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Abstract

The analysis and control of nonlinear dynamic systems is an active research field
due to the ubiquity of nonlinear systems in the physical world. However, the han-
dling of these systems is significantly more difficult than the handling of their linear
counterparts, for which a host of methods and techniques are available. It has been
shown that through the use of the Koopman Operator, these nonlinear systems can
be lifted to a higher order state space, and with this lifted representation, the system’s
dynamics behave linearly.

In this thesis, we explore the use of existing methods for constructing the Koopman
Operator on unexplored classes of nonlinear systems, such as systems with segmented
dynamics and exogenous inputs. Unlike when modeling these systems with a hybrid
or switched framework, the lifted linear models based on the Koopman Operator allow
for easy application of model predictive control.

We then discuss the methods for constructing the Koopman Operator. Specifi-
cally, we alleviate the pitfalls of current data-driven methods for construction of the
Koopman Operator through the use of a data-driven formulation of Direct Encoding,
which is based on integration. This differs significantly from the state of the art.

Lastly, the use of Koopman with relation to deep learning is considered. Through
utilizing the aforementioned data-driven method, improvements to standard applica-
tions of Deep Koopman are demonstrated. In addition, we demonstrate a novel train-
ing method that is enabled by Direct Encoding. Through the use of this method, we
are able to accurately model the stable subspace of a system containing both stable
and unstable subspaces, unlike with standard Deep Koopman methods. It is shown
that the resultant model can be used to estimate the borders between subspaces.

Thesis Supervisor: H. Harry Asada
Title: Ford Professor of Engineering
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Chapter 1

Introduction

The primary concern of this work regards creation and utilization of linearizations of

nonlinear systems through data-driven approaches. Nonlinear systems are ubiquitous

in the world, but difficult to handle. Though a collection of tools to address these

systems have been created, there still exist classes of nonlinear systems that are

difficult to address with current tools. When attempting to control, model, or even

analyze such systems, one must go to far greater lengths than when controlling or

analyzing a benign linear dynamic system. Considering this comparison, the desire to

model and analyze these nonlinear systems with linear approximations is not novel.

What is new for the world is the vast and abundant computing and memory re-

sources that are accessible. With these resources, applications of older theory become

far more tractable. The primary theory that this work draws from is a paper written

in 1931 by Bernard O. Koopman, in which Koopman discussed that a nonlinear dy-

namic system could be described by a spectrum of characterizing functions in a linear

fashion [23].

Dynamic Mode Decomposition (DMD) was presented as a method to produce

linear models from sequential data generated through nonlinear dynamical processes

by using Singular Value Decomposition (SVD) [44]. This method enabled analysis

of high dimensional nonlinear systems through separating its dynamics into simpler

linear modes, hence the modal decomposition-based name. The analysis hinged upon

a linear model which allowed for the superposition of the linear modes to describe
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the more complex nonlinear system. Later, DMD was developed further to create

Extended Dynamic Mode Decomposition (EDMD), which introduced the concept of

using observable functions, nonlinear functions of state variables, as a method of aug-

menting the state space [50]. It was in this work that references were drawn to the

Koopman Operator, providing justification and a theoretical underpinning for lifting

the state space. These methods were initially applied to fluid flows, autonomous

systems that exhibit significant nonlinear dynamics, and these applications were suc-

cessful in describing and providing understanding of the nonlinear systems. Further

work extended the use cases of DMD, demonstrating viability in providing linear

models of nonlinear dynamic systems even in the presence of exogenous inputs in the

case of non-autonomous systems [43]. This method, DMDc, was capable of creating a

model that could be used for control. This enabled complex nonlinear Model Predic-

tive Control (MPC) to be converted to linear MPC [26], leading to numerous studies

that applied the methodology to real systems.

From these initial works regarding DMD, three main avenues of research formed

regarding the Koopman Operator. The first was in application of the method. Though

the original applications were regarding fluids, after the method was extended to allow

for control, novel applications included: including: vehicles [12], soft robotics [7], gait

recognition [53], and bucket-soil interactions from excavation [48]. On the frontier of

applications are hybrid systems; these systems are unable to be defined by a single

dynamic equation and instead are defined with multiple dynamic equations that are

used depending on the state. The second avenue of research regards the selection of

observable functions uses for constructing a lifted state space, as these functions are

a key ingredient in creating an accurate linear model. Various methods have been

developed, including deep neural networks for learning effective observable functions

[33, 46, 51] and optimization [27]. However, an efficient selection of observables does

not solve all the issues that arise when attempting to construct an accurate linear

model. For example, it is known that unstable modes form when utilizing Koopman-

based DMD models and their extensions, even in cases where the underlying nonlinear

systems are known to be stable; extensive studies have been done to create stable
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linear models to remedy the situations where an outright use of DMD would lead

to the creation of an unstable linear model [6, 15, 18, 35]. These studies constitute

the third avenue of research: alternative formulations of the linear transition matrix.

This linear transition matrix is the final output of the Koopman Operator framework

as it describes the dynamics of the nonlinear system in the lifted linear model. This

thesis consists of contributions to each of these three avenues of research.

With regards to applications, this thesis addresses the application of the Koopman

Operator to hybrid systems that pose problematic for modern robotics research. In

relation to the second avenue of selection of observable functions, we present novel

training methods for Deep Learning to produce observable functions from datasets.

Along the third avenue of research in the Koopman Operator, we present a numerical

integration-based method that serves as a method of creating a linear model that is

robust to biases in distributions of datasets.

1.1 Original Contributions

The contributions presented in this work are as follows:

1. An approximation of the Koopman Operator is applied to hybrid dynamic sys-

tems, and the model is used for both control and prediction of different but

similar systems (Chapter 3).

2. A method is constructed to robustly construct approximations of the Koopman

Operator from data, utilizing a numerical integration approach opposed to the

state-of-the-art Least Squares Estimation based approaches (Chapter 4).

3. A method is constructed to generate subspace specific observable functions using

deep learning structures to accurately predict stable subspaces in the presence

of data belonging to unstable subspaces (Chapter 5).
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1.2 Thesis Structure

Chapter 2 introduces the formulation of the Koopman Operator, first with the Least

Squares Estimation approach and then with a direct encoding using the nonlinear

mapping. Chapter 3 discusses the use of existing lifted linearization methods on

complex nonlinear systems, and the families of nonlinear systems that pose possi-

ble problems for application of the technique. Constituting the first contribution,

the application of the Koopman Operator to switched systems is presented. Then,

Chapter 4 presents the second contribution, a data-driven method for construction

of the Koopman Operator. Afterwards, Chapter 5 presents the Koopman Operator

used in combination with Deep Learning methods and demonstrates a novel training

method, the third contribution, that is used in combination with Direct Encoding of

the Koopman Operator to handle unstable nonlinear systems. Concluding thoughts

and future directions are offered in Chapter 6.
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Chapter 2

Koopman Operator

In this chapter, we present the various methods of obtaining linear models based on

the Koopman Operator framework. The basis of these methods are in lifted lineariza-

tion: creating a linear system composed of a larger state space than required to rep-

resent the original nonlinear system. We begin with a brief introduction. Afterwards,

the Koopman Operator framework is discussed. Following the discussed of the Koop-

man Operator framework, two types of methods for construction of linear systems

based on the Koopman Operator are introduced. The first type mentioned is Dynamic

Mode Decomposition and variations of it; these are Least Squares Estimation-based

methods. The other type is Direct Encoding, which is an alternative approach for

formulating a linear system based on the Koopman operator.

2.1 Introduction

The original paper regarding the Koopman Operator was written in 1931, detail-

ing and arguing about the existence of a linear operator that transforms nonlinear

systems into linear systems [23]. Several years later, Dynamic Mode Decomposition

(DMD) was formulated in presented in 2010 as a method that would be applied to

describing fluid flows [44]. In this work, the author introduces the method utilizing

the flow field at successive time steps to predict the next state at the following time

step, incorporating Singular Value Decomposition (SVD) to handle modes that were
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not useful for prediction. Extended Dynamic Mode Decomposition (EDMD) intro-

duced the concept of observable functions which were nonlinear functions of state

variables [50]. Simultaneously, the author referenced the Koopman Operator as a

theoretical underpinning for the method, causing DMD and its variants to be syn-

onymous with the Koopman Operator framework. Another method introduced the

viability of using DMD for control [43]. After introducing the capability of using

linear Koopman models as predictors for model predictive control (MPC), numerous

studies were done utilizing the methodology to real systems [26]. This significant

body of research, an accumulation of fifteen years of work, has been reviewed and

summarized [45]. Recently, another method for formulating the Koopman Operator

was produced, termed Direct Encoding (DE) [5]. This formulation significantly differs

from the DMD based formulations, and is therefore detailed separately.

Before going into the mathematics involved in the formulations, we would like to

offer an intuitive explanation of the Koopman Operator framework and the methods

that use the framework as an underpinning. The Koopman Operator framework can

be thought of as a generalization of a Fourier transform. In a Fourier transform, a

nonlinear signal is decomposed into a superposition of sinusoidal functions of various

frequencies and phases. In the Koopman Operator, the functions that make up the

decomposition are allowed to be more general nonlinear functions satisfying the cri-

teria of existing in a Hilbert space; this criteria is less restrictive than only allowing

sine and cosine functions. Several methods exist to compute a Fourier transform of a

signal, such as Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT).

Similarly for the Koopman Operator, DMD, its variants, and DE are all methods of

obtaining Koopman Operator representations of a nonlinear system.

2.2 Koopman Operator Framework

Methods based on the Koopman Operator linearize nonlinear dynamic systems through

lifting the order of the system. All formulations begin with a nonlinear dynamic equa-
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Figure 2-1: Flowchart of formulating a data-driven Koopman Operator model for a
system. Beginning with a nonlinear system, a set of data is obtained. With this set
of data, the linear model is formed.

tion

𝑥𝑡+1 = 𝑓(𝑥𝑡) (2.1)

where 𝑥 ∈ 𝑋 ⊂ R𝑛 is the independent state variable vector representing the dynamic

state of the system, 𝑓 is a self-map, nonlinear function 𝑓 : 𝑋 → 𝑋, and 𝑡 is the

current time step.

To lift the system, observable functions, also referred to as observables, are se-

lected. Each observable function 𝑔 is a nonlinear function of the state variables. These

observables exist in a Hilbert Space ℋ. A Hilbert space, formally, is an inner prod-

uct space that is also a complete metric space with respect to the norm of the inner

product. A canonical example of sets of functions that do not belong to a Hilbert

space, due to not forming a complete metric space, are Cauchy sequences. Cauchy

sequences converge to continuous functions, but do not satisfy the requirements of a

complete metric space. In addition to this requirement that the observable functions

exist in a Hilbert Space, the composition of observable functions with the nonlinear

function, that is 𝑔 ∘ 𝑓 must also exist in a Hilbert Space. An example of a nonlinear

dynamic system that does not satisfy this requirement is one with discontinuities,

such as the hybrid system formulation for passive walkers. These requirements and

situations regarding functions like this are discussed further in depth in Chapter 3.
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With these observable functions, a lifted state vector, 𝑧, is created

𝑧𝑡 =

⎡⎢⎢⎢⎣
𝑔1(𝑥𝑡)

𝑔2(𝑥𝑡)
...

⎤⎥⎥⎥⎦ (2.2)

where each 𝑔𝑖 is a single observable function. In the theoretical formulation, 𝑧 may be

infinite dimensional. In practical applications, a truncated form of 𝑧 is found based

on the selection of observable functions.

With this lifted state vector, a linear model is constructed of the form

𝑧𝑡+1 = 𝐴𝑧𝑡 (2.3)

where 𝐴 is a linear transition matrix. In the infinite dimensional case, this 𝐴 matrix

is the Koopman Operator. The methods to construct this linear model are discussed

in the following sections, beginning with formulations based on Least Squares.

2.3 Least Squares Formulations

Underpinned by the Koopman Operator theory, Dynamic Mode Decomposition (DMD)

assumes the existence of a linear state transition matrix 𝐴 relating 𝑧𝑡+1 to 𝑧𝑡, and

determine 𝐴 by solving a least squares regression that minimizes

𝐴𝑂 = min
𝐴

∑︁
𝑡

||𝑧𝑡+1 − 𝐴𝑧𝑡||2 (2.4)

Singular Value Decomposition (SVD), a factorization method of matrices, is used for

the least squares optimization to compute 𝐴 for all DMD based methods.

The original work regarding DMD solely utilized the state at prior time steps as
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observables [44] That is the lifted state vector 𝑧 would be

𝑧𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑡

𝑥𝑡−1

...

𝑥𝑡−𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ (2.5)

To compute 𝐴 using SVD, one begins with snapshots of data in the following form:

X =

⎡⎢⎢⎢⎣
| | | |

𝑥1 𝑥2 𝑥3 . . . 𝑥𝑚−1

| | | |

⎤⎥⎥⎥⎦ (2.6)

and

X’ =

⎡⎢⎢⎢⎣
| | | |

𝑥2 𝑥3 𝑥4 . . . 𝑥𝑚

| | | |

⎤⎥⎥⎥⎦ (2.7)

such that there are 𝑚 snapshots and the above variables satisfy the equation X’ =

𝐴X. X’ is the set of state variables corresponding to 𝑋 at the next time step. The

decomposition using SVD results in

UΣV* = X (2.8)

where U ∈ R𝑛𝑥𝑛,Σ ∈ R𝑛𝑥𝑚−1, 𝑉 * ∈ R𝑚−1𝑥𝑚−1 are the left singular vectors, the

singular values of X, and the right singular vectors respectively. The * represents the

complex conjugate transpose operation.

From these matrices, 𝐴 can be computed as

𝐴 = X’VΣ−1U* (2.9)

To calculate the dynamic modes of the resulting 𝐴 matrix, the eigendecomposition

is taken. That is, the eigenvalues 𝜆 and eigenvectors 𝑣 are calculated such that they
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satisfy

𝐴𝑣 = 𝜆𝑣 (2.10)

The dynamic modes of 𝐴 for an individual DMD eigenvalue 𝜆 are given by

𝜓 = 𝑈𝑣 (2.11)

where 𝜓 is the dynamic mode.

At the time of writing this thesis, Extended Dynamic Mode Decomposition (EDMD)

is commonly accepted method for construction of a lifted linear model of a nonlin-

ear system. In EDMD, observables are experimentally obtained or simulated from

the governing equation of the system. These observables are then augmented with

real-valued nonlinear functions of the independent state vector 𝑥𝑡 [50]. Collectively,

a high-dimensional state vector 𝑧𝑡 is formed:

𝑧𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑔1(𝑥𝑡)

𝑔2(𝑥𝑡)
...

𝑔𝑚(𝑥𝑡)

⎤⎥⎥⎥⎥⎥⎥⎦ (2.12)

where 𝑚 is the order of the lifted state corresponding to the number of observable

functions. In EDMD, the calculation of the linear state transition matrix 𝐴 is still

found using SVD.

This formulation was extended to include applications to systems with exogenous

inputs as well [43]. In that formulation, the cost function that is minimized is instead

min
∑︁

||𝑧(𝑥𝑡+1)− (𝐴𝑧(𝑥𝑡) +𝐵𝑢𝑡)||2 (2.13)

where 𝑢𝑡 is a vector of exogenous inputs. The solution in this case equates to

[︁
𝐴 𝐵

]︁
= 𝐹𝐺† (2.14)
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where

𝐹 = [𝑧2, ..., 𝑧𝑘+1] (2.15)

𝐺 =

⎡⎣𝑧1, ..., 𝑧𝑘
𝑢1, ..., 𝑢𝑘

⎤⎦ (2.16)

and 𝐺† is the pseudoinverse of the 𝐺 matrix. In this formulation, the pseudoinverse

can still be calculated using SVD. In general, the usage of SVD is done with truncation

of the total order of the system in mind as that leads to performance improvements

in some cases.

Both DMD and EDMD are data-driven methods. In the next section, we will

introduce an analytical method, known as Direct Encoding.

2.4 Direct Encoding from Nonlinear Mapping

An alternative to the least squares estimate and EDMD is to obtain the exact 𝐴

matrix by directly encoding the self-map, nonlinear state transition function 𝑓(𝑥)

with an independent and complete set of observable functions through inner product

computations. This Direct Encoding method is introduced next, while the full proof

can be found in [5]. Notably, a set of assumptions are presented in the following

formulation. An instance where these assumptions, such as Hilbert space or continuity

assumptions of functions, do not hold is explored further in Section 3.1.1.

Let [𝜑1, 𝜑2, 𝜑3, ...] be orthonormal basis functions spanning a Hilbert space ℋ. Any

observable 𝑔𝑖 in the Hilbert space, 𝑔𝑖 ∈ ℋ, can be expanded in the orthonormal basis

as:

𝑔𝑖 =
∞∑︁
𝑗=1

⟨𝑔𝑖, 𝜑𝑗⟩𝜑𝑗 (2.17)

Assuming that the self-map nonlinear function 𝑓(𝑥) is continuous, we take the

composition of 𝑔𝑖 and 𝜑𝑗 with 𝑓(𝑥) on both sides of eq. (2.17).

𝑔𝑖 ∘ 𝑓 =
∞∑︁
𝑗=1

⟨𝑔𝑖, 𝜑𝑗⟩(𝜑𝑗 ∘ 𝑓) (2.18)
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We further assume that

𝜑𝑗 ∘ 𝑓 ∈ ℋ ∀𝑗 (2.19)

and [𝑔1, 𝑔2, 𝑔3, ...] also form a set of orthonormal basis functions spanning the Hilbert

space. Then,

𝜑𝑗 ∘ 𝑓 =
∞∑︁
𝑘=1

⟨𝜑𝑗 ∘ 𝑓, 𝑔𝑘⟩𝑔𝑘 (2.20)

Substituting eq. (2.20) to eq. (2.18) yields

𝑔𝑖 ∘ 𝑓 =
∞∑︁
𝑗=1

⟨𝑔𝑖, 𝜑𝑗⟩
∞∑︁
𝑘=1

⟨𝜑𝑗 ∘ 𝑓, 𝑔𝑘⟩𝑔𝑘 (2.21)

Concatenating 𝑔1, 𝑔2, 𝑔3, ... and 𝑔1 ∘𝑓, 𝑔2 ∘𝑓, 𝑔3 ∘𝑓... in infinite dimensional column

vectors, respectively,

𝑧𝑡 =

⎡⎢⎢⎢⎣
𝑔1(𝑥𝑡)

𝑔2(𝑥𝑡)
...

⎤⎥⎥⎥⎦ , 𝑧𝑡+1 =

⎡⎢⎢⎢⎣
𝑔1 ∘ 𝑓(𝑥𝑡)

𝑔2 ∘ 𝑓(𝑥𝑡)
...

⎤⎥⎥⎥⎦ (2.22)

Eq. (2.21) can be written in matrix and vector form.

𝑧𝑡+1 = 𝐴𝑧𝑡 (2.23)

where 𝐴 is an infinite dimensional matrix consisting of the inner products involved

in eq. (2.21),

𝐴 =
∞∑︁
𝑗=1

⎡⎢⎢⎢⎣
⟨𝑔1, 𝜑𝑗⟩

⟨𝑔2, 𝜑𝑗⟩
...

⎤⎥⎥⎥⎦[︁
⟨𝜑𝑗 ∘ 𝑓, 𝑔1⟩ ⟨𝜑𝑗 ∘ 𝑓, 𝑔2⟩ . . .

]︁
(2.24)

Eq. (2.23) manifests that the state lifted to the infinite dimensional space 𝑧𝑡 makes

linear state transition with matrix 𝐴.

The observables 𝑔1, 𝑔2, 𝑔3, ... were assumed to be orthonormal basis functions in the

above derivation. This assumption can be relaxed to an independent and complete
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set of basis functions spanning the Hilbert space. Hereafter, let [𝑔1, 𝑔2, 𝑔3, ...] be an

independent and complete set of basis functions spanning the Hilbert space. Using

the orthonormal basis functions [𝜑1, 𝜑2, 𝜑3, ...], each observable can be expanded to

𝑔𝑖 =
∑︀∞

𝑗=1⟨𝑔𝑖, 𝜑𝑗⟩𝜑𝑗. This implies that there is a linear relationship between 𝑔′𝑖𝑠 and

𝜑′
𝑗𝑠. ⎡⎢⎢⎢⎣

𝑔1

𝑔2
...

⎤⎥⎥⎥⎦ = 𝐶

⎡⎢⎢⎢⎣
𝜑1

𝜑2

...

⎤⎥⎥⎥⎦ (2.25)

where

𝐶 =

⎡⎢⎢⎢⎣
⟨𝑔1, 𝜑1⟩ ⟨𝑔1, 𝜑2⟩ . . .

⟨𝑔2, 𝜑1⟩ ⟨𝑔2, 𝜑2⟩ . . .
...

... . . .

⎤⎥⎥⎥⎦ (2.26)

Note that, as long as [𝑔1, 𝑔2, 𝑔3, ...] span the Hilbert space, the above matrix 𝐶 is

non-singular and therefore invertible. This allows us to extend Eq. (2.23) to one in

terms of the independent and complete set of observables.

𝑧𝑡+1 = 𝐴𝑓𝑧𝑡 (2.27)

where the two matrices are related as

𝐴𝑓 = 𝐶𝐴𝐶−1 (2.28)

Notably, once the existence of the linear state transition is guaranteed in eq. (2.27),

the matrix 𝐴𝑓 can be obtained without use of the orthonormal basis functions and the

matrix 𝐶 and its inverse. It can be computed directly from the self-map, state tran-

sition function 𝑓(𝑥) and an independent and complete set of observables [𝑔1, 𝑔2, 𝑔3, ...]

through inner product computations. Post-multiplying the transpose of 𝑧𝑡 to both

sides of eq. (2.27) and integrating them over 𝑋 yield:

∫︁
𝑋

𝑧(𝑓(𝑥))𝑧𝑇 (𝑥)𝑑𝑥 = 𝐴𝑓

∫︁
𝑋

𝑧(𝑥)𝑧𝑇 (𝑥)𝑑𝑥 (2.29)
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which can be written as

𝑄 = 𝐴𝑓𝑅 (2.30)

where

𝑄 =

⎡⎢⎢⎢⎣
⟨𝑔1 ∘ 𝑓, 𝑔1⟩ ⟨𝑔1 ∘ 𝑓, 𝑔2⟩ . . .

⟨𝑔2 ∘ 𝑓, 𝑔1⟩ ⟨𝑔2 ∘ 𝑓, 𝑔2⟩ . . .
...

... . . .

⎤⎥⎥⎥⎦ (2.31)

𝑅 =

⎡⎢⎢⎢⎣
⟨𝑔1, 𝑔1⟩ ⟨𝑔1, 𝑔2⟩ . . .

⟨𝑔2, 𝑔1⟩ ⟨𝑔2, 𝑔2⟩ . . .
...

... . . .

⎤⎥⎥⎥⎦ (2.32)

(2.33)

Because the observables are independent, the matrix 𝑅 is non-singular. Therefore,

the matrix 𝐴𝑓 is given by

𝐴𝑓 = 𝑄𝑅−1 (2.34)

This formula for obtaining the matrix 𝐴𝑓 directly from the governing nonlinear state

equation with the function 𝑓(𝑥) and the independent observables through inner prod-

ucts, which are guaranteed to exist in Hilbert space ℋ, is the Direct Encoding method.

In practical applications, a finite number of observable functions 𝑔 are selected.

After selecting these observable functions, the elements of 𝑄 and 𝑅 can be calculated

as each of the elements are inner products. For example, an element of 𝑄 can be

calculated as

𝑄𝑖𝑗 = ⟨𝑔𝑖 ∘ 𝑓, 𝑔𝑗⟩ =
∫︁
𝑋

𝑔𝑖 ∘ 𝑓(𝜉)𝑔𝑗(𝜉)𝑑𝜉 (2.35)

where the 𝑔 is the complex conjugate of 𝑔. Given that real valued observables are

what are normally selected, this can be ignored but has been included for correctness.

This calculation requires analytically calculating this integral over the domain of the

state space.

Below is an example of calculating a single diagonal element of 𝑄 and 𝑅 where

32



the nonlinear system is

𝑓(𝑥) =
√︀
(𝑥) (2.36)

and the observable function 𝑔 is

𝑔(𝑥) = 𝑒−𝑥2

(2.37)

In this case, the corresponding diagonal element of 𝑅 for this observable would be

⟨𝑔, 𝑔⟩ =
∫︁ ∞

−∞
𝑔(𝜉)2𝑑𝜉 =

∫︁ ∞

−∞
(𝑒−𝜉2)(𝑒−𝜉2)𝑑𝜉 =

√︂
𝜋

2
(2.38)

and the element of 𝑄 would be

⟨𝑔 ∘ 𝑓, 𝑔⟩ =
∫︁ ∞

−∞
𝑔 ∘ 𝑓(𝜉)𝑔(𝜉)𝑑𝜉 =

∫︁ ∞

−∞
(𝑒−𝜉)(𝑒−𝜉2)𝑑𝜉 = 4

√
𝑒
√
𝜋 (2.39)
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Chapter 3

Modeling Hybrid Dynamic Systems

with the Koopman Operator

The concern of this chapter regards applications of the Koopman Operator to hybrid

dynamic systems, a subset of nonlinear dynamic systems that are difficult to ana-

lyze and control. Hybrid dynamic systems is a semantically overloaded term, in that

it has several meanings even within one context. For the remainder of this work, our

use of the term "hybrid systems" refers to nonlinear systems with segmented dynam-

ics that may exhibit both continuous and discrete dynamics. Prior work addressing

the use of the Koopman Operator with hybrid systems is also summarized here. Af-

terwards, the contribution is presented, where the Koopman Operator is applied to

construct a linear model for the sake of Model Predictive Control (MPC), based on

prior art [25]. It has been shown that MPC using the Koopman linearized model as

dynamic constraints is comparable in performance and sometimes outperforms MPC

using the real nonlinear system, but this was done for more benign classes of nonlinear

systems [21].

The chapter will begin with an introduction into hybrid systems in robotics and

in the context of the Koopman Operator. In that section, we address what nonlinear

systems the Koopman Operator is applicable to, and what characteristics prohibit

its use, as well as introduce the concepts (MPC and the modeling techniques used

for the system of interest) that necessary to understand the experiments that follow.
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The contribution articulated in this chapter is utilization of MPC to control a hy-

brid system. With this contribution, numerical experiments are presented. Finally,

concluding thoughts are offered at the end of the chapter.

3.1 Introduction

A plethora of robotic systems can be defined as systems with segmented domains. An

example of a class of robotic designs that meet this category are cable driven robots,

which are known have unique characteristics. Previous designs have ranged from

very simple cranes, to more complex tensegrity robots which are composed of both

tension elements and compression elements [10, 30]. There are several advantages to

using cable based designs: they are lightweight parallel manipulators, capable of high

acceleration and velocities, and may have very large workspaces [17]. However, the

cables can only pull, not push. Thus, more complex designs may increase the number

of cables, making the model more difficult to analyze, but making the system more

feasible to control. The dynamics of these systems is similar to that of Coloumb

friction.

The prior art regarding controls in the field of cable driven robotics is vast. Some

of these methods target specific dynamics of the system, such as antisway control

[28]. This is done through a variety of means: linear control through a standard

linearization [49], feedback linearization [24], geometric control [29], and data driven

controllers [31]. These works also deal with a variety of different configurations of the

system: the standard single cable configuration, multiple cable configurations, and

variations of those configurations involving mobile suspension points like quadrotors.

In these works, it is usually assumed that the cables are in tension. However, there

are several situations neglected when not considering the dynamics of the system

when the cables become slack. By including this behavior, the system becomes more

complex and and difficult to model; the dynamics resemble a hybrid system due to

the significant difference in speed of the dynamics. As the primary focus of this paper

is control, we simulate a simple two-cable winch design that has no redundancies and
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allows for the cables to all become slack while the load is in motion.

There has also been work on tracking of time variant systems using Koopman

based methods through online versions of dynamic mode decomposition [2,52]. Other

work involving online learning of a Koopman model has been done with active learn-

ing, and using recursive least squares to update the model [1]. In general, these works

train a model based on a set of data and apply this model on the system that the data

came from. With that in mind, a problem arises. One of the key benefits of using

cable driven robotic systems is the ability to change the load that is carried in the

case of crane robots, which causes a significant and sudden change in the dynamics

of the system.

We attempt to model this segmented dynamic system behavior as a linear system

using the Koopman Operator. First, we introduce the nuances of hybrid systems,

and then describe criteria presented [5], regarding the conditions for existence of the

Koopman Operator for systems like this. Through modeling the system linearly in

a higher dimension, we are able to embed both the incredibly fast dynamics of the

cables going into tension and the slow dynamics of the motion of the winches and

projection motion of the mass into the lifted space and then apply MPC to the system

without explicitly modeling the discrete dynamic changes that would typically make

the system difficult to control [37]. This allows the controller to quickly determine the

control sequence of the system, and approximate when the discrete dynamics should

take place according to the optimization problem. We demonstrate this method on a

simulated system with applications to cable suspended systems.

3.1.1 Hybrid Dynamic Systems and the Koopman Operator

In this work, we define Hybrid Dynamic Systems as systems that exhibit both discrete

and continuous dynamics. Specifically, the continuous dynamics can be defined as

𝑥̇ =

⎧⎪⎨⎪⎩𝑓1(𝑥), 𝑥 ∈ 𝐶1

𝑓2(𝑥), 𝑥 ∈ 𝐶2

(3.1)
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Figure 3-1: Example of a trajectory for a hybrid system that undergoes a discrete
jump.

where 𝑓1 and 𝑓2 are continuous functions, and 𝐶1 and 𝐶2 are the domains of the

respective dynamics.

The discrete dynamics are defined in two parts. The first part describes the the

discrete jump as a function taking place over a single time step. That is

𝑥+ = 𝑔(𝑥−) (3.2)

where the function 𝑔 is known as the reset. The reset function is triggered when a

specific function, known as a guard function 𝜑(𝑥), equals 0. The trajectory of such a

dynamic system is visualized in Fig. 3-1.

An example of a physical system that is typically modeled as a hybrid system is
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Figure 3-2: Example of how changing the timing of transitions between different
dynamic domains changes a controlled trajectory.

the canonical passive walker system, illustrated in Fig. 3-3.

For the passive walker, it experiences continuous dynamics between steps:

𝜃 − sin 𝜃 − 𝛾 = 0 (3.3)

𝜃 − 𝜓 + 𝜃2 sin𝜓 − cos(𝜃 − 𝛾) sin𝜓 = 0 (3.4)

For discrete dynamics, it experiences a discrete reset map of:

⎡⎢⎢⎢⎢⎢⎢⎣
𝜃

𝜃

𝜓

𝜓̇

⎤⎥⎥⎥⎥⎥⎥⎦

+

=

⎡⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0

0 cos 2𝜃 0 0

−2 0 0 0

0 𝑐𝑜𝑠2𝜃(1− 𝑐𝑜𝑠2𝜃) 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝜃

𝜃

𝜓

𝜓̇

⎤⎥⎥⎥⎥⎥⎥⎦

−

(3.5)

with a guard function of:

𝜑(𝑥) = 𝜓 − 2𝜃 (3.6)

It is crucial to note that the analysis and control of such systems is incredibly

difficult due to the inclusion of these discrete jumps. The analysis is problematic

for similar reasons to analyzing any nonlinear system; the analysis hinges on finding

a Lyapunov function that is capable of representing the system which is inherently

difficult as the requirements of such a function are not difficult to satisfy. In the
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Figure 3-3: Illustration of the simplest passive walker system.
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Figure 3-4: Example of how changing the number of allowed transitions between
different dynamic domains changes a controlled trajectory. The dotted line indicates
the boundary between the dynamic domains.

case of control, two main issues arise even in the case where the reset function is

negligible, as in the case of switched systems. The first issue is one of number of

switches, or transitions between types of dynamics. As illustrated in Fig. 3-4, by

changing the number of different dynamic transitions allowed over a trajectory, the

optimal trajectory can drastically change. Similarly, by varying the timing of these

transitions, a domino effect can occur causing drastic differences in trajectory, shown

in Fig. 3-2.

Prior work that attempts to control these systems introduce frameworks for model

predictive control [3,9]. These frameworks address the number of transitions problem

and timing problems by restricting the total number and the range of possible timings

that the optimizer solves for. However, these workarounds that are proposed do not

alleviate the underlying issue that is solving the optimal control problem for hybrid

systems.

As such, linearizing such systems with the application of the Koopman Operator

would be desired, as linear systems are far easier to analyze. In [5], weak existence

conditions are provided for finite-dimensional approximations of the Koopman Op-

erator, allowing for the application to hybrid systems. In the formulation of the
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Koopman Operator, a strong condition is required, 𝜑𝑖 ∘ 𝐹 ∈ ℋ,∀𝑖 ∈ 𝒩 , where 𝒩

is the set of all integers greater than 1. By replacing this condition with a weaker

condition, 𝜑𝑖 ∘ 𝐹 ∈ ℋ, 𝑖 < ∞, we are enabled in producing a finite-dimensional ap-

proximation of the operator for some arbitrary, finite 𝑖. This yields a rectangular

linear state transition matrix, dubbed 𝐴𝑚∞ that satisfies⎡⎢⎢⎢⎢⎢⎢⎣
𝜑1 ∘ 𝐹

𝜑2 ∘ 𝐹
...

𝜑𝑚 ∘ 𝐹

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝐴𝑚∞

⎡⎢⎢⎢⎢⎢⎢⎣
𝜑1

𝜑2

...

...

⎤⎥⎥⎥⎥⎥⎥⎦ (3.7)

where

𝐴𝑚∞ =

⎡⎢⎢⎢⎢⎢⎢⎣
⟨𝜑1 ∘ 𝐹, 𝜑1⟩ ⟨𝜑1 ∘ 𝐹, 𝜑2⟩ . . .

⟨𝜑2 ∘ 𝐹, 𝜑1⟩ ⟨𝜑2 ∘ 𝐹, 𝜑2⟩ . . .
...

... . . .

⟨𝜑𝑚 ∘ 𝐹, 𝜑1⟩ ⟨𝜑𝑚 ∘ 𝐹, 𝜑2⟩ . . .

⎤⎥⎥⎥⎥⎥⎥⎦ (3.8)

However, this method is only required for hybrid systems that contain these dis-

crete jumps. For a continuous system with multiple domains, termed a switched

system, the existence of the Koopman Operator is not problematic. That type of

system, specifically a switched system with a control input, is the subject of the rest

of this chapter.

3.1.2 Model Predictive Control

The cable suspension system is a complex system as shown in its original dynamical

model. Once a cable goes slack, the mass freely drops, followed by an impact at the

instant when the cable becomes taut. It tends to bounce back, unless the velocity in

the direction of the cable is zero. It should be noted that, once the cable goes slack,

the winch of the cable is essentially disconnected and becomes unable to influence

the motion of the mass. In this sense, the input to the winch loses the ability to

influence the all states of the system. To maintain this ability, the robot controller
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must reduce the impact and extend the controllable duration by keeping the cable

taut. To find such an intelligent, skillful control action, the robot must be able to

predict the dynamic behavior, in particular, the consequence of impact and bouncing.

Here, we consider Model Predictive Control (MPC) for realizing such skillful actions.

With MPC we can expect that the robot can find an optimal control sequence, which

would minimize a potential impact and retain the ability to manipulate the mass.

For the model predictive control section, we solve an optimization problem of the

form

min 𝑉 =𝜑(𝑥𝑁(𝑡)) +
𝑁−1∑︁
𝑖=0

ℓ(𝑥𝑖(𝑡), 𝑢𝑖(𝑡))𝑑𝜏 (3.9)

𝑠.𝑡. 𝑥𝑖+1(𝑡) = 𝑥𝑖(𝑡) + 𝑓(𝑥𝑖(𝑡), 𝑢𝑖(𝑡))𝑑𝜏 (3.10)

𝑥0(𝑡) = 𝑥0 (3.11)

𝐶(𝑥𝑖(𝑡), 𝑢𝑖(𝑡)) ≤ 0 (3.12)

where 𝑑𝜏 = 𝑇/𝑁 , 𝑇 is the time horizon, and 𝑁 is the number of time steps. We use

an objective function of the form

ℓ(𝑥, 𝑢) =(𝑥− 𝑥𝑑)
𝑇𝑄(𝑥− 𝑥𝑑) + 𝑢𝑇𝑅𝑢 (3.13)

𝜑(𝑥) =(𝑥− 𝑥𝑑)
𝑇𝑃 (𝑥− 𝑥𝑑) (3.14)

where 𝜑 is the end stage cost. The weight matrices used in the experiments are 𝑃 = 0,

𝑄 is of the form

𝑄 =

⎡⎣𝑄𝑥 0

0 0

⎤⎦ (3.15)

where 𝑄𝑥 ∈ R𝑛×𝑛 and is diagonal; the diagonal elements of 𝑄𝑥 are

𝑄𝑥𝑑𝑖𝑎𝑔 = [6, 0, 0.3, 0.3, 1, 1, 0.5, 0.5] (3.16)

𝑅 is a diagonal matrix with values {0.01, 0.01}.

No inequality constraints are used in our implementation of the optimization prob-
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Figure 3-5: Diagram explaining the core benefits of utilizing MPC with a lifted linear
model as opposed to the use of the original nonlinear model. With the lifted linear
model, the optimal controller solves a simple quadratic program which finds a single
optimal control input, but for a nonlinear system, there are possible local minima
that are not the true optimal control input but are able to trap the optimization
algorithm.

lem.

The challenge in implementing the above MPC is due to the dynamic constraints

on the problem. Because the system has hybrid dynamics, it must not only optimize

the control input, but also optimize the switching times between dynamic modes.

Though work has been done in creating a framework to use MPC for hybrid sys-

tems [4], the framework requires denoting a set of terminal times. In essence, the

problem with implementing MPC directly onto a hybrid system is that optimal se-

quence of modes may not be known a priori and leaving the solver of the optimization

program to discover this sequence is computationally expensive and can sometimes
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be intractable.

With this in mind, creating a linear model where the system is no longer modeled

as a hybrid system with guards, modes or reset maps is very attractive. The dynamic

constraints can replaced with a linear time invariant model, causing the problem to

become a linear MPC problem. Linear MPC is known to be convex, and simple

to solve. We no longer need to solve for a sequence of modes, nor incorporate any

additional constraints on the time steps for each mode. This does require having an

accurate linear model for the system throughout the time horizon of the problem,

which is feasible because of the Koopman operator.

3.1.3 Modeling of Cable Suspension System

Modeling as a Switched System

The simulated system is based on a real robotic system from a prior work which

utilized three winches and a very similar design [20]. The original robotic system’s

design is pictured in Fig. 3-6. The simulated system is a simplified version of this

robotic system and a diagram for this system that can be found in Figure 3-7.

The object suspended by the cable system is treated as a point with mass 𝑚.

Because the system is constrained to two dimensions, the state vector is defined as:

x =
[︁
𝑥 𝑦 𝑥̇ 𝑦̇ 𝐿𝐴 𝐿𝐵 𝐿̇𝐴 𝐿̇𝐵

]︁𝑇
(3.17)

where 𝐿𝐴 and 𝐿𝐵 are unstretched cable lengths and 𝐿̇𝐴 and 𝐿̇𝐵 are their time deriva-

tives.

The unstretched cable lengths and their velocities are functions of the winch ro-

tation 𝜃𝑖 and 𝜃𝑖 respectively, where 𝑖 corresponds to the cable identifier, A or B. The

unstretched cable length is defined as

𝐿𝑖 = 𝐿0 + 𝑟𝑤𝑖
𝜃𝑖 (3.18)

and the unstretched cable length velocity is the time derivative of the above function
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Figure 3-6: CAD diagram showing the key components of the WinchBot Winch design
from [20].
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Figure 3-7: Diagram of the hybrid system involving two winches, two cables, and
a suspended mass. The winches are each driven directly by a motor. The point at
which the cable departs from the winch is maintained as a fixed point for simplicity.
We refer to the cable on the left as cable A and the cable on the right as cable B.
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and is also a state variable.

Considering this, there are four state variables associated with the winches and

cables, and four state variables associated with the suspended mass. The winch

positions are fixed in place, but allowed to rotate. The winch rotation dynamics are

written as

𝐼𝑖𝜃𝑖 = 𝑢𝑖 − 𝜏𝑤𝑖
(3.19)

where 𝜏𝑤𝑖
is the torque due to the cable when in tension, and 𝑢𝑖 is the input torque

from the motor attached to the winch. This torque is defined as

𝜏𝑤𝑖
= 𝑟𝑤𝑖

n𝑤𝑖
× 𝑇𝑖n𝑖 (3.20)

where 𝑟𝑤𝑖
is the radius of the winch, and n𝑖 corresponds to the unit vector in the

direction of the departure point of the cable from the center of the winch.

This system’s different dynamic modes can be represented visually by Fig. 3-8.

By modeling the system as a hybrid system, we have two options: 1) choose to ignore

the dynamics of the system when the cable suddenly goes in tension and causes the

mass to “bounce”, and instead model it as a discrete reset map, or 2) use the guard

function to map the dynamic transition from slack to tension and tension to slack

for each cable. We model the system according to the second option, in which the

cables tension switches between the different dynamic domains with continuous state
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Figure 3-8: The different dynamic modes of the system that are determined by
whether the cables are in tension. From left to right: both cables are in tension,
cable A is in tension and cable B is slack, cable A is slack and cable B is in tension,
both cables are slack.

variables. As such, we define the system’s dynamic equations as

𝑚

⎡⎣𝑥̈
𝑦

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ if 𝑑𝐴 ≤ 0 ∧ 𝑑𝐵 ≤ 0

𝑇𝐴n𝐴 +

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ if 𝑑𝐴 > 0 ∧ 𝑑𝐵 ≤ 0

𝑇𝐵n𝐵 +

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ if 𝑑𝐴 ≤ 0 ∧ 𝑑𝐵 > 0

𝑇𝐴n𝐴 + 𝑇𝐵n𝐵 +

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ otherwise

(3.21)

and where 𝑑𝑖 is the elongation length of cable 𝑖 subtracted by its unstretched length

based on the positioning of the mass relative to the respective winch.

3.2 Cable Manipulation Based on MPC in Lifted

Space

In this section the MPC formulation using lifting linearization is implemented for a

multi-cable robot system. We create a realistic model of tension using experimental
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data, demonstrate the accuracy of the linearized system in comparison to the full

nonlinear system, and apply the lifted linear model to MPC for driving the system

to specific reference states from randomized initial conditions.

The simulations are calculated with the Koopman linearized system and also com-

pared to a DMD system which truncates the dynamic modes to a rank that contains

99% of the information based on the singular value decomposition.

3.2.1 Tension Modeling

The tension in the cables was assumed to be elastic and modeled through taking

experimental data of the cables used in the real robotic system. The model does

not include any damping component; this assures that no causality problem arises

from lifting the space, since anti-causal observables pertain to damping elements

alone [46]. This experimental data is shown in Fig. 3-9 and the parameters found

from this experimental data is shown in Table 3.1.

Figure 3-9: Tension-Displacement data gathered from the motivating robotic system.
The data is fit to polynomial models. Models of higher than 2nd order were deemed
unreasonable as they gave the possibility of negative tension. The models were also
required to intersect with zero tension at zero displacement.
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Table 3.1: Tension Models

Model 𝑅2 Equation
Linear 0.8914 𝐹 = 1699𝑥

Quadratic 0.9673 𝐹 = 206015𝑥2 + 613.99𝑥

Polynomial models were considered, and only two reasonable models were found,

the linear and quadratic model. For the simulations, the linear model was chosen

though it had a lower 𝑅2 value, as it emphasized the hybrid dynamic nature of

the system more than the quadratic model which was continuous and differentiable

through the entire domain of the system, including “negative" displacements where

the tension remains zero.

3.2.2 Model Training

Both Fig. 3-10 and 3-11 were produced for trajectories where the control law applied

was a proportional controller on cable length. In Fig. 3-10, an estimation of the

linearized system compared to the real system for one of the state variables is shown.

In Fig. 3-11, a plot of the MSE (mean squared error) for the eight state variables is

shown as a function of the length of the prediction time. As the prediction time in-

creases, the mean squared error tends to increase. In the numerical results presented,

we find that the system can be reasonably estimated using the Koopman linear sys-

tem and by the DMD system, though less so, which is expected. The truncation of

the system also appears to cause a significant increase in variation of the prediction

error for the system, however, it is within reason for small time horizons to still be

used for model predictive control.

3.2.3 Model Predictive Control

For all implementations of MPC, the time horizon was chosen to be one hundred time

steps, or one second, and was selected based on the accuracy of prediction over time

shown in Fig. 3-11.
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Figure 3-10: Example of the estimation provided from the Koopman linear system
and the DMD system for a state variable; in this plot it is the length of cable A.
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Figure 3-11: A plot of MSE over time for the linear predictor models. Each predic-
tor begins with the correct initial state. The shaded regions represent the variation
in mean squared error over twenty five different trajectories, while the solid lines
represent the average mean squared error for the collection of trajectories. The plot
demonstrates that for small amounts of time, the Koopman model is much more accu-
rate than the DMD model, but after enough time has passed, both models approach
the same levels of inaccuracy.
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As stated previously, the weight matrices used in the experiments are 𝑃 = 0, 𝑄

is of the form

𝑄 =

⎡⎣𝑄𝑥 0

0 0

⎤⎦ (3.22)

where 𝑄𝑥 ∈ R𝑛×𝑛 and is diagonal; the diagonal elements of 𝑄𝑥 are

𝑄𝑥𝑑𝑖𝑎𝑔
= [6, 0, 0.3, 0.3, 1, 1, 0.5, 0.5] (3.23)

𝑅 is a diagonal matrix with values {0.01, 0.01}. No inequality constraints are used in

our implementation of the optimization problem.

In Fig. 3-12, the resultant trajectory simulated from MPC that used the Koop-

man linearized model as the dynamic constraints for the optimization problems is

juxtaposed with the control input that was generated for cable A. The steady state

error in the state variables is expected as a non-zero weight is used for the input,

and the reference points require the require a significant input. Initially, the mass

was placed 3 meters vertically above the goal position with both cables being slack.

With MPC+Koopman, the mass trajectory smoothly converged to the goal position,

as shown by the red line in the vertical position plot. For comparison, a naive PD

control that controls the individual cable length without predicting the mass behavior

is plotted by blue lines. Note that the mass bounced when the two cables became

taut consecutively at 𝑡 = 1.1 ∼ 1.7 sec, as indicated by notches in the plots. This

resulted in a pronounced bouncing motion of the mass, leading to the slow conversion

of the naive cable length control. In contrast, MPC+Koopman could smoothly move

the mass towards the goal. Interestingly, the MPC control input did not attempt to

lengthen the cable rapidly, unlike the naive PD control, as seen in section A indicated

by the orange circle. Instead, the MPC control allowed the mass to pull on the cable,

and dampened the motion of of the mass. These behaviors cannot be created unless

the robot can predict the nonlinear hybrid nature of the system dynamics.

As stated previously, the dynamic constraints are all that are necessary to generate

a solution for this MPC problem, and no additional constraints or equations were set
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Figure 3-12: A juxtaposition of the input used for cable A and the trajectory of the
length of cable A over time when using model predictive control with the Koopman
linearization as the dynamic constraints. This is compared to the trajectory found
from using a PD controller. In section A, denoted by the orange circle, the MPC con-
trol input does not attempt to lengthen the cable significantly like the PD controller,
and instead allows the mass to pull on the cable, and dampens the motion of the
mass instead. In section B, denoted by the green circle, we observe the mass disturbs
the cable dynamics for the PD controller, which it is unable to reject properly.
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Figure 3-13: A juxtaposition of the tensions for the cables and the trajectories of the
length of each cable over time when using model predictive control with the Koopman
linearization as the dynamic constraints. This is compared to the trajectory found
from using a PD controller.
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Figure 3-14: SSE (Sum of Squared Error) over the trajectory comparing an MPC
scheme using the DMD model and the Koopman model as dynamic constraints. The
number indicated in the legend denotes the prediction time horizon in time steps for
the model. It was found that after approximately 100 time steps that MPC began
performing poorly, likely due to inaccuracy of the linear model.

on time. The MPC result is successful in that it does rapidly decrease the SSE with

respect to the reference trajectory as shown in Fig. 3-14; the slight differences between

using the Koopman linear system as dynamic constraints and the DMD system as

linear constraints is expected given prior work.

3.3 Concluding Thoughts

In this chapter, first addressed the issues of modeling hybrid systems with the Koop-

man Operator. We then presented a novel approach to using optimal control for

hybrid systems using the Koopman Operator and applied it to an elastic cable sus-
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pension system. This allowed us to use model predictive control without the difficulty

of determining controllable hybrid sequences nor switching times as the hybrid dy-

namics were encoded into a linear time invariant system. The model predictive control

input was also analyzed on its behavior, showing that it demonstrated proper model

predictive behavior despite using a linear model to represent an inherently hybrid

dynamic system.
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Chapter 4

Data-Driven Encoding

The goal of this chapter is to address the inconsistencies between existing formula-

tions of the Koopman Operator detailed in Chapter 2. The chapter begins with an

introduction to the problem that arises due to the difference in nature of the for-

mulations; DMD and its variants are data-driven methods and DE is an analytical

method, a data-driven formulation is created based on DE. The motivation for this

work is then discussed, where we articulate the reason that the difference between the

methods is a cause for concern. We then introduce the novel data-driven formulation

based on DE. This novel formulation serves as a significant contribution, the second

contribution of this thesis, as it is shown to be robust to the distributions of data

used in its formulation. Afterwards, a numerical experiment is presented that demon-

strates the value of the novel method and confirms properties that are articulated in

the formulation. Lastly, concluding thoughts are offered.

4.1 Introduction

A fundamental difficulty in constructing a proper linear model is data dependency.

Least Squares Estimation (LSE), involved in all DMD based methods, often produces

a significant bias due to the distribution of the dataset. To eliminate this dependency

on data distributions, the current work takes an alternative approach to LSE.

This differs significantly from DE, presented in Chapter 2. This method directly
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encodes the nonlinear function of state transition using observables as basis functions

to obtain a Koopman linear model. Inner products of observable functions in com-

position with the nonlinear state transition function are used to construct the state

transition matrix without use of LSE. While DE theoretically guarantees the exact

linear model, it requires access to the nonlinear state equations, which are often not

available in practical applications. The current work aims to fill the gap between DE

and data-driven approaches.

There is not a simple conversion between the DMD methods and DE, even while

utilizing the same observable functions, for many reasons. One of which is because DE

utilizes the underlying nonlinear model in combination with the observable functions

to generate the linear matrix. In addition, the methods are calculated in fundamen-

tally different manners; DE utilizes integration over the state space, whereas DMD

methods utilize least squares estimation based on data. However, the need for the

underlying nonlinear model is a significant limitation for DE. Thus, there is a gap

between DE and a method that can be utilized for real applications that are currently

able to be handled with DMD as it is a data-driven method.

In this chapter, we begin by discussing the issues with the existing formulations

of constructing the linear matrix of the Koopman Operator. We then outline the

process of converting the analytical DE method to a data-driven method, termed

Data-Driven Encoding (DDE). In addition, a proof of the convergence of this method

to its analytical counterpart is presented along with the circumstances required for

convergence. An analytical algorithm is given that allows for efficient use of the

method. Numerical experiments are utilized on a simple second order dynamic system

to illustrate the key differences between DDE and the traditionally used EDMD.

4.2 Motivation

The prevailing method for construction of the Koopman Operator, EDMD, is based

on LSE and SVD. This method, however, cannot provide a consistent estimate; the

result is highly dependent on the distribution of data as the Koopman Operator is
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being approximated [32]. This dependency on distribution occurs because a core

assumption of LSE is that the model structure is correct; when this assumption

is violated, LSE is unable to create an unbiased estimator [16]. As the Koopman

operator is truncated in practical use, this assumption does not hold.

Non-uniform data distributions inevitably occur in practical applications. For a

nonlinear dynamical system with a stable equilibrium, for example, data collected

from experiments and/or simulation of the system tend to be dense in the vicinity of

the equilibrium, as all trajectories that begin within a region of attraction converge to

the equilibrium. This problem is illustrated in Fig. 4-1, in which a situation where a

large number of points is measured in a small dynamic region, and points away from

the densely populated region are sparse, leading to alternative models for a single

dynamic systems. Because LSE applies equal weighting to all data points, the model

is heavily tuned to the behavior of the densely populated region. Of course, this

dilemma does not arise when the observable functions are completely and correctly

chosen as the Koopman Operator can be exactly determined in that case, but this is

not the general case in applications of the Koopman Operator.

The Direct Encoding method described previously enables us to obtain the exact

linear state transition matrix 𝐴 through inner product computations. As the formu-

lation is based on integration over the entire state space, there is no bias towards

particular parts of the domain.

However, the original form of the Direct Encoding method utilizes the nonlinear

state equation, i.e. the self-map 𝑓(𝑥), to compute the inner products. In practical

applications, such a nonlinear function is not always available; only data are available.

The objective of this section is to establish a computational algorithm to obtain the

𝐴 matrix by numerically computing the inner products, ⟨𝑔𝑖, 𝑔𝑗⟩, ⟨𝑔𝑖 ∘ 𝑓, 𝑔𝑗⟩, from a

given set of data.

The method presented consists of three operations.

• The integral of the inner products is reduced in range from the entire state

space to the dynamic range encapsulated by the data.
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Figure 4-1: Artistic illustration of differences for a Least Squares estimation utilizing
two different datasets drawn from the same underlying function. The ground truth
from which data points are drawn from is in blue.

• The dynamic range is discretized with data points.

• The inner product integral is reduced to a weighted summation of the integrand

evaluated at each data point multiplied by the volume ∆𝑣 associated to each

point.

Naturally, if data are densely populated in a small region, the discretized integral in-

terval is small and thereby the volume also becomes small. Similarly, the volume tends

to be larger where the data are sparse. In the summation, the integrand evaluated

at individual data points are "weighted" by the size of the volume. This numerical

inner product calculation prevents overemphasis of clustered data.
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4.3 Formulation

We present the data-driven encoding method (DDE) as an alternative data-driven

method to DMD for calculating a finite order approximation of the Koopman Op-

erator. In the algorithm presented, we utilize a mesh generation algorithm, such as

Delaunay Triangles [11] for an 𝑛-dimensional nonlinear system, where 𝑛 ≥ 2. De-

pending on the dimension of the system, different methods of mesh construction can

be used interchangeably with Delaunay Triangles.

The objective of this method is to compute the matrices 𝑅 and 𝑄 in (13) and (14)

from data. This entails the computation of inner products:

⟨𝑔𝑖, 𝑔𝑗⟩ =
∫︁
𝑋

𝐺𝑖𝑗(𝜉)𝑑𝜉 (4.1)

⟨𝑔𝑖 ∘ 𝑓, 𝑔𝑗⟩ =
∫︁
𝑋

𝐹𝑖𝑗(𝜉)𝑑𝜉 (4.2)

where

𝐺𝑖𝑗(𝑥) = 𝑔𝑖(𝑥)𝑔𝑗(𝑥), 𝐹𝑖𝑗(𝑥) = 𝑔𝑖[𝑓(𝑥)]𝑔𝑗(𝑥) (4.3)

are assumed to be Riemann Integrable; the functions are bounded and continuous [14].

There are two data sets used for the inner product computation. The first data

set is

𝐷𝑁 = {𝑥𝑖 | 𝑖 = 1, · · · , 𝑁 ;𝑥𝑖 ∈ 𝑋} (4.4)

Note that all the data values are finite, |𝑥𝑖| < ∞. As such, the integral interval of

the inner products is finite in computing them from the data. To define the integral

interval, we consider the dynamic range of the system, 𝑋𝐷, determined from the data

set 𝐷𝑁 . See Fig.4-2. The dynamic range 𝑋𝐷 is defined to be the minimum domain in

the space 𝑋 that includes all the data points in 𝐷𝑁 , 𝑋𝐷 ⊃ 𝐷𝑁 , and that is convex.

Namely, for any two states in 𝑋𝐷, 𝑥, 𝑥′ ∈ 𝑋𝐷,

𝜉 = 𝛼𝑥+ (1− 𝛼)𝑥′ ∈ 𝑋𝐷 (4.5)

where 0 ≤ 𝛼 ≤ 1. Note that 𝑋𝐷 is the smallest domain that is convex and that
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includes all the data points, as shown in Fig. 4-2. Each data point 𝑥𝑖 is mapped to

Figure 4-2: Illustration of the dynamic range of a dataset defined by the convex hull
containing all points in the set, partitioned using a triangulation method. The data
points are in black and the convex hull that encapsulates all data points is in grey.

𝑓(𝑥𝑖), following the state transition law in eq.(2.1). We assume that the transferred

state, too, stays within the same dynamic range 𝑋𝐷. This assumption is valid for all

stable regions of a nonlinear system. In the case of an unstable system, maintaining

this assumption requires discarding the data points on the perimeter of the convex

hull. Collecting all the transferred states yields the second data set.

𝐷𝑓
𝑁 = {𝑓(𝑥𝑖) | 𝑖 = 1, · · · , 𝑁 ;𝑥𝑖 ∈ 𝐷𝑁} (4.6)

𝐷𝑓
𝑁 ⊂ 𝑋𝐷 (4.7)

This implies that the state space of the nonlinear system under consideration is closed

within the dynamic range 𝑋𝐷.

With this dynamic range, we redefine our objective to compute the inner products
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over 𝑋𝐷.

𝑅𝑖𝑗 =

∫︁
𝑋𝐷

𝐺𝑖𝑗(𝑥)𝑑𝑥 (4.8)

𝑄𝑖𝑗 =

∫︁
𝑋𝐷

𝐹𝑖𝑗(𝑥)𝑑𝑥 (4.9)

The integrals can be computed by partitioning the domain 𝑋𝐷 into many segments

𝑋1, · · ·𝑋𝑃 , as shown in Fig. 4-2.

𝑋𝐷 =
𝑃⋃︁

𝑝=1

𝑋𝑝 (4.10)

We generate these segments by applying a meshing technique to the data set 𝐷𝑁 ,

where the 𝑛-dimensional coordinates of individual data points are treated as nodes of

a mesh. Delaunay Triangulation, for example, generates a triangular mesh structure

with desirable properties [11]. As illustrated in Fig. 4-2, each triangular element is

convex and has no internal node. The volume of the dynamic range 𝑉 (𝑋𝐷) is the

sum of the volumes of all the elements.

𝑉 (𝑋𝐷) =
𝑃∑︁

𝑝=1

∆𝑣𝑝 (4.11)

Accordingly, the integral 𝑅𝑖𝑗 in eq.(4.8) can be segmented to

𝑅𝑖𝑗 =
𝑃∑︁

𝑝=1

∫︁
𝑋𝑝

𝐺𝑖𝑗(𝑥)𝑑𝑥 (4.12)

Suppose that the 𝑝-th element has 𝐾𝑝 nodes, as shown in Fig.4-3. Renumbering these

nodes 1 through 𝐾𝑝,

{𝑥[𝑘𝑝]
⃒⃒⃒
𝑥[𝑘𝑝] ∈ 𝑋𝑝; 𝑘𝑝 = 1, · · · , 𝐾𝑝}, 𝑝 = 1, · · · , 𝑃 (4.13)

The integrand 𝐺𝑖𝑗 within the 𝑝-th element can be approximated to the mean of the
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𝐾𝑝 nodes involved in the 𝑝-th element.

𝐺𝑖𝑗(𝑥; 𝑝) ≈ 𝐺̄𝑖𝑗,𝑝 =
1

𝐾𝑝

𝐾𝑝∑︁
𝑘𝑝=1

𝐺𝑖𝑗(𝑥[𝑘𝑝]), 𝑥[𝑘𝑝] ∈ 𝑋𝑝 (4.14)

If Delaunay Triangulation is used, 𝐾𝑝 = 𝑛 + 1. See Fig. 4-3. Substituting this into

(4.8) yields the approximate value of 𝑅𝑖𝑗.

𝑅̂𝑖𝑗 =
𝑃∑︁

𝑝=1

1

𝐾𝑝

𝐾𝑝∑︁
𝑘𝑝=1

𝐺𝑖𝑗(𝑥[𝑘𝑝])∆𝑣𝑝 (4.15)

where

∆𝑣𝑝 =

∫︁
𝑋𝑝

1 · 𝑑𝑥 (4.16)

Similarly, each component of the matrix 𝑄 can be computed by using the same

meshing.

𝑄̂𝑖𝑗 =
𝑃∑︁

𝑝=1

1

𝐾𝑝

𝐾𝑝∑︁
𝑘𝑝=1

𝐹𝑖𝑗(𝑥[𝑘𝑝])∆𝑣𝑝 (4.17)

Note that 𝐹𝑖𝑗 is evaluated by using the data points in both 𝐷𝑓
𝑁 and 𝐷𝑁 ,

𝐹𝑖𝑗(𝑥[𝑘𝑝]) = 𝑔𝑖[𝑓(𝑥[𝑘𝑝])]𝑔𝑗(𝑥[𝑘𝑝]) (4.18)

where 𝑓(𝑥[𝑘𝑝]) ∈ 𝐷𝑓
𝑁 . Fig. 4-3 visualizes this process of calculating 𝐺𝑖𝑗 for a set of

data points that encapsulate a single partition of the state space.

4.3.1 Convergence

Consider the center of each partition, 𝑥̄𝑝 =
∫︀
𝑋𝑝
𝑥𝑑𝑥/∆𝑣𝑝, and the distance between

𝑥̄𝑝 and each point, 𝑥[𝑘𝑝]:

∆𝑥[𝑘𝑝] = 𝑥̄𝑝 − 𝑥[𝑘𝑝] (4.19)
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Figure 4-3: Visualization of the integrand calculation process. The volume of the
partition is encapsulated by the data points is denoted as ∆𝑣𝑝. With this grouping,
the value of 𝐺𝑖𝑗 is calculated for each point and the average among this group is
computed, 𝐺̄𝑖𝑗,𝑝. In turn, this value, weighted by the volume of this partition, is
summed across other partitions (not shown) to approximate the value of the element
𝑅𝑖𝑗.
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See Fig.4-3. The maximum distance from the center of the partition to each point

that makes up the partition is

|∆𝑥𝑝| = max{|∆𝑥[1]|, ... |∆𝑥[𝑘𝑝 − 1]|, |∆𝑥[𝑘𝑝]|} (4.20)

Consider a sequence of refining the approximate inner product integral 𝑅̂𝑖𝑗 by increas-

ing data points 𝑁 . We can show that, as the number of partition 𝑃 tends infinity

and the maximum subintervals |∆𝑥𝑝| approach zero, the approximate inner product

integral 𝑅̂𝑖𝑗 converges to its true integral.

𝑅𝑖𝑗 = lim
𝑃→∞

|Δ𝑥𝑝|→0

𝑃∑︁
𝑝=1

1

𝐾𝑝

𝐾𝑝∑︁
𝑘𝑝=1

𝐺𝑖𝑗(𝑥[𝑘𝑝])∆𝑣𝑝 (4.21)

𝑄𝑖𝑗 = lim
𝑃→∞

|Δ𝑥𝑝|→0

𝑃∑︁
𝑝=1

1

𝐾𝑝

𝐾𝑝∑︁
𝑘𝑝=1

𝐹𝑖𝑗(𝑥[𝑘𝑝])∆𝑣𝑝 (4.22)

This formulation takes the form of weighted sums, specifically Riemann sums. This

summation is formulated as a sequence that can be refined, where the maximum

subintervals, in this case ∆𝑥𝑝, approach 0. Given functions that are bounded and

continuous over the subdomain of interest, sequences of this form are known to have

a common limit and thus converge upon refinement to the Riemann integral value

over that subdomain, according to Numerical Integration theory [14, Section 1.5].

Notably, this use of the Riemann integral differs from the use of Lebesgue integrals

which are used in Hilbert spaces. As the method is an application of numerical

integration, the inability to generalize to all functions that belong to Hilbert spaces

is a known limitation. However, one should not consider this as overly restrictive

given that the observable functions chosen in state of the art methods are Riemann

integrable.

4.3.2 Algorithm

In the prior section, integrals (4.15) and (4.17) are presented as summations over

partitions. This computation can be streamlined by converting the summations over

68



partitions to the one over nodes. Consider node 3 associated to data point 𝑥3 in Fig.4-

2, for example. This node is an apex of the 5 surrounding triangles. This implies

that integrand 𝐺𝑖𝑗(𝑥) is calculated or recalled 5 times in computing (4.15) and (4.17).

This repetition can be eliminated by computing volume ∆𝑣𝑘 associated to node 𝑘,

rather than partition 𝑝 : ∆𝑣𝑝. Namely, we compute

∆𝑣𝑘 =
𝑃∑︁

𝑝=1

∆𝑣𝑝
𝐾𝑝

𝐼(𝑘, 𝑝) (4.23)

where 𝐼(𝑘, 𝑝) is a membership function that takes value 1 when node 𝑘 is an apex

of triangle 𝑝, that is, node 𝑘 is involved in partition 𝑝. Using this volume as a new

weight we can rewrite (4.15) and (4.17) to be

𝑅̂𝑖𝑗 =
𝐾∑︁
𝑘=1

𝐺𝑖𝑗(𝑥[𝑘])∆𝑣𝑘 (4.24)

𝑄̂𝑖𝑗 =
𝐾∑︁
𝑘=1

𝐹𝑖𝑗(𝑥[𝑘])∆𝑣𝑘 (4.25)

Using this conversion, the computation can be streamlined and cleanly separated

into three steps, as shown by pseudo-code in Algorithm 1. The steps are: (1) Graph

Creation: data are connected to create partitions of the domain using a mesh gener-

ator: lines 3 to 8, (2) Weighting Calculation: calculation of the weights for each data

point: lines 10 to 17, and (3) Matrix Calculation: the calculation of the 𝑅 and 𝑄

matrices to find the matrix 𝐴, lines 19 to 21.

4.4 Experiments

In this section, the DDE algorithm is implemented for the sake of evaluating its valid-

ity and comparing its modeling accuracy to EDMD. Consider a 2nd order nonlinear

system consisting of a pendulum with a nonlinear damper. See Fig. 4-4. The pen-

dulum also bounces against walls with nonlinear compliance. The state variables for
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this system are

𝑥 =

⎡⎣𝜃
𝜃

⎤⎦ (4.26)

and the equation of motion can be written as:

𝜃 = −𝑠𝑖𝑛(𝜃) + 𝐹𝑘 + 𝐹𝑐 (4.27)

where 𝐹𝑘 and 𝐹𝑐 are wall reaction moment and damping moment, respectively,

𝐹𝑘 =

⎧⎪⎨⎪⎩−sign(𝜃) 𝑘(|𝜃| − 𝜋
4
)2 if |𝜃| ≥ 𝜋

4

0 if |𝜃| < 𝜋
4

(4.28)

𝐹𝑐 = −sign(𝜃) 𝑐 𝜃2 (4.29)

Algorithm 1: Algorithm for DDE in pseudocode
Input:
𝐷𝑁 , 𝐷𝑓

𝑁

Output:
𝑃 : 𝑝, 𝐾: 𝑘, 𝑅, 𝑄 𝐴
Graph Creation:
for 𝑥𝑖 in 𝐷𝑁 and corresponding 𝑓(𝑥𝑖) in 𝐷𝑓

𝑁 do
Create node, 𝑘
Assign node attributes for current data point 𝑘.𝑥𝑡 = 𝑥𝑡 and 𝑘.𝑥𝑡+1 = 𝑥𝑡+1

Append node to node list 𝐾.
then
Weighting Calculation:
Create list of triangles, 𝑃 using Delaunay Triangulation on node list 𝐾 using
𝑘.𝑥𝑡

for 𝑝 in 𝑃 do
Calculate volume, 𝑉 , of 𝑝
for 𝑘 corresponding to 𝐾𝑝 do

Update volume of each node 𝑘.∆𝑣𝑘 = 𝑘.∆𝑣𝑘 +
𝑉

𝑛+1

then
Matrix Calculation:
Find 𝑅 and 𝑄 via (4.24) and (4.25)
Find 𝐴 = 𝑄𝑅−1
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Notation Definition
𝑥 state vector
𝑥𝑡 an initial state drawn from the dataset 𝐷𝑁

𝑥𝑡+1 𝑥𝑡 at next time step, drawn from 𝐷𝑓
𝑁

𝐷𝑁 a set of states
𝐷𝑓

𝑁 a set corresponding to 𝐷𝑁 at the next time step
𝑝 a partition formed from a set of 𝑛+ 1 data points
𝑃 list of partitions
𝑘 a node with attributes: 𝑥𝑡, 𝑥𝑡+1, 𝑅,𝑄, 𝑉
𝐾 a list of nodes equivalent
𝐴 the linear dynamic matrix

Table 4.1: Notation and definitions for variables indicated in different parts of this
paper.

where 𝑘 = 200 and 𝑐 = 1. We present a two part numerical experiment for this

system. The first experiment regards variations in dataset size and distribution, and

the second experiment varies the usage of observable functions.

4.4.1 Dataset Variations

The datasets tested are of three types:

1. Uniform: These datasets are composed of a rectangular dynamic range which

is sampled uniformly, like an evenly divided grid. The range varies from 𝜃 =

[−0.8, 0.8] and 𝜃 = [−2, 2], where the mass can hit the walls and the damping

can vary from 0 to a significant value. See Fig. 4-4-(b), (c).

2. Gaussian: Data points are sampled with a finite-support Gaussian distribu-

tion. We define sampling from a finite-support Gaussian as first sampling from

a Gaussian function, and then discarding all points outside of a pre-defined dy-

namic range. The data are distributed non-uniformly with their highest density

at the peak of the Gaussian placed at diverse locations. Each dataset contains

100 data points uniformly distributed along the boarder of the dynamic range to

guarantee the same dynamic range as the uniform datasets. The standard devi-

ation is chosen to reliably sample within the truncated range; that is 𝜎𝜃 = 0.08,

𝜎𝜃 = 0.2 where 𝜎 is the standard deviation.
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Figure 4-4: Diagram of pendulum with with walls. (a) depicts the range of the
pendulum where the walls are equally angularly displaced from the vertical. (b)
depicts the forces exerted on the pendulum due to contact with walls. (c) depicts the
damping force exerted onto the pendulum.

3. Trajectories: These datasets are composed of trajectories, beginning from 100

initial conditions that are simulated forward the same number of time steps.

The dynamic range of this dataset differs from the two other dataset types.

The inputs of each dataset are visualized in Figs. 4-5, 4-6, 4-7, and4-8. Corre-

sponding graphs are presented in Fig. 4-9, 4-21, Fig. 4-19, and 4-20.

The models constructed for DDE and EDMD use the same observable functions.

The observable functions chosen are two dimensional radial basis functions (RBFs),

uniformly distributed between the maximum and minimum values of each state vari-

able in their respective dataset, and the state variables. The total order of the system

is 27th order with 25 RBFs and 2 state variables.

A trajectory dataset graph is generated using Delaunay Triangles in DDE, shown

in Fig. 4-9.

The accuracy of the models is tested through calculating sum of squared errors

(SSE) for one-step ahead predictions over the dynamic range of the datasets. These

error values are calculated for a uniform grid of points, similar to that used in the

uniform datasets. A visualization of the SSE is plotted in Fig. 4-10 and in Fig. 4-12.
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Figure 4-5: Example of data belonging to the uniform dataset with 900 data points
for all snapshots belonging to 𝑥𝑡.

Table 4.2: Sum of Squared Errors over dynamic range with varying dataset sizes.

Dataset Size Total SSE SSE Variance
EDMD / DDE EDMD / DDE
Uniform Datasets

900 19.470 / 17.167 0.0094 / 0.0097
2500 17.995 / 16.471 0.0095 / 0.0103
10000 17.010 / 16.184 0.0099 / 0.0105
22500 16.698 / 16.133 0.0101 / 0.0105

Trajectory Datasets
1000 56.532 / 33.392 0.0349 / 0.0193
2500 33.330 / 25.064 0.0200 / 0.0130
5000 31.690 / 25.099 0.0195 / 0.0129
10000 30.184 / 25.101 0.0186 / 0.0129
25000 29.380 / 25.106 0.0181 / 0.0129
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Figure 4-6: Example of data belonging to the Gaussian dataset that is centered at
the origin with 10000 data points for all snapshots belonging to 𝑥𝑡.
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Figure 4-7: Example of data belonging to a Gaussian dataset that is centered away
from the origin with 10000 data points for all snapshots belonging to 𝑥𝑡.
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Figure 4-8: Example of data belonging to the trajectory dataset with 10000 data
points for all snapshots belonging to 𝑥𝑡.
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Figure 4-9: Graph of connections for a trajectory dataset composed of 10000 points
formed when utilizing the data-driven direct encoding method. The lightly red shaded
region denotes the dynamic range. In the zoomed-in image, the difference in volumes
associated to different data points can be observed. Noting the difference in size of
the purple triangle versus the green triangle.

The results of these calculations are shown in Table 4.2 and 4.3. In the computation,

the dynamic range is discretized, and the SSE value of each point is summed. For

the Gaussian datasets, the test is run for eight iterations of each dataset to account

for randomness and the average result is noted.

To demonstrate the convergence of the parameters based on numerical integration,

Figs. 4-13 - 4-18, illustrate the parameter values for various elements of the 𝑄 matrix

used in DDE as a function of dataset size for each of the different dataset types.

4.4.2 Observable Function Variation

The second experiment varies the number of observable functions selected, thus in-

creasing the order. In this experiment, the number of RBFs is varied through uni-

formly increasing the density of the centers of the function over the range of the

dataset. The results are noted in Table 4.4. In the table, the number detailing num-

ber of observables is the number of functions including the state variables. It is shown
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Figure 4-10: Sum of Squared Error plots for various datasets. (a) and (b) are EDMD
models for Gaussian datasets; (a) uses a dataset that is centered at [0, 0] and (b)
uses a dataset that is centered at [0, 2]. (c) DDE and (d) EDMD models using the
trajectory dataset composed of 2500 data points and using 25 RBFs. Circled in red
are the regions with greatest variation in SSE between models. Only the dynamic
range is shown in all plots.
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Figure 4-11: Absolute difference in Sum of Squared Error across two different models.
These heatmaps are formed by generating models for two different Gaussian datasets,
one with mean centered at the origin and the other centered at [0, 2], and calculating
the absolute difference in SSE. On the left is the difference for an EDMD model, which
is notably highlighted throughout the dynamic range. On the right is the difference
in SSE for the DDE model, which is in general nearly zero, indicating a consistent
model despite large differences in data.

Figure 4-12: Sum of Squared Error plots for a trajectory dataset consisting of 2500
data points. (a) corresponds the DDE model, and (b) corresponds to the EDMD
model. Provides an alternative view of Fig. 4-10(c) and (d)
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Table 4.3: Sum of Squared Errors over dynamic range for Gaussian distributions with
different centers. Centers of the distribution are noted above each column.

Dataset Size
Total SSE

Center: [0, 0] Center: [0.8, 0] Center: [0, 2]
EDMD / DDE EDMD / DDE EDMD / DDE

Gaussian Datasets
1000 25.565 / 24.377 25.161 / 22.98 24.338 / 22.445
2500 24.991 / 23.739 25.421 / 22.747 24.221 / 21.590
5000 24.662 / 23.518 26.805 / 22.415 23.914 / 21.195
10000 24.395 / 23.085 28.424 / 21.825 25.770 / 21.052
25000 25.219 / 22.167 30.788 / 21.687 26.941 / 20.704

Figure 4-13: Change in values of diagonal elements in the 𝑄 matrix of DDE with
respect to trajectory dataset size. The specific elements shown correspond to a state
variable, 𝑄0,0, and three RBF functions of varying distances away from the equilib-
rium.
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Figure 4-14: Change in values of diagonal elements in the 𝑄 matrix of DDE with
respect to gaussian dataset size. The specific elements shown correspond to a state
variable, 𝑄0,0, and three RBF functions of varying distances away from the equilib-
rium.
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Figure 4-15: Change in values of diagonal elements in the 𝑄 matrix of DDE with
respect to uniform dataset size. The specific elements shown correspond to a state
variable, 𝑄0,0, and three RBF functions of varying distances away from the equilib-
rium.
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Figure 4-16: Change in values of off diagonal elements in the 𝑄 matrix of DDE with
respect to trajectory dataset size.
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Figure 4-17: Change in values of off diagonal elements in the 𝑄 matrix of DDE with
respect to uniform dataset size.
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Figure 4-18: Change in values of off diagonal elements in the 𝑄 matrix of DDE with
respect to Gaussian dataset size.
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Figure 4-19: Graph of connections for the Gaussian dataset with a center at the origin
formed when utilizing the data-driven direct encoding method.
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Figure 4-20: Graph of connections for the Gaussian dataset with a center away from
the origin formed when utilizing the data-driven direct encoding method.
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Figure 4-21: Graph of connections for the uniform dataset formed when utilizing the
data-driven direct encoding method.
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Table 4.4: Sum of Squared Errors over dynamic range with varying order of lifted
linear models.

# Observables Total SSE
EDMD DDE

Trajectory Dataset, 5000 points
27 31.690 25.099
51 36.657 21.637
83 28.437 13.613

as a bar chart in Fig. 4-22.

4.4.3 Discussion

From these results we can make the following observations.

All the numerical experiments show that DDE outperforms EDMD in total SSE.

For uniform datasets, both models are nearly equivalent, though DDE has slightly

lower SSE in all cases, shown in Table 4.2. This result is expected as all data points

are weighted equally in a uniform distribution.

EDMD models exhibit significantly different distributions of prediction error, de-

pending on dataset distribution. In Fig. 4-10-(a), the EDMD model learned from

a dataset with high density near the origin produces a prediction error distribution

that is low in accuracy in the top-right and the bottom-left corners of the dynamic

range. In contrast, Fig.4-10-(b) illustrates that when using EDMD to learn from data

with high density at 𝜃 = 0, 𝜃 = 2, the model results in low accuracy in the lower half

of the dynamic range. DDE does not exhibit this high distribution dependency and

achieves lower total SSE, as shown in Table 4.3.

In the trajectory datasets in Table 4.2, DDE is not only lower in total SSE than

EDMD but is also smaller in variance. Fig. 4-10-(c) shows that DDE has a uniformly

low error distribution across the dynamic range, while EDMD in Fig.4-10-(d) has

two regions, as circled in the figure, with significantly larger error. In the figure, the

error plots over the dynamic range of the data are similar except for, as circled in
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Figure 4-22: Differences in Total SSE over the dynamic range for a Trajectory dataset
of 5000 data points, with varying numbers of Radial Basis Functions.

90



the figure, two regions on which have a significant difference between models. These

regions coincide with sparsity in the dataset, providing evidence of EDMD’s bias

towards regions of high data density and explaining the difference in performance

between models for the non-uniform datasets.

In the trajectory datasets, the total SSE converges for DDE beginning with small

dataset sizes. This result implies that the elements in the 𝑅 and 𝑄 matrices of

DDE, that is, the inner product integral computations, converge as the data size and

the data density increase. This convergence is confirmed in Figs. 4-13-4-18, where

several elements of the 𝑄 matrix are plotted against the data size. These elements

are representative of the elements not pictured in the 𝑅 and 𝑄 matrices.

The second experiment, regarding variations in observable function numbers demon-

strates the effect of DDE remains even for significant increases in observable functions,

referring to Table 4.4. In all cases tested, DDE significantly outperforms EDMD over

the dynamic range, as expected for a non-uniform dataset.

4.5 Conclusion

In this chapter, a new data-driven approach to generating a Koopman linear model

based on the direct encoding of Koopman Operator (DDE) is presented as an al-

ternative to dynamic mode decomposition (DMD) and other related methods using

least squares estimate (LSE). The major contributions include: 1) The analytical

formula of Direct Encoding is converted to a numerical formula for computing the

inner product integrals from given data; 2) An efficient algorithm is developed and

its convergence conditions to the true results are analyzed; 3) Numerical experiments

demonstrate a) greater accuracy compared to EDMD, b) lower sensitivity to data

distribution, and c) rapid convergence of inner product computation. However, the

current method does not rigorously allow for control, and as such is a future direction

for exploration.
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Chapter 5

Deep Learning Approaches

In this chapter, we discuss the use of modern Deep Learning methods used with the

Koopman Operator framework. We begin by discussing the recent work that involves

the use of Deep Learning to formulate a lifted linear system, specifically to learn

observable functions. Afterwards, the use of DDE is demonstrated on a 6th order

nonlinear system, demonstrating the ability to accurately model the system with a

low number of observables. Then, the final contribution of this thesis, a novel training

method for producing observable functions, is presented. This training method is

utilized in tandem with DE, demonstrating high accuracy for a system with both

stable and unstable subspaces, and the capacity to illustrate the boundary between

subspaces.

5.1 Introduction

Linearization methods, such as those based on the Koopman Operator, have been

used to transform nonlinear systems to linear models. The theory states that the

linear model becomes exact in modeling a nonlinear system as the order of the lin-

ear model approaches infinity, though some nonlinear systems have finite order rep-

resentations in lifted space [8, 40]. The Koopman Operator models are generally

constructed through data-driven methods such as Extended Dynamic Mode Decom-

position (EDMD) [50]. These Koopman-DMD methods have been applied to non-
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autonomous systems to construct linear dynamic models that allow us to apply various

linear control methods, such as linear model predictive control (MPC), to nonlinear

control systems [25].

A key component necessary to constructing a Koopman Operator-based linear

model is selection of the observable functions that lift the state space. Prior work

has studied the use of various function families as observables, such as polynomial

basis functions, radial basis functions and time delays [22, 38, 47] . There have also

been formulas created for algorithmically determining useful observables based on

the dataset [13, 36]. Modern machine learning techniques have been applied to learn

observable functions with significant success [19, 34,51].

However, it can be difficult to formulate accurate approximations of the Koopman

Operator for nonlinear systems that produce both stable and unstable trajectories.

A passive dynamic walker, for example, is essentially an unstable system, but it can

walk stably if it starts within a stable region [39]. When concerned with only the

stable regions of a nonlinear system, methods have been developed to construct stable

Koopman models from unstable data-driven models for systems that are known to

be stable [6, 15, 18, 35]. These works provide methods to construct stable Koopman

models from unstable Koopman models. However, these methods are not applicable

when needing to predict stable trajectories for a system with unstable regions. A key

difficulty is to capture a proper dataset that represents diverse behaviors involved in

stable and unstable trajectories. Because of the nature of unstable trajectories, a bias

towards the unstable modes can often occur when creating the Koopman model.

Prior work discusses the potential for Koopman Operator models to describe un-

stable subspaces [40]. This paper presents a methodology for constructing an accurate

Koopman model for nonlinear systems with both stable and unstable regions through

separation of a lifted space into stable and unstable subspaces. Two sets of effective

observables are learned separately and superposed to construct a complete model.

In addition, a method will be developed for determining a boundary between

stable and unstable regions in the original state space by analyzing the Koopman

Operator Model using modal decomposition, which is made possible with the effective
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construction of observable functions. In the field of Deep Learning, attempts at

modeling unstable systems have relied on novel loss functions, such as a time-weighted

loss [41], but, in general, such methods have demonstrated little success at separating

the dynamics of such systems.

The current chapter presents two significant points. The first is a demonstration

of the use of DDE in coordination with Deep Koopman methods. The next is a

novel training method of subspace specific observable generation (SSOG) via a neural

network.

5.2 Deep Koopman with Data-Driven Encoding

The use of deep neural networks for finding effective observable functions and con-

structing a Koopman linear model has been reported by several groups [33, 46, 51].

This method, sometimes referred to as Deep Koopman, is effective for approximating

the Koopman operator to a low-order model, compared to the use of locally activated

functions, such as RBFs, which scale poorly for high-order nonlinear systems. The

proposed DDE method can be incorporated into Deep Koopman, further improving

approximation accuracy.

Fig. 5-1 shows the architecture of the neural network similar to the prior works

[33, 46, 51]. The input layer receives training data of independent state variables.

The successive hidden layers produce observable functions; these functions feed into

the output layer consisting of linear activation functions. This linear output layer

corresponds to the 𝐴 matrix that maps the observables of the current time to those

of the next time step, i.e. the state transition in the lifted space. In the Deep

Koopman approach, the output layer, that is, the 𝐴 matrix, is trained together with

observable functions in the hidden layers. Using the observable functions learned

from deep learning, the output layer weights are replaced with the 𝐴 matrix obtained

from DDE, captioned in Fig. 5-1.

The number of the units in the final hidden layer connected to the linear output

layer is the number of observables. For this set of observable functions and data
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Figure 5-1: Feedforward neural network model used to generate observable functions.
The final layer of the neural network is a linear layer. In the standard Deep Koopman
model this remains the same after the model is fully trained. However, with the DDE
model, this final layer is recalculated using DDE by taking in the dataset used to
train the model.
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matrices 𝐷𝑁 and 𝐷𝑓
𝑁 , we can apply the DDE algorithm for finding the A matrix. The

neural net training can be repeated for refining the observables after the A matrix is

determined from the DDE. Furthermore, the DDE and the neural net training can

be repeated multiple times in a bootstrap manner.

The trained observable functions are used for constructing a high-dimensional

state vector 𝑧.

𝑧 = [𝑔1(𝑥;𝑤1), · · · , 𝑔𝑚(𝑥;𝑤𝑚)]
𝑇 (5.1)

where 𝑤𝑘 is the weights of all the hidden layer units associated to the 𝑘-th state

variable in the lifted space. The effectiveness of this Deep Koopman-DDE method is

applied to a multi-cable manipulation system [42]. A simplified single cable version

is utilized consisting of six independent state variables. The network is constructed

using PyTorch, trained with an Adam optimizer, to generate 40 observable functions.

The loss function of the neural network is the mean squared error loss function

𝐿𝑀𝑆𝐸 =
1

𝑁

𝑁∑︁
𝑛=1

||𝑧𝑡+1 − 𝐴𝑧𝑡||2 (5.2)

These model concatenates the state variables of the nonlinear system, resulting in a

46th order model. Table 5.1 shows parameters used for training the Deep Koopman

model. The training dataset is composed of 3000 data points drawn from trajectories.

Table 5.2 compares the Deep Koopman model to the proposed model that uses DDE.

Results are in terms of sum of squared error over a set of test trajectories. A significant

improvement is achieved by incorporating DDE into the deep learning method.

Table 5.1: Neural network parameters and characteristics.

Parameters and Characteristics Value
Number of Hidden layers 3

Activation Functions, Both Hidden Layers ReLU
Width of 1st Hidden Layer 16
Width of 2nd Hidden Layer 16
Width of 3rd Hidden Layer 40

Learning Rate, 𝛼 0.01

We utilize a simplified, one winch model in this section to demonstrate the effect
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Table 5.2: Average SSE prediction error for trajectories in set of test data for single
winch system.

Modeling Method 1 Time Step 20 Time Steps
Deep Koopman only 0.2471 9.8610

Deep Koopman + DDE 0.2350 4.1131

of DDE with Deep Koopman. A diagram for this system is shown in Fig. 5-2. The

dynamics for this system are similar, though not identical to the system introduced

in Chapter 3.1.3.

The corresponding state vector for this sixth order system is

x =
[︁
𝑥 𝑦 𝑥̇ 𝑦̇ 𝐿𝐴 𝐿̇𝐴

]︁𝑇
(5.3)

where 𝐿𝐴 is the unstretched cable lengths. This unstretched cable length is defined

as function

𝐿𝐴 = 𝐿0 + 𝑟𝑤𝐴
𝜃𝑖

and the unstretched cable length velocity is the time derivative of the above function.

The winches are allowed to rotate, but are fixed in position. Their rotational dynamics

are defined as

𝐼𝐴𝜃𝐴 = 𝑢𝐴 − 𝜏𝑤𝐴

where 𝜏𝑤𝐴
is the torque due to the cable when in tension, and 𝑢𝐴 is the input torque

from the motor attached to the winch. This torque is defined as

𝜏𝑤𝐴
= 𝑟𝑤𝐴

n𝑤𝐴
× 𝑇𝐴n𝐴

where 𝑟𝑤𝐴
is the radius of the winch, and n𝐴 corresponds to the unit vector in the

direction of the departure point of the cable from the center of the winch. The mass

98



Figure 5-2: Diagram of one winch system consisting of one winch with rotational
inertia, two cables, and a suspended mass. The motor that drive the winches are
controlled with PD controllers that attempt to guide the unstretched cable length to
specific values.

switches dynamic equations based on the conditions

𝑚

⎡⎣𝑥̈
𝑦

⎤⎦ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ if 𝑑𝐴 ≤ 0

𝑇𝐴n𝐴 +

⎡⎢⎣ 0

𝑚𝑔

⎤⎥⎦ if 𝑑𝐴 > 0

(5.4)

where 𝑑𝐴 is the elongation length of cable 𝐴 subtracted by its unstretched length

based on the positioning of the mass relative to the respective winch.

The equations that govern the rope’s extension with respect to force are nonlinear,

and derived experimentally as in the prior work. The equation for the tension of the

rope is

𝑇𝐴 = 1699𝑑𝐴 (5.5)

In Fig. 5-4, an example trajectory for the mass position in the horizontal direction
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Figure 5-3: Sum of Squared Error (SSE) plot for one hundred trajectories for both
EDMD and DDE models using the grid point dataset. The shaded regions represent
the minimum and maximum errors and the corresponding line is the average SSE.

is shown, and in Fig. 5-3, a SSE error plot is shown presenting the SSE of one hundred

trajectories represented by the shaded regions.

For the realistic experiment of applying this to the sixth order winch system, it is

clear that for higher order systems that the effect of calculating the 𝐴 matrix using

DDE leads to improved results when compared to the EDMD approach as shown in

Fig. 5-3 and 5-4. With this increase in prediction accuracy, the method presented

can be deemed as effective even when applying neural networks for generation of

observable functions.

Practical concerns arose from the use of Delaunay Triangulation in this experi-

ment. Specifically, the method was found to be limiting and inconsistent for systems
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Figure 5-4: Trajectory example comparing the prediction of the EDMD and DDE
models for the 𝑦 position of the point mass.
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that are eighth order or higher, due to computational cost and numerical instabil-

ity. Alternative numerical integration approaches or alternative partitioning methods

may be necessary when applying the method to higher order nonlinear systems.

5.3 Subspace Specific Observable Generation

This section presents a novel algorithm for obtaining an accurate Koopman operator

model for nonlinear systems having both stable and unstable regions. The algorithm

is built upon three theoretical and technical foundations.

First, it employs the Direct Encoding formula. In DMD, including its variants such

as EDMD, the linear state transition matrix 𝐴 is assumed to exist and is determined

from data based on a Least Squares Estimation. This may cause a biased estimate,

as addressed previously. In the Direct Encoding formula, however, the 𝐴 matrix is

determined from the inner products of observable functions and their composition

with the nonlinear state function 𝑓 involved in the two matrices 𝑅 and 𝑄. Because

both 𝑔𝑖 and 𝑔𝑖 ∘𝑓 are in a Hilbert space, all the inner products are guaranteed to exist

and the resultant 𝐴 matrix provides an exact linearization that does not depend on

data. The linear model is globally valid. This Direct Encoding formula is used as a

foundational framework in the new algorithm.

Second, the algorithm exploits a basic property of a linear dynamical system. If a

Koopman Operator model can be constructed for a nonlinear system, then the system

can be represented by

𝑧𝑘+1 = 𝐴𝑧𝑘 (5.6)

from eq. (2.1). This linear system can be separated into its individual modes using

eigendecomposition.

𝑧𝑘+1 = 𝑉𝑢𝐷
𝑡
𝑢𝑊

𝑇
𝑢 𝑧𝑘 + 𝑉𝑚𝐷

𝑡
𝑚𝑊

𝑇
𝑚𝑧𝑘 + 𝑉𝑠𝐷

𝑡
𝑠𝑊

𝑇
𝑠 𝑧𝑘 (5.7)

where 𝑉,𝐷, and 𝑊 are the eigendecomposition of 𝐴, and the subscripts 𝑢,𝑚, and
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𝑠 represent unstable, marginally stable, and stable subspaces. This decomposition

in the lifted space motivates us to construct observable functions that represent the

individual subspaces.

However, when represented in the state space of the original nonlinear system,

these subspaces may be not as simple to find the boundaries in between; an artistic

visualization of such boundaries is shown in Fig. 5-6.

Figure 5-5: The training scheme utilized to generate the architecture in Fig. 5-7.

Third, the algorithm uses neural networks to find an effective set of observables

for each of the stable and unstable subspaces. The training method, summarized

in Fig 5-5, assumes that while the underlying system has unknown characteristics,

the trajectory data obtained from the system can be separated into two categories:

stable/marginally stable, and unstable. Specifically, an aggregate dataset is comprised

of initial states 𝑋𝑘 and the states at one time step ahead 𝑋𝑘+1. This can then be

organized into

𝑋 =
[︁
𝑋𝑢 𝑋𝑠

]︁
(5.8)

for both 𝑋𝑘 and 𝑋𝑘+1. These subsets of data are used to train corresponding neural
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networks 𝐺𝑢(𝑥𝑖; 𝜃𝑖) and 𝐺𝑠(𝑥𝑖; 𝜃𝑖) and the weights of linear output layers 𝐴𝑠 and 𝐴𝑢.

The function of the neural networks is to produce observables of a given state, that

is

𝐺*(𝑥) = 𝑔*(𝑥) (5.9)

and

𝑧*𝑘+1
= 𝐴*𝑧*𝑘 (5.10)

where * can be replaced with 𝑠 or 𝑢, representing the specific subset of data, and 𝑧

is the lifted state represented by

𝑧* =
[︁
𝑥* 𝑔*(𝑥*)

]︁𝑇
(5.11)

The loss function utilized in training all models is

𝐿(𝑧, 𝑧) =
1

𝑁

𝑁∑︁
𝑖=0

(𝑧 − 𝑧)2 (5.12)

After the training of these networks is completed with the trajectory dataset, the

weights for the neural networks 𝐺𝑢 and 𝐺𝑠 no longer are updated. We then utilize

the Direct Encoding method to produce a new estimation for the output layer. This

new regression is computed by creating a new lifted state through concatenating the

observable functions of each network with the state vector

𝑧 =
[︁
𝑥 𝑔𝑢 𝑔𝑠

]︁𝑇
(5.13)

The observable functions produced by these networks are then concatenated as

shown in Fig. 5-7. This new linear transition matrix can be recomputed utilizing the

Direct Encoding method. Let 𝑔𝑖(𝑥; 𝜃𝑖) be the 𝑖-th observable in the form of a neural

network with parameters 𝜃𝑖. The inner product comprising the matrix 𝑅 is give by

𝑅 = {𝑅𝑖𝑗} = {⟨𝑔𝑖(𝑥; 𝜃𝑖), 𝑔𝑗(𝑥; 𝜃𝑗)⟩} (5.14)
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Figure 5-6: An example of a phase plot with regions of the domain separated into
possible stable and unstable regions.

Similarly,

𝑄 = {𝑄𝑖𝑗} = {⟨𝑔𝑖(𝑥; 𝜃𝑖) ∘ 𝑓(𝑥), 𝑔𝑗(𝑥; 𝜃𝑗)⟩} (5.15)

Note that simulation data are used only for finding effective observables and not

for obtaining the state transition 𝐴 matrix. The 𝐴 matrix is obtained from DE

by using the neural net observables as shown in the above equation. Algorithm 2

summarizes this procedure, referred to in latter sections as the SSOG Model, as it

joins together two neural network models that are constructed to generate observables

specific to the subspaces they are trained on.
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Algorithm 2: Training scheme for the prediction models. Notation is ex-
plained in Table 5.3.
Input:
𝐺𝑢: 𝑥𝑢 ∼ 𝑋𝑢; 𝐺𝑠: 𝑥𝑠 ∼ 𝑋𝑠; 𝐺𝑗𝑜𝑖𝑛𝑡: 𝑥 ∼ 𝑋;
𝐹𝑢: 𝑧𝑢𝑘

; 𝐹𝑠 : 𝑧𝑠𝑘 ; 𝐹𝑗: 𝑧𝑗𝑘
Parameters: (weight variables);
Output:
𝐺𝑢: 𝑔𝑢; 𝐺𝑠: 𝑔𝑠; 𝐺𝑗𝑜𝑖𝑛𝑡: 𝑔𝑗𝑜𝑖𝑛𝑡
𝐹𝑢: 𝑧𝑢𝑘+1

; 𝐹𝑠: 𝑧𝑠𝑘+1
; 𝐹𝑗: 𝑧𝑗𝑘+1

for number of epochs do
Sample 𝑥* from 𝑋*
Generate observable function vector 𝑔*, by inputting 𝑥* through nonlinear
layers

Append state vector to observable vector 𝑧* = 𝑥* ⊕ 𝑔*
Estimate augmented output through linear activation 𝐹*(𝑧*𝑘)
Forward pass through MSE Loss function 𝐿(𝑧, 𝑧);
Backward pass: update parameters for observable functions (𝑊𝑢,𝑊𝑠);

then
Calculate augmented input 𝑔𝑢𝑘

and 𝑔𝑠𝑘 for 𝑥𝑘𝐷𝐸
𝑋𝐷𝐸 for all 𝑋𝐷𝐸

Append augmented inputs 𝑧𝑘𝐷𝐸
= 𝑥𝑘𝐷𝐸

⊕ 𝑔𝑢𝑘
⊕ 𝑔𝑠𝑘

Calculate augmented output 𝑔𝑢𝑘+1
and 𝑔𝑠𝑘+1

for 𝑥𝑘+1𝐷𝐸
𝑋𝐷𝐸 for all 𝑋𝐷𝐸

Append augmented outputs 𝑧𝑘+1𝐷𝐸
= 𝑥𝑘+1𝐷𝐸

⊕ 𝑔𝑢𝑘+1
⊕ 𝑔𝑠𝑘+1

Calculate state transition matrix for linear layer of joint model

Notation Definition
x state vector
𝑥𝑢 state vector belonging to unstable region
𝑥𝑠 state vector belonging to stable region
𝐺* Observable function model trained on the * dataset
𝐹* Linear regression model trained on * dataset
𝑥*𝑘 state vector at initial time step
𝑥*𝑘+1

state vector at next time step
𝑊* weights for a model (𝐺* and 𝐹*)
𝑧 lifted state vector
𝐿 Loss function
* Subscript denotes being used

for stable (𝑠), unstable (𝑢) regions

Table 5.3: Notation and definitions for variables indicated in different parts of this
paper.
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Figure 5-7: Resultant model architecture of the Joint Model described in Algorithm
2.

107



5.3.1 Results

The computer creating these models has a AMD Ryzen 7 3700X 8-Core Processor 3.60

GHz, and a NVIDIA GeForce GTX 1060 3GB Graphics Card. The models are created

using PyTorch. The SSOG models have two hidden layers with ReLU activation units,

and the final layer utilizes a linear layer, which represents the Koopman Operator’s

linear transition matrix. The width of the first hidden layer is 16 units, and the width

of the second hidden layer is 10 units. These hidden layers utilize rectified linear

activation units. In the case of 40 observables, the SSOG model has 20 observables

for both stable and unstable regions. In the case of 80 observables, the division is

done similarly. In addition to these observable functions, the original state variables

are included as part of the model as well. The loss function for the neural networks

is a standard mean squared error loss function of

𝐿𝑀𝑆𝐸 =
1

𝑁

∑︁
𝑡

|𝑧𝑡+1 − 𝐴𝑧𝑡|2 (5.16)

where 𝑧 is the lifted state variable, and 𝐴 is the weights of the final linear layer.

The model is trained using an Adam optimizer with a learning rate of 𝛼 = 0.01.

Hyperparameters were equivalent between models.

The SSOG model with DE is compared to the SSOG model without the use of

DE, where the weights of the linear activation layer is computed from a least squares

regression. It is also compared to an Aggregate model which utilizes the same neural

network structure but aggregates the dataset together, training a single network that

produces twice the number of observable functions and is not subspace specific. A

DE version of the Aggregate model is also formulated, recomputing the final layer of

the model using DE.

Standard EDMD models are constructed to be of equivalent order to the SSOG

and Aggregate without deep learning. The EDMD model’s observables are radial

basis functions that are uniformly distributed for individual states between minimum

and maximum value for that state in the dataset. These radial basis functions are of
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the form

𝜓 = 𝑒−𝜔(𝑥𝑖−𝑥𝑖𝑎 )
2

(5.17)

where 𝜔 is a parameter that was set to equal 1 for all state variables and 𝑥𝑖 is the 𝑖th

state variable, and 𝑥𝑖𝑎 is the center of the radial basis function.

We introduce a second order nonlinear system:

𝑥̇ = −𝑥+ 𝑥2 + 𝑦2

𝑦̇ = −𝑦 + 𝑦2 + 𝑥2 − 𝑥

This system has effectively two regions, a stable region and an unstable region, visu-

alized with a collection of trajectories in Fig. 5-8.

The observables generated from training this model on the stable dataset is shown

in Fig. 5-9, while the observable functions corresponding to the unstable dataset is

shown in Fig. 5-10. When aggregating the datasets together, the observable functions

are shown in Fig. 5-11.

The pole plots corresponding to the Aggregate model and the SSOG model are

shown in Figs. 5-12, and 5-13. An additional pole plot is provided showing the

difference between the models after the use of Direct Encoding in Fig. 5-14.

Prediction Error

The prediction error for this system is calculated separately for stable and unstable

region time series trajectories with a set of test data consisting of initial conditions

not included for either DE nor the aggregate trajectory dataset. The equation used

for prediction error is sum of squared error for the state variables, not including

observables of the system. That is

𝐸𝑠𝑠𝑒 =
𝑁∑︁
𝑖=0

(𝑥𝑖 − 𝑥̂𝑖)
2 (5.18)
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Figure 5-8: Phase Plot visualization of initial conditions that yield stable versus
unstable trajectories. The green trajectories symbolize the stable region, and the red
trajectories symbolize the unstable region.
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Figure 5-9: Observable functions learned from training on a stable dataset.
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Figure 5-10: Observable functions learned from training on a unstable dataset.
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Figure 5-11: Observable functions learned from training on the aggregated dataset.

113



Figure 5-12: Pole plot comparing the eigenvalues of the model trained on the aggre-
gated dataset and the eigenvalues of the SSOG model.
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Figure 5-13: A zoomed in perspective of the pole plot comparing the eigenvalues
of the model trained on the aggregated dataset and the eigenvalues of the SSOG
model. The dashed ellipse represents the unit circle, indicating the region for which
eigenvalues belong to stable eigenvectors.
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Figure 5-14: A zoomed in perspective of the pole plot comparing the eigenvalues of
the model trained on the aggregated dataset and the eigenvalues of the SSOG model
with the usage of Direct Encoding. The dashed ellipse represents the unit circle,
indicating the region for which eigenvalues belong to stable eigenvectors.
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Figure 5-15: Prediction error for 100 trajectories beginning at initial conditions of
a test set within the stable subspace. The shaded region represents the variation
between minimum and maximum SSE at the given time step for the listed model.
The solid lines represent the average sum of squared error. Comparison is between
the SSOG with Direct Encoding, and Aggregate Model with and without DE. The
models plotted utilize 40 observables in addition to the two state variables.

where 𝑖 is the 𝑖th state variable for a given time step. The estimated state variable,

𝑥̂, is the prediction from the model, where the ground truth is denoted as 𝑥. This

prediction error is not of the total lifted state, but of the state variables belonging to

the original nonlinear system which are shared between all models.

The prediction error is visualized in the set of figures, Fig. 5-15. The two figures

compare the SSOG with DE and other learned models. Further comparisons using

this test set are outlined in Table 5.4. The best performing result of the labeled order

for each subspace for each set of models is in bold.
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Table 5.4: Average SSE prediction error after 1 and 10 time steps for trajectories in
set of test data.

Method Stable Unstable
40 Observables, 1 Time Step

SSOG 2.84 6.15
SSOG with DE 0.12 0.26

Aggregate 2.90 5.23
Aggregate with DE 0.27 1.44

EDMD 3.79× 103 2.06× 103

80 Observables, 1 Time Step
SSOG 4.16 4.80× 105

SSOG with DE 0.11 0.36
Aggregate 2.20 2.83

Aggregate with DE 0.60 1.12
EDMD 1.28× 107 7.71× 106

40 Observables, 10 Time Steps
SSOG 2.50× 1036 6.8× 10131

SSOG with DE 0.22 6.8× 10131

Aggregate 9.00 ×106 6.8× 10131

Aggregate with DE 3.60 6.8× 10131

EDMD 2.15× 1035 6.8× 10131

80 Observables, 10 Time Steps
SSOG 5.71× 1010 6.8× 10131

SSOG with DE 0.18 6.8× 10131

Aggregate 1.06× 108 6.8× 10131

Aggregate with DE 11.63 6.8× 10131

EDMD 2.10× 1073 6.8× 10131

Subspace Boundary Formation

Finding the boundary between stable and unstable regions is important for analyzing

nonlinear dynamics. Here we compare each modeling method in terms of the accuracy

in finding the boundary. Consider the following quotient:

𝜉 =
||𝑧𝑢||
||𝑧||

(5.19)

where

𝑧𝑢 = 𝑊 𝑇
𝑢 𝑧 (5.20)
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If 𝑧 is in a stable region and the matrix 𝑊𝑢 spanning the unstable region is accurate,

then the quotient 𝜉 must be 0. On the other hand, if 𝑊𝑢 is inaccurate, then some

fraction of the component will enter the stable region with non-zero 𝜉. Fig 5-8 shows

the plots of this quotient indicating how accurately the true boundary is recreated.

Figure 5-16: Instability quotient plots for models of the system. Top: (a) Ground
Truth assuming complete separation, (b) Aggregate Model, (c) Aggregate Model with
Direct Encoding. Bottom: (d) EDMD, (e) SSOG Model, (f) SSOG Model with Direct
Encoding. By comparing all other plots to (a), it is clear that in terms of shape (f)
most accurately resembles the ground truth.

5.3.2 Discussion

The first key result found from Table 5.4 is that using SSOG in combination with

DE yields the highest accuracy. Secondly, the DE method is shown to drastically

lower the prediction error for both Aggregate and SSOG models by several orders of

magnitude. This result matches the expectation that DE removes biases from over-

or undersampling of a region given its formulation that involves calculating inner

products over a domain. Furthermore, the DE method is demonstrated to have a

significant impact even with increases in order of the system. Notably however, none
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of the models are capable of predicting trajectories in the unstable subspace.

When examining Figs. 5-9, 5-10, and 5-11 that regard the observable functions

themselves, it is clear that training with different datasets yields different observable

functions. When examining Figs. 5-12, 5-13, and 5-14, the difference in accuracy for

the SSOG models versus the Aggregate models appears to be due to the fact that

the resulting linear models are inherently different from each other from a modal

perspective. Without the use of Direct Encoding, both models are composed of

far more unstable modes. In the case of the Aggregate models, the use of Direct

Encoding significantly changes the shape of the plot, but the main locations of the

eigenvalues remain the same. However, for SSOG, the use of DE drastically changes

the arrangement of the poles for the linear model, bringing them far closer to the

unit circle. This change provides a mathematical explanation for the accuracy of the

SSOG model with DE for longer trajectories.

Because the prediction models used are finite order approximations of the Koop-

man operator, we expect inaccuracies to arise when using these models to locate

boundaries between regions. For that reason, the instability quotient is introduced.

Assuming complete separation of dynamic modes, the ratio of unstable projection

to state vector (instability quotient) should be 0 for the stable region, and 1 for the

unstable region, as shown in plot (a) of Fig. 5-16. However, due to the approximation

of the system as a linear system, this discrete switch becomes blurred, depending on

the accuracy of the model which is shown in the other plots. The SSOG Model with

DE demonstrates that the instability quotient increases significantly in the unstable

region. This result does not occur for the other models, further indicating that the

observables learned for the SSOG Model are effective for their specific subspaces.

The DE method is also key in this result as it demonstrates a drastic change in the

dynamic model.
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5.4 Conclusion

In this chapter, presented two significant results. The first was incorporation of

DDE to Deep Koopman, i.e. neural network based methods for construction of the

Koopman Operator, for improving prediction accuracy. The second significant result,

which corresponds to the third contribution of the thesis, was the formulation of

the subspace specific observable generation (SSOG) method for learning an efficient

set of observable functions to lift the state space of nonlinear dynamic systems. In

combination with an existing method, Direct Encoding (DE), SSOG was shown to

improve accuracy given certain conditions. Separately, SSOG with DE demonstrates a

capacity to be used as an analysis tool for finding borders between subspaces based on

analytical foundations. The work has a clear direction for improvement; the current

network structure and training does not enable the subspaces to be fully separated

as the observable functions learned are not zero outside of their respective regions.

This would be a notable direction to explore in the future to further improve results.

121



122



Chapter 6

Conclusion and Future Work

In this work, we explored the construction of the Koopman Operator for nonlinear

systems. With prior work in mind, we discussed the next class of systems, systems

with segmented dynamics, that stand to benefit the most from linearizing through

the construction of the Koopman Operator. We demonstrate the success in modeling

these systems with linear models and applying Model Predictive Control (MPC). The

trajectory generated from MPC demonstrates some degree of intelligent trajectory

planning. However, it is shown in Chapter 4 that the use of Least Squares Estima-

tion (LSE) to solve for the Koopman Operator has unintended effects depending on

the distribution of the datasets used to learn these models. By adopting a data-driven

version of Direct Encoding, dubbed Data-Driven Encoding, models learned with this

numerical integration-based method outperform the LSE based models. This differ-

ence in performance is driven by the underlying mechanics in the formulations. Fur-

ther, by utilizing Direct Encoding and Data-Driven Encoding in combination with

Deep Learning of the Koopman Operator, the types of nonlinear system behaviors

that can be predicted with the resulting linear models widens, allowing for applica-

tion to unstable systems, and also lowers the overall order required to represent these

models.

This thesis touches upon each avenue for extending the use of the Koopman Oper-

ator, from pushing the frontier of how the theory can be applied to nonlinear systems

of different classes, but also for more accurately formulating the operator both based
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on observable functions and the linear transition matrix. However, there still exist

several directions to continue. Through the creation of Data-Driven Encoding, a sig-

nificant number of problems that were problematic to form linear models for may

now be tractable. An example of such a system that was puzzling and difficult to

linearize are walking robots, both passive and actuated, as they exist in the realm

of systems defined as hybrid systems. With regards to the formulation of the linear

transition matrix, the use of Data-Driven Encoding has demonstrated increased ac-

curacy, but through the change in formulation has lost the capability of being easily

updated. The use of EDMD allowed for linear updates in a recursive fashion with

simple matrix math; this updating method is not as easily computed for Data-Driven

Encoding as it requires insertion into a graph. Producing such a method that would

allow for real-time updates would be incredibly beneficial. Similarly, the new method

does not have a simple formulation that is mathematically rigorous for applications of

control and currently exists solely for autonomous systems, and the creation of such

a formulation would drastically increase the opportunities for which the method can

be applied.

Another direction that remains puzzling is the formation of unstable modes for

stable systems with specific selections of observable functions. Though prior work has

discussed the issue, it remains a problem that is only ameliorated by algorithms that

stray away from the core theory of the Koopman Operator. Data-Driven Encoding

does not resolve this issue, though preliminary work has found that the instability

forms differently when utilizing that method for formulation of the linear matrix as

opposed to EDMD.

Perhaps most important, though only discussed for a single chapter, is the possible

application of the Koopman Operator to Deep Learning. Though modern problems

tackled by Deep Learning vary widely, many of which constitute modeling functions

that are of similar formulation as the nonlinear dynamic systems for which the for-

mulation of the Koopman Operator has been applied on. As the bare-minimum to

apply the theory is a self-map, a nonlinear one-to-one transition between one state

and another, the number of problems that remain to be solved is vast and innumer-
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able. But, similar to how observables are chosen for construction of the Koopman

Operator, we must choose wisely and choose what is most important for our goals.
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