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ABSTRACT

Sequential decoding is a decoding algorithm for tree codes originally
developed for single-user channels (i.e., channels with one transmitter
and one receiver). Sequential decoding relies on what is called a metric
to direct its search and find the path in the tree that corresponds to the
encoded message. The decoding complexity in sequential decoding, that
is, the number of computations to decode a source digit, is a random
variable. A rate is said to be achievable by sequential decoding if it is
possible to select a code with that rate and a metric such that the
expected value of the decoding complexity is finite. In the single-user
case, the largest achievable rate is called the cut-off rate of sequential
decoding.

Multiple access channels are models of communication systems where
there are a number of users all sharing the same transmission medium to
communicate their messages to a common receiver. This thesis exploras
the possibility of using sequential decoding on multiple access channels.
Immediate generalizations of the metrics, in particular of the Fano
metric, that have been used in the past for single-user sequential
decoding, do not work satisfactorily in the multi-user case. A new
metric is introduced which works quite satisfactorily not only for
multiple access channels but also for single-user ones. The achievable
rate region of sequential decoding under this new metric is evaluated. It
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is shown by examples that sequential decoding has the potential of
achieving rates (throughputs) beyond those achievable by conventional
ways of using multiple access channels, such as time-division
multiplexing, frequency division multiplexing, and Aloha-like schemes.

Outer bounds to the achievable rate region of sequential decoding are
considered. The cut-off rate of sequential decoding (in the single-user
case) is determined, thus settling a long-standing open question. Alsg,
the achievable rate region of sequential decoding is determined in the
case of multiple access channels that have a property known as
pairwise-reversibility. The achievable rate region of sequential decoding
for arbitrary multiple access channels remains undetermined.

An alternative approach to sequential decoding, in which there is a
separate sequential decoder for each user in the system, is considered
and an inner bound to its achievable rate region is given. Non-joint
sequential decoding, as this approach is called, has the advantage of
being simple: each sequential decoder is responsible for decoding the
message of a single user, so it does not have to know the tree codes of
the other users. An example is given for which non-joint sequential
decoding, in addition to being simpler, also achieves rates that are
unachievabie by ordinary sequential decoding.

Name and Title of Thesis Supervisor:
Robert G. Gallager
Professor of Electrical Engineering and Computer Science
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Chapter |

INTRODUCTION

Multiple access channels are models of communication systems in which
there are a number of wuncoordinated users sharing a transmission
medium to transmit messages to a common destination. 3ome examples
of multiple access channels are a satellite transponder shared by several
ground stations, a radio network in which users transmit over the same
frequency band to exchange messages, and a computer network where
several computers send messages over a common bus.

One common approach to multiple access communications is to employ
time-sharing (time-division multiplexing), in which at any given time
only one user is allowed to transmit @ message. This idea of splitting 3
given channel into non-interfering subchannels and giving the use of each
subchannel exclusively to a single user alsa underlies frequency-division
multiplexing and other technigues that aim at elimination of multi-usar
interference.

Another approach, which is much less common than time-sharing, is to
let all users transmit simultaneously, thus allowing them to interfere
with each other. In this approach, a sufficient amount of redundancy is
embedded into what is transmitted by each user so that, with hign
probability, the receiver can reconstruct the messages correctly. This is
the coding approach to multiple access communications. Theoreticaily,
coding affords a channel utilization {throughput) always as hign as, and
often significantly higher than, what is possibie by time-sharing. The
reason for being interested in coding for muitipie access channels is
thus the desire to communicate at higher rates, or more reliabiy at a
given rate.

While coding is potentially superior to time-sharing in terms of
throughput, it requires more complexity in the form of encoders and
decoders. In addition, there is the problem of finding an encoder-decoder



pair achizving a given desired rafe. This thesis examines a particuiar
approach to coding for multi-access channels, namely, tree coding and
sequential decoding, and establishes it as a practically applicable
method for achieving rates beyond those achievatie by time-sharing.

1.1. The Multiple Access Channel Model

The multiple access channel model used in this thesis has, as its central
element, a channel (in the information thearetic sense of the word),
which has one input for each user and a single output to the commaon
destination (Figure 1.1.1).

X
source 1 [—S14encoder 1{F—'— — 24

Channel LY Decoder

source n —Sn4encoder n| —"—} 5

Figure 1.1.1. Multi-user communication system mocel.
Our study is restricted to the class of channels which have the following
properties.

1) The channel operates in discrete time; it can be used only once 3
second, say.

2) The channel is discrete; that is, the channel input and output
alphabets are finite sets.



3) The channel is memoryless and stationary. Memorylessness is the
property that the statistics of the output at any given time depends only
on the inputs at that time, and possibly on the time itself. Stationarity
rules out the dependence of channel statistics on time.

A channel in this class with n users can be identified by its input
alphabets Xi,...,%X,, its output alphabet ¥, and its transition probabilities
P={P(m | 2)imeY, eX x-xX ). P(n|2) is the probability of receiving m
given that & is transmitted. If 2=(2,,...,& ), an alternative notation for
P(N| &) 18 PN | &y p)s PN | Z1suendyy) B8 thus the probability that m is
received given that user i transmits ii, i=1,...,N. A channel with these
parameters will be denoted by (P;Xy,...,Xp;Y).

The encoders in this model are what we call (M,k} encoders, where M and
k are arbitrary positive integers. An (Mk) encoder is a device which
sends k symbols to the channel for each digit it receives from the
source; M designates the size of the source alphabet.

In general, each user may have encoders with arbitrary parameters, say,
(Hi,ki) for user i, i=1,...,n. We shall, however, consider only those cases

where k; is the same for all i, and denste the parametasr of such a
collection of encoders by (My,...,M,K).

A source for an (M,-) encoder is viewed as an infinite shift-register
holding digits from a set with M elements. It is assumed that each digit
in each source register is a random variable, uniformly distributed, and
independent of all other source digits in the same or in other registers.
Viewing the sources in this way eliminates the source coding problem,
and thus, enables us to focus on the problem of channel coding, which is
the problem of main interast here.

At this point, we view the decoder quite generally as any device that
generates an estimate for each source digit.



Motice that, as a result of the statistical indspencencs at the sourca
level and the lack of cooperation among the users in the encoding of
their messages, the inputs to the channel by different users are
statistically independent. This is the essential difference between a
multi-user channel, say, (P;:r<1,....,><n;‘r‘} and its single-user counterpart

(Pyiyxees K3,

The two main performance criteria for the analysis of this model will be
the expected system delay and the probability of decoding error. System
delay for a source digit is defined as the time lag from the time that
digit is accepted by its encoder to the time the decoder delivers its
estimate about that digit. System delay is permitted to be a random
variable; but clearly, a system can not be used in practice unless the
expected system delay is uniformly bounded aver all source digits,

Probability of decoding error for a source digit is the probability t
the decoder estimate for that digit is in error. We are interested i
finding ways of reducing the probability of decoding error to arbitrarily
low leveis for each source digit, while keeping the expected sysiem
delay bounded.

hat
n

In order to describe the model precisely, and alsgo for future refzsrance,
we now 1ist the notation that will be used throughcut this thesis.

Notation, Concepts, and Conventions

Transmissions start at time 1, and take place at times 1,2,3,...

As a convention, in the following notation, subscripts refer to user
identity, arguments refer to time.

Generically, e; stands for the encoder (the device) and the encoding

i
operation for user i; the parameter of e; is denoted by (M;k); and the

number of users is denoted by n. e denotes the collection of encoders
ey,...,8,, and also the jaint encoding operation.



Soiyrce Jutnuts, Eacader Inouts

si{m} is the mth input to e, Or equivalently, the mth

output of source 1.
3;{..m)=(g;(1),....,;3;{m)} is the first m inputs to e;.

$;=5i(1),8;(2),... 15 the input sequence to e;.

It is important to note that s; denotes the actual output of source i.

Throughout what follows, the letter s is reserved for denoting actual
source outputs. When there is need to mention a possible but arbitrary
output sequence for source i, we write u; or u; or v;, but never s;. Thus,

Uj denotes an arbitrary sequence of letters from {1,...,1‘11-}. Wea denote the

mth tetter of u; by u;{m), and the first m letters of u; by u;{.m).

Encoder Qutputs, Channel Inputs

x;(m) is the m'M output block of ej, m=1,2,...

x;(m,j) is the I digit of x;(m), j= 1k,

%i(eaM)=(%;( 1)yenne; (M) is the first m output blocks of e;.

%5781 (1, 1% (1,k0,%;(2,1),... Ts the output sequence of ey.

®; 1s the actual output of encoder ey; in other words, it i1s the ssguencs
of channel symbols transmitted by user i. %; and s; are related through
the equation x;(mj=e,(s;(..m)). As stated earlier, e; is regarded not only

as a device (the encoder) but also as the encoding operation itself. In
this second sense, e; is a causal operator mapping source sequences into

channel input seguences.

Our model allows x;(m) to depend on all of s;(1),...,5;(m), no matter how
large m is. If %{m) does not depend on s;{m-b-1) for any babgy and bo 15

the smallest integer with this property, then b, is said to be the memary
of e
i
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Encoders with zerg memory arz called plock encoders, and they will be
discussed in the next section. The discussion of block codes aims at
introducing certain theorems that are useful in understanding the coding
problem in multi-access channels. Our focus in this thesis is on tree
- codes, which are generated by encoders that may have arbitrarily large
memories,

we often use the following notation for the actual channel inputs:

iSi=%; iSj(ml=x;(m) , e;ys;(..m)=x;(..m) .

we use the following notation in relation to what would be observed as
the output of e; if u; were the input to e;.

e;u;(m)=e;(u;(..m)), the mth output block of ey in response to u;.
e-u-(..m)=(e-ui(1),...,eju]-(m)), the first m blocks in response to u;.
uj=e;u;{1),8;u;(2),.... , the output sequence in response to Uj.

Inputs and Qutputs for the Joint Encoder

stm)z{s4(m),...,s,{m}) is the mth input to e.

s(..m)={s{1),...,s{m)) is the first m inputs to e.
s=5{1),8{2),... is the input sequence to e.

x(m, })={4{M, ]),...,%,{m, )} is the jth digit in the mth output block of e.

(M)=(x(M, 1)yueenk(M,K)) s the mtD output block of e.
x(..m)=(x(1),...,x(m)) is the first m output blocks of e.
%=2x(1,1)y0.0y%{ 1,k),%(2,1),... is the output sequence of e.

The functional relationship between the joint source output s and the
joint channel input x will be expressed by writing x(m)=e(s(..m)). Thus, e
is regarded both as a label for the collection of all encoders and as an
operator mapping sequences of letters from {1,..,M}x---x{1,...,M,} into
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sequences of letters from AgfeeZe. In this second sense, e is an
encoder with parameter (My=++Mp,k), input alphabet {l,..,m}x---x{l,...,Mn},
and output alphabet KyXemeK '

We often use the following notation for joint channel inputs.
es=x , es{m)=x{m) , es(..m)=x(..m) .

As in the case of individual source sequences, the letter s is reserved
for denoting the actual joint source outputs. Arbitrary joint source
Sequences are denoted by u or U or v, etc. Thus, u denotes a sequence of
elements from {1,...,M1}><---><{l,...,Mn}; ulm) denotes the mth letter of u;

and u(..m) denotes the first m letters of wu.

We usa the following notation in relation to what would be obsarved as
the output of e if u were the input to e.

eu(mj=e(u(..m)}, the m:h output block of e in response to u.
eu(..m)=(eu(1),...,eu(m)), the first m blocks in respanse to u.
eu=eu(1),eu(2),.... , the output sequence in response to u.

Channel and Decoder Cutputs

ylm, ) is the channel output in response to x(m,j).
ylmi=(y(m, 1),...,u(m,k}) is the mt™" channe] output block.
ylm)=(y(1),...,4(m)) is the first m channel output blocks.
Y=yt 1y, u( 1,kL,U(2, 1,... is the channe] output sequence.

zy{m) is the decoder estimate for §;(ma,
2(m)=(21(m),...,zn(m}) Is the decoder estimate for s{m).
An error in the decoding of si{m) is the event that zj{mlzs;(m).

This completes the basic list of notation,
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Wa now introduce an operation to simplity the notation.
For any collection of sets Ay,...,Ap, any integer t, and any collection of

gi=(g; 1,---s51,t)fﬁit, i=1,...,n, we define

1
51}(52)(---)(&" = ((;'31 ‘1 ,;‘;2'1 ,.,.,an,1 )’(51 J2’£'2,2""’£n,2)"""(81 ’tl""!ath))'

If 51':51',1’51',2’51',3'"" with ‘31',1"5'““1’ then we define

€1x‘£2x"'x£n= (51 | ’52,1 !-'-san )!(81 '2!52’2,--'!"}:“,2},-"-
Some of the preceding relations can now be restated as follows.

S(m)=31(m)x"'x3n(m) ] s(__m)='31l:_,m)><---XSn(..m) 3 S:S‘X---Xsn *

#(m)=x,(m)x-cxx (m) , k(m)=xy(m)xeexgolm) RIR X ene X%

es=e,s1x---xensn,
es{m)=e s {m)x---xe,s,(mj,

es(..mj=e s (.m)x---xe 5,(..m).

If u; is an arbitrary input sequence for e, 1= 1.0, @nd U=uUyxe--xu,, then
eu:eiu1x..'xenUn,
eu(m)=e u,(m)x---xe u (m),

eu(..m)=eu (..m)x---xe u (..m).



1.2. Capacity and Coding for Multiple Access Channels

Interest in multiple access channels (and other types of multi-user
channels) goes back to Shannon’s 1961 paper [1]. Since the publication of
that paper considerable theoretical work has been done about such
channels. This section presents two weli-known results about multiple
access channels which provide the motivation and the framework for the
work reparted in this thesis. To keep the notation simple, the discussion
is limited to the two-user case.

Two-User Block Coding

A (M,M5,k) block code for a two-user channel with input alphabets X
and X, is a mapping

Tl ’___’M1}}<{ 1 ,...,Mg} —_— (X1x><2)k

~

which has the property that, for sach (i,jle{1,....MyIx{1,.,M00,
f(]-])=f1(1)‘f2(]},
for some pair of functions fy and f, such that

fi:{l,...,l“a,} - X‘Ik!

fat{1 Myl — X,K,

2
The operation x is as defined in §1.1,

The above definition forces a two-user block code f to be decomposable
into two component block codes fy and f,. This reflects the regquirement
that in a two-user channel the channel inputs must be independently
encoded.

The implementation of a block code f, with component codes fy and f;, on
a channel K=(P;X,X»;¥! results in the following functional relationships.



gdmy=rylsdmil, Kaimy=Taiza0ml, gimy=rizimil.

Any function g, g:'*r*k {1,0sMy 30 1,.,Mat, Can be used as 3 decoder
for the above block code by simply letting z{m)=giyim)).

An error is said to occur in the decoding of sim) if sim)=z{m). Under our
assumption that the source output letters are independent and uniformily
distributed, the probability of s{(m)=zz{m) is independent of m; it equals

=
3

My 2
Polf,g) = 3 (1M} 3 (1/Mg) 3 PUm | 13,1
1 mevkgln=(i,j)

=1 j

Po(f,0) is minimized if g has the property that, for each nevk, gln)=(i,j)
only if P( | f(i,j)32P(m | fthym)) for all (hym)e{l,...,Mdx{1,.Mp}. Such a
decoder is called a maximum-likelihood (ML} decoder. The way ties ars
broken in ML decoding does not affect the probability of decoding errar;
sn, we denote the probability of error for ML decoders by P,if).

Capacity Region

The capacity region C{K) of a two-user channel K={P;X;,Xy;¥) is defined
as the closure of the following regicn.

C(K)=convex-hull U C(Q,,Q,)
01!Q2

where the union is over all Qq and Q, such that Q, is a probability
distribution {p.d.) on X, and Q, is a p.d. on X, and C(Qy,Q,) is defined as
the set of points (Ry,R;) such that :
P(T| 21,82

<> Q )zQ(h)) P(n|&1.&201n d
216Ky 86X, MeY S QP | 24,0)

QEX




FI:.” ; 31,f23
0« P.g < z 01(31:' z ngzg)z P(ﬂ]ihig)ln !
ZieXy By, meY > O IP(M | 2,2,)
Cexy

Ri*Ra< Z Q4(&4) z Qz(az)z P(11|'£1.£2)ln )
£1EX1 EzEXQ mEY z Qﬂi])i Qg(t)P('ﬂ. ! t],t_g)
f:1E:3<1 czﬁ}'(z

Theorem 1.2.1. (Ahlswede [2], Liao (3D
For any two-user channel K=(P;X,X,;¥) and any pair of real numbers By
and R, we have:

i) It (Ry,R,)eC(K), then, for any €>0, there exists a (My,M,,k) block code f
such that P,(f)<¢ and (1/K)InM;2Ry, 1=1,2,

iy If ‘(R1,H ) lies outside C(K), then P.(f,q) is bounded away fram zers
2 2 g 4

for all f and g, so long as (M,Mpk), the parameter of f, is such that
(Uk)lnH]ZR], i=1,2. O

In words, Theorem 1.2.1 states that, for any channe! K, i) communication
with arbitrarily low probability of error is possible if the sourcs rates
lie in C(K), and ii) probability of error can not be mace arditrariiy small
(i.e., reliable communication is not possible) if the source rates lie
outside C(K). The theorem does not assert anything about points which
belong to C(K) but not to C(K).

Example 1.2.1.

To illustrate the capacity theorem and to explain certain approaches to
multi-access communications, we now discuss the two-user erasure
channel (TEC) of Figure 1.2.1. We observe from the figure and by the
channel capacity theorem that sum rates, Ry+R,, of up to 1.3 bits are
achievable (with arbitrarily small probability of error) by using black
codes.



(0,0)C 00
(0,1

g
(1,0)
(1,10 o3

Xy 20,1} X,={0,1} ¥=1{0,e,1

;
POt B, Ry*R,=1.5 bits
7 Nyan
o
] capacity //\
; region ///é
;/.7/ oy / ‘

> R,
! bit

Figure 1.2.1, Twn-user erasure channel and its capacity region.
Let us look at some simple block codes for this channel. It is easy to see

that the following code achieves the rate pair (0.5 bits, 0.5 bits) with
zern probability of error.



Codet
User | User 2
Message Codeword Message Codeword
1 00 1 00
2 01 2 10

In this code, the first user sends no information in the first digit of a
codeword (it always transmits a 0); similarly, the second user is "quiet”
in the second digit of each codeword. For this reason, this code is said
to have no multi-user interfersnce: user 1°s message can be estimated
independently of user 2’s message without any loss of optimality. Thus,
elimination of multi-user interference simplifies decoding, but codes
without multi-user interference are limited to sum rates of at most 1
bit in the case of the TEC, which is significantly below the theoretically
possibie 1.5 bits.

Cocei is typical of a class of straightforward approaches to muitiple
access communications, such as time division multipiexing, frequency
division multiplexing, and the like, which are based on the idea of
splitting the channel into non-interfering subchannels and giving the use
of each subchannel exclusively to a single user. The main advantage of
these approaches is the ease of decoding, but as here, their operation is
often restricted to a small portion of the capacity region. Coding for
multiple access channels aims, at the very least, af finding practical
techniques for achieving rates beyond what is achigvable by such simple
schemes.

One can easily improve upon Code 1; for example, Kasami and Lin {4] give
the foilowing code, which achieves a sum rate of 0.5+(1/2)10g,3=1.3
bits.
Code 2.
User | User 2
Message Codeword Message Codeword
1 00 1 Q1
2 11 2 10
3 11




In this code, unlike the previous one, both users fransmit information in
both digits of each codeword; as a result, each received digit is
corrupted by multi-user interference. Hence, it optimality is desired, the
decoder must deal with the codes of both users simultanesusly. 5o, an
increase in the rates comes at the cost of increased decading
complexity. As a general rule, allowing the users to interfere with each
other requires untangling a more complicated set of possibilities at the
decoder, hence, an increased decoding compiexity.

If we wish to communicate at still higher sum rates, and at the same
time keep the probability of error below a given level, we find out that
codes with longer block lengths must be considered. The channel capacity
theorem does not tell us how large the block length has to be before we
can be sure that there exists a block code with that block length which
satisfies our rate and reliability requirements; the foliowing theorem
pravides an answer to this question.

Theorem 1.2.2. (Slepian and Wolf [3])
Far any twao-user channel K, there exists a function EyiR,R;) which has

the following properties. 1) Ey(Ry,R,) is positive if (Ry,Ry)eC(K) and zero

otherwise. 2) For any (Ry,R,), there exists a block code f with parameter
(My,M2,k) such that a) (1/k)InM;2R; for i=1,2 and b P (f)< exp-kE(Ry,R,)

For the purposes of our discussion, the explicit form of E {Ry,R;} is not

important. The important point is that, for any given rate in C(K), this
theorem establishes the possibility of making the probability of decoding
error at that rate approach zero exponentially by increasing the block
iength. This suggests a favorable trade-off between reliability and
system complexity, as long as the desired rate is in C(K). A more
complete discussion of this issue lies outside the scope of this thesis.
For that the interested reader is referred to [5], which covers all the
material given up to here in greater detail and from a broader
perspective, and also gives an overview of several approaches to coding
for multiple access channels, which we will not discuss at all.
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1.3. Multi-User Treoe Codes

A multi-user tree code is simply another name for the joint encoding
operation described in §1.1. The name derives from the fact that the
mapping generated by causal encoders with 1ang memory is most gasily
visualized as a tree. This section starts by considering a single-user
tree code to introduce the basic terminology and concepfs; then a
Uwo-user tree code is considered; next the form of the concepts and the
notation for an arbitrary number of users is indicatad; and, finally,
random tree code ensembles are introduced.

Single-User Tree Cades

A3 in the case of encoders, a single-user tree code with paramatar (M,k)
has an input alphabet of size M and, for each source digit accepted, it
generates k channel digits. The rate of such 3 tree code is defined as
(1/k}InM (nats) or, equivalently, as (1/kJTog,M (bits).

As an example, consider a (2,2) tree code for which the source and the
channel aiphabets are both equal to {0,1} and the encoding aperation e is
defined as follows.
(u{1)u(1)) for m=1;
eful..m)) =
(u{m=1)+ufm),u(m)) for m=2,3,...

Hers, + denotes modulg 2 addition, and u dengtes an arbitrary source
sequence.

The first three levels of the code tree for e are shown in Figure 1.3.1.
The tree representation is based on establishing a one-to-ane mapping
from source sequences to paths in the tree. In the present example, the
mapping is indicated by the arrows at the left side of the diagram. In
order to generate the encoded sequence, the encoder uses the source
output as a sequence of instructions and follows the “upper” or the
“lower” branch going aut from the current node depending on whether the
next source digit is, respectively, a0 or a 1,
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Figure 1.3.1. Example of a single-user tree code.

For example, if the first three digits of the source output are §,1,0, then
the first three blocks (branches) of the encoded sequence are 00,11,10,
Thus, each source sequence is mapped to a unique path. Hence, we refer
to source sequences as paths and to initial segments of source sequences
as nodes. For any path u, and any m=1,2,..., the branch connecting node
u(..m-1) (for m=1, take u(..m-1) as the origin) to nocs u(..m) is labelled
by elu(..m)j.

In the tree representation of 2 (M,k) tree code, each node at each level is
connected to M nodes at the next higher level; each branch is labelled by
a block of k channel input digits; M is refsrred to as the degree of the
tree.

The path corresponding to s, the actual source sequence, is called the
carrect path. Nodes on the correct path are called the correct nodss. The
branch labels on the correct path are thus the channel symbols that get
transmitted over the channel.
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Twn-User Tree Codes

We illustrate the relationship between a pair of single-user tree codes,
e, and e,, and the corresponding joint two-user tree code, e, by using
the example shown in Figure 1.3.2. We observe that the parameters of ey
and e, are both equal to (2,2). In general, if (My,k) and {Mk) are the
parameters of e; and e,, then (M;,M,,k) is the parameter of e. 5o, here,
the parameter of e is (2,2,2). '

With reference to Figure 1.3.2, observe that, for each pair of nodes,
uyl..m) in ey and uy(..m) in ey, ujl.mixu(.mj is a node in e. Likewise,
for each pair of paths, u; in e and u; in e, u;xu; is a path in e.

The path s=sxs,, where s, is the correct path in ey and s; is the
correct path in e,, is called the jgint correct path, or the correct path in
e.

Basic Concepts and Notation for Multi-Usar Trae Codes

Generically, e; denotes the tree code for user i, and e denotes the joint
tree code. (Mj,k) denotes the parameter of e;; n denotes the number of
users; and (My,...,M,,k) denotes the parameter of e. The rate of e; is
defined as R;=(1/k}InM;, and that of e as (RigeeesRpy

If u;j is a path in ey for each ie{1,..,n}, then upeeexu, is 3 path in e. It is
called the product path or the joint path corresponding to Uj,..,up. U is

said to be a component path of uyx--+xup,.

The path in e; corresponding to s;, the actual source output, is called the
correct path in ey; syx---xs, is called the correct path in e, or the joint

correct path. Modes on syx---xs, are called correct nodes.
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Example of 8 two-user tree code.
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If u{..m) is a node in @; for each ie{1,...n}, then uyl.mpc--xy,(.m) is 2

node in e. It is called the joint node or the product node corresponding to
UgeaM) el (M), u5(am) 15 s3id to be a component node of uyl.m)xes.x

Up(..m).

For any vpair of nodes in e, ul.m)=u,{.m)x---xu,{..m) and al..m)=u, (.m)x--
-xU,(.m), the type of u(.m) with respect to U(.m) is defined as the
vector (Ty,...,Ty,) where T,, 1<jem, is the set of i such that ui(..j)zﬁi(..j).

(For example, in Figure 1.3.2, the type of node ({1,1),(1,0)) with respect
to ((1,1),(0,00) is ($,{1}).)

For any node uf..m) and any path U in e, the type of u(..m} with respect to
U is defined as the type of u(..m) with respect to u{..m}.

For any path u in e, the mtM (mz1) incorrect subtres of u, denoted by
I(u), is defined as the set of nodes u(..j} in e such that a) j:m, b)

at..m)zul..m), and ¢) if m22, u(..m-1)=uf..m-1).

The number of types of nodes at level m equals (m+1)™ This can be seen
by observing that, if (T,,...,Tm) is the type of a node, Tj must be 3 subset

- of Ty, for a1l h>j. Thus, for each user, there are m+1 wauys that that user

first appears (one possibility is that it never appears) in the sequence of
sets T,,...,Tm.

Ensembles of Tree Codes

We end this section by introducing a certain type of tree code ensembies,
which will be used mainly for proving thearems.

For any parameter (M,k), any channel input alphabet X, and any p.d. Q on
X, the single-user tree code ensemble Ens{M;k;X;Q) is a set of tree codes
Q(M,k,X) with a probability measure p on it. Q(Mk,X) is the set of all
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{M.k) tree codes with channel input alphabet X. W is a measurs defined on
the class of events that are expressable as countable unions and
intersections (the g-algebra) of elementary events of the form

E(u(..i),£)={ee§2(r1,k,><): e(u(..i))=a:e><'<} .

E(u(..1),&) is the set of tree codes in Q{M,k,X) for which & is the label of
the branch immediately preceding node u(..i). yu is the extension measure
corresponding to the following probability assignment: For any collection
of distinct nodes uy{..my),...,u...m.) and any 51,...,£rexk,

Pr{ By (M & D ECU M2 } = QEE QL.

Thus, the statistical properties of a code chosen at random according to
p coincides with those of a (M,k) tree code each of whose branches gets
a label &, 2exK, with probability Q(2), independently of what is assigned
to other branches.

For any n-user parameter (My,...M,k), any collection of channel input
alphabets Xy,....,X,, and any collection of Qy,...,Qy,, wneres Q; 1s a p.d. on
Xi, '
defined as the set of all (M,,...,Mn,k) tree codes for which ><]- is user i's

the n-user tree code ensemble Ens{M,,...,Mn;k;X,,...,Xn;Q,,...,Qn}' is

channel input athabet, with the following probability measurg g on this
sat. J is best described by saying that it is the measure that would
exist on the joint tree code e corresponding to a collection of random,
mutually independent tree codes ey,...,e,, where e; is selected according

to the probability measure associated with Ens(Mi;k;Xi;Qi). In other

words, the statistical properties of a code chosen at random according
to g are identical to those of a joint tree code in the situation where
each branch of each user’s tree code is labelled independently of each
other branch, in such a way that Q; is the p.d. for branch labels in user

i’s tree code, i=1,...,,n.




1.4. Sequential Decoding for Multi-User Tree Codes

Sequential decoding is a decoding algorithm for tree codes invented by
wozencraft [?], and later developed by Fane [8]. This section describes the
stack algorithm, a version of segquential decoding due to Zigangirov [9]
and Jelinek [10], and defines the concept of achievability for sequential
decoding. Familiarity with sequential decoding, to the extent that it is
given in any one of the references [11], [12], and [13], is assumed.

Sequential Decoding_and Its Metric

Sequential decoding is a tree search algorithm for finding the correct
path in a code tree based on the information available from the received
sequence. The algorithm relies on what is called a metric for directing
its search. The metric in sequential decoding is not a metric in the usual
mathematical sense of the word. Ordinarily, the metric is intended to be
a function that measures the statistical correlation between the received
sequence and the hypothesized transmitted sequence.

Farmally, a metric for a channel K=(P;Xy,...;X;¥) and a (MyyenesM,k) tree
code e is any function of the form

[o4] .
r: U (Xix...xxn)hkxvhk —_ [_oo,+°°).
h=1
The value of the metric at a node ul.m) for a received sequence y is
given by T'{eu(..m),y(..m)), where the notation is as given in §1.1.

It is important to note that I'(eu(..m),y(..m)) does not depend on y(m+1),
y{m+2),...., the portion of the received sequence beyond level m. This
restriction is an integral part of sequential decoding; and without it,
some results of this thesis would not hold.

Also notice that the metric is allowed to take on the value -o. As will
be clear soon, this makes it possible to rule out a node permanently from
further consideration when there is no doubt that it is incorrect.
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Example 1.4.1. The Fana Metric

The most well-known metric for sequential decoding is the Fano metric,
which was originally introduced by Fano for single-user channels [8]. In
the case of an n-user channel I<=(P;><1,...,><n;‘f) and a (M,,...,Mn,k) tree code

e, the Fano metric takes the following form.

m P{y(h} | euth))
T{eu(.m),yC.m)=3 {in - kR},
ol w(yth)
n
where w is a p.d. on YK and R=(1/k) 3 InM,.
i=1

In practice, one might pick e at random according to the probability
measure associated with an ensemble Ens(M,,...,Mn;k;X,,...,Xn;Q1,...,Qn) and

set
w(n) =D Q& )2 Q&) PN [ & fpeensd )
a,ex,k inexnk
for each 'rle\.fk.

The Fano metric is branchwise additive; that is,
r{eu(..m),y(..m)N=T{eul..m-1},y{..m- 1))+ Eleu(m),y(m)),

P(y(m)|eu(m))

wherg 8(eu(m),y(m))=1n - kR.
~ wly(m))

Branchwise additive metrics are simnler to implement and easier to
analyze; but these are not compelling reasons to restrict our discussion
to this class of metrics, and we do hot do so.

The Stack Algorithm

There are two well-known versions of sequential decoding, namely, the
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Fano algorithm and the stack algorithm. For practical purposes, the Fano
algarithm is preferable since it requires almost no storage. However, in
this thesis, we shall consider only the stack algorithm, mainly because it
is much simpler to describe and analyze. Let us point out that the results
of our analyses hold for the Fano algorithm without any essential
changes.

In the stack algorithm, there is a list of nodes in which nodes are ordered
with respect to their metric values. This list is referred to as the stack.
The metric values of the nodes in the stack increase towards the top of
the stack. Ties between the metric values in the ordering of nodes are
broken by some fixed but arbitrary rule. Each step of the stack algorithm
consists of deleting the node at the stack-top and inserting its
immediate descendants into the stack. At the start of the algorithm, the
origin is the only node in the stack, and it has a metric value of zero.

In practice, all tree codes are truncated at some finite level, and the
stack algorithm stops as soon as a nade at the last level of the code tree
reaches the stack-top. The stack-top-node is then taken as the output of
the sequential decoder. If the rate is sufficiently small, reliability of the
decoder output can be improved by increasing the length of the finite tree
‘code. The remarkable point about sequential decoding is the possibility of
making the average decoding complexity independent of the length of the
tres code, and thus, of the desired level of reliability.

The fgllowing definitions formalize the concept of decoding complexity.

Definition 1.4.1. A Measure of Decoding Complexity
If the stack algorithm is used, with T as its metric, in decoding a tree
code e over a channel K, then CJ-(K,e,I‘,s,g) denotes the number of nodes in

I]-(s), the jth incorrect subset of the correct path, which reach the

stack-top, conditional on s being the corract path and y being the
received sequence.
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Cj(K,e,I‘) denotes the expected value of Cj(K,e,I‘,s,g) with respect to the
joint p.d. on s and y. That is, Cj(K,e,T)=EgEy | osCjfKs8:T,3,) where Eg
denotes expectation with respect to the p.d. on s and Eules denotes

expectation with respect to the p.d. on y conditional on es being the
transmitted sequence.

For each L, Dy (K,e,} is defined to be (Cy(K,e,l)+---+C (K,e,T)/L. O

Observe that LD (K,e,T'} is an upper bound on the expectad number of

nodes which reach the stack-top before the algorithm reaches level L on
the correct path for the first time. Hence, for large L, DL can be taken as

an approximate measure of the average number of computations for the
algorithm to move one step along the correct path. These considerations
motivate the following definition.

Definition 1.4.2. A Criterion of Applicability
A point R=(Ry,...,R,) is said to be an achievable rate for seguential

decoding on a channel K=(P;X ., Xps¥) if
1) Ry20 for each i=1,...,n, and

2) there exists a finite constant A, A=A(K,R), such that, for every L, there
exist :

i} a code e with rate at least as large as R

and i} a metric T

such that D (K,e,[}<A.

(Condition i) above means that, if (My,....M,,k) is the parameter of e, then
(1/k)InM; 2 R; for each i=1,ume,N.)

The closure of the set of all such R is called the achievable rate region
of sequential decoding and is denoted by R(K).O

The above definition of achievability allows e and T to depend on L. Now,
one may ask, quite justifiably, why the definition of achievability does
not read as follows.



Definition 1.4.3. An Alternative Criterion of Applicability
A point R=(R1,...,Rn) is said to be a strongly_achievable rate for sequential

decoding on a channel K=(P;X,.., %% if
1) R;20 for each i=1,...,n, and

2) there exists a finite constant A=A(K,R) such that there exist
i) a code e with rate at least as large as R
and ii) a metric T
such that DL(K,e,I‘)<A for all L.O

Unlike Definition 1.4.2, Definition 1.4.3 requires that e and T' be chosen
independently of L. Clearly, if R is achievable in the sense of Def.1.4.3,
then R is also achievable in the sense of Def.1.4.2.

The concept of achievability used in the literature on sequential decoding
coincides with that of Def. 1.4.2. It is not known if strong achievability
and achievability are equivalent, even for the single-user case. (Resolving
this question might contribute greatly to our understanding of sequential
decoding.) Strong achievability is not used anywhere in this thesis for the
following reasons. First, despite some efforts, we have not been able to
prove that any non-trivial rate is strongly achievable. Second, for finite
tree codes, which are the only type of tree codes of practical interest,
strong achievability is unnecessarily restrictive.

To illustrate that achisvability in the sense of Def. 1.4.2 is sufficient for
practical purposes, consider a situation where the desired rate and the
desired level of reiiability are given. Suppose that the desired rate is
achievable. Then, given any L, there exists an infinite tree code e with
the desired rate and a metric I' such that DL(K,e,I‘)<A, where A is a

finite constant, independent of e, L, and T. The idea is to pick L large
enough so that, among those code-metric pairs satisfying D (K,e,[')<A4,

there exist e and ' such that: when the stack algorithm is applied, with T
as its metric, to the finite tree code that is obtained by truncating e at
level L, the desired reliability is also satisfied. A tail, i.e. a part where
no branching occurs, may be appended to the truncated code in order to
increase the reliability of the final digits of the decoded sequence.
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1.9. Summary of Results

The research reported in this thesis has been aimed mainly at finding a
characterization of R, the achievable rate region of sequential decoding.
This goal has not been achieved and no general characterization of R is
known at present; there are, however, some partial results, which we now
summarize.

The Result on Achievability

The following thearem is the main result of this thesis on achievability.
For notational simplicity, it is stated here for the two-user case. In
Chapter 2, it is restated and proved for an arbitrary number of users.

Theorem 2.2.1.
For any two-user channel K=(P;X{,X;;Y), R(K} is inner-bounded by Ry(K),
which is defined as follows.
Ro(K) = | RelK,Q)
Q

where the union is aver all Q={Q,Q,) such that Q, is a p.d. on X,k and Q,

is a p.d. on xzk for some arbitrary integer k (same k for both Q, and Q,);
and for any such Q, Ry(K,Q)} is defined as the set of all (Ry,R,) such that
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This theorem is proved by showing that Ry 15 achievapble by the following
class of metrics: Members of the class are identified by a parameter
(K,k,Q,B) where K is 3 Channel, say K=(P;X 1, X2:¥); Kk i5 2 positive integer;
Q=(Q,,Q,) where Q; is a p.d. on X,k and Q, is a p.d. on sz; and
B=(B4,8,,B3) is what is called the bias function. The member of the class

—

with parameter (K,k,Q,B) is based on a branch metric
R e RV
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becausz the form of the metric itself is closely related to the method we
use in §2.1 to prove that a given rate is achievable.

This metric is the only metric known to achieve Ry(K} for all K. Qur
efforts to show that the Fano metric (or simple modifications of it)
achieves Ry have not been successful. In view of this, we regard the
introduction of the above metric as a major contribution of this thesis.

Converse Results

Converse arguments aim at finding outer bounds to the achievable rate
region of sequential decoding. The main converse results of this thesis
are as follows.

Theorem 3.2.1. For any single-user channel K, R(K)=Ry(K). O

For single-user channels, Rg(K)=[0,Rqo(K) (see §2.3 or pp.149-50 of [12D),
whetre .

‘ 2
Re(K) = max -In § { T Q) VP[]
Q meY &eX
where the maximum is taken over all p.d.’s Q on X.

The achievability of all B, for Re{C0,Rq(K}}, is 2 special case of Theorem
2.2.1 and it has been well-known, see, e.g., [11], [12], or [13]. But the
converse statement, that rates gresater than Rgy{K} are not achievable, is
new and will be proved in §3.2.

The strongest converse prior to this was due to Jacobs and Berlekamp
[14], which stated that rates in excess of FZO(K,H are not achievable.
Here, Eq(K,1) is the value, at p=1, of Eq(K,p), which Jacobs and Beriekamp
defined as the smallest concave function greater than or equal to

1
EolK.p) = max -In ) { > Q) P(”"lli)”“*P)}( +p),
Q TEY &eX
where the maximization is over all p.d.’s Q on X.
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Mote that EgiK,1)=Rg{K); hence, our result is an improvement over that of
Jacobs and Berlekamp only for channels for which EglK, 1)< Eg(K,1). we do
hot have an example for which Eo{K,13<Ey(K,1), but we believe that such
channels exist. It is known, for example, that there exists K for which
Ep(K,p) is not a concave function of p [14]; for any such K, Eg(K,pkéU(K,p)
at some p20.

Ro(K) has been called the cut-off rate of channel K with the understanding
that at rates above Rg(K) the average complexity of sequential decoding is
~infinite. The above theorem justifies the use of this term.

Theorem 3.3.1. R{K)=Ry(K} for any channel K=(P;X,....%n;¥} which has
the property that

z "/P(Tl | 31;---:5;1) P(Tl I ?;l!-"sﬁn) ]Og {P(Tl. l 81’"-,£n)‘fp(n I ﬁh‘Hstn)}:O
ney

for every &;,8;€X;, i=1,..,n. O

Channels with the above property are cailed pairwise reversible channels
[16]; an example is the TEC of Figure 1.2.1.

The above converses determine R for two special classes of channels.
However, R remains undetermined in the general case. It might be that
R(K) equals Rg(K) for all K, but this has not besn proved yet, except in an
ensemble average sense (see Theorem 3.4.1). No examples have been found
for which R is strictly larger than Ry, either.

Mon-Joint Sequential Decoding

Chapter 4 considers an alternative approach to sequential decoding and
finds an inner bound to its (appropriately defined) achievable rate region.
Non-joint sequential decoding, as this approach is called, uses a separate
sequential decoder for each user; the decoder for a given user decodes
that user’s message without any knowledge of the tree codes of the
remaining users.



In exchange for the increase in the number of decoders, non-joint
decoding allows each decoder to be much simpler than a joint decoder. It
is demonstrated by an example in Chapter 4 that non-joint sequential
decoding, in addition to being simpler, sometimes achieves rates that are
unachievable by ordinary sequential decoding. This seemingly paradoxical
result is then explained, and conclusions are drawn about the nature of
achievability in sequential decoding.

This completes the summary of the main results. In the remaining part of
this section, we shall consider some examples and try to answer some
specific questions about seguential decoding.

Example 1.5.1.
a) Two-lJser OR Channel (Figure 1.5.1)

For this channel, it is known that R=Ry=C; in other words, the achievable
rate region of sequential decoding coincides with the capacity region.

One particular feature of the OR channel, which we wish to discuss, is
that it is noiseless; that is, the channel output is completely detarmined
by the channel inputs. Noiseless channels are pairwise reversible. Hence,
by Theorem 3.3.1, R{K)=Ry(K) for all noiseless K. Furthermore, for any
noiseless K, one can achieve Rq(K) by simply using a metric that has only
two values, namely 0 and -e. This metric assigns O fto consistent nodes
and -0 to inconsistent ones. A node u(..j) is said to be consistent if its
correctness can not be ruled out on the basis of y(..j), the first j blocks
of the received sequence.

b) Two-User Erasure Channel (TEC) (Figure 1.5.2)

This is another noiseless channel, so we know that Rg(TEC)=R(TEC). The
shaded region in Figure 1.5.2 is an inner bound to Ry(TEC), obtained by
computing Ry(TEC,Q) for Q=(Q4,Q;) with Qy=Q,=the uniform distribution
on {0,1}. Ry(TEC,Q) is not equal to Ry(TEC), because clearly, the points
(0,1) and (1,0) belong to Ry(TEC). 3o, a larger inner bound to Re(TEC) can
be obtained by taking the convex-hull of the union of the shaded region

with the points (0,1) and (1,0).
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Figure 1.5.1. Two-user OR channel.
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Figure 1.5.2. Two-user erasure channel.
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Figure 1.5.2 shows that sum rates of up to 1.42 bits are achievable Dy
sequential decoding. In Example 1.2.1, a simple block code achieving a
sum rate of approximately 1.3 bits was given. We do not know, however,
of any comparably simple block codes which achieve sum rates as high as
1.42 bits, while maintaining an arbitrarily small probability of error.

¢) Two-User Additive Gaussian Noise Channel (AGNC) (Figure 1.5.3)

This is a channel with non-discrete input and output alphabets. Our
results do not directly apply to such channels since we are considering
only discrete channels. Nevertheless, the AGNC is of special interest
because of its practical relevance. The treatment here is brief, however;
and we refer to [6] for maore about this channel.

The channel input and output alphabets for AGNC’s are the set of real
numbers. If 1, &, and &, denote, respectively, the received number, the
number transmitted by user 1, and the number transmitted by user 2, then
n-2,-&, (the noise) is a random variable with distribution N(0,52). Here,
N(0,52) is the Gaussian density function with mean O and variance G2
There are energy constraints on the inputs of the form: E(2,2)¢¢y and
E(2,2)¢¢,, where E denotes expected value in a time and code average
sense. (In the absence of energy constraints, the capacity region and the
achievable rate region of sequential decoding are unbounded.)

Figure 1.5.3 shows C(AGNC), the capacity region, and an inner bound to
Ro(AGNC). The inner bound is obtained by computing Rq(AGNC,q) for
q=(N(0,€,),N(0,¢5)). The computation of Ro(AGNC,q) is carried out in the
same way as for discrete channels, except that sums are replaced by
integrals and probability distributions by densities.

Notice that, if o? is fixed, the achievable rate region of seguential
decoding for an AGNC with constraints E(2,2)<2¢; and E(£,%)s2¢, is at
least as large as the capacity region of an AGNC with constraints
E(2,2)¢e, and E(2,%)¢¢,. So, at the expense of at most doubling the
“energy”, we can achieve all points in the capacity region of a given AGNC
by sequential decoding.
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Figure 1.5.3. Additive Gaussian noise channel.
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Complementary Bemarks

Here we wish to discuss informally some guestions that may have arisen
up to this point.

Q. What makes sequential decoding of multi-user tree codes a different,
if not a more difficult, problem than sequential decoding of one-user tree
codes?

A. The complication in multi-user sequential decoding is due to the
presence of different types of incorrect paths which have markedly
different statistical properties in relation to the correct path. Despite
this, one has to design a metric that distinguishes the correct path from
these various types of incorrect paths. While the design of such a metric
may not seem to be a problem (because the correct path has a higher
correlation with the channel output sequence than any other path), it is
not at all clear whether such additional constraints on the metric do not
force the achievable rate region of sequential decoding to be much too
small to make it attractive.

To discuss the above ideas in more concrete terms, consider a two-user
tree code. Let sq and s, be the correct paths for users 1 and 2. Sequential
decoding aims at finding syxs; based on the information available from
the received sequence y. For simplicity, 1et us consider only the incorrzct
paths in Iy(syxsy), the first incorrect subtree of the correct path. There
are three types of paths in I,(syxsp): 1} Totally incorrect paths of the
form u,xu, whers uy=s; and u,zs,. 2) Half incorrect paths of the form
uyxs, whers u,=s;. 3) Half incorract paths of the form s,xu, where u;=s;.

Paths of type 1 have no correlation with y; hence, they are relatively
easy to detect and eliminate from further search. But paths of types 2
and 3 are correlated with y. This is precisely the point where multi-user
sequential decoding differs from and becomes more difficult than
single-user sequential decoding.

Q. Do we know of simpler characterizations of the regions R and Ry ?
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A. In general, there are no known characterizations of the regions R and
Ry which are simpler than their definitions. Clearly, the definitions of
these regions do not immediately suggest any algorithms for determining
whether a given point belongs to these regions.

While so little is known in terms of computing R and Ry in general, the
situation is compietely solved in the one-user case. For any one-user
channel K=(P;X;¥), we have

‘R(K)=R0(K)=[0,sgp Ro(K,Q)],

where the supremum is over all p.d.’s Q on K for some arbitrary integer
k, and for any such Q,

2
R (K,Q) = -1/ 5 { T Q@) PID} .
nevk zexk

The computation of R(K) is made possible by Gallager’s parallel channels
thearam (see pp. 149-50 of [12]), which states that in order to maximize
Rq(K,Q) over Q, one needs to consider only p.d.’s over X, i.e.,

sup{ Re(K,Q):Q is a p.d. on xK for some integer k}

= sup{RU(K,Q):Q is a p.d. on X}.

The computation of Rg(K):=sup{Ry(K,Q):Q is a p.d. on X} is facilitated by
the following necessary and sufficient conditions for a p.d. Q on X to
maximize Ry(K,Q) (see Theorem 5.6.5 in [12]):

2
S/FAD S eFmD: 3 { o@D} an gex,
neY - CeX meY gex

with equality if Q(&)>0.

These conditions are extremely useful in verifying whether a given Q,
which may have been guessed on the basis of intuition, does indeed
maximize Ry(K,Q). It is unfortunate that there is no analogue of the
parallel channels theorem in the multi-user case.



Q. Ara R(K) and Ry(K) convex regions for all K?

A. It is not knawn if R(K) is convex for all K. (Note that one may not need
to have an explicit characterization of R(K) to prove that it is convex.)

It is known that Ry(K) is convex for all K. The convexity of Ry should not
be attributed to the possibility of time-sharing between a number of tree
codes and decoding each code by a separatz sequential decoder. That
argument overlooks the fact that a collection of sequential decoders
working on different codes is not equivalent to any single sequential
decoder.

The convexity of Ry can still be explained by the idea of time-sharing,
however; but we must consider time-sharing within a code as opposed to
between a number of different codes. Time-sharing within a code is
achieved by taking the branches of the tree code long encugh so that
conventional time-sharing can in effect be used within the duration of a
branch. The proof of convexity of Ry, along with several other of its
properties, is given in §2.3.

Q. How well does the metric proposed for multi-user sequential decoding
work in the one-user case?

A. The achievable rate region of the proposed metric coincides with R(K)
for every one-user channel K. For K={F;X;¥), the metric with parameter
(K,k,Q,B) is given as foilows.

For each t‘,exk, ‘qe*fk,
4 P(m|2&)
%(Z,m) =1n - kB.
S Q@Y P
' texk

For any code parameter (M,k) satisfying (1/k)InM<Ry(K), the appropriate
parameter to be used is found as follows: Q is taken as a p.d. on xK such
that (1/k)InM<Ry(K,Q), and B is then set equal to {(1/k)InM+R,y(K,Q)}/2.
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In Chapter 2, it is proven, as a special case of Theorem 2.2.1, that the
above metric achieves the rate (1/k)InM. It thus follows that all rates up
to Ry(K) are achievable.

Mow, compare the above metric with the Fano metric, which is given by

P{n|&)
Fp(g,m) = In—— — kB,
win)
and which also achieves all rates up to Rg(K) for any single-user channel
K, provided that w and B are chosen appropriately.

Note that these two metrics are not reducible to one another; that is, it
is not possible, in general, to choose the parameters of these metrics so
that their ratio is fixed.

We conjecture that the following metric, which contains the above two as
special cases, also achieves all rates up to Ry(K) for each single-user
channel K and for each r, 0.5¢r¢l.

P(m|&)F
(&M} = 1n — kB
S @ Pq "
texk
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Chapter 2

AN INNER BOUND TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

The main result of this chapter is the proof that Ry(K) (to be defined in
§2.2) is an inner bound to R{K) for any multiple access channel K.

2.1. Sufficient Conditions on Achievability

Let K:(P;X,,...,Xn;\r‘) be an n-user channel; let T be a branchwise additive
metric for (My,...,M,,k) codes for K; let &, 25:(><1><---><><n)k —> [~,00),

be the branch metric for I'. The value of T for a channel input x(..m} and
a channel output y(..m) is thus given by
m
I‘(x(..m),g(..m))=z g(x(i),y(i)).
i=1

In this secvtion, we wish to find conditions on K, (My,.,M,k), and ¥
which, if satisfied, guarantee that the point R:(Rj,...,Rn), whera
R;=(1/k}InM;, is achievable in the sense of Definition 1.4.2. We fix K,
(M1,...,Mn,k}, and T' throughout the following discussion, and suppress

them in the notation.

Proving that R is achievable rsguirss exhibiting the existencs of a code
e, with rate at least as large as R, for which D (e) is uniformly bounded.

A direct approach to this problem is not feasible, because the
computation of DL(e) is hopelessly complicated for any non-degenerate

code e. We try therefore an indirect approach, known as random-coding,
which is based on the fact that the expected value of a random variable
upper-bounds the value of that random variable at at least one sample
point. Thus, instead of a fixed code, we consider an ensemble of codes,
and evaluate the expected value of D| (e} over this ensemble.




The ensemble wg uUse here is E=Ens(r11,..,Mn;k;><,,..,Kn;Qh..,Qn). E will be
fizxed throughout the following analysis, and E, will denote expectation
with respect to the probability measure associated with E.

Now, EgD () = Ee{C,(e)+--f+CL(e)}x'L

= {EgC(e)+---+EC (el}/L. (1)
So, EgD| (@) can be upper-bounded by upper-bounding EoC;(e) for each i.
EgCile) = EgESEy | psCil@,s,y)

= EsEeEg l asCi(@:S:y). (2)

Here, s represents the source sequence; Eg stands for expectation with
respect to the source statistics; Egles stands for expectation with

respect to the probability measurs on the channel output sesguence y
conditional on es being the channel input seguence.

Changing the order of expectations in (2) is justified by the
non-negativity of the terms involved. (See, .., page 147 of [15].)

(One can see at this point that EeEglesCi(e’s’g) does not depend on s;
hence, in (2), Eg can be dropped, and s can be replaced by any fized
source output. But we shall carry aiong Eg in the following argument.)

EaCi(e) will be upper-bounded with the help of the follawing inequality.

Lemma 2.1.1. For any non-negative t,

Cile,s,y) ¢ > > exp t{l"(eu(..j),g(..j)) - r‘(es(..m),g(..m))}. (3)

ul..jlel;(s) mai



Proof. A node u(..j)élif;s} reaches the stack-top oniy 17

rieul..j),yl..j)) 2 T{es(..m),y{..m))  for some mzi. (4

If (4) is not satisfied, s(..m) has precedence over u(..j) in reaching the
stack-top for each m, m2i. So, u(..j)el;(s) reaches the stack-top only if

s 3 exp t{Tteul.j)y(..j)) - I(est.m),yt.m)} for all ts0, (5)
mazi

Note that the right hand side of (5) is positive whether or not u(..j)
reaches the stack-top; hence, it upper-bounds the indicator function of
the event that u(..j) reaches the stack-top. So, by summing the right
hand side of (S) over all nodes in I;(s), we obtain the claimed upper

bound on C,(e,s,y). O

Hereafter, suppose that t is a fixed positive numb'er. Now, from (2) and
(3},
Egli(e) ¢Eg D> 3 Als,mul.j), ®)
u..jlel;(s) m2i
where, by definition,

Jf‘a(s,m,u(..j))zEeEU | es®%P t{r‘(eu(..j),g(..j)) - I‘(es(..m),g(..m))}. (7

For any u(..j)el;(s),

Als,m,ul..j)) = EeEg les exp t{ Z?_f(eu(h),g(h)) - zﬁ(es(h),g(h)) I8

iche] ichem

thus, if j>m,
Als,mu(..j) =

= EgFy|ese*Pt! > [$teuthy,y(h) - $lesth),yth)l+ Y Sleuth)yth)l;  (8)
ishsm m<hs
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and, it mzj,
Als,m,ul..j)) =

= EgEy| es &% t{> [¥euth)y(h) -¥lesth),yth)] - > Blesthly(h)}.  (3)
ichs] j<hem ;

Since the labels on branches at different levels are independent random
variables over the ensemble under consideration, (8) and (9) can be
rewritten as follows.

For any u(..j)el;(s), if i>m,
Als,mul..j)) =

TT E exp t{Bteuth),yh) - stest,ytn} 1T Eexptyleuth)ytn);  (10)
ichem m<hg]j

and, if mz2j,

Als,mu(..j)) =

TT Eexp t{steuh),ytn) - s(esth),ythi} 1T Esxptslesthiytniy, (1)
ichej j<hem

where the symbol E has been used as an abbreviation for EeEg les

We now wish to find an explicit expression for A(s,m,u(..j)). Let u(..j) be
a fized node in I;(s), and (T,,...,Tj) be the type of u(..j) with respect to s.

Now, for any he{l,..,jl, 11&\"‘, &=8x---x§,, and §=8yx---xqy, where
& eXp k, CeX, k, r=1,..,n, the probability that esth)=Z and euth)=¢ and
y(h)=m is given as follows.



Pries(h)=2, euth}=g, yth)=m ;=

Mo Mo @) 1Txie=2, Pen ),
leren reTy,  reTy’

where ¥ is the indicator function.

To simplify the notation, we shall write

Q(2) in place of ﬂQr(ar) ,
1<rin

Q(%7) in place of ﬂQr(Er), and
rel

X{&7=21} in place of ﬂx{zrd,r}.
rel

In this notation, (12) can be rewritten as follows.
Pr{es(h)=¢, eu(h)=t, ythl=m} = Q(&) Q(Ey) )({tTfST:}P(‘n | &)
Nowy, EeEg |es exp -t ¥(es(h},ylh))

mné

EoEy | eg &xp t{¥(euth),y(h))-B(es(h),y(h))}

yle

=555 Q(&')Q(tTh) }{{tTriT:}P(nlﬁ)exP tHEE,M)-5(2, M)},
née

and  EgEy | es®XP t8(euthl,y(h))

=5 > > Q) Q(CT") }{{31;‘0=t'|‘;}|:'(11 | &)exp t¥&,M).
ngg

(14;

(15)

(16)




S0

We see that the left hand side of (14) does not depend on h; and the left
hand sides of (15) and (16) depend on h only through Ty,. 30, we define

e EeEg | es %P -t ¥{esthl,ylh)),
(Tp)=EgEy | es B%P t{¥(eulh),yth))-vlesth,ythh}, and
3(Th)=EeEg |es &P teuch),ythi).

Now, for any node uf..j)el;(s) with type (T1,...,Tj-) wrt s, (10) and (11) can
be rewritten as follows.

G(Ti)---d(Tm)B(Tm,,])---B(T]-) ’ j}m; (17}

Als,mul..j)) = _
ST o (T )™M , mzj. (18)

Observe that A(s,m,u(..j)} depends on u(..j) only through the type of ul..j)
wrt s. So, let A(s,m,T) denote A(s,m,uf..j)) whenever u(..j) is a node of
type T wrt s. Letting T(i,j} be the set of types for Tevel-j nodes in Li(s},

{6) can be rewritten as follows.

co 00
Eelile) ¢ g 2 2 S Als,m,ul.j)
j=i TeT(i,j) ul.jk m=i
type of u(..j)=T

> (v
=E Yy o NT) Y Alsm,T) (19)
j=i TeT(i,j)  ms=i
where N(T) denotes the number of nodes of type T.

Define Q(T)=max{c(T), B(T)}. Now, for any T=(T1,...,Tj)eT(i,j),

QT+ AT)) , j=m; (20)

Als,m,T) ¢ _
QT 2T , M2j. (21)



S1

Thus,
00 j-1 o _
S AlEMT) ¢ 3 TR+ T Ty T ™)
m=i m=i m=j
0
= QT T (i T ") (22)
h=0 '

For any non-empty subset T of {1,....,nt}, 1ot M(T) be the product of Mi for
i€T; if T=¢, let M(T)=1. For any node type T=(Ty,...,T;), let M(T)=M(T,)--
--M(Tj). Note that M(T) is an upper bound on N(T), the number of nodes of
type T. Also note that, if T=(T,,...,Tj)eT(i,j), then M(TI':M'ITi)---M(Tj);
because Tp=¢ for 1ch<i-1. Define

‘F=max{Q{T)M(T) : T is a non-empty subset of {l,..,n}}.

~ Now, by (22),

xR =
NMT) S Als,m,T) « M(T) 3 Als,m,T) (23)
m=i m=i
R 2GR UD) (24)
h=0

By (19) and (23)-(24),

o )
ECife) ¢ Eg S S ¥+ T ") (25)
j=i TeTG,))  h=0

Noting that the number of elements in T(i,j) is upper-bounded by (j-i+2)0
(see §1.3 for this upper bound), it follows fram (25) that

o] o o]
ECile) <Eg S (-i+2" w1 (j-i+ T ")
j=i h=0



c ) oQ
R IC) U 2T G TINE U (26)
j=0 h=0

The right side of (26) is independent of i; and, it converges if <1 and
m<1. The conclusion of this discussion can now be stated as follows.

Theorem 2.1.1. Sufficient Conditions on Achievability.
Let K=(P;Xy,...,X,;¥) be a muitiple access channel; suppose that there

exist a branch metric tf:(x,x"-xxn)k—) [-e0,00), an ensemble
E=Ens(l‘11,..,Mn;k;X1,..,Xn;Q1,..,Qn),
and a positive real number t such that

i) mitK,B,E)<l,
iy M(T)o(T,t,K,3,E)<1 for each non-empty subset T of {1,...,n}, and
jii) M(T)8(T,t,K,5,E)<1 for each non-empty subset T of {1,...,n}.

Then, for all L,

0
EoD (K,e,T0s 5 (142N ¥t KB,EN ( J+1/C1-MUEKEEN < o0,

j=0
where T' denotes the metric based on ¥. * O

Thus, if K, (H,,...,Nn,k}, and ¥ satisfg the conditions of the above
theorem for some ensemble E, then (Ry,...R,), where Riz(Uk)lnM]—,
belongs to R(K), the achievable rate region of sequential decoding.

* It is possible to prove this theorem with m(t,K,%,E}<1 relaxed to
n(t,K,%,E) <1 by following Gallager’s praof for n=1 (see App. 6B of [12]).
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2.2. The Proposed Metric and An Inner Bound to Its Achievable
Rate Region

This section considers a class of metrics and finds an inner bound to its
achigvable rate region by using Theorem 2.1.1. Metrics in this class are
parametrized by a four-tuple (K,k,Q,B} where K is a multiple access
channel, say K=(P;X,,...,xn;Y); k is a positive integer; Q:(Q,,..,Qn) where

Q; is a p.d. on Xik, 1=1,..,n; and B is a real-valued function of non-empty
subsets of {1,...,n}. B(T) is called the bias term for subset T.

The metric with parameter (K\k,Q,B), denoted by met{Kk,Q,B), is a
branchwise additive metric based on the following branch metric ¥.
For each 'rle‘(k and &=&x---x& . where ﬁiéxik, =1 000,

5(&,m) = min{¥1(Z,M)}, (1)
T

where the minimum is over all non-empty subsets of {1,...,n} and

JP(T[IE)

B7(&,m)= In -kB(M. (2

5 To@y ./ P{nl @i, @y )

Rihier T

In (2}, the summation is over the cartesian product, over all ieT, of X.ik;
P(m [&) is the transition probability of the channel over blocks of length

ks P{"ll{zi}ie}'c , {C;}m—} is the probability that m is received given
that the transmitted block at input i equals &; if i€T and &; if ieT".

To simplify the notation, as in the previous section, we shall denote

Eikier Y &r
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Moz by Qi2p), and
ieT

P{n]&here, @hier) by PIM| &y

In this notation, (2) can be rewritten as follows.

J/P(n|8&)
81(&,m)=In = kB(T) (3)

z Q(tT) «/P('ll | ch’tT)
Cr

The remainder of this section is devoted to showing that RgiK}, which
we shall define next, is an inner bound to the achievable rate region of
the above class of metrics (hence, an inner bound to R(K)) for all K.

Definition 2.2.1.
For any channel K=(P;Xy,..,Xns'Y), any Q=(Qy,...,Q,) where Q; is a p.d. on

xik, and any subset T of {1,...,n}, we define

Rk, = (1700 § Qgr{ 3 e/ P} ans

RU{K,Q}={(Fﬁ,..,Rn):OsR(T)sRu(K,Q,T) for each subset T of {1,..,n}}.

we also define

RU(K,k) = U RO(K’Q)!
| Q

where the union is over all Q=(Qy,...,Q,) such that Q; is a p.d. on Xik,

o]

and Ro(K)=U Rg(K,k). O
k=1
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Rq(K) will be shown to be an inner bound to the achievable rate region of
metiK,k.Q,B) with the help of the following fact, which is just a special
case of Theorem 2.1.1 at t=1 and in the particular way E is selected.

Lemma 2.2.1. Sufficient Conditions on Achievability for metik,k,Q,B}.
For any channel K=(P;X,..Xp;%) and any (My,..,Mg.k), the point (RyseeesBip)s
where Ry=(1/k)InM;, belongs to the achievable rate region of met{k,k,Q,B)
if the following conditions are satisfied by ¥, the branch metric for
metik,k,Q,8), and the ensemble E=Ens(l‘1,,...,Mn;k;><,,...,><n;Q1,...,Qn), where
Q4,...,Q,, are such that (Qy,...,0,)=Q.

1) ﬂ(hK!lﬁsE){ ]s
2) M(T)o(T,1,K,8,E}<1 for each non-empty subset T of {1,...,n}, and
3) M(T)B(T,1,K,8,E) <1 for each non-empty subset T of {1,.,n}. O

Mote that in the above lemma the distributions parametrizing E and the
metric ars identical. Of course, the statement of the lemma would still
hold if this wers not so, but this less general form is sufficient for our
purposes.

In order to restate Lemma 2.2.1 in a simpler, more useful way, we now
find upper bounds on M(1,K,%.E), O(T,1,KT,E), and BIT,1,KB,E) for a
fixed collection of K, ¥, and E, where E and T are parametrized by the
same Q={Qy,.....Q,).

T{1,K,8,E) = 5 QIZP{n|&lexp-F(&,m)
e

¢ TS a@p(n]|2exp-3(8,M)
T=$ M8

=Y > Q2pin| 83{2 QWP [ Z7ety) / /P [E) }exp KBIT)
Tz[t’ 1'[,1?, tT



o6

= 5 T Q@ YPM[E D QR Pn | &ye,dr) exp kBIT)
Tz(p 11!‘?» cT

=S S e T QDY P &1e,87) 2 Q) PIM | &pe,8p) exp kBT)

T=d M, 870 &1 Tr

=S S| S e/ P | expkam)

Tz Mgt &1

= 3 expk{Ro(K,QT)-B(T) }. (4)
Tz

For notational convenience, in the following ¥(&1,8ye, M) and S(&,m) will

be used interchangeably.

S(T,1,K5,E) = > Q2)QRIPIM | &exp (31,87, M)-8(&,M)
asCTsn

¢ S Q2)@PM | & exp (577,816, M)-5(E, M)
E;tT’T‘,

/PN [T7.87) exp-5(&, ) exp ~kB(T)

- S a2 IPm| )

¥
> Q(ET)mﬂ | 81,87¢)
&y
= exp -kB(T) > Q(2)P(7 | &) exp -¥(&,m)
‘?uTl 2 Q(';'T)'«/P(Tl | "PT,f,Tc)

b7



o7

= exp -kB(T) 5 Q(ZIP(n | &)exp-¥(2,m)
&m
= 7(1,K,%,E)exp -kB(T). (5)

Finally,

BT, 1,K,8,E) = Y QEQEDIP(M | &)exp B(&r,&qe, )
asth‘“

¢ Y URQRIP(M| &) exp G, dre, M)
gsthn

JP("IRT&TO)
= > QAP |B) exp -kB(T)
22,1 S Q1)+ Pim | $7.870)
b7

> Q7)Y P(M|C7,87e)
or '
= > Q(2P(n|&) exp -kB(T)
&M z Q) [P(T[ l $r,81c)
b

= exp -kB(T) (6)

It follows from (4)-(6) that conditions of Lemma 2.2.1 are satisfied if
S expk{Rg(k,QT)-B(T) } <1, (7

Tzq)

M(T)exp -kB(T)z exp-k{Flo(K,Q,S)-B(S)} < 1 for each non-empty T,  (8)

Sz
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and M(T)exp -kB(T) <1 for each non-empty T. (3)

we notice that (8) is redundant as a3 condition, because (3) is satisfiad
whenever (7) and (9) are satisfied.

We can therefore express Lemma 2.2.1 in the following weaker but more
readily applicable form.

Lemma 2.2.2. For any channel K=(P;Xy,...X;Y) and any (My,...,My,k), the
point R=(Ry,...,Ry), where R;=(1/k)InM;, belongs to the achievable rate
region of met(K,k,Q,B) if

1) z exp-k{Ro(K,Q,T)-B(T)} <1 and
Tz
2) M(T)exp -kB(T) <1 for each non-empty T. [

Using this lemma and the following definition, we are now in a position
to give an inner bound to the achievable rate region of met(K.k,Q,B).

Definition 2.2.2.
For any channel K=(P;Xy,...,Xn;Y), any M=(Myyuenslp k), and any Q=(Qy,...,Qp)

where Q; is a p.d. on X]-k, we define

§(K,M,Q) = min{Ry(K,Q,T)-R(T)},
T

where the minimum is taken over all non-empty subsets of {1,....ni, and
R(T) is defined as (1/k)InM(T) for any subset T of {1,..,n}. O

Lemma 2.2.3. Inner Bound to Achievable Rate Region of met(K,k,Q,B).
For any K=(P;X,...X,;Y) and M=(MyyeeesMok)s the point R={R{,...,Rpy)y wWhere

Riz(I/k)lnMi, belongs to the achievable rate region of met(K)k,Q,B) if

§(K,M,@) > (2/K)In(2"-1}, provided that the bias terms are selected such
that B(T)=(Ry(K,Q,T)+R(T})/2 for each T.
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Proof. Suppose that §(K,M,Qr>(2/k)In(2"-1). It suffices to verify that
conditions 1) and 2) of Lemma 2.2.2 are satisfied.

1S exprk{Ro(K,Q,T)-B(T) }
Tzd
S exp-k{ Ro(K,QT)-(Ry(K,QT)+R(TI)/2 }
T2
S expk{ (Ro(K,Q.T)-R(T/2 |
T=4
¢ > exp-k{S(K,M,Q)/Q}
T=d

= (2-1) exp-k{&(K,M,o)fz} < 1.

The last two steps follow by noting that 2M-1 is the number of
non-empty subsats of {1,..,n}, and that &(k,M,Q) > (2/k)In{2"-1).

2) M(T)exp-kB(T)

- m(T)exp-k{(Ru(K,Q,T)m(T))fz}

= exp -k{(Ro(K,Q,T)-R(T))!’Q} < 1 for all non-empty T,
since §(K,M,Q)>0. O

Lemma 2.2.4. For all K, Ry(K) is an inner bound to the achievable rate
region of the proposed class of metrics.

Proof. In view of Lemma 2.2.4, it suffices to prove the following
statement: For any channel K=(P;X,,...,Xn;¥) and any point R=(RyseeesR)s

suppose that there exist M={M,...,M,k) and Q=(Qy,...,Qp), where Q; is a
p.d. on xik, such that (1/k)InM;2R;, i=1,...,n, and §(K,M,Q)>0. Then, there
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BRIt H={H,...,Hp,h} and U={Uy,...,U,), whers U; 15 a p.d. on :::<]-h, SUCh that
(1/M)InH; 2Ry, i=1,...,n, and 8(K,H,UY>(2/h) In(2N-1),

Suppose that M and Q satisfy the hypothesis of the above statement. Let
U be such that U; is the m' product of Q, i=1,...p; 1.6, U; is a p.d. on

%™K such that, for each (& pammnnn Y MK, |
u,-cca1,....,smk))=oi(ce,,...,ak))o]-((e:k+p...,.szkn----o,-((s(m_Wp....,smk).
Let H be such that Hi=M:™ and h=mk,

It is easy to verify that Ro(K,Q,T)=Ro(K,U,T) for aIl T, and that §{K,M,Q) =
$(K,H,u). So, by simply taking m Jarge enough, we can satisfy §(k,Hu)>
(2/h)in(2M-1). O

As a corollary to Lemma 2.2.4, we have the main result of this chapter.

Theorem 2.2.1. Ry(K) is an inner bound to R(K) for a1l k. O

Comnlementaru Remarks

1) No examples are known for which R is strictly larger than Rg. On the
other hand, it is not known if Ro(K)=R(K) for all K. In the next chapter,
1t will be shown that Ro=R for single-user Channels (see §3.2) and alsg
for pairwise reversible channels (see §3.3).

2) At this point, it is natural to ask whether there exists a class of
metrics which satisfies the conditions of Theorem 2.1.1 over a set of
points larger than Ro. §2.4 will prove that there is no such class.

set in the way suggested in Example 1.4.1, the answer is no. A simple
counter-example is a (pseudo) two-user Channel which is the parallel
combination of two independent binary symmetric channeis. By choosing
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the crossover probabilities of the binary symmetric channels
appropriately (one close to 1/2, the other close to 0), one can obtain a
situation where the Fano metric has a positive drift {in an ensemble
average sense) on each path whose corpanent path for the less noisy
subchannel is correct.

4) The proof of Lemma 2.2.4 suggests a method for finding an
appropriate metric in any given situation. Suppose, for example, that
K=(P;X150eXs¥) 18 the channel and R=(Ry,....Ry} is the desired rate. we

first try to find M=(My,.,M,k) and Q=(Qy,...,Qp), where Q; is a p.d. on
X,—k, such that (1/k)InM;2R; and 85(K,M,Q) > (2/k}In(2"-1). Supposing that

such a pair is found, then the metric met(K,k,Q,B), with bias
B(T) = (Ry(K,Q,T)+R(T))/2 for each T, is an appropriate metric for this
situation. If we decide to use this metric, then we may select the tree
" code at randem according to the probability measure associated with the
ensemble Ens(H,,...,Hn;k;x,,...,xn;o-,,...,Qn). There is no guarantee that

such a randomly selected code will perform satisfactorily; but the
probability that its performance is much worse than average is small.

5) If the stack algorithm is applied to a tree code with parameter
M=(My,...,Mp,k), €2Ch step of the algorithm requires the evaluation of the

metric values of My---M, nodes. Ordinarily, one is given a desirad rate
R=(Ry,...,Ry)} and the code parameter M=(M,,...,Mn,k) is chosen so that
(1/k)InM;2R; is satisfied for each ie{1,...,n}. From the viewpoint of

computational complexity, it is thus preferable to select M so that k is
the minimum possible subject to the rate constraints.

If we wish to use met(K,k,Q,B), with bias B(T)=(R¢(K,Q,T)+R(T)}/2 for
gach T, there is an additional constraint that M has to meet, namely,
§(K,M,Q)>(2/K)1n(2"-1). This constraint is unpleasant because it forces k
to get large as the desired rate approaches the boundary of Rg(K). It is
not known at present whether a constraint of this type is inherent in
multi-user sequential decoding or whether one can find metrics which do
not suffer from this problem.
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2.3. Some Properties of R,
This section summarizes some of what is known about the Rq region.

In §1.5, it was shown that Ry(K)=Ry(K,1) for any single-user channel K.
In the case of multi-user channels, however, this is no longer true; there
are channels for which Ry(K)=Rg(K,1). An example is the two-user M-ary
collision channel K=(P;X;,X»;¥}, where M is an integer greater than 2,
X1=X,={0,1,...,M-1}, ¥Y={e,0,1,...,M-1}, and the transition probabilities are
as  follows. P(xy|%5,00=P(%,|0,%x)=1 for each xyeX; and xp€eXy
Ple|xy,%2)=1 if %4e{l,...,M-1} and x,ell,...,M-1}; and, all other transitions
have zero probability. We leave it to the reader to verify that the point
((1/2)1nM nats, (1/2)1nM nats) belongs to Rg(K,2) but not to RglK,1).

By considering collision channels with larger numbers of users, it can be
seen that, for any fixed m, there exists a channel K for which RgiK)=

Ro(K, 1 )U"'U RO(K,m).

R, is convex. This is a simple result of admitting probability
distributions over blocks of arbitrary length in the definition of Ry. The
convexity of Rq can be proved by observing that, for any pair, Q, and Q,,
of vectors of p.d.’s over block-lengths k, and kp, and for any pair of
integers m, and my, the vector of p.d.’s Q, defined as Q=Q*2™1QX™2,
satisfies (m;+m,)Re(Q,T)=mRe(Q¢,T)+ myRe(Q,,T) for all T. Here, the
components of Q2™ are k,mq-order product forms of the corresponding
components of Qy, and similarly for Q,%1™2. The components of Q are
product farms of the correspending components of Q2™ and Q;1™2. The
compaonents of Q2™ and Q,%1™M2 are thus p.d.’s over block-lengths of
kyk,my and kk,m,, respectively; and the components of Q are p.d.’s over
a block-length of kikp{my+ma).

For any given m, there exists a channel K (e.g., a collision channel) for
which Ry(K,m) is not convex. It is not known, haowever, if there exists K
such that Ry(K)=convex-hullRy(K,1). If there were no such channel, then
we would have a characterization of Ry similar to that for the capacity
region.




By using the parallel channels theorem (pp.149-150, [12]3, it can be
proved that, for any K, i, and m,
max{Ri: (0,..,Ri,..,0)e convex-hullRy(K, 1)} =

max{R;: (0,..,R;,..,0) € convex-hul1 Ry(K,m)}.

This can be seen directly by noting that, if all users, except for user i,
are constrained to transmit at rate zero (which means that each such
user transmits a fixed sequence), then the situation reduces to the
single-user case, for which we know that the stated result holds. This
result is useful in that it provides some information about the relative
sizes of the regions Ry(K,m), m=1,2,...

We now prove some inequalities about the Ry region.
For any K, Q, 5, and T, if T is a subset of 3, then
RQ(K,Q,T) < RO(K,Q,S)- (”

Proof. Let m be the block-length for Q. Now,

mRy(K,Q,3) = -In T Qe {T e /P D)

= -In 3 Q2 {J QS PmD ) (2)

\T)
ndsr &y &

2-In T Q2 Qs {Se/FmlD ¥ 3)
Mége  &av7 &r

-In 3 Q@ {S ey P D)
N&1e tT

mRy(K,Q,T),

where (3) follows from (2) by Jensen’s inequality:




b4 -

[Saep/Pa[E} « Sa@ppm] ).
2 2

In the proof of (1), if we replace T by the empty set, we obtain the proof
of another basic fact, namely, Ry{K,Q,5):0 for all K, Q, and non-empty 3.

For any subset of users T, let P(m | &) = z Q(t‘.Tc)P(n[z).
Z1e
P('llli-l-) is the transition probability that would be observed befween

the users in set T and the receiver if the users in set T° collectively
transmitted a given symbol &1c with probability Q(&ye). If one is only

interested in decoding the messages of the users in a set T, then one
may model the remaining users as noise sources and thus obtain a
reduced channel. Such schemes will be the subject of Chapter 4. The
following inequality is of interest in comparing the achievable rates for
the reduced channel with those for the original one.

For any K, Q, and T,

-in 2{2 Q&r) P(‘IIIQT)}Z ¢ MRy(K,Q,T), (4)
n &
where m is the block-length for Q.

Proof.
MRK,Q,T) = -In S 2 S QP D |
N.&Te &t
-0 33 { SeEp G ePm[D ) (s)
N &re &7
2-n 3 { Saep,/ Seepm| o) (6)

n & &1e
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- -n S{S PN,
n &7

where (6) follows from (3) by the foilowing inequality.

5 { Seep/aErmD) < {5 ey / Segep@|a} @
tre & & Ere

(?) is proved by using Minkowsky’s inequality {see inequality h on p.524
in [12]), which states that, for any collection of non-negative real
numbers {a;,} and any p.d. tQ;h

(5 o/ ¢ (S0 Tl
. /2

In 2 sense, this ineguality confirms the obvious fact that codebook
knowledge of all users can be used to improve the achievable rate region
in sequential decoding.



2.4. A Result on the Method of §2.1

In this section we prove that there is no branchwise additive metric
which satisfies the sufficient conditions on achievability of Theorem
2.1.1 at any given point outside Ry This means that, if there is an
achievable point outside Rg, the achievability of that point cannot be
shown by using Theorem 2.1.1. This, of course, does not mean that R,
equals R, the achievable rate region of sequential decoding. Thus, the
results of this section are not directly related to sequential decoding,
but rather to the limitations of the particular method of §2.1 in terms of
proving achievability.

The above result is proved in two steps. First, Theorem 2.4.1 gives an
outer bound, for any given metric, to the rate region where the ensemble
average of decoding complexity is finite. Then, Lemma 2.4.1 shows that
Ry outer-bounds the outer bound of Theorem 2.4.1! for any given
branchwise additive metric.

Let the following be fiked but otherwise completely arbitrary throughout
this section: A channel K={P;Xy,...,%;¥), @ code parameter M=(My,...,M, k),

a branchwise additive metric I which can be used in decoding codes over
K with parameter M, and an ensemble E=Ens(M,,...,Mn;k;x,,...,Xn;Q,,...,Qn).

we define DL to be Ee DL(K,E,T) for each L, where EB denotes expectation

with respect to the probability measure asscciated with E. We also
define, as usual, Ry=(1/k)InM;, i=1,...,n; and we let ¥ denote the branch

metric for T.

Theorem 2.4.1. If inf{c(T,t,K,8,E):t20} > exp-kR(T) for some non-empty
subset T of {1,...,n}, then D increases without bound as L increases.

Lemma 2.4.1. If t20 and T is a non-empty subset of {1,...,n}, then

-1no(T,t,K,8,E) 2 kRy(K,Q,T).



Praoof of Lamma 2.4.1. By definition,
o(T,tK,8,E) =3 QIT1)Q(EIP( | &) expt(B(@r,&qe, M) -B(E,M))
E:thTl

=S Q{2793 QERPQEIP(T | B expt(BR 2o, M) - BB, 2rem) (1)
&re  &1.81M

Now, |

aTstT:Tl
= \/ > Q(tT)Q(gT)P(‘ﬂlaTgiTc)EXPtW(C'{',iTc,‘ﬂ)‘5(31’;3‘[‘0,11:')

eTsth‘n
\/ Z Q(tT)Q(aT}P(ﬂ l tT’5T°) EXpt(g(aT,aTc,T{:‘ 'K(CT,&'TC,T[:‘) {2)
aTscTsTl
aT:tT-n

whera (2) follows by reversing the roles of &+ and §1, and (3) follows
by Cauchy’s inequality. (For arbitrary non-negative reals a;, by, i=1,...,m,
Cauchy’s inequality states that (3;Zb;)'/2 » £./a;0;, with equality iff,
for some constant c, »aizcni for all 1.}

Substituting (3) into (1), we get

S(THK,5,E) 2 Y Qlere) S QRQED VPN | &1,81) P | T1.870)

ETC ETstTu‘“
= exp -kRy(K,Q,T), which is the desired result.




Proof of Theorsm 2.4.1. L2t the nodes at level L be labelled by integers
LMy, Where M| denotes the total number of nodes at level L. Let T}/

dencte the value of the metric at the k" node on the path to level-L
node i. I'k‘ is thus a random variable whose distribution is determined by

the source, channel, and ensemble statistics.

Far any pair of nodes i and j at level L, let us define
A(i,j) = the event that min{T'\J: 1<kel}>min{T) ':1<ksL},

B(i,j) = the event that ij>r'ki for each k, 1<kel, and
C(i,]) = the event that T J>T 1.

Let P; dencte probabilities conditional on node 1 being the correct node
at level L.

Theorem 2.4.1 follows by the following sequence of inequalities, each of
which is justified subsequently.

M M
LD 2 D (17M)) D Py(AG,))) (4)

i=1 j=1
M M

2 (1) Y Py(BGLIN (S)
=1 j=1
Ll

2 (/LMD 2 Py(CC, i) (for any non-empty T} (6)
i=1 j ¢ type of j wrt i=(T,...,T)
M

2 S /LMD 3 (e//D(nf{o(T,6K,8,E): 20t (7)

i=1 j ¢ type of j wrt i=(T,...,T)
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2 axp kL - DR (/L3 3 inf {o(T, LK, 5, B tzont, ()

Suppuosing for a moment that (4)-(3) hold, it immediately follows that,
if expkR(T)>inf{c(T,t,K,8,E):t20} for some T, then Dy goes to infinity as

L increases. So, the proof will be complete if we prove (4)-(8).

Proof of (4).
If there exists a node i at level L such that P]-(i never reaches: the

| stack-top)>0, then mDy,=e0 for all mal. So, without loss of generality,
we may assume that P;(i never reaches the stack-top)=0 for each node i
at level L and each level L.

Let i be the correct node at level L. If Afi,j} occurs, then, by the
properties of the stack algorithm, i cannot reach the stack-top before j.
But, by assumption, i reaches the stack-top with probability one; it
follows that P;(A(i,j)) is a lower bound to the probability that j reaches
the stack-top before i, conditional on i being corract. Summing over j,
we obtain a3 lower bound to the expected number of nodes which reach
the stack-top before i, conditional on i being correct; averaging over i,
we obtain (4).

Proof of (5).

This follows by the fact that B(i,j) is a subset of A(i,j). To see this,
suppose that B(i,]) accurs; in other words, suppose that T\ J>T, ! for each
K, lck:el. Now, by taking the minimum of the right side, we gbtain
Pk1>min{1’m‘:lsmsL}, which holds for each k. Taking the minimum of doth
sides of I‘kj>min{I‘mi:1smsL} over k, we see that whenever B(i,j) occurs

so does A(i,j); hence, B(i,j) is a subset of A(i,j).

Praof of (6).

We wish to prove that, for any two nodes i and j, if the type of i with
respect to j is uniform, i.e., if it equals (T,..,T) for some non-empty
subset T of {I,....,n}, then P;(B(i,j))2(1/L)P;(C(i,j}). We do this with the

~help of the following fact.




Claim. Let Zy,..,2 De 1id (independent, identically-distributed) random
variables. Let C be the event that Zy+---+Z >0. Let B be the event that

m
Z]- >0 for each m, 1smsl.

i=1
Then, P(B)2 (1/L)P(C).

Proof of the Claim. Suppose that C occurs; that is, suppose that a sample
point w occurs such that Z,(w)++--+Z (w)>0. Let h be the maximum index

such that Z;{w)+e--+Zy(w) = min{Z (w)+---+Z) (w):1sksl}. Consider the
cyclic permutation Zp, ((w)yeaZ) (W21 (W), Zplw); observe that all
partial sums for this permutation, namely Z, (W), 2y, ((wi+Zp (W),

and so on, are positive.

S0, if Zy{w)++++Z (w)>0, then there exists a cyclic permutation for

which all partial sums are positive. 3Since therz arz L cyclic
permutations and since each permutation (cyclic or non-cyclic) of a
given realization is equally likely to occur, the claim follows.

The proof follows by substituting (I‘kj - I‘k_]j) - (I‘ki - I‘k_]i) in place
of Z, in the above claim. Notice that the condition that j te of type
(T,....,TJ with respect to i ensures that the random variables (I‘kj-i‘kqj)
- (I‘ki -l“k_1i). k=1,...,L, are identically-distributed.

Proof of (7).
We want to prove that, for any L, any non-empty T, and any pair of nodes
i and j at level L, if the type of j wrt i is (T,...,T), then

Py(C(i, 1)) 2 (e/vD) (inf (o(T,t,K,¥,E):t01t, C)

where c is a constant.




71

Lat 2= (T = Ty Jy = (1)) = Tyey ) for each k=t Note that ZyZy
are iid random variables with a moment generating function o(T,t,K,¥,E).
Now, we have P;(C(i,j))=P;(Zy+---+2 >0); so, Cfi,]) is the event that the
sum of L iid random variables exceeds zero.

If 2, has a non-negative expected value (this corresponds to the

situation where the metric tends to increase on a branch of type T at
least as fast as it does on a correct branch), then P,{C{i,j}21/2 and

inf{c(T,t,K,8,E}:t20}=1; so, in this case, (3) is easily satisfied by taking,
say, c=1/2.

S0, without loss of generality, we may assume that the expected value
of Z, is negative, in which case, (9) follows directly from the

asymptotic form of the Chernoff bound, as given by equations 3.4.23 and
5.4.24 of [12].

Proof of (8.

(8) follows from (7) by noting that expk(L-1JR(T) is a lower bound on
the number of nodes at level L which are of type (T,...,T} wrt (any given)
level-L node i. {Also note that expkLR(T) is larger than the number of
nodes in question.) This compietes the proof of Theorem 2.4.1.

R R a——
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Chapter 3

OUTER BOUNDS TO THE ACHIEVABLE RATE REGION OF
SEQUENTIAL DECODING

3.1. A Basic Lemma

Definition 3.1.1.
For any channel K=(P;X1,...,Xn;‘r") and any block code f over K with block

length N and codewords f(1),...,f(M), define
M M
AlKD=0/M Y D PBG,j 1N,
i=1 j=1
where, for each i and j,

{nevN e P(n 1) < PeEGNY  if =),
B(,j) =

$ if izj. O

A{K,f) is the expected number of incorrect codewords which are at least
as likely as the correct codeword conditional on the received word T,
assuming that each codeword is a priori sgually likely. A(K,f) will be
used in lower-dounding the expected computation in sequential decoding.
The Tink between block codes and sequential decoding is established by
Lemma 3.1.1, which will be given after developing some concepts.

Definition 3.1.2.

For any channel K, any tree code e over K, and any positive integer t,
define Af(K.e, ,t) as the expected number of nodes which reach the
stack-top before the correct node at level t, assuming that the stack
algorithm is used with I' as its metric, and that a priori each path is
equally likely to be the correct one.

For any tree code e and any positive integer t, let e(t) denote the block
code obtained by truncating e at level t. O




For the purposes of this chapter, it 15 necessary to state explicitly the
tie-breaking rule for ordering those nodes in the stack which have equal
metric values. The rule that we shall use is based on the following
lexicographical order on the set of nodes.

In our notation, a node u(..j) is associated with a vector (u{1),....,u(j}),
where each uth), 1chsj, belongs to a common set, say S. Any ordering
relation on the elements of S induces a lexicographical order on the
nodes: For any pair of nodes u(..j) and v(..h), u(..j) preceeds v(..h} iff, for
some i, Oci¢j-1, ul..i)=v(..i) and u(i+1) preceeds v(i+1) with respect to
the order on 5.

We shall assume throughout this chapter that nodes in the stack with
equal metric values are ordered in the above lexicographical order. Our
interest in the details of the tie-breaking rule is for purposes of
precision (and correctness) in the following proofs. For practical
purposes, any tie-breaking rule should be as good as any other.

Lemma 3.1.1. A(K,e,I',t32(1/2)A(K,e(t}. (1)

- Remark. Observe that a(K,e(t)) is the expected number of level-t nodes

which, conditional on the first t blocks of the received seguence, appear
at least as likely as the correct node at level t. Lemma 3.1.1 thus
implies that the average cecoding compiexiiy in segquential gecoding
would be minimized if the stack algorithm werz able to explore the
nodes at any given level t in the same order as they are ordersd with
respect to their a posteriori likelihoods conditional on the first t blocks
of the received sequence. Of course, no sequential decoder can actually
do this. So the analysis in this chapter can be sesn as an attempt to
lower-bound the average decoding complexity of sequential decading by
that of an optimum, but unrealizable, sequ‘ential decoder.

Proof. Let K=(P;Xj,...,X,;¥) be a channel and e be a tree code for K with
parameter (My,...,M,k). Consider the situation where the stack algorithm

is used in decoding e with a metric T.
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Let the level-t nodes in e be lapelled by integers 1,...,M(t}, where M(t) is
the total number of nodes at level t, namely M(t)=(M,---Mn)t. Let elt,i)

denote the encoded sequence for the ith Jevel-t node in e. we shall
regard e(t,i) also as the ith codeword of e(t).

Claim.
M{t) M(t)
AlK,e, It 2 (1M DY D P(AG, I elt,i)). S (2)

i=1 j=1
where, by definition, for each pair of distinct level-t nodes i and j,

AllLj)={ evXt: i cannot reach the stack- top before j given that m is the
J=m g m
first t blocks of the received sequencej;

and for each level-t node i, Ali,i)=9.

The definition of A(i,j) would not be meaningful if the stack algorithm
(equipped with the lexicographical order discussed above) did not have
the property that, given any two nodes at level t, in order to determine
which of them reaches the stack-top first, if any reaches it at all, we
need to know only the first t blocks of the received sequence. In other
words, given a node, the first t blocks of the received sequencs, in
general, do not tell us if that node reaches the stack-top; but given any
two nodes, they tell which of the nodes cannot reach the stack-top
before the other.

An explicit characterization of A(i,j) can be given as follows. For any
level-t node i, let minI'(i,n) be the minimum of the metric values of the
nodes on the path to node i, given that T[E'Y'kt is received. Now, for any
two distinct level-t nodes i and j, and any 'r[e‘r‘kt,

neAli,j) if minT(j,n)>minT({,m) or if minI'(j,n)=minl{i,n)
and j preceeds i with respect to the lexicographical order;
neA(],i) otherwise.
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Thus, A(i,]) and A(j,i) are complementary sets (in vKY), a ract which will
be used in what follows.

Proof of the Claim.

If the probability that the correct node at level t never reaches the
stack-top is positive, then A{K,e,l,t) is infinite. So, without loss of
generality, we may assume that the code and the metric are such that
the correct node at level t reaches the stack-top with probability one.

Suppose that node i is the correct node at level t. Let j be some other
level-t node. Since i, being the correct node, reaches the stack-top with
certainty, the probability that j reaches the stack-top before i equals
P(AC, ) | e(t,i)). Thus,

M{t) |

S PAG,)) | et i) (3)

J=1
is the expected number of level-t nodes which reach the stack-top
before node i, conditional on i being corract. Averaging (3) over i, we
obtain (2), thus concluding the proof of the claim.

Now, the proof of Lemma 3.1.1 is completed as follows.
M{t) MOt

2AK,e, N0 2 (/M) S S PLaG, ) e(t,in) + P(AL,D et (4)
i=1 j=1

M(t) M(t)
amen S S S min{P(n|e(t,i),P(nleltin} (5
i=1 j=1 mevkt
j#

Iv

M(t) M(t)
(/2M) S S PBLGL{) | edt, i)+ P(B(G,1) | elt,i)) (6)

i=1 j=1

(2%



M(t) Mt
= (/M) S S PBGL Y eltil
i=1 j=1

= A(K,elt)).

Here, (5) follows from (4) by the complementarity of Ali,j) and A(j,i) for

izj; in {8) we divide by 2 to account for the fact that, for i=j, B{i,j) and
B{(j,i) have in common those 7 for which P{m|e(t,i}}=P(n |e(t,j)). O

The following sections of this chapter are devoted to finding oufer
bounds to the achievable rate region of sequential decoding (to be exact,
of the stack algorithm with the particular tie-breaking rule described
above) in various situations. These bounds ares based on the fact that, if
A(K,e(t)) grows without bound as t increases, then by Lamma 3.1.1, the
average complexity of sequential decoding must, too, be unbounded.




3.2. The Cut-off Rate of Single-User Channels

The main result of this section is the proof that Ry(K) is the cut-off
rate of sequential decading for any single-user discrete memoryless
channel (DMC) K. This proof relies heavily on certain results about
sphere-packing lower bounds to the probability of decoding error for
block codes, which we review in the following subsection.

3.2.1. Sphere-Packing Loywer Bounds

Probabilities of Error

Let K=(P;X;¥) be a DMC and let f be a block code for this channel with
rate R, block length N, and number of codewords M (M=eNF). Denote the
codewords of f by f(1),...,f(M). Let d={Vy,...,Y,,) be a decoder for f. Here,

¥ 1sue ¥y @re disjoint sets whose union is YN, and the decoder decides in
favor of message i if the received word belcngs to Yi'.

P(Yi°|f(i)) is then the probability of decoding error for message i.

The average probability of decoding error is defined as
M
PolK,1,d) = (1/1) 3 PCY;°| 1)
i=1

The maximum probability of decoding error is defined as

(K,f,d) = max P(Y®| f(i)).
121<M
Po(K,M,N) is defined as the minimum of P,(K,f,d) aver all codes f with M

Pe,max

codewords and block length N, and all decoders d.

'We shall give lower bounds to F'e(K,f,d) and Pe,max(K'f"”; but first more

definitions are needed.



Compnositions and the Spherz-Packing Sxponent Function

A p.d. Q on X is said to be the composition of £e><N iff, for each &eX,
NQ(Z) equals the number of times £ appears in &. A p.d. Q on X is said to
be a composition class on KN it NQ(Z) is integer-valued for each &ex. A
code is called a fixed-composition code iff all of its codewords have the
same composition.

For any channel K=(P;X;Y), any pasitive real number R, and any p.d. Q on
X, the sphere-packing_exponent, ESD(K,R,QJ, is defined as

Egp(K:R,Q) = min D(V [P |Q)
v

subject to W(m |&) 2 0 for each 2¢X and meY,

2 V(nlé‘,) = 1 for eaéh 2eX, and R I{Q;V).
neY

Here, DIY|P|Q) =3 S Q@v(n|2)in {v(n]&) 7/ P(n|&)} and
£eX meY

QY =S S @vin|&in (vin] &) 7 3 avin |01 .
ZeX MeY ReX

Lemma 3.2.1. Sphere-Packing Lower Bound for Fixed-Composition Codes
Let K=(P;X;¥) be a channel, N be a positive integer, Q be a compssition
class on XN. R and & be positive real numbers. Let f be a
fixed-composition code with composition Q, block length N, and number
of codewords M. Suppose that M2expN{R+8). Let d be a decoder for f.
Then, for any such K, f, and d, ,
Pe,max(K,f,dP(UQ)exp —N{Esp(K,R,Q) (1+8)}

provided that N>Ng(8,| X |,|¥]), for some function Ny. O

This is Theorem 5.3 in [16], and hence, its proof will be omitted here.

e EEAEE § ¢ T ——————— =
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The explicit form of the function Ny is not important for our purposes (it
can be found in [16]); what is important is the fact that Ny does not
depend on Q.

Corollary 3.2.1.
For any K, N, Q, R, 8, f, M, and d as in Lemma 3.2.1, salisfying the
additional condition (M-1)/2 2 expN{(R+8),

Po{K,f,d) > (1/4) exp -N{ Egp(K,R,Q) (148},

provided that N>Ng(8,|X|,| Y]

Proof. We make use of an idea of [17] (Eq. 4.41): If (1/N)In[(M-1)/2] > R+5
and N>Ng(8,|X],|v]), then, by Lerama 3.2.1, at least half of the
codewords of f have probability of error greater than

(1/2)exp -N{ESP(K,R,Q)( 1+83};

the corollary follows by noting that such codewords have probability of
occurrence of at ieast one half. 0

Lemma 3.2.2. Some Properties of E.,(K,R,Q)

For fixed K=(P;X;¥) and Q, ESD(K,E‘,Q) 1.5 2 convex, non-increasing function
of R20. Egy(GR,Q) is positive for 0¢R<I(Q;P) and zero for R:1(Q:P). There
is a rate R.(K,Q), called the critical rate for Q, which has the property
that

Re(K,Q) + EgplK,Re(K,Q),Q) = EgK,Q), where, by definition,
EolK,Q) = mki;n DIV |P|Q) + HQ;¥)
s.t. W(n|2) 20 for all &eX and meY,

S v(n|&) =1 forall &ex.
ney




The asgertions of this lemma are contained in Lemma 5.4 and Corollary
5.4 of [16]; hence, their proofs are omitted here.

Lemma 3.2.3. For any K and Q, RgfK)2Ey(K,Q)2Ry(K, Q..

Proof. We follow the hints given in problem 5.23 of [16]. The dependence
of the functions on K will be suppressed in the following proof. First it
will be shown that Rg2Eq(Q).

EolQ) = mJn DIV |P|Q) + 1{QY) (1)

=miny > Q(&W(nlai{ln{v(nl:z)fP('qla)}+1n{vm|£:-.fu(n)}}, (2)
V,U ZeX meY

where U is a probability distribution on Y. (2) follows from (1) by noting
that
o) = min $ S Qv | &) In{vin | /0, (3)
U &eX meY
which can be proved by considering the differencs of the two sides in (3)
for fixed U, and then using Jensen’s inequality.

Move, note that

S Sa@ vin| Bniven] B/pm ] Ok nvin | 2/umi }
&sX meY

- 23 o) 3 vin|on{ RO/ v |8} (4)
ZeX ney

»-25 @) n{ v o FDIm/ v 8]} (5)
gex TeY | -

- 23 a@ { § YFM[D0m |, (6)

&eX neY




G1

whera (5) follows from (4) by Jensan’s ineguality; and sguality nolds in
(S) if V is as follows.

P(m | &Huln)
> P | 2um)

ey

vin|2)=

From (1)-(6), it follows that

Eo(@ = min -2 3 o) In{ I /PRI ). (7)

U 2eX neY

So, for any p.d. Uon Y,

Bl ¢ -2 5 Q) In{ T /PRS0 | (®)
2eX ey

In particular, we may take U in (8) to be

{ S o/Fm[D}
EeX

U*{n) = for each meY,

S SRR}

TeY ZeX

where Q* is a p.d. that maximizes Ry(Q), i.e., Ro(Q*)=Ry. By Theorem
5.6.5 of [12], Q* has the property that

S/AA[E ST 3 {3 e FmD) @
TeY Cex neyY Cex |
for each &eX, with equality if Q*(&)>0.
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Substituting U* inta (3}, we get

£ ¢ -2 5 a@) in{ 3 /P[DU*n) }

geX TEY
S /P8 3 a*@)YPR]D
neY LeX
=-23 Q&) In | (10)
fex fz S ewvrmD)
meY CeX
£ Hn. ()

(11) follows by the property of Q* expressed in (9). This completes the
proof of the first half of the lemma. We now prove that E(Q)2Ry(Q) for
all Q.

E(@ = min -2 3 @ n{ 3§ /P [DUM } (12)
U &ex TeY

» min-21n{ § o@) 3 VE[DUmM (13)
U Zex  TmeY

=Re(Q), (14)

where (12) is just a restatament of (7); (13) follows by Jensen’s
inequality; and (14) follows by substituting the minimizing U, which is

{S o@D}

£eX
uim) = for each meY. O

S { SRR}

neY &eX




Corollary 3.2.2. max E l,Q) = Ryfk) for all K.
Proof. By Lemma 3.2.3,

Ro(K,Q)<Eo(K,Q)<Rg(K);
hence,

max Ry(K,Q} ¢ méxx Eq{K,Q)¢Ry(K).
Q

The proof follows by noting that maxRy(K,Q)=Rg{K).
Q

Corollary 3.2.3. max R.(K,Q) ¢ Re(K) for all K.
Q

Proof. R (K,Q)<Ey(K,Q) by Lemma 3.2.2, and Ey(K,Q}<RgiK) by Lemma
3.2.3. Hence, R.(K,Q) <Ry(K) for all K and Q.

3.2.2. A Lower Bound on A(K,f)

Lemma 3.2.4. For any K={P;X;¥), any code f for K with M codewords and
block length N, and any collection of integers t,My,...,M; such that i)t

i1) M;>1 for each ie{1,e,t}, and iii) M-1=Z(Mi-l), one has
1¢ict

}.(K,fj 2 Pe(K,M 1 ,N)+' "+Pe(Kth.‘N)-

Proof. Fix K, f, and My,...,M;. Let 1{1),...,f(M) be the codewords of f.
Define
(merNap(m [ £ <P | £ if i=j;
B(i,j} = |
¢ if i=j.

For each ie{1,...,M}, define

Pi= {(SpunSp) # $UUSY=(1,unth, 1655, || =My, =1t }.




g4

It follows from the definition that, if (3,...,3;0¢P;, then the szats
315..,9¢ are mutually disjoint, except for i, which is common to all.

For each subset T of {1,...,M}, define

Ei(T)z{-quN: There exists jeT such that j=i and P{m | f(i))<P(n | f{(j)) }

QObserve that, for any §=(Sy,...,5¢)¢P; and any ie{l,...,M},

M t
> P(BU,| (1)) 2 Y P(E;(S,) | 1Cid).
j=1 k=1

o, for any p.d. W; on P,

M t
> PBULD| 10D 2 D Wi(S) D PE(S)] (i),
j=1 SeP; k=1

Take W, as the uniform distribution on P; for each ie{l,...,M}. Note that
the cardinality of P equals ¢ = (M-1)1/(M- 1)1+ (M- 101,
Sum over all i to obtain

MM M t
AKL) = (/M Y S PRGN 2 (/eM) Y Y D PES) | (i
i=1 j=1 i=1 SeP; k=1

M
Let o= (1/cM) 3 PCE{(S) | fLid).
i=1 SeP;

Now, A(K,C)2eq*ee++xp. Clearly, the proof will be complete if we show
that &2 PE{K,NK,N}.

Define F(m)={D:D is a subset of {1,...,M} with m elements} and
Fi{m)={D:DeF(m) and ieD}.
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M
= (17eM) 3 Y PLE(5,)] 1))
i=1 SeP;
M
=(teMyy 3 > P(E;(S) ] f(iD)
i=1 DeF; (M) SePy:5,=D
M
=(1/7eM) Y Y PEDFEN Y
i=1 DeF;(M) S¢P;:5,=0

M (M-M! (M- 1)1
(t7eM) Y Y PCE;(DY|1CID)
i=1 DeF;(My) (My=1) 1w (My= 1)1

(M-MI (M- M
= > 2 PE{DI|FGN

= > > P(ED)| (i)
Ml DeF{My) ieD

2 > M Pl M)
M DeF(M,)
Po(K,M,N). O

Corollary 3.2.4. For any channel K=(P;X;Y), any code f for K with
block length N and number of codewords M, and any integer H such that
M22H, one has A(K,T}>(M/2H)}P,(K,H,N).



Proof. Under the conditions of the corollary, integers M1,...,Mt can be
found such that t>(M/2H) and M;zH, for each i. The result foilows from
Lemma 3.2.4 by noting that P,iK,myN}>P,(K,mzN) for any pair of
integers my and m, such that my>ms,.

3.2.3. Proof that R, is the Cut-off Rate

Lemma 3.2.5. Let f,f,,.. be an infinite sequence of block codes for a
DMC K=(P;X;¥Y). Let Nj=ki be the block length of f; for each i, where k is

some fixed integer. Let M; be the number of codewords in f;. Suppose
that M;>expM;(Ro+e) for each i, where e is a positive constant
independent of i. Then, for all sufficiently large i, (1/N;)InA(K,f;)> €/8.

Proof. Let g; be a subset of f; with a fixed composition and with number
of codewords at least as large as M z’(1+Ni}1!x I (There is no prablem in
assuming that g; has this many codewords because (I+Ni)!x| is an
upper bound on the number of composition classes on XM.) Let L; be the
number of codewords in g and let Qi be the composition of the

codewords in g;-

Note that A(K,f;)2(L;/M;)a(K,g;), 2 fact that will be used later in this
proof.

Let 8=¢/(8+4Ry(K)).

It is tedious but conceptually straightforward to see that there is a
function Q(eK,|X|,|Y|) such that for all i>2 all of the following
conditions hold simultaneously.

L. (/N InL;>Ro(K)+€/2 (15)
2. (1/N)In(L;/8M;)>-¢/8 (16)

3. Ny=No(s, | X],| Y] (17)



4. Thers axist intagers H]- such that

a) Li>2H; (18)
) Re(K,Qp)+8 < (17N} In[(H;-1)/2] (19)
©) R.(K,Q;)+28 > (1/Ny)InH. (20)

The Ng in (17) is the same as the Ny in Lemma 3.3.1.

To see that (15) and (16) can be satisfied, recall the assumption on the
size of L;. To see how (18)-(20) can be satisfied, first note that, for

large i, the right hand sides of (19) and (20) are almost identical; thus,
(19) and (20) essentially require that (1/N;)InH; be between R.(K,Q;)+8

and R.(K,Q;)+28, a condition which can clearly be satisfied. Now, if L;
are chosen to satisfy (16} and H; are chosen to satisfy (19) and (20),

then, for all i sufficiently large, they also satisfy (18) in view of 1)
R.(K,Q)<Ry(K) (see Corollary 3.2.3) and 2) the relation §=¢/(§+4R{K)).

Hereafter, suppose that i is larger than . Let H; be chosen so that

(18)-(20) are satisfied. The rest of the proof is 3 simple consaguence of
the results established thus far,

AlK ) > (LMD Ad(K, gy true in general)
> (Li3/(2MH; )P o (K, Hj Ny {by (18) and Corollary 3.2.4)
> (L]-2/(8M1Hi))exp-N,-{Esp(K,RC(K,Qi),Qi)(1+8)} (by (17), (19),

and Corollary 3.2.1)

= (L;2/(BMH D exp=N; ((1+8)[Eg(K,Q)-Re(K,Q]}  (by Lemma 3.2.2)

2 (L;2/(8M;H; ) exp-N;{(1+8) [Ro(K)-R.(K,Q;) 1} (by Corollary 3.2.2)



(The concept of composition here has no relation to that in the previous
section.)

Lemma 3.3.2. For any PRC K, and any block code f for K,
MK, =(1/2)g(N) [-1+exp -N&(K,M,Q)],

where N is the block length of f; g(N) is as in Lemma 3.3.1; M is the
parameter of f (if, say, T is an n-user code, then M is of the form
(M,,...,Mn,N) where M; is the number of codewords in the jth component

code and N is the common block length); Q is the compasition of f. The
function 8(K,M,Q), as defined in §2.2, is the minimum of Ry(K,Q,T)-R(T}
over all T, where T is a non-empty subset of {1,...,n} and R(T) is the sum,
over ieT, of (1/N)InM,.

The proof of Lemma 3.3.2 will be given following that of Theorem 3.3.1.

Proof of Theorem 3.3.1.
Let K be a PRC, and f be 3 trse code for K with parameter M=(M1,...,Mn,k},

where n denotes the number of users. Let R=(Ry,...,R ) with Ry=(1/k)1nM;.

Suppose that R does not belong to Rg{K). We will show that R does not
belong to R(K), either.

Let f(i) be the block code obtained by truncating f at level i and let Q;

be the composition of f(i). The parameter of f{i), which is denoted by M,
equals (My',...,M,',ki). The rate of (i) thus equais R=(R,...,R ). Now, by

Lemma 3.3.2,
A E(D) > (1/2)g(ki) -1+ exp-ki 8(K,M,Q1)]
> (1/72)g(ki)}[-1+exp-ki A(K,M) ],

where, by definition, A(K,M)=sup{s(K,M',Q;)2i=1,2,3,...}.
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(by (15) and (20}
= (L]-/Er’l]-)exp N]-{ea’2-28-8 RQ{K)"'SRC(K,Q-])}

> {L;/8M;)exp Nj{e/2-28-8Rg(K)} (since R.(K,Q;)20)
= (L;/8M;)exp Nie/4 (since § = e/{B+4Ry(K)})
> exp Nie/8 (by (16)). O

Theorem 3.2.1. Ry(K) is the cut-off rate of sequential decoding for any
single-user DMC K.

Proof. For any single-user DMC K and any (M,k) tree code e for this
channel, if (1/k)InM>R4(K), then Lemma 3.2.5 implies that i({K,e(t))
increases exponentially in increasing t. Hence, by Lemma 3.1.1,
AlK,e,T,t), too, increases exponentially in t regardless of what the
metric T is. It follows that rates abave Ry(K) ars nat achievable (in the
sense of Def. 1.4.2). 0




(w2}
W0

3.3 Proof that Ry=R for Pairwise Reversible Channels

& channel K=(P;><1,...,><n;‘() is said to be a pairwise reversible channel
(PRC) iff for each &;,T;€X;, 1=1,.,n, and meY,

S AP 1yeensf ) PON B 15eese ) 10GEPIT | € fr1ens ) PAT | Teens) )20,
ey -

{(Here, 0109 0=0.)

PRC’s were introduced by Shannon, Gallager, and Berlekamp in their study
of zero-rate error exponents for block codes [17]. Some examples of
PRC’s are the two-user OR and erasure channels of §1.5. Our purpase in
this section is to prove the following result.

Theorem 3.3.1. Ry{K)=R(K) for any PRC K.

Recall that Rg(K) has already been shown to be an inner bound to R(K} for
all K (Theorem 2.2.1). Thus, to prove that Ry(K)=R(K) for a given K, it
suffices to show that Ry(X) is an outer bound to R(K). The following
result, taken fram [17] without proof, is the key to praoving this.

Lemma 3.3.1. For any PRC K={P;Xy,...,Xp;¥), any positive integer N, and
any pair of ee(x,x"-xxn)N and té(x,x"-xxn)“,

> min{P(n|&L,P(M| T} > g > VP(M|EF(Q|D
neYN neYN

where g(N) =(1/4)exp{+/2N1nP__ } and

P_.= min{P(n|2):meY, Ze(X x---xX ), and P(7 | 2)>01.
(Pm.n is thus the smallest non-zerg transition probability over K. O

Definition 3.4.1. Let f be an (M,N) block code over a symbol alphabet
X. Apd. Qaon ><N is said to be the composition of f iff, for each £e><N,
MQ(2) equals the number of times & appears as a codeword of f.




Since we assume that R does not belong to RyK), we have A{K,M)<0.
Therefore, A(K.f(i}) increases exponentially as i increases. This in turn
implies, by Lemma 3.1.1, that A(K,f,[,i) increases exponentially as i
increases, regardiess of what the metric is. This means that the
expected number of nodes which reach the stack-top before the correct
node at level i grows exponentially in increasing i. Hence, R does nof
belong to R(K). O

Proof of Lemma 3.3.2.
Let K=(P;Xy,....X;;;¥) be a PRC and T be a M=(My,...,M,,N) block code for K.

Let f]- be the component code of f for user i, i=1,...,n. Let the codewords
of f; be indexed by integers 1 through M;, and the codewords of f by
n-tuples of integers (my,...,my) where m;e{l,...,M;}. The words index and
message will be used interchangeably in what follows.

The codeword in f with index (my,...,m,) corresponds to a collection of
codewords, namely, codeword m; from code f; for each ie{l,..,nk. The
codeword with index m:(m1,...,mn) will be denoted by f{m), as usual.

Recall that
A(K,f) = (17H) 3 > P(B(m,m | f(m}) (1)
m m
whers H=M;---M, 1s the total number of codewords, the summations run

through all possible messages for f, and B(m,m) is as defined in §3.1.

Now, by Lemma 3.3.1, for any distinct pair of m and m,

P(B(m,m) | f{m))+ P(B{m,m) | f(m)} 2 (g(N)/2) > *,f; P{m | fimIP(m | f(m)),
mneY

where the factor of 1/2 accounts for the fact that B(m,m) and B(m,m)
have in common those mevN for which P(y| f(m))=P(m | f(m)).
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Summing aver 31l messages,

3 Py s fm) 2 @/ T Y SRR mIP( ] fim)
m m m mzm

= (g2 {-H+ D > Y JP(m|fmiP(m]|fim}. (2)
m m 7

This expression will now be simplified.

Let Q be the composition of f, and Q; be that of f;. The relationship
between Q and Qy.....,Q, is a simple one: For any collection of ziexiN,
ié{]!"-,n}, Q(alx"'xan)=Q‘I(a])'"Qn(en)-

The following short-hand notation {which should be familiar by now) will
be used in the rest of the proof. For any subset T of {1,..,n} and any
&yx-ex &, where &,-exiN, &t will denote the collection of &; for ieT; &

will denote &yx--x&.; Q(&1) will dencte the product of Q;(&;) over all
ieT. P(n | &) and P(m | &1,&7e) will be used interchangeably.

For any message m=(my,....,m,)} and any subset T of {1,..,n}, T,(T) will

denote the set of messages m=(My,...,m

n) for which my=m; for sach 1e7°.

Now, we can proceed with the proof.

S > S /PO fm)Pin|fim)
m m mq

v

2y S > P ] f(m)YP{m | (M)
m meT(T) M

Here, T is a fixed but arbitrary subset of {1,...,n}.



= 3 2 MT ey Y PO fimiPin] L7 0imie)
m CT N

The summation over gy should be thought of as one summation for each

element in T; the summation corresponding to an element i of T runs
through all of X]-N. Now, let M(T) denote the product of all M; for ieT.

=HS QMM T o) T VPN [EIP(R | Er.810)
Z ST n

Recall that H is the total number of codewords in f. The summation over
& runs through all of (><1><---><><n)N.

= HM(T) 5 Q&re) 5 Q20> Qity) 5 VP(m[&)P(m] 1.8+
&re &1 ST mn

Note that Q(&)=Q(&1e)Q(27).

= HM(T) z Q(gTO) z z Q(t‘.T)fP(n l ET,iTc) 2 Q(tﬂﬁ‘ﬂ 1 cT’£T°)
&1e n &7 Cr

- 1M S 2o T {S eepyPmD )

&e n &7

= Hexp N(R(T)-Ry(K,Q,T)), where R(T) is defined as (1/N;InM(T).

We have thus praved that, for any non-empty subset T of {1,...,n},

> 3 2 /P(n[fm)P(n] (M) 2 Hexp N{R(TI-Ry(K,Q,T)). (3)
m m T

TG S S E T ST St & oy sey vy R rpE- vT YR <= = 4e— % W P2
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It follows that

S S JPn|fim)P(m|f(m)) 2 HexpN(max{R(T)-Ry(K,Q,T)1.  (4)
m m T T

Noting that max{R(T}-Ry(K,Q,T)]} = -8(K,M,Q),
T

S5 S /PR PO | (M) 2 HexpN(max[R(T)-Ry(K,Q,T)D. (5
m m 7 T

Mow, the lemma follows from (1), (2), and (5). O
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3.4. A Lower Bound to the Ensemble Average of Computation in
Jequential Decoding

Theorem 3.4.1. For any channel K=(P;Xy,...,Xq;¥), any tree code
ensemble E=Ens(My,...,MpiksX 1peeenXiQ15..Qp ), @y metric T that can be
used in sequential decoding of codes in E, and any positive integer t,

EA(K,e,I,t) 2 hit)exp -kt&(K,M,Q),

where E denotes expectation (here, E is an averaging operation over all
codes e in E); h{t)=(g/vt)+0(1/4/t) where g is a constant and o{1/+t) is
a quantity which goes to zero faster than 17/t as t goes to infinity;
M=(M5eeesMpk); @=(Qy,...,Qp); and, 8(K,M,Q) is as defined in §2.2.

Remarks
1) There are certain similarities between Thearem 3.4.1 and the results
of §2.4, but neither is stronger than the other.

Theorem 2.4,1 and Lemma 2.4.1 together imply that, for branchwise
additive metrics, the method of §2.1 cannot be used to prove the
achievability of any point outside Ry. The result here is much stronger:
Thecrem 3.4.1 states that the inability to prove achievability outside Rq
is not due to a shorticoming of the particular method employed in §2.1,
neither is it due to the restriction of the metrics to branchwise additive
ones. It is because random-coding arguments over the class of ensembies
we are considering in this thesis can not yield any achievable points
outside Rg; in this respect, the method of §2.1 can not be improved.

Theorem 2.4.1 gives an outer bound to what can be shown to be
achievable by a given branchwise additive mefric by using the method of
§2.1. Theorem 3.4.1, on the other hand, implicitly deals only with the
best possible metric.

2) In the one-user case, a result similar to Theorem 3.4.1 was proved by
Gallager in a different context [13L.

- —— — 5
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Proof of Thearam 2.4.1.
In view of Lemma Z.1.1, it is sufficient to prove that

Ex(K,e(t)) » hit)exp-kts(K,M,Q).
Here, e(t) is the block code obtained by truncating the tree code e at

level t, as defined in §3.1. We associate messages for e(t) with level-t
nodes in e. Now, by definition,

AKe(t) = (/M) D S PBLL., Ut | eul.t)), (1)
ul..t) ul..t)
where M(t) is the total number of codewords in e(t), i.e., M(t):(M,---Mn)t;

the sums are over all level-t nodes in e; eu(..t) denotes the codeword in
e(t) for message (node) u(..t); and B(u(..t},u(..t}} is defined as follows.

{mevKt:p(m | edl.t) 2 P(m | eul..t)} ul.t)=ul..t);
Blu(..t),ul..t)) =
$ Uf..th=ul..t).

Taking expectations of both sides of (1),

ExlKe(t) = (/M) 3 5 EP(B(ul.t),ul.t)) | eul..t)), (2)
uf..t) ul..t)

Ex(K,e(t)) can thus be lower-bounded by lower-bounding
EP(E(u(.th,u(. 1)) | eul..t)),

which is just the probability of the event that
t
> In[P(y(i) | edti))/ Ply(i) | eulin] 2 o. (3
i=1
Here, yli) denotes the ith channel output block, and it is regarded as a
random variable taking values in vK, Likewise, e is regarded as a random
variable taking values in E.
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The distribution of Z; = In[P{yii)|euti)) / P(y(i) | euli)}] depends on the

type of uf.i) with respect to uf..i). In order to simplify matters, let us
suppase that the type of u{..t} with respect to u(..t} is (T,...,T) for some
non-empty subset T of {1,..nhL ZyyesZy @re then independent and

identically-distributed. So, the probability of the event in (3), which is
now just the probability that the sum of t iid random variables, Cqyeensis

have a non-negative sum, can be lower-bounded by using the asymptotic
form of the Chernoff bound, as given by equations 5.4.23 and 5.4.24 of
[12]. To use the Chernoff bound, we note that the moment-generating
function of 24, E(expsZ,), is as follows.

ElexpsZy) =3 3 3 D QADQRDQEIP(M | &1,87) 78 P | 81,8720
M &7e &7 T
where we have used the notation of §3.3.

It can be verified easily that E{expsZ,) is a convex function of s with a
minimum at $=1/2; thus, the minimum value of E{expsZ,) equals

E(exp(Z!a"Q)} = B?-ip-kRU(K,Q,T).
Now, the Chernoff bound states that

Pricy+---+Z;20}2H(t)exp-tkRy(K,Q,T), (&)

where H(t) is of the form (x/+t) + o{1/+/t) for some constant . (For
the exact form of H(t), ses page 130 of [12].)

Note that exp{k(t-1)R(T)}, where R(T)=(1/K)InM(T), lower-bounds the
number of level-t nodes which ara of type (T,..,T} with respect to (any
given) node u(..t). Thus, it follows from (2), (3}, and {4) that

EA(K,eft)) > H{t)exp{-kR(T)}exp {kt[R{T)-Ry(K,Q,T)I}, (3)

which is true for any non-empty subset T of {1,...,n}
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Mo, lower-bounding H(t)expi-kR(T) by h{t)=H(t)/(M,---M:) and taking a T
in (S) for which

5:5 is a non-empty subset of {1,....n}

= - §(K,M,Q),
we obtain Ex(K,e(t)) 2 h(t) exp {-kt&(K,M,QJ, (6)

thus concluding the proof.



Chapter 4

NON-JOINT SEQUENTIAL DECODING

The sequential decoding procedure that we have been considering in the
past chapters - joint sequential decoding (JSD), as it will be called in
this chapter - requires a complete knowledge of all tree codes in the
system on the part of a single processor. In this section, we shall
consider what we call non-joint sequential decoding (NJ3SD) in which
there is a separate sequential decoder for each user, the decoder for any
given user working only on that user’s tree code. (See Figure 4.1.) Our
goal is to examine the achievable rate region of NJSD (to be defined
presently) and compare it with that of JSD.

Consider a channel K=(P;><,,...,Xn;Y) and suppose that user i emplous a
(M‘-,k) tree code e, 1=1,..,n. Let e denote joint tree code for € 3uensBpe

NJSD in this situation uses n sequential decoders. The sequential decoder
WOorking on user i‘s tree code e;, which we denote by S0y, uses a metric

Ty of the form 00
ry: U (g Mkevik)

h=1
Note that the form of Ty does not allow SD; to use any information about

[-c0,00].

the codes of the other users.

Rougnly speaking, achievability in MNJSD requires that the average
decoding complexity be finite for each S0j, i=1,.,n. What follows is a

formalization of this idea.

Achievability_in Non-Joint Sequential Decoding

Let C; J-'{K,e,r']-,s,g) be the number of nodes in Ij(si), the jth incorrect

subset of the correct path s; in ey, that reach the stack-top of SD;.
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Decodes the n-user
tree code

4

y Seq.

Channel

Dec.

Joint Sequential Decoding

Channel

S1 X1
Source | Enc. 1
Sn xn
Sourcen Enc. n
Sy X1
Source | Enc. 1§
Sn ®n
Sourcen Enc. n

Decodes tree 1

/

—{ SO,

— 2

Non-Joint Seguential Decoding

Figure 4.1. Joint and Non-Joint Sequential Decoding




(A3 usual, s=3yx---x3, denotes the correct path in e, and y denctes the
channel output sequence.)

Let C; ;(K,e,I'}) be the value of C; ;(K,e,I';,s,y) averaged over s and y. Let
Di,L(K’e’Pi)={Ci, 1 (K,B,Pi,‘+---+Ei’L(K,B,Pi)}fL.

For large L, Di,L(K,e,I‘]-) can be interpreted as the average work SD; has
to do to move one step along the correct path s;.

A paint R=(Ry,...,R,) is said to be achievable by MJSD if there exists a

finite constant A, A=A(K,R), such that for any given L there exist i) a
code e with rate at least as large as R, and ii) metrics T'y,...,I[}, such

that
D 1 ’L(K,e,l",)+---- +Dn,L(K,e,I‘n)<A.

The achievable rate region of NJSD is defined as the closure of the set
of all points achievable by NJSD, and is denoted by an(K).

Theorem 4.1. R (K) is inner-bounded by R, (K), which is defined as
follows.

an,o(K) = U an,a(K’Q}’
Q
where the union is over all Q={Qy,...,Q,) such that Q; is a p.d. on Xik for
some k (k is the same for each i), and for any such Q,

an'o(K,Q) = {{(RysenBp) 1 0 ¢ R; san’o(K,Q.i) for each i=1,...,n},

where an'o(K,Q,i) = -(1/K)n 2 { Z Q;(&;} Pi(nlii)}z,

ne‘fk e,-exik

and where
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Pilm ! &) =E Qi(ti:’"zQH € )EQM €4 :"'E Qn(EaPim ! (ST ST )
€1 ti-1 tiﬂ tn

Proof. We use a random-coding argument that is essentially the same as
the one in §2.1. Hence, details of the following proof are omitted.

Let E=Ens{My,..,MpkiX 150s%05Q1500,Qp) e an arbitrary ensemble such that

an’o(K,Q,j)>(I/k)lnMj for each j=1,...,n. To prove the theorem, it suffices
to prove that there exist metrics 'y,...,T such that the expected value
of D1,L(K,e,r‘1)+---+Dn,L(K,e,I‘n) over E is uniformly bounded over all L.
Simpler yet, it suffices to prove that, for any given i, there exists ¥
such that the expected value of D]-,L(K,e,l"]-) over E is uniformly bounded

aver all L. Without loss of generality, we may consider the expected
value of Dl,L(K,e,I‘,) over E, as we do next.

Let EizEns(Mi;k;xik;Qi), i=1,...n. Let E denote expectation over E, and E;
denote expectation over E;. Now,
EDy | (K,8,Ty) = £y EnDy | (Ke,Ty)
= E4fEpEqDy (K8, y))
= E,D, (Ky,e,,T),
where Dy is as in Def. 1.4.1, and K,=(P ;X ¥;vX) with P, as follows.

For each z,ex1k and neY",

JENEDEY We SR Y- K REIC TFI J 2
tz tn

If Ty is taken as met(K,,1,Q4,B), with bias B={R0(K,,Q1,{I})+lnM,‘}f2,
then E1DL(K1,e,,I'1) is uniformly bounded over all L by the results of §2.2.

Remarks

1) The branch metric for met(K,,1,Q,,B) is as follows.
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For each nevk, ££§=<|k,
YPy(m|&
3(&,m)=1In - B.
> gmwmmln
X,

2) R, ,(K,Q) is also achievable if SD; uses the following Fano metric.

For each neYk, £e><ik,
Pi(m| &)
Bp(&,M)=In —— - InM;,
wi{n)

where w;(M) = Y Q;(2)P;(m|%). O
texik

One might think that R(K) must be at least as large as an(K) for all K.

This is not true. There is no general inclusion relationship betwesen R
and an, as illustrated by the following examples.

Example 4.1. A channel for which R is not containeg in an.
Consider a channel K=(P;X;,Xp;YxY,) (Figure 4.2) where X;=X,=V,=¥,=
{0,1} and the transition probabilities are as follows.

P((£,00](2,00) = 1-¢ £20,1;
P((&,1)](4,00) = ¢ £=0,1;
PO(&, 1] (2, 10) = 1-¢ 2=1 and $=0, or £=0 and {=1;
P((2,0){ (L, 1)) = ¢ &=1 and £=0, or £=0 and C=1;

all other transitions have zero probability.
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(0,0) oS (0,0)
(1,1) € > on
(1,0) ot (1,0)
(0,1) L (1,1)

Figure 4.2. The two-user channel of Example 4.1.

Thus, in a sense, the input by the second user selects the channel for the
first user. If (£,,8,) is the channel input and (m;,m,) is the channe!
output at a given time, the transition prababilities fram £, to 7, are the
same as those of a binary symmetric channel with probability of error e.
If £,=0, one has m,=&, with probability one; if £,=1, then one has n=2,
with probability one.

In order to decode the message of user 1, 1t is sufficient to decode that
of user 2. So, any two-user rate (1 bit, R, bits) for which R, is smaller
than the cut-off rate of a binary symmetric channel with probability of
ervar ¢, namely 1-2lag,{v'e+/{1-¢)} bits, is achievable by JSD.

If user 1 transmits at a rate of 1 bit, any decoder that decodes user 1’s
message correctly must produce (as a by-product) a correct decoding of
user 2's message, whether or not we are interested in that message.
Therefare, no two-user rate of the form (1 bit, R, bits) is achievable by
NJ3D if R, is positive. More precisely, if (R, bits, R, bits) is achievable
by NJ3D, then Ry must be smaller than 1-8(Ry) bits, where § is 3
~function such that 8§(R,)>0 for R,>0.

TR W W e 5 i 5 - o . s R
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Example 4.2. A channel for which Hnj is not contained in R.

Consider a channel K=(P;X,,X;YxY,) (Figure 4.3) where X;=X,={0,1},
¥,="¥,={0,1,8}, and the transition probabilities are

P((zhaZ) I (81152)) = 1-6

and P((e,e)[(2,82)) = €  for each pair of X, &,eX,.

The output symbol (e,e) is called an erasure and ¢ is called the erasure
probability. We assume that ¢ satisfies O<e<1,

(0,0)n—\ - a (0,0
(0,1) 6N 2 (0,1)
(1,0) o (1,0)

c\1k\
(U)"Nﬂ (1,0
(e,e)

Figure 4.3. The two-user channel of Example 4.2,

An outer bound to R{K) is found by observing that, if (8,R,) belongs to
R(K), then Ry+R, cannot be larger than Ry{K=-1n{{1+3¢}/4} nats, whers
K4 is the single-user quaternary erasure channel, and Rg{Ky is the
cut-off rate of K4

By Theorem 4.1, an(K) is inner-bounded by an’o(K,Q) for any Q, in
particular for Q*=(Q,,Q,) where Q;=Q,=the uniform distribution on
{0,1}. By simple calculation, an’o(K,Q*)={(R1,R2):05R,s-ln[(1+e)f2] nats,
0<Ro<¢-1In[(1+€)/2] nats}.*

* Actually, an O(KsQ*)=an ,(KJ; but we do not need this fact here.




Figurz 4.4 shows the above bounds. 'We notice that therz arz points in
the neighborhood of (-1In[{1+e)/2],-In[{1+€)/2]) which belong to an(K} but
not to RiK), since -2In[(1+e)/2]>-1n[{1+3€)/4] for any ¢, O<e<1.

- +E
R, = -lnLtE
2

-In!
\(__ R, = -In%

R1+ R2 - _]nH;Zi:

Figure 4.4, Inner and outer bound regions of Example 4.2,

Complementary Remarks on Example 4.2

1) Example 4.2 may seem paradoxical: How can two sequential decoders,
neither with a complete view of the system, achieve a point that is not
achievable by JSD? This can be explained as follows.

Let e, be the code for user 1, and e, be the one for user 2. Let e be the
joint tree code for e, and e,. Let k be the number of channel symbols per
branch.

The channel output here is a sequence of pairs of symbols: (M, M21)s
(My2:M22) (M13,M23)ye- We shall denote the sequence Myq,My2sM 125w DY
Ji. The first kt elements of y; will be denoted by y{..th. M21sM22:M23seee
will be denoted by y,, and the first kt elements of y, by y,{..t).
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A node uyl..t) in ey is said to be consistent if equy(.t) agraes with y,(.t)
in the unerased digits. A node u,(..t) in e, is said to be consistent if
exux(..t) agrees with yp(..t) in the unerased digits. A node u,(..t)xu,(..t)
in e is said to be consistent if u,{..t) and u,(..t) are consistent. Let
Wiy (.th), Woly,(i.t)), and wW(yixu,(..t)) denote the number of consistent
level-t nodes in ey, e, and e, respectively. Note the identity W=W,W,.

Conditional on y,(..t}, all consistent level-t nodes in e, are equally likely
to be correct. Thus, W,(y,(..t))/2 is a lower bound to the number of
level-t nodes in e, that reach the stack-top of 3D, in NJSD. (The
reasoning here is the same as that leading to Lemma 3.1.1.) On the other
hand, ¥, is an upper bound on the same number of nodes provided that
oDy uses, as we assume that it does, a metric that assigns -« to
inconsistent nodes, thus preventing them from ever reaching the
stack-top.

Similarly, the number of level-t nodes in e, that reach the stack-top of
3D, is lower-bounded by W,(y,(..t})/2 and upper-bounded by W,(y,(..t}).
And the number of level-t noces in e that reach the stack-top in JSD is
lower-bounded by W(y,xy,(..t)}/2 and upper-bounded by W{y,xy,{.t)).

what is of interest for our discussion is that 1) W{y;xy,(..t))/2 is a
lower bound to the number of level-t nodes in e that are processed in
JSD, and 2) W {y(..t))+w,(u(..t)) is an upper bound on the number of
levei-t nodes in e and e, that are processed in MJSD. Since W=%,Ww, and
both W, and W, are at least 1, we have W/2 2 (W +W,)/4. It is thus clear
that the complexity of JSD is greater than one fourth the combined
complexity of SDy and SD,. The conclusion that follows is that R(K) must
be a subset of R .(K).

2) Example 4.2 was inspired by Massey’s paper on sequential decoding for
single-user M’ary erasure channels [15]. Massey observed that, if M=2L,
then an Mary erasure channel decomposes into L completely correlated
binary erasure channels (BEC), as illustrated in Figure 4.5 for L=2. The
component BEC’s are completely correlated in the sense that an erasure
in one means an erasure in all.
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(Aa) o o (A a)

(Ab) c\\'_E 5 (&,b)
(8,9) c\\"e 2 (B,a)
(B,b) 'k\ 3 (B,b)

N (E.e)

1-¢

A 0 A 8 b g &

E e

B o B b o qa b
1-€ 1-¢

Figure 4.5. Decomposition of a quaternary erasure channel.

The cut-off rate of an M'ary erasure channel with erasure probability ¢
equals Rg({Mi=-In[e+{1-¢)/M] nats. If one wuses separate sequential
lecocers gn each component BEC L’arg erazure channel, one can
hen achieve rates up 10 L-sU(’f’)--' 1nm +¢)/21 nats. On the other hand, if
que itial decoding is used directiy on a 1L'arg erasure channel, then the
chievabie rates ars uppcr-bounded by Rg{2-). But LRU(")>R0k7L) for any
€, 0 € 1 In fact, LP0(2)/R0{’? J goes to infinity as L increases,

o) o
w =¥

An explanation for this apparant peculiarity can be given in exactly the
same way as has been done for Example 4.2. The conclusions that can be
drawn from Massey’s observation are that i) one cannot talk about a
cut-off rate for single-user channels without being explicit about the
sequential decoding scheme one has in mind, and ii} the cut-off rate of
ordinary seguential decoding does not constitute a limit, even in an
approximate sense, to rates at which reliable communication is possible
in prachce
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Chapter 5

SUGGESTIONS FOR FURTHER RESEARCH

1. Determine whether R(K)=Ry(K) for all K.

2. Determine whether R is convex. Note that, if R is indeed convex,
proving that it is convex does not necessarily require an explicit
characterization of R.

3. Determine whether Ry(K)=convex-hullRy(K,1) for all K.

4. Determine whether strong achievability {(Def. 1.4.3) is equivalent to
achievability (Def. 1.4.2).

3. The metric of §2.2 requires that, in order to maintain achievability as
§, the distance between the desired rate and the “outer” boundary of Ry,
goes to zero, the number of channel symbols per branch increase without
bound. Determine whether this requirement, which does not exist in the
single-user case, is inherent in multi-user sequential decoding.

A rzsult in this rsgard, which is not rzportsd in this thesis, is that
there is no metric that 1) satisfies the sufficient conditions of §2.1
over a region whose closure is Ry, and 2) does not require the number of
symbols per branch go to infinity as § goes to zera.

6. A simulation study of multi-user sequential decoding may be done to
obtain a better idea about its complexity. The analytical upper bounds of
this thesis are useful for determining whether the average complexity is
finite; but they are too weak to give an idea about the actual average
complexity. Furthermore, a simulation study would provide information
about the dynamic behavior of multi-user sequential decoders, a difficult
subject to approach analytically.
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7. The non-joint segquential decoding scheme of Chapter 4 is just one of
several possible approaches to sequential decoding with multiple
processors. It would be interesting to see what could be gained by
letting the processors exchange information about their current
estimates. Such schemes are not likely to be analytically tractable; but

that should not deter one from exploring these potentially more powerful
schemes.
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