝑙+1, it makes at
most 0 + (𝐾 − 1) = 𝐾 − 1 switches from round 𝑇𝑙 to round 𝑇𝑙+1.

• If the last action in epoch 𝑙 is eliminated before the start of epoch 𝑙+1, then epoch 𝑙+1 starts
from another uneliminated action, and one switch occurs between round 𝑇𝑙 and round 𝑇𝑙 + 1.
The elimination implies that |𝐴𝑙+1| ≤ 𝐾−1, thus LS-SE makes |𝐴𝑙+1|−1 ≤ (𝐾−1)−1 = 𝐾−2

switches within epoch 𝑙+ 1, i.e., from round 𝑇𝑙 + 1 to round 𝑇𝑙+1. Therefore, the LS-SE policy
makes at most 1 + (𝐾 − 2) = 𝐾 − 1 switches from round 𝑇𝑙 to round 𝑇𝑙+1.

From round 𝑇𝑞(𝑆,𝐾) to round 𝑇 , since LS-SE does not switch within epoch 𝑞(𝑆,𝐾) + 1, i.e., from
round 𝑇𝑞(𝑆,𝐾) + 1 to round 𝑇 , the only possible switch is between round 𝑇𝑞(𝑆,𝐾) and 𝑇𝑞(𝑆,𝐾) + 1.
Thus LS-SE makes at most 1 switch from round 𝑇𝑞(𝑆,𝐾) to round 𝑇 .

Summarizing the above arguments, we find that the LS-SE policy makes at most 𝑞(𝑆,𝐾)(𝐾 −
1) + 1 ≤ 𝑆 switches from round 1 to round 𝑇 . Thus it is indeed an 𝑆-switching-budget policy.

E.7.2 Proof of Upper Bound

Since LS-SE is a (𝑞(𝑆,𝐾) + 1)-batch policy, existing upper bound analysis for batched MAB (Gao
et al. 2019) applies here. Still, we present our upper bound proof for completeness. A difference is
that we obtain slightly better dependence on 𝐾 under the condition sup𝑖,𝑗∈[𝐾]|𝜇𝑖 − 𝜇𝑗 | ∈ [0, 1].

If 𝐾 > 𝑇/4 or 𝑞(𝑆,𝐾) = 0, then the upper bound in Proposition 6.1 becomes 𝒪(𝑇 ) and is trivial.
Therefore, without loss of generality, we assume that 𝑇 ≥ 4𝐾 and 𝑞(𝑆,𝐾) > 0.

We start the proof of the upper bound on regret with some definitions. Define the confidence
radius as

𝑟𝑖(𝑡) =

√︃
6 log 𝑇

𝑁𝑖(𝑡)
, ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ].

The UCB𝑖(𝑡) and LCB𝑖(𝑡) confidence bounds defined in (6.4) can be expressed as

UCB𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝑟𝑖(𝑡), ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ],

LCB𝑖(𝑡) = 𝜇𝑖(𝑡)− 𝑟𝑖(𝑡), ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ].

Define the clean event as

ℰ := {∀𝑖 ∈ [𝐾],∀𝑡 ∈ [𝑇 ], |𝜇̄𝑖(𝑡)− 𝜇𝑖| ≤ 𝑟𝑡(𝑖)}.
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By Hoeffding’s inequality for sub-Gaussian variables and a standard union bound argument (see,
e.g., Lemma 1.5 in Slivkins 2019), since 𝑇 ≥ 𝐾, for any policy 𝜋 and any environment 𝒟, we always
have P𝜋𝒟(ℰ) ≥ 1− 2

𝑇 3 · 𝑇 ·𝐾 ≥ 1− 2
𝑇 . Define the bad event ℰ as the complement of the clean event.

Let 𝜋 denote the LS-SE policy. First, observe that for any environment 𝒟,

𝑅𝜋𝒟(𝑇 ) = E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
P𝜋𝒟(ℰ) + E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
P𝜋𝒟(ℰ)

≤ E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
+ 𝑇 · 2

𝑇

= E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
+ 2, (E.4)

so in order to bound 𝑅𝜋(𝑇 ) = sup𝒟 𝑅
𝜋
𝒟(𝑇 ), we only need to focus on the clean event.

Consider an arbitrary environment 𝒟 and assume the occurrence of the clean event. By the
specification of Algorithm E.3, we know that the optimal action 𝑘⋆ ∈ 𝐴𝑗 for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 1].
For any 𝑘 ∈ [𝐾], define 𝜂𝑘 := max{𝑗 ∈ [𝑞(𝑆,𝐾) + 1] | 𝑘 ∈ 𝐴𝑗}, i.e., 𝜂𝑘 the index of the last epoch
where action 𝑘 is uneliminated. Consider any action 𝑘 such that 𝜇𝑘 < 𝜇𝑘⋆ . By the specification of
Algorithm E.3, if 𝜂𝑘 > 1, then the confidence intervals of the two actions 𝑘⋆ and 𝑘 at the end of
round 𝑇𝜂𝑘−1 must overlap, i.e., UCB𝑘(𝑇𝜂𝑘−1) ≥ LCB𝑘⋆(𝑇𝜂𝑘−1). Therefore,

Δ(𝑘) := 𝜇𝑘⋆ − 𝜇𝑘 ≤ 2𝑟𝑘⋆(𝑇𝜂𝑘−1) + 2𝑟𝑘(𝑇𝜂𝑘−1) = 4𝑟𝑘(𝑇𝜂𝑘−1), (E.5)

where the last equality is because 𝑘⋆ and 𝑘 are chosen for equal times in each epoch 𝑗 ∈ [𝜂𝑘 − 1],
which implies that 𝑁𝑘⋆(𝑇𝜂𝑘−1) = 𝑁𝑘(𝑇𝜂𝑘−1). Since 𝑘 is never chosen after the 𝜂𝑘-th epoch, we have
𝑁𝑘(𝑇𝜂𝑘) = 𝑁𝑘(𝑇 ), and therefore 𝑟𝑘(𝑇𝜂𝑘) = 𝑟𝑘(𝑇 ).

For any 𝑗 ∈ [𝑞(𝑆,𝐾)], since 𝐾 ≤ 1
2⌊2𝐾⌋ ≤ 1

2⌊𝐾
√︀
𝑇/𝐾⌋ ≤ 1

2 𝑡𝑗 , we have

𝑇𝑗 = 𝑇𝑗−1 + |𝐴𝑗 |
⌊︂
𝑡𝑗 − 𝑇𝑗−1

|𝐴𝑗 |

⌋︂
≥ 𝑇𝑗−1 + 𝑡𝑗 − 𝑇𝑗−1 − (|𝐴𝑗 | − 1)

≥ 𝑡𝑗 − (𝐾 − 1) ≥ 1

2
𝑡𝑗 . (E.6)

For any 𝑘 ∈ [𝐾], define 𝑅(𝑇 ; 𝑘) :=
∑︀𝑇
𝑡=1(𝜇

⋆ − 𝜇𝑘)1{𝑎𝑡 = 𝑘} = Δ(𝑘)𝑁𝑘(𝑇 ). For any 𝑘 such that
𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)], by (E.5), (E.6), and the specification of Algorithm E.3, conditional on the clean
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event ℰ ,

𝑅(𝑇 ; 𝑘) = 𝑁𝑘(𝑇 )Δ(𝑘)

≤ 4𝑁𝑘(𝑇𝜂𝑘)

√︃
6 log 𝑇

𝑁𝑘(𝑇𝜂𝑘−1)

≤ 4
𝑇𝜂𝑘
|𝐴𝜂𝑘 |

√
6 log 𝑇√︀
𝑇𝜂𝑘−1/𝐾

≤ 4
√︀

6𝐾 log 𝑇
1

|𝐴𝜂𝑘 |
𝑇𝜂𝑘√︀
𝑇𝜂𝑘−1

≤ 8
√︀
3𝐾 log 𝑇

1

|𝐴𝜂𝑘 |
𝑡𝜂𝑘√
𝑡𝜂𝑘−1

= 8
√︀

6 log 𝑇
1

|𝐴𝜂𝑘 |
𝐾(𝑇/𝐾)

1

2−2−𝑞(𝑆,𝐾) .

For any 𝑘 such that 𝜂𝑘 = 1, we have 𝑅(𝑇 ; 𝑘) = 𝑁𝑘(𝑇 )Δ(𝑘) ≤ 𝑁𝐾(𝑇1) ≤ 1
|𝐴1|𝐾(𝑇/𝐾)

1

2−2−𝑞(𝑆,𝐾) .
Moreover, we have

∑︁
𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

𝑅(𝑇 ; 𝑘) =
∑︁

𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

𝑁𝑘(𝑇 )Δ(𝑘)

≤ 𝑇 max
𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

Δ(𝑘)

≤ 4𝑇 max
𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

√︃
6 log 𝑇

𝑁𝑘(𝑇𝑞(𝑆,𝐾))

≤ 4𝑇

√
6 log 𝑇√︀

𝑇𝑞(𝑆,𝐾)/𝐾

≤ 8
√︀

6 log 𝑇𝐾(𝑇/𝐾)
1

2−2−𝑞(𝑆,𝐾) .

Therefore, for any environment 𝒟, conditional on the clean event ℰ , we have

𝑇𝜇⋆ −
𝑇∑︁
𝑡=1

𝜇𝑎𝑡 =
∑︁
𝑘∈[𝐾]

𝑅(𝑇 ; 𝑘)

=
∑︁

𝑘:𝜂𝑘=1

𝑅(𝑇 ; 𝑘) +
∑︁

𝑘:𝜂𝑘∈[2:𝑞(𝑆,𝐾)]

𝑅(𝑇 ; 𝑘) +
∑︁

𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

𝑅(𝑇 ; 𝑘)

≤ 8
√︀
6 log 𝑇𝐾(𝑇/𝐾)

1

2−2−𝑞(𝑆,𝐾)

(︃
𝐾∑︁
𝑘=1

1

|𝐴𝜂𝑘 |
+ 1

)︃

≤ 8
√︀
6 log 𝑇𝐾(𝑇/𝐾)

1

2−2−𝑞(𝑆,𝐾)

⎛⎝ 𝐾∑︁
𝑗=1

1

𝑗
+ 1

⎞⎠
≤ 8
√︀
6 log 𝑇𝐾(𝑇/𝐾)

1

2−2−𝑞(𝑆,𝐾) (log𝐾 + 2)

≤ 40
√
6(log𝐾 log 𝑇 )𝐾

1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) .
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Thus by (E.4) and 𝑅𝜋(𝑇 ) = sup𝒟 𝑅
𝜋
𝒟(𝑇 ), we have

𝑅𝜋(𝑇 ) ≤ 40
√
6(log𝐾 log 𝑇 )𝐾

1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) + 2.

□

E.8 Proof of Theorem 6.1

In this proof, we let the tuning parameter 𝜆 = 1/2 (see Algorithm 6.2). Our proof essentially holds
for any 𝜆 ∈ (0, 1) being a constant.

E.8.1 The AdaLS Policy is Indeed an 𝑆-Switch Policy

According to Section 6.3.2, before the last switch (where we commit to a single action; see Line 16),
we allow AdaLS to switch to each action in 𝐴(1)

1 for at most 𝑞(𝑆,𝐾) times, while allowing it to switch
to each action in 𝐴(2)

1 for at most 𝑞(𝑆,𝐾) + 1 times. Therefore, if ̂︀𝑟(𝑆,𝐾) > 0, then AdaLS will make
up to

𝑞(𝑆,𝐾)(𝐾 − ̂︀𝑟(𝑆,𝐾))⏟  ⏞  
switching to an action in 𝐴(1)

1

+ (𝑞(𝑆,𝐾) + 1)̂︀𝑟(𝑆,𝐾)⏟  ⏞  
switching to an action in 𝐴(2)

1

− 1⏟ ⏞ 
the first round

+ 1⏟ ⏞ 
the last switch

= 𝑆

switches. See Appendix E.3 for a concrete example when 𝐾 = 2𝑆 − 2.
On the other hand, if ̂︀𝑟(𝑆,𝐾) = 0, then AdaLS will behave similar to LS-SE and make up to

𝑞(𝑆,𝐾)(𝐾 − 1) + 1 < 𝑆 switches.
To sum up, AdaLS is indeed an 𝑆-switch policy.

E.8.2 Proof of Upper Bound

If 𝐾 > 𝑇/64, then the upper bound in Theorem 6.1 becomes 𝒪(𝑇 ) and is trivial. Therefore, without
loss of generality, we assume that 𝑇 ≥ 64𝐾. If 𝑞(𝑆,𝐾) = 0, then Algorithm 6.2 will only execute
Lines 14 to 16, and it is very easy to show that the regret is upper bounded by

|𝐴(1)
1 |
𝐾

· 𝒪(𝑇 ) +
|𝐴(1)

2 |
𝐾

· 𝒪(𝐾
1
3𝑇

2
3 log 𝑇 ) = 𝒪(log 𝑇 ) ·max

{︂
𝐾 − 𝑟(𝑆,𝐾)

𝐾
𝑇,𝐾

1
3𝑇

2
3

}︂
.

Therefore, without loss of generality, we assume that 𝑞(𝑆,𝐾) > 0 in the proof below.
We start the proof of the upper bound on regret with some definitions. Define the confidence

radius as

𝑟𝑖(𝑡) =

√︃
6 log 𝑇

𝑁𝑖(𝑡)
, ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ].

The UCB𝑖(𝑡) and LCB𝑖(𝑡) confidence bounds defined in (6.4) can be expressed as

UCB𝑖(𝑡) = 𝜇𝑖(𝑡) + 𝑟𝑖(𝑡), ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ],

LCB𝑖(𝑡) = 𝜇𝑖(𝑡)− 𝑟𝑖(𝑡), ∀𝑖 ∈ [𝐾], 𝑡 ∈ [𝑇 ].
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Define the clean event as

ℰ := {∀𝑖 ∈ [𝐾],∀𝑡 ∈ [𝑇 ], |𝜇̄𝑖(𝑡)− 𝜇𝑖| ≤ 𝑟𝑡(𝑖)}.

By Hoeffding’s inequality for sub-Gaussian variables and a standard union bound argument (see,
e.g., Lemma 1.5 in Slivkins 2019), since 𝑇 ≥ 𝐾, for any policy 𝜋 and any environment 𝒟, we always
have P𝜋𝒟(ℰ) ≥ 1− 2

𝑇 3 · 𝑇 ·𝐾 ≥ 1− 2
𝑇 . Define the bad event ℰ as the complement of the clean event.

Let 𝜋 denote the AdaLS policy. First, observe that for any environment 𝒟,

𝑅𝜋𝒟(𝑇 ) = E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
P𝜋𝒟(ℰ) + E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
P𝜋𝒟(ℰ)

≤ E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
+ 𝑇 · 2

𝑇

= E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
+ 2, (E.7)

so in order to bound 𝑅𝜋(𝑇 ) = sup𝒟 𝑅
𝜋
𝒟(𝑇 ), we only need to focus on the clean event.

Define ℰ1 :=
{︁
𝑘⋆ ∈ 𝐴

(1)
1

}︁
and ℰ2 :=

{︁
𝑘⋆ ∈ 𝐴

(2)
1

}︁
. Since 𝐴(1)

1 and 𝐴(2)
1 are determined by random

sampling independent of the clean event ℰ , we have

P𝜋𝒟(ℰ1 | ℰ) = P𝜋𝒟(ℰ1) =
𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾
,

P𝜋𝒟(ℰ2 | ℰ) = P𝜋𝒟(ℰ2) =
̂︀𝑟(𝑆,𝐾)

𝐾
.

Thus

E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ

]︃
=
𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾
E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ , ℰ1

]︃
+
̂︀𝑟(𝑆,𝐾)

𝐾
E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ , ℰ2

]︃
.

(E.8)
Note that we define E𝜋𝒟(· | ℰ , ℰ2) ≡ 0 if ̂︀𝑟(𝑆,𝐾) = 0.

Define 𝑇 (1)
𝑞(𝑆,𝐾)+1

:= 𝑇 . For all 𝑗 ∈ [𝑞(𝑆,𝐾)+1], “epoch 𝑗” corresponds to “period [𝑇
(1)
𝑗−1+1 : 𝑇

(1)
𝑗 ]”.

Let 𝑘† denote the action that Algorithm 6.2 chooses in Line 16.

In what follows, we derive several useful inequalities for the time points appeared in Algorithm 6.2.
For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], we have

𝑡
(2)
𝑗 =

⌊︂
𝐾

1− 2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1 𝑇
2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1

⌋︂
≥
⌊︂
𝐾

1− 2−22−𝑗

2−2−𝑞(𝑆,𝐾) 𝑇
2−22−𝑗

2−2−𝑞(𝑆,𝐾)

⌋︂
≥
⌊︂
(𝐾 − ̂︀𝑟(𝑆,𝐾))

1− 2−22−𝑗

2−2−𝑞(𝑆,𝐾) 𝑇
2−22−𝑗

2−2−𝑞(𝑆,𝐾)

⌋︂
= 𝑡

(1)
𝑗−1. (E.9)
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By (E.9) and the fact that

∀𝑗 ∈ [𝑞(𝑆,𝐾)],

⎧⎪⎪⎨⎪⎪⎩
𝑇

(2)
𝑗 = 𝑇

(1)
𝑗−1 + |𝐴(2)

𝑗 |
⌊︂
𝑡
(2)
𝑗 −𝑇 (1)

𝑗−1

|𝐴𝑗 |

⌋︂
,

𝑇
(1)
𝑗 = 𝑇

(2)
𝑗 + |𝐴(1)

𝑗 |max

{︂⌊︂
𝑡
(1)
𝑗 /2−𝑇 (2)

𝑗

|𝐴(1)
𝑗 |

⌋︂
,

⌊︂
𝑡
(2)
𝑗 −𝑇 (1)

𝑗−1

|𝐴𝑗 |

⌋︂}︂
,

we have

∀𝑗 ∈ [𝑞(𝑆,𝐾)],

⎧⎨⎩𝑇
(2)
𝑗 ≤ 𝑡

(2)
𝑗 ,

𝑇
(1)
𝑗 ≤ max{𝑡(1)𝑗 /2, 𝑡

(2)
𝑗 } ≤ 𝑡

(2)
𝑗+1.

(E.10)

Meanwhile, for any 𝑗 ∈ [𝑞(𝑆,𝐾)], since 𝐾 ≤ 1
8⌊8𝐾⌋ ≤ 1

8⌊𝐾
√︀
𝑇/𝐾⌋ ≤ 1

8 𝑡
(2)
𝑗 , we have

𝑇
(1)
𝑗 ≥ 𝑇

(1)
𝑗−1 + |𝐴𝑗 |

⌊︃
𝑡
(2)
𝑗 − 𝑇

(1)
𝑗−1

|𝐴𝑗 |

⌋︃
≥ 𝑇

(1)
𝑗−1 + 𝑡

(2)
𝑗 − 𝑇

(1)
𝑗−1 − (|𝐴𝑗 | − 1)

≥ 𝑡
(2)
𝑗 − (𝐾 − 1) ≥ 1

2
𝑡
(2)
𝑗 . (E.11)

In addition to the above inequalities, we also need a lower bound on 𝑁𝑘(·) for 𝑘 ∈ 𝐴
(2)
1 , which

we provide below.

Lemma E.2. For any 𝑙 ∈ [𝑞(𝑆,𝐾) + 1], for any 𝑘 ∈ 𝐴
(2)
𝑙 , we have

𝑁𝑘(𝑇
(2)
𝑙 ) ≥

𝑡
(2)
𝑙

32𝐾
.

Proof of Lemma E.2. By (E.10), we have

𝑇
(1)
𝑗−1 ≤ max{𝑡(1)𝑗−1/2, 𝑡

(2)
𝑗−1} ≤ 𝑡

(2)
𝑗

for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 1], hence

𝑛
(2)
𝑗 =

⌊︃
𝑡
(2)
𝑗 − 𝑇

(1)
𝑗−1

|𝐴𝑗 |

⌋︃

≥ min

{︃⌊︃
𝑡
(2)
𝑗 − 𝑡

(1)
𝑗−1/2

|𝐴𝑗 |

⌋︃
,

⌊︃
𝑡
(2)
𝑗 − 𝑡

(2)
𝑗−1

|𝐴𝑗 |

⌋︃}︃

≥min

{︃⌊︃
𝑡
(2)
𝑗 /2

|𝐴𝑗 |

⌋︃
,

⌊︃
𝑡
(2)
𝑗 − 𝑡

(2)
𝑗−1

|𝐴𝑗 |

⌋︃}︃
(E.12)

for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 1], where the last inequality follows from (E.9). For all 𝑗 ≤ log2 log2(𝑇/𝐾), we
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have

𝑡
(2)
𝑗−1 ≤ 𝐾(𝑇/𝐾)

2−22−𝑗

2−2−𝑞(𝑆,𝐾)−1

= 𝐾(𝑇/𝐾)
2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1 · (𝑇/𝐾)
−21−𝑗

2−2−𝑞(𝑆,𝐾)−1

≤ 𝐾(𝑇/𝐾)
2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1 · (𝑇/𝐾)−2−𝑗

≤ 𝐾(𝑇/𝐾)
2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1 · (𝑇/𝐾)− log(𝑇/𝐾) 2

=
1

2
𝐾(𝑇/𝐾)

2−21−𝑗

2−2−𝑞(𝑆,𝐾)−1

≤ 1

2
(𝑡

(2)
𝑗 + 1). (E.13)

By (E.12) and (E.13), for all 𝑗 ≤ min{log2 log2(𝑇/𝐾), 𝑞(𝑆,𝐾) + 1}, we have

𝑛
(2)
𝑗 ≥ min

{︃⌊︃
𝑡
(2)
𝑗 /2

|𝐴𝑗 |

⌋︃
,

⌊︃
𝑡
(2)
𝑗 − 𝑡

(2)
𝑗−1

|𝐴𝑗 |

⌋︃}︃

≥ min

{︃⌊︃
𝑡
(2)
𝑗 /2

|𝐴𝑗 |

⌋︃
,

⌊︃
(𝑡

(2)
𝑗 − 1)/2

|𝐴𝑗 |

⌋︃}︃

≥

⌊︃
(𝑡

(2)
𝑗 − 1)/2

𝐾

⌋︃

≥
𝑡
(2)
𝑗 − 1

4𝐾
, (E.14)

where the last inequality follows from 𝑡
(2)
𝑗 ≥ ⌊𝐾

√︀
𝑇/𝐾⌋ ≥ 8𝐾.

Fix any 𝑙 ∈ [𝑞(𝑆,𝐾) + 1] and any 𝑘 ∈ 𝐴
(2)
𝑙 . If 𝑙 ≤ log2 log2(𝑇/𝐾), then by (E.14), we have

𝑁𝑘(𝑇
(2)
𝑙 ) =

∑︁
𝑗∈[𝑙]

𝑛
(2)
𝑗 ≥ 𝑛

(2)
𝑙 ≥

𝑡
(2)
𝑙 − 1

4𝐾
≥
𝑡
(2)
𝑙

8𝐾
.

If 𝑙 > log2 log2(𝑇/𝐾), then by letting ̃︀𝑙 := ⌊log2 log2(𝑇/𝐾)⌋ ≥ 2 and using (E.14), we have

𝑁𝑘(𝑇
(2)
𝑙 ) =

∑︁
𝑗∈[𝑙]

𝑛
(2)
𝑗 ≥ 𝑛

(2)̃︀𝑙 ≥
𝑡
(2)̃︀𝑙 − 1

4𝐾
≥

𝑡
(2)
𝑙

32𝐾
,

where the last inequality follows from

𝑡
(2)̃︀𝑙 ≥ 𝐾(𝑇/𝐾)

2−21−̃︀𝑙
2−2−𝑞(𝑆,𝐾)−1 − 1

≥ 𝐾(𝑇/𝐾)1−2−
̃︀𝑙
− 1

≥ 𝑇 (𝑇/𝐾)−2−
̃︀𝑙
− 1

≥ 𝑇 (𝑇/𝐾)−2− log2 log2(𝑇/𝐾)+1

− 1

= 𝑇/4− 1 ≥ 𝑇/8 + 1 ≥ 𝑡
(2)
𝑙 /8 + 1.
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Therefore, no matter 𝑙 ≤ log2 log2(𝑇/𝐾) or 𝑙 > log2 log2(𝑇/𝐾), we always have

𝑁𝑘(𝑇
(2)
𝑙 ) ≥

𝑡
(2)
𝑙

32𝐾
.

□

To simplify the presentation, we define the following two notations:

ℛ1 := (𝐾 − ̂︀𝑟(𝑆,𝐾))
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) ,

ℛ2 := 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1 .

Consider an arbitrary environment 𝒟 and assume the occurrence of the clean event ℰ . In what
follows, we discuss two cases: ℰ1 occurs, and ℰ2 occurs.

Case 1: Both ℰ and ℰ1 occur. By the specification of Algorithm 6.2, we know that the optimal
action 𝑘⋆ ∈ 𝐴

(1)
𝑙 ⊂ 𝐴𝑙 for all 𝑙 ∈ [𝑞(𝑆,𝐾) + 1]. Moreover, by Line 3 to Line 12 of Algorithm 6.2, we

know that action 𝑘⋆ is chosen for

max

{︃⌊︃
𝑡
(1)
𝑙 /2− 𝑇

(2)
𝑙

|𝐴(1)
𝑙 |

⌋︃
, 𝑛

(2)
𝑙

}︃

rounds in each epoch 𝑙 ∈ [𝑞(𝑆,𝐾)], which is no less than the number of plays of any other action in
epoch 𝑙. Therefore, for all 𝑘 ∈ [𝐾] and 𝑙 ∈ [𝑞(𝑆,𝐾)] we have

𝑁𝑘⋆(𝑇
(1)
𝑙 ) ≥ 𝑁𝑘(𝑇

(1)
𝑙 ), 𝑟𝑘⋆(𝑇

(1)
𝑙 ) ≤ 𝑟𝑘(𝑇

(1)
𝑙 ). (E.15)

For any 𝑘 ∈ [𝐾], define 𝜂𝑘 := max{𝑗 ∈ [𝑞(𝑆,𝐾) + 1] | 𝑘 ∈ 𝐴𝑗}.

Consider any action 𝑘 such that 𝜂𝑘 > 1. By Line 12 of Algorithm 6.2, the confidence intervals of
the two actions 𝑘⋆ and 𝑘 at the end of round 𝑇 (1)

𝜂𝑘−1 must overlap, i.e., UCB𝑘(𝑇
(1)
𝜂𝑘−1) ≥ LCB𝑘⋆(𝑇

(1)
𝜂𝑘−1).

Therefore,
Δ(𝑘) := 𝜇𝑘⋆ − 𝜇𝑘 ≤ 2𝑟𝑘⋆(𝑇

(1)
𝜂𝑘−1) + 2𝑟𝑘(𝑇

(1)
𝜂𝑘−1) ≤ 4𝑟𝑘(𝑇

(1)
𝜂𝑘−1), (E.16)

where the last inequality follows from (E.15). Since 𝑘 is never chosen after the 𝜂𝑘-th epoch, we have
𝑁𝑘(𝑇

(1)
𝜂𝑘 ) = 𝑁𝑘(𝑇 ).

Consider the action 𝑘† selected in Line 16 of Algorithm 6.2. By Lines 15 and 16 of Algorithm 6.2,
the confidence intervals of the two actions 𝑘⋆ and 𝑘† at the end of round 𝑇

(2)
𝑞(𝑆,𝐾)+1 must overlap,

i.e., UCB𝑘†(𝑇
(2)
𝑞(𝑆,𝐾)+1) ≥ LCB𝑘⋆(𝑇

(2)
𝑞(𝑆,𝐾)+1). Therefore,

Δ(𝑘†) := 𝜇𝑘⋆ − 𝜇𝑘† ≤ 2𝑟𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1) + 2𝑟𝑘†(𝑇

(2)
𝑞(𝑆,𝐾)+1) ≤ 4 max

𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1). (E.17)

We now try to prove the following key lemma.
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Lemma E.3. Assume both ℰ and ℰ1 hold. For any action 𝑘 such that 𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)], we have

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤

⎧⎪⎨⎪⎩
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

2

|𝐴(1)
𝜂𝑘

|
max

{︁
ℛ1,

32𝐾
𝐾−̂︀𝑟(𝑆,𝐾)ℛ2

}︁
, if 𝑘 ∈ 𝐴

(1)
1 ;√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1) +

8
|𝐴𝜂𝑘 |

ℛ2, if 𝑘 ∈ 𝐴
(2)
1 .

(E.18)

Moreover, considering all 𝑘 such that 𝜂𝑘 = 𝑞(𝑆,𝐾) + 1 (i.e., 𝑘 ∈ 𝐴𝑞(𝑆,𝐾)+1), we have

max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

≤ 4max

{︂
ℛ1,

32𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)
ℛ2

}︂
, (E.19)

max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

⎛⎝ 𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)

⎞⎠ ≤ 16ℛ2. (E.20)

Proof of Lemma E.3. We first show (E.18). Fix any action 𝑘 such that 𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)].

We first consider the case of 𝑘 ∈ 𝐴
(1)
1 . By Line 3 to Line 12 of Algorithm 6.2, we know that

action 𝑘 is chosen for

max

{︃⌊︃
𝑡
(1)
𝑙 /2− 𝑇

(2)
𝑙

|𝐴(1)
𝑙 |

⌋︃
, 𝑛

(2)
𝑙

}︃
rounds in each epoch 𝑙 ∈ [𝜂𝑘 − 1], which is no less than the number of plays of any other action in
epoch 𝑙. This implies

𝑁𝑘(𝑇
(1)
𝑙 ) ≥ 𝑇

(1)
𝑙 /𝐾 ≥ 𝑡

(2)
𝑙 /(2𝐾), ∀𝑙 ∈ [𝜂𝑘 − 1], (E.21)

where the last inequality follows from (E.11).

If 𝑡(1)𝜂𝑘−1/4 ≥ 𝑡
(2)
𝜂𝑘−1, then we have

𝑁𝑘(𝑇
(1)
𝜂𝑘−1) ≥

⌊︃
𝑡
(1)
𝜂𝑘−1/2− 𝑇

(2)
𝜂𝑘−1

|𝐴(1)
𝜂𝑘−1|

⌋︃
≥

⌊︃
𝑡
(1)
𝜂𝑘−1/4

|𝐴(1)
𝜂𝑘−1|

⌋︃
≥

⌊︃
𝑡
(1)
𝜂𝑘−1

4(𝐾 − ̂︀𝑟(𝑆,𝐾))

⌋︃
≥

𝑡
(1)
𝜂𝑘−1

8(𝐾 − ̂︀𝑟(𝑆,𝐾))
, (E.22)

where the second inequality utilizes 𝑇 (2)
𝜂𝑘−1 ≤ 𝑡

(2)
𝜂𝑘−1 (by (E.10)) and the last inequality follows from

𝐾 − ̂︀𝑟(𝑆,𝐾) ≤ 1

8
⌊(𝐾 − ̂︀𝑟(𝑆,𝐾))

√︀
𝑇/(𝐾 − ̂︀𝑟(𝑆,𝐾))⌋ ≤

𝑡
(1)
𝑗

8
, ∀𝑗 ∈ [𝑞(𝑆,𝐾) + 1].
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Hence we have

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) + max

{︂⌊︂
𝑡(1)𝜂𝑘

/2−𝑇 (2)
𝜂𝑘

|𝐴(1)
𝜂𝑘

|

⌋︂
, 𝑛

(2)
𝜂𝑘

}︂
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

max
{︁
𝑡
(1)
𝜂𝑘 /2, 𝑡

(2)
𝜂𝑘

}︁
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

max

{︃
𝑡
(1)
𝜂𝑘

2

√︃
8(𝐾 − ̂︀𝑟(𝑆,𝐾))

𝑡
(1)
𝜂𝑘−1

, 𝑡(2)𝜂𝑘

√︃
2𝐾

𝑡
(2)
𝜂𝑘−1

}︃
(by (E.21) & (E.22))

=

√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

max

{︃
𝑡(1)𝜂𝑘

√︃
2(𝐾 − ̂︀𝑟(𝑆,𝐾))

𝑡
(1)
𝜂𝑘−1

, 𝑡(2)𝜂𝑘

√︃
2𝐾

𝑡
(2)
𝜂𝑘−1

}︃

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

2

|𝐴(1)
𝜂𝑘 |

max{ℛ1,ℛ2}.

If 𝑡(1)𝜂𝑘−1/4 < 𝑡
(2)
𝜂𝑘−1, then

(︂
𝑇

𝐾 − ̂︀𝑟(𝑆,𝐾)

)︂ 2−22−𝜂𝑘
2−2−𝑞(𝑆,𝐾)

≤
2𝑡

(1)
𝜂𝑘−1

𝐾 − ̂︀𝑟(𝑆,𝐾)
≤

8𝑡
(2)
𝜂𝑘−1

𝐾 − ̂︀𝑟(𝑆,𝐾)
≤ 8𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)

(︂
𝑇

𝐾

)︂ 2−22−𝜂𝑘
2−2−𝑞(𝑆,𝐾)−1

,

which implies

(︂
𝑇

𝐾 − ̂︀𝑟(𝑆,𝐾)

)︂ 2−21−𝜂𝑘
2−2−𝑞(𝑆,𝐾)

≤
(︂

8𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)

)︂ 2−21−𝜂𝑘
2−22−𝜂𝑘

(︂
𝑇

𝐾

)︂ 2−21−𝜂𝑘
2−2−𝑞(𝑆,𝐾)−1

≤
(︂

8𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)

)︂2(︂
𝑇

𝐾

)︂ 2−21−𝜂𝑘
2−2−𝑞(𝑆,𝐾)−1

.

Thus

𝑡(1)𝜂𝑘 ≤ (𝐾 − ̂︀𝑟(𝑆,𝐾))

(︂
𝑇

𝐾 − ̂︀𝑟(𝑆,𝐾)

)︂ 2−21−𝜂𝑘
2−2−𝑞(𝑆,𝐾)

≤ 64𝐾

𝐾 − ̂︀𝑟(𝑆, 𝑘)𝐾
(︂
𝑇

𝐾

)︂ 2−21−𝜂𝑘
2−2−𝑞(𝑆,𝐾)−1

. (E.23)

Hence we have

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) + max

{︂⌊︂
𝑡(1)𝜂𝑘

/2−𝑇 (2)
𝜂𝑘

|𝐴(1)
𝜂𝑘

|

⌋︂
, 𝑛

(2)
𝜂𝑘

}︂
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

max{𝑡(1)𝜂𝑘 /2, 𝑡
(2)
𝜂𝑘 }√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

max{𝑡(1)𝜂𝑘 /2, 𝑡
(2)
𝜂𝑘

}
√︃

2𝐾

𝑡
(2)
𝜂𝑘−1

(by (E.21))

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

1

|𝐴(1)
𝜂𝑘 |

64𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)
ℛ2. (by (E.23))

We then consider the case of 𝑘 ∈ 𝐴
(2)
1 . By Line 3 to Line 12 of Algorithm 6.2, we know that
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action 𝑘 is chosen for 𝑛(2)𝑙 rounds in each epoch 𝑙 ∈ [𝜂𝑘 − 1], and 𝑁𝑘(𝑇
(1)
𝜂𝑘−1) = 𝑁𝑘(𝑇

(2)
𝜂𝑘−1). Since

𝑘 ∈ 𝐴
(1)
𝜂𝑘 ⊂ 𝐴

(1)
𝜂𝑘−1, by Lemma E.2, we have

𝑁𝑘(𝑇
(1)
𝜂𝑘−1) = 𝑁𝑘(𝑇

(2)
𝜂𝑘−1) ≥

𝑡
(2)
𝜂𝑘−1

32𝐾
. (E.24)

Thus

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) + 𝑛

(2)
𝜂𝑘√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

=

√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

𝑛
(2)
𝜂𝑘√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

𝑡
(2)
𝜂𝑘 /|𝐴𝜂𝑘 |√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1)

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

𝑡
(2)
𝜂𝑘 /|𝐴𝜂𝑘 |√︁
𝑡
(2)
𝜂𝑘−1/(32𝐾)

(by (E.24))

≤
√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

8

|𝐴𝜂𝑘 |
ℛ2.

Combing the above three paragraphs, we prove (E.18).

We then show (E.19) and (E.20). Consider 𝑘 ∈ 𝐴
(1)
𝑞(𝑆,𝐾)+1. If 𝑡(1)𝑞(𝑆,𝐾)/4 ≥ 𝑡

(2)
𝑞(𝑆,𝐾), then (E.22)

holds for 𝜂𝑘 = 𝑞(𝑆,𝐾) + 1; if 𝑡(1)𝑞(𝑆,𝐾)/4 < 𝑡
(2)
𝑞(𝑆,𝐾), then (E.23) and (E.21) hold for 𝜂𝑘 = 𝑞(𝑆,𝐾) + 1.

Thus

max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

≤ max

⎧⎨⎩𝑇
⎯⎸⎸⎷8(𝐾 − ̂︀𝑟(𝑆,𝐾))

𝑡
(1)
𝑞(𝑆,𝐾)

,
64𝐾

𝐾 − ̂︀𝑟(𝑆, 𝑘)𝐾
(︂
𝑇

𝐾

)︂ 2−2−𝑞(𝑆,𝐾)

2−2−𝑞(𝑆,𝐾)−1
√︃

2𝐾

𝑡
(2)
𝑞(𝑆,𝐾)

⎫⎬⎭
≤ 4max

{︂
ℛ1,

32𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)
ℛ2

}︂
.

Consider 𝑘 ∈ 𝐴
(2)
𝑞(𝑆,𝐾)+1. By Lemma E.2, we have

𝑁𝑘(𝑇
(1)
𝑞(𝑆,𝐾)) = 𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)) ≥

𝑡
(2)
𝑞(𝑆,𝐾)

32𝐾
, 𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1) ≥

𝑡
(2)
𝑞(𝑆,𝐾)+1

32𝐾
.

Thus we have

max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

⎛⎝ 𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)

⎞⎠ ≤ 𝑡
(2)
𝑞(𝑆,𝐾)+1

√︃
32𝐾

𝑡
(2)
𝑞(𝑆,𝐾)

+ 𝑇

√︃
32𝐾

𝑡
(2)
𝑞(𝑆,𝐾)+1

≤ 16ℛ2.

□

For any 𝑘 ∈ [𝐾], define 𝑅(𝑇 ; 𝑘) :=
∑︀𝑇
𝑡=1(𝜇

⋆ − 𝜇𝑘)1{𝑎𝑡 = 𝑘} = Δ(𝑘)𝑁𝑘(𝑇 ). Consider any 𝑘 such
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that 𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)], by (E.16), conditional on the events ℰ and ℰ1, we always have

𝑅(𝑇 ; 𝑘) = 𝑁𝑘(𝑇 )Δ(𝑘) ≤ 4𝑁𝑘(𝑇
(1)
𝜂𝑘

)𝑟𝑘(𝑇
(1)
𝜂𝑘−1) = 4

√︀
6 log 𝑇

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

Moreover, we have
∑︀
𝑘:𝜂𝑘=1𝑅(𝑇 ; 𝑘) ≤ 𝑇

(1)
1 ≤ max{ℛ1/2,ℛ2} and

∑︁
𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

𝑅(𝑇 ; 𝑘)

= 𝑁𝑘†(𝑇 )Δ(𝑘†) +
∑︁

𝑘∈𝐴𝑞(𝑆,𝐾)+1∖{𝑘†}

𝑁𝑘(𝑇 )Δ(𝑘)

= 𝑁𝑘†(𝑇 )Δ(𝑘†) +
∑︁

𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1
∖{𝑘†}

𝑁𝑘(𝑇 )Δ(𝑘) +
∑︁

𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1
∖{𝑘†}

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)Δ(𝑘)

(i)

≤ 4𝑇 max
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1) + 4𝑇 max

𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(1)
𝑞(𝑆,𝐾)) + 4𝑇

(2)
𝑞(𝑆,𝐾)+1 max

𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(1)
𝑞(𝑆,𝐾))

(ii)

≤ 4𝑇 max
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1) + 4𝑇 max

𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(1)
𝑞(𝑆,𝐾)) + 4𝑡

(2)
𝑞(𝑆,𝐾)+1 max

𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑟𝑘(𝑇
(1)
𝑞(𝑆,𝐾))

= 4
√︀
6 log 𝑇

⎛⎝ max
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1)

+ max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+ max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

⎞⎠
(iii)

≤ 4
√︀
6 log 𝑇

⎛⎝ max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

2𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+ max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+ max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1)

⎞⎠
= 4
√︀
6 log 𝑇

⎛⎝ max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

2𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+ max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

⎛⎝ 𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)

⎞⎠⎞⎠,
where (i) follows from (E.16) and (E.17), (ii) follows from

𝑇
(2)
𝑞(𝑆,𝐾)+1 = 𝑇

(1)
𝑞(𝑆,𝐾) + |𝐴(2)

𝑞(𝑆,𝐾)+1|

⎢⎢⎢⎣ 𝑡(2)𝑞(𝑆,𝐾)+1 − 𝑇
(1)
𝑞(𝑆,𝐾)

|𝐴𝑞(𝑆,𝐾)+1|

⎥⎥⎥⎦ ≤ 𝑡
(2)
𝑞(𝑆,𝐾)+1

(note that (E.10) guarantees 𝑡(2)𝑞(𝑆,𝐾)+1 ≥ 𝑇
(1)
𝑞(𝑆,𝐾)), and (iii) follows from

max
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1)

= max

⎧⎨⎩ max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

, max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

𝑇√︁
𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1)

⎫⎬⎭.
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Therefore, for any 𝒟, conditional on the events ℰ and ℰ1, we have

𝑇𝜇⋆ −
𝑇∑︁
𝑡=1

𝜇𝑎𝑡 =
∑︁
𝑘∈[𝐾]

𝑅(𝑇 ; 𝑘) =
∑︁

𝑘:𝜂𝑘=1

𝑅(𝑇 ; 𝑘) +
∑︁

𝑘:𝜂𝑘∈[2:𝑞(𝑆,𝐾)]

𝑅(𝑇 ; 𝑘) +
∑︁

𝑘:𝜂𝑘=𝑞(𝑆,𝐾)+1

𝑅(𝑇 ; 𝑘)

≤ max{ℛ1/2,ℛ2}+ 4
√︀
6 log 𝑇

⎛⎝ ∑︁
𝑘:𝜂𝑘∈[2:𝑞(𝑆,𝐾)]

𝑁𝑘(𝑇
(1)
𝜂𝑘 )√︁

𝑁𝑘(𝑇
(1)
𝜂𝑘−1)

⎞⎠
+ 4
√︀
6 log 𝑇

⎛⎝ max
𝑘∈𝐴(1)

𝑞(𝑆,𝐾)+1

2𝑇√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+ max
𝑘∈𝐴(2)

𝑞(𝑆,𝐾)+1

⎛⎝ 𝑡
(2)
𝑞(𝑆,𝐾)+1√︁
𝑁𝑘(𝑇

(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)

⎞⎠⎞⎠.
Combining the above inequality with Lemma E.3 and

∑︀
𝑘:𝜂𝑘>1

√︁
𝑁𝑘(𝑇

(1)
𝜂𝑘−1) ≤

√
𝐾𝑇 , we have

E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ , ℰ1

]︃
≤ 𝒪(log𝐾

√︀
log 𝑇 ) ·max

{︂
ℛ1,

𝐾

𝐾 − ̂︀𝑟(𝑆,𝐾)
ℛ2

}︂
. (E.25)

Case 2: Both ℰ and ℰ2 occur. By the specification of Algorithm 6.2, we know that the optimal
action 𝑘⋆ ∈ 𝐴

(2)
𝑙 ⊂ 𝐴𝑙 for all 𝑙 ∈ [𝑞(𝑆,𝐾) + 1], and 𝑘⋆ ∈ 𝐴𝑞(𝑆,𝐾)+2. Moreover, by Line 3 to Line 12

of Algorithm 6.2, we know that action 𝑘⋆ is chosen for 𝑛(2)𝑙 rounds in each epoch 𝑙 ∈ [𝑞(𝑆,𝐾)], which
is no greater than the number of plays of any other action chosen in epoch 𝑙. Therefore, for all
𝑙 ∈ [𝑞(𝑆,𝐾)] and 𝑘 ∈ 𝐴𝑙 and we have

𝑁𝑘⋆(𝑇
(1)
𝑙 ) ≤ 𝑁𝑘(𝑇

(1)
𝑙 ), 𝑟𝑘⋆(𝑇

(1)
𝑙 ) ≥ 𝑟𝑘(𝑇

(1)
𝑙 ). (E.26)

For any 𝑘 ∈ [𝐾], define 𝜂𝑘 := max{𝑗 ∈ [𝑞(𝑆,𝐾) + 1] | 𝑘 ∈ 𝐴𝑗}.

Consider any action 𝑘 such that 𝜂𝑘 > 1. By Line 12 of Algorithm 6.2, the confidence intervals of
the two actions 𝑘⋆ and 𝑘 at the end of round 𝑇 (1)

𝜂𝑘−1 must overlap, i.e., UCB𝑘(𝑇
(1)
𝜂𝑘−1) ≥ LCB𝑘⋆(𝑇

(1)
𝜂𝑘−1).

Therefore,
Δ(𝑘) := 𝜇𝑘⋆ − 𝜇𝑘 ≤ 2𝑟𝑘⋆(𝑇

(1)
𝜂𝑘−1) + 2𝑟𝑘(𝑇

(1)
𝜂𝑘−1) ≤ 4𝑟𝑘⋆(𝑇

(1)
𝜂𝑘−1), (E.27)

where the last inequality follows from (E.26). Since 𝑘 is never chosen after the 𝜂𝑘-th epoch, we have
𝑁𝑘(𝑇

(1)
𝜂𝑘 ) = 𝑁𝑘(𝑇 ).

Consider any action 𝑘 such that 𝑁𝑘(𝑇
(1)
𝜂𝑘 ) > 𝑁𝑘(𝑇

(2)
𝜂𝑘 ). If 𝜂𝑘 < 𝑞(𝑆,𝐾) + 1, then 𝑘 ∈ 𝐴

(1)
𝜂𝑘 . By

Lines 6 and 10 of Algorithm 6.2, the confidence intervals of the two actions 𝑘⋆ and 𝑘 at the end of
round 𝑇 (1)

𝜂𝑘,𝑘
must overlap, i.e., UCB𝑘(𝑇

(1)
𝜂𝑘,𝑘

) ≥ LCB𝑘⋆(𝑇
(1)
𝜂𝑘,𝑘

). Therefore,

Δ(𝑘) := 𝜇𝑘⋆ − 𝜇𝑘 ≤ 2𝑟𝑘⋆(𝑇
(1)
𝜂𝑘,𝑘

) + 2𝑟𝑘(𝑇
(1)
𝜂𝑘,𝑘

) ≤ 4𝑟𝑘⋆(𝑇
(2)
𝜂𝑘

), (E.28)

where the last inequality follows from

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘

) = 𝑁𝑘⋆(𝑇
(1)
𝜂𝑘,𝑘

) = 𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1) + 𝑛(2)𝜂𝑘 ≤ 𝑁𝑘(𝑇

(1)
𝜂𝑘−1) + 𝑛(2)𝜂𝑘 = 𝑁𝑘(𝑇

(1)
𝜂𝑘,𝑘

).

If 𝜂𝑘 = 𝑞(𝑆,𝐾) + 1, then 𝑘 = 𝑘†. By Lines 15 and 16 of Algorithm 6.2, we have 𝑘⋆ ∈ 𝐴
(2)
𝑞(𝑆,𝐾)+2 ≠ ∅

and hence 𝑘† ∈ 𝐴𝑞(𝑆,𝐾)+2 = 𝐴
(2)
𝑞(𝑆,𝐾)+2. Moreover, the confidence intervals of the two actions 𝑘⋆ and
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𝑘† at the end of round 𝑇 (2)
𝑞(𝑆,𝐾)+1 must overlap, i.e., UCB𝑘†(𝑇

(2)
𝑞(𝑆,𝐾)+1) ≥ LCB𝑘⋆(𝑇

(2)
𝑞(𝑆,𝐾)+1). Therefore,

Δ(𝑘†) := 𝜇𝑘⋆ − 𝜇𝑘† ≤ 2𝑟𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1) + 2𝑟𝑘†(𝑇

(2)
𝑞(𝑆,𝐾)+1) ≤ 4𝑟𝑘⋆(𝑇

(2)
𝑞(𝑆,𝐾)+1), (E.29)

where the last inequality follows from 𝑘⋆, 𝑘† ∈ 𝐴
(2)
𝑞(𝑆,𝐾)+1 and

𝑁𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1) = 𝑁𝑘⋆(𝑇

(1)
𝑞(𝑆,𝐾)) + 𝑛

(2)
𝑞(𝑆,𝐾)+1 ≤ 𝑁𝑘†(𝑇

(1)
𝑞(𝑆,𝐾)) + 𝑛

(2)
𝑞(𝑆,𝐾)+1 = 𝑁𝑘†(𝑇

(2)
𝑞(𝑆,𝐾)+1).

We now try to prove the following key lemma.

Lemma E.4. Assume both ℰ and ℰ2 hold. For any action 𝑘 such that 𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)], we have

𝑁𝑘(𝑇
(2)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+
𝑁𝑘(𝑇

(1)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

≤

⎧⎪⎨⎪⎩
24

|𝐴(1)
𝜂𝑘

|
ℛ2, if 𝑘 ∈ 𝐴

(1)
1 ;

32
|𝐴𝜂𝑘 |

ℛ2, if 𝑘 ∈ 𝐴
(2)
1 .

(E.30)

Moreover, considering all 𝑘 such that 𝜂𝑘 = 𝑞(𝑆,𝐾) + 1 (i.e., 𝑘 ∈ 𝐴𝑞(𝑆,𝐾)+1), we have

∑︁
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)√︁

𝑁𝑘⋆(𝑇
(1)
𝑞(𝑆,𝐾))

+
𝑁𝑘(𝑇 )√︁

𝑁𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1)

≤ 16ℛ2. (E.31)

Proof of Lemma E.4. We first show (E.30). Fix any action 𝑘 such that 𝜂𝑘 ∈ [2 : 𝑞(𝑆,𝐾)].

We first consider the case of 𝑘 ∈ 𝐴
(1)
1 . By Line 3 to Line 12 of Algorithm 6.2, we know that every

action in 𝐴(1)
𝜂𝑘 (including action 𝑘) is chosen for

max

{︃⌊︃
𝑡
(1)
𝑙 /2− 𝑇

(2)
𝑙

|𝐴(1)
𝑙 |

⌋︃
, 𝑛

(2)
𝑙

}︃

rounds in each epoch 𝑙 ∈ [𝜂𝑘 − 1]. This implies

𝑁𝑘(𝑇
(2)
𝜂𝑘

) = 𝑁𝑘(𝑇
(1)
𝜂𝑘−1) ≤ 𝑇

(1)
𝜂𝑘−1/|𝐴(1)

𝜂𝑘
| ≤ 𝑡(2)𝜂𝑘 /|𝐴

(1)
𝜂𝑘

|, (E.32)

where the last inequality follows from (E.10). Moreover, we have

𝑁𝑘(𝑇
(1)
𝜂𝑘

) ≤ 𝑁𝑘(𝑇
(2)
𝜂𝑘

) + max

{︃⌊︃
𝑡
(1)
𝜂𝑘 /2− 𝑇

(2)
𝜂𝑘

|𝐴(1)
𝜂𝑘 |

⌋︃
, 𝑛(2)𝜂𝑘

}︃
≤ 𝑁𝑘(𝑇

(2)
𝜂𝑘

) +
max{𝑡(1)𝜂𝑘 /2, 𝑡

(2)
𝜂𝑘 }

|𝐴(1)
𝜂𝑘 |

≤
2𝑡

(2)
𝜂𝑘+1

|𝐴(1)
𝜂𝑘 |

,

where the last inequality follows from (E.32) and (E.9). By 𝑘⋆ ∈ 𝐴
(2)
𝑞(𝑆,𝐾)+1 ⊂ 𝐴

(2)
𝜂𝑘 and Lemma E.2,

we have

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1) = 𝑁𝑘⋆(𝑇

(2)
𝜂𝑘−1) ≥

𝑡
(2)
𝜂𝑘−1

32𝐾
, 𝑁𝑘(𝑇

(2)
𝜂𝑘

) ≥ 𝑡
(2)
𝜂𝑘

32𝐾
.

Therefore, we have

𝑁𝑘(𝑇
(2)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+
𝑁𝑘(𝑇

(1)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

≤ 𝑡
(2)
𝜂𝑘

|𝐴(1)
𝜂𝑘 |

√︃
32𝐾

𝑡
(2)
𝜂𝑘−1

+
2𝑡

(2)
𝜂𝑘+1

|𝐴(1)
𝜂𝑘 |

√︃
32𝐾

𝑡
(2)
𝜂𝑘

≤ 24

|𝐴(1)
𝜂𝑘 |

ℛ2.
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We then consider the case of 𝑘 ∈ 𝐴
(2)
1 . By Line 3 to Line 12 of Algorithm 6.2, we know that

action 𝑘 is chosen for 𝑛(2)𝑙 rounds in each epoch 𝑙 ∈ [𝜂𝑘 − 1], while every action in 𝐴𝜂𝑘 is chosen for
at least 𝑛(2)𝑙 rounds in each epoch 𝑙 ∈ [𝜂𝑘 − 1]. This implies

𝑁𝑘(𝑇
(1)
𝜂𝑘−1) ≤ 𝑇

(1)
𝜂𝑘−1/|𝐴𝜂𝑘 | ≤ 𝑡(2)𝜂𝑘 /|𝐴𝜂𝑘 |, (E.33)

where the last inequality follows from (E.10). Moreover, we have

𝑁𝑘(𝑇
(1)
𝜂𝑘

) = 𝑁𝑘(𝑇
(2)
𝜂𝑘

) ≤ 𝑁𝑘(𝑇
(1)
𝜂𝑘−1) + 𝑛(2)𝜂𝑘 ≤ 𝑁𝑘(𝑇

(1)
𝜂𝑘−1) +

𝑡
(2)
𝜂𝑘

|𝐴𝜂𝑘 |
≤ 2𝑡

(2)
𝜂𝑘

|𝐴𝜂𝑘 |
,

where the first equality utilizes 𝜂𝑘 ≤ 𝑞(𝑆,𝐾), and the last inequality follows from (E.33). By
𝑘⋆ ∈ 𝐴

(2)
𝑞(𝑆,𝐾)+1 ⊂ 𝐴

(2)
𝜂𝑘 and Lemma E.2, we have

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1) = 𝑁𝑘⋆(𝑇

(2)
𝜂𝑘−1) ≥

𝑡
(2)
𝜂𝑘−1

32𝐾
, 𝑁𝑘(𝑇

(2)
𝜂𝑘

) ≥ 𝑡
(2)
𝜂𝑘

32𝐾
.

Therefore, we have

𝑁𝑘(𝑇
(2)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+
𝑁𝑘(𝑇

(1)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

≤ 2𝑡
(2)
𝜂𝑘

|𝐴𝜂𝑘 |

√︃
32𝐾

𝑡
(2)
𝜂𝑘−1

+
2𝑡

(2)
𝜂𝑘

|𝐴𝜂𝑘 |

√︃
32𝐾

𝑡
(2)
𝜂𝑘

≤ 32

|𝐴(1)
𝜂𝑘 |

ℛ2.

We then show (E.31). We have

𝑇
(2)
𝑞(𝑆,𝐾)+1 = 𝑇

(1)
𝑞(𝑆,𝐾) + |𝐴(2)

𝑞(𝑆,𝐾)+1|

⎢⎢⎢⎣ 𝑡(2)𝑞(𝑆,𝐾)+1 − 𝑇
(1)
𝑞(𝑆,𝐾)

|𝐴𝑞(𝑆,𝐾)+1|

⎥⎥⎥⎦ ≤ 𝑡
(2)
𝑞(𝑆,𝐾)+1

(note that (E.10) guarantees 𝑡(2)𝑞(𝑆,𝐾)+1 ≥ 𝑇
(1)
𝑞(𝑆,𝐾)). By 𝑘⋆ ∈ 𝐴

(2)
𝑞(𝑆,𝐾)+1 ⊂ 𝐴

(2)
𝑞(𝑆,𝐾) and Lemma E.2,

we have

𝑁𝑘⋆(𝑇
(1)
𝑞(𝑆,𝐾)) = 𝑁𝑘⋆(𝑇

(2)
𝑞(𝑆,𝐾)) ≥

𝑡
(2)
𝑞(𝑆,𝐾)

32𝐾
, 𝑁𝑘(𝑇

(2)
𝑞(𝑆,𝐾)+1) ≥

𝑡
(2)
𝑞(𝑆,𝐾)+1

32𝐾
.

Therefore, we have

∑︁
𝑘∈𝐴𝑞(𝑆,𝐾)+1

𝑁𝑘(𝑇
(2)
𝑞(𝑆,𝐾)+1)√︁

𝑁𝑘⋆(𝑇
(1)
𝑞(𝑆,𝐾))

+
𝑁𝑘(𝑇 )√︁

𝑁𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1)

≤
𝑇

(2)
𝑞(𝑆,𝐾)+1√︁

𝑁𝑘⋆(𝑇
(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1)

≤
𝑡
(2)
𝑞(𝑆,𝐾)+1√︁

𝑁𝑘⋆(𝑇
(1)
𝑞(𝑆,𝐾))

+
𝑇√︁

𝑁𝑘⋆(𝑇
(2)
𝑞(𝑆,𝐾)+1)

≤ 𝑡
(2)
𝑞(𝑆,𝐾)+1

√︃
32𝐾

𝑡
(2)
𝑞(𝑆,𝐾)

+ 𝑇

√︃
32𝐾

𝑡
(2)
𝑞(𝑆,𝐾)+1

≤ 16ℛ2.

□
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For any 𝑘 ∈ [𝐾], define ℛ(𝑇 ; 𝑘) :=
∑︀𝑇
𝑡=1(𝜇

⋆ − 𝜇𝑘)1{𝑎𝑡 = 𝑘} = Δ(𝑘)𝑁𝑘(𝑇 ). If 𝜂𝑘 > 1, then
conditional on the events ℰ and ℰ2, we always have

𝑅(𝑇 ; 𝑘) = 𝑁𝑘(𝑇 )Δ(𝑘) = 𝑁𝑘(𝑇
(1)
𝜂𝑘

)Δ(𝑘)

≤ 𝑁𝑘(𝑇
(2)
𝜂𝑘

) · 4𝑟𝑘⋆(𝑇 (1)
𝜂𝑘−1) + (𝑁𝑘(𝑇

(1)
𝜂𝑘

)−𝑁𝑘(𝑇
(2)
𝜂𝑘

)) ·Δ(𝑘) (by (E.27))

≤ 𝑁𝑘(𝑇
(2)
𝜂𝑘

) · 4𝑟𝑘⋆(𝑇 (1)
𝜂𝑘−1) + (𝑁𝑘(𝑇

(1)
𝜂𝑘

)−𝑁𝑘(𝑇
(2)
𝜂𝑘

)) · 4𝑟𝑘⋆(𝑇 (2)
𝜂𝑘

) (by (E.28) & (E.29))

≤ 𝑁𝑘(𝑇
(2)
𝜂𝑘

)4

√︃
6 log 𝑇

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+𝑁𝑘(𝑇
(1)
𝜂𝑘

)4

√︃
6 log 𝑇

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

≤ 4
√︀
6 log 𝑇

⎛⎝ 𝑁𝑘(𝑇
(2)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+
𝑁𝑘(𝑇

(1)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

⎞⎠.
Moreover, we have

∑︁
𝑘:𝜂𝑘=1

𝑅(𝑇 ; 𝑘) ≤ 𝑇
(2)
1 +

∑︁
𝑘:𝜂𝑘=1

(𝑁𝑘(𝑇
(1)
1 )−𝑁𝑘(𝑇

(2)
1 )) ·Δ(𝑘)

≤ ℛ2 +
∑︁

𝑘:𝜂𝑘=1

(𝑁𝑘(𝑇
(1)
1 )−𝑁𝑘(𝑇

(2)
1 )) · 4𝑟𝑘⋆(𝑇 (2)

1 ) (by (E.28))

≤ ℛ2 + 4
√︀

6 log 𝑇
∑︁

𝑘:𝜂𝑘=1

𝑁𝑘(𝑇
(1)
1 )√︁

𝑁𝑘⋆(𝑇
(2)
1 )

≤ ℛ2 + 4
√︀

6 log 𝑇
𝑇

(1)
1√︁

𝑁𝑘⋆(𝑇
(2)
1 )

≤ ℛ2 + 4
√︀

6 log 𝑇𝑇
(1)
1

√︃
2𝐾

𝑡
(2)
1

(by 𝑁𝑘⋆(𝑇
(2)
1 ) = 𝑛

(2)
1 ≤ 𝑡

(2)
1

2𝐾 )

≤ ℛ2 + 8
√︀
6 log 𝑇ℛ2.

Therefore, for any 𝒟, conditional on the events ℰ and ℰ2, we have

𝑇𝜇⋆ −
𝑇∑︁
𝑡=1

𝜇𝑎𝑡 =
∑︁
𝑘∈[𝐾]

𝑅(𝑇 ; 𝑘) =
∑︁

𝑘:𝜂𝑘=1

𝑅(𝑇 ; 𝑘) +
∑︁

𝑘:𝜂𝑘>1

𝑅(𝑇 ; 𝑘)

≤ ℛ2 + 8
√︀
6 log 𝑇ℛ2 + 4

√︀
6 log 𝑇

⎛⎝ ∑︁
𝑘:𝜂𝑘>1

⎛⎝ 𝑁𝑘(𝑇
(2)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(1)
𝜂𝑘−1)

+
𝑁𝑘(𝑇

(1)
𝜂𝑘 )√︁

𝑁𝑘⋆(𝑇
(2)
𝜂𝑘 )

⎞⎠⎞⎠.
Combining the above inequality with Lemma E.4, we have

E𝜋𝒟

[︃
𝑇𝜇⋆ −

𝑇∑︁
𝑡=1

𝜇𝑎𝑡 | ℰ , ℰ2

]︃
≤ 𝒪(log𝐾

√︀
log 𝑇 )ℛ2. (E.34)

Putting everything together. Combining Eqs. (E.8), (E.25) and (E.34), we have

𝑅𝜋(𝑇 ) ≤ 𝒪(log𝐾
√︀
log 𝑇 ) ·max

{︂
𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾
ℛ1,ℛ2

}︂
. (E.35)
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Since ̂︀𝑟(𝑆,𝐾) ∈ [𝑟(𝑆,𝐾) + 1− 𝑞(𝑆,𝐾), 𝑟(𝑆,𝐾)] (note that 𝑞(𝑆,𝐾) ≥ 1), we have

1 ≤ 𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾 − 𝑟(𝑆,𝐾)
≤ 𝐾 − 𝑟(𝑆,𝐾)− 1 + 𝑞(𝑆,𝐾)

𝐾 − 𝑟(𝑆,𝐾)
= 1 +

𝑞(𝑆,𝐾)− 1

𝐾 − 𝑟(𝑆,𝐾)
≤ 𝑞(𝑆,𝐾).

If 𝑞(𝑆,𝐾) ≤ log2 log2(𝑇 ), then (E.35) implies the upper bound in Theorem 6.1 because

𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾
ℛ1 ≤

(︂
𝐾 − ̂︀𝑟(𝑆,𝐾)

𝐾 − 𝑟(𝑆,𝐾)

)︂2

· (𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

≤ (𝑞(𝑆,𝐾))2 · (𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

≤ 10
√︀
log2 𝑇 · (𝐾 − 𝑟(𝑆,𝐾))

2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

and ℛ2 = 𝐾
1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1 . If 𝑞(𝑆,𝐾) ≥ log2 log2(𝑇 ), then the right-hand side of
(E.35) is 𝒪(log𝐾

√
log 𝑇 ) ·

√
𝐾𝑇 because

ℛ1 ≤ (𝐾 − ̂︀𝑟(𝑆,𝐾))(𝑇/(𝐾 − ̂︀𝑟(𝑆,𝐾)))
1

2−2− log2 log2(𝑇 ) ≤
√︀

2(𝐾 − ̂︀𝑟(𝑆,𝐾))𝑇 ≤
√
2𝐾𝑇,

ℛ2 ≤ 𝐾(𝑇/𝐾)
1

2−2− log2 log2(𝑇 )−1 ≤
√
2𝐾𝑇,

which also implies the upper bound in Theorem 6.1. Therefore, we finish the proof of Theorem 6.1.
□

E.9 Proof of Theorem 6.3

Consider an arbitrary switching graph 𝐺 whose switching costs satisfy the triangle inequality. Recall
that 𝐻 is the total weight of the shortest Hamiltonian path in 𝐺.

E.9.1 The HS-SE Policy is Indeed an 𝑆-Switching-Budget Policy

From round 1 to round 𝑡1, HS-SE incurs 𝐻 switching cost.

For 1 ≤ 𝑙 ≤ 𝑞′(𝑆,𝐺) − 1, from round 𝑡𝑙 to round 𝑡𝑙+1, no matter whether 𝑙 is odd or even, no
matter whether the last action in epoch 𝑙 is eliminated before the start of epoch 𝑙 + 1 or not, by
the switching order (determined by the shortest Hamiltonian path of 𝐺) and the triangle inequality,
HS-SE always incurs at most 𝐻 switching cost.

From round 𝑡𝑞′(𝑆,𝐺) to round 𝑇 , since HS-SE does not switch within epoch 𝑞′(𝑆,𝐺) + 1, i.e., from
round 𝑡𝑞′(𝑆,𝐺) + 1 to round 𝑇 , the only possible switch is between round 𝑡𝑞′(𝑆,𝐺) and 𝑡𝑞′(𝑆,𝐺) + 1.
Thus HS-SE incurs at most max𝑖,𝑗∈[𝑘] 𝑐𝑖,𝑗 switching cost from round 𝑡𝑞′(𝑆,𝐺) to round 𝑇 .

Summarizing the above arguments, we find that HS-SE incurs at most 𝑞′(𝑆,𝐺)𝐻+max𝑖,𝑗∈[𝑘] 𝑐𝑖,𝑗 ≤
𝑆 switching cost from round 1 to round 𝑇 . Thus it is indeed an 𝑆-switching-budget policy.

E.9.2 Proof of Upper Bound

The proof is essentially the same as Appendix E.7.2, with 𝑞(𝑆,𝐾) replaced by 𝑞′(𝑆,𝐺). □
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E.10 Proof of the Upper Bound in Theorem 6.5

Consider an arbitrary 𝑐 ∈ R𝐾≥0. Recall that 𝑖𝐾 ∈ argmax𝑖∈[𝐾] 𝑐𝑖, 𝑖1 ∈ argmax𝑖∈[𝐾]∖{𝑖1} 𝑐𝑖, 𝑐
(1) =

max𝑖∈[𝐾] = 𝑐𝑖𝐾 , 𝑐(2) = max𝑖 ̸=𝑖𝐾 𝑐𝑖 = 𝑐𝑖1 , and Σ =
∑︀𝐾
𝑖=1 𝑐𝑖.

E.10.1 The AS-SE Policy is Indeed an 𝑆-Switching-Budget Policy

From round 1 to round 𝑇 , by the switching order specified in Algorithm 6.4, AS-SE departs from
action 𝑖𝐾 for at most

⌈︁
𝑞(𝑆,𝑐)

2

⌉︁
times, departs from action 𝑖1 for at most

⌊︁
𝑞(𝑆,𝑐)

2

⌋︁
+ 1 times, and

departs from every other action for at most 𝑞(𝑆, 𝑐) times. The total switching cost is no larger than⌈︂
𝑞(𝑆, 𝑐)

2

⌉︂
𝑐(1) +

(︂⌊︂
𝑞(𝑆, 𝑐)

2

⌋︂
+ 1

)︂
𝑐(2) + 𝑞(𝑆, 𝑐)

∑︁
𝑖∈[𝐾]∖{𝑖1,𝑖𝐾}

𝑐𝑖. (E.36)

If 𝑞(𝑆, 𝑐) = max
{︁
1 + 2

⌊︁
𝑆−Σ

2Σ−𝑐(1)−𝑐(2)

⌋︁
, 2
⌊︁

𝑆−𝑐(2)
2Σ−𝑐(1)−𝑐(2)

⌋︁}︁
= 1 + 2

⌊︁
𝑆−Σ

2Σ−𝑐(1)−𝑐(2)

⌋︁
, then (E.36) is equal

to (︂
1 +

⌊︂
𝑆 − Σ

2Σ− 𝑐(1) − 𝑐(2)

⌋︂)︂(︁
𝑐(1) + 𝑐(2)

)︁
+

(︂
1 + 2

⌊︂
𝑆 − Σ

2Σ− 𝑐(1) − 𝑐(2)

⌋︂)︂(︁
Σ− 𝑐(1) − 𝑐(2)

)︁
= Σ+

⌊︂
𝑆 − Σ

2Σ− 𝑐(1) − 𝑐(2)

⌋︂(︁
2Σ− 𝑐(1) − 𝑐(2)

)︁
≤ Σ+ 𝑆 − Σ = 𝑆.

If 𝑞(𝑆, 𝑐) = max
{︁
1 + 2

⌊︁
𝑆−Σ

2Σ−𝑐(1)−𝑐(2)

⌋︁
, 2
⌊︁

𝑆−𝑐(2)
2Σ−𝑐(1)−𝑐(2)

⌋︁}︁
= 2
⌊︁

𝑆−𝑐(2)
2Σ−𝑐(1)−𝑐(2)

⌋︁
, then (E.36) is equal to

⌊︂
𝑆 − 𝑐(2)

2Σ− 𝑐(1) − 𝑐(2)

⌋︂(︁
𝑐(1) + 𝑐(2)

)︁
+ 𝑐(2) + 2

⌊︂
𝑆 − 𝑐(2)

2Σ− 𝑐(1) − 𝑐(2)

⌋︂(︁
Σ− 𝑐(1) − 𝑐(2)

)︁
= 𝑐(2) +

⌊︂
𝑆 − 𝑐(2)

2Σ− 𝑐(1) − 𝑐(2)

⌋︂(︁
2Σ− 𝑐(1) − 𝑐(2)

)︁
≤ 𝑐(2) + 𝑆 − 𝑐(2) = 𝑆.

Therefore, AS-SE is indeed an 𝑆-switching-budget policy.

E.10.2 Proof of Upper Bound

The proof is essentially the same as Appendix E.7.2, with 𝑞(𝑆,𝐾) replaced by 𝑞(𝑆, 𝑐). □
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E.11 Information-Theoretic Tools

In this section, we introduce our information-theoretic tools.

For any two probability measures P and Q defined on the same measurable space (Ω,ℱ), let
𝐷TV(P‖Q) := sup𝐸∈ℱ |P(𝐸)−Q(𝐸)| denote the total variation distance between P and Q. We write
P << Q to indicate that P is absolutely continuous with respect to Q, and

𝐷KL(P‖Q) :=

⎧⎨⎩
∫︀
Ω
log
(︁
𝑑P
𝑑Q

)︁
𝑑P, if P << Q,

+∞, otherwise.

be the Kullback-Leibler (KL) divergence between P and Q. Furthermore, let

𝐷re(P ‖ Q) := 𝐷KL(Q ‖ P)

be the reverse KL divergence between P and Q. For any 𝑝, 𝑞 ∈ [0, 1], let

𝑑TV(𝑝 ‖ 𝑞) := 𝐷TV(Ber(𝑝) ‖ Ber(𝑞)),

𝑑KL(𝑝 ‖ 𝑞) := 𝐷TV(Ber(𝑝) ‖ Ber(𝑞)) = 𝑝 log(
𝑝

𝑞
) + (1− 𝑝) log(

1− 𝑝

1− 𝑞
),

𝑑re(𝑝 ‖ 𝑞) := 𝐷re(Ber(𝑝) ‖ Ber(𝑞)) = 𝑞 log(
𝑞

𝑝
) + (1− 𝑞) log(

1− 𝑞

1− 𝑝
),

where Ber(𝑝) stands for the Bernoulli distribution with mean 𝑝. More generally, for any divergence
denoted by 𝐷(· ‖ ·), let

𝑑(𝑝 ‖ 𝑞) := 𝐷(Ber(𝑝) ‖ Ber(𝑞)).

E.11.1 Reverse Fano-Type Inequalities

We first introduce a basic version of the reverse Fano-type inequality below.

Proposition E.3 (Reverse Fano-Type Inequality). Let 𝐷 be the KL divergence or the reverse KL
divergence. Let P1, . . . ,P𝑁 and Q be arbitrary probability measures on a common measurable space
(Ω,ℱ). For any measurable function 𝜓 : Ω ↦→ [𝑁 ], we have

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝜓 = 𝑖) ≥ 1

𝑁
− 1

𝑁

⎯⎸⎸⎷2

(︂
1− 1

𝑁

)︂ 𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q). (E.37)

More generally, let Q1, . . . ,Q𝑁 be arbitrary probability measures on (Ω,ℱ). For any sequence of
events 𝐸1, . . . , 𝐸𝑁 ∈ ℱ (not necessarily disjoint), if 𝑞 := 1

𝑁

∑︀𝑁
𝑖=1 Q𝑖(𝐸𝑖) ∈ [0, 12 ], then

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≥ 𝑞 −

⎯⎸⎸⎷2𝑞(1− 𝑞)
1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖). (E.38)

To the best of our knowledge, both (E.37) and (E.38) are new. Note that the classical Fano’s
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inequality (E.1) provides a lower bound on the minimum “average error probability”

inf
𝜓

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝜓 ̸= 𝑖).

Our inequality (E.37) provides a sharp upper bound on the maximum “average error probability”

sup
𝜓

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝜓 ̸= 𝑖),

thus can be viewed as a reverse version of the classical Fano’s inequality. Our inequality (E.38)
further generalizes (E.37) to arbitrary events.

Remark 1. While there are some existing inequalities sometimes referred to as “reverse Fano’s
inequalities” in the literature (e.g., Chu and Chueh 1966, Tebbe and Dwyer 1968), they are very
different from (E.37), as all of them only provide an upper bound on inf𝜓

1
𝑁

∑︀𝑁
𝑖=1 P𝑖(𝜓 ≠ 𝑖) rather

than sup𝜓
1
𝑁

∑︀𝑁
𝑖=1 P𝑖(𝜓 ̸= 𝑖), i.e., their upper bound only holds for the minimax test and does not

hold for an arbitrary test 𝜑. For this reason, we call the inequalities in Proposition E.3 “reverse
Fano-type inequalities” to distinguish them from the existing “reverse Fano’s inequalities” in the
literature.

Remark 2. Gerchinovitz et al. (2020) provide a very general framework to derive Fano-type
inequalities, and their results imply two related inequalities. In the setting of (E.37), their results in
their Section 4.2 imply

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝜓 = 𝑖) ≥ 1

𝑁
−

⎯⎸⎸⎷ 1

𝑁 log𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q),

which is worse than our (E.37) by a 1√
𝑁

factor — importantly, this worse result cannot help us to
obtain a tight lower bound for U-BwSC whenever 𝐾 − 𝑟(𝑆,𝐾) = 𝑜(𝐾). In the setting of (E.38),
Gerchinovitz et al. (2020) show that

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≥ 1−
1
𝑁

∑︀𝑁
𝑖=1𝐷KL(P𝑖 ‖ Q) + log 2

log
(︁

1
1−𝑞

)︁ .

However, this bound becomes meaningless under our condition 𝑞 ∈ [0, 12 ]. In other words, this bound
is only useful for proving lower bounds for “high-probability events” rather than “low-probability
events” — the latter is required in the proof of U-BwSC lower bounds.

E.11.2 Generalized Reverse Fano-Type Inequalities

In this subsection, we introduce a more general version of the inequalities in Proposition E.3, which
enjoy several advantages as described in Appendix E.4. We then give the proof.

Proposition E.4 (Generalized Reverse Fano-Type Inequality). Let 𝐷 be the KL divergence or the
reverse KL divergence. Let (Ω1,ℱ1), . . . , (Ω𝑁 ,ℱ𝑁 ) be an arbitrary sequence of measurable spaces.
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For any 𝑖 ∈ [𝑁 ], let P𝑖 and Q𝑖 be arbitrary probability measures on (Ω𝑖,ℱ𝑖), and 𝐸𝑖 ∈ ℱ𝑖 be an
arbitrary event. We have

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≥
1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖)−

⎯⎸⎸⎷2 · 1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖) ·
1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖). (E.39)

Moreover, if 𝑞 := 1
𝑁

∑︀𝑁
𝑖=1 Q𝑖(𝐸𝑖) ∈ [0, 12 ], then we have a slightly tighter bound

1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ≥ 𝑞 −

⎯⎸⎸⎷2𝑞(1− 𝑞) · 1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖). (E.40)

Proof of Proposition E.4. Our proof builds on a two-step procedure established by Gerchinovitz et al.
(2020), with a few key modifications in the second step to obtain sharper one-sided inequalities.

Our first step is a reduction to Bernoulli distributions. By the joint convexity of general
𝑓 -divergences, we have

𝑑

(︃
1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ‖
1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖)

)︃
≤ 1

𝑁

𝑁∑︁
𝑖=1

𝑑(P𝑖(𝐸𝑖) ‖ Q𝑖(𝐸𝑖)) =
1

𝑁

𝑁∑︁
𝑖=1

𝑑(P𝑖(𝐸𝑖) ‖ Q𝑖(𝐸𝑖)).

Note that the above inequality holds even if P1, . . . ,P𝑁 are on different measurable spaces. For
all 𝑖 ∈ [𝑁 ], since Ber(P𝑖(𝐸𝑖)) (resp., Ber(Q𝑖(𝐸𝑖))) is the law of 1𝐸𝑖 under P𝑖 (resp., Q𝑖), using the
data-processing inequality for 𝑓 -divergences (see, e.g., Lemma 1 in Gerchinovitz et al. 2020), we have

𝑑(P𝑖(𝐸𝑖) ‖ Q𝑖(𝐸𝑖)) = 𝐷(Ber(P𝑖(𝐸𝑖)) ‖ Ber(Q𝑖(𝐸𝑖))) ≤ 𝐷(P′
𝑖 ‖ Q′

𝑖).

Thus we have

𝑑

(︃
1

𝑁

𝑁∑︁
𝑖=1

P𝑖(𝐸𝑖) ‖
1

𝑁

𝑁∑︁
𝑖=1

Q𝑖(𝐸𝑖)

)︃
≤ 1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖).

Let 𝑝 := 1
𝑁

∑︀𝑁
𝑖=1 P𝑖(𝐴𝑖), we have

𝑑𝑓 (𝑝 ‖ 𝑞) ≤
1

𝑁

𝑁∑︁
𝑖=1

𝐷(P𝑖 ‖ Q𝑖). (E.41)

In the second step, we lower bound 𝑑(𝑝 ‖ 𝑞) to extract a lower bound on 𝑝. When 𝐷 is restricted
to be the KL divergence or the reverse KL divergence, Lemma E.5 and Lemma E.6, we have

𝑑(𝑝 ‖ 𝑞) ≥ (𝑝− 𝑞)
2

2𝑞

for all 𝑞 ∈ [0, 1) and

𝑑(𝑝 ‖ 𝑞) ≥ (𝑝− 𝑞)
2

2𝑞(1− 𝑞)

for all 𝑞 ∈ [0, 12 ]. Note that Lemma E.5 and Lemma E.6 provide “localized” versions of the Pinsker’s
inequality that substantially improves over existing “global” variants of the Pinsker’s inequality by
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exploiting the one-sided condition 𝑝 ≤ 𝑞 (see the remarks after Lemma E.5 and Lemma E.6). Such
improvement is critical for our second step and enables us to obtain tight one-sided inequalities about
𝑝 (with improved dependence on 𝑞), which we describe below:

• If 𝑝 /∈ [0, 𝑞], then 𝑝 ≥ 𝑞.

• If 𝑝 ∈ [0, 𝑞], then we have

𝑑(𝑝 ‖ 𝑞) ≥ (𝑝− 𝑞)
2

2𝑞
,

which implies 𝑝 ≥ 𝑞 −
√︀
2𝑞𝑑(𝑝 ‖ 𝑞).

Therefore, no matter 𝑝 ∈ [0, 𝑞] or not, we always have

𝑝 ≥ 𝑞 −
√︁
2𝑞𝑑𝑓 (𝑝 ‖ 𝑞). (E.42)

The above inequality can be improved to 𝑝 ≥ 𝑞 −
√︀
2𝑞(1− 𝑞)𝑑(𝑝 ‖ 𝑞) when 𝑞 ∈ [0, 12 ].

By (E.41), we prove (E.39). □

E.11.3 Localized Pinsker’s Inequalities

Lemma E.5 (Localized Pinsker’s Inequality). If 0 ≤ 𝑝 ≤ 𝑞 ≤ 1
2 or 1

2 ≤ 𝑞 ≤ 𝑝 ≤ 1, then

𝑑KL(𝑝 ‖ 𝑞) ≥
(𝑝− 𝑞)2

2𝑞(1− 𝑞)
and 𝑑KL(𝑞 ‖ 𝑝) ≥

(𝑝− 𝑞)2

2𝑞(1− 𝑞)
.

Proof of Lemma E.5. If 𝑝 = 𝑞 = 0 or 𝑝 = 𝑞 = 1, then 𝑑KL(𝑝 ‖ 𝑞) = 𝑑KL(𝑞 ‖ 𝑝) = 0 = (𝑝−𝑞)2
2𝑞(1−𝑞) . In the

rest of the proof, we fix 𝑞 ∈ (0, 1).

We first define

𝑔(𝑥) := kl(𝑥, 𝑞)− (𝑥− 𝑞)2

2𝑞(1− 𝑞)
= 𝑥 log

𝑥

𝑞
+ (1− 𝑥) log

1− 𝑥

1− 𝑞
− (𝑥− 𝑞)2

2𝑞(1− 𝑞)

for all 𝑥 ∈ [0, 1]. We have

𝑔′(𝑥) = log

(︂
𝑥

1− 𝑥

1− 𝑞

𝑞

)︂
− 𝑥− 𝑞

𝑞(1− 𝑞)
,

𝑔′′(𝑥) =
1

𝑥(1− 𝑥)
− 1

𝑞(1− 𝑞)
.

We discuss two cases:

• If 𝑞 ≤ 1
2 , then 𝑔′′(𝑥) ≥ 0 for all 𝑥 ∈ (0, 𝑞]. Furthermore, since 𝑔′(𝑞) = 0, we have 𝑔′(𝑥) ≤ 0 for all

𝑥 ∈ (0, 𝑞), which implies that 𝑔(𝑥) ≥ 𝑔(𝑞) = 0 for all 𝑥 ∈ [0, 𝑞]. Thus 𝑔(𝑝) = kl(𝑝, 𝑞)− (𝑝−𝑞)2
2𝑞(1−𝑞) ≥ 0

when 0 ≤ 𝑝 ≤ 𝑞 ≤ 1
2 .

• If 𝑞 ≥ 1
2 , then 𝑔′′(𝑥) ≥ 0 for all 𝑥 ∈ [𝑞, 1). Furthermore, since 𝑔′(𝑞) = 0, we have 𝑔′(𝑥) ≥ 0 for all

𝑥 ∈ (𝑞, 1), which implies that 𝑔(𝑥) ≥ 𝑔(𝑞) = 0 for all 𝑥 ∈ [𝑞, 1]. Thus 𝑔(𝑝) = kl(𝑝, 𝑞)− (𝑝−𝑞)2
2𝑞(1−𝑞) ≥ 0

when 1
2 ≤ 𝑞 ≤ 𝑝 ≤ 1.
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We then define

𝑔(𝑥) := kl(𝑞, 𝑥)− (𝑥− 𝑞)2

2𝑞(1− 𝑞)
= 𝑞 log

𝑞

𝑥
+ (1− 𝑞) log

1− 𝑞

1− 𝑥
− (𝑥− 𝑞)2

2𝑞(1− 𝑞)

for all 𝑥 ∈ (0, 1). We have

𝑔′(𝑥) =
𝑥− 𝑞

𝑥(1− 𝑥)
− 𝑥− 𝑞

𝑞(1− 𝑞)
=

(𝑥+ 𝑞 − 1)(𝑥− 𝑞)2

𝑥(1− 𝑥)𝑞(1− 𝑞)
.

We discuss two cases:

• If 𝑞 ≤ 1
2 , then 𝑥+ 𝑞− 1 ≤ 0 and 𝑔′(𝑥) ≤ 0 for all 𝑥 ∈ (0, 𝑞], which implies that 𝑔(𝑥) ≥ 𝑔(𝑞) = 0

for all 𝑥 ∈ (0, 𝑞]. Thus 𝑔(𝑝) = kl(𝑞, 𝑝)− (𝑝−𝑞)2
𝑞(1−𝑞) ≥ 0 when 0 ≤ 𝑝 ≤ 𝑞 ≤ 1

2 .

• If 𝑞 ≥ 1
2 , then 𝑥+ 𝑞− 1 ≥ 0 and 𝑔′(𝑥) ≥ 0 for all 𝑥 ∈ [𝑞, 1), which implies that 𝑔(𝑥) ≥ 𝑔(𝑞) = 0

for all 𝑥 ∈ (𝑞, 1]. Thus 𝑔(𝑝) = kl(𝑞, 𝑝)− (𝑝−𝑞)2
𝑞(1−𝑞) ≥ 0 when 1

2 ≤ 𝑞 ≤ 𝑝 ≤ 1.

To sum up, if 0 ≤ 𝑝 ≤ 𝑞 ≤ 1
2 or 1

2 ≤ 𝑞 ≤ 𝑝 ≤ 1, then kl(𝑝, 𝑞) ≥ (𝑝−𝑞)2
2𝑞(1−𝑞) and kl(𝑞, 𝑝) ≥ (𝑝−𝑞)2

2𝑞(1−𝑞) . □

Lemma E.6 (Localized Pinsker’s Inequality, version 2). If 0 ≤ 𝑝 ≤ 𝑞 ≤ 1, then

𝑑KL(𝑝 ‖ 𝑞) ≥
(𝑝− 𝑞)2

2𝑞
and 𝑑KL(𝑞 ‖ 𝑝) ≥

(𝑝− 𝑞)2

2𝑞
.

Lemma E.6 is a corollary of Lemma A.2 in Talebi Mazraeh Shahi (2017). It has a slightly worse
constant compared with Lemma E.5, but holds for a more general range of 𝑞.

Remark. The classical Pinsker’s inequality (see, e.g., Lemma 2.5 in Tsybakov 2009) for Bernoulli
distributions states that

𝑑KL(𝑝 ‖ 𝑞) ≥ 2(𝑑TV(𝑝 ‖ 𝑞))2 = 2(𝑝− 𝑞)2

for all 𝑝, 𝑞 ∈ [0, 1]. Many improvements and generalizations of the Pinsker’s inequality have been
obtained in the literature, including the “refined Pinsker’s inequality” by Ordentlich and Weinberger
(2005), which states that

𝑑KL(𝑝 ‖ 𝑞) ≥
log((1− 𝑞)/𝑞)

1− 2𝑞
(𝑝− 𝑞)2

for all 𝑝, 𝑞 ∈ [0, 1]. The above bounds become substantially weaker than the (𝑝−𝑞)2
2𝑞(1−𝑞) bound in

Lemma E.5 and the (𝑝−𝑞)2
2𝑞 bound in Lemma E.6 as 𝑞 gets closer to 0, i.e., they lose an ̃︀𝑂(1/𝑞) factor

when 𝑞 → 0. In fact, all variants of the Pinsker’s inequality that seek to establish a global bound
which holds for all 𝑝, 𝑞 ∈ [0, 1] must lose such a huge factor compared with Lemmas E.5 and E.6, thus
are loose for our purpose (note that Lemmas E.5 and E.6 critically utilizes the one-sided condition:
𝑝 ≤ 𝑞). It is also worth noting that Lemmas E.5 and E.6 hold for not only the KL divergence
𝑑KL(𝑝 ‖ 𝑞) but also the reverse KL divergence 𝑑re(𝑝 ‖ 𝑞). This feasture is crucial for us to prove
Proposition E.4 and establish tight lower bounds on the regret of the BwSC problem.

E.12 Proof of Theorem 6.2

For an overview of the proof, see Appendix E.4.2.
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Given any 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 2𝐾, we focus on the setting of 𝒟𝑘 = 𝒩 (𝜇𝑘, 1) (∀𝑘 ∈ [𝐾]), as
this is sufficient for us to prove the desired lower bound. Note that now the underlying environment
(i.e., latent distributions) 𝒟 can be completely determined by a vector 𝜇 = (𝜇1, · · · , 𝜇𝐾) ∈ R𝐾 . For
simplicity, in this proof we will directly use the vector 𝜇 to represent the environment.

For any environment 𝜇, let 𝑋𝑡
𝜇(𝑘) ∼ 𝒩 (𝜇𝑘, 1) denote the i.i.d. random reward of each action

𝑘 at round 𝑡 (𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ]). For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, for any 𝑡 ∈ [𝑇 ], we
use 𝑎𝑡 to denote the random action selected by policy 𝜋 at round 𝑡 under environment 𝜇, and use
𝑋𝑡

𝜇(𝑎𝑡) to denote the random reward observed by policy 𝜋 at round 𝑡 under environment 𝜇. Let
ℋ𝑡 :=

(︀(︀
𝑎1, 𝑋

1
𝜇(𝑎1)

)︀
, . . . ,

(︀
𝑎𝑡, 𝑋

𝑡
𝜇(𝑎𝑡)

)︀)︀
be the history (of actions and observations) up to round 𝑡

(inclusive), whose value lies in Ω𝑡 := ([𝐾]× R)𝑡. Let ℱ𝑡 := ℬ(Ω𝑡) be the Borel 𝜎-algebra on Ω𝑡. Let
P𝜋𝜇 be the probability measure induced by (i.e., the law of) ℋ𝑇 , and E𝜋𝜇 be the associated expectation
operator. Let 𝑅𝜋𝜇(𝑇 ) := 𝑇𝜇⋆ − E𝜋𝜇

[︁∑︀𝑇
𝑡=1 𝜇𝑎𝑡

]︁
be policy 𝜋’s distribution-dependent regret under

environment 𝜇.

We argue that in our proof, we only need to consider the case of 𝑞(𝑆,𝐾) + 2 ≤ log2 log2(𝑇/𝐾).
Suppose 𝑞(𝑆,𝐾) + 2 > log2 log2(𝑇/𝐾), then we have

𝐾
1− 1

2−2−𝑞(𝑆,𝐾) 𝑇
1

2−2−𝑞(𝑆,𝐾) = 𝐾(𝑇/𝐾)
1

2−2−𝑞(𝑆,𝐾)

= 𝐾(𝑇/𝐾)
1
2 (𝑇/𝐾)

2−𝑞(𝑆,𝐾)−1

2−2−𝑞(𝑆,𝐾)

≤
√
𝐾𝑇 (𝑇/𝐾)2

−𝑞(𝑆,𝐾)−1

<
√
𝐾𝑇 (𝑇/𝐾)2

− log2 log2(𝑇/𝐾)+1

=
√
𝐾𝑇 (𝑇/𝐾)2log𝑇/𝐾(2) = 4

√
𝐾𝑇,

thus the lower bound in Theorem 6.2 becomes Ω(
√
𝐾𝑇/ log 𝑇 ) and can be directly obtained by

applying the well-known Ω(
√
𝐾𝑇 ) lower bound of the classical MAB (see, e.g., Lattimore and Szepesvári

2020). Therefore, the really non-trivial case of Theorem 6.2 is the case of 𝑞(𝑆,𝐾)+2 ≤ log2 log2(𝑇/𝐾),
and we focus on this case in the rest of our proof.

Our goal is to explicitly construct a family of environments Φ, such that for any 𝑆-switching-budget
policy 𝜋 ∈ Π𝑆 , the “average-case regret” 1

|Φ|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ) is lower bounded by both

̃︀Ω(︃ (𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

)︃
(E.43)

and ̃︀Ω(︁𝐾1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

)︁
. (E.44)

Since the worst-case regret 𝑅𝜋(𝑇 ) is no less than the “average-case regret” 1
|Φ|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ), the

above goal directly implies Theorem 6.2. In our proof, we construct two classes of environments Φ1

and Φ2 to show the lower bounds (E.43) and (E.44) respectively.

For notational simplicity, we redefine the sequence (𝑡
(1)
𝑗 )

𝑞(𝑆,𝐺)+1
𝑗=0 as 𝑡(1)0 = 0 and

𝑡
(1)
𝑗 =

⌊︂
(𝐾 − 𝑟(𝑆,𝐾))

1− 2−21−𝑗

2−2−𝑞(𝑆,𝐾) 𝑇
2−21−𝑗

2−2−𝑞(𝑆,𝐾)

⌋︂
, ∀𝑗 = 1, . . . , 𝑞(𝑆,𝐾) + 1. (E.45)
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Note that the above definition is slightly different from the definition of (𝑡(1)𝑗 )
𝑞(𝑆,𝐾)+1
𝑗=0 in Algorithm 6.2

(specifically, ̂︀𝑟(𝑆,𝐾) is replaced by 𝑟(𝑆,𝐾)) — we only use the above definition in this proof, for
the purpose of making the analysis cleaner.65 Meanwhile, we keep the definition of the sequence
(𝑡

(2)
𝑗 )

𝑞(𝑆,𝐾)+2
𝑗=0 the same as the original definition of (𝑡(2)𝑗 )

𝑞(𝑆,𝐾)+2
𝑗=0 in Algorithm 6.2.

Our lower bound proof program consists of five steps:

1. Risky Events

2. Combinatorial arguments and lower bounds under a single environment

3. Alternative environments, bad events, and lower bound reductions

4. Probability space changing tricks

5. Applying the GRF inequality

Based on the initials of the first four steps, we call the program RECAP. We present the five steps in
the five subsections below.

E.12.1 Definitions of Risky Events

For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, we make some key definitions below.
1. For any 𝑛1, 𝑛2 ∈ [𝑇 ], we define a random variable 𝑆(𝑛1, 𝑛2) to be the total switching cost

incurred in period [𝑛1 : 𝑛2] (note that if there is a switch happening between round 𝑛1 − 1 and round
𝑛1, or between round 𝑛2 and round 𝑛2 + 1, we do not count its cost in 𝑆(𝑛1, 𝑛2)).

2. Second, we define a stopping time

𝜏 := min{𝑡 ∈ [𝑇 ] : 𝑆(1 : 𝑡) = 𝑆}

if the set is non-empty and 𝜏 = ∞ otherwise. That is, 𝜏 is the first round that the learner’s total
switching cost reaches 𝑆.

3. We define a class of risky events as follows: for any 𝑘 ∈ [𝐾], let
𝐸

(1)
1,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
1 : 𝑡

(1)
1

]︁}︁
,

𝐸
(1)
𝑗,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

]︁}︁
, ∀𝑗 ∈ [2 : 𝑞(𝑆,𝐾)],

𝐸
(1)
𝑞(𝑆,𝐾)+1,𝑘

:=
{︁

action 𝑘 is not chosen in period
[︁
𝑡
(1)
𝑞(𝑆,𝐾) : ⌊(𝑡

(1)
𝑞(𝑆,𝐾) + 𝑇 )/2⌋

]︁}︁
,

𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘

:=
{︁
𝜏 ≤ ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝜏 − 1

]︁}︁
.

By doing so, we get (𝑞(𝑆,𝐾) + 2)𝐾 risky events (of the form 𝐸
(1)
𝑗,𝑘 ) in total. Note that the time

points (𝑡
(1)
𝑗 )

𝑞(𝑆,𝐾)+1
𝑗=1 are fixed and given in (E.45), and the events (𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘)𝑘∈[𝐾] are defined

based on the stopping time 𝜏 . We refer to the above class of risky events as “the first class of risky
events,” and will use them to prove the lower bound (E.43).

4. We then define another class of risky events: for any 𝑘 ∈ [𝐾], let
𝐸

(2)
1,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
1 : 𝑡

(2)
1

]︁}︁
,

65The quantity ̂︀𝑟(𝑆,𝐾) is introduced in Algorithm 6.2 (as a “proxy” of 𝑟(𝑆,𝐾)) to help us control the total
number of switches more conveniently. In the lower bound analysis, directly dealing with 𝑟(𝑆,𝐾) (rather
than the algorithmic proxy ̂︀𝑟(𝑆,𝐾)) is better because 𝑟(𝑆,𝐾) is the quantity that actually appears in the
regret bound.
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𝐸
(2)
𝑗,𝑘 :=

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

]︁}︁
, ∀𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 2].

By doing so, we get (𝑞(𝑆,𝐾) + 2)𝐾 risky events (of the form 𝐸
(2)
𝑗,𝑘 ) in total. Note that the time

points (𝑡
(2)
𝑗 )

𝑞(𝑆,𝐾)+1
𝑗=1 are fixed and given in Algorithm 6.2. We refer to the above class of risky events

as “the second class of risky events,” and will use them to prove the lower bound (E.44).

Remark. Note that in the first class of risky events, the events (𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘)𝑘∈[𝐾] are defined

based on the stopping time 𝜏 . Such delicate design is crucial for our analysis — the importance
should become clear quite soon. In particular, if we do not define the events (𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘)𝑘∈[𝐾] in

this step, but only define the events (𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘)𝑗∈[𝑞(𝑆,𝐾)+1],𝑘∈[𝐾] (which do not involve 𝜏), then in

the next step, we can only show

∑︁
𝑗∈[𝑞(𝑆,𝐾)+1]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ 𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 1

⌋︂

for Lemma E.7, which is unfortunately a meaningless result when 𝑆%(𝐾 − 1) = 0 (i.e., when 𝑆 is at
the end of a “phase” defined in Section 6.3.4), as the right-hand side 𝐾 − 1−

⌊︁
𝑆

𝑞(𝑆,𝐾)+1

⌋︁
becomes 0

when 𝑆%(𝐾 − 1) = 0 — this issue will eventually prevent us from making the floor function
⌊︁
𝑆−1
𝐾−1

⌋︁
appear in the lower bound. By contrast, by defining the events (𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘)𝑘∈[𝐾] based on 𝜏 , we

are able to show ∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ 𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
for Lemma E.7. Importantly, the right-hand side is always no less than 1 — this property will play a
fundamental role in subsequent analysis.

E.12.2 Combinatorial Arguments and Lower Bounds for Risky Events
(Under a Single Environment)

The main purpose of this subsection is to prove the following two lemmas (Lemma E.7 and Lemma E.8)
using (non-trivial) combinatorial (and probabilistic) arguments. The arguments extensively exploit
the properties of the switching constraint.

Lemma E.7. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ 𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
.

Lemma E.8. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(2)
𝑗,𝑘

)︁
≥ 𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂
.

Lemma E.7 and Lemma E.8 lead to the following corollary, which will be utilized in subsequent
subsections.
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Corollary E.2. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ 𝐾 − 𝑟(𝑆,𝐾)

2(𝑞(𝑆,𝐾) + 2)2𝐾
,

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(2)
𝑗,𝑘

)︁
≥ 1

2(𝑞(𝑆,𝐾) + 2)2
.

Corollary E.2 tells us the following fact: under any single environment 𝜇, the average probability
of the first class of risky events is ̃︀Ω(︁𝐾−𝑟(𝑆,𝐾)

𝐾

)︁
, and the average probability of the second class of

risky events is ̃︀Ω(1).
In the rest of this subsection, we provide proofs for Lemma E.7, Lemma E.8 and Corollary E.2.

Proof of Lemma E.7. For any 𝑗 ∈ [𝑞(𝑆,𝐾)], we have

∑︁
𝑘∈[𝐾]

1

{︁
𝐸

(1)
𝑗,𝑘

}︁
= number of actions that are not chosen in period

[︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

]︁
≥ 𝐾 − 1− 𝑆

(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
≥
(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
1

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂
almost surely. Thus for any 𝑗 ∈ [𝑞(𝑆,𝐾)], we have∑︁

𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
=
∑︁
𝑘∈[𝐾]

E𝜋𝜇
[︁
1

{︁
𝐸

(1)
𝑗,𝑘

}︁]︁

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1

{︁
𝐸

(1)
𝑗,𝑘

}︁⎤⎦
≥ E𝜋𝜇

[︂(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
1

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂]︂
=

(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇
[︂
1

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂]︂
. (E.46)

Summing (E.46) over 𝑗 ∈ [𝑞(𝑆,𝐾)], we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥
(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇

⎡⎣ ∑︁
𝑗∈[𝑞(𝑆,𝐾)]

1

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂⎤⎦
(i)

≥
(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇
[︂(︂

1− 1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂)︂]︂
.
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Note that (i) follows from

∑︁
𝑗∈[𝑞(𝑆,𝐾)]

1

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂
≥ 1

⎧⎨⎩ ⋃︁
𝑗∈[𝑞(𝑆,𝐾)]

{︂
𝑆
(︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

)︁
<

𝑆

𝑞(𝑆,𝐾) + 1

}︂⎫⎬⎭
(ii)

≥ 1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
<

𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂
= 1− 1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂
,

where (ii) follows from the pigeonhole principle.

Now we define

𝐸
(1)
∼,𝑘 :=

{︂
action 𝑘 is not among the first

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
(different) actions chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝑇

]︁}︂
.

If
{︁
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾)+1𝑆
}︁

happens, then by the switching constraint 𝑆(1 : 𝑇 ) ≤ 𝑆, we have

𝑆
(︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝑇

)︁
≤ 𝑆

𝑞(𝑆,𝐾)+1 . If we further assume 𝐸(1)
∼,𝑘 happens, then by 𝑆

(︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝑇

)︁
≤ 𝑆

𝑞(𝑆,𝐾)+1 ,

either 𝐸(1)
𝑞(𝑆,𝐾)+1,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : ⌊(𝑡

(1)
𝑞(𝑆,𝐾) + 𝑇 )/2⌋

]︁}︁
happens, or

𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘 =

{︁
𝜏 ≤ ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝜏 − 1

]︁}︁
happens. Therefore, we know that

𝐸
(1)
𝑞(𝑆,𝐾)+1,𝑘 ∪ 𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘 ⊃ 𝐸

(1)
∼,𝑘 ∩

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂
This implies that

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑞(𝑆,𝐾)+1,𝑘 ∪ 𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘

)︁
≥
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︂
𝐸

(1)
∼,𝑘 ∩

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂)︂

=
∑︁
𝑘∈[𝐾]

E𝜋𝜇
[︂
1

{︁
𝐸

(1)
∼,𝑘

}︁
1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂]︂

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1

{︁
𝐸

(1)
∼,𝑘

}︁
1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂⎤⎦
(iii)

≥ E𝜋𝜇
[︂(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂]︂
=

(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇
[︂
1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂]︂
,

where (iii) follow from the definition of 𝐸(1)
∼,𝑘.
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Combining the above two paragraphs, we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
≥

∑︁
𝑗∈[𝑞(𝑆,𝐾)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑗,𝑘

)︁
+
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(1)
𝑞(𝑆,𝐾)+1,𝑘 ∪ 𝐸

(1)
𝑞(𝑆,𝐾)+2,𝑘

)︁
≥
(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇
[︂(︂

1− 1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂)︂]︂
+

(︂
𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂)︂
E𝜋𝜇
[︂
1

{︂
𝑆
(︁
1 : 𝑡

(1)
𝑞(𝑆,𝐾)

)︁
≥ 𝑞(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
𝑆

}︂]︂
= 𝐾 −

⌈︂
𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
.

□

Proof of Lemma E.8. For any 𝑗 ∈ [𝑞(𝑆,𝐾)], we have

∑︁
𝑘∈[𝐾]

1

{︁
𝐸

(2)
𝑗,𝑘

}︁
= number of actions that are not chosen in period

[︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

]︁
≥ 𝐾 − 1− 𝑆

(︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

)︁
≥
(︂
𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂)︂
1

{︂
𝑆
(︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

)︁
≤ 𝑆

𝑞(𝑆,𝐾) + 2

}︂
almost surely. Thus for any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], we have∑︁

𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(2)
𝑗,𝑘

)︁
=
∑︁
𝑘∈[𝐾]

E𝜋𝜇
[︁
1

{︁
𝐸

(2)
𝑗,𝑘

}︁]︁

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1

{︁
𝐸

(2)
𝑗,𝑘

}︁⎤⎦
≥ E𝜋𝜇

[︂(︂
𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂)︂
1

{︂
𝑆
(︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

)︁
≤ 𝑆

𝑞(𝑆,𝐾) + 2

}︂]︂
=

(︂
𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂)︂
E𝜋𝜇
[︂
1

{︂
𝑆
(︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

)︁
≤ 𝑆

𝑞(𝑆,𝐾) + 2

}︂]︂
(E.47)

Summing (E.47) over 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], we have

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︁
𝐸

(2)
𝑗,𝑘

)︁

≥
(︂
𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂)︂
E𝜋𝜇

⎡⎣ ∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

1

{︂
𝑆
(︁
𝑡
(2)
𝑗−1 : 𝑡

(2)
𝑗

)︁
≤ 𝑆

𝑞(𝑆,𝐾) + 2

}︂⎤⎦
(i)

≥
(︂
𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂)︂
E𝜋𝜇[1{𝑆(1 : 𝑇 ) ≤ 𝑆}]

(ii)
= 𝐾 − 1−

⌊︂
𝑆

𝑞(𝑆,𝐾) + 2

⌋︂
,

where (i) follows from the pigeonhole principle and (ii) follows from the switching constraint. □
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Proof of Corollary E.2. Since 𝐾 ≥ 2 and 0 ≤ 𝑟(𝑆,𝐾) ≤ 𝐾 − 2, we have

𝐾 −
⌈︂

𝑆

𝑞(𝑆,𝐾) + 1

⌉︂
= 𝐾 −

⌈︂
(𝐾 − 1)− 𝐾 − 2− 𝑟(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1

⌉︂
≥ 𝐾 −min

{︂
𝐾 − 1,

[︂
(𝐾 − 1)− 𝐾 − 2− 𝑟(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1
+ 1

]︂}︂
= max

{︂
1,
𝐾 − 2− 𝑟(𝑆,𝐾)

𝑞(𝑆,𝐾) + 1

}︂
≥ 𝐾 − 𝑟(𝑆,𝐾)

2(𝑞(𝑆,𝐾) + 2)

and

𝐾 − 1−
⌊︂

𝑆

𝑞(𝑆,𝐾) + 2

⌋︂
= 𝐾 − 1−

⌊︂
(𝐾 − 1)𝑞(𝑆,𝐾) + 𝑟(𝑆,𝐾) + 1

𝑞(𝑆,𝐾) + 2

⌋︂
≥ 𝐾 − 1−

[︂
(𝐾 − 1)𝑞(𝑆,𝐾) + 𝑟(𝑆,𝐾) + 1

𝑞(𝑆,𝐾) + 2

]︂
≥ 2(𝐾 − 1)− 𝑟(𝑆,𝐾)− 1

𝑞(𝑆,𝐾) + 2

≥ 𝐾 − 1

𝑞(𝑆,𝐾) + 2

≥ 𝐾

2(𝑞(𝑆,𝐾) + 2)
.

Combining the above inequalities with Lemma E.7 and Lemma E.8, we obtain Corollary E.2. □

E.12.3 Alternative Environments, Bad Events, and Lower Bound Reduc-
tions

In the rest of the proof, we fix an arbitrary policy 𝜋 ∈ Π𝑆 .

In this subsection, we define the following concepts: (i) reference environment & reference measure,
(ii) alternative environments & alternative measures, and (iii) bad events. Based on these definitions,
we explicitly construct two classes of environments Φ1 and Φ2, and reduce the task of proving lower
bounds on the “average-case regret” 1

|Φ1|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ) and 1

|Φ2|
∑︀

𝜇∈Φ𝑅
𝜋
𝜇(𝑇 ) to the task of proving

lower bounds on the “average-case bad event probability” 1
(𝑞(𝑆,𝐾)+2)𝐾

∑︀
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︀
𝑘∈[𝐾] P

(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
and 1

(𝑞(𝑆,𝐾)+2)𝐾

∑︀
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︀
𝑘∈[𝐾] P

(2)
𝑗,𝑘

(︁
𝐸

(2)
𝑗,𝑘

)︁
, respectively.

Let 0 = (0, . . . , 0) ∈ R𝐾 be the reference environment. Let Q := P𝜋0 denote the reference measure.
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Results Associated with the First Class of Risky Events

For any 𝑗 ∈ [𝑞(𝑆,𝐾 + 2)], define a reward gap

Δ
(1)
𝑗 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑗 = 1,

1
2(𝑞(𝑆,𝐾)+2)

√︂
𝐾−𝑟(𝑆,𝐾)

𝑡
(1)
𝑗−1

, if 𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 1],

− 1
2(𝑞(𝑆,𝐾)+2)

√︂
𝐾−𝑟(𝑆,𝐾)

𝑡
(1)

𝑞(𝑆,𝐾)

, if 𝑗 = 𝑞(𝑆,𝐾) + 2.

Note that
⃒⃒⃒
Δ

(1)
𝑗

⃒⃒⃒
∈ [0, 1] for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 2].

For any 𝑗 ∈ [𝑞(𝑆,𝐾)+2], 𝑘 ∈ [𝐾], define an alternative environment 𝜇(1)
𝑗,𝑘 :=

(︁
𝜇
(1)
𝑗,𝑘;1, . . . , 𝜇

(1)
𝑗,𝑘;𝐾

)︁
∈

R𝐾 where

𝜇
(1)
𝑗,𝑘;𝑖 :=

⎧⎨⎩Δ
(1)
𝑗 , if 𝑖 = 𝑘,

0, otherwise.

Note that each alternative environment 𝜇
(1)
𝑗,𝑘 only differs from the reference environment in terms of

the mean reward of action 𝑘.

For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], let P(1)
𝑗,𝑘 := P𝜋

𝜇
(1)
𝑗,𝑘

denote the alternative measure associated

with the alternative environment 𝜇
(1)
𝑗,𝑘.

We explicitly construct a class of environments Φ1 :=
{︁
𝜇

(1)
𝑗,𝑘 | 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾]

}︁
.

For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], under environment 𝜇
(1)
𝑗,𝑘, the risky event 𝐸(1)

𝑗,𝑘 becomes a bad
event66 whose occurrence would lead to large regret. Specifically:

• Suppose 𝑗 = 1. Since action 𝑘 is the unique optimal action under environment 𝜇
(1)
1,𝑘, choosing

any action other than 𝑘 for one round incurs at least a Δ
(1)
1 term in the policy’s regret, and

the occurrence of 𝐸(1)
1,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
1 : 𝑡

(1)
1

]︁}︁
incurs at least a 𝑡(1)1 Δ

(1)
1

term in the policy’s regret.

• Suppose 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)]. Since action 𝑘 is the unique optimal action under environment 𝜇
(1)
𝑗,𝑘 ,

choosing any action other than 𝑘 for one round incurs at least a Δ
(1)
𝑗 term in the policy’s

regret, and the occurrence of 𝐸(1)
𝑗,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

]︁}︁
incurs at

least a
(︁
𝑡
(1)
𝑗 − 𝑡

(1)
𝑗−1 + 1

)︁
Δ

(1)
𝑗 term in the policy’s regret.

• Suppose 𝑗 = 𝑞(𝑆,𝐾) + 1. Since action 𝑘 is the unique optimal action under environment
𝜇

(1)
𝑞(𝑆,𝐾)+1,𝑘, choosing any action other than 𝑘 for one round incurs at least a Δ

(1)
𝑞(𝑆,𝐾)+1 term

in the policy’s regret, and the occurrence of

𝐸
(1)
𝑞(𝑆,𝐾)+1,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : ⌊(𝑡

(1)
𝑞(𝑆,𝐾) + 𝑇 )/2⌋

]︁}︁
incurs at least a

(︁
⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋ − 𝑡

(1)
𝑞(𝑆,𝐾) + 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+1 term in the policy’s regret.

66In our language, we call 𝐸(1)
𝑗,𝑘 a risky event for any environment, but a bad event only for environment

𝜇
(1)
𝑗,𝑘.
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• Suppose 𝑗 = 𝑞(𝑆,𝐾) + 2. Since action 𝑘 is the worst action under environment 𝜇
(1)
𝑞(𝑆,𝐾)+2,𝑘,

choosing action 𝑘 for one round incurs at least a −Δ
(1)
𝑞(𝑆,𝐾)+2 term in the policy’s regret.

Furthermore, since the occurrence of 𝐸(1)
𝑞(𝑆,𝐾)+2,𝑘 implies the occurrence of

{︁
action 𝑘 is chosen in every round in [⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋ : 𝑇 ]

}︁
(because of the switching constraint), it incurs at least a −

(︁
𝑇 − ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋+ 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+2

term in the policy’s regret.

The above arguments lead to Lemma E.9.

Lemma E.9 (From risky events to bad events). For any 𝑗 ∈ [𝑞(𝑆,𝐾)+2], 𝑘 ∈ [𝐾], under environment
𝜇

(1)
𝑗,𝑘, the risky event 𝐸(1)

𝑗,𝑘 becomes a bad event in the sense that

E𝜋
𝜇

(1)
𝑗,𝑘

[︃
𝑇𝜇

(1)
𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇
(1)
𝑗,𝑘;𝑎𝑡

| 𝐸(1)
𝑗,𝑘

]︃
≥ ℛbad(𝑆,𝐾, 𝑇 ),

where

ℛbad(𝑆,𝐾, 𝑇 ) :=
(𝐾 − 𝑟(𝑆,𝐾))

8(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

is a universal lower bound on the “distribution-dependent regret conditional on the bad event.”

Proof of Lemma E.9. By the arguments in the previous paragraph, we have

E𝜋
𝜇

(1)
𝑗,𝑘

[︃
𝑇𝜇

(1)
𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇
(1)
𝑗,𝑘;𝑎𝑡

| 𝐸(1)
𝑗,𝑘

]︃

≥ E𝜋
𝜇

(1)
𝑗,𝑘

⎡⎢⎣(︁𝑡(1)𝑗 − 𝑡
(2)
𝑗−1 + 1

)︁
𝜇
(1)
𝑗,𝑘;𝑘 −

∑︁
𝑡∈

[︁
𝑡
(1)
𝑗−1:𝑡

(1)
𝑗

]︁𝜇(1)
𝑗,𝑘;𝑎𝑡

| 𝐸(1)
𝑗,𝑘

⎤⎥⎦

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑡
(1)
1 Δ

(1)
1 , if 𝑗 = 1,(︁

𝑡
(1)
𝑗 − 𝑡

(1)
𝑗−1 + 1

)︁
Δ

(1)
𝑗 , if 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)],(︁

⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋ − 𝑡
(1)
𝑞(𝑆,𝐾) + 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+1, if 𝑗 = 𝑞(𝑆,𝐾) + 1,

−
(︁
𝑇 − ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋+ 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+2, if 𝑗 = 𝑞(𝑆,𝐾) + 2,

≥ (𝐾 − 𝑟(𝑆,𝐾))
1− 1

2−2−𝑞(𝑆,𝐾)

8(𝑞(𝑆,𝐾) + 2)
𝑇

1

2−2−𝑞(𝑆,𝐾) ,

where the last inequality follows from the following inequalities:

𝑡
(1)
1 Δ

(1)
1 = 𝑡

(1)
1 ≥ (𝐾 − 𝑟(𝑆,𝐾))

1− 1

2−2−𝑞(𝑆,𝐾)

(𝑞(𝑆,𝐾) + 2)
𝑇

1

2−2−𝑞(𝑆,𝐾) ,
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(︁
𝑡
(1)
𝑗 − 𝑡

(1)
𝑗−1 + 1

)︁
Δ

(1)
𝑗

≥ (𝐾 − 𝑟(𝑆,𝐾))

⎛⎝(︂ 𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 2−21−𝑗

2−2−𝑞(𝑆,𝐾)

−
(︂

𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 2−22−𝑗

2−2−𝑞(𝑆,𝐾)

⎞⎠Δ
(1)
𝑗

≥ (𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

⎛⎝(︂ 𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 2−21−𝑗

2−2−𝑞(𝑆,𝐾)

−
(︂

𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 2−22−𝑗

2−2−𝑞(𝑆,𝐾)

⎞⎠(︂ 𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂− 1−21−𝑗

2−2−𝑞(𝑆,𝐾)

=
(𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

⎛⎝(︂ 𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

−
(︂

𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1−21−𝑗

2−2−𝑞(𝑆,𝐾)

⎞⎠
=

(𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

⎛⎝1−
(︂

𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ −21−𝑗

2−2−𝑞(𝑆,𝐾)

⎞⎠
≥ (𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

⎛⎝1−
(︂

𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ −2−𝑞(𝑆,𝐾)

2−2−𝑞(𝑆,𝐾)

⎞⎠
≥ (𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

(︃
1−

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂−2−𝑞(𝑆,𝐾)−1)︃
(i)

≥ (𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

(︃
1−

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂− 1
log2(𝑇/𝐾)

)︃

≥ (𝐾 − 𝑟(𝑆,𝐾))

2(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾) (︁
1− (𝑇/𝐾)

− 1
log2(𝑇/𝐾)

)︁
=

(𝐾 − 𝑟(𝑆,𝐾))

4(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

, ∀𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 1],

(︁
⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋ − 𝑡

(1)
𝑞(𝑆,𝐾) + 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+1 ≥ 1

2

(︁
𝑡
(1)
𝑞(𝑆,𝐾)+1 − 𝑡

(1)
𝑞(𝑆,𝐾) + 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+1

≥ (𝐾 − 𝑟(𝑆,𝐾))

8(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

,

−
(︁
𝑇 − ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋+ 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+2 ≥

(︁
⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋ − 𝑡

(1)
𝑞(𝑆,𝐾) + 1

)︁
Δ

(1)
𝑞(𝑆,𝐾)+1

≥ (𝐾 − 𝑟(𝑆,𝐾))

8(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

.

Note that in (i) we utilize the fact that 𝑞(𝑆,𝐾) + 1 ≤ log2 log2(𝑇/𝐾). □

Based on Lemma E.9, we can reduce the task of proving a lower bound on the policy’s (distribution-
dependent) regret 𝑅𝜋

𝜇
(1)
𝑗,𝑘

(𝑇 ) to the task of proving a lower bound on the bad event probability

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
. Consequently, we can reduce the task of proving a lower bound on the policy’s “average-

case regret” 1
|Φ1|

∑︀
𝜇∈Φ1

𝑅𝜋𝜇(𝑇 ) to the task of proving a lower bound on the “average-case bad event

probability” 1
(𝑞(𝑆,𝐾)+2)𝐾

∑︀
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︀
𝑘∈[𝐾] P

(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
.

Lemma E.10 (Reducing regret lower bounds to bad event probability lower bounds). For any
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𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], we have

𝑅𝜋
𝜇

(1)
𝑗,𝑘

(𝑇 ) ≥ ℛbad(𝑆,𝐾, 𝑇 ) · P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
.

As a result, we have

𝑅𝜋(𝑇 ) ≥ 1

|Φ1|
∑︁
𝜇∈Φ1

𝑅𝜋𝜇(𝑇 ) ≥ ℛbad(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
.

Proof of Lemma E.10. For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], by Lemma E.9, we have

𝑅𝜋
𝜇

(1)
𝑗,𝑘

(𝑇 ) = E𝜋
𝜇

(1)
𝑗,𝑘

[︃
𝑇𝜇

(1)
𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇
(1)
𝑗,𝑘;𝑎𝑡

]︃

≥ E𝜋
𝜇

(1)
𝑗,𝑘

[︃
𝑇𝜇

(1)
𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇
(1)
𝑗,𝑘;𝑎𝑡

| 𝐸(1)
𝑗,𝑘

]︃
· P(1)

𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ ℛbad(𝑆,𝐾, 𝑇 ) · P(1)

𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
,

and hence

𝑅𝜋(𝑇 ) = sup
𝒟
𝑅𝜋𝒟(𝑇 )

≥ sup
𝜇∈Φ1

𝑅𝜋𝜇(𝑇 )

≥ 1

|Φ1|
∑︁
𝜇∈Φ1

𝑅𝜋𝜇(𝑇 )

≥ 1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝑅𝜋
𝜇

(1)
𝑗,𝑘

(𝑇 )

≥ ℛbad(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
.

□

Results Associated with the Second Class of Risky Events

For any 𝑗 ∈ [𝑞(𝑆,𝐾 + 2)], define a reward gap

Δ
(2)
𝑗 :=

⎧⎪⎨⎪⎩
1, if 𝑗 = 1,

1
2(𝑞(𝑆,𝐾)+2)

√︂
𝐾

𝑡
(2)
𝑗−1

, if 𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 2].

Note that
⃒⃒⃒
Δ

(2)
𝑗

⃒⃒⃒
∈ [0, 1] for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 2].

For any 𝑗 ∈ [𝑞(𝑆,𝐾)+2], 𝑘 ∈ [𝐾], define an alternative environment 𝜇(2)
𝑗,𝑘 :=

(︁
𝜇
(2)
𝑗,𝑘;1, . . . , 𝜇

(2)
𝑗,𝑘;𝐾

)︁
∈
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R𝐾 where

𝜇
(2)
𝑗,𝑘;𝑖 :=

⎧⎨⎩Δ
(2)
𝑗 , if 𝑖 = 𝑘,

0, otherwise.

Note that each alternative environment 𝜇
(1)
𝑗,𝑘 only differs from the reference environment in terms of

the mean reward of action 𝑘.

For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], let P(2)
𝑗,𝑘 := P𝜋

𝜇
(2)
𝑗,𝑘

denote the alternative measure associated

with the alternative environment 𝜇
(2)
𝑗,𝑘.

We explicitly construct a class of environments Φ2 :=
{︁
𝜇

(2)
𝑗,𝑘 | 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾]

}︁
.

For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], under environment 𝜇
(2)
𝑗,𝑘, the risky event 𝐸(2)

𝑗,𝑘 becomes a bad
event whose occurrence would lead to large regret. Similar to our analysis in Appendix E.12.3, we
have the following two lemmas.

Lemma E.11 (From risky events to bad events). For any 𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], under
environment 𝜇(2)

𝑗,𝑘, the risky event 𝐸(2)
𝑗,𝑘 becomes a bad event in the sense that

E𝜋
𝜇

(2)
𝑗,𝑘

[︃
𝑇𝜇

(2)
𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇
(2)
𝑗,𝑘;𝑎𝑡

| 𝐸(2)
𝑗,𝑘

]︃
≥ ℛbad2(𝑆,𝐾, 𝑇 ),

where

ℛbad2(𝑆,𝐾, 𝑇 ) :=
𝐾

4(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾

)︂ 1

2−2−𝑞(𝑆,𝐾)−1

is a universal lower bound on the “distribution-dependent regret conditional on the bad event.”

Lemma E.12 (Reducing regret lower bounds to bad event probability lower bounds). For any
𝑗 ∈ [𝑞(𝑆,𝐾) + 2], 𝑘 ∈ [𝐾], we have

𝑅𝜋
𝜇

(2)
𝑗,𝑘

(𝑇 ) ≥ ℛbad2(𝑆,𝐾, 𝑇 ) · P(2)
𝑗,𝑘

(︁
𝐸

(2)
𝑗,𝑘

)︁
.

As a result, we have

𝑅𝜋(𝑇 ) ≥ 1

|Φ2|
∑︁
𝜇∈Φ2

𝑅𝜋𝜇(𝑇 ) ≥ ℛbad2(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(2)
𝑗,𝑘

(︁
𝐸

(2)
𝑗,𝑘

)︁
.

E.12.4 Probability Space Changing Tricks

Lemma E.10 and Lemma E.12 indicate that, in order to prove the desired lower bound on the regret
𝑅𝜋(𝑇 ), it suffices to prove the following two statements:

𝑝(1) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
= ̃︀Ω(︂𝐾 − 𝑟(𝑆,𝐾)

𝐾

)︂
, (E.48)

𝑝(2) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(2)
𝑗,𝑘

(︁
𝐸

(2)
𝑗,𝑘

)︁
= ̃︀Ω(1). (E.49)
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That is, we only need to establish tight lower bounds on the average probability 𝑝(1) and the average
probability 𝑝(2).

By Corollary E.2, we have

𝑞(1) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q
(︁
𝐸

(1)
𝑗,𝑘

)︁
= ̃︀Ω(︂𝐾 − 𝑟(𝑆,𝐾)

𝐾

)︂
,

𝑞(2) :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q
(︁
𝐸

(2)
𝑗,𝑘

)︁
= ̃︀Ω(1).

Therefore, in order to show (E.48), it suffices to show that 𝑝(1) is close to 𝑞(1); in order to show
(E.49), it suffices to show that 𝑝(2) is close to 𝑞(2).

Let us first focus on the relationship between 𝑝(1) and 𝑞(1). Note that 𝑝(1) is the average of the
sequence

{︁
P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁}︁
67 (where a sequence of events

{︁
𝐸

(1)
𝑗,𝑘

}︁
are evaluated by a sequence of varying

alternative measures
{︁
P(1)
𝑗,𝑘

}︁
), while 𝑞(1) is the average of the sequence

{︁
Q
(︁
𝐸

(1)
𝑗,𝑘

)︁}︁
(where the same

sequence of events
{︁
𝐸

(1)
𝑗,𝑘

}︁
are evaluated by a single and fixed reference measure Q). Intuitively,

we just need a “change of measure”/information-theoretic argument — if the alternative measures{︁
P(1)
𝑗,𝑘

}︁
are “close enough” to the reference measure Q, then 𝑝(1) is close to 𝑞(1).

Unfortunately, it turns out that the divergence between
{︁
P(1)
𝑗,𝑘

}︁
and Q is too large to make

the above argument work. An important reason is that such an argument directly deals with the
underlying measures

{︁
P(1)
𝑗,𝑘

}︁
and Q, thus completely overlooks the special structures of the risky

event sequence
{︁
𝐸

(1)
𝑗,𝑘

}︁
. Therefore, if we want to show that 𝑝(1) is close to 𝑞(1), we need to integrate

the structural properties of risky events into our argument.
The same challenge exists when we want to show that 𝑝(2) is close to 𝑞(2).
We develop probability space changing tricks to address this challenge. See below.

Results Associated with the First Class of Risky Events

We start with some key structural properties of the risky event sequence
{︁
𝐸

(1)
𝑗,𝑘

}︁
.

• For any 𝑘 ∈ [𝐾], the occurrence of the event

𝐸
(1)
1,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
1 : 𝑡

(1)
1

]︁}︁
is independent of the random variables

(︀
𝑋𝑡

𝜇(𝑘)
)︀
𝑡∈[1:𝑡

(1)
1 ]

and the random variables
(︀
𝑋𝑡

𝜇(𝑖)
)︀
𝑡∈[𝑡

(1)
1 +1:𝑇 ],𝑖∈[𝐾]

.

• For any 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)], 𝑘 ∈ [𝐾], the occurrence of the event

𝐸
(1)
𝑗,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑗−1 : 𝑡

(1)
𝑗

]︁}︁
is independent of the random variables

(︀
𝑋𝑡

𝜇(𝑘)
)︀
𝑡∈[𝑡

(1)
𝑗−1:𝑡

(1)
𝑗 ]

and the random variables
(︀
𝑋𝑡

𝜇(𝑖)
)︀
𝑡∈[𝑡

(1)
𝑗 +1:𝑇 ],𝑖∈[𝐾]

.

67We use the notation
{︁
P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁}︁
to represent the sequence

(︁
P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁)︁
𝑗∈[𝑞(𝑆,𝐾)+2],𝑘∈[𝐾]

. In general,

we use {𝑎𝑗,𝑘} to represent a sequence (𝑎𝑗,𝑘)𝑗∈[𝑞(𝑆,𝐾)+2],𝑘∈[𝐾].
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• For any 𝑘 ∈ [𝐾], the occurrence of the event

𝐸
(1)
𝑞(𝑆,𝐾)+1,𝑘 =

{︁
action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : ⌊(𝑡

(1)
𝑞(𝑆,𝐾) + 𝑇 )/2⌋

]︁}︁
is independent of the random variables

(︀
𝑋𝑡

𝜇(𝑘)
)︀
𝑡∈[𝑡

(1)

𝑞(𝑆,𝐾)
:⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋] and the random vari-

ables
(︀
𝑋𝑡

𝜇(𝑖)
)︀
𝑡∈[⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋+1:𝑇 ],𝑖∈[𝐾]

.

• For any 𝑘 ∈ [𝐾], the occurrence of the event

𝐸
(1)
𝑞(𝑆,𝐾)+2,𝑘

:=
{︁
𝜏 ≤ ⌊(𝑡(1)𝑞(𝑆,𝐾) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, action 𝑘 is not chosen in period

[︁
𝑡
(1)
𝑞(𝑆,𝐾) : 𝜏 − 1

]︁}︁
is independent of the random variables

(︀
𝑋𝑡

𝜇(𝑘)
)︀
𝑡∈[𝑡

(1)

𝑞(𝑆,𝐾)
:⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋] and the random vari-

ables
(︀
𝑋𝑡

𝜇(𝑖)
)︀
𝑡∈[⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋+1:𝑇 ],𝑖∈[𝐾]

. (Note that this property crucially relies on the delicate

design of 𝐸(1)
𝑞(𝑆,𝐾)+2,𝑘.)

The above properties indicate that, when we want to represent the probability of a risky event 𝐸(1)
𝑗,𝑘

under an environment 𝜇, we do not need to use the “full” measure induced by ℋ𝑇 (i.e., P𝜋𝜇) or the
“natural” measure induced by ℋ

𝑡
(1)
𝑗

. Instead, we can use a “ristricted” measure which deliberately
“ignores” certain reward information associated with action 𝑘 — thanks to the structural property of
𝐸

(1)
𝑗,𝑘 , such ignorance would not affect the measure’s well-definedness and value on 𝐸(1)

𝑗,𝑘 . Moreover,
since the alternative environment 𝜇

(1)
𝑗,𝑘 only differs from the reference environment in terms of the

mean reward of action 𝑘, such ignorance can help make the measures associated with the two
environments “closer.” We can then establish tighter bounds on the distance between 𝑝(1) and 𝑞(1).

Motivated by the above idea, we design two sequences of artificial measures
{︁
P′
𝑗,𝑘

}︁
and

{︁
Q′
𝑗,𝑘

}︁
as follows.

Artificial measures
{︁
P′
𝑗,𝑘

}︁
. For any 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)], 𝑘 ∈ [𝐾], let P′

𝑗,𝑘 be the probability
measure induced by the joint random variable(︃(︂

𝑎𝑡, 𝑋
𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)

)︂
𝑡∈[1:𝑡

(1)
𝑗−1−1]

,

(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}
)︂
𝑡∈[𝑡

(1)
𝑗−1:𝑡

(1)
𝑗 ]

)︃
. (E.50)

For 𝑗 = 1, for any 𝑘 ∈ [𝐾], let P′
𝑗,𝑘 be the probability measure induced by the joint random variable(︃(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}
)︂
𝑡∈[1:𝑡

(1)
𝑗 ]

)︃
.

For 𝑗 ∈ {𝑞(𝑆,𝐾) + 1, 𝑞(𝑆,𝐾) + 2}, let P′
𝑗,𝑘 be the probability measure induced by the joint random

variable (︃(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)

)︂
𝑡∈[1:𝑡

(1)

𝑞(𝑆,𝐾)
−1]

,

(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}
)︂
𝑡∈[𝑡

(1)

𝑞(𝑆,𝐾)
:⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋]

)︃
.

Artificial reference measures
{︁
Q′
𝑗,𝑘

}︁
. For any 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)], 𝑘 ∈ [𝐾], let Q′

𝑗,𝑘 be the
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probability measure induced by the joint random variable(︁(︀
𝑎𝑡, 𝑋

𝑡
0(𝑎𝑡)

)︀
𝑡∈[1:𝑡

(1)
𝑗−1−1]

,
(︀
𝑎𝑡, 𝑋

𝑡
0(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}

)︀
𝑡∈[𝑡

(1)
𝑗−1:𝑡

(1)
𝑗 ]

)︁
.

For 𝑗 = 1, for any 𝑘 ∈ [𝐾], let Q′
𝑗,𝑘 be the probability measure induced by the joint random variable(︁(︀

𝑎𝑡, 𝑋
𝑡
0(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}

)︀
𝑡∈[1:𝑡

(1)
𝑗 ]

)︁
.

For 𝑗 ∈ {𝑞(𝑆,𝐾) + 1, 𝑞(𝑆,𝐾) + 2}, let Q′
𝑗,𝑘 be the probability measure induced by the joint random

variable (︂(︀
𝑎𝑡, 𝑋

𝑡
0(𝑎𝑡)

)︀
𝑡∈[1:𝑡

(1)

𝑞(𝑆,𝐾)
−1]
,
(︀
𝑎𝑡, 𝑋

𝑡
0(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}

)︀
𝑡∈[𝑡

(1)

𝑞(𝑆,𝐾)
:⌊(𝑡(1)

𝑞(𝑆,𝐾)
+𝑇 )/2⌋]

)︂
.

Let us provide some explanations on the above definitions of artificial measures. For brevity, we
focus on the case of 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)]. Note that (E.50) is not the total data collected by 𝜋 under
environment 𝜇

(1)
𝑗,𝑘 during period

[︁
1 : 𝑡

(1)
𝑗

]︁
, which should be

ℋ
𝑡
(1)
𝑗

=

(︃(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)

)︂
𝑡∈[1:𝑡

(1)
𝑗 ]

)︃
;

instead, (E.50) is a censored variant of ℋ
𝑡
(1)
𝑗

, with all the reward observations associated with action

𝑘 during period
[︁
1 : 𝑡

(1)
𝑗

]︁
being “ignored.” Consequently, P′

𝑗,𝑘 is neither a measure on (Ω𝑇 ,ℱ𝑇 ) nor

a measure on
(︁
Ω
𝑡
(1)
𝑗
,ℱ

𝑡
(1)
𝑗

)︁
; instead, it is a measure on a “restricted” measurable space

(︁
Ω′
𝑗,𝑘,ℱ ′

𝑗,𝑘

)︁
,

where
Ω′
𝑗,𝑘 := Ω

𝑡
(1)
𝑗

∖
(︁
Ω
𝑡
(1)
𝑗−1−1

× ({𝑘} × (R ∖ {0}))𝑡
(1)
𝑗 −𝑡(1)𝑗−1+1

)︁
, ℱ ′

𝑗,𝑘 := ℬ
(︀
Ω′
𝑗,𝑘

)︀
.

Since
(︁
Ω′
𝑗,𝑘,ℱ ′

𝑗,𝑘

)︁
⊂
(︁
Ω
𝑡
(1)
𝑗
,ℱ

𝑡
(1)
𝑗

)︁
⊂ (Ω𝑇 ,ℱ𝑇 ), the artificial measure P′

𝑗,𝑘 can be seen as the restriction

of P(1)
𝑗,𝑘 to a “much smaller” measurable space which still keeps 𝐸(1)

𝑗,𝑘 measurable.68 Similarly, the
artificial reference measure Q′

𝑗,𝑘 is the restriction of the reference measure Q to the same measurable

space
(︁
Ω′
𝑗,𝑘,ℱ ′

𝑗,𝑘

)︁
. Such restrictions guarantee two nice properties:

1. P′
𝑗,𝑘(𝐸

(1)
𝑗,𝑘 ) = P(1)

𝑗,𝑘(𝐸
(1)
𝑗,𝑘 ) and Q′

𝑗,𝑘(𝐸
(1)
𝑗,𝑘 ) = Q(𝐸

(1)
𝑗,𝑘 ) for all 𝑗, 𝑘.

2. Since the alternative environment 𝜇
(1)
𝑗,𝑘 only differs from the reference environment 0 in terms

of the mean reward of action 𝑘, the divergence between P′
𝑗,𝑘 and Q′

𝑗,𝑘 becomes much smaller

on the new measurable space
(︁
Ω′
𝑗,𝑘,ℱ ′

𝑗,𝑘

)︁
, compared with the divergence between P(1)

𝑗,𝑘 and Q
on the original measurable space (Ω𝑇 ,ℱ𝑇 ).

We now use the policy’s behavior under the fixed reference environment 0 to bound the reverse
KL divergence between P′

𝑗,𝑘 and Q′
𝑗,𝑘. Using a standard “divergence decomposition” lemma (see, e.g.,

68In measure theory, ℱ ′
𝑗,𝑘 is called a sub-𝜎-algebra, and P′

𝑗,𝑘 is called a restricted measure.
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Lemma 15.1 of Lattimore and Szepesvári 2020), we have

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
= 𝐷KL

(︀
Q′
𝑗,𝑘 ‖ P′

𝑗,𝑘

)︀
= E𝜋0

⎡⎢⎣𝑡
(1)
𝑗−1−1∑︁
𝑡=1

[︁
Δ

(1)
𝑗

]︁2
2

1{𝑎𝑡 = 𝑘}

⎤⎥⎦ =

[︁
Δ

(1)
𝑗

]︁2
2

E𝜋0

⎡⎢⎣𝑡
(1)
𝑗−1−1∑︁
𝑡=1

1{𝑎𝑡 = 𝑘}

⎤⎥⎦
for all 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)] and 𝑘 ∈ [𝐾]. This implies that

𝐾∑︁
𝑘=1

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
=

𝐾∑︁
𝑘=1

[︁
Δ

(1)
𝑗

]︁2
2

E𝜋0

⎡⎢⎣𝑡
(1)
𝑗−1−1∑︁
𝑡=1

1{𝑎𝑡 = 𝑘}

⎤⎥⎦ =

[︁
Δ

(1)
𝑗

]︁2
2

(︁
𝑡
(1)
𝑗−1 − 1

)︁

for all 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)]. Similarly, we have
∑︀𝐾
𝑘=1𝐷re

(︁
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︁
= 0 for 𝑗 = 0 and

𝐾∑︁
𝑘=1

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
=

𝐾∑︁
𝑘=1

[︁
Δ

(1)
𝑗

]︁2
2

E𝜋0

⎡⎢⎣𝑡
(1)

𝑞(𝑆,𝐾)
−1∑︁

𝑡=1

1{𝑎𝑡 = 𝑘}

⎤⎥⎦ =

[︁
Δ

(1)
𝑗

]︁2
2

(︁
𝑡
(1)
𝑞(𝑆,𝐾) − 1

)︁

for 𝑗 ∈ {𝑞(𝑆,𝐾) + 1, 𝑞(𝑆,𝐾) + 2}. Combining with the definitions of Δ(1)
𝑗 in Appendix E.12.3, we

have
𝐾∑︁
𝑘=1

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
≤ 𝐾 − 𝑟(𝑆,𝐾)

8(𝑞(𝑆,𝐾) + 2)2

for all 𝑗 ∈ [𝑞(𝑆,𝐾) + 2]. Therefore, we have the following lemma.

Lemma E.13. It holds that

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
≤ 𝐾 − 𝑟(𝑆,𝐾)

8(𝑞(𝑆,𝐾) + 2)
.

Combined with Corollary E.2, this implies

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︀
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
≤ 𝐾 − 𝑟(𝑆,𝐾)

8(𝑞(𝑆,𝐾) + 2)2𝐾
≤ 𝑞(1)

4
.

Results Associated with the Second Class of Risky Events

Similar to Appendix E.12.4, we design two sequences of artificial measures
{︁
P′′
𝑗,𝑘

}︁
and

{︁
Q′′
𝑗,𝑘

}︁
as follows.

Artificial measures
{︁
P′′
𝑗,𝑘

}︁
. For any 𝑗 ∈ [2 : 𝑞(𝑆,𝐾) + 1], 𝑘 ∈ [𝐾], let P′′

𝑗,𝑘 be the probability
measure induced by the joint random variable(︃(︂

𝑎𝑡, 𝑋
𝑡

𝜇
(1)
𝑗,𝑘

(𝑎𝑡)

)︂
𝑡∈[1:𝑡

(2)
𝑗−1−1]

,

(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(2)
𝑗,𝑘

(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}
)︂
𝑡∈[𝑡

(2)
𝑗−1:𝑡

(2)
𝑗 ]

)︃
.
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For 𝑗 = 1, for any 𝑘 ∈ [𝐾], let P′′
𝑗,𝑘 be the probability measure induced by the joint random variable(︃(︂
𝑎𝑡, 𝑋

𝑡

𝜇
(2)
𝑗,𝑘

(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}
)︂
𝑡∈[1:𝑡

(2)
𝑗 ]

)︃
.

Artificial reference measures
{︁
Q′′
𝑗,𝑘

}︁
. For any 𝑗 ∈ [2 : 𝑞(𝑆,𝐾)], 𝑘 ∈ [𝐾], let Q′′

𝑗,𝑘 be the
probability measure induced by the joint random variable(︁(︀

𝑎𝑡, 𝑋
𝑡
0(𝑎𝑡)

)︀
𝑡∈[1:𝑡

(2)
𝑗−1−1]

,
(︀
𝑎𝑡, 𝑋

𝑡
0(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}

)︀
𝑡∈[𝑡

(2)
𝑗−1:𝑡

(2)
𝑗 ]

)︁
.

For 𝑗 = 1, for any 𝑘 ∈ [𝐾], let Q′′
𝑗,𝑘 be the probability measure induced by the joint random variable(︁(︀

𝑎𝑡, 𝑋
𝑡
0(𝑎𝑡)1{𝑎𝑡 ̸= 𝑘}

)︀
𝑡∈[1:𝑡

(2)
𝑗 ]

)︁
.

Similar to Lemma E.13, we have the following lemma.

Lemma E.14. It holds that

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︀
P′′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︀
≤ 𝐾

8(𝑞(𝑆,𝐾) + 2)
.

Combined with Corollary E.2, this implies

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︀
P′′
𝑗,𝑘 ‖ Q′′

𝑗,𝑘

)︀
≤ 1

8(𝑞(𝑆,𝐾) + 2)2
≤ 𝑞(2)

4
.

E.12.5 Applying the GRF Inequality

In this part, we apply the GRF inequality to show (E.48) and (E.49), and complete the proof of
Theorem 6.2.

We first represent 𝑝(1) using {P′
𝑗,𝑘} and represent 𝑞(1) using {Q′

𝑗,𝑘}. Since P′
𝑗,𝑘(𝐸

(1)
𝑗,𝑘 ) = P(1)

𝑗,𝑘(𝐸
(1)
𝑗,𝑘 )

and Q′
𝑗,𝑘(𝐸

(1)
𝑗,𝑘 ) = Q(𝐸

(1)
𝑗,𝑘 ) hold for all 𝑗, 𝑘, we have

𝑝(1) =
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
=

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P′
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
,

𝑞(1) =
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q
(︁
𝐸

(2)
𝑗,𝑘

)︁
=

1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q′
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
.
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By the GRF inequality (Proposition E.4), we have

𝑝(1) ≥ 𝑞(1) −

⎯⎸⎸⎷2𝑞(1) · 1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︁
P′
𝑗,𝑘 ‖ Q′

𝑗,𝑘

)︁
(i)

≥ 𝑞(1) −

√︃
2𝑞(1)

𝑞(1)

4

=
2−

√
2

2
𝑞(1)

(ii)

≥ 2−
√
2

4

𝐾 − 𝑟(𝑆,𝐾)

(𝑞(𝑆,𝐾) + 2)2𝐾
(E.51)

and

𝑝(2) ≥ 𝑞(2) −

⎯⎸⎸⎷2𝑞(2) · 1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

𝐷re

(︁
P′′
𝑗,𝑘 ‖ Q′′

𝑗,𝑘

)︁
(iii)

≥ 𝑞(2) −

√︃
2𝑞(2)

𝑞(2)

4

=
2−

√
2

2
𝑞(2)

(iv)

≥ 2−
√
2

4

1

(𝑞(𝑆,𝐾) + 2)2
, (E.52)

where (i) follows from Lemma E.13, (ii) follows from Corollary E.2, (iii) follows from Lemma E.14,
and (iv) follows from Corollary E.2. We thus prove (E.48) and (E.49).

Now we plug (E.51) and (E.52) into Lemma E.10 and Lemma E.12. We have

𝑅𝜋(𝑇 ) ≥ 1

|Φ1|
∑︁
𝜇∈Φ1

𝑅𝜋𝜇(𝑇 )

≥ ℛbad(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(1)
𝑗,𝑘

(︁
𝐸

(1)
𝑗,𝑘

)︁
≥ ℛbad(𝑆,𝐾, 𝑇 ) ·

2−
√
2

4

𝐾 − 𝑟(𝑆,𝐾)

(𝑞(𝑆,𝐾) + 2)2𝐾

=
(𝐾 − 𝑟(𝑆,𝐾))

8(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾 − 𝑟(𝑆,𝐾)

)︂ 1

2−2−𝑞(𝑆,𝐾)

· 2−
√
2

4

𝐾 − 𝑟(𝑆,𝐾)

(𝑞(𝑆,𝐾) + 2)2𝐾

=
2−

√
2

32(𝑞(𝑆,𝐾) + 2)3
(𝐾 − 𝑟(𝑆,𝐾))

2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

≥ 2−
√
2

32(log2 log2(𝑇/𝐾))3
(𝐾 − 𝑟(𝑆,𝐾))

2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)

=
2−

√
2

160 log2(𝑇/𝐾)

(𝐾 − 𝑟(𝑆,𝐾))
2− 1

2−2−𝑞(𝑆,𝐾)

𝐾
𝑇

1

2−2−𝑞(𝑆,𝐾)
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and

𝑅𝜋(𝑇 ) ≥ 1

|Φ2|
∑︁
𝜇∈Φ2

𝑅𝜋𝜇(𝑇 )

≥ ℛbad2(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P(2)
𝑗,𝑘

(︁
𝐸

(2)
𝑗,𝑘

)︁
≥ ℛbad2(𝑆,𝐾, 𝑇 ) ·

2−
√
2

4

1

(𝑞(𝑆,𝐾) + 2)2

=
𝐾

4(𝑞(𝑆,𝐾) + 2)

(︂
𝑇

𝐾

)︂ 1

2−2−𝑞(𝑆,𝐾)−1

· 2−
√
2

4

1

(𝑞(𝑆,𝐾) + 2)2

=
2−

√
2

16(𝑞(𝑆,𝐾) + 2)3
𝐾

1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

≥ 2−
√
2

16(log2 log2(𝑇/𝐾))3
𝐾

1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1

≥ 2−
√
2

80 log2(𝑇/𝐾)
𝐾

1− 1

2−2−𝑞(𝑆,𝐾)−1 𝑇
1

2−2−𝑞(𝑆,𝐾)−1 .

We thus complete the proof of Theorem 6.2. □

E.13 Proof of Theorem 6.4

The proof of Theorem 6.4 builds on the proof of Theorem 6.2. In this proof, we emphasize the
differences, which are mainly in Appendices E.13.1 to E.13.3, corresponding to the first three steps of
the RECAP method.

Given any 𝐾 = |𝐺| > 1, 𝑆 ≥ 0 and 𝑇 ≥ 2𝐾, we focus on the setting of 𝒟𝑘 = 𝒩 (𝜇𝑘, 1) (∀𝑘 ∈ [𝐾]),
as this is sufficient for us to prove the desired lower bound. For simplicity, in this proof we will
directly use the vector 𝜇 to represent the environment.

For any environment 𝜇, let 𝑋𝑡
𝜇(𝑘) ∼ 𝒩 (𝜇𝑘, 1) denote the i.i.d. random reward of each action

𝑘 at round 𝑡 (𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ]). For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, for any 𝑡 ∈ [𝑇 ], we
use 𝑎𝑡 to denote the random action selected by policy 𝜋 at round 𝑡 under environment 𝜇, and use
𝑋𝑡

𝜇(𝑎𝑡) to denote the random reward observed by policy 𝜋 at round 𝑡 under environment 𝜇. Let
ℋ𝑡 :=

(︀(︀
𝑎1, 𝑋

1
𝜇(𝑎1)

)︀
, . . . ,

(︀
𝑎𝑡, 𝑋

𝑡
𝜇(𝑎𝑡)

)︀)︀
be the history (of actions and observations) up to round 𝑡

(inclusive), whose value lies in Ω𝑡 := ([𝐾]× R)𝑡. Let ℱ𝑡 := ℬ(Ω𝑡) be the Borel 𝜎-algebra on Ω𝑡. Let
P𝜋𝜇 be the probability measure induced by (i.e., the law of) ℋ𝑇 , and E𝜋𝜇 be the associated expectation
operator. Let 𝑅𝜋𝜇(𝑇 ) := 𝑇𝜇⋆ − E𝜋𝜇

[︁∑︀𝑇
𝑡=1 𝜇𝑎𝑡

]︁
be policy 𝜋’s distribution-dependent regret under

environment 𝜇.

Similar to Appendix E.12, we argue that in our proof, we only need to consider the case of
𝑞′′(𝑆,𝐺) + 2 ≤ log2 log2(𝑇 ). Suppose 𝑞′′(𝑆,𝐺) + 2 > log2 log2(𝑇 ), then we have

𝑇
1

2−2−𝑞′′(𝑆,𝐺) ≤ 4
√
𝑇 ,

thus the lower bound in Theorem 6.4 becomes Ω(
√
𝑇/(𝐾 log 𝑇 )) and can be directly obtained by

applying the well-known Ω(
√
𝐾𝑇 ) lower bound of the classical MAB (see, e.g., Lattimore and Szepesvári
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2020). Therefore, the really non-trivial case of Theorem 6.4 is the case of 𝑞′′(𝑆,𝐺)+ 2 ≤ log2 log2(𝑇 ),
and we focus on this case in the rest of our proof.

Our goal is to explicitly construct a family of environments Φ, such that for any 𝑆-switching-budget
policy 𝜋 ∈ Π𝑆 , the “worst-case regret” max𝜇∈Φ𝑅

𝜋
𝜇(𝑇 ) is lower bounded by

Ω

(︂
1

𝐾 log 𝑇
𝑇

1

2−2−𝑞′′(𝑆,𝐺)

)︂
Since the worst-case regret 𝑅𝜋(𝑇 ) is no less than the max𝜇∈Φ𝑅

𝜋
𝜇(𝑇 ), the above goal directly implies

Theorem 6.4.

Without loss of generality, we assume that 1 ∈ argmax𝑖∈[𝐾] min𝑗 ̸=𝑖 𝑐𝑖,𝑗 . For notational simplicity,
we redefine the sequence (𝑡𝑗)

𝑞′′(𝑆,𝐺)+1
𝑗=0 as 𝑡0 = 0 and

𝑡𝑗 =

⌊︂
𝑇

2−2−(𝑖−1)

2−2−𝑞′′(𝑆,𝐺)

⌋︂
, ∀𝑗 = 1, . . . , 𝑞′′(𝑆,𝐺) + 1. (E.53)

Note that the above definition is different from the definition of (𝑡𝑗)
𝑞′(𝑆,𝐺)+1
𝑗=0 in Algorithm 6.3 — we

only use the above definition in this proof, for the purpose of simplifying notations.

E.13.1 Definitions of Risky Events

For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, we make some key definitions below.

1. For any 𝑛1, 𝑛2 ∈ [𝑇 ], we define a random variable 𝑆(𝑛1, 𝑛2) to be the total switching cost
incurred in period [𝑛1 : 𝑛2] (note that if there is a switch happening between round 𝑛1 − 1 and round
𝑛1, or between round 𝑛2 and round 𝑛2 + 1, we do not count its cost in 𝑆(𝑛1, 𝑛2)).

2. Second, we define a stopping time

𝜏 := min
{︀
𝑡 ∈ [𝑇 ] : all of the actions in [𝐾] are chosen in period [𝑡𝑞′′(𝑆,𝐺) : 𝜏 ]

}︀
if the set is non-empty and 𝜏 = ∞ otherwise. Note that this definition is different from the definition
used in Appendix E.12.1.

3. We define a class of risky events as follows: for any 𝑘 ∈ [𝐾], let

𝐸1,𝑘 := {action 𝑘 is not chosen in period [1 : 𝑡1]},

𝐸𝑗,𝑘 := {action 𝑘 is not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}, ∀𝑗 ∈ [2 : 𝑞′′(𝑆,𝐺)],

𝐸𝑞′′(𝑆,𝐺)+1,𝑘 :=
{︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞′′(𝑆,𝐺) : ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋

]︀}︀
,

𝐸𝑞′′(𝑆,𝐺)+2,𝑘 :=
{︀
𝜏 ≤ ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, 𝑆(1 : 𝑡𝑞′′(𝑆,𝐺)) ≥ 𝑞′′(𝑆,𝐺)𝐻

}︀
.

By doing so, we get (𝑞′′(𝑆,𝐺) + 2)𝐾 risky events (of the form 𝐸𝑗,𝑘) in total. Note that the time
points (𝑡𝑗)

𝑞′′(𝑆,𝐺)+1
𝑗=1 are fixed and given in (E.53), and the events (𝐸𝑞′′(𝑆,𝐺)+2,𝑘)𝑘∈[𝐾] are defined

based on the stopping time 𝜏 .
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E.13.2 Combinatorial Arguments and Lower Bounds for Risky Events
(Under a Single Environment)

The main purpose of this subsection is to prove the following lemma using (non-trivial) combinatorial
(and probabilistic) arguments. Compared with the second step in the proof of Theorem 6.2, we
develop new techniques here to deal with the general switching cost structure, while paying less
attention to the order of 𝐾.

Lemma E.15. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥ 1.

Lemma E.15 leads to the following corollary, which will be utilized in subsequent subsections.

Corollary E.3. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

1

(𝑞′′(𝑆,𝐺) + 2)𝐾

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥
1

(𝑞′′(𝑆,𝐺) + 2)𝐾
,

Corollary E.3 tells us the following fact: under any single environment 𝜇, the average probability
of the risky events is ̃︀Ω(︀ 1

𝐾

)︀
.

In the rest of this subsection, we provide a proof for Lemma E.15.

Proof of Lemma E.15. Since 𝐻 is the total weight of the shortest Hamiltonian path of 𝐺, for any
𝑗 ∈ [𝑞′′(𝑆,𝐺)], we have

∑︁
𝑘∈[𝐾]

1{𝐸𝑗,𝑘} = number of actions that are not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]

≥ 1{not all actions are chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}

≥ 1{𝑆(𝑡𝑗−1 : 𝑡𝑗) < 𝐻}

almost surely. Thus for any 𝑗 ∈ [𝑞′′(𝑆,𝐺)], we have∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) =
∑︁
𝑘∈[𝐾]

E𝜋𝜇[1{𝐸𝑗,𝑘}]

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1{𝐸𝑗,𝑘}

⎤⎦
≥ E𝜋𝜇[1{𝑆(𝑡𝑗−1 : 𝑡𝑗) < 𝐻}]. (E.54)

Summing (E.54) over 𝑗 ∈ [𝑞′′(𝑆,𝐺)], we have

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥ E𝜋𝜇

⎡⎣ ∑︁
𝑗∈[𝑞′′(𝑆,𝐺)]

1{𝑆(𝑡𝑗−1 : 𝑡𝑗) < 𝐻}

⎤⎦
(i)

≥ E𝜋𝜇
[︀(︀
1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀)︀]︀
.
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Note that (i) follows from

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)]

1{𝑆(𝑡𝑗−1 : 𝑡𝑗) < 𝐻} ≥ 1

⎧⎨⎩ ⋃︁
𝑗∈[𝑞′′(𝑆,𝐺)]

{𝑆(𝑡𝑗−1 : 𝑡𝑗) < 𝐻}

⎫⎬⎭
(ii)

≥ 1
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
< 𝑞′′(𝑆,𝐺)𝐻

}︀
= 1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀
,

where (ii) follows from the pigeonhole principle.

Now we define

𝐸∼,𝑘 :=
{︀
action 𝑘 is not among the first 𝐾 − 1 (different) actions chosen in period

[︀
𝑡𝑞′′(𝑆,𝐺) : 𝑇

]︀}︀
.

If both
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀
and 𝐸∼,𝑘 happen, then since 𝜏 is the first time that all actions

of [𝐾] have been chosen after round 𝑡𝑞′′(𝑆,𝐺), we know that either

𝐸𝑞′′(𝑆,𝐺)+1,𝑘 =
{︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞′′(𝑆,𝐺) : ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋

]︀}︀
happens, or

𝐸𝑞′′(𝑆,𝐺)+2,𝑘 =
{︀
𝜏 ≤ ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, 𝑆

(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀
happens. Therefore, we know that

𝐸𝑞′′(𝑆,𝐺)+1,𝑘 ∪ 𝐸𝑞′′(𝑆,𝐺)+2,𝑘 ⊃ 𝐸∼,𝑘 ∩
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀
.

This implies that

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸𝑞′′(𝑆,𝐺)+1,𝑘 ∪ 𝐸𝑞′′(𝑆,𝐺)+2,𝑘

)︀
≥
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸∼,𝑘 ∩

{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀)︀
=
∑︁
𝑘∈[𝐾]

E𝜋𝜇
[︀
1{𝐸∼,𝑘}1

{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀]︀

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1{𝐸∼,𝑘}1
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀⎤⎦
(iii)

≥ E𝜋𝜇
[︀
1
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀]︀
,

where (iii) follow from the definition of 𝐸∼,𝑘.
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Combining the above two paragraphs, we have

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥
∑︁

𝑗∈[𝑞′′(𝑆,𝐺)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) +
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸𝑞′′(𝑆,𝐺)+1,𝑘 ∪ 𝐸𝑞′′(𝑆,𝐺)+2,𝑘

)︀
≥ E𝜋𝜇

[︀(︀
1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀)︀]︀
+ E𝜋𝜇

[︀
1
{︀
𝑆
(︀
1 : 𝑡𝑞′′(𝑆,𝐺)

)︀
≥ 𝑞′′(𝑆,𝐺)𝐻

}︀]︀
= 1.

□

E.13.3 Alternative Environments, Bad Events, and Lower Bound Reduc-
tions

Compared with the proof of Theorem 6.2, the main difference in this step is that we define the
reference and alternative environments in a new way. In particular, we make action 1 the unique
optimal action in the reference environment, and let all the alternative environments in the form
of 𝜇𝑞′′(𝑆,𝐺)+2,𝑘 (𝑘 ̸= 1) be the same as the reference environments. Since any switch from or to
action 1 incurs a cost at least max𝑖min𝑗 ̸=𝑖 𝑐𝑖,𝑗 , such new techniques help us to make the quantity
max𝑖min𝑗 ̸=𝑖 𝑐𝑖,𝑗 appear in the lower bound.

In the rest of the proof, we fix an arbitrary policy 𝜋 ∈ Π𝑆 .

For any 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], define a reward gap

Δ𝑗 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝑗 = 1,

1
2(𝑞′′(𝑆,𝐺)+2)

√︁
1

𝑡𝑗−1
, if 𝑗 ∈ [2 : 𝑞′′(𝑆,𝐺) + 1],

− 1
2(𝑞′′(𝑆,𝐺)+2)

√︁
1

𝑡𝑞′′(𝑆,𝐺)
, if 𝑗 = 𝑞′′(𝑆,𝐺) + 2.

Note that |Δ𝑗 | ∈ [0, 1] for all 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2].

Let 𝛼 = (
Δ𝑞′′(𝑆,𝐺)+1

2 , 0, 0, . . . , 0) ∈ R𝐾 be the reference environment. Let Q := P𝜋𝛼 denote the
reference measure.

For any 𝑗 ∈ [𝑞′′(𝑆,𝐺)+1], 𝑘 ∈ [𝐾], define an alternative environment 𝜇𝑗,𝑘 := (𝜇𝑗,𝑘;1, . . . , 𝜇𝑗,𝑘;𝐾) ∈
R𝐾 where

𝜇𝑗,𝑘;𝑖 :=

⎧⎨⎩𝛼𝑖 +Δ𝑗 , if 𝑖 = 𝑘,

𝛼𝑖, otherwise.

Note that each alternative environment 𝜇𝑗,𝑘 define above only differs from the reference environment
in terms of the mean reward of action 𝑘.

For 𝑗 = 𝑞′′(𝑆,𝐺) + 2, for any 𝑘 ̸= 1, define an alternative environment 𝜇𝑞′′(𝑆,𝐺)+2,𝑘 := 𝛼 which
is the same as the reference environment. For 𝑗 = 𝑞′′(𝑆,𝐺) + 2 and 𝑘 = 1, define an alternative
environment 𝜇𝑞′′(𝑆,𝐺)+2,1 :=

(︀
𝜇𝑞′′(𝑆,𝐺)+2,1;1, . . . , 𝜇𝑞′′(𝑆,𝐺)+2,1;𝐾

)︀
∈ R𝐾 where

𝜇𝑞′′(𝑆,𝐺)+2,1;𝑖 :=

⎧⎨⎩𝛼𝑖 +Δ𝑗 , if 𝑖 = 1,

𝛼𝑖, otherwise.
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Note that the above definitions are different from those in the proof of Theorem 6.2.

For any 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], 𝑘 ∈ [𝐾], let P𝑗,𝑘 := P𝜋𝜇𝑗,𝑘 denote the alternative measure associated
with the alternative environment 𝜇𝑗,𝑘.

We explicitly construct a class of environments Φ := {𝜇𝑗,𝑘 | 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], 𝑘 ∈ [𝐾]}.
For any 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], 𝑘 ∈ [𝐾], under environment 𝜇𝑗,𝑘, the risky event 𝐸𝑗,𝑘 becomes a bad

event whose occurrence would lead to large regret. Specifically:

• Suppose 𝑗 = 1. Since action 𝑘 is the unique optimal action under environment 𝜇1,𝑘, choosing
any action other than 𝑘 for one round incurs at least a Δ1 −

Δ𝑞′′(𝑆,𝐺)+1

2 ≥ Δ1

2 term in the
policy’s regret, and the occurrence of 𝐸1,𝑘 = {action 𝑘 is not chosen in period [1 : 𝑡1]} incurs
at least a 𝑡1Δ1/2 term in the policy’s regret.

• Suppose 𝑗 ∈ [2 : 𝑞′′(𝑆,𝐺)]. Since action 𝑘 is the unique optimal action under environment 𝜇𝑗,𝑘,
choosing any action other than 𝑘 for one round incurs at least a Δ𝑗 −

Δ𝑞′′(𝑆,𝐺)+1

2 ≥ Δ𝑗
2 term in

the policy’s regret, and the occurrence of 𝐸𝑗,𝑘 = {action 𝑘 is not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}
incurs at least a (𝑡𝑗 − 𝑡𝑗−1 + 1)Δ𝑗/2 term in the policy’s regret.

• Suppose 𝑗 = 𝑞′′(𝑆,𝐺) + 1. Since action 𝑘 is the unique optimal action under environment
𝜇𝑞′′(𝑆,𝐺)+1,𝑘, choosing any action other than 𝑘 for one round incurs at least a Δ𝑞′′(𝑆,𝐺)+1 −
Δ𝑞′′(𝑆,𝐺)+1

2 ≥ Δ𝑞′′(𝑆,𝐺)+1

2 term in the policy’s regret, and the occurrence of 𝐸𝑞′′(𝑆,𝐺)+1,𝑘 ={︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞′′(𝑆,𝐺) : ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋

]︀}︀
incurs at least a

(︀
⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋ − 𝑡𝑞′′(𝑆,𝐺) + 1

)︀
Δ𝑞′′(𝑆,𝐺)+1/2

term in the policy’s regret.

• Suppose 𝑗 = 𝑞′′(𝑆,𝐺) + 2 and 𝑘 = 1. Since action 1 is the worst action under envi-
ronment 𝜇𝑞′′(𝑆,𝐺)+2,1, choosing action 1 for one round incurs at least a −Δ𝑞′′(𝑆,𝐺)+2 −
Δ𝑞′′(𝑆,𝐺)+1

2 = −Δ𝑞′′(𝑆,𝐺)+2

2 term in the policy’s regret. Furthermore, by the switching con-
straint 𝑆(1 : 𝑇 ) ≤ 𝑆 < (𝑞′′(𝑆,𝐺) + 1)𝐻 + min𝑗 ̸=1 𝑐1,𝑗 , the occurrence of 𝐸𝑞′′(𝑆,𝐺)+2,1 im-
plies the occurrence of {no switch happens after round 𝜏} (as the remaining switching bud-
get does not allow for switching from action 1), thus essentially implies the occurrence of{︀
action 1 is chosen in every round in period [⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋ : 𝑇 ]

}︀
. As a result, the occur-

rence of 𝐸𝑞′′(𝑆,𝐺)+2,1 incurs at least a −
(︀
𝑇 − ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋+ 1

)︀
Δ𝑞′′(𝑆,𝐺)+2/2 term in the

policy’s regret.

• Suppose 𝑗 = 𝑞′′(𝑆,𝐺) + 2 and 𝑘 ̸= 1. Since action 1 is the unique optimal action under
environment 𝜇𝑞′′(𝑆,𝐺)+2,𝑘 = 𝛼, choosing action 𝑘 ̸= 1 for one round incurs at least a Δ𝑞′′(𝑆,𝐺)+1

2

term in the policy’s regret. Furthermore, by the switching constraint 𝑆(1 : 𝑇 ) ≤ 𝑆 <

(𝑞′′(𝑆,𝐺) + 1)𝐻 +min𝑗 ̸=1 𝑐𝑗,1 (we utilize the symmetry of switching costs here), the occur-
rence of 𝐸𝑞′′(𝑆,𝐺)+2,1 implies the occurrence of {action 1 is never chosen after round 𝜏} (as
the remaining switching budget does not allow for switching to action 1), thus essentially im-
plies the occurrence of

{︀
action 1 is not chosen in period [⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋ : 𝑇 ]

}︀
. As a result,

the occurrence of 𝐸𝑞′′(𝑆,𝐺)+2,1 incurs at least a
(︀
𝑇 − ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋+ 1

)︀
Δ𝑞′′(𝑆,𝐺)+1/2 =

−
(︀
𝑇 − ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋+ 1

)︀
Δ𝑞′′(𝑆,𝐺)+2/2 term in the policy’s regret.
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Note that the arguments in the last two bullets are very different from what we have done in the
proof of Theorem 6.2. The above arguments lead to Lemma E.16.

Lemma E.16 (From risky events to bad events). For any 𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], 𝑘 ∈ [𝐾], under
environment 𝜇𝑗,𝑘, the risky event 𝐸𝑗,𝑘 becomes a bad event in the sense that

E𝜋𝜇𝑗,𝑘

[︃
𝑇𝜇𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇𝑗,𝑘;𝑎𝑡 | 𝐸𝑗,𝑘

]︃
≥ ℛbad(𝑆,𝐺, 𝑇 ),

where
ℛbad(𝑆,𝐺, 𝑇 ) :=

1

16(𝑞′′(𝑆,𝐺) + 2)
𝑇

1

2−2−𝑞′′(𝑆,𝐺)

is a universal lower bound on the “distribution-dependent regret conditional on the bad event.”

Proof of Lemma E.16. By the arguments in the previous paragraph, we have

E𝜋𝜇𝑗,𝑘

[︃
𝑇𝜇𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇𝑗,𝑘;𝑎𝑡 | 𝐸𝑗,𝑘

]︃

≥ E𝜋𝜇𝑗,𝑘

⎡⎣(︁𝑡𝑗 − 𝑡
(2)
𝑗−1 + 1

)︁
𝜇𝑗,𝑘;𝑘 −

∑︁
𝑡∈[𝑡𝑗−1:𝑡𝑗 ]

𝜇𝑗,𝑘;𝑎𝑡 | 𝐸𝑗,𝑘

⎤⎦

≥

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑡1Δ1/2, if 𝑗 = 1,

(𝑡𝑗 − 𝑡𝑗−1 + 1)Δ𝑗/2, if 𝑗 ∈ [2 : 𝑞′′(𝑆,𝐺)],(︀
⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋ − 𝑡𝑞′′(𝑆,𝐺) + 1

)︀
Δ𝑞′′(𝑆,𝐺)+1/2, if 𝑗 = 𝑞′′(𝑆,𝐺) + 1,

−
(︀
𝑇 − ⌊(𝑡𝑞′′(𝑆,𝐺) + 𝑇 )/2⌋+ 1

)︀
Δ𝑞′′(𝑆,𝐺)+2/2, if 𝑗 = 𝑞′′(𝑆,𝐺) + 2,

≥ 1

16(𝑞′′(𝑆,𝐺) + 2)
𝑇

1

2−2−𝑞′′(𝑆,𝐺) ,

where the last inequality follows from the same algebra presented in the proof of Lemma E.9. □

Based on Lemma E.16, we can reduce the task of proving a lower bound on the policy’s
(distribution-dependent) regret 𝑅𝜋𝜇𝑗,𝑘(𝑇 ) to the task of proving a lower bound on the bad event prob-
ability P𝑗,𝑘(𝐸𝑗,𝑘). Consequently, we can reduce the task of proving a lower bound on sup𝜇∈Φ𝑅

𝜋
𝜇(𝑇 )

to the task of proving a lower bound on the “average-case bad event probability”

1

(𝑞′′(𝑆,𝐺) + 2)𝐾

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘).

Lemma E.17 (Reducing regret lower bounds to bad event probability lower bounds). For any
𝑗 ∈ [𝑞′′(𝑆,𝐺) + 2], 𝑘 ∈ [𝐾], we have

𝑅𝜋𝜇𝑗,𝑘(𝑇 ) ≥ ℛbad(𝑆,𝐺, 𝑇 ) · P𝑗,𝑘(𝐸𝑗,𝑘).

As a result, we have

𝑅𝜋(𝑇 ) ≥ sup
𝜇∈Φ

𝑅𝜋𝜇(𝑇 ) ≥ ℛbad(𝑆,𝐾, 𝑇 ) ·
1

(𝑞′′(𝑆,𝐺) + 2)𝐾

∑︁
𝑗∈[𝑞′′(𝑆,𝐺)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘).
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Proof of Lemma E.17. The proof is almost the same as the proof of Lemma E.10. □

E.13.4 Probability Space Changing Tricks

Lemma E.17 indicates that, in order to prove the desired lower bound on the regret 𝑅𝜋(𝑇 ), it suffices
to prove the following statement:

𝑝 :=
1

(𝑞′′(𝑆,𝐺) + 2)𝐾

∑︁
𝑗∈[𝑞′′(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘) = ̃︀Ω(︂ 1

𝐾

)︂
, (E.55)

That is, we only need to establish tight lower bounds on the average probability 𝑝.

By Corollary E.3, we have

𝑞 :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q(𝐸𝑗,𝑘) ≥
1

(𝑞(𝑆,𝐾) + 2)𝐾
= ̃︀Ω(︂ 1

𝐾

)︂
,

Therefore, in order to show (E.55), it suffices to show that 𝑝 is close to 𝑞. Similar to the proof of
Theorem 6.2, we apply the probability space changing tricks. The arguments are very similar to the
arguments in Appendix E.12.4 and are omitted here.

E.13.5 Applying the GRF Inequality

Similar to Appendix E.12.5, by applying the GRF inequality, we can show that

𝑝≥𝑞 −
√︂
2𝑞
𝑞

4

=
2−

√
2

2
𝑞. (E.56)

Now we plug (E.56) into Lemma E.17. We have

𝑅𝜋(𝑇 ) ≥ sup
𝜇∈Φ

𝑅𝜋𝜇(𝑇 )

≥ ℛbad(𝑆,𝐺, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘)

≥ ℛbad(𝑆,𝐺, 𝑇 ) ·
2−

√
2

2
𝑞

=
1

16(𝑞′′(𝑆,𝐺) + 2)
𝑇

1

2−2−𝑞′′(𝑆,𝐺) · 2−
√
2

2

1

(𝑞(𝑆,𝐾) + 2)𝐾

= Ω

(︂
1

𝐾 log 𝑇
𝑇

1

2−2−𝑞′′(𝑆,𝐺)

)︂
.

We thus complete the proof of Theorem 6.4. □
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E.14 Proof of the Lower Bound in Theorem 6.5

The proof of the lower bound builds on the proof of Theorem 6.2. In this proof, we emphasize the
differences, which are mainly in Appendices E.14.1 and E.14.2, corresponding to the first two steps
of the RECAP method.

Given any 𝐾 > 1, 𝑆 ≥ 0 and 𝑇 ≥ 2𝐾, we focus on the setting of 𝒟𝑘 = 𝒩 (𝜇𝑘, 1) (∀𝑘 ∈ [𝐾]), as
this is sufficient for us to prove the desired lower bound. For simplicity, in this proof we will directly
use the vector 𝜇 to represent the environment.

For any environment 𝜇, let 𝑋𝑡
𝜇(𝑘) ∼ 𝒩 (𝜇𝑘, 1) denote the i.i.d. random reward of each action

𝑘 at round 𝑡 (𝑘 ∈ [𝐾], 𝑡 ∈ [𝑇 ]). For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, for any 𝑡 ∈ [𝑇 ], we
use 𝑎𝑡 to denote the random action selected by policy 𝜋 at round 𝑡 under environment 𝜇, and use
𝑋𝑡

𝜇(𝑎𝑡) to denote the random reward observed by policy 𝜋 at round 𝑡 under environment 𝜇. Let
ℋ𝑡 :=

(︀(︀
𝑎1, 𝑋

1
𝜇(𝑎1)

)︀
, . . . ,

(︀
𝑎𝑡, 𝑋

𝑡
𝜇(𝑎𝑡)

)︀)︀
be the history (of actions and observations) up to round 𝑡

(inclusive), whose value lies in Ω𝑡 := ([𝐾]× R)𝑡. Let ℱ𝑡 := ℬ(Ω𝑡) be the Borel 𝜎-algebra on Ω𝑡. Let
P𝜋𝜇 be the probability measure induced by (i.e., the law of) ℋ𝑇 , and E𝜋𝜇 be the associated expectation
operator. Let 𝑅𝜋𝜇(𝑇 ) := 𝑇𝜇⋆ − E𝜋𝜇

[︁∑︀𝑇
𝑡=1 𝜇𝑎𝑡

]︁
be policy 𝜋’s distribution-dependent regret under

environment 𝜇.

Similar to Appendix E.12, we argue that in our proof, we only need to consider the case of
𝑞(𝑆, 𝑐) + 2 ≤ log2 log2(𝑇 ). Suppose 𝑞(𝑆, 𝑐) + 2 > log2 log2(𝑇 ), then we have

𝑇
1

2−2−𝑞(𝑆,𝑐) ≤ 4
√
𝑇 ,

thus the lower bound in Theorem 6.5 becomes ̃︀Ω(√𝑇 ) and can be directly obtained by applying the
well-known Ω(

√
𝐾𝑇 ) lower bound of the classical MAB (see, e.g., Lattimore and Szepesvári 2020).

Therefore, the really non-trivial case of Theorem 6.5 is the case of 𝑞(𝑆, 𝑐) + 2 ≤ log2 log2(𝑇 ), and we
focus on this case in the rest of our proof.

Our goal is to explicitly construct a family of environments Φ, such that for any 𝑆-switching-budget
policy 𝜋 ∈ Π𝑆 , the “worst-case regret” max𝜇∈Φ𝑅

𝜋
𝜇(𝑇 ) is lower bounded by

Ω

(︂
1

𝐾 log 𝑇
𝑇

1

2−2−𝑞(𝑆,𝑐)

)︂
Since the worst-case regret 𝑅𝜋(𝑇 ) is no less than the max𝜇∈Φ𝑅

𝜋
𝜇(𝑇 ), the above goal directly implies

the lower bound in Theorem 6.5.

Without loss of generality, we assume that 1 ∈ argmax𝑖∈[𝐾] min𝑗 ̸=𝑖 𝑐𝑖,𝑗 . For notational simplicity,
we redefine the sequence (𝑡𝑗)

𝑞(𝑆,𝑐)+1
𝑗=0 as 𝑡0 = 0 and

𝑡𝑗 =

⌊︂
𝑇

2−2−(𝑗−1)

2−2−𝑞(𝑆,𝑐)

⌋︂
, ∀𝑗 = 1, . . . , 𝑞(𝑆, 𝑐) + 1. (E.57)

Note that the above definition is different from the definition of (𝑡𝑗)
𝑞(𝑆,𝑐)+1
𝑗=0 in Algorithm 6.4 — we

only use the above definition in this proof, for the purpose of simplifying notations.
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E.14.1 Definitions of Risky Events

For any policy 𝜋 ∈ Π𝑆 , for any environment 𝜇, we make some key definitions below.

1. For any 𝑛1, 𝑛2 ∈ [𝑇 ], we define a random variable 𝑆(𝑛1, 𝑛2) to be the total switching cost
incurred in period [𝑛1 : 𝑛2] (note that if there is a switch happening between round 𝑛1 − 1 and round
𝑛1, or between round 𝑛2 and round 𝑛2 + 1, we do not count its cost in 𝑆(𝑛1, 𝑛2)).

2. Second, we define a stopping time

𝜏 := min
{︀
𝑡 ∈ [𝑇 ] : all of the actions in [𝐾] are chosen in period [𝑡𝑞(𝑆,𝑐) : 𝜏 ]

}︀
if the set is non-empty and 𝜏 = ∞ otherwise. Note that this definition is different from the definition
used in Appendix E.12.1.

3. We define a class of risky events as follows: for any 𝑘 ∈ [𝐾], let

𝐸1,𝑘 := {action 𝑘 is not chosen in period [1 : 𝑡1]},
𝐸𝑗,𝑘 := {action 𝑘 is not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}, ∀𝑗 ∈ [2 : 𝑞(𝑆, 𝑐)],

𝐸𝑞(𝑆,𝑐)+1,𝑘 :=
{︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞(𝑆,𝑐) : ⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋

]︀}︀
,

𝐸𝑞(𝑆,𝑐)+2,𝑘 :=
{︀
𝜏 ≤ ⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, 𝑆(1 : 𝑡𝑞(𝑆,𝑐)) > 𝑆 − Σ

}︀
.

By doing so, we get (𝑞(𝑆, 𝑐) + 2)𝐾 risky events (of the form 𝐸𝑗,𝑘) in total. Note that the time points
(𝑡𝑗)

𝑞(𝑆,𝑐)+1
𝑗=1 are fixed and given in (E.57), and the events (𝐸𝑞(𝑆,𝑐)+2,𝑘)𝑘∈[𝐾] are defined based on the

stopping time 𝜏 .

E.14.2 Combinatorial Arguments and Lower Bounds for Risky Events
(Under a Single Environment)

The main purpose of this subsection is to prove the following lemma using (non-trivial) combinatorial
(and probabilistic) arguments. Compared with the second step in the proof of Theorem 6.2, we
develop new techniques here to deal with the departure cost structure, while paying less attention to
the order of 𝐾.

Lemma E.18. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

∑︁
𝑗∈[𝑞(𝑆,𝑐)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥ 1.

Lemma E.18 leads to the following corollary, which will be utilized in subsequent subsections.

Corollary E.4. For any policy 𝜋 ∈ Π𝑆, for any environment 𝜇, we have

1

(𝑞(𝑆, 𝑐) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝑐)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥
1

(𝑞(𝑆, 𝑐) + 2)𝐾
,

Corollary E.4 tells us the following fact: under any single environment 𝜇, the average probability
of the risky events is ̃︀Ω(︀ 1

𝐾

)︀
.

In the rest of this subsection, we provide a proof for Lemma E.18.
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Proof of Lemma E.18. We discuss two cases: 𝑞(𝑆, 𝑐) is odd, and 𝑞(𝑆, 𝑐) is even. Suppose that 𝑞(𝑆, 𝑐)
is odd. For any 𝑗 ∈ [𝑞(𝑆, 𝑐)], we have

∑︁
𝑘∈[𝐾]

1{𝐸𝑗,𝑘} = number of actions that are not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]

≥ 1{not all actions are chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}

= 1− 1{all actions are chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}

almost surely. Thus for any 𝑗 ∈ {1, 3, · · · , 𝑞(𝑆, 𝑐)− 2}, we have∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) +
∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗+1,𝑘)

=
∑︁
𝑘∈[𝐾]

E𝜋𝜇[1{𝐸𝑗,𝑘}] +
∑︁
𝑘∈[𝐾]

E𝜋𝜇[1{𝐸𝑗+1,𝑘}]

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1{𝐸𝑗,𝑘}

⎤⎦+ E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1{𝐸𝑗+1,𝑘}

⎤⎦
≥ 1− 1{all actions are chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]}

+ 1− 1{all actions are chosen in period [𝑡𝑗 : 𝑡𝑗+1]}

≥ 1− 1{all actions are chosen in both period [𝑡𝑗−1 : 𝑡𝑗 ] and period [𝑡𝑗 : 𝑡𝑗+1]}

= 1− 1

{︁
𝑆(𝑡𝑗−1 : 𝑡𝑗+1) ≥ 2Σ− 𝑐(1) − 𝑐(2)

}︁
= 1

{︁
𝑆(𝑡𝑗−1 : 𝑡𝑗+1) < 2Σ− 𝑐(1) − 𝑐(2)

}︁
.

Moreover, for 𝑗 = 𝑞(𝑆, 𝑐), we can show that

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸𝑞(𝑆,𝑐),𝑘

)︀
≥ 1− 1

{︁
𝑆(𝑡𝑗−1 : 𝑡𝑗) ≥ Σ− 𝑐(1)

}︁
= 1

{︁
𝑆(𝑡𝑗−1 : 𝑡𝑗) < Σ− 𝑐(1)

}︁
.

Therefore, by the pigeonhole principle and the definition of 𝑞(𝑆, 𝑐), we have

∑︁
𝑗∈[𝑞(𝑆,𝑐)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘)

≥ E𝜋𝜇

⎡⎣ ∑︁
𝑗∈{1,3,··· ,𝑞(𝑆,𝑐)−2}

1

{︁
𝑆(𝑡𝑗−1 : 𝑡𝑗+1) < 2Σ− 𝑐(1) − 𝑐(2)

}︁
+ 1

{︁
𝑆
(︀
𝑡𝑞(𝑆,𝑐)−1 : 𝑡𝑞(𝑆,𝑐)

)︀
< Σ− 𝑐(1)

}︁⎤⎦
≥E𝜋𝜇

[︂(︂
1− 1

{︂
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
≥ 𝑞(𝑆, 𝑐)Σ−

⌈︂
𝑞(𝑆, 𝑐)

2

⌉︂
𝑐(1) −

⌊︂
𝑞(𝑆, 𝑐)

2

⌋︂
𝑐(2)
}︂)︂]︂

≥ E𝜋𝜇
[︀(︀
1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀)︀]︀
.

Suppose that 𝑞(𝑆, 𝑐) is even. Then using similar arguments, we can still show that

∑︁
𝑗∈[𝑞(𝑆,𝑐)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥ E𝜋𝜇
[︀(︀
1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀)︀]︀
.
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Therefore, the above inequality always holds.

Now we define

𝐸∼,𝑘 :=
{︀
action 𝑘 is not among the first 𝐾 − 1 (different) actions chosen in period

[︀
𝑡𝑞(𝑆,𝑐) : 𝑇

]︀}︀
.

If both
{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀
and 𝐸∼,𝑘 happen, then since 𝜏 is the first time that all actions of

[𝐾] have been chosen after round 𝑡𝑞(𝑆,𝑐), we know that either

𝐸𝑞(𝑆,𝑐)+1,𝑘 =
{︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞(𝑆,𝑐) : ⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋

]︀}︀
happens, or

𝐸𝑞(𝑆,𝑐)+2,𝑘 =
{︀
𝜏 ≤ ⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋, 𝑎𝜏 = 𝑘, 𝑆

(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀
happens. Therefore, we know that

𝐸𝑞(𝑆,𝑐)+1,𝑘 ∪ 𝐸𝑞(𝑆,𝑐)+2,𝑘 ⊃ 𝐸∼,𝑘 ∩
{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀
.

This implies that

∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸𝑞(𝑆,𝑐)+1,𝑘 ∪ 𝐸𝑞(𝑆,𝑐)+2,𝑘

)︀
≥
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸∼,𝑘 ∩

{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀)︀
=
∑︁
𝑘∈[𝐾]

E𝜋𝜇
[︀
1{𝐸∼,𝑘}1

{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀]︀

= E𝜋𝜇

⎡⎣ ∑︁
𝑘∈[𝐾]

1{𝐸∼,𝑘}1
{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀⎤⎦
(iii)

≥ E𝜋𝜇
[︀
1
{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀]︀
,

where (iii) follow from the definition of 𝐸∼,𝑘.

Combining the above two paragraphs, we have

∑︁
𝑗∈[𝑞(𝑆,𝑐)+2]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) ≥
∑︁

𝑗∈[𝑞(𝑆,𝑐)]

∑︁
𝑘∈[𝐾]

P𝜋𝜇(𝐸𝑗,𝑘) +
∑︁
𝑘∈[𝐾]

P𝜋𝜇
(︀
𝐸𝑞(𝑆,𝑐)+1,𝑘 ∪ 𝐸𝑞(𝑆,𝑐)+2,𝑘

)︀
≥ E𝜋𝜇

[︀(︀
1− 1

{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀)︀]︀
+ E𝜋𝜇

[︀
1
{︀
𝑆
(︀
1 : 𝑡𝑞(𝑆,𝑐)

)︀
> 𝑆 − Σ

}︀]︀
= 1.

□

E.14.3 Alternative Environments, Bad Events, and Lower Bound Reduc-
tions

In the rest of the proof, we fix an arbitrary policy 𝜋 ∈ Π𝑆 .
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For any 𝑗 ∈ [𝑞(𝑆, 𝑐) + 2], define a reward gap

Δ𝑗 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if 𝑗 = 1,

1
2(𝑞(𝑆,𝑐)+2)

√︁
1

𝑡𝑗−1
, if 𝑗 ∈ [2 : 𝑞(𝑆, 𝑐) + 1],

− 1
2(𝑞(𝑆,𝑐)+2)

√︁
1

𝑡𝑞(𝑆,𝑐)
, if 𝑗 = 𝑞(𝑆, 𝑐) + 2.

Note that |Δ𝑗 | ∈ [0, 1] for all 𝑗 ∈ [𝑞(𝑆, 𝑐) + 2].
Let 𝜇 = (0, . . . , 0) ∈ R𝐾 be the reference environment. Let Q := P𝜋0 denote the reference

measure.
For any 𝑗 ∈ [𝑞(𝑆, 𝑐) + 2], 𝑘 ∈ [𝐾], define an alternative environment 𝜇𝑗,𝑘 := (𝜇𝑗,𝑘;1, . . . , 𝜇𝑗,𝑘;𝐾) ∈

R𝐾 where

𝜇𝑗,𝑘;𝑖 :=

⎧⎨⎩0 + Δ𝑗 , if 𝑖 = 𝑘,

0, otherwise.

Note that each alternative environment 𝜇𝑗,𝑘 only differs from the reference environment in terms of
the mean reward of action 𝑘.

For any 𝑗 ∈ [𝑞(𝑆, 𝑐)+ 2], 𝑘 ∈ [𝐾], let P𝑗,𝑘 := P𝜋𝜇𝑗,𝑘 denote the alternative measure associated with
the alternative environment 𝜇𝑗,𝑘.

We explicitly construct a class of environments Φ := {𝜇𝑗,𝑘 | 𝑗 ∈ [𝑞(𝑆, 𝑐) + 2], 𝑘 ∈ [𝐾]}.
For any 𝑗 ∈ [𝑞(𝑆, 𝑐) + 2], 𝑘 ∈ [𝐾], under environment 𝜇𝑗,𝑘, the risky event 𝐸𝑗,𝑘 becomes a bad

event whose occurrence would lead to large regret. Specifically:

• Suppose 𝑗 = 1. Since action 𝑘 is the unique optimal action under environment 𝜇1,𝑘, choosing
any action other than 𝑘 for one round incurs at least a Δ1 term in the policy’s regret, and the
occurrence of 𝐸1,𝑘 = {action 𝑘 is not chosen in period [1 : 𝑡1]} incurs at least a 𝑡1Δ1 term in
the policy’s regret.

• Suppose 𝑗 ∈ [2 : 𝑞(𝑆, 𝑐)]. Since action 𝑘 is the unique optimal action under environment 𝜇𝑗,𝑘,
choosing any action other than 𝑘 for one round incurs at least a Δ𝑗 term in the policy’s regret,
and the occurrence of 𝐸𝑗,𝑘 = {action 𝑘 is not chosen in period [𝑡𝑗−1 : 𝑡𝑗 ]} incurs at least a
(𝑡𝑗 − 𝑡𝑗−1 + 1)Δ𝑗 term in the policy’s regret.

• Suppose 𝑗 = 𝑞(𝑆, 𝑐) + 1. Since action 𝑘 is the unique optimal action under environment
𝜇𝑞(𝑆,𝑐)+1,𝑘, choosing any action other than 𝑘 for one round incurs at least a Δ𝑞(𝑆,𝑐)+1 term in
the policy’s regret, and the occurrence of

𝐸𝑞(𝑆,𝑐)+1,𝑘 =
{︀
action 𝑘 is not chosen in period

[︀
𝑡𝑞(𝑆,𝑐) : ⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋

]︀}︀
incurs at least a

(︀
⌊(𝑡𝑞(𝑆,𝑐) + 𝑇 )/2⌋ − 𝑡𝑞(𝑆,𝑐) + 1

)︀
Δ𝑞(𝑆,𝑐)+1 term in the policy’s regret.

• Suppose 𝑗 = 𝑞(𝑆, 𝑐) + 2. Since action 𝑘 is the worst action under environment 𝜇𝑞(𝑆,𝑐)+2,𝑘,
choosing action 𝑘 for one round incurs at least a −Δ𝑞(𝑆,𝑐)+2 term in the policy’s regret.
Furthermore, by the switching constraint 𝑆(1 : 𝑇 ) ≤ 𝑆 < 𝑆(1 : 𝑡𝑞(𝑆,𝑐)) + Σ, the occurrence
of 𝐸𝑞(𝑆,𝑐)+2,𝑘 implies the occurrence of {no switch happens after round 𝜏} (as the remaining
switching budget does not allow for switching from action 𝑘), thus essentially implies the
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occurrence of
{︁

action 𝑘 is chosen in every round in [⌊(𝑡(1)𝑞(𝑆,𝑐) + 𝑇 )/2⌋ : 𝑇 ]
}︁
. As a result, the

occurrence of 𝐸𝑞(𝑆,𝑐)+2,𝑘 incurs at least a −
(︁
𝑇 − ⌊(𝑡(1)𝑞(𝑆,𝑐) + 𝑇 )/2⌋+ 1

)︁
Δ𝑞(𝑆,𝑐)+2 term in the

policy’s regret.

The above arguments lead to Lemma E.19.

Lemma E.19 (From risky events to bad events). For any 𝑗 ∈ [𝑞(𝑆, 𝑐)+2], 𝑘 ∈ [𝐾], under environment
𝜇𝑗,𝑘, the risky event 𝐸𝑗,𝑘 becomes a bad event in the sense that

E𝜋𝜇𝑗,𝑘

[︃
𝑇𝜇𝑗,𝑘;𝑘 −

𝑇∑︁
𝑡=1

𝜇𝑗,𝑘;𝑎𝑡 | 𝐸𝑗,𝑘

]︃
≥ ℛbad(𝑆,𝐺, 𝑇 ),

where
ℛbad(𝑆,𝐺, 𝑇 ) :=

1

8(𝑞(𝑆, 𝑐) + 2)
𝑇

1

2−2−𝑞(𝑆,𝑐)

is a universal lower bound on the “distribution-dependent regret conditional on the bad event.”

Proof of Lemma E.19. The proof is almost the same as the proof of Lemma E.9. □

Based on Lemma E.19, we can reduce the task of proving a lower bound on the policy’s
(distribution-dependent) regret 𝑅𝜋𝜇𝑗,𝑘(𝑇 ) to the task of proving a lower bound on the bad event prob-
ability P𝑗,𝑘(𝐸𝑗,𝑘). Consequently, we can reduce the task of proving a lower bound on sup𝜇∈Φ𝑅

𝜋
𝜇(𝑇 )

to the task of proving a lower bound on the “average-case bad event probability”

1

(𝑞(𝑆, 𝑐) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝑐)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘).

Lemma E.20 (Reducing regret lower bounds to bad event probability lower bounds). For any
𝑗 ∈ [𝑞(𝑆, 𝑐) + 2], 𝑘 ∈ [𝐾], we have

𝑅𝜋𝜇𝑗,𝑘(𝑇 ) ≥ ℛbad(𝑆,𝐺, 𝑇 ) · P𝑗,𝑘(𝐸𝑗,𝑘).

As a result, we have

𝑅𝜋(𝑇 ) ≥ sup
𝜇∈Φ

𝑅𝜋𝜇(𝑇 ) ≥ ℛbad(𝑆,𝐾, 𝑇 ) ·
1

(𝑞(𝑆, 𝑐) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝑐)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘).

Proof of Lemma E.20. The proof is almost the same as the proof of Lemma E.10. □

E.14.4 Probability Space Changing Tricks

Lemma E.20 indicates that, in order to prove the desired lower bound on the regret 𝑅𝜋(𝑇 ), it suffices
to prove the following statement:

𝑝 :=
1

(𝑞(𝑆, 𝑐) + 2)𝐾

∑︁
𝑗∈[𝑞′′(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘) = ̃︀Ω(︂ 1

𝐾

)︂
, (E.58)

That is, we only need to establish tight lower bounds on the average probability 𝑝.
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By Corollary E.4, we have

𝑞 :=
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

Q(𝐸𝑗,𝑘) ≥
1

(𝑞(𝑆,𝐾) + 2)𝐾
= ̃︀Ω(︂ 1

𝐾

)︂
,

Therefore, in order to show (E.58), it suffices to show that 𝑝 is close to 𝑞. Similar to the proof of
Theorem 6.2, we apply the probability space changing tricks. The arguments are very similar to the
arguments in Appendix E.12.4 and are omitted here.

E.14.5 Applying the GRF Inequality

Similar to Appendix E.12.5, by applying the GRF inequality, we can show that

𝑝≥𝑞 −
√︂
2𝑞
𝑞

4

=
2−

√
2

2
𝑞. (E.59)

Now we plug (E.59) into Lemma E.20. We have

𝑅𝜋(𝑇 ) ≥ sup
𝜇∈Φ

𝑅𝜋𝜇(𝑇 )

≥ ℛbad(𝑆,𝐺, 𝑇 ) ·
1

(𝑞(𝑆,𝐾) + 2)𝐾

∑︁
𝑗∈[𝑞(𝑆,𝐾)+2]

∑︁
𝑘∈[𝐾]

P𝑗,𝑘(𝐸𝑗,𝑘)

≥ ℛbad(𝑆,𝐺, 𝑇 ) ·
2−

√
2

2
𝑞

=
1

8(𝑞(𝑆, 𝑐) + 2)
𝑇

1

2−2−𝑞(𝑆,𝑐) · 2−
√
2

2

1

(𝑞(𝑆,𝐾) + 2)𝐾

= Ω

(︂
1

𝐾 log 𝑇
𝑇

1

2−2−𝑞(𝑆,𝑐)

)︂
.

We thus complete the proof of the lower bound. □
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Appendix F

Supplementary Material for Chapter 7

F.1 Extended Models in the Bandits with Knapsacks Setup

In this section, we introduce the bandits with knapsacks (BwK) problem and its variant, the bandits
with knapsacks under limited switches (BwK-LS) problem. We explain the relations between BNRM

v.s. BwK, and the relations between BNRM-LS v.s. BwK-LS in Section F.1.1.

The BwK problem is a general learning framework introduced in Badanidiyuru et al. (2018) and
has been later on extensively studied in the machine learning literature. It generalizes the classical
MAB problem and includes the BNRM problem as a special case. See Badanidiyuru et al. (2018) for a
review of relevant literature.

BwK Setup

Similar to the BNRM problem, let there be a discrete, finite time horizon with 𝑇 periods. Time starts
from period 1 and ends in period 𝑇 . Unlike BNRM, there is no “product” nor “consumption matrix”
in BwK. Let there be 𝑑 different resources, each endowed with finite initial capacity 𝐵𝑖, ∀𝑖 ∈ [𝑑].

In each period 𝑡, the decision maker pulls one arm from a finite set of 𝐾 distinct arms, which
we denote using 𝑧𝑡 ∈ [𝐾]. Each time an arm 𝑘 ∈ [𝐾] is pulled, a random reward 𝑅𝑘 ∈ [0, 𝑅max] is
received at a random cost 𝐶𝑖,𝑘 ∈ [0, 𝐶max] of each resource 𝑖, which we denote using the cost vector
𝐶𝑘 ∈ [0, 𝐶max]

𝑑. The distributions of both the random reward and the random cost vector are fixed
but unknown to the decision maker, and have to be sequentially learned over time. The decision
maker stops at the earlier time when one or more resource constraint is violated, or when the time
horizon ends. We use ℐ = (𝑇,𝐵,𝐾, 𝑑;𝑅,𝐶) to stand for one instance of the BwK problem.

Regime for Regret Analysis

Similar to the BNRM problem, we derive non-asymptotic bounds on the regret of policies in terms of
the number of time periods 𝑇 . Again, we adopt the following regret analysis regime: there exists an
arbitrary positive constant 𝑏 > 0, such that 𝐵min ≥ 𝑏𝑇 .

Following the literature, we assume 𝐶max, 𝑅max are all absolute constants that do not depend on
𝑇 or 𝐵. The other parameters 𝐾 and 𝑑 do not depend on 𝑇 or 𝐵, either. Yet we write out our regret
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bounds’ exact dependence on 𝐾 and 𝑑 in our main theorems and all the proofs. Obtaining regret
upper and lower bounds that are tight in the orders of 𝐾 and 𝑑 is an interesting future direction.

New Constraint to BwK

We model the business constraint of limited changes between arms as a hard constraint, and define
the BwK-LS problems as the BwK problems with an extra constraint of limited switches. Specifically,
on top of the initial resource capacities, the decision maker is initially endowed with a fixed number
of switching budget 𝑠, to change the arm from one to another. When two consecutive arm pulls
are different, i.e., 𝑧𝑡 ̸= 𝑧𝑡+1, one unit of switching budget is consumed. When there is no switching
budget remaining, the decision maker cannot change the arm anymore, and has to keep pulling the
last arm pulled.

There are other ways to model the business constraint of limited switches, but all are beyond the
scope of this paper; see Section F.1.2 for more discussions. We can view the BwK problems as the
BwK-LS problems under an infinite switching budget. Since a limited switching budget restricts the
family of admissible policies, any admissible algorithm for the BwK-LS problem is also an admissible
algorithm for the BwK problem.

F.1.1 Comparison of the Models

The BNRM problem and the BwK problem are closely related. The distinct price vectors in the
BNRM problem corresponds to the distinct arms in the BwK problem. For each 𝑘 ∈ [𝐾], the revenue
of price vector 𝑝𝑘,

∑︀𝑛
𝑗=1𝑄𝑗,𝑘𝑝𝑗,𝑘, corresponds to the reward of arm 𝑘, 𝑅𝑘. And for each resource

𝑖 ∈ [𝑑], the consumption of price vector 𝑝𝑘,
∑︀𝑛
𝑗=1𝑄𝑗,𝑘𝑎𝑖𝑗 , corresponds to the cost of arm 𝑘, 𝐶𝑖,𝑘.

The BwK problem is more general than the BNRM problem, in the sense that for any fixed arm
𝑘 ∈ [𝐾], the reward 𝑅𝑘 and any cost 𝐶𝑖,𝑘 can have an arbitrary and unknown relationship. But in
the BNRM problem, the revenue

∑︀𝑛
𝑗=1𝑄𝑗,𝑘𝑝𝑗,𝑘 and any consumption

∑︀𝑛
𝑗=1𝑄𝑗,𝑘𝑎𝑖𝑗 are correlated

through the random demand 𝑄𝑗,𝑘 (intuitively, the revenue earned is proportional to the consumption
of resources). The BNRM problem can thus be understood as a special case of the BwK problem with
a specific reward-cost structure.

Due to this reason, after adding the switching constraint, the BwK-LS problem is more general
than the BNRM-LS problem. Consequently, establishing an upper bound on regret for BwK-LS is
more challenging than establishing an upper bound on regret for BNRM-LS; meanwhile, establishing
a lower bound on regret for BNRM-LS is more challenging than establishing a lower bound on regret
for BwK-LS, as one has to construct hard problem instances without breaking the specific structure
of BNRM-LS (this can be highly non-trivial, as illustrated in Section 7.1.2).

F.1.2 Related Modeling Components

We survey other related modeling components that have appeared in the literature, including the
stopping criterion, performance metric, and the modeling of limited switches.
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Stopping Criterion

At each point in time, as long as the remaining inventory for any resource is zero, the selling horizon
stops. This stopping criterion is standard in the BNRM and BwK literature, see Besbes and Zeevi
(2012), Badanidiyuru et al. (2018). We refer to this stopping criterion as the “ungenerous” stopping
criterion.

There is a second stopping criterion that is common in the revenue management literature when
the stochastic distribution is known. This setup assumes time horizon never stops. Even if some
resources are stocked-out, the decision maker continues to generate revenue from products that does
not use the stocked-out resources. Either the admissible policy eliminates the possibility to sell
stocked-out resources (Gallego and Van Ryzin 1997, Rusmevichientong et al. 2020), or the realized
demand in each period is simply the minimum between the remaining inventory and the generated
demand (Ma et al. 2021). We refer to this stopping criterion as the “generous” stopping criterion.

Following each trajectory of randomness, the ungenerous stopping criterion stops earlier than the
generous stopping criterion, hence the regret is larger.

Modeling Limited Switches

We model the switching budget as a hard constraint that cannot be violated, which is common in
the literature. Cheung et al. (2017) considers a dynamic pricing model where the demand function
is unknown but belongs to a known finite set, and a pricing policy makes limited number of price
changes. Chen and Chao (2019) studies a multi-period stochastic joint inventory replenishment and
pricing problem with unknown demand and limited price changes. Chen et al. (2020) considers the
dynamic pricing and inventory control problem in the face of censored demand. Simchi-Levi and
Xu (2023) considers the stochastic MAB problem with a general switching constraint. All the above
papers adopt the same modeling approach, yet none of the above papers considers the existence of
non-replenishable resource constraints.

There is another prevalent way of modeling, which models the business constraint as incurring
switching costs; see Agrawal et al. (1988, 1990), Cesa-Bianchi et al. (2013), and Jun (2004) for a
survey. Most papers from this stream of research penalize switching costs into the objective function
of the reward calculation. That is, the objective is to minimize the sum of the regret incurred, plus
the switching costs. Since we treat the switching budget as a hard constraint that can never be
violated, we face a more challenging learning task.

F.2 Bandits with Knapsacks Under Limited Switches

In this section, we study the BwK-LS problem, introduce an efficient algorithm, and provide matching
upper and lower bounds of the optimal regret.

Admissible Policies and Clairvoyant Policies

Recall that in Section 7.4, we distinguish between a BNRM instance ℐ = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴;𝑄) and
a BNRM problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑, 𝑛, 𝑃,𝐴) based on whether the underlying demand distributions 𝑄
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are specified or not. In this section, we distinguish between a BwK instance ℐ = (𝑇,𝐵,𝐾, 𝑑;𝑅,𝐶)

and a BwK problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑) based on whether the underlying reward and cost distributions
𝑅,𝐶 are specified or not. Consider a BwK problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑). Let 𝜑 denote any non-
anticipating learning policy; specifically, 𝜑 consists of a sequence of (possibly randomized) decision
rules (𝜑𝑡)𝑡∈[𝑇 ], where each 𝜑𝑡 establishes a probability kernel acting from the space of historical
actions and observations in periods 1, . . . , 𝑡− 1 to the space of actions at period 𝑡. For any 𝑠 ∈ N, let
Φ[𝑠] be the set of learning policies that change actions for no more than 𝑠 times almost surely under
all possible distributions 𝑅,𝐶. For any 𝑠, 𝑠′ ∈ N such that 𝑠 ≤ 𝑠′, Φ[𝑠] ⊆ Φ[𝑠′]. Let Φ[∞] be the set
of all learning policies with an infinite switching budget. Let Rev𝑅,𝐶(𝜑) be the expected reward that
a learning policy 𝜑 generates under distributions 𝑅,𝐶.

As we have defined in Section 7.2, 𝜋 refers to a clairvoyant policy with full distributional
information about the true distributions 𝑅,𝐶. For any 𝑠 ∈ N, let Π𝑅,𝐶 [𝑠] be the set of clairvoyant
policies that change actions for no more than 𝑠 times under the true distributions 𝑅,𝐶. For any
𝑠, 𝑠′ ∈ N such that 𝑠 ≤ 𝑠′, Π𝑅,𝐶 [𝑠] ⊆ Π𝑅,𝐶 [𝑠′]. Let Π𝑅,𝐶 [∞] be the set of clairvoyant policies
with an infinite switching budget. Let Rev𝑅,𝐶(𝜋) be the expected revenue that a clairvoyant policy
𝜋 ∈ Π𝑅,𝐶 generates under distributions 𝑅,𝐶. Let 𝜋⋆𝑅,𝐶 [𝑠] ∈ arg sup𝜋∈Π𝑅,𝐶 [𝑠] Rev(𝜋) be one optimal
clairvoyant policy with switching budget 𝑠, and 𝜋⋆𝑅,𝐶 be one of the optimal dynamic policies with an
infinite switching budget (i.e., without a switching constraint).

Performance Metrics

The performance of an 𝑠-switch learning policy 𝜑 ∈ Φ[𝑠] is measured against the performance of the
optimal 𝑠-switch clairvoyant policy 𝜋⋆𝑅,𝐶 [𝑠]. Specifically, for any BNRM problem 𝒫 and switching
budget 𝑠, we define the 𝑠-switch regret of a learning policy 𝜑 ∈ Φ[𝑠] as the worst-case difference
between the expected revenue of the optimal 𝑠-switch clairvoyant policy 𝜋⋆𝑅,𝐶 [𝑠] and the expected
revenue of policy 𝜑:

𝑅𝜑𝑠 (𝑇 ) = sup
𝑅,𝐶

{︀
Rev𝑅,𝐶(𝜋⋆𝑅,𝐶 [𝑠])− Rev𝑅,𝐶(𝜑)

}︀
.

We also measure the performance of policy 𝜑 against the performance of the optimal unlimited-switch
clairvoyant policy 𝜋⋆𝑅,𝐶 . Specifically, we define the overall regret of a learning policy 𝜑 ∈ Φ[𝑠] as
the worst-case difference between the expected revenue of the optimal unlimited-switch clairvoyant
policy 𝜋⋆𝑅,𝐶 and the expected revenue of the policy 𝜑:

𝑅𝜑(𝑇 ) = sup
𝑅,𝐶

{︀
Rev𝑅,𝐶(𝜋⋆𝑅,𝐶)− Rev𝑅,𝐶(𝜑)

}︀
.

Intuitively, the 𝑠-switch regret 𝑅𝜑𝑠 (𝑇 ) measures the “informational revenue loss” due to not knowing
the underlying distributions, while the overall regret 𝑅𝜑(𝑇 ) measures the “overall revenue loss” due
to not knowing the underlying distributions and not being able to switch freely. Clearly, the overall
regret 𝑅𝜑(𝑇 ) is always larger than the 𝑠-switch regret 𝑅𝜑𝑠 (𝑇 ). Interestingly, as we will show later, for
all 𝑠, 𝑅𝜑(𝑇 ) and 𝑅𝜑𝑠 (𝑇 ) are always in the same order in terms of the dependence on 𝑇 .
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F.2.1 Upper Bound

In this subsection, we describe the Limited-Switch Learning via Two-Stage Linear Programming
(LS-2SLP) algorithm as Algorithm F.1 in the BwK-LS setup. Note that, Algorithm 7.2 should not
be directly viewed as a special case of Algorithm F.1, as it utilizes BNRM’s feedback structure and
can have much better empirical performance in the BNRM-LS setup. We analyze the performance of
Algorithm F.1 as follows. The proof can be found in the full version of our paper (Simchi-Levi et al.
2019).

Theorem F.1. Let 𝜑 be the LS-2SLP policy as suggested by Algorithm F.1. Let 𝑏 > 0 be an arbitrary
constant. For any BwK problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑) with 𝑇 ≥ 1, 𝑑 ≥ 0,𝐾 > 𝑑+ 1 and 𝐵min/𝑇 ≥ 𝑏, 𝜑 is
guaranteed to be a 𝑠-switch learning policy, and the regret incurred by 𝜑 satisfies

𝑅𝜑𝑠 (𝑇 ) ≤ 𝑅𝜑(𝑇 ) ≤
(︁
max{𝑐𝑛/𝑏, 𝑐′} ·

√︀
𝑑 log[𝑑𝐾𝑇 ]𝐾

1− 1

2−2−𝜈(𝑠,𝑑) log 𝑇
)︁
· 𝑇

1

2−2−𝜈(𝑠,𝑑) ,

where 𝜈(𝑠, 𝑑) =
⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
, and 𝑐, 𝑐′ > 0 are some absolute constants.

F.2.2 Lower Bound

As we have discussed in Section F.1.1, the lower bound construction in Theorem 7.4 for the BNRM-LS

problem directly applies to the BwK-LS problem. So the lower bound result holds.

Corollary F.1. Let 𝑏 > 0 be an arbitrary constant. For any 𝑇 ≥ 1, 𝑑 ≥ 0,𝐾 ≥ 2(𝑑 + 1) and 𝐵

such that 𝐵min/𝑇 ≥ 𝑏, for the BwK problem 𝒫 = (𝑇,𝐵,𝐾, 𝑑), for any switching budget 𝑠 ≥ 0 and
any 𝜑 ∈ Φ[𝑠],

𝑅𝜑(𝑇 ) ≥ 𝑅𝜑𝑠 (𝑇 ) ≥
(︁
min{𝑐𝑏, 𝑐′} · (𝑑+ 1)−3𝐾

− 3
2−

1

2−2−𝜈(𝑠,𝑑) (log 𝑇 )−
5
2

)︁
· 𝑇

1

2−2−𝜈(𝑠,𝑑) ,

where 𝜈(𝑠, 𝑑) =
⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
, and 𝑐, 𝑐′ > 0 are some absolute constants.
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Algorithm F.1 Limited-Switch Learning via Two-Stage Linear Programming (LS-2SLP) for
BwK-LS
Input: Problem parameters (𝑇,𝐵,𝐾, 𝑑); switching budget 𝑠; discounting factor 𝛾.
Initialization: Calculate 𝜈(𝑠, 𝑑) =

⌊︁
𝑠−𝑑−1
𝐾−1

⌋︁
. Define 𝑡0 = 0 and

𝑡𝑙 =

⌊︃
𝐾

1− 2−2−(𝑙−1)

2−2−𝜈(𝑠,𝑑) 𝑇
2−2−(𝑙−1)

2−2−𝜈(𝑠,𝑑)

⌋︃
, ∀𝑙 = 1, . . . , 𝜈(𝑠, 𝑑) + 1.

Set 𝛾 = 1− 3
𝐶max

√
𝑑 log[𝑑𝐾𝑇 ] log 𝑇

𝐵min
𝑡1.

Notation: Let 𝑇𝑙 denote the ending period of epoch 𝑙 (which will be determined by the algorithm).
Let 𝑧𝑡 denote the algorithm’s action at period 𝑡. Let 𝑧0 ∈ [𝐾] be a random action.
Policy:
1: for epoch 𝑙 = 1, . . . , 𝜈(𝑠, 𝑑) do
2: if 𝑙 = 1 then
3: Set 𝑇0 = 𝐿rew

𝑘 (0) = 𝐿cost
𝑖,𝑘 (0) = 0 and 𝑈 rew

𝑘 (0) = 𝑈 cost
𝑖,𝑘 (0) = ∞, ∀𝑖 ∈ [𝑑],∀𝑘 ∈ [𝐾].

4: else
5: Let 𝑛𝑘(𝑇𝑙−1) be the total number of periods that action 𝑘 is chosen, up to period
𝑇𝑙−1. Calculate 𝑐𝑖,𝑘(𝑇𝑙−1) to be the empirical average consumption of resource 𝑖 by
selecting arm 𝑘, up to period 𝑇𝑙−1; Calculate 𝑟𝑘(𝑇𝑙−1) to be the empirical average
reward by selecting arm 𝑘, up to period 𝑇𝑙−1. Calculate confidence radius ∇𝑘(𝑇𝑙−1) =√︁

log[(𝑑+1)𝐾𝑇 ]
𝑛𝑘(𝑇𝑙−1)

and{︃
𝑈 rew
𝑘 (𝑇𝑙−1) = min {𝑟𝑗,𝑘(𝑇𝑙−1) +𝑅max∇𝑘(𝑇𝑙−1), 𝑈

rew
𝑘 (𝑇𝑙−2)} ,

𝐿rew
𝑘 (𝑇𝑙−1) = max {𝑟𝑗,𝑘(𝑇𝑙−1)−𝑅max∇𝑘(𝑇𝑙−1), 𝐿

rew
𝑘 (𝑇𝑙−2)} ,

∀𝑘 ∈ [𝐾],

⎧⎨⎩𝑈
cost
𝑖,𝑘 (𝑇𝑙−1) = min

{︁
𝑐𝑖,𝑘(𝑇𝑙−1) + 𝐶max∇𝑘(𝑇𝑙−1), 𝑈

cost
𝑖,𝑘 (𝑇𝑙−2)

}︁
,

𝐿cost
𝑖,𝑘 (𝑇𝑙−1) = max

{︁
𝑐𝑖,𝑘(𝑇𝑙−1)− 𝐶max∇𝑘(𝑇𝑙−1), 𝐿

cost
𝑖,𝑘 (𝑇𝑙−2)

}︁
,

∀𝑖 ∈ [𝑑], ∀𝑘 ∈ [𝐾].

6: Solve the first-stage pessimistic LP:

JPES𝑙 = max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

𝐿rew
𝑘 (𝑇𝑙−1)𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

𝑈 cost
𝑖,𝑘 (𝑇𝑙−1)𝑥𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀𝑘 ∈ [𝐾]
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7: For each 𝑗 ∈ [𝐾], solve the second-stage exploration LP:

𝑥𝑙,𝑗 = arg max
(𝑥1,...,𝑥𝐾)

𝑥𝑗

s.t.
∑︁
𝑘∈[𝐾]

𝑈 rew
𝑘 (𝑇𝑙−1)𝑥𝑘 ≥ JPES𝑙∑︁

𝑘∈[𝐾]

𝐿cost
𝑖,𝑘 (𝑇𝑙−1)𝑥𝑘 ≤ 𝐵𝑖 ∀𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾]

8: For all 𝑘 ∈ [𝐾], let 𝑁 𝑙
𝑘 =

(𝑡𝑙−𝑡𝑙−1)
𝑇

∑︀𝐾
𝑗=1

1
𝐾 (𝑥𝑙,𝑗)𝑘. Let 𝑧𝑇𝑙−1+1 = 𝑧𝑇𝑙−1

. Starting
from this arm, Select each arm 𝑘 for 𝛾𝑁 𝑙

𝑘 consecutive periods, 𝑘 ∈ [𝐾] (we overlook the
rounding issues here, which are easy to fix in regret analysis). Stop the algorithm once
time horizon is met or one of the resources is exhausted.

9: End epoch 𝑙. Mark the last period in epoch 𝑙 as 𝑇𝑙.
10: For epoch 𝜈(𝑠, 𝑑) + 1 (the last epoch), calculate 𝑐𝑖,𝑘(𝑇𝜈(𝑠,𝑑)) to be the empirical average

consumption of resource 𝑖 by selecting arm 𝑘, up to period 𝑇𝜈(𝑠,𝑑); Calculate 𝑟𝑘(𝑇𝜈(𝑠,𝑑))
to be the empirical average reward by selecting arm 𝑘, up to period 𝑇𝜈(𝑠,𝑑). Solve the
following deterministic LP

max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

𝑟𝑗,𝑘(𝑇𝜈(𝑠,𝑑)) 𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

𝑟𝑗,𝑘(𝑇𝜈(𝑠,𝑑)) 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],

and find an optimal solution with the least number of non-zero variables, 𝑥⋆𝑞. Let

𝑁
𝜈(𝑠,𝑑)+1
𝑘 =

(𝑇−𝑡𝜈(𝑠,𝑑))
𝑇 (𝑥⋆𝑞)𝑘 for all 𝑘 ∈ [𝐾]. First let 𝑧𝑇𝜈(𝑠,𝑑)+1 = 𝑧𝑇𝜈(𝑠,𝑑) . Start from this

arm, choose each arm 𝑘 for 𝛾𝑁𝜈(𝑠,𝑑)+1
𝑘 consecutive periods, 𝑘 ∈ [𝐾] (we overlook the

rounding issues here, which are easy to fix in regret analysis). Stop the algorithm once
time horizon is met or one of the resources is exhausted. End epoch 𝜈(𝑠, 𝑑) + 1.
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