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Abstract  
The urgency of addressing climate change and grid decarbonization in the United States 
necessitates the rapid deployment of clean energy technologies at scale.  Residential solar 
photovoltaic (PV) technologies have emerged in the past decade as one such technology as a 
result of substantial cost declines, though market penetration remains low.  New government 
initiatives and policy incentives have been enacted to encourage the uptake of these technologies, 
however recent research has documented distributional challenges related to their deployment.  
Building on emerging studies focused the racial equity implications of residential solar PV 
deployment, this research implements a series of regression models on two, national solar 
installation datasets, controlling for market, policy, and demographic variables.  The primary goal 
of this work is to systematically evaluate the effect of race and ethnicity on 1) the probability of a 
community having at least one solar installation and 2) the diffusion of solar PV technologies, 
defined as the total number of installations in a community.  Results indicate strong evidence that 
communities classified as majority-Black are associated with decreased likelihood of having any 
solar at all, and fewer installations overall, in most of the specified models. The results vary for 
majority-Hispanic communities, with observed disparities present in some of the models. 
Controlling for certain demographic variables has differentiated effects for different racial and 
ethnic majority classifications, due to the cumulative impacts of socioeconomic disadvantage for 
those groups.  The study concludes with a discussion of policy implications, methodological 
limitations, and avenues for future policy research to support an equitable clean energy transition.    
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Introduction 
Mounting pressures from the rapidly changing climate require rapid deployment of new 
technologies at scale and policies to accelerate the clean energy transition (Hanna and Victor 
2021; Meckling, Sterner, and Wagner 2017; Geels et al. 2017; Bumpus and Comello 2017; Åhman, 
Nilsson, and Johansson 2017; Holmes et al. 2021). Over the last decade, many of these 
technologies have rapidly matured (e.g. wind and solar), leading to decreased costs and—in 
theory—greater accessibility to broader populations in the United States.  Residential solar PV 
technology costs, in particular, have fallen dramatically, from approximately $4/W in 2007 to 
$0.35/W in 2017 (Comello, Reichelstein, and Sahoo 2018).    While lower costs and government 
incentives for solar drive adoption, distributional challenges related to its equitable deployment 
across different groups (e.g., income, race and ethnicity) remain (Darghouth et al. 2022; Carley 
and Konisky 2020; Sovacool, Barnacle, et al. 2022; Sovacool, Newell, et al. 2022; O’Shaughnessy, 
Barbose, Wiser, Forrester, et al. 2021; Brockway, Conde, and Callaway 2021; Goldstein, Reames, 
and Newell 2022; Lukanov and Krieger 2019; Castellanos, Sunter, and Kammen 2021; Hanke, 
Guyet, and Feenstra 2021; Si and Stephens 2021).  This research focuses on how residential solar 
photovoltaic technology adoption may be influenced by the racial and ethnic composition of 
communities in the United States.  Using two, national datasets disaggregated to the census-tract 
level, I construct a series of regression models to examine the role that race and ethnicity plays in 
the likelihood and extent  of residential solar photovoltaic (PV) adoption.  To begin, I take stock 
of primary barriers to solar adoption, before examining specific racial equity considerations, the 
primary focus of this work.   

Barriers to Residential Solar PV Adoption  
Barriers to residential solar PV adoption documented in prior work include lack of energy 
efficiency and renewable energy policy generally; lack of information and low consumer 
awareness; inadequate workforce capacity; lack of stakeholder/community participation in 
projects; political polarization of climate and energy issues; the growing need for energy storage  
for variable renewable technologies; and high, often unanticipated “soft costs” of solar related to 
labor, permitting, and interconnection, among others (Corrado, Holt, and Schambach 2022; 
Margolis and Zuboy 2006; Ramasamy 2022).   

Moving beyond these higher-level barriers, several studies have examined individual-level 
perspectives that factor into the decision to adopt solar (Palm 2018; Schulte et al. 2022; Scheller 
et al. 2021).  Income is often cited as a key difference in the ability of households to install solar.  
Regardless of income, households tend to be motivated by environmental norms and perceived 
financial benefits (Wolske 2020), and social networks play a sizeable role in the spread of 
information regarding the benefits of solar (Wolske, Stern, and Dietz 2017; Graziano and 
Gillingham 2015). The presence of the aforementioned barriers mean that even if a household is 
knowledgeable about residential solar PV, motivated to adopt and has the financial means to 
adopt, accessibility of installers, incentives, and institutional support may ultimately prevent them 
from doing so particularly if adoption among peers is low or non-existent.    
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With these baseline barriers and motivations identified, it is critical to consider the disparate 
impacts they may pose to different demographic groups.  For example, people of color are more 
likely to be renters, have lower household incomes, and higher populations of limited English-
proficiency individuals, all of which may impact their access to and ability to adopt solar PV 
technologies (Reames 2020).  Consequently, there is a need to better understand the distributional 
effects that these barriers may pose to the equitable adoption of these technologies.   

Equity and Solar PV Adoption 
Just as income is considered a highly influential constraint on a household’s decision to adopt, it 
has often been the main dimension through which researchers have considered the notion of 
“equity” in studies of residential solar PV deployment to date; this may be the result of policy 
developments that have focused on increasing market penetration of residential solar PVs among 
low-to-moderate income (LMI) households (Crago, Grazier, and Breger 2023; Si and Stephens 
2021; O’Shaughnessy, Barbose, Wiser, and Forrester 2021; “Bringing the Benefits of Solar Energy 
to Low-Income Consumers” n.d.; Paulos et al. 2021; O’Shaughnessy 2022).  While studies relating 
income and solar PV deployment have increased, the literature focused on quantifying the 
relationship between race, ethnicity, and residential solar deployment is relatively sparse.  As of 
writing, I identified three, peer-reviewed articles that explicitly consider the role of racial and ethnic 
equity and residential solar PV adoption, all published within the last several years.   

First, Sunter, Castellanos, and Kammen (2019) combine data from Google’s Project Sunroof data 
with 2009-2013 demographic data from the American Community Survey (ACS) to conduct a non-
parametric analysis of adoption trends across different racial and ethnic majority groups.  Plotting 
a state-normalized solar deployment metric against the proportion of renters and income level at 
the tract-level, they observe trends in deployment across different races and ethnic groups.  They 
conclude that after controlling separately for these two variables, Black, Hispanic, and Asian 
communities experience less solar deployment, relative to areas with no racial or ethnic majority.    

Next, Reames (2020) analyzes solar potential and penetration across four U.S. cities with a focus 
on LMI communities.  Leveraging DeepSolar, a national-level dataset on solar installations 
disaggregated to the census tract level (also featured in this analysis), he finds that race/ethnicity 
does not have a statistically significant correlation with total rooftop solar penetration in 
Washington, DC, Riverside, CA, or Chicago, IL; in San Bernardino, CA, he finds a statistically 
significant, positive association between the percent of the non-white population and solar 
penetration.   

Finally, Gao and Zhou (2022) adopt Sunter, Castellanos, and Kammen (2019)’s approach to 
segmenting groups based on racial and ethnic majority classification to examine correlations 
between the effects of “solar justice” policies on residential solar PV adoption.  Relying on a pre-
processed, census tract-level dataset from the Lawrence Berkley National Lab, they run regressions 
on annual residential solar installations from 2012 to 2019 (at the census tract level), finding 
evidence of a negative correlation between of race/ethnicity and annual installations, for majority-
Black, majority-Asian, majority-Hispanic, and no majority tracts.   
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Each of these studies provides evidence of disparities across racial/ethnic groups, but do not come 
without limitations.  Sunter, Castellanos, and Kammen (2019)’s non-parametric approach does not 
quantify the effects of race and ethnicity and presents results only at the national level.  Reames 
(2020) samples census tracts within four U.S. cities, but few estimated parameters reach statistical 
significance at that sample size; he also uses a simplified classification of race/ethnicity, using 
“percent of non-white population” as a catch-all grouping for nonwhite racial groups. Gao and 
Zhou (2022)’s underlying dataset is not demographically representative at the national-level (due 
to overrepresentation of Hispanic and Asian populations and underrepresentation of Black and 
White populations, compared to national averages), which may result in biases in the estimated 
coefficients for each racial or ethnic group.  Moreover, conflicting results across these three studies 
warrant a more systematic approach to studying disparities in race and ethnicity in residential 
solar PV adoption.    

This work contributes to the existing literature by 1) conducting parametric modeling on a 
demographically representative, national-level solar dataset at the census tract level,  2) 
comparing the results across two datasets using remote sensing to assess residential solar 
adoption, 3) quantifying the associations between different racial and ethnic group classifications 
and residential solar installations and 4) using a national-level analysis to inform case study 
selection of a specific locality through lenses of both race and place.  The results provide evidence 
of racial disparities in the initial “seeding” of residential solar installations and quantifies the 
magnitude of the associations between race/ethnicity and residential solar installations in the U.S.  
I conclude by discussing the limitations of the research and suggest avenues for future policy-
relevant research.   
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Data and Methods  
The primary goal of this research is to aid in answering the following research questions: 

• Is there a relationship between a census tract’s racial and ethnic composition and the 
likelihood of it containing at least one residential solar PV installation (“seeding”)?   

• To what extent is solar deployment, defined as the total number of installations in a 
census tract, characterized by disparities across race and ethnicity? 

To do so, I employ a combination of statistical modeling and qualitative policy analysis of specific 
geographies to analyze the explanatory variables of interest and their relationship with residential 
solar photovoltaic adoption for census tracts in the United States.  I compile and analyze data on 
demographic, market, and policy variables from different sources at the tract-level, where 
available, and combined them with national datasets on residential solar PV installations.  The final 
dataset serves as the input to a series of logistic and ordinary least squares (OLS) regression 
models, implemented using R programming language; a link to the full set of scripts is included 
in the Appendix (“The Comprehensive R Archive Network” n.d.).  Information on the data sources 
and models used in this analysis are described in the remainder of this section.   

Data Sources 
Table 1 summarizes the definitions and data sources for each variable included in the analysis 
presented in this work; this also corresponds to Model 5 in the logistic and OLS regressions that 
follow. 

Residential Solar PV Installations.  I use data on the total number of residential solar PV 
installations from two sources: the DeepSolar database, produced by researchers at Stanford 
University, and Google’s Project Sunroof.  DeepSolar uses machine learning to identify solar 
installations using satellite imagery, while Project Sunroof uses 3D digital elevation models to 
extract key building features (e.g. presence or absence of solar panels) and models building 
suitability for solar installations.  Both datasets are national in scope, with spatial resolution at the 
census tract level.  The DeepSolar dataset includes an estimated 1,277,794 residential solar 
installations, and Project Sunroof includes 650,494 total estimated installations.  The year of 
comparison for the dependent variable, total residential solar PV installations, is 2015. This was 
the most recent data available at the start of this project.   

Racial and Ethnic Composition.  I include several variables on race and ethnicity at the Census-
tract level from the 2011 – 2015 American Community Survey (ACS) to capture racial and ethnic 
compositions across communities.  Following Sunter, Castellanos, and Kammen (2019) and Gao 
and Zhou (2022), I classify tracts based on the proportion of different races and ethnicities present 
in each tract in the dataset.  “Majority-Black” tracts are those with a non-Hispanic Black population 
that exceeds 50%, “Majority-Asian” tracts have a non-Hispanic Asian population greater than 50%, 
and “Majority-Hispanic” tracts are those with a Hispanic population greater than 50%.  Tracts 
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where no racial or ethnic group exceeds 50% are classified as “No Majority” tracts.  All others are 
majority non-Hispanic white. 
Table 1.  Definitions and Data Sources.   

Variable Definition Source 
Dependent Variables   
Total Solar Installations Total number of residential solar installations in a census tract 

DeepSolar, Project Sunroof Solar Installations 
(Binary: Yes = 1, No = 0) 

Yes, if ≥ 1 residential solar installation is present in a census tract 

Explanatory Variables   
Majority Black 
(Yes = 1, No = 0) 

Yes, if >50% of respondents in a census tract self-identify as non-
Hispanic, Black  

2015 ACS 
 

Majority Asian 
(Yes = 1, No = 0) 

Yes, if >50% of respondents in a census tract self-identify as non-
Hispanic, Asian  

Majority Hispanic 
(Yes = 1, No = 0) 

Yes, if >50% of respondents in a census tract self-identify as 
Hispanic 

No Majority 
(Yes = 1, No = 0) 

Yes, if none of the target groups achieves a majority of the 
racial/ethnic composition 

Control Variables   
Average Daily Solar 
Radiation Daily solar radiation averaged from 1983 to 1993 (kWh/m2/d) DeepSolar/NASA 

Average Residential 
Electricity Price Average residential electricity price, by state (cents/kWh) EIA 2015 

State-Level Incentives Total number of state-level, residential solar PV incentives available 
in 2015 DSIRE 

Housing Units* Total number of housing units in a tract 

2015 ACS 
 

Age Median age of individuals in a census tract 
Income* Median income in a census tract 

Educational Attainment Percent of population in a census tract with a bachelor’s degree or 
higher 

Detached, single-family 
homes 

Percent of housing stock that consists of detached, single-family 
housing in a census tract 

Limited English Proficiency 
Population 

Percent of households in a tract that speak English less than “very 
well” 

*These variables are log-transformed in the regression models.   

Daily Solar Radiation.  Data on average daily solar radiation are included in the DeepSolar 
database at the tract level, sourced from NASA’s Surface Meteorology and Solar Energy product, 
which has a spatial resolution of 1 x 1 degrees (Chandler, Whitlock, and Stackhouse 2004).  Daily 
solar radiation is expressed as the average daily solar radiation, in kilowatt-hours per square meter 
per day (kWh/m2/day), over a ten-year period from 1983 to 1993.  Solar radiation accounts for a 
key physical constraint on the viability of solar PV development across geographies (Yu et al. 
2018).  Prior studies have identified strong positive relationships between higher levels of solar 
irradiance and total residential installations (Wang et al. 2022; Kwan 2012).  

Average Residential Electricity Rate.  To control for potential differences in the effect of electricity 
costs on residential solar PV installation, I use average residential electricity costs in cents per 
kilowatt-hour (cents/kWh) derived from Energy Information Administration (EIA) estimates from 
2015; consequently, every tract within a state shares the same value (EIA 2015).   While this field 
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is included in the original DeepSolar database, I cross reference those values with the EIA data 
from 2015 as a quality check.   

State-Level Incentives. Leveraging the DeepSolar database and the North Carolina Clean Energy 
Technology Center’s Database of State Incentives for Renewables & Efficiency (DSIRE), I extract 
the total number of state-level residential solar incentives available in the contiguous United 
States, as of 2015, and use it as a proxy for access to state-level resources to aid in solar 
deployment (“Database of State Incentives for Renewables & Efficiency”).   

Data Compilation 
Table 2. Comparison of Average Tract-Level Characteristics in DeepSolar and Project Sunroof Compared to ACS 
Estimates.  

Tracts in the 
2011-2015 ACS DeepSolar Project Sunroof 

% White 62.8% 62.9% 56.9% 
% Black 13.4% 13.5% 15.7% 

% Asian 4.6% 4.5% 5.8% 

% Hispanic 15.9% 15.9% 18.6% 
% Limited English Proficient 4.7% 4.7% 5.8% 
Median Income $57,752 $57,655 $60,174 
Median Age 38.9 38.9 37.9 
% with a Bachelor’s Degree or Higher  28.6% 28.6% 31.5% 

 

After compiling the final dataset, I conduct a series of preliminary descriptive analyses.  First, I 
examine the two datasets in terms of their representation of the general population, as estimated 
by the 2015 ACS data.  Table 2 provides an overview of that comparison, across several 
demographic variables.  I perform several t-tests on the DeepSolar and Project Sunroof data, 
comparing their average values for these variables to the ACS (see Appendix). From them, I 
conclude that there is not a statistically significant difference between the mean values of these 
variables in DeepSolar and the ACS.  DeepSolar is therefore more closely aligned with national-
level demographics, compared to Project Sunroof. Consequently, many of the tables and figures 
presented in this work use DeepSolar as the data input; corresponding figures using the Project 
Sunroof data are presented in the Appendix.   

In the DeepSolar database, I found that the authors’ tabulation of the census data did not isolate 
Hispanic and non-Hispanic ethnicities from the racial groups. To address that, I extracted the race 
and ethnicity variables from the ACS in R using tidycensus to ensure that those groups are 
mutually exclusive in my analysis (Walker, Herman, and Eberwein 2023).  Formally, the race and 
ethnicity explanatory variables correspond to non-Hispanic, Black-majority; non-Hispanic, Asian-
majority; and Hispanic-majority tracts. No majority tracts have neither a racial nor ethnic majority.   

Additionally, I randomly selected 10 observations and manually calculated each of the variables 
described above.  This provided a quality check on the overall data compilation process and 
enabled the correction of any errors that arose during the merging process.    
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Model Specification 
Dependent Variable Transformation  
After compiling the data, I ran a preliminary version of the final OLS model on both the DeepSolar 
datasets and analyze the residuals with a Quartile-Quartile (Q-Q) plot; the output was 
characterized by non-normality of the model’s residuals and heteroskedasticity, violating two OLS 
assumptions.  To correct for the former, the dependent variable for the OLS models is transformed 
using equation (1) below, where 𝑌𝑌�𝑖𝑖 is the natural log-transformed dependent variable in the OLS 
models and 𝑛𝑛 is the total number of residential solar installations detected in census tract 𝑖𝑖.  For 
the latter, the estimated coefficients described in the Results section are presented with 
heteroskedastic-robust standard errors.   

 

𝑌𝑌�𝑖𝑖 = ln (𝑛𝑛𝑖𝑖 + 1) 
( 1 ) 

Log-transforming the dependent variable in this manner retains the zero values, which are of 
particular relevance to this analysis.  Following this transformation, I re-ran the preliminary OLS 
model and observe that the residuals more closely resemble normal distribution. Following Kwan 
(2012), the number of housing units, and median income are also log-transformed. As a 
robustness check I also run the models using the inverse hyperbolic sine (IHS) transformation, 
another data transformation commonly used in econometric and social science applications. With 
the IHS transformation, the estimated coefficients can be interpreted in the same manner as a 
log-transformed variable (Aihounton and Henningsen 2021).  The output from those models are 
included in the Appendix. 

Handling Multicollinearity 
Because this analysis uses several highly correlated variables as controls I calculate the variance 
inflation factor (VIF) for the fully specified model.  “Median income” and “the percent of the 
population living in owner-occupied housing units” are highly correlated, with VIF values greater 
than four.  The owner-occupied fraction is also highly correlated with the percent of the 
population living in “detached single-family unit” housing, so the latter is excluded from the model 
specifications.  Median income and the percent of the population with a bachelor’s degree or 
higher are also highly correlated.  As an additional sensitivity check and to mitigate against 
potential errors arising from multicollinearity I also test models that include only median income, 
only the percent of the population with a bachelor’s degree or higher, and both variables together.  
All of the specified models are documented in the Appendix.    

Model Selection   
The first portion of the statistical analysis uses logistic regression to estimate the probability that 
at least one residential solar installation exists in a census tract, controlling for the variables in 
Table 2.  I model the first phase using a general logistic regression function: 
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𝑌𝑌�𝑖𝑖 =
1

1 + 𝑒𝑒−(𝛽𝛽�0 +  𝛽𝛽1�𝑋𝑋1𝑖𝑖+  𝛽𝛽2�𝑋𝑋2𝑖𝑖+⋯+ 𝛽𝛽𝑘𝑘�𝑋𝑋𝑘𝑘𝑖𝑖)
 

( 2 ) 

where 𝛽𝛽0� is a constant, 𝛽𝛽1�… 𝛽𝛽𝑘𝑘� are the estimated coefficients and 𝑋𝑋1𝑖𝑖 ,𝑋𝑋2𝑖𝑖 , … ,𝑋𝑋𝑘𝑘𝑖𝑖 represent the 
value of the independent variables for each observation 𝑖𝑖 included in the DeepSolar or Project 
Sunroof datasets.  Similarly, for the second phase, I run an OLS model, generalized as: 

 

𝑌𝑌�𝑖𝑖 = �̂�𝛽0  +   𝛽𝛽1�𝑋𝑋1𝑖𝑖 +   𝛽𝛽2�𝑋𝑋2𝑖𝑖 + ⋯+  𝛽𝛽𝑘𝑘�𝑋𝑋𝑘𝑘𝑖𝑖 

( 2 ) 

where 𝑌𝑌�𝑖𝑖  is the log-transformed dependent variable, measuring the estimated total number of 
observed installations Y  observed in census tract 𝑖𝑖, �̂�𝛽0 is a constant, 𝛽𝛽1�… 𝛽𝛽𝑘𝑘� are coefficient 
estimates for each regressor in the model, and 𝑋𝑋1𝑖𝑖 ,𝑋𝑋2𝑖𝑖 , … ,𝑋𝑋𝑘𝑘𝑖𝑖 denote the values of the 
independent variables for each observation 𝑖𝑖.  The results are detailed in the next section.   
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Results 

Descriptive Analysis 
Summary Statistics 

 
Table 3.  Summary Statistics for DeepSolar Installations, by Race/Ethnic Majority Classification. 

 
 

 

 

 

 

 

First, I analyze how the total residential solar installations varies by race and ethnicity for the 
DeepSolar data (Project Sunroof figures are in the Appendix).  Figure 1 plots the density of 
observed installations, broken out by racial and ethnic majority classification to highlight 
differences in the frequency and distribution of the total number of residential solar installations 
across groups.  The y-axis values are log-transformed, according to Equation 1.  

For each group, with the exception of majority-Asian tracts, I observe heightened clustering 
around tracts with zero solar installations.  These groups follow a general trajectory of having a 
mode of zero near zero, with several lesser “peaks” around logged-values of one, with a significant 

 Total 
DeepSolar 

Installations 

Total 
DeepSolar 

Tracts 

DeepSolar 
Tracts with 0 
Installations 

DeepSolar Tracts 
with >0 

Installations 

Mean 
DeepSolar 

Installations 
Majority-Asian 22,412 510 67 443 43.9 
Majority-Black 29,368 6,092 2,743 3,349 4.8 

Majority-Hispanic 137,460 6,639 1,244 5,395 20.7 

Majority-White 853,294 50,177 12,729 37,448 17.0 
No Majority 234,602 8,522 1,762 6,760 27.5 
Total 1,277,136 71,940 18,545 53,395 17.8 

Figure 1. Mirrored Density Plot of the Distribution of Residential Solar, by Race/Ethnicity. 
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remainder being outlier values.  For majority-Asian tracts, however, the highest density is clustered 
around y = ~4, roughly corresponding to the mean value of 43.9 solar installations (see Table 3).  
This is in stark contrast to majority-Black tracts, for which I observe a higher density of zero values, 
as compared to the other groups, suggesting potential negative bias in the likelihood of having 
at least one residential solar PV installation.   

The mean number of installations, defined as the total number of residential installations divided 
by the total number of tracts, reflects this observation.  For the entire dataset, that value is 17.8; 
however, majority-Asian tracts have a mean of 43.9, majority-Black tracts have a mean of 4.8 
installations, and majority-Hispanic tracts have a mean of 20.7 installations.  No majority tracts 
appear to outperform other groups on this metric, with a mean of 27.5 installations.  

From the accompanying summary statistics in Table 3, I estimate that approximately 25% of all 
census tracts included in the DeepSolar dataset have zero residential solar installations.   However, 
there are significant differences in how that value appears for different races and ethnicities.  For 
example, 13.1% of majority-Asian tracts, 18.7% of majority-Hispanic tracts, and 20.7% of no 
majority tracts are categorized as having zero installations.  On the other hand, 45% of majority-
Black tracts do not have any residential solar installations, nearly twice the average for the entire 
dataset. Additionally, I observe that while majority-Black tracts make up approximately 8.5% of 
total tracts in the DeepSolar sample, installations in majority-Black communities comprise 2.3% of 
total installations.  This suggests that majority-Black tracts might be overrepresented in the 
composition of tracts with zero residential installations, and underrepresented in tracts with at 
least one residential installation. 
 

 

Figure 2. Proportion of Tracts with Zero or at Least 1 Installation (DeepSolar), by Race/Ethnicity. 
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Figure 2 visualizes proportions derived from Table 3, highlighting the relative contributions of 
each racial/ethnic group to the total number of tracts with either zero or at least one residential 
solar installation. Figure 3 illustrates how the proportion of installations across the racial/ethnic 
groups included in the study, compares to their overall representation in the dataset.  I observe 
that total installations in majority-Asian, majority-Hispanic, and no majority tracts trend in the 
direction of overrepresentation, at first glance.   

Geographies of Race, Ethnicity, and Residential Solar PV 

Figure 4. Spatial Distribution of Race/Ethnic Majorities and Counties with Highest Installations, by Race/Ethnicity (DeepSolar). 
NOTE: Because there are different racial and ethnic majority classified tracts in certain counties, some places have the highest 
installation counts across several groups (e.g. Los Angeles, above). 

Figure 3. Proportion of Total Tracts and Installations (DeepSolar), by Race/Ethnicity. 
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Table 4. Top Counties with the Highest Number of Solar Installations, by Race/Ethnicity.  

NOTE: Because there are different racial and ethnic majority classified tracts in certain counties, some places have the 
highest installation counts across several groups. 

 

Figure 4 and Table 4 describe the geography of where each racial/ethnic-majority classification is 
present at the tract-level; For many groups the areas with the highest number of installations 
coincide with higher average daily solar radiation with and regulatory environments that are 
favorable to residential solar PV adoption (e.g., California).  However, majority-Black tracts exhibit 
a markedly different geographic distribution in residential, with the highest concentrations of solar 
installations for those communities located in the Southeast.    

Table 4 sheds light into some of the nuances regarding representation across groups within 
particular geographies.  For example, the top two counties with the highest number of installations 
in majority-Asian tracts contain 54.2% of all installations for this group.  Similarly, 37.6% of all 
installations in majority-Black tracts can be found in the DC suburb of Prince George’s County, 
Maryland and New Orleans, Louisiana. This suggests that installations in majority-Black and 
majority-Asian communities are concentrated in fewer areas as compared to majority-Hispanic, 
majority-White, and no majority tracts.  

  

 

County Name 

Number  
of Tracts 

in the 
County 

% of Total 
Tracts in 

the 
County 

Total 
DeepSolar 

Installations 

Racial/Ethnic 
Majority  

Installations as % 
of Total 

Installations in 
the County 

Racial/Ethnic 
Majority 

Installations as  
% of Total 

Installations 
Nationally 

Majority-Asian 
Santa Clara, County, CA  81 0.3% 6,993 21.2% 31.2% 

Contra Costa, County, CA 120 5.2% 5,152 5.6% 23.0% 

Majority-Black 
Prince George’s County, MD 157 72.0% 6,065 81.5% 20.7% 

Orleans Parish, LA 107 61.5% 4,958 76.7% 16.9% 

Majority-Hispanic 
Los Angeles County, CA 1081 46.5% 24,622 26.7% 17.9% 

Riverside County, CA 183 40.5% 12,064 21.9% 8.8% 

Majority-White 
San Diego County, CA 335 53.5% 66,459 68.6% 7.8% 
Maricopa County, AZ 620 67.9% 48,723 84.8% 5.7% 

No Majority 
Los Angeles County, CA 501 21.5% 23,167 25.0% 9.9% 
San Diego County, CA 134 21.4% 20,499 21.2% 2.4% 
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Statistical Analysis 
Overview of Regression Models 
Results from the logistic and OLS regression models are presented in the following subsections.  
Identical variable mixes are selected for each set of regressions, according to Table 5 below. 

Table 5. Specified Logit and OLS Models. 

 General Model Specification 
 Dependent variable: ln(installations + 1)  -OR- logit(installations) 
 (1) (2) (3) (4) (5) 

Explanatory 

Majority-Black 
Majority-Asian 

Majority-
Hispanic 

No Majority 

Majority-Black 
Majority-Asian 

Majority-
Hispanic 

No Majority 

Majority-Black 
Majority-Asian 

Majority-
Hispanic 

No Majority 

Majority-Black 
Majority-Asian 

Majority-
Hispanic 

No Majority 

Majority-Black 
Majority-Asian 

Majority-
Hispanic 

No Majority 

Market/Environmental 

Total Number of 
Units* 

Total Number of 
Units* 

Avg Daily Solar 
Radiation  

Avg Residential 
Electricity Price 

Total Number of 
Units* 

Avg Daily Solar 
Radiation 

Avg Residential 
Electricity Price 

Total Number of 
Units* 

Avg Daily Solar 
Radiation 

Avg Residential 
Electricity Price 

Total Number of 
Units* 

Avg Daily Solar 
Radiation 

Avg Residential 
Electricity Price 

Demographic 

-  - Age 
Education  
Detached, 

single-family 
homes 

Limited English 
Proficiency 
Population 

Age 
Income* 

Detached, 
single-family 

homes 
Limited English 

Proficiency 
Population 

Age 
Income* 

Education 
Detached, 

single-family 
homes 

Limited English 
Proficiency 
Population 

*For consistency, these values are also log-transformed according to equation (1).  The full table of estimates is found in the 
Appendix. 
 
Model 1 includes the race and ethnicity variables with the only control being the total number of 
units in the tract. Model 2 adds solar radiation and electricity price.   Models 3 – 5 introduce the 
demographic variables. Model 3 includes educational attainment but excludes the log-
transformed median income, to minimize bias related to collinearity between those two, closely 
correlated variables.  Model 4 excludes educational attainment in favor of the log-transformed 
median income, while Model 5 includes both variables as a sensitivity check on the model 
specifications. 

Because both the logistic and OLS models are specified with log-transformed dependent 
variables, results are presented in terms of the estimated coefficient and on occasion, the 
corresponding percentage change in the dependent variable.   
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Logistic Regression  

DeepSolar 
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Figure 5. Estimated Logistic Regression Coefficients for Models 3-5, with 95% Confidence Intervals. 
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Results from the logistic regression models indicate that majority-Black census tracts are 
associated with a statistically significant decrease in the log-odds of there being a solar 
installation, ranging from -129.3% to -33.6% (see Table 6 for the full range of values, and Figure 
5 for visualizations of the coefficient estimates for Models 3-5).   This result holds for each of the 
model specifications and across both datasets.   However, it did not always hold for majority-
Asian, majority-Hispanic, and no majority tracts, which varied in both magnitude and statistical 
significance, depending on the model specification and input data.  

DeepSolar 
In Model 1, the estimated coefficients for the race variables are: -0.76 for majority-Black tracts, 
0.90 for majority-Asian tracts, 0.48 for majority-Hispanic tracts, and 0.34 for no majority tracts. 
These estimates correspond to a changes in the log-odds of residential solar in these communities 
by -113.8%, 146.0%, 61.6%, and 40.5% respectively, all of which are statistically significant at the 
0.1% level.  

For majority-Black tracts in Model 2, the estimated coefficient for majority-Black tracts is identical 
in magnitude, direction, and statistical significance to that of Model 1.  The coefficient on majority-
Asian, majority-Hispanic and no majority all change direction to -0.28, -0.38, and  
-10, though the estimate for majority-Asian is not statistically significant and the coefficient for 
no majority is significant at the 1% level.   

In Model 3, the coefficient on majority-Black tracts remains negative and statistically significant at 
the 0.1% level, however its magnitude exhibits a relatively large decrease from -0.76 to -0.40, 
suggesting that differences in socioeconomic factors absorb some of the effects of race on the 
log-odds of the presence of residential solar PV installations, for this group.  For the remaining 
groups, however, all of these effects are not statistically significant, diminishing the effect of race 
on the likelihood of residential solar PV installations in a census tract. This also raises a point 
central to the question of measuring systemic disadvantage using these methods: inequities tied 
to race and ethnicity are closely correlated to many of the socioeconomic variables in this analysis. 
This may partially explain the coefficient decrease observed once I control for them in the models.       

Model 4 yields several interesting results, of relevance to this set of regressions as well as the OLS 
regressions discussed in the next subsection.  Controlling for median income, rather than 
educational attainment, results in a 0.9 increase in the estimated coefficient for majority-Black 
tracts (from -0.40 to -0.31), while the majority-Hispanic and no majority coefficients (-0.15 and  
-0.07) exhibit increases in magnitude and changes in their direction.  The coefficients on the latter 
groups are also significant at the 1% and 5% levels, respectively. This suggests that effect of 
median income may not be uniform across different racial and ethnic groups.  Finally, model 5 
results in an increase in the coefficient on majority-Black from -0.31 to -0.29, maintaining 
significance at the 0.1% level.  The estimates for the rest of the groups are not statistically 
significant.   

From the output of each of these models using the DeepSolar dataset, I find evidence of a strong, 
negative correlation between majority-Black census tracts and the log-odds of a tract having at 
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least one solar installation, even when controlling for differences in income, education, home 
ownership, and English proficiency. There also appears to be distinct relationships between 
income and different racial and ethnic groups.  

Project Sunroof 
Next, I replicate the analysis on the Project Sunroof data. For Model 1, the estimated coefficient 
on majority-Black is -0.83, which is larger in magnitude than its DeepSolar counterpart.  Majority-
Asian and no majority tracts are associated with a statistically significant increase in the log-odds 
of having at least one installation (0.47 and 0.06). The estimated coefficient for the majority-
Hispanic classification is not statistically significant.  As highlighted in the descriptive analysis, 
differences in the represented racial composition of both datasets may account for variations 
observed in the outputs for each of them.   
The coefficient for majority-Black tracts increases to -0.74 in  in Model 2, maintaining significance 
at the 0.1% level.  For the majority-Asian, majority-Hispanic, and no majority classifications, the 
sign of the coefficient flips from Model 1 to Model 2, such that the estimates  are -0.56, -0.83, and 
-0.33, respectively; they are all statistically significant.  Model 3 sees the coefficient on majority-
Black increase from -0.74 to -0.30 and remains statistically significant at the 0.1% level.  The 
coefficient for no majority tracts, estimated to be 0.07, decreases in significance to the 5% level.  
For the remaining groups, the estimated coefficients are not statistically significant.  From this, I 
conclude that the inclusion of key socioeconomic variables decreases the previously observed 
negative effect of race and ethnicity on the likelihood of a residential solar installation, indicating 
that the model may be picking up on systemic inequity effects within the control variables.   

Controlling for median income in Model 4 results in large changes in the estimated coefficients 
for majority-Black and majority-Hispanic; with the former, the coefficient decreases to -0.41, while 
the latter changes direction to -0.25.  Both are significant at the 0.1% level.   Finally, the majority-
Black (-0.34) coefficient estimate in Model 5 maintains its significance with the estimate for no 
majority tracts changing direction from -0.01 to 0.08 and gaining significance at the 5% level.   

Analysis of both datasets provides empirical support for the existence of racial disparities in the 
likelihood of there being at least one solar installation in a given tract for majority-Black 
communities, even after controlling for important socio-economic factors.  Across each model 
specification, majority-Black census tracts are associated with large, statistically significant 
decreases in the log-odds of a having at least one solar installation.  On the other hand, these 
data do not provide definitive evidence of that disparity holding for majority-Asian, majority-
Hispanic, and no majority census tracts.   Next, I examine whether there is a correlation between 
race and ethnicity and the total number of residential solar PV installations in a given tract, using 
OLS regression.   
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Ordinary Least Squares (OLS) Regression 

Project Sunroof 
 

DeepSolar 

Figure 6. Estimated OLS Coefficients for Models 3-5, with 95% Confidence Intervals. 
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Tables 7 and 8 display unstandardized and standardized coefficient estimates for the race and 
ethnicity explanatory variables from the OLS regressions, respectively.  Table 8 serves primarily to 
enable comparison of the estimated coefficients across the control variables; because the 
explanatory variables are binary, standardization by z-scoring complicates direct interpretation of 
those results.   Direct interpretation of the coefficients on race and ethnicity should therefore be 
drawn from Table 7. Both tables follow identical variable mixes as those outlined in the preceding 
section, however, in these models, the dependent variable is transformed according to Equation 
1.  Figure 6 visualizes the estimated unstandardized coefficients from Models 3-5.    

DeepSolar 
The results of Model 1 indicate a disparity for majority-Black tracts, with an estimated coefficient 
on majority-Black of -0.62, meaning that majority Black tracts have a 46.2% decrease in residential 
solar installations.  The coefficients for majority-Asian, majority-Hispanic, and no majority tracts 
are all positive at 1.26, 0.49, and 0.43 respectively.  All coefficients are statistically significant at the 
0.1% level, under this model specification.   

I observe a change in direction for these three coefficients in Model 2.  The coefficients on 
majority-Asian, majority-Hispanic and no majority tracts are -0.29, -0.64, and -0.19 respectively 
and maintain the same level of statistical significance.  This suggests that some of the apparent 
positive effects related to those groups may exist due to increased presence of those communities 
in areas with increased average daily solar radiation, more state-level, residential solar incentives, 
and higher average state-level residential electricity prices.  In this specification, the coefficient on 
majority-Black increases to -0.50, but also retains significance at the 0.1% level.   

Introducing socioeconomic control variables has different effects on the estimated coefficients for 
each group, depending on the model specification.  For no majority tracts, the estimates for 
Models 3-5 are consistently significant at the 0.1% level, ranging from 0.08 to 0.13, corresponding 
to an 8.3 – 13.9% increase in installations for tracts with this classification. This provides strong 
evidence of a positive correlation between tracts without a racial or ethnic majority and residential 
solar PV installations.   

The results of Model 3 show a sizeable decrease in the coefficient on majority-Black, from -0.50 
to -0.09; conditioning on the variables in column 4 in Table 5 (notably, educational attainment).  
The coefficients on majority-Asian and majority-Hispanic are no longer significant, suggesting 
that demographic characteristics across all three groups contribute to the initial observed racial 
disparities associated with the estimates in Model 2.  

Conditioning on median income in Model 4 results in diminished  statistical significance for the 
majority-Black variable.  This also holds true in Model 5, and in additional models that use the 
“percent of population living in owner-occupied units” variable in lieu of the “percent of detached, 
single-family homes” variable, in a given tract (see Appendix). For majority-Hispanic communities, 
I observe the opposite effect;  the coefficient on ethnicity is only statistically significant at the 0.1% 
level in Model 4 once I control for income.  In Model 5, when educational attainment is 
reintroduced, the coefficient on majority-Hispanic decreases in significance to the 5% level.   
Estimated coefficients for all other groups are no longer statistically significant, except for no 
majority tracts.   
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Project Sunroof 
In Model 1, the coefficient on majority-Black is -0.76 and statistically significant at the 0.1% level; 
this corresponds to a -53.2% decrease in the log-odds of the presence of at least one residential 
solar PV installation.  Majority-Asian and no majority tracts have estimated coefficients of 0.73 
and 0.10, corresponding with increases of 107.5% and 10.5% respectively, both of which are 
significant at the 0.1% level. The estimated coefficient on majority-Hispanic tracts in -0.04  
(-4.1%), with a 5% significance level. 

Controlling for market/environmental factors in Model 2, yields a decrease in the coefficient on 
majority-Black to -0.55 (or a -42.3% decrease in the number of installations).  Similarly, every 
estimated coefficient for the remaining racial and ethnic groups are both negative and statistically 
significant at the 0.1% level.  Like the aforementioned regressions, this indicates that after 
controlling for variables that address solar potential and policy environments favorable to 
residential solar adoption, race and ethnicity may have a negative correlation with the total 
number of installations in a community.      

The outputs from Models 3-5 follow a similar trend observed in the prior regression models, 
however Project Sunroof differs from DeepSolar in one key way: there is a consistent, statistically 
significant negative correlation between tracts classified as majority-Black and the total number 
of residential solar installations.  Under these three fully specified models, the range of percentage 
change in residential solar installations for the effect of race/ethnicity is -13.1% to -10.4% for 
majority-Black tracts and -30.9% to -22.9% for majority-Hispanic tracts.   

The introduction of socioeconomic variables in Model 3, leads to an increase in the coefficient on 
majority-Black from -0.55 to -0.12.  In this specification, the coefficient on majority-Asian loses 
significance, while the coefficients on both majority-Hispanic and no majority tracts are significant 
at the  0.1% and 5% levels, respectively. Controlling for income, rather than educational 
attainment, in Model 4 leads to an decrease in the estimated coefficients on both the majority-
Black and majority-Hispanic regressors, indicating the effect of race and ethnicity is more negative 
than in Model 3.   When controlling for both income and education, the negative coefficients on 
majority-Black and majority-Hispanic remain statistically significant at the 0.1% level.  For 
majority-Asian tracts, the effect is not statistically significant after factoring in those variables.   

Results from both sets of OLS models suggest that there is evidence that race and ethnicity are 
negatively correlated with under many of the model specifications, but the effect of income 
changes according to different group classifications.  Further discussion of these findings follows 
in the next section.   

 

 

 



 24 

 
 

Table 6. Logistic Regression Results for Explanatory Variables. 

 

Dependent Variable: logit(Residential Solar Installations) 
 Maximum Likelihood Estimation (MLE) 

(1) (2) (3) (4) (5) 
Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Majority Black -0.76*** 

(0.03) 
-0.83*** 

(0.03) 
-0.76*** 

(0.03) 
-0.74*** 

(0.03) 
-0.40*** 

(0.03) 
-0.30*** 

(0.04) 
-0.31*** 

(0.03) 
-0.41*** 

(0.04) 
-0.29*** 

(0.03) 
-0.34*** 

(0.04) 

Majority Asian 0.90*** 

(0.13) 
0.47*** 

(0.11) 
-0.28 
(0.14) 

-0.56*** 

(0.11) 
-0.09 
(0.16) 

-0.02 
(0.13) 

-0.10 
(0.16) 

-0.001 
(0.13) 

-0.10 
(0.16) 

0.01 
(0.13) 

Majority Hispanic 0.48*** 

(0.03) 
0.01 

(0.03) 
-0.38*** 

(0.04) 
-0.83*** 

(0.04) 
0.10 

(0.05) 
-0.08 
(0.05) 

-0.15** 

(0.05) 
-0.25*** 

(0.05) 
0.09 

(0.05) 
-0.05 
(0.05) 

No Majority 0.34*** 

(0.03) 
0.06* 

(0.03) 
-0.10** 

(0.03) 
-0.33*** 

(0.03) 
0.003 
(0.04) 

0.07* 

(0.04) 
-0.07* 

(0.04) 
-0.01 
(0.04) 

0.0001 
(0.04) 

0.08* 

(0.04) 
Observations 71,940 51,646 66,357 47,853 66,166 47,715 66,019 47,608 66,019 47,608 

Log Likelihood -39,755.20 -32,252.91 -34,112.90 -27,275.16 -32,192.15 -26,470.71 -32,378.28 -26,583.64 -31,971.45 -26,390.22 

Akaike Inf. Crit. 79,522.40 64,517.83  68,243.81 
 

54,568.31 64,410.29 52,967.42 64,782.56 53,193.27 63,970.90 52,808.45 

* p < 0.05;  ** p < 0.01;  *** p < 0.001 
 

Table 7. Unstandardized OLS Regression Results for Explanatory Variables.   

* p < 0.05;  ** p < 0.01;  *** p < 0.001

 

Dependent Variable: Ln(Residential Solar Installations + 1) 
Ordinary Least Squares Estimation (OLS) 

(1) (2) (3) (4) (5) 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Majority Black -0.62*** 

(0.02) 
-0.76*** 

(0.02) 
-0.50*** 

(0.02) 
-0.55*** 

(0.02) 
-0.09*** 

(0.02) 
-0.12*** 

(0.02) 
0.02 

(0.02) 
-0.14*** 

(0.02) 
0.02 

(0.02) 
-0.11*** 

(0.02) 

Majority Asian 1.26*** 

(0.06) 
0.73*** 

(0.06) 
-0.29*** 

(0.05) 
-0.45*** 

(0.05) 
0.05 

(0.05) 
-0.03 
(0.05) 

0.02 
(0.05) 

-0.03 
(0.05) 

0.01 
(0.05) 

-0.03 
(0.05) 

Majority Hispanic 0.49*** 

(0.02) 
-0.04* 

(0.02) 
-0.64*** 

(0.02) 
-0.98*** 

(0.02) 
-0.03 
(0.02) 

-0.26*** 

(0.02) 
-0.13*** 

(0.02) 
-0.37*** 

(0.02) 
-0.05* 

(0.02) 
-0.26*** 

(0.02) 

No Majority 0.43*** 

(0.02) 
0.10*** 

(0.02) 
-0.19*** 

(0.01) 
-0.37*** 

(0.01) 
0.13*** 

(0.01) 
0.04* 

(0.02) 
0.08*** 

(0.01) 
-0.01 
(0.02) 

0.11*** 

(0.01) 
0.04* 

(0.02) 
Observations 71,940 51,646 66,357 47,853 66,166 47,715 66,019 47,608 66,019 47,608 
Adjusted R2 0.07 0.06 0.43 0.40 0.50 0.47 0.50 0.46 0.51 0.47 
F-Statistic 1,029.12*** 617.44***  6,182.15*** 4,030.16*** 5,477.46** 3,528.95*** 5,605.54*** 3,443.85*** 5,250.07*** 3,257.69*** 
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Table 8. Standardized OLS Regression Results, including control variables. NOTE:  Standardizing coefficients for these binary variables is primarily to compare effect sizes, not for 
direct interpretation.  Coefficients presented in units of standard deviation.  

* p < 0.05;  ** p < 0.01;  *** p < 0.00

 Dependent Variable: Ln(Residential Solar Installations + 1) 
Ordinary Least Squares (OLS) 

(1) (2) (3) (4) (5) 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Deep 
Solar 

Project 
Sunroof 

Majority Black -0.12*** 

(0.02) 
-0.16*** 

(0.02) 
-0.09*** 

(0.02) 
-0.12*** 

(0.02) 
-0.02*** 

(0.02) 
-0.03*** 

(0.02) 
0.003 
(0.02) 

-0.03*** 

(0.02) 
0.004 
(0.02) 

-0.02*** 

(0.02) 
Majority Asian 0.07*** 

(0.06) 
0.05*** 

(0.06) 
-0.02*** 

(0.05) 
-0.03*** 

(0.05) 
0.003 
(0.05) 

-0.002 
(0.05) 

0.001 
(0.05) 

-0.002 
(0.05) 

0.001 
(0.05) 

-0.002 
(0.05) 

Majority Hispanic 0.10*** 

(0.02) 
-0.01* 

(0.02) 
-0.13*** 

(0.02) 
-0.22*** 

(0.02) 
-0.01 
(0.02) 

-0.06*** 

(0.02) 
-0.03*** 

(0.02) 
-0.08*** 

(0.02) 
-0.01* 

(0.02) 
-0.06*** 

(0.02) 
No Majority 0.09*** 

(0.02) 
0.03*** 

(0.02) 
-0.04*** 

(0.01) 
-0.09*** 

(0.01) 
0.03*** 

(0.01) 
0.01* 

(0.02) 
0.02*** 

(0.01) 
-0.003 
(0.02) 

0.02*** 

(0.01) 
0.01* 

(0.02) 
Total Number of 
Housing Units 

0.16*** 
(0.01) 

0.14*** 
(0.01) 

0.17*** 
(0.01) 

0.14*** 
(0.01) 

0.18*** 
(0.01) 

0.15*** 
(0.01) 

0.18*** 
(0.01) 

0.15*** 
(0.01) 

0.18*** 
(0.01) 

0.15*** 
(0.01) 

Average Daily 
Solar Radiation - - 0.48*** 

(0.01) 
0.51*** 
(0.01) 

0.46*** 
(0.01) 

0.47*** 
(0.01) 

0.46*** 
(0.01) 

0.47*** 
(0.01) 

0.46*** 
(0.01) 

0.47*** 
(0.01) 

Average 
Residential 
Electricity Price 

- - 0.06*** 
(0.002) 

-0.06*** 
(0.003) 

0.07*** 
(0.002) 

-0.05*** 
(0.003) 

0.06*** 
(0.002) 

-0.06*** 
(0.003) 

0.06*** 
(0.002) 

-0.05*** 
(0.003) 

Total State-Level 
Incentives - - 0.35*** 

(0.001) 
0.36*** 
(0.002) 

0.35*** 
(0.001) 

0.39*** 
(0.002) 

0.32*** 
(0.001) 

0.38*** 
(0.002) 

0.33*** 
(0.001) 

0.38*** 
(0.002) 

Median Age 
- - - - -0.05*** 

(0.001) 
0.04*** 
(0.001) 

-0.06*** 
(0.001) 

0.03*** 
(0.001) 

-0.06*** 
(0.001) 

0.03*** 
(0.001) 

% with a 
Bachelor’s or 
Higher 

- - - - 0.19*** 
(0.02) 

0.14*** 
(0.03) - - 0.10*** 

(0.04) 
0.13*** 
(0.04) 

Median Income - - - - - - 0.23*** 
(0.01) 

0.12*** 
(0.01) 

0.15*** 
(0.02) 

0.01* 
(0.02) 

% of Detached, 
Single-Family  
Homes 

- - - - 0.21*** 
(0.02) 

0.21*** 
(0.02) 

0.11*** 
(0.02) 

0.16*** 
(0.02) 

0.15*** 
(0.02) 

0.21*** 
(0.02) 

% of LEP 
Population - - - - -0.05*** 

(0.08) 
-0.07*** 
(0.08) 

-0.05*** 
(0.08) 

-0.08*** 
(0.08) 

-0.04*** 
(0.08) 

-0.07*** 
(0.08) 

Observations 71,940 51,646 66,357 47,853 66,166 47,715 66,019 47,608 66,019 47,608 
Adjusted R2 0.07 0.06 0.43 0.40 0.50 0.47 0.50 0.46 0.51 0.47 
F-Statistic 1,029.12*** 617.44*** 6,182.15*** 4,030.16*** 5,477.46** 3,528.95*** 5,605.54*** 3,443.85*** 5,250.07*** 3,257.69*** 
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Discussion 
Key Findings  
Overall, the findings demonstrate strong evidence that majority-Black census tracts are associated 
with decreased probability of having any solar installations at all (in 2015) and fewer installations, 
in most of the specified models.  Researchers have grappled with the often confounding 
interaction between income and race in prior work; several hypotheses have been set forth as 
explanations, ranging from inequities in the solar workforce (Sunter, Castellanos, and Kammen 
2019) to the efficacy of installers across communities (Darghouth et al. 2022). I observe a similar 
phenomenon in my data.  I hypothesize that this counterintuitive finding can be attributed to the 
systemic disadvantage observed in the control variables for majority-Black tracts in the analysis.  
For example, majority-Black tracts have an average value  of 16.3% for the percent of population 
with a bachelor’s degree or higher, an average value of 45.6% for the percent of the population 
living in owner-occupied units, and an average median income of $34,537 For majority-Hispanic 
tracts, those values are 13.4%, 46.3%, and $41,369, respectively; these trends may help explain 
why the coefficient estimates shift for both groups in Models 3-5.  Both can be considered relative 
to the national averages of 28.6%, 62.7% and $57,752 for those variables.   
Table 9. Comparison of Tracts and Installations in Tracts Below the Federal Poverty Line for a Family of Four in 2015 
($24,250) by Race/Ethnicity.   

 
Percent of Tracts 

Below the FPL  
(2015) 

Percent of Installations in 
Tracts Below the FPL 

(2015) 
Majority-Asian 3.1% 0.1% 

Majority-Black 29.6% 13.0% 
Majority-Hispanic 9.0% 2.2% 
Majority-White 1.9% 0.3% 
No Majority 6.6% 0.7% 

All Tracts in DeepSolar 5.4% 0.9% 

 

This follows for observed patterns in residential solar installations. Table 9 highlights the 
proportion of tracts and installations with median incomes below the poverty line for a family of 
four in 2015 ($24,250).  Not only do majority-Black tracts have a significantly larger proportion of 
tracts below that threshold, the percentage of installations in tracts below is also the highest of 
any group in the analysis. The combination of systemic disadvantage for majority-Black 
communities detected in the control variables and the solar installation outliers overlapping with 
tracts at lower income, educational attainment, and homeownership rate ranges. Controlling for 
these socioeconomic variables—particularly median income—in the regression models might 
explain the decrease in statistical significance for the coefficient on majority-Black in Models 4 
and 5.  The statistical significance is therefore not indicative of a lack of the effect of race and 
ethnicity on solar installations; rather, the model is picking up on the fact that these communities 
have comparatively worse outcomes across the control variables.  Improving racial equity 
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outcomes in solar deployment for this group should therefore be addressed under the backdrop 
of structural racism and discrimination underpinning these group dynamics. 

Placing the logistic regression results into the broader literature on residential solar PV technology 
diffusion yields several insights.  Prior work to model the diffusion of residential solar installations 
within communities has found that the diffusion exhibits positive spatial autocorrelation, meaning 
that areas in closer proximity tend to have similar outcomes (Graziano and Gillingham 2015; 
Richter 2013; Mundaca and Samahita 2020; Rode and Weber 2016; Bollinger and Gillingham 
2012).   Similarly, earlier research has found that certain areas are slower to “seed” (e.g. have an 
initial instance of solar adoption) and tend to saturate more quickly (Holt and Sunter 2021; 
Castellanos, Sunter, and Kammen 2021; Wang et al. 2022).  My results indicate that there may be 
significant barriers to “seeding” in majority-Black census tracts, even after controlling for many of 
the barriers set forth earlier (e.g. income, access to subsidies, etc.). These barriers potentially arise 
as a result of systemic inequities beyond the socio-demographic controls included in the 
regressions.  Such inequities could be the result of lack of access to capital or low-cost financing 
for solar installations,  higher proportions of “underbanked” individuals within particular racial or 
ethnic groups, or potentially discriminatory practices on the part of installers, leading to exclusion 
of certain populations from the solar market altogether.    

While the significance of the effects of race and ethnicity diminish as more demographic variables 
are included in the models, the variable on limited English proficiency (LEP) proportion of the 
population stays consistently negative and statistically significant.  This suggests that fraction of 
limited English speakers, may have a greater influence on solar installation outcomes than race or 
ethnicity alone, even when taking educational attainment and median income into account.  This 
is particularly important for Asian and Hispanic populations, which exhibit higher proportions of 
LEP populations (Zong 2016). This raises questions about marketing efforts of installers, as it 
relates to limited-English proficient markets.  Further research on the motivations of individual 
installer behaviors, including determining which market segments to engage with, could provide 
insight into potential sources of systemic inequities in installation patterns in addition to 
identifying opportunities to engage with LEP populations, with the goal of increasing their 
participation in the market for solar PVs (Sinitskaya et al. 2020).    

Finally, despite the findings providing partial evidence that race and ethnicity are negatively 
correlated with residential solar installations, that the comparative effect is smaller when evaluated 
against other variables in the specified models.  Reviewing the standardized coefficient estimates 
for the OLS models in Table 8 gives us a sense of the relative effect size of each regressor included 
in this analysis.  In line with prior work across disciplines, my results indicate that the number of 
housing units, average solar radiation, and subsidies for residential solar PV uptake have the 
largest relative correlations to the total number of installations (Yu et al. 2018; Kwan 2012; 
Mundaca and Samahita 2020; Wang et al. 2022).  Therefore while I observe correlations between 
race, ethnicity, and residential solar installations, the largest determinants in terms of their effect 
sizes, relate to market and environmental characteristics.     
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The Spatial Politics of Residential Solar PV Adoption 
The descriptive analysis outlined in preceding section helps to facilitate the selection of case 
studies centered around the adoption of residential solar PV in areas the statistical models might 
categorized as “disadvantaged”.  These areas correspond to census tracts with higher solar 
adoption than expected given the regression results.  The goals of these cases are 1) to identify 
areas that “overperform” under the models specified, 2) to place the results into a real-word 
context, and 3) to discuss high-level policy recommendations considerations for current and 
future interventions in this area. 

Recall Table 4, which lists the top five counties in terms of the total number of installations for 
each racial and ethnic majority group. Notably, installations in majority-Black tracts are clustered 
around the Southeastern and Mid-Atlantic regions.  This might be partially attributed to legacies 
of racial and ethnic discrimination and its effects on settlement patterns of different racial/ethnic 
groups in the U.S (Frazier, Margai, and Tettey-Fio 2003).  I select Orleans Parish, LA (or New 
Orleans) as a case study, as it represents an “outlier” majority-Black community with higher-than 
expected solar installation, while also having lower educational attainment and median income. 
Generally speaking, majority-Black census tracts in this area have high residual values from the 
outputs of Model 5 in both the logit and OLS regressions, indicating overperformance. 

Case Study 
On the surface, New Orleans appears to be an unlikely region for high solar penetration, due to 
its demographic profile and more conservative political climate at the state-level.  While my 
analysis identifies New Orleans as an outlier in terms of the number of residential solar 
installations it has, the city has been informally recognized as such prior to this work (Environment 
America 2017; Hanley 2017). Several aspects of the trajectory of New Orleans’ solar industry 
warrant further examination, given the context of the results.  I explore two elements for the 
purpose of this analysis—1) the broader backdrop of Hurricane Katrina and the area’s rebuilding 
efforts in the decade following that disaster and 2) incentives for residential solar provided by the 
State of Louisiana.   

To this day, Hurricane Katrina, which landed in New Orleans in August of 2005, remains one of 
the costliest and most fatal storms in United States history (National Weather Service 2022).  In its 
wake, local government officials, the State of Louisiana, and the federal government worked in 
tandem to disburse tens of billions of dollars in public funding to aid in relief and long-term 
recovery efforts (Richardson 2021).  These efforts included significant investments in energy 
efficiency, renewable energy technologies, and the electric grid in an attempt to build local 
regional resilience against future disasters (Department of Energy 2011).  The combination of 
significant direct financial assistance via relief funding and an overhaul of the regulatory barriers 
to adoption placed New Orleans at the center of what would be a defining era for the 
development of its burgeoning solar industry.   

These actions overlapped with parallel, state-level efforts to enact historic incentives in 2007, 
resulting in the state’s adoption of net-metering and disbursing what would still be some of the 
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most generous tax subsidies for solar adoption, nationally.  The now-expired tax credit included 
funding for household installations, up to the lesser of $25,000 or 50% of the total installation.  
Combined with the federal tax credit of 30%, residents of Louisiana could have up to 80% of total 
installation costs subsidized via tax credits.  This led to great success in deploying solar within the 
state (Upton 2019).  From 2008 to 2019, installed capacity increased from roughly 0 to over 140 
MW (Upton 2019).  Despite their apparent success, these incentives were short-lived; as of 2017, 
the incentives were discontinued due in part to oversubscription and lack of long-term funding 
to sustain them (Upton 2019). The combination of an influx of federal disaster recovery funding, 
coupled with the passing of unusually generous solar subsidies at the state level might explain 
how the region became an outlier in the datasets included in my analysis.  

From this preliminary assessment, future researchers can leverage national-level model outputs 
to identify relative over- and underperformers at the local level.  As demonstrated above, this may 
serve as a starting point for digging into more substantive questions of policy and incentive 
structure for equitable residential solar PV adoption at the local level.  While this study has several 
limitations, there is ample opportunity for future work to build on these findings.   

Limitations + Future Research 
Study Limitations 
There are several limitations of this study with implications for future work in this area.  First, due 
to limitations in the DeepSolar and Project Sunroof datasets, the analysis relies on data 
aggregated at the census tract level, rather than household-level data.  This limits the extent to 
which I can infer causality between race and residential solar PV deployment. Consequently, the 
observational nature of the research design requires that the findings from the statistical outputs 
should be interpreted as correlational, rather than causal.  Because of this limitation, I cannot 
identify race and ethnicity alone as the direct causal mechanism driving the disparities observed 
in the data.    

Furthermore, aggregation at the census tract level may obscure intracommunity dynamics that.  
For example, in higher cost urban areas, there could in theory be increased solar deployment in 
neighborhoods with higher minority populations and lower median incomes, on average, as a 
result of gentrification pressures.   In these scenarios, higher income households with greater 
educational attainment may be driving solar adoption in census tracts that would otherwise be 
classified as less likely to have any solar installations.  Aggregating to larger geographies may 
therefore introduce potential biases in the coefficient estimates, leading to higher observed 
installations in tracts where models predict lower levels of solar penetration.  Future research could 
therefore benefit from data at a higher spatial resolution, to mitigate against any potential 
obscuring of household-level dynamics.   

Next, both the DeepSolar and Project Sunroof are subject to limitations in their geographic 
representation.  As previously mentioned, the DeepSolar dataset contains installation data on the 
contiguous United States, so the models specified on that dataset do not include solar or 
demographic data for Alaska, Hawaii, or U.S. territories, all of which have higher minority 
populations than the national average. On the other hand, the Project Sunroof dataset excludes 
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large swaths of the country’s rural population, resulting in a sample that is less representative of 
the nation.  I also hypothesize this as one potential reason for some of the differences observed 
in the model outputs across the DeepSolar and Project Sunroof datasets. Because Project Sunroof 
excludes a number of rural, majority-white census tracts with lower incomes and educational 
attainment, disparities across race and ethnicity may be more exaggerated in their absence.  
Regardless, both datasets do exclude portions of the population that may result in biased 
coefficient estimates.   

Another limitation is found in the static nature of this analysis.  As mentioned, the datasets were 
compiled in 2016.  With annual residential solar PV installations reaching levels that exceed several 
hundreds of thousands in the years following 2016, the number of residential solar PV installations 
has increased rapidly since then (Galen Barbose et al. 2022).  Constraining this study to one time 
period obscures temporal dynamics.   

This research also focuses narrowly on a subset of solar technology diffusion—solar panel 
installations residential structures.  Recent policy trends centering on equity in solar PV adoption 
have emerged with a particular focus on incentivizing participation in leasing and community solar 
programs (Chan et al. 2017).  In this analysis, it is difficult to distinguish between the financing 
mechanisms that are tied to specific installations in the data.  Consequently community solar 
programs and are not explicitly considered as they are not delineated the DeepSolar and Project 
Sunroof datasets. These programs have shown promise as a means of diversifying the end users 
of solar power, and therefore warrant more rigorous evaluation on their performance through the 
lens of racial equity.    

Next Steps 
In terms of building on the data and methodologies used in this project, there are several possible 
pathways forward to improve upon them.  First, the research group at Stanford University that 
published the DeepSolar dataset is set to release a new spatiotemporal dataset later in 2023, 
which would allow for analysis of annual installations spanning the years 2005 to 2021. As of 
writing, the full dataset has not yet been published.  Replicating this analysis on this larger, panel 
dataset could yield more nuanced results, regarding how solar PV technologies have spread across 
both time and space.  This would enable the assessment of several preliminary hypotheses offered 
in this work.  For example, researchers could leverage this dataset to assess the rate at which 
residential solar PV installations increased before and after Hurricane Katrina, taking into 
considerations data on federal, state, and local spending on renewable energy upgrades as part 
of longer-term rebuilding efforts.   

Next, to address the issues arising due to the resolution of the data (e.g. census tract as opposed 
to household-level data), future work could leverage datasets with higher spatial resolutions.  In 
other contexts, IRS data, when available, has been previously leveraged to provide empirical 
evidence of disparities in earnings, among different groups over longer lengths of time (Chetty et 
al. 2014).  Accessing more granular data on household dynamics would enable researchers to 
move beyond quasi-experimental and correlational studies (such as this one) into causal inference.  
This is particularly relevant, as the recently passed Inflation Reduction Act (IRA) includes several 
tax provisions related to solar PV deployment (Barbanell 2022).  Applying econometric methods 
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to the study of solar deployment using “big data” sources, could yield additional insight into how 
adoption patterns have changed over time, as incomes and migration patterns change.   

Finally, drawing on the descriptive analysis, future work could critically evaluate elements of 
existing program design that have led to more or less equitable outcomes, from both quantitative 
and qualitative perspectives.  The brief case study of New Orleans provides a starting point for 
prioritizing jurisdictions for a more rigorous assessment of the aspects of residential solar PV 
incentive design and implementation that have led to increased better outcomes in more 
disadvantaged communities.  This research underscore the need to consider residential solar 
deployment as part of a broader discussion of energy justice, and perhaps more importantly issues 
of historic and systematic discrimination that led to the outcomes observed in this research.    
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Conclusion 
From this research, I quantify an observed systematic disadvantage for majority-Black 
communities in the likelihood and extent of solar installations, nationwide.  While the logistic 
regression results provide robust evidence of that trend, the OLS regressions underscore the 
difficulties faced when attempting to quantify effects of race and ethnicity, both in general and 
for this particular group, due to the associations between race, ethnicity, and socioeconomic 
disparities.  Placed within the broader context of the clean energy transition in the United States, 
several themes emerge: 1) residential solar PV adoption has not been equitable among racial and 
ethnic minority groups, particularly for majority-Black communities, 2) the geographic distribution 
of residential solar PV installations is not uniform across racial and ethnic groups, with some 
groups outperforming majority-White and no majority communities, and 3) solar PV diffusion may 
be constrained for some groups as a result of systemic inequities, as measured by the 
socioeconomic variables used in this research.   

As a result, climate and clean energy policy efforts cannot be considered separate from the 
broader socioeconomic contexts into which they are introduced.  The results underscore this 
notion by demonstrating how the diffusion of clean energy technologies is not inherently 
equitable, despite the drastic cost declines for residential solar PVs.  They also provide a framework 
through which clean energy technology adoption and diffusion can be considered through the 
lens of racial equity.  Failing to address underlying systemic disadvantage within and between 
groups poses a critical challenge to equitably addressing climate change in the United States.  
Further research should be undertaken to uncover causal mechanisms driving the disparities for 
majority-Black and majority-Hispanic communities observed in the results.  Likewise, policy 
efforts, from the energy and climate field and beyond, will need to incorporate measures to correct 
for identified sources of disparities and ensure that clean technology deployment explicitly 
considers these disparities moving forward.  The example of residential solar PV technologies 
provide a useful case for meaningfully assessing deployment disparities across groups, helping to 
embed racial equity into a just clean energy transition in the coming decades. 
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Appendix 

All data and code used to undertake this analysis can be found at this link.  This section includes 
the full model specifications and output for each dataset, correlation matrices for the variables 
in each model, and graphics for the Project Sunroof Data not included in the main work.  

Correlation Matrices 
DeepSolar 

https://github.com/joykjackson/solar_disparities
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Project Sunroof 
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Variance Inflation Factor Results 
Calculating a Variance Inflation Factor (VIF) is one method of measuring multicollinearity in 
regression models.  As part of my model selection process, I calculated VIFs for each independent 
variable in the dataset.  Because of the results below, models were specified to minimize the 
effects of multicollinearity; this involved running different sets of regressions for the percent of 
the population in owner-occupied units vs the percent of detached, single-family units at the tract 
level, as well as alternating between the median income and educational attainment variables.   
These variables were selected to their relatively high VIF values (bolded below).  All regression 
tables are at the end of this Appendix.   

DeepSolar 

Variable VIF Variable VIF Variable VIF 

n_units                1.072258                 daily_solar_radiation    1.239860                 med_income                  4.063987                 

black_maj                1.217422                 res_electricity_price 2.691193                 pct_own  4.130169  

asian_maj             1.131770                 tot_state_res_incentive  2.823214  pct_sfh                  2.730783                 

hispanic_maj 2.254223  med_age  1.714393                 pct_lep  2.309355 

no_maj    1.342333                 pct_educ               3.164690                   

    

Project Sunroof 

Variable VIF Variable VIF Variable VIF 

n_units                1.088379                          daily_solar_radiation    1.264686                 med_income                  4.285642                 

black_maj                1.304304                 res_electricity_price 2.925605                 pct_own  4.572537  
asian_maj             1.147400                 tot_state_res_incentive  3.060610  pct_sfh                  3.036088                 

hispanic_maj 2.317602  med_age  1.724006                 pct_lep  2.253375 

no_maj    1.366696                 pct_educ               3.253101                   
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Descriptive Graphics and Tables for Project Sunroof Data 
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Table 10.  Summary Statistics for Project Sunroof Installations, by Race/Ethnic Majority Classification. 

 

*NOTE: the total number of installations is slightly less than what is listed in the Data and Methods Section, as the numbers in this 
table reflect the total installations for which I was able to calculate racial/ethnic majority classification variables.   

 
Table 11. T-test Results for DeepSolar and Project Sunroof (Compared to ACS National Averages). 

 DeepSolar Project Sunroof 

 t-statistic p-value t-statistic p-value 
% White 1.0789 0.2806 -34.058 < 2.2e-16 

% Black 0.64902 0.5163 17.131 < 2.2e-16 

% Asian -3.1186 0.001817 22.117 < 2.2e-16 

% Hispanic 0.46084 0.6449 21.564 < 2.2e-16 
% LEP -0.060812 0.9515 22.946 < 2.2e-16 

Avg Median Income -0.63407 0.526 13.98 < 2.2e-16 

Avg Median Age 0.09494 0.9244 -22.309 < 2.2e-16 

% with At Least a  
Bachelor’s Degree -0.087516 0.9303 26.005 < 2.2e-16 

 Total 
Sunroof 

Installations 

Total 
Sunroof 
Tracts 

Sunroof Tracts 
with 0 

Installations 

Sunroof Tracts 
with >0 

Installations 

Mean 
Sunroof 

Installations 

Majority-Asian 13,418   509  119 390  26.4  

Majority-Black  13,937  5,303  2,838  2,465 2.6  

Majority-Hispanic  47,501  5,820 1,905   3,915  8.2 
Majority-White  463,494 32,520    10,269  22,251  14.3 

No Majority  112,011  7,494  2,327  5,167  14.9 

Total  650,361 51,646   17,458  34,188 12.5  



 43 

Model Outputs 
NOTE: To derive percentage changes from the estimated coefficients, the coefficients should be 
exponentiated (e.g. (exp(coefficient * X) – 1) * 100) = percentage change).  

DeepSolar – Logit – Single-Family Home 
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Sunroof – Logit – Single-Family Home 
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DeepSolar – OLS – Single-Family Home 
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Sunroof – OLS – Single-Family Home 
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DeepSolar – Logit – Homeowner 
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Sunroof – Logit – Homeowner 
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DeepSolar – OLS – Homeowner 
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Sunroof – OLS – Homeowner 
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DeepSolar – OLS – Single-Family Home – IHS Transform
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Sunroof – OLS – Single-Family Home – IHS Transform

 
 



 53 

DeepSolar – OLS – Homeowner – IHS Transform
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Sunroof – OLS – Homeowner – IHS Transform 



 55 

 


	Introduction
	Barriers to Residential Solar PV Adoption
	Equity and Solar PV Adoption

	Data and Methods
	Data Sources
	Data Compilation
	Model Specification
	Dependent Variable Transformation
	Handling Multicollinearity
	Model Selection


	Results
	Descriptive Analysis
	Summary Statistics
	Geographies of Race, Ethnicity, and Residential Solar PV

	Statistical Analysis
	Overview of Regression Models
	Logistic Regression
	Ordinary Least Squares (OLS) Regression


	Discussion
	Key Findings
	The Spatial Politics of Residential Solar PV Adoption
	Case Study

	Limitations + Future Research
	Study Limitations
	Next Steps


	Conclusion
	References
	Appendix

