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Improved Friction and Dynamics Estimation in Legged Robots

by

Laura Schwendeman

Submitted to the Department of Mechanical Engineering
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Mechanical Engineering

Abstract
Reducing the Sim-to-Real gap between robot simulation and robot performance could lead
to improved and more efficient robot design through more accurate controls and design
testing in simulation and through more accurate state detection for model-based control ar-
chitectures. This work built upon current research in the field of robot system dynamics by
investigating the effect of using single-layer feed-forward neural nets to model non-linear
friction forces and other forms of dynamics that are difficult to account for with traditional
robot system identification schemes. Applying the single-layer feed-forward neural nets to
system identification data from the dynamic MIT Humanoid and MIT Mini Cheetah robots
significantly reduced torque prediction errors. The neural net was able to reduce torque er-
rors by modeling both linear and non-linear effects that could not be easily fit by traditional
methods. The results of this paper suggest that using the system identification methodology
outlined within could lead to more accurate dynamics modeling, which would assist with
closing the Sim-to-Real gap through simulated dynamics with more fidelity and a more
robust representation of robot dynamics.

Thesis Supervisor: Sangbae Kim
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

The Sim-to-Real gap between simulated and physical robot performance presents a prob-

lem for robot controls engineers and researchers. To control complex robots performing

complex tasks, often engineers will first design and test control systems in simulation soft-

ware packages. This helps roboticists gain an understanding of the efficacy of their control

structures through simulated dynamics before applying said control structures to physical

hardware that is more costly to test, especially in the event of catastrophic failures. Vetted

control schemes are then applied in physical robotic systems and further tuned and opti-

mized. However, since the dynamics coded in simulation are often not entirely reflective

of true physical systems, the transition from applying a control scheme generated through

simulation to a physical robot can be time-consuming and lead to control that is much less

effective than what was predicted in simulation. Especially in popular dynamic control

schemes with model-based components, the differences between simulated and physical

dynamics, which are integral to the control scheme itself, can lead to vastly different re-

sults between simulated and real performances. Such differences can even persist with

corrective learning control methods like reinforcement learning that seek to edit control

automatically based on performance metrics and errors.

Many research papers from a variety of different fields have developed techniques to

make simulated physics more accurately reflect and predict true physical results. With re-

spect to dynamic-legged robots, Lee et al. recently developed a method using a regularized

geometric convex optimization approach with a least squares formulation and additional
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physical constraints [4]. This approach uses a given robot model and can fit robot inertial

parameters while accounting for the pitfalls that traditional robot inertial fitting methods

fall into. However, this approach is still linear in nature, and its accuracy still depends on

the robustness of the underlying robot system model that describes which inertial and dy-

namic parameters to fit in the first place. Any un-modeled or non-linear effects will create

errors in torque predictions.

This work theorized then that including more detailed, non-linear effects measured dur-

ing system identification in the control design pipeline would not only help diminish the

discrepancies between simulated and physical control performance but also improve the

performance of controllers that depend on dynamics modeling to connect input commands

to controlled movements and torques. Particularly, this work focuses on internal, non-

linear friction-based dynamic effects that often are unaccounted for in model-based control

schemes. This work investigated applying neural networks in addition to the regularized

convex approach developed by Lee et al. to model the largely friction-based dynamic ef-

fects that are difficult to accurately include in simulated robot models built from traditional

system identification methods alone [4]. This work included non-linear friction estimation

in both the MIT Mini Cheetah and MIT Humanoid robots’ system identification pipeline

with physical and simulated data sets. Including said non-linear dynamic effects in simu-

lated and physical dynamic state estimation led to reduced torque prediction errors and was

able to model more complex dynamics on robots with coupled dynamics and non-linear

belt frictions. Such results suggest that including non-linear friction estimation in robot

control could lead to improved performance and potentially reduce the need for aggres-

sive tuning and correction when transitioning controllers between simulated and physical

robots.
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Chapter 2

Background

Determining the dynamic parameters and responses of a system through testing is intrinsic

to the understanding and development of many physical systems. System identification

finds relevance in fields ranging from neuromuscular biomechanics to industrial robotics to

drone control. System identification is particularly important in the development of robotic

control systems because many control schemes generate commands based on a simulated

physical model of the system in question. Classically, a least squares approach has been

used to fit system identification data to robot model parameters.

2.1 Classic Least Squares Approach

Starting in the 1980s, popular methods for estimating robot dynamic parameters included

a suite of Least-Squares based regression methods. Researchers like Gautier et al. inves-

tigated techniques for applying least-squares and getting inertial parameters from physical

robot data with optimized trajectories [2]. Similarly, Swevers et al. used least-squares-

based linear techniques with a method for fitting parameters in the presence of noise and

with a unique optimized robot trajectory. Swevers et al. were able to closely estimate the

inertial parameters of industrial robots with this method [6]. These initial works and others

like them were largely designed for and tested on industrial robots. They create a linear fit

in terms of robot inertial parameters using excitatory robot dynamics data.

Different traditional papers will formulate a given robot’s least squares regression sys-
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tem identification using different models of rigid body dynamics. For example, Gautier et

al. describe their robot dynamics through Hamiltonians [2]. However, regardless of the

fundamental physics equations used to correlate measured kinematic parameters to robot

forces, a classic least squares regression in robotics will follow the form of:

τ = AΦ (2.1)

Where τ refers to an n-sized vector of robot torque measurements, Φ refers to an r-sized

vector of relevant inertial parameters and linear friction coefficients, and A refers to a n-by-r

matrix describing relevant model speeds, velocities, and acceleration measures depending

on the choice of physics model. In a robot system’s identification problem then, the goal

is to fit values to the numbers in Φ that reduce the error between the measured τ values

and those predicted by a linear fit of the data. This creates the least squares optimization

problem depicted in 2.2.

min
Φ

∥AΦ− τ∥ (2.2)

Solving this least sqaures problem for Φ then gives a set of parameters that can be used

to estimate and model robot joint torques given input joint velocities, positions, and/or ac-

celerations. Such approaches using dynamics parameters with such a least squares formu-

lation, with additional methods to account for measurement noise, have been successful in

simulating the physical dynamics of industrial robots as evinced by Gautier et al., Swevers

et al., and other authors [2–4, 6].

2.2 Regularized Convex Least Squares Approach

For cases outside industrial robots, such as in legged robots with more complex mech-

anisms and environments, traditional least-squares approaches do not efficiently account

for the more complicated dynamics, increased degrees of freedom, and the large magni-

tude ranges of velocities and inertias present between different links in a legged robot [1].

To account for the difficulties in applying traditional methods to legged robots, many re-
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searchers have experimented with new approaches for inertial parameter system identifi-

cation. In particular, Lee et al. formulated and tested a convex geometric regularization

approach that made use of an entropic divergence distance metric to regularize and opti-

mize robot inertial parameters within a least squares optimization method [1]. Such an

approach was able to model, among other systems, a 3 DoF mini-cheetah robot leg with

reduced errors when compared to traditional methods. In Lee et al.’s work, they dynamics

of a system were modeled using equation 2.3:

τ = M(q,Φ)q̈+b(q, q̇,Φ) = Γ(q, q̇, q̈)Φ (2.3)

Where τ represents robot joint torques, M describes the mass matrix of the system, q

refers to joint position, b describes gravitational and Coriolis forces, and Γ is a regressor

matrix that puts equation 2.3 into a factored form similar to equation 2.1. Φ then is a vector

of the inertial parameters for each moving rigid body in the system, and Φ includes the

components of each body’s inertia tensor in addition to its mass and an indicator of each

body’s center of mass [4].

To fit experimental data to equation 2.3, Lee et. al then formalized a least squares

minimization problem with an extra regularization factor that penalizes divergence from

an initial guess at the system’s inertial parameters and the inertial parameter’s divergence

from physically feasible parameters. The formulation is described in equation 2.4:

minΦ ∥Γ(q, q̇, q̈)Φ− τ∥2
C−1 + γ ·d(Φ,0 Φ)2 (2.4)

Where C, the error covariance, is based on a non-regularized data fit, γ is a weight that

emphasizes the importance of adherence to the initial guesses of inertial parameters 0Φ,

and d(Φ,0 Φ) describes a regularized distance metric between 0Φ and the newly optimized

Φ. In the Lee et al. paper, a variety of different distance metrics, d(Φ,0 Φ), were used.

This work specifically utilizes an entropic Bregman distance metric which is described

by Lee et al. [4]. Using the entropic distance metric reduced the torque prediction error

in optimizing Φ when compared to other distance metrics like the Euler distance, and it

especially improved torque estimation at lower sample sizes from MIT Mini Cheetah leg
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data in addition to other system models [4].

The convex approach developed by Lee et al. promises to be useful for estimating robot

inertial parameters in a quick and more robust way for legged robots and more complicated

systems. However, while the convex regularization approach succeeds in finding the in-

ertial parameters of models with high degrees of freedom and more complicated coupled

dynamics, it does not account for non-linear dynamic effects present in larger legged robots

such as the MIT Humanoid.

2.3 Friction Estimation Techniques

This work seeks to include a complimentary module that can work in tandem with an

approach like Lee et al.’s convex regularization algorithm to account for the non-linear

dynamics and errors that an approach solving for inertial parameters alone cannot easily

model. Commonly difficult physical parameters to model include torque-dependent friction

and non-linear friction-based effects such as Stribeck friction and belt friction.

Recently Huang et al. developed a method employing a small neural network with

backpropagation in conjunction with a hybrid least squares algorithm to estimate robot

friction torques unaccounted for by the hybrid least squares algorithm alone. Such a method

used a single-layer neural net with 10 neurons and was able to reduce the torque prediction

errors in a 7 DoF Fanka Emika Panda and UR5 Robot [3]. This work thus sought to see

if similarly adding a small artificial neural network with backpropagation to robot system

identification in addition to Lee et al.’s convex regularization approach could improve the

torque errors present in the MIT Cheetah and MIT Humanoid robots, which differ from the

fixed base Panda and UR5 robots. Additionally, this work also sought to better understand

if improving torque predictions on a model level would result in more accurate control and

tracking in the MIT Cheetah and MIT Humanoid robots.
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Chapter 3

Methods

3.1 Robot Modeling

3.1.1 Rigid Body Dynamics Models

The approach developed by Lee et. al. for estimating robot inertial parameters depends

on underlying robot kinematic models to provide constraints and relationships between fit

robot inertial parameters. The choice of model can thus greatly affect the results of the

optimization. In this work, two different robot systems were investigated to understand

the efficacy and effects of employing friction compensation in robot system identification.

Initial data was collected with a 3 DoF leg from a MIT Mini Cheetah robot to test the

effects of friction compensation on a lower DoF system with smaller inertias and lower

torque errors due to friction. Data was also collected with the 5 DoF left leg of the MIT

Humanoid robot to further test the effects of friction compensation in a robot with more

complicated coupled dynamics, larger inertias, and harder to model effects from belt and

torque dependant frictions.

Rigid Body Dynamics (RBD) models, shown in Figure 3-1, were made for both robot

systems in order to describe the robot kinematics and initial prior parameters used for in-

ertial parameter optimization. For the MIT Mini Cheetah, the same RBD model that was

used in the Lee et al. paper was employed. This model includes the inertias of three rigid

links and 3 rotors whose dynamics are coupled between the second and third link. For
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the MIT Humanoid Robot, three different models were investigated in order to determine

which model could best reduce torque prediction errors and to analyze the differences be-

tween performing system identification with simulated and physical data. One model, the

Hardware model, is a representation of the humanoid robot’s kinematics that can best de-

scribe the geometries and coupled dynamics of lower leg links. The Hardware Model for

the MIT Humanoid includes belt ratios, rotor inertias, and a representation of the coupled

dynamics between the lower leg that arise due to off-joint actuation through belt drives.

The other models used in this work, the Isaac Gym model and the Robot Software model

represent simplified versions of the MIT Humanoid that are used for simulating control

strategies and dynamics in different software systems. The Robot Software model includes

rotor inertias and dynamics but does not include the coupled dynamics between links or the

effects of belt gear ratios. Each rotor and link pair are modeled as directly driven joints.

The Issac Gym model then further simplifies the MIT Humanoid to just its rigid links and

ignores the effects of separate rotor inertias.

For the MIT Humanoid, all three models were investigated to determine the minimum

level of complexity required to accurately describe generated robot motor torques. The

results of fitting inertial parameters to the different MIT Humanoid models with different

motor torque datasets are shown in section 4.2.1.

3.1.2 Inertial Parameter Regression

The approach described by Lee et. al generates bounding ellipsoids based on physical

robot parameters in order to constrain the set of optimized inertial parameters to ones that

are more physically realistic. In this work, bounding ellipsoids were generated in order

to encompass the range of inertias within the constraints of the robot’s geometric bounds

taken from CAD software. These bounds are graphically depicted in Figure 3-1 for each

RBD model used in this work.

Additionally, the approach described by Lee et. al. includes a regularization term that

weights the optimizations divergence from the inertial parameters first fed into the param-

eter optimization algorithm. In this work, the initial parameters (referred to as priors) were
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(a) (b)

(c) (d) .

Figure 3-1: Graphical depictions of the RBD models and their bounding ellipsoids used to
represent and fit the intertias of a MIT Mini Cheetah leg and a MIT Humanoid leg. Rotor
inertias, if present, are shown in translucent black. Colored ellipses represent bounding
ellipses for robot links. Dark black lines denote the relative coordinate frames of each link.
(a) RBD model of the MIT Mini Cheetah with 3 DoF and 3 rotors in their true locations
in CAD. (b) Isaac Gym RBD model of the MIT Humanoid with 5 DoF and no rotors. (c)
Robot Software RBD model of the MIT Humanoid with 5 DoF and 5 rotors placed at each
joint (d) Hardware RBD model of the MIT Humanoid with 5 DoF and 5 rotors in their true
locations.
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taken from the estimated link weights and dimensions taken from CAD representations of

the robots studied. The regularization parameter γ was set to 0.001 for all optimizations in

this work.

In this work, nearly the same approach and optimization formulation developed by Lee

et. al. and described in section 2.2 was used to fit inertial parameters to robot system identi-

fication data. The only considerable difference was the exclusion of the friction terms from

the Γ function described in equation 2.3. As shown in figure 4-3, the effect of including or

excluding the friction terms in the Γ function have a relatively small effect on the optimal

parameters found through Lee et. al’s optimization approach.

3.2 Neural Network Training and Dynamics Identification

Once inertial parameters were fit using Lee et al.’s regularized optimization approach, a

single-layer feed-forward neural net with 16 neurons was trained on the resulting error be-

tween the predicted torque from optimization and the true, measured torque. The neural

nets for each robot in each data set were given a vector with the recorded joint angles,

velocities, and torques. The number of inputs to each net, n, was equal to the number of

degrees of freedom for each robot times three, where the joint angles, joint velocities, and

torques for each DoF’s controlling motor constituted the input. The neural nets then out-

putted m friction torques where m is equal to the number of DoF in the system. Each neural

net was trained on 50% of the data with 20% reserved for validation and 30% reserved for

testing. The neural net was implemented using Matlab’s learning toolbox, using the default

parameters coded for a feedforward neural network shown in table 3.1.

Table 3.1: Neural Net Parameters

Neural Net Parameter Value

Training Algorithm Levenberg-Marquardt
Performance Metric Mean Squared Error

Max Number of Epochs 1000
Gradient Threshold 10−7

µ Threshold 1010
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3.3 System Identification Data Collection

System identification was performed with both simulated and physical excitatory data on

both a MIT Mini Cheetah leg and the left leg of the MIT Humanoid. Swept simulated

data and oscillatory fixed speed data were collected from the MIT Biomimetics Robotics

Lab’s Robot Software simulation package. Robot Software used the same Robot Software

MIT Humanoid and MIT Mini Cheetah models as this work to generate oscillatory robot

paths with added noise on all 3 motors of the Mini Cheetah and all 5 motors of the MIT

Humanoid. The measured motor torques resulting from swept simulations for the MIT

Humanoid and constant frequency simulations for the Mini Cheetah were recorded and are

shown in Figure 3-2.

Physical excitatory data was also collected for both the MIT Humanoid and MIT Chee-

tah robots (see Figure 3-4). Both robots were commanded to generate motor torques fol-

lowing swept sine paths at each motor. The recorded motor torques for each data set and

robot platform are shown in Figure 3-3.
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(a)

(b)

Figure 3-2: (a) Measured simulated torque data from commanding the MIT Mini Cheetah
to follow a constant frequency sinusoid. (b) Simulated motor torques for the MIT Hu-
manoid robot when commanding the robot joints to follow swept oscillations.

20



(a)

(b)

Figure 3-3: (a) Measured physical torque data from commanding the MIT Mini Cheetah to
follow a constant Frequency Sinusoid. (b) Physical motor torques for the MIT Humanoid
robot when commanding the robot joints to follow swept oscillations.
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(a) (b)

Figure 3-4: The two robot systems used in this work. (a) the MIT Mini Cheetah. (b) a
rendering of the full MIT Humanoid. For this work, the left leg of the MIT humanoid was
modeled and tested.
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Chapter 4

Results

4.1 MIT Mini Cheetah Leg Results

4.1.1 Simple Nets Improve Torque Predictions

To first test the efficacy of a neural net in estimating robot friction torques, this work inves-

tigated the improvement of torque estimation for a 3 DoF MIT Mini Cheetah Leg. As a first

pass, simulated MIT Mini Cheetah Leg oscillating position, velocity, and acceleration data

were taken and frictionless torque time series were generated for each motor using known

simulated Mini Cheetah inertial parameters. Friction torques using a non-linear model of

Stribeck friction described by Marton and Lantos were then added to the torque time series

data along with Coulomb friction and viscous joint friction torques [5]. As shown in Figure

4-1, the single-layer neural net described in section 3.2 was able to reduce prediction errors

by nearly perfectly matching the simplified added friction torques.

The neural net framework was then tested on filtered physical Mini Cheetah leg dynam-

ics data. Figure 4-2 shows similarly that applying a neural net for friction compensation

was able to greatly reduce the torque prediction errors of the Mini Cheetah model.
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4.2 MIT Humanoid Leg Results

4.2.1 Fitting Inertial Parameters

After verifying that neural nets could predict the friction torques present a 3 DoF MIT Mini

Cheetah Leg at varying speeds, the MIT Humanoid was analyzed in a similar manner, in

more depth, and across different potential models.

Figure 4-3 shows the entropic Bregman Distance between the prior parameters fed into

optimizations with or without linear friction and Coulomb friction terms included in the

cost function. As shown in the figure, the difference between a given model’s inertial

parameter fitting when the linear dynamic and Coulomb friction terms were or were not

included was very small compared to the distance between the optimized parameters and

the initial parameters used at the beginning of optimization. The small regularized distances

between optimizations with and without linear friction terms generally held true across all

models and data sets. The presence or absence of the friction term in the regularized convex

optimization did not significantly affect the results of final torque predictions, and so all

following results and investigations into inertial parameter fitting did not include dynamic

and Coulomb friction terms in equation 2.3 when optimizing inertial parameters on a given

data set.

Figure 4-4 then compares the entropic distances of the inertial parameters fit using the

three different robot models described in 3.1.1 with both simulated and physical MIT Hu-

manoid measured torque data. As shown in Figure 4-4, the smallest distance measures

are first between the distance calculated between the same inertial parameter sets running

down the diagonal of the matrix. The next smallest distances then fall between the prior

parameters of the Isaac Gym model and the other two MIT Humanoid models investigated

in the study. This is largely an artifact of the reduced inertial bodies described in the Isaac

Gym model of the MIT Humanoid because the Isaac Gym model does not have any rotors.

The inertial distances calculated by the entropic Bregman distance metric for inertial pa-

rameters involving the Isaac Gym model then only compare the distances between inertias

of the robot links. The reported values discount the distances between the non-existent

rotors of the Isaac Gym model and the rotors of the Hardware and Robot Software models.

24



It is somewhat difficult then to make conclusions and comparisons between the Isaac Gym

model and the other two MIT Humanoid models based purely on the comparisons of the

distances between inertial parameters. This work thus focused on the fit parameters of the

Issac Gym model in isolation from the parameters of the Robot Software and Hardware

models.

Figure 4-5 highlights the distances between the priors of the Issac Gym Model and

newly generated parameters from both simulated and physical data sets. Smaller distances

were observed between the Isaac Gym priors and the parameters optimized from simulation

data compared to those optimized using hardware torques. Interestingly, the Isaac Gym

model optimized with software data had parameters that were closer to the Isaac Gym

priors than the parameters that were fit with hardware data. This generally goes against

the trend shown in Figure 4-6 where the largest distances exist between the priors and

the optimized parameters, and parameters optimized on either data set have the smallest

distances outside those between a data set and itself.

4.2.2 Neural Network Friction Estimation

As shown in Figure 4-7, applying a low-layer neural net after fitting inertial parameters can

greatly improve the accuracy of torque predictions of a model on a given data set just as

it did for the MIT Cheetah Leg. Tables 4.1, 4.2, and 4.3 show that for all data sets and all

Humanoid models, applying a neural net to estimate friction torques reduces the root mean

square errors between a model’s predicted motor torques and the true measured torque.

This holds true across model fits across simulated and physical MIT Humanoid data sets,

suggesting that friction-based and unmodeled forces can account for a large amount of the

error between measured and model-predicted torque values.

Tables 4.1, 4.2, and 4.3 also show that, on average, using the MIT Humanoid Hardware

model with a neural net for friction estimation correlated with the lowest torque prediction

errors on the Hardware data set compared to all other models. Comparatively, the Isaac

Gym and Robot Software models with a compensatory neural net were best able to reduce

the prediction errors on the simulated data sets. Additionally, the Isaac Gym and Robot
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Software models both were able to reduce errors on simulated data sets to a similar extent

on average, and they both had similar errors, within 15% of each other on average, on the

hardware data set even with a compensatory neural net. This suggests that the coupled

inertias and belt ratios modeled in the Hardware Model but not the other models may be

appreciable in generating motor torques and can lead to torque prediction errors that are

more easily fit by a neural net on noisy, physical MIT Humanoid torque measurements.

Tables 4.1, 4.2, and 4.3 showed that adding friction and modeling error compensation

with a neural net could reduce torque prediction errors. Figures 4-8 and 4-9 qualitatively

show potential mechanisms as to how the neural net’s predicted friction torques differ from

the method of fitting linear friction torques described by Lee et. al. One mechanism may

just be a stronger fit to channel noise. However, in Figure 4-8, the neural net friction torques

differ from linear ones, especially at low speeds, where the neural net fits some overshoot-

ing friction profiles that bring to mind Stribeck friction transitions and Coulomb friction

forces in the sharp transition between motor torque direction changes. These characteristic

effects can be seen similarly in the friction torque comparisons for motors 1, 2, and 3 in

Figure 4-9, and similar, although slightly less noticeable, Coulomb friction spikes present

at lower speeds on motor 5, which drives the ankle joint which has the smallest inertia out

of all the links in the Humanoid Leg.

Label Motor 1 Motor 2 Motor 3 Motor 4 Motor 5
Simulated, no Friction 1.0095 1.0869 1.2457 1.3573 1.0622

Simulated, with Friction 0.10247 0.096516 0.049276 0.0999 0.028167
Hardware, no Friction 1.124 0.90553 1.0317 0.85934 1.1184

Hardware, with Friction 0.12809 0.15685 0.063481 0.13078 0.01765

Table 4.1: Root Mean Square Error (RSME) between the measured and predicted torques
for each MIT Humanoid Motor when using the Hardware model for inertial parameter
optimization on hardware and software data sets
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Label Motor 1 Motor 2 Motor 3 Motor 4 Motor 5
Simulated, no Friction 0.95828 1.0381 1.1508 1.2139 1.0637

Simulated, with Friction 0.0768 0.078842 0.057406 0.059127 0.017483
Hardware, no Friction 1.8635 2.8796 3.1244 5.7569 3.4991

Hardware, with Friction 0.1388 0.17251 0.11898 0.15015 0.096106

Table 4.2: Root Mean Square Error (RSME) between the measured and predicted torques
for each MIT Humanoid Motor when using the Robot Software model for inertial parameter
optimization on hardware and software data sets

Label Motor 1 Motor 2 Motor 3 Motor 4 Motor 5
Simulated, no Friction 0.95928 1.0383 1.0869 1.2349 1.0656

Simulated, with Friction 0.068952 0.075697 0.070939 0.054919 0.012441
Hardware, no Friction 1.7592 1.6082 1.1388 1.2741 1.0844

Hardware, with Friction 0.15327 0.15017 0.16238 0.12248 0.02019

Table 4.3: Root Mean Square Error (RSME) between the measured and predicted torques
for each MIT Humanoid Motor when using the Isaac Gym model for inertial parameter
optimization on hardware and software data sets
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(a)

(b)

Figure 4-1: (a) A comparison of synthetic motor torques (blue) and those predicted af-
ter only fitting inertial parameters through convex optimization (red). The data shown was
generated by using a set of known inertial parameters, joint velocities, and accelerations for
the Mini Cheetah robot to create a time series sum of inertial torques, Coulumb frictions,
Viscous frictions, and Stribeck frictions. The Root Mean Square error for the fit on motors
1, 2, and 3 of the Mini Cheetah was 0.68, 0.71, and 1.45 respectively before friction com-
pensation. (b) A comparison of synthetic motor torques (blue) and those predicted after
training a neural net on the generated friction torques (red). The predicted torques visibly
nearly perfectly match the measured ones with 0.00 RMS error on all motors besides motor
1.
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(a)

(b)

Figure 4-2: (a) A comparison of filtered measured physical Mini Cheetah motor torques
(blue) and those predicted after only fitting inertial parameters through convex optimization
(red). The Root Mean Square error for the fit on motors 1, 2, and 3 of the Mini Cheetah
was 0.62, 0.19, and 0.10 respectively before friction compensation. (b) A comparison of
synthetic motor torques (blue) and those predicted after training a neural net on the error
between the measured torques and inertial torques (red). The predicted torques visibly
nearly perfectly match the measured ones with RMSE values of 0.04, 0.01, and 0.0 for
motors 1, 2, and 3 respectively
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Figure 4-3: A matrix representation of the calculated Bregman distances between the prior
inertial parameters and those fit from optimization using the Hardware MIT Humanoid
rigid body model with MIT Humanoid Hardware data. Inertial Parameters from optimiza-
tions with dynamic and Coulomb friction terms and without any friction terms are com-
pared. Bregman Distances are reported on a log scale.
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Figure 4-4: A matrix representation of the calculated Bregman distances between the prior
inertial parameters and those fit from optimization using all MIT Humanoid Models and
simulated and hardware data sets. Bregman Distances are reported on a log scale.
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Figure 4-5: A matrix representation of the calculated Bregman distances between the prior
inertial parameters and those fit from optimization using the Isaac Gym MIT Humanoid
Model and simulated and hardware data sets. Bregman Distances are reported on a log
scale.
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Figure 4-6: A matrix representation of the calculated Bregman distances between the prior
inertial parameters and those fit from optimization using the Robot Software and Hardware
MIT Humanoid Models and simulated and hardware data sets. Bregman Distances are
reported on a log scale.
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Figure 4-7: (Top) A comparison of measured physical motor torques (black) and those
predicted after only fitting inertial parameters through convex optimization (red). The data
shown is a representative example of the measured and predicted torques from using the
MIT Humanoid Hardware Model on hardware data. (Bottom) A comparison of measured
physical motor torques (black) and those predicted after fitting inertial parameters through
convex optimization and training a neural net (red). The data shown is a representative ex-
ample of the measured and predicted torques from using the MIT Humanoid Hardware
Model on hardware data with a neural network for friction estimation. The predicted
torques visibly nearly perfectly match the measured ones.
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Figure 4-8: The estimated friction torques fit to MIT Humanoid hardware using the linear
friction compensation approach employed by Lee et al. (blue) and using a neural net fitting
the residual after only fitting inertial parameters using the convex optimization approach
developed by Lee et al. (red). In both cases, the humanoid hardware model was used to
describe the geometry constraints when optimizing inertial parameters.
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Figure 4-9: The estimated friction torques fit to MIT Humanoid hardware torque data using
the linear friction compensation approach employed by Lee et al. (blue) and using a neural
net fitting the residual after only fitting inertial parameters using the convex optimization
approach developed by Lee et al. (red). In both cases, the humanoid hardware model was
used to describe the geometry constraints when optimizing inertial parameters.
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Chapter 5

Discussion

This body of work suggests that employing low-layer neural nets to estimate friction torques

can result in reduced errors between the predicted torques output by a model and the true

torques measured on a robot. This work was able to combine Lee et al.’s algorithm for

finding the optimal parameters for a given model with an additional torque prediction mea-

sure that can compensate for any discrepancies between the torques predicted by a model

and those measured. Tables 4.1, 4.3, and 4.2 showed that employing a neural net to predict

unmodeled dynamics could greatly improve prediction errors from a variety of models fit

to the same simulated and physical measurements. Part of these improvements run the risk

of overfitting noise, but from figures like Figure 4-8, and the fact that the fit friction torques

closely followed Lee et al.’s linear friction torques with additional characteristic features,

this work suggests that simple neural networks can model effects that are difficult to model

with linear methods and traditional system identification techniques alone. This work sug-

gests then that using neural nets could serve as a useful tool for modeling and estimating

non-linear torques in complicated systems with high DoF and non-linear dynamics. Us-

ing trained friction models fit to hardware data in simulation software could lead to more

accurate robot modeling in simulation, further leading to control architectures that are bet-

ter prepared for transitions to physical robots. Additionally, employing non-linear friction

models in the state estimation of physical robots could lead to more accurate tracking in

force feedback and impedance-based control schemes that depend on estimations of output

forces for generating trajectory and force corrections.
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Future work then would involve investigating if employing a neural net architecture in

simulation and physical hardware when calculating joint torques could measurably improve

robot performance in tracking tasks and tasks involving dynamic interactions. Furthermore,

the current models of friction could be used to model non-linear dynamics in simulation,

closing the sim-to-real gap and better-informing roboticists of their robot’s performance

outside of simulation. This would confer the benefits discussed in the introduction, leading

to less time and cost in readjusting robot designs and control schemes when transition-

ing to physical systems and a better understanding of performance early on in the robot

development cycle.

The author of this work particularly sees the benefit of employing the neural network

friction system identification technique described in this paper on increasingly complex

robotic systems. In the current study, the benefits of employing friction compensation with

a neural net on the MIT Humanoid were clear and likely much more beneficial because

the MIT Humanoid has larger inertias and coupled dynamics that are difficult to account

for with traditional methods. Further studies could investigate the robustness of the cur-

rent work’s friction torque estimation procedure against increasingly more complicated

systems, such as the entire MIT Humanoid robot, with arms and both legs included. By

nature, a neural network is model blind and easily scaled to any type of system. As long as

the system inertias can be formulated into equation 2.3, then the approach used in this work

could potentially scale to systems with high degrees of freedom with relatively complex dy-

namics. Testing this work’s friction compensation and system identification approach could

reveal an easily translatable system for more accurate system identification in increasingly

more complex robots that are hard to model by traditional means, giving roboticists and

engineers the ability to more quickly design robots that can potentially handle increasingly

more complex tasks.
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Chapter 6

Conclusion

This work sought to investigate the effect of including non-linear friction compensation

in the system identification of the MIT Cheetah and MIT Humanoid robotic systems in

conjunction with the convex optimization algorithm developed by Lee et. al. The work

found that employing non-linear friction compensation through a relatively small trained

neural network was able to reduce the torque prediction errors of a variety of different robot

models in both simulated and physically measured datasets. Models that more accurately

reflected the robot used to collect data in a given dataset, such as the Hardware Model used

on the MIT Humanoid hardware torque and positions data, generally tended to experience

greater reductions in torque prediction errors compared to simpler models that did not in-

clude all of the dynamics present in the measured model. However, even in simplified

models, friction compensation still significantly decreased robot torque prediction errors

by including effects that are difficult to model with traditional linear system identification

systems.

Overall, the conducted research of this work promoted the efficacy of using neural

nets to include non-linear and unmodeled effects in the system identification of dynamic

robotic systems. Such work adds to the body of knowledge seeking to improve robot system

identification and may be able to improve the control and design of more complex robotic

systems.
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