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Abstract

Modeling and analysis of turbulent fluid flows remains one of the challenging areas
of fluid mechanics where integration of the full equations is associated with extreme
computational cost, while their simplification inevitably introduces important model
errors. In this work we are aiming to answer three questions: How can we use the
governing equations and available datasets to formulate physics-constrained data-
driven closures that will provide accurate coarse-grained evolution equations? Can
we formulate the corresponding physics-constrained closures for the quantification of
uncertainty? Can high-order statistics and statistics of extreme events be computed
from data-augmented coarse-scale or reduced-order models? These questions are
motivated by real-world problems, such as multiphase fluid flows as well as climate
modeling.

To address these questions we adopt a statistical formulation of the governing
equations and employ machine-learning ideas to formulate, physics informed, non-
local in space and time closure schemes for turbulent, possibly multi-phase, fluid flows
found in engineering and geophysical settings. The generic form of the systems we
study includes a linear operator, external forcing and a bi-linear, energy-preserving
operator. We use the predictions of neural networks to integrate over a coarse grid
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the evolution of turbulent anisotropic fluid flows on which bubbles that act as passive
inertial tracers are being transported.

To answer the first question we develop closures for the mean flow field that
we complement with physical constraints, which follow from the energy-preserving
character of the bi-linear operator. Next, we proceed with the second question by
formulating the second-order moment equations for which we also derive data-driven
closures that we complement with appropriate physical constraints. We utilize re-
current and convolutional layers to capture both temporal and spatially non-local
effects. The addition of the physical constraints not only improves the performance
of the resulted closures but also stabilizes the coarse-grained equations in cases that
are otherwise unstable. The approach is tested both for closing the mean equa-
tion and the covariance evolution equation in a second-order statistical framework.
The closure schemes for turbulent fluid flows are complemented with a method that
aims to predict high-order moments of bubble cluster deformation from second-order
statistics. This is achieved with the introduction of a hybrid quadrature method of
moments appropriate for finite-dimensional dynamical systems. We demonstrate the
resulted closures and assess the generalizability properties in different Reynolds and
flow configurations.

To answer the third question we machine learn non-intrusive correction operators
that use as input imperfect, i.e. coarse-scale, climate model outputs that typically
have discrepancies due to low resolution. An important challenge in this case is the
chaotic character of the underlying dynamics which makes the machine learning of the
correction operator an intractable task. To overcome this obstacle we design a new
approach based on nudging, a popular method for data-assimilation in geophysical
modeling, to create consistent training datasets between the input and the output
of the correction operator. We illustrate that the resulted non-intrusive correction
operator is able to improve inaccuracies of the coarse-scale model attractor making it
consistent with the target attractor. This allow us to obtain extreme event statistics
of climate extreme events such as hurricanes and atmospheric rivers, using as input
only inexpensive coarse-scale simulations. To this end, the introduced approach paves
the way for the parsimonious study of climate-change scenarios and the effectiveness
of possible measures or policies.
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Chapter 1

Introduction

The earliest version of a neural network (NN) dates back to 1958 and the ground-

breaking work of psychologist Frank Rosenblatt [139]. In his work, Rosenblatt drew

from the concept of Hebbian learning [61] and successfully created a neural network

with image recognition abilities, Perceptron. A year later, Arthur Samuel coins the

term machine learning (ML), motivated by a program of IBM that was trained to

play checkers [4]. This family of computational models drew inspiration from psy-

chology and brain science, which motivated the employed anthropomorphic naming

conventions. It is hard to imagine that the pioneers of that era could have anticipated

the drastic impact of their research in the upcoming decades.

In particular, the introduction of the back-propagating algorithm, [141, 143] al-

lowed these models to fully utilize the contemporary advances in high-performance

computing and storage hardware, thus leading ML and NN to surpass the then state-

of-the-art results for a number of problems around computer vision and language

processing. These successes, together with the easy applicability of these models to

different problems, garnered increasing attention from computer science researchers,
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resulting in the continuing development of ever-more potent algorithms that keep on

shattering the performance records on standardized tests.

In parallel, ML drew the attention of scientists working on complex dynamical

systems, particularly, the prediction and analysis of their temporal evolution. This

connection should arise naturally, as since the 1940’s Kolmogorov coined turbulence

as a possible problem for statistical learning theory. This approach provides an

alternative to the established systematic study of dynamical systems via derivation

of partial differential equations (PDEs) that describe the physics and underlying

dynamics. Under an ML-based framework, data are no longer used only for the

verification of theoretical models, but instead allow scientists to make complicated

decisions directly using information extracted from data. While such an approach

is still contentious among the scientific community, its ability to bypass possible

internal system complexities for which a first principle derivation is cumbersome,

eventually highlighted ML as a complementary alternative (e.g., [161, 92, 25]).

Yet, only after the success of ML in image recognition will this potential link be

further explored. Eventually, in the first application of deep neural networks (DNNs)

to turbulent flows, Milano & Koumoutsakos [114] showcased their ability to predict

turbulence within boundary layers. With the introduction of mini-batch optimization

algorithms [85, 167, 78], scientists were able to develop models that seamlessly handle

the rapid accumulation of data from sources like experiments, measurements and

high-fidelity simulations for incorporating ML in turbulent systems.

Despite the promising results of ML, it cannot be treated as a panacea for dy-

namical modelling. While a lot of ML tools are treated as plug-and-play in much of

the image processing community, this is not the case for dynamical systems. This

intuitive comment was theoretically solidified by David Wolpert who, with his no

free lunch theorem [183], proved that without prior information for the target distri-
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bution, there is no single learning algorithm that is best suited for all possible data

sets. In addition, by their very design, ML algorithms are constructed as black boxes

that provide descriptions. Hence, a purely ML-based modeling, while possessing a

a lot of vastly expressive tools, severely suffers in explaining observed phenomena,

especially in the immense model spaces of turbulent systems. These two drawbacks

naturally restrict the probability of any purely ML-driven model to extrapolate and

generalize to other problems with even the slightest of differences.

Hence, a successful application of ML to dynamical systems requires a problem-

dependent approach that leverages valuable knowledge about the system of interest.

This knowledge ranges from using the underpinning physical laws that govern the

system, appropriate physical constraints that should be respected by the system, to

the employment of particular NN architectures, like the convolution [84] and recur-

rence [142], to correctly fit the properties of the system. These practices increase

accuracy and convergence speed of the model, but above all, improve its general-

izability. This family of ML approaches will be henceforth referred to as physics-

constrained machine learning (PCML).

A review of PCML methods focused on turbulent closures is presented in chap-

ter 2. Each of these PCML methods provide their unique values and can be effective

under the right framework. At the same time, they suffer from particular weaknesses,

from relying on near-perfect physical models, to the formulation of models that do

not scale well, to long-time stability issues. This thesis hopes to provide some in-

sights into PCML turbulent closure schemes and the prediction of the statistics of

turbulent models in general. In the following chapters, we present directions on how

data-driven uncertainty quantification can be achieved in realistic scenarios.
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1.1 Contributions

This thesis explores machine learning strategies designed to incorporate physical

knowlodge in nonlinear dynamical systems, with particular focus on turbulence.

Throughout this work we will continue along with the blended, physics-constrained

ML perspective that aims to extract information from both data observations and

imperfect physical reduced-order models (ROMs). To cope with the intrinsic limita-

tions of working with reduced-order spaces and coarse-scale resolutions, we employ

ML models that implicitly augment the partial state representation with time history

- an idea motivated by the well-celebrated embedding theorems of Whitney [182] and

Takens [168]. We present our studies on important engineering application areas like

anisotropic turbulent jets, climate statistics, as well as bubble dynamics.

1.1.1 Turbulent closure schemes for statistics of anisotropic

flows

A main goal of this work is to formulate energy-preserving and spatio-temporally

non-local turbulent closures which are a priori consistent with the conservation prop-

erties of quadratic nonlinearities. This property is of particular importance in fluid

mechanics through the presence of the advection term. These constraints follow from

the energy-conserving properties of the nonlinear advection operator in Navier-Stokes

and have been utilized previously in the context of uncertainty quantification and

stochastic closure models [147, 150, 102].

We first employ this method to predict the coarse-scale mean state of the sys-

tem. Specifically, we utilize machine learning schemes which represent the effect of

the small scales at each spatial location, using as input the large scale features of
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the flow in a spatial neighborhood of this location. Past values of the large scale

features are also employed as inputs for the turbulent closures in a causal manner.

These data-driven schemes are enforced to be consistent with physical constraints

expressing the energy exchanges between resolved and unresolved scales. In contrast

to previous efforts where the full system equation is used as a constraint, assuming

perfect knowledge of the equation form and/or parameters (e.g. [137]), the formu-

lated constraint in this work expresses a universal property of the advection terms,

i.e. that they do no create or destroy kinetic energy of the flow.

In a similar fashion, we seek to expand the aforementioned approach to allow for

prediction of second-order statistics of turbulent flows as well. Similar to the ap-

proach of traditional modified quasilinear Gaussian closures (MQG), a second-order

statistical framework is employed for this study. This framework allows for a compu-

tationally cheap reduced-order model. Uncertainty is modelled under a parametric

Bayesian point of view. In previous MQG approaches, the nonlinear energy transfers,

that result in non-Gaussian effects, are modelled via a quasi-linear approach, where

the closure is tuned to specific steady-state statistics. The current method replaces

this assumption with spatio-temporally nonlocal neural networks. The scheme once

again respects the energy transfers dictated by the nonlinear term. This is achieved

by using steady-state statistics of flow realizations that are incorporated during the

training process. These physical constraints allow for correct prediction of mode-to-

mode energy transfers during simulations. The utilization of deep neural networks

allow for a richer representation of nonlinear energy transfers and higher accuracy,

not only for the mean but also for the second-order statistics of the flow. Past values

of these features are also employed as inputs for the turbulent closures in a causal

manner.
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1.1.2 Non-intrusive prediction of climate statistics via trans-

fer learning

Apart from data-informed closure terms we explore the ability of non-intrusive neu-

ral networks to correct the statistics of coarse-scale turbulent systems. This thesis

presents a systematic framework for improving the predictions of statistical quanti-

ties for turbulent systems, with a focus on correcting climate simulations obtained by

coarse-scale models. Specifically, failure to incorporate all relevant scales in climate

simulations leads to discrepancies in the energy spectrum as well as higher order

statistics. Accurate but computationally cheap coarse-scale models are essential in

climate simulations, where high-fidelity simulations are prohibitively expensive to

run for multiple scenarios or long simulation time. Especially for climate change

studies, multiple long-time scenarios need to be simulated, thus making accurate

coarse-scale reduced-order models necessary for such applications.

While high resolution simulations or reanalysis data are available, at least for

short periods, they cannot be directly used as training datasets to machine learn

a correction for the coarse-scale climate model outputs, since chaotic divergence,

inherent in the climate dynamics, makes datasets from different resolutions incom-

patible. To overcome this fundamental limitation we employ coarse-resolution model

(here we employ Energy Exascale Earth System Model, E3SM) simulations nudged

towards high quality climate realizations, here in the form of ERA5 reanalysis data.

The nudging term is sufficiently small to not “pollute” the coarse-scale dynamics

over short time scales, but also sufficiently large to keep the coarse-scale simulations

“close” to the ERA5 trajectory over larger time scales. The result is a “compatible"

pair of the ERA5 trajectory (used as output training data) and the weakly nudged

coarse-resolution E3SM output that is used as input training data to machine learn
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a correction operator. We emphasize that the nudging step is used only for the train-

ing phase. Once training is complete, we perform free-running coarse-scale E3SM

simulations without nudging and use those as input to the machine-learned correc-

tion operator to obtain high-quality (corrected) outputs. The model is applied to

atmospheric climate data with the purpose of predicting global and local statistics

of various quantities of a time-period of a decade. Using ERA5 datasets that are

not employed for training, we demonstrate that the produced datasets from the ML-

corrected coarse E3SM model have statistical properties that closely resemble the

reanalysis data.

1.1.3 Closure schemes for high-order moments of bubble clus-

ters

The final contribution of this thesis revolves around predicting high-order moments

of nonlinear dynamical systems via the values of lower-order moments. In partic-

ular, we focus on quadrature-based moment methods (QBMMs) which are used to

invert these moments with a quadrature rule, approximating the required statistics

for bubble clusters. QBMMs have been shown to accurately model sprays and soot

with a relatively compact set of moments. However, significantly non-Gaussian pro-

cesses such as bubble dynamics lead to numerical instabilities when extending their

moment sets accordingly. To circumvent these stability issues, this work employs

neural networks to enhance the predictive abilities of standard 2-by-2-node (4-node)

CHyQMOM, which only requires access to first and second-order moments. This

approach avoids both the numerical instabilities and high computational costs of

evolving higher-order moments. The method follows the recent success of deep neu-

ral networks for improving multiphase flow models [97, 98, 29, 21]. We expand on
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a previous such effort that used neural networks to close strictly-Gaussian moment

transport equations [21]. Here, we instead seek data-informed corrections to a CHyQ-

MOM method [40, 127]. By doing this, one has control over the resulting quadrature

nodes and weights. This makes correcting moment approximations straightforward

and consolidates the two neural networks of [21] to one. This allows for computation

of even out-of-training-set moments, in contrast to data-informed moment methods

that use low-order moments to learn specific high-order ones [67, 69, 68]. Extension

from [21] includes non-uniform and long-time pressure forcings, making the trained

model appropriate for computational fluid dynamics (CFD) solvers.

1.2 Thesis organization

An overview of the thesis organization follows. In chapter 2 we provide an overview

of existing ML methods for nonlinear dynamical systems. In chapter 3, descriptions

and explanations for universal tools used by such methods are included. Some fun-

damental knowledge regarding turbulent systems is also provided. In chapter 4, we

present an energy-preserving spatio-temporally non-local turbulent closure scheme.

This scheme is a priori consistent with the conservation properties of the advection

term in Navier-Stokes equations and is tested on anisotropic turbulent flows. Along

the same line, chapter 5 expands upon the previous work and describes a data-

informed closure scheme for second-order statistics of dynamical systems with an

energy-preserivng quadratic nonlinearity. This model is applied on toy models and

more realistic turbulent flows as well. In chapter 6, a non-intrusive transfer learning

approach for learning the statistics of climate models is described. In chapter 7,

a closure scheme for high-order moment prediction of bubble cluster deformation

is presented. Conclusory remarks are provided in chapter 8, followed by a short
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discussion on possible future work.
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Chapter 2

Background

Abstract

In this chapter, we present the relevant background for the methodologies described
thereafter. Short expositions of relevant literature regarding the machine learning
methods presented in this thesis are provided. First, literature regarding data-
informed turbulent closure schemes is presented. Then, an exposition of uncertainty
quantification schemes for turbulent systems follows. Finally, quadrature methods
of moments techniques are presented.

2.1 Review of related methodologies

2.1.1 Data-informed turbulent closure schemes

Turbulent fluid flows in nature and engineering are characterized by a wide range of

spatial and temporal scales with nonlinear interactions making their reduced order

modeling a challenging task. Over the last decades several ideas have emerged that

successfully model turbulent fluid flows, such as Large Eddy Simulations [116, 144].

However, these methods still require very high resolution in order to satisfactorily

11



model the large scale dynamics, as well as features associated with those. This is an

important computational obstacle especially for applications involving uncertainty

quantification, optimization, and risk analysis where there is a need for a large num-

ber of accurate simulations.

The machine-learning advances of the 1960’s sparked an interest in utilizing neural

networks to develop reduced order models for turbulent flows. The machine-learning

closures abandon the path of a closed-form expression for the closure terms into uti-

lizing experimental or costly high-fidelity computations to train a neural network and

predict the nonlinear energy transfers between resolved and unresolved scales. How-

ever, despite the association of turbulence and statistical learning since the 1940’s,

no concrete results exist from that period regarding turbulence. The lack of results

will lead to the 1973 Lighthill report and its subsequent debate (which is free on

youtube for everyone to watch). In this debate Lighthill attacks the ML community

for making high promises it has failed to accomplish. Lighthill strongly believed

that due to combinatorial increase in the complexity of the state space of physical

problems (as we introduce more degrees of freedom) ML will never be able to be

used outside of toy examples. This will lead to the so called AI winter of the 70’s

and early 80’s.

With the re-introduction of ML via DNNs, interest from the community of dy-

namical systems arose again. For the first time since the Lighthill report, there

was hope that the new ML models were expressive enough for the real-world high-

dimensional application. The first application of deep neural networks to turbulent

flows appears to be the work of Milano & Koumoutsakos [114]. They utilized nonlin-

ear autoencoders to develop a nonlinear embedding for a turbulent flow near a wall.

Their work showcased that they were able to learn the flow just by using information

on the wall only. Their approach can be thought of as a nonlinear version of the
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widely used in turbulence proper orthogonal decomposition (POD) [94],[95], [157].

Their use of neural networks for Principal Components Analysis (PCA) [8] improved

the predictions possible by traditional POD.

Since then there has been a plethora of efforts focusing on machine-learning clo-

sures using different data-driven schemes, such as artificial neural networks in fluid

flows [41, 156, 109, 186] and multiphase flows [97, 98], random forest regressions [184],

spatially nonlocal schemes such as convolutional neural networks [194], stochastic

data-driven representations using generative adversarial networks [163], reinforce-

ment learning [120] and with applications ranging from engineering turbulence to

geophysics and beyond (see [20] for a recent review).

One of the great advantages of machine-learning closures is their capability to

seamlessly model non-locality in time. In this work, a non-local but causal modeling

of the closure terms, implies that for the prediction of the closure terms at a particular

time, only present and past information is used. Indeed, there is no a priori reason to

expect that the closure terms of a complex system will behave in a Markovian manner,

i.e. depend only on the current reduced-order state of the system. On the contrary,

Takens embedding theorem [168] states that if we observe only a limited number of

the state variables of a system, in principle, we can still obtain the attractor of the

full system by using delay embedding of the observed state variables. Therefore, it is

essential to incorporate memory effects when we model closure terms for turbulent

fluid flows. This approach has found success in a number of physical applications

involving bubble motion and multiphase flows [180, 21], as well as the reduced-order

modeling of chaotic dynamical systems [178, 180, 179].

On the other hand, machine-learning schemes allows us to parametrize the closure

terms using a large number of input variables opening the possibility for non-local

models in space (see [194] for an application to the advection of a passive scalar).
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Spatially, non-local models have been advocated for turbulent closures and there

is a plethora of related ideas ranging from scale-dependent closures [133], non-local

Reynolds Stress models [56], and fractional-operators closures [146]. Several ideas

related to functional neural networks or operator neural networks have shown great

promise in this direction [32, 33], and have recently been of great interest in the

context of turbulent closure models [193, 3].

Beyond local closures deep neural networks have also been used successfully in

combination with the underlying governing equations for reconstructing complex

fluid flows and identifying flow parameters. Specifically, physics-informed neural

networks [135] identify the optimal solution (either the flow itself or parameters

associated with it) by minimizing an objective function that contains the Navier-

Stokes equations, as well as scattered data in space and time. Inclusion of the

governing equations significantly improves the behavior of the data-driven scheme,

while the representation of the solution in terms of a neural networks circumvents the

need for a grid or spatial discretization scheme. The method has shown great promise

for reconstructing fluid flows given spatio-temporal measurements [137], as well as

recovering macroscopic quantities such as lift or drag for vortex-induced vibration

problems [136]. Previous efforts along this line include the embedding of symmetries

such as Galilean invariance to the neural net predictions for an anisotropic Reynolds

stress tensor [90, 89].

2.1.2 Uncertainty Quantification of turbulent systems

The defining property of turbulent dynamical systems is the existence of multiple

and persistent sources of instability. While from a physical perspective such sys-

tems are usually viewed as deterministic in nature, uncertainty manifests into their
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study via an abundance of mechanisms. Fundamental model assumptions like model

structure, constitutive laws, geometry, as well as initial and boundary conditions,

may be only approximations of the truth, and as a result carry uncertainty into the

implementation. Furthermore, spatio-temporal discretization errors push the model

predictions away from the underlying mathematical model, allowing only for bounds

between the numerical and analytical solutions. Additionally, other input parameters

of the model may exhibit randomness. This effect can be either an intrinsic property

of that quantity (i.e. aleatoric uncertainty) or stem from an inability to accurately

measure its otherwise deterministic value, due to computational and experimental

limitations. Hence, all these effects need to be accounted for in the study of unstable

complex systems.

Despite the many sources of randomness, uncertainty quantification (UQ) at-

tempts can be separated into the following categories: (i) propagation of stochastic-

ity from input parameters, via the model, to the output values, (ii) parametrization

of input-parameter uncertainty via backwards-propagation of the model output un-

certainty. Both kinds of UQ studies have been applied to all fields where nonlinear

multiscale systems are observed. UQ is used for performance prediction of integrated

circuits with thousands of sub-micrometer parts [73]. It is accounted for in assessing

the structural integrity of large structures with variability in their material prop-

erties [45, 46] and in imperfect neuroscopic models in material science [74, 31]. It

is used in combustion to describe complex kinetic mechanisms [129]. Furthermore,

in the last 50 years, UQ tools have been widely adopted by researchers interested

in turbulent flows. They have been used to model permeability of porous media in

multiphase flows [44, 43]. UQ is used to account for randomness in microfluidic ap-

plications [79] and thermal problems [63, 185]. It is used in engineering applications

with shear turbulence [170]. In addition, it has become a major research interest in
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climate studies [176, 145, 101] and climate change in particular [103].

The most straightforward UQ approach is the well-known Monte Carlo (MC)

method [113, 58, 57]. Techniques inspired by the MC method, perform numerous

deterministic simulations of the system for sampled conditions, and proceed to per-

form a-posteriori statistical analysis on the numerical results [47]. Yet, repeated

simulations of turbulent models are still prohibitively expensive both to generate

and store [13]. Hence, MC techniques find limited applications usually only on low-

dimensional systems. As a result, the need for efficient uncertainty propagation

schemes arises for more complex and computationally expensive systems.

To reduce the computational cost of UQ, many approaches project the initial

system on a low-dimensional subspace of pre-selected modes [104]. The first such

approaches derived reduced-order models based on an energy-based POD [158, 159,

160, 65]. A similar concept is used in deriving reduced-order models via balanced

POD based on linear theory [82, 99]. Orthogonal decompositions are also used

to derive dynamically orthogonal field equations [148, 147]. Finite-series represen-

tations of randomness are also used in truncated polynomial chaos (PC) expan-

sions [119, 66, 79, 59]. While all these models have found success in weakly chaotic

regimes, they suffer from the fact that in turbulent systems, non-energetic modes can

intermittently have significant impact on energetic modes [35, 17, 150, 149]. As a re-

sult, despite the low computational cost of truncated-series methods, such approaches

are antithetical to the nature of turbulence. Non-modal UQ approaches, include the

utilization of the fluctuation-dissipation theorem (FDT) [51, 1, 52, 2, 53, 103, 77]

and the modified quasilinear Gaussian closure (MQG) scheme [147], which utilizes a

second-order moment framework and models the impact of non-Gaussian statistics

via incorporating statistical steady-state information appropriately.

It is therefore clear that for reduced-order models to accurately predict that sta-
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tistical properties of the reference turbulent systems, a physically consistent modeling

of the intermittent energy transfers between energetic modes needs to be employed.

Hence, tools that allow for the approximation of complicated operators are of inter-

est. Apart from recent conventional basis expansions [190, 72, 151] and parametriza-

tions [104, 105], deep neural networks have recently seen success in reduced-order

modelling of turbulent systems both in a deterministic and in a statistical frame-

work [41, 156, 109, 108, 186, 97, 98, 29, 28]. Despite their lack of closed-form ex-

pressions for the closure terms, neural networks have reliably approximated many

intricate operators in nonlinear dynamics. In addition, neural networks can seam-

lessly incorporate spatio-temporal non-locality in their predictions, a property that

suits many reduced-order models. Utilizing temporal delays in a closure scheme is

theoretically justified via Takens’ embedding theorem [168], which states that under

the constraint of observing a limited number of the state variables of a system, in

principle, we can still obtain the attractor of the full system by using delay embed-

ding of the observed state variables (i.e. a non-Markovian approach). Such methods

have seen success in reduced-order modelling of highly non-linear dynamical sys-

tems [178, 180, 179, 21, 28, 29].

2.1.3 Quadrature Methods of Moments

The dynamics of dispersions of small particles or bubbles in a fluid are important

to many engineering and medical applications. In medicine, ultrasounds, generated

via small cavitating bubbles, are employed during cataract removal [76], to stop

internal bleeding [175, 174], and in other procedures like tumor necrosis [7]. Fo-

cused shockwaves can cavitate bubbles that ablate kidney stones during lithotripsy

treatment [34, 132]. Their interaction with biological tissue or manufactured soft
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materials also attracts the medical [19, 124, 121, 38, 162] and material science

communities [42, 10, 171]. Bubble cavitation is also responsible for damage and

noise in hydraulic pipe systems [181, 165], hydro turbines [39, 81, 96], and pro-

pellers [153, 71]. At the same time, soots are critical to combustion [75, 9, 128, 118]

and aerosols are used in many industrial processes [155, 83, 70]. In nature, cavitation

is used as part of the hunting strategies of some marine animals, including humpback

whales [87, 86, 22], mantis shrimps [126], and snapping shrimps [11, 80].

While the dynamics of these particles can be simulated directly for a specific

(sampled) dispersion by tracking each particle, distribution statistics are typically

sought in applications. In flows with large spatial gradients, a large ensemble of

such simulations (Monte Carlo) is required to gather these statistics [192, 140]. The

poor scaling of Monte Carlo (MC) makes such simulations expensive, and particle

tracking also interferes with efficient parallelization. By instead phase-averaging the

equations of motion [188], a two-way coupled set of Eulerian equations that are more

suitable to parallelization and GPU processing is obtained. However, the averaged

equations involve solving the generalized population balance equation (PBE) [138].

The PBE evolves the dispersed phase number density function (NDF) as a function

of its dynamic variables [23]. For example, the relevant variables for bubbles dy-

namics are the bubble radii and their radial velocities. However, further treatment

is still required. The PBE is a partial differential equation in the dynamic variables,

separate from the spatial and temporal variables of the flow equations, making this

approach intractable for large simulations.

Quadrature-based moment methods (QBMMs) are a low-cost approach to ap-

proximately solving a PBE. Introduced in [111], QBMMs have seen rapid improve-

ment [107]. In brief, they prescribe a finite moment set and invert it to an optimal set

of quadrature nodes and weights in the dynamic system phase space. The success
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of QBMMs has led to the creation of open-source libraries for them [23, 125]. In

the case of multiple dynamic variables, conditional QBMMs like conditional quadra-

ture method of moments (CQMOM) [187] and conditional hyperbolic-MOM (CHyQ-

MOM) [40, 127] are preferred. These methods can efficiently solve many problems

but suffer from a combinatorial explosion of their computational cost when higher

accuracy is needed. This problem stems from the need to evolve all moments up to a

higher order to increase accuracy. Worse still, these methods can exhibit numerical

instabilities when third- or higher-order moments are evolved [107].
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Chapter 3

Theoretical Foundation

Abstract

This chapter presents an overview of the theoretical foundation behind the main
methodologies of this thesis. First, a framework for turbulent closure schemes is
described for systems with a energy-preserving quadratic nonlinearity. This class of
systems includes standard toy models like the Lorentz-96 system as well as more
complex models like the Navier-Stokes equations and quasi-geostrophic flows. An
expansion for the first and second order statistics of such systems is derived and
the closure terms that need to be determined are highlighted and discussed. Then,
a discussion on supervised learning for neural networks is discussed. Afterwards,
an overview on constructing and training (in a supervised manner) neural network
models for sequence to sequence mapping is presented. Fully-connected neural net-
works, recurrent neural networks and convolutional neural networks are described
and explained.
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3.1 Second-order expansion of systems with quadratic

nonlinearity

In the following two chapters, this thesis combines a second-order statistical formu-

lation with neural networks that are trained under appropriate physical constraints.

This framework produces accurate uncertainty quantification predictions for nonlin-

ear dynamical problems. Let 𝑢𝑢𝑢 be a field describing the state of the system. The

evolution equation of 𝑢𝑢𝑢 has the following general form

𝑑𝑢𝑢𝑢

𝑑𝑡
= 𝐴𝑢𝑢𝑢+𝐵𝐵𝐵 (𝑢𝑢𝑢,𝑢𝑢𝑢) +𝐹𝐹𝐹 (𝑡) + 𝑊̇𝑘(𝑡;𝜔)𝜎𝜎𝜎𝑘(𝑡), (3.1)

where 𝐴 is a linear operator, 𝐹𝐹𝐹 denotes a deterministic external forcing and 𝑊̇𝑘𝜎𝜎𝜎𝑘

corresponds to a stochastic forcing with white noise characteristics. The operator 𝐵𝐵𝐵

is assumed to be quadratic and energy-preserving, i.e.

𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢) · 𝑢𝑢𝑢 = 0. (3.2)

This restrictive definition of 𝐵𝐵𝐵 is valid for many important problems in fluid me-

chanics, retaining the physical relevance of the formulation. For example, 𝐵𝐵𝐵 can

be viewed as the advection term of turbulent flows, a class of problems that has

historically attracted the attention of reduced-order modelling literature.

Using well-known linear algebra results [164], the linear operator 𝐴 can be de-

composed as

𝐴 =
1

2
(𝐴− 𝐴𝑇 ) + 1

2
(𝐴+ 𝐴𝑇 ) = 𝐿+𝐷, (3.3)

where 𝐿 is a skew-symmetric linear operator and 𝐷 is a symmetric linear operator.

Throughout this work 𝐷 will also be assumed to be negative definite, which implies
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that it corresponds to a linear dissipative process. The quantity of interest 𝑢𝑢𝑢 is

analyzed using the finite-dimensional expansion

𝑢𝑢𝑢 = 𝑢𝑢𝑢+ 𝑢𝑢𝑢′ = 𝑢𝑢𝑢+
𝑁∑︁
𝑖=1

𝑍𝑖(𝑡;𝜔)𝑣𝑣𝑣𝑖, (3.4)

where 𝑣𝑣𝑣𝑖 form a prescribed orthonormal basis, while 𝑍𝑖 are zero-mean, time-dependent

random functions. The symbol 𝜔 denotes the random argument and the mean field

𝑢𝑢𝑢 can be interpreted as an ensemble average, E [𝑢𝑢𝑢] = 𝑢𝑢𝑢, with respect to 𝜔. Using the

above representation, the original dynamical equation can be re-written as

𝑑𝑢𝑢𝑢

𝑑𝑡
+
𝑑𝑢𝑢𝑢′

𝑑𝑡
= [𝐿+𝐷]𝑢𝑢𝑢+ [𝐿+𝐷]𝑢𝑢𝑢′ +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢) +𝐵𝐵𝐵(𝑢𝑢𝑢′,𝑢𝑢𝑢)

+𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢′) +𝐵𝐵𝐵(𝑢𝑢𝑢′,𝑢𝑢𝑢′) +𝐹𝐹𝐹 + 𝑊̇𝑘(𝑡;𝜔)𝜎𝜎𝜎𝑘(𝑡).

(3.5)

By taking the expectation of the above equation, we derive the dynamical equation

for the average state 𝑢𝑢𝑢, i.e.

𝑑𝑢𝑢𝑢

𝑑𝑡
= [𝐿+𝐷]𝑢𝑢𝑢+𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢) +

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) +𝐹𝐹𝐹 . (3.6)

For a second-order statistical framework, an evolution equation for the covariance

matrix 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑗 is also required. To this end, first the equation for the perturba-

tions 𝑢𝑢𝑢′ = 𝑢𝑢𝑢− 𝑢𝑢𝑢 is derived:

𝑑𝑢𝑢𝑢′

𝑑𝑡
=[𝐿+𝐷]𝑢𝑢𝑢′ +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢′) +𝐵𝐵𝐵(𝑢𝑢𝑢′,𝑢𝑢𝑢)

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝑍𝑖𝑍𝑗 −𝑅𝑖𝑗]𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) + 𝑊̇𝑘𝜎𝜎𝜎𝑘.
(3.7)
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The projection of the evolution equation for 𝑢𝑢𝑢′ onto a basis function 𝑣𝑣𝑣𝑛, yields

𝑑𝑍𝑛
𝑑𝑡

=+
𝑁∑︁
𝑖=1

𝑍𝑖[𝐴𝑣𝑣𝑣𝑖 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑖) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑖,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝑍𝑖𝑍𝑗 −𝑅𝑖𝑗]𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛 + 𝑊̇𝑘𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑛.
(3.8)

By multiplying the above equation with 𝑍𝑚 and taking the ensemble average, we

have

𝑑𝑍𝑛
𝑑𝑡

𝑍𝑚 =+
𝑁∑︁
𝑖=1

𝑅𝑖𝑚[𝐴𝑣𝑣𝑣𝑖 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑖) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑖,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑚𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛 + 𝑍𝑚𝑊̇𝑘𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑛,
(3.9)

since 𝑅𝑖𝑗𝑍𝑚 = 𝑅𝑖𝑗𝑍𝑚 = 0. Hence, the evolution of the elements of the covariance

matrix is dictated by the equation

𝑑

𝑑𝑡
𝑅𝑚𝑛 =

𝑁∑︁
𝑖=1

𝑅𝑖𝑚[𝐴𝑣𝑣𝑣𝑖 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑖) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑖,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑅𝑖𝑛[𝐴𝑣𝑣𝑣𝑖 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑖) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑖,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑚

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑚𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑛𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑚

+ (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑚) (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑛) .

(3.10)
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The evolution equation for the covariance of the system can then be written as

𝑑R
𝑑𝑡

= ℒR + Rℒ* +𝒬𝜎 +𝒬, (3.11)

where ℒ is a linear operator expressing dissipation and energy transfers between the

mean field and the stochastic modes

ℒ𝑖𝑗 = [(𝐿+𝐷)𝑣𝑣𝑣𝑗 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑗) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑗,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑖, (3.12)

with ℒ* being its transpose. The operator (𝒬𝜎)𝑖𝑗 = (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑗) (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑖) models effects

due to the stochastic external forcing and 𝒬 corresponds to third-order effects that

express energy fluxes between different stochastic modes

𝒬𝑚𝑛 =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑚𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑛𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑚.

(3.13)

In more detail, ℒ includes the effects of the linear operators on each mode, as well as

energy transfers between the mean and each mode via the energy-preserving nonlin-

ear operator. All these effects can be studied and understood under the framework

of second-order statistics. It is the mode-to-mode nonlinear energy transfers that re-

quire knowledge of higher moments for their estimation. In order to close the system

for the covariance and the mean, a model for the third-order terms 𝒬 appearing in

Eq. (3.10) is required.
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3.2 Neural networks for time sequences

3.2.1 Supervised learning

Supervised machine learning is a subcategory of ML, revolving around training a

predictive model based on a limited number of labeled observations. The goal of

the process is accurate prediction of the target system’s output. Ideally, within the

functional space of possible models, supervised learning seeks to find a function ℎ(·)

that best approximates the response of the system. The quality of approximation is

measured by the risk functional:

𝑀(ℎ) =

∫︁
ℒ (ℎ(𝑥), 𝑦)𝑃 (𝑥, 𝑦)d𝑥d𝑦, (3.14)

where the loss ℒ measures the discrepancy between the output produced by ℎ and

the true system 𝑦 for a given input 𝑥. Probability distribution 𝑃 (𝑥, 𝑦) corresponds

to the sampled data. However, in general, 𝑃 (𝑥, 𝑦) is not known, and thus task is

reduced to minimizing risk over the finite number of training data points. Hence,

the task becomes

𝜃* = argmin
𝜃∈Θ

1

𝑁

𝑁∑︁
𝑖=1

ℒ
(︀
ℎ(𝑥(𝑖); 𝜃), 𝑦(𝑖)

)︀
, (3.15)

where 𝜃 denotes a finite set of parameters that describe the neural network. 𝒟train ={︀
𝑥(𝑖), 𝑦(𝑖)

}︀𝑁
𝑖=1

, denotes the training dataset. Defining the appropriate model space Θ

is crucial for the success of a supervised ML problem, especially for generalizing the

model outside the training set. This thesis will explore appropriate constraints and

modelling choices for supervised learning in turbulent flows and nonlinear dynamical

systems.
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3.2.2 Fully-connected neural networks

Fully-connected (feedforward) neural networks consist of a number of neurons, each

representing a scalar variable of the system under investigation. The term feedfor-

ward denotes the fact that neurons in one layer are only dependent on ones in the

previous layer. These NNs comprise the most basic class of NN models. The func-

tional dependence between the vector input 𝑥𝑥𝑥 and scalar output 𝑧 of a single neuron

has the generic form

𝑧 = 𝑎
(︀
𝑤𝑤𝑤𝑇𝑥𝑥𝑥+ 𝑏

)︀
, (3.16)

Input vector 𝑥𝑥𝑥 consists of the neuron predictions of the previous layer. Parameters

𝑤𝑤𝑤 and 𝑏𝑏𝑏 are respectively the weight matrix and bias vector of the neuron. Function

𝑎 (·) is known as the activation function and is generally nonlinear. For a given input

and a fixed network structure, we can easily calculate the model output and measure

the quality of prediction on the given data by computing a predefined cost function:

𝒥 (𝜃) =
∑︁
𝑛

ℒ
(︀
𝑧𝑧𝑧(𝑛)(𝑥𝑥𝑥(𝑛), 𝜃), 𝑦𝑦𝑦(𝑛)

)︀
, (3.17)

where 𝑦𝑦𝑦 denotes the ground truth corresponding to a prediction 𝑧𝑧𝑧, and 𝜃 represent

the set of all model parameters including weights and biases. The cost sums over all

cases (indexed by 𝑛), where a loss function ℒ is used to measure the difference for a

single prediction-truth pair. The overall cost is minimized with respect to parameters

𝜃, which defines the model that can be utilized to make predictions for unseen input.

By varying 𝑤𝑤𝑤 and 𝑏𝑏𝑏 one obtains a somewhat limited range of functions mapping

𝑥𝑥𝑥 to 𝑧𝑧𝑧. Hence, rich representations are achieved by stacking several fully-connected

layers on top of each other. The expressive power of the resulting model significantly

multiplies as the number of layers and neurons increase, making it capable of accu-
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rately approximating a broad range of functions. Networks with more than one layer

(called hidden) between the first (input) and the last (output) are referred to as deep

neural networks. A schematic of such networks is shown in fig. 3-1. Conveniently,

the gradient of the cost function in this form can be calculated via a well-known

algorithm known as backpropagation [142] which calculates the error and gradient

first for the last layer and moves layer-by-layer back to the first.

FIG. 3-1. A four-layer fully-connected neural netowrk mapping a 9-dimensional input
to a 7-dimensional output.

3.2.3 Recurrent neural networks

Recurrent neural networks (RNNs) are a special class of NNs specifically designed

for sequence to sequence mapping. Such systems may exhibit strong non-Markovian

characteristics and thus NNs that preserve information from previous time-steps are

needed. RNNs incorporate information from previous states of the system via a

vector called hidden state. This variable acts as an internal memory for the model

providing non-Markovian properties to the trained model. In a generic framework,

the model is parametrized by weight matrices {𝑊𝑊𝑊 ℎ𝑥,𝑊𝑊𝑊 ℎℎ,𝑊𝑊𝑊 𝑜ℎ} and bias vectors

{𝑏𝑏𝑏ℎ, 𝑏𝑏𝑏𝑜}. All tunable parameters, via stochastic gradient descent, are jointly denoted
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by 𝜃. Given an input sequence {𝑥𝑥𝑥𝑡}𝑇𝑡=1, the RNN computes the sequence

ℎℎℎ𝑡 = 𝜎ℎ (𝑊𝑊𝑊 ℎ𝑥𝑥𝑥𝑥𝑡 +𝑊𝑊𝑊 ℎℎℎℎℎ𝑡−1 + 𝑏𝑏𝑏ℎ)

𝑧𝑧𝑧𝑡 = 𝜎𝑧 (𝑊𝑊𝑊 𝑧ℎℎℎℎ𝑡 + 𝑏𝑏𝑏𝑧) ,
(3.18)

where {ℎℎℎ𝑡}𝑇𝑡=1 denotes the hidden state and a sequence of outputs {𝑧𝑧𝑧𝑡}𝑇𝑡=1 the output

sequence. Activation functions 𝜎ℎ(·) and 𝜎𝑧(·) are general nonlinear functions. A

schematic of an RNN is shown in fig. 3-2

FIG. 3-2. Computational graph for recurrent neural network, 𝑥𝑥𝑥𝑡,ℎℎℎ𝑡 and 𝑧𝑧𝑧𝑡 are the
input, hidden and output states at time 𝑡.

Once again, in a supervised learning setting, model parameters 𝜃 are obtained by

defining a finite training set of size 𝑁 and minimizing the cost function

𝒥 (𝜃) =
𝑁∑︁
𝑛=1

𝑇∑︁
𝑡=1

ℒ
(︁
𝑧𝑧𝑧
(𝑛)
𝑡

(︁
𝜃,𝑋𝑋𝑋

(𝑛)
:𝑡

)︁
, 𝑦𝑦𝑦

(𝑛)
𝑡

)︁
, (3.19)

where the number of time steps 𝑇 denotes the number of time delays the model

incorporates during training. Memory is always truncated to a finite length to allow

for a stable gradient-based optimization scheme.
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3.2.4 Long short-term memory

As mentioned in the previous subsection, RNNs experience difficulties to converge to

a satisfying solution during training when long-term dependencies are incorporated.

This is a result of the loss function containing implicit dependencies from the output

of all previous time steps. As a result, the nested form of these dependecies turn

into a large product of terms when calculating the derivatives of the loss function

during stochastic gradient descent. Hence, if most of these terms are larger than 1,

the gradient would diverge and the model fail to converge. On the other hand, if

most terms are smaller than 1, the gradient would vanish and the model would get

stuck in sub-optimal position of the state space [12].

The long short-term memory (LSTM) networks [64], seeks to address this issue

through introducing specialized units known as memory cells. This type of cell is a

self-recurrent neuron, whose prediction only undergoes linear transformations. The

prediction of the model interacts with the input and memory state via the so-called

input, forget and output gates. In particular, the states of the model are governed

by the following evolution equations

𝑖𝑖𝑖𝑡 = 𝜎 (𝑊𝑊𝑊 𝑖ℎℎℎℎ𝑡−1 +𝑊𝑊𝑊 𝑖𝑥𝑥𝑥𝑥𝑡 + 𝑏𝑏𝑏𝑖)

𝑓𝑓𝑓 𝑡 = 𝜎 (𝑊𝑊𝑊 𝑓ℎℎℎℎ𝑡−1 +𝑊𝑊𝑊 𝑓𝑥𝑥𝑥𝑥𝑡 + 𝑏𝑏𝑏𝑓 )

𝑜𝑜𝑜𝑡 = 𝜎 (𝑊𝑊𝑊 𝑜ℎℎℎℎ𝑡−1 +𝑊𝑊𝑊 𝑜𝑥𝑥𝑥𝑥𝑡 + 𝑏𝑏𝑏𝑜)

𝐶̃𝐶𝐶𝑡 = tanh (𝑊𝑊𝑊 𝑐ℎℎℎℎ𝑡−1 +𝑊𝑊𝑊 𝑐𝑥𝑥𝑥𝑥𝑡 + 𝑏𝑏𝑏𝑐)

𝐶𝐶𝐶𝑡 = 𝑖𝑖𝑖𝑡 ∘ 𝐶̃𝐶𝐶𝑡 + 𝑓𝑓𝑓 𝑡 ∘𝐶𝐶𝐶𝑡−1

ℎℎℎ𝑡 = 𝑜𝑜𝑜𝑡 ∘ tanh (𝐶𝐶𝐶𝑡) ,

(3.20)

where 𝜎 (·) is the sigmoid function and (·) denotes element-wise multiplication. Vec-
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tors 𝑖𝑖𝑖𝑡, 𝑓𝑓𝑓 𝑡 and 𝑜𝑜𝑜𝑡 are the input, forget and output gates respectively. 𝐶𝐶𝐶𝑡 represents

the cell memory (formally called cell state) calculated as a linear combination of a

new candidate cell state 𝐶̃𝐶𝐶𝑡 and the previous memory 𝐶𝐶𝐶𝑡−1, weighted by the input

and forget gate values. ℎℎℎ𝑡 is the output of the LSTM and can be regarded as a

nonlinear copy of the cell state that helps to decide how to process the input in the

next step.

All states of the system have the same dimension. This particular setup allows

the model to drop dependencies from past time steps that are not important and thus

the vanishing gradient problem is resolved. In total, 8 weight matrices and 4 bias

vectors make up the parameter space of a single LSTM unit. Despite having more

parameters and a much more intricate forward pass, LSTM can be easily implemented

using software packages equipped with automatic differentiation.

3.2.5 Convolutional neural networks

All the architectures described so far comprise of a number of fully-connected NNs.

Such an approach implies that all possible states of the system can influence all

other states as well at any time. However, this property usually does not hold true

in most dynamical systems. In fact, generally a localized spatial or temporal region

is only important for predictions at a particular location. The convolutional neural

networks (CNNs) are another class of neural network models capable of incorporating

this property. They are characterized by the convolution operator (1-D)

𝑧𝑧𝑧𝑡 = (𝐹𝐹𝐹 *𝑑 𝑥𝑥𝑥) (𝑡) =
𝐾∑︁
𝑘=0

𝐹𝐹𝐹 𝑘𝑥𝑥𝑥𝑡−𝑘. (3.21)
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where 𝐹𝐹𝐹 is a kernel matrix, to be determined during training. The convolution op-

eration can be seen as a sparse variance of the fully connected mode. In addition,

this approach introduces an idea of isotropicity in the model, as each output is com-

puted from the same model parameters with a simple positional shift. To incorporate

anisotropic effects, multiple convolutions are usually incorporated.

FIG. 3-3. 1D convolution operation for sequences: (left) normal convolution and
(right) dilated causal convolution.

While such convolutions can readily be used for temporal sequences, they must be

mended if causality is an issue. To that end causal and dilated convolutions [123, 6]

were introduced. The general form of this convolution operation is

𝑧𝑧𝑧𝑡 = (𝐹𝐹𝐹 *𝑑 𝑥𝑥𝑥) (𝑡) =
𝐾∑︁
𝑘=0

𝐹𝐹𝐹 𝑘𝑥𝑥𝑥𝑡−𝑑·𝑘. (3.22)

In a dynamical system context, it corresponds to the restriction that output states

are strictly determined by historical events, hence being causal. Dilated convolution

refers to the fact that two adjacent 𝐹𝐹𝐹 𝑘’s are applied to input which are 𝑑 steps apart,

where 𝑑 is a hyperparameter representing the dilation rate. Using a large dilation

rate allows the output to depend on a wider range of input. A schematic of causal

convolutions is shown in fig. 3-3.
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Chapter 4

Energy preserving closure-schemes

for first-order statistics

Abstract

In this chapter we present an online turbulence closure scheme for the first-order
statistics of turbulent flows. While we use the problem formulation presented in chap-
ter 3, we restrict ourselves to the study of the mean equation only. Second-orders
statistics will be studied in chapter 5. We first formulate the objective function used
in the training phase. This step also includes the physical constraint and its deriva-
tion using Gauss theorem. We subsequently consider a forced two-dimensional jet
flow. We first take into account the invariance of the flow in one direction to derive
one-dimensional machine-learned closures using DNS information. As a next step,
we apply the method on the computation of two-dimensional turbulent closures that
do not rely on this special symmetry. We compare the obtained coarse-scale model
with DNS and assess its generalizability properties for different Reynolds numbers,
as well as different jet profiles which have not been used in the training phase. We
thoroughly examine the role of the physical constraint on the stability properties
and accuracy of the coarse-scale equations. In addition, we assess our closure scheme
on capturing the evolution of concentration for inertial tracers, such as bubbles and
aerosols. The results presented in this chapter were published here [30].
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4.1 Formulation of energy-preserving closure schemes

Our aim is to derive Eulerian, data-driven closure schemes for turbulent fluid flows,

as well as for inertial tracers advected by those. These closure schemes will not only

rely on DNS training data, but also on the physical constraint that follows from the

energy conservation principles that the nonlinear advection terms satisfy [147, 102].

The effectiveness of the closure schemes is assessed by how well the coarse-scale

equations can reproduce the mean flow characteristics for problems that reach a

statistical equilibrium. Higher order closures may be utilized to improve predictions

for higher order statistics such as the flow spectrum. However, in this work we will

focus on closures that aim to model the mean flow characteristics.

First, we introduce a spatial-averaging operator that will define the coarse scale

version of the quantities of interest and their evolution equations. Specifically, we

decompose any field of interest 𝑓 as

𝑓 = 𝑓 + 𝑓 ′, (4.1)

similarly to eq. (3.4), where 𝑓 corresponds to the large-scale component of the quan-

tity and 𝑓 ′ corresponds to the small-scale component. As a result we always have

𝑓 ′ = 0.

4.1.1 Averaged Navier-Stokes equations

We consider the incompressible Navier-Stokes equations in dimensionless form:

𝐷u
𝐷𝑡

= −∇𝑝+ 1

Re
∆u + 𝜈∇−4u + F, (4.2)
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∇ · u = 0, (4.3)

where u is the velocity field of the fluid, 𝑝 its pressure, Re is the Reynolds number

of the flow, 𝐷
𝐷𝑡

is the material derivative operator and F denotes an external forcing

term. Parameter 𝜈 is a hypoviscosity coefficient aiming to remove energy from large

scales and maintain the flow in a turbulent regime. Using the decomposition eq. (4.1)

into the fluid flow eqs. eq. (4.2) and applying the averaging operator we obtain:

𝜕𝑡u = −u · ∇u− u′ · ∇u′ −∇𝑝+ 1

Re
∆u + 𝜈∇−4u + F, (4.4)

∇ · u = 0. (4.5)

Clearly, the averaged evolution equations do not comprise a closed system anymore

due to the nonlinearity of the advection term. As a result, the term u′ · ∇u′ is not

defined by the evolution equations and needs to be parametrized.

4.1.2 Averaged advection equation for inertial tracers

One can follow a similar process for the advection equation governing the motion

of small inertial tracers. In particular for small inertia particles their Lagrangian

velocity, v, is a small perturbation of the underlying fluid velocity field [54, 55]:

v = u + 𝜖

(︃
3𝑅

2
− 1

)︃
𝐷u
𝐷𝑡

+𝑂(𝜖2), 𝜖 =
𝑆𝑡

𝑅
≪ 1, 𝑅 =

2𝜌𝑓
𝜌𝑓 + 2𝜌𝑝

, (4.6)

35



where 𝜖 = 𝑆𝑡
𝑅
≪ 1 is a parameter representing the importance of inertial effects, 𝑆𝑡 is

the particle or bubble Stokes number, and 𝑅 =
2𝜚𝑓

𝜚𝑓+2𝜚𝑝
is a density ratio with 𝜚𝑝 and 𝜚𝑓

being the density of the particle or bubble and the flow respectively. Eq. (4.6), arises

from geometric singular perturbation theory in the limit of small particle inertia [54].

For this asymptotic limit the presented manifold is always attracting trajectories

exponentially fast [55]. However, errors due to the finite order truncation of the

asymptotic expansion will result in inaccuracies for time scales larger than 𝑂(𝜖−2).

By introducing 𝜌 as the concentration of tracers at a particular point, we can

write the following transport equation

𝜕𝑡𝜌+∇ · (v𝜌) = 𝜈2∆
4𝜌. (4.7)

The right-hand-side of the transport equation represents a hyperviscosity term. In-

troducing the decomposition of eq. (4.1) in the evolution eqs. (4.6) and (4.7), we

obtain

v = u + 𝜖

(︃
3𝑅

2
− 1

)︃(︁
𝜕𝑡u + u · ∇u + u′ · ∇u′

)︁
, (4.8)

𝜕𝑡𝜌+∇ · (v𝜌) +∇ · (v′𝜌′) = 𝜈2∆
4𝜌. (4.9)

Once again, the closure term ∇ · (v′𝜌′) appears, which requires parametrization.

Note that the evolution equations of the carrier fluid (eq. (4.4) and (4.5) and the

transported inertial particles (eq. (4.8) and (4.9)) are both in dimensionless form.

4.1.3 Data-driven parametrization of the closure terms

While the full Navier-Stokes equations and the associated advection equations are

Markovian and spatially-local, i.e. the evolution of the flow or concentration field
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in a specific location and time instant depends only on the current time instant and

the current neighborhood, this is not necessarily the case for the averaged version of

these equations. In particular, for the averaged equations we typically do not have

access to the full-state information, required to fully describe the evolution of the

system. In this case the missing information is the small-scale dynamics.

To overcome this limitation we recall Takens embedding theorem [168], which

states that if we observe only a limited number of the state variables of a system, in

principle, we can still obtain the attractor of the full system by using delay embed-

dings of the observed state variables. In other words, under appropriate conditions

there is a map between the delays of the observed state variables and the full state sys-

tem. Although the theorem itself is several decades old, we can now rely on recently

developed data-driven schemes that can implement such mapping as part of their

training process, enhancing the accuracy of predictions (see e.g. [178, 180]). To this

end, we parametrize the closure terms with non-local in time (but still causal) rep-

resentations, based on Long-Short-Term Memory (LSTM) recurrent neural networks

(RNN) and Temporal Convolutional Networks (TCN) [64]. The specific RNN imple-

mentation was picked based on its tested ability to incorporate long-term memory

effects of hundreds of time-delays, while simpler RNN models suffer from vanishing

or exploding gradients [12].

Beyond non-locality in time we also choose to employ non-locality in space. That

is, given a point in space x, we use information from points that lie in a small neigh-

borhood of x. Clearly, incorporating information from the entirety of the domain

is not only computationally infeasible but also redundant and can lead to stability

issues. For this reason we use convolutions in space to make sure that we incor-

porate information only from a region around each point and not from the entire

domain. The parameterization is based on a stacked LSTM architecture [50], which
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utilizes LSTM layers with the detail that all input and recurrent transformations are

convolutional.

As a result, the closure terms are modeled in the following form:

u′ · ∇u′(x, 𝑡) = Du
[︀
𝜃1; 𝜉[𝛼(x), 𝜒(𝑡)]

]︀
,

∇ · (v′𝜌′)(x, 𝑡) = D𝜌

[︀
𝜃2; 𝜁[𝛼(x), 𝜒(𝑡)]

]︀
,

(4.10)

where 𝜉 and 𝜁 are (averaged) flow features to be selected, 𝛼(x) denotes a pre-selected

neighborhood of points around x over which the averaged state is considered, i.e.

𝛼(x) = {x,x+ x1,x+ x2, ...,x+ x𝑁}, and 𝜒(𝑡) denotes the history of the averaged

state backwards from time 𝑡, i.e. 𝜒(𝑡) = {𝑡, 𝑡− 𝜏1, ..., 𝑡− 𝜏2, ..., 𝑡− 𝜏𝑁} . The vectors

𝜃1 and 𝜃2 denote the hyperparameters of the neural networks and their optimization

is performed empirically. The spatial neighborhood, 𝛼(x), is selected such that if we

further increase it, the training error does not significantly reduce any more. Note

however, that the number of points in space that have to be considered in 𝛼(x) is

dependent on the discretization of the domain, i.e., if we increase the resolution of

our model the number of neighborhood points in 𝛼(x) should increase respectively

so that the input information used as input in the closure always corresponds to the

same spatial neighborhood. In the numerical study that follows, the the effect of

spatial discretization is investigated. We use a similar approach for the temporal

history, 𝜒(𝑡).

Temporal integration

We point out that our numerical goal is inline prediction. This means that the neural

nets described by eq. (4.10) must be coupled with the evolution eqs. (4.4)-(4.9). For

a simple forward Euler scheme for temporal integration, this would imply that by
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knowing the values of u, 𝜌 at time 𝑡 we can predict the closure terms at time 𝑡 using

eq. (4.10) and use their values to integrate eqs. (4.4)-(4.9) by one time-step 𝛿𝑡 so

that we compute 𝑢1, 𝜌 at time 𝑡 + 𝛿𝑡. However, if we want to use a higher-order

integration scheme like a 4th-order explicit Runge-Kutta, we need to evaluate the

closure terms at time 𝑡 + 𝛿𝑡/2 as well. Since, we do not have access to the required

time-history for such a prediction, we instead integrate in time not by 𝛿𝑡 but by 2𝛿𝑡

and thus get a time-integration error of the for 𝑂[(2𝛿𝑡)4].

4.1.4 Physical constraints

An important feature of our data-driven closure schemes is the requirement to satisfy

certain physical principles. Specifically, we utilize the energy flux constraint that the

advection term does not alter the total kinetic energy of the model [147, 150]. This

constraint, follows from Gauss identity. Specifically, for any scalar fielsd, 𝜓, 𝛽, and

divergence-free field, Φ, we have from Gauss identity:

∫︁
Ω

𝜕𝜓

𝜕𝑥𝑗
𝛽Φ𝑗𝑑x = −

∫︁
Ω

𝜕𝛽

𝜕𝑥𝑗
𝜓Φ𝑗𝑑x+

∫︁
𝜕Ω

𝜓𝛽Φ𝑗𝑛𝑗𝑑x, (4.11)

where 𝑛𝑗 is the unit vector on the boundary, 𝜕Ω. Applying the above for 𝜓 = 𝛽 = 𝑢𝑘

and Φ𝑗 = 𝑢𝑗, we obtain the general three-dimensional constraint:

∫︁
Ω

u · (u · ∇)udx =

∫︁
𝜕Ω

ℰ u · n 𝑑x, ℰ =
1

2
u · u (4.12)

where Ω is the domain in which the fluid flow is defined. The above constraint

essentially expresses the fact that the nonlinear advection terms do not change the

total kinetic energy of the system. In what follows we will consider the case of periodic

boundary conditions, where the right hand side in (4.12) vanishes. However, the same
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ideas are applicable for arbitrary boundary conditions. We apply the decomposition

(4.1) and the spatial averaging operator to this equation and obtain:∫︁
Ω

u · (u · ∇)udx+

∫︁
Ω

u · (u′ · ∇)u′dx+

∫︁
Ω

u′ · (u · ∇)u′dx

+

∫︁
Ω

u′ · (u′ · ∇)udx+

∫︁
Ω

u′ · (u′ · ∇)u′dx = 0,

(4.13)

From the last equation we have the physical constraint that the closure term Du

must satisfy∫︁
Ω

u · Du
[︀
𝜃1; 𝜉[𝛼(x), 𝜒(𝑡)]

]︀
𝑑x = 𝐴[u] ≜ −

∫︁
Ω

u · (u · ∇)udx−
∫︁
Ω

u′ · (u · ∇)u′dx

−
∫︁
Ω

u′ · (u′ · ∇)udx−
∫︁
Ω

u′ · (u′ · ∇)u′dx,

(4.14)

where 𝐴[u] is a function that depends on the training data and the discretization.

Such a constraint can be added to the training process in a straightforward manner

through the objective function. We emphasize that one could formulate a physical

constraint based e.g. on the Navier-Stokes equations directly. However, this assumes

exact knowledge of the flow-specifics. This is not the case here since the above

constraint expresses a universal property, i.e. that advection terms do not create or

destroy energy.

4.1.5 Objective function for training

In terms of the training process itself, we normalize the input and output data as

usually suggested (see e.g. [152]). The loss function for this problem is chosen

to be the single-step prediction mean square error superimposed with the physical
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constraint. This can be formulated as

𝐿(𝜃1) =

∫︁
Ω×𝑇

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒Du

[︀
𝜃1; 𝜉

]︀
− (u′ · ∇)u′

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

𝑑x𝑑𝑡+𝜆

∫︁
𝑇

⃒⃒⃒⃒
⃒
∫︁
Ω

u · Du
[︀
𝜃1; 𝜉

]︀
𝑑x− 𝐴[u]

⃒⃒⃒⃒
⃒𝑑𝑡,

(4.15)

where 𝜆 is a hyperparameter which is chosen so the two terms of the loss function

are of the same order of magnitude. More specifically, 𝜆 = 𝜆* = 101. It also reported

that if 𝜆 = 𝜆*/10 is chosen, then the results are almost identical to the case where

the constraint is not used. Furthermore, if 𝜆 = 10𝜆* then the generated closure is

unstable both for unimodal and bimodal jets. On the other hand, for the advection

equation we have the objective function:

𝐿(𝜃2) =

∫︁
Ω×𝑇

⃒⃒⃒⃒⃒⃒
D𝜌

[︀
𝜃2; 𝜁[𝛼(x), 𝜒(𝑡)]

]︀
−∇ ·

(︀
v′𝜌′
)︀⃒⃒⃒⃒⃒⃒2

𝑑x𝑑𝑡. (4.16)

Note that a similar constraint with the one in eq. (4.15) can be formulated for the

mass conservation property of the tracers. However, this approach is not pursued

here. An important question is which flow features are important as input for each

of the two models. We examine this issue in detail in the following sections.

4.1.6 Imitation learning

While the single-step prediction-error is used for training, the aim this work aims to

use these models for multi-step prediction. Any such predictor introduces errors and

these compounding errors change the input distribution for future prediction steps,

breaking the train-test independent and identically distributed (i.i.d) assumption

that is common in supervised learning. Under these circumstances, the error can be
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shown to grow exponentially [177]. This effect was observed in the current setup as

well, with the averaged equations becoming unstable. To alleviate this problem a

version of the imitation learning presented in [177], the Data as Demonstrator (DAD)

method, is used. It is also noted that since in the current setup, the evolution equa-

tion of the carrier fluid is independent of the evolution of the transported particles,

the process can be showcased for only the carrier fluid closure. This process is shown

in an algorithmic manner in Algorithm 1.

Expanding on what Algorithm 1 presents, the algorithm first computes the ref-

erence flow features 𝜇Ref and reference closure terms values DRef
u from DNS. Then,

the neural network for the carrier fluid closure-term DRef
u is trained. For the next

step, define a fixed number of time-steps 𝑀𝑇 and an error tolerance 𝛿1. The goal

of this stage is, for all time-instances that are included in the training set as the

fluid flow is evolved for 𝑀𝑇 time-steps forward in time, the 𝐿2-error at the final

time-step is smaller than 𝛿1. This condition has to be satisfied for all flows that

are included in the training set. If this condition is satisfied, the closure is as-

sumed to be stable and thus the training process is rendered complete. If not,

for each initial training point, mark as 𝑀𝑠 the time-step forward in time at which

the condition was first violated. The imitation algorithm requires that an artifi-

cial data point (𝜇*|𝑡=𝑡+𝑀𝑠 ,D*
u(𝑡 +𝑀𝑠)) is created, which corresponds to the value

of the closure term that is required, so that the flow features return to their ap-

propriate reference value 𝜇DNS(𝑡 +𝑀𝑠 + 1) at the 𝑀𝑠 + 1 time-step forward. These

data-points are not physical solutions of some DNS solver. They artificially intro-

duce stability to the closure scheme so as to allow the model to return close to

the training data when it deviates. This extra amount of data are introduced to

the previous set of training data. and steps 1 and 2 of Algorithm 1 are repeated.
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Algorithm 1: Training of closure scheme
Input: Reference closure terms { DDNS

𝑖 (𝑡0), ...,DDNS
𝑖 (𝑡𝑝)} 𝑖 = u, 𝜌, computed

from DNS

Data: Neural network (NN) architecture, averaging-operator,

discretization, 𝛿𝑡 and input flow features 𝜇

Result: Predicted closure terms { DML
𝑖 (𝑡0), ...,DML

𝑖 (𝑡𝑝)} 𝑖 = u, 𝜌.

1 Set 𝜇Ref = 𝜇DNS and DRef
u = DDNS

u ;

2 Train DML
u using DRef

u ;

3 for 𝑖 = 1, ..., 20 do

4 for 𝑡 = 0, 𝛿𝑡, ..., 𝑇 𝛿𝑡 do

5 𝑠→ 𝑡;

6 while
⃦⃦⃦
DML

u (𝑠)− DDNS
u (𝑠)

⃦⃦⃦
> 𝛿1 do

7 Predict uML(𝑠+ 𝛿𝑡);

8 Predict DML
u (𝑠+ 𝛿𝑡);

9 𝑠→ 𝑠+ 𝛿𝑡;

10 end

11 Compute D*
u(𝑠) so that uML(𝑠+ 𝛿𝑡) = uDNS(𝑠+ 𝛿𝑡);

12 Set (𝜇Ref,DRef
u ) = (𝜇DNS,DML

u ) ∪ (𝜇*|𝑠,D*
u(𝑠));

13 end

14 Train DML
u using DRef

u ;

15 end

This process is repeated until the closure is stable and displays good predictive

accuracy in all training cases. A more rigorous display of this condition is seen in

Algorithm 1. For the present setup, this was achieved after 20 iterations. The same

process is followed for the closure scheme of the transported particles, D𝜌 = ∇ · (v′𝜌′).
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Note that noise, in the form of some artificial colored or white noise, is not added

to the training data. However, the use of the DAD algorithm increases the training

size by generated new training data that have noise, as a result of the error in the

predictions of the neural network as it is propagated as the flow evolves.

4.2 Fluid flow setup

For the validation and assessment of the formulated closures we consider a two-

dimensional turbulent jet where bubbles are also advected as passive inertial tracers.

Specifically, the velocity field governing the bubbles is different from that of the

underlying fluid flow (due to inertia effects), but the bubbles do not affect in any

way the underlying fluid flow.

We setup a turbulent jet that fluctuates around a steady-state jet solution, u𝑗𝑒𝑡.

In its dimensionless form this system of equations can be written as

𝐷u
𝐷𝑡

= −∇𝑝+ 1

Re
∆u + 𝜈∇−4(u− u𝑗𝑒𝑡) + F, (4.17)

∇ · u = 0, (4.18)

where u = (𝑢1, 𝑢2) and 𝑅𝑒 = 𝑂(103). The domain is assumed rectangular, doubly

periodic, i.e. x = (𝑥, 𝑦) ∈ 𝑆2 = [0, 2𝜋]× [0, 2𝜋]. For initial conditions, since we desire

anisotropy in our flow, we use Gaussian jet structures of the general form

𝑢1,𝑗𝑒𝑡 =
∑︁
𝑖

𝐴𝑖 exp
[︁
− 𝑐𝑖(𝑦 − 𝛽𝑖)2

]︁
, 𝑢2,𝑗𝑒𝑡 = 0, (4.19)
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where 𝐴𝑖, 𝑐𝑖, 𝛽𝑖 are parameters. The role of the external forcing term, F, is twofold:

i) it contains a large-scale component to maintain the jet structure, by balancing

the dissipation term, and ii) it has a small-scale and small-amplitude component to

perturb the flow and trigger instabilities so that the we enter a turbulent regime.

To achieve turbulence we choose a forcing term that acts only on a specific wave-

band with 6 ≤ ‖k‖ ≤ 7. Exciting a flow with a forcing localized only in a narrow

wavenumber interval is common practice in the turbulence literature [16, 14, 110, 15].

Therefore, we adopt a form F = − 1
𝑅
∆𝑢𝑢𝑢𝑗𝑒𝑡 + 𝑓 , with 𝑓 being

𝑓(x, 𝑡) =
∑︁
𝑖

𝐴𝑖(𝑡) cos(k · x + 𝜔𝑖), (4.20)

where 6 ≤ |k| ≤ 7, 𝐴𝑖(𝑡) are random vectors that follow a Gaussian white noise

distribution (each one independent from the other) and 𝜔𝑖 are phases sampled from

a uniform distribution over [0, 2𝜋]. The standard deviation for these amplitudes

is set to 0.03. This ensures that the energy and enstrophy inputs are localized in

Fourier space and only a limited range of scales around the forcing is affected by

the details of the forcing statistics. Furthermore, such a forcing ensures that the

system reaches a jet-like statistical steady state after a transient phase. Due to the

small-scale forcing being essentially homogeneous in space we can deduce that the

statistical steady state profile is only dependent on 𝑦 (since our large-scale forcing

and initial conditions depend only on 𝑦). We solve this flow using a spectral method

and 2562 modes.

For the bubbles we use the perturbed advection field (eq. (4.6)) and the cor-

responding advection equation (4.7). For the simulations presented we use the in-

ertial parameters, 𝜖 = 0.05 and 𝑅 = 2, which correspond to small bubbles. A

typical snapshot of the described flow can be seen in Figure 4-1. During train-
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ing, unimodal jets of different Reynolds number are used with parameter values

𝐴1 = 1, 𝑐1 = 2, 𝛽1 = 𝜋. Furthermore, for testing purposes, bimodal jets are consid-

ered with the Reynolds number varying and parameters 𝐴1 = 1, 𝛽1 = 0.8𝜋, 𝑐1 = 3

and 𝐴2 = 1, 𝛽2 = 1.2𝜋, 𝑐2 = 3.

FIG. 4-1. Snapshot of vorticity (left) and bubble density field (right) for a bimodal
turbulent jet for 𝑅𝑒 = 1000, and bubble parameters 𝜖 = 0.05 and 𝑅 = 2.

4.3 Training of the closures

In this case our averaging operator was chosen to be local in both dimensions, 𝑥 and

𝑦:

𝑓(𝑥, 𝑦) =
1

2𝜋

∫︁∫︁
𝑆2

𝑤𝑙𝑥(𝑦
′ − 𝑦)𝑤𝑙𝑦(𝑦′ − 𝑦)𝑓(𝑥, 𝑦′)d𝑥d𝑦′, (4.21)

where 𝑙𝑥 = 𝑙𝑦 =
2𝜋
12

are the averaging windows in the 𝑥 and 𝑦 directions respectively.

As objective functions we used equations (4.15) and (4.16). The spatial and temporal

neighborhood used in the closures are chosen as:

𝛼(y) = {y +𝑚1𝛿x+𝑚2𝛿y}, 𝛿𝑥 = 2𝜋/48, 𝛿𝑦 = 2𝜋/48 and 𝑚1,𝑚2 = −2,−1, ..., 2,
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𝜒(𝑡) = {𝑡−𝑚𝛿𝜏}, 𝛿𝜏 = 1/100, 𝑚 = 1, 2, ..., 12.

Similarly with the one-dimensional closures, these numbers are based on the fact

that further increase did not result significant difference in the training and validation

errors. We employ the same neural network architectures that we used in the previous

section.

Feature selection

For the closure term Du (corresponding to the fluid flow) we try as possible flow

features the quantities 𝑢𝑢𝑢, 𝜕𝑡𝑢𝑢𝑢,Du. Results are shown for the case where the constraint

is adopted (cTCN and cLSTM) in Table 3 in terms of training and validation errors.

In this case, we observe that the single most important feature is the history of the

Reynolds stresses. Furthermore, we see that the optimal combination consists of all

the examined features.

Table 4.1. Feature selection for closure of Navier-Stokes.

𝜉 feature selection

cTCN cLSTM

Features Dimension Train-MSE Val-MSE Train-MSE Val-MSE

𝑢𝑢𝑢 = (𝑢1, 𝑢2) 2 0.235 0.521 0.258 0.572

𝜕𝑡𝑢𝑢𝑢 = (𝜕𝑡𝑢1, 𝜕𝑡𝑢2) 2 0.098 0.480 0.112 0.388

Du 2 0.081 0.094 0.092 0.114

𝑢𝑢𝑢, 𝜕𝑡𝑢𝑢𝑢 4 0.069 0.485 0.100 0.522

𝑢𝑢𝑢,Du 4 0.048 0.082 0.067 0.094

𝜕𝑡𝑢𝑢𝑢,Du 4 0.027 0.048 0.034 0.063

𝑢𝑢𝑢, 𝜕𝑡𝑢𝑢𝑢,Du 6 0.020 0.039 0.027 0.055
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For the closure of the transport equation we carry out the same process in Table

4. We observe that the single most important features seems to be 𝜌, similarly with

the one-dimensional case. For the results that follow we choose the combination

v, 𝜌, 𝜕𝑡v, 𝜕𝑡𝜌,D𝜌, which results in the minimum validation and testing errors.

Table 4.2. Feature selection for closure of bubble transport equation.

𝜁 feature selection

cTCN cLSTM

Features Dimension Train-MSE Val-MSE Train-MSE Val-MSE

𝜌 1 0.199 0.398 0.228 0.451

𝑣𝑣𝑣 = (𝑣1, 𝑣2) 2 0.320 0.591 0.318 0.515

𝑣𝑣𝑣, 𝜌 3 0.141 0.386 0.162 0.404

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝑣𝑣𝑣 5 0.085 0.176 0.087 0.192

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝜌,D𝜌 5 0.051 0.091 0.061 0.125

𝑣𝑣𝑣, 𝜕𝑡𝜌, 𝜕𝑡𝑣𝑣𝑣,D𝜌 6 0.030 0.049 0.038 0.068

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝜌, 𝜕𝑡𝑣𝑣𝑣,D𝜌 7 0.016 0.032 0.031 0.047

4.4 Validation and generalizability

Here we aim to showcase the application of our method on two-dimensional coarse-

scale closures. We consider two cases: (i) we train on unimodal jets for flows

with Reynolds number Re ∈ {650, 750, 850} and test on unimodal jets in the range

Re ∈ [500, 1000] and not included in the training set; and (ii) we once again train

on unimodal jets (same Reynolds as before) and test on bimodal jets in the same

Reynolds range as in case (i). For the coarse-scale model we employ a resolution of

48× 48, complemented with the ML-closure terms. We compare the energy spectra
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at the statistical steady state of the flows between the coarse-scale predictions and

the two-dimensional reference solutions, i.e. for 𝑡 ∈ [200, 600].

4.4.1 Testing on a unimodal jet

In Fig. 4-2 we present the space-time-averaged mean-square error between the 𝑥− 𝑦

locally averaged DNS flow field [using Eq. 4.21], 𝑢̄*, and the coarse scale model, 𝑢̄:

||𝑢̄* − 𝑢̄||22 =
1

(2𝜋)2𝑇

∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝑡0+𝑇

𝑡0

(𝑢̄*(𝑥, 𝑦, 𝑡)− 𝑢̄(𝑥, 𝑦, 𝑡))2d𝑥d𝑦d𝑡. (4.22)

The results are in full consistency with the one-dimensional closures, i.e. cTCN has

FIG. 4-2. Normalized mean-square error Eq. 4.22 of each two-dimensional closure
model using TCN, LSTM and their constrained versions for unimodal jets. Training
includes data for unimodal jets with Re ∈ {650, 750, 850}.

the best performance. We also present a detailed comparison for Re = 800 between

the coarse model and the DNS in terms of the energy spectrum and mean profile

the flow (Fig. 4-3). The energy spectrum is computed by obtaining the spatial

Fourier transform at each time instant and then considering the variance of each

Fourier coefficient over time. We plot the energy spectrum in terms of the absolute
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wavenumber values. For both the flow field and bubble field the coarse-model is able

to accurately capture the mean profiles, and the large scale features of the spectrum.

FIG. 4-3. Comparison of energy spectra and mean profiles for the flow velocity
field [(a), (c)] and the bubble velocity field [(b), (d)] for unimodal jets. Blue lines
correspond to DNS simulations on a 256× 256 grid and the black circles correspond
to the coarse model using two-dimensional closures (cTCN) on a 48 × 48 grid for
Re = 800.

4.4.2 Testing generalizability on bimodal-jets

We proceed to test the generalizability of the two-dimensional closure schemes on

bimodal jets. The setup is identical with the one adopted for one-dimensional clo-

sures. In Fig. 4-4 we compare the normalized mean-square error between the locally

averaged DNS solution and the one obtained form the coarse model. Consistent with
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previous results, the cTCN has the best performance. It is interesting to note that

the performance is even better in the Reynolds regime outside the training data, i.e.

for Re > 850.

FIG. 4-4. Normalized mean-square error Eq. 4.22 for two-dimensional coarse models
applied on bimodal jet flows. Training used data from unimodal flows with Re =
{650, 750, 850}.

The energy spectrum of the fluid velocity and the bubble velocity field, as well as

the corresponding mean profiles are compared with DNSs for Re = 800 in Fig. 4-5.

In this case, we note that while there is good agreement between the mean profiles,

there is some discrepancy between the approximate and exact spectra. To understand

better the source of this discrepancy we plot the energy spectrum of the flow in the

𝑘𝑥, 𝑘𝑦 space (Fig. 4-6). As can be seen the coarse model overestimates the spread

of the energy of the fluctuations only in the 𝑥−direction, which is consistent with

the fact that the mean 𝑦−profile of the flow is accurately modeled. This is not

surprising given that the developed closures in this paper are designed to capture

well the mean flow characteristics and not necessarily the energy spectrum. A closure

approach based on second-order statistical equations (see e.g. Ref. [150]) is beyond

the scope of this paper and will be considered elsewhere.
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FIG. 4-5. Comparison of energy spectra and mean profiles for the fluid velocity field
[(a), (c)] and the bubble velocity field [(b), (d)] for the case of a bimodal jet with
Re = 800. Blue lines correspond to DNSs on a 256 × 256 grid and the black circles
correspond to a coarse-model with two-dimensional cTCN closures on a 48×48 grid.

The overall improvement in the two-dimensional predictions due to the adoption

of the physical constraint is summarized in Table 4.3, where we show the improve-

ment of the mean-square error for the mean flow, averaged over different Reynolds

numbers. We note that for the TCN architecture the improvement is more pro-

nounced, close to 30%, and it is also robust for the case of a bimodal jet. A quick

comparison with the error-decrease values in Table A.3 shows the 𝐿2-error improve-

ment is slightly better in the 1D (zonally-averaged) coarse-scale model than in the 2D

coarse-scale model. This result could be attributed to the fact that a 1D model will
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be less turbulent compared to a 2D coarse-scale simulation, due to zonally-averaging

the flow and thus essentially neglecting perturbations along the 𝑥-axis, making the

simulations more stable.

FIG. 4-6. Energy spectrum of the fluid flow for the bimodal jet for Re = 800.
Comparison between the DNS (left) and the coarse-model based on 2D cTCN closures
(right).

Table 4.3. Error decrease (Reynolds-averaged) due to the physical constraint for
two-dimensional closure schemes.

Architecture Jet-type Error decrease

TCN-2D Unimodal 30%

LSTM-2D Unimodal 20%

TCN-2D Bimodal 33%

LSTM-2D Bimodal 31%
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4.4.3 Dependence on the coarse-model grid-size

Finally, we showcase a numerical investigation for the relationship between the chosen

grid-size for the coarse-scale simulations and the mean-square error of the velocity of

the fluid flow. For all results presented below, training data was chosen as previously

(unimodal jets) and results are presented for bimodal jets. In Fig. 4-7(a), we vary

the size of a 𝑁𝑥 ×𝑁𝑦 grid with 𝑁𝑥 = 𝑁𝑦 ∈ {16, 24, 32, 40, 48, 64, 80, 96}. We notice

that there is significant improvement in our predictions as we refine the grid up to a

grid-size of 64× 64 where the error saturates.

(a) (b)

FIG. 4-7. Root-mean-square error for different grid-sizes using two-dimensional
cTCN closures on bimodal jet.

Since the variation of the mean profile of the flow is only along the 𝑦-direction,

having a coarser resolution along the less significant 𝑥-direction should not hinder the

predictions. To validate this property we maintain a constant discretization in the

𝑥-direction and vary the grid-size only in the 𝑦− direction. Results are demonstrated

in Fig. 4-7(b), showing clearly that by having a fine resolution only in the 𝑦−direction

is sufficient to achieve comparable performance with the fine resolution case in both

directions: 𝑁𝑥 = 𝑁𝑦 = 96.
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4.4.4 Limitations

While the proposed method adequately predicts flows that are distinct from those of

the training set, it is important to state that the computed closure is not expected

to be as effective in every fluid flow. This is due to the fact that depending on

the specifics of a fluid flow, such as dimensionality, boundary conditions, domain

geometry, excitation terms, and the presence of additional dynamics such as Coriolis

terms, the nonlinear interactions between scales are different. Therefore, aiming to

machine learn universal closures that will work for every case is beyond the scope

of this thesis. Instead, our approach is to employ data from flows that have some

common features with the flow we are interested in modeling, and combine this

data with a universal constraint, the energy conservation by the nonlinear terms,

to increase the accuracy of the computed closures. The optimal choice of input

features is also expected to vary depending on the specifics of the flow and therefore

a numerical examination of different combinations should be performed to achieve

the most effective closure.
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Chapter 5

Energy preserving closure-schemes

for second-order statistics

Abstract

This chapter, based on [27], presents a data-driven, energy-conserving closure method
for the coarse-scale evolution of the mean and covariance of turbulent systems.
Spatio-temporally non-local neural networks are employed for calculating the im-
pact of non-Gaussian effects to the low-order statistics of dynamical systems with
an energy-preserving quadratic nonlinearity. This property, which characterizes the
advection term of turbulent flows, is encoded via an appropriate physical constraint
in the training process of the data-informed closure. This condition is essential for
the stability and accuracy of the simulations as it appropriately captures the en-
ergy transfers between unstable and stable modes of the system. The numerical
scheme is implemented for a variety of turbulent systems, with prominent forward
and inverse energy cascades. These problems include prototypical models such as
an unstable triad-system and the Lorentz-96 system, as well as more complex mod-
els: the 2-layer quasi-geostrophic flows and incompressible, anisotropic jets where
passive inertial tracers are being advected on. Training data are obtained through
high-fidelity direct numerical simulations. In all cases, the hybrid scheme displays its
ability to accurately capture the energy spectrum and high-order statistics of the sys-
tems under discussion. The generalizability properties of the trained closure models
in all the test cases are explored, using out of sample realizations of the systems.
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5.1 Problem formulation

The methodology of this chapter follows that presented in section 3.1. To synopsize

the results here, we assume that the evolution equation of a quantity of interest 𝑢𝑢𝑢

has the following general form

𝑑𝑢𝑢𝑢

𝑑𝑡
= 𝐴𝑢𝑢𝑢+𝐵𝐵𝐵 (𝑢𝑢𝑢,𝑢𝑢𝑢) +𝐹𝐹𝐹 (𝑡) + 𝑊̇𝑘(𝑡;𝜔)𝜎𝜎𝜎𝑘(𝑡), (5.1)

where 𝐴 is a linear operator, 𝐹𝐹𝐹 denotes a deterministic external forcing and 𝑊̇𝑘𝜎𝜎𝜎𝑘

corresponds to a stochastic forcing with white noise characteristics. The operator 𝐵𝐵𝐵

is assumed to be quadratic and energy-preserving, i.e.

𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢) · 𝑢𝑢𝑢 = 0. (5.2)

This restrictive definition of 𝐵𝐵𝐵 is valid for many important problems in fluid me-

chanics, retaining the physical relevance of the formulation. For example, 𝐵𝐵𝐵 can

be viewed as the advection term of turbulent flows, a class of problems that has

historically attracted the attention of reduced-order modelling literature.

The quantity of interest 𝑢𝑢𝑢 is analyzed using the finite-dimensional expansion

𝑢𝑢𝑢 = 𝑢𝑢𝑢+ 𝑢𝑢𝑢′ = 𝑢𝑢𝑢+
𝑁∑︁
𝑖=1

𝑍𝑖(𝑡;𝜔)𝑣𝑣𝑣𝑖, (5.3)

where 𝑣𝑣𝑣𝑖 form a prescribed orthonormal basis, while 𝑍𝑖 are zero-mean, time-dependent

random functions. The symbol 𝜔 denotes the random argument and the mean field

𝑢𝑢𝑢 can be interpreted as an ensemble average, E [𝑢𝑢𝑢] = 𝑢𝑢𝑢, with respect to 𝜔. Using the
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above representation, a mean state evolution equation can be written as

𝑑𝑢𝑢𝑢

𝑑𝑡
= [𝐿+𝐷]𝑢𝑢𝑢+𝐵𝐵𝐵(𝑢𝑢𝑢,𝑢𝑢𝑢) +

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) +𝐹𝐹𝐹 . (5.4)

For a second-order statistical framework, an evolution equation for the covariance

matrix 𝑅𝑖𝑗 = 𝑍𝑖𝑍𝑗 can then be written as

𝑑R
𝑑𝑡

= ℒR + Rℒ* +𝒬𝜎 +𝒬, (5.5)

where ℒ is a linear operator expressing dissipation and energy transfers between the

mean field and the stochastic modes

ℒ𝑖𝑗 = [(𝐿+𝐷)𝑣𝑣𝑣𝑗 +𝐵𝐵𝐵(𝑢𝑢𝑢,𝑣𝑣𝑣𝑗) +𝐵𝐵𝐵(𝑣𝑣𝑣𝑗,𝑢𝑢𝑢)] · 𝑣𝑣𝑣𝑖, (5.6)

with ℒ* being its transpose. The operator (𝒬𝜎)𝑖𝑗 = (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑗) (𝜎𝜎𝜎𝑘 · 𝑣𝑣𝑣𝑖) models effects

due to the stochastic external forcing and 𝒬 corresponds to third-order effects that

express energy fluxes between different stochastic modes

𝒬𝑚𝑛 =
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑚𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑛𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑚.

(5.7)

In more detail, ℒ includes the effects of the linear operators on each mode, as well as

energy transfers between the mean and each mode via the energy-preserving nonlin-

ear operator. All these effects can be studied and understood under the framework

of second-order statistics. It is the mode-to-mode nonlinear energy transfers that re-
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quire knowledge of higher moments for their estimation. In order to close the system

for the covariance and the mean, a model for the third-order terms 𝒬 is required. To

this end, neural networks are utilized to parameterize them. The architecture and

constraints used are presented in the following subsections.

5.1.1 Physical constraints related to nonlinear energy trans-

fers

Before describing the details of the data-driven model for 𝒬, we note that an im-

portant feature of the presented closure scheme is the requirement to satisfy certain

physical principles, which characterize turbulent systems. More specifically, modes

that carry small energy or variance can still have important, dynamical effects on

the large variance modes through nonlinear energy transfers. A schematic of this

property can be seen in Fig. 5-1. The external force excites the mean, which then

through the linear part of the covariance equation ℒ transfers part of this energy

to the unstable modes. Since, these modes are unstable, the linear operator ℒ can

only increase them in amplitude. Hence, the only way for the system to reach a

statistical steady state is due to i) dissipation, and ii) the nonlinear terms 𝒬 transfer

energy from the unstable modes to the stable ones. Therefore, it is critical to ac-

curately represent the third-order closure terms. Using the fact that the quadratic

term is energy-preserving by construction, eq. (5.2) holds for 𝑢𝑢𝑢′ and thus, one gets

𝐵𝐵𝐵 (𝑢𝑢𝑢′,𝑢𝑢𝑢′) ·𝑢𝑢𝑢′ = 0. Taking the expectation of this relations and expanding it using eq.

(5.3) one gets

𝑁∑︁
𝑖=1

𝑁∑︁
𝑚=1

𝑁∑︁
𝑛=1

𝑍𝑚𝑍𝑛𝑍𝑖𝐵𝐵𝐵 (𝑣𝑣𝑣𝑚, 𝑣𝑣𝑣𝑛) · 𝑣𝑣𝑣𝑖 = 0, (5.8)

60



or in terms of the closure term[150]

Tr[𝒬] = 0. (5.9)

This constraint is enforced during training to improve the numerical stability of the

predictions. It is emphasized that correctly capturing this constraint is necessary for

the purpose of correctly modeling the energy exchanges between stable and unstable

modes and thus capturing the correct statistical steady steady of the system under

discussion.

FIG. 5-1. Energy flow in the systems under consideration.

5.1.2 Data-driven parametrization of the closure terms

While the dynamical systems under study are Markovian and spatially-local, i.e. the

evolution of u in a specific location and time instant depends only on the current

time instant and the current neighborhood, this is not the case for the reduced-

order averaged version of these equations. In particular, for the evolution of the

mean and covariance equations one typically does not have access to the full-state

information required to fully describe the evolution of the system (in this case third-

order moments).

61



As has been showcased by recently proposed data-driven schemes for dynamical

systems[178, 180], Takens embedding theorem can be used to enhance the accuracy

of predictions [168]. The theorem states that even if only a limited number of the

state variables of a system are observed, in principle, one can still obtain the attrac-

tor of the full system by using delay embeddings of the observed state variables. To

this end, the closure terms are parametrized with non-local in time (but still causal)

representations, based on Temporal Convolutional Networks [123] (TCN) and Long

Short-Term Memory networks[64] (LSTM). These ML architectures have been em-

ployed successfully in previous work [29] on computing turbulent closures just for

the mean equation (5.4).

In terms of spatial information, the entire mean field and the covariance are

utilized as input for the data-informed closure scheme. As a result, the closure terms

are modeled in the following form:

D𝑛,𝑚

[︀
Θ; 𝜉[𝜒(𝑡)]

]︀
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑚𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑛

+
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑍𝑖𝑍𝑗𝑍𝑛𝐵𝐵𝐵(𝑣𝑣𝑣𝑖, 𝑣𝑣𝑣𝑗) · 𝑣𝑣𝑣𝑚,

(5.10)

where 𝜉 = {𝑢𝑢𝑢,𝑅𝑅𝑅} are 2nd order statistics of the system, and 𝜒(𝑡) denotes the history

of the statistics state backwards from time 𝑡, i.e. 𝜒(𝑡) = {𝑡, 𝑡−𝜏1, ..., 𝑡−𝜏2, ..., 𝑡−𝜏𝑁}.

The entire mean field 𝑢𝑢𝑢 and covariance 𝑅𝑅𝑅 are used as input for the neural network.

The vector Θ denotes the hyperparameters of the neural network while the temporal

neighborhood, 𝜒(𝑡), is selected such that if further increased, the training error does

not significantly reduce any more. The number of points in time that have to be

considered depends on the temporal discretization of the domain.
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5.1.3 Objective function for training

In terms of the training process itself, the input and output data are normalized

as typically suggested [152]. The loss function for this problem is chosen to be the

single-step prediction mean square error superimposed with the physical constraint.

This can be formulated as

𝐿(Θ) =
1

𝑇

∫︁
𝑇

∑︁
𝑛

∑︁
𝑚

⃒⃒⃒⃒⃒⃒
D𝑛,𝑚

[︀
Θ; 𝜉

]︀
−𝒬𝑛,𝑚

⃒⃒⃒⃒⃒⃒2
𝑑𝑡+𝜆

∫︁
𝑇

Tr[𝒬]𝑑𝑡, (5.11)

where 𝜆 is a weight that measures the relative importance between the data and the

physical constraint, typically chosen to be 1.
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5.2 Applications

5.2.1 Triad system

The first application involves a three-dimensional dynamical system that consists of 3

Langevin equations coupled via quadratic and energy-preserving nonlinearities [106].

This triad system acts as a simple surrogate model for barotropic instability. It can

be viewed as the result of projection of the fluid equations to three modes, one corre-

sponding to the mean flow and the other two corresponding to wave perturbations.

Under these assumptions, the system has the form⎡⎢⎢⎢⎣
d𝑢1

d𝑢2

d𝑢3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−𝛾1 0 0

0 −𝛾2 0

0 0 −𝛾3

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐷

⎡⎢⎢⎢⎣
𝑢1

𝑢2

𝑢3

⎤⎥⎥⎥⎦ d𝑡

+

⎡⎢⎢⎢⎣
0 𝜆12 𝜆13

−𝜆12 0 𝜆23

−𝜆13 −𝜆23 0

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐿

⎡⎢⎢⎢⎣
𝑢1

𝑢2

𝑢3

⎤⎥⎥⎥⎦ d𝑡+

⎡⎢⎢⎢⎣
𝛽1𝑢2𝑢3

𝛽2𝑢1𝑢3

𝛽3𝑢1𝑢2

⎤⎥⎥⎥⎦
⏟  ⏞  

𝐵(u,u)

d𝑡

+

⎡⎢⎢⎢⎣
𝐹1

𝐹2

𝐹3

⎤⎥⎥⎥⎦ d𝑡+

⎡⎢⎢⎢⎣
𝜎1d𝑊1

𝜎2d𝑊2

𝜎3d𝑊3

⎤⎥⎥⎥⎦ ,

(5.12)

where 𝐷 and 𝐿 are respectively the symmetric and skew-symmetric component of

the linear operator, 𝐹1, 𝐹2, 𝐹3 correspond to deterministic external excitation and
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d𝑊1, d𝑊2, d𝑊3 are independent white-noise processes. It is also assumed that

𝛽1 + 𝛽2 + 𝛽3 = 0, (5.13)

to ensure that the quadratic term is energy-preserving. Interaction of this reduced-

order model with other modes of the full system is modeled via the white-noise terms

and linear dissipation, a standard practice in many stochastic climate models [88,

60, 36].

The goal of this section is to examine the triad system as a prototypical model

for turbulent anisotropic flows. A property of such flows is that the mean exhibits

persistent instabilities along certain directions in phase space. Under the assumption

that 𝑢1 corresponds to the mean-flow variable, this instability can be added to the

triad system via a negative 𝛾1 value. Linear dissipation is set as 𝛾1 = −0.4 and

𝛾2 = 𝛾3 = 2, following a previously presented setup [149]. The skew-symmetric

part is set as 𝜆12 = 0.03, 𝜆13 = 0.06 and 𝜆23 = −0.09. The coefficients of the

nonlinear term are set as 𝛽1 = 2 and 𝛽2 = 𝛽3 = −1. For the first test-case constant

deterministic external forcing is tested. To ensure that the perturbation variables

𝑢2, 𝑢3 are energetic (and thus remove energy from the mean), the deterministic forcing

is set to 𝐹1 = 0, 𝐹2 = −1 and 𝐹3 = 1. Finally, the white noise amplitudes are tuned

so as to ensure the system achieves a statistical steady state. For this to happen

the amplitudes are chosen as 𝜎1 = 0.25 and 𝜎2 = 𝜎3 = 0.79. Initial conditions are

sampled from the distribution⎡⎢⎢⎢⎣
𝑢1(0)

𝑢2(0)

𝑢3(0)

⎤⎥⎥⎥⎦ ∼
⎡⎢⎢⎢⎣
𝒩 (1, 0.5)

𝒩 (0.5, 0.2)

𝒩 (−0.5, 0.1)

⎤⎥⎥⎥⎦ . (5.14)
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For reference data, 105 samples of this system are computed (each time using

a new sample of both the white noise forcing and the initial conditions). Refer-

ence statistics of this dynamical systems are obtained from this MC simulation. All

simulations are carried out with time-step d𝑡 = 0.01 from 𝑡 = 0 till 𝑡 = 25. The

system is integrated in time using the forward Euler method. With respect to the

reduced-order model, a single-layer LSTM neural network is used during training.

FIG. 5-2. Comparison between MC (solid line) and reduced-order (dashed-line)
results for triad system with constant forcing. (a) Evolution of mean of the system;
(b) Evolution of off-diagonal components of covariance matrix; (c) Evolution of real
part of eigenvalues of 𝐿𝑣; (d) Evolution of total system variance and variance of each
mode; (e) Contour of the steady-state system pdf for 𝑢|𝑓(𝑢)=10−5 ; (f) Marginal pdfs
of the system at steady-state.

The statistical properties of the system as well as a comparison with the low-order

statistical predictions of the proposed data-informed method are depicted in figure 5-

2. Subplots (a) and (d) establish that 𝑢1 is indeed the most energetic mode of the

system and that the system achieves a statistical steady state. Furthermore, as seen

66



from the marginal on the 𝑢2 − 𝑢3 plane on subplot (f), the system exhibits strong

anisotropic behaviour in this plane. The reduced-order model is able to accurately

predict the statistical equilibrium of the system. In addition, it adequately captures

the intermittent dynamical evolution of the mean and variance of the system. The

good agreement with the MC data is observed despite the fact that the pdf of the

system is strongly non-Gaussian in the 𝑢3− 𝑢2 space and the mean variable 𝑢1 is by

construction linearly unstable.

FIG. 5-3. Comparison between MC (solid line) and reduced-order (dashed-line)
results for triad system with periodic forcing. (a) Evolution of mean of the system;
(b) Evolution of off-diagonal components of covariance matrix; (c) Evolution of real
part of eigenvalues of 𝐿𝑣; (d) Evolution of total system variance and variance of each
mode; (e) Contour of pdf at 𝑡 = 25 for 𝑢|𝑓(𝑢)=10−5 ; (f) Marginal pdfs of the system
at 𝑡 = 25.

The next test-case involves periodic forcing while the other parameters of the

system remain the same as before. In more detail, the deterministic part of the
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forcing is now set to

𝐹1 = 0, 𝐹2 = −1 + 0.5 sin
𝜋𝑡

2
, 𝐹3 = 1 + 0.2 cos

𝜋𝑡

2
. (5.15)

In addition, the parameters of the stochastic forcing are set to

𝜎1 = 0.25− 1.32

10
sin2 𝜋𝑡

2
, 𝜎2 = 𝜎3 = 0.79− 2

5
0.79 · 1.32 sin2 𝜋𝑡

2
. (5.16)

MC results for the system as well as a comparison with the results of the data-

informed closure scheme (trained with the previous set of forcing parameters) are

shown in figure 5-3(a, d). Again, despite the strongly non-Gaussian nature of the

problem (fig. 5-3 (b, e, f)) the closure scheme is able to accurately predict the first-

and second-order statistics throughout the duration of the simulation.

5.2.2 L96 model

As a next step, a higher-dimensional problem, with a large number of positive Lya-

punov exponents, is considered [93]. Specifically, the model under discussion is gov-

erned by the equation

d𝑢𝑖
d𝑡

= 𝑢𝑖−1(𝑢𝑖+1 − 𝑢𝑖−2)− 𝑢𝑖 + 𝐹, (5.17)

for 𝑁 = 40 and 𝐹 deterministic external forcing. This system acts as a prototypical

model to study baroclinic instability in midlatitude flows. The dynamics comprise of

an energy-conserving quadratic nonlinearity, a linear dissipation term and external

forcing. The forcing term is assumed to be spatially homogeneous, which as a result

implies that the system is translationally invariant in space. This property implies
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that Fourier modes can be used for the basis expansion and that the covariance matrix

can be assumed to be diagonal. One can observe that for different magnitudes of

forcing, the number of unstable modes changes (from 0 up to 11). Hence, this is

model is an excellent case to assess the presented method.

To illustrate numerically the UQ properties of the proposed closure scheme, the

model is trained and tested on an aperiodic forcing generated by the Ornstein-

Uhlenbeck process

𝑑𝐹 = − 1

𝜏𝐹
(𝐹 − 𝐹 )𝑑𝑡+ 𝜎𝐹𝑑𝑊, (5.18)

where 𝐹 is the mean value around which the process oscillates and 𝑑𝑊 models white

noise. Here we chose as modes 𝑣𝑛 the Fourier modes. Also, we do not perform any

covariance reduction, i.e. we model the full covariance matrix.

Training occurs with a single stochastic forcing realization. The reference statis-

tics are derived by averaging over a distribution of initial conditions. To derive the

required training data 104 direct numerical simulations are averaged. These statistics

allow for the calculation of the time-evolution of E[𝑢] and E[𝑍2
𝑛] = E{[(𝑢−E[𝑢])·𝑣𝑛]2}.

The neural network is then trained using the derived data and under the constraint

of Eq. (5.9), which is equivalent to the constrain that the quadratic operator should

be energy conserving. A single-layer LSTM neural network with 150-timesteps as

time-history is used. Testing of the closure scheme is carried out for 4 out-of-sample

random realizations of the forcing. Only 10 time-steps are used as initial input for

the neural network. Results are presented in Figure 5-4. For all realizations, we have

excellent agreement between the spectrum predicted from the data-driven closure

and the MC simulation. This is the case despite the strongly transient nature of the

excitation that pushes the system away from its statistical steady state.
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FIG. 5-4. Comparison of ML uncertainty quantification scheme with exact statistics
produced by the Monte-Carlo method. Results are shown for different dynamical
regimes of the aperiodic forcing parameter 𝐹 generated as an Ornstein-Uhlenbeck
process. The colorplots present the evolution of the exact and approximated spec-
trum. We also present the energy of the mean and the trace of the covariance over
time. At the last row we show the steady state spectrum (exact and approximate).
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5.2.3 Multiphase flow

The next test case is an anisotropic multiphase flow setup. It involves the advection

of bubbles, which are assumed to be passive inertial tracers, over an incompressible

fluid flow. The fluid flow is governed by the Navier-Stokes equations in dimensionless

form:
𝐷𝑢𝑢𝑢

𝐷𝑡
= −∇∇∇𝑝+ 1

Re
∆𝑢𝑢𝑢+ 𝜈∆−2𝑢𝑢𝑢+𝐹𝐹𝐹 , (5.19)

∇∇∇ · 𝑢𝑢𝑢 = 0, (5.20)

where 𝑢𝑢𝑢 is the velocity field of the fluid, 𝑝 its pressure, Re is the Reynolds number of

the flow, 𝐷/𝐷𝑡 is the material derivative operator and 𝐹𝐹𝐹 denotes an external forcing

term. Parameter 𝜈 is a hypoviscosity coefficient aiming to remove energy from large

scales and maintain the flow in a turbulent regime.

One can follow a similar process for the advection equation governing the motion

of small inertial tracers. In particular for small inertia particles their Lagrangian

velocity, 𝑣𝑣𝑣, is a small perturbation of the underlying fluid velocity field [54]:

𝑣𝑣𝑣 = 𝑢𝑢𝑢+ 𝜖

(︂
3𝑅

2
− 1

)︂
𝐷𝑢𝑢𝑢

𝐷𝑡
+𝑂

(︀
𝜖2
)︀
, (5.21)

where

𝜖 =
St
𝑅
≪ 1, 𝑅 =

2𝜌𝑓
𝜌𝑓 + 2𝜌𝑝

. (5.22)

The parameter 𝜖 represents the importance of inertial effects, while St is the bubble

Stokes number, measuring the ratio between the characteristic timescales of the

bubbles over that of the flow. Parameter 𝑅 is a density ratio with 𝜚𝑝 and 𝜚𝑓 being

the density of bubble and the fluid respectively. By introducing 𝜌 as the concentration

of tracers at a particular point, the following transport equation can be derived for
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the bubble flow:

𝜕𝑡𝜌+∇∇∇ · (𝑣𝑣𝑣𝜌) = 𝜈2∆
4𝜌. (5.23)

The right-hand-side of the transport equation represents a hyperviscosity term. The

hyperviscosity parameter is tuned so as to remove energy from scales close to the

resolution limit of the numerical simulations.

Utilizing the series expansion presented here for the variables of the problem:

𝑢𝑢𝑢 = 𝑢𝑢𝑢+
∑︁
𝑘

𝑍𝑘,𝑢, 𝑣𝑣𝑣𝑘,𝑢, 𝜌 = 𝜌+
∑︁
𝑘

𝑍𝑘,𝜌𝑣𝑘,𝜌, (5.24)

one can develop evolution equations for the mean and the variance for both the fluid

flow and the bubble flow. For the particular problem, the data-informed closure-

scheme is trained on data from unimodal jet flows (details of the jet configuration

have been presented previously[29]). The Reynolds numbers used in training are

Re ∈ {650, 750, 850}. The reference simulations are carried out on a 256 × 256

grid with doubly periodic boundary conditions on a [0, 2𝜋]2 rectangular domain. All

flows are evolved until they reach a statistical equilibrium. Since MC simulations are

prohibitively expensive for this problem, time-averaging is used for the derivation of

the energy spectra in the statistical equilibrium.

The derived closure is first tested on unimodal jets in the range Re ∈ [500, 1000].

For the mean-field model (eq. (5.4)) a coarse resolution of 32 × 32 is employed.

For the covariance of both the flow field and the density, Fourier modes are uti-

lized. Specifically, modes with wavenumber |𝑘| ≤ 48 are considered in the covariance

evolution (eq. (??)) that is complemented with the ML closures.

Figure 4-2 presents the space-time-averaged mean-square error between the 𝑥−𝑦
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locally averaged DNS flow field, 𝑢𝑢𝑢*, and the coarse scale model, 𝑢𝑢𝑢:

||𝑢𝑢𝑢* − 𝑢𝑢𝑢||22 =
1

(2𝜋)2𝑇

∫︁ 2𝜋

0

∫︁ 2𝜋

0

∫︁ 𝑡0+𝑇

𝑡0

(𝑢𝑢𝑢* − 𝑢𝑢𝑢)2 d𝑥𝑥𝑥d𝑡. (5.25)
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FIG. 5-5. Normalized mean-square error of each two-dimensional closure model using
TCN, LSTM and their constrained versions with the energy-conservation (5.4) for
unimodal jets. Training includes data for unimodal jets with Re ∈ {650, 750, 850}.

The numerical results of the presented scheme are compared with first-order clo-

sures where the ML correction is applied only on the mean equation (5.4) and the

covariance is not modeled [29]. For the 1st-order closure both TCN and LSTM ar-

chitectures were assessed. The constrained versions, cTCN and cLSTM, correspond

to closures where, in addition to the 𝐿2-error of the closure terms, the physical con-

straint related to the energy-preserving property of the advection term is included

(eq. (4.15)). As expected the second-order closure scheme outperforms the corre-

sponding first-order schemes, even using a coarser resolution. The inclusion of the

constraint significantly improves the accuracy of the predicted statistics for all cases.

Furthermore, to showcase the importance of using the constraint derived in eq. (5.9),

a version of the 2nd-order closure scheme with 𝜆 = 0 is also presented. As it can be

seen, numerical results are improved when including the constraint.

As an additional test-case, the closure scheme is tested on bimodal jets with Re ∈

[500, 1000] (details of the bimodal jet configuration have been presented previously[29]).
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The closure is trained on the same data set as before, i.e. on unimodal jets with

Reynolds number Re ∈ {650, 750, 850}. Figure 5-6 presents the space-time-averaged

mean-square error between the 𝑥 − 𝑦 locally averaged DNS flow field. In this case,

including the constraint during training not only improves numerical accuracy of the

results but allows us to avoid numerical instabilities for Reynolds numbers outside

the training data-set.

In Figure 5-7 we compare the energy spectra for the fluid and bubble flows as

obtained by DNS and the second order closure scheme. We also include a comparison

with the first-order closure obtained in previous work [29]. For both the unimodal

and bimodal jets we have accurate computation of the energy spectra of the fluid

flow and the advected bubble dispersion in the statistical equilibrium. Furthermore,

the second order model clearly outperforms the corresponding first-order scheme,

indicating that incorporating additional physics through the second order equation

is leading to better performance and improved stability, albeit the additional com-

putational cost.
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FIG. 5-6. Normalized mean-square error for different closure models and their con-
strained versions for bimodal jets. Training utilizes data for unimodal jets with
Re ∈ {650, 750, 850}.
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FIG. 5-7. Energy spectra for the fluid flow and bubble flow for (a) a unimodal jet
with Re = 800 and (b) a bimodal jet with Re = 800.
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5.2.4 Application to quasi-geostrophic (QG) flows

The last test-case involves a quasi-geostrophic (QG) model. The quasigeostrophic

model stems from shallow-water equations for horizontally dominated (i.e. columnar)

motion of homogeneous fluid in each (thin) layer:

𝐷𝑢

𝐷𝑡
+ 𝑓 × 𝑢 = −𝑔∇𝜂, and

𝜕ℎ

𝜕𝑡
+∇ · (𝑢ℎ) = 0, (5.26)

where ℎ = 𝜂+𝐻 is the total depth of a single layer, 𝑢 is the velocity field and 𝑓 the

Coriolis accelearation. The quasigeostrophic equation arises when one considers only

nearly geostrophic motions (which we must consider independent of ageostrophic

phenomena as well). Under these assumptions one has the simplifications

𝜓 =
𝑔𝜂

𝑓0
, and

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
− 𝜕𝜓

𝜕𝑦

𝜕

𝜕𝑥
+
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
, (5.27)

with 𝜓 being the streamfunction describing the horizontal flow. Under these condi-

tions one can derive the quasigeostrophic equation (for a single layer)

𝜕𝑞

𝜕𝑡
+ 𝐽(𝜓, 𝑞) = 0, (5.28)

where 𝑞 is the potential vorticity defined as

𝑞 = ∇2𝜓 + 𝑓 − 𝑓 2
0

𝑔𝐻0

𝜓 + 𝑓0
𝐻0 −𝐻(𝑥, 𝑦)

𝐻0

. (5.29)

As a result, potential vorticity determines the velocity field that transports it, and

thus the dynamics of the flow are completely controlled by it. While quasi-geostrophic

models can have an arbitrary number of layers, we focus on a 2-layer quasi-geostrophic

(QG) model. model considered here[130] consists of an advection-diffusion equation
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for the potential vorticity 𝑞𝑖, in each of two immiscible layers with fractional layer

thickness

𝛿 = 𝐻1/𝐻0, 1− 𝛿 = 𝐻2/𝐻0, (5.30)

respectively (where 𝐻0 = 𝐻1 +𝐻2) and mean zonal velocities 𝑈1 > 𝑈2. The domain

under discussion is a square doubly periodic domain with rigid-lid surface boundary

conditions. The governing equations for the potential vorticity (PV) of each layer

become

𝜕𝑡𝑞1 =− 𝐽(𝜓1, 𝑞1)− 𝛽𝜕𝑥𝜓1

− (𝑈1 − 𝑈2)𝐿
−2
𝑃 (1− 𝛿)𝜕𝑥𝜓1

− (𝑈1 − 𝑈2)(1− 𝛿)𝜕𝑥𝑞1 + 𝐹1,

(5.31)

and

𝜕𝑡𝑞2 =− 𝐽(𝜓2, 𝑞2)− 𝛽𝜕𝑥𝜓2

+ (𝑈1 − 𝑈2)𝐿
−2
𝑃 𝛿𝜕𝑥𝜓2

+ (𝑈1 − 𝑈2)𝛿𝜕𝑥𝑞2 + 𝐹2 − 𝑟∇2𝜓2,

(5.32)

where the field 𝑞1 corresponds to the upper-layer PV and 𝑞2 to the bottom-layer

PV, with 𝜓𝑖 being the respective streamfunctions and 𝐽(𝑎, 𝑏) = 𝜕𝑥𝑎𝜕𝑦𝑏 − 𝜕𝑦𝑎𝜕𝑥𝑏 is

the Jacobian operator. The 𝛽 terms arise from the variation of the vertical projection

of Coriolis frequency with latitude and the 𝑘2𝑑 terms result from the imposed shear.
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FIG. 5-8. Typical snapshots (vorticity fields) of the (a) barotropic and (b) baroclinic
mode for baroclinic ocean turbulence at high latitudes.

Potential vorticity is defined via the following relations

𝑞1 = ∇2𝜓1 −
𝑓 2
0

𝑔′𝐻1

(𝜓1 − 𝜓2),

𝑞2 = ∇2𝜓2 +
𝑓 2
0

𝑔′𝐻2

(𝜓1 − 𝜓2) + 𝑓0
ℎ𝑏
𝐻2

.

(5.33)

The dynamics can also be described in terms of the barotropic and baroclinic

modes and their corresponding streamfunctions

𝑞𝑡 = 𝛿𝑞1 + (1− 𝛿)𝑞2 = ∇2𝜓𝑡

𝜓𝑡 = 𝛿𝜓1 + (1− 𝛿)𝜓2

𝑞𝑐 =
√︀
𝛿(1− 𝛿)(𝑞1 − 𝑞2) = (∇2 − 𝑘2𝑑)𝜓𝑐

𝜓𝑐 =
√︀
𝛿(1− 𝛿)(𝜓1 − 𝜓2).

(5.34)

The model dynamics can then be rewritten in terms of the barotropic and baroclinic
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modes. For periodic boundary conditions with a flat bottom, this yields

𝜕𝑡𝑞𝑡 =− 𝐽(𝜓𝑡, 𝑞𝑡)− 𝐽(𝜓𝑐, 𝑞𝑐)

− (1− 𝛿)𝑟∇2(𝜓𝑡 − 𝑎−1𝜓𝑐)

− 𝑈𝜕𝑥∇2𝜓𝑐 − 𝛽𝜕𝑥𝜓𝑡 − 𝜈∇4𝑞𝑡

𝜕𝑡𝑞𝑐 =− 𝐽(𝜓𝑡, 𝑞𝑐)− 𝐽(𝜓𝑐, 𝑞𝑡)− 𝜉𝐽(𝜓𝑐, 𝑞𝑐)

+
√︀
𝛿(1− 𝛿)𝑟∇2(𝜓𝑡 − 𝑎−1𝜓𝑐)− 𝛽𝜕𝑥𝜓𝑐

− 𝑈𝜕𝑥(∇2𝜓𝑡 + 𝜆2𝜓𝑡 + 𝜉∇2𝜓𝑐)− 𝜈∇4𝑞𝑐,

(5.35)

where

𝜆2 = 𝑘2𝑑, 𝜉 =
1− 2𝛿√︀
𝛿(1− 𝛿)

, (5.36)

with 𝜉 expressing the triple interaction coefficient and 𝑈 =
√︀
𝛿(1− 𝛿) (𝑈1 − 𝑈2) is

the shear intensity. Three different regimes can be distinguished for this model, des-

ignated by values of the model parameters: (i) ‘low latitude’ or weakly supercritical

(𝛽 ≈ 𝑘2𝑑/2, 𝑟 = 1), (ii) ‘mid latitude’ or moderately supercritical (𝛽 ≈ 𝑘2𝑑/4, 𝑟 = 4)

and (iii) ‘high latitude’ or strongly supercritical (𝛽 ≈ 0, 𝑟 = 16). Hence, 𝛽 decreases

as latitude increases, while the bottom friction coefficient 𝑟 is increased with in order

to keep the inverse energy cascade from reaching the resolution limit. The drag co-

efficient varies as 𝛽 changes to control the scale at which the inverse energy cascade

is absorbed.
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FIG. 5-9. (a): Barotropic, baroclinic and total energy with respect to the wavenum-
ber |𝑘|. (b): Wavenumber-averaged heat flux normalized over its maximum value;
Stability indicator: max|𝑘𝑘𝑘|=𝑘 Re𝜆𝑖(𝑘) normalized over its maximum magnitude,
where 𝜆𝑖(𝑘) are the vertical eigenvalues for each wavenumber; Wavenumber-averaged
BT/BC nonlinear energy fluxes.

The results presented here are derived for parameters 𝛿 = 0.2, 𝑟 = 9, 𝛽 = 10

and 𝜆 = 10; a set of parameters that corresponds to baroclinic ocean turbulence at

high-latitudes. A typical snapshot of the 𝑞𝑡, 𝑞𝑐 is shown in Fig. 5-8. Typical energy

properties of such flows are shown in Fig. 5-9.

For the implementation of the presented method, the potential vorticity is ex-

panded to

𝑞𝑗 =
𝑁∑︁
𝑖=1

𝑍𝑖(𝑡)𝑣𝑖. (5.37)

Due to the periodicity of the domain, Fourier modes are used as a basis.

To test the performance of the closure scheme, we first train the model for 𝑈 =

1.00 and to assess its performance we test it for different mean velocity, chosen within

the interval 𝑈 ∈ [0.75, 1.25]. For training, validation and testing the flow is solved
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FIG. 5-10. Comparison between DNS results (dashed line) and ML results (solid
line) for (a-b) percentage comparison of the average energy and heat flux for different
shear stresses and (c-j) energy and heat flux radially averaged spectrum for 4 different
testing cases.
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FIG. 5-11. Comparison between DNS simulations and ML model for 𝑈 = 0.95.
Results show total energy spectrum and heat flux. The black dashed line is the
−10%max𝑘|⟨𝐻𝑓⟩𝑘𝑙| contour of the heat flux field.

FIG. 5-12. Comparison of barotropic and baroclinic energy between spectral code
and ML-closure scheme for 𝑈 = 0.95.
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assuming doubly periodic lateral boundary conditions and a 256×256 descritization.

For the coarse-scale simulations a discretization 48×48 is utilized for the mean flow,

while for the covariance we include all Fourier modes with wavenumbers |𝑘𝑘𝑘| ≤ 16.

To assess the performance of the closure scheme, the first metric used will be the

energy of the system and its spectrum

𝐸total = 𝐸t + 𝐸c

=
∑︁
𝑘𝑘𝑘

[︁
|𝑘𝑘𝑘|2|𝜓𝑘,𝑙|2 +

(︀
|𝑘𝑘𝑘|2 + 𝜆2

)︀
|𝜏𝑘,𝑙|2

]︁
,

(5.38)

where 𝐸t and 𝐸c are the energy carried by the barotropic and baroclinic modes

respectively. Parameters 𝑘 and 𝑙 signify the zonal and meridional component of

wavenumber, respectively. Furthermore, the heatflux and its spectrum will also be

used as metrics

𝐻𝑓 =
𝜆

𝑈2

∑︁
|𝑘𝑘𝑘|

𝑖𝑘𝑘𝑘𝑞𝜓,𝑘𝑙𝑞
*
𝜏,𝑘𝑙

|𝑘𝑘𝑘|2 (|𝑘|2 + 𝜆2)
. (5.39)

In Figure 5-10 the total mean energy and heatflux are shown for different values

of 𝑈 ∈ [0.75, 1.25]; we present the results from the coarse resolution solver with the

ML closures and compare these with the DNS. We also show the radially-averaged

energy and heatflux spectra and note the favorable comparison between the DNS

results and the data-informed closure-scheme. For a more detailed comparison, the

energy and heatflux spectra for the case 𝑈 = 0.95 are also computed. Results are

presented in Fig. 5-11, where the total normalized energy spectrum, the heat flux

and nonlinear energy fluxes are compared with DNS calculations. In Fig. 5-12 the

energy components carried by the barotropic and baroclinic modes respectively are

also compared with DNS results. In all cases, the coarse-scale simulation is able to
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FIG. 5-13. Comparison of pdf of deviations between DNS (red line), 1st-order-closure
(green line), 2nd-order-closure (blue line). The best fitted Gaussian pdf for the DNS
results (black line) is also shown with dashed line. Results are shown for (a) high
latitude. and (b) mid latitude atmospheric flows.

accurately capture the equilibrium statistics of the flow.

Furthermore, in Fig. 5-13 the marginal pdfs for the leading modes 𝜓(1,0), 𝜓(0,1) of

the barotropic streamfunction 𝜓 = (𝜓1 + 𝜓2) /2 are presented. Training takes place

for flows with parameters (𝛽, 𝑟) = (0.8, 0.2), (1.5, 0.1), (2.5, 0.1). We compare the

closure schemes for two cases: the mid-latitude case that corresponds to 𝑘𝑑 = 4, 𝛽 =

2, 𝑟 = 0.1, and the high-latitude case that corresponds to 𝑘𝑑 = 4, 𝛽 = 1, 𝑟 = 0.2.

We also include a comparison with the first-order closure scheme [29]. The first-

order closure results use the same resolution as the presented closure, with a TCN-

based architecture and a constraint to the loss function that enforces the energy-

preserving property of the quadratic nonlinearity of the system. We observe that

the second-order closure captures very accurately the non-Gaussian structure of the

pdf. This is not the case for the first-order closure which typically underestimates

the variance but also misses the bimodal character of the mode 𝜓(0,1). Similarly, in
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FIG. 5-14. Comparison of pdf of streamfunctions between DNS (red line), 1st-order-
closure (green line), 2nd-order-closure (blue line). Results are shown for (a) high
latitude. and (b) mid latitude atmospheric flows.

Fig. 5-14, the pdf of the top and bottom layer streamfunctions are shown. Again, the

proposed 2nd-order closure outperforms the 1st-order closure scheme. Discrepancies

in the tails of the pdf may be due to unresolved high wavenumbers, especially since

the large-scale modes seem to be well approximated by the 2nd-order scheme. Finally,

it is noted that training the second-order scheme with the same hyperparameters but

setting 𝜆 = 0 yields a closure that becomes unstable as the flow evolves, highlighting

the importance of the constraint in numerical stability.
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Chapter 6

Nonintrusive statistical corrections of

climate models

Abstract

In the previous chapters, online hybrid closure schemes were presented. This chap-
ter discusses a non-intrusive systematic framework for improving the predictions of
statistical quantities for turbulent systems. The focus here lies on correcting climate
simulations obtained by coarse-scale models, in an offline manner. Specifically, failure
to incorporate all relevant scales in climate simulations leads to discrepancies in the
energy spectrum as well as higher order statistics. While high resolution simulations
or reanalysis data are available, at least for short periods, they cannot be directly used
as training datasets to machine learn a correction for the coarse-scale climate model
outputs, since chaotic divergence, inherent in the climate dynamics, makes datasets
from different resolutions incompatible. To overcome this fundamental limitation
we employ coarse-resolution model simulations nudged towards high quality climate
realizations. The nudging term is sufficiently small to not “pollute” the coarse-scale
dynamics over short time scales, but also sufficiently large to keep the coarse-scale
simulations “close” to the reference trajectory over larger time scales. We emphasize
that the nudging step is used only for the training phase. Once training is complete,
we perform free-running coarse-scale simulations without nudging and use those as
input to the machine-learned correction operator to obtain high-quality (corrected)
outputs. Results are shown for quasi-geostrophic flows and realistic climate data.

87



6.1 Method formulation

Accurate statistical climate predictions require high-fidelity simulations that come

with large computational cost. As a result, improving upon the predictions of coarse-

scale climate models has become a critical goal in order to develop credible climate

scenarios. The developed method aims to augment the accuracy of statistical proper-

ties of coarse-scale free-running (i.e. without the influence of observations which are

obviously not available for future projections) climate models, via corrections based

on past data. While many approaches tackle this problem with an online (i.e. intru-

sive) correction term in the evolution equations of the model, they usually face severe

stability issues. To circumvent this obstacle, a non-intrusive approach is developed.

Hence, after a free-running coarsely resolved climate output has been generated, the

hybrid approach corrects the model output in a post-processing manner. A reference

high-fidelity dataset is selected for testing the effectiveness of the scheme.

Since the goal of the approach is to correct the long-time statistics of coarse-

scale climate simulations in a post-processing manner, it is important to isolate

the main discrepancies between the coarse-scale simulations and the reference data

that are responsible for these differences. In general, discrepancies between two

turbulent simulations, one high-fidelity (i.e. reference) and one free-running coarse,

can be grouped into two categories: (i) discrepancies due to chaotic divergence; (ii)

discrepancies due to deformation of the attractor due to coarse-scale resolution.

Chaotic divergence is an intrinsic property of turbulent systems. It can be ob-

served even between two solutions of the same dynamical system, with ever slightly

different initial conditions. It is a manifestation of the fact that by definition, at

least one of the eigenvalues of the linear part of the system is positive. As a result,

infinitesimal energy transferred to perturbations along these directions will result
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in finite magnitude perturbations. The system is allowed to equilibrate with the

intervention of nonlinear terms that will transfer this energy from the unstable per-

turbations to stable ones. However, the two deviating trajectories will still remain

on the same attractor and thus retain the same statistical properties. Therefore

these chaos-induced discrepancies should not contribute to the correction scheme for

long-time statistics.On the other hand, difference in long-time statistics implies a

different statistical steady-state and thus different attractors. These intrinsic dy-

namical differences between the simulations produce energy discrepancies in various

scales between the produced datasets. It is exactly these corrections we aim to learn

and fix.

FIG. 6-1. Description of the method that learns a map between the attrac-
tor of the coarsely-resolved equations and the attractor of the reference trajectory.
Left: the red dashed curve represents a reference trajectory. The black curve is a
coarsely-resolved nudged trajectory towards the reference trajectory. The blue curve
is the free-run coarsely-resolved trajectory that is not used for training (shown for
reference). Right: the target attractor and the target trajectory (red), same as the
dashed curve shown at the left plot. For training we use the coarsely-resolved nudged
trajectory as input and the reference trajectory as output to machine learn a map
between them. After we obtain the map we use as input coarsely-resolved free-run
simulations (blue) and obtain a trajectory that accurately captures the shape of the
target attractor.
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Given the two previous observations, it is clear that it is not possible to use a

dataset of free-running climate simulations and a reference simulation and try to

machine learn a map between the two. To eliminate the problematic component,

i.e. chaos-induced divergence we design a new coarse-scale dataset (we call it nudged

and denote it as X𝑐,𝑛). Ideally, one can produce a dataset that is preserving the

coarse-scale behavior of the climate model but does not suffer from the chaos-induced

divergence with respect to the reference solution. To this end, the concept of nudging,

that has been used extensively in the context of data assimilation [166, 191], is

employed. Specifically, we utilize the coarse-scale solver with an extra term, the

nudging term, that is ‘pulling’ the coarse-scale solution close to the reference solution:

𝜕X𝑐,𝑛

𝜕𝑡
= 𝒟 (X𝑐,𝑛) + 𝒫 (X𝑐,𝑛) +𝒩

(︀
X𝑐,𝑛;X

ref)︀ , (6.1)

where 𝒟 correspond to the dynamics, 𝒫 corresponds to physics terms and the relax-

ation term 𝒩 is called the nudging tendency and it corrects the coarse-scale solution

based on the reference solution. The non-rigorous separation between dynamics and

physics is done to exemplify that the two terms are resolved in a different manner

in the E3SM solver. In this study, the nudging tendency 𝒩 is given by the algebraic

term

𝒩
(︀
X𝑐,𝑛 −Xref)︀ = −1

𝜏

(︀
X𝑐,𝑛 −ℋ

[︀
Xref]︀)︀ . (6.2)

Parameter 𝜏 is a relaxation timescale that has a large value (so that 1/𝜏 is small

compared with the other terms in the equation), and ℋ is an operator that maps

Xref to the coarse resolution. A schematic of the proposed mapping learned during

training can be seen in fig. 6-1. The resulted nudged trajectory (black curve on the
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right panel) is subjected to this very small perturbation, the nudging term that is

keeping it close to the reference trajectory. Moreover, because the overall magnitude

of the nudging term is very small the long-time statistics of the coarsely resolved

before-nudge trajectory should be close to that of the free-running coarsely-resolved

trajectory that starts from the before-nudge state (shown with blue color). The

latter will naturally diverge from the reference solution if not continuously being

nudged due to chaotic properties, even if it was initiated very close to it. Having

the before-nudge trajectory we can now use it to machine learn a scheme that will

map it to the reference trajectory. That is the basic approach of our framework. We

emphasize that nudging is used ONLY for the generation of training data. Once the

map has been trained we will feed it with free-run simulations (i.e. free-run coarse-

scale climate simulations without nudging) to obtain outputs that have corrected

long-time statistics, i.e. represent the target attractor accurately.

FIG. 6-2. Schematics of the training process (top) and testing process (bottom), for
the non-intrusive hybrid method.
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The resulting training and testing process are described in fig. 6-2. During train-

ing, the Nudged solver is used to produce training data. After a spectral correction

of the data (described in the next section), the resulting R-nudged dataset is used

as input for the neural network. The neural network then learns a mapping be-

tween the reference data and the input R-nudged dataset. The neural network used

is described in detail in subsection ‘Neural Network Architecture’. During testing,

the coarse-scale solver is used to generate a free-running coarse-scale dataset. This

dataset is used as input to the trained neural network which produces a corrected

dataset with the desired statistics. Hence, during testing, the model is not assessed

in its ability to mimic the reference data snapshot-by-snapshot but by its ability to

learn its underlying statistics.

Revisiting the nudging procedure, parameter 𝜏 is chosen so the nudged solution

X𝑐 satisfies two properties: (a) it reduces the divergence of the nudged simulation

from the reference solution ℋ
[︀
Xref

]︀
, i.e. allowing for a generalizable mapping be-

tween the two datasets; (b) it resembles the statistical properties of the coarse-scale

free-running simulation. The second property is important in the context of machine

learning to ensure that the learned mapping during training will be applicable while

testing using coarse data. This implies that the attractor of the Nudged simulation

has the same shape as the attractor of the free-running coarse-scale dataset. However,

no parameter 𝜏 can be found that explicitly satisfies this condition. This is due to

the arbitrariness of the algebraic form of the nudging term. While an algebraic term

is easily implemented it yields a constant dissipation rate across all wavenumbers

which are in general not consistent with the dynamics of the system. This leads to

suppression of extreme events and thus statistics with less heavy tails. A remedy for

this issue is show in subsection ‘Spectral Correction of Nudged Dataset’, where the

energy spectrum of nudged simulations is brought closer to that of the coarse-scale
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free-running.

6.2 Application to quasigeostrophic flows

The first model under investigation simulates two-layer quasigeostrophic flows. In a

dimensionless form, its evolution equation is given by

𝜕𝑞𝑗
𝜕𝑡

+ 𝑣𝑣𝑣𝑗 · ∇∇∇𝑞𝑗 +
(︀
𝛽 + 𝑘2𝑑𝑈𝑗

)︀ 𝜕𝜓𝑗
𝜕𝑥

= −𝛿2,𝑗𝑟∆𝜓𝑗 − 𝜈∆𝑠𝑞𝑗, (6.3)

where 𝑗 = 1, 2 corresponds to the upper and lower layer respectively and the flow is

defined in the horizontal domain (𝑥, 𝑦) ∈ [0, 2𝜋]2. Doubly periodic boundary condi-

tions are assumed. A mean zonal flow of intensity 𝑈1 = 𝑈 and 𝑈2 = −𝑈 is imposed

on each layer respectively. The two layers are assumed to have the same width,

𝑘𝑑 denotes the deformation radius, 𝑟 the bottom-drag coefficient and 𝛽 is the beta-

plane approximation parameter. The potential vorticity (PV) 𝑞𝑗 and corresponding

streamfunction 𝜓𝑗 are related via the inversion formulae

𝑞𝑗 = ∆𝜓𝑗 +
𝑘2𝑑
2
(𝜓3−𝑗 − 𝜓𝑗) , 𝑗 = 1, 2. (6.4)

The quasigeostrophic model described by eq. (6.3) is used here to simulate mid

latitude and high latitude atmospheric flows that are forced by an imposed shear

current [134]. While in the previous chapter quasigeostrophic flows were used to

study oceanic turbulence cases, here we focus on atmospheric flows since subsequently

the model will be applied to predict ERA5 atmopheric reanalysis data. The principal

parameter to be varied is the beta-plane approximation parameter 𝛽. To locate an

interval of values for 𝛽 that correspond to physically relevant simulations, the Coriolis
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acceleration need to be taken into account. Taking into account the dimensionless

form of eq. (6.3), the Coriolis frequency at some latitude 𝜑0 is defined as

𝑓 = 2
Ω𝐿𝑦
𝑈scale

sin
(︁
𝜑0 + 𝐿𝑦

𝑦

𝑅

)︁
, (6.5)

where Ω is the frequency of the rotation of the earth and set to Ω = 7.2925 ·

10−5 [rad/sec]. 𝑅 is the radius of the earth and set to 𝑅 = 6378 [km]. Parame-

ters 𝐿𝑦 and 𝑈scale are scales for the meridional extent and velocity field respectively.

(a) (b)

FIG. 6-3. (a) Schematic of beta-plane approximation on a globe. (b) The meridional
extent that the simulations with 𝛽 ∈ [1, 2] correspond to.

A schematic depicting the domain on a globe is seen at fig. 6-3, subfigure (a).

Utilizing a Taylor expansion, the beta-plane approximation coefficient arises from

𝑓 = 2
Ω𝐿𝑦
𝑈scale

sin𝜑0 + 2Ω
𝐿2
𝑦

𝑈scale

cos𝜑0

𝑅
𝑦 +𝑂

(︂
𝐿2
𝑦

𝑦2

𝑅2

)︂
≈ 2

Ω𝐿𝑦
𝑈scale

sin𝜑0 + 2Ω
𝐿2
𝑦

𝑈scale

cos𝜑0

𝑅⏟  ⏞  
𝛽

𝑦
. (6.6)
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For atmospheric flows, a standard assumption is 𝐿𝑦 ∼ 330 [km] and 𝑈scale ∼ 100 [m/sec].

Hence, a range of 𝛽 values for midlatitude and high latitude cases, corresponds to

𝛽 ∈ [1, 2]. Indeed, one can check that 𝛽 = 1 corresponds to 𝜑0 ≈ 29o and 𝛽 = 2

corresponds to 𝜑0 ≈ 64o. The extent of this regime on a globe map is seen in fig. 6-3,

subfigure (b) and relevant parameter values can be seen in table 6.1.

In this investigation, neural networks are trained given as input the predictions

of a free running coarse-scale simulation (𝜓coarse
1 , 𝜓coarse

2 ) of eq. (6.3), with the target

output being a modified time-series
(︀
e.g. 𝜓ML

1 , 𝜓ML
2

)︀
that will have the same statistics

as a fine-scale reference simulation
(︀
𝜓ref
1 , 𝜓ref

2

)︀
. The de-coupling of the data-informed

correction process and the initial simulation phase is justified by the fact that the goal

is not to make phase corrections at each time-step but retrieve the correct statistics

for the current flow parameters.

regime 𝛽 𝑘𝑑 𝑈 𝑟 𝜈 𝑠

atmosphere, high lat. 1 4 0.2 0.1 1× 10−13 4

atmosphere, mid lat. 2 4 0.2 0.1 1× 10−13 4

Table 6.1. Parameter values for different atmosphere regimes.

As discussed in section 6.1, it is not feasible for a neural network to learn a

generalizable mapping directly between (𝜓coarse
1 , 𝜓coarse

2 ) and
(︀
𝜓ref
1 , 𝜓ref

2

)︀
. To that end,

to produce coarse-scale simulations for training, a relaxation term 𝑄 is added to the

evolution eq. (6.3) to become

𝜕𝑞𝑗
𝜕𝑡

+ 𝑣𝑣𝑣𝑗 · ∇∇∇𝑞𝑗 +
(︀
𝛽 + 𝑘2𝑑𝑈𝑗

)︀ 𝜕𝜓𝑗
𝜕𝑥

= −𝛿2,𝑗𝑟∆𝜓𝑗 − 𝜈∆𝑠𝑞𝑗 +𝑄
(︁
𝑞𝑗 − 𝑞𝑟𝑒𝑓𝑗

)︁
, (6.7)

where 𝑗 = 1, 2. The term 𝑄 is called nudging tendency and it corrects the coarse-
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scale solution based on the fine-scale reference solution. In this study, the nudging

tendency 𝑄 is given by the algebraic term

𝑄
(︀
𝑞𝑗 − 𝑞ref

𝑗

)︀
= −1

𝜏

(︀
𝑞𝑗 −ℋ

[︀
𝑞ref
𝑗

]︀)︀
. (6.8)

FIG. 6-4. Pdfs of wavenumber amplitudes (a) 𝜓(0,1) and (b) 𝜓(1,1) of the barotropic
mode for various simulations. Time evolution of the zonally-averaged profile of the
top layer streamfunction for (c) coarse-scale free running simulation (d) reference
fine-scale simulation (e) nudged coarse-scale simulation for 𝜏 = 16. Flow parameters
correspond to the mid latitude case with 𝛽 = 2.0 and 𝑟 = 0.1.

Parameter 𝜏 is a relaxation timescale to be determined, and ℋ is an operator that

maps 𝑞ref
𝑗 to the coarse resolution. In this particular test case, ℋ simply removes the

high-frequency wavenumbers from the reference solution. Parameter 𝜏 is chosen so as

the nudged solution 𝑞nudged
𝑗 satisfies two properties: (i) it stops the nudged simulation

from diverging from the reference solution 𝑞ref
𝑗 , i.e. allowing for the mapping between

the two time histories (ii) it resembles the statistical properties of the coarse-scale
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free running simulation. The second property is important to ensure that the map-

ping learned during training, will be applicable during testing with un-nudged data

(𝜓coarse
1 , 𝜓coarse

2 ). As can be seen in fig. 6-4, a value that approximately satisfies both

properties is 𝜏 = 16.

6.2.1 Reverse Spectral Nudging

As discussed in section 6.1 , using algebraically nudged data for training, yields pre-

dictions with biases in the tails of the statistics. A main reason for the discrepancies

is due to different statistical behaviour of the nudged solution with respect to the

free-running coarse data.

1 2 4 8 

10-4

10-2

100

1 2 4 8 

10-4

10-2

100

1 2 4 8 

10-4

10-2

100

1 2 4 8 

10-4

10-2

100

(a) (b)

FIG. 6-5. (a) Energy spectra of the Top layer, bottom layer, barotropic and baroclinic
mode. (b) Predictions of zonally-averaged streamfunctions for reference simulation,
coarse-scale free runing simulation and coarse-scale R-nudged simulation.

One can observe this from fig. 6-4, where the statistics of the nudged solution
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differ when computing the pdf of 𝜓(1,1). This is a result of discrepancies in the energy

spectrum of the nudged solution with respect to the coarse-scale solution, which can

be seen in fig. 6-5 for the same flow parameters and 𝜏 = 24. These energy spectra

differences lead to different statistical behaviours of testing data (𝜓coarse
1 , 𝜓coarse

2 ) and

training data
(︁
𝜓nudge
1 , 𝜓nudge

2

)︁
.

Discrepancies in the training and testing input distributions will lead to the

neural network behaving differently in the two schemes [152]. To remedy the en-

ergy spectra differences between the testing data (𝜓coarse
1 , 𝜓coarse

2 ) and training data(︁
𝜓nudge
1 , 𝜓nudge

2

)︁
, a new method is developed and employed. The process is called

‘Reverse Spectral Nudging’ with its purpose being to match the energy spectrum

of the nudged solution to that of the coarse-scale solution to improve the training

process. Hence, while traditional nudging schemes correct the coarse-scale solution

with data from the reference solution, the proposed scheme further processes the

nudged data by matching its energy spectrum to that of the corresponding free run-

ning coarse-scale flow. The corrected nudged data is termed as
(︁
𝜓RS-nudge
1 , 𝜓RS-nudge

2

)︁
and defined as

𝜓RS-nudge
𝑖 (𝑥, 𝑦, 𝑡) =

∑︁
𝑘,𝑙

𝑅𝑘,𝑙𝜓
nudge
𝑘,𝑙 (𝑡)𝑒𝑖(𝑘𝑥+𝑙𝑦), , (6.9)

where 𝜓nudge
𝑘,𝑙 (𝑡) are the spatial Fourier coefficients of

(︁
𝜓nudge
1 , 𝜓nudge

2

)︁
and

𝑅𝑘,𝑙 =

√︃
ℰcoarse
𝑘,𝑙

ℰnudge
𝑘,𝑙

, and ℰ𝑘,𝑙 =
1

𝑇

∫︁ 𝑇

0

𝐸̂𝑘,𝑙(𝑡)d𝑡 =
1

𝑇

∫︁ 𝑇

0

|𝜓𝑘,𝑙(𝑡)|2d𝑡. (6.10)

This scheme produces new data that have exactly the energy spectrum of the free

running coarse simulation. Hence, training and testing data come from the same
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distributions. This property improves significantly the accuracy of the resulted ML

scheme. In fig. 6-5, subfigure (a) demonstrates for a mid latitude flow that the energy

spectra of the R-nudged solution coincide with the coarse-scale free running spectra.

In addition, subfigure (b) shows that the R-nudged data still follow the reference

data, allowing for a mapping between
(︁
𝜓R-Nudge
1 , 𝜓R-Nudge

2

)︁
and

(︀
𝜓ref
1 , 𝜓ref

2

)︀
.

6.2.2 Loss Function

The first term to be used in the loss function is the 𝐿2-error of the streamfunction

predictions:

𝐿 =
2∑︁
𝑗=1

∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

(︀
𝜓ML
𝑗 − 𝜓ref

𝑗

)︀2
d𝑥d𝑦. (6.11)

To introduce some physical consistency in the predictions of the neural network,

physical constraints are also incorporated. Let ℎeq
𝑗 be the equilibrium depth of layer

𝑗 and ℎ
′
𝑗 be a local variation from this depth. It then naturally follows from mass

conservation of an incompressible flow that

∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

ℎ
′

𝑗d𝑥d𝑦 = 0, 𝑗 = 1, 2. (6.12)

Using geostrophic balance, depth variations can be related to the streamfunction via

the equations

𝜓1 =
𝑔

ℎ0

(︁
ℎ

′

1 + ℎ
′

2

)︁
, 𝜓2 =

𝑔

ℎ0

(︁
ℎ

′

1 + ℎ
′

2

)︁
+
𝑔′

𝑓0
ℎ

′

2. (6.13)
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Combining eq. (6.13) with the mass conservation principle eq. (6.12), one gets a

physical constraint with respect to the streamfunctions:

∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

𝜓𝑗d𝑥d𝑦 = 0, 𝑗 = 1, 2. (6.14)

Incorporating only eq. (6.11) and eq. (6.14) in a loss function however, implies that

the predictions for the two layers can be trained independently, a property that is

non-physical. The main physical constraint across layers is that while the flow can

exhibit velocity jumps across layers, no pressure jumps can be observed. To incor-

porate this cross-layer constraint, we introduce to addition terms, (i) the inversion

relation eq. (6.4) and (ii) the system dynamics eq. (6.3). Incorporating all these

terms, the final loss function becomes

ℒ =
2∑︁
𝑖=1

𝛼𝑖

Streamfunction 𝐿2-error⏞  ⏟  ∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

(︀
𝜓ML
𝑖 − 𝜓ref

𝑖

)︀2
d𝑥d𝑦+

2∑︁
𝑖=1

𝛽𝑖

Continuity/ Mass Conservation⏞  ⏟  ⃒⃒⃒⃒∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

𝜓ML
𝑖 d𝑥d𝑦

⃒⃒⃒⃒

+
2∑︁
𝑖=1

𝛾𝑖

Vorticity 𝐿2-error⏞  ⏟  ∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

[︂
∆𝜓ML

𝑖 +
𝑘2𝑑
2

(︀
𝜓ML
3−𝑖 − 𝜓ML

𝑖

)︀
− 𝑞ref

𝑖

]︂2
d𝑥d𝑦

+
2∑︁
𝑖=1

𝛿𝑖

System Dynamics⏞  ⏟  ∫︁ 𝐿𝑥

0

∫︁ 𝐿𝑦

0

(︂
𝜕𝑞ML

𝑖

𝜕𝑡
− 𝜕𝑞ref

𝑖

𝜕𝑡

)︂2

d𝑥d𝑦

(6.15)

where the time-derivative of 𝑞ML
𝑖 is determined by the equation

𝜕𝑞ML
𝑗

𝜕𝑡
= −

Advection⏞  ⏟  (︀
𝑣𝑣𝑣ML
𝑗 + 𝑉𝑉𝑉 𝑗

)︀
· ∇∇∇𝑞ML

𝑗 +

Coriolis⏞  ⏟  (︀
𝛽 + 𝑘2𝑑𝑈𝑗

)︀ 𝜕𝜓ML
𝑗

𝜕𝑥
−

Bottom Drag⏞  ⏟  
𝛿2,𝑗𝑟∆𝜓

ML
𝑗 .

(6.16)
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FIG. 6-6. Mass conservation error as calculated for the layer for a neural-network
trained with loss function eq. (6.11) (blue line) and loss function eq. (6.15).

where 𝑉𝑉𝑉 𝑗 = (𝑈𝑗, 0) corresponds to the steady background mean zonal flow. Pa-

rameters {𝛼𝑗, 𝛽𝑗, 𝛾𝑗, 𝛿𝑗} for 𝑗 = 1, 2, are factors used to regularize the terms. A

validation of enhanced performance when using the new loss function eq. (6.15) can

be seen in fig. 6-6, where the predicted mass conservation error at the top layer is

computed for a neural network trained with eq. (6.11) and with eq. (6.15).

6.2.3 Neural Network Architecture

This subsection discusses how recurrent neural networks (RNN) are used for the

data-informed mappings previously described. In particular, long short-term memory

(LSTM) [64] neural networks are employed. Of great interest is the ability of this

model to generalize beyond the data seen during training. At first this is investigated

in out-of-sample data from the training flow and later further tested on different flow

setups. The architecture of the LSTM-based neural-network is shown in fig. 6-7. It

consists of an input fully connected layer that compresses the streamfunctions of the

two layers from a 24 × 24 × 2 dimension to a 60-valued vector. This layer has a

tanh activation function. This vector is then passed as input to a long short-term

memory (LSTM) neural network. The output of the neural network is then passed
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through an output fully connected neural network to produce the final data-informed

corrected predictions. The output layer has a linear activation function.

FIG. 6-7. Neural-network architecture using LSTM.

In addition to temporal nonlocality, the model is nonlocal in space. Due to the

small size of the system, for a prediction at point 𝑥𝑥𝑥 in space, information from the

entire domain is used. In the case of E3SM dataset fully-connected layers will be

replaced by convolutional layers.

6.2.4 Data assimilation

For initial results, the model is trained on the mid latitude flow parameters. The

simulations are carried out until 𝑇 = 9000. For training and testing the time-interval

[1000, 9000] is kept where the flow has achieved statistical equilibrium. The neural

network is trained using the Adam method [78], which is a first-order gradient descent

method. Input and reference data are normalized so that 𝜓1, 𝜓2 ∈ [−1, 1]. The neural

network is trained for 2000 epochs. For training, the time-interval [1000, 4600] is used

and the interval [4600, 5000] is used for validation. The data-size used during training

here is conservative, to ensure that the model has enough data to learn from. R-

nudged data are used as input data. Training takes place for a flow with 𝛽 = 2 and
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𝑟 = 0.1.
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FIG. 6-8. (a) Training and validation error for the proposed neural network; (b)
Schematic diagram of the separation of weights along the architecture of the neural
network; (c) Normalized norm of mean and standard deviation of weight gradients
for the weights as defined in (b).

In fig. 6-8, subfigure (a) we show the training and validation error at the end of

the training process. The close resemblance of validation and training error showcase

the generalizability of the scheme. To further show that the neural network has in
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fact "learned" a meaningfull representation, the gradients of the weights of the archi-

tecture are computed for each batch, for each epoch. As explained in [154], when the

mean weight gradients are much larger than the corresponding standard deviations,

the neural network is still applying an 𝐿2 best fit of the training data. It is when

the standard deviation becomes significantly larger than the mean that the neural

network starts compressing the data, trying to "forget" features that are not usefull

for its predictions. This process can be seen in subfigure (c) of fig. 6-8. Subfigure

(b) contains an explanation of the grouping of weights along the architecture. In

particular 𝑊2 contains weights that relate the LSTM input to its output, while 𝑊3

contains weights that relate the LSTM memory to its output.

(a) (b)

FIG. 6-9. Zonally-averaged time-series of (a) 𝜓1; and (b) 𝜓2. 𝛿Ψ1 and 𝛿Ψ2 correspond
to biases of the predicted fields with respect to the reference 128 × 128 DNS data.
Results are presented for 𝛽 = 2 and 𝑟 = 0.1.

As a next metric, the zonally-averaged bias of the streamfunctions with respect

to the reference data is computed. Results are shown in fig. 6-9. The bias of the

104



LSTM predictions (while using R-Nudged data as input), is very low both in the

training region [1000, 4600] and the testing region [4600, 9000]. Therefore, we can

conclude that the neural network generalizes well outside of its training regime.

Temporal Correlation Coefficient (TCC), 𝑇 = 100

Upper half Lower half

𝑡0 = 2000 𝑡0 = 4000 𝑡0 = 2000 𝑡0 = 4000

Model 𝜓1 𝜓2 𝜓1 𝜓2 𝜓1 𝜓2 𝜓1 𝜓2

24× 24 DNS 0.09 0.09 0.45 0.52 0.01 0.04 0.40 0.49

Nudged 64 0.57 0.65 0.65 0.74 0.48 0.57 0.63 0.73

Nudged 16 0.87 0.92 0.81 0.87 0.83 0.87 0.84 0.89

Nudged 4 0.98 0.98 0.96 0.97 0.96 0.98 0.96 0.97

24× 24 LSTM 0.96 0.97 0.99 0.99 0.97 0.96 0.98 0.98

Table 6.2. Temporal correlation coefficient for different simulations.

As an additional metric, the Temporal Correlation Coefficient (TCC) is computed

for different cases. It is reminded, that the TCC, for a region (𝑥, 𝑦) ∈ [𝑥1, 𝑥2]×[𝑦1, 𝑦2]

and a time-interval 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] is defined as:

TCC (𝜓𝑖; 𝑡0) =
1

∆𝑥∆𝑦

∫︁ 𝑥2

𝑥1

∫︁ 𝑦2

𝑦1

∫︀ 𝑡0+𝑇
𝑡0

(︁
𝜓ML
𝑖 − 𝜓ML

𝑖

)︁(︁
𝜓ref
𝑖 − 𝜓ref

𝑖

)︁
d𝑡√︂∫︀ 𝑡0+𝑇

𝑡0

(︁
𝜓ML
𝑖 − 𝜓ML

𝑖

)︁2
d𝑡
∫︀ 𝑡0+𝑇
𝑡0

(︁
𝜓ref
𝑖 − 𝜓ref

𝑖

)︁2
d𝑡

d𝑥d𝑦,

(6.17)

where ∆𝑥 = 𝑥2 − 𝑥1, ∆𝑦 = 𝑦2 − 𝑦1 and

𝜓𝑖 =
1

∆𝑥∆𝑦𝑇

∫︁ 𝑥2

𝑥1

∫︁ 𝑦2

𝑦1

∫︁ 𝑡0+𝑇

𝑡0

𝜓𝑖d𝑥d𝑦d𝑡. (6.18)
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The results are shown for the upper half and lower half of the domain, in table 6.2.

Results are shown for both streamfunctions with time origins 𝑡0 = 2000, 4000 and

duration 𝑇 = 100. In all cases, the LSTM trained with R-nudged data scores TCC

values similar to a strongly nudged simulation with 𝜏 = 4.

In addition, the Spatial Anomaly Correlation Coefficient (ACC) is studied. ACC

for a region (𝑥, 𝑦) ∈ [𝑥1, 𝑥2]× [𝑦1, 𝑦2] and a time-interval 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] is defined as:

ACC (𝜓𝑖; 𝑡0) =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

∫︀ 𝐿𝑥

0

∫︀ 𝐿𝑦

0

(︁
𝜓ML
𝑖 − 𝜓ML

𝑖

)︁(︁
𝜓ref
𝑖 − 𝜓ref

𝑖

)︁
d𝑥d𝑦√︂∫︀ 𝐿𝑥

0

∫︀ 𝐿𝑦

0

(︁
𝜓ML
𝑖 − 𝜓ML

𝑖

)︁2
d𝑥d𝑦

∫︀ 𝐿𝑥

0

∫︀ 𝐿𝑦

0

(︁
𝜓ref
𝑖 − 𝜓ref

𝑖

)︁2
d𝑥d𝑦

d𝑡.

(6.19)

The results are shown for the upper half and lower half of the domain, in table 6.3.

Results are shown for both streamfunctions with time origins 𝑡0 = 2000, 4000 and

duration 𝑇 = 100. Similarly with TCC, the LSTM trained with R-nudged data

scores ACC values similar to a strongly nudged simulation with 𝜏 = 4.

Spatial Anomaly Correlation Coefficient (ACC), 𝑇 = 100

Upper half Lower half

𝑡0 = 2000 𝑡0 = 4000 𝑡0 = 2000 𝑡0 = 4000

Model 𝜓1 𝜓2 𝜓1 𝜓2 𝜓1 𝜓2 𝜓1 𝜓2

24× 24 DNS 0.06 0.09 0.49 0.61 -0.01 0.04 0.49 0.61

Nudged 64 0.54 0.65 0.70 0.81 0.48 0.59 0.69 0.80

Nudged 16 0.87 0.91 0.86 0.91 0.85 0.90 0.87 0.92

Nudged 4 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98

24× 24 LSTM 0.98 0.99 1.00 1.00 0.99 0.99 0.99 0.99

Table 6.3. Parameter values for different atmosphere regimes.
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6.2.5 Statistical quantification

We now move to test the model on data not used during training. Specifically, the

ability of the model to learn the statistics of the flows when free-running coarse-

scale simulations are used as input is compared to when nudged data are used.

The simulations are carried out until 𝑇 = 9000. For training and testing, the time-

interval [1000, 9000] is kept where the flow has achieved statistical equilibrium. Input

and reference data are normalized so that 𝜓1, 𝜓2 ∈ [−1, 1]. The neural network is

trained for 2000 epochs. For training, the time-interval [1000, 4600] is used and the

interval [4600, 5000] is used for validation. The data-size used during training here

is conservative, to ensure that the model has enough data to learn from. R-nudged

data are used as input data. Training takes place for a flow with 𝛽 = 2 and 𝑟 = 0.1.
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FIG. 6-10. Probability density function of 𝜓1 and 𝜓2 using as loss-function (a) the
𝐿2-error eq. (6.11); and (b) the full loss function of eq. (6.15). Results are shown for
𝛽 = 2 and 𝑟 = 0.1.
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FIG. 6-11. Probability density function of the amplitude of wavenumbers (1, 0), (1, 1)
of the barotropic streamfunction, using as loss-function (a) the 𝐿2-error eq. (6.11);
and (b) the full loss function of eq. (6.15). Results are shown for 𝛽 = 2 and 𝑟 = 0.1.
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FIG. 6-12. Probability density function of 𝜓1 and 𝜓2 using as training data (a)
nudged-data; and (b) R-nudged data. Results are shown for 𝛽 = 2 and 𝑟 = 0.1.
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The importance of using physical constraints can be further highlighted by looking

at computed statistical quantities when using as loss function eq. (6.11) vs eq. (6.15).

Results can be seen in fig. 6-10 and fig. 6-11. Both neural networks were trained with

the same hyperparameters but with different loss-function. Training took place for

2000 epochs using nudged-data with 𝜏 = 16 as input. The solid red line corresponds

to predictions made with nudged data as input, while the blue line corresponds to

predictions made with free-running coarse-scale simulations as input. In fig. 6-10 it

is evident that using eq. (6.15) markedly improves the predictions of the tails of the

pdf.

Further improvement in statistics is showcased in fig. 6-12. The predictions of the

LSTM that was trained with R-nudged data, are significantly improved along the

tails. Furthermore, the difference in the predicted pdf when using the training data

and free-running data is smaller compared to the LSTM that was trained on nudged

data. Furthermore, This is a result of the pdf of R-nudged data being very similar

to that of the free running coarse data, allowing for a smoother transfer learning

between data sets.

We now move to the numerical investigation of the hybrid approach for different

𝛽 values. Training took place only at 𝛽 = 2 and 𝑟 = 0.1. For training, 10% of the

training flow data were used, randomly sampled in time. Results are shown in fig. 6-

13. Six different models are trained. First, hybrid models are trained on spatial data

using 4, 20 and 80 hidden units. In the case of PCA modes, half of the modes are

obtained from the top layer and the other half from the bottom layer. On the other

side, for the physical data case, modes can incorporate cross-layer information. The

logarithm pdf error for each model are shown and compared to free-running coarse

scale simulations, at (a) for LSTM-PCA modesl and (b) for the LSTM architecture

with two fully connected layers.
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FIG. 6-13. (a) Logarithm pdf error of streamfunction for LSTM trained on (a) PCA
(b) physical data, as a function 𝛽. Training took place at 𝛽 = 2.0. Probability
density function of 𝜓1 and 𝜓2 𝛽 = 2.0 for (c) PCA input data and (d) physical input
data. Training took place at 𝛽 = 2 and 𝑟 = 0.1. 𝑁 corresponds to the dimension of
the latent space the LSTM works on in both cases.
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In both cases, increasing the dimension of the latent space improves the accuracy

of the predictions. Furthermore, error is low only for 𝛽 values close to the training

point 𝛽 = 2.0. Finally, LSTM models seem to outperform LSTM-PCA models. To

test the accuracy of the predictions, a logarithmic pdf error is defined as

𝜖 (𝜃;𝜓𝑖) =

∫︁ ⃒⃒
max

{︀
−5, log10 𝑝ref

𝜓𝑖
(𝑠; 𝜃)

}︀⃒⃒
−
⃒⃒
max

{︀
−5, log10 𝑝ML

𝜓𝑖
(𝑠; 𝜃)

}︀⃒⃒
d𝑠 (6.20)

Note that this measure includes the difference of the logarithm of the predicted

pdfs and thus is a very strict measure. For a closure look at the model predictions,

subfigure (c) includes a pdf comparison between all LSTM-PCA models and reference

and coarse data and (d) includes a comparison between all LSTM architectures, with

fully connected layers for projection, and reference and coarse data, for 𝛽 = 2.0.

For the second numerical investigation, both schemes are trained on flow data

with 𝛽 = {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. 10% of the time series for each flow parameter

is used during training. Results regarding the logarithm pdf error for each 𝛽 value

are shown in fig. 6-14. For all cases, the LSTM-PCA underperforms with respect to

the architecture with physical input.

A few justification can be given for this behaviour. First, the PCA modes were

taken independently for each layer. However, the flow undergoes a baroclinic instabil-

ity, and thus cross-layer information is important to correctly capture the statistics.

As a result, layer-by-layer PCA projection will not be the most efficient way to com-

press data and thus suffer when contrasted with cross-layer projections of the same

latent-space dimension. Furthermore, using different projection schemes for the in-

put and output of the data, allows for a more efficient representation of the two

datasets. The ability of the input and output fully-connected layers to represented

different projections, may have added to the increased accuracy of that scheme.
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FIG. 6-14. (a) Logarithm pdf error eq. (6.20) of streamfunction for LSTM trained
on (a) PCA (b) physical data, as a function 𝛽. Training took place at 𝛽 =
1.0, 1.2, 1.4, 1.6, 1.8, 2.0.

6.3 Application to climate data

A reference dataset is selected for testing the effectiveness of the scheme, the ERA5

dataset [62]. It is a reanalysis dataset of hourly global atmospheric data, on a

30[km] horizontal resolution, produced by the Copernicus Climate Change Service

(C3S). For the generation of coarse-scale climate data, the atmospheric component

of the Energy Exascale Earth System Model (E3SM) is used. In particular, version
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2 of the E3SM Atmospheric Model (EAMv2) [37, 169, 49]. Appropriate boundary

conditions over the Earth’s surface are imposed, prescribing the sea-surface temper-

ature (SST) [122]. Simulations are run on an unstructured grid of approximately

1o(∼ 110[km]) resolution per sigma-level and 72 levels along the vertical direction.

The vertical levels extend from the Earth surface up to altitude of about 64[km],

corresponding to ∼ 0.1[hPa]. The evolution model equations for the coarse-scale

model have the form

𝜕X𝑐

𝜕𝑡
= 𝒟 (X𝑐) + 𝒫 (X𝑐) , (6.21)

where X𝑐 = (𝑈, 𝑉, 𝑇,𝑄) represent the set of coarsely-resolved system variables, 𝒟 is

the operator containing the dynamics of the system [189, 48] and 𝒫 is the operator

concerning the physics of the system [117, 91, 115]. Variables (𝑈, 𝑉 ) correspond the

zonal and meridional components of wind velocity, 𝑇 is wind temperature and 𝑄

is specific humidity. The vertical velocity component 𝑊 is derived from (𝑈, 𝑉 ) in

E3SM and thus is ignored as input. From here on now, the coarse-scale free-running

dataset will be labeled as CLIM and will be denoted as X𝑐.

Given the two previous observations, it is clear that it is not possible to use a

dataset of CLIM and one of ERA5 and try to machine learn a map between the two,

i.e. a map that takes as input a CLIM timeseries and produces as output an ERA5

timeseries. To eliminate the problematic component, i.e. chaos-induced divergence

we design a new CLIM dataset (we call it nudged CLIM and denote it as X𝑐,𝑛) that

is preserving the long-time statistics of the original CLIM dataset but does not suffer

from the chaos-induced divergence with the ERA5. This is done by employing the

concept of nudging that has been used extensively in the context of data assimilation.

Specifically, we utilize the EAMv2 solver (generator of the CLIM dataset) with an
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extra term, the nudging term, that is ‘pulling’ the CLIM solution close to the ERA5

solution:

𝜕X𝑐,𝑛

𝜕𝑡
= 𝒟 (X𝑐,𝑛) + 𝒫 (X𝑐,𝑛) +𝒩 , (6.22)

where the relaxation term 𝒩 is called nudging tendency and it corrects the coarse-

scale solution based on the ERA5 reference solution. In this study, the nudging

tendency 𝒩 is given by the algebraic term

𝒩
(︀
X𝑐,𝑛 −Xref)︀ = −1

𝜏

(︀
X𝑐,𝑛 −ℋ

[︀
Xref]︀)︀ . (6.23)

Parameter 𝜏 is a relaxation timescale that has a large value (so that 1/𝜏 is small

compared with the other tems in the equation), and ℋ is an operator that maps Xref

to the coarse resolution.

6.3.1 Spectral Correction of Nudged Dataset

As described in the previous subsection, the nudged dataset X𝑐,𝑛 is used during

training to eliminate discrepancies due to chaotic divergence between input data and

ERA5 reference data. The corrected nudged data is termed as X𝑐,𝑟𝑠𝑛 and defined as

X𝑐,𝑟𝑠𝑛 (𝜑, 𝜃, 𝑡; 𝑘) =
∑︁
𝑚,𝑛

𝑅𝑚,𝑛{X̂𝑐(𝑡)}𝑚,𝑛𝑒𝑖(𝑚𝜑+𝑛𝜃), , (6.24)

where {X̂𝑐(𝑡)}𝑚,𝑛 are the spatial Fourier coefficients of X𝑐,𝑛 and

𝑅𝑘,𝑙 =

√︃
ℰcoarse
𝑘,𝑙

ℰnudge
𝑘,𝑙

, (6.25)
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and

ℰ𝑘,𝑙 =
1

𝑇

∫︁ 𝑇

0

𝐸̂𝑘,𝑙(𝑡)d𝑡 =
1

𝑇

∫︁ 𝑇

0

|{X̂𝑐(𝑡)}𝑘,𝑙|2d𝑡. (6.26)

6.3.2 Neural Network Architecture

In the current implementation, training is done on a layer-by-layer basis. A schematic

of the configuration for training on a particular layer is shown in fig. 6-15. The model

receives as input the predictive variables X = X(𝜑, 𝜃, 𝑡; 𝑘), where 𝜑 is the longitudinal

angle and 𝜃 the latitudinal one. Snapshots of the entire horizontal discretization of

the layer are used. Afterwards, a custom "split" layer separates the input into

non-overlapping subregions. These subregions are periodically padded via a custom

padding process, tasked with respecting the spherical periodicity of the domain.

Then, each subregion is independently passed through a series of convolutional layers.

The purpose of this process is to extract anisotropic local features in each subregion.

Split
conv1

conv2

conv3

conv4
Merge fnn lstm fnn

Deconv1

Deconv2

Deconv3
Deconv4

Merge

FIG. 6-15. Neural network architecture of the non-instrusive model for a training on
a particular sigma-level.

Afterwards, the local information extracted from each subregion is concatenated
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in a single vector via a custom ‘merge’ layer. The global information is now passed

through a linear fully-connected layer, that acts as a basis projection of the spatial

data onto a reduced-order latent space. The latent space data are then corrected

by a long short-term memory (LSTM) layer [64]. Subsequently they are projected

back to physical space via another linear fully-connected layer. Afterwards, global

information is split into the same subregions of the input, and distributed to a series

of independent deconvolution layers that upscale the data to the original resolution.

Finally, a custom ‘merge’ layer gathers the information from each subregion and

produces the final corrected snapshot.

In addition to temporal nonlocality, the model is nonlocal in space. Note, that

in terms of the LSTM layer, this information comes in the form of the latent space

coefficients, which in general correspond to global modes that correspond to rows of

the fully connected layer’s matrix. Under the assumption that both fully-connected

layers have linear activation functions, the model can be mathematically depicted as

a basis projection. Hence, the fully connected layers act as projection schemes to

(a) compress input data to a latent space of low dimensionality, and (b) project the

LSTM prediction to physical space.

The used loss function is a standard mean-square error (MSE) loss

ℒ = 𝛼
∑︁
𝑡

∑︁
𝜑

∑︁
𝜃

cos

(︂
2𝜋

𝜃

360

)︂
‖X̂−Xref‖2, (6.27)

where 𝛼 is a normalization coefficient. Each term in the sum is multiplied by the

cosine of its latitude to approximate integration over a sphere. Without this term,

the model would over-emphasize on learning the corrections at the poles.
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6.3.3 Data assimilation

The numerical exploration of the proposed method begins with some validation re-

sults. Specifically, nudged data not used for training are used as input, with the

purpose of checking whether the produced output has good accuracy. Training takes

places over 1000 epochs and eq. (6.27) is used as the loss function. In fig. 6-16,

results regarding zonally averaged predictions of zonal and meridional velocities 𝑈

and 𝑉 respectively, are shown. The left column of subfigure (a) displays the zonally

averaged predictions of zonal velocity 𝑈 , for ERA5 reanalysis data, Nudged data

and neural network predictions. The right column displays the biases compared to

ERA5 predictions for CLIM, Nudged and the neural network predictions. Similarly,

the left column of subfigure (b) displays the zonally averaged predictions for merid-

ional velocity 𝑉 , with the same biases displayed. Results are shown for sigma-level

71, i.e. the one closest to the surface of the earth. The results show that the neural

network clearly is able to learn a correction for both velocity components.

Now, the model is tested on unseen free-running and coarse-scale climate models.

This dataset (CLIM) is not nudged and thus does not include any ERA5 informa-

tion. Since the free-running dataset diverges from ERA5 in terms of phases, specific

extreme events cannot be studied, as they are absent from CLIM. Hence, long-time

statistics are studied now.

In fig. 6-17, the predicted probability density functions (pdf) are shown for the

four different predictive variables, (𝑈, 𝑉, 𝑇,𝑄). Solid black lines correspond to ERA5

data and dashed black lines correspond to CLIM. Blue lines correspond to neural

network predictions using CLIM data as input (i.e. testing data). Results are shown

for sigma-level closest to the earth’s surface. Data are averaged over the time-period

2007-2017.
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The predictions of the neural network that was trained with Nudged data, sig-

nificantly improve the prediction of the tails. This can be seen both for the pdfs of

the well-predicted quantities (𝑈, 𝑉 ) by CLIM as well as for (𝑇,𝑄), two quantities

whose tails are not well predicted by CLIM. These results showcase the ability of the

model to generalize beyond training data (Nudged data). This is a result of the pdf

of the implemented spectral corrections to the Nudged data, making them display

very similar statistics to that of the free running coarse data. This property allows

for smoother transfer learning between data sets. A more thorough validation of the

climate dataset is presented in appendix B.

(a) (b)

FIG. 6-16. (a) Zonally averaged predictions for 𝑈 (left column) and biases with
respect to ERA5 predictions (right column). (b) Zonally averaged predictions for 𝑉
(left column) and biases with respect to ERA5 predictions (right column).
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FIG. 6-17. Predicted pdfs for (a) horizontal velocity components 𝑈 (top) and 𝑉
(bottom); and (b) for temperature 𝑇 (top) and specific humidity 𝑄 (bottom). Solid
black lines correspond to ERA5 data, dashed black lines correspond to CLIM and
blue lines correspond to neural network predictions using CLIM data as input (i.e.
testing data). The blue envelope corresponds to a 95% confidence interval in the
calculation of the LSTM-corrected pdf.

6.3.4 Statistical quantification

We now move to predict statistics for a derived integral quantity, in particular,

mean integrated vapor transport (IVT) over the period 2007-2017. Since IVT is

strongly anisotropic, extracting local features, and especially atmospheric rivers, is

vital. Therefore the local convolutions derived from each subregion is important

for its correction estimation. 25 subregions are used in this numerical test, using

different convolutions on each one (i.e. extract local features).
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FIG. 6-18. IVT predictions averaged over the period 2007-2017. Mean IVT predic-
tions are shown in the top row for ERA5 data. Biases from ERA5 predictions are
shown for, Nudged datasets and CLIM free-running datasets, together with corrected
results via our non-intrusive approach. A 1-subregion partition was used for these
results.

In fig. 6-18, the first row corresponds to ERA5 predictions. The other rows

correspond to biases with respect to ERA5. As expected, the neural network exhibits

very small biases when Nudged data are used as input. This is expected since these
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data were used for training. However, the model significantly decreases biases even

when CLIM data are used as input. In addition, it is able to decrease the root mean-

squared error (RMSE) below that of the Nudged dataset, a simulation that exploits

ERA5 information at every time-step.

The final numerical result involves the statistics of tropical cyclones for the time-

period 2007-2017. For tracking tropical cyclones, the software package TempestEx-

treme is used [172, 173]. The following steps are used to track cyclones: (i) Find

local minima of sea-level pressure (SLP). (ii) Eliminate smaller minima within 2

great-circle distance (gcd) degrees. (iii) Check that SLP raises by 200 [Pa] within

8 gcd. (iv) Check that temperature at 400 [mbar] drops by 0.4 [K] within 8 gcd.

(v) Check that velocity is higher than 10 [m/sec] for 8 snapshots. (vi) Check that

geopotential height is larger than 100 for at least 8 snapshots. (vii) Check that

phenomenon lasts at least 54 hours, with a max gap of 24 hours.

During training, the neural network will track dissipated cyclonic structures in

the Nudged simulations, that correspond to tropical cyclones in ERA5. It will then

amplify them allowing them to be recognized as tropical cyclones. As a result, if the

cyclonic structures present in CLIM are more dissipated than in Nudged, the learned

mapping will not be transferable. To overcome this issue, we post process the SLP

values of Nudged data. To that end the following conditional means are computed

𝑐(𝜑, 𝜃) =
1

TC(𝜑, 𝜃)

𝑁𝑡∑︁
𝑡=1

𝛿𝑆𝐿𝑃 (𝑡, 𝜑, 𝜃), (6.28)

where TC is the tropical cyclone density over the globe.
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FIG. 6-19. Tropical cyclone counts over the period 2007-2017. Results are derived
using ERA5 datasets, CLIM free-running datasets and CLIM datasets corrected via
our non-intrusive LSTM approach. Cyclones are tracked via the TempestExtremes
software.

Then, the following spatially dependent coefficient is computed

𝑅(𝜑, 𝜃) =
𝑐c(𝜑, 𝜃)

𝑐c,n(𝜑, 𝜃)
. (6.29)
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Finally, the SLP Nudged data are corrected as follows

𝑆𝐿𝑃 c,rnsn =

⎧⎪⎨⎪⎩𝑅(𝜑, 𝜃)𝑆𝐿𝑃
c,n + 𝑃0, 𝑆𝐿𝑃 < 𝑃0

𝑆𝐿𝑃 c,n, 𝑆𝐿𝑃 ≥ 𝑃0

. (6.30)

Results are shown in fig. 6-19. In terms of total number of tropical cyclones pre-

dicted, the neural network corrections are much better than the ones predicted by

the Nudged dataset and CLIM. Nudged data predict 317 tropical cyclones, while

CLIM predicts 305. On the other hand, the neural network corrections predict 411

tropical cyclones when using Nudged data and 404 tropical cyclones when using

CLIM data. These predictions are much closer to the 488 cyclones predicted from

ERA5 data. By focusing on the predictions when using CLIM as input, we notice

that barely any new cyclones are predicted in the Atlantic. Looking further into

this issue it is our belief that this is a problem of CLIM, where it does not generate

enough vorticity over the Atlantic for tropical cyclones to form.
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Chapter 7

Hybrid Quadrature-based method of

moments

Abstract

The focus of this chapter, based on [28], is predicting the dynamics of a bubble clus-
ter as it deforms within a fluid. Solving the population balance equation (PBE) for
the dynamics of a dispersed phase coupled to a continuous fluid is expensive. Still,
one can reduce the cost by representing the evolving particle density function in
terms of its moments. In particular, quadrature-based moment methods (QBMMs)
invert these moments with a quadrature rule, approximating the required statistics.
QBMMs have been shown to accurately model sprays and soot with a relatively com-
pact set of moments. However, significantly non-Gaussian processes such as bubble
dynamics lead to numerical instabilities when extending their moment sets accord-
ingly. We solve this problem by training a recurrent neural network (RNN) that
adjusts the QBMM quadrature to evaluate unclosed moments with higher accuracy.
The proposed method is tested on a simple model of bubbles oscillating in response
to a temporally fluctuating pressure field. The approach decreases model-form error
by a factor of 10 when compared to traditional QBMMs. It is both numerically
stable and computationally efficient since it does not expand the baseline moment
set. Additional quadrature points are also assessed, optimally placed and weighted
according to an additional RNN. These points further decrease the error at low cost
since the moment set is again unchanged.

125



7.1 Problem formulation

7.1.1 Ensemble-averaged flow equations

This work focuses on the fluid-coupled dynamics of a dispersion of small, spherical

bubbles transported in a compressible carrier fluid. The mixture phase-averaged

evolution equations for the continuous fluid are

𝜕𝜌

𝜕𝑡
+∇∇∇ · (𝜌𝑢𝑢𝑢) = 0,

𝜕𝜌𝑢𝑢𝑢

𝜕𝑡
+∇∇∇ · (𝜌𝑢𝑢𝑢𝑢𝑢𝑢+ 𝑝𝐼𝐼𝐼) = 0,

𝜕𝐸

𝜕𝑡
+∇∇∇ · (𝐸 + 𝑝)𝑢𝑢𝑢 = 0,

(7.1)

with 𝜌,𝑢𝑢𝑢, 𝑝, and 𝐸 being the mixture density, velocity vector, pressure, and total

energy, respectively. The system of equations is complemented by appropriate initial

and boundary or radiation conditions specific to each individual problem. The void

fraction of the bubbles is 𝛼 and a dilute assumption 𝛼≪ 1 is made. The bubbles are

defined by their instantaneous bubble radii 𝑅, its time derivative 𝑅̇. The bubbles

are assumed monodisperse and so have the same equilibrium radius 𝑅𝑜.

The mixture pressure 𝑝 is deduced from the ensemble phase-averaging method [188,

24] as

𝑝 = (1− 𝛼)𝑝𝑙 + 𝛼

(︃
𝑅3𝑝𝑏𝑤

𝑅3
− 𝜌𝑅

3𝑅̇2

𝑅3

)︃
, (7.2)

where 𝑝𝑏𝑤 and 𝑝𝑙 are the bubble wall and liquid pressures, respectively [5]. Liq-

uid pressure 𝑝𝑙 follows from the stiffened-gas equation of state [112], though this

model can be substituted for another if required. The usual coefficients for water are
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used [24].

The overbars in 7.2 denote raw moments 𝜇 of the bubble dispersion as

𝑅𝑖𝑅̇𝑗 = 𝜇𝑖,𝑗 =

∫︁
Ω

𝑅𝑖𝑅̇𝑗𝑓(𝑅, 𝑅̇;𝑅𝑜)d𝑅d𝑅̇, (7.3)

where 𝑓 is the number density function of the bubbles. This paper focused on a

new, improved method for computing these moments, which will be introduced in

section 7.2.

The void fraction transports as [24]:

𝜕𝛼

𝜕𝑡
+ 𝑢𝑢𝑢 · ∇∇∇𝛼 = 3𝛼

𝑅2𝑅̇

𝑅3
. (7.4)

The moments required to close the governing flow equations are thus

𝜇𝜇𝜇Targ. =
{︁
𝑅3𝑅̇2, 𝑅3, 𝑅2𝑅̇, 𝑅3𝑝𝑏𝑤

}︁
. (7.5)

7.1.2 Bubble model

To close the governing equations of the previous subsection, a model for the bubble

dynamics, in terms of the dynamical variables 𝑅 and 𝑅̇, is required. We use a

Rayleigh–Plesset equation for this:

𝑅𝑅̈ +
3

2
𝑅̇2 +

4

Re

𝑅̇

𝑅
=

(︂
𝑅𝑜

𝑅

)︂3𝛾

− 1

𝐶𝑝
, (7.6)

which is dimensionless via the reference bubble size 𝑅𝑜, liquid pressure 𝑝0, and liquid

density 𝜌0. In (7.6), 𝐶𝑝 is the ratio between the fluid and bubble pressures and Re
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is a Reynolds number

Re =

√︂
𝑝0
𝜌0

𝑅𝑜

𝜈0
, (7.7)

where 𝜈0 is the liquid kinematic viscosity. For the cases considered here Re = 103.

This model assumes the bubbles remain spherical and compress via a polytropic

process with coefficient 𝛾 = 1.4. While this model can be generalized to include heat

exchange and liquid compressibility, these effects are not critical to our study and

thus omitted here. Based on this model, the bubble wall pressure 𝑝𝑏𝑤 simplifies the

last moment of 𝜇𝜇𝜇Targ. as

𝑅3𝑝𝑏𝑤 = 𝜇3(1−𝛾),0. (7.8)

We also define a dimensionless time 𝑡* = 𝑡𝜔0, where 𝜔0 is the natural frequency

of the bubbles. To simplify the notation, 𝑡 will be used in place of 𝑡* hereon.

7.1.3 Population balance formulation

A number density function 𝑓 describes the statistics of the bubbles. The generalized

population balance equation is

𝜕𝑓

𝜕𝑡
+

𝜕

𝜕𝑅
(𝑓𝑅̇) +

𝜕

𝜕𝑅̇
(𝑓𝑅̈) = 0, (7.9)

assuming the bubbles do not coalesce or break up, though these effects can be in-

cluded via empirically modeled terms if desired. QBMMs solve (7.9) by representing

𝑓 as a set of raw moments 𝜇𝜇𝜇 [40, 23]. Through an appropriate inversion procedure,

these methods can transform these moments into quadrature nodes and weights in
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phase space. This allows for the approximation of 𝑓 via a weighted sum of Dirac delta

functions. Hence, the following quadrature rule can approximate any raw moment

𝜇𝑖,𝑗 =
∑︁
𝑘

𝑤𝑘𝜉
𝑖
1,𝑘𝜉

𝑗
2,𝑘, (7.10)

where 𝜉𝑖,𝑗 is the 𝑗-th quadrature point locations for the 𝑖-th internal coordinate.

7.2 Hybrid quadrature method moment formulation

We now present the hybrid, data-informed method for predicting the moments of

cavitating bubbles. Subsection 7.2.1 presents 4-node CHyQMOM predictions [23].

Subsection 7.2.2 details the hybrid neural-network model that improves the predic-

tions.

7.2.1 CHyQMOM

For two-dynamic-variable cases, conditioned moment methods are computationally

preferable to traditional QMOM [187]. We use CHyQMOM because it can close a

second-order moment system with fewer carried moments than CQMOM [40]. For a

4-node quadrature rule, it uses the first- and second-order moments

𝜇𝜇𝜇 = {𝜇1,0, 𝜇0,1, 𝜇2,0, 𝜇1,1, 𝜇0,2}, (7.11)

in tandem with a Gaussian closure assumption for the third-order moments 𝜇3,0, 𝜇0,3.

The particular chosen scheme displayed similar fidelity with more involved quadra-

ture schemes [187] for the bubble dispersions discussed here. The CHyQMOM inver-

sion process for obtaining the nodes 𝜉𝜉𝜉 and weights 𝑤𝑤𝑤 is presented in appendix C.1.

129



Taking the time-derivative of each of the (7.11) moments and applying (7.6)

results in

𝜕𝜇1,0

𝜕𝑡
= 𝜇0,1,

𝜕𝜇0,1

𝜕𝑡
= −3

2
𝜇−1,2 −

4

Re
𝜇−2,1 + 𝜇−4,0 − 𝐶𝑝𝜇−1,0,

𝜕𝜇2,0

𝜕𝑡
= 2𝜇1,1,

𝜕𝜇1,1

𝜕𝑡
= −1

2
𝜇0,2 −

4

Re
𝜇−1,1 + 𝜇−3,0 − 𝐶𝑝,

𝜕𝜇0,2

𝜕𝑡
= −3𝜇−1,3 −

8

Re
𝜇−2,2 + 2𝜇−4,1 − 2𝐶𝑝𝜇−1,1,

(7.12)

which are called the moment transport equations. The quadrature rule (7.10) ap-

proximates unclosed moments in (7.12).

While this scheme is computationally cheap, it is challenging to extend to include

additional quadrature points without potential numerical instabilities or need to

decrease the time-step [107]. Thus, truncation errors can affect approximation of the

right-hand-side of (7.12) and the extrapolation out of the low-order moment space

to the moments of 𝜇𝜇𝜇Targ. of (7.5). We next present an augmented method that treats

these issues without introducing numerical instability or high computational cost.

7.2.2 Data-informed corrections

We improve the CHyQMOM moment inversion procedure by adding a correction

term to the 4-node quadrature rule and introducing additional quadrature nodes.

The unaugmented CHyQMOM quadrature rule is denoted via {𝑤𝑤𝑤(QBMM), 𝜉𝜉𝜉(QBMM)}.

For these corrections, a long short-term memory (LSTM) RNN is employed. The

LSTM incorporates non-Markovian memory effects into the reduced-order model.

This approach is known to be capable of improving predictions of reduced-order
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models [178, 21].

The corrections {𝑤𝑤𝑤′, 𝜉𝜉𝜉′} serve as input predictions for the first- and second-order

moments as well as the pressure {𝜇1,0, 𝜇0,1, 𝜇2,0, 𝜇1,1, 𝜇0,2, 𝐶𝑝}. They are modelled as

{𝑤𝑤𝑤′(𝑡), 𝜉𝜉𝜉′(𝑡)} = G[Θ;𝜇𝜇𝜇(𝜒(𝑡)), 𝐶𝑝(𝜒(𝑡)),Re], (7.13)

where G denotes the functional representation of the employed neural networks, the

vector Θ denotes hyperparameters and optimized parameters of the neural network

as obtained during training. More detail on the implementation is in section 7.3,

subsection 7.3.1. The chosen values for the hyperparameters are included in ap-

pendix C.2. The history of the reduced-order model states is

𝜒(𝑡) = {𝑡, 𝑡− 𝜏1, ..., 𝑡− 𝜏𝑁}. (7.14)

The hybrid quadrature rule follows as

𝑤𝑤𝑤 = 𝑤𝑤𝑤(QBMM) +𝑤𝑤𝑤′ and 𝜉𝜉𝜉 = 𝜉𝜉𝜉(QBMM) + 𝜉𝜉𝜉′. (7.15)

The neural network loss function is designed to ensure the target high-order

moments 𝜇𝜇𝜇𝑇 can be accurately computed and that the low-order moments 𝜇𝜇𝜇 evolve

accurately. Hence, the right-hand-side of (7.12) is included in the loss function as

ℒ =
∑︁

0≤𝑖,𝑗≤2

𝛼𝑖,𝑗

(︃
𝜕𝜇

(ML)
𝑖,𝑗

𝜕𝑡
−
𝜕𝜇

(MC)
𝑖,𝑗

𝜕𝑡

)︃2

+
∑︁

(𝑖,𝑗)∈ℐ

𝛽𝑖,𝑗

(︃∑︁
𝑘

𝑤𝑘𝜉
𝑖
1,𝑘𝜉

𝑗
2,𝑘 − 𝜇

(MC)
𝑖,𝑗

)︃2

+𝜆
∑︁
𝑘

Relu(−𝑤𝑘),
(7.16)
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where,

ℐ = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (3, 2), (3− 3𝛾, 0)}, (7.17)

and

𝛼𝑖,𝑗 =

⃦⃦⃦⃦
⃦𝜕𝜇

(MC)
𝑖,𝑗

𝜕𝑡

⃦⃦⃦⃦
⃦
−1

∞

, 𝛽𝑖,𝑗 =
⃦⃦⃦
𝜇
(MC)
𝑖,𝑗

⃦⃦⃦−1

∞
. (7.18)

The variables
{︁
𝜇
(ML)
𝑖,𝑗 , 𝜇

(MC)
𝑖,𝑗

}︁
correspond to moment 𝜇𝑖,𝑗 as predicted by the pro-

posed hybrid approach and by Monte Carlo simulations respectively. The first term

in (7.16) minimizes, in the 𝐿2 sense, the right-hand-sides of (7.12) (given 𝜇𝜇𝜇). The

second term in (7.16) minimizes prediction error for both 𝜇𝜇𝜇 and 𝜇𝜇𝜇Targ., while it also

penalizes the network when the weights don’t sum up to 1 (under the assumption

that 𝜇0,0 = 1). The last term in (7.16) penalizes negative-valued weights.

The discretized moment transport equation (7.12) and the quadrature rule (7.10)

compute the time-derivatives 𝜕𝜇(ML)
𝑖,𝑗 /𝜕𝑡 required in (7.16) as

𝜕𝜇
(ML)
1,0

𝜕𝑡
=
∑︁
𝑘

𝑤𝑘𝜉1,𝑘

𝜕𝜇
(ML)
0,1

𝜕𝑡
= −3

2

∑︁
𝑘

𝑤𝑘𝜉
−1
1,𝑘𝜉

2
2,𝑘 −

4

Re

∑︁
𝑘

𝑤𝑘𝜉
−2
1,𝑘𝜉2,𝑘 +

∑︁
𝑘

𝑤𝑘𝜉
−4
1,𝑘 − 𝐶𝑝

∑︁
𝑘

𝑤𝑘𝜉
−1
1,𝑘,

𝜕𝜇
(ML)
2,0

𝜕𝑡
= 2

∑︁
𝑘

𝑤𝑘𝜉1,𝑘𝜉2,𝑘

𝜕𝜇
(ML)
1,1

𝜕𝑡
= −1

2

∑︁
𝑘

𝑤𝑘𝜉
2
2,𝑘 −

4

Re

∑︁
𝑘

𝑤𝑘𝜉
−1
1,𝑘𝜉2,𝑘 +

∑︁
𝑘

𝑤𝑘𝜉
−3
1,𝑘 − 𝐶𝑝,

(7.19)
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𝜕𝜇
(ML)
0,2

𝜕𝑡
= −3

∑︁
𝑘

𝑤𝑘𝜉
−1
1,𝑘𝜉

3
2,𝑘 −

8

Re

∑︁
𝑘

𝑤𝑘𝜉
−2
1,𝑘𝜉

2
2,𝑘 + 2

∑︁
𝑘

𝑤𝑘𝜉
−4
1,𝑘𝜉2,𝑘

−2𝐶𝑝
∑︁
𝑘

𝑤𝑘𝜉
−1
1,𝑘𝜉2,𝑘.

(7.20)

Once trained, the scheme

𝜇𝜇𝜇
(ML)−−−→ {𝑤𝑤𝑤,𝜉𝜉𝜉}

results in a new quadrature rule that evaluates the right-hand-side of (7.12). The

moment transport equations (7.12) then evolve via an adaptive 4th-order Runge–

Kutta time-stepper. Algorithm 2 describes this procedure.

The baseline 2-by-2-node scheme of [40] imposes certain symmetry assumptions

for the reconstructed NDF. In general, this may be non-physical for bubble popula-

tions. A more physically consistent approach may be [187]. However, the proposed

hybrid scheme varies the positions of the baseline quadrature scheme. Therefore, it

allows for non-symmetrical NDFs while, contrary to [187], only resolving moments

up to order 2 as input for scheme. The method of [187] may also be considered

when generalizing the hybrid approach to high-order schemes. This is because the

realizability condition of [40] is meaningfully different when more than 2 nodes are

used per direction, rendering it more restrictive. Note that the closure terms need

to be evaluated at times 𝑡, 𝑡 + 𝛿𝑡/2, and 𝑡 + 𝛿𝑡. The neural network does not make

predictions at 𝑡+ 𝛿/2, so the equations are instead integrated in time by 2𝛿𝑡 instead

of 𝛿𝑡.
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Algorithm 2: Hybrid CHyQMOM
Input: 𝜇𝜇𝜇 = {𝜇1,0, 𝜇0,1, 𝜇2,0, 𝜇1,1, 𝜇0,2}; 𝐶𝑝,Re.

Data: NN architecture, CHyQMOM method, 4th-order-accurate

Runge–Kutta (RK4), Re, 𝐶𝑝, time interval 𝑡 ∈ [0, 𝑇 ], error-tolerance

𝜏tol, maximum time-step 𝛿𝑡max.

Result: 𝜇𝜇𝜇(𝑡𝑖) and 𝜇𝜇𝜇Targ.(𝑡𝑖) for 𝑖 = 0, 1, . . . , 𝑛

1 Train D(ML)
𝑢𝑢𝑢 with D(MC)

𝑢𝑢𝑢 ;

2 𝑛← 0 ;

3 while 𝑡 ≤ 𝑇 do

4 𝑠← 𝑡;

5

{︁
𝑤𝑤𝑤(QBMM), 𝜉𝜉𝜉(QBMM)

}︁
= CHyQMOM

[︁
𝜇𝜇𝜇(𝑠)

]︁
// Moment inversion

6 {𝑤𝑤𝑤′, 𝜉𝜉𝜉′}(𝑠) = G
[︁
𝜇𝜇𝜇(𝑠);

{︁
𝑤𝑤𝑤(QBMM), 𝜉𝜉𝜉(QBMM)

}︁
(𝑠), 𝐶𝑝(𝑠)

]︁
// ML correction

7 {𝑤𝑤𝑤,𝜉𝜉𝜉}(𝑠) =
{︁
𝑤𝑤𝑤(QBMM) +𝑤𝑤𝑤′, 𝜉𝜉𝜉(QBMM) + 𝜉𝜉𝜉′

}︁
(𝑠) // Set quadrature rule

8 {𝜇𝜇𝜇,𝜇𝜇𝜇𝑇 , 𝜕𝜇𝜇𝜇/𝜕𝑡}(𝑠) = Quadrature
[︁
{𝑤𝑤𝑤,𝜉𝜉𝜉}(𝑠)

]︁
// Moment projection

9 𝛿𝑡← 𝛿𝑡max;

10 flag← 1;

11 while flag > 1 do

12 𝛿𝑡← 𝛿𝑡/2;

13 𝜇𝜇𝜇1(𝑠+ 𝛿𝑡max) = RK4
[︁
{𝜇𝜇𝜇, 𝜕𝜇𝜇𝜇/𝜕𝑡}(𝑠); 𝛿𝑡

]︁
// Evolve moments

14 𝜇𝜇𝜇2(𝑠+ 𝛿𝑡max) = RK4
[︁
{𝜇𝜇𝜇, 𝜕𝜇𝜇𝜇/𝜕𝑡}(𝑠); 𝛿𝑡/2

]︁
// Evolve moments

15 flag← Floor

[︂
max

0≤𝑙+𝑚≤2
‖𝜇1

𝑙,𝑚 − 𝜇2
𝑙,𝑚‖2/𝜏tol

]︂
16 end

17 𝑡← 𝑠+ 𝛿𝑡;

18 𝑛 = 𝑛+ 1 ;

19 end
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7.3 Application to evolution of bubble populations

7.3.1 Pressure signals

The capabilities of the data-enhanced CHyQMOM method to predict the statistics of

bubble populations are explored. The pressure term 𝐶𝑝 excites the bubbles causing

oscillations. The representation of 𝐶𝑝 used here should be general enough to include

pressure profiles seen in actual fluid flows. In a generic framework, let 𝐶𝑝 have a

finite Fourier-series expansion

𝐶𝑝(𝑡) = 1 +
𝑁∑︁
𝑖=1

𝛼𝑖 sin [2𝜋𝑓𝑖𝑡+ 𝜑𝑖] , (7.21)

where 𝑡 corresponds to nondimensional time, nondimenionalized by the natural os-

cillation frequency of the bubbles 𝜔0, 𝑓𝑖 are the included dimensionless frequencies,

and 𝛼𝑖 and 𝜑𝑖 are the corresponding amplitude and phase. It is stressed that 𝐶𝑝 = 1

corresponds to the equilibrium pressure of the bubbles (for which 𝑅 = 1 and 𝑅̇ = 0).

Most cavitating flow applications do not contain pressure frequencies higher than

the natural oscillation frequency of the bubbles [18] (with a notable exception of some

high-intensity focused ultrasound treatments). We operate under this constraint

hereon, though higher frequencies could be included if desired. On the other hand,

very low frequencies are uninteresting because they cause the bubbles to evolve quasi-

statically. Hence, without significant loss of generality, the dimensionless frequencies

of 𝐶𝑝 are in the interval [1/10, 1/5]. The phases of the waveforms that make up 𝐶𝑝

are independently sampled from a uniform distribution 𝒰 in [0, 2𝜋]

𝜑𝑖 ∼ 𝒰([0, 2𝜋]), 𝑖 = 1, 2, ..., 6. (7.22)
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Applications dictate the possible observed pressure amplitudes. For example,

significantly low pressures are not relevant for most applications. To set an empirical

threshold approximating this condition, the pressures must not cause the used Monte

Carlo simulation configuration to become numerically unstable. The solver itself

uses an adaptive 3rd-order Runge–Kutta scheme with minimum time-step 10−6 and

relative error tolerance of 10−7. Thus, we design a pressure distribution from which

all samples are numerically stable and physically realistic. Algorithm 3 details this

process.

Algorithm 3: Forcing Amplitude Sampling

1 𝛼𝑖 ∼ 𝒰([0, 1]), 𝑖 = 1, 2, ..., 6;

2 𝛼←
∑︀6

𝑖=1 𝛼𝑖;

3 𝛼𝑖 ← max
(︁
5𝛼/3

)︁
𝛼𝑖, 𝑖 = 1, 2, . . . , 6

Previous experimental works can also be used to justify that the forcing constraint

in algorithm 3 avoids abrupt cavitation. This is estimated by the cavitation number

𝜎 =
1− 𝑝𝑉 (𝑇0)/𝑝0
𝜌𝑈2

0/2𝑝0
, (7.23)

where 𝑝𝑉 (𝑇0) is the vapor pressure of the liquid at reference temperature 𝑇0 and 𝑈0

is the reference velocity [18]. If the liquid cannot withstand negative pressures then

vapor bubbles appear when the liquid pressure is 𝑝𝑉 . Thus, nucleation occurs when

𝜎 ≥ −min
𝑡

{︂
𝐶𝑝(𝑡)− 1

𝜌𝑈2
0/2𝑝0

}︂
. (7.24)

Without loss of generality, we can choose 𝜌𝑈2
0/(2𝑝0) = 1 to simplify the following

calculations. For flows around axisymmetric headforms, with Reynolds number in

the range of 4.5 × 105, if 𝜎 ≤ 0.40, the formed nuclei grow explosively up to a
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certain bubble size [26]. This phenomenon renders numerical simulations for flows

with 𝜎 ≤ 0.40 considerably more expensive compared to 𝜎 > 0.40 cases in order to

achieve the same numerical accuracy. For the pressure profiles presented here, the

case 𝜎 ≤ 0.40 is avoided when using algorithm 3.

Figure 7-1 shows example pressure profiles 𝐶𝑝(𝑡) that are used to test the fidelity

of the hybrid moment inversion method. Herein, the end of this time window, 𝑡 ∈

[40, 50], is used to assess model fidelity. This enables the bubble dynamics to evolve

from a specific initial state to one more representative of those found in actual flows.

0 10 20 30 40 50

0.4

1  

1.6

FIG. 7-1. The time-history of example realizations of 𝐶𝑝. Comparisons of the time-
history of the evolved moments 𝜇𝜇𝜇 and target moments 𝜇𝜇𝜇Targ. between different nu-
merical schemes are performed in the shaded time-interval 𝑡 ∈ [40, 50].

7.3.2 LSTM RNN training procedure

We simulate 1000 samples of individual bubbles for each realization of 𝐶𝑝. The

bubbles are initialized via samples from normal distributions with variances 𝜎2
𝑅 =

0.052 and 𝜎2
𝑅̇
= 0.052 for 𝑅 and 𝑅̇ respectively. The values of 𝑅 and 𝑅̇ are sampled

independently from one another. The choice of initial distributions, given small

variance, is not particularly important for the evolution of the statistics. Each case

is evolved until 𝑡 = 50, which in this dimensionless system corresponds to 50 natural

periods of bubble oscillations. The individual bubble dynamics are then averaged to
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obtain the Monte Carlo reference statistics for each 𝐶𝑝 realization. To showcase that

1000 samples provide MC data of adequate accuracy, Figure 7-2 shows the 𝐿2-error

for a particular set of moments as the number of samples 𝑁 increases, compared to

reference MC data with 𝑁 = 105.

102 103 104 10510-4

10-1

FIG. 7-2. 𝐿2-error of MC data for variable 𝑁 compared to reference MC data with
𝑁 = 105.

For the numerical investigation, 200 samples of 𝐶𝑝 from (7.21) are used. From

these, 50 are randomly selected for training, with the remaining 150 cases used during

testing. The number of samples used for training deviates from common practices

(where about 80% of data are used) and instead is chosen so that it is large enough

to avoid over-fitting but small enough to still allow for the sampling of qualitatively

different pressure profiles during testing. The neural network includes 28 hidden

units and is trained on the entire time history of each of the 50 selected samples of

𝐶𝑝. Figure 7-3 shows 𝑓 and the 𝜉𝜉𝜉 for one realization of 𝐶𝑝 at different time instances.

The same figure displays the CHyQMOM nodes as estimated by both the standard

4-node CHyQMOM scheme and the 4- and 5-node hybrid schemes.
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(a) 4-node
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FIG. 7-3. Temporal snapshots of 𝑓 computed via Monte Carlo and the positions
of the quadrature nodes for the 4-node CHyQMOM quadrature scheme (QBMM)
and the 4- and 5-node hybrid CHyQMOM quadrature schemes (Hybrid). The labels
(i)–(v) correspond to times 𝑡 = 43.9, 44.1, 44.2, 44.4, and 44.6, respectively.

During training, the LSTM memory size is set to 256 time-instances, with each

𝛿𝑡 = 0.01 apart. The Adam method [78] trained each neural network for 500 epochs,

minimizing the loss function (7.16). A table with the values of the hyperparameters of

the neural networks is presented in appendix C.2. A 4th-order Runge–Kutta adaptive

time stepper evolves the predictions of the hybrid scheme. The time integration

scheme is adaptive, but the neural network predictions are uniform, so the neural

network corrections are limited to the associated fixed time step 𝛿𝑡 = 0.01. To

initialize the neural network during testing, the MC data for the time-interval [0, 0.31]

are used as input.
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7.3.3 Low-order moment evolution and error quantification

The model-form relative error is computed via a discrete 𝐿2 error

𝜖
(*)
𝑙,𝑚 =

⎯⎸⎸⎸⎸⎷
∑︀𝑁𝑡

𝑖=1

[︁
𝜇
(*)
𝑙,𝑚(𝑡𝑖)− 𝜇

(MC)
𝑙,𝑚 (𝑡𝑖)

]︁2
∑︀𝑁𝑡

𝑖=1

[︁
𝜇
(MC)
𝑙,𝑚 (𝑡𝑖)

]︁2 , (7.25)

where (MC) indicates Monte Carlo surrogate truth data and * = {ML,QBMM}.

The 𝑡𝑖 are 𝑁𝑡 = 5000 uniformly spaced times in the interval 𝑡 ∈ [0, 50]. Results

regarding the low-order moments are presented in figure 7-4.

Figure 7-4 (i) shows 𝜖*𝑙,𝑚 for the first- and second-order moments 𝜇𝜇𝜇 for the 4-node

schemes. Rows (ii–iv) shows the evolution of select moments for 𝑡 ∈ [40, 50] and

row (v) shows the corresponding 𝐶𝑝. All results correspond to 4 randomly selected

testing samples (a)–(d) as labeled. We observe a smaller 𝜖 for the hybrid scheme

than standard CHyQMOM for all 4 cases considered. The largest errors for both

approaches appear for moment 𝜇0,2 (row (iv)), which exhibits large and intermittent

fluctuations when the bubbles collapse. The CHyQMOM method deviates most

from the MC surrogate-truth data during intervals of high compression (small 𝐶𝑝),

with hybrid CHyQMOM tracking the reference solution more accurately. Thus, the

observed increase in accuracy varies significantly from case-to-case and moment-to-

moment, from 10 times smaller errors to only 20% improvements. The evolution of

the 𝐿2 error for Case 2 is shown in figure C-1 of appendix C.3.
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FIG. 7-4. Low-order moment evolution for 4-node CHyQMOM and hybrid CHyQ-
MOM methods. Results compare against surrogate-truth Monte Carlo (MC) data.

7.3.4 High-order moment extrapolation

The next quantity of interest is the 𝐿2-error in predicting the target higher-order

moments 𝜇𝜇𝜇Targ.. Figure 7-5 presents these results for the same 4 testing samples

presented in figure 7-4. For all moments (ii)–(iv), hybrid CHyQMOM significantly

improves the predictions of 𝜇𝜇𝜇Targ.. This improvement is associated with the more
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accurate evolution of the low-order moments 𝜇𝜇𝜇 and these targeted moments in the

neural network training procedure.
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FIG. 7-5. Comparison of predictions of target moments 𝜇𝜇𝜇Targ. for Monte Carlo data
(black line), CHyQMOM predictions (red dashed line), and hybrid CHyQMOM pre-
dictions (blue line) for 4 quadrature nodes.

To better study the typical reduction in error for the 4-node hybrid CHyQMOM
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scheme, we compute the percent improvement of the 𝐿2 error as

𝒬𝑙,𝑚 = 100
𝜖
(QBMM)
𝑙,𝑚 − 𝜖(ML)

𝑙,𝑚

𝜖
(QBMM)
𝑙,𝑚

. (7.26)

Figure 7-6 shows a histogram of 𝒬 calculated for example low-order moments

𝜇𝜇𝜇 and target moments 𝜇𝜇𝜇Targ.. For all testing samples, the 4-node hybrid scheme

improves the accuracy of the standard CHyQMOM method.
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FIG. 7-6. Histogram of 𝐿2-error improvement 𝒬 for hybrid CHyQMOM over tradi-
tional CHyQMOM for example (a–d) low-order moments and (e–f) target high-order
moments. Cases are drawn from 150 realizations of 𝐶𝑝.

Further, for both low-order moments (𝜇𝜇𝜇) and target moments (𝜇𝜇𝜇Targ.), the error
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is reduced by more than 50% for more than 80% of the sampled 𝐶𝑝 cases. Target

moments 𝜇𝜇𝜇Targ. exhibit 𝐿2-error improvement ranging from 5% to 96%. The variation

in error improvement is due to the amplitude range of the sampled 𝐶𝑝 and how closely

the time-series of 𝐶𝑝 corresponds to one of the training samples. Thus, results can

improve by including more training samples.

7.3.5 Additional quadrature nodes

Another potential route to method improvement is to increase the number of quadra-

ture nodes. While the number of quadrature nodes can change, the evolved moments

remain 𝜇𝜇𝜇. The algorithm for this is included in appendix C.1.

To quantify the effect of this change, 𝜖1/2𝑙,𝑚(*) is computed, which is the median

𝜖
(*)
𝑙,𝑚 error among the 150 test samples. We then define

𝐶𝑙,𝑚 =
𝜖
1/2
𝑙,𝑚(ML)

𝜖
1/2
𝑙,𝑚(QBMM)

(7.27)

to quantify the decrease in the 𝐿2-error when using higher-node-count hybrid CHyQ-

MOM compared to the standard 4-node CHyQMOM.

Figure 7-7 shows that the accuracy of the hybrid predictions is improved as the

number of nodes 𝑁𝜉 increases. However, the error improvement gains diminish once

7 nodes are reached. Further, including additional nodes to the quadrature rule

increases the computational time needed to perform a single time-step evolution for

the system. The computational cost of 4-node hybrid CHyQMOM per time-step is

8.9 times the cost of CHyQMOM. For 5, 6, and 7 nodes, the hybrid method costs

per time-step are 11.5, 13.8, and 16.2 times that of 4-node CHyQMOM1. Hence,

1Simulations were performed using PyQBMMlib [23] on 1 core of a 2.3GHz Intel Core i9 CPU.
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diminishing improvements are observed as the number of nodes increases to more

than 6, as the simulations require significantly more computations per time-step for

comparable accuracy.
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FIG. 7-7. Median error decrease while using hybrid CHyQMOM over 4-node CHyQ-
MOM for different numbers of nodes for the hybrid CHyQMOM scheme.
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Chapter 8

Conclusions and Future Work

8.1 Summary of results

This thesis demonstrated a multitude of machine learning strategies for predicting

the statistics of turbulent and highly nonlinear dynamical systems under appropriate

physics-constrained frameworks. All approaches revolve around employing statisti-

cal formulations of the problem and utilizing recurrent neural networks to accurately

estimate the reduced-order dynamics from delay coordinates. These neural networks

can replace closure terms of coarse-scale equations of turbulent flows, improve exist-

ing numerical schemes or entirely replace the dynamical system. The viability of the

method was tested on a number of applications from climate modelling to bubble

cluster dynamics.

In chapter 4, we have demonstrated the application of the energy conservation

property of the advection terms on machine learning non-local closures for turbulent

fluxes. We have adopted two neural network architectures, based on LSTM and TCN,

to further include memory effects in our analysis. Clearly, the physical constraint
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is not restricted to these two frameworks and can be employed in other machine

learning architectures, as well as other fluid systems (e.g. environmental flows). We

demonstrated the computed closures in two-dimensional jets in an unstable regime

and showed that closures obtained from unimodal jets can be used for different

jet geometries. The adoption of the physical constraint significantly and consistently

improved the accuracy of the mean-flow predictions obtained from the corresponding

coarse-scale models independently of the adopted architecture or the flow setup. This

improvement was on average 26% for one-dimensional closures and 29% for two-

dimensional closures, being notably larger for flows that were not used for training.

Moreover, the constraint improved the numerical stability of the coarse-scale models

especially in Reynolds numbers, which were higher than the ones included in the

training data sets. While the adopted examples are relatively simple, yet unstable,

fluid flows, the presented energy constraints do not depend on the complexity of the

flow.

In chapter 5, we have formulated and assessed a data-informed turbulence-closure

scheme that respects the underlying conservation properties of nonlinear advection.

The method employs a second-order framework for the uncertainty quantification

of nonlinear and turbulent dynamical systems. We first applied our approach to

prototypical problems of nonlinear dynamics, like the unstable triad system and

the Lorentz-96 model. In both cases, the data-informed approach produced results

in good agreement with reference MC simulations. Furthermore, the method was

applied to more realistic turbulent flows, involving anisotropic multiphase flows and a

2-layer quasigeostrophic model. The obtained results demonstrated the improvement

of applying the closure at the second-order level, as opposed to mean-flow closures,

but also how the results are improved by encoding the energy conservation property

of the nonlinear terms in the training process. In addition, we illustrated that the
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ML closure of the covariance equation allows for accurate modeling of highly non-

trivial non-Gaussian statistics that govern the response of low wavenumbers in the

QG model.

In chapter 6, we have formulated and assessed a data-informed hybrid scheme

for accurately computing the statistics of climate models. The method employs a

nudged solver during training with appropriate spectral corrections to the produced

dataset. During testing, the model is assessed on free-running coarse-scale climate

models. The approach was applied to realistic atmospheric climate data. Free-

running EAMv2 simulations were used as baseline while ERA5 reanalysis data were

employed as reference truth. First, the ability of the model to predict global statistics

of horizontal velocities (𝑈, 𝑉 ), temperature 𝑇 and specific humidity 𝑄 was assessed.

In all cases, the data-informed approach produced results in good agreement with

reference ERA5 predictions. Furthermore, the model was tasked with predicting

mean IVT over the period 2007-2017, a highly anisotropic quantity. Results are

again in good agreement with ERA5, with the corrected dataset having a smaller

mean-square error than a nudged dataset. Finally, the model was used to predict

statistics of tropical cyclones throughout the globe. The model’s ability to correct

the number of predicted cyclones over the pacific was demonstrated.

In chapter 7, a data-informed conditional hyperbolic quadrature method for sta-

tistical moments was presented. The method was applied to the statistics of a popu-

lation of spherical bubbles oscillating in response to time-varying randomized forcing.

The forcing is designed to resemble any possible function with a banded frequency

spectrum from 1/5 to 1/10 the natural frequency of the bubbles. Results showed

that the method reduces closure errors when compared against a standard 4-node

CHyQMOM scheme. The hybrid method reduced errors more significantly for the ex-

trapolated higher-order moments that close the phase-averaged flow equations. This
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improvement was achieved via recurrent neural networks that include time history

during training and were trained using a fixed time-step. This result is significant

because higher-order QBMM schemes are generally numerically unstable for this

problem, so another approach is required to improve accuracy. Thus, while the pre-

sented hybrid scheme is about a factor of 10 more expensive than CHyQMOM, its

numerical cost should be viable for many applications. Furthermore, the presented

method can be effectively applied to any dynamical system with non-Gaussian statis-

tics where high-order moments are of interest.

8.2 Future work

While the proposed online closure schemes of chapter 4 and chapter 5, adequately

predict flows that are distinct from those of the training set, it is important to state

that the computed closure is not expected to be as effective in every fluid flow. This

is due to the fact that depending on the specifics of a fluid flow, such as dimension-

ality, boundary conditions, domain geometry, excitation terms, and the presence of

additional dynamics such as Coriolis terms, the nonlinear interactions between scales

are different. Therefore, aiming to machine learn universal closures that will work

for every case is beyond the scope of this thesis. Instead, our approach is to employ

data from flows that have some common features with the flow we are interested in

modeling, and combine this data with a universal constraint, the energy conserva-

tion by the nonlinear terms, to increase the accuracy of the computed closures. The

optimal choice of input features is also expected to vary depending on the specifics

of the flow and therefore a numerical examination of different combinations should

be performed to achieve the most effective closure.

In chapter 6, while the non-intrusive hybrid approach was shown to effectively
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capture statistics of extreme events, further future pathways can be highlighted.

First, active learning can determine optimal datasets for the training of this system.

This step is of particular importance in a setup where the datasets and models are

very large and training is cumbersome. Furthermore, clustering techniques can be

used to interpret the selection process by uncovering potentially important physical

phenomena that should be included in training. Another path is a systematic study of

uncertainty quantification in the predictions of the model itself. For that purpose, an

ensemble of neural networks that are trained over the same dataset can be used. The

variance between the predictions of these NNs can be vital in quantifying uncertainty

and error propagation in scenarios where ground truth cannot exist. This technique

can also be used during training to assess how much the proposed architecture tends

to overestimate or underestimate its own uncertainty. Finally, the proposed model

can be used for fututre climate scenarios as a computationally efficient model for

adequately accurate extrapolation of climate statistics under different scenarios.

151



152



Appendix A

Energy preserving closure-schemes

for first-order statistics in 1D flows

We study the effectiveness of the proposed closure scheme in chapter 4, when we

take advantage of the translational invariance of the flow in the 𝑥−direction. This

allows us to obtain a closed averaged equation for the 𝑦−profile of the jet. In the

second case we do not rely on this symmetry and obtain closures directly for the

two-dimensional flow. We will compare the adopted architectures for both the case

of utilizing the energy constraint presented above and not.

A.0.1 One-dimensional closures for the jet profile

We take advantage of the translational invariance of the flow in the 𝑥−direction and

select the spatial-averaging operator to be integration along the full 𝑥-direction and

local spatial averaging along the 𝑦-direction:

𝑓(𝑦) =
1

2𝜋

∫︁∫︁
𝑆2

𝑤𝑙(𝑦
′ − 𝑦)𝑓(𝑥, 𝑦′)d𝑥d𝑦′ (A.1)
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where, 𝑤𝑙(𝑦′−𝑦) = 1
2𝑙
[𝐻(𝑦′−𝑦−𝑙)−𝐻(𝑦′−𝑦+𝑙)] is the piece-wise constant averaging

window of length 2𝑙; here 𝑙 = 2𝜋
20

. Applying the averaging operator to the governing

equations we obtain the equation for the 𝑦−profile of the jet. Note that based on

our averaging operator for this case, we have 𝑢̄2 = 0 and 𝑢̄1 is only a function of 𝑦.

To this end, we have:

𝜕𝑡𝑢1 = −D𝑢1 +
1

Re
𝜕2𝑦𝑢1 + 𝜈∇−4(𝑢1 − 𝑢1,𝑗𝑒𝑡) + 𝐹 1, (A.2)

𝜕𝑡𝜌+ 𝜕𝑦(𝑣2 𝜌) + D𝜌 = 𝜈2𝜕
4
𝑦𝜌. (A.3)

Therefore, the objective function used for training of the flow closure takes the form:

𝐿(𝜃1) =

∫︁
Ω×𝑇

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒D𝑢1

[︀
𝜃1; 𝜉

]︀
− (u′ · ∇)u′

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒
2

dxd𝑡+𝜆

∫︁
𝑇

⃒⃒⃒⃒
⃒
∫︁
Ω

𝑢1 · D𝑢1

[︀
𝜃1; 𝜉

]︀
dx− 𝐴[u]

⃒⃒⃒⃒
⃒d𝑡,

(A.4)

where 𝐴[u] = −
∫︀
Ω
u′ · (u′ · ∇)u′dx. On the other hand, the objective function for

the density field closure takes the form:

𝐿(𝜃2) =

∫︁
Ω×𝑇

⃒⃒⃒⃒⃒⃒
D𝜌

[︀
𝜃2; 𝜁[𝛼(x), 𝜒(𝑡)]

]︀
−∇ ·

(︀
v′𝜌′
)︀⃒⃒⃒⃒⃒⃒2

𝑑x𝑑𝑡. (A.5)

The neighborhood 𝛼(𝑦) is selected to have five nodes in total:

𝛼(𝑦) = {𝑦 +𝑚𝛿𝑦}, 𝛿𝑦 = 2𝜋/80, 𝑚 = −2,−1, ..., 2,
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while the temporal horizon in the past is selected as

𝜒(𝑡) = {𝑡−𝑚𝛿𝜏}, 𝛿𝜏 = 10−2, 𝑚 = 1, 2, ..., 12.

Both the spatial extent of the neighborhood and the memory are chosen as the

threshold values above which any further increase does not result significant difference

in the training and validation errors.

Neural network architecture

We assess two different architectures for our closure scheme. In the first case, we

represent the flow closure with 3 convolutional-LSTM layers and the density closure

with 4 convolutional-LSTM layers (16 time-delays). Further increase of the number

of layers does not offer any significant improvement in the training and validation

errors. The adopted architectures are presented in Figure A-1 (a-b). For the second

machine learning architecture we use 4-layer temporal convolutions to model the

memory terms of our closure for both the flow and the density fields. The architecture

in this case is depicted in Figure A-2(a-b). An important difference between the two

architectures that is worth emphasizing is associated with their computational cost.

Specifically, in the LSTM architecture we have a memory term that is updated at

each time-step and to this end, LSTM needs to only operate on the flow features

at each time-step. On the other hand, TCN layers operate on the entire included

time-history making them more computationally expensive.

Feature selection

The selection of the flow features that are used as inputs for the data-driven closures

is done numerically by testing different combinations of basic flow features. We
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eventually choose the combination that minimizes the training and the validation

error. It is important to emphasize that if we rely only on the training error we run the

risk of over-fitting. We carry out this process individually for each of the closure terms

for the Navier-Stokes equation and the transport equation. For the closure term Du

we select as possible flow features the quantities: 𝑢1, 𝜕𝑡𝑢1, 𝜕𝑦(𝑢′1𝑢′2). All input flow

features are separately normalized to have variance equal to 1. Table 1 summarizes

performance for different combinations over 100 periods for the TCN and LSTM

architectures with the physical constraint. It is observed that while {𝜕𝑡𝑢1, 𝜕𝑦(𝑢′1𝑢′2)}

drastically decreases training error, the inclusion of the mean flow profile 𝑢1 strongly

improves validation error. Since the best validation error is achieved in this case, all

considered flow features are employed.

For the implementation of the presented closure scheme the input features are

not imposed to be Galilean invariant. Requiring the input features to be Galilean

invariant can be justified when the closure scheme is intended to model drastically

different flows (different boundary conditions, flow geometry or significantly different

Reynolds number). Machine learning universal closures for turbulence is beyond the

scope of this effort. This is because this task is associated with extreme obstacles,

such as selection of training data which are representative of essentially every possible

dynamical regime and geometry, and the assumption that there is a machine learning

architecture that can generalize well over such a vast range of conditions. Instead,

the goal here is to develop closures that can generalize well over a family of flows

with common topology and dynamics. To this end, the need for the features to be

Galilean is not necessary, since the frame of reference for all the produced jet flows

is the same and the magnitude of the examined jets is very similar.
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Table A.1. Feature selection for the one-dimensional closure of the Navier-Stokes.

𝜉 feature selection

cTCN cLSTM

Features Dimension Train-MSE Val-MSE Train-MSE Val-MSE

𝑢1 1 0.094 1.712 0.102 1.501

𝜕𝑡𝑢1 1 0.037 0.535 0.041 0.501

𝜕𝑦(𝑢′1𝑢
′
2) 1 0.028 0.144 0.033 0.139

𝑢1, 𝜕𝑡𝑢1 2 0.042 0.418 0.056 0.511

𝑢1, 𝜕𝑦(𝑢′1𝑢
′
2) 2 0.023 0.159 0.028 0.157

𝜕𝑡𝑢1, 𝜕𝑦(𝑢′1𝑢
′
2) 2 0.021 0.092 0.026 0.085

𝑢1, 𝜕𝑡𝑢1, 𝜕𝑦(𝑢′1𝑢
′
2) 3 0.021 0.029 0.025 0.032

Table A.2. Feature selection for closure of bubble transport equation.

𝜁 feature selection

cTCN cLSTM

Features Dimension Train-MSE Val-MSE Train-MSE Val-MSE

𝜌 1 0.109 0.150 0.123 0.171

𝑣𝑣𝑣 2 0.603 0.673 0.592 0.625

𝑣𝑣𝑣, 𝜌 3 0.081 0.090 0.094 0.101

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝑣𝑣𝑣, 𝜕𝑡𝜌 6 0.058 0.060 0.061 0.064

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝑣𝑣𝑣, 𝜕𝑦(𝜌′𝑣′2) 6 0.028 0.039 0.042 0.088

𝑣𝑣𝑣, 𝜌, 𝜕𝑡𝜌, 𝜕𝑦(𝜌′𝑣′2) 5 0.027 0.036 0.035 0.049

𝑣𝑣𝑣, 𝜌.𝜕𝑡𝑣𝑣𝑣, 𝜕𝑡𝜌, 𝜕𝑦(𝜌′𝑣′2) 7 0.025 0.031 0.033 0.044
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(a) (b)

(c) (d)

FIG. A-1. (a) Architecture of the LSTM neural network for parametrizing the term
D𝑡 = 𝜕𝑦(𝑢′1𝑢

′
2). (b) Architecture of the LSTM neural network for parametrizing the

term D𝑡 = 𝜕𝑦(𝑣′2𝜌
′). (c) Mean square training-error (solid line) and validation error

(dashed line) for D𝑢. (d) Mean square training-error (solid line) and validation error
(dashed line) for D𝜌.
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(a) (b)

(c) (d)

FIG. A-2. (a) Architecture of the TCN neural network for parametrizing the term
𝜕𝑦(𝑢′1𝑢

′
2) and 𝜕𝑦(𝑣′2𝜌

′). (b) Inner architecture of a residual block. (d) Mean square
training-error (solid line) and validation error (dashed line) for D𝑢. (e) Mean square
training-error (solid line) and validation error (dashed line) for D𝜌.

For the closure of the transport equation we carry out the same process in Table

2, where we present the training and validation error over 100 periods. We observe

that the single most important feature is 𝜌. Based on the mean-square error (both
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training and validation) we choose the combination of 𝑢, 𝜌, 𝜕𝑡𝑢, 𝜕𝑦(𝜌′𝑣′). In Figure

A-1 we present the value of both validation and training error with respect to the

number of epochs. These are quite similar, hinting towards generalizability of the

predictions. It is worth mentioning that when spatial derivatives are added to the

selected feature sets shown previously, training and validation error didn’t improve.

This could be a result of non-local information of the (averaged) fluid flow profile

and density profile used as input, allowing the convolutions to combine these values

in a finite-difference sense to derive spatial derivative information that is needed.

However, in the case of trying to test this model to drastically different flow set-ups,

the Galilean invariant partial spatial derivatives are probably appropriate to replace

the non-Galilean averaged features, i.e. the fluid flow profile and density profile.

A.1 Validation and generalizability for one-dimensional

closures

To showcase the generalizability properties of the obtained closures we train on uni-

modal jets and test on bimodal ones. We mention again that the averaged model

is one-dimensional and we use 80 points in space to simulate it. We compare the

results of the averaged model with the predictions of the two-dimensional reference

solutions that we computed using a spectral method and 2562 modes. Each training

case contains data in the time-interval 𝑇 = [200, 600].
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A.1.1 Validation on unimodal jets

As seen in Sec. 4.2, the unperturbed jet profile is chosen as,

𝑢1,jet = exp
[︁
− 2(𝑦 − 𝜋)2

]︁
, 𝑢2,jet = 0. (A.6)

We train four different models on unimodal jets of Re ∈ {650, 750, 850}. We use

LSTM and TCN architectures with and without enforcing the physical constraint

of eq. (A.4). In Fig. A-3, we present the time- and 𝑦-averaged mean-square error

between the 𝑥-averaged profile of the DNS, 𝑢̄* and the coarse scale model, 𝑢̄:

||𝑢̄* − 𝑢̄||22 =
1

2𝜋𝑇

∫︁ 2𝜋

0

∫︁ 𝑡0+𝑇

𝑡0

(𝑢̄*(𝑦, 𝑡)− 𝑢̄(𝑦, 𝑡))2𝑑𝑦𝑑𝑡. (A.7)

We observe that the TCN models clearly outperform the LSTM based closures.

Moreover, training using the objective function that includes the physical constraint

(Eq. A.4) for the advective terms (cTCN and cLSTM) significantly improves the

testing results for the two architectures by 23% and 25%, respectively (Table A.3).

This improvement comes at no additional cost in terms of data, but only using

the physical constraint associated with the advection terms, which does not depend

on the knowledge of any physical quantity of the flow or any other system-specific

information.

In Fig. A-4 we present additional results for the cTCN model (best performer).

We showcase results both for the time-averaged profile for the fluid velocity and for

the bubble distribution for Re = 1000. Comparisons are made between the time-

averaged results that the one-dimensional closure scheme produces and the time-

and 𝑥− averaged results of the two-dimensional reference solution. Specifically, the
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FIG. A-3. Normalized error (A.7) for one-dimensional closure models using TCN,
LSTM and their constrained versions, cTCN and cLSTM for unimodal jets. Training
data includes unimodal jets with Re ∈ {650, 750, 850}.

time-averaged jet-profile is computed as

⟨𝑢1⟩(𝑦) =
1

𝑇

∫︁ 𝑡0+𝑇

𝑡0

𝑢1(𝑦, 𝑡)𝑑𝑡, (A.8)

where 𝑢̄1 is the 𝑥−averaged reference solution and the temporal averaging parameters

are chosen as 𝑡0 = 200 and 𝑇 = 400; note that we omit the first transient part of the

simulation.

The results appear to be in very good agreement showcasing that our closure

scheme is able to predict the statistical steady state of the flow. We can also observe

the Rayleigh instability that the initial jet profile (dashed line) undergoes due to

the excitation by the external forcing. We note that the slight asymmetry that

the velocity profile exhibits is due to a minor inhomogeneity of the forcing term

along the 𝑦 direction. We apply the same operation described above to compute ⟨𝜌⟩

from both the reference solution and the data-based closure scheme (Fig. A-4(b)).

Again, we obtain very good agreement between the machine learning approach and

the reference solution, which has a non-trivial form, as the bubbles seem to cluster

162



(a) (b)

FIG. A-4. Time-averaged profile of 𝑢1 (left) and 𝜌 (right) for the one-dimensional
cTCN closure model (blue line) and the DNS (black line). The shape of the jet that
is imposed by the large-scale forcing is depicted with dashed line. The simulation
corresponds to Re = 1000 while training included Re ∈ {650, 750, 850}.

around the core of the jet and be repelled from the adjacent areas of the jet core.

A.1.2 Testing generalizability on bimodal jets

Next we test the generalizability of the closure schemes presented in the previous

section on bimodal jets. Once again we state that we train on unimodal jets (as

described previously) while we test our scheme on bimodal jets with the unperturbed

jet-structure of the fluid flow chosen (as seen in Sec. 4.2) as

𝑢1 = exp[−3(𝑦 − 0.8𝜋)2] + exp[−3(𝑦 − 1.2𝜋)2], Re ∈ [500, 1000]. (A.9)

In Fig. A-5 we present the normalized mean-square error Eq. A.7 between the refer-

ence solution and the one predicted by the closure model. As we can see, employing

the physical constraint during training significantly improves the results. Specifi-

cally, we note that the errors of the cTCN and cLSTM remain at the same levels

observed in the unimodal jet case (i.e. we have good generalizability properties in
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FIG. A-5. Normalized error Eq. A.7 for one-dimensional closure models error for
one-dimensional closures applied on bimodal jets. Training data includes unimodal
jets with Re = {650, 750, 850}.

different flows), while the unconstrained version has significantly worse performance

compared with the unimodal jet case. In addition, we observe much better behavior

of the constrained closures when we move to Reynolds numbers higher than the ones

used for training. In fact, for sufficiently large Reynolds the schemes based on the

unconstrained closures become unstable.

Results regarding the time-averaged jet profile of 𝑢1 and 𝜌 are depicted in Fig. A-6

for the cTCN architecture, where we can observe excellent agreement of the predicted

profile with DNSs. We also apply the closure scheme on the transport Eq. 4.7

to compute the distribution of bubbles. We present the comparison of the mean

distribution of bubbles between the cTCN closure model and DNS in Fig. A-6(b).

We note that the error for this case is slightly more pronounced compared with the

one observed for the mean flow velocity in Fig. A-6(a). This can be attributed to

two factors: (i) the predictions of the transport model rely on the predictions of the

coarse-scale model for the velocity field (hence error accumulates); and (ii) the closure

model for the bubbles relies only on data since the energy-preserving constraint is
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not relevant.

(a) (b)

FIG. A-6. Time-averaged profile of 𝑢1 and 𝜌 for the one-dimensional cTCN closure
model (blue line) and the DNS (black line). The simulation corresponds to Re = 1000
and a bi-model background jet, while training data for the closures correspond to
unimodal jets with Re ∈ {650, 750, 850}. The shape of the jet that is imposed by
the large-scale forcing is depicted with dashed line.

A summary of the error improvement in the one-dimensional predictions due to

the adoption of the physical constraint is presented in Table A.3. We present the

improvement of the mean-square error for the mean flow, averaged over different

Reynolds numbers. For all cases this percentage ranges between 23% and 29% with

the improvement being more pronounced for the bimodal setups, i.e. the setup that

was not used for training.

Table A.3. Error decrease (Reynolds-averaged) due to the physical constraint for
one-dimensional closure schemes.

Architecture Jet-type Error decrease

TCN-1D Unimodal 23%

LSTM-1D Unimodal 25%

TCN-1D Bimodal 29%

LSTM-1D Bimodal 27%
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Appendix B

Nonintrusive statistical corrections of

climate models

B.1 Further Data assimilation results for climate

model

For the next numerical validation, the focal point shifts to extreme events. Again we

plan to use as input nudged data of certain events. These data have not been used

for training. The goal is to see how well the extreme event can be reproduced from

the trained ML scheme if the input is just nudged data.

The first extreme event under discussion is a tropical cyclone named hurricane

Sandy. Hurricane Sandy impacted the Caribbeans and the East Coast of the United

States from 10/23 to 11/02 of 2012. For this case, training takes place for all of 2012,

excluding the time-interval 10/22 to 11/03. The neural-network is again trained

for 1000 epochs. In fig. B-1, the maximum wind-speed for time interval 10/22-

11/03 is shown over the spatial region of [40𝑜W, 100𝑜W]× [0𝑜N, 50𝑜N]. The first row
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shows ERA5 predictions. Second row shows the Nudged prediction together with the

Nudged biases with respect to ERA5 data. The last column shows the same results

for corrections applied to the Nudged data via the trained neural-network.

FIG. B-1. Maximum wind-speed predictions for different datasets over the time-
period 11/22-11/03. Results are shown for ERA5, Nudged and neural-network cor-
rections. Left column corresponds to predictions and right column to biases with
respect to ERA5.
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The model displays a clear ability to reduce biases over the time-interval it was

not trained, showcasing the generalizability of the scheme. Furthermore, Nudged

data display some form of aliasing over the continental US and Canada. These

effects are significantly removed via the neural-network corrections.

FIG. B-2. Maximum integrated water vapor predictions for different datasets over
the time-period 01/20-01/26. Results are shown for ERA5, Nudged and neural-
network corrections. Left column corresponds to predictions and right column to
biases with respect to ERA5.
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FIG. B-3. Maximum integrated vapor transport predictions for different datasets
over the time-period 02/04-02/14. Results are shown for ERA5, Nudged and neural-
network corrections. Left column corresponds to predictions and right column to
biases with respect to ERA5.

Moving forward to other climate extreme events for numerical validation, we

focus on a particular extratropical cyclone. The extreme event under discussion is

an extratropical cyclone that caused a category 4 snowstorm over the East Coast

from 01/20 to 01/26 of 2016. For this case, training takes place for all of 2016,
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excluding the time-interval 01/20 to 01/26. The neural-network is again trained for

1000 epochs. In fig. B-2, the maximum integrated water vapor for time interval

01/20-01/26 is shown over the spatial region of [50𝑜W, 110𝑜W] × [10𝑜N, 60𝑜N]. The

first row shows ERA5 predictions. Second row shows the Nudged prediction together

with the Nudged biases with respect to ERA5 data. The last column shows the same

results for corrections applied to the Nudged data via the trained neural-network.

The generalizability of the learned mapping is showcased again here. It is also noted

that IVW is not a quantity directly predicted by the hybrid model. It is an integral

quantity that is derived from the predictive fields.

As a final study of a speficic extreme event, an atmospheric river is chosen. The

study focuses on an atmospheric river that impacted the West Coast of the United

States from 02/04 to 02/14 of 2017. For this case, training takes place for all of

2017, excluding the time-interval 02/04 to 02/14. The LSTM is again trained for

1000 epochs. In fig. B-3, the maximum integrated vapor transport for time interval

02/04-02/14 is shown over the spatial region of [90𝑜W, 170𝑜W] × [10𝑜N, 60𝑜N]. The

first row shows ERA5 predictions. Second row shows the Nudged prediction together

with the Nudged biases with respect to ERA5 data. The last column shows the same

results for corrections applied to the Nudged data via the trained neural-network.

Integrated vapor transport is defined as

IVT =

√︃(︂
1

𝑔

∫︁ 𝑃0

𝑃surf

𝑈2𝑄d𝑃

)︂2

+

(︂
1

𝑔

∫︁ 𝑃0

𝑃surf

𝑉 2𝑄d𝑃

)︂2

. (B.1)
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FIG. B-4. Maximum integrated water vapor predictions for different datasets over
the time-period 02/04-02/14. Results are shown for ERA5, Nudged and neural-
network corrections. Left column corresponds to predictions and right column to
biases with respect to ERA5.

The model displays a clear ability to reduce biases over the time-interval it was

not trained, showcasing the generalizability of the scheme.

In fig. B-4, the maximum integrated vapor transport for time interval 02/04-

02/14 is shown over the spatial region of [90𝑜W, 170𝑜W]× [10𝑜N, 60𝑜N]. The first row
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shows ERA5 predictions. Second row shows the Nudged prediction together with

the Nudged biases with respect to ERA5 data. The last column shows the same

results for corrections applied to the Nudged data via the trained neural-network.

Integrated vapor transport is defined as

IVW =
1

𝑔

∫︁ 𝑃0

𝑃surf

𝑄d𝑃. (B.2)
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FIG. B-5. Predictions of (a) IVT and (b) IVW, over the Orville Dam for the time
period 02/04 to 02/14 of 2017.
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The model displays a clear ability to reduce biases over the time-interval it was

not trained, showcasing the generalizability of the scheme. Finally, the time-series for

IVT and IVW over the Orville Dam, during the same time period is shown in fig. B-

5. The Orville Dam in California suffered a spillway on 02/11/2017, damaging its

concrete surface. This was caused by the excess rain during the occurence of the at-

mospheric river. The model effectively tracks the ERA5 predictions for the duration

of the extreme event.

B.2 Active search

Throughout chapter 6, the presented non-intrusive models were trained by randomly

sampling time-intervals from the 11-year available Nudged dataset. This proposed

methodology showcased its ability to accurately capture the long-time statistics of

extreme events. However, there is no theoretical or heuristic guarantee that the

chosen training dataset will yield optimal or even adequate results. This is due to

the uncertainty of (i) what properties constitute a training point "useful"; and (ii)

are these "useful" points included in the randomly chosen training dataset. Without

this information included during training, the model’s performance will be hindered

during testing. That is because in a supervised learning setup, only during training

can gradient-descent schemes optimize the weights of the neural-networks. As a

result, it is of outmost importance to ensure all relevant information is included

during training. Furthermore, it is desirable to recognise redundant data and draw

theoretical conclusions.

To improve the training process, we will use Bayesian sequential selection algo-

rithms similar to Bayesian experimental design (BED). These algorithms are widely

use to identify the critically informative training data while disregarding those that
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are unrelated or misleading. This approach dynamically couples the model and data

based on its merits towards improving the aforementioned model, and evaluates the

performance of the model on the full training set which guarantees that no key in-

formation is wasted. One scenario where this approach is utilized is to avoid the

double-descent phenomenon, a phenomenon in which the accuracy of a ML model

deteriorates before it improves as the model complexity, training set size or, in case

of deep neural networks (DNNs). A recent study by Pickering and Sapsis [131]

demonstrates the efficacy of this approach, referred to as information FOMO (Fear

Of Missing Out) in reducing the training dataset size to its most informative data

and consequently, rectifying the double descent phenomenon. The physical system

studied in this article concerns a one-dimensional partial differential equation origi-

nally proposed by Majda, McLaughlin, and Tabak (MMT) [100] for the study of 1D

wave turbulence.

The goal of this study is to identify optimal training datasets for predicting ac-

curate statistics of extreme events for different climate free-runs. This is particularly

important for this application as we have a vast set of data points and outputs,

which if used inefficiently can use to large wastes of computational time. It is also

expected that different data-points will be crucial for different target extreme events.

As a result, a number of different targets are described in the next subsection, and

detailed results will be given in the future reports.

For any form of value of data analysis, a method to estimate uncertainty in the

predictions of the trained models is needed. To quantify uncertainty in the neural

network predictions, an ensemble of neural networks, of size 𝑁 , is employed. These

neural networks are trained over the same dataset and have the same architecture

and hyperparameters. The only difference between them is that the weights of each

member of the ensemble are initialized with different values sampled from a random
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process. Using this ensemble, model uncertainty can be quantified via the variance

𝜎(X) =

⎯⎸⎸⎷ 𝑁∑︁
𝑛=1

(︀
𝑌𝑛(X)− 𝑌 (X)

)︀2
𝑁 − 1

, (B.3)

where X corresponds to the input data and 𝑌 is the quantity of interest. 𝑌𝑛 is the

predictions of the nth neural network of the ensemble, and

𝑌 (X) =
1

𝑁

𝑁∑︁
𝑖=1

𝑌𝑛(X). (B.4)

This metric can be used to asses the statistical characteristics of spatio-temporally

local generalization errors as well as uncertainty in non-local quantities, such as PCA

modes and global pdf predictions.

Data value (or importance) will be determined by the score that the acquisition

function assigns to each data. The acquisition function we will adopt is given by

𝑎(X) = 𝜎2(X)
𝑝𝑥(X)

𝑝𝑦(𝑦(X))
, (B.5)

where X is the input data and 𝑦 is the output or quantity of interest. This output

𝑦 or quantity of interest can be for example, the temperature over a specific region,

the density count for cyclones. The acquisition function above consists of two terms,

𝜎2(X) and 𝑝𝑥(X)/𝑝𝑦(𝑦(X)). The former, attempts to assign larger importance to

those regions of the input domain that haven’t been populated with enough data.

The latter, however, considers those regions of the dataset important where rare

and extreme events occur, i.e., 𝑝𝑦(𝑦(X))≪ 1. All together, the acquisition function

mentioned above, considers subdomains of the dataset valuable, if 1) they are not

populated with data points, and 2) the model predicts they contain extreme and rare
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events.

Of course, the aforementioned acquisition function can and will be tailored in

such a way that is most suitable to our needs, for instance, it can be modified such

that it deems a subset of the data valuable if, for instance, it:

• improves the accuracy and predictive capacity of the model over local regions

of the globe, e.g., a particular city, state, country, region, etc.;

• helps the model to accurately predict extreme local events such as hurricanes;

• results in accurate modeling of the spatial or temporal mean fields of variables

of interest.

This approach can then be used to augment the training set with training samples

with the highest acquisition function score. Repeating this process for multiple

iterations can yield an optimal training set for the neural network. The iterative

process for active sampling can be seen in fig. B-6.

FIG. B-6. Schematics of the iterative active sampling process. Training process (top)
and active search (bottom), for the non-intrusive hybrid method.
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First, a small training set denoted by Θ is randomly selected. An ensemble of

neural networks are trained over Θ. Then, the trained neural networks are used to

predict the proposed acquisition function for a target quantity 𝑦. The acquisition

function is computed over the entire sampling dataset. Once the largest values of

the acquisition function are found, the datapoints are added to the training set Θ.

The number of datapoints added to the training set a hyperparemeter of the scheme.

The neural networks are then trained over the new training set, with re-initialized

weights. The process is repeated until satisfactory accuracy has been achieved.

B.2.1 Forecast Targets

With respect to forecast targets, PCA modes for a variety of physical quantities are

examined. The purpose of using PCA modes is to reduce the dimensionality of the

target quantity 𝑦 in the acquisition function. Below, preliminary results for the first

PCA mode of temperature are shown. Specifically, the first PCA mode is computed

over the horizontal region [0oN, 60oN]× [40oW, 110oW], for the sigma-level closest to

the surface of the earth.

Implementing the scheme proposed in fig. B-6, two distinct choices can be made

for "Sampling dataset", during the active search step. While training can only

be carried out over the Nudged dataset, the acquisition function can be computed

either over the Nudged dataset or the free-running CLIM dataset. As a result,

two sampling approaches are tested here. Sampling Approach #1 involves using

the Nudged dataset to compute the acquisition function. Then, the samples with

the largest acquisition function value are directly added to the training set. On

the other hand, Sampling Approach #2 involves the free-running CLIM dataset for

the acquisition function. With this approach however, the samples with the largest
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acquisition function value cannot be directly incorporated in training. Instead, the

selected samples are used to find the training samples withing the Nudged dataset

that are closest to the selected free-running ones.

The two methods are compared to validate that using only the Nudged dataset

during training can indeed help as learn vital information for the testing free-running

datasets as well. Results are shown in fig. B-7 for an ensemble of 𝑁 = 5.
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FIG. B-7. Top row: MSE Test error (i.e. out-of-sample data) as a function of training
samples. Bottom row: Log-PDF Test error as a function of training samples. Results
are shown for an ensemble of 5 neural-networks. Solid lines correspond to mean
prediction over an ensemble of 5 realizations. Shaded areas engulf the predictions of
all 5 realizations.

In fig. B-7, two metrics are shown. The top row shows convergence of the mean-
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square-error

MS Error =
1

|𝒟sample ∖ 𝒟train|
∑︁

X∈𝒟sample∖𝒟train

(︀
𝑌 (X)− 𝑌 ref(X)

)︀2
, (B.6)

where 𝑌 ref corresponds to the PCA predictions from the ERA5 dataset. Neural-

netowrk predictions are derived by passing through all snapshots of the input data.

Then, only the samples not included in the training process are used for the error

calculation. This metric corresponds to the proposed metric I of section 3.1 from

Milestone 7. The second metric (second row), shows the convergence of the log-pdf

error

Log-PDF Error =
1

𝑌max − 𝑌min

∫︁ 𝑌max

𝑌min

|log10 𝑝ℳ (𝑦;𝒟train)− log10 𝑝ref(𝑦)|d𝑦. (B.7)

This metric corresponds to the proposed metric III of section 3.1 from Milestone 7.

The two methods exhibit the same rate of convergence for both metrics, showcasing

that the two schemes are equivalent. Hence, we can assume that the optimal dataset

selected over the Nudged dataset will contain information important for the free-

running dataset during testing.

In fig. B-8, a comparison between Active Sampling and standard Monte Carlo

sampling is shown. The same two metrics are used. With respect to the mean-

square error, both methods appear to converge at the same rate. However, active

sampling converges faster with the respect to the log-PDF error. These two results

hint that the active sampling approach allows for faster sampling of extreme events

in the behaviour of the dominant PCA mode. This behaviour can be evaluated on

other quantities as well, to see its range of applicability. Of particular interest is

the convergence properties for PCA modes of other physical quantities as well as
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indicators that are used as priors for extreme events.

4 40 80 120

10 -2

10 -1

100

4 40 80 120

10 -3

10 -2

10 -1

FIG. B-8. (a): MSE Test error (i.e. out-of-sample data) as a function of training
samples. (b): Log-PDF Test error as a function of training samples. Results are
shown for an ensemble of 5 neural-networks. Solid lines correspond to mean predic-
tion over an ensemble of 10 realizations. Shaded areas engulf the predictions for all
5 realizations.
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Appendix C

Hybrid Quadrature-based method of

moments

C.1 CHyQMOM inversion algorithm

This is the inversion algorithm for the 4-node CHyQMOM scheme. Given the first

and second-order moments {𝜇1,0, 𝜇0,1, 𝜇2,0, 𝜇1,1, 𝜇0,2} it computes the nodes (𝜉𝑖, 𝜉𝑖)

and corresponding weights 𝑤𝑖 for 𝑖 = 1, 2, 3, 4, in phase-space. In this work we

assume 𝜇0,0 = 1. To tail the algorithm to our hybrid scheme of arbitrary number of

quadrature nodes, the algorithm adds some fictitious extra nodes to the scheme with

zero-valued weights to match the desired number of nodes of the hybrid scheme.
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Algorithm 4: CHyQMOM inversion algorithm

1 𝑤𝑖 = 0.25, 1 ≤ 𝑖 ≤ 4.;

2 𝑤𝑖 = 0.00, 4 < 𝑖 ≤ 𝑁 ;

3 𝜎𝑅 =
√︁
𝜇2,0 − 𝜇2

1,0;

4 𝛼 = 𝜇1,1−𝜇1,0𝜇0,1
𝜎𝑅

;

5 𝜎𝑅̇ =
√︁
𝜇0,2 − 𝛼2 − 𝜇2

0,1;

6 𝜉𝑖 = 𝜇1,0 + 𝜎𝑅;

7 𝜉2 = 𝜇1,0 + 𝜎𝑅;

8 𝜉3 = 𝜇1,0 − 𝜎𝑅;

9 𝜉4 = 𝜇1,0 − 𝜎𝑅;

10 𝜉𝑖 = 𝜇1,0, 4 < 𝑖 ≤ 𝑁 ;

11 𝜉1 = 𝜇0,1 + 𝛼 + 𝜎𝑅̇;

12 𝜉2 = 𝜇0,1 + 𝛼− 𝜎𝑅̇;

13 𝜉3 = 𝜇0,1 − 𝛼 + 𝜎𝑅̇;

14 𝜉4 = 𝜇0,1 − 𝛼− 𝜎𝑅̇;

15 𝜉𝑖 = 𝜇0,1, 4 < 𝑖 ≤ 𝑁 ;
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C.2 Neural network hyperparameters

Hyperparameter Value

Epochs 500

Learning rate 10−5

Batch size 32

Activation function tanh

Recurrent activation function hard sigmoid

Dropout coefficient 0.10

Recurrent dropout coeffificent 0.10

LSTM is stateful True

Kernel initializer Zeros

Recurrent initializer Zeros

Bias initializer Zeros

hidden units 28

Table C.1. Hyperparameters used to train the neural networks.

C.3 Evolution of mean-square error

Evolution of 𝐿2 error as time progresses, defined as

𝐸
(*)
𝑙,𝑚(𝑘) =

⎯⎸⎸⎸⎸⎷
∑︀𝑘

𝑖=1

[︁
𝜇
(*)
𝑙,𝑚(𝑡𝑖)− 𝜇

(MC)
𝑙,𝑚 (𝑡𝑖)

]︁2
∑︀𝑘

𝑖=1

[︁
𝜇
(MC)
𝑙,𝑚 (𝑡𝑖)

]︁2 , (C.1)
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where (MC) indicates Monte Carlo surrogate truth data and * = {ML,QBMM} and

𝑘 denotes the last time-step till which the error is calculated. Results are presented

for Case (2) of Figure 7-4 and Figure 7-5.
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FIG. C-1. Evolution of 𝐿2 error for different moments for a particular forcing real-
ization.
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