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Abstract

The goal of this thesis is to explore the problem of contact-rich robotic manipulation
from an optimization perspective. We plan to study the interplay between contact
mechanics, geometry, and machine learning to synthesize manipulation plans with
varying theoretical properties. More specifically, we propose a quasi-dynamic me-
chanics model for contact-trajectory optimization and apply it to solve long-horizon
manipulation problems in conjunction with randomized planning. We also discuss
a machine learning pipeline to solve this problem from video demonstrations, lever-
aging novel tools from differentiable optimization and learning. Finally, we aim to
explore the issue of certification for planar manipulation tasks in the frictionless plane.
We propose a theory of certification that enables us to generate long-horizon manip-
ulation plans that are robust to bounded pose uncertainty. The desired outcome
of these techniques is to validate them over a wide range of standard manipulation
tasks in 2D environments. Our current results demonstrate the ability of model-based
approaches at synthesizing high-quality manipulation plans with varying properties,
such as optimality, convergence, robustness, and computation speed.

Thesis Supervisor: Alberto Rodriguez
Title: Associate Professor
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Chapter 1

Introduction

Robotics has reached a major milestone in its history, now ready to revolutionize

warehouses, manufacturing, recycling, and even home assistance. Achieving success

in these areas requires robots to master the art of re-arranging their surroundings.

We call this problem robotic manipulation. Having the ability to manipulate

objects flexibly and skillfully is essential to the complex process of re-arranging an

environment to complete a task (e.g. picking up an object and using it). Robots today

lack this capability, limiting many of the robots used in factories to pre-programmed

and human-crafted sequences of pick-and-place tasks. Dexterous manipulation is one

of the keys to unlocking the application of autonomous robots in homes, warehouses,

hospitals, and other environments that are not carefully designed to accommodate

repetitive and hand-crafted sequences of actions.

When looking at humans, manipulation skills are ubiquitous in our day to day.

From taking our phones out of our pockets to assembling furniture, we consistently re-

arrange objects to complete tasks. A key component to achieving such a wide range of

dexterity is our subconscious command of contact mechanics when moving an object

by grasping, pushing, pulling, folding, sliding, and many other skills. Enabling this

level of command in a robot implies moving away from pre-designed sequences an

into an autonomous understanding of manipulation from a perspective of geometry,

physics, and logic. In order to explore this goal of providing robots with the versatile

ability to manipulate objects, this thesis will consider three few questions related to
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Figure 1-1: Examples of common dexterous manipulation tasks in our day to day:
pulling a phone from a pocket, packing groceries, assembling furniture, picking a
book from a shelf, opening a dresser, or preparing a package at a warehouse. Images
generated with CLIP [103].

the dexterity of robotic tasks. Here, we will consider a manipulation task any problem

that requires re-locating at least one object from an initial pose in space to another

pose. An example of this is picking a book from a table and storing it on a shelf.

With this perspective, we focus this thesis on the following questions:

How to achieve versatile dexterity? To enable dexterity we require our algo-

rithms to efficiently reason about dynamics, geometry, and, perhaps most challenging,

contact mechanics. Contact-rich interaction is the key enabler in this context. Unfor-

tunately, the addition of contacts creates discrete events that require combinatorial

decision-making (e.g. push an object from the side or pull it from the top). This

makes the problem of finding policies very challenging without any kind of guidance.

Today, there exist two main streams of work that aim to solve this problem: 1) re-

search that prescribes a set of primitives (e.g. grasping, pushing, or pivoting) and

concatenates them to manipulate an object [140, 29, 138, 66], which restricts the set
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of solvable tasks, or 2) research that formulates a large, non-differentiable, and non-

convex optimization problem that can solve the task by implictly reasoning about

contact interaction [100, 91], which is computationally intractable without careful

seeding. Can we find a rich model of task and mechanics that allows for a efficient

discovery of manipulation skills?

Can we scale dexterity from experience? Following on our previous question,

even with the right algorithm, model-based methods can be computationally expen-

sive, are unable to exploit past experience, and require a degree of hand engineering,

as they assume access to known object shape, pose, and desired trajectory. On the

other hand, Many tasks can be easily described through videos and have the potential

to scale robot manipulation planning and inference, but decoding relevant information

from them remains a challenging problem. While recent approaches employing deep

learning from images and videos have seen remarkable success in various prehensile

robotic tasks [122, 137, 15, 136], there has been limited progress in the direction of

dexterous manipulation tasks. An underlying struggle lies in building representations

that can reason over object geometry, rigid-body mechanics, and the combinatorial

decisions of choosing contact modes. Can we leverage scalable data sources, such as

video, and our understanding of mechanics to find manipulation policies at scale?

Can we certify that a policy will succeed? Certification is central problem in

robotics and automation. Challenging robotic tasks benefit from the ability to certify

their safety and performance in the face of uncertainty. While feedback control often

allows a system to adapt to disturbances and uncertainty, these algorithms rarely pro-

vide any explicit guarantees of where an arbitrary system will be stabilized. Over the

past decade, there has been significant progress in certification by leveraging tools

from Lyapunov theory [121, 87]. such frameworks allow the synthesis of feedback

controllers with formal stability guarantees. This has led to impressive results in self-

driving cars, aerial robots, and mobile robots. Perhaps the main limiting factor of

these methods is their scalability, restricting their usage to simple dynamical systems
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(one or two states) [61] with accurate sensing, unsuitable to manipulation tasks with

large state spaces, and hybrid constraints. Moreover, these approaches are dependent

on state-space representations, ubiquitous in control systems, which struggle to cap-

ture the important geometric and topological properties of the manipulation problem,

limiting robustness to the mechanic’s space of the system. Can there be a principled

approach to finding manipulation policies that are certified to succeed under a set of

uncertainty?

1.1 Contributions

In order to offer an answer to these three questions, this thesis has three main con-

tributions:

1. Planning Framework: We propose a novel hierarchical framework to effi-

ciently plan optimal 2D manipulation tasks, combining tools from dynamic

programming, randomized motion planning. and mixed-integer optimization.

2. Learning Framework: We design a framework to solve manipulation tasks

using a small set of examples given animated video descriptions of 2D tasks. To

achieve this, we combine tools from deep learning and differentiable program-

ming.

3. Certification Model: Finally, we derive a model to find manipulation poli-

cies certified to succeed, despite bounded object-pose uncertainty, for planar

manipulation tasks under frictionless contact and point-finger manipulators.

Naturally, we have to restrict our work to a limited scope of problems where

we can explore the nature of each of the three problems. To this end, we operated

under spaces with polygonal objects in 2D environments. We also operate under a

reduced model for our robots, assuming that our robot manipulators are a set of

points that can float in space. These assumptions limit the scope of our algorithms

to 2D problems. Nonetheless, these assumptions still allow us to capture some of the
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main complexities of the manipulation problem, such as object geometry, environment

interaction, and contact mechanics.

Our first contribution delves in the question of how to achieve dexterous behavior.

We explore this problem under the task of moving a single object from an initial pose

to a goal pose in a 2D environment. To this end, we derive a model of the contact

interaction of planar manipulation tasks using quasi-dynamics and polytopic objects

and environments. This allows us to cast contact mechanics under a mixed-integer

convex optimization problem. Our model retains global optimality, global infeasi-

bility and convergence, at the cost of combinatorial complexity. Then, we propose

a framework to solve long-horizon manipulation tasks with alternating sticking con-

tact interactions using dynamic programming, sampling-based planning, and mixed-

integer optimization. We validate the applicability of this quasi-dynamic model and

our proposed framework applied to manipulation tasks in challenging environments

without a prescribed object motion, contact schedule or primitives.

Our second contribution explores the question of how to connect well-known me-

chanics models with deep learning to find policies for manipulation tasks. To this

end, we present a differentiable learning framework that can learn to solve manipula-

tion tasks from an animated video description of the problem in 2D. Our framework

consists of a deep neural network that decodes a set mechanical parameters from

video (such as object shape, object trajectory, contact-facet assignments, and friction

cones) and a differentiable convex optimization model that finds a trajectory for the

robot fingers that executes the task on the video. We restrict this model to 2D manip-

ulation problems using a point robot finger and polygonal objects. We self-supervise

this pipeline using a differentiable simulator that captures intermittent contact. We

validate this approach under a variety of toy problems of picking and placing a set of

objects from an initial pose to a goal pose in a toy 2D setup.

Our third and final contribution explores the question of certification in 2D manip-

ulation tasks. We propose a method for synthesizing of robust manipulation policies

that are certified to succeed in a frinctionless environment despite a bounded pose

uncertainty. To this end, we derive a model of certificates that builds sequences of
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invariant sets of configuration space, or funnels, to constrain the set of possible con-

figurations of an object and funnel it towards a goal. We validate this theory with a

wide variety of planar manipulation tasks, where the robot fingers and the environ-

ment are used to achieve certification, and in a real-world setup for the problem of

sensorless planar grasping.

1.2 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 covers the litera-

ture and key concepts referenced through this work. Chapter 3 describes our quasi-

dynamic model and hierarchical framework to solve manipulation tasks in long hori-

zons. Chapter 4 describes our differentiable learning framework to solve manipulation

tasks given a video description. Chapters 5 and 6 describe our certification model for

manipulation tasks, starting with the sub-problem of grasping and, then, extending

toward general planar manipulation tasks. Finally, 7 concludes on the contribution of

each of the previous chapters and proposes future steps and extensions to this work.
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Chapter 2

Background

In this chapter we review some of the previous research most relevant to this work

and introduce the concepts that we reference through the section.

2.1 Literature review

We split our review in four sections, each of relevance to its respective chapter on this

thesis.

2.1.1 Planning Manipulation

Trajectory Optimization Trajectory Optimization is a popular tool to generate

robot motions that need to respect some constraints [63, 75, 113]. The main benefit

it provides comes from its versatility, as it generalizes between systems and problems.

A significant body of work has been dedicated apply this tool to contact-rich motion

generation [50, 82, 91, 100, 116, 124, 127]. Since contact is fundamentally discontinu-

ous and dependent on geometry, modelling it requires the introduction of non-smooth

constraints or discrete decision variables to determine its schedule. Hence, solution

to this problem is subject to a dichotomy, either rely on fast nonlinear optimization

tools [91, 100, 116], which rigorously model the problem at the cost of dependence

on initialization and lack of convergence guarantees, or pose the problem as a large
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combinatorial optimization, which has useful theoretical properties subject to an ex-

ponential growth in complexity [50, 124, 127]. Despite the aforementioned challenges,

many have successfully applied trajectory optimization through contact to locomotion

problems [38]. Manipulation, however, introduces a higher dimension of complexity,

as geometry and hybrid dynamics play a larger role in the generation of object mo-

tions.

Quasi-Dynamic Models The idea of applying approximate physics to solve contact-

rich planning problems has been pursued for many decades [93], promising a trade-

off between performance and fidelity. On one extreme, some attempt to accurately

model the dynamics of the entire system [100], while other completely drop the non-

smooth/nonlinear aspects of the model [123] for performance. In the middle, and

most relevant to us, some works approximate specific constraints of the problem

while retaining other relevant aspects of contact interaction [28, 66, 124]. In the case

of [28], a quasi-dynamic relaxation allows them to formulate the prehensile pushing

problem with gravity in terms of motion cones. On the other hand, [124] shows how

a simplified model guided by geometry can be used to generate long-horizon trajec-

tories involving objects and tools. A relevant example is that of [127], where the

hybrid aspects of the quadruped locomotion problem are accurately modeled, while

the nonlinear relations of angular dynamics are relaxed. Our work borrows from this

philosophy, where relaxations are applied to some elements of the problem, such that

we can still capture the general behavior of the system and provide better performance

and theoretical guarantees.

Motion Planning Motion planning is a well studied problem within robotics.

There are two main approaches relevant to this work. First, Sampling-based mo-

tion planning algorithms, such as RRT [80], which have been a successful approach to

solving problems with plenty of local minima. On the other hand, optimization-based

techniques, such as CHOMP or GPMP [104, 48], have also seen success at getting

high-quality solutions in high-dimensional setups, although local in nature. In con-
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trast to these two approaches, Dynamic Programming (DP) [21] can solve optimal

control problems to optimality with the caveat of high-computational complexity,

which restricts this approach to short horizon problems.

Manipulation Planning The most common approach to manipulation is planning

motions with primitives, such as grasping [101], pushing or pivoting. Many models

can accurately optimize motions with these primitives [93]. Different primitives can

be concatenated to manipulate a simple object [66]. A key limitation, however, is

that primitives are specific to an object and an environment, which makes them hard

to generalize to different tasks. Another line of research has focused on optimizing

the contact interaction as part of the task [100, 91, 50], without assuming a primitive.

However, optimizing contact interaction requires scheduling contact modes along the

motion, which leads to combinatorial complexity, or modeling contacts implicitly

through complementarity conditions, which are not differentiable. This makes it very

challenging to optimize a manipulation plan without making assumptions on the

contact interaction or providing significant seeding [3].

Manipulation on Long-Horizons Recent work has tried to alleviate these issues

through sampling-based motion planning [32], which removes assumptions on the

contact schedule and object motion. However, this approach is unable to guarantee

the quality of its solution. Morever, as with RRT, this approach will struggle to

reason globally on long-horizons, leading to slow computation. Other recent work

has shown that the robot Contact-Trajectory can be globally optimized efficiently

[4, 31], with the caveat that the object trajectory must be prescribed. Our work

draws inspiration from these two philosophies and will aim to find object motions

using a sampling-based approach, guided by a high-level search, and optimize the

robot contact-trajectory using mixed-integer optimization.

33



2.1.2 Learning Manipulation

Learning manipulation from video Prior work in visual manipulation has in-

volved learning predictive models from videos of a robot interacting with its en-

vironment. These models are used to find actions with simulation roll-outs, in a

model-predictive fashion [54, 8, 122, 77, 135, 119, 40]. These approaches have been

successful at solving prehensile manipulation problems where the dynamics are hard

to model. When the dynamics have a known model, while these approaches remove

the need to analyze visual data, mechanics or geometry, they struggle in generalizing

to different tasks and geometries and can be data inefficient. Our work aims to ad-

dress this limitation, under the planar non-prehensile manipulation task, by learning

mechanical parameters from video and optimizing robot finger actions with a known

rigid-body mechanics model, instead of learning a fully predictive model.

Bridging learning and model based approaches Recent research has tried to

bridge the gap between deep learning and model-based techniques by introducing

differentiable computational techniques as part of the learning pipeline. The first

relevant line of work involves the introduction of differentiable optimization solvers

[14, 13, 6], which introduce a parametric convex optimization program as a differ-

entiable layer in a neural network. We leverage one of these solvers [6] to solve a

quadratic program that takes as input mechanical parameters from a task (deren-

dered from video) and outputs robot finger trajectories within our network. The

second relevant line of work comes from the implementation of differentiable contact-

mechanics simulators [41, 102], which execute a parametric physical simulation and

allow to back-propagate from a measured output. We modify an existing differen-

tiable simulator [41], using finite-differences, to handle intermittent contact dynamics

and evaluate the error when executing the learned robot finger trajectories as part of

a loss function.
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2.1.3 Caging and Grasping

Sensorless Grasping. Stemming from the foundational works on sensorless ma-

nipulation by [51], and by [58] on sequences of squeezing grasps, this line of work

aims to find grasping strategies that reliably bring an object to a known configura-

tion, despite initial uncertainty in the object pose. In [58], Goldberg proposes an

algorithm to find squeezing grasps that can reorient any convex polygon. This can

be seen as a particular case of conformant path planning, as in [85, 51, 18], which

synthesizes motions that drive a robot from an initially uncertain pose towards a

goal, possibly under uncertain dynamics. This section maintains the spirit of these

works and studies the case of general point-based manipulators, and general planar

polygonal objects.

From caging to grasping. One way to constrain the object configuration to an

invariant set is to cage it, a concept introduced to robotics by [106]. While not all

cages lead to a grasp, as shown in [111], these always provide a certificate that the

object is bounded to some compact set. More importantly, a subset of these cages

are guaranteed to have a motion of the fingers that drives the cage into a grasp of the

object. In this context, a grasp is a configuration in which a set of fingers immobilize

an object. We are interested in synthesizing this type of cages that lead to a grasp in

a unique configuration.

Computational models for caging. Many algorithms for cage synthesis have

been studied since its introduction in [106]. The most relevant to this work is the

optimization model in [1], which poses the caging condition in terms of convex-

combinatorial constraints. We exploit the properties of this model to include re-

quirements of convergence of the grasp process and observability of the final grasp.

This optimization approach to caging, however, has a few limitations: it has only been

applied to 2D cages, it has exponential bounds on complexity, and assumes that our

robot has point fingers. Caging has also been studied in the context of randomized

planning, such as in [131, 129], making no assumptions on shapes, and graph-search
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defined on contact-space, in [10, 25], with polynomial bounds in complexity.

2.1.4 Certifying Manipulation

Certification and Robustness The ability to find policies that can certify the

success of a particular task has not been achieved until recent years. One of the

first relevant works to explore this problem came from Burridge et. al, [26], which

described how controllers could be sequenced to achieve the success of a task via

”funneling”. Since then, many algorithms have emerged to solve this problem, lever-

aging tools such as Lyapunov functions [121, 87], Contraction theory [83, 115], and

barrier functions [12, 120]. We remark the contribution of [88] to synthesize nonlinear

controllers with Lyapunov certificates that can be sequenced to execute long-horizon

tasks in continuous systems (vehicles and drones). Perhaps the biggest limitation

of these tools is their limitation to continuous dynamics. Despite initial work on

applying some of these tools into manipulation problems, it has been restricted to

approximate certification[74, 62, 112] or specific tasks [11, 47, 46]. One way to con-

strain the object configuration to lie within a set is to ”cage” it, a concept introduced

to robotics by [106]. While not all cages lead to a goal object pose when the robot

fingers move, as shown in [111], these always provide a certificate that the object is

bounded to some compact set. We borrow heavily from this idea to transcribe it as

a set of constraints [1, 2].

Conformant Path Planning Our work partly stems from the works on sensorless

manipulation by [51], and by [58] on sequences of squeezing grasps. We aim to find

manipulation strategies that reliably move an object towards a goal configuration,

despite initial uncertainty in the object pose or along its trajectory. These problems

are categorized under the context of conformant path planning, as in [85, 51, 18],

which describe motions that drive a robot from an initially uncertain pose towards

a goal, possibly under uncertain dynamics. This chapter follows the vision of these

works and studies the case of moving a planar polygonal object along a trajectory

with a point-based manipulator and a line-segment external environment. Our work
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proposes a computational model to optimize grasping trajectories that would be cer-

tified to succeed despite initial (bounded) uncertainty on the object pose. We achieve

this by concatenating a sequence of cages that gradually close the object pushing it

to a goal configuration.

2.2 Mixed-Integer Programming

A Mixed-Integer Convex Program (MIP) [56] is an optimization problem of the form:

minx,z𝑓(x, z)

subject to:

⎡
⎣x
z

⎤
⎦ ∈ ℋ, x ∈ Rdim(x), z ∈ {0, 1}dim(z),

where 𝑓(x, z) is a convex cost function, ℋ is a convex set of constraints, x is

a vector of continuous variables and z a vector of binary variables. Mixed-Integer

Programs have many useful properties and applications, as well as off-the-shelf solvers.

In particular, we make use of two useful properties of these models:

• Search guarantees. If the problem has a solution, the algorithm will find it.

If it does not, it will report so. If a convex cost function is provided, we can

always find a global optimal, provided one exists.

• Integer constraints: binary variables allow to encode logical implications as

linear constraints. A common technique is known as the big-M formulation.

For example, given a binary variable y, we can incorporate logical constraints

of the form

y = 1 ⇒ 𝐴𝑥 ≤ 𝑏,

as the inequality

𝐴𝑥 ≤ 𝑏+𝑀(1− y)

37



where 𝑀 is a large positive number. The satisfaction of this inequality implies

that if y = 1 then 𝐴𝑥 ≤ 𝑏 is enforced, otherwise when y = 0 the inequality is

largely relaxed, or effectively nullified if 𝑀 is large.

These properties come at the cost of exponential bounds on computation time that

grow with the number of binary decision variables variables. Most algorithms to solve

this problem rely on “branch-and-bound" and “cutting-plane" methods, which perform

and iterative search over a tree of the binary decision variables and rely on information

from the optimization problem to quicken the search. These techniques operate over

this discrete search space, discarding large sets of branches by solving a hierarchy of

relaxations of the original problem [22]. Because of this, these optimization problems

often scale much better, reducing the exponential complexity burden [134].

However, numerical conditioning can hinder the performance of this process, and

the conditions under which the search algorithms are efficient are not well charac-

terized. In practice, we solve mixed-integer programs using off-the-shelf optimization

software, which have provided satisfactory performance.
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Chapter 3

Optimal Planning of Manipulation

Tasks

3.1 A Global Quasi-Dynamic Model of Contact-Trajectory

Optimization

Since the early years of robotics, resolving contact interaction has hindered the de-

ployment of robots for general manipulation tasks. Contact has been, and still is,

difficult to observe, predict and control. The last decade has seen significant advance

in planning-through-contact tools for general motion generation. Their wide-spread

use in robotics, however, has been limited by coarse approximations of the mechanics

of contact, or by numerical difficulties that arise from the choice of problem formu-

lation – e.g., hybrid dynamics, non-unique solutions, non-convex constraints. These

consequences are difficult to avoid in a problem often specified as the optimization

of the interaction between a robot and an object, both free variables, to achieve a

loosely specified behavior.

In this work we focus on a different perspective: We assume as input a desired

trajectory of the object in its environment, and ask how, where, and when should the

robot make contact to achieve it. We refer to this problem as Contact-Trajectory

Optimization, in contrast to the more general trajectory optimization problem,
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Figure 3-1: By reasoning about an approximate world, with quasi-dynamics and
polytopic shapes, we reliably optimize alternated-sticking contact interactions to achieve
complex manipulation tasks. Our model receives an object motion and outputs a
contact-trajectory (positions and forces).

where the object trajectory is also a free variable [100]. This sub-problem retains

some of the key challenging aspects of planning through contact, namely hybridness

and non-convexity. We will see, however, that this provides multiple benefits. It leads

to a better defined problem, with more numerically stable solutions, and ultimately a

global model for planning-through-contact with certificates: global optimality, global

infeasibility and convergence.

In order to achieve this goal, we rely on a quasi-dynamic approximation of the

motion equations and polygonal (convex or non-convex) descriptions of objects and

environments. The term quasi-dynamics refers to an approximation of the equations

that describe the time-evolution of the system that ignores high-order inertial terms,

assumes uniform pressure contact distributions, and exploits a mixed integer-convex

approximation of nonlinear relations. In contrast to previous work that use exact

contact-dynamics ([100]), we provide a global model. In contrast to previous works

that rely on approximate contact-dynamics ([123, 124]), we implement approxima-
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tions that obey non-penetration and contact complementarity, fundamental proper-

ties in manipulation. The key tools to achieve this come from mixed-integer convex

optimization, including piecewise McCormick envelopes and disjunctive constraints.

Hencer, in this section, we present two main contributions:

• Modeling of the contact-trajectory optimization problem with quasi-dynamics

and polytopic objects and environments as a mixed-integer convex optimization

problem. Our model retains global optimality, global infeasibility and conver-

gence.

• Validation of the model on multi-contact manipulation behaviors on planar

environments, sagittal and transversal, both in simulation and on real robot

environment.

Fig. 3-1 illustrates our vision for this model: by optimizing contact-trajectories

in simple environments we can generate motion plans to complete tasks that involve

complex contact interactions. We show how our model optimizes contact-trajectories

for planar tasks consistently in less than 1 s.

The remainder of this section is organized as follows: Sec. 3.1.1 provides an

overview of the model, its assumptions and properties. Sec. 3.1.2 describes the pro-

posed model in detail, while Sec. 3.1.3 discusses its implementation as a Mixed-Integer

Convex Program. Finally, Sec. 3.1.4 demonstrates the model with simulation and real

experiments.

3.1.1 Approach Overview

In this subsection we provide an overview of our model, describe its properties and

discuss its assumptions. Given the trajectory of a polytopic object, this model will

find a sequence of contacts interactions that achieve this motion and minimize a

convex objective.
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Inputs and Notation

Our model receives as inputs the trajectory of the object and the geometry of the

object and environment. We introduce the following notation and variables:

1. Object: A polytopic rigid-body 𝒪 with 𝑁𝑣 vertices and 𝑁𝑓 facets. Each facet

F𝑓 has 𝑁 𝑓
𝑣 vertices, with nominal positions v𝑓

𝑣 , with a corresponding friction

cone FC𝑓 , represented with 𝑅𝑑 rays. In the 2D case we have 𝑁𝑓 = 𝑁𝑣 and

𝑁 𝑓
𝑣 = 2.

2. Trajectory: A set of object poses over 𝑇 discrete time-steps. We describe each

pose, at a time-step 𝑡, as q(𝑡) ∈ 𝒞, where 𝒞 is the configuration space of the

object. In the 2D, 𝒞 corresponds to the 𝑥, 𝑦, 𝜃 coordinates of 𝑆𝐸(2).

3. Manipulator: A set of 𝑁𝑐 contacts points. We describe the 𝑐𝑡ℎ contact-point,

at time-step 𝑡, as p𝑐(𝑡) ∈ 𝒲 , where 𝒲 is the workspace. In the 2D case, the

workspace simply corresponds to each position (𝑥, 𝑦) that can be reached by

the robot.

4. Environment: A polytopic environment with 𝑁𝑒 facets, described as planes

with friction cones FC𝑒. Additionally, the free-space between the object and

environment is segmented in𝑁𝑅 convex polytopic regions ℛ𝑟 = {x ∈ 𝒲 | 𝐴𝑟x <

𝑏𝑟}.

A diagram describing these elements, at a fixed time-step, can be seen in Fig. 3-2.

Desired Properties

The proposed model describes the time-evolution of the multi-contact system while

maintaining the following desirable properties:

1. Versatility the model must capture rigid-body (quasi) dynamics and hybrid

(sticking) contact interactions while remaining agnostic to the task, object, and

environment.
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Figure 3-2: For a trajectory of 𝑇 time-steps, our model solves for the finger positions p
(dots) and contact forces 𝜆 (green), as well as reaction forces with the environment 𝜆𝑒

(blue) represented by separate surrogate variables.

2. Global Optimality If there is a feasible set of contact trajectories that achieve

this motion, the model will always find it. Moreover, if there is a convex cost

function, the model can always be used to find the solution that globally mini-

mizes it.

3. Infeasibility Detection If the model is infeasible, then it implies that the

object motion cannot be achieved.

Throughout the upcoming sections we will discuss how the constraints of the

model preserve these properties.

Modeling Assumptions In order to achieve the desired properties of the model,

we make the following assumptions:

1. Objects are rigid, with uniform contact surfaces (such that line contacts can be

approximated by contact with two vertices), and approximated as combinations

of “simple” polytopes.

2. Object motions occur at low speeds, such that high order intertial effects are

negligible.
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3. Robot fingers have small masses, such that there is no impacts between the

robot and the object.

4. Interactions between the object and robot are a sequence of alternating sticking

contacts, such that friction cones can be approximated as 𝑅𝑑 rays.

The upcoming sections will describe how these modeling decisions translate into

a mixed-integer convex model.

3.1.2 Global Quasi-Dynamic Model

In this subsection we present our global quasi-dynamic model. Each paragraph de-

scribes a set of constraints, for which we discuss their derivation and numerical im-

plementation.

Force-Motion Equations

By solving the Lagrange equations for a an object, assumed to be rigid, we obtain

the standard force-motion equation that describes the dynamics of the system:

𝑀(q)q̈+ 𝐶(q, q̇)q̇ = 𝜏𝑔(q) +𝐻𝑇 (q)Λ,

where the given object configuration is denoted by q =

⎡
⎣q𝑡

q𝜃

⎤
⎦, where q𝑡 corre-

sponds to the position of the object and q𝜃 to its orientation, 𝐻(q) maps the effect

of the contact forces Λ =

⎡
⎣𝜆

𝜆𝑒

⎤
⎦ as body wrenches, 𝜏𝑔 describes the gravitational

wrench, 𝑀(q) is a mass matrix, and 𝐶(q, q̇) maps velocities q̇ into Coriolis forces.

When velocities are low and inertial effects are small, the equation of motion reduces

to:

𝑀(q)q̈ = 𝜏𝑔(q) +𝐻𝑇 (q)Λ.

From this form, we can decouple the equations of motion into translational and ro-

tational components:
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Translational Motion The top rows are directly Newton’s second law applied to

the center of mass of the object:

𝑚q̈𝑡(𝑡) = 𝑚g +
∑︁

𝑐

𝜆𝑐(𝑡) +
∑︁

𝑛

𝜆𝑒
𝑛(𝑡) (CT1)

Where 𝑚 is the object mass, 𝜆𝑐 is the force applied by the 𝑐𝑡ℎ finger p𝑐, and 𝜆𝑒
𝑛 is

the environmental force applied over the 𝑛𝑡ℎ vertex of object. Eq. (CT1) is a linear

sum of unknown terms, which is a convex constraint.

Rotational Motion The bottom rows, recasting the Jacobian 𝐻𝑇 (q) as a sum of

cross-product operations, become:

𝐼q̈𝜃(𝑡) =
∑︁

𝑐

(p𝑐(𝑡)− q𝑡(𝑡))× 𝜆𝑐(𝑡) +
∑︁

𝑛

𝑅𝑟(𝑞𝜃(𝑡))v𝑛 × 𝜆𝑒
𝑛(𝑡)

where 𝐼 is the object’s moment of inertia w.r.t its center of mass, p𝑐 is the position

of the 𝑐𝑡ℎ finger, and 𝑅𝑟 is a rotation matrix from 0 to q𝜃. Unfortunately, the cross-

product operation is a bilinear term, making each torque a non-convex constraint.

For now, we replace each cross-product with a surrogate term and substitute the

rotational dynamics with:

𝐼𝑞𝜃(𝑡) =
∑︁

𝑖

𝜏𝑖(𝑡) +
∑︁

𝑛

𝑅𝑟(q𝜃(𝑡))v𝑛 × 𝜆𝑒
𝑛(𝑡) (CT2)

where 𝜏𝑖 ≈ (p𝑖 − q𝑡)× 𝜆𝑖 is mixed-integer convex approximation, the method by

which this approximation is computed is described in detail in Sect. 3.1.2. Note that,

fortunately, the terms corresponding to external forces are linear constraints on the

external force, since 𝑅𝑟(q𝜃(𝑡)) is known a priori.

Equations (CT1) and (CT2) are often referred to as the “centroidal dynamics” of

a system, ubiquitous in the legged locomotion community, see [38, 99].

45



Figure 3-3: (left) Contact Assignment: the object is decomposed in 𝑁𝑓 facets and 𝑁𝑣

vertices, and contacts forces are constrained to lie within the respective friction cone.
(right) Friction cone approximation as 𝑅𝑑 = 4 rays.

Contact Scheduling

In order to ensure consistency between equations (CT1)-(CT2) and the position of

the fingers, forces 𝜆𝑐 must be active only if p𝑐 is in contact with one of the facets

of the object. Moreover, this contact force must be constrained to lie within its

corresponding friction cone. This leads to a hybrid condition, as the constrains change

depending on the position of the fingers and the shape of the object. To achieve this,

we leverage the object representation as a polytope with 𝑁𝑓 facets F𝑓 and the fingers

described as points, as shown in Fig. 3-3 (left).

To include this constraint, at each time-step 𝑡, we introduce a binary matrix as

part of the decision variables T(𝑡) ∈ {0, 1}𝑁𝑓×𝑁𝑐 that maps the position of each

contact 𝑐 to some facet 𝑓 of the object via the constraint:

T𝑓,𝑐(𝑡) = 1 ⇒

⎧
⎪⎨
⎪⎩
p𝑐(𝑡) ∈ F𝑓 (𝑡)

𝜆𝑐(𝑡) ∈ FC𝑓 (𝑡)

. (CT3)

This constraint enforces that forces are only active when the fingers are in contacts

with a facet. Since each facet F𝑓 has 𝑁 𝑓
𝑣 vertices with position v𝑓

𝑛, we model the facet
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assignment constraint as:

p𝑐(𝑡) ∈ F𝑓 (𝑡) ⇔ p𝑐(𝑡) =
∑︁

𝑗

𝜌𝑗(𝑡)v
𝑓
𝑗 ,

∑︁

𝑗

𝜌𝑗(𝑡) = 1,

which constrains the finger position to be a convex combination of the facet vertices,

where 𝜌 are assignment weights. Then, we constrain the force to lie on its friction

cone FC𝑓 , described with 𝑅𝑑 rays 𝛾𝑓,1, . . . ,𝛾𝑓,𝑅𝑑
, with 𝑅𝑑 = 2 for 2D and 𝑅𝑑 ≥ 3 for

3D, depicted in Fig. 3-3 (right), as:

𝜆𝑐(𝑡) ∈ FC𝑓 (𝑡) ⇔ 𝜆𝑐(𝑡) =
∑︁

𝑘

𝛼𝑘(𝑡)𝛾𝑓,𝑘, 𝛼𝑘(𝑡) > 0,

which constrains each contact force to be a conic combination of the friction cone

rays, where 𝛼 are also assignment weights. Finally, since forces cannot be active if

the fingers are not in a facet, we add the following constraint:

∑︁

𝑓

T𝑓,𝑐(𝑡) = 0 ⇒ 𝜆𝑐(𝑡) = 0 (CT4)

We transcribe all ⇒ operator using big-M formulation. The constraints defined by

Eqs. (CT3) and (CT4) are equivalent to a complementarity constraint over the con-

tact force [100], since the contact force will only be non-zero once the finger touches

the object.

Alternated-Sticking For robustness of the optimized trajectories, we further re-

quire that finger contacts are not sliding between time-steps, as our model assumes

that contact-trajectories are a sequence of sticking contacts, we model this constraint

as:

T𝑓,𝑐 = 1 ⇒ p𝑐(𝑡+ 1) =
∑︁

𝑗

𝜌𝑗(𝑡)v
𝑓
𝑗 , (CT5)

which enforces that if the finger is in contact at time 𝑡 then it must remain sticking

at time-step 𝑡+1 before switching to a different contact location. If we were to allow

sliding-contact, we would need to represent the border of the friction cone which
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is a non-convex constraint [60]. This is possible, but would extend the size of the

optimization problem.

Figure 3-4: Non-Penetration Constraint: The free-space between the object and the
environment is decomposed in 𝑁𝑅 convex regions ℛ, including the facets of the object.

Environment Contacts Since we provide the object motion as an input and we

assume an uniform pressure distribution on the object facets, the contact schedule

between the object and the environment is also known. Hence, the model only needs

to constrain reaction forces at each object vertex v𝑛, to lie within their respective

friction cone FC𝑒
𝑛(𝑡), with 𝑅𝑑 rays 𝛾𝑒

𝑛,1(𝑡), . . . ,𝛾
𝑒
𝑛,𝑅𝑑

(𝑡). This constraint is imposed,

for the 𝑛𝑡ℎ vertex at time-step 𝑡, as:

𝜆𝑒
𝑛(𝑡) ∈ FC𝑒

𝑛(𝑡) (CT6)

As before, the friction cone constraint is included as 𝜆𝑒
𝑛(𝑡) =

∑︀
𝑘 𝛼

𝑒
𝑘(𝑡)𝛾

𝑒
𝑛(𝑡), 𝛼

𝑒
𝑘(𝑡) ≥

0, where 𝛼𝑒 are assignment weights for each ray. Since these vertex contacts can

also slide, some of the assignment weights must fixed to zero to have the force in

the border of the friction cone. This can be done when setting-up the optimization

problem, since the contact modes between each vertex and the environment are known

from the given trajectory.
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Non-Penetration

Naturally, fingers cannot penetrate the object nor the environment. A strategy to

enforce this is to segment the free-space into 𝑁𝑅 convex, possibly overlapping, regions

ℛ𝑟 that cover the free space of the workspace [105, 78, 127], as shown in Fig. 3-4.

Each finger is then constrained to lie within one of this regions. This constraint is

added through a binary decision matrix R(𝑡) ∈ {0, 1}𝑁𝑅×𝑁𝑐 , such that:

R𝑟,𝑐(𝑡) = 1 ⇒ p𝑐(𝑡) ∈ ℛ𝑟(𝑡) (CT7)

with
∑︀

𝑟 R𝑟,𝑐(𝑡) = 1, ∀𝑐. Here, region assignment is done as:

p𝑐(𝑡) ∈ ℛ𝑟(𝑡) ⇔ 𝐴𝑟(𝑡)p𝑐(𝑡) < 𝑏𝑟(𝑡)

which are all linear constraints on the finger positions. Finding these regions is a

separate optimization problem, examples include [44].

Modeling Approximations via McCormick Envelopes

The constraints defined by Eq. CT2 include a cross-product operation, which is a

non-convex function due to the presence of bilinear equalities. For the purpose of this

section, we refer to a bilinear equality constraint as a relation of the type:

𝑤 = 𝑢 · 𝑣

where 𝑢, 𝑣 and 𝑤 are decision variables. Concretely, each cross-product 𝜏 adds 4|𝜏 |−6

bilinear equalities to the model. To illustrate their non-convexity, we plot the surface

𝑤 = 𝑢𝑣 in Fig. 3-5a.

While there are several methods to approximate or relax non-convex constraints

of this type, we are interested in an approximation that 1) can be embedded in a

global model and 2) preserves the hybrid structure of contact. A technique that

achieves this purpose is that of Piecewise McCormick Envelopes. Initially proposed
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(a) 𝑤 = 𝑢𝑣 (b) 𝑀 = 1

(c) 𝑀 = 2 (d) 𝑀 = 4

Figure 3-5: (a) Bilinear equality curve for 𝑤 = 𝑢𝑣, (b)-(d) Piecewise McCormick
Envelopes with different levels of accuracy.

by McCormick in [95], this approximation covers the bilinear surface 𝑤 = 𝑢𝑣 with

𝑀 convex envelopes, each being the convex-hull of the surface between a segment on

the uniform set −𝑢𝑀/2, . . . , 𝑢𝑀/2 and 𝑣 ≥ 0, 𝑣 ≤ 0. Examples of these envelopes are

shown in Fig. 3-5b, blue for 𝑣 ≥ 0 and red for 𝑣 ≤ 0. Then, each approximation of

𝑤 is constrained to lie within the envelopes with a binary decision matrix W(𝑡) ∈
{0, 1}2×𝑀 as:

W1,𝑘(𝑡) = 1 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑤 ≥ 𝑢𝑘−1𝑣

𝑤 ≥ 𝑢𝑘𝑣 + 𝑢− 𝑢𝑘−1

𝑤 ≤ 𝑢𝑘−1𝑣 + 𝑢− 𝑢𝑘

𝑤 ≤ 𝑢𝑘𝑣

𝑢𝑘−1 ≤ 𝑤 ≤ 𝑢𝑘

𝑣 ≥ 0

(CT8)
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W2,𝑘(𝑡) = 1 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑤 ≤ 𝑢𝑘−1𝑣

𝑤 ≤ 𝑢𝑘𝑣 − 𝑢− 𝑢𝑘−1

𝑤 ≥ 𝑢𝑘−1𝑣 − 𝑢− 𝑢𝑘

𝑤 ≥ 𝑢𝑘𝑣

𝑢𝑘−1 ≥ 𝑤 ≥ 𝑢𝑘

𝑣 ≤ 0

, (CT9)

which constraint 𝑤 to lie within one of the envelopes, depending on the sign of 𝑣.

This approximation is not exact; however, it provides several useful properties:

1. The segmentation provides upper and lower bound on the quality of the ap-

proximation.

2. A larger 𝑀 makes the approximation arbitrarily tight, at the cost of a larger

binary matrix.

3. The approximation preserves the hybrid and nonlinear structure of the bilinear

surface, as:
𝑢 · 𝑣 ≥ 0 ⇒ 𝑤 ≥ 0

𝑢 · 𝑣 ≤ 0 ⇒ 𝑤 ≥ 0

𝑢 · 𝑣 = 0 ⇒ 𝑤 = 0

4. If the relaxed envelope constraint is infeasible then the original bilinear con-

straint is also infeasible, as the envelopes cover the original curve in their solu-

tion space.

Examples of approximations of different sizes are shown in Fig. 3-5a-3-5d.

3.1.3 Contact-Trajectory Optimization

From the constraints presented above, we formulate a Mixed-Integer Optimization

problem. We summarize all the decision variables required for our model in Table
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Name Description Size C/B
p Point Locations 𝐷 ×𝑁𝑐 × 𝑇 C
𝜆 Contact Forces 𝐷 ×𝑁𝑐 × 𝑇 C
𝜆𝑒 External Forces 𝐷 ×𝑁𝑣 × 𝑇 C
𝜏 Torque Approximation (4|𝜏 | − 6)×𝑁𝑐 × 𝑇 C
𝜌 Facet weights

∑︀
𝑓 𝑁

𝑓
𝑣 ×𝑁𝑐 × 𝑇 C

𝛼 Friction Cone Weights 𝑅𝑑 ×𝑁𝑐 × 𝑇 C
𝛼𝑒 External Cone Weights 𝑅𝑑 ×𝑁𝑣 × 𝑇 C
T Contact Assignment 𝑁𝑓 ×𝑁𝑐 × 𝑇 B
R Non-Penetration 𝑁𝑅 ×𝑁𝑐 × 𝑇 B
W McCormick Envelope 2𝑀 × (4|𝜏 | − 6)×𝑁𝑐 × 𝑇 B

Table 3.1: Summary of Decision Variables (C: Continuous, B: Binary).

3.1. For notation convenience we define three sets of decision variables: contact-

trajectories 𝒳 = {p,𝜆,𝜆𝑒, 𝜏}, assignment weights 𝒴 = {𝜌, 𝛼, 𝛼𝑒}, and binary matri-

ces 𝒯 = {T,R,W}.

Optimization problem Adding the constraints and all the decision variables, we

transcribe the optimization problem into MIQP1:

MIQP1 : minimize
𝒳 ,𝒴,𝒯

𝐽 =
[︁
𝒳 𝒴 𝒯

]︁
𝑄

⎡
⎢⎢⎢⎣

𝒳
𝒴
𝒯

⎤
⎥⎥⎥⎦+ 𝑞𝑇

⎡
⎢⎢⎢⎣

𝒳
𝒴
𝒯

⎤
⎥⎥⎥⎦

subject to:

1. For time-step 𝑡 = 1 to 𝑡 = 𝑇 :

(a) Quasi-Dynamics (CT1)-(CT2).

(b) For fingers 𝑐 = 1 to 𝑐 = 𝑁𝑐

• Contact-Trajectory Assignment (CT3)-(CT5).

• Non-Penetration (CT7).

(c) Environmental Contact (CT6).

• Pre-fix weights 𝛼𝑒 when sliding.

(d) For bilinear terms 𝑏 = 1 to 𝑏 = 𝑁𝑐(4𝐷 − 6):
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• Piecewise McCormick Envelope (CT8)-(CT9).

Where 𝑄 is a positive-semi-definite (PSD) square matrix and 𝑞 is a column vector

of appropriate size, these matrices can be chosen according to the problem.

Properties of the Model The formulation of the problem can be categorized

as a Mixed-Integer Quadratic Program (MIQP); this type of problem has several

useful properties [56]. Mainly, if given sufficient time (with worst-case exponential

complexity), a solver can always find the global solution to the optimization problem.

This also implies that it does not require any form of initialization or warm-start.

Finally, If MIQP1 results infeasible we can guarantee that the original problem,

with exact bilinear equality constraints, is also infeasible [95].

The complexity of the program grows exponentially with the number of binary

variables in the model, defined by the number of fingers, tightness of the McCormick

envelopes, shape of the object and environment.

3.1.4 Validation and Applications

(a) Pushing a block (b) Pivoting a block (c) Grasping a block
(d) Pulling a
non-convex object

(e) Pivoting a
non-convex “tool”

(f) Pivoting a
triangle

(g) Sliding with
curvature

(h) Rotating 90∘ in
place

Figure 3-6: Primitive behaviors optimized with our model, without any initialization or
seeding. Red points are the finger locations, green arrows the applied forces, and blue
arrows represent the environmental contacts.

To demonstrate some of the capabilities of our model, we implement MIQP1 and

asses its application for set of traditional manipulation problems. First, we aim to
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validate the model’s ability to optimize simple manipulation behaviors and detect

infeasible ones. We then show different applications of our model for manipulation

problems that involve interaction with the robot and the environment. Finally, we

execute a set of open-loop experiments to illustrate how this model transfers to a

real-world set-up.

We generate all the trajectories in MATLAB R2019b, running on an Intel Core

i9 laptop with Mac OS X High Sierra. We use Gurobi 8.1.0 [59], an off-the-shelf

optimization software, as our MIP solver. All of our tests are done in two-dimensional

set-ups, such that |𝜏 | = |p| = 𝑁 𝑓
𝑣 = 𝑅𝑑 = 2. We fix the accuracy of each piecewise

McCormick envelops to 𝑀 = 4. We manually generate each object trajectory and

segment the free-space of each task into convex regions ℛ. For all problems, we add

a quadratic cost-function that minimizes the applied force and smooths the finger

trajectories:

𝐽 =
𝑇∑︁

𝑡=1

𝑁𝑐∑︁

𝑐=1

||𝜆𝑐(𝑡)||2 + ||p̈𝑐(𝑡)||2 − 𝛽𝑐(𝑡)

Second derivatives are computed within the model with backwards-Euler scheme

for simplicity and numerical stability. The term 𝛽 is a lower-bound convex-approximation

of the distance between each contact-force and the border of its friction cone, com-

puted as in [3, 66], this term has to be linear in order for the cost-function to be

convex.

Model Validation We start by validating the functionality of the model in several

simple manipulation problems. In particular, we show its ability to optimize contact-

trajectories for “primitive” object motions and to detect when an object motion is

infeasible. We generate a set of object trajectories in the sagittal –𝑋𝑍– plane for

which the optimal solution can be intuitively found. For this, we use three objects: 1)

a block, 2) a triangle, a 3) a non-convex object. Unless otherwise specified, all surfaces

have a friction coefficient of 𝜇 = 0.1. Then, we generate the following trajectories of

𝑇 = 5 time-steps:

Block 1-finger sliding (Fig. 3-6a), 2-finger pivoting (Fig. 3-6b), 2-finger grasping
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(Fig. 3-6c). We observe that one finger is sufficient to slide the object by pushing

it.Grasping directly from the ground requires two or more contacts in order to lift

the object. In the case of pivoting, a surface with 𝜇 = 0.1 is not sufficient for 1-finger

pivoting and the solver only finds a solution when 𝑁𝑐 ≥ 2, which allows to create

internal force to increase friction.

Triangle 2-finger pivoting (Fig. 3-6f). Consistent with physical intuition, 𝜇 = 0.1

does not provide enough friction for the object to pivot without sliding; hence, the

model chooses to place a second finger to push on the ground a generate additional

reaction force, providing enough torque. Similar to the block case, fixing 𝑁𝑐 = 1 leads

the solver to report infeasibility.

Non-Convex Object 1-finger sliding (Fig. 3-6d) and 1-finger pivoting (Fig. 3-

6e). For both tasks, one finger is sufficient. In contrast to the other objects, the

non-convex “end” of the tool can be used to generate sufficient torque and pivot with

only one finger.

Transverse manipulation 1-finger curved-pushing (Fig. 3-6g) and 2-finger in-

place rotation (Fig. 3-6h). For straight line pushing or pushing with small curvature,

one finger is sufficient, as it can generate enough torque to slide and rotate. However,

two fingers are required rotate the block around its geometric center.

As a reference, all trajectories are optimized in the range of 0.04 s to 0.44 s of

computation. We stress the benefits of global optimality in this problem, since small

changes in the friction coefficient or geometry of the object lead to different solutions.

Furthermore, the ability to report when a task is infeasible, either because it requires

more than one finger or because it is physically impossible, also provides useful insight

on the primitive itself.

Applications Once we have proven that our framework can effectively generate

simple behaviors, we aim to show how it can also reason about longer horizon tasks

that involve complex contact interactions. For this, we show two examples of “ex-

trinsic” dexterity [34], where contacts with the environment are essential part of the

manipulation problem, on two different set-ups with 𝑇 = 10 time-steps. In both
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Figure 3-7: Experimental validation of our model Our optimized behaviors can be
applied for real world execution, snapshots of each open-loop experiment are shown (each
blue box corresponds approximately to the goal pose of the object). Top to bottom: 1)
transversal pushing with a desired angle. 2) Rotating 45∘ in-place. 3) Transversal pivoting
against a wall. 4) Grasping vertically. 5) Sagittal pivoting.
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(a) Pivoting against a wall with
gravity

(b) Planar sliding with two fingers
and a wall

Figure 3-8: Two applications of our model for extrinsic dexterity in the sagittal and
transverse planes.

cases, the object trajectories were specified manually on a set-up with a block and a

wall. We optimize these “exrinsic” re-orienting strategies in two separate planes:

Sagittal Accounting for the effect of gravity, the object is pushed to a wall, pivoted

w.r.t. it, and lifted vertically. The execution of this motion is shown in Fig. 3-8a.

The optimal solution is computed in under 10 sec.

Transverse In this case, the object slides against a wall and is then pivoted with

respect to it. This trajectory is shown in Fig. 3-8b. The optimal solution finds a

sticking contact location for each finger. The problem is solved in 2 sec.

Experimental Validation In order to demonstrate that the contact-trajectories

generated by this model translate to the real world, we conduct experiments on a

two-arm robot manipulating and a cubic object on a table.

Our robotic platform is an ABB YuMi® (IRB-14000) robot, which has two 7

DOF arms with a custom point-finger attached to each end-effector. We work with

a Robot Operating System (ROS) setup, interfaced with MATLAB R2019, and run

all the demonstrations in an open-loop fashion, guided through position commands.

Transverse Manipulation Our first demonstration focuses on planar sliding on

an uniform surface, replicating the behaviors in Figs. 3-6g, 3-6h, and 3-8b. Snapshots

of the execution of each task are shown in Fig. 3-7 (top to middle). Despite the open-

loop fashion of these demonstrations, we achieve a reliable execution of the optimized
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contact-trajectory, as long the trajectory is executed slow enough, otherwise impacts

occur and inertial effects are noticeable.

Sagittal Manipulation Our second demonstration shows how our model can

accurately generate motions that interact with gravity. For this, we replicate the

pivoting and grasping behaviors, depicted in Figs. 3-6b and 3-6c. Executions are

shown in Fig. 3-7 (bottom two). In this example, however, trajectories are brittle

and highly-dependent on the initial pose of the object and the robot contacts. This

points at the importance of tracking position along with forces, as contacts must

remain sticking in order to execute these tasks correctly.

In both cases, accuracy is achieved by placing the object in the precise initial

condition. The general scenario, with uncertainty, requires a controller and perception

to execute each motion.

Model Limitations Perhaps the main limitation of this approach comes from need-

ing to specify as input the object motion. While in many cases object trajectories

are intuitive to specify, many simple motions lead to infeasible contact-trajectories,

such a lifting a steep triangle. The second main limitation is the restriction to alter-

nating sticking-contacts. This is not necessarily a limitation in the 2D case since the

sliding condition can be included through a binary decision matrix that encodes the

contact mode of each finger at every time-step [67]. The 3D case is more troubling,

since the friction cone border constraints are non-convex and these would have to be

approximated in some way [60].

Potential Extensions The first set of extensions to this work arise from its main

limitations: incorporating sliding contact, as described above, and mitigating the

dependence on an provided trajectory. Further validation in more complex 3D tasks

[70] is also important. Since our model outputs trajectories with position and force,

a natural extension would be to combine this model with a state-of-the-art feedback

controller [17, 50, 61, 67, 112]. This is particularly relevant under recent advances on

localized tactile sensing [49, 66, 33], which could allow us to generate more dynamic
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Start Goal

Figure 3-9: Given an object, an environment, a start and a goal, our framework finds a
manipulation plan to complete the task.

motions under uncertainty.

3.2 A hierarchical framework to plan manipulation

in long-horizons

In this section, we explore the problem of efficiently planning object trajectories with

robot contact interaction to solve a manipulation task. We refer to this problem as

Object-Contact Trajectory planning. In contrast to using pre-designed primi-

tives, we several the model described in the previous section to design a hierarchical

algorithm that reasons about the object motion and the robot contact interaction as

part of the plan. Our goal is to incorporate multi-contact interaction between the

object, the robot, and the environment, without sacrificing efficiency in long-horizon

trajectories. Solving this problem has three key challenges: 1) dynamics, which de-

termine the motion of the object, 2) geometry, which constrains the set of actions

and configurations, 3) and non-smoothness, which is required to describe rich contact

interactions.

Our approach is to decompose the problem into three stages, which can be eval-

uated hierarchically and solved efficiently: 1) A dynamic-programming search over
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Figure 3-10: Our proposed framework receives an object with a start and goal pose. We
discretize the free-space in slices and decompose them into polygonal regions. Our
algorithm performs a high-level search over the graph of regions, building a roadmap. At
each new edge of the roadmap, we sample an object trajectory that connects the two
regions. For each object trajectory, we optimize a manipulator contact-trajectory that
executes the motion.

regions of the object configuration space, 2) A sampling-based motion planner for the

object trajectory between connected regions, and 3) A contact-trajectory optimiza-

tion to find a manipulator contact-trajectory (finger trajectory + forces) to execute

the sampled object trajectory. These three stages can be solved iteratively in a hi-

erarchy with backtracking, where the result of each stage informs the previous one.

We name this approach VI-MIQP, acronym for Value Iteration (VI) with Mixed Inte-

ger Quadratic Programming (MIQP). We restrict our implementation in this section

to 2D scenes, over which it is simpler to reason about geometry. While this is a

limitation, 2D manipulation problems encompass a wide range of skills that can be

composed to solve practical tasks. The main contributions of this section are:

• Framework to solve manipulation tasks with alternating sticking contact in-

teractions using dynamic programming, sampling-based planning, and mixed-

integer optimization.

• Validation of this approach applied to manipulation tasks in challenging envi-

ronments without a prescribed object motion, contact schedule or primitives.

The remainder of this section is organized as follows: Sec. II reviews concepts

and literature relevant to this work. Sec. III provides an overview of our framework,

its assumptions and properties. Sec. IV describes the proposed algorithm in detail,

while Sec. V discusses its implementation. Sec. VI demonstrates the algorithm with
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simulated experiments, and we conclude in Sec. VII summarizing the contributions

and limitations of the work.

3.2.1 Problem Setup

In this subsection we provide an overview of our framework inputs and discuss its

assumptions. Given a polygonal object, our algorithm will find a sequence of contact

interactions that move it toward a goal pose.

Inputs and Notation Our algorithm receives as inputs the initial and final pose

of the object and the geometries of the object and environment. We introduce the

following notation and variables:

1. Object: A polygonal rigid body 𝒪 with𝑁𝑣 vertices and𝑁𝑓 facets in a workspace

𝒲 . Each facet F𝑓 has 2 vertices, with nominal positions v𝑓
𝑣 , with a correspond-

ing friction cone FC𝑓 , represented with 2 rays.

2. Trajectory: A set of object poses over discrete time steps, the length of the

plan 𝑇 is not known a-priori. We describe each pose, at a time step 𝑡, as

q(𝑡) ∈ 𝒞, where 𝒞 is the configuration space of the object. 𝒞 corresponds to

the 𝑥, 𝑦, 𝜃 coordinates of 𝑆𝐸(2). The starting configuration is q0 and the goal

configuration is q𝑔.

3. Manipulator: A set of 𝑁𝑐 contacts points. We describe the 𝑐𝑡ℎ contact-point,

at time-step 𝑡, as p𝑐(𝑡) ∈ 𝒲 , where 𝒲 is the workspace.The workspace corre-

sponds to each position (𝑥, 𝑦) that can be reached by the robot. We describe

the force applied by the manipulator to the object, at time step 𝑡, as 𝜆𝑐(𝑡) ∈ R2.

4. Environment: A polygonal environment ℰ with 𝑁𝑒 facets, described as planes

with friction cones FC𝑒. Additionally, we segment the free-space between the

object and environment into𝑁𝑅 convex polytopic regions ℛ𝑟 = {x ∈ 𝒲 | 𝐴𝑟x <

𝑏𝑟}. We label the force between the environment and vertex 𝑣 of the object as
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Figure 3-11: Elements of our problem: a polygonal object 𝒪, a point-finger manipulator
p𝑐 and an environment ℰ . The contact between object and environment leads to a reaction
force.

𝜆𝑒𝑣 and the force applied by the vertex 𝑣𝑒 of the environment into the object

facet 𝑓 as 𝜆𝑓𝑣𝑒 .

Then, we operate our planning on the following spaces:

1. Configuration Space: A set 𝒞 of 𝑥, 𝑦, 𝜃 coordinates in 𝑆𝐸(2) where the object

can move. The set of configurations where the object penetrates the environ-

ment is called C-obstacles or 𝒞𝑜𝑏𝑠 and is defined by the Minkowski sum between

the object geometry (across all orientation of the configuration space) and the

environment edges.

2. Free-Space: a set of configurations 𝒞𝑓𝑟𝑒𝑒 where 𝒪 does not penetrate the

environment, defined as 𝒞𝑓𝑟𝑒𝑒 = 𝒞 − 𝒞𝑜𝑏𝑠, which is a subset of 𝑆𝐸(2). For

practical purposes, we will discretize this space over the orientation component

with a sample 𝑆 𝒞−slices.

A diagram describing these elements, at a fixed time-step, can be seen in Fig.

3-11.

Modeling Assumptions Similar to last section. in order to build the manipulation

planning problem, we make the following assumptions:
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1. Objects are rigid, with uniform contact surfaces (such that line contacts can be

approximated by contact with two vertices), and approximated as combinations

of “simple” polygons.

2. Object motions occur at low speeds, such that high-order inertial effects are

negligible.

3. Robot fingers have small masses, such that there are no impacts between the

robot and the object.

4. Interactions between the object and robot are a sequence of alternating sticking

contacts, at which friction is captured by a cone represented by two rays.

The upcoming sections will describe how these modeling decisions translate into

our planning framework.

3.2.2 Hierarchical Framework

In this section, we present our hierarchical approach to long-horizon manipulation

planning. Each paragraph describes a stage of the hierarchy and provides technical

and implementation details. Our framework has three stages, which help alleviate

some of the key issues of contact-rich manipulation:

1. High-Level: The first stage constructs a roadmap over a decomposition of the

free-space into convex regions. We represent this roadmap as a graph 𝐺 with

edges 𝐸. We search over this roadmap to find a path from the start to goal

configuration.

2. Motion Level: The second stage finds object trajectories that connect edges

of the roadmap. These trajectories are concatenated while searching on the

graph. If there is not a feasible trajectory corresponding to an edge, then we

remove the edge from the roadmap.

3. Contact Level: This stage verifies that the motion-level trajectory can be

executed with the manipulator. This problem is known as Contact-Trajectory
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Optimization. If the optimization has no solution then we reject the object

trajectory as infeasible.

These three stages are evaluated in a hierarchy where stage informs the previous

one. Our approach leverages dynamic programming, sampling-based motion plan-

ning, and mixed-integer optimization to construct the full pipeline, illustrated in Fig.

3-10.

High-Level Search

An effective approach to guide a long-horizon planning problem is to build a high-level

roadmap that outlines a coarse plan for a low-level finer planning stage. This outline

ensures a certain level of optimality on the resulting trajectory. Without a roadmap,

sampling-based planning tools, such as RRT, take a long time to solve long-horizons

problems, and the resulting solution often has poor quality.

Roadmap construction To construct our roadmap we operate under the following

decomposition of the free-space:

• Slicing: we discretize the free-space of the object, which lies in 𝑆𝐸(2), into slices

of constant orientation. We refer to 𝒞𝑓𝑟𝑒𝑒-slice of orientation 𝜃 as 𝐶𝑓𝑟𝑒𝑒(𝜃). Each

slice is a 2D region of coordinates in R2. We showcase some examples in Fig.

3-12 (left).

• Segmentation: we further decompose each 𝒞𝑓𝑟𝑒𝑒-slice into convex regions, as

demonstrated in Fig. 3-12 (right).

We use each of the convex regions as a node in our graph 𝐺, where edges 𝐸 are the

overlapping side or area with regions in the same slice or in adjacents slices1. We label

the node of the 𝑖𝑡ℎ region as 𝑁𝑖, where 𝐸𝑖,𝑗 is the edge between 𝑁𝑖 and 𝑁𝑗. This graph

is the roadmap used to plan our high-level path. In practice, we compute 𝐶𝑓𝑟𝑒𝑒(𝜃)

as the Minkowski sum 𝐶𝑓𝑟𝑒𝑒(𝜃) = ℰ ⨁︀
𝑅(𝜃)𝒪, where 𝑅(·) is a rotation matrix, and

perform the convex decomposition using Delaunay triangulation.
1The separation between slices can cause two regions not to overlap, which can lead to path
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Figure 3-12: Free-space decomposition for high-level planning. Top: Workspace 𝒲 and
free-space slice at 𝐶𝑓𝑟𝑒𝑒(𝜃). Bottom: convex decomposition of the slice 𝐶𝑓𝑟𝑒𝑒(𝜃).

Dynamic programming Once we construct the roadmap 𝐺,𝐸 we need to search

over the nodes to find the best path to the goal and determine the distance from each

node to the goal. Since we need to find an object motion as we search through the

graph, as part of the motion-level planning, it is more reasonable to pre-compute a

value function for each edge 𝑉 (𝐸𝑖,𝑗) using a heuristic. With this value function, we

iteratively explore different paths in subsequent stages.

We start by finding start and goal nodes such that:

q0 ∈ 𝑁0, q𝑔 ∈ 𝑁𝑔,

and set

𝑉 (𝐸𝑖,𝑗) = ∞, 𝑉 (𝐸𝑖,𝑔) = 𝑑(𝑖, 𝑔),

where 𝑑(𝑖, 𝑗) is the normalized 𝑆𝐸(2) distance between the center of 𝑁𝑖 and 𝑁𝑗
2.

Finally, we determine the value of each node by running value iteration on the graph,

non-existence. Hence, this makes the resulting plan dependent on the resolution of the slicing
2We normalize this distance to avoid over-emphasis on the rotation component.

65



using the Bellman equation [21]:

𝑉 (𝐸𝑖,𝑗) = 𝑑(𝑖, 𝑗) + min
𝑘

𝑉 (𝐸𝑗,𝑘) , 𝑘 ̸= 𝑗

This relation is evaluated at each node iteratively until convergence. If 𝑉 (𝐸0,𝑘) = ∞
then there is no path from the start to the goal under the current slicing.

Forward pass Finally, after computing the value of each node, we proceed to

explore the tree in a forward pass. We create a list of nodes 𝑁 = [𝑁0], including

the start node, and a list of configurations 𝑞 = [q0], including the start configuration.

We then proceed to explore the graph. We set 𝑁𝑡 = 𝑁0 and choose:

𝑁𝑡+1 = argmin
𝑘

𝑉 (𝐸𝑡,𝑘)

Then, we verify with the motion-level plan if there is a trajectory from node 𝑁𝑡

to 𝑁𝑡+1. We then follow the logic:

1. If the motion-level planner finds a feasible motion q𝑛𝑒𝑤 and contact-trajectory

for the entire motion p𝑐, 𝜆𝑐: we push the solution 𝑞 = [𝑞,q𝑛𝑒𝑤], 𝑁 = [𝑁,𝑁𝑡+1],

and set 𝑁𝑡 = 𝑁𝑡+1.

2. If the motion-level planner cannot find a trajectory, then we remove the edge

from the graph by setting 𝑉 (𝐸𝑡,𝑡+1) = ∞.

If all the edges of node 𝑁𝑡 have 𝑉 (𝐸𝑡,𝑡+1) = ∞, then we remove 𝑁𝑡 from the

list of nodes and pop the latest q𝑛𝑒𝑤 from the list of configurations. We continue

this process until 𝑁𝑡 = 𝑁𝑔, at which point we run the motion-level planner to find a

motion to the goal.

3.2.3 Motion-Level Planning

While running the forward pass through the optimal graph, at each edge with nodes

𝑁𝑡 and 𝑁𝑡+1, we need to verify if there is a motion for the robot to move the object.
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This requires finding a feasible contact-trajectory for the given path, which results

in a non-smooth and nonlinear optimization problem, such as in [100]. This problem

is hard to solve and usually requires a warm-start and depends heavily on numerical

conditioning, which often makes it impractical.

In our case, we decouple the problem by randomly sampling object motions be-

tween 𝑁𝑡 and 𝑁𝑡+1, since each node is associated with a convex polygon, using the

function 𝑆𝑎𝑚𝑝𝑙𝑒(·), which randomly samples an 𝑆𝐸(2) configuration within a convex

polygon. For each sample we solve an optimization problem 𝐶𝑇𝑂() to find a contact-

trajectory, discarding the sample if 𝐶𝑇𝑂() is infeasible. We sample up to 𝑁𝑀𝐴𝑋

trajectories before deciding an edge is not feasible. We summarize this procedure in

algorithm 1.

Algorithm 1 𝑅𝑅𝑇𝐶𝑇𝑂

Require: 𝒪, ℰ , 𝑁𝑡, 𝑁𝑡+1, 𝑁𝑀𝐴𝑋

trial = 0
while 𝑡𝑟𝑖𝑎𝑙 < 𝑁𝑀𝐴𝑋 do

q𝑛𝑒𝑤 = [q0, 𝑆𝑎𝑚𝑝𝑙𝑒(𝑁𝑡), 𝑆𝑎𝑚𝑝𝑙𝑒(𝑁𝑡 ∩𝑁𝑡+1)
p𝑛𝑒𝑤, 𝜆𝑛𝑒𝑤 = 𝐶𝑇𝑂([q,q𝑛𝑒𝑤])
if Success then

return q𝑛𝑒𝑤,p𝑛𝑒𝑤, 𝜆𝑛𝑒𝑤
else

trial = trial + 1
end if

end while
return Failure

Note that 𝐶𝑇𝑂(·) is called over the entire object trajectory, including previous

nodes. We remark that the 𝑆𝑎𝑚𝑝𝑙𝑒(·) function needs to account for vertices and edges

to have completeness, since each node is tied to a convex polygon. For this reason, we

sample: 1) uniformly inside the polygon with probability 𝑝1, 2) uniformly inside of a

random polygon facet with probability 𝑝2, and 3) in a random polygon vertex with

probability 1 − 𝑝1 − 𝑝2. This guarantees that the sampler will consider trajectories

where the object traverses across facets or vertices of the node. We note that this

is particularly important since environmental interaction will occur only at facets of

vertices of each node. In practice, we always sample along a straight line during the
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Figure 3-13: Once the object trajectory is sampled, we optimize a set of finger motions
and contact forces that execute the trajectory. This problem involves the finger
trajectories, applied forces, reaction forces, and the object facets and friction cones.

first trial, to bias towards a smooth motion, and sample freely in subsequent trials.

3.2.4 Contact-Trajectory Optimization

Once we sample an object trajectory, we need to verify that the manipulator can exe-

cute it. To do this, we need to solve an optimization problem that verifies that contact

dynamics allow for such execution, under the components depicted in Fig. 3-13. One

effective method to solve this problem is to apply Mixed-Integer Programming (MIP)

once the object trajectory is prescribed, as in our case.

The mixed-integer programming formulation receives the object-trajectory as an

input and returns the contact-trajectory of the manipulator. Note that once we

sample a trajectory we also obtain the contact schedule of the environmental contacts,

encoded by FC𝑒, and the manipulator free-space regions ℛ𝑟. To achieve this, we apply

the following modeling assumptions, based on 3.1.1, which models constraints using

the following convex relations:
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Quasi-Dynamics We model the linear object dynamics, at each time-step 𝑡, under

the quasi-dynamic relation3:

𝑚[q̈𝑥(𝑡), q̈𝑦(𝑡)]
𝑇 =

∑︁

𝑐

𝜆𝑐(𝑡) +
∑︁

𝑣

𝜆𝑒𝑣(𝑡) +
∑︁

𝑣𝑒

𝜆𝑓𝑣𝑒(𝑡)−𝑚g, (CT10)

where g is the gravity vector, note that this equation disregards Coriolis effects.

Here, we compute time derivatives using second-order finite differences. For rota-

tional dynamics, since torques require a non-convex bilinear cross product, we use

the following approximate model:

𝐼q̈𝜃(𝑡) =
∑︁

𝑐

𝜏𝑐(𝑡) +
∑︁

𝑣

𝑅(q𝜃(𝑡))v𝑣 × 𝜆𝑒𝑣(𝑡) +
∑︁

𝑣𝑒

ve
𝑣 × 𝜆𝑓𝑣𝑒(𝑡), (CT11)

where 𝜏𝑐 ≈ (p𝑐 − [q𝑥,q𝑦]
𝑇 ) × 𝜆𝑐 and 𝑅(·) is a rotation matrix. We approximate

the bilinear cross product (×) in 𝜏𝑐 using the McCormick Envelopes technique [95].

McCormick Envelopes are a piecewise outer approximation of the bilinear product

𝑤 = 𝑥 · 𝑦. Finally, we determine the value of environmental forces via the friction

cone:

𝜆𝑒𝑣(𝑡) ∈ FC𝑣
𝑒(𝑡), 𝜆

𝑓
𝑣𝑒(𝑡) ∈ FC𝑓 (𝑡), (CT12)

where the value of FC𝑒(𝑡) is determined once the trajectory is sampled.

Geometry We need to constrain the manipulator fingers to only lie in the free-

space between the object and the environment. To achieve this, we introduce a binary

decision matrix ℋ ∈ {0, 1}𝑁𝑐,𝑁𝑅,𝑇 that maps each contact p𝑐(𝑡) to a convex region

ℛ𝑟(𝑡), at each time-step 𝑡. This is encoded by the mixed-integer linear constraint

ℋ(𝑐, 𝑟, 𝑡) = 1 ⇒ p𝑐(𝑡) ∈ ℛ𝑟(𝑡), (CT13)

where the ⇒ operator is encoded using the big-M formulation [92].
3we distinguish between 𝜆𝑒

𝑣(𝑡) and 𝜆𝑒
𝑣(𝑡) because environmental forces have pre-fixed friction

cones while robot friction-cones need to be found by the model.
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Contact mechanics We encode the hybrid mechanics of applied contact by intro-

ducing a binary decision matrix 𝒯 ∈ {0, 1}𝑁𝑐,𝑁𝑓 ,𝑇 . This matrix map each manipulator

contact to a facet of the object and a friction cone as:

𝑇 (𝑐, 𝑓, 𝑡) = 1 ⇒

⎧
⎪⎨
⎪⎩
p𝑐(𝑡) ∈ F𝑓 (𝑡),

𝜆𝑐(𝑡) ∈ FC𝑓 (𝑡),

(CT14)

and
∑︁

𝑓

𝑇 (𝑐, 𝑓, 𝑡) = 0 ⇒ 𝜆𝑐(𝑡) = 0, (CT15)

which are all linear constraints with big-M formulation.

We aggregate these sets of constraints into a single optimization problem. This

results in the following mixed-integer optimization problem:

CTO : minimize
𝒯 ,ℋ,p,𝜆

𝐽 =
[︁
𝒯 ℋ p 𝜆

]︁
𝑄

⎡
⎢⎢⎢⎢⎢⎢⎣

𝒯
ℋ
p

𝜆

⎤
⎥⎥⎥⎥⎥⎥⎦
+ 𝑞𝑇

⎡
⎢⎢⎢⎢⎢⎢⎣

𝒯
ℋ
p

𝜆

⎤
⎥⎥⎥⎥⎥⎥⎦

subject to:

1. For time-step 𝑡 = 1 to 𝑡 = 𝑇 :

(a) Quasi-Dynamics (CT1)-(CT2).

(b) Environmental Contact (CT3).

(c) For fingers 𝑐 = 1 to 𝑐 = 𝑁𝑐

• Non-Penetration (CT4).

• Contact-Trajectory Assignment (CT5)-(CT6).

This optimization problem has the following properties: 1) Given a convex cost

function, we will always find the optimal solution, and 2) The model only reports

infeasibility if the original non-convex problem is also infeasible, thanks to the Mc-

Cormick envelope approximation used in (CT2). This is comes with the drawback
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Figure 3-14: Contact robustness margin: we compute a convex inner approximation of
the stability margin of our motion.

of combinatorial complexity, which grows exponentially with the number of binary

variables. However, we find that this optimization problem can be solved very quickly

in practice, on the order of tens of milliseconds.

Moreover, this formulation also allows for the inclusion of additional constraints,

such as kinematics or robustness margins [35], provided that these can be formulated

in a mixed-integer linear fashion. In the final 𝐶𝑇𝑂(·) call of the algorithm, when

reaching the goal pose, we add a quadratic cost function that minimizes the applied

force, smooths the finger trajectories, and maximizes contact robustness:

𝐽 =
𝑇∑︁

𝑡=1

𝑁𝑐∑︁

𝑐=1

||𝜆𝑐(𝑡)||2 + ||p̈𝑐(𝑡)||2 − 𝛽𝑐(𝑡)

The term 𝛽 is a lower-bound convex-approximation of the distance between each

contact-force and the border of its friction cone, computed as in [3, 66], this term has

to be linear in order for the cost-function to be convex. We depict this 𝛽 term in Fig.

3-14.

3.2.5 VI-MIQP

Putting all the previous stages together, we formulate our planning framework under

the stages outlined in the previous section. This algorithm receives an object shape,

initial pose, goal pose, and free-space 𝒞𝑓𝑟𝑒𝑒 sliced over orientations. We summarize

our proposed framework in algorithm 2.

This formulation has a few benefits and theoretical properties:
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Algorithm 2 VI-MIQP
Require: 𝒪, ℰ , q0, q𝑔

𝐺,𝐸 = Delaunay(𝒞𝑓𝑟𝑒𝑒) ◁ Roadmap construction
𝑉 (𝐸𝑖,𝑗) = ∞, ∀ 𝑖, 𝑗
𝑉 (𝐸𝑖,𝑔) = 0, ∀ 𝑖
while 𝑉 not converged do

𝑉 (𝐸𝑖,𝑗) = 𝑑(𝑖, 𝑗) + min𝑘𝑉 (𝐸𝑗,𝑘) ◁ Value iteration
end while
𝑁𝑡 = 𝑁0 ◁ Starting node
𝑁 = [𝑁𝑡] ◁ Starting list
while 𝑁𝑡 ̸= 𝑁𝑔 do ◁ Forward pass

for 𝑁𝑡+1 = argmin 𝑉 (𝐸𝑡,𝑡+1) do
q𝑛𝑒𝑤,p𝑛𝑒𝑤, 𝜆𝑛𝑒𝑤 = 𝑅𝑅𝑇𝐶𝑇𝑂(𝑞,𝑁𝑡, 𝑁𝑡+1)
if Success then

q = push(q,q𝑛𝑒𝑤), p = p𝑛𝑒𝑤, 𝜆 = 𝜆𝑛𝑒𝑤
𝑁 = [𝑁,𝑁𝑡+1] ◁ Adds edge to plan
𝑁𝑡 = 𝑁𝑡+1

break for
else

𝑉 (𝐸𝑡,𝑡+1) = ∞ ◁ Remove edge
end if
if 𝑉 (𝐸𝑡,𝑡+1) = ∞ ∀𝑁𝑡+1 ∈ 𝑁𝑒𝑖𝑔ℎ(𝑁𝑡) then

𝑁𝑡 = 𝑁𝑡−1 ◁ Removes node
pop(𝑞), pop(𝑁)

end if
end for

end while

• First, the dynamic programming over a roadmap yields an optimal solution to

the high-level plan, conditioned on the resolution of the slicing of the free-space

and in the limit of sampling of the motion planner.

• Thanks to the mixed-integer optimization formulation, we can guarantee that

the contact-trajectory found by 𝐶𝑇𝑂(·) is globally optimal, conditioned to

the object trajectory found in the motion-level.

These properties are very useful to understand the feasibility of a task and the

quality of the solution.
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(a) Pivoting a block
and sliding

(b) Moving in a
narrow corridor

(c) Peg-in-wall for a
rectangle

(d) Unpegging a 𝑇
from a hole

Figure 3-15: Long-horizon manipulation tasks solved with our algorithm. Green dots
correspond to the point-fingers of our manipulator. Doted object contour corresponds to
the initial pose q0 and bold object contour corresponds to goal pose q𝑔.

3.2.6 Validation and Results

To demonstrate the capabilities of our framework, we implement algorithm 2 and

asses its application to a set of long-horizon manipulation problems. First, we aim

to validate the model’s ability to find solutions to complex manipulation tasks and

detect infeasible ones. We then show how the algorithm performance scales over

problems with varying complexity.

We generate all the trajectories in MATLAB R2021b, running on an Intel Core

i9 laptop with Mac OS X Big Sur. We use Gurobi 9.1.0 [59], an off-the-shelf opti-

mization software, as our MIP solver. All of our tests are done with a 𝒞𝑓𝑟𝑒𝑒 sampled

in 7 slices between −90∘ and 90∘4. We use piecewise McCormick envelopes of 12 seg-

ments. We segment the free space of each task into convex regions ℛ using Delaunay

triangulation. We compute second derivatives within the mixed-integer model with

the backwards-Euler scheme for simplicity and numerical stability.

Simulated Validation We start by validating the functionality of the algorithm

in several manipulation problems. In particular, we show its ability to solve problems

that demand long horizon and multi-contact reasoning. These tasks require alternat-

ing contact switching with the robot and the environment. All the tasks are solved

with a 2-finger manipulator with kinematic constraints based on an ABB YuMi robot,
4This choice is made to leave a gap of 30∘ between slices, which is enough to find paths in the

shapes used. Environments with narrower paths or more non-convex shapes may require further
slicing.
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encoded in 𝐶𝑇𝑂(·). For this, we use three objects: 1) a block, 2) a rectangle, a 3) a

non-convex 𝑇 object. The contacts between all surfaces have a friction coefficient of

𝜇 = 0.1. We solve the following manipulation problems:

Block Pivoting: we ask the planner to rotate a block −90∘ in the sagittal plane

and slide it 200𝑚𝑚 in the −𝑋 direction (Fig. 3-15a). Due to the low friction with the

surface, our algorithm finds a trajectory that: 1) grasps the block with two fingers,

slowly rotating in the process, 2) pivots the object with one finger, while pushing it

to the goal, and 3) uses the two fingers to immobilize in the final goal pose. This

trajectory demonstrates the contact-rich nature of our approach, since the solution

to a problem can choose to grasp an object and then proceed to use a single finger to

complete the task. This trajectory is found in 0.2s.

Rectangle across Narrow Corridor: we ask the planner to grasp a rectangle

and move to the other side of a region with a very narrow corridor in the moddle (Fig.

3-15b). The algorithm performs a strategy of: 1) grasping the object, 2) rotating the

object −90∘, 3) sliding the object through the corridor with one finger, 4) grasp the

object the two fingers, and 5) pivot it back for 0∘. This trajectory demonstrates

the long-horizon reasoning that our planner can achieve, considering contact switches

and global path. This type of trajectory would likely require a very large amount

of exploration from randomized sampling-based planner. This trajectory is found in

7.2s.

Rectangle Peg-in-wall: we ask the planner to pick a rectangle from the ground

and insert it into a tight hole in a wall, rotated by −90∘ (Fig. 3-15c). The algorithm

performs a strategy of: 1) grasping the object, rotating it while grasped, 2) pushing it

to the wall with one finger, 3) sliding it up to the ”ceilng”, and 4) pushing it with the

two fingers, against the ceiling contact, to insert the object in the wall. This trajectory

demonstrates multi-contact interaction with the robot and the environment. Here, the

wall and ceiling contacts are used to enable more stability and to make the trajectory

geometrically feasible. This trajectory is found in 2.5s.

T Unpeg: we ask the planner to pick a 𝑇 object from a hole and rotate it by 90∘

into the floor (Fig. 3-15d). The algorithm finds a strategy of: 1) grasping the object
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from the hole, 2) pivoting it while grasped, 3) switching the grasp configuration, and

4) placing the 𝑇 in the goal location. This tasks demonstrates the ability of our

algorithm to reason over non-convex geometry in the objects and environment. This

trajectory is found in 6.3s.

As a reference, all trajectories are optimized in the range of 0.2 s to 7.2 s. We stress

the ability of 𝐶𝑇𝑂(·) to report when a task is infeasible, either because it requires

an additional contact force or because it is geometrically infeasible, which can help

the planner quickly discard edges and find a path. We note that all these tasks are

performed in the sagittal plane.

Application to Sagittal and Traversal tasks A key question is how this al-

gorithm performs across the sagittal –𝑋𝑍– plane and one problem in the traversal

–𝑋𝑌 – plane. The traversal plane adds the presence of Coulomb friction forces in the

object surface, following the maximum discipation principle. We can easily model

this patch contact in our 𝐶𝑇𝑂(·) problem by transforming the friction cone at each

object vertex to the vector:

FC𝑣
𝑒(𝑡) =

−𝜇𝑒√︀
𝑣̇2𝑥(𝑡) + 𝑣̇2𝑥(𝑡)

[𝑣̇𝑥(𝑡), 𝑣̇𝑦(𝑡)],

where 𝑣(𝑡) = [𝑣𝑥(𝑡), 𝑣𝑦(𝑡)] is the position of the object vertex 𝑣 at time-step 𝑡. We

then contrast how our model performs in both traversal and sagittal scenarios with

the following tasks:

Saggital Unpeg: we ask the planner to pick a rectangle from a hole and rotate

it by 90∘ into the floor (Fig. 3-16a). The algorithm finds a strategy of: 1) pushing the

object to one side of the hole to create some clearance, grasping it up from the hole,

2) pivoting it with respect to one of the vertices of the hole, 3) grasping it outside

of the hole, and 4) dropping it into the goal location in the floor. Similar to before,

this trajectory demonstrates multi-contact interaction and dynamics with the robot

and the environment. Here, the planner effectively finds a space clearance to pivot

the object against the environment and then use gravity to drop it to the goal. This

trajectory is found in 3.2s.
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(a) Sagittal unpeg-from-hole (b) Traversal unpeg-from-hole

Figure 3-16: Comparison between the same task solved in a sagittal and traversal
environment

Traversal Unpeg: we ask the planne to pick a rectangle from a hole and rotate

it by 90∘ into the floor (Fig. 3-16b). The algorithm finds a similar strategy of: 1)

pushing the object to one side of the hole to create some clearance, grasping it up from

the hole, 2) pivoting it with respect to one of the vertices of the hole, 3) grasping

it outside of the hole, and 4) pushing it into the goal location in the floor. This

trajectory shows how the presence of traversal contact, dictated by the maximum

dissipation principle, forces the planner to find a different contact schedule for the

trajectory. This trajectory is found in 9.6s.

These trajectories are optimized in the range of 3.2 s to 9.6 s. This demonstrates

the versatility of our model when accounting for new constraints and dynamic effects.

Complexity Analysis One natural question is understanding the computational

complexity of this algorithm and how efficient it can be at solving problems of differ-

ent scale. Assessing the speed of a mixed-integer optimization problem can be very

challenging, since off-the-shelf tools will use different techniques to solve the prob-

lem. Nevertheless, we can analyze other metrics that relate to the complexity of the

problem, such as number of nodes of explored 𝑁𝑁 , 𝐶𝑇𝑂(·) calls 𝑁𝑀𝐼𝑃 , and value

iteration steps 𝑁𝑉 𝐼 .

We come back to the task of ”rectangle across a corridor” and sample several

intermediary goals. We measure the 𝑆𝐸(2) distance between q𝑠 and each of these
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Figure 3-17: Complexity analysis for our model

goals and then run our algorithm, recording: number of value iteration steps, number

of nodes explored, and number of MIP calls. We report the results in Fig. 3-17. We

find the complexity our framework to grow approximately linearly with the distance

to the goal. This comes with the caveat that MIP calls can often take up to a second,

becoming the main source of delays. However, this also suggests that our approach

can scale well to very long-horizon tasks.

Source Code The entire source code used as part of this work is publicly available

on GitHub: https://github.com/baceituno
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Chapter 4

Differentiable Learning of

Manipulation Tasks from Video

Robot ActionsVideo

Model
g

Figure 4-1: We tackle the problem of visual non-prehensile planar manipulation where
given a pre-segmented video of an object in planar motion (left) the goal is to find the
robot actions (middle) to reproduce the same object motion (right). In learning for
manipulation, we study the role of structure, intermediate representations, and end-to-end
differentiation.

Can bringing mechanics representations and priors into deep learning models aid

in decoding videos and learning dexterous manipulation? This chapter studies this

question as part of the problem of video-based non-prehensile planar manipulation.

Here, given a video of an object in planar motion in some environment (i.e. input

video), the goal is to find contact and force trajectories for the robot fingers (i.e. out-

put robot actions) that when executed will reproduce the same object motion in the

same environment. This problem is illustrated in Fig. 4-1. Our approach is to build

intermediate representations based on mechanics that serve as a glue in combining

upstream neural models that decode the video with downstream differentiable priors
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that solve for robot actions. We limit the problem scope to planar settings, with

the input video being pre-segmented, and the robot having point-fingers (standard

in robot manipulation literature [140, 112, 52, 4, 32]). These simplifications allow us

to assess the impact of structured learning without the confounding effects of sensor

or actuator noise, and enable us to make a reasonable first step towards general ap-

proaches that would be able to learn dexterous manipulation by watching large scale

human videos [39].

We present an architecture, Differentiable Learning for manipulation (DLM) (il-

lustrated in Fig. 4-2), that works in three stages and can be progressively trained

on each stage: (1) a neural model that derenders the input video to mechanical pa-

rameters i.e. object shape, object trajectory, discrete contact-mode decisions, and

allowable forces between robot fingers and object, (2) a differentiable convex opti-

mization module based on cvxpylayers [6, 45] that solves inverse dynamics from the

mechanical parameters to find contact and force trajectories for the robot fingers,

and finally (3) a differentiable contact-mechanics simulation module based on lcp-

physics [41] and finite-differencing that executes the robot actions to simulate the

object motion. We train the first two stages with supervision from an expert contact

trajectory optimizer [4] while the third stage is trained end-to-end over the desired

object trajectory.

To investigate the role structure plays in learning, we compare our approach with

various architectures including neural models without any mechanics priors on visual

non-prehensile planar manipulation tasks. In our experiments, we train the third

stage of DLM on a dataset that is smaller relative to the training dataset used for

the first two stages to resemble a more realistic setting where pre-training is done on

a large simulation dataset with easy to obtain supervision and fine-tuning is done on

a smaller real-world dataset that is expensive to collect and harder to label. We find

that our structured model is able to outperform other learning-based architectures

on unseen objects and motions, while being more computationally efficient compared

to the non-learning expert.
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4.1 Visual Non-Prehensile Manipulation Inference

In this section, we define our problem of inferring manipulation actions from a video

which serves as a task specification. We limit our focus to the context of 2D non-

prehensile manipulation given 2D pre-segmented videos of desired object motion. In

the discussion section, we elaborate on possible avenues to extending our formulation

and approach to 3D, real videos, and real robots. We start by defining the main

components of our problem, its assumptions, and our notation:

1. Task: a video 𝒱 with 𝑇 frames showing a sequence of object poses. The tasks

involves a set of object poses r(𝑡) ∈ 𝑆𝐸(2), sampled in 𝑇 time-steps 𝑡.

2. Object: a polygonal rigid-body 𝒪 with mass matrix M and 𝑁𝐹 facets. Each facet

F𝑓 has a corresponding friction cone ℱ𝒞𝑓 .

3. Action Space: a set of 𝑁 point-fingers1 moving freely around space. We describe

the position of finger 𝑐, at time-step 𝑡, as p𝑐(𝑡). The contact interaction between

the object and the finger at p𝑐(𝑡) applies a force 𝜆𝑐(𝑡).

4. Environment: a polygonal environment described as planes with friction cones

ℱ𝒞𝑒. The contact interaction between the object and the environment occurs at

the contact point p𝑒(𝑡) and results in a reaction force 𝜆𝑒(𝑡).

We show a high-level representation of our problem in Fig. 4-1. One of the chal-

lenges in solving this problem come from interpreting video data, in order to extract

an implicit representation of the object shape, the object motion, and finding the ap-

propriate contact interactions between the robot fingers and the object. Specifically,

finding a contact interaction is divided in two steps: (i) select a sequence of contact

modes, indicating where each contact is applied at each time-step, and (ii) invert the

dynamics to resolve the exact contact locations and forces to apply. In this context,

inverse dynamics (ID) is an optimization problem that receives an object motion and
1The use of point-fingers does not account for robot kinematics. While this is a limitation, it

is a standard approach to evaluate planning and learning pipelines for manipulation problems (see
[140, 71, 112, 2, 4, 32]).
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outputs forces and locations, formulated in the form:

ID: min
p,Λ

𝑇∑︁

𝑡=0

𝐽 𝐼𝐷
𝑝,𝜆 (𝑡) (CT1)

subject to: Mr̈(𝑡)+G(r) = 𝐽(r)𝑇Λ(𝑡), p𝑐(𝑡) ∈ F𝑐(𝑡), 𝜆𝑐(𝑡) ∈ ℱ𝒞𝑐(𝑡), 𝜆𝑒(𝑡) ∈ ℱ𝒞𝑒(𝑡)

(CT2)

where 𝐽 𝐼𝐷
𝑝,𝜆 (𝑡) is a cost function that typically penalizes actuation efforts, G(𝑟) rep-

resents gravity and inertial effects, and 𝐽(𝑟) is a Jacobian mapping contact forces

Λ = [𝜆1, . . . , 𝜆𝑁 , 𝜆𝑒] into wrenches. Solving ID, however, assumes knowledge of the

exact shape of the object and the contact modes to be applied [53, 30, 69], encoded

in the facets F𝑐(𝑡) and friction cones ℱ𝒞𝑐(𝑡). Solving this problem without assuming

known contact modes is often intractable and a significant body of research has fo-

cused on studying it [100, 42, 4]. Our approach addresses this by extracting object

shape and contact modes (as facets and friction cones) as parameters through a deep

neural model, which can be trained with ground-truth labeled data and augmented

with self-supervision through differentiable optimization and differentiable simulation.

4.2 Differentiable Visual Non-Prehensile Manipula-

tion

In this section, we present our approach Differentiable Learning for Manipulation

(DLM). Each subsection describes a stage of the model and provide technical and

implementation details. Our approach leverages deep neural networks, differentiable

optimization, and simulation, to construct the full pipeline, illustrated in Fig. 4-2.

Mechanical Derendering One challenge of visual manipulation is to decode ge-

ometry and motion from video. While pre-segmented videos can be obtained from

realistic videos with state-of-the-art computer vision tools [65], it is challenging to

translate explicit task information into an implicit latent space. This is due to dis-

crete variables such as facets, vertices, and intersections. Hence, the first stage of

82



Simulation

Robot

Actions

Object

Trajectory

LSTMCNN

Desired  

Obj, Motion


Video

QP

g

De-rendering

Mechanical

Parameters

Neural-based Model-based

Latent 

space

p⇤c(t), �
⇤
c(t)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A(P⇤)


p
�

�
 b(P⇤)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4-2: Our proposed fully differentiable pipeline, DLM (Differentiable Learning for
Manipulation). In contrast to approaches that represent policies as feed-forward neural
networks, our approach leverages model-based priors from mechanics to process
mechanical parameters via a differentiable quadratic program and evaluate the resulting
policy through a differentiable simulator.

our model encodes the video frames 𝒱 into an implicit latent space ℒ𝒱 . To achieve

this, we first encode each frame 𝐼𝑘 through a set of convolution layers 𝐶𝑁𝑁(·) and

combine these embeddings with a Long Short-Term Memory (LSTM) layer, to retain

their temporal relation, as:

𝐿𝒱 = 𝐿𝑆𝑇𝑀(𝐶𝑁𝑁(𝐼1), 𝐶𝑁𝑁(𝐼2), . . . , 𝐶𝑁𝑁(𝐼𝑇 )) (CT3)

Given this encoding, we find all the parameters required for ID with differentiable

optimization, in similar fashion to [73]. This set of mechanical parameters [4] includes:

(i) the Jacobian matrix 𝐽(r)(𝑡), (ii) the location of external contacts p𝑒(𝑡), and (iii)

parameters that implicitly encode contact modes F𝑐, ℱ𝒞𝑐, and ℱ𝒞𝑒. We derender this

set of mechanical parameters 𝒫 = {r(𝑡), 𝐽(r)(𝑡),F𝑐(𝑡),ℱ𝒞𝑐(𝑡),p𝑒(𝑡),ℱ𝒞𝑒(𝑡)} through

an MLP2 and the loss function:

𝒫*(𝑡) =𝑀𝐿𝑃P(𝐿𝒱)(𝑡), ∀𝑡, 𝑐, (CT4)

ℒ𝒫 = ||𝒫*(𝑡)− 𝒫(𝑡)||22 (CT5)

As illustrated in Fig. 4-3 these parameters are an implicit representation of the finger
2Facets F are represented by two vertices in the world frame, while friction cones ℱ𝒞 are repre-

sented with two rays originating at the contact point.
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Figure 4-3: Interactions in our setup (top-left) and the mechanical parameters from the
scene (bottom). Different contact modes are encoded implicitly via the friction cones and
the object facet at each contact (top-right). Note that the input video only demonstrates
the object moving without any robot actions.

contact modes and the local object geometry for a given task, since the contact mode

only encodes which facet is in contact and what is the friction cone.

Differentiable Inverse Dynamics Given the derendered parameters, we recast

ID as the following quadratic program which solves for robot actions 𝑝𝑐(𝑡), 𝜆*𝑐(𝑡):

QP: min
p𝑐,𝜆,𝜖

𝐽𝑄𝑃 =
∑︀𝑇

𝑡=0 ||Λ𝑐(𝑡)||𝑄𝜆
2 + ||p̈𝑐(𝑡)||𝑄𝑝

2 + 𝑞|𝜖(𝑡)|

subject to:

Mr̈*(𝑡) = 𝐽(p, r)*
𝑇

Λ(𝑡)−Ĝ(r*)+𝜖(𝑡), 𝜆𝑐(𝑡) ∈ ℱ𝒞*
𝑐(𝑡), 𝜆𝑒(𝑡) ∈ ℱ𝒞*

𝑒(𝑡), p𝑐(𝑡) ∈ F*
𝑐(𝑡)

(CT6)

Under this linearization, QP has the property of being a convex optimization

problem [24]. This has a few benefits: (i) its solution is always the global optima, (ii)

if 𝒫*(𝑡) = 𝒫(𝑡) then its solution is guaranteed to match the ground-truth optima, and

(iii) QP can be added as a differentiable layer of our model [14, 6], which inputs 𝒫*

and outputs the optimal p*
𝑐 , 𝜆

*
𝑐 , 𝜖 for such parameters. There are a few considerations

to make QP a differentiable layer. In particular, QP must have a solution–or be

feasible– for any choice of parameters 𝒫*(𝑡) [6]. To make the problem always feasible,
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Figure 4-4: Example of four different valid solutions to a simple manipulation task of
pushing a block from left to the right. Since the video does not show what actions to
follow, our model may output any of these actions depending on its supervision.

we relax the dynamics constraints by adding a slackness term 𝜖(𝑡) and penalize it in

the loss function 𝐽𝑄𝑃 , with weight 𝑞. After solving QP, we supervise its solution with

ground-truth labels, under known parameters, with the loss

ℒ𝑄𝑃 = 𝑞|𝜖|+ ||p*
𝑐 − p𝑐||22 + ||𝜆*𝑐 − 𝜆𝑐||22, (CT7)

which drives the model towards a set of actions that are both consistent with the

physical structure, such that 𝜖(𝑡) → 0, the ground-truth physical parameters p*
𝑐 , 𝜆

*
𝑐 →

p𝑐, 𝜆𝑐. After training, we set 𝜖 = 0 to ensure consistency.

Evaluation A drawback of learning directly from the action space is the dependence

on ground-truth finger trajectories to assess the generality of the learned model. The

existence of multiple solutions, e.g. as depicted in Fig. 4-4, makes it ambiguous to

assess a model with unseen labeled data. To resolve this ambiguity in the evalua-

tion, we simulate the task using inferred actions 𝑝*𝑐(𝑡), 𝜆*𝑐(𝑡). We then compare the

simulated object trajectory with the desired object trajectory, and use this error as
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a metric [19]. Algebraically, a simulator is represented by

r*(𝑡) = 𝑆𝑖𝑚(p*
𝑐(𝑡))

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r(𝑡+ 1) = r(𝑡) + ∆𝑇 ṙ(𝑡),

ṙ(𝑡+ 1) = ṙ(𝑡) + ∆𝑇 r̈(𝑡),

Mr̈(𝑡) +G(r) = 𝐽(r)𝑇Λ𝑓 (𝑡)

(CT8)

and:

Λ𝑓 = [𝜆𝑓1(p
*
1(𝑡)), . . . , 𝜆

𝑓
𝑁(p

*
𝑁(𝑡)), 𝜆

𝑓
𝑒 (p

*
𝑒(𝑡))]

is a functional representation of the contact forces. These forces need to be determined

based on the inertial properties of the system. To resolve these forces we solve a Linear

Complementary Problem (LCP), based on [41], which outputs the corresponding

contact forces between the object, fingers, and the environment. These contact forces

are activated discretely as:

𝜆𝑓𝑘((p
*
𝑘(𝑡))) = 𝛿(𝐷(p*

𝑘(𝑡), r(𝑡))), 𝐷(p*
𝑘(𝑡), r(𝑡)) ≥ 0, 𝛿(𝑥) =

⎧
⎪⎨
⎪⎩
1, 𝑥 = 0

0, 𝑥 > 0

(CT9)

where 𝐷(p*
𝑘(𝑡), r(𝑡)) is the distance between point p*

𝑘(𝑡) and the object at pose r(𝑡).

Similar relations are used to represent the friction cones and contact modes, which

we omit for simplicity. Then, we use the simulation for the evaluation metric using

the loss function

ℒ𝑠𝑖𝑚 = ||𝑆𝑖𝑚(p*
𝑐(𝑡))− r(𝑡)||2 (CT10)

where p*
𝑐(𝑡) are finger trajectories obtained by solving QP. It is important to note

that ℒ𝑠𝑖𝑚 is not an injective mapping from the finger trajectory error ||p*
𝑐(𝑡)−p𝑐(𝑡)||2.

Therefore, having actions near the ground-truth might not necessarily lead to a lower

ℒ𝑠𝑖𝑚.

Supervision via Simulation Having access to the loss function ℒ𝑠𝑖𝑚 can also tune

our model subject to ground-truth physics. This reduces (or potentially removes) the

burden of having labeled data over the parameters 𝒫(𝑡) and the finger-trajectories
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p𝑐(𝑡), leading to a fully self-supervised approach. Training our model with ℒ𝑠𝑖𝑚 re-

quires the function 𝑆𝑖𝑚(·) (i.e. the simulator) to be differentiable in all its domain.

However, the function 𝛿(·) only returns gradients at the origin. While this is a per-

vasive problem, many researchers have successfully included contact mechanics as

differentiable functions by approximating 𝛿(·) with a smooth function [100]. In our

case, we approximate 𝛿(·) as the smooth function:

𝛿(𝐷(p𝑘(𝑡)) ≈ 𝜎(−𝐷(p𝑘(𝑡), r(𝑡)), 𝜅)

where 𝜎(·, 𝜅) is a sigmoidal function with factor 𝜅. This approximation can be made

arbitrarily tight as 𝜅 → ∞. With this smoothing, the simulator gradients are com-

puted via finite differences as:

∇r*(𝑡) ≈ (𝑆𝑖𝑚(p*
𝑘(𝑡) + ℎ𝑝)− 𝑆𝑖𝑚(p*

𝑘(𝑡)− ℎ𝑝))/2ℎ

where ℎ𝑝 = ℎI3×3. While automatic differentiation is a more efficient approach to

obtain gradients, we found it incompatible with the smoothed contact model of our

current implementation. We leave this enhancement for future work. Minimizing ℒ𝑠𝑖𝑚

drives the learned finger trajectories to push the object through the desired object

trajectory. A consequence of this approximation is that 𝛿(·) ≈ 𝜎(·) leads to effects

such as contact at distance and small penetration, although these are attenuated for

a large 𝜅 >> 1 in practice.

4.3 Experiments

We implement all models in PyTorch [96] with Python 3. To generate our datasets, we

use MATLAB R2020b and solve optimization problems with the Gurobi [59] solver.

For all experiments, we use Adam as our network optimizer and CVXPY layers [45, 7]

as differentiable solver for QP. In all experiments we train over each loss function for

100 iterations with a learning rate of 10−4. We implement our simulator on top of

the LCP-based scheme in [41] by modifying it to accommodate our problem setting.
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We run all training, testing, and timing experiments on a Macbook Pro with 2.9 GHz

6-Core Intel CPU.

Datasets: We built four datasets of non-prehensile manipulation tasks in the

sagittal3 plane with randomized trajectories in 𝑆𝐸(2), all ground truth robot actions

are found by solving Contact-Trajectory Optimization (CTO) [4]:

• Training set of 20 tasks with randomly generated polygonal objects of 4 to 6 facets,

including all mechanical parameters and robot actions for each task.

• Fine-Tuning set of 20 tasks with new random objects of 4 to 6 facets, with robot

actions for each task.

• Test set of 40 tasks with new random objects of 12 facets, with robot actions for

each task.

• Family Test set of 40 tasks with new random objects of 4-6 facets (same shape and

task distribution as training and fine-tuning sets), with robot actions for each task.

Each task has a video of 𝑇 = 5 RGB frames of size 50×50. We find optimal finger

trajectories for each task using a Mixed-Integer Quadratic Program (MIQP) [4], for

𝑁 = 2 point fingers. We set 𝜅 = 0.5, 𝑞𝜖 = 0.1 and 𝑑𝑖𝑚(ℒ𝒱) = 75. We illustrate

example objects we generate for each dataset in Fig. 4-5 (left). Also see Appendix

for more details on data generation.

Architectures: We asses the performance of our approach, Differentiable Learn-

ing for Manipulation (DLM) against four different architectures and a model-based

oracle (see Fig. 4-5).

• NN: The Neural Network (NN) architecture replaces QP in DLM, with a 3-layer

MLP. This is akin to a pixel-to-actions style policy network [55, 15] and is trained

to generate MIQP solutions with a loss function ℒ𝑁𝑁 = ||p*
𝑐(𝑡)− p𝑐(𝑡)||22.

• NNM: The Neural Network Manipulation (NNM) architecture extends NN by also

fine-tuning by minimizing ℒ𝑠𝑖𝑚, akin to the examples used in [41]. This network is

pre-trained with 100 iterations of minimizing ℒ𝒩𝒩 .
3side-view of the scene with gravity pointing down in the image plane.
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Figure 4-5: Left: Examples shapes of objects in our different datasets. Right:
Architectures used to evaluate our framework. Blue segments are stages in the architecture
with a neural model, black segments are differentiable model-based stages. Dots represent
points with labeled data used for pre-training and arrow ends are the final loss function for
the full architecture. The MIQP approach has privileged access to all the parameters of
the problem.

• MDR: In the Mechanical DeRendering (MDR) architecture, DLM is cut off when it

is trained to extract parameters from video by minimizing the loss function ℒ𝒫 . At

test time robot actions are obtained by solving QP. This is akin to the approach

used to learn integer solutions to mixed-integer programs [68, 27].

• CVX: In the ConVeX optimization (CVX) architecture, DLM is cut off after being

trained by minimizing ℒ𝑄𝑃 . This network is pre-trained with 100 iterations of

minimizing ℒ𝒫 .

• DLM: Our proposed approach is trained by minimizing ℒ𝑆𝑖𝑚 after it is pre-trained

with 100 iterations of minimizing ℒ𝒬𝒫 which in turn is pre-trained with 100 itera-

tions of minimizing ℒ𝒫 .

• MIQP (Oracle): A model-based solution to each manipulation task, solved via

CTO [4] and provided with all ground-truth parameters (such as object shape and

desired object trajectory in 𝑆𝐸(2)).

Network details: The 𝐶𝑁𝑁(·) and𝐷𝑒𝐶𝑜𝑛𝑣(·) operators represent 3 (de)convolution

operations with 6, 12, and 24 channels. The 𝐿𝑆𝑇𝑀(·) function is a 5-layer bi-

directional recurrent LSTM. Each 𝑀𝐿𝑃 (·) has 3 fully-connected hidden layers of

equal size to their input. All the layers use ReLU activation functions. We add a 0.2

dropout and batch-normalization to each fully-connected layer of the network.
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DLM 

Figure 4-6: Left: In contrast to NN, MDR and CVX closely match the finger-trajectory
solution from MIQP (Oracle). Center: While each network is trained to match finger
trajectories from MIQP, the more structured networks (MDR and CVX) generalize better
to unseen object trajectories and shapes. Right: Each network is trained by propagating
gradients through the simulator. The DLM architecture performs better than the
unstructured NNM without over-fitting.

Learning Policies from Data We first analyze the ability to infer finger trajec-

tories from the ground truth data obtained via CTO.

Finger trajectory loss: We measure the ability of NN, MDR, and CVX methods

to learn specific finger actions from the training set and evaluate their generalization

to unseen data from the test set. We present the results of running each network for

100 epochs in Fig. 4-6 (left). The NN network consistently falls in a local minima. In

contrast, the MDR and CVX result in lower training loss closer to the MIQP (Oracle)

reference. CVX further refines the learned weights for more accurate predictions, since

it is pre-trained with learned weights from MDR.

Simulated object trajectory loss: As we mention in Section IV.D, when we

presented new data, the networks struggle to generalize finger trajectories to new

object shapes. This is a consequence of each problem having multiple solutions. To

resolve this ambiguity, we measure the object-trajectory loss by simulating the learned

actions at each learning iteration. We show the object trajectory loss curves for each

of our datasets in Fig. 4-6 (center). Fig. 4-6 (center) demonstrates how the inferred

actions lead to better execution on unseen objects, despite little improvement on the

finger-trajectory loss. We note how training with CVX not only refines the loss of

MDR, but also prevents over-fitting. Examples of the qualitative performance of each

model are shown in Fig. 4-7.
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Input Video NN MDR CVX DLM

Figure 4-7: Qualitative examples of each network applied to four trajectories from the
family (top two) and test (bottom two) sets. These shapes and motions are not seen
during the training phase of each model. Networks with more embedded mechanical
structure (MDR, CVX, DLM) tend to perform better than less structured ones (NN). The
DLM pipeline provides a layer of self-supervision to the model which helps it to generalize
better to unseen scenarios.

Learning Policies from Simulation Next we study the impact of learning actions

in a self-supervised fashion. We train DLM and NNM networks on the Fine-tuning

set, leveraging the differentiability of our simulator. Both networks are pre-trained

with the training set. We plot the resulting object trajectory loss in Fig. 4-6 (right).

The DLM architecture decreases the test loss without overfitting on the Fine-tuning

set, while the NNM network oscillates around a local minima. This test presents

the most similarity to a real-world experiment where, without ground-truth labels

on the parameters, the network learns to execute a video motion by iterating over

experiments. Examples of qualitative performance of DLM model is shown in Fig.

4-7. We show an example of how this approach can be applied to real object, given

a segmented video, in Fig. 4-1. Also see Appendix for results on shapes from the

OmniPush dataset [20].
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Table 4.1: Object-Trajectory Loss and computation times (in seconds) for the different
architectures on each dataset.

Model Training Fine-Tuning Test Family test Backward Pass (s) Forward Pass (s)
NN 8.5± 0.5 N/A 9.5± 2 10.0± 1.5 0.05± 0.01 0.06± 0.02

NNM N/A 15.0± 5.00 11.0± 2.00 15.0± 5.0 40.00± 5.00 0.06± 0.02
MDR 4.5± 2.0 N/A 7.5± 2.5 4.5± 2.0 0.10± 0.01 0.11± 0.02
CVX 2.0± 0.5 N/A 4.0± 0.5 3.5± 0.5 0.23± 0.01 0.11± 0.02
DLM - 1.5± 0.5 3.5± 0.5 3.5± 1.0 40.00± 5.00 0.11± 0.02
MIQP - - - - - 0.57± 0.25

Comparative Analysis Finally, we compare the final performance of the different

networks in terms of object-trajectory loss and computation times (per data-point),

shown in Table 4.1. Inference time in a neural model is smaller than MIQP (Oracle)

[4], as our model involves simple operations and solving QP. We note that training

the DLM model is slow, due to the use of finite difference in the backward pass.

92



Chapter 5

Certified Grasping

5.1 Caging as Optimization

A cage is an arrangement of obstacles that bounds the mobility of an object such

that it cannot escape arbitrarily far from its initial configuration. A cage can be

used to manipulate without rigid immobilization, alleviating common issues from

jamming, wedging, and general over-constrained interactions (e.g. turning the handle

of a door). A cage can also be used as a way-point to a grasp [133, 111], providing

a guarantee that the object will not escape in the process [2]. This connection of

cages to invariant regions and to robustness has attracted significant attention from

the robotic manipulation community.

In practice, however, the application of caging algorithms has been limited. In

this work, we propose to rethink the conventional topological/geometric approach to

characterize caging—focused on describing the set of finger configurations that cage

an object—and instead, we develop an approach that directly synthesizes a caging

configuration for some particular objective.

Figure 5-1 describes the motivation and long-term goal of this project: How do

we synthesize a manipulation strategy to cage an object while respecting the robot

and gripper kinematic limitations, and possibly exploiting the environment? The

work in this section is a first step in that direction. We present a reformulation of

the caging condition as a set of mixed-integer convex constraints with the versatility
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to incorporate the caging condition in the context of a larger manipulation planning

framework. Moreover, this proposed formulation also provides useful guarantees in

terms of optimality and convergence of the optimization problem. These proper-

ties, however, come at the expense of exponential bounds on computation time, and

resolution completeness of the algorithm.

In particular, this section focuses on caging planar polygonal objects—described as

the union of convex polygons—with a manipulator described by an arbitrary number

of point fingers in the plane. To do this, the proposed approach provides a set

of sufficient conditions expressed as convex mixed-integer constraints to cage such

object. The main contributions of this section are:

• Cage optimization algorithm based on the proposed convex-combinatorial

caging model. Cages can be computed efficiently with off-the-shelf mixed-

integer solvers yielding global convergence guarantees.

• Proof of correctness. If a cage exists within the resolution of the represen-

tation, the optimization algorithm will report it. If the algorithm reports a

solution, then that solution is a cage, and if a cage does not exist, the algorithm

will report so.

• Validation of the proposed cage synthesis algorithm on random planar poly-

gons.

• Application of the caging algorithm to find cages that exploit the environment

(walls) or that take into account kinematic limits in finger motions.

The remainder of this section is organized as follows: Sect 5.1.2 presents rele-

vant concepts and notation, and Sect 5.1.3 provides an overview of the framework

to synthesize cages. Sects 5.1.4 and 5.1.5 describe the constraints that represent the

proposed our convex-combinatorial model for planar caging. Sect 5.1.6 details the

theoretical guarantees of the approach. Finally, Sect 5.1.7 shows the results obtained

from implementing the cage synthesis algorithm on random polygons and shows ex-

amples of synthesis of complex cages exploiting the environment and considering
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kinematic constraints to finger motions.

5.1.1 Related Work

The problem of caging a rigid polygon was originally proposed by Kuperberg [79] as:

“Let P be a polygon in the plane, and let C be a set of n points in

the complement of the interior of P. The points capture P if P cannot be

moved arbitrarily far from its original position without at least one point

of C penetrating the interior of P. Design an algorithm for finding a set

of capturing points for P.”

Examples of cages can be seen in Fig. 5-1. This notion was later imported

to the robotics manipulation community by Rimon and Blake [107] as the problem

of surrounding an object by a robotic hand such that the object is not completely

immobilized, but cannot escape the “cage” formed by the fingers. The first set of

works that addressed the caging problem focused on algorithmic search—often based

on computation geometry techniques—of caging configurations of planar polygons for

two- and three-fingered manipulators [107, 118, 126]. In these and most caging works,

the manipulator “fingers” are usually modelled as points. More recently, we have also

seen techniques that search caging configurations with two and three fingers directly

in contact space [9, 25]. In contrast to these works, the approach we present in this

section is not limited a specific number of fingers; instead, we present a framework

for finding cages with arbitrary number of fingers.

The complexity of the caging problem significantly increases for three-dimensional

objects. Pipattanasomporn and Sudsang [98] developed an algorithm for computing

all two-finger cages of non-convex three-dimensional objects.

Most works on caging, as the work presented in this section, considers fingers

a points. Taking into account the shape of the manipulator can be beneficial, es-

pecially when dealing with classes of objects with shape features such as “waists”

and “rings”[89, 90], “holes” [117], and “narrow parts” [132]. These approaches avoid

reasoning about the entire configuration space, and instead identify specific shape
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features that facilitate specific types of cages. Searching for local shape features (in

workspace) rather than cages (in configuration space), reduces the complexity of the

caging search problem.

In the present section, we do not assume that objects have any specific shape

features, but we do build on the concept of searching for a particular type of cage. As

described in Sect 5.1.3, we search within those cages that are defined by a sequence

of loops in adjacent slices of configuration space which jointly define an enclosing of

the object. This yields a rich and computationally favorable family of cages. One

of the key contributions is a representation of the loop in each slice, and how it

changes between adjacent slices. This representation makes it possible to represent

the problem as a convex mixed-integer optimization problem with search guarantees.

An alternative approach for cage verification is to build an explicit approxima-

tion of the configuration space of the object, either in two-dimensional [86] or three-

dimensional [128, 130] space. While this approach offers more generality, as it is

applicable to manipulators and objects of arbitrary shapes, it is computationally

expensive due to the high dimension of the configuration space. To mitigate this

problem, Varava et al. [128, 130] represent configuration spaces as a collection of

lower-dimensional slices with fixed orientation values. This is similar to our choosing

of decomposing the configuration space into discrete orientation slices. In contrast to

our proposed approach, however, Varava et al. [128, 130] assume a predefined rigid

configuration of the manipulator and do not optimize relative finger placements. This

is done such that the configuration space of the object is defined. In our work, we

directly optimize the distribution of finger placements around the object.

The majority of works in caging consider cage verification and synthesis as separate

problems. This has made integrating caging into motion planning and trajectory op-

timization frameworks relatively unaddressed in the literature. Some scenarios where

caging has been integrated in manipulation planning are multi-agent transportation

of rigid objects [97] and multi-agent herding of a group of mobile agents [131]. In

these scenarios, maintaining caging provides robustness—the object or the agent can-

not escape. In general MIP has been applied to a diverse set of engineering problems
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Figure 5-1: Illustrative examples of caging in the context of robot manipulation:
trapping against a wall and caging under kinematic constraints, e.g., limited gripper
opening.

in robotics, including design, scheduling, planning, and control [76, 64, 43, 36, 3, 125].

5.1.2 Preliminaries

Here we introduce the notation and definitions that we will use through this section.

Notation

Given a rigid object 𝒪 in a planar workspace 𝒲 ⊂ R2, we denote its configuration

as 𝑞 = [𝑞𝑥, 𝑞𝑦, 𝑞𝜃]
𝑇 in its Configuration Space 𝒞 = 𝑆𝐸(2) [84]. The object 𝒪 can

be represented as the union of 𝑀 convex polygons P1, . . . ,P𝑀 covered by 𝐿 facets

F1, . . . ,F𝐿. We refer to a hyperplane of 𝒞 with fixed orientation component 𝜃 as a

𝒞−slice, denoted 𝒞(𝜃). The manipulator ℳ is an arrangement of 𝑁 point fingers

in the workspace 𝒲 , with positions ℳ = {𝑝1, . . . ,𝑝𝑁} ∈ 𝒲𝑁 . We summarize this

notation in Table 5.1 and depict it in Fig. 5-2.

In configuration space 𝒞, and at each 𝒞−slice, we refer to the set of configurations

where the object intersects a finger as 𝒞-obstacles (also known as Collision Space).

Then, the free space of the object 𝒞free is the subset of 𝒞 not intersecting any of the

𝒞-obstacles. Note that we allow the object to be in contact with the obstacles, and
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Figure 5-2: Depiction of some of the central concepts relevant to this chapter: 1)
The configuration space of a planar object 𝒞, under a configuration 𝑞 = [𝑥, 𝑦, 𝜃], 2)
the workspace 𝒲 with the object 𝒪 and two point obstacles, and 3) The visual
representation of the slice of C-space 𝒞(𝜃).

so the free space is a closed set. For a more detailed definition of free configuration

space and its properties, see Rodriguez and Mason [109].

Caging

Using the language of configuration space, we re-state the caging problem as

Given a planar object 𝒪 at configuration 𝑞 = [𝑞𝑥, 𝑞𝑦, 𝑞𝜃]
𝑇 and an 𝑁 -

finger manipulator ℳ, find a configuration of ℳ such that 𝑞 lies in a

compact connected component of 𝒞free. We denote that compact connected

component as 𝒞compact
free .

This formulation of the problem, based on a topological characterization, is equiv-

alent to the more traditional geometric condition that there must exist no continuous

path for the object to go arbitrarily far from the manipulator.

5.1.3 Approach Overview

In this section, we overview our approach to represent the problem of caging a planar

object.
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Table 5.1: Summary of notation used in this chapter

𝒪 object
𝒲 ⊆ R2 workspace
𝒞 ⊆ 𝑆𝐸(2) C-space
𝒞free ⊂ 𝒞 free space
𝒞col ⊂ 𝒞 C-obstacles
𝒞(𝜃) slice of the C-space
𝒞free(𝜃) free space of a slice
𝑁 number of robot fingers
𝑀 number of convex polygons composing 𝒪
𝑆 number of 𝒞−slices
𝑅 number of convex regions in 𝒲∖𝒪

Conditions for Caging

Based on the definition in Section 5.1.2, synthesizing a cage is equivalent to creating

a compact connected components in the free space 𝒞compact
free . In general, the set of

possible compact connected components is very large. In [111], Rodriguez and Mason

showed that it might be indeed too large for it to be a useful characterization of

cages and grasps. Here, we introduce a set of conditions that characterize a rich set

of cages that are both useful and will make the search more efficient. We restrict

to those cages where the compact connected component 𝒞compact
free has a single local

maxima and minima along the orientation 𝜃 axis, as illustrated in Figure 5-3. To

formalize this idea, we first introduce the concept of limit orientations

Definition 1 (Limit Orientation). Given a compact connected component 𝒜 of the

configuration space of the object 𝒞, we define its upper limit orientation as

𝜃𝑈 = sup
Θ
𝜃 where Θ = {𝜃 s.t. [𝑞𝑥, 𝑞𝑦, 𝜃] ∈ 𝒜}

and its lower limit orientation as

𝜃𝐿 = inf
Θ
𝜃 where Θ = {𝜃 s.t. [𝑞𝑥, 𝑞𝑦, 𝜃] ∈ 𝒜}

For some [𝑞𝑥, 𝑞𝑦] ∈ R2. The key idea we propose in this chapter is that the com-
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Figure 5-3: Different types of compact connected components. The conditions
described in this section describe cages (a) and (b), as both of these components
have a pair of limit orientations where the component opens and closes (green
stars). However, these conditions are not sufficient to create a cage with component
(c), as there are two local minima in the orientation of the component (red stars).

bination of the following three constraints generate a compact connected component

𝒞compact
free , and that these constraints can be expressed with the language of mixed-

integer programming:

1. The mobility of the object is bounded in the 𝜃 axis by two limit orientations 𝜃𝑈

and 𝜃𝐿, or it is unbounded and it cycles, i.e., object can rotate indefinitely.

2. In all 𝒞−slices between the two limit orientations there is a loop of 𝒞−obstacles

enclosing the free configurations 𝑞 of the object. These loops must be connected

between adjacent slices in a way that they form an enclosing of the configuration

of the object.

3. At the 𝒞−slices of the limit orientations, when they exist, the free space com-

ponent enclosed by the loop must degenerate to zero volume. In our case, this

will mean being reduced to a line segment or a single configuration.

Figure 5-4 illustrates the process in the workspace, slices, and configuration space

where these conditions hold. While these conditions do not represent the complete

set of cages of an object, they include a large subset. Figure 5-3 gives some intuition

of the type of cages we do and do not characterize.
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Figure 5-4: Overview of the conditions for caging. Each plane shows a 𝒞−slice
during a cage between two limit orientations (blue) with a compact connected
component of free space (red). Note that in the limit orientations the object is
constrained to a line segment of translational motion by the collision space. Also,
the object is only caged if the component remains compact and connected between
slices.

Model Overview

To make it possible to formulate the problem as a convex mixed-integer program, we

rely on the following assumptions:

• The object 𝒪 is represented as the union of𝑀 convex polygons, with a boundary

composed of 𝐿 line segments.

• The manipulator ℳ is represented as a set of 𝑁 point-fingers.

• We discretize 𝒞 in 𝑆 𝒞-slices, similar to [128]. We will impose that the manip-

ulator bounds the object in each slice and will also impose regularity between

consecutive slices to provide caging guarantees.

These assumptions allow us to: 1) describe the compact-connected component

at each 𝒞−slice as a chain of interconnecting convex polygons, and 2) describe limit

orientations and point-line intersection constraints. Formulating this model requires

continuous variables to represent the positions of the manipulator fingers, and bi-

nary variables to represent the discrete-combinatorial connectivity relation between

𝒞-obstacles. Therefore, we will introduce three types of constraints to our model:

• Limit orientations: we constrain that either the object is caged for all 360∘

or that 𝒞compact
free is bounded by two limit orientations.
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Figure 5-5: The enclosing loop for a slice with three fingers in 𝒲 (left), 𝒞(𝜃)
(center) and its corresponding connection graph (right)

.

• At each slice: We require that a subset of the 𝑁 𝒞−obstacles, each induced

by a finger, forms a loop around the configuration of the object [𝑞𝑥, 𝑞𝑦]
𝑇 . This

ensures that there is a compact connected component at each slice

• Between slices: We require that the loop at each 𝒞−slice maps continuously,

without breaking, into the loop of its adjacent 𝒞−slices. We impose this by

requiring that the connectivity between 𝒞−obstacles at each slice remains con-

sistent across 𝒞−slices, forming the component 𝒞compact
free that encloses 𝑞.

In Sections 5.1.4 and 5.1.5, we show how to formulate these conditions and that

they are sufficient to guarantee that the object 𝒪 is caged by the manipulator ℳ.

5.1.4 Constructing enclosing loops at configuration space slices

In this section, we derive sufficient conditions for an object to be caged in a configura-

tion space slice 𝒞(𝜃), that is given an orientation of the object 𝜃, we derive conditions

that guarantee that the object cannot escape under planar translations.

The approach to derive these conditions is to construct a continuous loop in the

𝒞-slice that encloses the configuration of the object 𝑞. To that end, we impose that the

configuration of the 𝑁 manipulator fingers is such that the union of the 𝒞-obstacles

induced by a subset of these fingers contains such an enclosing loop. We do this

in three steps: In Section 5.1.4 we describe how to enforce that a loop exists, in

Section 5.1.4 we impose that the loop encloses the object, and in Section 5.1.4 we

require that the manipulator fingers that define the loop live in the free space of the

object 𝒞free.
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We start by defining the notion of enclosing loop. Consider an object 𝒪, its

configuration space 𝒞, and a slice of constant orientation 𝒞(𝜃), a manipulator ℳ, and

the 𝒞(𝜃)-obstacle it defines in the the 𝒞(𝜃). We define:

Definition 2 (Enclosing loop). Continuous closed curve contained in 𝒞(𝜃)-obstacle

that cannot be contracted to a point inside 𝒞(𝜃)-obstacle.

And we make the following remark:

Remark 1. An object in configuration 𝑞 = [𝑞𝑥, 𝑞𝑦, 𝑞𝜃] is caged under planar transla-

tions in 𝒞(𝜃) if 𝑞 lies in the interior of an enclosing loop in 𝒞(𝜃)-obstacle.

Since the configuration space of a planar object with a fixed orientation is a subset

of R2, the statement immediately follows from Jordan’s polygon theorem [114]. The

connected component of the free space containing 𝑞 must be bounded by definition,

and since the free space is closed, it must also be compact.

For notation convenience, we will refer to the free space of 𝒞(𝜃) as 𝒞free(𝜃), and

its enclosed component 𝒞compact
free (𝜃𝑠) as 𝒞𝑐(𝜃𝑠). To create 𝒞𝑐(𝜃𝑠), we require that the

𝒞−obstacles in 𝒞(𝜃) form a loop.

Existence of a loop

We assumed in Section 5.1.3 that the object can decomposed into the union of 𝑀

convex polygons P1 . . .P𝑀 , such that:

𝒪 =
𝑀⋃︁

𝑖=1

P𝑖

This property becomes key to formulate the existence of a loop between a subset

of the 𝑁 𝒞(𝜃)−obstacles induced by the 𝑁 fingers. Because the obstacle associated to

manipulator finger 𝑖 in the slice 𝒞(𝜃) has the shape of a rotated and translated version

of the object 𝒪, it can also be decomposed into the union of 𝑀 convex polygons P.

We will note the convex polygons that decompose the 𝒞(𝜃)-obstacle associated to

finger 𝑗 as P1,𝑗 = p𝑗

⨁︀
P1, . . . ,P𝑀,𝑗 = p𝑗

⨁︀
P𝑀 , where

⨁︀
is the Minkowski sum
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operator, such that:

𝒞𝑐𝑜𝑙(𝜃) =
𝑁⋃︁

𝑗=1

𝑀⋃︁

𝑖=1

P𝑖,𝑗

Then loop existence is equivalent to constructing a loop in a graph where nodes

are each of the convex polygons P𝑖,𝑗 ∀𝑖, 𝑗, and edges represent the intersection or

adjacency among them. This is illustrated in Figure 5-5.

For the algorithm to be general to any number of fingers, it must determine which

of the fingers or polygons on each 𝒞−obstacles are part of the enclosing loop, to

account for the possibility that not all fingers are necessary. For representational

purposes it must also determine the direction of each of these edges in a directed

graph, which prevents degenerate loops. We address the construction of enclosing

loops without using all fingers at the end of this section, but for now, for simplicity

of exposition, we assume that all fingers must be part of this loop.

Loops that use all fingers Here we formulate the constraint that the finger ob-

stacles form a loop of constraints around the configuration of the object. We assume,

without loss of generality, that the indices of the fingers 1 . . . 𝑁 are in the same order

as they eventually appear in the loop of constraints, i.e. finger 𝑖 is nearby finger 𝑖+1

and this nearby finger 𝑖 + 2. When fingers can move freely, this assumption comes

without loss of generality since an MIP will ultimately optimize over finger locations,

and the caging property is invariant to their identity. However, if the fingers have

any kinematic constraints, the numbering of fingers can have an impact on the set of

possible cages. Moreover, this assumption implies that all fingers are part of the cage,

forbidding the model from that ability to discriminate when a finger is not necessary

in the cage.

In practice, this means that when encoding intersections between finger obstacles

we can only consider adjacent fingers. To do so, for each finger 𝑛, we introduce a

binary matrix 𝐻𝑛 ∈ {0, 1}𝑀×𝑀 that encodes the intersections or connectivity between

its convex polygons and those of its adjacent finger. That is, 𝐻𝑛(𝑖, 𝑗) = 1 if polygon

P𝑖,𝑛 intersects polygon P𝑗,𝑛+1. Imposing an intersection between those two polygons
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can be written as

𝐻𝑛(𝑖, 𝑗) = 1 ⇒ ∃ r𝑛 ∈ R2 s.t. r𝑛 ∈ P𝑖,𝑛 ∩P𝑗,𝑛+1 (CT1)

Note that the values of 𝐻 are variables that depend on the configuration of the fingers

p1, . . . ,p𝑁 . The coordinates of the point r𝑛 also become continuous variables in the

optimization problem, and imposing that r𝑛 belongs to P𝑖,𝑛 and P𝑗,𝑛+1 is a series of

linear constraints, given that both are convex polygons. we can also transcribe the

operator ⇒ (implies) as linear constraint through the big-M formulation [22].

To make all fingers a part of the loop, we enforce the following constraint for each

finger 𝑛:
∑︁

𝑖,𝑗

𝐻𝑛(𝑖, 𝑗) = 1 (CT2)

This imposes that there is one and only one directed edge from 𝒞(𝜃)-obstacle 𝑛 to

𝒞(𝜃)-obstacle 𝑛+ 1. Since these connections are enforced for 𝑛 = 1, . . . , 𝑁 , they lead

to a directed loop of obstacles in 𝒞(𝜃).

In addition to using 𝐻𝑛 to represent the connectivity between different 𝒞(𝜃)-
obstacles, we also introduce a binary matrix 𝐺𝑛 ∈ {0, 1}𝑀×𝑀 , for each finger 𝑛,

to represent the internal connectivity between the convex polygons that form each

𝒞(𝜃)−obstacle. That is, 𝐺𝑛(𝑖, 𝑗) = 1 if polygon P𝑖,𝑛 and P𝑗,𝑛 are connected. Note

that the values of 𝐺 are constants pre-determined by the shape of the object 𝒪 and

its decomposition into convex polygons.

We can then formulate the loop closure condition between all 𝑁 fingers as:

𝐻𝑛−1(𝑖, 𝑗) ⇒ ∃ 𝑘,∃ 𝑙 s.t. 𝐺𝑛(𝑗, 𝑘) +𝐻𝑛(𝑗, 𝑙) = 1 (CT3)

𝐺𝑛(𝑖, 𝑗) ⇒ ∃ 𝑘 ̸= 𝑖,∃ 𝑙 s.t. 𝐺𝑛(𝑗, 𝑘) +𝐻𝑛(𝑗, 𝑙) = 1 (CT4)

(CT3) and (CT4) combined guarantee that for each node with an inbound edge, there

is one and only one outbound edge. When combined, this defines a loop in 𝒞(𝜃). Note

that in the special case of a two-finger manipulator, since 𝐻𝑛,𝑛+1 and 𝐻𝑛−1,𝑛 have the
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same value, we need to further constrain that 𝑙 ̸= 𝑖 in (CT3).

Extension to arbitrary loops The previous constraints allow us to find cages

that employ all fingers. However, the flexibility of the model to use integer variables

also facilitates finding loops containing only a sub-set of the fingers. For this, we can

extend each 𝐻 matrix into a higher dimensional tensor that considers all possible fin-

ger combinations. Essentially, 𝐻𝑛(𝑖, 𝑗,𝑚) = 1 would encode an intersection between

P𝑖,𝑛 and P𝑗,𝑚. This would extend the dimension of each 𝐻 matrix to 𝑀×𝑀×(𝑁−1)

(note the 𝑁 − 1 term represents connection with the other fingers). With this new

formulation, we have recast constraint (CT2) and replace it by

∑︁

𝑖,𝑗

∑︁

𝑛,𝑚

𝐻𝑛(𝑖, 𝑗,𝑚) +𝐺𝑛(𝑖, 𝑗) ≥ 1

adding the requirement to have at least one edge in the closed directed graph. Simi-

larly, equations (CT3) and (CT4) are modified as:

𝐻𝑛(𝑖, 𝑗,𝑚) ⇒ ∃ 𝑘,∃ 𝑙,∃ 𝑜 s.t. 𝐺𝑚(𝑗, 𝑘) +𝐻𝑚(𝑗, 𝑙, 𝑜) = 1

𝐺𝑛(𝑖, 𝑗) ⇒ ∃ 𝑘 ̸= 𝑖, ∃ 𝑙 ∃ 𝑜 s.t. 𝐺𝑛(𝑗, 𝑘) +𝐻𝑛(𝑗, 𝑙, 𝑜) = 1

With this extended formulation, the model can consider interconnections between

arbitrary pairs of fingers. This removes any dependence on finger numbering, as

any pair of fingers can be a part of the loop, and allows the model to distinguish

“minimal” cages without redundant or unnecessary fingers, as in [97]. Naturally, this

comes at the cost of a much larger 𝐻 matrix, which has a significant impact in the

computational complexity of the Mixed-Integer model.

Object enclosing

The previous constraints ensure the existence of a compact connected component

𝒞compact
free (𝜃) in each slice. It is important to note that the enclosing loop implies the

existence of a piecewise-polygonal curve in each slice 𝒞(𝜃) that traverses through the
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Figure 5-6: A point lies within a closed curve (dashed line) if a ray originating
from that point has an odd number of intersections (blue) with the edges of the
loop. Left: the point lies inside the polygon, and the ray has an odd number (one)
of intersections. Right: the point lies outside the polygon, and the ray has an even
number (two) of intersections.

inside of some of the 𝒞(𝜃)-obstacles. We construct this curve by connecting points

that live in the intersection of polygons in the loop.

However, this does not guarantee that 𝑞 = [𝑞𝑥, 𝑞𝑦, 𝑞𝜃] is contained in 𝒞compact
free , since

the configuration 𝑞 could lie on the outside of the component. Note that enclosing 𝑞 in

one of the slices 𝒞compact
free (𝜃) implies requiring that [𝑞𝑥, 𝑞𝑦]𝑇 is enclosed in 𝒞compact

free (𝑞𝜃).

To formalize this constraint, we use the following remark:

Remark 2 (Point inside a curve [114]). Given a closed curve and a point 𝑟 in the

plane, and given a ray starting at 𝑟. If the ray intersects the curve an odd number of

times, then 𝑟 is in the interior of the curve.

This remark is valid except for degenerate cases, for example when the ray is

parallel to a segment of the curve, in which case the intersection can be a segment

rather than a point, or when the curve encloses zero area. These scenarios can be

avoided in our analysis if all the polygons have non-zero area (none of them is a point

or a line). In this case, we can define the enclosing curve such that its segments do

not coincide with the facets of the 𝒞−obstacles. This prevents the enclosing curve

from being completely parallel to the ray or having zero area.

Making use of Remark 2 we impose the configuration 𝑞 to be enclosed by the
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Figure 5-7: Counting ray (red arrow) intersection with enclosing polygonal loop
(dashed line). For any given segment (dashed blue line) of the enclosing loop, the
configuration 𝑞 (red dot) must lie in one of the four regions 𝐹 (𝑛,𝑚, 1), 𝐹 (𝑛,𝑚, 2),
𝐹 (𝑛,𝑚, 3), 𝐹 (𝑛,𝑚, 4). Note that since the regions are aligned with the direction of
the ray, the ray intersects the mentioned segment when the configuration when 𝑞
lies in 𝐹 (𝑛,𝑚, 1).

curve constructed above by constraining the number of intersections between a ray

and the line segments to be odd. We will see that we can impose this as a convex-

combinatorial constraint.

To count the number of times the ray crosses the enclosing polygonal loop, we

count the number of edges it crosses. We do that by creating binary variables that

encode the relative location of the configuration 𝑞 and the ray with respect to each

polygon in the loop. Verifying if a ray intersects a line segment requires a bilinear non-

convex constraint, which is incompatible with our framework. However, we can recast

this constraint by checking whether the origin of the ray lies on, over, under, or to

the side of the segment. To model this constraint, we start by assuming a direction of

the ray (in our case we use the positive 𝑦−axis) and by decomposing the surrounding

area around each segment in the polygonal loop into four boxes orthogonally aligned

with the direction of the ray. Figure 5-7 illustrates an example where the ray is in

the direction of positive 𝑌 , and the four regions for the blue dashed edge. For each

segment, and their associated four regions, we introduce binary decision variables

𝐹 ∈ {0, 1}𝑁×𝑀×5, such that:
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1. 𝐹 (𝑛,𝑚, 1) through 𝐹 (𝑛,𝑚, 4), when equal to one, assign [𝑞𝑥, 𝑞𝑦] to that partic-

ular region of the line segment starting in the 𝑚𝑡ℎ polygon of the 𝑛𝑡ℎ finger.

2. 𝐹 (𝑛,𝑚, 5) is set to 1 if the 𝑚𝑡ℎ polygon of the 𝑛𝑡ℎ finger is not part of the loop.

We strategically construct the regions such that region number 1 is parallel to the ray

and below the line segment. By construction then, the ray will intersect the segment

if 𝐹 (𝑛,𝑚, 1) = 1, as illustrated in Figure 5-7.

With these variables, we can constraint the ray to intersect an odd number of

times with the polygonal loop by imposing

⎧
⎪⎨
⎪⎩

∑︀
𝑛,𝑚 𝐹 (𝑛,𝑚, 1) is an odd number

∑︀5
𝑖=1 𝐹 (𝑛,𝑚, 𝑖) = 1 ∀𝑛,𝑚

(CT5)

note that the second constraint is necessary to only assign configuration 𝑞 to one of

the four regions. This also effectively reduces the area where the configuration may

lie to the intersection of the actual caging region and the orthogonal region.

Finally to transform (CT5) into a set of (mixed-integer) linear constraints, we use

the fact that (1 𝑋𝑂𝑅 1) = (0 𝑋𝑂𝑅 0) = 1 and (1 𝑋𝑂𝑅 0) = (0 𝑋𝑂𝑅 1) = 1, hence

we obtain the following lemma

Lemma 1. The summation of binary variables
∑︀𝑛

𝑖=1 𝑏𝑖 is an odd number if and only

if 𝑏1 𝑋𝑂𝑅 𝑏2 . . . 𝑋𝑂𝑅 𝑏𝑛 = 1.

Where the 𝑋𝑂𝑅 operator can be transcribed as linear constraints on the binary

variables as described in [72].

Non-Penetration Constraints

Finally, for the previous constraints to be valid, we must prevent the fingers from

penetrating the object at each slice where there must exist a loop. Unlike the enclosing

loop constraint which we represented in the configuration space of the object, non-

penetration is easier to represent in the workspace of the object. For this, we partition
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Figure 5-8: Decomposition of the free workspace 𝒲 ∖𝒪, for some orientation 𝜃0,
into the union of convex regions and assignment of each finger to a region. In this
example with two point fingers, the free workspace is segmented into 𝑅 = 4 convex
polygonal regions ℛ1,ℛ2,ℛ3,ℛ4, finger p1 is in region ℛ1 (that is 𝑅1,1(𝜃) = 1) and
finger p2 is in region ℛ3 (that is 𝑅3,2(𝜃0) = 1).

the 2D free workspace around the object 𝒲 ∖ 𝒪 into a set of 𝑅 convex regions, as

illustrated in Figure 5-8. We represent each convex region as the union of half-spaces:

ℛ𝑖 = {𝑥 ∈ R2|𝐴𝑖𝑥 ≤ 𝑏𝑖}

and then constrain that each finger p𝑛 to lie in one of these regions. For this, we

introduce the binary decision matrix 𝑅(𝜃) ∈ {0, 1}𝑅×𝑁 that assign fingers to a region

at each slice with:

𝑅𝑟,𝑛(𝜃) ⇒ 𝐴𝑖p𝑛 ≤ 𝑏𝑖 and
𝑅∑︁

𝑟=1

𝑅𝑟,𝑛(𝜃) = 1,∀𝑛 (CT6)

this ensures that each finger lies in one and only one of the regions. We again tran-

scribe the ⇒ operator via big-M formulation. Note that this constraint, although

formulated in the workspace of the object, it also ensures that 𝑞 lies in each 𝒞-slice

without penetrating any 𝒞−obstacle.

The following section we discuss how the loops in each slice interconnect to create

a compact connected component 𝒞compact
free or cage.
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5.1.5 Constructing a cage from loops

To guarantee a cage, we will require that 𝒞compact
free either repeats periodically in the

orientation dimension or closes at two limit orientations, in order to remain compact.

In Section 5.1.5 we present a set of sufficient conditions for that to be the case.

Further, for the object to be fully caged, the enclosing loops at each of the 𝒞−slices

constructed in Section 5.1.4 must be interconnected such that there are no escaping

paths in the space between slices. In Section 5.1.5 we show that we can impose

sufficient regularity conditions to guarantee it.

Limit Orientations

We distinguish between two different ways to cage an object:

1. A cage where the object rotation is not limited, also known as a fence,

2. A cage where the reorientation of the object is limited.

The former case is a practical, but often inefficient way to cage an object that em-

ploys many fingers. The later case requires the existence of limit orientations in the

configuration space between which the mobility of the object is bounded.

We are specially interested in the construction of cages of the latter type. For that,

the model must impose the existence of and determine a pair of limit orientations

𝜃𝑈 , 𝜃𝐿 in 𝒞compact
free . To capture this in the formulation, we introduce a vector of binary

variables Θ ∈ {0, 1}𝑆, one variable for each slice, such that Θ𝑠 = 0 implies that slice 𝑠

with orientation 𝜃𝑠 lies between two limit orientations. When a slice lies between two

limit orientations, we must impose the necessary constraints for that slice to contain

an enclosing loop (existence of a loop and non-penetration). We impose this relation

through the following constraints

Θ𝑠 = 0 ⇒

⎧
⎪⎨
⎪⎩

∑︀𝑅
𝑟=1𝑅𝑟,𝑛(𝜃𝑠) = 1

∑︀
𝑖,𝑗 𝐻𝑛(𝑖, 𝑗)(𝜃𝑠) = 1

(CT7)
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Where 𝑅𝑟,𝑛(𝜃𝑠) are the binary variables defined for non-penetration, and 𝐻𝑛(𝑖, 𝑗)(𝜃𝑠)

are the binary variables defined to construct the enclosing loop for slice 𝜃𝑠. With

this constraint CT7, if slice 𝒞(𝜃𝑠) lies between two limit orientations then the loop

existence and non-penetration constraints are active. If the slice, however, lies outside

the limit orientations then the loop existence and non-penetration constraints are not

enforced.

We constrain that Θ𝑠 = 1 when the component of 𝒞free(𝒪) in the corresponding

slice degenerates to zero area. Moreover, assuming slices are ordered by increasing

orientation, we add the condition that:

Θ𝑠 = 1 =⇒

⎧
⎪⎨
⎪⎩
Θ𝑠+1 = 1, 𝜃𝑠 ≥ 𝜃𝑈

Θ𝑠−1 = 1, 𝜃𝑠 < 𝜃𝐿

Which removes all constraints for the slices after the limit orientations. The condition

that imposes that the cage in a slice degenerates to zero area depends on the number

of fingers and on the boundary of the object. Figure 5-9 illustrates some scenarios

that satisfy this zero-area condition:

• Two fingers: the fingers make contact with two parallel but opposite facets of

the object, as in Figure 5-9 (top).

• Three fingers: three fingers are in simultaneous contact with non-parallel

facets, as in Figure 5-9 (center).

• More fingers: four or more fingers are in simultaneous contact with non-co-

directional facets (without the same normal), as in Figure 5-9 (bottom).

where opposite refers to facets with normals that are parallel but with opposite direc-

tion. Since the fingers create a loop that encloses 𝑞, any concave vertex in the object

can be considered opposite and non-parallel to the facets with a 180∘ difference to

some angle in arc of the vertex.

Finally, for the optimization problem to be able to determine automatically the

limit orientations 𝜃𝑈 and 𝜃𝐿 among the vector of orientations Θ, we characterize all
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geometric object-finger configurations that define a limit orientation and force that

one of these configurations is satisfied at the limit orientations. To achieve this,

introduce at each slice Θ𝑠 a binary matrix 𝑇𝑠 ∈ {0, 1}𝑁×𝐿. Each term in the matrix

is constrained so that 𝑇𝑠(𝑛, 𝑓) = 1 implies that finger 𝑛 is in contact with facet F𝑓 ,

for some configuration of the object within the slice 𝑠.

Given that the shape of the object is known, we can determine which combination

of contacts with the facets of the object induce a limit orientation. Note that each

component of 𝑇 represents one possible combination of contacts. We pre-compute

which elements of 𝑇 induce a limit orientation to obtain the set ℒ𝒪, comparing each

pair of facets in the objects, and impose constraint:

𝑇𝑠 ∈ ℒ𝒪 ⇒ Θ𝑠 = 1 (CT8)

which guarantees that the model will indeed assign Θ𝑠 = 1 only if it is a real limit

orientation.

As an aside note, and in relation with previous works in caging theory, the idea

of caging between two limit configurations was key for Rimon and Blake’s original

caging formulation [106], and is equivalent to finding a critical point of the inter-finger

distance function in the contact space of the object, as proposed by Allen et al. [9]

and Bunis et al. [25].

Continuous Boundary Variation

The constraints described in Section 5.1.4 and in Section 5.1.5 ensure the existence

of a compact connected component of free space in each sampled 𝒞-slice, ensure that

𝑞 lies in one of those slices, and ensure that the free space closes in upper and lower

limit orientations. Due to the discretization of slices, the object might still escape

through the space in between the 𝒞-slices, through complex motions that combine

translations and rotations. See the example in Figure 6 in Rodriguez et al. [111].

To avoid this, we impose conditions to guarantee that the polygonal intersections

that define the enclosing loops in Section 5.1.4 are maintained between slices. This
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Figure 5-9: Examples of limit orientations: (top) Two fingers in contact on facets with
opposite normals yield a line in free space. (center) Three fingers in contact on
non-parallel facets yield a single point in free space. (bottom) Four points in contact with
with four non-co-directional facets, each facet has a different normal vector.

will ensure sufficient regularity to guarantee that the configuration 𝑞 is in a compact

connected component of 𝒞free. In this section we describe the constraints, and in

Section 5.1.6 we give a proof of correctness.

In essence, to impose regularity between slices, we impose that the active set of

discrete connections between polygons in a slice remains active in adjacent slices, as

illustrated in Figure 5-10. In practice, we model this constraint by enforcing that

there is a point 𝑥 that remains inside the intersections across adjacent slices. Given

two fingers p𝑛 and p𝑛+1 whose 𝒞-obstacles contribute to define an enclosing loop,

we have noted their respective intersecting convex polygons as P𝑖,𝑛 and P𝑗,𝑛+1. We

define now a new decision variable 𝑥𝑗,𝑛+1, at each slice, denoting a point that belongs

to the intersection of P𝑖,𝑛 and P𝑗,𝑛+1. Note that by the subscript 𝑗,𝑛+1 we mean to

indicate that 𝑥 is expressed in local relative coordinates to P𝑗,𝑛+1.

We start by imposing the constraint:

𝑥𝑗,𝑛+1 ∈ P𝑗,𝑛+1 (CT9)
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Figure 5-10: Continuous boundary variation. If the intersecting convex polygons
that define the enclosing loop have a continuous intersection between adjacent slices
(blue triangular regions in figure on the right), then the caged free space has a
continuous boundary between slices 𝜃𝑠 and 𝜃𝑠+1 (red area), which will induce a
compact connected component between them.

To constrain that 𝑥 is also in P𝑖,𝑛 when transitioning from slice 𝜃𝑠+1 to slice 𝜃𝑠, we

explicitly construct the trajectory of 𝑥 in P𝑖,𝑛’s coordinates given by a relation of

∆𝜃 = 𝜃𝑠+1 − 𝜃𝑠:

𝑥𝑖,𝑛(∆𝜃) = 𝑥𝑗,𝑛+1 +𝑅(∆𝜃)𝑇 (𝑐𝑗,𝑛+1 − 𝑐𝑖,𝑛)

where 𝑅(∆𝜃) is a planar positive rotation matrix of angle ∆𝜃, and 𝑐𝑖,𝑛, 𝑐𝑗,𝑛+1 are the

origins or centers of rotation of P𝑖,𝑛 and P𝑗,𝑛+1 respectively.

The trajectory 𝑥𝑖,𝑛(𝜃) describes a circular arc with center 𝑐𝑗,𝑛+1 and radius |𝑥𝑗,𝑛+1−
𝑐𝑖,𝑛+1|, as illustrated in Figure 5-11. Constraining the trajectory of 𝑥 to stay inside the

polygon P𝑖,𝑛 is a non-convex constraint because of the curvature of the arc. Instead

we impose the stricter constraint that a triangle enclosing the arc must lie inside the

polygon P𝑖,𝑛. We construct the arc-enclosing triangle with the two ends of the arc

(𝑥𝑖,𝑛(𝜃𝑠), 𝑥𝑖,𝑛(𝜃𝑠+1)) and the point 𝑥𝑣 at the intersection of the two arc tangents at

those two ends. A sufficient condition for the triangle and the arc to be inside the

polygon P𝑖,𝑛 is that all three vertices {𝑥𝑖,𝑛(𝜃𝑠), 𝑥𝑖,𝑛(𝜃𝑠+1), 𝑥𝑣} are inside the polygon.

See this construction in Figure 5-11 (bottom).

Note that we can construct 𝑥𝑣 as a linear function of decision variables:

𝑥𝑣 = 𝑥𝑖,𝑛(𝜃𝑠) +

(︂
I2×2 +𝑅−90∘ tan

∆𝜃

2

)︂
(𝑐𝑗,𝑛+1 − 𝑐𝑖,𝑛) (CT10)
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with ∆𝜃 = 𝜃𝑠+1 − 𝜃𝑠.

We activate these regularity constraints only for those polygons that define the

enclosing loops with the following constraints:

𝐻𝑛(𝑖, 𝑗)(𝜃𝑠) ⇒ 𝑥𝑖,𝑛(𝜃𝑠), 𝑥𝑖,𝑛(𝜃𝑠+1), 𝑥𝑣 ∈ P𝑖,𝑛

(CT11)

Through constraints (CT9), (CT10) and (CT11) we ensure that the intersecting

polygons of 𝒞(𝜃) remain connected for all orientations between 𝒞(𝜃𝑠) and 𝒞(𝜃𝑠+1).

Hence, the free space component boundary only expands or contracts continuously

when rotating between slices.

Figure 5-11: Loop closure continuity between 𝒞-slices 𝜃𝑠 and 𝜃𝑠+1. We require that
the convex polygons defining the 𝐶-obstacles intersect at a point 𝑥 during the
rotation between slices. (top) Example polygons defining the 𝐶-obstacles rotate
from 𝜃𝑠 (darker shaded grey) to 𝜃𝑠+1 (lighter shaded grey). Point 𝑥 lies at the
intersection of both polygons at both slices, and its trajectory induced by the
rotation between 𝜃𝑠 and 𝜃𝑠+1 is a circular arc. (bottom) The arc, observed from
𝑃𝑖,𝑛’s coordinates. It is contained within the triangle formed by vertices
{𝑥𝑖,𝑛(𝜃𝑠), 𝑥𝑖,𝑛(𝜃𝑠+1), 𝑥𝑣}.

5.1.6 Theoretical properties of our approach

This section derives a proof of correctness for the solutions obtained from this model.
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We want to demonstrate that all manipulator configurations found by our algo-

rithm are guaranteed to cage the object in its configuration 𝑞. The proposed for-

mulation relies on a discretization of the configuration space into slices. We now

demonstrate that the enclosing loop does not break between two consecutive slices.

Formally, the following theorem describes the sufficient conditions that are the basis

for constructing cages in Section 5.1.4 and Section 5.1.5.

Figure 5-12: The set of intersections between the obstacle polygons remains the
same for consecutive slices; there is an enclosing loop that is preserved between
them.

Intuitively, we would like to demonstrate that, given a caging configuration 𝑞 that

is caged under translations in a orientations 𝜃𝑠 and 𝜃𝑠+1, it remains caged for all

orientations from the respective interval. Formally, we want to prove the following

statement:

Theorem 1. Consider two consecutive slices corresponding to orientations 𝜃𝑠 and

𝜃𝑠+1, and assume that the following conditions are satisfied (see Fig. 5-12):

1. There are enclosing loops 𝛾(𝜃𝑠) and 𝛾(𝜃𝑠+1) that enclose the configuration of the

object 𝑞 within the 𝐶-obstacles defined in 𝐶-slices 𝜃𝑠 and 𝜃𝑠+1 respectively, and

these are formed by the same polygonal intersections;

2. The set of intersections between the obstacle polygons remain the same for all

orientations 𝜃 ∈ [𝜃𝑠, 𝜃𝑠+1];

If the object’s movements are restricted to arbitrary rigid translations in R2 and ro-

tations between orientations 𝜃𝑠 and 𝜃𝑠+1. Then, any point 𝑥 such that 𝑥 ∈ int 𝛾(𝜃𝑠)
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and 𝑥 ∈ int 𝛾(𝜃𝑠+1), is caged in R2 × [𝜃𝑠, 𝜃𝑠+1].

To derive the final statement, we will need to make several preliminary obser-

vations. First, notice that the enclosing loop is always located inside the obstacles

and there is a lower bound on its distance from their boundary. Let 𝛼(𝜃) denote the

distance from 𝛾(𝜃) to the boundary of the obstacles. Formally, we prove the following

statement:

Lemma 2. There exists 𝛼𝑚𝑖𝑛 > 0 such that 𝛼(𝜃) ≥ 𝛼𝑚𝑖𝑛 for any 𝜃 ∈ [𝜃𝑠, 𝜃𝑠+1].

Proof. Let 𝛾𝑖(𝜃) be a segment of the polygonal enclosing loop 𝛾(𝜃), corresponding to

an obstacle polygon 𝑃𝑖(𝜃). Then, 𝛼(𝜃) can be expressed as the minimum distance

from a segment to the respective polygon:

𝛼(𝜃) = min
𝑖
𝑑(𝛾𝑖(𝜃), 𝜕𝑃𝑖(𝜃))

Let us consider a polygon 𝑃𝑖(𝜃), the respective segment of the enclosing loop 𝛾𝑖(𝜃),

and its endpoints 𝑥𝛾𝑖,1(𝜃) and 𝑥𝛾𝑖,2(𝜃). On the one hand, according to the condition

(CT9), one of the endpoints 𝑥𝛾𝑖,1 is fixed in the internal coordinates of 𝑃𝑖, there-

fore its distance to the 𝜕𝑃𝑖(𝜃) does not depend on 𝜃 and is equal to some constant

𝑎
(1)
𝑖 = 𝑑(𝑥𝛾𝑖,1(𝜃𝑠), 𝜕𝑃𝑖(𝜃𝑠)) > 0. On the other hand, constraint (CT11) ensures that

another endpoint 𝑥𝛾𝑖,2 is restricted to a triangle 𝑇𝑖, lying inside 𝑃𝑖 (in its internal coor-

dinates). Therefore, 𝑑(𝑥𝛾𝑖,2(𝜃), 𝜕𝑃𝑖(𝜃)) ≥ 𝑑(𝑇𝑖, 𝜕𝑃𝑖) > 0. As 𝑇𝑖 is fixed in the internal

coordinates of 𝑃𝑖, 𝑎
(2)
𝑖 = 𝑑(𝑇𝑖, 𝜕𝑃𝑖) is independent on 𝜃, and is determined by the

choice of 𝑥𝛾𝑖,2(𝜃𝑠) and 𝑥𝛾𝑖,2(𝜃𝑠+1). Since 𝑃𝑖 is convex, and 𝛾𝑖(𝜃) is a segment inside it,

𝑑(𝛾𝑖(𝜃), 𝜕𝑃𝑖(𝜃)) = 𝑚𝑖𝑛(𝑑(𝑥𝛾𝑖,1(𝜃), 𝜕𝑃𝑖(𝜃)), 𝑑(𝑥𝛾𝑖,2(𝜃), 𝜕𝑃𝑖(𝜃))) ≥ 𝑚𝑖𝑛(𝑎
(1)
𝑖 , 𝑎

(2)
𝑖 ). Let

𝛼𝑖 = 𝑚𝑖𝑛(𝑎
(1)
𝑖 , 𝑎

(2)
𝑖 ) > 0. Then 𝛼(𝜃) = min𝑖 𝑑(𝛾𝑖(𝜃), 𝜕𝑃𝑖(𝜃)) = min𝑖 min(𝑎

(1)
𝑖 , 𝑎

(2)
𝑖 ) =

min𝑖 𝛼𝑖 > 0. By denoting 𝛼𝑚𝑖𝑛 = min𝑖 𝛼𝑖 and using independence of 𝛼𝑖 on 𝜃, we

conclude the proof. For a visual depiction, see Fig. 5-13.

Now, this observation allows us to show that in any orientation 𝜃, any point from

the free space, and in particular from the compact-connected component that defines

the cage, is separated from the corresponding enclosing loop 𝛾(𝜃) at least by 𝛼𝑚𝑖𝑛.
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Figure 5-13: For slices that are close to each other, the respective enclosing loops
are close to each other and homotopic in the intersection of the 𝒞−obstacles of the
slices.

Lemma 3. For any point 𝑥, lying in the 𝒞compact
free (𝜃), the distance 𝑑(𝑥, 𝛾(𝜃)) is greater

than 𝛼𝑚𝑖𝑛.

Proof. Consider a segment 𝛾𝑖(𝜃), such that 𝑑(𝑥, 𝛾(𝜃)) = 𝑑(𝑥, 𝛾𝑖(𝜃)), and a corre-

sponding obstacle polygon 𝑃𝑖(𝜃). Let the 𝑥𝛾𝑖(𝜃) be a point on this segment, where

𝑑(𝑥, 𝛾𝑖(𝜃)) = 𝑑(𝑥, 𝑥𝛾𝑖(𝜃)), and 𝑠 be a segment, connecting 𝑥 and 𝑥𝛾𝑖(𝜃). Let 𝑥𝜕 =

𝑠∩𝜕𝑃𝑖(𝜃) (such 𝑥𝜕 exists, as 𝑥 lies outside 𝑃𝑖(𝜃), and 𝑥𝛾𝑖(𝜃) lies inside 𝑃𝑖(𝜃) due to the

convexity of 𝑃𝑖(𝜃)). Then 𝑑(𝑥, 𝛾(𝜃)) = 𝑑(𝑥, 𝑥𝛾𝑖(𝜃)) > 𝑑(𝑥𝜕, 𝑥𝛾𝑖(𝜃)) ≥ 𝑑(𝜕𝑃𝑖(𝜃), 𝛾𝑖(𝜃)).

According to the Lemma 2, 𝑑(𝜕𝑃𝑖(𝜃), 𝛾𝑖(𝜃)) ≥ 𝛼𝑚𝑖𝑛.

Now, let us define the radius of a polygon as the distance from its rotation center

𝑐 to the furthest point in the polygon:

𝑅(𝑃 ) = max
𝑥∈𝑃

𝑑(𝑐, 𝑥)

For the set of polygons
⋃︀

𝑖 𝑃𝑖 forming the enclosing loop, let 𝑅 denote the maximum

radius: 𝑅 = max𝑖 𝑅(𝑃𝑖), where 𝑐𝑖 is a rotation center of 𝑃𝑖.

Furthermore, let us define the displacement of a point 𝑥 ∈ 𝑃 induced by a rotation

of the polygon 𝑃 through an angle ∆𝜃 around the rotation center 𝑐 by DΔ𝜃(𝑥) =

2 sin(Δ𝜃
2
) · 𝑑(𝑐, 𝑥). Then, to make sure that the displacement of any point 𝑥 ∈ ⋃︀

𝑖 𝑃𝑖

does not exceed 𝜀, we need to limit the rotation angle to ∆𝜃(𝜀) = 2 arcsin 𝜀
2𝑅

.
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We now want to show that the movement of the enclosing loop is bounded, and

the allowed amount of displacement 𝜀 cannot be exceeded if the orientation interval

is sufficiently small:

Lemma 4. Consider 𝜃 ∈ [𝜃𝑠, 𝜃𝑠+1], the corresponding enclosing loop 𝛾(𝜃), and an

arbitrary point 𝑥. Let us fix 𝜀 ∈ (0, 2𝑅). For any 𝜃′ ∈ 𝒟Δ𝜃(𝜀)(𝜃) ∩ [𝜃𝑠, 𝜃𝑠+1] and the

corresponding enclosing loop 𝛾(𝜃′), we have 𝑑(𝑥, 𝛾(𝜃′)) ≥ 𝑑(𝑥, 𝛾(𝜃))− 𝜀.

Proof. First, note that the displacement of any point 𝑥 in
⋃︀
𝑃𝑖 does not exceed 𝜀

when rotated through an angle ∆𝜃:

DΔ𝜃(𝑥) = 2𝑑(𝑥, 𝑐) sin(∆𝜃/2) = 𝜀
𝑑(𝑥, 𝑐)

𝑅
≤ 𝜀.

Let us show that 𝑑(𝑥, 𝛾(𝜃′)) ≥ 𝑑(𝑥, 𝛾(𝜃)) − 𝜀. Suppose the opposite is true, i.e.

𝑑(𝑥, 𝛾(𝜃′)) < 𝑑(𝑥, 𝛾(𝜃)) − 𝜀. Consider the point 𝑥𝛾(𝜃′) ∈ 𝛾(𝜃′), where 𝑑(𝑥, 𝛾(𝜃′)) =

𝑑(𝑥, 𝑥𝛾(𝜃′)), and its image 𝑥′𝛾(𝜃′) ∈ 𝛾(𝜃). Then 𝑑(𝑥, 𝑥𝛾(𝜃′)) < 𝑑(𝑥, 𝛾(𝜃))−𝜀 ≤ 𝑑(𝑥, 𝑥′𝛾(𝜃′))−
𝜀 ≤ 0, leading to contradiction.

Finally, we can demonstrate the correctness of our approach by proving Theorem 1:

Proof. Suppose the opposite is true, and there is a continuous escaping path 𝜌 :

[0, 1] → R2 × [𝜃𝑠, 𝜃𝑠+1], such that:

𝜌(0) = {𝑥0, 𝜃𝑠}, 𝑥0 ∈ int 𝛾(𝜃𝑠)

𝜌(1) = {𝑥′, 𝜃′}, 𝑥′ /∈ int 𝛾(𝜃′),

where 𝜃′ ∈ (𝜃𝑠, 𝜃𝑠+1].

Since 𝑥0 lies in the interior of 𝛾(𝜃𝑠), for any 𝛿 > 0 there exists some 𝜆 ∈ [0, 1− 𝛿]

such that 𝜌𝜆 = {𝑥𝜆, 𝜃𝜆}, and 𝑥𝜆 ∈ 𝒞free(𝜃𝜆) ∩ int 𝛾(𝜃𝜆), while 𝑥𝜆+𝛿 /∈ 𝒞free(𝜃𝜆+𝛿) ∩
int 𝛾(𝜃𝜆+𝛿). As 𝜌 is continuous in [0, 1], its corresponding coordinates 𝑥 and 𝜃 are also

continuous in [0, 1]. Let us fix 𝛼𝑚𝑖𝑛, according to the definition of Lemma 2, and 𝑅 as

described in the proof of Lemma 4. Using the continuity, let us choose 𝛿 such that for
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Figure 5-14: Cage synthesis for random polygonal objects, decomposed into the
union of convex polygonal objects. In this experiment, the proposed optimization
framework searches for possible cages of random polygons with up to four fingers.

corresponding 𝜆 ∆𝑥 = 𝑑(𝑥𝜆, 𝑥𝜆+𝛿) < 𝛼𝑚𝑖𝑛/2 and ∆𝜃 = |𝜃𝜆+𝛿 − 𝜃𝜆| < 2 arcsin 𝛼𝑚𝑖𝑛/2
2𝑅

.

According to the definition of 𝛼𝑚𝑖𝑛 in Lemma 2, for all 𝜃 and 𝑖, 𝛼𝑚𝑖𝑛 ≤ 𝑑(𝛾𝑖(𝜃), 𝜕𝑃𝑖(𝜃)).

In particular, 𝛼𝑚𝑖𝑛 ≤ 𝑑(𝛾𝑖(𝜃𝑠), 𝜕𝑃𝑖(𝜃𝑠)) ≤ 𝑑(𝛾𝑖(𝜃𝑠), 𝑐𝑖) + 𝑑(𝜕𝑃𝑖(𝜃), 𝑐𝑖) < 2𝑅 due to the

triangle inequality.

Let Ω1 and Ω2 be two disks with the center in 𝑥𝜆 and radii 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑖𝑛/2,

respectively. According to Lemma 3, Ω1 ∈ int 𝛾(𝜃𝜆). Applying Lemma 4 to 𝜀 =

𝛼𝑚𝑖𝑛/2 < 2𝑅, we obtain Ω2 ∈ int 𝛾(𝜃𝜆+𝛿). On the other hand, 𝑑(𝑥𝜆, 𝑥𝜆+𝛿) < 𝛼𝑚𝑖𝑛/2,

therefore, 𝑥𝜆+𝛿 ∈ Ω2 ∈ int 𝛾𝜃(𝜆+ 𝛿), leading to contradiction.

5.1.7 Implementation and Results

In this section we implement an optimization-based cage-finding algorithm based

on the proposed model. We also evaluate the performance and versatility of this

formulation by synthesizing cages for different planar geometries, and under different

sets of extra constraints.

Formulation of Caging as an Optimization Problem

Given an object segmented in 𝑀 polygons, a manipulator with 𝑁 fingers and 𝑆

sample slices of the configuration space 𝒞, we formulate the cage-finding algorithm as
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Variable Dimension Role C/B
Θ 𝑆 Limit orientations B
𝐻 𝑁 ×𝑀2 × 𝑆 Loop creation B
𝐺 𝑁 ×𝑀2 × 𝑆 Loop creation B
𝑅 𝑁 ×𝑅 Non-Penetration B
𝐹 𝑁 ×𝑀 × 5 Object enclosing B
𝑇 𝑁 × 𝐿× 𝑆 Limit orientations B
p 2×𝑁 Finger positions C
𝑥 2×𝑁 × 𝑆 Boundary continuity C

Table 5.2: Summary of Decision Variables in MIP1 (B: Binary, C: Continuous)

the feasibility problem:

MIP1 : min
Θ,𝐻,𝐺,𝑅,𝑇,𝑝

𝐽(Θ, 𝐻,𝐺,𝑅, 𝑇, 𝑝)

subject to

• For all 𝑆 slices:

– Existence of a loop (CT1)—(CT4).

– Non-penetration (CT6).

– Limit orientation constraints (CT7)—(CT8).

– Continuous Boundary Variation (CT9)—(CT11).

• For slice containing 𝜃𝑠 = 𝑞𝜃:

– Configuration enclosing (CT5).

Where 𝐽(·) is a convex cost function. All constraints in problem MIP1 are convex,

and the decision variables are either real or binary, hence it is a Mixed-Integer Convex

Program. A summary of the variables involved in MIP1 is presented in Table 5.2.

This provides useful properties and guarantees:

• First, given sufficient time, a solver will always find the global optimal solution,

providing a convergence guarantee with worst-case exponential complexity. We

evaluate in Section 5.1.7 the performance of the algorithm caging random poly-

gons.
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Figure 5-15: Cage synthesis with additional kinematic constraints: (a) Cage using
two fingers and a fixed environment, in this case a wall segment modelled as a set of
non-movable fingers (b) Caging with four fingers that are subject to kinematic
constraints, in this case the constraints induced by these points being the fingers of
two parallel jaw grippers, i.e, limited opening and moving parallel to each other.

• Second, the formulation is versatile since we can add additional mixed-integer

convex constraints without sacrificing its properties. In Section 5.1.7 we ap-

ply the formulation to find cages exploiting an environmental wall as extra

constraint, and in Section 5.1.7 we explore different convex cost functions to

minimize or maximize the separation between fingers.

Model Validation

To evaluate the cage synthesis algorithm, we transcribe and solve the optimization

problem using off-the-self optimization software. We use Gurobi 8.0.0 [59] as our MIP

solver. All the tests are performed in MATLAB R2018b, on a Intel Core i9 laptop

running Mac OS X High Sierra. For all tests, we set the parameter 𝑆 to 9 slices, evenly

distributed in the range between −90∘ and 90∘. As a proof of concept, Figure 5-16

shows an example of a cage found on a classically complex object extracted from

Figure 6 in [111].

Caging random polygons We generate a set of 20 random polygonal shapes by

sampling vertices within a circular area and connecting them to form the object facets,
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which then we segment into convex polygons with Delaunay triangulation [57]. We

then call on the optimizer to find a cage for a manipulator with up to four fingers,

under the cost function:

𝐽 = 0

which leads the solver to return the first feasible cage found. Figure 5-14 shows

the results on 10 of these polygons. We see that the model efficiently finds a cage,

handling non-convex and non-symmetric shapes.

We note however that when we ask the optimizer to find two- or three-finger

cages, the optimizer sometimes reports infeasibility because the uniform slicing of the

configuration space does not contain any limit orientation. This can be alleviated by

using heuristics to more adequately slice the configuration space by possibly taking

into account symmetries in the shape of the object and the angular separation between

facets. However, it remains an open question to find optimal slicing strategies. When

caging with four or more fingers, a cage is almost always found with uniform slicing

because limit orientations are more abundant.

Caging with kinematic constraints The optimization nature of the formulation

allows us to include additional constraints in the caging problem. For this, we study

two cases of interest: (1) Caging with two fingers against a fixed-environment (wall);

and (2) caging with the kinematic constraints of two grippers each with two fingers

of limited opening. To incorporate the wall in case (1), we distribute 5 point-fingers

with fixed positions along the wall and allow the two robot fingers to move freely.

Note that other methods could also be used to model the wall, such as computing

the 𝒞−obstacle associated to a line segment and directly including it as part of the

loop. We choose the model as a set of points for simplicity and consistency with

the current implementation. To model the kinematics of (2) we use the dimensions

of an ABB YuMi robot and constraint the distance between pairs of fingers to the

maximum and minimum opening of the grippers. For simplicity, and to avoid having

to deal with collision checking between arms and between the gripper, which leads

to a non-convex constraint, we also enforce that the two grippers can only translate
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Figure 5-16: Example of an object difficult to cage extracted from Figure 6
in [111]. The figure shows (left) an example cage found with the algorithm MIP1,
(center) as well as its representation in a 𝒞-slice of the configuration space with
orientation 𝜃 = 0, and (right) the enclosing loop in the connection graph encoded by
the binary matrices 𝐻𝑛 and 𝐺𝑛.

parallel to each other but not rotate.

Figure 5-15 shows cages for four different polygonal objects under the above con-

straints. In contrast to traditional caging approaches, where these conditions would be

difficult to include into the algorithm, we need to only include additional constraints

that describe the kinematics of the manipulator ℳ into the model. It is interesting

to note that by adding extra constraints the optimization time is often reduced. The

reason for this, maybe contradictory, speed-up is that, in a convex mixed-integer pro-

gram, additional constraints reduce the search space by allowing the solver to discard

infeasible branches. Computational complexity is largely affected by the number of

variables rather than by the number of constraints.

Caging with different cost functions The convexity of the formulation makes it

possible for the algorithm to find global optimal solutions when given a convex cost-

function. In this section, we explore the effect of adding two different cost functions:

• Minimize separation (for a set of unconstrained fingers): We define the cost

function

𝐽1(ℳ) =
∑︁

𝑖 ̸=𝑗

(p𝑖 − p𝑗)
2,

which is a convex function. Such cost-function penalizes the separation between

each pair of fingers.
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• Maximize separation (for a one-parameter coupled 3-finger gripper): In gen-

eral, maximum distance is in a non-convex cost-function; However, it can be

convex for some particular kinematic relations. One useful case is when the

finger configurations are coupled by one-parameter, similar to [94]. Hence, In

this experiment we define parametrizations for two-fingers :

p1 =

⎛
⎝p1,𝑥

p1,𝑦

⎞
⎠ , p2

⎛
⎝p1,𝑥 + 𝛼

p2,𝑦

⎞
⎠ ,

and three-fingers :

p1 =

⎛
⎝p𝑥

p𝑦

⎞
⎠+ 𝛼

⎛
⎝0

1

⎞
⎠ , p2 =

⎛
⎝p𝑥

p𝑦

⎞
⎠+ 𝛼

⎛
⎝−1/

√
2

−1/
√
2

⎞
⎠ ,

p3 = 𝛼

⎛
⎝ 1/

√
2

−1/
√
2

⎞
⎠ ,

with 𝛼 ∈ [0,∞). In such case, we can maximize the gripper opening by mini-

mizing the cost-function

𝐽2(𝛼) = −𝛼

which is convex.

We apply the cage-synthesis model to find cages to the same objects in Figure 5-15

under a variety of cost functions.

Figure 5-17 shows different solutions to our model under the loss functions 𝐽1 and

𝐽2. In both cases, we exploit convenient parametrizations of the robot kinematics,

which result in linear constraints. However, finding these parametrizations might not

always be possible. For more complex kinematic chains, these could be integrated in

the model using using piece-wise affine constraints [36].

A key remark from these results is the impact that our approximations play in

the model, in particular those from (CT5). Since (CT5) is used to ensure that the

object lies inside of the compact-connected component, having a tighter constraint
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Figure 5-17: Synthesis of cages with different convex cost functions. Top: finding
minimum and maximum distance cages for a parallel jaw gripper (left) and an
unconstrained 3-finger gripper (right). Bottom: finding maximum cages for a
parallel jaw gripper and a one-parameter 3-finger gripper. Since all the
cost-functions are convex, the solutions we obtain are globally optimal (to the
tolerance of our approximations and slicing).

also constrains the set of cages that satisfy it. This causes that the solution found

by our model to be different from the theoretical minimum. An example can be seen

in Fig. 5-17 (M-object), here the third finger is placed separate from the other two

fingers, while the theoretical minimum would have two of the fingers in the same

position.

Limitations of the model

The properties of this model come at the expense of some model limitations. First,

the discretization of the configuration space into slices makes the model sensitive to

the selection of orientations used for finding a cage. Second, the enclosing constraints

(Section 5.1.4) are sufficient but not necessary, since the configuration [𝑞𝑥, 𝑞𝑦] is forced

to lie in one of the 4 aligned regions covering each line segment, that constraint is

sometimes unnecessarily infeasible (this can be seen often for example when trying

to cage a triangle with 3 fingers). Finally, we build our implementation of the model

assuming that all fingers are part of the enclosing loop and, hence, cannot search for

cages with a minimal number of fingers.
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Potential extensions

We are interested in making the model more flexible and efficient. First, by studying

how object shape information can be leveraged to derive heuristics to automatically

slice the configuration space. In general, it is important to further explore opportu-

nities to reduce the complexity of the model. One avenue is to exploit the property

that adding constraints often helps the solver quickly discard large branches of the

search space. From a theoretical perspective, while the conditions in this chapter

are sufficient to guarantee a cage, in particular those derived from Theorem 1, we

suspect that these could also become necessary and sufficient through a dense enough

slicing, for any cage of tye type described in Fig. 3 (a) an (b). Hence, the potential

“resolution completeness" of the model deserves further study.

Source Code

The MATLAB source code implementing the caging problem in used as part of this

work is available on GitHub: https://github.com/baceituno/Grasping

5.2 Certified Grasping

The key question we study in this section is that of robustness in the process of

grasping an object. Can we ever certify that a planned grasp will work?

The common approach to grasping is to plan an arrangement of contacts on the

surface of an object. Experimental evidence shows an intuitive but also paradoxical

observation: On one hand, most grasps do not work as expected since fingers do

not deliver exactly the planned arrangement of contacts; on the other hand, many

planned grasps still end up working and produce a stable hold of the object.

These natural dynamics work within all grasping algorithms, often to their benefit,

sometimes adversarially. [94] put it as: if we cannot put the fingers in the right place,

can we trust the fingers to fall where they may? In this section we study the possibility

to synthesize grasps for which the fingers have no other option than to do so.
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The notions of robustness and certification are central to the robotics community.

However, formal approaches to synthesize robustness in grasping have been mostly

limited to study the set of forces that a grasp can resist, see [23], neglecting the key

importance of the reaching motion towards that grasp.

Both the reaching motion and the end-grasp can encode robustness. In this section

we study the problem of synthesizing trajectories of a set of point fingers that con-

verge onto an intended grasp of a polygonal planar object without friction, naturally

encoding robustness to uncertainty as part of the grasping process.

We start by proposing three different types of certificates that one can formulate

at different stages of the grasping process, depicted in Figs. 5-1 and 5-19:

• Invariance Certificate: At the beginning of the grasping process, the object

lies in an invariant set of its configuration space. In this section we study the

case when the object is geometrically trapped by fingers around it, i.e., the

object is caged by the fingers.

• Convergence Certificate: All configurations in the invariant set are driven

towards a given end-grasp configuration. Intuitively, this is analogous to driving

down the value of a scalar/energy function with only one minimum.

• Observability Certificate: The configuration of the object in the end-grasp is

identifiable with the robot’s contact or proprioceptive sensors after completing

the grasp. In this work we characterize when the location of fingers is enough to

recover the pose of the object, for which the condition is analogous to first-order

form closure.

Sections 5.2.2, 5.2.3, and 5.2.4 derive a model for a particular formulation of

each of these certificates. We achieve this under the assumption that objects are

polygons, robot fingers are points, and that there is no friction between objects.

These models build on tools from convex-combinatorial optimization that decompose
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Figure 5-18: Overview of frictionless grasping with certificates. From a
configuration space perspective, we say a grasp is certified to succeed when: 1) The
robot bounds the object pose within an invariant set, and 2) the free-space
converges to a single configuration. From this initial bound, we obtain an invariant
set of configurations for which the grasp will always succeed. A third certificate,
also valid for non-converging grasping processes, comes from requiring that the
end-grasp configuration is observable.

the configuration space of an object surrounded by fingers into free regions, and is

based on recent work to formulate the caging synthesis problem as an optimization

problem, see [1]. Section 5.2.2 summarizes the approach.

The combination of the models for each of the three certificates yields a global

geometric model to synthesize grasping motions that reach certifiable grasps. Sec-

tion 5.2.5 describes the application of this model to robust grasping of planar poly-

gons, and provides experimental evidence of the value of the approach by a direct

comparison between certified grasping and force-closure grasping.

The formulation we provide in this section for each of the proposed certificates

presents limitations–and opportunities for future work–which we detail in Chapter 7.

Most notably, the presented formulation is purely geometrical, and does not take into

account friction uncertainty, which can yield undesired behaviors between fingers and

object such as jamming and wedging.

5.2.1 Problem description

The problem of interest in this section is that of finding a grasping motion that is

certified to succeed. Formally, we define this problem as:
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Non-invariant Non-convergent Non-observable

Figure 5-19: Examples of grasps that break each of the certificates. We
show three grasps that break each of the individual certificates: 1) The object
configurations does not lie on an invariant set, the object can escape by moving up,
2) The object configurations do not converge to a unique configuration, 3) It is not
possible to identify a single pose of the object by using proprioceptive sensing.

Figure 5-20: Key concepts used to develop our framework. A visual
representation of the following concepts: 1) a configuration space 𝒞, 2) a 𝒞−slice ,
and 3) the mapping between workspace 𝒲 , 𝒞(𝜃) and 𝒞(𝜃 +∆𝜃).

Problem 1 (Certified Grasping): Given an object 𝒪, a manipulator ℳ, 𝑆

samples of 𝒞−slices, and a goal object configuration 𝑞, find a manipulator trajectory

𝜌ℳ = {ℳ(𝑡) | 𝑡 ∈ {1, . . . , 𝑁𝑇}} and an invariant set 𝑄0 ⊂ 𝒞(𝒪), such that 𝜌ℳ will

drive any configuration of the object 𝑞 ∈ 𝑄0 towards an observable grasp on 𝑞.

This problem can be seen as a particular case of the general problem known as

LMT [85], and as a generalization of Goldberg’s squeezing plans [58] for non-convex

objects and point-finger contacts. For an object on a plane without friction, a solution

to this problem results from implementing the certificates described in the previous

section as a three-step process (discretized as a manipulator trajectory of 𝑁𝑇 time-
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Figure 5-21: Invariance Certificate. Example of a cage in 𝒲 (left), the
𝒞−slices (center) and the configuration space 𝒞(𝒪) (right). Note how the
configuration 𝑞 lies in a compact connected-component of the free-space (pink),
bounded by two limit orientations (gray). Image adapted from [1].

steps):

• Invariance: The configuration of the object 𝑞 lies in a compact-connected com-

ponent of its free-space. We will impose this condition at 𝑡 = 1 with the

convex-combinatorial model of caging from [1].

• Convergence: The manipulator path drives all configurations in the initial in-

variant set (cage) towards the goal 𝑞. To meet this condition, once the object

is caged (𝑡 ∈ {2, . . . , 𝑁𝑇}), the manipulator follows a penetration-free path over

which the compact-connected component contracts. Then, at the final time-step

of the path, the 𝒞-obstacles reduce 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑁𝑇 ) to a singleton {𝑞}.

• Observability: As a consequence of the fingers motion, the final contact config-

uration can recover the object pose at 𝑞 through proprioceptive sensing. We

call such a configuration an observable grasp and is a condition solely required

at the end of the path (𝑡 = 𝑁𝑇 ).

The satisfaction of these constraints would give a geometric certificate that any con-

figuration of the object in the set 𝑄0 = 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑡 = 1) will be driven towards

and immobilized in the goal grasp. The following three sections provide a model for

each of these three steps, which then will be combined into an optimization problem

(MIQP1) for certified grasping of polygonal objects.
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5.2.2 Invariance Certificate

As explained above, one way to constrain an object to an invariant set is to cage it

geometrically. Under the model presented in [1], the following are a set of sufficient

conditions for invariance:

1. The component 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪) is bounded in the orientation coordinate by two

limit orientations.

2. At all 𝒞−slices between the two limit orientations there is a loop of 𝒞−obstacles

enclosing a segment of free-space. Each 𝒞−obstacle has the shape of the object

rotated according to the limit orientation. All these loops must be connected,

enclosing a component of free-space in between adjacent slices. At the slice with

𝑞𝜃, the loop must enclose 𝑞 (as illustrated in the middle column of Fig. 5-21).

3. At the 𝒞−slice of a limit orientation (if these exist) the free-space component

enclosed by the loop has zero area. Thus, becoming a line segment or a point.

The union of these conditions define a set of constraints to enclose the config-

uration 𝑞, as illustrated in Fig. 5-21. We can transcribe these conditions as a

convex-combinatorial model composed of two sets of constraints, described below,

and explained in more detail in the previous section.

Creating loops at each 𝒞-slice

To construct a loop of 𝒞−obstacles at each slice, we formulate the problem as that

of finding a closed directed graph within the intersections between polygonal obsta-

cles. In such graph, each node represents a convex polygon of the decomposition of

a 𝒞−obstacle, while each edge imposes an intersection between polygons. We denote

the polygon 𝑖 of 𝒞−obstacle 𝑛 as 𝑃𝑛,𝑖. Including this condition in the model, at each

time 𝑡, is done through the following constraints:
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Existence of a Loop. This is encoded through two binary matrices: 𝐻𝑛 ∈ {0, 1}𝑀×𝑀

and 𝐺𝑛 ∈ {0, 1}𝑀×𝑀 . 𝐻𝑛 encodes edges between 𝒞−obstacle 𝑛 and 𝒞−obstacle 𝑛+1,

such that 𝐻𝑛(𝑖, 𝑗) = 1 ⇒ 𝑃𝑛,𝑖 ∩ 𝑃𝑛+1,𝑗 ̸= ∅. 𝐺𝑛 encodes edges within 𝒞−obstacle

𝑛, such that 𝐺𝑛(𝑖, 𝑗) = 1 ⇒ 𝑃𝑛,𝑖 ∩ 𝑃𝑛,𝑗 ̸= ∅. These matrices are constrained so that

the resulting graph is closed and directed. We show an example of this loop and its

graph in Fig. 5-22 (b) and (c).

Configuration Enclosing. We include this condition by introducing a binary ten-

sor F ∈ {0, 1}𝑁×𝑀×3, where F𝑞(𝑛, 𝑗) = 1 imposes that a ray with origin 𝑞 has an

intersection with the line segment connecting polygon1 𝑗 at 𝒞−obstacle 𝑛 and the

next polygon in the loop (encoded by 𝐻𝑛 and 𝐺𝑛), while other values of 𝑘 assign

the ray to the complement of the segment. Following Jordan’s Polygon Theorem, the

constraints needed to enclose 𝑞 is to impose
∑︀

(𝑖,𝑗) F(𝑖, 𝑗) to be odd. An illustration

of this condition is shown in Fig. 5-22 (d).

Non-Penetration Constraints. We impose this constraint by introducing a bi-

nary matrix 𝑅 ∈ {0, 1}𝑁×𝑅 that encodes the location of finger points 𝑝 in the convex

decomposition of the free workspace 𝒲∖𝒪 =
⋃︀𝑅

𝑘=1ℛ𝑘. 𝑅(𝑖, 𝑟) = 1 assigns finger 𝑖 to

region 𝑟 in 𝒲∖𝒪, or 𝑅(𝑖, 𝑟) = 1 ⇒ 𝑝𝑖 ∈ ℛ𝑟, with
∑︀

𝑟 𝑅(𝑖, 𝑟) = 1,∀𝑖. A visualization

of this is shown in Fig. 5-22 (e).

Combining all of these constraints ensures the existence of a loop at each 𝒞−slice

and that 𝑞 is enclosed by one of these loops.

Constructing a cage from loops

The next step is to impose that these constraints are only active for slices between two

limit orientations (when these exist) while also enclosing a component of free-space

between slices.
1In practice we use the line segment defined by the geometric centers of the polygons.
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Figure 5-22: Caging Model. (a) Illustration of the cage of an object composed
of two polygons (𝑀 = 2), caged with four fingers (𝑁 = 4) in a configuration space
slice of constant orientation defined by six polygonal regions (𝑅 = 6), and with a
boundary with eight edges (𝐿 = 8). (b) The model forms a polygonal loop at each
slice of 𝒞(𝒪, 𝑡), (c) defining a graph of polygonal intersections that enclose 𝑞. (d)
We test that the configuration 𝑞 is enclosed by the loop by checking a ray (red
arrow) has an odd number of intersections with the loop. In this case the ray
intersects the loop once, in the black line between two polygons. (e) Slightly
exploded view of the (intersecting) polygonal regions that define the
non-penetration space where the fingers can move.

Constraint Activation. To determine which slices must contain a closed loop

of 𝒞−obstacles, we first determine if a slice is limit orientations. To include this

constraint, we introduce a binary vector Θ ∈ {0, 1}𝑆, where Θ𝑠 = 1 imposes that a

limit orientation must be reached before slice 𝑠, deactivating all loop constraints in

such slice. In this context, before means a greater or equal angle if the slice lies in

the negative orientation half-space or a smaller or equal angle if it lies in the positive

one. We then introduce the constraint
∑︀𝑆

𝑠 Θ𝑠 = 2.

Limit Orientations. A limit orientation occurs when the loop encloses a zero-

area component, a condition defined by the contacts between the fingers and some

translation of the object. At any particular 𝒞−slice, we define this condition when

the contact normals between the fingers in contact with the object span R2 in positive

linear dependent set. To verify this limit orientation condition, we define a binary

matrix 𝑇𝑠 ∈ {0, 1}𝑁×𝐿, such that 𝑇𝑠(𝑖, 𝑙) = 1 ⇒ 𝑝𝑖 ∈ 𝐿𝑙 imposes that finger 𝑖 must

be in contact with facet 𝑙 at slice 𝑠 with contact normal 𝜆𝑠𝑖 . Using this variable we

pre-compute ℒ𝒪 as the set of contact assignments that lead to a limit orientation,

such that
∑︀𝑁

𝑐 𝛼
𝑠
𝑐𝜆

𝑠
𝑐 = 0, 𝛼𝑠

𝑐 > 0 𝑟𝑎𝑛𝑘(
[︁
𝜆𝑠1 · · ·𝜆𝑠𝑁

]︁
) = 2. Then, we impose 𝑇𝑠 ∈ ℒ𝒪 ⇒
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Θ𝑠 = 1, which constrains that two limit orientations must exist in each cage.

Continuous Boundary Variation. In order for 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪) to be compact and

connected, the swept value of the loop created at each 𝒞−slices must also enclose a

segment of free-space in between adjacent slices. [1] shows that a sufficient condition

for this is to have the boundary of such loops to vary continuously unto the boundary

of the loop in the adjacent 𝒞−slices. Mathematically, this constraint requires 1) that

the topology of the loop at each 𝒞−slice is preserved in adjacent slices and 2) that the

swept volume of each polygon in the loop remains in contact with the swept volume

of its connecting polygons in the loop between slices. We integrate a set of sufficient

convex constraints for this condition as part of the model .

By satisfying these conditions, we ensure that the configuration 𝑞 is enclosed by

a compact-connected component of free-space. For more details on implementation

and proofs on the correctness of these conditions, the reader is referred to [1].

5.2.3 Convergence Certificate

Given an initial cage, the convergence certificate is satisfied if the process drives a

set of bounded configurations towards the goal 𝑞. The main insight that allows us to

integrate this stage in the framework comes from the following remark:

Remark 1: Given an object 𝒪, at some time-step 𝑡, with a configuration 𝑞

enclosed in a compact connected component of free-space 𝑞 ∈ 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑡) and

bounded between limit orientations 𝜃𝑙(𝑡) and 𝜃𝑢(𝑡), a collision-free manipulator path

𝜌ℳ where the upper and lower limit orientations get closer monotonically, satisfying
𝑑
𝑑𝑡
(𝜃𝑢(𝑡)− 𝜃𝑙(𝑡)) < 0, until ℳ(𝑁𝑇 ) immobilizes 𝒪 uniquely at configuration 𝑞 will

drive all configurations 𝑞 ∈ 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑡) towards 𝑞.

The conditions specified in Remark 1, shown in Fig. 5-23, are sufficient but

might not be necessary. However, these allow us to optimize a manipulator path

that satisfies the convergence certificate. This also allows us to characterize the set of
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Figure 5-23: Convergence Certificate. This condition is trivially satisfied when
the range of limit orientations (gray) decreases, converging at 𝑡 = 𝑁𝑇 . The initial
cage at 𝑡 = 1 (left) is equivalent to the set of configurations.

initial configuration that will certifiably converge to 𝑞. Hence, by relying on the model

described in the previous section, we derive a linear model to certify convergence as

detailed below.

Certificate Model

In order for the conditions detailed in remark 1 to hold, we require that:

1. The object configuration must lie in a cage at all times.

2. The separation between limit orientations must decrease monotonically between

time-steps, until they converge at 𝑡 = 𝑁𝑇 .

3. The cage at 𝑡 = 𝑁𝑇 must uniquely enclose the goal configuration 𝑞.

Algebraically, the conditions to impose a cage at each time-step are posed as:

⎧
⎪⎨
⎪⎩

∑︀
𝑠 Θ𝑠(𝑡) = 2

𝜃𝑠(𝑡) ∈ [𝜃𝑙(𝑡), 𝜃𝑢(𝑡)] ⇒ (loop existence)|(𝑠,𝑡)
(CT12)

for all 𝑡 ∈ {1, . . . , 𝑁𝑇}. Then, in order to ensure that the cage topology does not

break between time-steps, we introduce the following constraint at each slice:

𝐻𝑛(𝑖, 𝑗)|𝑡=𝑘 ⇒ ∃ 𝑟𝑡 ∈ R2 𝑠.𝑡. 𝑟𝑡 ∈ 𝑃𝑛,𝑖,𝑘+1 ∩ 𝑃𝑛+1,𝑗,𝑘+1 (CT13)
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Note that this condition is sufficient, as the intersection occurs between convex poly-

gons and the path is linearly interpolated. Because of this, we introduce the following

remark:

Remark 2: Since all initial configurations of the object are caged at 𝑡 = 1 and

the topology of the enclosing loop does not change between adjacent time-steps, the

conditions for 𝑞 ∈ 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑡) are trivially satisfied for all 𝑡 > 1.

Furthermore, for the final cage to uniquely immobilize the object a one config-

uration, we require that the limit orientations at 𝑡 = 𝑁𝑇 are infinitesimally close,

reducing 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪, 𝑡 = 𝑁𝑇 ) to a singleton. Algebraically, we add this constraint as:

⎧
⎪⎨
⎪⎩
𝑇𝑢(𝑁𝑇 ) = 𝑇𝑙(𝑁𝑇 ) ∈ ℒ𝒪

|𝜃𝑢(𝑁𝑇 )− 𝜃𝑙(𝑁𝑇 )| ≈ 0

(CT14)

This condition effectively ensures that the object is trapped at an unique configuration

at time 𝑁𝑇 , since it cannot translate due to the loop and it cannot rotate beyond 𝜃𝑢

or under 𝜃𝑙 (which are infinitesimally close). Finally, the limit orientations converge

monotonically under the constraint:

⎧
⎪⎨
⎪⎩
𝜃𝑢(𝑡+ 1) < 𝜃𝑢(𝑡)

𝜃𝑙(𝑡) < 𝜃𝑙(𝑡+ 1)

(CT15)

This, along with the caging model, certifies that the grasp will always succeed within

a set of certified initial configurations 𝑄0.

Optimizing Region of Attraction.

A desirable property of a grasp is for it to maximize the set of configurations caged

a 𝑡 = 1, since all these configurations would converge to the goal. This condition is
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Figure 5-24: Region of Attraction Model. We can constrain a set of
configuration 𝑄0 (blue) to lie in the free-space of the initial cage (red). Such
constraint is implemented in 𝒞𝑓𝑟𝑒𝑒(𝜃) and 𝒲 by enforcing that all finger positions lie
in a free-space region ℛ when translated by the vertices of 𝑣ℎ of 𝑄0.

equivalent to constraining that 𝒞𝑐𝑜𝑚𝑝𝑎𝑐𝑡
𝑓𝑟𝑒𝑒 (𝒪) encloses an arbitrary set of initial condi-

tions 𝑄0. Unfortunately, constraining volume of 𝑄0 cannot be integrated in general

within this convex-combinatorial model. However, we can use an inner convex approx-

imation of 𝑄0 in the form: 𝑄0 = {𝑞 ∈ 𝒞(𝒪) | 𝑞 ∈ 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑣1, 𝑣2, . . . , 𝑣𝑛)×[𝜃1, 𝜃2]}
by including two additional constraints:

1. All configurations in the convex hull defined by 𝑣1, 𝑣2, . . . , 𝑣𝑛 must be enclosed

by the loop, satisfying
∑︀

(𝑖,𝑗) F
𝑣𝑘(𝑖, 𝑗), 𝑘 ∈ {1, . . . , 𝑛} to be odd for all points in

the convex hull.

2. All configurations in 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑣1, 𝑣2, . . . , 𝑣𝑛) need to lie outside of the 𝒞−obstacles.

In the workspace, this condition is equivalent to imposing that the fingers lie in

one of the 𝑅 regions of 𝒲∖𝒪 when the object is translated around the config-

uration in the convex hull.

Since this polygon is convex, our model only needs to enforce that the polygon vertices

are enclosed by the loop and that the fingers lie in a single convex region ℛ when they

are translated by −𝑣1, 𝑣2, . . . ,−𝑣𝑛. These conditions can be expressed algebraically

as:
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𝜃𝑠 ∈ [𝜃1, 𝜃2] ⇒
∑︀

(𝑖,𝑗) F
𝑣ℎ(𝑖, 𝑗) is odd, ∀ℎ

𝑅(𝑖, 𝑟) = 1 ⇒ 𝑝𝑖 − 𝑣ℎ ∈ ℛ𝑟,∀ℎ (CT16)

These constraints ensure that that all points in 𝐶𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝑣1, 𝑣2, . . . , 𝑣𝑛) are en-

closed by the cage. An useful description of this convex hull is under the following

decomposition:

𝑣ℎ = 𝑞 + 𝛼𝑟ℎ, 𝛼 > 0

where 𝑟ℎ is a vector in the direction of 𝑣ℎ−𝑞. Under this definition, we can incorporate

𝛼 as a decision variable of our model which can be maximized to find the cage the

encloses the biggest convex hull. This process is summarized in Fig. 5-24.

5.2.4 Observability Certificate

Once a planned grasp process has been executed, we can also certify the immobiliza-

tion at the goal configuration if the grasp is observable, i.e. such that we can retrieve

the object pose from sensor readings. In this section, we present a definition of grasp

observability and derive sufficient constraints for a grasp to be locally observable

under proprioceptive sensing (e.g. joint encoders). In practice, this adds an extra

constraint to the type of end grasp that we are interested in.

Definitions

Given a vector of 𝑛𝑟 sensor readings 𝑠 ∈ R𝑛𝑟 , we define:

Definition 1 (Sensor Model): Given a final grasp 𝐺 achieved by a manipula-

tor configuration ℳ(𝑁𝑇 ), we define a sensor model 𝐹𝐺 as a mapping from object

configurations to sensor readings:

𝐹𝐺 : 𝒞(𝒪) −→ R𝑛𝑟

𝑞 ↦−→ 𝑠 = (𝑠1, ..., 𝑠𝑛𝑟) = 𝐹𝐺(𝑞).

Definition 2 (Grasp Observability): Given a grasp 𝐺, a sensor model 𝐹𝐺 and
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Figure 5-25: Observability Certificate. (a) An observable grasp 𝐺1. (b) A
non-observable grasp 𝐺2, the object can slide between the fingers.

a final object configuration 𝑞, we will say that 𝐺 is observable if and only if 𝐹𝐺 is

locally invertible around 𝑞.

Remark 3: If 𝑛𝑟 ≥ 3 and the sensor model 𝐹𝐺 satisfies that its Jacobian

𝐽𝐹𝐺(𝑞) ∈ R𝑛𝑟×3 is full rank, then the grasp 𝐺 is observable and only 3 sensor readings

are necessary for observability.

Fig. 5-25 shows an example of grasp observability. In general, 𝐹𝐺 can be hard to

define in closed form, as it depends on the object and manipulator geometries. Hence,

we restrict our analysis to first order effects, see [108].

Proprioceptive Sensor Model: In order to give an intuitive notion of a sensor

reading, we characterize a sensor model for point-contact sensing to first order effects.

Intuitively, for an object in contact, this model reports local changes based on a gap

function at each contact point, 𝜓𝑖(𝑞,𝑝𝑖), as it is commonly used to formalize the study

of grasp stability, as in [101]. More concretely, sensor readings should only report

changes in the object pose that imply decrements of the gap (causing penetration),

ignoring changes that preserve or break contact (no applied force). Therefore, we

characterize a sensor reading with the result of applying the sensor model Jacobian
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  (a)                    (b)                       (c)

Figure 5-26: Examples of grasps with
different proprioceptive observability
conditions: (a) Not observable, (b)
First-Order Not-Observable, and (c)
First-Order Observable.

Figure 5-27: Examples of finger
arrangements for non-coincidence of
normal vectors in the case of
non-parallel (left) and parallel (right)
facet assignments. Note that these
arrangements are illustrative examples
and not grasps.

to an infinitesimal object configuration variation 𝑑𝑞 from 𝑞:

𝐽𝐹𝐺(𝑞) =

⎛
⎜⎜⎜⎝

𝑑𝑠1
𝑑𝑞

(𝑞)
...

𝑑𝑠𝑛𝑟

𝑑𝑞
(𝑞)

⎞
⎟⎟⎟⎠ ,

𝑑𝑠𝑖
𝑑𝑞

(𝑞) 𝑑𝑞 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

𝑘𝑖
𝑑𝜓𝑖

𝑑𝑞
(𝑞,𝑝𝑖) 𝑑𝑞,

𝑑𝜓𝑖

𝑑𝑞
(𝑞,𝑝𝑖) 𝑑𝑞 < 0,

0,
𝑑𝜓𝑖

𝑑𝑞
(𝑞,𝑝𝑖) 𝑑𝑞 ≥ 0,

where 𝑘𝑖 is a real non-zero constant.

The first-order behavior of the proprioceptive sensor model above highlights a

relation between observability and first-order form closure. As a result of Remark 3,

we will consider only three sensor readings, 𝑛𝑟 = 3.

Remark 4: Given a grasp 𝐺 of an object in its final configuration 𝑞, first-order

form closure is equivalent to have the matrix 𝐽𝐹𝐺(𝑞) be of full rank, where 𝐹𝐺 is the

proprioceptive sensor model defined above.
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Certificate Model

Proof. Note that having full rankness of 𝐽𝐹𝐺(𝑞) ∈ R3×3 is equivalent to:

[𝐽𝐹𝐺(𝑞) 𝑑𝑞 = 0 ⇒ 𝑑𝑞 = 0] ⇔[︂
∀ 𝑖, 𝑑𝑠𝑖

𝑑𝑞
(𝑞) 𝑑𝑞 = 0 ⇒ 𝑑𝑞 = 0

]︂
.

As a result of the first-order behavior of our virtual sensor model, we have

𝑑𝑠𝑖
𝑑𝑞

(𝑞) 𝑑𝑞 = 0 ⇔ 𝑑𝜓𝑖

𝑑𝑞
(𝑞,𝑝𝑖) 𝑑𝑞 ≥ 0,

where the implication from right to left is by definition and from left to right is a

consequence of 𝑘𝑖 ̸= 0. Therefore,

[︂
∀ 𝑖, 𝑑𝑠𝑖

𝑑𝑞
(𝑞) 𝑑𝑞 = 0 ⇒ 𝑑𝑞 = 0

]︂
⇔

[︂
∀ 𝑖, 𝑑𝜓𝑖

𝑑𝑞
(𝑞,𝑝𝑖) 𝑑𝑞 ≥ 0 ⇒ 𝑑𝑞 = 0

]︂
,

that is precisely a characterization of first-order form closure (see [101]). Conse-

quently, first-order form closure is equivalent to full rankness of 𝐽𝐹𝐺(𝑞), when con-

sidering 𝐹𝐺 as the proprioceptive sensor model.

Corollary 1: Given a grasp 𝐺 and the proprioceptive sensor model 𝐹𝐺, first-order

form closure implies grasp observability.

Given the relation between form-closure and observability that we derived above,

a planar grasp is first-order observable if there are 4 unilateral contact constraints on

the object, see [108]. This is satisfied if the following conditions hold:

1. The object configuration must lie in a singleton of 𝒞𝑓𝑟𝑒𝑒(𝒪, 𝑡). This condition

is already implied by (CT14).

2. There must exist no point of coincidence between all the contact normals. This

is required because otherwise, to first-order, the object would be free to rotate
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infinitesimally around the point of concurrency of the contact normals (see

[108]).

Fig. 5-26 shows examples. These are convex-combinatorial constraints on the

facet-assignment matrix 𝑇𝑠 and manipulator configuration ℳ(𝑁𝑇 ). Algebraically,

the non-coincidence condition can be expressed as:

⋂︁

𝑖

𝑝𝑖(𝑁𝑇 ) + ⟨𝜆𝑖⟩ = ∅

We note that there are two scenarios for every pair of fingers: 1) Intersecting normals

correspond to non-parallel facets and have a single intersection point, and 2) Normal

vectors are parallel and thus have infinite intersection points or none. Therefore, if

we define the following sets:

• 𝒫 = {(𝑖, 𝑗) ∈ 𝑁2 | 𝑖 > 𝑗} is the set of all different pairs of facet-assignments.

• 𝒫‖ = {(𝑖, 𝑗) ∈ 𝒫 | 𝜆𝑖 × 𝜆𝑗 = 0} is the set of pairs of facet-assignments with

parallel normals.

• 𝒫∦ = {(𝑖, 𝑗) ∈ 𝒫 | 𝜆𝑖 × 𝜆𝑗 ̸= 0} is the set of pairs of facet-assignments with

nonparallel normals.

where × is the ordinary cross-product. Then, we can introduce the binary matrix

𝑀 = (𝑀𝑖,𝑗)(𝑖,𝑗)∈𝒫 ∈ {0, 1}|𝒫|𝑐 , where |𝒫| is the cardinality of 𝒫 , reducing the problem

to the following set of convex-combinatorial conditions:

𝑀(𝑖,𝑗)∈𝒫∦ ⇒
𝑁∑︁

𝑘=1

|(𝛼𝑖,𝑗 − 𝑝𝑘(𝑁𝑇 ))× 𝜆𝑘| > 0 (CT17)

𝑀(𝑖,𝑗)∈𝒫‖ ⇒ |(𝑝𝑖(𝑁𝑇 )− 𝑝𝑗(𝑁𝑇 ))× 𝜆𝑖| > 0 (CT18)
∑︁

(𝑖,𝑗)∈𝒫

𝑀𝑖,𝑗 ≥ 1, (CT19)

where 𝛼𝑖,𝑗 is the intersection point between the lines defined by the normal vectors

starting at 𝑝𝑖(𝑁𝑇 ) and 𝑝𝑗(𝑁𝑇 ). These conditions guarantee that at least one pair

of normals is non-coincident to the rest, providing observability as shown in Fig.
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Figure 5-28: Simulation results. 12 random polygons are grasped with
trajectories generated with our model. In each case, a set of random initial
configurations certified by our model (shown in gray) are driven towards a goal
grasp (purple) by using the same trajectory (blue).

5-27. Here, we include absolute value function through slack variables and big-M

formulation ([56]).

5.2.5 Application to Sensorless Grasping

This section describes an optimization problem for grasping of planar objects with

bounded uncertainty. For this, we formulate a Mixed-Integer program (MIP) using

the constraints described in sections 4, 5 and 6. We validate this approach on different

polygonal objects, both with experiments and simulations. All the computations are

done in MATLAB R2018b on a MacBook Pro computer with Intel Core i9 2.9 GHz

processor. All optimization problems are solved with Gurobi 8.0 (see [59]).

Mixed-Integer Programming Formulation

We propose a formulation which receives as inputs the description of the polygonal

object 𝒪 and the manipulator ℳ. We incorporate the conditions described through

the section as constraints and add a quadratic cost term on acceleration to smooth

the trajectory, resulting in problem MIQP1.

MIQP1 : min
ℳ(𝑡)

∫︁ 𝑁∑︁

𝑖=1

⃒⃒
⃒⃒
⃒⃒
⃒⃒𝑑

2𝑝𝑖(𝑡)

𝑑𝑡2

⃒⃒
⃒⃒
⃒⃒
⃒⃒
2

𝑑𝑡

subject to:
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1. For 𝑡 = 1 to 𝑡 = 𝑁𝑇 :

• Caging (CT12)-(CT13).

• Convergence Certificate (CT14)-(CT15).

• Additional possible constraints (kinematics, region of attraction).

2. (𝑡 = 1) Invariance certificate (CT12)-(CT13).

3. (𝑡 = 𝑁𝑇 ) First-Order Grasp Observability (CT17)-(CT19).

We stress the versatility of this formulation, since MIQP1 is a Mixed-Integer

Convex Program, see [56], this problem preserves the properties of the underlying

caging model proposed in [1]. Because of this, any solver will always converge to its

global solution and will report infeasibility only if no solution exists2. We reduce the

complexity of the problem by fixing the limit orientations along the path, prescribing

the variables in (CT15).

Imposing additional constraints

One of the benefits of this formulation is that it allows for the inclusion of addi-

tional conditions over the finger trajectories, as long as these are transcribed in a

mixed-integer constraints. Examples of these constraints include: kinematic relations

between the fingers as formulated in [35], force-closure in the final grasp as tran-

scribed in [101, 37], and interactions with the environment as in [1]. Furthermore,

this framework is also compatible with contact dynamics when there are formulated

in the context of trajectory optimization, with the example of [4].

Simulated Experiments

We generate a set of 12 random polygons and optimize a trajectory for each using

MIQP1. Then, we perform simulations for a set of over 100 different initial condi-

tions, using the open planar manipulation simulator in [139]. We initialize the plan

with 3 limit orientations between −15∘ and 15∘, centered around 𝜃 = 0. For simplicity,
2We however remark that this solution will only be optimal under the specific slicing of 𝒞
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do not include constraint (CT16) when solving these simulate problems. Each MIQP

has in the ranges of 500-1000 continuous variables and 200-500 integer variables.

In order to generate random polygons with interesting properties, we rely on the

heuristics presented in [16], which specify parameters such as irregularity and referen-

tial radius. We implement this code in MATLAB and generate the 12 polygons of Fig.

5-28, with 4 to 6 facets. We segment each object with Delaunay triangulation, refer

to [57], and construct 𝒲 ∖𝒪 using a triangular decomposition of the free workspace.

Is worth noting that algorithms other than Delaunay triangulation might be able to

find a decomposition with a small number of convex polygons, as in [81].

For each initial condition, we execute the trajectory with 4 free point fingers.

Results for 12 of the random object are reported in Fig. 5-28. Using the same

manipulator trajectory, a set of different initial poses (marked in gray) are driven

towards 𝑞 (blue). For all the objects, a trajectory was successfully found in 25 to

45 seconds. However, the time required to find the optimal trajectory ranged from

several seconds to around two minutes, depending on the number of integer variables

of the problem. We note that fixing the decision variables in (CT15) tends to allow

little translational uncertainty, suggesting the need for (CT16) in the general case.

Real Robot Experiments

We demonstrate trajectories generated on four different planar objects in a real ex-

perimental set-up with a two-armed robot. We optimize trajectories for each of the

objects in Fig. 5-28 and use simulations to determine 𝑄0. Each trajectory is designed

with 𝑁𝑇 = 5 time-steps and initial limit orientations between −22.5∘ and 22.5∘. We

perform 10 experiments on each object, initializing them at random initial configura-

tions within the invariant set 𝑄0.

Our robotic platform is an ABB YuMi (IRB-14000) robot, which has two 7 DOF

arms with parallel jaw grippers. We work with a Robot Operating System (ROS)
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Figure 5-29: Experimental results. Each row shows snapshots from execution
of the resulting grasping trajectories for 4 objects, overlaying 10 experiments with
initial pose uncertainty (first frame) moving towards a single goal configuration (last
frame). Our certification allows for significant rotational uncertainty in the initial
object configuration, always converging to the same goal.
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Original

Grasp

Optimized

Regions of

Attraction

Figure 5-30: Grasps with optimized region of attraction. By incorporating
−𝛼 as a component of our cost function, we can find the initial cage that encloses
the largest area. We show how the size of 𝑄0, at the 𝜃 = 0 slice, increases
significantly in all cases, as seen in the left examples. However, we also note that
kinematic constraints can limit the search for the largest area, as seen for the T
object.

setup and an Intel RealSense D415 RGB-D camera calibrated with AprilTag 2 scan-

ning, which we use to place the object within the reach of the robot, and within the

invariant set 𝑄0. Additional constraints are added to MIQP1 to account for the

kinematics of the manipulator. The end-effectors of YuMi are modified to have thin

cylindrical fingers. To showcase the robustness of this approach, all experiments are

run open-loop.

Fig. 5-29 shows resulting trajectories for 10 different initial conditions of the four

objects. Depending on the shape, the resulting trajectories vary from stretching – (a)

and (b) – to squeezing (d), and a combination of both (c). In all cases, we are able

to handle significant uncertainty in the orientation axis, and varying translational

uncertainty (from millimeters to a few centimeters). Videos on the experiments for

each of the objects are shown in the supplementary material.
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Comparison with pure force-closure grasping

A natural question is how accounting for certification compares to a naive reaching

strategy. In order to provide a quantitative answer to this question, we compare our

approach to a naive grasping plan which optimizes some criteria of grasp quality,

as commonly done in grasp planning algorithms. We design this naive motion by

searching for a force close grasp, as defined in [101], and approaching each contact

with a trajectory perpendicularly to the goal facet, starting all fingers with the same

separation to their contact at the goal pose.

We simulate both strategies to grasp a T-shaped object from 100 different initial

conditions. Certified grasping always drives the object to the goal configuration with

proprioceptive observability. We measure the 𝐿1 distance to desired object pose,

which we call error, after each grasping strategy is executed and report our results in

Fig. 5-31. As can be seen in many of these simulations, the naive force-closure grasp

does not drive the object towards the goal nor does it provide observability.

Optimizing region of attraction

As we discuss in Section 5.2. we can maximize the set of configurations enclosed by the

initial cage 𝑄0. This in turn, maximizes the set of configurations that will converge

to the desired grasp. We incorporate this property into our model by maximizing the

set of configurations enclosed by a quadrilateral region on the 𝜃 = 0 slice. To this

end, we define our convex region with the vertices:

𝑣1 = 𝑞 + 𝛼

⎛
⎝0

1

⎞
⎠ , 𝑣2 = 𝑞 + 𝛼

⎛
⎝ 0

−1

⎞
⎠ ,

𝑣3 = 𝑞 + 𝛼

⎛
⎝1

0

⎞
⎠ , 𝑣4 = 𝑞 + 𝛼

⎛
⎝−1

0

⎞
⎠ , 𝛼 ≥ 0

Then we include the constraints defined in (CT16) and expand our cost function

to include:
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Figure 5-31: Certified Grasping vs. Force-Closure Grasping. We simulate
grasps over an object with noisy initial configuration (left). A traditional grasping
strategy that maximizes force closure (top-center) fails to handle uncertainty,
resulting in significant error in the final pose of several simulations. In contrast,
certified grasping (bottom-center) drives the object to its goal pose, always
converging to the same configuration. By comparing the 𝐿1 error on the final pose
(right), we obtain that certified grasping is orders of magnitude more accurate than
a naive policy.

MIQP2 : min
ℳ(𝑡)

− 𝛼 +

∫︁ 𝑁∑︁

𝑖=1

⃒⃒
⃒⃒
⃒⃒
⃒⃒𝑑

2𝑝𝑖(𝑡)

𝑑𝑡2

⃒⃒
⃒⃒
⃒⃒
⃒⃒
2

𝑑𝑡

We then test this optimization problem over two different geometries (a ”T” and

a ”double-triangle” object), contrasting the solutions of MIQP1 and MIQP2. We

report our results in Fig. 5-30. We measure the original 𝑄0 by solving the MIQP1,

storing its solution and decision variables, fixing the decision variables in MIQP2

and then solving to find the maximum 𝛼 of the original grasp.

Our results show how the size of 𝑄0 grows noticeably once we include −𝛼 in our

cost. We also notice how kinematic constraints on the gripper can hinder the search

for the largest region, as seen for the ”T” object. However, once we remove these

constraints, the difference between both regions is much larger. We note that, since

we restrict the analysis quadrilateral for areas and only optimize for a common 𝛼, all

these resulting areas are inner estimates and the true region of attraction might be,

in fact, larger.
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Chapter 6

Certified Manipulation in the

Frictionless Plane

The question of planning robotic manipulation behavior that is robust to uncertainty

is almost as old as robotic manipulation itself [85, 51]. Over decades, manipulation

research has looked for mechanisms to force the natural dynamics of the manipula-

tion process to contribute to robustness. In many cases, this has been done through

educated discovery of actions that yield that natural robustness, for example when

pushing an object before grasping it [47], or when squeezing a few times before grasp-

ing it [58].

In this chapter we propose a method for synthesis of robust manipulation behav-

ior which is closer to the notion of robustness in control theory where sequences of

invariance sets, or funnels, constrain and manipulate the set of possible configura-

tions of a system. Lyapunov analysis, contraction theory, or barrier certificates are

common tools for robust behavior in flying, locomoting, or driving robots. However,

the interplay between contact mechanics and geometry in manipulation complicates

the use of the aforementioned tools in general tasks.

The common approach for planning manipulation behavior is to search for tra-

jectories of manipulator actions that apply the right forces to an object or its en-

vironment to move it toward a goal configuration without much consideration to

uncertainty. These methods can capture the complexity of the mechanics and the
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q(T)

q(0)

Figure 6-1: We certify manipulation tasks by building a sequence of invariance sets
(cages), defined by robot fingers and the environment, which enclose an object along
a desired trajectory. This approach generates manipulation strategies that funnel
bounded object pose uncertainty to a goal. In this example, we show a triangle
being pushed a pivoted against a corner for a bounded set of initial configurations.

geometry of rigid-body interaction[100, 32, 5], however the plans they come up with

lead to unreliable executions due to the many sources of uncertainty.

Instead of planning directly for contact trajectories and contact forces when de-

riving manipulation plans, we propose an alternative method, inspired by the notion

of caging [106, 111], where the goal is to derive invariance sets that constraint and

manipulate the set of possible configurations of an object. The method that we pro-

pose here builds from the contribution from the chapter 5, where an optimization

program searches for sequences of manipulator actions that constraint and gradu-

ally shrink the free space of an object directly in configuration space leading it to a

unique final configuration. We generalize this method to certified manipulation plans

by including:

• Motion of the object toward a goal configuration.

• Potential interactions and constraints between object and the environment.

To formulate and solve this problem we make a series of important assumptions: 1)
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Invariance Convergence

Figure 6-2: Visual depiction of our proposed certificates. Invariance: The object
initial configuration 𝑞(0) is constrained to a compact connected component of
free-space 𝒞0

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 (a cage), defined by the manipulator and the environment.
Convergence: The manipulator drives the object through a sequence of
interconnected cages 𝒞𝑡

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 that push the object from its initial configuration
through an specified path 𝑞(𝑡), converging in a singleton 𝒞𝑇

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 = {𝑞(𝑇 )}.

point manipulators, 2) planar world, 3) frictionless interactions, and 3) polygonal

object and environments. Given these assumptions, we plan manipulator motions

that manipulate an object through a trajectory toward a goal by combining these

two certificates the ensure the success of the manipulation plan:

• Invariance: At the beginning of the plan, the object lies in an invariant set

of its configuration space. In this chapter we study the case when the object

is geometrically trapped by either the manipulator fingers, the environment

around it, or a combination of both.

• Convergence: All configurations in the initial invariant set are funneled through

a series of moving and eventually shrinking invariant sets. At the end of the

plan, the invariant set converges to a singleton. This is analogous, in Lya-

punov theory, to driving down the value of a scalar/energy function to a unique

minimum.

We model these certificates under the language of mixed-integer optimization.

This has the caveat of exponential bounds on the computational complexity of solving

each optimization problem. Nonetheless, we show how this technique can synthesize

certified manipulation strategies that involve open multi-contact interactions between

a manipulator, an object and its environment.
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Table 6.1: Notation used in the chapter

𝒪 object
𝒲 ⊆ R2 workspace
𝒞 ⊆ 𝑆𝐸(2) C-space
𝒞free ⊂ 𝒞 free space
𝒞col ⊂ 𝒞 collision space
𝒞(𝜃) slice of the C-space
𝒞free(𝜃) free space of a slice
𝒞col(𝜃) collision space of a slice
𝑁𝑓 number of robot fingers
𝑁𝑒 number of environment facets
𝑁 number of 𝒞-obstacles considered in a loop
𝑀 number of convex polygons composing 𝒪
𝑆 number of 𝒞−slices
𝑁𝑟 number of convex regions in 𝒲 −𝒪

This chapter is organized as follows: In section 6.1 we summarize relevant work

to this problem and introduce the notation we use along the chapter. In section 6.2

we formally describe the problem of this chapter and formulate the approach to solve

along with our assumptions. In section 6.3 we describe our models for each certificate.

Finally, In section 6.4 we demonstrate how our models can be applied to synthesize

certified manipulation plans that are robust to object pose uncertainty

6.1 Background

Given a rigid object 𝒪 in a planar workspace 𝒲 ⊂ R2, we denote its configuration

as 𝑞 = [𝑞𝑥, 𝑞𝑦, 𝑞𝜃]
𝑇 in its Configuration Space 𝒞 = 𝑆𝐸(2) [84]. The object 𝒪 can

be represented as the union of 𝑀 convex polygons P1, . . . ,P𝑀 covered by 𝐿 facets

F1, . . . ,F𝐿 and vertices v1, . . . ,v𝑙. We refer to a hyperplane of 𝒞 with fixed orientation

component 𝜃 as a 𝒞−slice, denoted 𝒞(𝜃). The manipulator ℳ is an arrangement of

𝑁𝑓 point fingers in the workspace 𝒲 , with positions ℳ = {𝑝1, . . . ,𝑝𝑁𝑓
} ∈ 𝒲𝑁𝑓 . The

environment ℰ is an set of 𝑁𝑒 facets in the workspace 𝒲 , defined by line segments

ℰ = {𝐿1, . . . ,𝐿𝑁𝑒} ∈ 𝒲𝑁𝑒 , where each line segment is defined a 𝐿𝑘 = 𝑣𝑘1 𝑣
𝑘
2 .

For each environment segment, we define two ”virtual fingers” which are defined as
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𝑝𝑘
(𝑣,1),𝑝

𝑘
(𝑣,2), ∈ 𝐿𝑘

1. We summarize this notation in Table 6.1.

We refer to the set of configurations where the object intersects a finger or the

environment as 𝒞-obstacles (also known as Collision Space). Then, the free space

of the object 𝒞free is the subset of 𝒞 excluding the 𝒞-obstacles. Note that we allow

the object to be in contact with the obstacles, and so the free space is a closed set

[109]. Each 𝒞-obstacle is defined by the Minskowski sum of the robot fingers and

the environment. To define a loop one must know set of 𝒞-obstacle are enclosing the

object configuration at each slice. Hence, define 𝑁 = (2 × 𝑁𝑒 + 𝑁𝑓 ) ×𝑀 , the sum

of robot fingers and environment ”virtual fingers”, as the number of 𝒞-obstacles we

consider when analyzing the configuration space.

6.2 Certificates for Manipulation

The problem of interest for this chapter is that of finding a manipulation plan that

is certified to succeed. Formally, we define this problem as:

Problem 1 (Certified Manipulation): Given an object 𝒪, a manipulator ℳ,

𝑆 samples of 𝒞−slices, and environment ℰ, and a discrete object trajectory 𝜌𝒪 =

{𝑞(1), . . . , 𝑞(𝑇 )}, find a manipulator trajectory 𝜌ℳ = {ℳ(𝑡) | 𝑡 ∈ {1, . . . , 𝑇}} and

a set 𝑄0 ⊂ 𝒞(𝒪), such that 𝜌ℳ will drive any configuration of the object 𝑞 ∈ 𝑄0

including 𝑞(𝑡) towards the goal in 𝑞(𝑇 ).

This problem can be seen as a particular case of the general problem of fine-

motion planning, also known as LMT [85]. To solve this problem we make three key

assumptions:

1. Friction in between 𝒪,ℳ, and ℰ is neglegible2.

2. The object 𝒪 is represented as a union of convex polygons.

3. The fingers ℳ are points in the workspace.
1These ”virtual fingers” are decision variables used the encode the role of the environment when

building a cage around the object.
2an intuitive reason for this is to prevent the fingers from jamming or wedging the object
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For an object on a plane without friction, a solution to this problem results from en-

forcing the following certificates as a multi-step process (discretized as a manipulator

trajectory of 𝑇 time-steps):

1. Invariance: The initial configuration of the object 𝑞(0) lies in a compact-

connected component of its free-space 𝒞0
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⊂ 𝒞𝑓𝑟𝑒𝑒, This condition is also

known as caging [111]. We will impose this condition at 𝑡 = 1 with the convex-

combinatorial model of caging proposed in Chapter 5.

2. Convergence: The manipulator path drives all configurations towards the

goal 𝑞(𝑇 ) through an an overlapping sequence of compact-connected compo-

nents with decreasing size {𝒞0
𝑐𝑜𝑚𝑝𝑎𝑐𝑡, . . . , 𝒞𝑇

𝑐𝑜𝑚𝑝𝑎𝑐𝑡}. These compact connected

components are defined to contain each triplet of configurations of the path

𝑞(𝑡− 1), 𝑞(𝑡), 𝑞(𝑡+ 1) ∈ 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡∀𝑡 ∈ 1, . . . , 𝑇 − 1. At the final time-step of the

path, the 𝒞-obstacles reduce 𝒞𝑇
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 to a singleton {𝑞(𝑇 )}.

The satisfaction of these constraints gives a geometric certificate that any configu-

ration of the object in the set 𝑄0 = 𝒞0
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 will be driven towards and immobilized in

the goal configuration 𝑞(𝑇 ). The following sections provide a model for these steps,

which then will be combined into an optimization problem (OPT1) for certified ma-

nipulation of polygonal objects.

6.3 Modeling of certificates

This section describes the modeling of each of our certificates under the language of

mixed-integer convex optimization.

6.3.1 Invariance Certificate

As explained above, one way to constrain an object to an invariant set is to cage

it geometrically. Extending the model caging proposed in Chapter 5, in order to

represent line contacts (such as walls or fingers), the following are a set of sufficient

conditions for invariance:
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Figure 6-3: Invariance. Example of a cage in 𝒲 (left), the 𝒞−slices (center) and
the configuration space 𝒞(𝒪) (right). Note how the configuration 𝑞 lies in a
compact connected-component of the free-space (pink), bounded by two limit
orientations (sky blue).

1. The component 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 is bounded in the orientation coordinate by two limit

orientations.

2. At all 𝒞−slices between the two limit orientations there is a loop of 𝒞−obstacles

enclosing a segment of free-space. All these loops must be connected, enclosing

a component of free-space in between adjacent slices. At the slice with 𝑞𝜃(𝑡),

the loop must enclose 𝑞(𝑡) (as illustrated in the middle column of Fig. 6-3).

3. At the 𝒞−slice of a limit orientation (if these exist) the free-space component

enclosed by the loop has zero area. Thus, getting reduced to a line segment or

a point.

The union of these conditions define a net of constraints that enclose the config-

uration 𝑞(𝑡), as illustrated in Fig. 6-3.

To construct a loop of 𝒞−obstacles at each slice, we transcribe the problem as

that of finding a closed directed graph within the intersections between polygonal
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s

Figure 6-4: Caging Model. (a) Illustration of the cage of an object composed of
one polygon (𝑀 = 1), caged with two fingers and a wall (𝑁 = 4) in a configuration
space slice with a free-space of three polygonal regions (𝑅 = 3), and with a
boundary with three edges (𝐿 = 3). (b) The model forms a polygonal loop at each
slice of 𝒞(𝒪, 𝑡) by using the robot fingers 𝑝 and introducing ”virtual fingers” 𝑝𝑘

(𝑣,{1,2})
inside each environment faces, (c) defining a graph of polygonal intersections that
enclose 𝑞(𝑡). (d) We require that 𝑞(𝑡) is enclosed by the loop by constraining the
red ray has an odd number of intersections with the loop. (e) We ensure the cage is
bounded by two limit orientations where the contact normals between the object,
fingers, and the environment define a positive linear dependent set.

obstacles. In such graph, each node represents a 𝒞−obstacle, while each edge imposes

an intersection between polygons. We denote the polygon of 𝒞−obstacle 𝑛 as 𝑃𝑛.

Including this condition in the model, at each time 𝑡, is done through the following

constraints:

Existence of a Loop. We introduce a binary matrix 𝐻(𝑡) ∈ {0, 1}𝑁×𝑁 which

describes the topology of the loop. 𝐻(𝑡) indicates the connection of edges between

𝒞−obstacle 𝑛 and 𝒞−obstacle 𝑚, at time 𝑡, such that 𝐻(𝑛,𝑚)(𝑡) = 1 ⇒ 𝑃𝑛 ∩𝑃𝑚 ̸= ∅.
We compute each 𝒞−obstacle polygon 𝑃 as the Minkowski sum between a robot

finger 𝑝𝑘(𝑡) or virtual finger from the environment 𝑝𝑘
𝑒,{1,2}(𝑡) with a convex polygon

from the 𝒪. This matrix is constrained so that the resulting graph is closed and

directed as

𝐻(𝑛,𝑚)(𝑡) = 1 ⇒

⎧
⎪⎨
⎪⎩

∑︀𝑀
𝑖=1𝐻(𝑚,𝑖)(𝑡) = 1

∑︀𝑀
𝑗=𝑖 𝐻(𝑗,𝑛)(𝑡) = 1

. We show an example of this loop and its graph in Fig. 6-4 (b) and (c).
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Configuration Enclosing. We include this condition by introducing a binary ten-

sor F𝑞(𝑡) ∈ {0, 1}𝑁×𝑁×4, where F𝑞(𝑡)(𝑖, 𝑗, 𝑘 = 1) = 1 imposes that a ray with origin

𝑞(𝑡) has an intersection with the line segment connecting 𝒞−obstacle 𝑖 and 𝒞−obstacle

𝑗 when H(𝑖, 𝑗) = 1, while other values of 𝑘 ∈ {2, 3, 4} denote that the ray lies in the

complement of the segment3. Following Jordan’s Polygon Theorem, the constraint

needed to enclose 𝑞(𝑡) is to impose
∑︀

(𝑖,𝑗) F
𝑞(𝑡)(𝑖, 𝑗, 1) to be odd. An illustration of

this condition is shown in Fig. 6-4 (d).

Remark 1: The constraints needed the enclose 𝑞(𝑡) can also be used to enclose

the set of configurations 𝑞(𝑡)±∆ (where ∆ ∈ 𝒲 is a decision variable). Hence F𝑞(𝑡)

can also encode the minimum translational uncertainty enclosed in 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡

Non-Penetration Constraints. We impose this constraint by introducing a bi-

nary matrix 𝑅(𝑡) ∈ {0, 1}𝑁𝑓×𝑅. 𝑅(𝑡)𝑖,𝑟 = 1 assigns finger 𝑖 to region 𝑟 in 𝒲 ∖𝒪, or

𝑅(𝑡)𝑖,𝑟 = 1 ⇒ 𝑝𝑖(𝑡) ∈ ℛ𝑟(𝑡), with
∑︀

𝑟 𝑅(𝑡)𝑖,𝑟 = 1,∀𝑖, 𝑡.

Constraint Activation. To determine which slices must contain a closed loop of

𝒞−obstacles, we must first determine if the cage has limit orientations. To include

this constraint, we introduce a binary vector Θ(𝑡) ∈ {0, 1}𝑆, where Θ(𝑡)𝑠 = 1 imposes

that a limit orientation must be reached before slice 𝑠, deactivating all loop constraints

in such slice at time-step 𝑡. In this context, before means a greater or equal angle if

the slice lies in the negative orientation half-space or a smaller or equal angle if it lies

in the positive one.

Limit Orientations. A limit orientation occurs at the slices where the loop en-

closes a zero-area component, a condition satisfied when the contact normals of the

objects, fingers, and environments define a positive linear dependent set. To enforce

the existence of limit orientations, we define a set of binary matrices:

1. 𝑇 𝑝
𝑠 (𝑡) ∈ {0, 1}𝑁𝑓×𝐿, such that 𝑇𝑠(𝑡, 𝑖, 𝑙) = 1 ⇒ 𝑝𝑖(𝑡) ∈ 𝐹𝑙(𝑡) imposes that robot

finger 𝑖 must be in contact with an unique object facet 𝑙 at slice 𝑠.
3In practice we use the line segment defined by the geometric centers of the polygons.
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2. 𝑇 𝑣
𝑠 (𝑡) ∈ {0, 1}𝐿×𝑁𝑒 , such that 𝑇𝑠(𝑣, 𝑙) = 1 ⇒ 𝑣𝑣(𝑡) ∈ 𝐿𝑙 imposes that the object

vertex 𝑣 must be uniquely in contact with environment facet 𝑙 at slice 𝑠.

using theses variables and labeling ℒ𝒪 as the set of contact assignments that is pos-

itively linear dependent, we impose 𝑇 𝑣
𝑠

⋃︀
𝑇 𝑝
𝑠 ∈ ℒ𝒪 ⇒ Θ𝑠(𝑡) = 1. A visualization of

this is shown in Fig. 6-4 (e)

Swept volume across slices. In order for the 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 to be compact and con-

nected, the loops created at the 𝒞−slices must also enclose a segment of free-space

between the slices. Chapter 5 describes a sufficient condition for this, having the

boundary of such loops varying continuously towards the boundary of the loop in

the adjacent 𝒞−slices. This condition is satisfied when the swept volume of the

𝒞−obstacles between slices retains the loop topology of the slices. We integrate these

constraints as part of the model as well.

Satisfying these conditions ensures that the configuration 𝑞 is enclosed by a

compact-connected component of free-space.

6.3.2 Convergence Certificate

Given an initial cage, the convergence certificate is satisfied if the process drives a

set of bounded configurations around a trajectory 𝑞(0), . . . , 𝑞(𝑡) towards a goal 𝑞(𝑇 ).

The main insight that allows us to integrate this stage in the framework comes from

the following remark:

Remark 2: Given an object 𝒪, at some time-step 𝑡, in a configuration 𝑞(𝑡) en-

closed in a compact connected component of free-space 𝑞(𝑡) ∈ 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 and bounded

between limit orientations 𝜃𝑙(𝑡) and 𝜃𝑢(𝑡), a collision-free and frictionless manipu-

lator path 𝜌ℳ where the path ℳ(𝑡) → ℳ(𝑡 + 1) pushes all points in 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 to

𝒞𝑡+1
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 ⊃ 𝑞(𝑡 + 1), respecting the 𝒞-obstacle topology of 𝒞𝑡

𝑐𝑜𝑚𝑝𝑎𝑐𝑡, and satisfying
𝑑
𝑑𝑡
(𝜃𝑢(𝑡)− 𝜃𝑙(𝑡)) < 0 will drive any configuration 𝑞 ∈ 𝒞𝑡

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 towards a configura-

tion on 𝒞𝑡+1
𝑐𝑜𝑚𝑝𝑎𝑐𝑡.

The conditions specified in Remark 2, shown in Fig. 6-5, are sufficient but might

not be necessary. However, these allow us to optimize a manipulator path that
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Figure 6-5: Convergence Certificate. We apply this by connecting a sequence
of cages with a decreasing range of limit orientations (gray) decreases, converging at
𝑡 = 𝑇 to a singleton of 𝑞(𝑇 ). The initial cage at 𝑡 = 0 (left) is equivalent to the set
of configurations certified to converge.

satisfies the contraction certificate. This also allows us to characterize the set of

initial configuration that will certifiably converge to 𝑞(𝑇 ). Hence, by relying on the

model described in the previous section, we derive a model to certify contraction as

detailed below.

In order for the conditions detailed in remark 2 to hold, we require that:

1. The object configuration must lie in a cage at all times.

2. Each cage must respect the loop topology of the previous cage, encoded by
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Figure 6-6: Synthesis of short-horizon plans with Invariance and Convergence
certificates using OPT1. Left: Manipulation primitives with point fingers: (1)
planar sliding of triangle in an arch, (2) grasping a square, and (3) moving an
”hourglass” in a ”zig-zag” motion. Right: Sliding and trapping tasks with point
fingers and external environments: (1)-(2) Sliding a triangle and a square along a
wall, (3) trapping a square against a corner.
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H(𝑡), even if choosing a new topology with matrix H(𝑡).

3. Each cage must contain the object configuration at the specific time-step and

its subsequent one.

Algebraically, the conditions to impose a cage at each time-step are posed as:

⎧
⎪⎨
⎪⎩

∑︀
𝑠 Θ𝑠(𝑡) = 2

𝜃𝑠(𝑡) ∈ [𝜃𝑙(𝑡), 𝜃𝑢(𝑡)] ⇒ (loop existence)|(𝑠,𝑡)
(CT1)

for all 𝑡 ∈ {1, . . . , 𝑇}. Then, in order to ensure that the cage topology is respected

between time-steps, we introduce the following constraint at each slice:

𝐻(𝑡)|𝑖,𝑘 ⇒ ∃ 𝑟𝑡 ∈ R2 𝑠.𝑡. 𝑟𝑡 ∈ 𝑃𝑖,𝑡+1 ∩ 𝑃𝑗,𝑡+1 (CT2)

Note that this condition is sufficient, as the intersection occurs between convex poly-

gons and the path is linearly interpolated. Finally, we constraint the limit orientations

to contract their volume gradually under the constraint:

⎧
⎪⎨
⎪⎩
𝜃𝑢(𝑡+ 1) < 𝜃𝑢(𝑡)

𝜃𝑙(𝑡) < 𝜃𝑙(𝑡+ 1)

(CT3)

This, along with the caging model, certifies that the object configuration will be

”funneled” along the trajectory 𝑞(𝑡).

For the final time-step, we want to 𝒞-obstacles to uniquely enclose the object in

𝑞(𝑇 ). A simple technique to enforce this condition is to require that the two limit

orientations at 𝑡 = 𝑇 are infinitesimally close. Note that this reduces 𝒞𝑇
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 to a

singleton. Algebraically, this constraint is added as:

|𝜃𝑢(𝑇 − 1)| ≈ |𝜃𝑙(𝑇 − 1)| ≈ 𝑞𝜃(𝑡) (CT4)

This leads the object to lie in a single configuration where it is unable to rotate,
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since the limit orientations enclose the orientation space, or translate, since the limit

orientations are defining a positive linear dependent set4. With this constraint, we

can certify that the entire manipulation plan funnels a set of configurations centered

𝑞(0), and along a trajectory 𝑞(𝑡), towards a goal 𝑞(𝑇 ).

6.4 Synthesis of certified manipulation plans

Using our model for each certificate, we can pose the following optimization problem

that results in a solution to Problem 1. We propose a formulation which receives

as inputs the description of the polygonal object 𝒪, the reference object trajectory

𝑞(𝑡), the environment ℰ , and the manipulator ℳ. We incorporate the conditions

described through the chapter as constraints and add convex cost term 𝐽(𝑝), resulting

in problem OPT1.

OPT1 : minimize
ℳ(𝑡),𝐻,𝐹 ,𝑇

∫︁ 𝑁∑︁

𝑖=1

𝐽(𝑝𝑖(𝑡))𝑑𝑡

subject to:

1. At 𝑡 = 0, Invariance certificate (CT1).

2. For 𝑡 = 1 to 𝑡 = 𝑇 :

(a) Caging 𝑞(𝑡− 1), 𝑞(𝑡), and 𝑞(𝑡+ 1) (CT1)-(CT2).

(b) Convergence of 𝒞𝑡
𝑐𝑜𝑚𝑝𝑎𝑐𝑡 → 𝒞𝑡+1

𝑐𝑜𝑚𝑝𝑎𝑐𝑡 (CT3).

(c) Additional task constraints (e.g. kinematic limits [35], robustness.

3. At 𝑡 = 𝑇, Caging a singleton (CT4).

We summarize the decision variables of this optimization problem in Table 6.2.

We remark the versatility of this formulation, since OPT1 is a Mixed-Integer Convex

Program (MICP), see [56]. Any solver will always converge to its global solution and

will report infeasibility only if no solution exists.
4This condition is equivalent to a second-order form closure grasp [101]
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6.5 Implementation and results

To demonstrate some of the capabilities of our model, we implement OPT1 and

asses its application for set of manipulation tasks. First, we aim to validate the

model’s ability to optimize simple manipulation behaviors. We then show different

applications of our model for manipulation problems that involve interaction with the

robot and the environment. 5

We generate all the trajectories in MATLAB R2020b, running on an Apple M2

processor with Mac OS X Monterrey. We use Gurobi 8.1.0 [59], an off-the-shelf

optimization software, as our MICP solver. We implement OPT1 with the following

setup:

1. We set 𝑆 = 3 and pre-compute the set ℒ𝒪.

2. To simplify formulation we pre-fix the values of 𝜃𝑙(𝑡), 𝜃𝑢(𝑡), and Θ𝑠(𝑡) in (CT1)

and (CT3).

3. We use a schedule such that 𝜃𝑢(𝑡)− 𝑞𝜃(𝑡) = 𝑞𝜃(𝑡)− 𝜃𝑙(𝑡) = ∆𝜃𝑈𝐿(𝑡).

4. We manually generate each object reference trajectory 𝑞(𝑡).

For all problems, we add a quadratic cost-function that smooths the finger trajecto-

ries:

𝐽 =
𝑇∑︁

𝑡=0

𝑁𝑓∑︁

𝑓=1

||p̈𝑓 (𝑡)||2

Where we compute second derivatives using a second-order finite difference scheme.

6.5.1 Synthesis of manipulation primitives

We first test our model in canonical problems in planar manipulation, without in-

cluding environment constraints. We use trajectories with 𝑇 = 5 define ∆𝜃𝑈𝐿 =
5See a video with this results at: https://youtu.be/ZJK5PCg7Flw
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Table 6.2: Decision variables of OPT1

Variable Dimension Description
H {0, 1}𝑇×𝑆×𝑁×𝑁 Topology 𝒞−obstacle connections
F {0, 1}𝑇×𝑁×𝑁×4 Enclosing of 𝑞(𝑡) at each time-step
T𝑝 {0, 1}𝑇×𝑆×𝑁𝑓×𝐿 Contact between the fingers and an object facets
T𝑣 {0, 1}𝑇×𝑆×𝐿×𝑁𝑒 Contact between object vertices and an environment

facets
R {0, 1}𝑇×𝑁𝑓×𝑅 Non-penetration between fingers a object
Θ {0, 1}𝑆×𝑇 Limit-orientation assignment
𝑝 R𝑁𝑓×𝑇 Robot fingers
𝑝𝑘
(𝑣,·) R2×𝑁𝑒×𝑇 ”virtual” environment fingers

{𝜋
6
, 𝜋
12
, 𝜋
24
, 𝜋
48
, 𝜋 × 10−4}6. We use a point finger manipulator with four fingers for the

following tasks:

1. Planar Grasping: immobilizing a square and an hourglass-shaped object to

a single static configuration.

2. Planar Pushing: sliding a triangle and an hourglass-shaped object along a

trajectory. For the triangle, we perform a translate+rotate motion. For the

hourglass, we execute a zig-zag trajectory.

we show the resulting sensorless manipulation plans in Figure 6-6 (Left). Our results

show how our model can reliably generate grasps and planar pushing trajectories.

Despite the combinatorial complexity of the mixed-integer program, our solver can

find optimal solutions to these problems in the range of 0.5 s to 5 s. For each problem

the MICP has in the range of 700 − 900 integer variables and 400 − 600 continuous

variables.

6.5.2 Using environment as a part of the plan

We then test problems where environmental constraints play a more important role

in certifications. We test two different environments with one and two walls. Again,

we use 𝑇 = 5 and ∆𝜃𝑈𝐿 = {𝜋
6
, 𝜋
12
, 𝜋
24
, 𝜋
48
, 𝜋 × 10−4}. We use a manipulator with two

6This choice of schedule is somewhat arbitrary and other schedules will likely work as well
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and three fingers as indicated:

1. Sliding along a wall: sliding a square (three fingers) and a triangle (two

fingers) against a flat wall towards a goal.

2. Trapping against a corner: sliding a square, using two fingers, against the

90∘ corner of two walls.

We depict both trajectories at the right of Figure 6-6. Our results show how our

model can represent trajectories that leverage environment interaction to fully object

pose uncertainty. In these tasks, our solver finds optimal solutions in the range of

5.5 s to 30 s. For each problem the MICP has in the range of 900 − 3000 integer

variables and 600 − 900 continuous variables. We also remark the impact of our

frictionless contact assumption at solving this task. In the case of high frictional

contact, the object can get jammed or wedged against the wall corner or against a

finger, preventing the manipulator from executing the remaining of the plan.

6.5.3 Synthesis of mid-horizon plans

Finally, we test our model in the context of longer horizon task that requires switching

cage topology and finger configurations along its execution. We select one illustrative

problem that is also challenging: certifiably pivot a triangle 120∘ or 2𝜋
3

using two robot

fingers and two walls. This task is inspired by the allen wrench example described

in [51]. We set a horizon of 𝑇 = 10 and a schedule that linearly decreases 𝜃𝑈𝐿 =

{𝜋
8
, . . . , 𝜋 × 10−4}.
Our model successfully finds a trajectory to this problem in 2 minutes. The

results show how, intuitively, the fingers follow the following strategy: 1) first pivot

the triangle 90∘ against a corner, funneling the largest set of uncertainty, then 2)

shifting the fingers to trap one object facet, and finally 3) funneling the remaining

uncertainty while pivoting to 120∘ while trapping the object between the two fingers

(in one facet) and the corner between the two walls. We depict this trajectory on

Figure 6-7.

168



-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t = 0 t = T

Figure 6-7: Synthesis of mid-horizon sensorless manipulation policy. We solve the
task of pivoting a triangle pose 120∘ using two fingers and two walls.
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Chapter 7

Discussion

In this thesis, we have explored the problems of planning, learning, and certifying

manipulation policies. In each of the chapters of this thesis we have derived algorithms

and computational models that can allow for the discovery of manipulation in skills

in planar setups that can leverage our understanding of contact mechanics and the

manipulation problem. In this chapter, we will discuss the contributions, limitations

and opportunities to explore in future work for each of the chapters of this thesis.

7.1 Planning Manipulation

In Chapter 3, we have presented a hierarchical framework to solve long-horizon object-

contact trajectories for manipulation tasks in 2D polygonal environments. We de-

couple the problem into three stages by searching over a high-level roadmap of a

discretized configuration space, planning motion over local free-space regions, and

optimizing contact interactions over sampled trajectories. This provides us with

a resolution complete algorithm with optimality bounds on high-level search and

contact-trajectory. Our framework accounts for object shape, environment contacts,

and allows for the inclusion of additional constraints within the contact-trajectory

optimization.

We implement this framework using off-the-shelf optimization software and MAT-

LAB. We validate its application on a variety of manipulation tasks with varying
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time horizons, physics constraints, and geometries. Our planner returns a solution

between 0.2 s to 9.6 s, varying with the horizon of the task and complexity of the

problem. Our long-term vision is that the execution of these plans will be robust to

uncertainty using geometry and certification, as proposed in [2], and supported by a

low-level tactile controller, as demonstrated in [66].

Limitations. This algorithm has a few limitations that constrain its scope. First,

the use of mixed-integer programming leads to combinatorial complexity in the contact-

trajectory optimization step. Second, we constrain our manipulator to perform alter-

nated sticking, which eliminates the possibility of in-hand sliding as part of our plans.

Finally, the sampling nature of this approach will usually lead to non-smooth object

trajectories, with jerky motion. Moreover, extending this approach to 3D tasks is not

straightforward. Since we rely on free-space slicing over the orientation component

to construct a roadmap. A generalization to 3D would require a less naive alternative

decomposition of the free-space into convex regions.

Future work. The first set of extensions to this work come from its limitations.

First, we can extend the contact-trajectory optimization model to account for sliding

motion, with the caveat that it would require more binary variables. Secondly, the

trajectories from this model could be post-processed through a nonlinear optimizer,

fixing the contact schedule, in order to get smoother object motions. While this

approach is not directly applicable to 3D tasks, we can sequentially compose planar

tasks between sagittal and traversal environments in order to generate a ”2.5D” be-

havior. In such case, we could also slice over the depth dimension of the space and

generate a graph of convex regions over two rotation dimensions, leading to manip-

ulation skills like those of [66]. Another natural extension would be to combine the

solutions of this algorithm with a state-of-the-art feedback controller [61, 50, 69]. The

use of contact forces could rely on feedback from localized tactile sensing [33, 66].
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7.2 Learning Manipulation

In chapter 4 we explore the problem of visual non-prehensile planar manipulation,

reconciling tools from model-based mechanics with deep learning. Our proposed Dif-

ferentiable Learning for Manipulation (DLM) approach: (i) encodes the input video

𝒱 in a latent vector 𝐿𝒱 , (ii) derenders mechanical parameters 𝒫*(𝑡) for the task, (iii)

solves QP [14] to obtain robot finger actions 𝑝*𝑐(𝑡), 𝜆*𝑐(𝑡), and (iv) evaluates the perfor-

mance of the model by simulating these actions. We train this model by minimizing

ℒ𝒫 , in order to match the ground-truth parameters, and by minimizing ℒ𝑄𝑃 , in order

to match the ground-truth actions. Moreover, we can self-supervise this approach

with new data by back-propagating through the simulator [41] by minimizing ℒ𝑠𝑖𝑚,

without the need for ground-truth labels on parameters or actions. We assess this

method by learning how to solve planar manipulation tasks given a pre-segmented

video showing a desired object motion. Our experiments suggest that, when com-

pared to fully neural architectures, our approach can generalize better to unseen tasks

and shapes with the same amount of training data.

Limitations. The first limitation of this approach comes from the differentiable

simulation scheme. Since our implementation uses finite differences, the slow back-

ward pass hampers the scalability of our model. Similarly, the approximations re-

quired to make contact-mechanics differentiable also lead to undesired effects, such as

rigid-body penetrations and contact at distance, which can compromise the quality of

the results. A second limitation arises from our mechanical assumptions. Assuming

that contacts occur at a set of points disregards tasks involving multiple or continuous

contacts (e.g. pivoting against a wall). Moreover, the representation of the friction

cones brings challenges for extending to 3D scenarios, as it cannot appropriately rep-

resent sliding contact. Finally, since our setup uses unconstrained point fingers, we

are unable to represent more realistic robot kinematics.

Future work. The next step towards our vision is applying this framework in a

real-world system, requiring the capability to handle real-world video data and robot
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kinematics. Our vision is to perform training on completely synthetic data generated

with MIQP [4], fine-tuned for robustness with the simulator, and execute a task

specified with a real-world video. Exploring faster simulation schemes will also be

essential to scale this model to larger datasets. Techniques that explicitly resolve the

contact mechanics, through differentiable solvers, can alleviate this issue [41, 102].

Extending this framework to more complex manipulation tasks might require an

implicit representation for multiple environmental contacts. Finally, moving to 3D

tasks in 𝑆𝐸(3) is also possible by solving contact-trajectory optimization [4] in a 3D

environment [4, 32] also leveraging recent advances in large-scale 3D differentiable

simulation [102].

7.3 Certifying Grasping

In chapter 5 we we studied certified grasping of planar objects under bounded pose

uncertaint and in frictionless objects. To do this, we extend grasp analysis to in-

clude the reaching motion towards the final arrangement of contacts. Under this

perspective, we propose three certificates of grasp success: 1) Invariance within an

initial set of configurations of the object, 2) convergence from the initial set to a

goal grasp, and 3) observability of the final grasp. For each of the these certificates,

we derive a mathematical model, which can be expressed with convex-combinatorial

constraints, and demonstrate their application to synthesize robust sensorless grasps

of polygonal objects. We validate these models in simulation and with real robot

experiments, showcasing the value of the approach by a direct comparison with force

closure grasping.

Limitations. The first limitation of this approach comes from restricting our the

analysis to the configuration space of the object, which neglects frictional interaction

between the fingers and the object. Because of this, our model can only find certified

grasps for trajectories that do not create stable configurations such as jamming or

wedging. Accounting for the role of friction, characterizing undesired scenarios such
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as in [60], would allow this framework to provide certification over a larger range of

dynamic settings and objects. The second limitation comes from the first-order pro-

prioceptive analysis of observability. Including second-order effects such as curvature

of the object, see [108], as well as accounting for more discriminative sensor models

that provide shape, texture, or force information, as in [49], could certify success of a

grasp without requiring form-closure constraints.

Future work. Given the versatility of convex-combinatorial optimization models,

we believe that this approach can be extended to the design of finger phalanges with

complex shapes beyond finger points, see [110]. This would allow to certifiably grasp

specific objects within a larger set of initial conditions and with a lower number of

fingers. Additionally, we are interested in extending this model to invariance sets that

are not purely geometrical, for example by considering energy bounds, as in [86], or

other type of dynamic constraints on object mobility. This could potentially allow for

applications such as sensorless in-hand manipulation, as in [51]. Another promising

line of research lies in the study of certification under parametric uncertainty in

object shape. Finally, it is important to explore the case for three dimensional grasps

and objects, since the definition of our certificates (and specifically remark 2) are

not limited two-dimensional setups. However, our model for caging is not directly

extendable to 3D objects and the notion of limit orientations is not well defined in

𝑆𝐸(3) either.

7.4 Certifying Manipulation

In chapter 6 we presented a global model for the Certified Manipulation problem

on two dimensional polygonal environments. We achieve this by assuming the robot

fingers are represented as points, the environment is represented as a set of line

segments, and that friction coefficients between all bodies are negligible. Under these

assumptions, we propose two certificates, invariance and convergence, that ensure

a manipulation plan will succeed despite initial bounded object pose uncertainty.
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We model both certificates under the language of mixed-integer programming. We

implement these certificates as part of an optimization model to synthesize certified

manipulation plans. We show how our model reliable generates plans for a variety

of tasks including simple manipulation primitives with robot fingers, environment

interaction, and mid-horizon tasks. Our model provides a principled technique to

find manipulation strategies that can be robust to object pose uncertainty.

Limitations. There are several limitations to this approach. First, the compu-

tational complexity of our model has exponential bounds on the number of binary

variables in the problems. Secondly, our frictionless contact assumption has severe

implications on the types of tasks we can execute, since many tasks heavily lever-

age friction to succeed (e.g. pulling an object). Third, the selection of specific limit

orientations can define whether OPT1 is feasible or not for many shapes.

Future work. There are also some natural extensions to this work. First, this

framework can also be applied to solving longer horizon tasks, this can be achieved

by solving a sequence of short horizon problems with OPT1 iteratively to move an

object through longer trajectory, similar to [5]. Secondly, there remains the need

to rigorously analyze the validity of these certificates across different geometries,

shapes, and manipulator schemas. Third, it is key to characterize the role of friction

on the convergence certificate in order to certify manipulation plans that can be

robust under frictional contact. Finally, it is very relevant to explore the role of

energy-bounded cages as part of this framework [86], allowing for less geometrically

constrained manipulation plans.

7.5 Final Remarks

After exploring these problems and discussing our contributions, there remain some

key directions of work that can get us closer enabling versatile dexterity in our robots.
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Spatial planning Our world exists in three dimensions where object geometries

are rarely constrained to the plane. Through this thesis we have emphasized the

application of our algorithms in the planar setup, since it results in a lower dimensional

state space and often captures the main complexities of the manipulation problem.

However, for robots to truly achieve dexterous behavior these models must be adapted

to the spatial world in 𝑆𝐸(3). Significant work has been done in this direction

[66, 32], showing that robots can discover dexterous behavior under the appropriate

system engineering and algorithm conditioning. Extending our planning, learning,

and certification algorithms to the 3D world is paramount for their usage outside of

laboratories.

Geometry and robustness Geometry is an often overlooked aspect of manipula-

tion and the central them of Chapters 5 and 6. However, due to the relatively minor

role of dynamics, geometry often dictates the robustness and versatility of manipu-

lation systems. In the future, our robots along with their policies must be designed

with this in mind. Since robot hands have a monopoly on the manipulation world,

their selection of their shapes could greatly benefit from the ideas of quasi-dynamics

and certification. Similarly, algorithms and controllers should be aware of the role of

geometry in the system. Designing controllers and policies that can implicitly adapt

to new changes in geometry, potentially leveraging advances in tactile sensing, can

allow our robots to act when they see and feel the environment.

Leveraging video data The internet contains innumerable examples of human

dexterity through video, demonstrating the capabilities that enable us to serve at

homes, hospitals, warehouses, and stores. This represents a major source of data for

robots to extract knowledge of how to achieve manipulation skills. Continuing work

that combines video de-rendering along with simple physics representations to learn

how to solve manipulation tasks for experience is a promising direction towards scaling

robot dexterity in the real world. Naturally, this comes with challenges. Such learning

models must be able to decode what are the different elements of an environment,
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which ones are relevant to the task, and how should objects behave, whether rigid or

deformable. However, the advances of large models show that learning systems can

scale to vast amounts of unstructured date.

These ideas present a step towards the dream of versatile dexterity. In the quest

to enable robots to co-exist and assist in human work, one of our key goals to bridge

the human and robot dexterity significantly beyond current capabilities. Mechanics,

geometry, and experience are a stepping stone towards this goal.
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