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Abstract
Medical imaging plays a crucial role in medical diagnosis and analysis. 3D medi-
cal imaging provides more comprehensive and greater anatomical detail of internal
body structures when compared to traditional 2D images, allowing for more accu-
rate measurement of organ and tumor volume, and prediction and monitoring of
some disease progression. 3D medical images can be obtained through various imag-
ing modalities, including magnetic resonance (MR), computed tomography (CT),
and ultrasound (US). Among those modalities, freehand ultrasound is preferred for
its cost-effectiveness, non-invasiveness, portability, safety, versatility, and real-time
information.

However, the lack of information on the position and orientation of the ultrasound
probe makes it challenging to obtain 3D images from 2D ultrasound slices. With-
out the expert knowledge, the user may not acquire precise images on the region of
interest (RoI). To address this issue, we proposed a novel path planning framework
that provides real-time guidance for freehand ultrasound and reconstructs 3D images
in real-time. A low-cost RGB-D camera with IMU module is mounted on a regular
ultrasound probe to estimate the spatial placement of the probe with respect to the
RoI, and the acquired ultrasound images are analyzed and registered into 3D voxel
grid. After the user performs initial scan, the system guides the user to find missing
areas shaded by obstacles such as bones, resulting in more accurate, detailed, and
efficient 3D ultrasound imaging. We validated our system on an ultrasound phantom
and demonstrated its ability to investigate the area beneath the obstacle. Addition-
ally, we developed a visualization system for real-time probe movement guidance and
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image display.
This study demonstrates the feasibility of implementing an online path planning

approach with real-time guidance and high-attenuation area avoidance for freehand
ultrasound scanning, even in scenarios where prior knowledge of the scanning area is
not available. The proposed path planning system not only enhances the efficiency
and precision of ultrasound imaging in clinical settings, but also facilitates the acqui-
sition of high-quality 3D ultrasound images by non-expert users in a more convenient
manner, potentially allowing for long-term health monitoring.

Thesis Supervisor: Brian W. Anthony
Title: Principal Research Scientist
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Chapter 1

Background and Motivation

1.1 Volumetric Medical Image

Medical imaging technologies play an important role in clinical diagnosis and medical

treatment. Popular image modalities include X-ray, magnetic resonance (MR), and

computed tomography (CT), ultrasound (US).

These technologies have been applied in the measurement of in vivo organ vol-

umes, which has drawn much attention. The organ volumes can provide the whole

organ view for a better understanding of the body status of patients. Optimizing

the imaging parameters is essential to image quality; organ volumes can also provide

situational awareness and context for 2D slice acquisition. Moreover, organ or tu-

mor volume measurement is widely used in monitoring and longitudinal analysis of

disease progression.

In particular, the measurement and monitoring of volumetric information in some

diseases is very important and even essential [12].
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1.1.1 Existing Image Modalities for 3D Volume Measure-

ment

Computed Tomography (CT) Image

Computed tomography (CT) is a medical diagnostic imaging technique that utilizes

X-rays to measure the projection of an object from multiple surrounding directions,

and then construct a 3D image of the linear attenuation coefficient throughout the

object. The images are typically obtained as a sequence of parallel axial slices,

which can be “stacked” into a 3D image, showing the 3D volume and properties of

the object [75]. Since the location and orientation of the slice images are known, and

the slices are parallel to each other, the reconstruction of 2D X-ray images into 3D

image only involves some basic translation and would also be more accurate when

compared with ultrasound imaging.

Segmentation of volume reconstructions can be used for quantitive measurement.

Many researches have been conducted in the area of CT image automatic segmen-

tation. Classical methods for segmentation involve applying threshold on the image

intensity and considering the shape information of the interested domain [63]. Lim

et al. [54] proposed a method for CT liver image automatic segmentation based on

intensity distribution and priori knowledge of adjacent slices. The volume measure-

ment utilizing this method presented an average error rate of 3% when compared

to manual segmentation. Automatic segmentation methods are developed based on

machine learning algorithms utilizing the prior knowledge related to the interested

domain [63], which also happens in other imaging modalities [2, 56].
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Magnetic Resonance (MR) Image

Magnetic resonance (MR) imaging is a non-invasive medical imaging technique that

uses a magnetic field and radio waves to create detailed maps of internal body struc-

tures [8]. MR images are formed by detecting the energy emitted from the body

tissues in response to the magnetic field and radio waves. MR images are commonly

used to diagnose and evaluate a variety of conditions, including brain and spinal

cord injuries, tumors, heart, liver, and other organs. MR is non-invasive, does not

use ionizing radiation, and can provide highly detailed and accurate images that can

assist in guiding medical interventions and treatments.

In 1995, Järvinen et al. [45] validated the accuracy of volume measurement with

MR imaging on the right atrium, revealing that the measured volumes had a good

correlation with the true volumes obtained from water displacement. Mahieu-Caputo

et al. [58] measured the lung volume of fetal from MR images, and with a relationship

between the lung volume size and gestational age, concluded a criterion to diagnose

pulmonary hypoplasia in congenital diaphragmatic hernia. Mayr et al. [60] compared

the tumor volume estimated by tracing the tumor region size in MR slices and the

volume measured by a “ellipsoid volume” fomula based on diameter measurement in

60 patients with advanced cervical cancer, and concluded that the surrogate “ellipsoid

volume” fomula was not able to predict the tumor size for radiation therapy (RT)

treatment.

Ultrasound (US) Image

Ultrasound (US) imaging is a medical imaging technique that employs high-frequency

sound waves to create images of internal body structures. To acquire ultrasound

images, an ultrasound transducer will be placed on the skin over the target area.
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The transducer will first emit sound waves and then change into receiving mode to

collect the returning echoes relected from the organs and tissues inside the body,

which will be analyzed to produce real-time images of that area. Ultrasound was

first introduced in medical imaging in the 1950s, initially focusing on cardiac and

obstetrical applications [20, 103]. Over time, ultrasound imaging is commonly used

to diagnose and treat various diseases, and evaluate various organs, such as the

heart, liver, and kidneys, as well as to monitor fetal development during pregnancy.

It is non-invasive, does not use ionizing radiation, and can provide detailed images

that can assist in guiding medical interventions and treatments. In the beginning,

ultrasound was mainly used in hospitals, but with the development of cost-effective

and portable equipment, as well as its non-ionizing and safe nature, its use has

expanded to physician offices, trauma settings, and even space [15,52,57].

Previously, some organ volume was usually calculated with an ellipsoid formula

based on the dimension estimated from ultrasound images, which simply modeled the

organ as an ellipsoid with the height, width, and length of H, W , and L, respectively,

and the volume can be estimated as π
6
HWL. Bakker et al. [5] compared the renal

volume determined from ellipsoid formula and that from MR imaging, concluded

that the ellipsoid formula can not provide precise and consistent evaluation of the

volume of kidney. In a study conducted by Tong et al. [96], 8 observers measured

15 in vivo prostate images through ellipsoid formula from 2D transrectal ultrasound

(TRUS) images, and 3D TRUS images, proving that the 3D TRUS images have

higher reliability than the ellipsoid formula estimation. Rogers et al. [81] compared

the volume estimation accuracy of B-mode ultrasound, 3D tomographic ultrasound

(tUS), CT, and MR imaging using an ex vivo porcine arteries phantom, and suggested

that the tUS was the most accurate. Benjamin et al. [6] developed a system for

estimating renal volumes with freehand ultrasound scan by augmenting a depth
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camera and utilizing simultaneous localization and mapping (SLAM), resulting an

estimation error within 3%, which was better than the ellipsoid fomula and CT

images.

When compared to ultrasound, other medical imaging technologies such as MR,

CT, contrast angiography (CA), and single-photon emission computed tomography

(SPECT) are typically considered more expensive, involving exposure to ionizing

radiation, less portable, or have a higher risk of complications from contrast me-

dia [70]. Particularly, in obstetrics and gynecology examination, according to the

National Institute of Child Health and Human Development, the lower cost, real-

time capability, safety, and operator comfort and experience have made ultrasound

the preferred choice for imaging during pregnancy [79]. Meanwhile, ultrasound eval-

uation of blood flow in the fetal brain has proven to be more precise (85%) than

amniotic fluid testing (76%), indicating noninvasive ultrasound as a recommended

replacement for invasive testing [68]. Ultrasound shows cost-effective for diagnos-

ing various medical conditions, including gallstones, biliary pancreatitis, and adrenal

masses, and has comparable accuracy when compared with other imaging modalities

such as MR and CT [26, 73]. Additionally, ultrasound can be used as a nonionizing

alternative to colonoscopy and can be used for frequent reimaging in patients with

inflammatory bowel disease to avoid excessive radiation exposure [39]. In many other

medical conditions, such as vascular flow evaluation, cardiac exmination, and cancer

diagnosis, ultrasound offers fast and accurate diagnosis, with a lower cost [7].
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1.1.2 Organ Volume Measurement in Disease Diagnosis and

Monitoring

Chronic Kidney Disease (CKD)

Chronic kidney disease (CKD) is a prevalent medical condition involving sustained

kidney function deterioration over time, the extent of which can be determined by

the glomerular filtration rate (GFR) [22,25]. Chapman et al. [12] followed 241 adults

with CKD for 8 years, revealing that height-adjusted total kidney volume (htKTV)

has negative correlations with GFR, and the increace of htKTV occurs earlier than

the decrease of GFR. Chapman et al. [12] concluded a baseline of htTKV ≥ 600

cc/m as a better predictor for CKD and renal dyfunction than the previous ones.

The total kidney volume and the its growth rate are highly correlated to the

advanced stages of CKD, and can also be used as biomarker in autosomal dominant

polycystic kidney disease (ADPKD) predication and monitoring [109]. ADPKD is

one of the major late-onset genetic multisystem disorders characterized by the en-

largement of numerous kidneys cysts, leading to CKD and end-stage renal disease

(ESRD) [27, 37, 109]. There is currently no cure for this disease, but treatment can

slow down the progression of the disease, which can be benifit a lot from identifying

the disease at early stage and tracking the progression with the biomarker of renal

volume. According to a study on 241 patients with ADPKD conducted by Grantham

et al. [34], the total kidney volume and cyst volume showed an exponential growth

in most studied patients, with an average annual rate of 5.27±3.92.

As stated in [74], ultrasound imaging is a commonly utilized method for identi-

fying ADPKD due to its cost-effectiveness and safety compared with MR and CT

scans. However, it should be noted that in the early stages of ADPKD, small cysts

may potentially go undetected in ultrasound imaging examination [74]. In earlier
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years, ellipsoid formula was applied to the ultrasound images to estimate the kidney

volume. However, this method lacks accuracy and reproducibility [5]. The renal

volume estimation method proposed by Benjamin et al. [6] made accurate kidney

volume acquisition with freehand ultrasound possible.

Chronic Liver Disease

In a study conducted in 1998, Lin et al. [55] measured the liver volume of 39 patients

without liver diseases and 44 patients with chronic liver disease with CT images,

revealing that the actual liver volume of alcoholic hepatitis patients was significantly

higher than the predicted volume based on their height and weight, while the liver

volume of chronic viral hepatitis patients tended to be lower than predicted. Hence,

the actual liver volume with respect to the predicted volume can be an indicator for

the cause and severity of liver diseases [55]. Polycystic liver disease (PLD) is iden-

tified by the growth of multiple cysts, gradually and continuously causing the liver

enlargement [29]. Neijenhuis1 et al. [66] studied the height-corrected liver volume

(htLV) of 82 patients with PLD and concluded that the patients with larger htLV

would have severer symphotoms and lower life quality, suggesting that htLV should

be considered as a criteria for exploring new treatments for PLD symptoms.

Currently, due to the significant increase in obesity rates, nonalcoholic fatty liver

disease (NAFLD) has become more prevalent than alcoholic liver disease, and is the

leading cause of both steatosis and raised liver enzymes, with a worldwide estimated

prevalence of 20% in the general popular and up to 70% among type 2 diabetes

mellitus patients [11,48,59]. The first identifiable stage of NAFLD, hepatic steatosis,

can be recognized by the fat volume in the liver exceeding 5% [85]. Although steatosis

is typically considered non-threatening regarding to the risk of developing advanced
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liver disease, it is still a significant contributor to cirrhosis due to the high prevalence

[99]. Because the speed of sound in fat is lower than in healthy tissue, the 3D

distribution map of speed of sound in the liver can serve as a biomarker to this

disease [30,71,72].

1.2 3D Ultrasound

Dispite the advantages of ultrasound imaging mentioned above, the conventional 2D

ultrasound uses 1D ultrasound probes to provide 2D images in an arbitrary plane,

but due to the lack of information on the position and orientation of the probe, it

would be harder to acquire 3D information from ultrasound images. Without expert

knowledge, the user might fail to acquire precise images of the region of interest

(RoI). To deal with the limitation mentioned above, 3D US was proposed to help

with acquiring spatial anatomic information. This provides the clinics with the 3D

volume view and panoramic view of the RoI, which also provides real-time visual

assistance during surgeries [43].

1.2.1 Data Acquisition

Generally, 3D ultrasound image can be collected in two different ways: (1) directly

collect 3D images with 2D array transducers; (2) reconstruct 3D image with 2D

images collected by 1D array transducers and the spatial information of the probe,

which requires localization of the space position of the probe [43].

The 2D array transducers send out acoustic beam steering in both the horizontal

and vertical dimensions to obtain a volumetric scan [108]. The elements of the 2D

array transducers can generate a pyramid-shaped beam, whose echoes can be pro-
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cessed to form 3D ultrasound images in real time. By modifying the phased array

delays to direct and focus the beams on the ROI, the transducers can stay motionless

during the scanning process [43]. This type of transducer does not need localization

or reconstruction, resulting in a more precise result. However, the 2D array trans-

ducer is still facing challenges in fabrication, signal processing, time consuming and

fabrication cost, and the view field is very small [43].

Besides the 2D array transducers, some mechanical 3D probes are also proposed

for acquisition of 3D ultrasound images [43]. The mechanical 3D probe moves a

regular 1D linear array transducer within the probe, and reconstructs 3D ultrasound

images from the 2D images acquired by the 1D transducer [76]. The mechanical 3D

probe does not need external localizer and are easy to operate. However, they are

larger than conventional linear probes, and the static holding is required during the

image acquisition, which can result in errors. Moreover, they require a specific motor

to fit within the probe, which limits their versatility [43].

The convential probes can also be applied to 3D ultrasound image acquisition, but

some external localization methods are required, which will be discussed in Section

1.2.2.

1.2.2 Localization Method

There are two main types of external localization methods for the regular 2D imaging

transducers: (1) place the transducer in desired positions utilizing mechanical local-

izers (as is classified by Huang et al. [43]) or robotic arms; (2) estimate the real-time

spacial placement of the transducer with some sensors [6, 92].

The mechanical localizers can provide accurate position and orientation of the

transducers, and can be controlled to follow optimal paths and reduce scanning
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time. The mechanical localizers are typically enormous and heavy, losing the advan-

tage of portability of ultrasound imaging. Another popular method for transducer

localization is to mount the transducer on an articulated robotic arm. The type

of transducers held by the robotic arm can also be changed based on the scanning

condition. However, to reduce the error introduced by the positioning errors on the

joints, the robotic arm should be as short as possible, which limits the view range.

Therefore, in clinical practice, freehand scans are much preferred. Additionally, a

force-controlled freehand ultrasound probe proposed by Gilbertson et al. [31] can

control the contact force between the transducer and body surface for desired tis-

sue deformation, which overcomes the shortage of human operator and enhances the

ability of freehand ultrasound.

According to Huang et al. [43], acoustic positioners, optical positioners, and mag-

netic field sensors have been applied to freehand ultrasound scanning to estimate the

pose (position and orientation) of the probes in real time. Typically, these localiza-

tion methods need to attach some particular labels (optical markers, electromagnetic

tags, etc.) to the ultrasound transducers and track the spacial placement of these tags

with an external device from some distance. These additional setups would introduce

inconvenience and expensive cost to ultrasound imaging, violating the flexibility and

low-cost nature of ultrasound imaging. Moreover, this type of setup requires the

labels to be identifiable to the tracking device, which restricts the orientation of the

probe. Meanwhile, obstacles are not allowed between the labels and the tracking

device, which further limits the motion of the probe. Thus, this type of solution is

not ideal in clinical use.

Alternatively, the spacial displacement of ultrasound probe can be estimated

through mounting sensors on the probe. Horvath et al. [40] projected structured

light onto the patient skin surface, and attached a video camera to the probe for
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localization. Similarly, a designated adhesive strip with markers is affixed to the skin,

and detected by a camera attached mounted on the transducer in a study conducted

by Rafii-Tari et al. [78]. Although these methods were validated to be accurate and

cheap, fixing markers on the skin would reduce the flexibility, restricting the probe

within a small range around the designed pattern. Researchers are also exploring

the use of ultrasound images for transducer localization with fully developed speckle

patches and deep learning [62,77,80]. This method does not require additional device

for position tracking, but the error accumulates over time, and the requirement of

prior knowledge might not support the scanning in an arbitrary in real time. A

total variation regularization method was proposed, which employs a variational

formulation in the manifold of Euclidean transformations to improve the accuracy of

pose data generated by general tracking systems [24].

Another markerless localization method of exploiting the feature of the skin sur-

face and structure from motion (SfM) with a web camera was proposed, and the

location estimation error for probe moving 200mm was tested to be 2mm [44]. This

study proved the feasibility of empolying light-weight camera in 3D freehand ultra-

sound, but the orientation estimation still remain to be verified. Benjamin et al. [6]

suggested a method of mounting a low-cost RGB-D camera and and inertial mea-

surement unit (IMU) to a convential ultrasound transducer, allowing the localization

during unrestricted freehand scanning.

1.2.3 3D Volume Reconstruction

With the localization information of the transducer when the US image is acquired,

a series of 2D US images can be augmented and reconstructed into 3D images. The

speed and accuracy of 3D volume reconstruction are important for achieving real-time
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3D ultrasound image acquisition. According to the implementation, there are two

popular types of real-time volume reconstruction algorithms: Voxel-Based Methods,

and Pixel-Based Methods [43].

For voxel-based methods, a discritized voxel grid in a predefined area is defined.

For each voxel in the voxel grid, the corresponding pixels in the B-mode images can

be located, and a resulted value (e.g., mean value or maximum value) will be assigned

to the voxel. A simple method can be find the nearest pixel to the voxel from the 2D

imamges, which will be located on the voxel’s normal to the nearest 2D image [82,90].

Furthermore, the voxel-based methods can be improved with interpolation between

the involved pixels, mostly in a distance-weighted fashion [43,97].

Pixel-based methods are more popular in 3D ultrasound image resconstruction,

where the nearest voxels of each pixel in the B-mode images will be found, and the

value of the pixel will be assigned to the corresponding voxels. In cases where mul-

tiple pixels are assigned to a same voxel, the value of the voxel can be determined

with different methods, that is, the resulting value of the voxel can be the average

value, the maximum value, the most recent value or the first value [16,32,67,69,97].

When some vacant voxels occur in the reconstructed volume, some gap filling meth-

ods would then be applied, such as bilinear interpolation between the two nearset

nonempty voxels around the empty voxel [41].

Thus, to fast and completely acquire the 3D information of a given domain and

avoid estimation for the gap filling process, especially for freehand ultrasound without

expertise knowledge, path planning is needed to assist image acquisition.
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1.3 Related Works

Although path planning has not been discussed in terms of guided freehand 3D ul-

trasound imaging, many works in different area have been done to achieve intelligent

ultrasound image acquisition. Furthermore, in a broader vision area, the techniques

applied in automatic view planning can be utilized in this research. Meanwhile,

the problem of path planning has been well discussed in the fields of computational

graphics and robtics, so some ideas in those areas can also be adpated into this

problem.

1.3.1 Robotic Ultrasound Acquisition Systems

Many researchers have applied technology in robotics and computer vision to build

robotic ultrasound systems for image acquisition, which makes remote medical imag-

ing and diagnosis possible. Li et al. [53] classified the levels of autonomy in robotic

ultrasound acquisition systems based on the autonomous capabilities [107]. At its

most basic level, a robotic ultrasound system involves “human-robot cooperation”

in which the robot and the human operator work together to move the ultrasound

transducer [53, 93]. Visual servoing techniques based on ultrasound images are usu-

ally integrated in this type of system for tracking specific features and unintended

patient motion [1,88,89]. An enhanced type of this “human-robot cooperation” sys-

tem allows the robot completely control the motion of the probe, but needs the user

to specify the initial position [13, 49, 61]. The second level is called task autonomy,

which enables the robot automatically acquire ultrasound images along a pre-defined

path. The third level, also known as conditional autonomy, refers to robotic ultra-

sonography systems that are capable of autonomously planning and carrying out

ultrasound acquisitions without any guidance from a human operator, but still un-

29



der their supervision. The three most common topics discussed in this area are

contact force control, scanning path planning, and image quality optimization [53],

the latter two of which overlap with our interest.

The automatic acquisition of ultrasound imaging requires automatic scanning

path generation. Mustafa et al. [64] developed a robotic system to automatically

scan liver area. This platform utilized the natural visual marker of human body

for target area localization using optical camera, and the scanning trajectory was

then generated with interpolation inside the area. Huang et al. [42] introduced a

depth camera to the robotic ultrasound system for 3D object surface reconstruction

and determining the target area. The system would then execute linear sweeps for

multiple times according to the area size. These methods, however, do not consider

the body surface and tissue information, which might lead to low image quality and

limited scanning applicability. Some studies utilized MRI data [38, 47, 100] for de-

formable registration with real-time RGB-D images of the patient, which enhances

the scanning versatility. Graumann et al. [35] proposed an algorithm to generate the

scanning path for a certain RoI for robotic ultrasound scan with the prior knowledge

of 3D point cloud of patient surface and co-registered segmentation of the volume. In

this work, the scanning orientation is fixed to the normal direction of the surface at

the scanning point, and the generated paths follow the pre-defined cosine function.

While these systems can easily and fast generate ultrasound scanning trajectories for

a domain, its ability will be limited in clinical use due to the complexity of human

body, such as the obstruction of bones and the position and shape of interested or-

gans. Nakadate et al. [65] proposed an incremental scanning path planning method

utilizing real-time US images to search for the desired view of the carotid artery.

This method involves detecting carotid landmarks using real-time image process-

ing algorithms, but may not be easily applicable to other organs without obvious
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landmarks.

Another popular research topic in this area is to find optimal probe orientation

and position to acquire the information of a target plane or point for better image

quality. Many studies have have investigated using tomographic data from CT or

MR images to predict ultrasound image quality [50,102,111]. A view-planning plat-

form with automatic adaption to patient data and image-based probe tracking based

on preproduced CT or MR images was proposed [101], which can find optimized

probe locations for acquiring the standard view planes defined by the user. Acous-

tic window planning has been proposed to adjust scanning orientation and surface

points for optimized acquisition at target points which were previously generated

with the information from MR or X-ray images [33]. Additionally, some automatic

image quality assessment techniques have also been developed for ultrasound imag-

ing, which can be further applied to real-time ultrasound acquisition [4, 86,106].

1.3.2 Freehand Ultrasound Trajectory Guidance

Freehand ultrasound scanning is typically performed based on the experience of

the operator, and guidance or path planning for this method has not been well

studied. Droste et al. [19] developed a first real-time freehand ultrasound probe

movement guidance system for obstetric standard plane acquisition using a neural

network called US-GuideNet. This network receives ultrasound image signals and

corresponding probe motion information to guide the probe movement for acquiring

a desired standard plane. Zhao et al. [110] further developed a landmark retrieval-

based method utilizing a Transformer-VLAD network for real-time obstetric freehand

ultrasound scanning guidance. This network can transform obtained images into

global descriptors and search for the nearest landmark to localize the probe, and the
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probe position is visualized accordingly. The performance of this network was tested

on a clinical 3D US simulator.

1.3.3 Robotic Path Planning

The topics of path planning and object reconstruction have been widely discussed

in the field of robotics. Our problem can be identified as Coverage Path Planning

(CPP), which aims to find a path to pass all the points in an given area or volume [28].

This type of task occurs in many applications, such as automatic cleaning robot [17],

demining robot [3] and lawn mower robot [36]. Although this problem can be further

modeled as many classical path planning problems, most of them are NP-hard [28].

Based on whether the algorithm is proven to guarantee complete coverage of the

given space, CPP algorithms can be classified as heuristic or complete. With the

assumption of whether the environment is fully known, CPP algorithms can also be

classified as offline or online [28]. Typical CPP algorithms discretize the target region

into small cells [14] and represent with adjacent graph using line sweeping [28]. Wong

et al. [104, 105] proposed a coverage algorithm for mobile robots that uses natural

landmarks detection for topological mapping.

Considering the real-time ultrasound acquisition and the need of volume recon-

struction, we are mostly interested in grid-based online CPP algorithms. Grid-based

methods are the most common solution to CPP problems, which use cells with val-

ues indicating obstacle presence or free space, typically represented by squares but

also triangles, so the completeness of these methods depends on resolution [23, 28].

However, grid maps have a disadvantage of increasing memory usage exponentially

because the resolution remains the same irrespective of the complexity of the environ-

ment [95]. Additionally, they necessitate precise localization to ensure the consistency
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of the map [51].

1.3.4 3D Reconstruction and View Planning

3D object reconstruction is a technique to build the model a real 3D object from im-

ages scanned at different perspectives. A typical object reconstruction environment

setup includes a range camera, positioning system, fixtures, and the target object.

The range camera can detect the 3D shape of the object. Since different sides of the

object needs different perspective, positioning systems are needed to measure the rel-

ative position of camera and object. To determine the relative position, some kinds

of fixtures are also needed [87]. View planning algorithms work in viewpoint space,

where each viewpoint consists of the sensor pose and measurement parameters [94].

As is depicted in Figure 1-1, the workflow of object reconstruction shapes in a

cycle of four steps – plan, scan, register, and integrate. Plan means computing a

plan scan

registerintegrate

Figure 1-1: Workflow of object reconstruction [87]

sequence of next-best-view (NBV) lists. Then the sensor should move as the the

NBV lists indicate, and take scan. In consideration of the existing of position error

in positioning systems, the images acquired in scan should be registered, and then

integrated into a single and non-redundant model. This process works in a loop until

meets some criteria.
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The topic of view planning developed from the demand of 3D models for complex

objects, and can be applied in automated high-quality 3D object reconstruction [87].

View planning works in the step of plan in the reconstruction process mentioned in

Figure 1-1.

Algorithms to find the NBV sequences to construct an arbitrary object with

the existing of positioning error have been developed [98]. These algorithms first

generate a set of candidate views in the viewpoint space, and evaluate the views

with multi-resolution strategy.

1.4 Discussion

Medical imaging is an important part in clinical diagnosis and treatment, while 3D

volume information plays a crucial role in diagnosis and stage identification of some

diseases, such as CKD and NAFLD. Among various imaging modalities, ultrasound

imaging is preferred due to its cost-effectiveness, convenience, real-time feedback and

safety. However, the accurate reconstruction of 3D ultrasound images requires addi-

tional real-time location and orientation information of the transducer. A suitable

solution to the ultrasound probe localization, in consistent with the low-cost and

portability nature of ultrasound imaging, is considered to be mounting a low-cost

RGB-D camera and IMU module on the probe.

Nontheless, expert knowledge is required to achieve the 3D information quickly

and accurately. To address this issue, a path planning system can be proposed to

guide the freehand ultrasound scanning to construct a 3D ultrasound image. The

path planning problem in freehand ultrasound has not been adequately explored, so

several related areas have been reviewd in this context. Different from the research

topics discussed in Section 1.3, this project focuses on guiding non-expert users to
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fast and completely acquire an entire interested volume with real freehand scan in

real time.
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Chapter 2

Problem Formulation for Freehand

Ultrasound Scan

In general, the scanning area is discretized into voxels, which are pixels in the 2D

case. As mentioned in Section 1.3.3, the aim of Coverage Path Planning (CPP) is

to find a scanning trajectory that can cover almost all voxels and use the fewest

scanning poses, if possible.

In an early work [10], the criteria for CPP problem, or region filling operations,

were defined as follows:

1. The whole target region (or all target points) must be covered.

2. The region should be filled without overlapping paths.

3. The paths should be continuous, sequential, and non-repetitive.

4. The paths should be obstacle-free.

5. For simplicity in operation, simple motion trajectories should be used (straight

lines and circles in most cases).
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6. An "optimal" path is desired if possible.

However, in some cases, not all criteria can be satisfied due to the complexity of the

real environment, such as the occlusions due to ribs or other anatomical structures

in ultrasound imaging.

To adapt the CPP problem to freehand ultrasound, we need to consider the

properties of ultrasound scanning. The complex structure with bones and entrapped

air of the human body makes some areas unobservable by ultrasound. Generally,

each scan motion consists of a sequence of images and probe poses. As shown in

Figure 2-1, there are two common scanning types used in clinical practice: linear

scan and fan scan.

Furthermore, path planning for freehand ultrasound scan should also consider

the image quality. In ultrasound scanning, the transducer emits ultrasound waves

and detects the reflected waves. Given the properties of the scanning area and the

transducer type, the angle between the ultrasound beam and target boundaries (e.g.,

tissue, organ, tumor), pressure, and wavelength would influence the reflection and,

consequently, the image quality. Also, due to attenuation when ultrasound travels

through the medium, the brightness and contrast of the acquired images would be

low after passing through high-attenuation areas. A good path planning algorithm

should also try to avoid such areas and acquire the information underneath.

Therefore, the criteria for path planning for freehand ultrasound can be summa-

rized as follows:

1. Most of the target region is covered.

2. The paths should be continuous sequences.

3. Obstacles (e.g., bones) should be avoided or compensated for during scanning.
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(a) (b)

Figure 2-1: Two commonly used scanning trajectories for commercial ultrasound
probe: linear scan and fan scan. Figure 2-1(a) shows linear scan, where the probe
moves translationally, while maintaining the angle between the probe and the scan-
ning surface. Figure 2-1(b) shows fan scan, where the probe rotates about the contact
point of the probe and the surface.

4. Simple motions, such as linear scan and fan scan, should be used.

5. The scanning parameters, such as the pose, should be adjusted to acquire

better images if possible.

6. An "optimal" path with the smallest set of scanning actions is desirable.

We define a scanning sequence as the sequence of scanning poses, which can be

either linear scan or fan scan. Two adjacent motions should be either different in

type or discontinuous in space.

Moreover, for freehand scanning, the human operator cannot strictly follow the

suggested trajectories, requiring additional principles to examine whether the objec-

tive is reached.

To outline the main points for this project, a basic workflow of the proposed

path planning approach is described in 2-2. First, to quickly collect the information
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fan scan

linear scan

path suggestion
user move to suggested

pose and execute path

confirm recommended

scan is performed
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discovered?

finish scan and

get 3D reconstruction

No
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Figure 2-2: The basic outline and workflow of the proposed method
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within the region of interest, a initial scan will be suggested, that is, do several linear

scans within the region. Then the algorithm will start to analyze the missing area,

and iteratively predict a most informative pose for the next scan to approach. The

type of scan to perform around the new pose will also be suggested. The human

operator can move the transducer to the suggested pose either directly by lifting the

probe and moving to the position through the air, or keeping the probe in contact

with the region surface. Keeping in contact is not required but suggested so that

the proposed system can continue to gather additional information during the two

scanning path. Ideally, the algorithm can confirm the operator has performed the

desired scan at the selected pose, and then the algorithm will repeats finding the

next best pose with a suggested scanning type to perform at the new pose. Once the

algorithm finds most voxels have been discovered, or no new informative pose can

be found, the loop will end and a 3D model of the region can be reconstructed.

41



42



Chapter 3

Next Best Scanning Pose

Searching in 2D Simulation

To further study the path planning problem, we discuss the problem of finding the

best scanning pose in a 2D simulation in this chapter.

3.1 Path Planning Algorithm with Greedy Policy

We employ the greedy method [21] to make every step the most informative since

the inner structure of the scanning area is unknown. The strategy can be written as

Algorithm 1. where the score consists of pose score and scan score. The pose score

indicates the continuity of the current pose p with previous pose, while the scan score

is the sum of the scores of the voxels in the predicted scanning area at the current

pose p. The involved voxels of a certain scanning pose is determined with ray tracing

method according to Bresenham algorithm [9]. The scan score at a single voxel is
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Algorithm 1 With greedy search
initial scan: voxels {v0, v1, · · · , vn0} → Vknown

Update priority map
while known voxels percent < threshold or cannot find new pose do

Find all possible candidate poses as P
Evaluate the scores of all poses in P
p← a pose with the highest score in P
Update Vknownwith scan at p
Update priority map

end while

defined based on whether it is unknown or in a high-priority area as follows:

sv =


−100, v nontransmittable or other prohibited zone

1, v is unknown or in high-priority area

0, other

(3.1)

Voxels in the interested area can be assigned with higher priority.

In some configurations, there might exist some unreachable areas. Hence, the

pose searching process would also end if no new pixels can be discovered.

3.2 Path Planning in 2D Simple World

The algorithm was first applied to a 40mm × 40mm simple 2D world with a direct

straight line, as shown in Figure 3-1, where the scanning beam will emit from the top.

The target object is the ellipse in the middle, shaded by a long and thin obstacle.

The "image" acquired in this case is 1D, i.e., a straight line, and the "probe" in this

scenario is a point sensor that sends out a 1D single line for acquisition. Each pixel

in the acquired image cooresponds to 0.1 mm in the world.
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Figure 3-1: Schematic of 2D world
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Figure 3-2: Degrees of freedom of the sensor
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In this 2D world, the candidate pose sets were generated uniformly in the workspace.

Note that the end of the point sensor must be located on the top surface of the target

area, so the sensor has two degrees of freedom (DoF), orientation and lateral posi-

tion. Therefore, with the lateral position of the tip point of the sensor (x) and the

intersection angle between the sensor beam and the upper boundary (θ), the pose of

the sensor can be defined, as shown in Figure 3-2.

Considering that line sensors in the real world would still have thickness, which

limits the intersection angle, we limit the angle θ between 30◦ and 150◦.

Figure 3-3: Ray tracing method in 2D case. The boxes colored in blue are the pixels
reached by sensor represented by the blue line, and the yellow boxes are reached by
the yellow line sensor.

For each pair of x and θ, we can retrieve the intersected voxels at each layer along

the longitudinal direction, which is described in Figure 3-3.

The system was implemented on the Robotic Operating System (ROS Noetic)

[91]. It consists of two main nodes, one for calculating the data received to determine

the best next pose, and for visualizing the acquired information and pose. This node
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sends the best pose to the other node, which runs the simulation, generates line

images, and sends the image back to the calculation node. The calculation node only

has knowledge of the size of the world and can only obtain line images associated

with the suggested poses. In the calculation node, the size of the world is set as

40mm width × 40mm length, with the center located in [0, 0]. The grid size for

image registration, reconstruction and path calculation is 0.1mm.

The algorithm operated as shown in Figure 3-4. As is shown in Figure 3-4(a)

– 3-4(b), the direct beam performed an initial scan, and the missing area in the

middle was shaded by the obstacle. Knowing the existing of obstacle, the algorithm

adjusted the orientation of the beam to acquire the missing information (Figure 3-

4(c) – 3-4(d)). The scanning ended in Figure 3-4(e) when most (>96%) pixels are

known, where the object area was identified, and the upper and side boundaries of

the obstacle area was also discovered. The bottom boundaries of the obstacle, and

some area beneath the obstacle remained undiscovered.

However, the undiscovered area below the non-transmittable obstacle cannot be

reached with the current configuration.

3.3 Path Planning in 2D Simulation with Ultra-

sound 1D propagation

This algorithm was also applied in 2D simulation with an ultrasound beam. In

this case, the probe is a 1D transducer emitting an ultrasound beam, and the 1D

ultrasound propagation of 1D probe was simulated with finite element method.

The wave equation for the displacement y of any particle at location x in the
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Figure 3-4: Resulting scanning path with straight line. As is legended in Figure (e),
the green rod represents the sensor location; the red areas are detected to be the
obejct; the white areas are recognized as the background; the black areas remain
undiscovered; and the yellow lines are the boundaries of the obstacle. Figure (a)
shows the initial state. Figure (b) describes the information acquired during initial
scan. Figure (c) – (d) indicate the algorithm was trying to fill the gaps caused by
the obstacle during initial scan, and Figure (e) depicts the final state. The 2D world
schemetic is displayed in Figure (f) again for comparison, the detailed legend and
dimensions can be found in Figure 3-1.
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ultrasound field, at time t, can be expressed as:

ρ
∂2y

∂t2
= B

∂y2

∂x2
(3.2)

where ρ is the density of the medium and B is the bulk modulus. The speed of sound

can be derived as c =
√

B
ρ

. When accounting for damping with a damping ratio β,

the wave equation becomes:

∂2y

∂t2
= c2

∂y2

∂x2
− β∂y

∂t
(3.3)

Polynomial interpolation is used on both sides of the wave equation, yielding the

following equation for a selected simulation time step ∆t and grid distance ∆x:

y(x, t+∆t)− 2y(x, t) + y(x, t−∆t)

∆t2
=c2

y(x+∆x, t)− 2y(x, t) + y(x−∆x, t)

∆x2

− β y(x, t+∆t)− y(x, t−∆t)

∆t

(3.4)

This equation can be used to calculate the displacement y at the next time step,

which is given by:

y(x, t+∆t) =
1

1 + 1
2
β∆t

[
c2

∆t2

∆x2
y(x+∆x, t) + c2

∆t2

∆x2
y(x−∆x, t)

+ (2− 2c2
∆t2

∆x2
)y(x, t)− y(x, t−∆t) +

1

2
β∆ty(x, t−∆t)

] (3.5)

After iterating Equation 3.5 for a finite number of steps, the particle displacement
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field for 1D ultrasound propagation can be estimated. Using the equation of motion,

−∂P
∂x

= ρ0
∂y2

∂t2
(3.6)

the pressure signal P at the receiver can be derived. Then we can apply descritized

Fourier Transform to the signal, filter the information out with a low pass filter, and

detect the envelope of the signal, as is shown in Figure 3-5. This method allows for

the generation of 1D B-mode images.

Figure 3-5: Envelope detection of the simulated signal

Based on those geometrical information, ultrasound 1D propagation would be

simulated and the obtained signal would then be sent out for further path planning.

To simplify the calculation related to geometrical features, the target object was

designed as a circle with a diameter equal to half of the whole square, as shown in

Figure 3-6. Given the pose of the sensor, the length of the ultrasound beam traveling

within the Region of Interest (RoI) can be determined, along with the location and

length of the intersection between the beam and the target. It is also possible to

determine whether the ultrasound beam reaches the high-attenuation area and the
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Figure 3-6: 2D world configuration for ultrasound simulation. The white strip on
the top represents a high ultrasound attenuation area. The blue circle represents the
target object, and the black square serves as the RoI to be explored.

length the beam travels within the area.

The simulation was conducted using an excitation signal frequency of 1 MHz.

The density of the surrounding area was set to 1000 kg/m3, while the bulk modulus

was chosen as 2.3716× 109 N/m2, resulting in a speed of sound of c0 = 1540 m/s in

this area. The energy transmitted through the white area was assumed to be low and

was ignored. The density of the blue round area in the middle was set to 1.1 times

that of the background density, resulting in a speed of sound of ct = 1468.33m/s in

the object area. The damping ratio for attenuation was set to β = 0.1c2.

The sampling rate was set to 20 MHz, which determined the time step ∆t, while

the space grid distance was ∆x = c0∆t. The setup for pose calculation and image

simulation was similar to the simple world simulation described in Section 3.2, with

the simulation node in this case simulating 1D ultrasound propagation and generating

1D B-mode images.
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Under the simulation conditions described above, the algorithm performed as

depicted in Figure 3-7. As with the straight beam case, the simulated 1D ultrasound

probe first executed an initial scan, and the missing area in the middle was shaded by

the obstacle, as shown in Figure 3-7(a) – 3-7(b). Knowing the existense of obstacle,

the algorithm started to adjust the orientation of the ultrasound beam to acquire the

missing information, as shown in Figure 3-7(c) – 3-7(d). In Figure 3-7(e), when most

pixels were discovered, the algorithm could not find a new scanning pose where the

ultrasound beam can reach more than 10 new pixels, so the searching process ended.

Similar to the previous example, the object area was identified, and the upper and

side boundaries of the obstacle area was also discovered. The bottom boundaries of

the obstacle, and some area beneath the obstacle remained undiscovered.

In this best scanning pose searching problem, which was developed from coverage

path planning (CPP) problem, the image quality was not considered. Thus, at the

left and right corners of the circle in the middle, the pixels were discovered during

initial scan when the ultrasound beam direction was almost tangential to the object

surface. Under this scanning condition, the reflection at the object boundaries was

low, resulting in unclear images around the two corners. However, the algorithm

considers those pixels as “discovered”, so they would not need to be examined again

with appropriate view angels. Similarly, the pixels at the bottom boundary of the

target object were also explored during the initial scan. However, due to attenuation,

the image intensity around that area was also low.

3.4 Results Discussion

The previous section presented two simple 2D cases provide an intuitive understand-

ing for path planning in trajectory-guided ultrasound scanning. In both cases, an
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Figure 3-7: Resulting scanning path with ultrasound 1D propagation. As is legended
in Figure (e), the green rod represents the sensor location; the red (and dark red)
areas are detected to be the obejct; the white areas are recognized as the background;
the gray areas remain undiscovered; and the yellow lines are the boundaries of the
obstacle. Figure (a) shows the initial state. Figure (b) describes the information
acquired during initial scan. Figure (c) – (d) show the algorithm was trying to fill
the gaps caused by the obstruction area during initial scan, and Figure (e) is the
final state. The 2D world schemetic for this simulation is again included in Figure
(f) for comparison, the detailed legend and dimensions can be found in Figure 3-6.
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area beneath the obstacle remained undiscovered after the guided scan. This area is

the blind spot shaped by the occlusion area, and can only be accessed when the in-

tersection angle θ is less than 30◦ or greater than 150◦, which violates the workspace

definition, as is described in Figure 3-8. In real ultrasound scans, the angle θ can

obstruction area

undiscovered area

Figure 3-8: Blind spot under current configuration. Obviously, the red point can
only be accessed at θ1 < 30◦, or θ2 > 150◦, which exceed the angle limit.

also influence image quality, restricting the angle to a narrow range. Therefore, some

undiscoverable area may still exist even with appropriate trajectory guidance.

In these two experiments, the best next scan pose was calculated only as a single

pose, resulting in a pose sequence that may be discontinuous at some points, i.e., the

probe may jump frequently from one side to the other. To avoid frequent and severe

changes in pose, an additional score indicating the distance of the new pose to the

previous one was included.

It should be acknowledged that the greedy policy employed in this work may

lead to local minima. However, since we can only optimize the next pose based on

past information, the greedy policy is acceptable. Additionally, the inherently safe

nature of ultrasound imaging makes the total scanning time a non-sensitive factor,

so a time-optimal solution is not necessary, and redundant information can actually

improve image quality.
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Chapter 4

Path Planning Algorithm

Description

In Chapter 3, we presented two simple 2D examples to illustrate the fundamentals

of the path planning algorithm for ultrasound scanning. In this chapter, we describe

how we adapt and apply this algorithm to real-time ultrasound scanning with 2D

images in order to construct a 3D volume, and the hardware system required for its

implementation.

4.1 Hardware System

4.1.1 Probe Localization

In order to estimate position and orientation of the probe in real time, we use the

Intel Realsense depth camera D435i (Intel, Santa Clara, California, USA) for the

implementation of the path planning algorithm. This camera is a RGBD camera

equipped with an inertial measurement unit (IMU). Figure 4-1 shows the appearance
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of the camera and its associated coordinate system.

IR
projector

IMU inside

left
imager

right
imager

rgb

camera

Figure 4-1: Intel Realsense depth camera D435i. This camera has two camera sensors
(“left imager” and “right imager”), an Infrared Projector (“IR projector”), and an
RGB camera (labeled as “rgb camera”). It provides depth data with a resolution of
1280× 720 at a frame rate of 90 fps, and RGB data with a resolution of 1920× 1080
at 30 fps.

The camera has two stereo camera sensors (“left imager” and “right imager”), an

Infrared Projector (“IR projector”), and an RGB camera (labeled as rgb camera”).

The stereo depth module (two imagers and the IR projector) has a field of view (FOV)

of 87◦×58◦×95◦ (horizontal, vertical, and diagonal, respectively) and is available in

all lighting conditions, with a resolution of 1280 × 800. The IR projector sends out

static infrared patterns at the wavelength of 850nm ± 10 nm to the environment to

help the depth measurement. The projector has a FOV of 90◦±3◦×63◦±3◦×99◦±3◦.

The camera can provide steoro depth data with a maximum resolution of 1280×720

at a frame rate of 90 frames per second (fps) and RGB data with a resolution of up

to 1920 × 1080 pixels at a frame rate of 30 fps. It is capable of measuring depth

between the range of 0.2m to over 3m. This camera is equipped with an additional
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inertial measurement unit (IMU) module, enabling the estimation of its 6 degrees

of freedom (DoF) space pose, and the integration error of the IMU data would be

corrected with the optical information.

Figure 4-1 shows the appearence and associated coordinate system of this camera.

By default, the origin Oc of this camera coordinate system is located at the center

of the RGB camera, and the xc, yc, and zc axes point towards the forward, left, and

upright sides of the camera, respectively. As is displayed in Figure 4-2, the camera

is attached to the ultrasound probe with some 3D-printed connectors.

In order to simplify the computation, we have defined a specific coordinate system

for the probe as shown in Figure 4-2. The xp axis is aligned with the transducer

traversal element arrangement direction, the yp axis is aligned with the longitudinal

direction, and the zp axis is aligned with the upright direction of the probe. Moreover,

we have relocated the origin to the bottom center point of the probe. Therefore, the

rotation matrix Rc
p from the camera frame to the probe frame can be written as given

in Equation 4.1.

Rc
p = Rz(−90◦) =


0 1 0

−1 0 0

0 0 1

 (4.1)

The translation between the probe and the camera, denoted as dcp, with respect to

the camera coordinates depends on the shape and size of the connectors.

4.1.2 Coordinate system

This section provides an overview of the coordinate systems used in the proposed

system. The coordinate systems are illustrated in Figure 4-3, which shows four main

frames: the world frame, the camera frame, the ultrasound probe frame, and the
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Figure 4-2: The ultrasound probe with D435i camera attached by 3D-printed con-
nectors. The coordinate system Op − xpypzp defines the probe frame, where xp axis
points to the traversal element arrangement direction of the transducer, which will
be the width direction u of the acquired B-mode image; yp axis is parrallel to the
longitudinal direction; zp axis is the upright direction, whose negative direction is
the height direction v of the resulting image. Op is the bottom center point of the
probe, which coinsides with the top center of the image.
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Figure 4-3: Coordinate systems associated with the D435i camera, world, and ul-
trasound probe. The red frame Ow − xwywzw represents the world frame. Typically
in the experiments, the origin of world frame is located around the center of the
top surface of the region of interest (the blue box). The green frame Op − xpypzp
represents the ultrasound probe frame, as is defined in Figure 4-2. The red frame
Oc − xcyczc indicates the camera frame described in Figure 4-1. The yellow frame
(u,v) indicates the ultrasound B-mode image frame, whose width direction is u, and
height direction is v.
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ultrasound B-mode image frame. The world frame (Ow − xwywzw) is established

by the camera when the measurement program starts running, and its origin and

coordinates are defined by the starting pose of the camera. The camera frame (Oc−

xcyczc) information can be obtained directly from the depth camera with respect to

the world coordinate system. The probe frame (Op − xpypzp) has a static rotation

from the camera frame given in Equation 4.1, along with a rigid translation dcp. The

ultrasound B-mode image frame is denoted by the yellow frame (u,v), where u and

v are the width and height directions of the image, respectively.

Let us denote the time at camera initialization as t0. If we place the probe

normally onto the region of interest (RoI) surface at t0, the world coordinate system

will be established at frame Ow − xwywzw (also known as the camera frame at t0,

i.e., Oc0 −xc0yc0zc0) in Figure 4-3. Then the rotation and translation from the world

frame to the probe frame at t0 (Op0 − xp0yp0zp0) will be equal to Rc
p, and dcp. At an

arbitrary time t after t0, let Tw
c be the pose information of the camera frame read

from the camera, then the probe pose (rotation matrix Rw
p and displacement dwp ) in

the world frame can be written as Rw
p dwp

0 1

 = Tw
p = Tw

c T
c
p =

 Rw
c dwc

0 1

 Rc
p dcp

0 1

 (4.2)

For a pixel (un, vn) in the B-mode image acquired at t, its corresponding location

in the probe frame is [unsu, 0,−vnsv]T , where su and sv are the resolution of the

ultrasound image in u and v direction, respectively. Therefore, its position [X,Y, Z]T
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in the world frame can be written as:
X

Y

Z

 = Rw
p


u0su

0

−v0sv

+ dwp (4.3)

To aviod repetitive computation of matrix multiplication, we can derive the

positions of other pixels from the top center point in the image, which coincides

with the origin of prboe coordinates, i.e., dwp . Let the column vectors of Rw
p be

Rw
p = [nw

p , t
w
p ,b

w
p ], then we can easily map the unit vector of the B-mode image, ∆u

and ∆v, to the world frame:

∆uw =sun
w
p

∆vw =− svbw
p

(4.4)

Similar to the ray tracing method based on Bresenham algorithm [9], but in two

directions, the corresponding points of other pixels can then be computed with ∆u,

∆v, dwp , and their relative displacement to the top center point in the image frame.

4.1.3 Verasonics Ultrasound Machine

The ultrasound machine used in this project is Verasonics Vantage 256 (Verasonics,

Kirkland, Washington, USA). This machine is a research-grade ultrasound machine

that provides high flexibility and programmability for a wide range of ultrasound

applications. It has a maximum sampling rate of 80 MHz, which enables high-

resolution imaging, and can be programmed to operate in both B-mode (brightness

mode) and RF (radiofrequency) mode in real time, and supports a wide range of

transducer types and frequencies. and velocity, making it a valuable tool in car-
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diovascular research. During the data acquisition of the proposed system, the data

would be streamed out in real-time through Ethernet to process and record.

4.1.4 Data Streaming and Communication

Figure 4-4: Data transfer and communication in the system

As is depicted in Figure 4-4, in the proposed system, the Verasonics machine is

connected to a Windows desktop and the acquired B-mode images are transferred to

a laptop running ROS through Ethernet. The pose of the probe is estimated by the

RealSense D435i camera, which is also connected to the laptop. The coordination

and synchronization of different processes and calculations is handled by ROS, which

ensures seamless communication between different components of the system.

However, since the acquired 2D images are reshaped into 1D for streaming out,

and the data is received and processed by line in ROS, there is a time delay between

receiving the first byte of data from the Verasonics machine and successfully pro-

cessing all the lines to form an image. Therefore, the pose information related to

the image should be collected at the time when first byte of image information is
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received to ensure accurate and timely synchronization of data.

4.2 Target Area Identification and Workflow De-

scription

As is described earlier in Figure 1-1, although this proiect focuses on path planning

for the scanning pose, as part of this process we need to decide a fast solution to the

identification of important area to move the process forward.

In this project, the main focus is on path planning for the scanning pose, but it is

still necessary to identify important areas for online and real-time path planning, as is

described earlier in Figure 1-1. Specially, when working with a typical B-mode image

acquired in an ultrasound phantom and the identification of important areas, we use

segmentation of the area with inclusions and shaded areas from the background. It

is possible to complete this segmentation task roughly based on the image intensity

at each pixel.

However, the high-reflection area and high-attenuation area are not absolutely

correlated, so the high-attenuation area can not be directly identified through inten-

sity differences alone. Given that the shadow in the image must be caused by the

high-attenuation area above it, the high-attenuation area, or obstacle to avoid, can

be located based on the shaded area. For example, we can traverse an image by col-

umn, and for a single column, as is framed out in Figure 4-5, if a high-intensity area

occurs in a shallow pixel (area A in the Figure), and is followed by a low-intensity

area in lower pixels (area B), then we can label area A as the high-attenuation area.

The basic methodology to fill the shaded area would be similar to the 2D cases
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A

B

Figure 4-5: Simple intersity criteria for extracting the obstraction area. When
traversing an column in the image from top to the bottom, if we first find a high-
intensity area (labeled as A) followed by some low-intensity area (labeled as B), then
we can consider area A as the obstruction area, or the obstacle area.

discussed in Chapter 3, while for the blurred area, the number of voxels involved

would be relatively small compared with the total voxel number. Therefore, a more

efficient solution is to record the blurred areas once identified and find a better

scanning pose for the areas that remain blurred after most voxels are discovered.

Then the path planning with greedy search adapted to real-world freehand ultrasound

is described in Algorithm 2.

The evaluation of candidate poses and estimation of better scanning pose for

blurred areas will be discussed in the following sections.
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Algorithm 2 Path planning for freehand ultrasound
initial scan: voxels {v0, v1, · · · , vn0} → Vknown, {b0, b1, · · · , bm0} → Vblurred
Update priority map
while known voxels percent < threshold or cannot find new pose do

Find all possible candidate poses as P
Evaluate the scores of all poses in P
po ← a pose with the highest score in P
Decide a best path p1, p2, · · · , ps around po, and wait for the user to execute
while Path p1, p2, · · · , ps is not finished do

Acquire a new image A and pose p
Update Vknown,Vblurredwith image A at pose p
Update priority map

end while
end while
for each b in Vblurred do

if b is still blurred then
Find a better scanning pose for b

end if
end for

4.3 Multi-resolution Strategy For Path Planning

in Large Area

4.3.1 Candidate Pose Generation and Evaluation

Similar to the 2D cases, we first need to find all possible poses for next scan for further

evaluation. The spacial placement of transducer has 6 DoF, the location, [x, y, z],

and the orientation, roll (ϕ), pitch (θ), yaw (ψ). However, not all parameters are

free to change in order to acquire informative ultrasound images.

First of all, the transducer surface emitting the ultrasound should be in contact

with the obejct surface (phantom surface, or skin surface when acquiring in vivo

images). Therefore, the displacement of z would be determined by x and y with

65



Figure 4-6: The six degrees of freedom (DoF) of the probe.

the surface function f(x, y). Specially, for a typical ultrasound phantom whose top

surface is flat, z will be a constant value. The variation of angular position θ does not

change the plane the transducer is examining, which might provide more information,

but the new information would be limited. Hence, we would not consider changing

this angular position in path planning. The choice of ϕ might introduce interspace

of air between the transducer and the target surface, adversely affecting the image

quality, so this angle should be limited within a reasonable range. Since the variation

of ϕ coinsides with fan scan, and doing linear scan with a particular value of ϕ would

be hard to execute, we would first decide the displacement of x, y, and ψ, and then

choose from linear scan or fan scan.

Thus, the candidate pose set can be generated by evenly sample of [x, y, ψ] in the

workspace while keeping z = f(x, y), θ = ϕ = 0.

The evaluation of a candidate pose is similar to the 2D case, that is, predicting

the voxels can be accessed by imaging at the candidate pose, but the Bresenham

algorithm [9] is applied to both u and v directions utilizing Equation 4.4. The

related voxels are located and evaluted by column in the predicted image. For a
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single column, the 2D version ray tracing method performs the same with the 1D

beam, counting the new voxels and the voxels with high proirity the column beam

reaches, and once the column beam reaches the obstacle area, a negative score will

be assgined to the column, and the 2D version ray tracing method will move to the

next column for evalution. The final score for this candidate pose is the sum of the

scores of all the columns.

4.3.2 Multi-resolution Strategy

Moving from 2D domain to 3D domain, the number of voxels and candidate poses

increases sharply, which is hugely time-consuming. To expendiate the path searching

process, a multi-resolution strategy described in [98] is utilized and adapted. That

is, first evaluate the candidate poses in a lower resolution R1, and find the top n1

candidate poses for next resolution layer. Repeat the evaluation with new resolution

and reduced candidate pose set until achieving the final resolution. Suppose there

are k resolution layers, and resolution Rk is the final resolution we reconstruct the

3D model with, then with the resolution Rk, we need to find the top one pose, and

this pose would be the output of this multi-resolution best pose searching process.

Namely, the next best pose searching process in the scenario of freehand ultrasound

scan can be described in Algorithm 3.

4.4 Normal Vector Estimation for Pose Adjust-

ment of Target Scanning Point

As is shown earlier in the 2D ultrasound simulation in Section 3.3, even when most of

the voxels in the RoI are discovered, there might still exist some blurred area where
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Algorithm 3 Next best pose searching for freehand ultrasound with multi-resolution
strategy

Generate candidate pose set P0

for i = 1 : k − 1 do
for each candidate pose p in Pi−1 do

Evaluate p with resolution Ri

end for
Find top ni poses {pi,1, pi,2, · · · , pi,ni

}
Pi ← {pi,1, pi,2, · · · , pi,ni

}
end for
Evaluate each p in Pk with resolution Rk

Find top pose pbest
return pbest

the image is not clear and could be improved with an additional pose. In ultrasound

imaging, the angle of incidence represents the angle at which a beam deviates from a

line that is perpendicular to the tissue surface. Typically, a larger angle of incidence

means in fewer reflected sound waves to the transducer, causing a darker and more

unclear image. Therefore, in order to obtain a clear ultrasound image of some inner

body structures (e.g., organ shape), the optimal orientation of the ultrasound beam

should be perpendicular to the surface of the target inner body area, i.e., follow the

direction of the normal vector at the inner surface [18]. To satisfy this criterion,

the path planning algorithm should suggest a probe pose that is close to the normal

direction of some unclear points. This requires normal vector estimation.

Considering the fact that human operators cannot follow the instructions pre-

cisely, here we can use a simple normal vector estimation method – using the normal

vector of a plane tangent to the surface to approximate the normal vector to a point

at the surface. Therefore, this problem can be turned into a least-square plane fitting

estimation problem. Thus, the solution to this problem can be reduced to an analysis

of the eigenvectors and eigenvalues (or PCA Principal Component Analysis) of a
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covariance matrix created from the nearest neighbors of the query point introduced

in [83].

For each inquired point Pq in the point cloud, we can find its k neighbor points,

P1, P2, · · · , Pk, and the centroid point P of the k neighbors can then be estimated

by taking

P =
k∑

i=1

Pi (4.5)

Then the covariance matrix at point Pi can be computed as

C =
1

k

k∑
i=1

ξi(Pi − P )(Pi − P )T (4.6)

where ξi is the possible weight for Pi, if any, or would be set to 1. For a 3D point

cloud, C ∈ R3×3, so we can find the eigenvalue and eigenvectors of C, λj and vj,

j = 1, 2, 3, through

Cvj = λjvj, j = 1, 2, 3 (4.7)

Let λ1 be the smallest eigenvalue, then the normal vector nq at point Pq can be

approximated by v1 or −v1.

Since the sign of the normal vector nq given by PCA method is ambiguous,

Rusu [83] also stated that the direction can be determined with the viewpoint vp
when it is known. Then normal vector should satisfy that

nq · (vp − Pq) > 0 (4.8)

Applying this normal estimation method into this path planning problem, we

utilized an open-source library, Point Cloud Library (PCL) [84], for point cloud pro-

cessing. During the image registration and reconstruction process, the information
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of the surface points would be recorded in a point cloud, and the locations of all the

blurred areas would also be tracked. After most region of the RoI is discovered and

filled, check each voxel in the blurred areas. If no better image has been acquired at

this voxel (denote the center point of this voxel as Pv), estimate the normal vector

ni at this voxel, then in most cases we can find the intersetion point Ps of this vector

ni and the outer surface, or find the point Ps satisfying

Ps ∈ Pouter surface, s.t.min
Ps

{arg (PsPv,ni)} (4.9)

Then we can find the normal vector ns at Ps of the outer surface with the information

gathered through initial scan, and choose the plane decided by ni − Ps − ns for a

new scan.
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Chapter 5

Algorithm Validation and

Experiments

In the last chapter, we described the basic workflow of the proposed algorithm. A

system for real-time freehand ultrasound scanning guidance was developed and tested

on an ultrasound phantom.

5.1 Experimental Setup

5.1.1 Ultrasound phantom for experiments

To evaluate the functionality of the proposed framework, especially the obstacle

(high-attenuation area) avoidance feature, an ultrasound phantom was fabricated, as

is shown in Figure 5-1. The phantom consisted of a potato and an agar cube placed

in the lower layer. The agar cube serves as the target “organ” for examination, as

it exhibits strong reflection and good penetrability in ultrasound. The potato has

a high reflection at the surface, but high-attenuation inside. To introduce a shaded
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Figure 5-1: The ultrasound phantom fabricated for testing and validation

area, a wooden stick was place on the top of the two objects.

Since the phantom was handmade, it contains some defects, such as air holes,

which would introduce noise to the acquired image.

5.1.2 Visualization System for Probe Guidance and Real-

time Reconstruction Preview

A crucial element of real-time probe guidance for freehand scanning is a user-friendly

visualization system. To this end, we developed a visualization system to display

suggested scanning poses, and the reconstructed 3D image in real time based on

RViz [46], a 3D visualization tool of ROS, which is shown in Figure 5-2. The 3D

view in the middle of the interface provides information about the phantom, probe,

and camera, as well as the data reconstructed from the acquired images. During
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real-time B-mode image

inclusion area

probe frame

world framesuggested probe movement

suggested pose

background area

image frame

undiscovered area

Figure 5-2: Visualization system for real-time probe guidance and reconstruction.
As is labeled, the voxels in the undiscovered area will be invisible, while voxels in
the inclusion area will appear in red colors, the obstacle area in yellow, and the
background area in black. The ultrasound probe mesh in red placed on the top of
the phantom indicating the suggested pose; the transparent probe mesh moves along
the suggested path. The real-time ultrasound image streamed from the Verasonics
machine is displayed in the lower left corner.
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the real-time path planning and image acquisition process, once an B-mode image is

received by the computational system, the visualization system will change related

voxel colors in the screen based on the information from the image. The voxels in the

undiscovered area will remain invisible, while voxels in the inclusion area will appear

in red colors, the obstacle area will be yellow, and the background area will be in

black. The method for area classification and corresponding voxel determination will

be discussed in Section 5.1.5. The camera pose and probe pose are also displayed in

the 3D view. The ultrasound probe mesh in red placed on the top of the phantom

indicating the most informative pose at this stage, guiding the user to move the

probe, while the transparent probe mesh moves continuously, showing the suggested

movement of the probe and directing the user to perform either a linear scan or fan

scan. A screen in the lower left corner displays the ultrasound image streamed from

the Verasonics machine.

The system has a feature of automatically confirming whether the suggested path

was executed by evaluating the Euclidean distance between the current pose and

the suggested pose. However, during the experiments, the position and orientation

estimation of the probe exhibited lage error at times, so the feature was disabled to

aviod false judgement. The user will be required to move the probe until the frame

in the visualization platfrom indicating the probe aligns with the suggested probe

pose, and once the user confirms that the suggested path has been achieved, they

can report to the computation system for next path computation and suggestion (by

pressing the enter botton in the terminal in current setup).
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5.1.3 Parameter Selection

Most parameters in the Verasonics system are tunable. The high voltage parameter

controls the amplitude of the measuring wave pulse, which directly influences the

energy reflected. Higher value of this parameter will result in higher contrast and

intensity of the B-mode image. Noticing that the defects in the phantom can absorb

energy and hence decrease the image intensity, we set the high voltage to the highest

possible value, 50 V, or the B-mode images acquired might not be bright enough for

the following assessment and processing. The defects in the phantom also cause some

detectable reflection in the background area, which interferes the image segmenta-

tion. Since most of the reflection caused by the defects is not strong, a parameter

of the “sensor cutoff” was set to 0.9 to filter out such reflection and form a clear

boundary of the inclusion area. Despite the fact that the images acquired in real

time may not be as clear as those from commercial ultrasound machines equipped

with enhancement algorithms, the B-mode images streamed out from the Verasonics

machine were normalized to a range of 0 to 255 in intensity and had a size of 459

pixels in height and 394 pixels in width. The GE C1-6D Ultrasound Probe (GE

Healthcare, Chicago, IL, USA) was utilized in the experiments, with each pixel in

the B-mode image representing a square with a side length of 0.0238mm. To facil-

itate faster path calculation, we need to prevent the total voxel number being too

high, so the resolution of the voxel grid was set to be much lower than that of the

ultrasound image, that is, 1mm, 2mm, and 5mm in the three trials, respectively.

The initial pose of the camera defines the world frame, so at the initialization

of the camera, the projection point of camera frame origin to the top surface of

the phantom, i.e., the center of the RGB camera, would be positioned near the

center of that surface. At the same time, the probe would be held normally to the
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phantom top surface. Certainly, these operations can not be executed accurately by

human hands, but the system can tolerate small deviations. To prevent the probe

from hitting the edge of the phantom container, the target area in the calculation

node was defined as a box with demension of 120mm in length, 120mm in width,

and 60mm in height. The displacement of the probe frame in camera frame was

measured as [−0.0398,−0.0175,−0.1065] (m), so the center of the phantom was

defined as [0, 0,−0.13] (m) in the world frame to ensure the origin of probe frame to

be close to the top surface of the phantom.

The best next scanning pose searching was conducted in a limited workspace,

as described in Section 4.3.1. To avoid unnecessary computation, the position co-

ordinates x and y were confined within a 100mm × 100mm square centered at the

center of the phantom top surface. The rotation angle θ was discretized steps of 6◦

within the range of [0, 180◦]. To determine whether to perform a linear or fan scan,

the algorithm calculated the total score of both types of scans by evaluating their

respective forward and backward 15-step trajectories. For linear scans, the step size

was set to the length of a single voxel (1mm, 2mm, and 5mm in the three trials,

respectively), whereas for fan scans, the step size was 5◦.

5.1.4 Real-time Image Registration and Post-processing Vol-

ume Reconstruction

It is important to consider computation time when developing a real-time guidance

system. The algorithm was tested on the system three times with different voxel

length of 1mm, 2mm, and 5mm. The multi-resolution strategy introduced in Section

4.3.2 was implemented to optimize the speed of pose searching process, which involves

adding additional layers with voxel lengths that are 2 and 4 times to the original
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layer. To speed up the image registration process, a pixel-based method in the

latest value fasion was adopted, and with the method described in Equation 4.4,

reduplicative transformation can be prevented and time-efficient image registration

can be achieved.

In practice, the real-time 3D image is primarily used as a tool for guiding probe

movement rather than as diagnostic evidence, so it is not necessary to have precise

segmentation and reconstruction during the scanning process. Therefore, to obtain a

better 3D image, a precise post-processing volume reconstruction is required. Since

the main objective of this project is not 3D image reconstruction, a simple reconstruc-

tion method was employed after the path planning process. This involved converting

each pixel with information in the 2D B-mode image into a space point in a point

cloud. By doing so, a dense point cloud can be generated for areas with inclusion.

5.1.5 Information Extration in Acquired B-mode Images

Due to the defacts in the handmade ultrasound phantom, extracting information

from the B-mode images can be challenging. To simplify the image processing during

the path planning, only the obstacles are identified through a sudden intensity change

along the v direction in the ultrasound B-mode images, as is described in Section 4.2.

The inclusion area related voxels are also colored during the real-time reconstruction

based on the intensity value in the corresponding pixels of the B-mode images, but

the algorithm does not distinguish the inclusion from the background area for further

path planning. In post-processing volume reconstruction, the cubic inclusion and the

obstacle were segmented through the intensity difference after filtering.

Figure 5-3 displays two original B-mode images acquired during the experiments

and their segmentation with the simple intensity-based method. Both images were
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Figure 5-3: Simple segmentation for two typical B-mode images in the experiment
(top and bottom edges were cropped). The red points refer to the segemented ob-
struction area, while the green lines represent the boundaries of the segmented inclu-
sion area. Figure 5-3(a) and Figure 5-3(c) are original B-mode images, while Figure
5-3(b) and Figure 5-3(d) are resulting segmented images with inclusion and obstacle
areas for Figure 5-3(a) and Figure 5-3(c), respectively.
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captured over the cubic inclusion and obstacle. It can be observed that there are

irregular dark patterns within the area of the cubic inclusion, and also some false

bright areas on the top and the left. The bottom of the container also showed high

reflection in the B-mode images. A Gaussian filter with the window size of 5× 5 was

applied to the images, but only part of the pattern was removed, and the images

started losing details.

Hence, a pixel would be considered to be inside the inclusion when the maximum

intensity value within a 5 × 5 window around it passed a threshold of 60. Some

column and row criteria were also applied to remove the erroneous bright area and

the container bottom. While for the obstacles, since the number of pixels involved

was much less than the inclusion, the original image was utilized.

Obviously, some areas are still erroneously segmented, such as some inclusion

areas near the bottom were not identified in both Figure 5-3(b) and 5-3(d), and there

are outliers in the detected obstacle points, but the resulting images are adequate to

reconstruct a rough 3D point cloud.

5.2 Experimental Results

When using a voxel length of 1mm, the entire process took approximately 5 minutes.

The suggested scanning trajectories of the proposed system together with the path

planning and reconstruction process are depicted in Figure 5-4. The placement of the

voxel grid in the screen was consistent with the phantom orientation in the real world,

where the obstacle extended from the right inner corner to the left outer corner. In

Figure 5-4(a) shows the initial scan suggested by the system, which involved covering

the area roughly with a simple linear scan. Then we reported the completion of initial

scan through hitting the enter botton in the terminal when we thought the initial
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(a) initial scan (b) linear scan (c) fan scan

(d) fan scan (e) final state

Figure 5-4: The suggested scanning path sequence in the experiment when voxel
length was 1mm. The voxels in the undiscovered area is invisible, while voxels in the
inclusion area appear in red and pink colors, the background area in gray, and the
obstacle area is yellow. The “map” frame represents the world frame, which is still
and was defined when at the camera initialization; the “base_link” frame indicates
the pose of the camera; the “probe” frame is also included; the two axes in yellow
and blue denote the image frame that is being processed. The ultrasound probe
mesh in red placed on the top of the phantom indicating the most informative pose
at this stage, guiding the user to move the probe, while the transparent probe mesh
shows the suggested movement of the probe, directing the user to perform either a
linear scan or fan scan. Figure 5-4(a) shows the initial scan. Figure 5-4(b) suggests
a linear scan. Figure 5-4(c) and Figure 5-4(d) are both fan scans. Figure 5-4(e) is
the finishing state.
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scan was accomplished. Next, the system identified a missing area in the initial

scan, so a linear scan was suggested and drawn in the screen, as is shown in Figure

5-4(b). After this path was reported as finished, the system determined that the

most informative scanning path for the next scanning step was a fan scan near the

obstacle, as is indicated in 5-4(c). Then another fan scan near the obstacle was also

suggested, as is shown in Figure 5-4(d). Finially, most of the voxels were filled, and

the final voxel grid in the real-time path planning and reconstruction system is shown

in Figure 5-4(e).

Utilizing the information extraction and image reconstruction method for post-

processing described in the previous section, the final point cloud resulted from this

experiment is displayed in Figure 5-5 with three views. Although outliers caused

by position and segmentation errors exis, the shape of the cubic inclusion and the

obstacle stick can still be recognized.

The second validation experiment was conducted on the same phantom with

a voxel length of side of 2mm for real-time path planning and image exhibition.

The scanning process was completed in approximately 4 minutes, and the suggested

trajectory sequence and resulting real-time mesh are presented in Figure 5-6.

Similar to the first experiment, the state in Figure 5-6(a) indicated the initial scan,

and after the achievement of initial scan, the system determined the next scanning

path should be a fan scan near the obstacle, as is instructed in Figure 5-6(b), which

was followed by another fan scan (Figure 5-6(c)), two successive linear scan (Figure

5-6(d) and 5-6(e)), one more fan scan (Figure 5-6(f)) and another linear scan (Figure

5-6(g)). Eventually, the final state was achived, as is displayed in Figure 5-6(h), and

the final point cloud after post-processing is displayed in Figure 5-7.

As previously discussed in the 1mm case, the outliers are mainly caused by the

localization and segmentation error, but the shapes of the cube and stick are still
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Figure 5-5: Three views of the resulting point cloud. Figure 5-5(a) is the top view,
and Figure 5-5(b) and 5-5(c) are side and front view, respectively. In the figures,
the green rod and blue cube are the estimated true position of the obstacle and the
inclusion; while the red point cloud and the yellow point cloud are the reconstructed
point of the obstruction and the inclusion, respectively.
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(a) initial scan (side view) (b) fan scan (side view) (c) fan scan (side view)

(d) linear scan (top view) (e) linear scan (side view) (f) fan scan (top view)

(g) linear scan (top view) (h) final state (bottom view)

Figure 5-6: The suggested scanning path sequence in the experiment when voxel
length was 2mm. Figure 5-6(a) shows the initial scan, and Figure 5-6(b) – 5-6(g)
suggests fan scan, fan scan, linear scan, linear scan, fan scan, and linear scan, se-
quentially. Figure 5-6(h) is the final state of the real-time path planning experiment
viewed from the bottom.
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Figure 5-7: The resulting point cloud when voxel length was 2mm. Figure 5-7(a) and
Figure 5-7(b) are the top view and bottom view, respectively, while Figure 5-7(c) and
5-7(d) are side and front view, respectively. Figure 5-7(e) is the same view with 5-
7(b), but the true inclusion mesh was removed for better observation. Some outliers
were removed and the true object meshes were enlarged for better observation.
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recognizable in the post-time reconstructed point cloud. It is worth noting that a

small interspace can be observed under the obstacle, which is clearly visible in the

bottom view (Figure 5-7(e)).

(a) initial scan (side view) (b) linear scan (top view)

(c) linear scan (top view) (d) final state (top view)

Figure 5-8: The suggested scanning path sequence in the experiment when voxel
length was 5mm. Figure 5-8(a) shows the initial scan. Figure 5-8(b) and 5-8(c) are
both linear scans. Figure 5-8(d) is the finishing state. Figure 5-8(b) – 5-8(d) were
viewed from the top.

In the third trial, a larger voxel side length of 5mm was used, and the process

was completed within 3 minutes. The planned path sequence and resulting real-time

mesh are displayed in Figure 5-8. Similarly to the previous trials, the initial scan was

performed first, as described in Figure 5-8(a). Then two linear scans were determined

and executed, as indicated in Figure 5-8(b) and 5-8(c). The freehand ultrasound
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Figure 5-9: The resulting point cloud when voxel length was 5mm. Figure 5-9(a) and
Figure 5-9(b) are the top view and bottom view, respectively, while Figure 5-9(c) and
5-9(d) are side and front view, respectively. Figure 5-9(e) is the same view with 5-
9(b), but the true inclusion mesh was removed for better observation. Some outliers
were removed and the true object meshes were enlarged for better observation.
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acquisition was comsidered complete after the two linear scans, and Figure 5-8(d)

shows the final state.

The resulting post-time reconstructed point cloud is depicted in Figure 5-9.

Larger and more vacancies in the reconstructed cubic inclusion can be observed

compared to previous trials.

5.3 Results Discussion

The voxel size of 1mm is the maximum achievable resolution of the visualization

system at current setup. Both the path sequence and the reconstructed results

confirmed the success of the real-time path planning and scanning guidance system.

Despite the presence of errors and outliers in the reconstructed volumes, the cubic

inclusion was still recognizable in all three experiments.

Based on the post-processed reconstructed meshes, the 1mm case worked the

best, resulting in a dense and complete mesh, but a dense voxel grid also increased

the computational time generating the next best path, which caused a time delay of

approximately 2 seconds. However, since path recalculating is only required when

the previous scanning path is finished, this time-consuming step does not occur

frequently during the experiment.

In the 2mm case, the time delay caused by path recalculating was deciseconds,

which is acceptable because the human operator also needs time to react and move

to the next path. Fan scans were suggested several times in this case, yet the gap

caused by the obstacle was not fully filled.

In the 5mm case, the time consumed for path planning could be entirely neglected,

but a obvious gap occurs in the reconstructed mesh. This is predictable because the

algorithm did not suggest fan scans during the experiment. Although some vacant
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areas might be reached by some unconscious motions of the human operator, the

large vacant in the final mesh indicates that this resolution is too sparse.

Therefore, we can conclude that the 5mm voxel length is too sparse for this

scenario, while the 2mm voxel length is acceptable despite some small gaps, and the

1mm voxel length is ideal.

The time cost for the three experiments was initially overestimated because the

probe needed to be be moved slowly between two different scanning paths, or the

depth camera and the IMU module would lose tracking ability. Nevertherless, since

the tests were performed by a same person familiar with the system, the time con-

sumed in each trial can still imply that the time expended would increase as the in-

creasing of resolution. Therefore, a optimal resolution can be selected between 1mm

and 2mm for voxel length, which depends on the preference between the scanning

speed and quality. A more intuitive trajectory guidance tool can also be developed

for better real-time guidance.

While some outliers may result from incorrect segmentation, such as the mixture

of obstacle and inclusion, or classifying the container boundaries or other defacts as

the inclusion, there is another type of error originating from localization. Specifically,

the expansion of the cube in one direction might arise from the accumulating error in

the depth estimation of the camera and the integrating error of the IMU. The points

outside the normal range were also introduced by localization failures. Therefore, the

stability and consistency of the localization strategy should be improved for further

studies.

Furthermore, due to the similarity of the shape of potato and the defects in

the phantom, the potato contour was not identifiable in any of the experiments.

Additionally, the phantom has a simple structure, and the unclear area caused by

unsuitable scanning pose does not exist in this phantom, so the better pose suggestion
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for unclear area has not been tested. Hence, a better segmentation method will be

desired for more complex scenarios.

Overall, the validation system and the experiments demonstrate the potential

of using online path planning with real-time guidance and 3D mesh reconstruction

for freehand ultrasound. The system can guide the user to explore the information

hidden under the high-attenuation areas, enabling users unfamiliar with ultrasound

imaging to acquire 3D freehand ultrasound image accurately and efficiently.
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Chapter 6

Conclusions and Future Work

In summary, this thesis presented a novel approach to improve the accuracy, com-

pleteness and efficiency of freehand ultrasound imaging through real-time path plan-

ning and guidance. The proposed system utilized a low-cost RGB-D camera and

IMU module to estimate the spatial position and orientation of the ultrasound probe

and provide real-time guidance for the user. The system was validated on an ul-

trasound phantom with high-attenuation obstacle on the top, proving the ability of

the system in real-time path planning and scanning guidance, and bypassing the

high-attenuation area to explore the hidden information.

This study demonstrated the possibility of online path planning with real-time

guidance and high-attenuation area avoidance for freehand ultrasound scanning, even

in scenarios where prior knowledge of the scanning area is not available. By avoiding

high-attenuation areas and improving the view angle of the region of interest, the

proposed path planning framework not only improved the accuracy and efficiency of

ultrasound imaging in clinical settings but also enabled non-expert users to acquire

high-quality 3D ultrasound images in a more convenient way, indicating the potential

91



of this system for long-term health monitoring.

Based on this initial demonstration of path planning system for freehand ul-

trasound trajectory guidance, more potential reasearches and applications can be

explored in the future:

1. Integrating some model-based image segmentation methods such as deep learn-

ing, and prori knowledge of body surface data or other medical images for better

reconstruction in some particular areas.

2. Utilizing visualization techniques such as Augmented Reality (AR) to provide

more intuitive and comprehensible real-time guidance.

3. Analyzing the speed of sound together with the structural information for

better acquisition of the region of interst.

4. Applying the improved system to human studies to realize path planning under

complicated body structures.

5. Alternatively, intergrating with articulated robotic arm systems to enable the

automatic ultrasound scanning in complex body area.
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