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Abstract8

While heavy-duty trucks constitute the backbone of freight transportation in the US, they also contribute9

significantly to greenhouse gas emissions. Various alternative powertrains to reduce emissions have been10

assessed, but few specific to US long-haul applications with a consistent basis of assumptions. To enable a11

more accurate assessment for all stakeholders, a representative drive cycle for long-haul truck operations in12

the US is introduced (USLHC8) for modeling and simulation purposes. It was generated from 58,000 miles13

of real-driving data through a unique random microtrip selection algorithm. USLHC8 covers a total driving14

time of 10 h 47 min, an average vehicle speed of 55.58 mph, and road grade ranging from -6% to +6%.15

To establish a benchmark for further powertrain comparisons, a vehicle-level simulation of a conventional16

diesel powertrain was paired with USLHC8. Benchmarks are presented for fuel consumption, Well-to-Wheel17

emissions and Total Cost to Society under different scenarios (present-day, mid-term and long-term).18
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1 Introduction1

Slowing climate change is a major challenge for the world. Reducing carbon dioxide emissions is particu-2

larly difficult in the long-distance transportation sector, particularly for heavy-duty trucking [1]. Heavy-duty3

freight trucks are responsible for approximately 30% of US highway transportation emissions, even though4

they only represent about 5.5 % of vehicles on the road [2]. Heavy-duty trucks are also the backbone of the5

US economy, as they account for 71 % of freight deliveries [3]. The corresponding on-road freight energy6

consumption has been consistently increasing over the last decades and is expected to grow even further in7

the future [4, 5].8

The fast growth of heavy transport, which relies heavily on diesel engines, has motivated regulations9

intended to reduce CO2 emissions. For instance, the United States Environmental Protection Agency (EPA)10

mandates a CO2-reduction of 27% in 2027 relative to a 2017 baseline for commercial trucks [6].11

In Europe, the proposal from the Consortium for ultra Low Vehicle Emissions (CLOVE) strengthening12

NOx limits for the Euro VII heavy-duty vehicle legislation. These efforts in lowering emissions have also13

uncovered challenges in the context of heavy-duty engine developments. Different alternative powertrains are14

being explored to answer the crucial question: how can road freight emissions be cut dramatically by 205015

while at the same time facing a growing transportation demand? The complexity of this question presents a16

challenging dilemma for the transportation sector: neither the scientific community nor large truck manufac-17

turers have reached a consensus on which powertrain will be the best solution for the future of the long-haul18

sector. This lack of consensus slows decision-making among stakeholders. For example, policymakers are19

hesitant on large-scale incentives, and private-sector investors avoid substantial uncertainty. Uncertainty20

about which fuel/powertrain combination will dominate in the future makes it even more expensive and21

risky for manufacturers to carry the burden of research and development costs for a multitude of different22

possible future powertrain solutions. Lastly, truck operators are uncertain which powertrains to purchase for23

their fleet to comply with future regulations and customer sustainability demands. Comparative analyses24

of alternative powertrains have been performed to clarify the path to decarbonize long-haul trucks [7, 8, 9],25

primarily from economic and environmental criteria. While these comparisons have provided insights into26

the trade-offs of switching from diesel-based to cleaner technologies, comprehensive assessments with a focus27

on long-haul trucking operations are still limited, particularly for the US freight operation, where driving28

patterns are different than in other countries. This makes it more difficult to evaluate technologies on a29

consistent basis when it comes to different vehicle models, design attributes, and assumptions about how30

the trucks will be employed [10]. A representative long-haul class 8 drive cycle is an essential prerequisite31

to accurately compare suitable alternative powertrains on a consistent basis. In general terms, a drive cycle32

consists of a series of data points that describe a vehicle speed trace over time. Drive cycles are the main33

input for most simulations determining on-road energy consumption and emissions. Also, drive cycles influ-34

ence the sizing and performance requirements of the powertrain components. The purpose of this study is35

twofold:36

1. Develop a characterization of US long-haul freight operations in the form of a drive cycle and associated37

supplementary parameters.38

2. Using the results from 1, establish a benchmark to conventional long-haul trucking on the basis of fuel39

consumption, greenhouse gas (GHG) emissions, and total cost to society (TCS), for comparison with40

alternative powertrains in the present, mid term, and long term.41

In the future, this new drive cycle can be used to assess proposed fuel/powertrain combinations and compare42

them with the “conventional diesel” benchmark presented here. This paper is organized as follows. Section43

2 provides a literature review on drive cycles currently used to model long-haul truck operation. This section44

also gives background on comparative analyses of different powertrains and current research gaps. Section 345

outlines the methodology followed for the drive-cycle construction, vehicle-level simulation, emissions analysis46

and Total Cost of Ownership (TCO) analysis. Results are presented in section 4. The paper concludes with47

section 5, outlining final remarks, limitations and future directions.48
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2 Literature Review1

In the reviewed literature on heavy-duty truck emissions modeling in the USA, six commonly used drive2

cycles were identified for long-haul trucking. Namely:3

1. Highway fuel consumption Driving Schedule (HWFET) [11]4

2. Heavy-Duty Diesel Truck Cruise Mode (HHDDT) [12]5

3. Northeast States Center for a Clean Air Future Long-Haul Cycle (NESCCAF) [13]6

4. US06 Supplemental Federal Test Procedure [11]7

5. Heavy-Duty Urban Dynamometer Driving Schedule (HDUDDS) [11]8

6. NREL long-haul cycle [14]9

These six driving cycles are shown in Figure S1. These are used for simulating highway duty cycles, and10

most are intended for chassis dynamometer testing. However, they have significant shortcomings in terms11

of simulating entire long-haul duty cycles on the basis of distance traveled, duration, vehicle speed and road12

grade distributions, and driving behavior.13

The distance and duration of a drive cycle can determine the size and weight of the energy storage on14

board a truck that is necessary to cover a given route. Energy storage sizing considerations are especially15

important for alternative powertrains such as battery and fuel cell electric trucks that suffer from low energy16

density. The distance and duration can be increased by repeating a given drive cycle several times. However,17

if the initial drive cycle does not accurately represent the power requirements of the entire duty cycle or does18

not contain uninterrupted highway driving segments that are long enough to represent long-haul driving, a19

repetition of the drive cycle leads to an inflated frequency of vehicle stops and less realistic power demand20

distribution.21

Except for the NREL long-haul cycle, all cycles reviewed are too short in distance and duration to22

represent long-haul driving. They range from 6 to 103 miles, and from 10 to 114 minutes. The NREL long-23

haul cycle on the other hand is too long, consisting of 935 miles traveled in more than 19 hours. This length24

and duration would only be appropriate for slip seating operations, in which multiple drivers successively25

operate a single truck. For the overall long-haul sector, slip seating operation has a limited significance26

because it requires very complex and costly logistics for allocating drivers given the current shortage of truck27

drivers in the US [15, 16] (Slip-seating is more important at shorter distances for return-to-base operations).28

A drive cycle’s vehicle speed and road grade distributions are directly related to a vehicle’s tractive29

power demand and, consequently, to the fuel consumption and powertrain component sizing. The HWFET,30

HDUDDS and HHDDT are limited to vehicle speeds ranging up to 60 mph and thus lack the higher speeds31

driven in many states. This leads to an under-representation of the national average power demand. The32

NESCCAF is a modified version of the HHDDT that is designed to have higher vehicle speeds and longer33

driving time. However, the additional driving time is generated by adding modal segments that do not34

contain the transients that are representative of real driving. Therefore, the NESCCAF modal segments35

underestimate power demand due to the absence of accelerations. Of the six drive cycles discussed, only36

the NREL long-haul and NESCCAF cycle account for road grade. Even if the total elevation changes for a37

given driving profile were to be negligible over time, information about the road grade would still be of great38

importance to determine the instantaneous power demand which defines the performance requirements for39

the powertrain sizing. While the NESCCAF cycle contains a road grade profile, it is synthetically contrived40

to oscillate between -3% and 3% road grade and does not represent a realistic road grade profile. The NREL41

long-haul cycle represents a particular continuous driving event and thus only accounts for a single set of42

vehicle, driver and route characteristics. This significantly limits its representativeness to the aggregate43

national average long-haul driving profile. Since no representative US long-haul driving cycle has been44

published, light-duty drive cycles including the HWFET and US06 are sometimes used for highway driving.45

This leads to a significantly higher power demand because of the increased number and speed of acceleration46

events for light-duty vehicles compared to long-haul heavy trucks. Hence, a more realistic drive cycle for47

long-haul driving is needed to accurately determine road freight emissions for long-haul class 8 trucks. This48

need was also expressed by the US EPA in its report on GHG Certification of Medium- and Heavy-Duty49

Vehicles [17].50
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Studies on powertrain simulation, emissions analysis and TCO are widely available in the literature. For1

example, Lee et al. [18] conducted a well-to-wheel (WTW) analysis of the emissions for conventional diesel2

and hydrogen fuel cell electric trucks (FCET) over a range of Class 2b through Class 8b trucks. They derived3

the truck fuel consumption from vehicle dynamic simulation using the Autonomie model and an adjusted4

version of EPA/NHTSA test cycles. Langshaw et al.[19] also compared two different fuel options, diesel5

and LNG, in the context of food freight with a large UK Food Retailer as a case study. They estimated6

the GHG emissions, Total Cost of Ownership (TCO) and Total Cost to Society (TCS) using real data of7

duty cycles that were recorded by the food retail company. This data corresponded to measurements in fuel8

consumption and distance traveled for diesel and LNG vehicle fleets, which was then translated into vehicle9

energy efficiencies. Recently, Lajevardi et al.[9] analyzed several options for conventional and alternative10

short-haul and long-haul drivetrains over different scenarios of infrastructure deployment. When it comes11

to fuel consumption, they used in-house models for these drivetrains with drive cycles that represent freight12

operations in British Columbia.13

The literature review on powertrain emissions and TCO revealed several research gaps. First, few studies14

compare powertrain performance in the mid and long term. This is particularly relevant because technology15

adoption and maturity could overcome the current limitations of alternative long-haul powertrains, leading16

to more competitive options vs. the conventional diesel powertrain in the future. Second, various works17

focus on different geographical regions, such as British Columbia [9], which may differ significantly from the18

average US long-haul trucking sector. Third, few works provide a consistent basis of assumptions, which is19

necessary for a comprehensive comparison of alternative powertrain options for long-haul trucks [18].20
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3 Methods1

3.1 Defining Long Haul2

3.1.1. Regional Haul vs. Long Haul3

In the context of freight operations, the duty cycles of most class 8 trucks can be classified into regional-4

haul and long-haul. This work focuses on long-haul operation because it is significantly more complex to5

equip with alternative powertrains due to the need for prolonged high-power output over extended high-6

way distances. In addition, regional return-to-base operation enables for better maintenance and simpler7

overnight vehicle charging or refueling at the home base [20].8

Several different criteria for distinguishing “long-haul” from other trucking have been proposed in the9

literature. Here, long-haul operation is distinguished from regional-haul on the basis of trip distance and10

average vehicle speed. Table 1 lists different values for long-haul driving distances and speeds proposed in11

the literature. In this paper, class 8 long-haul truck operation is defined as trip distances of at least 250 mi12

with a minimum average vehicle speed of at least 40 mph.13

This minimum distance of 250 miles was determined based on the average of the reviewed literature as14

shown in Table 1 and currently available alternative powertrains. At the time of completion of this work,15

one of the leading commercially available class 8 trucks with an alternative powertrain had a 250-mile all16

electric range [21]. The minimum average vehicle speed that long-haul trucks reach during a day trip was17

determined to be 40 mph because line haul trucks in California, the state with the most conservative truck18

speed limit [22], were ascertained to have an average vehicle speed of 41.1 mph with mostly highway driving19

[23].20

3.1.2. Long-haul Fraction of Class 8 Market21

Data on the US. truck population from the most recent Vehicle Inventory and Use Survey (VIUS) was22

employed to determine the fraction of class 8 trucks being used for long-haul operations. Two different23

approaches were considered. The first approach distinguished the tractors with sleeper cabs as long-haul,24

since they allow operation without returning to a home base or depot. According to this approach, the long-25

haul fraction of the class 8 market was 26.8% (see Figure S2). The second approach distinguishes long-haul26

based on a daily driving range greater than 250 miles per day. For this approach, the VIUS data in miles per27

year was translated into daily miles using the number of months operated, 30.4 days per month conversion28

factor.29

Based on the output space of these daily ranges, depicted Figure S3, the long-haul fraction was 24%.30

Both approaches were combined, defining the long-haul fraction of the class 8 market at 25%.31

3.1.3. Vehicle Lifetime32

This work considers the entire useful vehicle life of an average class 8 tractor. After their first use in long-33

haul operations, long-haul tractors typically have a second-use phase, where they travel shorter distances34

as shown in Table S1. The latter applications have lower requirements in terms of engine performance and35

uptime in between service intervals because of their shorter distances and driving durations. The repurposing36

of trucks is an established market process that is financially incentivized and will very likely continue to take37

place in the future. Consequently, the long-haul use-phase should not be analyzed in isolation from secondary38

use when regarding emissions. In the reviewed literature, there are very consistent assumptions establishing39

the length of the vehicle lifetime at 10 years (see Table 1). In this work, the vehicle lifetime was therefore40

defined as 10 years. This longer lifetime assumption instead of a first-use period enabled better comparison41

of alternative powertrains in terms of in-use emissions, replacement, and durability. However, it is important42

to keep in mind that the way the truck is used during its “secondary use” years will be significantly different43

from the “first use” phase of its life, but still operating as “long-haul”.44

3.1.4. Vehicle Miles Traveled (VMT)45

The VMT parameter was defined per year of operation within the entire vehicle life of 10 years to represent46

both first-use and second-use operation characteristics. These values derived from the VIUS dataset for class47
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Table 1: Parameters defining long-haul operation

Parameters Values Units Reference

Minimum daily trip distance >300 mi NACFE [24]
190 mi [25]

220-250 mi [26]
250 mi This work

Minimum average vehicle
speed in a daily trip

41.1 mph [23]

40 mph This work

Vehicle lifetime 10 years [27, 28, 29], this work
5 years [30]
3 years [31]

Vehicle miles traveled 120,000 mi/year [30]
1,500,000 mi/lifetime [7]
1,000,000 mi/lifetime [32]
104,000 mi/year [33]
91,506 mi/year [34]
52,000-
108,000

mi/year [27, 35], this work

Maximum driving hours 11 hours [36]

Daily range 750 mi/day [37, 38]
600 mi/day [24]
587 mi/day (J. Gregorio, personal

communication,
September 5, 2021)

600 mi/day This work

8 sleeper cabs [27] and are available in Table S1. The average VMT per year over the vehicle life is 87,2001

miles and the cumulative VMT after ten years is 872,000 miles [27, 35].2

3.1.5. Daily Range3

With respect to the legal limits for truck operation, a drive cycle length of 600 miles was chosen, which4

is also consistent with estimations of NACFE and other works summarized in Table 1. This value is also5

supported by the VIUS daily range for sleeper cab class 8 trucks distribution given in Figure S4.6

3.1.6. Vehicle Weight7

The vehicle weight has a substantial influence on fuel consumption and thus on emissions and operating8

costs. The average vehicle curb weight of a standard diesel heavy-duty sleeper tractor was defined as 19,5009

lb based on averaging data from [39] and adding the average weight of a full tank of diesel fuel [40]. The10

defined weight is consistent with standard heavy-duty sleeper tractors such as the 2011 Freightliner Cascadia11

133 [41]. To enable further research regarding alternative powertrains, the glider weight was also determined12

at 14,991 lb, defining the weight of the tractor without the powertrain. This was done by subtracting the13

weight of all components specific to a diesel powertrain from the defined tractor curb weight. The derived14

glider weight is consistent with [42]. The average tractor payload for class 8b trucks was taken to be 40,60015

lb accounting for both trailer and cargo weight. It was derived using a filtered subset of the most recent16
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dataset from the SmartWay program [43]. The combined average tractor and payload weight is consistent1

with Zhao et al.[44].2

3.2 Drive Cycle Development3

The drive cycle presented in this paper consists of a vehicle speed and a road grade trace. It was developed4

by first determining the characteristics of the national average driving profile of long-haul class 8 trucks and5

then generating a drive cycle from real driving data, taken from the NACFE Run On Less Regional (ROLR),6

that best describes these characteristics. The matching was done by optimizing selected assessment features7

relative to a target feature vector. Figure 1 shows a schematic representation of the steps followed for the8

drive cycle construction. Brief descriptions of each step are provided below. More details are available in9

the supplementary material.10

3.2.1. Assessment Feature Selection11

In the context of this paper, an assessment feature describes one or several driving characteristics and is12

used to quantify the national average driving profile. Out of 10 identified assessment features, the 3 features13

vehicle speed, road grade, and daily range were chosen to quantify the national average driving profile as they14

have the largest impact on powertrain energy demand. The powertrain energy demand is a suitable metric15

since it is strictly proportional to fuel consumption and thus CO2eq − emissions.The impact of assessment16

features on the energy demand was determined by (i) evaluating their relative impact on each vehicle tractive17

force component and (ii) combining this with an analysis that calculated the relative impact of each tractive18

force component specific to long-haul truck driving [45].19

3.2.2. Target Feature Vector Definition20

The target feature vector describes the national average values of long-haul truck driving for the chosen21

assessment features of vehicle speed, road grade, and daily range. This vector was used to optimize the drive22

cycle generation by minimizing the deviation between a generated drive cycle’s feature vector and the target23

feature vector. Based on public availability of high-resolution data specific to heavy-duty trucks, this vector24

was constructed from the following datasets:25

1. NACFE Run On Less 2017 Roadshow (ROL17) [24]26

2. NACFE Run On Less Regional Roadshow (ROLR) [46]27

3. US Bureau of Transportation Statistics (BTS) Freight Analysis Framework [47]28

4. Oak Ridge National Laboratory Heavy Truck Duty Cycle Project (HTDC)29

5. NREL Fleet DNA [48]30

6. TomTom N.V. National Road Grade database [49]31

A summary of the characteristics of each dataset is given in Table S2.32

To increase the representativeness on a national level, the vehicle speed part of the target feature vector33

was constructed from several vehicle speed datasets covering a wide variety of characteristics. In order to34

combine several datasets into one national average vehicle speed distribution, the contribution of each single35

dataset, i.e. the individual share in the combined national average, had to be determined. The following36

factors were used to determine the individual contribution of each dataset to the target vector:37

• Number of trucks (indicates coverage of different vehicles, routes, and driver behaviors)38

• Total mileage covered (indicates coverage of different truck speed limits and traffic characteristics)39

• Time duration of data collection (indicates coverage of temporal variations such as changing seasons)40

• Geographical coverage (with a focus on major freight corridors)41

• Focus on long-haul driving (driving characteristics and stated goal of the data collection effort)42
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Based on these factors and using the national distribution of truck highway speed limits derived from [17]1

as a reference, a combination of the datasets with the following individual shares was chosen: 70% HTDC,2

20% ROL17, 5% ROLR and 5% filtered Fleet DNA. HTDC was chosen as the primary contributor, as it3

was the largest dataset available (accounting for almost six times the mileage of all other datasets combined,4

with comprehensive geographical coverage). The combination of these four datasets represents the target5

national average vehicle speed, which the generated drive cycle was modeled to match. The defined national6

average vehicle speed distribution together with different dataset combinations is displayed in Figure S5.7

The road grade part of the target feature vector was based on a comprehensive effort by NREL, EPA, and8

DOE to compile a national representative road grade distribution specifically for medium and heavy-duty9

trucks using the TomTom N.V. National Road Grade database[17]. The feature vector was constructed from10

five activity-weighted, distance-based cumulative distributions of absolute road grade [49], each of which is11

specific to one highway truck speed limit (shown in Figure S6). These 5 truck speed specific distributions12

were combined into a single distribution independent of the speed limit by multiplying each distribution with13

the corresponding highway truck speed limit share.14

To obtain the final target road grade vector, the single distribution was divided into negative and positive15

road grade intervals. This was done to ensure a uniform distribution of highway stretches with a positive16

road grade and a negative road grade in the final drive cycle.17

The resulting target vector for vehicle speed and road grade is given in Table S3.18

3.2.3. Drive Cycle Generation19

The presented drive cycle was generated from real driving data to account for the transient nature of20

truck driving and thus to estimate its energy demand more accurately than synthetic drive cycles often used21

in the literature [13, 50]. The NACFE ROLR was selected as the real driving base dataset because of its22

high-resolution data at 1 Hz for a simultaneously recorded set of vehicle speed and road grade, specific to23

heavy-duty trucks [24]. It is important to note that both traces were recorded simultaneously to accurately24

capture the interdependence between vehicle speed and road grade, avoiding unrealistic power requirements.25

Even though the ROLR dataset as a whole may not fully represent long-haul driving, the drive cycle is26

generated from subsets of the dataset exhibiting long-haul driving characteristics.27

As shown in Figure 1, the drive cycle generation process has three major steps: pre-processing of raw28

data, microtrip preparation and, microtrip random selection and drive cycle evaluation. More detailed29

explanations are given in the supplementary material. The pre-processing of the raw ROLR vehicle speed30

and elevation traces covered data cleansing to remove unrealistic, incomplete and duplicate datapoints. In31

particular, the GPS-derived elevation data had to be denoised using the Savitzky-Golay filter to be able to32

decrease the unrealistic volatility in the derived road grade trace.33

The second step- microtrip preparation- divides the ROLR data into microtrips by cutting the traces34

in between periods of driving when the truck is at a complete stop (vehicle speed and acceleration equal35

zero). The elevation signal at these connection points was smoothed to ensure that the resulting road grades36

were also always equal to zero. In this way, microtrips can be randomly connected to each other without37

inconsistencies at the connection points. For each microtrip, the feature vector was calculated containing38

the total distance driven, and the road grade and vehicle speed distributions. Finally, the microtrips were39

classified into long-haul and urban using the criteria in Table S4 for the random selection algorithm.40

For the microtrip random selection and evaluation step, an algorithm was developed that consists of41

three main processes, framed in light blue boxes in Figure 1. Namely, these main processes are initialization,42

randomized drive cycle generation and drive cycle evaluation. In the initialization, manual inputs determining43

the iterations of the algorithm and the length of the drive cycle are defined. The randomized drive cycle44

generation process constructs a drive cycle by first concatenating random long-haul microtrips to a long-haul45

segment. Then, urban microtrips are randomly added to either end of the long-haul segment. This was done46

to ensure a succession of microtrips that is representative of long-haul driving.47

Finally, the feature vector of each generated drive cycle is evaluated against the defined target feature48

vector of the national average driving profile. The drive cycle with the smallest error value was selected and49

named US Long-Haul Class 8 drive cycle or USLHC8.50

The validation of the USLHC8 was performed using a two-sample Kolmogorov-Smirnov (KS) test against51

the drive cycles commonly used in the literature. This was done to determine the degree of similarity and52

thus the representativeness relative to the defined national average driving profile for each drive cycle. In53
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addition, the robustness of the drive cycle generation methodology itself was evaluated. A drive cycle named1

“Control” was generated with a slightly altered algorithm for that purpose.2

3.3 Diesel heavy-duty Truck Model3

A diesel heavy-duty truck (DICET) model was constructed using the software GT-Suite to serve as a4

baseline to compare alternative powertrains in future research. The developed drive cycle USLHC8 is the5

main input for DICET model simulations. The tractive power demand is calculated from the drive cycle’s6

vehicle speed and road grade discussed above, and that power demand is met by the powertrain. The output7

of the model is fuel consumption, which is also used to calculate GHG emissions.8

3.3.1. Description of Diesel Truck Model Components9

An overview of the DICET model is given in Figure 2. The main model components are the vehicle10

body, wheels, trailer, engine, engine control unit, transmission, and transmission control unit. The driveline11

is contained within the vehicle and trailer blocks. The base template for a conventional truck was obtained12

from the GT-DRIVE+ package and its components were adapted to suit the objectives of the research13

project. A brief description of each component modeled is given below.14

Figure 2: Diesel model overview

The heavy-duty (HD) diesel engine was modeled using an engine map based approach. Thus, no detailed,15

predictive simulation of the air path, the combustion process, or NOx emissions is carried out. Instead,16

steady-state engine maps are used to describe e.g. the engine performance, friction and fuel consumption17

characteristics. The baseline engine map used for the model represents a contemporary HD diesel engine.18

The engine maps were obtained through collaboration with IAV GmbH. The selected, 12 L class HD diesel19

engine features charge air cooled turbocharging, high pressure EGR, and has 2600 Nm of peak torque and20

a rated power of 370 kW. An overview of the engine properties is presented in Table 2.21

Table 2: Specification of selected HD Diesel engine

Engine feature Value

Displacement 12 L class
Number of cylinders 6
Number of valves 4 per cylinder
Compression ratio 18.5:1
Injection system Direct injection, common rail
Charging system Turbocharged, charge air cooled

Exhaust gas recirculation (EGR) Cooled, high pressure EGR
Maximum brake torque 2600 Nm between 1100 and 1300 RPM

Rated power 370 kW at 1600 RPM

An overview of the steady state engine behavior regarding selected parameters is presented in Figure22

S7. The calibration of the engine was conducted to maximize the brake efficiency values while considering23
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the engine-out NOx emissions targeting current, US10 / Euro VI emissions limits. Accordingly, the peak1

brake efficiency of the engine is 44 %, which is reached at 1200 RPM and at 200 kW. In this operation range2

moderate EGR rates are used and the resulting engine-out NOx emissions are 10 g/kWh.3

The appropriate size of the engine was determined by the engine power and torque requirements defined4

by the USLHC8 drive cycle. Downsizing the engine was considered since engines typically operate more5

efficiently at high loads. However, downsizing would lead to lower peak power and therefore a larger portion6

of the engine power demand not being met. Simulations across the USLHC8 were limited to no more than7

a 1.24 mph average absolute error. The output space of these simulations is depicted in Figure S7. Because8

350kW encompasses over 99% of engine power demand with a discrete cutoff, downsizing was not pursued.9

Hence, the engine max power and torque requirements were determined to be least 350kW and 2000Nm.10

A conventional US10 / Euro VI exhaust aftertreatment (EAT) system consists of a diesel oxidation11

catalyst, a particulate filter, a urea doser, a Selective Catalytic Reduction (SCR) catalyst and an ammonia12

slip catalyst. An EAT system of this kind has a significant throttling effect downstream the turbine and,13

thus, increases the pressure level after the turbine – typically leading to a drop in Brake Thermal Efficiency14

(BTE). Although an EAT system model is not directly included in the diesel Truck Model, its negative effect15

on BTE is considered in the engine maps (e.g. regarding BTE). Furthermore, using the above mentioned16

EAT layout ensures compliance with US10/Euro VI emission limits as shown also by the authors in previous17

works [51, 52, 53].18

The engine control unit was implemented to decrease fuel consumption by mediating engine idling and19

fuel cutting. Fuel cut occurs one second after coasting and fuel resume occurs at 700 RPM. Fuel cut also20

occurs at 2000 RPM to keep the engine from rotating past its max speed.21

Power auxiliaries were modeled to generate a negative torque on the engine and include the A/C, pumps,22

and fans. The average auxiliary power was defined as 5 kW additional to the USLHC8 power demand. An23

18-speed manual transmission based on the Eaton Heavy-Duty Super 18 is used in this study. The gear24

efficiency was assumed constant across all gears and is 0.97. The clutch’s maximum static torque is rated25

at 3000Nm. The transmission control unit (TCU) was implemented in GT-Suite using the TCU-Manual26

template and functions to execute the shifting schedule.27

As described in section 3.1.6, the average curb weight of long-haul class 8 tractors was defined as 19,50028

lb and the average payload for class 8b trucks was defined as 40,600 lb. The parameter aerodynamic drag29

coefficient was defined as 0.6 [33, 54, 55], and the projected frontal area was defined as 9.2 m2 [55, 56] for30

an average long-haul class 8 tractor-trailer. The rolling resistance coefficient was assumed to be independent31

of the vehicle powertrain and defined as 0.007 in accordance with NAP2020. Similar values are reported by32

Zhao et al. [44].33

3.3.2. Shifting Optimization34

Simulations were designed to optimize fuel consumption with performance as a constraint. The goal of35

the shifting strategy is therefore to operate the engine in its most efficient region. Two approaches were36

considered in designing the shifting strategy. The first approach was based on constant RPM upshifting37

and downshifting. Downshifting was explored between 600 and 1000 RPM, while upshifting, ranged from38

1600 to 2000 RPM. The second approach considered GTSuite’s built-in shift schedule generator, which39

optimizes shifting by considering acceleration potential and fuel consumption in each gear at various vehicle40

speeds through static analysis. With a shifting strategy set, the final drive and transmission gear ratios were41

optimized to further improve fuel consumption. The optimization was performed on the top three gear ratios42

due to the nature of long-haul driving cruising at high vehicle speeds for the majority of operation. The43

number of top gear ratios was determined using k means clustering for RPM, velocity, torque, and power over44

the drive cycle. Using the elbow method, the minimum number of clusters and therefore minimum number45

of top gears was chosen. A case sweep over the top transmissions and final drive ratios was performed to46

obtain an output space of fuel consumption. The highest fuel consumption from these results was used to47

find the initial point for optimization while ensuring a global optimum from the optimizer.48

3.3.3. Projected Fuel Consumption49

This study considered the powertrains of heavy-duty long-haul trucks in three different scenarios: present,50

mid term and long term. Future fuel consumption is based on the current simulated value, and increases51

proportionally to the increase in engine peak efficiency and improved fuel consumption of the waste heat52
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recovery (WHR) system. The current baseline for comparison of engine peak efficiency is 44% . The mid1

term peak BTE is assumed to be 55% and is based on the DOE project, SuperTruck II [57]. A BTE of 60%2

is assumed for the long term and is based on projections set by the Department of Energy as stated in their3

21st Century Truck Partnership [58], although efficiencies as high as 66.9% have been modeled in the most4

ideal scenarios [59].5

3.4 Diesel Truck Emission Modeling6

This study considered greenhouse gas emissions produced during the fuel production process, well to7

pump (WTP), and emissions from combusting the fuel as the vehicle operates, pump to wheel (PTW). The8

entire process consisting of fuel production and vehicle operation is known as well to wheel (WTW), and is9

a primary output of this study.10

The Greenhouse gases, Regulated Emissions, and Energy use in Technologies model (GREET) is the11

primary tool that was used to calculate WTP emission intensities. GREET allows for the customization of12

production pathways. Ultra-low sulfur diesel No.2, renewable diesel, and biodiesel20 (BD20) were considered13

in this study. All fuel pathways considered emissions from agricultural impacts, land use change, feedstock14

and co-product transportation, fuel production, fuel distribution, storage and fuel use. The fuel use (PTW)15

value for diesel was derived from the EIA carbon dioxide emission coefficient at 10.19 kgCO2eq/gal [60],16

however, this value was offset by carbon fixation for biofuels during the feedstock growing process. The17

WTW emissions in gCO2eq/mi were therefore calculated as the sum of WTW and WTP deriving from18

Equations 1 and 2.19

WTP = 3.79
ED × EI

FE
(1)

20

PTW =
EC

FE
(2)

Where ED is energy density in kWh/L, EI is emission intensity calculated by GREET in gCO2eq/kWh,21

FE is the fuel consumption in mi/gal, and EC is the emission coefficient of diesel fuel in kgCO2eq/gal.22

3.5 Diesel Truck Total Cost to Society Model23

This study used a Total Cost to Society (TCS) analysis to combine operating cost, capital cost and the24

social cost of GHG emissions into a single metric. A discounted cash flow analysis was conducted using25

an average discount rate of 7%, based on recommendations by the White House’s Office of Management26

and Budget [61]. Assumptions for each cost consideration vary by year and are included in the present,27

mid term and long term. More details about the techno-economic estimates are provided in Supplementary28

Information.29

3.5.1. Operating Cost30

The operating cost was broken down into labor, maintenance & repair, fuel, permits, licenses and in-31

surance. Table 3 lists the cost data for these parameters based on The American Transportation Research32

Institute (ATRI) [62]. Detailed equations for total operating cost estimates are given in Supplementary33

Information. Fuel costs depend on the location and its land price, and transport distances from refinery34

to retail stations. They have been volatile in past years, impacted by pandemic and civil war. This work35

uses a pre-pandemic average retail price for diesel fuel for the present-day scenario. In 2019, the average36

price on highway of the ultra-low sulfur diesel was 3.056 $ USD/gallon [63], which accounted for production,37

distribution and taxes. Average federal and state taxes (0.56 $ USD/gallon) were removed [64], resulting in38

a with-out-tax fuel cost of 2.5 $ USD/gallon. For the mid and the long term, the diesel cost was taken from39

the EIA Annual Energy Outlook projections out to 2050 [65]. The present-day cost of renewable diesel was40
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Table 3: Operating and capital cost parameters

Item Values in each scenario Unit Reference
Present Mid term Long term

Aftertreatment cost 5782 7297 9118 USD [68,
69]

Engine price density 34.62 46.41 51.37 USD/kW [70]
Fuel tank cost 6.00 6.00 6.00 USD/kg [28]

Maintenance and repair 0.14 0.14 0.14 USD/mi [62]
Labor 0.69 0.69 0.69 USD/mi [62]
Tolls 0.03 0.03 0.03 USD/mi [62]

Permits and licenses 0.02 0.02 0.02 USD/mi [62]
Insurance 0.07 0.07 0.07 USD/mi [62]

WHR system (15 kW) 5900 5900 5900 USD [71]
18-speed automated
manual transmission

10250 10250 10250 USD [72]

Diesel cost 2.50 2.73 3.13 USD/gal [63,
65]

Renewable diesel cost 3.14 3.43 3.94 USD/gal [66]
Biodiesel BD20 cost 2.53 2.77 3.17 USD/gal [67]

based on the plant gate cost added by the average distribution cost reported by NREL [66]. As for biodiesel1

BD20, the fuel cost was based on the DOE’s report on alternative fuel prices published in 2020 [67]. We2

note the projected prices assume sufficient bio-derived feedstock will be available to meet the demand for3

the renewable; it is unclear if this would actually be the case in 2050 when several sectors including aviation4

might be demanding large amounts of bio-derived fuels. Taxes and subsidies were excluded from the total5

cost to society because taxes and subsidies are internal transfers; therefore, they do not contribute to the6

TCS.7

3.5.2. Capital Cost8

The capital cost considers engine, exhaust aftertreatment, transmission, waste heat recovery, fuel tank,9

and glider manufacturing costs. Special attention was given to powertrain components that were assumed to10

experience major change as time progresses, such as engine and the exhaust aftertreatment. A manufacturing11

cost for the engine as a function of engine peak power was derived by Argonne’s Energy Systems Division12

in collaboration with the International Council on Clean Transportation (ICCT) [73]. Cost increases due13

to efficiency gains were taken into consideration and are shown in Figure S12b. The aftertreatment system14

cost was based on a manufacturing cost analysis performed by the ICCT [68]. For the present-day scenario,15

the aftertreatment cost as a function of power is depicted in Figure S12a While future emission regulations16

are uncertain, this paper assumed that the medium and long term efforts to improve exhaust aftertreatment17

are primarily to meet Euro VII limits. The estimated incremental cost increase of the aftertreatment system18

for these scenarios is found in [69]. Particularly for the long term scenario, a two SCR-configuration was19

assumed for the Euro VII emission control system.20

3.5.3. Cost of GHG Emissions21

The future damages of CO2 emissions were translated into economic terms through the Social Cost of22

Carbon (SCC) metric to account for these externalities. The SCC metric translates the negative climate23

impacts of a ton of CO2 emitted into a present monetary value [74]. It has been predominantly used for24

climate policies and regulations in the US, and to define zero-emissions credits in states such as Illinois25

and New York [75, 76]. This metric is calculated through integrated models that predict CO2 emission26

trajectories over time, and its relationship with economic growth, which refer to climate and socio-economic27

modules in modular frameworks, respectively. They also determine the climate damages associated to these28

emissions within the damage module and translate them into present values using rates defined within the29

discounting module [77]. While the SCC is highly dependent on parameters such as time preference, discount30

13



rates and climate sensitivity, it offers a clarifying baseline to underpin cost-benefit analysis of climate actions.1

In this work, the SSC estimates from the US Government for the years 2020 through 2050 were used [78].2

Therefore, the SCC for a metric ton of CO2 is 51, 62 and 85 in 2020 dollars for the present, mid and long3

term using an average discount rate of 3%.4
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4 Results & Discussion1

4.1 Drive Cycle Development2

4.1.1. Validation3

To validate the degree of representativeness relative to the defined national average driving profile for4

USLHC8, the Kolmogorov-Smirnov (KS) test was used. Figure 3 displays the KS statistics for the USLHC85

and drive cycles commonly used in the literature. A KS score closer to zero indicates a higher degree of6

representativeness.7

The USLHC8 shows a significantly higher representativeness when compared to all other considered8

drive cycles in terms of both vehicle speed distribution and road grade distribution. Regarding vehicle9

speed, USLHC8 showed a lower KS test value than HHDDT, HWFET and NESCCAF by approximately10

44%, 12% and 32%, respectively. USLHC8 also shows an approximately 23% lower road grade KS statistic11

than NESCCAF, the only other drive cycle in consideration that consists of both a vehicle speed and road12

grade trace.13
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Figure 3: Two-sample distribution KS statistics of different drive cycles

In addition, the robustness of the generation methodology for USLHC8 was validated. This was done14

by determining the sensitivity of the KS score to a deviation in the generated drive cycle’s error value. The15

generated Control drive cycle in Figure 3 was selected for its vehicle speed KS score that is very close to16

the HWFET KS score, which is the second-best after USLHC8. The road grade KS score of Control is17

about 23 % lower than the NESCCAF KS score. Yet, the Control has an error value which is about 12218

% greater than that of the USLHC8. After running the microtrip randomization and evaluation algorithm19

more than 50 times, the resulting error values only deviated from each other by less than 5%. Therefore,20

a 122 % increase in the error value is an extremely unlikely result of the algorithm. This demonstrates a21

very high robustness of the presented methodology in terms of generating drive cycles with a high degree of22

representativeness relative to the defined national average driving profile. Moreover, the generated degrees23

of representativeness are consistently higher than those of drive cycles from the literature.24

4.1.2. Results25

The selected final drive cycle “US Long-Haul Class 8” (USLHC8) is shown in Figure 4, and compared with26

other drive cycles in Table 4. When considering long-haul driving, USLHC8 has substantial advantages over27

the other drive cycles in consideration. The USLHC8 covers a total distance of 599.43 miles, has an average28

vehicle speed of 55.56 mph and a maximum vehicle speed of 70.87 mph, which is the highest vehicle speed29

of the drive cycles considered. The total driving time at 10 hours and 47 minutes (38840 seconds) is slightly30
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below the maximum legal driving window of 11 hours. This is crucial to accurately capture prolonged highway1

driving without too many stops and for powertrain architecture design, because long-haul powertrains must2

be capable of handling the legal maximum of daily operation. The USLHC8 exhibits a distinguished segment3

of urban driving at either end. These segments show significantly more acceleration and deceleration as well4

as lower speed driving. Both urban segments are similar in length at about 2,000 seconds. The urban driving5

in each segment includes short and interrupted highway sections which model metropolitan traffic and the6

changing of highways. The remaining long-haul segment in the middle consists of prolonged highway driving7

which is only interrupted by very few stops. These may represent stops necessary for refueling or the truck8

operator’s personal needs. For the most part, the long-haul segment exhibits steady driving. Two long-haul9

segments of USLHC8 cover highway speeds at about 55 mph and one segment comprises driving at about10

65 mph. The last long-haul segment of USLHC8 also accounts for more transient long-haul driving towards11

the end of the cycle ranging from about 40 mph to about 70 mph. None of the other drive cycles considered12

display this inter-metropolitan driving profile representative of long-haul driving in the US. Most USLHC813

road grade values are between -3% and +3%. However, there are also road grade values up to -6% and +6%.14

Most of these high values are part of the urban segments where extreme grades are more common than on15

the highway. NESCCAF only demonstrates a synthetic road grade trace limited to 3 %.16
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Figure 4: Long-Haul Class 8 Drive Cycle (USLHC8). Urban segments are marked in black

Despite these differences between USLHC8 and drive cycles from the literature, it must also be noted17

that the overall spread in between the drive cycles is not too large. The USLHC8 vehicle speed KS statistic is18

about 1.8 standard deviations away from the mean of the literature drive cycle KS statistics. Consequently,19

it can be concluded that the deviation of USLHC8 from literature drive cycles is within reasonable limits.20

In addition to the USLHC8 drive cycle, the drive cycle development methodology itself is discussed in the21

following. The unique microtrip random generation and evaluation method presented has several distinct22

advantages over other drive cycle generation methods commonly used in the literature such as k-means23

microtrip clustering [79] or Markov chains [80, 81]. Most importantly, it allows for the drive cycle to be24
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Table 4: Properties of USLHC8 and drive cycles commonly used in the literature

Drive
cycle

Vehicle
speed
KS

statistic

Road
grade
KS

statistic

Distance
(miles)

Time
(s)

Average
vehicle
speed
(mph)

Maximum
vehicle speed

(mph)

HHDDT 0.4622 n.a. 23.07 2084 39.86 59.3
NESCCAF 0.3822 0.3076 72.51 6830 38.22 70.2
HWFET 0.2986 n.a. 10.26 765 48.3 59.9
USLHC8 0.261 0.237 599.43 38840 55.56 70.87

modeled after a specific target vector and not solely to match the average of the base data itself. Also, the1

microtrip method does not need a validation of driving segments because these consist of measured vehicle2

speed and road grade traces from actual on-the-road driving. The method also avoids inconsistencies in3

the generated drive cycles by establishing clear boundary constraints in between concatenated microtrips.4

Moreover, it allows for a very high variability in generated drive cycles that cannot be achieved using a5

k-means clustering method. A total number of approximately 1.73*1047 possible drive cycles significantly6

increase the likelihood of closely matching the national average driving profile.7

4.1.3. Limitations8

There are several limitations to the presented work. First and foremost, it must be noted that the9

presented drive cycle is only intended for modeling and simulation purposes. It is inconveniently long for10

usage in an experimental setting such as a roller test bench. Another limitation of USLHC8 is the absence of11

idle time segments, either non-discretionary or discretionary. Non-discretionary idling describes powertrain12

idling that is not intended by the vehicle operator. Discretionary idling is usually necessary to meet the hotel13

load energy demand for purposes other than vehicle propulsion. Even though non-discretionary idle time14

only makes up a negligible part of the energy demand during highway operation [82, 24], it may be significant15

for determining criteria pollutants and for a more detailed analysis of individual powertrain components.16

Not accounting for the time the vehicle is stopped in between periods of driving limits the accuracy of17

powertrain thermal behavior, which may be important for precisely modeling diesel exhaust after-treatment18

systems, batteries, or fuel cells. A further limitation is that the drive cycle development methodology does19

not consider vehicle acceleration behavior as an assessment feature and thus USLHC8 might be slightly20

biased to the ROLR base data. However, no class 8 truck acceleration dataset of sufficient quality could be21

identified, and the influence of acceleration may be limited during constant speed highway driving. USLHC822

only has a limited amount of prolonged vehicle speed segments above 65 mph, even though the defined23

national average driving profile incorporates significant driving at vehicle speeds over 70 mph. This is due24

to limited high vehicle speeds in the ROLR base data and the chosen microtrip method is constrained to25

the base dataset, since it does not allow for the generation of new synthetic driving segments. Additionally,26

USLHC8 was chosen from several possible drive cycles generated by the algorithm, which show distinguishable27

distributions of vehicle speed between individual random sampling. However, they provide relatively close28

average vehicle speeds and fuel consumption (see SI for details). Despite these limitations, USLHC8 exhibits29

the highest degree of representativeness to the national average in comparison to all identified drive cycles30

in the literature.31

4.2 Diesel heavy-duty truck model32

The engine power distribution of the DICET model over the UCLHC8 drive cycle is shown in Figure 533

and is typically within the range of 70-170 kW. From this power map, the red lines underline the envelope34

for the majority of potential engine operating points. The optimal fuel economy occurs at 1200 RPM and35

about 200 kW according to the efficiency map. It is important to clarify that the engine assessed in this36

work is representative of a typical truck engine on the road today; it does not have the best-in-class fuel37
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Figure 5: Power and efficiency map of the Diesel engine

consumption efficiency. Several efficiency improvements are achievable with current technology at higher1

engine cost.2

4.2.1. Shifting Optimization3

The first optimization approach achieved up to 7.57 mpg by upshifting at 1600 RPM and downshifting4

at 600 RPM. Figure S8 depicts the fuel consumption ranges at different RPM. The second approach using5

GT-Suite’s optimized shifting algorithm resulted in a fuel consumption of 7.83 mpg. The generated shift6

schedule is provided in Figure S9. Because the GT-Suite method resulted in lower fuel consumption and7

satisfied performance constraints, this shifting schedule was used in the final model.8

For the case sweep, the top three gears along with the final drive ratio were selected according to the9

elbow point (see Figure S10). The output space of this optimization is presented as a histogram given in10

Figure S11. Initial estimates for the optimization of these gears come from the case sweep, where the highest11

fuel consumption resulted in 7.87 mpg with the gear ratios of 3.1 (final drive), 0.9 (16th gear), 0.86 (17th12

gear), and 0.75 (18th gear). The optimization was conducted as a minimization of fuel consumption under13

the constraint of 1.24 mph or smaller mean absolute error relative to the drive cycle vehicle speed trace14

(equation S2, i.e. we demand that the engine closely meet the power demanded by the drive cycle. The15

optimization resulted in an optimized fuel consumption value of 7.51 mpg at gear ratios of 3.04 (final drive),16

0.82 (16th gear), 0.75 (17th gear), and 0.71 (18th gear) (see Table S5). The operating points with a fuel17

consumption of 7.10 mpg for the default Eaton-Super18 are shown on the left and operating points with a18

fuel consumption using the optimized 18 speed transmission are shown on the right in Figure 6.19

4.2.2. Modeled Drive Cycle Fuel Consumptions20

Table 5 compares the fuel consumption over the DICET model of the USLHC8 and other drive cycles21

commonly used in the literature.22

4.2.3. Sensitivity Analysis23

A sensitivity analysis was performed to determine the influence of the input parameters payload, drag24

coefficient and rolling resistance coefficient on the DICET model fuel consumption. Figure 7 shows the25

18
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Figure 6: Distribution of operating points for the USLHC8 cycle under two different speed transmission setup: a) default
Eaton-Super18 resulting in fuel consumption of 7.10 mpg, and b) optimized gear ratio with fuel consumption of 7.51 mpg

Table 5: Model fuel consumption over literature drive cycles

Drive cycle Fuel Consumption (in mpg)

USLHC8 7.51
NREL 7.21

HDUDDS 5.70
NESCCAF 7.84
HWFET 7.41

sensitivity relative to the baseline parameters defined in section 3.3.1 and the modeled fuel consumption of1

7.51 mpg for the USLHC8 drive cycle. The payload varied from 0 lb, representing an empty truck, to around2

60000 lb, representing a fully loaded truck. The upper and lower bounds for the drag coefficient were based3

on values reported by Sripad et al.[83] for class 8 vehicles. The bounds for frontal area and rolling resistance4

coefficient were defined according to literature values [32, 83].5

Payload had the most significant influence on fuel consumption at 9.95 mpg without load and 6.41 mpg6

fully loaded. Of course, one does not get paid for running an empty truck. The fuel economy is less sensitive7

to aerodynamic drag and rolling resistance than it is to payload, but these parameters are still important.8

Fuel consumption varied from 8.13 mpg to 6.89 mpg when using drag coefficient ranged between 0.5 and9

0.7, respectively. The larger this coefficient, the more resistance to motion encountered by the truck and10

thus more fuel is needed to travel the same mileage. Vehicle frontal area was varied from 8 m2 to 10 m2
11

with resulting fuel consumption of 7.04 mpg and 7.93 mpg, respectively. The coefficient of rolling resistance12

between 0.006 and 0.008 led to fuel consumption of 7.15 and 7.98 mpg, respectively.13

Finally, we considered the effect of including (or not) road grade in the fuel consumption model, since14

many drive cycles do not take it into account. Road grades impact the power at the wheel required to15

follow the USLHC8 drive cycle. It influences the total tractive force, primarily the rolling resistance and16

gravitational components. It was found that the truck travels on average 7.53 miles per gallon of diesel when17

road grade is excluded from the analysis.18

4.2.4. Projected Fuel Efficiency of Trucks in the Future19

The calculated fuel consumption for the present-day DICET model running on the USLHC8 drive cycle is20

7.51 mpg. Future fuel consumption is projected to be 9.59 mpg for the mid term and 10.46 mpg for the long21

term. These increases are mainly due to engine improvements, and to the addition of a waste heat recovery22

unit, as other powertrain components such at the transmission already operate at close to ideal efficiencies.23

The waste heat recovery system added in the mid and long term scenario improves fuel consumption by24

powering the auxiliary load using waste heat generated by the engine. Similar improvements in the fuel25

consumption of diesel long-haul trucks have already been demonstrated in the context of DOE’s SuperTruck26

projects. For example, the Cummins-Peterbilt team reported fuel consumption ranging between 9.2 and27

19
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Figure 7: Effect of design parameters on fuel consumption

10.7 mpg in real driving conditions, while the Daimler team achieved a peak fuel consumption of 12.2 mpg1

[84]. Recent publications have also projected advances in present-day technologies that lead to higher freight2

efficiencies and better diesel engine performance. For instance, Tong et al.[85] estimated advances in fuel3

consumption of 20 % to 41 % for different designs of long-haul diesel trucks with modifications in empty4

vehicle weight, rolling resistance and frontal area.5

4.3 Well to Wheel Emissions6

Figure 8 shows the computed greenhouse gas emissions associated with fuel production (WTP) and7

fuel combustion during use (PTW) for the diesel long-haul truck. Using conventional diesel led to WTW8

emissions of 1507, 1180 and 1081 gCO2/mi for the present, mid and long term, respectively. Since WTW9

emissions are highly dependent on vehicle models, design attributes, assumed payload, and drive cycles, a10

wide range of values is found in the literature for diesel powertrains. Several other authors have recently11

estimated GHG emissions from trucking, reporting slightly higher values, e.g. in 2021 Liu et al.[86] obtained12

a value of 1846 gCO2/mi, and in 2015 Camuzeaux et al. [87] computed a value close to 2000 gCO2/mi.13

Renewable diesel has the lowest emissions followed by biodiesel BD20; because all the carbon in renewable14

diesel is non-fossil in origin, absorbed from the atmosphere by growing plants, it is not counted as a GHG15

emission. However, it is not zero-emission, since significant greenhouse gases are emitted to grow and harvest16

the plants, to convert them into fuel, and in transporting both the biomass and the finished fuel.17

4.4 Total Cost to Society18

The capital cost for the present, mid term, and long term slightly increase over time and are roughly19

125,400, 137,000, and 140,500 USD (see Figure 9). The glider makes up the majority of the capital cost20

at 95,000 USD and was included to account for the total capital cost. However, the analysis focused on21

powertrain components and their cost variation over time. The largest powertrain cost is attributed to the22

engine.23

The engine cost is 12,000 USD in 2020 and increases to nearly 18,000 USD in the mid term projection.24

This increase is due to technology improvements to meet emission requirements and increase fuel consumption25

[88]. In particular, the waste heat recovery system increases the capital cost by 6,000 USD [71], however, this26

value would be lower in mass production. Also included in the capital cost are the fuel tank, transmission,27

exhaust aftertreatment system, and battery.28

Figure 10 shows the operating cost for each diesel fuel type and time scenarios. For trucking operations in29

the USA, labor is the largest operating cost component followed by fuel, maintenance and repair, insurance,30

20
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Figure 8: Total Well to Wheel emissions

and fees. Labor costs are assumed to be constant in these calculations, but this is quite uncertain. Salaries1

may increase faster than inflation, causing real labor costs to rise, or labor costs might drastically decrease2

in the long term if autonomous driving is widely deployed. The scope of this study is limited to variations3

in powertrain and fuel cost.4
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Figure 9: Capital costs per truck

The price of all fuels is expected to increase over time per5

the EIA’s projections (though this is quite uncertain, e.g. sub-6

ject to future decisions by OPEC and by the USA government).7

The fuel efficiency increase from engine improvements is ex-8

pected to partially offset the increase in fuel price. Renewable9

diesel is associated with the largest operating cost in all sce-10

narios, followed by conventional diesel, and BD20. While re-11

newable diesel as a drop-in fuel drastically cuts emissions, it is12

more expensive than BD20 or conventional diesel. These price13

differences among diesel fuel types come from both production14

and supply factors. The production of renewable diesel is cur-15

rently lower than biodiesel in the USA, and the majority of16

its capacity is located on the West Coast; supplying this fuel17

to other farther regions adds more distribution costs. There18

is also a finite supply of the vegetable oils from which these19

biofuels are made; that limit is likely to become important in20

the long term.21

A recent comprehensive total cost of ownership analysis was performed by Argonne National Laboratory22

(ANL) [88]. The results of this study are compared to the ANL results in Figure 11. The ANL model23

considers additional costs relative to the DICET model including taxes and financing over time. Taxes are24

not included within the DICET model because the model will serve as a comparison baseline to alternative25

powertrains, where the extent and methodology of future taxation are largely uncertain. When equipping26

the DICET model with ANL parameters, results are within 5% of each other. The DICET model with our27

parameters differs from the ANL model with ANL parameters by roughly 30%. Major differences in input28

parameters include the discount factor, fuel consumption, and diesel price. The ANL model used a discount29

factor of 3%, whereas the DICET model uses 7%. The fuel consumption per mile used within the ANL model30

is nearly 15% different than the value computed here using the DICET model. This difference is attributed31

to different driving patterns. The ANL model considered all class 8 trucks, while the DICET model focused32

strictly on long-haul operation. We noted in section 3.5.1 that fuel prices depend on location and have been33

volatile in past years. The diesel costs in the ANL model were 3.08 and 3.37$ USD/gallon, with fuel taxes34

21
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included, which constitutes 22% of the final diesel cost. As stated, the DICET model removes the diesel tax1

to facilitate comparison to alternative powertrain and fuel combinations on a ”total cost to society” basis.2
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Figure 11: Comparison of total cost of ownership results with other works

Figure 12 shows the total cost to society of the diesel powertrain for each diesel fuel type. The social cost3

of carbon penalizes emissions more severely in the later years. The social cost of carbon values used here4

are insufficient to offset the significantly higher operating (fuel) cost when renewable diesel is used instead5

of conventional (fossil) diesel fuel.6
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Figure 12: Total Cost to Society per truck, lifetime

5 Conclusion1

Long-haul heavy-duty trucks constitute the backbone of growing US freight transport but are also re-2

sponsible for a large fraction of transport-related greenhouse gas emissions.3

Various alternative truck powertrains have been assessed to reduce these freight transport emissions. In4

the reviewed literature, consensus on the best powertrain solution has not yet been found. This is likely due5

to widely varying assumptions, including the use of drive cycles with significant shortcomings in terms of6

representing actual long-haul operations in the US. The main shortcomings are a lack of appropriate vehicle7

speed transients, realistic road grades, and maximum vehicle speeds.8

To allow for an accurate comparison of alternative powertrains on a consistent basis, this paper defines9

a drive cycle that represents how long-haul trucks are actually driven in the USA. The USLHC8 drive cycle10

was developed using a unique microtrip random selection algorithm, and many hours of real-world driving11

data covering 58,000 miles. The drive cycle was sampled from many possible drive cycles generated with the12

algorithm, featuring a high degree of representativeness. It consists of a vehicle speed and road grade trace13

and covers a total distance of 599.43 miles with an average vehicle speed of 55.56 mph. Compared to drive14

cycles in the reviewed literature, it has a higher degree of representativeness to the national average driving15

profile. USLHC8 was successfully validated using Kolmogorov-Smirnov statistics.16

USLHC8 and a simulation of a modern diesel engine served as the main inputs for a system-level simula-17

tion of the diesel powertrain. The simulation includes power auxiliaries, an exhaust aftertreatment system, as18

well as an optimized transmission and shifting strategy. Based on the simulation and USLHC8, well-to-wheel19

emissions were calculated to be 1507 gCO2 per mile for conventional diesel. The majority of these emissions20

were pump-to-wheel emissions, which were zero for renewable diesel. Emissions and fuel consumption were21

projected to steadily decrease over time as truck technology improves. Using the social cost of carbon, CO222

emissions and total cost of ownership were combined into a single metric, the Total Cost to Society (TCS).23

The TCS of purchasing and operating a truck over its lifetime was calculated for conventional diesel, re-24

newable diesel, and biodiesel BD20 while projected under current, mid, and long-term scenarios. Renewable25

diesel had the highest TCS, followed by BD20 and conventional diesel. The TCS was projected to steadily26

increase over time for all diesel fuel types despite projected improvements in efficiency, due to rising fuel27

prices. Finally, the results of the TCS were successfully validated against the literature.28

Nevertheless, several limitations to the presented research have to be taken into account. First, the drive29

cycle USLHC8 is only intended for modeling and simulation purposes and is not designed to be convenient30

for practical engine testing. USLHC8 also does not consider idle time segments, which limits the modeling31

23



accuracy of powertrain thermal behavior and hotel load power demand. Concerning the diesel powertrain1

simulation, the transmission design and gear-shift optimization were specific to USLHC8. Therefore, optimal2

performance would be different in simulations with other cycles. Lastly, both labor and fuel costs in the3

TCS analysis are highly uncertain in future scenarios and can be greatly affected by political and economic4

instability and future regulations; all of these are factors outside the scope of this paper.5

The supplementary parameter definition and drive cycle development presented in this paper complement6

the literature with the first publicly available comprehensive characterization of the US long-haul class 87

truck driving profile. Furthermore, the results of the diesel model and total cost to society analysis provide8

a consistent benchmark for future research to compare alternative powertrain solutions in the present, mid9

term, and long term. Taken together, this paper enables a substantially more accurate comparison of10

long-haul powertrains in terms of their cost and greenhouse gas emissions. Based thereon, stakeholders11

like manufacturers, investors, and policymakers, may be presented with less uncertainty about the optimal12

powertrain solution for the long-haul sector, allowing for better decisions.13

Since long-haul truck deliveries make up over 70 % of the continuously growing US freight sector, the14

presented research has the potential to make a significant contribution to improving the US economy and15

accelerating national decarbonization.16
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Supplementary Material1

Drive Cycles in the Literature2

Figure S1 shows six drive cycles commonly used for heavy-duty truck emissions modeling in the USA.3

The US EPA has been using the Highway fuel consumption Driving Schedule (HWFET), US06 Supplemental4

Federal Test Procedure and Heavy-Duty Urban Dynamometer Driving Schedule (HDUDDS). The California5

Air Resources Board (CARB) introduced the Heavy-Duty Diesel Truck Cruise Mode (HHDDT). The North-6

east States Center for a Clean Air Future (NESCCAF) and the National Renewable Energy Laboratory7

(NREL) also developed their own long-haul cycles.8
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Figure S1: Standard drive cycles used for long-haul trucks: a) US06, b) HWFET, c) NESCCAF, d) NRTL, e) HDUDDS, and
f) HHDDT.Source:[1, 2, 3, 4, 5]

Defining Long Haul9

The vehicle miles traveled for a truck with a 10-year vehicle lifetime are given in Table S1.Figure S210

shows the total number of class 8 trucks with sleeper cabs in the VIUS 2002 dataset.11

The daily range distribution for all class 8 trucks is shown in Figure S3. For class 8 trucks with a sleeper12

cab, the distribution is depicted in Figure S4.13
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Figure S2: Class 8 trucks with sleeper cabs (defined as long-haul) according to the VIUS dataset [6]
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Figure S3: Daily range distribution for all class 8 trucks in VIUS dataset [6, 7]. onversion factor from years to days given by
months under operation, 30.4 days in a month and 60/34 work period
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Figure S4: Daily range of class 8 trucks with sleeper cabs from the VIUS database. Conversion factor from years to days given
by months under operation,30.4 days in a month, and 60/7/34 work period. [7, 6]
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Table S1: Annual average vehicle miles traveled of long-haul class 8 trucks in the USA [8]

Year of vehicle life Vehicle miles traveled

1 108,000
2 120,000
3 114,000
4 105,000
5 92,000
6 81,000
7 74,000
8 67,000
9 59,000
10 52,000

Target Feature Vector Definition1

The target feature vector was defined according to the vehicle speed and absolute road grade distributions2

shown in Figure S5 and Figure S6. The individual shares in S5 are in 5 % increments because that is the3

highest resolution available for all datasets. Descriptions of the datasets used for the target feature vector4

can be found in Table S2. The target vector is available in Table S3.5
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Figure S5: Vehicle speed distributions of different dataset combinations

Drive Cycle Generation6

Data pre-processing: The Run on Less Regional (ROLR) raw dataset was provided under a collaboration7

agreement with the North American Council for Freight Efficiency (NACFE). A set of concatenated8

files for each truck was created for further data cleansing. This cleansing process includes the detection9

and correction of corrupt, coarse, or inaccurate data, which enables a more representative characteri-10
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Table S2: Overview of datasets considered for the target vector definition [9] [10] [11] [12]

Dataset Description

ROL17

• 7 trucks over a period of 17 days. Over 50,107 miles of data collected
• Average driving speed of 54 mph, very little time was spent at 68 mph or higher
• Average mileage of 506 miles/day
• Data collection with a focus on longer haul driving
• Relatively good geographical coverage of the main long-haul freight routes of the US, but

concentrated in the Midwest and Southeast of the US.

ROLR

• 10 trucks over a period of 18 days. Over 58,000 miles of data collected
• Average driving speed of 53.21 mph, but significantly more zero-speed time and

significantly higher number of stops in comparison to ROL17
• All trucks drove over 350 miles per day with an average mileage of 434 miles/day
• Not a dedicated long-haul data collection. Focus on Regional-haul with more frequents

stops and therefore more frequent acceleration events
• Limited geographical coverage because of locally concentrated regional-haul scope.

HTDC

• 6 trucks over a period of 12 months. 637,558 miles of data collected
• Average driving speed of 66.82 mph
• Dedicated long-haul data collection
• Very good coverage of the Southern and Eastern US, but no coverage of the West Coast

of the US
• Very good temporal coverage: captures seasonal variations

Filtered
fleet
DNA

• 12 trucks and 7247.4 miles of data collected. No information about the exact duration
of the data collection period

• Average driving speed of 45.57 mph
• Dataset filtered to select long-haul driving, but not a dedicated long-haul data collection
• Geographical coverage Heavy bias towards states on the West Coast of the US

TomTom N.V.
National
Road Grade
Database

• 100 % coverage of US controlled access highway routes
• approx. 12 million measured datapoints with an accuracy on road grade of ±0.3 %
• Validated against datasets by Southwest Research Insitute and US Geological Survey
• Based thereon: “Development of Road Grade Profiles Representative of US Controlled

Access Highways” [13]
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Table S3: Target vector for long-haul drive cycle construction

Target road grade vector Target speed vector

Interval (%) Relative frequency Interval (%) Relative frequency Interval (mph) Relative frequency

[-6; -5) 0.000962 (0; 0.1] 0.079101 (0; 5] 0.017636
[-5; -4) 0.000524 (0.1; 0.2] 0.039151 (5; 10] 0.014692
[-4; -3.5) 0.0013954 (0.2; 0.3] 0.0341882 (10; 15] 0.009007
[-3.5; -3) 0.001678 (0.3; 0.4] 0.031951 (15; 20] 0.008556
[-3; -2.6) 0.005869 (0.4; 0.5] 0.030012 (20; 25] 0.00928
[-2.6; -2.3) 0.004532 (0.5; 0.6] 0.025255 (25; 30] 0.010288
[-2.3; -2) 0.00547 (0.6; 0.7] 0.020996 (30; 35] 0.013487
[-2; -1.8) 0.007702 (0.7; 0.8] 0.018812 (35; 40] 0.01611
[-1.8; -1.6) 0.008405 (0.8; 0.9] 0.017279 (40; 45] 0.024457
[-1.6; -1.4) 0.009555 (0.9; 1] 0.016175 (45; 50] 0.047686
[-1.4; -1.2) 0.011091 (1; 1.2] 0.013247 (50; 55] 0.10966
[-1.2; -1) 0.013247 (1.2; 1.4] 0.011091 (55; 60] 0.130886
[-1; -0.9) 0.016175 (1.4; 1.6] 0.009555 (60; 65] 0.15372
[-0.9; -0.8) 0.017279 (1.6; 1.8] 0.008405 (65; 70] 0.206397
[-0.8; -0.7) 0.018812 (1.8; 2] 0.007702 (70; 75] 0.195433
[-0.7; -0.6) 0.020996 (2; 2.3] 0.00547 (75; 80] 0.032708
[-0.6; -0.5) 0.025255 (2.3; 2.6] 0.004532
[-0.5; -0.4) 0.030012 (2.6; 3] 0.005869
[-0.4; -0.3) 0.031951 (3; 3.5] 0.001678
[-0.3; -0.2) 0.034188 (3.5; 4] 0.001395
[-0.2; -0.1) 0.039151 (4; 5] 0.000524
[-0.1; -0) 0.079101 (5; 6] 0.000962

zation of the long-haul cycles.1

2

1. Remove duplicates and incomplete data: duplicate vehicle speed profiles and vehicle data lacking3

several important signals were removed.4

2. Remove unrealistic datapoints: Outliers representing the maximum possible OBD vehicle speed5

value of 255.99 km/h for an increment of only one second were removed from the dataset since the6

maximum vehicle speed in a realistic progression is 124.5 km/h. For values above 150 km/h, the7

datapoints were replaced by a linear interpolation of the previous and the subsequent error-free8

datapoints.9

3. Check data quality of raw elevation signal: No extreme outliers were detected for the elevation10

signal, but noise. Hence, the Savitzky-Golay filter was applied to denoise the signals.11

Acceleration and road grade estimation: The vehicle acceleration was calculated using the cleansed12

speed datapoints. The road grade (RG) was calculated from both elevation signal and vehicle speed13

signal. As shown in Equation S1, the road grade (%) derives from the difference in elevation (rise)14

divided by the difference in distance (run) between two sampling points.15

RG(%) =
∆Elevation

∆Distance
∗ 100 = tanα ∗ 100 (S1)

Microtrip preparation: The microtrip based cycle approach was used for the construction of the drive16

cycle. These microtrips were prepared as follows:17

18

1. Cutting of the ROLR data into microtrips: the datapoints with vehicle speed and acceleration19

of zero were used to define connecting points between consecutive microtrips. Based on these20
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bounded points, the microtrips were cut from the ROLR data. All other datapoints were dis-1

carded.2

2. Smoothing the microtrip elevation at connecting points: the elevation values were smoothed at3

the connecting points to ensure that the resulting road grades were equal to zero. This leads to4

a more consistent sequence of microtrips and continuous road grade traces.5

3. Determination of feature vector for each microtrip: the vehicle speed trace was integrated over6

time to obtain the total distance driven per microtrip. The average speed value was then estimated7

as the arithmetic mean of the vehicle speed trace. The relative frequency of each 5-mph vehicle8

speed interval was determined as the ratio of the total number of datapoints within a given interval9

to the total number of datapoints of the microtrip. Similarly, the relative frequency of the road10

grade intervals was calculated from the road grade trace of each microtrip.11

4. Microtrips classification into long-haul and urban: the microtrips were separated into an urban12

pool representing the drive out of or into a metropolitan area and a long-haul pool representing the13

prolonged highway driving in between metropolitan areas. This distinction was made according14

to the criteria summarized in Table S4. All microtrips that could neither be classified as long-haul15

nor as urban were discarded.16

Table S4: Classification criteria for long-haul and urban microtrips

Criteria Value Unit Reference

Minimum highway distance 105.66 miles This work
Minimum average driving speed 40 mph [14]
Driving time between stops 2 hours (J. Gregorio, personal communication, Sept 5, 2021)
Complete stops on interstate No - (J. Gregorio, personal communication, Sept 5, 2021)
Minimum urban distance 15 mi This work
Total urban distance 30 mi This work

Microtrips random selection: After the microtrip preparation process, an algorithm for the random17

selection and evaluation of microtrips was programmed and applied to the data. The randomized18

drive cycle generation process constructs drive cycles in two segments. First, the long-haul segment is19

generated with randomly selected microtrips from the long-haul microtrip pool. In detail, microtrips20

are successively selected at random and their cumulative distance is calculated with each microtrip21

selection. If the sum of the current cumulative distance and the distance of the next microtrip candidate22

exceeds the maximum distance for the long-haul segment, the long-haul fail counter is incremented by23

one. The maximum long-haul segment distance is equal to the maximum total distance subtracted24

by the initialized urban distance. If the fail counter is greater than the initialized maximum fail25

counter value, the generation of the long-haul segment is terminated. It is important to consider that26

the described optimization for a maximum distance leads to a bias of shorter microtrips towards the27

end. Therefore, all microtrips of the segment are randomly reshuffled before they are concatenated.28

Analogous to the long-haul segment, the urban segments are generated at either end of the long-haul29

segment. Microtrips are also successively selected at random and then randomly added to either the30

beginning or the end of the already generated long-haul segment. The urban fail counter is incremented31

by one if adding the distance of the next candidate microtrip would exceed the maximum total distance.32

Microtrips from the urban pool are excluded from the process if their distance is greater than 50 % of33

the remaining distance until the initialized maximum. This was done after initial trial runs to increase34

the efficiency of the algorithm and to prevent the urban segment from consisting of only very few and35

long microtrips. Again, the generation of the urban segment is terminated when the maximum value36

of the urban fail counter is exceeded and then the generated segment is reshuffled. The urban segments37

are created last because the urban microtrips are significantly shorter than the long-haul microtrips.38

Consequently, the urban segment has a higher variability and is more adaptable to converge towards39

the target feature vector and towards the defined maximum distance.40

Drive cycle evaluation: Through this step, each resulting drive cycle is compared to the national average41

driving profile. The deviation of each feature in the microtrips from the target vector is estimated and42

6



used to calculate the absolute error of the entire drive cycle. The contribution of each microtrip to the1

absolute error was time-weighted. Since the complete target vector accounts for 63 features, namely,2

distance, average vehicle speed, 16 vehicle speed distribution intervals and 44 road grade distribution3

intervals, weighting factors were introduced to account for the relative importance of each feature to4

the error. In this work, the weighting factors for distance feature, vehicle speed and road grade were5

set at 0.1,0.54 and 0.36, respectively. Based on these weights, a single error value is obtained for each6

generated drive cycle using the Euclidian norm of the weighed deviation vector. Finally, the drive cycle7

with smallest error was selected, and was named as USLHC8 (i.e. US Long-Haul Class 8 drive cycle).8

The Kolmogorov-Smirnov test was chosen for this validation since, on the one hand, it is sensitive to9

differences in both shape and location of the distributions in consideration. On the other hand, it is10

widely used in the literature for evaluating the statistical similarity of two cumulative distributions11

[15, 16].12

We also sampled other drive cycles generated with the algorithm for a 600-mile range. The distribu-13

tion of vehicle speeds was distinguishable between individual random sampling. However, they have14

relatively close vehicle speeds (between 52 and 56 mph and variances between 343 and 259 mph2,15

respectively), and fuel consumption around ∼ 7.6 and 7.2 mpg. To illustrate the capabilities of the16

algorithm to generate drive cycles of different lengths, we also generated drive cycles with a 300-mile17

range. Sampling from a few possible 300-mile drive cycles showed close fuel consumption (∼ 7.6− 7.418

mpg) and average vehicle speeds between 51 and 56 mph with variance between 302 and 143 mph2,19

respectively.20

Truck modeling21

Simulations across the USLHC8 drive cycle were limited to no more than a 1.24 mph average error. The22

error was defined as:23

Absolute Mean Error =

∫ tf
0

√
(vUSLHC8 − vsimulated)2

tf
(S2)

Where vUSLHC8 is the velocity of the USLHC8 drive cycle, vsimulated is the velocity of vehicle being24

simulated, and tf is the total time of the drive cycle.25

Figure S7: Output space for engine sizing
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Shifting Optimization1
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Figure S8: Effect of gear shift strategies on fuel consumption
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Figure S10: Optimal number of clusters using elbow method

Figure S11: Output space of fuel economies in case sweep

Table S5: Optimization results for sweep case

Variable Minimum Maximum Optimized

Final drive ratio 2.9 3.9 3.04
16th gear 0.8 1.1 0.82
17th gear 0.65 0.9 0.75
18th gear 0.55 0.8 0.71

Total Cost of Ownership Model1

Discount rate: The discount factor is calculated according to equation2

9



DF =

(
1

1 +DR

)yr

(S3)

Where DF is the discount factor, DR is the discount rate, and yr is the year1

Operating cost: The operating cost considers labor, maintenance & repair, tolls, permits & licenses, fuel2

and insurance. The cost of these components per mile travelled was translated to total operating costs3

using the VMT per year and the discount factor as given in Equation S5.4

Operating Cost = $Labor + $M&R + $Tolls + $Permits&Licenses + $Fuel + $Insurance (S4)

Operating Costi =

10∑
yr=1

(
$

mi
× VMTyr ×DFyr

)
(S5)

Capital cost: The capital cost considers engine, aftertreatment, transmission, waste heat recovery, fuel5

tank, and glider manufacturing costs. The total capital cost is given by Equation S6.6

Capital Cost = $Engine + $aftertreatment + $Transmission + $WHR + $Tank + $Glider (S6)

The manufacturing costs for the engine and the aftertreatment system are depicted in Figure S127
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Figure S12: Manufacturing cost as function of power demand
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