
Computational Discovery of Hidden Cues in
Photographs

by

Tristan Swedish

B.S., Northeastern University (2014)
S.M., Massachusetts Institute of Technology (2017)

Submitted to the Program for Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Program for Media Arts and Sciences,
School of Architecture and Planning,

June 28, 2022

Certified by. .
Ramesh Raskar

Associate Professor
Thesis Supervisor

Accepted by .
Tod Machover

Academic Head
Program in Media Arts and Sciences

2

Computational Discovery of Hidden Cues in Photographs

by

Tristan Swedish

Submitted to the Program for Media Arts and Sciences,
School of Architecture and Planning,

on June 28, 2022, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Images of everyday scenes often contain hidden information that can be extracted
to localize objects outside the view of the camera and to see around corners. For
example, we show that it is possible to look at shadows cast by an object on a table,
such as a teapot, and reconstruct an image of the surrounding room. We describe
how to identify and make use of these hidden cues such as shadows, reflections, and
other subtle changes in an image caused by the interaction of light with objects in a
scene that are not in the direct-line-of-sight. We use the term computational discovery
to describe techniques that can be used to uncover these cues and reveal hidden
information.

Despite incredible advances in computer vision in recent years, cameras are limited
to a single viewpoint of a scene, requiring invasive multi-camera setups or active
imaging modalities to solve many perception tasks today. Prior work has identified
hidden cues that are present in photographs of certain environments, but these methods
often require human insight to identify cues, and extensive calibration to make use
of them. In order to address the limitations found in prior work, we propose an end-
to-end machine learning framework to identify hidden cues. More generally, we show
that object localization is approximately equal to localizing a point light source, and
describe how this insight can be used to identify situations when object localization
is possible. Furthermore, we show that physically-based "inverse rendering" can be
used to estimate how light travels within a scene, turning objects, like coffee cups
or picture frames, into "object cameras". Physical models are quite fragile to small
errors in estimated scene parameters. As such, we suggest reconstruction methods
that make use of the uncertainty in scene parameters to improve robustness.

3

The thesis suggests a number of other interesting ways hidden cues may be used
in combination with imaging systems. This work could inspire future cameras that
incorporate the environment itself as part of the imaging system, blurring the line
between observer and subject.

Thesis Supervisor: Ramesh Raskar
Title: Associate Professor

4

Computational Discovery of Hidden Cues in Photographs

by

Tristan Swedish

This dissertation has been reviewed and approved by the following committee

members

Thesis Advisor .

Ramesh Raskar

Associate Professor

MIT Media Arts and Sciences

Thesis Reader .

Ashok Veeraraghavan

Professor

Rice University

Thesis Reader .

Roarke Horstmeyer

Assistant Professor

Duke University

5

6

Acknowledgments

This thesis is the product of many collaborations with incredible people. There are so

many people to thank: Prof. Ramesh Raskar taught me the value of fearless curiosity,

presentation, and work ethic, and whose discussions and comments guided me through

my graduate journey. I also want to thank my committee members, Prof. Roarke

Horstmeyer and Prof. Ashok Veeraraghavan, who have been supportive and flexible

amidst the unique challenges posed by Covid-19 and asking just the right questions to

help shape this thesis.

It’s impossible to properly credit those at the Media Lab: admins Maggie Church,

Maggie Cohen, Ashley Clark, Linda Peterson, and Sarra Shubart—thank you for your

time and encouragement. During my PhD, I’m honored to have worked closely with

Guy Satat, Connor Henley, Tomohiro Maeda, Lagnojita Sinha, Devesh Jain, and

Subhash Sadhu, among many others during my time at the Media Lab (I adore all

of my co-authors). I also want to thank our UROPs and visiting researchers, where

Summer 2019 was a catalyzing time for this work: Amey Chaware, Matthew Baugh,

and Ankit Ranjan. I’m very grateful for the creativity and early encouragement from

Matt Tancik, who showed many early results as an MEng, and whose project inspired

much of the early ideas that led to this thesis.

Praneeth Vepakomma and Abhishek Singh provided much feedback and essential

support as group members, and I’d like to thank the entire Camera Culture Group

extended family and those who I may not have worked with closely during my PhD,

but provided consistent feedback, support, and leading by example during my time

at the Media Lab—Achuta Kadambi, Ayush Bhandari, Otkrist Gupta, and Barmak

Heshmat.

Completing a PhD Thesis is probably not easy for anyone, and I certainly was

no exception. My friends and family listened to my stories of triumph and failure,

provided much needed emotional support, and asked “when are you graduating again?”

a perfect amount of times. Chuck, you opened my eyes to my potential, and elucidated

the wonders of phosphoromancy. Peter Henry, you and the inspiring team at Skydio

7

Figure 0-1: A picture is worth 1000 words. From Left: my advisor, Prof. Ramesh
Raskar, my committee members, Prof. Roarke Horstmeyer and Prof. Ashok Veer-
araghavan, and a montage (random ordering) of a few of the people who made this
thesis possible. <3

introduced me to computer vision for autonomy, and exposed me to a rigorous and

technical world outside of academia. Ubicept—Sebastian Bauer and the whole team—

have been extremely supportive and I’m looking forward to the future together.

Hardwick and TGL: love you people. My family—Mom, Jim, Dad, Maria, Grandma

Susannah and Grandpa Dale, Nana and Nono, Grandma Vicki and Grandpa Jerry,

the Breadens, the Swedish, the Bolognesi, the Graves, Carlos and Charles. So many

people in my life radiate a kindness, love, curiosity, and intellectualism that has

illuminated my way and taught me that Truth is that which remains consistent in

spite of everything else.

Caroline Moy—a real-life “Shadow Baker”—this thesis is dedicated to you, it would

not have happened without you. Thank you!

8

Contents

1 Introduction 35

1.1 Scope . 36

1.2 Goals . 36

1.3 Research Questions . 37

1.4 Background . 39

1.4.1 What is a photograph? . 39

1.4.2 What is the hidden scene? . 41

1.4.3 Forward light transport . 42

1.4.4 The inverse light transport problem 45

1.5 Overview of contributions . 47

1.5.1 Chapter 3 . 47

1.5.2 Chapter 4 . 48

1.5.3 Chapter 5 . 48

1.5.4 Chapter 6 . 49

2 Related Work 51

2.1 Capturing and exploiting light transport in computational imaging . . 51

2.1.1 Inverse problems in computational imaging 52

2.1.2 Inverse Rendering . 52

2.1.3 Shadow Volumes and Edge-shadow Boundaries 53

2.1.4 Differentiable Rendering . 53

2.1.5 Learning important features and hidden cues for inverse problems 54

2.2 Non-line-of-sight (NLoS) Imaging . 54

9

2.2.1 NLoS using L-Corner Geometries 55

2.2.2 Occlusion Assisted Imaging 56

2.3 Incident Illumination Estimation . 57

2.4 Computational Discovery of Optical Designs 58

2.4.1 Natural Evolution of Animal Eyes 58

2.4.2 Traditional Optical Design . 59

2.4.3 End-to-end optimization of camera designs 59

2.4.4 Rendered Synthetic Data for Deep Learning 60

2.4.5 Joint Camera and Algorithm Design 60

3 Learning cues to locate hidden objects 63

3.1 Revealing hidden cues with differential imaging 65

3.1.1 Temporal differential imaging 67

3.2 An imaging system that learns to use differential cues 68

3.2.1 Dataset Generation . 71

3.2.2 Localization Prediction Network 74

3.2.3 Implementation Details . 76

3.2.4 Image Capture . 76

3.2.5 Evaluation Environment . 77

3.3 Experimental Results . 80

3.3.1 Trained CNN Models . 80

3.3.2 Error Metrics . 80

3.3.3 Varying Geometry and Object Albedo 81

3.3.4 Varying corner scene geometry for a single trained network . . 84

3.3.5 Discussion . 84

3.3.6 Practical real-time implementation 85

3.4 Limitations . 86

3.5 Future Work . 88

3.5.1 Combining Data-driven and model-based approaches 88

3.5.2 Variational Optimization . 89

10

3.6 Conclusion . 92

4 Constraining Light Source Localization using Visible Occlusion Bound-

aries 95

4.1 Solving for point localization with known shadow edges 95

4.1.1 Contributions . 96

4.2 Analyzing shadow edges . 97

4.2.1 Shadows Cast from a Point Source 98

4.2.2 Solving for light source location 100

4.2.3 Adding Hidden Points . 102

4.2.4 Relation between Point Sources and Edges 103

4.3 Validation . 105

4.3.1 Single Point Localization . 105

4.3.2 Multi-point Localization . 106

4.3.3 Localizing shadow edges using image gradients 106

4.4 Discussion . 108

4.5 Future Work . 109

4.5.1 Coordinate system for discretizing the hidden scene 109

4.5.2 Differentiable Forward Model 110

4.6 Conclusion . 114

5 Reconstructing the Hidden Scene from Object Shadows 117

5.0.1 Contributions . 118

5.1 The Object Camera . 120

5.1.1 Inverse Rendering Problem . 120

5.1.2 Solving for Incident Illumination 121

5.2 Implementation . 126

5.2.1 Synthetic Results . 127

5.2.2 Real-data Results . 129

5.3 Analysis . 131

5.3.1 Robustness to Sensor Noise 131

11

5.3.2 Additional Results . 133

5.4 Discussion . 140

5.5 Future work . 144

5.5.1 Updating the Ray Transport Matrix 144

5.5.2 Adding robustness to model parameter uncertainty 144

5.5.3 Alternative Forward Models 145

5.5.4 Approximate Inverse of Continuous Linear Operator with Deep

Neural Network . 145

5.5.5 Alleviating Storage Requirements for Large Linear Models . . 148

5.6 Conclusion . 149

6 Discovering and Exploiting Hidden Cues 151

6.1 Data-driven Hidden Cue Discovery 151

6.2 Hidden cues from the linear inverse operator 152

6.3 Good cues are robust to model parameter uncertainty? 157

6.4 Future Outlook: Designing Imaging Systems that Exploit Hidden Cues 157

6.5 Computational Discovery of Computational Imaging Platforms 159

6.5.1 Architecture Selection . 160

6.5.2 Task-specific Parameter Optimization 162

6.5.3 Improved Architecture Selection 164

6.6 Experimental Design . 165

6.6.1 Robobee Platform . 165

6.6.2 Collision-free Movement Task 166

6.6.3 Experiment 1: Sensor Suite Selection 166

6.6.4 Experiment 2: VDC for collision-free movement and image sensor168

6.7 Discussion . 168

6.7.1 Enabling Manufacturing Technologies 168

6.7.2 Nature’s optical design grammar 169

6.7.3 Making use of the environment 170

6.7.4 Risks . 170

12

6.8 Conclusion . 172

7 Conclusion and Future Work 173

7.1 Goals and Research Questions . 173

7.1.1 Exploiting hidden cues in photographs 173

7.1.2 Automatically discovering hidden cues 176

7.2 Overview of Contributions . 177

7.2.1 Relevant Papers and Presentations 178

7.2.2 Software Implementations . 179

7.2.3 Miscellaneous Contributions 179

7.3 Future Work . 180

7.3.1 Summary from Chapters 3-6 180

7.3.2 Updating the Model Matrix 182

7.3.3 Linearization and tangent spaces of light transport 183

7.3.4 Types of non-linear effects . 185

7.4 Conclusion . 187

A Minimizing the Expected Error with Model Uncertainty 189

A.1 Sampling Approach . 189

A.2 Taylor Approximation Approach . 190

A.3 Non-linear Least Squares to update 𝜃 191

B Learning Linear Models from Data 193

B.1 Model Driven Linear Inverse Problem 193

B.1.1 Learning an Approximate Inverse 194

B.1.2 Extension to Nonlinear Forward Models 195

B.1.3 Comparison to Supervised Learning 195

B.1.4 Learning Linear Maps . 196

B.2 Results . 196

B.2.1 Frontoparallel Ray Transport Matrix 196

13

14

List of Figures

0-1 A picture is worth 1000 words. From Left: my advisor, Prof. Ramesh

Raskar, my committee members, Prof. Roarke Horstmeyer and Prof.

Ashok Veeraraghavan, and a montage (random ordering) of a few of

the people who made this thesis possible. <3 8

1-1 When solving an inverse problem, it is useful to analyze the components

of the forward model. There are numerous considerations when defining

a forward model that maps the hidden scene to an image that we can

observe. Often, we must calibrate a physics-based model to match the

current environment which may require some probing of the visible scene.

When solving the inverse problem we want to ensure our observations

match the output of our forward model, but model-mismatch and

noise may complicate this process. Furthermore, the forward model

may have some "nullspace" making some variation in the hidden scene

undetectable when we only have access to observations. This makes

the inverse problem ill-posed, and data-driven priors can be useful for

selecting from a potentially infinite set of possible solutions. 46

1-2 An overview of the different algorithms and techniques proposed in this

thesis by chapter number. There are different inputs and outputs each

technique is designed to accommodate. We also list the demonstrated

results and possible applications. 48

15

3-1 Two images of a cork were taken with and without a person standing

just out of view of the camera. The person did not cast a visible shadow

on the scene, and there is no obvious difference between the two images.

However, when the image without the person is subtracted from the

image with the person, a difference image shows a clear "shadow," as

if the person were an illumination source. While subtle, these cues

are detectable and can be explained using the principle of differential

imaging. 66

3-2 When an object is added to a scene, it interacts with paths of light that

would pass through the object volume if the object was not present.

When a background image is subtracted from an image with the object,

all rays cancel out except the rays that either scatter from the object

or are absorbed. Light rays that scatter make the object appear like

an illumination source, and rays that are absorbed or redirected make

the object appear like a "negative light source" for the corresponding

direction. In effect, if the object is small it can be modeled by a

anisotropic light source that can emit positive and negative valued light

rays. 66

16

3-3 (Left): A scene was created with an object around a corner illuminated

by a point light source. We show a black background surface, but also

rendered images with a black sphere and white background surface.

(Middle): A background image was rendered without the object. (Right-

Left Column): When the object is the only source of reflected light,

it is well modeled by a point source, generating a single shadow edge

aligned with object. (Right-Right Column): When the object blocks

light paths that normally would eventually contribute to the visible

image, it generates a "virtual point source" by projecting negative

valued light onto the background surface. We subtract the difference

image from 1 to maintain positive values. Both the object occluding

the background and the virtual point source contribute to two shadow

edges. 68

3-4 Overview of the Imaging Pipeline. a) In the online phase a scene

generator produces a scene with random properties that are rendered

to generate a dataset. The dataset is used to train a CNN to predict

the hidden object location in a 32 × 32 grid. b) In the online phase, a

background subtracted measurement is fed to the network for location

prediction. This prediction is refined with a Gaussian fit. 69

3-5 Leveraging complex geometry for seeing around corners. A data-driven

technique is used to predict the 2D location of objects around corners.

The network is trained only on synthetic data and robustly works on

a wide range of geometries. Data-driven techniques naturally learn

to leverage additional cues in complex geometries which are hard to

traditionally model. This results in the ability to locate objects in 2D

with improved accuracy compared to a simpler geometry with the same

computational pipeline. 70

17

3-6 Data generation for different geometries. a) Demonstrating the three

different geometries considered here: L corner, T intersection, and an L

corner with a table. b) Examples of the rendered data for the different

geometries. The green region in a) shows the area that the hidden

object may be located. The purple region is a possible position and

orientation of a generated table. 72

3-7 A large degree of variation was achieved in order to encourage domain

randomization when producing the synthetic dataset. Variation in

surface textures, material properties, corner geometry, and random

clutter were added to encourage the network to not overfit to the

training data. 73

3-8 The 21 considered geometries. The measurements presented before

background subtraction demonstrate the variability in the considered

scenes. The top row corresponds to L corner geometry, the middle row

to T intersection, and the bottom row to L corner with table. The

ordering from left to right corresponds to the indexing in Figure 3-13.

Each photo is a single instance of the 150 measurements per geometry. 74

3-9 Overview of label generation and model architecture. a) The ground

truth location is by selecting the origin point (corner), and calculating

the object location in polar coordinates. This location is mapped to a

32×32 grid. Finally a Gaussian centered on the location is applied with

a variance just large enough to cover adjacent pixels. b) The neural

network detailed architecture. Three convolutional layers are followed

by two fully connected layers. 77

3-10 The image system used to valide the trained network on real data

includes a camera and an illumination source. The illumination source

is a flashlight that projects 850nm NIR light into the visible scene. The

camera is fitted with a matching 850nm bandpass filter. 78

18

3-11 The validation environment consisted of a tabletop scene constructed

from poster board to form an L-shape. All the walls can be moved to

simulate different room geometries and camera positions. A color-label

based tracking system was used to provide ground truth labels of the

scene geometry and object position. 79

3-12 On the left, we see a screen capture of the live processing of the CNN

network. The input image can be seen in the bottom left, with the

background subtracted image shown to the immediate right. The

predicted object location distribution produced by the neural network

is shown above these two images. On the right, we show a top down

view of the scene while manipulating a hidden mannequin object. . . 79

3-13 Box plots showing the distribution of error for the 21 experimental

geometries (7 geometry instances within the 3 corner types). The lines

show the min and max values and the boxes correspond to the region

from the lower to the upper quartile of the errors. The orange line

shows the median error. We note that the complicated geometries (T

intersection and L corner with table) are superior to the simple L corner

across all geometry instances. 82

3-14 This figure shows the average 2D distance error in cm of localization by

the network when the corner position was varied. The corner position

was moved to cover a wide range of positions in camera screen space.

The average error was lowest when the corner position was roughly

centered in in the lower right quadrant of image space, which closest

resembled the average position of the corner in the synthetic training

data. 83

3-15 The figure to the left shows the ground truth and predicted angles to

the object, using the corner and side wall for reference. The absolute

position errors often contained difficult to explain bias, but the relative

differences were often consistent for a given scene. 86

19

3-16 The full-scale test scene of a real-time implementation. The screen

on the left shows a GUI output showing the background subtracted

frame used as input to a pre-trained deep neural network. The network

predicts the hidden object location as a distribution in 2D from a

top-down perspective relative to the camera. A blue dot is used to mark

the mean of a Gaussian fitted to this distribution, with transparency

corresponding to the variance of the Gaussian fit. A top-view camera

(not used during inference) is super-imposed to provide a view of ground

truth. On the right, a camera with a 850nm bandpass filter observed

backscattered light. An 850nm flood illumination source is imaged onto

the back wall of the scene using a fresnel lens placed in front of it. . . 87

3-17 (Left): A synthetic scene was constructed that resembles the table top

experiments. (Right): A image was rendered and passed to the trained

CNN. The predicted position of the hidden object was used to initialize

the location of an object in a differentiable renderer. By minimizing

the mean squared error reconstruction loss, the object position was

fine-tuned to ensure data consistency. 89

3-18 An end-to-end refinement approach for object localization around the

corner can be applied when using variational optimization. The advan-

tage of such an approach is that the forward model does not need to be

differentiable. The bottom row shows the trajectory of the predicted 2D

location of the object as updates are applied, along with the MSE loss

for each iteration. The bottom right image shows the final reconstruc-

tion of the observed image from a simple, but fast, non-differentiable

renderer. 93

20

4-1 Left : With a correspondence between edges (a,b,c) and shadows (colored

lines), we can estimate the location of multiple hidden point illumination

sources. Right : We use geometric constraints to validate these shadow

proposals and accurately estimate the 3D location of hidden illumination

sources. 96

4-2 Visualization of the geometry for intersecting two planes associated

with two edges. Left : Unconnected edges can be combined even if they

are not parallel, restricting possible point locations to lines in 3D. Right :

The same geometry can describe connected edges, which also constrain

illumination positions to a line in 3D. 97

4-3 We generate a plane parameterized by 𝜃 for each chosen edge in the

scene. Using a per pixel depth map, an equation of the plane along the

edge can be reliably generated for almost any visible edge in the scene. 99

4-4 3D points can be described by the intersection of 3 planes formed at

3 edges. There are numerous possible combinations of illumination

points, but correspondence between shadows across edges can enable

3D reconstruction of the hidden illumination sources. 102

4-5 Left : Image features limit the recoverability of the illumination point

position. We show that there’s a range of possible features that can

be used for recovery of incident illumination, and perfect knowledge of

the full light transport may not be required. Right : The geometry we

describe introduces a few constraints and reveals fundamental ambigui-

ties (a,b). We can use this geometry to associate edges with shadows

in image space (c,f), and 3D is a depth map is available (d,e). 103

4-6 Given edge and shadow positions in a realistic synthetic scene, we can

localize an illumination source with a high degree of accuracy. Our

approach utilizes a depth map to estimate the 3D location of scene

points, adding noise to this depth map smoothly degrades localization

accuracy, and does not require that the depth maps are noiseless. . . 105

21

4-7 One approach to localizing multiple points without a known correspon-

dence is to use additional edges to constrain possible illumination source

positions. Using the 1D projections of the scene from each edge, we

estimate the location of two light sources in 2D. Observing the singular

values of the first 100 singular vectors reveals additional diversity in

the visibility matrix when adding a third edge. This seems to resolve

ambiguities during estimation, such as the false apparent source at (2.5,

2.5). 107

4-8 A camera observes a field of view shown by solid black box. Defining

a coordinate system using the 𝜃 associated with each edge, we have a

natural way to represent hidden scene coordinates. The yellow square

in the coordinate grid is warped in euclidean space, the area can be

determined by calculating the magnitude of the determinant of the

coordinate system Jacobian. 110

4-9 With an initial guess of a single light source location, we estimate the

source position using a differentiable forward model that naturally arises

from our edge-plane parameterization of the hidden point source. By

minimizing the mean square reconstruction error using gradient descent,

our model converges for different initializations. The last column shows

a shadow only model, indicating that the model is not simply using

shading and ignoring the shadows to localize the hidden point. 111

4-10 Example output of solving for each position of a set of point lights.

Each light was initialized on a uniform grid above the scene and the

position was optimized in order to minimize the mean squared error

between the measurement and output of the differentiable forward model.113

22

5-1 (Top) Observing the area around a small, bunny-shaped object (top-

left), can we recover occluded viewpoints only visible from the bunny’s

perspective? (Bottom) Given the surface geometry of an object (bottom-

left), we estimate the incident illumination, and in some cases, the

unknown diffuse albedo of the surface surrounding the object. 119

5-2 Given a known surface geometry and shadow surface albedo, we estimate

the environment map illumination using a single observed image by

solving Eq. 5.3. For easier viewing, basic tonemapping was applied

to all images using gamma correction with clipping (𝛾 = 2.2, image

normalized such that the sun is clipped). 122

5-3 Given a ray transport matrix computed assuming all surface albedo are

one, and 3 images with unknown surface albedo or illumination, we esti-

mate both using the update procedure described in Equation 5.7. Three

different texture maps are shown, the observed images are rendered

with global illumination. 124

5-4 An object of known shape (a bunny) is placed in a controlled illumi-

nation environment. Illumination patterns are displayed on an LCD

display placed above the object, and a camera observes the shadows

that the object casts onto a flat surface. From this single image we

produce an estimate of the illumination pattern seen by the object. A

chrome ball is used to collect ground truth data in the object’s position

for each test pattern. 126

23

5-5 Ground truth albedo maps used to compute the RMSE/SSIM metrics

in Fig 3 and Table 1 in the paper. Mitsuba2 ‘aov‘ integrator was used

to output the per-pixel uv coordinates, which were then read from the

texture. This also enabled measurements of the RMSE/SSIM of the

recovered albedo texture obtained using Mitsuba2 autodifferentiation

and gradient descent in image space for the gradient descent section of

Table 1. Note that some artifacts from the Mitsuba2 ‘aov‘ integrator

are apparent near the feet and ears of the bunny, potentially artificially

raising the RMSE of the estimated albedos. 131

5-6 Top Left: Amber the unicorn and space invader. Estimated environ-

ment maps given noisy observations and their corresponding structure

similarity index measure (SSIM). We synthetically added noise to a

rendered image with pixel values between [0,1]. (Right column) Es-

timated environment maps with no noise, Poisson (i.e. shot noise)

only, and Poisson + additive Gaussian noise with increasing standard

deviation (𝜎) and zero mean. (Bottom left) The SSIM plotted against

SNR (20 log10(
1
𝜎
)) in dB. 132

5-7 Estimated environment maps compared to ground truth given rendered

observed images with decreasing number of samples per pixel (spp).

The left column shows the rendered observed images with decreasing

number of spp, and the right column shows ground truth and the

estimated environment map given the corresponding observed image. 134

5-8 Higher resolution estimates. Illumination estimation using a higher

resolution ray transport matrix (environment map 64 × 128), using the

same regularization parameters used in the main text. Reconstructions

are not significantly better than the lower resolution case and artifacts

are apparent. This suggests that tuning regularization parameters could

improve results for higher resolution reconstructions. 135

24

5-9 Estimated environment maps for a 3D printed teapot. In the top

row, we show a cropped ground truth environment map centered on a

display placed above the object. The middle row shows the estimated

environment map with the same crop applied, and the bottom row

shows the observed images captured using the camera. 135

5-10 Environment map estimates using real data captured using the 3D

printed bunny placed on a white sheet of paper and placed in various

real environments. The left column shows the observed image captured

by the camera and the corresponding reconstruction from the estimated

environment map. The middle two columns shows a full-resolution

ground truth environment map displayed with two gamma correction

factors and the same environment map resized to the dimensions of

the estimated environment map. The right column shows estimated

environment maps. All environment maps are shown with two gamma

correction factors to highlight the brightest sources in the scene. . . . 137

5-11 Visualization of main text Table 1 results. Predicted environment maps

compared to the gradient descent baseline for two stopping criteria.

Within a similar computation time as the proposed method gradient

descent produced lower quality estimates, requiring a greater number

of iterations to converge. While convergence may be accelerated by

using a larger learning rate, this led to poorly converged results. Table

1 in the paper contains the RMSE/SSIM values for these images. . . . 139

25

5-12 Estimated “differential environment maps” given a temporally sub-

tracted image. The top row shows the starting frame from a sequence

of 4 images with a human figure (magenta). The second row shows the

subsequent 3 images in the sequence as the human figure (cyan) moves

from right to left in the frame. The third row shows the estimated

environment maps without a non-negativity constraint applied, showing

how adding a figure subtracts light (cyan), and removing a figure adds

light (magenta) to the scene from particular directions. The bottom

row shows the observed differential images taken by subtracting the

observed image corresponding to the top row from the observed image

corresponding to the second row. All images have been normalized with

a maximum value of either [-1,1] for display purposes. 140

5-13 Simultaneous estimation of illumination and albedo for realistic outdoor

environment maps. Solving the same problem shown in Figure 3 of

the main text, but with realistic extended sources. On the left column

we see three observed images. Given known geometry but unknown

albedo, a ray transport matrix was generated using a white albedo

for all surfaces. The second column shows the per-pixel estimated

albedo after convergence. The environment maps associated with each

observed image are shown in the next 3 columns: (third column) The

ground truth environment map for 3 realistic scenes, (fourth column)

estimated environment maps after running all iterations, (fifth column)

estimated environment maps when running for 3 iterations where more

structure is preserved. 141

26

5-14 Estimation results from meshes obtained using photogrammetry. The

left set of panels shows the capture and pre-processing approach: (a)

Using photogrammetry, we obtain a camera pose, surface mesh, and

diffuse texture. We capture two images (b) a flash image and (c) an

image without a flash. (d) We use the flash-only image as input to the

texture estimation using photogrammetry. On the right section, we

use the approach on the left to recover the 3D geometry and diffuse

texture of three objects: a book, monster, and dragon. For each of

these objects we generate the corresponding ray transfer matrix and

produce an estimated environment map. While the brightest sources

can be identified in the estimated environment maps, the estimates

appear to suffer from model mismatch, such as the warped recovery

due to the larger dragon object and nearby light fixture. Addressing

these failure modes is an area for future work. 142

6-1 (Left): The background subtracted, or differential image used as input

to localize objects in Chapter 3. (Middle): The network is trained to

predict the likelihood of an object located within a 2D area. Since the

network is differentiable, we can show the gradient of the input pixels

with respect to the predicted location. (Right): Incredibly, the gradient

resembles an edge filter than identifies the shadow edge and also reveals

important pixels near the corner-floor and back wall. 152

6-2 Our algorithm implicitly amplifies the edge gradients of shadows cast

from a particular direction. (Top Row) Shadows rendered for point

illumination above and to the right, and behind and to the left of

the bunny-shaped occluder. (Bottom row) Corresponding rows of

regularized inverse operator. 153

27

6-3 We plot an image of the Cook’s distance (bottom right) associated with

each pixel in the target image shown on the bottom left. The estimated

environment map associated with this image is shown in the top row.

The Cook’s distance image has been compressed with a gamma value

of 0.5 to highlight interesting features. 155

6-4 We illustrate how occluder shape impacts object-camera performance by

generating images of per-pixel leverage (top row) and environment map

uncertainties (bottom) for three occluder shapes: a bunny, a sphere,

and a coded aperture mask [59]. 156

6-5 Left: A typical high-level architecture for a perception stack employed

in a real environment. A sensor observes a complex environment,

sometimes using active probing (e.g. LiDAR). Data is then processed to

provide suitable information (e.g. state estimates) for control or other

tasks. The raw data can be saved and labeled in a dataset that can be

used for offline training and validation. Right: a) The standard design

process for such a system utilizes an engineered spec, collection and

labeling of data, and then real-world testing. b) The proposed approach

makes use of an end-to-end optimization framework to produce the

hardware design and engineering specification automatically in a process

we call “computational discovery.” 159

28

6-6 A high-level overview of the proposed design framework. i) given a

library of components, Architecture Selection proposes a component

graph that is used to encode an instance of a parametric imaging system

and neural network for information processing. ii) The parameters in

these components are initialized and the system is evaluated on a task

in a simulated environment. iii) The loss from this task objective is

used to calculate the gradient of the parameters which can be updated

using gradient descent. The loop between ii. and iii. continues until

convergence. iv) The final best task loss value is used to score the se-

lected architecture, which is used to inform better architecture selection.

The entire loop can then be iterated until convergence. 160

6-7 In order to define an imaging system, we produce a set of optical

components in an optical library. Each component contains an input,

and most also contain outputs, which represent how they may be

connected with other compatible components. For example, on the left

we have library components from left to right: An image sensor, coded

aperture, standoff distance or air gap, lens, and the VDC, or volumetric

region where each point in the volume corresponds to an optical material

(via absorption or refraction) that could be 3D printed. Each of these

components contain some parameters that are differentiable with respect

to their outputs or inputs, making them well suited for propagating

gradients using backpropagation. On the right, we show different

instances of component graphs that might be possible. These graphs

encode the optical system design. Note that while not shown here,

branches are possible if components have multiple possible outputs,

such as a beamsplitter. 163

29

6-8 The Robobee is a small UAV with a vision system designed to solve a

specific task. In order to automatically discover the imaging system, we

use a virtual environment to evaluate different combinations of possible

sensors for a navigation task. These designs are evaluated in a real

platform which is configured with a general purpose navigation stack.

Information from the simulated and real validation environments are

used to refine the final specification defining the Robobee, which only

contains a subset of possible sensors and computation. 166

7-1 Physics-based and data-driven approaches to solving inverse problems

are sometimes considered incompatible, but are largely complementary.

Physics-based, or model-based, approaches rely on models that are

generated using induction, making their generalization excellent, but

may be highly sensitive to model parameter error and require extensive

calibration. Data-driven methods are typically excellent at interpolat-

ing values within the training data domain, but do not make use of

epistemological priors such as Occam’s razor, potentially producing

models that are over parameterized and/or produce hallucinations. . . 174

7-2 Light transport can be described by a linear map from illumination

source to observed image. The set of physically-plausible linear maps

are the subset of all possible linear maps that can be modeled using a

physically-based renderer. This subset is at least locally continuous for

perturbations of scene parameters that can describe the rendering of a

particular scene: changes to material reflectance, geometry, and camera

parameters. Loosely, we refer to this as the “Forward Model Manifold.”

A data-driven model does not have a notion of physical plausibility,

but may learn an approximate map from observed image to unknown

model parameters given sufficient training data. 184

B-1 Reconstruction Results . 197

B-2 Network Architecture . 198

30

B-3 Networks and their Gradients. The top row is the ground truth, the

second row is a low-rank approximation network, and the bottom row

corresponds to a convolutional neural network. 199

31

32

List of Tables

3.1 Localization prediction error for different geometries 81

3.2 Error by object size and albedo. Three cylinder diameters and four

albedos were chosen to measure the average error of object localization

when the hidden object varied in size and reflectance. 84

5.1 Ablation study: Multi-illumination: RMSE/SSIM relative to the

known synthetic ground truth for the unknown albedo “dots” scene

computed for 5 iterations for each set of added regularization terms.

Known albedo: RMSE/SSIM computed for the HDRI “garden” scene

for a single iteration. The compute times include pre-rendering of the

ray transport matrix (220 secs) for the proposed method. Gradient

Descent was stopped early to compare results under similar compute

times, corresponding to ∼3461 iterations. The learning rate for Adam,

𝛾 = 0.01, for the gradient descent baseline was chosen to maximize

SSIM after full convergence, which took significantly more time than

the proposed method (+L2+Smooth). 130

33

34

Chapter 1

Introduction

Consider a small object sitting on a coffee table in your living room. The object

is illuminated by light sources from all directions—this includes direct sources such

as the sun or overhead lights, but also indirect sources, like the foliage outside that

scatters sunlight through your window. The appearance of the object and the shadows

cast on the surface that it rests upon results from the complex interaction between

the incident illumination and the geometry and material properties of the object and

the surface of the table. By finding certain cues within this scene, such as specular

paths or shadow edges, we might be able to extract more information from a given

photograph, such as moving objects outside the line of sight, or viewpoints from the

perspective of objects in the scene.

The idea that photographs can contain subtle clues is familiar in the forensics of

photos posted to social media or reconnaissance operations using satellite imagery.

In these cases, human investigators might use their knowledge and experience to

make guesses about what caused certain visible phenomena, or use computer vision

to perform photogrammetry. For example, the 1969 moon landing photos contain

phenomena that can be fully explained by actual astronauts on the moon, debunking

conspiracy theorists1.

In this thesis, we explore a class of image analysis that makes use of knowledge of

light transport, either through a large dataset or using inverse rendering, to localize

1https://blogs.nvidia.com/blog/2019/07/19/real-time-ray-tracing-apollo-11-turing/

35

objects and reconstruct views of a scene outside the line-of-sight of a camera that

captured a particular image. One potential impact of such techniques is the ability to

examine historical footage or photographs and revealing new views encoded in this

image data that has previously eluded discovery.

1.1 Scope

This thesis considers the problem of discovering hidden cues to resolve information

outside the direct line of sight of a camera that captures visible light intensity. There

are number of ways information outside the line of sight could be obtained. For example,

active illumination time-of-flight systems have realized rapid progress in the last few

years [74]. Other modalities may include optical coherence based approaches [62, 76],

acoustic [68], thermal [75], terahertz [32], and radio frequency [129, 1].

The prevalence of intensity based images sensors futher motivates the limited

scope of this thesis. Rather than introduce additional hardware complexity, it is an

interesting question to examine how much information is already present in an easy

to acquire photograph. Furthermore, techniques that make use of commonly available

image sensors may be relevant for future application of forensic anthropology or other

forms of data mining that may be possible given existing photographic archives. As

such, this thesis restricts the kind of photographic input to that which may be easily

obtained using photograph or video data from commodity image devices.

1.2 Goals

The primary goal of this thesis is to examine the idea of using hidden cues

within an image of a scene to extract additional information beyond the

line of sight of the camera.

A secondary goal of this thesis is to demonstrate the idea of “computa-

tional discovery” to find hidden cues automatically by solving an inverse

problem.

36

Once a scene’s forward light transport model is known, we can define an inverse

problem where we estimate the incident illumination on the scene from a camera

image. We hope to show practical methods for solving such inverse problems, but

also examine how these solutions can be used for computational discovery. For both

data-driven and traditional inverse methods, we can in some situations obtain an

inverse operator that can be analyzed to reveal useful hidden cues.

This thesis has technical implications for augmented reality and robotic perception,

but it also challenges expectations of privacy given photographic data. By understand-

ing what kind of information can be inferred from photographs, we may inspire novel

techniques to analyze historical imagery or strategies to minimize undesirable violation

of privacy via video surveillance. We might also be inspired to design imaging systems

that make use of particular cues or are well-adapted to a given environment.

1.3 Research Questions

What are the kinds of hidden cues can be found in photographs? What

scene properties must be known ahead of time to take advantage of these

cues?

While this thesis is in part about discovering hidden cues in photographs, the

physics of light transport constrains the different kinds of hidden cues that may be

present. We can describe a few broad classes of cues such as specular reflections,

diffuse scattering intensity drop-offs, and shadow edges. In order to take advantage of

these cues, some scene properties may need to be known ahead of time. Identifying

what knowledge about a scene must be obtained is important for the practical use of

these cues.

Can we solve vision tasks such as object localization outside the line-

of-sight using a purely data-driven or end-to-end approach? How can this

task be used to discover hidden cues? What are the limitations of such an

approach?

37

Prior work has shown that some level of object localization is possible using shadow

cues, but require prior knowledge about the cue itself. We will investigate if it is

possible to use a learning based approach, such as training a deep neural network, to

predict the location of a hidden object from a sufficient dataset. In order to solve this

task, the network would need to uncover these cues purely from data, without any

direct prior knowledge of physics available.

If such a network can be trained, then it would be useful to describe strategies for

uncovering the cues it uses to solve the problem. However, a lack of physics knowledge

may be disadvantageous, and should be understood.

What are opportunities for combining machine learning and physics?

How can a machine learning based approach be augmented with physics-

based constraints?

We understand the physics of light transport quite well, but this knowledge is

underutilized in a purely data-driven approach. It would be useful to understand how

to combined this knowledge with that uncovered by a model trained using data. For

the object localization task in particular, we want to ensure that the resulting solution

from a model trained using machine learning is consistent with physical laws.

Are there opportunities to develop imaging strategies that utilize ob-

jects in the scene as part of image formation? What properties of objects

enable more accurate scene reconstruction?

In this thesis, we are particularly interested in the cue of cast shadows. Shadows

are cast when an object absorbs or reflects a subset of light paths traveling through

the scene. Since objects are typically localized to a particular region of space, they

typically only block a subset of light paths traveling in the same direction over the

entire scene. Effectively, this property can make certain objects behave as an ‘inverse

pinhole” that can be used to estimate the incident illumination on an object from

each direction. If we recover the incident direction of all light paths on the sphere

surrounding the object, we can obtain a “360 photo” of the scene from the perspective

38

of the object. We should understand the practical limitations such as the impact of

captured image signal-to-noise ratio, object shape, and model mismatch on the scene

reconstruction.

How might imaging systems be designed in the future to support com-

putational discovery of hidden cues in the environment?

Lastly, once we understand what cues can exist, how to find them, and how to

make use of them, it would be interesting to imagine how to better design cameras

that make use of these cues. In particular, what future directions are available to

imaging system designers based on the knowledge and strategies discussed in this

thesis?

1.4 Background

1.4.1 What is a photograph?

This work is focused on hidden cues in photographs, but what do we mean by

photograph? We refer to photographs as images captured by a conventional camera.

While we will not dwell on the finer points of image capture, we describe the basic

components of a conventional camera, and their impact on the work described in this

thesis. Detailed coverage of photography and its relevance in the context of this thesis

can be found in computer vision textbooks, such as [39, 113].

Light At a high level, a conventional camera measures the visible light radiance of

a scene from a certain perspective. Radiance is the amount of light, or flux, coming

from a particular location in a scene over a given set of angles. Light is composed of

particles of light, called photons, that are subject to the laws of quantum mechanics.

The details of these laws are not important for the purposes of photography, but

impacts image formation in a few important ways. First, light typically travels along

straight lines called rays. However, light paths can bend due to refraction, or rapidly

change direction when photons scatter off surfaces. Second, photons have different

amounts of energy, or wavelength, that we perceive as color in the visible spectrum.

39

Third, the speed of light is limited. Lastly, flux is an integer count of photons. As

such, cameras seek to measure the direction, amount, and energy of photons passing

through a region in space. A photograph is a representation of these measurements.

The visible scene A camera takes pictures of a scene. Natural scenes typically

contain things like objects and light sources. Light sources emit photons that illuminate

objects, and the surface of the objects scatter these photons in different directions.

Later in this chapter we will describe this in more detail, but the important part is

that illuminated objects scatter light, and this scattered light forms the radiance of

the scene.

Pinhole Camera A simple model for a camera is called a pinhole camera, which

allows light to pass only through a tiny hole before being projected onto a flat surface.

Pinhole cameras separate light rays passing though a point in space such that each

ray direction is mapped to a point along a 2D surface. Thus, the resulting image is

a perspective projection of the radiance of the scene. Cameras have a field of view,

which represents the set of angles of light they can measure that pass through the

pinhole or aperture.

Lens and Aperture In practice, cameras must have a larger aperture to allow

enough light to be collected by the sensor for a given period of time. Light can be

focused by a lens such that the incoming angle of light can be mapped to 2D sensor

position. Since a lens can only perform this mapping exactly for a single scene depth,

it must be focused to produce sharp images for a given scene depth.

The aperture of the lens controls the depth of field, or the set of similar depths

that produce sharp images. Small apertures produce sharp images over a large set

of depths, but let in less light. Smaller apertures also reduce the resolution of the

imaging system. Since light is best described by quantum particles, or photons, it is

subject to the Hesienberg uncertainty principle. This means that for small apertures,

we can more precisely limit the position of a photon, but the ability to preserve the

direction of travel, or momentum, is degraded. We call our ability to measure the

40

angle of incoming light rays the optical resolution.

Sensor When a light ray reaches the back of a camera, it collides with the sensor.

Conventional camera sensors are composed of an array of pixels that convert photons

into electrons, which are stored in a capacitor. As such, the voltage across this

capacitor measures the total count of photons that hit the sensor for a given period

of time. The camera exposure time is the amount of time photons are added to the

capacitor before the voltage is read by an analog to digital converter and then allowed

to drain charge back to zero. Sensors often have an optical band-pass filter over each

pixel called a Bayer pattern, such that each pixel only observes photons with a range

of wavelengths, or color.

Image Signal Processing Finally, a photograph is obtained when the data is read

from the sensor and a series of post-processing steps is applied to produce full-color

images.

1.4.2 What is the hidden scene?

In this thesis, we are interested in recovering hidden information about a hidden scene

from photographs of a visible scene. As such, we are interested in the geometry and

appearance of the hidden scene. In a general sense, we would like to recover similar

information about the hidden scene that we obtain from images of the visible scene.

This might include then position and orientation of hidden objects, or an image of the

hidden scene from the perspective of objects in the visible scene.

A general way to describe the hidden scene is function that returns the radiance

for position, 𝑢 ∈ (𝑥, 𝑦, 𝑧), and angle, 𝜔 ∈ (𝜃, 𝜑) within the volume outside the visible

scene. We call the tuple, (𝑢, 𝜔), a ray to emphasize that a single point in 𝜌 describes

the origin and direction of a light path.

𝜌(𝑢, 𝜔) (1.1)

This function returns the spectral radiance and absorption at every point. The

41

domain of 𝜌 is over 5 dimensions: 3 space and 2 angle. This representation of the

scene is quite general, and encodes both the spatial location of objects, but also their

appearance. In a way, this representation is a light field in 3D space, which has been

referred to as the radiance field [78] in the literature. In the next section, we describe

how this scene representation used across the visible and hidden scene can be used to

define a forward model for light transport.

1.4.3 Forward light transport

The forward light transport of a scene describes how light travels from light sources

through the scene before eventually reaching the camera. A physically accurate

forward model is the starting place for understanding how hidden cues in the visible

scene are created by changes in the hidden scene.

The Rendering Equation The rendering equation by [48] is a seminal contribution

to physically accurate rendering. It describes how the radiance at each surface point

in the scene is a function of the incident illumination. The incident illumination can

be determined recursively by integrating all light that originates from some set of light

sources, much of which might arrive at a scene point after many scattering events with

other scene points. Due to the nature of this recursion, the domain of the integrand is

practically infinite, so the solution to this equation is often approximated using monte

carlo techniques known as path tracing.

Using the rendering equation, we can calculate the amount of light from a ray

origin that reaches the observed image Y.

𝐿𝑜(𝑢, 𝜔𝑜) = 𝜌′(𝑢, 𝜔𝑜) +

∫︁
Ω

𝑓(𝑢, 𝜔𝑜, 𝜔)𝐿𝑖(𝑢, 𝜔)𝑑𝜔 (1.2)

Here, the equation above is intended to sketch the idea and obscures some detail in

favor of clarity. The function 𝑓(·) maps an incident light ray, (𝑢, 𝜔), to a ray (𝑢, 𝜔𝑜).

This function is called the bi-directional reflectance distribution function (BRDF)

when describing scattering from surfaces, and we assume here that 𝑓 contains the

42

necessary cosine terms. More generally, 𝑓 is called the phase function, which describes

how incident light is scattered or absorbed at position 𝑢 in the scene. 𝐿𝑖 describes the

radiance of incident light rays at point 𝑢, which is determined by a similar integral,

leading to the recursive nature of the equation.

The equation integrates over the surrounding sphere of angles Ω. The light must

originate from somewhere, here we designate 𝜌′ a function that describes source light

rays over the full space. This function may be the hidden scene, if we consider the

hidden scene a light source.

For conceptual convenience, we define a function 𝑎(𝑢, 𝜔, 𝑣, 𝜑) ∈ [0, 1] that maps

the total transmission from source light ray (𝑣, 𝜑) to output light ray (𝑢, 𝜔). We

note that this can be calculated by the the volumetric rendering equation, omitted

for brevity here taking a similar form of the rendering equation above, by setting

𝜌′(𝑢, 𝜔) = 𝛿(𝑣, 𝜑). A discrete version of this over a vector of (𝑣, 𝜑) values would

effectively set 𝜌′(𝑣, 𝜑) = 1 and 0 everywhere else. In physical systems, 𝑎 is conserved,

so it must lie in the range [0, 1].

Image formation model We can write the observed image as a function of the

hidden scene volume, 𝑉 . We assume the hidden scene is the only source of illumination

and 𝑎 properly accounts for occlusion and differential terms. In this way, we can

integrate over the hidden scene, 𝜌, to generate an observed image 𝑌 .2

𝑌 (𝑐, 𝜔𝑜) =

∫︁
𝑉

∫︁
Φ

𝑎(𝑐, 𝜔𝑜, 𝑣, 𝜑)𝜌(𝑣, 𝜑)𝑑𝜑𝑑𝑣 (1.3)

Here, 𝑐 is the camera position and 𝜔𝑜 is the direction corresponding to each camera

pixel.

We can also solve for the light field generated by 𝜌 on the hemisphere surrounding

the visible scene: 𝑥(𝑢, 𝜔) =
∫︀
𝑉

∫︀
Φ
𝑎(𝑢, 𝜔, 𝑣, 𝜑)𝑑𝜑𝑑𝑣. From the perspective of the visible

scene, the generated image is identical.

2This equation is only intended to provide a sketch of the idea. In practice we are interested in
the discrete version: we render an image for the columns of a matrix, 𝐴, each corresponding to a
single ray tuple (𝑣, 𝜑). The double integral is used to emphasize we are integrating over a light-field.

43

𝑌 (𝑐, 𝜔𝑜) =

∫︁
𝑈

∫︁
Ω

𝑎(𝑐, 𝜔𝑜, 𝑢, 𝜔)𝑥(𝑢, 𝜔)𝑑𝜔𝑑𝑢 (1.4)

We write this equation to show the general form we use when discretizing the

problem: 𝑦 = 𝐴𝑥, where 𝑦 is the observed image pixels, 𝑥 is the unknown illumination,

and 𝐴 is the ray transport matrix. If we assume the hidden scene is far away, then

we can remove the integration over 𝑢 and instead only consider rays originating on

the hemisphere, 𝜔. In this way, 𝑥 is an illumination source known as the environment

map.

Source of hidden cues

Hidden cues may arise from a few features in the visible scene. If the visible scene

is illuminated by 𝑥, then intuitively cues occur when changes to unique values in 𝑥

correspond to unique changes in 𝑦. In other words, two incident rays (𝑢1, 𝜔1) and

(𝑢2, 𝜔2) each create changes in 𝑦 that are orthogonal.

Diffuse Reflections Lambertion surfaces, or diffuse surfaces, remove a significant

amout of information about the direction of illumination. For this reason, they are

not good sources of cues.

Specular Reflections Reflections from shiny surfaces like polished metal are spec-

ular. Using knowledge of the surface normal, reflections are great cues for recovering

the hidden scene. This is commonly exploited in practice: chrome balls are often

used to estimate the environment map in a real scene. The problem with specular

reflections is that suitable objects must be available in the environment. The surfaces

of the object must be specular, but also have a good variety of surface normals.

Shadows Interestingly, shadows cast by objects in the visible scene create fantastic

cues. Shadows create diverse changes in the observed images with respect to incident

light direction and only require a scene with sufficient self-occlusion. Shadows are

44

incredibly common in natural scenes. As such, shadows a are good cue, and for this

reason are extensively studied in this thesis.

1.4.4 The inverse light transport problem

In this work, we would like to discover and make use of hidden cues that allow us to

solve the inverse light transport problem. We would like to recover the hidden scene

radiance, 𝑥, given observations 𝑦. This admits the familiar linear system.

𝑦 = 𝐴𝑥 (1.5)

Where 𝐴 is the light transport matrix. We may only have partial information

about 𝐴, and the nullspace, or kernel, of 𝐴 may make recovery of 𝑥 ill-posed without

regularization. These two problems form the fundamental motivation for this thesis.

In practical terms: we must account for the calibration of 𝐴 and utilize any prior

knowledge about 𝑥. These high-level relationship between these concepts are shown

in 1-1.

Model Priors We might not fully know the entries of 𝐴 when we observe a scene.

Perhaps the exact texture of geometric details are unknown. However, many spaces

follow predictable shapes, potentially making it possible to "fill in" 𝐴 with the most

likely values. For example, if we observe a room with a table and chairs, we do not

need to know the full geometry to provide a good guess for the geometry and shape of

the table and chair legs.

Data Consistency When capturing an image 𝑦, we want to ensure that any guess

we provide for 𝐴 and 𝑥 are consistent with 𝐴𝑥 = 𝑦. This may actually be fairly

challenging as measurement noise and model mismatch can make this exact equality

impossible to achieve. As such, we want to at least ensure data consistency in a least

squares sense.

45

Figure 1-1: When solving an inverse problem, it is useful to analyze the components
of the forward model. There are numerous considerations when defining a forward
model that maps the hidden scene to an image that we can observe. Often, we must
calibrate a physics-based model to match the current environment which may require
some probing of the visible scene. When solving the inverse problem we want to ensure
our observations match the output of our forward model, but model-mismatch and
noise may complicate this process. Furthermore, the forward model may have some
"nullspace" making some variation in the hidden scene undetectable when we only
have access to observations. This makes the inverse problem ill-posed, and data-driven
priors can be useful for selecting from a potentially infinite set of possible solutions.

46

Hidden Scene Priors While we may not know much about the hidden scene, there

may be common scene priors given the context of the visible scene. For example, we

know that the hidden scene radiance should at least be non-negative. Data-driven

methods can provide reasonable guesses when observing the visible scene context.

A car is more likely than an elephant when reconstructing an object near a city

intersection.

Recoverability The recoverability of the hidden scene from measurements can be

formally understood by analyzing the nullspace of the forward model operator 𝐴.

There may be changes to 𝑥, for example 𝑥′ = 𝑥 + 𝑎 such that 𝐴𝑥′ = 𝐴𝑥. In this

way, 𝑎 is not recoverable. There may also be particular directions that are not in the

nullspace of 𝐴 exactly, but are still pointing in the direction of an eigenvector with

a small eigenvalue. This problem is made more complex when there is uncertainty

about the forward model, so the entries of 𝐴 may not be known exactly.

1.5 Overview of contributions

This thesis explores the idea of using hidden cues in photographs to extract information

from a hidden scene. Chapters 3-6 contain the majority of the ideas contributed to

this thesis and are summarized below.

1.5.1 Chapter 3

Chapter 3 explores the use of data-driven methods to localize hidden objects. We

show how localizing hidden objects is related to the problem of localizing point

sources outside the line of sight of the camera. We also examine localization when

no calibration of the visible scene is available. Instead, we train a neural network to

infer the visible scene parameters to solve the localization task end-to-end. We also

propose a number of ideas for future work.

47

Figure 1-2: An overview of the different algorithms and techniques proposed in this
thesis by chapter number. There are different inputs and outputs each technique
is designed to accommodate. We also list the demonstrated results and possible
applications.

1.5.2 Chapter 4

In Chapter 4, we provide more analysis of shadows as a cue for localizing hidden

objects. We also build on this analysis to propose "rules of thumb" for visible scenes

that contain sufficient information for localization or reconstruction. In particular, we

find that like the perspective ambiguity for monocular pinhole cameras, cast shadows

from a single edge are insufficient to localize a point source in 3D. We also provide

some ideas for analyzing shadow edges in a scene to efficiently discretize the hidden

scene volume.

1.5.3 Chapter 5

Chapter 5 utilizes more knowledge about the forward model to reconstruct an image

of the hidden scene from the perspective of an object in the visible scene. We use a

rendering engine to generate the ray transport matrix, which we can then invert using

standard methods. We also describe how to handle unknown albedo, and perform

numerous experiments to understand the limits of reconstruction. We propose a

48

number of extensions for future work, such as handling uncertainty in the forward

model and making use of differentiable rendering.

1.5.4 Chapter 6

In Chapter 6, we perform further analysis to develop ways to automatically uncover

hidden cues from images. We also provide additional analysis to the image recon-

struction problem. Given these insights, we propose a framework for automatically

designing imaging systems that may make use of hidden cues.

49

50

Chapter 2

Related Work

2.1 Capturing and exploiting light transport in com-

putational imaging

Computational Imaging, and the closely related field of Computational Photography,

was partly conceived from an increasing understanding of light transport in realistic

scenes in the field of Computer Graphics[48]. Some researchers realized that more

information about a real scene could be captured by specialized cameras that were

created to estimate properties of a scene relevant to light transport[124, 64, 30, 83].

The desire for capturing this information motivated the evolution of camera systems

that estimated more aspects of the underlying light transport in the scene[119, 94, 63,

103, 86].

Today, computational imaging is an integral part of the most widely distributed

consumer cameras in smartphones, robotic perception for autonomous vehicles, and

improvements to health monitoring and medical imaging. Increasingly, ideas from

computational imaging have been used to push the boundaries of fundamental science

as computational methods must be employed to measure parts of the world that are

smaller, faster, or further away than ever before[120, 70, 5].

51

2.1.1 Inverse problems in computational imaging

In imaging, we are often interested in the Inverse problem of light transport: what

inputs to some physical model generated the observed image? We often must choose a

forward model to describe our measurement process, and then use various techniques

to invert the forward model to explain these measurements. There are two primary

approaches used to solve inverse problems today.

The first approach is model-based and seeks to cast the problem as a classic

optimization problem, where a scalar objective function is minimized using an iterative

update scheme, such as gradient descent or Newton’s method. Objective functions

with regularization, such as total variation [21], can be solved using iterative schemes

such as [18].

The second approach builds on the rapid progress of machine learning to use a

dataset of input-output pairs to learn an approximate inverse operator. Recently, the

use of deep neural networks has been applied to inverse problems in computational

imaging [49, 51, 96, 130, 112, 52]. Traditional iterative methods have also started

to incorporate more deep neural networks in their design, where a fixed number of

iterations can be represented as a multi-layer neural network, known as “unrolled

optimization”[77, 31, 38].

In addition to deep neural networks, Computational Imaging has a long history of

“data-driven” ideas to serve as priors for inverse problems, ranging from learned basis

functions using singular value decomposition to the addition of ideas in sparsity via

sparse dictionaries[2, 79].

2.1.2 Inverse Rendering

Recently, several data-driven approaches have been proposed to learn a mapping

between reference photographs and scene parameters [89] [8, 25] directly. These

learned mappings typically incorporate a differentiable rendering module to serve as

conditioning during training [8, 25, 50, 115].

Volumetric scene representations have been proposed for spatially varying lighting

52

estimation [109]. Similarly, implicit neural representations have shown impressive

results for inverse rendering tasks [78?], but estimates the unmixed product of

material reflectance and lighting.

Recently, practical implementations of differentiable path tracing for the rendering

of mesh-parameterized geometries have been developed [65], as well as a reparameteri-

zation that makes use of modern autodifferentiation techniques [85, 71].

Demonstrations of de-rendering have typically been used for re-lighting or 3D

reconstruction tasks and are less focused on “image-like” illumination estimates.

2.1.3 Shadow Volumes and Edge-shadow Boundaries

First invented by Crow [29] and later expanded [13], shadow volumes are a general

algorithm for computing shadows in computer graphics. Shadow volumes have been

of more recent interest for rendering volumetric shadows, and specialized coordinate

systems have been proposed for this task [123]. Typically, research interest in shadow

volumes has focused on efficient computation for real-time graphics [23]. Instead, we

are interested in the inverse problem that shadow volumes were proposed to solve and

our parameterization of occluded light paths is inspired by this early work.

2.1.4 Differentiable Rendering

Automatic differentiation of computer programs has made it possible in some cases to

invert complex physical simulations using gradient descent [92]. In computer graphics,

practical implementations of differentiable path tracing for the rendering of mesh-

parameterized geometries have been developed [65], as well as a reparameterization

that makes use of modern autodifferentiation techniques [85, 71]. Even though these

physics-based forward models are differentiable, gradient descent is still susceptible to

finding solutions that are at a local, rather than global, minimum. Hybrid methods

combining neural networks and differentiable rendering have been proposed, and shows

the promise of combining the advantages of data-driven inverse rendering with a

model-based approach [25].

53

2.1.5 Learning important features and hidden cues for inverse

problems

One of the key concepts in this thesis is the ability to exploit hidden cues within images.

While both data-driven and traditional approaches for solving inverse problems may

make use of these hidden cues, additional analysis may be necessary to characterize

these cues for human understanding. In machine learning and computer vision, this is

often under the umbrella of “explainable AI” [126, 67], with popular methods such as

[102] that highlight regions of an image that are important for solving an inference

task. Within inverse problems, this is closely related to understanding uncertainty in

estimates due to a model’s sensitivity to inputs. A statistical tool known as Cook’s

distance [28] can be used in analyzing inverse problems to understand what input

pixels are most influential for a given estimate.

2.2 Non-line-of-sight (NLoS) Imaging

Non-line-of-sight (NLoS) imaging for the problem of “seeing around the corner” has

received significant attention in recent years. These methods often utilize time-of-flight

measurements with the primary goal to recover hidden geometry [120, 87, 70, 69, 3].

Rendering and optical transport models have also been developed specifically for

time-of-flight NLoS reconstruction [43].

Bouman et al. [17, 101] demonstrated 1D tracking of objects around a corner with

angular filters that are used to track the angular position of the hidden object, which

has also been used for a robotics navigation task [82]. Other approaches have utilized

active sources to illuminate hidden objects [53, 114, 26] and utilized reflected light for

localization and reconstruction. Visual deprojection [10] proposed to learn to estimate

2D scenes from 1D projections with examples of NLoS applications. Despite these

impressive results, data driven techniques have been limited to specific scene setups

and have not been shown to work on novel and diverse scenes.

Exploiting occlusions for NLoS has been an active area of research, for time-of-flight

54

based approaches [116], blind deconvolution in intensity based NLoS [81, 99, 125], and

the recovery of light fields [11]. Critically, these works have shown reconstructions

from calibrated planar surfaces.

Recently, clever use of deep image priors has been shown to be effective for the

highly ill-posed problem of blindly recovering a ray transfer matrix for a NLoS task [4].

Our work differs from previous work, by exploiting edges occlusions of any orientation

relative to floor surface shadows. Furthermore, we demonstrate how our method can

be used without extensive calibration and for more practical camera placements. We

note that our formulation for a single edge is similar to [17], but our construction

supports any edge and surface orientation, is not restricted to vertical edges, and does

not require a homography.

2.2.1 NLoS using L-Corner Geometries

NLOS imaging has been explored in a variety of computer vision applications such as

image dehazing [14], imaging through fog [97], and underwater imaging [105]. One

unique instance of NLOS imaging is the seeing around corner problem which was

initially demonstrated by Velten et al. [120]. Since then, a wide range of advances

that cover different aspects of the problem have been suggested.

In the hardware side, ultrafast streak cameras were initially used [120], followed by

single photon avalanche diodes (SPAD) cameras [35], SPAD pixels [19], and AMCW

time-of-flight cameras [40, 47]. With the advances in sensing hardware the community

developed many improvements in the recovery algorithms. Initial works solved the

problem with back propagation and dictionaries [120?]. More recently, O’Toole et

al. [87] suggested a reparameterization of the problem and casted it as a deconvolution

for improved reconstruction quality.

Several recent works introduced seeing around corners with traditional cameras.

These can broadly be categorized as methods that rely on:

• Active illumination: A method by Klein et al. [53] used a laser pointer and a

regular camera to track objects around a corner with an optimization technique

55

on top of a graphical renderer to track an object with six degrees of freedom.

Tancik et al. [114] used a traditional camera with a spot light to track objects

and reconstruct scenes around corners with a data-driven approach.

• Passive illumination (rely on ambient light): Bouman et al. [17] demon-

strated 1D tracking of objects around a corner with angular filters that are used

to track the angular position of the hidden object.

Our suggested approach is based on hardware similar to Bouman et al. (consumer

camera without calibrated active illumination). However, we use a data-driven

approach and demonstrate 2D tracking around corners (compared to 1D tracking by

Bouman). Tancik et al. used a data-driven approach but their solution was limited to

a specific known corner.

The use of data-driven techniques in computer vision has many advantages, most

notably is their ability to avoid model mismatch. Data-driven techniques have

recently been applied to many problems in the computational imaging such as imaging

through scattering media [96], phase imaging [107], compressive imaging [57], and

microscopy [41]. In the context of seeing around corners a data-driven approach

based on active time of flight system (SPAD camera) [20] was able to localize and

identify people around a corner. More recently Tancik et al. [114] used a data-driven

approach with a traditional camera to localize, identify, and reconstruct occluded

scenes around corners. Both [20, 114] were trained for a particular corner and didn’t

show robustness to unseen corners. Our approach is robust to variations in the

scene and is demonstrated on multiple corner geometries and instances that were not

explicitly in the training set.

2.2.2 Occlusion Assisted Imaging

Early occlusion-based non-line-of-sight (NLoS) approaches make use of specific scene

features such as accidental cameras or pinspecks [27, 117]. More recently, some different

capture methodologies have been proposed for time-of-flight based approaches [93],

blind deconvolution in intensity-based NLoS [81, 99, 125, 116], and the recovery of

56

light fields [11]. Critically, these works have shown reconstructions from calibrated

planar surfaces. The use of the deep image prior has been proposed to approximate

the ray transfer matrix [4], but assumed planar hidden scenes and did not investigate

realistic high dynamic range hidden scenes.

Bouman and Seidel [17, 101] each demonstrated how the occlusion of light at a flat

edge enables the reconstruction of 1D projected views of a scene hidden around a corner.

Other approaches have utilized active sources to illuminate hidden objects [53, 114, 26].

Visual deprojection [10] is a learning-based approach to estimate 2D scenes from 1D

projections, and like other learning-based approaches, is limited to specific scene setups

and has not been shown to work on novel and diverse scenes. Our method supports

the use of objects with arbitrary shape, and does not require planar or one-dimensional

masks or planar, calibrated relay surfaces.

There is significant similarity between incident illumination estimation and NLOS

imaging. In essence, if we can estimate the incident illumination for each visible surface,

then each visible surface serves as a "camera" that provides a diversity of views of

the hidden scene. If the surface BRDF and normals are known for an image patch,

we can estimate incident illumination by inverting a linear system. For patches with

high-specularity and diverse surface normals, incident illumination can be accurately

estimated. However, diffuse surfaces make this inversion poorly conditioned. There has

been a growing body of work demonstrating the power of occluding surface edges to

make this inversion better conditioned for NLOS problems, and these methods typically

require estimation of the light transport matrix: mapping some set of illumination

positions in the hidden scene to the observed image.

2.3 Incident Illumination Estimation

There has been a wide variety of research applied to the problem of incident illumination

detection. In general, these methods require specific capture setups [30], or seek

approximations useful for downstream tasks [58, 124]. Sato et al [98] were one of the

first to define the problem of approximating illumination from shadows of objects on

57

diffuse surfaces. Later work has emphasized the use of sharp shadow boundaries from

a few bright sources for mixed reality applications [45, 66, 128], rather than extended

sources.

Recently, Jiddi et al [46] demonstrated illumination estimation using both specular

paths and shadow information. Specular paths are a useful cue for estimating incident

illumination [37, 88] potentially “in the wild,” but suitable surfaces must be present in

the scene.

Data driven techniques have been used to estimate incident illumination for a

database of objects [121]. Sophisticated capture methodologies have been used to

generate large datasets used to train neural networks that are capable of estimating

incident illumination in natural scenes [36, 60] for augmented reality applications

or learning illumination for portrait relighting [61]. Spatially varying illumination

estimation has been shown using RGBD images [12] and regular images [36], but these

models do not predict exact light source location. There has been recent interest

in precise localization of point light sources from images using material shading

models [127], however our work utilizes occlusions and shadows to accomplish this

task.

2.4 Computational Discovery of Optical Designs

2.4.1 Natural Evolution of Animal Eyes

As the eye developed through natural evolution, [84] were among the first to demon-

strate how incremental changes in organism morphology could lead to the evolution

of the complex optical system found in animal eyes while only optimizing for visual

acuity at each step. A simple iterative optimization scheme like gradient descent

could explain how the eye developed—starting with a collection of photo-sensitive

cells and ending with the familiar spherical shape containing a refractive element to

form an image. Later, [33] and [100] describe the necessary evolutionary biology and

the evidence supporting incremental develop of eye designs. More recently [118] has

58

shown how eye evolution can be simulated using iterative optimization schemes. These

works demonstrate how eyes have evolved in nature, but also serve to support the

idea that iterative optimization can be well suited for the design of optical systems.

Less well studied is the corresponding development of the visual processing in the

visual cortex of animals, but it is reasonable to assume these brain areas developed in

a similarly incremental manner as described by [56].

2.4.2 Traditional Optical Design

Traditional optical design has largely consisted of human designers, such as [104],

who select suitable lens configurations and the use of ray tracing to validate designs.

In practice, lens designers may reference a library of optical designs or rely on their

intuition and experience. Many optical designs optimize for objectives that take into

account visual acuity across the visible spectrum, but also robustness to errors in

manufacturing or perturbations such as vibration. As such, many optical designs

are part art and part science, and automated design frameworks have not entirely

replaced human designers.

With the advent of computer aided design tools, designers typically sketch a rough

design and refine some selected parameters, such as lens radius of curvature or exact

component position, using tools such as ZeMax.1 More recently, as described by [42],

more exotic optical designs have been made possible using free-form optics and design

and simulation tools. In any case, the primary objective of these design tools is to

optimize for low-level criteria such as a target point-spread function (PSF) over a set

of wavelengths and mechanical tolerances.

2.4.3 End-to-end optimization of camera designs

The use of gradient descent to train deep networks has also made possible the use

of backpropagation to update parameters of physical optical design by including the

design parameters as part of the optimization itself. One of the first examples was

1https://www.zemax.com/

59

demonstrated by [22], who learned better color filter masks for image demosaicing.

Such “end-to-end” systems may use gradient descent to automatically learn the

computational part of the problem via the weights of a neural network, and the choice

of components of the imaging system, such as aperture codes, to make the problem

better suited to a particular environment.

There has been a growing interest in designing optical systems and deep learning

models together using end-to-end frameworks, such as [24, 111, 122, 108]. These ap-

proaches typically define a parametric optical design, where parameters corresponding

to optical components are differentiable with respect to the sensor values. A more

detailed review is provided by [90].

2.4.4 Rendered Synthetic Data for Deep Learning

Optical design tools often make use of ray tracing, but often do no simulate the full

environment. The use of engineering design tools, such as [7], have recently pushed

for integrated simulation of the environment and optical design in order to validate

designs in realistic environments. Recently, [95] has launched a simulation framework

to generate training data for machine learning models such as deep neural networks.

These simulation tools can be adapted to emulate specific camera designs or sensing

modalities, and are thus well suited for the end-to-end optical design proposed in this

paper.

2.4.5 Joint Camera and Algorithm Design

There has been a growing interest in designing optical systems and deep learning models

together using end-to-end frameworks, such as [? 111, 122, 108]. These approaches

typically define a parametric optical design, where parameters corresponding to optical

components are differentiable with respect to the sensor values. A more detailed

review is provided by [90].

The key problem with this approach is that the parametric model is rigidly defined,

such that it would be impossible to discover novel designs outside the range of paramet-

60

ric values. This limitation suggests that a high-level “parametric optical architecture

generator” is needed to propose truly novel designs. Such high-level architecture

generators has been explored by the automatic machine learning community, such as

the architecture grammar proposed by [9].

61

62

Chapter 3

Learning cues to locate hidden

objects

The challenge of seeing around corners has been widely studied in recent years. Various

solutions tackle different aspects of the problem such as the sensing hardware, recovery

algorithms, or expanding the range of tasks that can be accomplished. One particularly

interesting aspect of the problem is in the case of using consumer cameras for sensing

around corners. This approach has many advantages such as reduced costs and relaxed

need for additional hardware on current platforms (e.g. vehicles). Due to the reduced

measurement dimensionality, such techniques are used primarily for tracking [53, 17].

Here we propose a data-driven approach for localizing objects in 2D around corners

with consumer cameras. The suggested approach is robust to variations in the scene

and does not require extensive calibration or assumed known geometry. Furthermore,

the suggested approach naturally benefits from increased scene complexity that result

in improved localization accuracy without additional modeling.

Data-driven approaches and convolutional neural networks (CNNs) have been

widely used in many computer vision and computational photography problems, but

have not been extensively explored in the context of sensing around corners. The main

challenge in traditional sensing around corner algorithms is the need to solve an inverse

problem based on a physical forward model. Such algorithms are very sensitive to

calibration and to model mismatch. Data-driven techniques on the other hand directly

63

learn an inverse mapping from the measurement to the occluded scene. Thus, these

methods do not need to solve a challenging inverse problem. Instead, the challenge in

these approaches is found in data gathering and ensuring model generalizability. Our

suggested approach tackles these challenges as follows:

Data gathering: instead of extensive experimental data gathering we use syn-

thetic rendering to render the inputs (i.e. measurements) along with a known ground

truth target location, alleviating the need for extensive experimental data gathering

and labeling.

Model generalizability: to make sure our model is robust to novel scenes we

introduce variations in the rendering parameters such as scene geometry and material

properties. This helps the trained model to localize even for scenes that were not

directly in the dataset.

Beyond robustness, a data-driven solution naturally benefits from additional cues

in the scene that are hard to model such as complex geometry and intensity variations

on continuous surfaces. Thus it has a potential to scale in localization quality with

increasing scene complexity. For example, we show that by introducing a table into the

visible scene our localization accuracy improves by 10%. This improvement is achieved

with the same network training procedure and does not require a more complicated

model. Furthermore, a data-driven approach has many other advantages in the context

of sensing around corners as it naturally enables other computer vision tasks such as

object counting, object classification, tracking, and full image reconstruction.

The main contributions of our work are:

• Robust data driven technique for 2D tracking of objects around multiple, unseen

corner instances of different geometries (including L shape, T shape, and L shape

with a table). The model is trained on synthetic data. The technique is based

on consumer cameras.

• Demonstrated improved localization accuracy around corners by leveraging

increased scene complexity with a data-driven algorithm.

• An efficient rendering procedure for around the corner scenes that is ∼ 20×

64

faster compared to vanilla rendering procedure.

3.1 Revealing hidden cues with differential imaging

The idea of "differential rendering" was made widely known by [30], who described a

method for inserting rendered objects in photographs that preserved realistic shadows

on surfaces. Previously, synthetic objects could be inserted using traditional matting

techniques, but these methods do not look realistic since objects typically change how

their surrounding surfaces are illuminated. The idea of differential rendering is to

render two images: one that roughly models the real surface in a photograph, and

another with synthetic objects added to the scene. When the rendered image with

the objects is subtracted from the rendered image without the objects, the resulting

differential rendering can be subtracted from the original photograph to model shadows

and reflections.

Differential Imaging: We can build on this idea to capture two photographs:

one with and one without a hidden object. Background subtraction is a common

method for revealing small changes in photographic measurements. Notably, [17]

used background subtraction to amplify the effect of hidden objects scattering light

into a scene with an occluding edge. The shadow cast by this edge can be used to

localize objects around a corner.

We show in this section how background subtraction reveals the "differential image"

of a scene. Practically, new objects inserted into the hidden scene act like hidden

illumination sources. This reduces the problem of tracking hidden objects to localizing

hidden illumination sources. However, this picture is not entirely complete, as these

hidden illumination sources are "differential" in the sense that they can contain both

positive and negative values. A more accurate model would be to reproduce the

differential light emitted from the surface of the object. Figure 3-2 explains this idea

a bit further.

65

Figure 3-1: Two images of a cork were taken with and without a person standing
just out of view of the camera. The person did not cast a visible shadow on the
scene, and there is no obvious difference between the two images. However, when the
image without the person is subtracted from the image with the person, a difference
image shows a clear "shadow," as if the person were an illumination source. While
subtle, these cues are detectable and can be explained using the principle of differential
imaging.

Figure 3-2: When an object is added to a scene, it interacts with paths of light
that would pass through the object volume if the object was not present. When
a background image is subtracted from an image with the object, all rays cancel
out except the rays that either scatter from the object or are absorbed. Light rays
that scatter make the object appear like an illumination source, and rays that are
absorbed or redirected make the object appear like a "negative light source" for
the corresponding direction. In effect, if the object is small it can be modeled by a
anisotropic light source that can emit positive and negative valued light rays.

66

3.1.1 Temporal differential imaging

While the majority of our discussion so far has described the idea of differential

imaging with and without the object present, we can also detect small motion of the

hidden object. This can be accomplished by capturing images at time 𝑡 and 𝑡 + 1

some time later, such that the differential image is 𝐼𝑡+1 − 𝐼𝑡.

In general, light paths that intersect the union of the two volumes encapsulating

the hidden object at two points in time are changed by object motion. We observed

that the light paths that change the most are those that pass through the volume the

object has entered and recently left.

For example, imagine a cube traveling in the direction of one of its face normals: a

small "sliver" of volume will make up the changing volume displacement by the cube to

the front and back of the object as it moves. In this way, providing temporal difference

images should be sufficient for localizing objects or reconstructing the differential

illumination created by their motion.

If the object strictly scatters light back into the scene, such that it appears as a

purely non-negative differential illumination source when performing background sub-

traction, then the temporal differential image will appear like the scene is illuminated

by a positive object and a negative light source. Localizing these two sources can

indicate the direction of motion of the object.

Rendering Differential Images

In order to render differential images, a path tracer could be used to sample paths

that intersect the object volume using importance sampling. Half of these paths would

be selected to scatter off the object, and the other half would continue as if the object

was not present, but their contribution to the rendering equation would be marked as

negative. For small objects, this would be similar to rendering a scene illuminated by

a point source that emits these rays (some directions positive, other directions the

rays would be negative). As shown in Figure 3-3, if the contribution of negative paths

is small, the hidden object can often by roughly modeled as an isotropic point source.

67

Figure 3-3: (Left): A scene was created with an object around a corner illuminated by
a point light source. We show a black background surface, but also rendered images
with a black sphere and white background surface. (Middle): A background image was
rendered without the object. (Right-Left Column): When the object is the only source
of reflected light, it is well modeled by a point source, generating a single shadow edge
aligned with object. (Right-Right Column): When the object blocks light paths that
normally would eventually contribute to the visible image, it generates a "virtual point
source" by projecting negative valued light onto the background surface. We subtract
the difference image from 1 to maintain positive values. Both the object occluding
the background and the virtual point source contribute to two shadow edges.

With this basic premise, we can now pose the problem of locating hidden objects

outside the line of sight of the camera as the problem of localizing light sources from

photographs. There a few useful cues that are useful for solving this problem, such as

shadows and specular reflections. In this chapter, we propose to develop an imaging

system that learns to make use of these cues for the purpose of localizing hidden

objects from differential images.

3.2 An imaging system that learns to use differential

cues

The imaging system consists of a consumer camera that observes the visible part of

the scene. In some cases we add additional light to ensure the hidden object is well

illuminated. We then use images from this camera to generate differential images that

are used to localize the occluded object (see Fig. 3-5).

The recovery algorithm is sketched in Fig. 3-4 and composed of an offline and

68

Training Dataset

Scene Generator

input

labels

z z

Loss

Location
Heat Map

a) Offline

b) Online Operation

Physically
Based
Render

Input

Object
location

(x,y)

 Data Generation

 Training

Figure 3-4: Overview of the Imaging Pipeline. a) In the online phase a scene generator
produces a scene with random properties that are rendered to generate a dataset. The
dataset is used to train a CNN to predict the hidden object location in a 32 × 32 grid.
b) In the online phase, a background subtracted measurement is fed to the network
for location prediction. This prediction is refined with a Gaussian fit.

69

z z

Data Driven
2D Location Prediction

Figure 3-5: Leveraging complex geometry for seeing around corners. A data-driven
technique is used to predict the 2D location of objects around corners. The network is
trained only on synthetic data and robustly works on a wide range of geometries. Data-
driven techniques naturally learn to leverage additional cues in complex geometries
which are hard to traditionally model. This results in the ability to locate objects in 2D
with improved accuracy compared to a simpler geometry with the same computational
pipeline.

70

online steps. In the offline phase a scene generator produce random scene geometries

that are rendered by a physics based path tracer. This synthetic data is used to train

a CNN, which is trained using the known object locations used to render images with

the rendering engine. In the online prediction phase, the captured differential image

fed into the network, which produces probability of the object being located at each

location in a 2D grid. The predicted location is refined by performing a Gaussian fit

to the predicted probabilities on the grid, which produces a location estimate with

sub-grid resolution. This section provides the details of the imaging pipeline.

3.2.1 Dataset Generation

We render a synthetic dataset to provide sufficient training data for the CNN. The

dataset was created using Blender Cycles [15]. The scenes are produced by a scene

generator written in python that generates a new scene file for each sample in the

dataset. The scene generator is parameterized by various scene properties including

geometry, materials and the textures composing the different objects in the scene,

location of the occluded object, and noise characteristics of the measurement. To

increase the robustness of the trained model we introduce perturbations to all of

the generator parameters (similarly to [96]). These perturbations are sampled from

uniform random distributions over physically plausible values. To introduce even

further variability in the dataset we introduce clutter to the scene. The clutter appears

in the form of cubes with random orientations and positions in the visible part of the

scene. In this work we consider three types of scenes (see Fig. 3-6): 1) L shape corner,

2) T intersection corridor, and 3) L shape corner with additional geometry (a table in

the visible scene).

One of the challenges in data generation for the seeing around corner problem

is the need for physically realistic rendering that accounts for subtle changes in the

hidden scene. Traditionally rendering such scenes accurately requires complete ray

tracing which is computationally intensive. To overcome that challenge we propose an

alternative faster rendering technique.

71

L Corner T Intersection Corner with Table

b)

a)

Figure 3-6: Data generation for different geometries. a) Demonstrating the three
different geometries considered here: L corner, T intersection, and an L corner with a
table. b) Examples of the rendered data for the different geometries. The green region
in a) shows the area that the hidden object may be located. The purple region is a
possible position and orientation of a generated table.

72

Figure 3-7: A large degree of variation was achieved in order to encourage domain
randomization when producing the synthetic dataset. Variation in surface textures,
material properties, corner geometry, and random clutter were added to encourage
the network to not overfit to the training data.

Efficient Rendering of Non-Line-of-Sight Scenes

Similarly to previous techniques [53, 17, 114] that leverage a camera for imaging

around corner we assume a background subtracted input. In terms of reconstruction,

the main benefit of background subtracted input is an effective invariance to ambient

light. Another major advantage of background subtracted inputs is that we can

efficiently render them which greatly simplifies the rendering procedure.

Consider the scene in Fig. 3-5 with a bright ambient light. To calculate the

background subtracted measurement we take the radiance from the scene without

the object (i.e. the background) and subtract it from the scene radiance with the

object. The result would appear as if the object is the only emitter in it. Thus we

can efficiently render directly the background subtracted measurement by modeling

the object as an emitter without additional illumination. As shown in Figure 3-2,

rendering two images and subtracting them would eliminate the contribution from

the majority of sampled paths in a path tracer and would be extremely inefficient.

73

Figure 3-8: The 21 considered geometries. The measurements presented before
background subtraction demonstrate the variability in the considered scenes. The
top row corresponds to L corner geometry, the middle row to T intersection, and the
bottom row to L corner with table. The ordering from left to right corresponds to the
indexing in Figure 3-13. Each photo is a single instance of the 150 measurements per
geometry.

An area for future work would be to develop path tracers that can efficiently perform

differential rendering.

This rendering procedure takes approximately 20 secs compared to 300 secs for

full rendering of the illuminated scene and subtracting the background from it (on an

Nvidia GTX 1080 GPU). Fig. 3-6 shows several rendering examples.

3.2.2 Localization Prediction Network

The rendered data is used to train a CNN. The input to the network is the background

subtracted 128 × 128 image of the visible scene. The network is relatively shallow

and composed of three convolutional layers followed by two fully connected layers (see

Fig. 3-9). The output is a 32 × 32 heat map of potential object locations. We selected

a relatively small network architecture to reduce the risk of over-fitting and reduce

the amount of training data required.

The ground truth location of the object is known from the rendering engine. It

is essential to define an origin of the coordinate system on which the localization is

74

performed. Since the position of the camera with respect to scene is unknown, we set

the origin to the closest corner in the scene (in the T intersection we choose the closer

corner to the camera). To enable realistic scenarios, this position is not provided

to the network, and the network effectively have to find this position and produce

outputs with respect to that position.

It has been previously observed [17] that shadows cast from the corner’s vertical

edge encode the angular position of the occluded object. Thus we choose a polar

coordinate system to represent the 32 × 32 prediction grid. Labels in this coordinate

system should help the network to learn similar angular filters as well as other global

features that provide the distance of the object.

In order to provide the network more meaningful gradients when it miss-classifies,

the ground truth location is provided as a Normal distribution centered on the actual

location. The distribution variance is a hyper-parameter that encodes the spatial

dependency of labels (we use 𝜎 = 3). The Gaussian is applied in polar coordinates,

so it naturally covers more area in euclidean coordinates when the object label is far

from the corner.

Rather than predict the object location 2D coordinates directly, the network is

trained to predict the probability of the object being located at a location on a

predefined grid of 2D locations. We model this as a classification problem, which is

known to be more stable and easier to train. The training loss is the mean of the

sigmoid cross entropy over the location heat map:

CNNloss =
𝐾∑︁
𝑖=1

1

𝐾
max(𝑤𝑖, 0) − 𝑤𝑖𝑦𝑖 + log

(︀
1 + 𝑒−|𝑤𝑖|

)︀
(3.1)

where 𝑤𝑖 is the logit value, 𝑦𝑖 is the ground truth label for the 𝑖th element, and

𝐾 = 32 × 32 is the number of elements in the grid. This loss represents multi-label

classification task (labels are not mutually exclusive), where the labels are independent.

The output heat map is converted to a predicted location by fitting a 2D Gaussian

to the heat map. Where the Guassian’s mean 𝜇0 is the predicted location, and the

variance Σ0 is the uncertainty. While this approach could be extended to predict

75

multiple object locations, in this work we consider only a single hidden object.

3.2.3 Implementation Details

Rendered Scenes

We consider three scene types:

• L Corner: The geometry of this corner is parameterized by the 2D location of

the two corners and the height of the walls.

• T Intersection: This is a hallway that splits to the right. It is parameterized

by 2D coordinate of the close corner, the widths of the two hallways, the depth

of the hallway, and the height of walls.

• L Corner with Table: In addition to the L corner parameters we add 7 table

parameters: 3D size, leg thickness, table top thickness, and the table 2D position.

On top of these geometric parameters we also parametrize the optical properties

of the different materials with surface roughness and three channel albedo.

All of the parameters are randomly sampled to produce a scene that is rendered

by Blender.

3.2.4 Image Capture

The CNN model was trained using entirely synthetic data, but in practice we need

some method of capturing images. We rely on light being reflected by the hidden

object when it is introduced to the scene. Since we can not rely on ambient light

serendipitously illuminating the hidden object, we provide a strong light source that is

projected into the visible scene. The intent is to ensure the hidden object is illuminated

by this light, providing a strong differential image signal. Ambient light may drift over

time, so we introduce a 850nm bandpass filter to match our 850nm NIR illumination

source. This light is not visible to the human eye, making our method suitable even

with a lack of visible ambient light. Figure 3-10 shows the image capture setup for

our table top evaluation environment.

76

z
z z

128x128x3

64x64

32x32

16x16128

64

32
1024

128

32x32x1

Figure 3-9: Overview of label generation and model architecture. a) The ground truth
location is by selecting the origin point (corner), and calculating the object location
in polar coordinates. This location is mapped to a 32 × 32 grid. Finally a Gaussian
centered on the location is applied with a variance just large enough to cover adjacent
pixels. b) The neural network detailed architecture. Three convolutional layers are
followed by two fully connected layers.

3.2.5 Evaluation Environment

We developed a table-top evaluation environment to model variations in scene geometry,

object size, and albedo. Figure 3-12 shows an overview of this setup. In some

experiments, we use a fixed set of known locations to place the hidden object, while

in others we use a color-label tracking system to label ground truth.

Since our CNN has been pre-trained on synthetic data, it can provide predictions

in real-time with the full setup. Figure 3-11 shows an overhead view along with a

screen capture of the full processing pipeline.

77

Figure 3-10: The image system used to valide the trained network on real data includes
a camera and an illumination source. The illumination source is a flashlight that
projects 850nm NIR light into the visible scene. The camera is fitted with a matching
850nm bandpass filter.

78

Figure 3-11: The validation environment consisted of a tabletop scene constructed
from poster board to form an L-shape. All the walls can be moved to simulate different
room geometries and camera positions. A color-label based tracking system was used
to provide ground truth labels of the scene geometry and object position.

Figure 3-12: On the left, we see a screen capture of the live processing of the CNN
network. The input image can be seen in the bottom left, with the background
subtracted image shown to the immediate right. The predicted object location
distribution produced by the neural network is shown above these two images. On the
right, we show a top down view of the scene while manipulating a hidden mannequin
object.

79

3.3 Experimental Results

To experimentally demonstrate the proposed technique we first train three CNN

models (one for each of the considered geometries). We built a re-configurable scaled

experimental setup that can be easily perturbed. For each scene type (L shape, T

intersection, and L shape with table) we created 7 instances by moving the walls of

the scene. Thus, each network is evaluated on 7 different corner instances, and our

approach is evaluated on 21 different geometries. In each geometry we move a target

object (a 6 cm wide cylinder) in the occluded scene and track its ground truth position

with an additional camera positioned above the scene. On average we capture 150

images per geometry. Fig. 3-8 shows example measurements for these 21 geometries.

3.3.1 Trained CNN Models

Each network was trained with 15K rendered training examples. The dataset contains

a significant amount of variation among samples, some examples from this training

set can be found in Fig. 3-6. We set aside 10% of the generated data as a validation

set. We use instance normalization for each input (zero mean, unit variance) and

add noise to the normalized rendered data during training, sampled from a Gaussian

distribution with a variance of 0.05. After training each model for 30K iterations

with a batch size of 64 and learning rate of 0.01, the final sigmoid cross entropy loss

was 6612 for L corner, 5280 for T intersection, and 6352 for the L corner with table

geometry.

We found that it was important to add noise to the inputs of each training batch.

Without adding noise to the training images, the network quickly learned to pick up

on artifacts in the rendered images and memorize the training set.

3.3.2 Error Metrics

We measured the error between the ground truth labels and our network predictions

using three primary metrics: angular error (𝜃), range error (𝜌), and the Euclidean

distance (𝑑) between the predicted and ground truth location. As can be seen in

80

L T L+Table

Synthetic
𝑑 (cm) 3.33 ± 2.16 2.07 ± 1.48 2.95 ± 1.82
𝜃 -0.05 ± 0.08 -0.01 ± 0.06 -0.04 ± 0.08
𝜌 (cm) 0.40 ± 3.13 0.49 ± 2.26 0.95 ± 2.76

Experiments
𝑑 (cm) 10.35 ± 5.14 7.88 ± 2.84 8.32 ± 4.67
𝜃 -0.04 ± 0.31 -0.43 ± 0.28 -0.12 ± 0.30
𝜌 (cm) 1.96 ± 9.64 -3.57 ± 5.14 1.59 ± 7.88

Table 3.1: Localization prediction error for different geometries

Table 3.1, the models produce good localization performance even when provided with

a large range of possible scene geometries for each scene type.

The error metrics we used highlight the difference between 1D angular localization

(𝜃) cues (e.g. corner edges) and 2D localization that benefits from the fusion of other

cues in the scene such as intensity changes on continuous surfaces or complex geometry

with occlusions. Since the occluded region starts at an unknown distance from the

camera, we define our occluded object coordinates from an origin point on the ground

plane at the start of the occlusion boundary (i.e. the corner edge). We orient our

right-handed coordinate system such that the y-axis points towards and perpendicular

to the ground plane and the x-axis points towards the occluded scene around the

corner. From this, we define the position error as follows:

Angular and Range Error (𝜃, 𝜌): The angular and range error is the difference

from ground truth in polar coordinates, where we define 𝜃 as the angle in degrees from

the x-axis to the z-axis.

Euclidean Distance (𝑑): The Euclidean distance from the prediction to the

position of the occluded target in the x-z plane. This metric should be compared to

the 6 cm width of the target.

3.3.3 Varying Geometry and Object Albedo

In Table 3.2, we show the localization error as average euclidean distance from ground

truth over a range of L-corner scene for different object sizes and albedo values. The

objects were constructed of diffuse card-stock paper formed into a cylinder shape with

diameters 4.5cm, 6cm, and 8cm. The ground truth albedos were not measured directly,

81

Figure 3-13: Box plots showing the distribution of error for the 21 experimental
geometries (7 geometry instances within the 3 corner types). The lines show the min
and max values and the boxes correspond to the region from the lower to the upper
quartile of the errors. The orange line shows the median error. We note that the
complicated geometries (T intersection and L corner with table) are superior to the
simple L corner across all geometry instances.

82

Figure 3-14: This figure shows the average 2D distance error in cm of localization by
the network when the corner position was varied. The corner position was moved to
cover a wide range of positions in camera screen space. The average error was lowest
when the corner position was roughly centered in in the lower right quadrant of image
space, which closest resembled the average position of the corner in the synthetic
training data.

but where approximately 0.95 for "white", 0.7 for "anthracite", 0.2 for "dreadnought"

and 0.05 for "black".

It is interesting to note that the average localization error was less than the diameter

of the objects in most cases, and localization performance improved for larger objects.

Large objects reflect more light into the scene which may have reduced the signal

to noise of the background subtracted images, improving localization performance.

Notably, the network was robust to deviations from the point-source approximation of

the hidden objects, and sharp shadow boundaries did not appear necessary for good

localization.

83

size \albedo "white" "anthracite" "dreadnought" "black"
4.5 cm 4.9 cm 6.7 cm 5.6 cm Failed
6 cm 4.1 cm 4.7 cm 3.3 cm Failed
8 cm 3.7 cm 4.6 cm 3.4 cm Failed

Table 3.2: Error by object size and albedo. Three cylinder diameters and four albedos
were chosen to measure the average error of object localization when the hidden object
varied in size and reflectance.

3.3.4 Varying corner scene geometry for a single trained net-

work

The object location prediction network was trained with widely varied synthetic data.

The idea was to ensure the trained network was robust to model error introduced by

different corner geometries, surface albedos, and even clutter objects (see Figure 3-7).

The core assumption when creating training data was to sample from a fixed "scene

class" such as an L-corner scene. Within this class, the exact position of walls could

change drastically. That said, we assume the camera is roughly pointed at the visible

scene "corner" so that the corner wall meeting the ground was centered roughly in

the lower quadrant in image space. In our experiments, we varied the position of

the L-corner and evaluated the average error of the L-corner scene. Changing the

position of the L-corner changed both the length and width of the hallways, but also

the position of the corner-floor intersection in the camera image space.

3.3.5 Discussion

The final optimized localization errors and their standard deviation are presented in

Table 3.1. We show the errors for each type of scene (L, T, and Table+L) for synthetic

validation and experimental data. As expected, a trained CNN performs well on the

synthetic validation set. However, the model does demonstrate generalization to the

experimental data without any additional fine tuning.

To demonstrate the robustness to scene perturbations we plot the localization error

for the 21 different geometries (3 types and 7 instances) in Fig. 3-13. We note that

the error is comparable across the different scene geometries within a scene class. The

84

scene class plays a very important roll in the final error. As predicted, more complex

scenes such as the T or L corner with table, achieve lower errors overall.

Angular vs. Absolute Position Error

Overall, we observed that angular predictions were much more accurate than 2D

localization. Figure 3-15 shows this result for a representative test scene over 12

ground truth locations. This is not surprising, one of the strongest cues for localization

is the shadow cast by the occluding edge, and the shadow angle relative to the wall

contains all the necessary information to find the angle to the hidden object.

Camera scale ambiguity

It is more surprising that 2D localization is possible at all. The network must be

using a combination of shadow edge angle, floor illumination, and diffuse back wall

reflectance to triangulate the object position. While the 2D location was reasonably

accurate in a relative sense, it often seemed globally shifted or scaled in non-intuitive

ways. Despite a rather extensive ablation of possible sources, there was not an clear

reason to explain the various bias introduced in the 2D localization.

Perhaps the best explanation is that scale and depth of perspective cameras is

inherently ambiguous. It is amazing that the network was able to estimate 2D location

at all in this context. As such, one of the most reliable outputs of the network is the

relative position of the hidden object in the sense of moving closer or further away

from the corner. While this was difficult to measure experimentally, we observed that

the network had an impressive ability to predict rather small movements of the hidden

object, even if there was a large bias in the error relative to ground truth.

3.3.6 Practical real-time implementation

In order to show the practicality of this approach, we built a full-scale real world scene

with configurable wall positions and floor materials. This full-scale scene demonstrated

that the localization network can perform well in corner environment scenes with no

85

Figure 3-15: The figure to the left shows the ground truth and predicted angles to the
object, using the corner and side wall for reference. The absolute position errors often
contained difficult to explain bias, but the relative differences were often consistent
for a given scene.

extrinsic calibration, and the synthetic training data was sufficient for even real-world

scenes and not just table-top poster-board models.

The demo system automatically subtracts frames corresponding to the past when

the network is confident a hidden object is not present, this provides a background

subtracted image where the hidden object appears like an illumination source.

3.4 Limitations

The key limitations of the suggested approach are summarized below:

1. Assumes limited prior knowledge of scene geometry: To train the net-

work we need a parametric model of the scene geometry. Fresh geometries (like

an X intersection) will require new rendering and training.

2. Background subtraction: Similarly to previous techniques to sense around

corners with traditional cameras we assume a background subtracted measure-

ment. This is a relatively strong assumption that limits this and prior works.

Another aspect of this limitation is the assumption that the object is well lit.

86

Figure 3-16: The full-scale test scene of a real-time implementation. The screen
on the left shows a GUI output showing the background subtracted frame used as
input to a pre-trained deep neural network. The network predicts the hidden object
location as a distribution in 2D from a top-down perspective relative to the camera.
A blue dot is used to mark the mean of a Gaussian fitted to this distribution, with
transparency corresponding to the variance of the Gaussian fit. A top-view camera
(not used during inference) is super-imposed to provide a view of ground truth. On
the right, a camera with a 850nm bandpass filter observed backscattered light. An
850nm flood illumination source is imaged onto the back wall of the scene using a
fresnel lens placed in front of it.

87

3. Localization recovery: In this work we focused only on robust localization

in novel scenes. We are motivated by prior work [114] that demonstrated other

tasks such as identification on a particular corner and leave such demonstrations

to future work.

4. Assumed single object around the corner: In this work we assume a single

occluded object. Future work would explore the possibility of training networks

to recover multiple objects and to predict the number of occluded objects.

5. Assumed diffuse objects: Our efficient rendering procedure effectively as-

sumes the object is Lambertian. Accounting for objects composed of more

complex BRDFs would also have to be dependent on knowledge of the illumina-

tion sources in the scene.

3.5 Future Work

3.5.1 Combining Data-driven and model-based approaches

Inspired by [25], the recent availability of differentiable renderers make it possible to

combine data-driven and model-based approaches to solve the localization problem.

This section describes this idea, with a focus on validating physical plausibility of

the prediction made by a pre-trained neural network and the ability to fine-tune the

resulting estimate.

While forward models for light transport that are fully differentible have recently

become highly capable, there may be instances when the forward model has discontinu-

ities leading to zero-valued gradients. In these cases, a sampling based approach may

be well suited, and in the next section we describe the use of variational optimization

to address this situation.

88

Figure 3-17: (Left): A synthetic scene was constructed that resembles the table top
experiments. (Right): A image was rendered and passed to the trained CNN. The
predicted position of the hidden object was used to initialize the location of an object
in a differentiable renderer. By minimizing the mean squared error reconstruction loss,
the object position was fine-tuned to ensure data consistency.

3.5.2 Variational Optimization

One of the challenges with neural networks is the black box nature of their performance.

Here, we propose to use the neural network as a hot start for a physically constrained

recovery algorithm.

Specifically, our goal is to find the location of the hidden object, such that when

we render a measurement given the object location (similarly to our data generation

procedure) it will be as close as possible to the actual raw measurement. When this

difference is low our confidence in reconstruction quality is high. This is captured by:

𝐿𝑟(𝑧) = ‖𝑟(𝑧) − 𝑥‖22 (3.2)

where 𝑥 is the vectorized measurement and 𝑟(𝑧) is the vectorized rendered output of

our rendering engine, given the object location 𝑧.

To find 𝑧 we use variational optimization. The theory of variational optimization

procedure is extensively discussed in [110, 72]. For completeness we provide the

high-level overview of the variational update procedure. In our case, the variational

89

upper bound of Eq. 3.2 is:

𝑈(𝑧) = [𝐿𝑟(𝑧)]𝑧∼𝒩 (𝜇,Σ) (3.3)

where the sampling distribution is a Gaussian defined by 𝒩 (𝜇,Σ). We seek 𝑧 such

that:

𝑧 = arg min
𝑧

𝑈(𝑧) (3.4)

To solve Eq. 3.4, we use an iterative algorithm with the following update rule:

𝜇𝑗 = 𝜇𝑗−1 + 𝜆𝜇𝜕𝜇𝑈(𝑧)

Σ𝑗 = Σ𝑗−1 + 𝜆Σ𝜕Σ𝑈(𝑧)
(3.5)

here, 𝑗 is the number of iterations, 𝜆𝜇 and 𝜆Σ are the step size for the two parameters,

and 𝜕 is the partial derivative with respect to the sub-script parameter. The iterative

solution is initialized with the output of the neural network as described in the previous

subsection.

The challenge is of course calculating the gradients in Eq. 3.5, we approximate

them using the following steps:

1. Sample points 𝑧𝑚 ∼ 𝒩 (𝜇𝑗,Σ𝑗). Here we sample 𝑀 = 5 points such that

𝑚 = 1..𝑀 .

2. Calculate 𝐿𝑟(𝑧𝑚).

3. Calculate 𝜕𝜇 log𝒩 (𝑧𝑚) and 𝜕Σ log𝒩 (𝑧𝑚).

4. The gradients are finally approximated by:

𝜕𝜇𝑈(𝑧) ≈ 1

𝑀

5∑︁
𝑚=1

𝐿𝑟(𝑧𝑚)𝜕𝜇 log𝒩 (𝑧𝑚) (3.6)

with a similar equation for 𝜕Σ𝑈(𝑧).

In our experiments we found that using the variational optimization procedure

alone was not sufficient due to slow convergence and modified mean’s gradient such

90

that:

𝜕𝜇𝑈̂(𝑧) = 𝛼
𝐿𝑟(𝑧

−) − 𝐿𝑟(𝜇)

𝑧− − 𝜇
+ (1 − 𝛼)𝜕𝜇𝑈(𝑧) (3.7)

where 𝑧− = arg min𝑧 𝐿𝑟(𝑧𝑚) and 𝛼 is a weighing term between these two estimates.

The left term in the sum is effectively a finite difference computed with respect to

the point with smallest cost. In all of our experiments we used a fixed 𝛼 = 0.5 and

𝜆Σ = 𝜆𝜇 = 0.1.

Figure 3-18 shows the cost function as a function of number of iterations.

The following points discuss different aspects of the variational optimization

algorithm:

Trade off between the two gradient estimates of 𝜇: First we note that even

if 𝛼 = 1 the variational optimization still runs to compute 𝜕Σ𝑈(𝑧). Calculating Σ is

essential to adapt the sampling Gaussian according to uncertainty or confidence in

different axis and effectively minimizes the variational upper bound. Furthermore,

for sufficiently small variance, 𝑝(𝑧|𝜇,Σ) approaches a Dirac delta function and the

variational upper bound is equivalent to the minimizer of 𝐿𝑟. Lastly, we note that

finding the global minimum of the variational upper bound is probably intractable

since 𝐿𝑟 is extremely non-convex, and thus finding the minimum relies on a good

initialization that is provided by the CNN.

Estimating 𝑟(𝑧) and rendering procedure: To calculate 𝐿𝑟(𝑧𝑚) we must

render 𝑀 measurements for each iteration. We can further accelerate this process

and render noisier versions of the measurement. This can be achieved by using a

path tracing algorithm with less sampling points. In practice we found that using an

efficient Blender Render was sufficient.

Details for calculating gradients

We optimize over the variational upper bound, which follows from Jensen’s Inequality:

min
𝑧

𝐿𝑟(𝑧) ≤ [𝐿𝑟(𝑧)]𝑧∼𝑝(𝑧|𝛽) (3.8)

where 𝛽 are parameters of some distribution we use to sample 𝑧 from 𝐿𝑟(𝑧).

91

Using the equality:

𝑝(𝑧|𝛽)
𝜕 log 𝑝(𝑧|𝛽)

𝜕𝛽
=

𝜕𝑝(𝑧|𝛽)

𝜕𝛽
(3.9)

the gradient of the upper bound with respect to our sampling distribution is then:

𝜕

𝜕𝛽
[𝐿𝑟(𝑧)]𝑧∼𝑝(𝑧|𝛽) = [𝐿𝑟(𝑧)

𝜕

𝜕𝛽
log 𝑝(𝑧|𝛽)]𝑧∼𝑝(𝑧|𝛽) (3.10)

which we write 𝜕𝛽𝐿𝑟(𝑧)𝑧∼𝑝𝛽 for brevity.

For our experiments, 𝑝(𝑧|𝛽) is a multivariate gaussian distribution, parameterized

by the mean 𝜇 and covariance matrix Σ, so that 𝛽 = (𝜇,Σ). We now present the

gradient of the log of our sampling distribution with respect to these parameters:

𝜕

𝜕𝜇
log 𝑝(𝑧|𝜇,Σ) = Σ−1(𝑧 − 𝜇) (3.11)

𝜕

𝜕Σ
log 𝑝(𝑧|𝜇,Σ) =

1

2
(Σ−1(𝑧 − 𝜇)(𝑧 − 𝜇)𝑇Σ−1 − Σ−1) (3.12)

This implies that we can optimize for 𝜇 and Σ via gradient descent, and recover

our estimate of 𝜃 and 𝜌 using our final 𝜇. We further parameterize Σ, ensuring the

diagonal entries are positive and the matrix remains positive semi-definite.

We approximate the expectation by taking the mean of 𝑀 samples of 𝑧 from

𝑝(𝑧|𝜇,Σ).

3.6 Conclusion

We introduce a data-driven technique for localizing an object around a corner. The

technique is robust for variations in the corner geometry and experimentally demon-

strated on three different scenes. We also measured the performance of the system

over a range of values for the albedo and size of hidden object and changes to the

geometry of the scene. We found that our trained CNN performs well over a wide

range of scenes with zero calibration. This robustness is achieved by training the

network on a wide range of synthetic scene variants. The main advantage of the

92

𝞺

𝞱

Sample Trajectory MSE over Sample Iteration Reconstruction

z
x

CNN Prediction

𝞱

𝞺

pa

Sample
𝝻, 𝝨 2. Calculate Reconstruction Loss

𝝨
𝝻

Variational Optimization Loop

𝝻 - 𝝲 Lm ∂𝝻 pm(𝝻, 𝝨)

𝞱,𝞺 𝝻
4. Update Estimate

𝝨 - 𝝲 Lm ∂𝝨 pm(𝝻, 𝝨)

𝞱m,𝞺m N(𝞱,𝞺; 𝝻, 𝝨)
1. Sample M Hypothesis

3. Variational Update

pm(𝝻, 𝝨) = logN(𝞱m,𝞺m; 𝝻, 𝝨)

Lm = || R𝞱m,𝞺m - X ||

𝝻
𝝨

Figure 3-18: An end-to-end refinement approach for object localization around the
corner can be applied when using variational optimization. The advantage of such an
approach is that the forward model does not need to be differentiable. The bottom
row shows the trajectory of the predicted 2D location of the object as updates are
applied, along with the MSE loss for each iteration. The bottom right image shows the
final reconstruction of the observed image from a simple, but fast, non-differentiable
renderer.

93

proposed data-driven technique for seeing around corners is the inherent ability to

leverage complex geometries with the same computational pipeline.

We demonstrated our approach on a full-scale test setup, and found that the

network was well-suited for identifying the relative movement of the hidden object.

Some obstacles remain, such as overcoming scale ambiguity inherent in using a

monocular image source and handling arbitrary scenes. We propose future work that

incorporates a rendering engine to make refinements to object positions by optimizing

for a data-consistency loss. We believe that such hybrid approaches are promising as

data driven methods are more widely used in inverse problems like localizing around

the corner and beyond.

94

Chapter 4

Constraining Light Source

Localization using Visible Occlusion

Boundaries

This chapter describes the geometric constraints for localizing objects from cast shadow

edges. This analysis provides a framework to determine if localization is possible for a

given scene using shadow edges.

4.1 Solving for point localization with known shadow

edges

If the shadow casting edges and the correspondence to the cast shadow are known,

point localization becomes a problem of plane intersection. This section describes this

idea, including the relevant geometry and solution to the optimization problem.

Localizing illumination sources from photos has numerous potential applications

spanning many industries. In consumer photography, lighting estimation is helpful

for image relighting, white balance, and flash removal tasks. Augmented and virtual

reality is concerned with realistic object insertion, which requires an accurate incident

illumination estimate, and scene capture for representing captured images of the

95

a

b

c

Figure 4-1: Left : With a correspondence between edges (a,b,c) and shadows (colored
lines), we can estimate the location of multiple hidden point illumination sources.
Right : We use geometric constraints to validate these shadow proposals and accurately
estimate the 3D location of hidden illumination sources.

real world in virtual environments. Self driving cars and autonomous robots rely

on accurate 3D reconstruction of the world, often from camera sensors, from which

additional lighting cues can help resolve common perception errors. In remote sensing

and satellite imaging, better understanding of the interaction of known illumination

sources such as the sun could improve understanding of objects on the ground.

One of the strongest cues for illumination source position are cast shadows. Shadows

cast by objects illuminated by point sources have been well studied in the context of

computer graphics. In this chapter, we investigate how to utilize the geometry of cast

shadows to localize point sources from images. Our approach is to model the problem

as the inverse of shadow volumes, which are typically used in computer graphics to

calculate the visibility of scene points to point light sources.

4.1.1 Contributions

Our key insight is that shadow casting edges largely constrain incident illumination

recovery. We summarize our contributions as follows:

1. Introduce a framework for establishing the geometric relationships of hidden

illumination sources to the observed scene features in the image space.

96

0

s1

p

l

s0

s1

l

pn𝞱

k k

s

Figure 4-2: Visualization of the geometry for intersecting two planes associated with
two edges. Left : Unconnected edges can be combined even if they are not parallel,
restricting possible point locations to lines in 3D. Right : The same geometry can
describe connected edges, which also constrain illumination positions to a line in 3D.

2. Identify some common image features and how they impact localization perfor-

mance.

3. We demonstrate our methodology for localizing a single point source, with

extensions to multiple point reconstruction.

4.2 Analyzing shadow edges

We show in this section that edges in the scene geometry can be used to define a

scene-specific coordinate system that relates hidden point light source position to

shadow edges. We show that with 3 non-parallel edges that cast shadows in the visible

part of the scene, we can identify hidden point illumination positions in 3D by finding

the intersection of planes. Shadows from 2 edges limits the possible location to a line

(Figure 4-2: yellow ray), while a single edge restricts the point location to a plane

(Figure 4-2: green and blue arrows).

For simplicity, we assume straight edges formed by the intersection of flat faces,

such as edges of a polygonal mesh. We leave the extension of our approach to

continuous curved surfaces for future work. We also assume shadows, edges, and their

correspondence have been provided, and a per-pixel depth is available at capture time.

97

We demonstrate in the Results section some results that relax these assumptions, as

in some cases very little annotation is required.

4.2.1 Shadows Cast from a Point Source

We begin with a model for localizing a single hidden point source. As in Figure 4-2,

we consider a scene point, 𝑝, a 3D vector corresponding to any surface position in the

visible scene, the illumination source position, 𝑙𝑘, and two points on a scene geometry

edge, 𝑠0 and 𝑠1.

In order to describe the position of a hidden light source relative to our scene,

we will construct a coordinate system, starting with a single edge, as illustrated in

Figure 4-3. Given two points on the edge, the goal is to describe all the planes that

intersect those points using a single scalar, 𝜃. As we will see later, two more edges

that are not parallel will enable us to describe the position of a point in 3D euclidean

space using a set of such scalars: (𝜃0, 𝜃1, 𝜃2).

Single Edge

We first construct a plane that lies along our edge, parameterized by 𝜃. The plane

normal, n𝜃, is defined using Rodrigues’ rotation formula:

𝜔 =
𝑠1 − 𝑠0

||𝑠1 − 𝑠0||
(4.1)

v = 𝑠0 × 𝜔 (4.2)

n𝜃 = cos(𝜃)v + sin(𝜃)(𝜔 × v) + (1 − cos(𝜃))(𝜔 · v)𝜔 (4.3)

We use a normalized 𝑠0, 𝑠0, to produce a unit vector, v, orthogonal to 𝜔. For

scene measurements that consist of a single depth per pixel, as in our experiments,

|𝑠0 · 𝜔| ≠ 1 so the cross product produces a non-zero vector. We can then write the

plane equation as:

98

s₁

ŝ₀

ω
s₀

v

v

ω x v

ω

⍺(θ) = 0

n
θ

θ

ω x v
Figure 4-3: We generate a plane parameterized by 𝜃 for each chosen edge in the scene.
Using a per pixel depth map, an equation of the plane along the edge can be reliably
generated for almost any visible edge in the scene.

𝛼(𝑝, 𝜃) = n𝜃 · 𝑝− n𝜃 · 𝑠0 (4.4)

Separately, we notice that the occluding edge, (𝑠0, 𝑠1), and the vector pointing

towards the light source, (𝑙𝑘 − 𝑠0), lie on a plane with the following normal vector:

n𝑙 =
(𝑙𝑘 − 𝑠0) × (𝑠1 − 𝑠0)

||(𝑙𝑘 − 𝑠0) × (𝑠1 − 𝑠0)||
(4.5)

Furthermore, we can solve for 𝜃 given 𝑙𝑘, observing that n𝜃 = n𝑙 when 𝑙𝑘 is on the

plane defined by 𝜃:

𝜃𝑙 = tan−1

(︂
n𝑙 · (𝜔 × v)

n𝑙 · v

)︂
(4.6)

While a single edge allows for us to constrain the position of the hidden point to a

plane, we can combine multiple edges to uniquely define a point in 3D.

Multiple Edges: Scene Coordinate System

At least 3 edges are required to represent a point in R3. Our scene can be represented

as a set of edge coordinates, 𝑘 = [𝜃0, 𝜃1, 𝜃2] ∈ Θ3, where {Θ ∈ [−𝜋, 𝜋]}. We fix 3 edges

in the scene to represent our coordinate system, and find the values of the remaining

99

coordinates using Equation 4.6.

Our point location can be determined by finding the intersection of planes parame-

terized by 𝑘., but we may only have access to one or two edges in the scene. For a

single edge: 𝑘 ∈ Θ, and we can only determine the plane the point lies on. For two

edges or all parallel edges: 𝑘 ∈ Θ2, and we can only find a line that the point lies. For

at least 3 non-parallel edges: 𝑘 ∈ Θ3, and the point can be recovered in 3D.

From Coordinate to Shadows

Now that we have a suitable coordinate system, we refer back to Figure 4-2, and claim

that the planes parameterized by 𝑘 are also possible positions of shadows in the visible

scene. The modeling of shadows from scene edges is well known, typically referred

to as “shadow volumes.” With our new parameterization, however, we can simply

find the values of 𝑘 that align the planes along the shadows and the corresponding

intersection of planes localizes the hidden illumination point. We do this by selecting

a point along each shadow and applying Equations 4.5 and 4.6, replacing 𝑙𝑘 with any

point along the shadow, recovering the values of 𝑘.

We point out that Equation 4.4 now has a useful interpretation, a scene point, 𝑝,

lies on a shadow edge when n𝜃 · 𝑝 = n𝜃 · 𝑠0 since a point on the plane would make

𝛼(𝑝, 𝜃) = 0.

4.2.2 Solving for light source location

In general, we can localize a light source by solving a system of linear equations.

Finding the intersection of planes is useful in other computer vision tasks, and are

often solved in homogenous coordinates [39]. However, we can adapt the coordinate

system we’ve described so far to find the intersection of multiple planes defined by

Equation 4.4. Given a set of corresponding points 𝑠, and normals 𝑛, the intersection

can be solved:

100

𝑆 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑠0

𝑠1
...

𝑠𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ (4.7)

𝑁 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛0

𝑛1

...

𝑛𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ (4.8)

𝑝 = (𝑁⊤𝑁)−1𝑁⊤
3∑︁

𝑘=3

𝑁𝑚𝑘 · 𝑆𝑚𝑘 (4.9)

Here, we solve for the intersection of 𝑚 shadow planes. Note that in order for this

equation to have a solution (𝑁⊤𝑁) must not be singular. Therefore, we need at least

3 planes to localize a point. Furthermore, we find that the intersection of 2 planes

yields a line. The constraints on the recovery of the location of the light source using

just shadow edge information is thus encoded in the ability to invert 𝑁 . Naturally,

more edges should provide a more accurate result. Equation 4.9 provides the least

squares solution to the point source location.

Planar Homologies

While not explored extensively in this work, the relationship between planar objects,

or their planar silhouette, that cast shadows on planar surfaces can be described by

a homology in image space. There is an interesting example of planar homologies

for image editing in [106]. In particular, a planar homology is formed when a planar

occluder casts a shadow onto another plane when the scene is illuminated by a point

source. The shadow cast by the surface mesh of a triangulated 3D object can be

determined by considering the set of triangles making up the mesh as a collection of

planar occluders.

The geometry of planar homologies provide constraints in image space, and are

101

θ₀

θ₁

θ₂

θ₀

θ₁

0

π/2

π

π/2
b

a

θ₂

a

b

Figure 4-4: 3D points can be described by the intersection of 3 planes formed at 3 edges.
There are numerous possible combinations of illumination points, but correspondence
between shadows across edges can enable 3D reconstruction of the hidden illumination
sources.

useful for determining expected visibility between points in image space and known

planar occluders. While the computed visibility terms are useful in many applications,

they are not sufficient for localizing point light sources in 3D as they are inherently

limited to perspective geometry.

4.2.3 Adding Hidden Points

Additional points to the hidden scene will create more shadows cast by the occluding

edges. Figure 4-4 illustrates such a scenario. Reconstructing points by finding all the

intersections of these planes will not work because with only 3 edges, there can be 𝑀3

intersections for 𝑀 shadows per edge. This means that 3D reconstruction is severely

102

(d)

(a) (b) (c)

(e) (f)

Im
ag

e P
atc

h

Man
y D

ive
rse

Edg
es

2D 3D

N
um

be
r o

f H
id

de
n

Po
in

ts

1D

Full 3D
Reconstruction

Ray
 Tr

an
sp

ort

Matr
ix

1

Few

Man
y

Vert
ica

l E
dg

es

Non
 P

ara
lle

l

Edg
es

2D 3D

Figure 4-5: Left : Image features limit the recoverability of the illumination point
position. We show that there’s a range of possible features that can be used for
recovery of incident illumination, and perfect knowledge of the full light transport
may not be required. Right : The geometry we describe introduces a few constraints
and reveals fundamental ambiguities (a,b). We can use this geometry to associate
edges with shadows in image space (c,f), and 3D is a depth map is available (d,e).

ill-posed in some cases. However, combining additional edges can begin to restrict the

possible point positions.

4.2.4 Relation between Point Sources and Edges

From Equation 4.9 we can make some important geometric observations. Figure 4-5

illustrates these scenarios as observed by a perspective camera. Figure 4-5(a-c) show

two parallel edges that are parallel to each other and also parallel to a plane. Figure 4-

5(d-f) illustrates a situation for shadows cast by two non-parallel edges that meet at a

corner, one edge that is parallel to a plane, and another edge that is at an angle to

the same plane.

2 edges produce set of rays, 3 edges can produce a set of points In Figure 4-

5(a,d) we see that two edges can restrict the location of the point to at most a line

(1D), as the intersection of two planes is a line. Combining any number of planes

that lie along parallel edges also can only intersect along a line. Parallel planes will

intersect along a line at infinity.

A natural extension of the first point is to combine three edges with at least one

edge not parallel to the others. The intersection of these planes is a point in 3D, as

103

the intersection of 3 non-parallel planes is a point.

Lack of shadow correspondence can produce ambiguities As show in Fig-

ure 4-5(b), by simply observing shadow edges, it is not possible to determine which

point cast each shadow. This is fundamentally a correspondence problem, as different

combinations of associated shadows can produce phantom points (shades of grey in

Figure 4-5(b)). Corner edges, such as in Figure 4-5(e), make this problem better

posed, but ambiguities can still exist.

A single patch can not recover depth As show in Figure 4-5(d,e), a single local

image patch (show in two shades of yellow) can at best restrict the location of the

point source to a ray. Thus, identifying the corner-shaped shadow in the image, and

drawing a line from the shadow of the corner to the corner itself forms a ray pointing

towards the illumination source. Since all of the rays must pass through the occluding

corner point, the distance to the illumination point can not be determined via parallax.

This is analogous to the depth ambiguity inherent in pinhole cameras.

Lines along shadow edges and occluding edges intersect in image space

We see that in Figure 4-5(c,f), if we draw lines along the occluding edges and extend

the lines along cast shadows, they intersect at a point in image space. Occluding edges

that are parallel to a plane will intersect at a vanishing point, indicating the lines are

parallel in euclidean space. Occluding edges that are not parallel to the plane, such as

the edge marked in blue in Figure 4-5(f), intersect shadow edges at the intersection of

the extended edge line with the plane. Using this observation, we can associate edges

with cast shadows, by ensuring that this intersection occurs. This can also be used to

identify which scene edges are casting shadows, by removing all those edges that do

not form an intersection point with at least one shadow edge.

Implementation Details

The data we use in our validation consist of images generated using the Blender Cycles

path tracer. We use the camera matrix provided by Blender, along with the z-buffer

104

Ground Truth

Estimate

Error: 0.16 m

Depth Map with Gaussian Noise

Noiseless Depth Map

Figure 4-6: Given edge and shadow positions in a realistic synthetic scene, we can
localize an illumination source with a high degree of accuracy. Our approach utilizes
a depth map to estimate the 3D location of scene points, adding noise to this depth
map smoothly degrades localization accuracy, and does not require that the depth
maps are noiseless.

to generate a point cloud. This point cloud provides the 3D location, 𝑝, of each pixel

in the camera’s reference frame. We use this point cloud to define edges using (𝑠0, 𝑠1),

and to check pixel points if they lie on a plane for a particular edge-plane angle, 𝜃.

We use the world-view matrix to convert estimated points in the camera frame back

to world coordinates in Blender to determine error from ground truth.

4.3 Validation

4.3.1 Single Point Localization

In order to demonstrate point localization using our proposed geometric technique, we

rendered a photo-realistic scene containing a variety of different materials, textures, and

geometry using Blender’s Cycles path tracer. An illumination source was placed outside

the field of view of the camera, such that visible objects in the scene cast shadows

onto other visible objects. After manually labeling three edges and corresponding

shadow positions, the point source could be localized within 16cm of the true position.

105

The z-buffer from Blender was used as a depth map to determine the 3D position

of points in the scene. Depth maps captured using RGBD cameras will invariably

contain noise, so we also evaluated our method’s robustness when using a depth map

with additive white gaussian noise. With 1 cm standarrd deviation error applied,

the method performed almost the same as in the noiseless case. Adding more noise

reduced accuracy gradually, and with 10cm noise localization was much less reliable.

4.3.2 Multi-point Localization

In Figure 5-1, we demonstrate localization errors of 0.48m, 0.65m, and 0.15m for

red, blue, and green estimates respectively for a natural scene with multiple point

sources. We point out that the majority of the localization error is along the radial

distance to the visible scene. This is understandable, as the scene in Figure 5-1

contains less parallax between edge geometry than Figure 4-6. We point out that

the observation intersection rule in Figure 4-5(c,f) can be used to verify our edge

and shadow associations. For example, the edge at Figure 5-1(b) and the green edge

would intersect each other near a vanishing point in image space, while the other edges

and shadows obviously intersect in image space. Shadow edges from point sources

are easy to identify, and our scene contains a variety of edges to use for localization.

However, without a known correspondence between shadows from different edges,

there many different possible positions for the hidden points. In practice it may be

beneficial to use additional edges to further localize points. To this effect, beyond

demonstrating the ability of our method to sufficiently localize hidden points, we

conducted an experiment to show 2D reconstruction of multiple points to resolve this

ambiguity.

4.3.3 Localizing shadow edges using image gradients

As described in Figure 4-8, combining two edges is not sufficient for 2D reconstruction

because there are inherent ambiguities that arise from a lack of known correspondence.

In order to investigate this further, we implemented a 2D reconstruction of a hidden

106

(0,0)

y

x

(0,10)

(10,0)

2 Edges 3 Edges

(4.3,3.7)

(2.8,5.8)
y

x

y

x

Measurement

Figure 4-7: One approach to localizing multiple points without a known correspondence
is to use additional edges to constrain possible illumination source positions. Using
the 1D projections of the scene from each edge, we estimate the location of two light
sources in 2D. Observing the singular values of the first 100 singular vectors reveals
additional diversity in the visibility matrix when adding a third edge. This seems to
resolve ambiguities during estimation, such as the false apparent source at (2.5, 2.5).

scene shown in Figure B-1. First, we annotated the position of occluding edges in the

scene as in previous examples, however, instead of specifying shadow locations, we

calculated the gradient between slices of pixels we found using Equation 4.4, as in

[17]. Taking the gradient in this way produces a 1D projection of the scene, and is

easily accomplished using the geometry we propose in the chapter.

For each edge and 32 evenly spaced values of 𝜃, we use 𝑛𝜃 projected in screen space

to determine the direction to take the spatial gradient of the image. We point out that

this enables direct recovery of the 1D projection without first taking a homography.

We then add the value of this intensity gradient to an accumulator, that sums each

local intensity gradient with all all other pixels that correspond to 𝜃. As can be seen

in the scene in Figure B-1, “thin” column occluders will produce a different shadow

pattern than a basic wall edge. We found that simply setting any negative gradients

to zero produced reasonable incident illumination recovery.

Given the 1D projection from each edge, 𝑏, we attempt to estimate the 2D position

107

of all hidden sources, 𝑟. We do this by solving the linear system 𝐴𝑟 = 𝑏, where 𝑟 is a

flattened 32 × 32 grid corresponding to each combination of angles from 2 edges (as

in Figure 4-8). When adding the third edge, we use the same discrete coordinates

from the first two edges, but the 1D projection is shifted due to parallax. The matrix

𝐴 simply maps each 𝑟 to the expected 1D projection. We find the solution to this

system using a non-negative least squares solver with ridge regression.

As expected, we found that adding an additional edge was able to successfully

resolve the ambiguity seen when reconstructing with only 2 edges. The reconstruction

of two circular objects is clearly seen, although they appear stretched in the direction

moving away from the visible scene, which would be expected from due to the limited

parallax available in the visible scene. The first 100 singular values are plotted for

the 𝐴 matrix, for the 2 edge and 3 edge case, further demonstrating the additional

information contained in the third edge.

4.4 Discussion

Detecting known failure cases Our proposed technique presents an opportunity

to determine when localization or reconstruction is not possible due to limitations of

the scene geometry. For example, if we are able to evaluate the scene and determine

if scene edges have a diverse orientation, we can make an informed decision about

whether a reconstruction of the hidden scene may be possible.

Pre-processing and Annotation For the purposes of this section, we provide

manual edge and patch annotation for our scenes. We consider these important sub-

problems which are largely perception problems separate from our core contribution.

While in this work we consider manual annotations as the “input” to our method, other

emerging techniques such as data driven methods may be well suited to automate

these tasks in future work.

Non-Emissive Hidden Objects In order to recover a signal from the hidden scene,

we can subtract an image of the observed scene before an object was introduced around

108

the corner. Subtracting this background frame reveals what pixels in the observed

scene change. This image can be understood as the “differential image” [30] of the

observed scene. In essence, any light paths that interact with the hidden object are

modified, and additional light can make it into the visible scene, making the hidden

object appear like an illumination source. In practice, the majority of the signal

introduced back into the observed scene is additive: the object scatters light from

an active light source back into the observed scene. There are some cases where the

object could block light paths originating from illumination sources in the hidden

scene. In this case the differential image will be negative as the object casts shadows

from these illumination sources in the hidden scene.

4.5 Future Work

4.5.1 Coordinate system for discretizing the hidden scene

While the primary focus of this chapter is to describe the shadow-edge geometry

in the context of illumination point localization, shadow-edge information may be

useful to determine how to discretize the hidden volume when performing full scene

reconstruction. This is because shadow edges are an essential cue for the presence

and location of illumination in the hidden scene. Discretization of the hidden scene

volume is an important part of solving the inverse problem in practice.

Example Discretization

We could discretize the hidden volume in a coordinate system defined by two edges

in the scene, as shown in Figure 4-8. In this way, we define a 2D coordinate system

𝑘 : (𝜃0, 𝜃1), where each (𝜃0, 𝜃1) pair corresponds to a line in 3D euclidean space. We

define a discrete set of N angles for each of these edges, producing a hidden region of

𝑁 ×𝑁 lines, determined by the intersection of the two planes associated with (𝜃0, 𝜃1).

An area to further explore would be to derive the grid spacing directly from

(𝐽⊤
𝑀𝑘

𝐽𝑀𝑘
)−1, which is the inverse Hessian of the coordinate map. The corresponding

109

a

b

θ₁θ₀

θ₀

θ₁

0

π

π/2

a

b

Figure 4-8: A camera observes a field of view shown by solid black box. Defining
a coordinate system using the 𝜃 associated with each edge, we have a natural way
to represent hidden scene coordinates. The yellow square in the coordinate grid is
warped in euclidean space, the area can be determined by calculating the magnitude
of the determinant of the coordinate system Jacobian.

eigenvectors and eigenvalues would inform the direction and relative spacing between

grid points. When the magnitude of the Jacobian determinant is large, it implies

that small changes in the shadow angles produce large changes in the location of

illumination sources in the hidden scene. As such, in Figure 4-8 we would expect the

grid spacing to become larger for points further away from the two occluding edges.

4.5.2 Differentiable Forward Model

So far, we’ve made use of the geometry of occluding edges to determine shadow edge

locations. In this section, we describe how we can think of the shadow-edge planes

as surfaces of a shadow volume. If we smooth the shadow edge discontinuity by

making the step function in the visibility term a steep sigmoid, we can achieve a

simple differentiable renderer where point locations are differentiable with respect to

rendered image pixels.

We then demonstrate a single hidden source localization task and solve it using

110

In
iti

al
iz

at
io

n
C

on
ve

rg
ed

M
ea

su
re

m
en

t

θ: 0.427

θ: -0.30θ: 1.50

θ: 0.429

θ: 0.40

x: 2.9, 5.8, -4.4 x: 3.0, 5.9, -4.5 x: 3.1, 5.7, -4.8

x: 2.0, 3.0, -5.0 x: 5.0, 5.0, -5.0 x: 5.0, 5.0, -5.0

x: 3.9, 6.4, -6.2 x: 3.9, 6.4, -6.2

Figure 4-9: With an initial guess of a single light source location, we estimate the
source position using a differentiable forward model that naturally arises from our
edge-plane parameterization of the hidden point source. By minimizing the mean
square reconstruction error using gradient descent, our model converges for different
initializations. The last column shows a shadow only model, indicating that the model
is not simply using shading and ignoring the shadows to localize the hidden point.

gradient descent. We use gradient descent to find 𝜃 that minimizes the mean squared

error over 𝑀 pixels.

arg min
𝜃

𝑀∑︁
𝑖

||𝐼0(𝑝𝑖) − 𝐼(𝑝𝑖, 𝜃)||22 (4.10)

The full model was implemented using JAX [34], using no momentum and learning

rate of 0.01. Equation 4.10 enables optimization of the point light source position, 𝜃,

in order to match the observed shadow. Our results for some scenes can be seen in

Figure 4-9.

The shading model

We want to estimate an unknown point source location, 𝑙𝑘, from an observed image 𝐼0.

We show how to find 𝜃 that minimizes the mean squared error over 𝑀 pixels.

We use the point cloud to estimate surface normals at each point, and use an

111

initial estimated position of the light source to shade each pixel using a simple diffuse

shading model.

𝐼(𝑝) = 𝑎𝑃

𝑙𝑘−𝑝
||𝑙𝑘−𝑝|| · np

||𝑙𝑘 − 𝑝||2
+ 𝑔 * (𝑙𝑔 · np) (4.11)

Where np is the surface normal and 𝑎𝑝 is the albedo at point 𝑝. To emulate

some “ambient” illumination, we add term using the surface normal and a fixed global

direction 𝑙𝑔 and scaling factor 𝑔. In practice, this ambient term had very little effect on

the optimization since it is constant, but we kept it as it was useful for visualization.

For each iteration of the optimization, we normalized the target and model output

such that they were scaled with pixel values [0, 1].

The visibility term, 𝑎𝑃 , can be defined using our edge-plane parameterization

developed so far:

𝑎(𝑝, 𝜃0, ..., 𝜃𝑁) =
𝑖∏︁
𝐶

(︃
1 −

𝑗∏︁
𝑁𝑖

𝜎(𝛼𝑖,𝑗(𝑝, 𝜃𝑖,𝑗))

)︃
(4.12)

Where 𝜎 is a sigmoid function 𝜎(𝑥) = (1 + 𝑒𝑇𝑥)−1, 𝑇 ≈ 100. The outer product

multiplies 𝐶 convex shadow volume indicator functions. The inner product is composed

of all the planes that make up the shadow volume and its purpose is to multiply to 1

only if the point is on the negative side of each plane equation. In this way, we can

check if a point is in shadow (returns 0) or not (returns 1). We note that this visibility

term in Equation 4.12 can be differentiated with respect to 𝜃.

We shade every image pixel by constructing the plane equation defined by the point

source location and a visible scene edge. This plane equation serves as an implicit

equation for the shadow volume produced by the occluding edge. This plane equation

can be used to weight visible scene pixels by passing it through a sigmoid function,

such that any negative values (inside the shadow volume) are scaled by 0, and points

with postive values (outside the shadow volume) are scaled by 1.

112

Figure 4-10: Example output of solving for each position of a set of point lights. Each
light was initialized on a uniform grid above the scene and the position was optimized
in order to minimize the mean squared error between the measurement and output of
the differentiable forward model.

Optimizing over multiple points

Since we can optimize for a single light source position using auto-differentiation, it

is relatively straightforward to optimize over multiple point source positions simul-

taneously. The observed image under multiple illumination sources is the sum of

all images produced with each individual light on at one time. By adding a sum to

Equation 4.11 over multiple lights, we optimize for the position of a collection of light

sources initialized as a grid of point sources. In the basic scene in Figure 4-10, a single

triangle occluder casts a shadow on a surface observed by a camera.

After a few iterations of gradient descent, the grid of light sources converges toward

113

the shape of the ground truth complex "smiley" light source. Effectively, the point

sources converge to regions of high light flux and remain relatively static in regions of

low light flux.

Handling arbitrary meshes

We extended the simple differentiable renderer to handle multiple triangles for complex

meshes. This approach is easily accomplished by using Equation 4.12, since each

triangle forms a convex shadow volume. While we were able to optimize the renderer

for a more complex scene of a few triangles on a mesh, the product over triangles was

extremely computationally intensive using the JAX autodifferentiation framework.

We also implemented this renderer using the Enoki autodifferentiation library, which

significantly improved the computation time, but this approach is fundamentally less

efficient than emerging path tracing auto-differentiation frameworks such as Mitsuba2.

The reason for this is that calculation of scene points in shadow volumes requires

checking the shadow volume of every triangle in the scene that could possibly cast

a shadow, which scales proportionally to the product of triangle counts and light

sources.

4.6 Conclusion

In this chapter, we propose a method for localizing illumination sources from images.

We identified a geometrical constraint that is commonly found in many real-world

scenes and demonstrate how these constraints can be used to form a forward model to

describe light transport in a scene that contains occlusion. We show that our method

can be applied in scenes with arbitrary edge orientation.

We show how our method can be used to localize a single illumination point,

and multiple illumination points with known correspondences. We further show the

practicality of our approach by implementing two tasks using our framework. First, we

demonstrate multiple source localization and the importance of using as many edges

in the scene as possible. Second we show how an extension to our point localization

114

geometry can be used to create a differentiable forward model properly models cast

shadows. This enables us to perform single source localization using gradient descent.

We hope that in the future, extensions to our approach will foster more direct modeling

of shadows in incident illumination estimation. In broader terms, we hope our work

will serve as inspiration for combining geometrical understanding of light transport in

scenes with perception based tasks.

115

116

Chapter 5

Reconstructing the Hidden Scene

from Object Shadows

This chapter explores the idea that incident illumination estimation is a method

for exploiting hidden cues that can enable the reconstruction of the scene from the

viewpoint of an object in the scene.

In the previous chapters, we describe how object localization and point-light

localization are highly related. We also show how many point-lights can be used

to model extended sources. The common observation used by all point-light based

approaches is that inference about the hidden scene is closely related to the problem of

incident illumination estimation. As such, we bring our focus to incident illumination

estimation directly.

This chapter will build on the principles of coded aperture imaging, where shadows

cast from a known mask onto an image sensor are used to reconstruct images of a

scene. A key idea from coded aperture imaging is that we can describe a linear image

formation model, that can be inverted using standard techniques. We extend this

work to arbitrary objects with 3D shape instead of flat masks.

Consider a small object sitting on a desk in your living room. The object is

illuminated by light sources from all directions—this includes direct sources such as

the sun or overhead lights, but also indirect sources, like the foliage outside that scatters

sunlight through your window. The appearance of the object and the surface that it

117

rests upon results from the complex interaction between the incident illumination and

the geometry and material properties of the object and the desk. In this chapter we

ask the question—if the geometry and material properties of the observed scene are

known, how well can we reconstruct the incident illumination pattern?

If we assume that the illumination sources are distant relative to the size of the

observed object, then we can represent this illumination as a hemispherical photograph

taken from the perspective of the object. Thus, by using our knowledge about an

object to accurately estimate the illumination incident upon it, we effectively turn the

object into a camera.

We primarily make use of shadows cast by an object onto nearby surfaces. Cast

shadows are particularly easy to interpret when an object is illuminated from a

single direction. For example, one can immediately determine the position of the

sun by looking at a sundial. Estimating the illumination incident from all directions

simultaneously is more challenging, and is a linear but ill-posed inverse problem.

Prior methods are commonly limited to controlled capture methodologies. Some

rely upon object’s shading or specular highlights and thus require the bidirectional

reflectance distribution function (BRDF) or precise surface normal information. Our

method relies on cast shadows and requires only the shape of the object and the shape

and albedo of the shadowed surface. Previous works that utilize cast shadows require

planar objects that cast shadows onto planar surfaces. We aim to support complex

3D objects in a general framework applicable to most natural objects and scenes.

We require partial reconstruction of the visible scene surface, such as from a stereo

camera pair, or utilize known object geometry and relative camera orientation. Our

estimates are performed by jointly optimizing for scene parameters using this partial

set of views to approximate the ray transport matrix. Once we have estimated the

ray transport matrix, further estimates only require a single photograph of the scene.

5.0.1 Contributions

• Recover high-frequency environment map from object shadows that does not

require a special setup, specular object, or low-frequency assumptions

118

Figure 5-1: (Top) Observing the area around a small, bunny-shaped object (top-
left), can we recover occluded viewpoints only visible from the bunny’s perspective?
(Bottom) Given the surface geometry of an object (bottom-left), we estimate the
incident illumination, and in some cases, the unknown diffuse albedo of the surface
surrounding the object.

119

• Propose a practical technique for approximating the light transport of an arbi-

trary object in a natural setting from a restricted set of partial viewpoints

• Demonstrate a strategy for solving the inverse problem “in the wild” for a scene

with unknown surface material and using just a single photograph.

• Examine the structure of the ray transport matrix to determine feasible regions

of reconstruction and assess the object-camera performance

5.1 The Object Camera

A perspective camera separates the radiance of light rays that travel through a

particular point in space. A pinhole camera’s aperture separates rays such that each

sensor position receives light from a unique direction. In our proposed setting, a

chosen object forms the camera’s “aperture” and the surrounding visible surface forms

the sensor. Given an image of this object and the shadows that it casts, we hope to

“see” what the object can see from its own perspective.

5.1.1 Inverse Rendering Problem

Inverse rendering is an analysis by synthesis approach, where we optimize the param-

eters of a forward light transport model until the rendered images closely resemble

the measured image. In general, the inverse rendering problem is extremely ill-posed:

there are some combinations of different scene parameters that render very similar

looking images. As such, additional information is required in the form of priors or

additional images to resolve ambiguities.

To illustrate the problem, consider a scene with a single object on a flat surface

that has an arbitrary albedo and diffuse surface reflectance. We aim to reconstruct an

image from the object’s perspective, represented by the set of rays extending from the

center of the object to a distant hemisphere. If we consider only direct illumination,

the observed radiance from a scene point, 𝑥, can be written as follows:

120

𝐿𝑜(𝑥, 𝜔𝑜) = 𝜌(𝑥)

∫︁
Ω

𝑉 (𝑥, 𝜔𝑖)𝐿𝑖(𝜔𝑖)(𝜔𝑖 · n)𝑑𝜔𝑖, (5.1)

where 𝐿𝑜 is the radiance observed by the camera at surface position 𝑥 with surface

normal n, 𝜌 is the spatially varying diffuse albedo, 𝑉 is the visibility of the surrounding

hemisphere, parameterized by 𝜔𝑖, as seen from surface point 𝑥, and 𝐿𝑖 is the radiance

of every incident ray from the surrounding hemisphere. We note that 𝐿𝑖 forms an

image of the incident illumination from the perspective of the object. We assume

that the illuminating hemisphere is sufficiently far away that we only need to know 𝜔𝑖.

This illumination model is often referred to as an environment map.

If 𝜌 and 𝑉 are known, solving for 𝐿𝑖 is a linear inverse problem. Concretely, if

we discretize these spatially varying functions, with incident illumination vector x

corresponding to illumination directions sampled over the environment map, and y

the pixels of the corresponding image, we can write the above equation in matrix form,

where “⊙" is the Hadamard product:

y = diag(𝜌)(V ⊙C)x = Ax, (5.2)

Where 𝜌 is a 𝑀 × 1 vector of diffuse albedos, V is a 𝑀 ×𝑁 matrix, C is a 𝑀 ×𝑁

matrix of the cosine factors, and x is a 𝑁 × 1 vector of unknown illumination radiance.

Combining factors, we obtain a linear system of equations represented by the matrix

A, where A = diag(𝜌)(V ⊙C). We can therefore solve for the environment map, x,

by minimizing the mean squared error: ||Ax− y||22.

5.1.2 Solving for Incident Illumination

Overview of Approach Rather than decompose the matrix explicitly for every

scene as in Eq. 5.2, we make use of a modern rendering framework to represent

the more complex structure of the model matrix, A. Since we model the incident

illumination using an environment map, we can generate the rows of A by rendering

an image for each illumination source in the discretized environment map.

Our inverse rendering problem is composed of two steps:

121

Figure 5-2: Given a known surface geometry and shadow surface albedo, we estimate
the environment map illumination using a single observed image by solving Eq. 5.3. For
easier viewing, basic tonemapping was applied to all images using gamma correction
with clipping (𝛾 = 2.2, image normalized such that the sun is clipped).

122

1. Render the approximate light transport matrix using estimated scene parameters

2. Estimate illumination or albedo by solving the corresponding linear system

The scene parameters we estimate at step 1 are the camera extrinsic parame-

ters, scene surface mesh, and diffuse surface albedo. These parameters could be

known a priori, or obtained using some other 3D reconstruction methodology such as

photogrammetry.

Rendering the Ray Transport Matrix We utilize the Mitsuba 2 [85, 71] path

tracer to render the ray transport matrix. Each column in the A matrix is associated

to an individual pixel in our environment map, and consists of the image that is

rendered when only that single environment map pixel is lit. The rendered images

are the columns of A: Ai = 𝑓𝜃(xi) where xi[𝑖] = 1 and xi[𝑗] = 0 when 𝑖 ̸= 𝑗. 𝑓𝜃(x)

represents the Mitsuba 2 rendering pipeline given scene parameters 𝜃. In our case, 𝜃

are the surface geometry mesh data and uv texture maps with corresponding diffuse

albedo or other material parameters. We map x to the texture data used by the

environment map emitter, where image pixels correspond to latitude and longitude in

spherical coordinates.

Jointly Solving for Illumination and Albedo With known surface geometry

and material parameters, we can solve for the incident illumination. We write the

illumination recovery problem as the solution to a linear system, where the rows of

the model matrix, A, are comprised of rendered images for each component (e.g. ray)

of the illumination model. Since A⊤A is not necessarily well conditioned, we add

spatial smoothness and L2 regularization, such that we aim to minimize the following

objective:

arg min
x

||Ax− y||22 + 𝜆𝑠||Dx||22 + 𝜆𝑟||x||22

s.t. x >= 0,

(5.3)

where D is the spatial difference operator and 𝜆𝑠, 𝜆𝑟 are regularization parameters

controlling spatial smoothness and L2 regularization respectively.

123

Figure 5-3: Given a ray transport matrix computed assuming all surface albedo are
one, and 3 images with unknown surface albedo or illumination, we estimate both
using the update procedure described in Equation 5.7. Three different texture maps
are shown, the observed images are rendered with global illumination.

Typically, the estimated albedo of the shadow surface is unavailable or not ac-

curate enough to obtain good results. We found that jointly estimating albedo and

illumination was essential to make our model robust to poor initialization of mesh

albedo, due to occasional artifacts in the surface texture produced by photogrammetry.

Given a ray transfer matrix, A′, rendered using Mitsuba with or without an existing

albedo texture map, we augment our forward model with a per-pixel scaling factor as

a proxy for diffuse albedo: A = diag(𝜌)A′.

As pointed out in [101], we also observed that adding a pixel-wise scaling term

to emulate the diffuse albedo residuals seemed to make the illumination estimates

more robust. As such, given the ray transport matrix rendered using Mitsuba, A′,

we can solve for the per-pixel scaling term. Since the albedo term is fixed under

changing illumination conditions, it is advantageous to write the following objective

for 𝐿 observed images, yl, and the associated environment map, xl.

Thus, we minimize the following objective:

arg min
𝜌

∑︁
𝑙

||diag(A′xl)𝜌− yl||22 + 𝜆𝑝||G𝜌||22

s.t. 0 < 𝜌 ≤ 1,

(5.4)

124

where G is the linear inverse operator: G = (A′⊤A′ + 𝜆𝑟I)
−1A′𝑇 . This is similar

to the regularization term used in [101], and discourages albedo estimates that can

be easily reconstructed using the ray transport matrix, such as cast shadows.

In practice, we solve for the albedo term, 𝜌, and each environment map, xl,

separately. We solve Equations 5.3 and 5.4 using damped Newton’s method, with

update steps in the direction of x* and 𝜌*, defined below.

The unconstrained minimum solution of Equation 5.3, x*, satisfies the linear

equation, with R = 𝜆𝑠D
⊤D + 𝜆𝑟I:

(A′⊤diag(𝜌)2A′ + R)x* = (diag(𝜌)) ⊙A′)⊤y (5.5)

Similarly for the 𝜌* and Equation 5.4:

(𝜆𝑝G
⊤G +

∑︁
𝑙

diag(A′xl)
2)𝜌* = yl ⊙

∑︁
𝑙

A′xl (5.6)

Equations 5.5 and 5.6 can be solved efficiently using a linear solver. With x* and

𝜌*, we alternately update 𝜌𝑡+1 and x𝑡+1 until convergence using a damped Newton

step with damping factor 𝛾, applying a projection H after each step:

𝜌𝑡+1 =𝐻0,1(𝜌
𝑡 + 𝛾(𝜌* − 𝜌𝑡))

x𝑡+1 =𝐻0,∞(x𝑡 + 𝛾(x* − x𝑡))
(5.7)

Where H is a simple clipping operator, with min ≤ 𝐻min,max(·) ≤ max.

Combining Multiple Images While this work evaluates data from a single camera

pose, our framework can be applied to 𝑃 camera poses each with 𝐿 illumination

conditions as described below.

Multi-Illumination For a static camera with 𝐿 different illumination conditions,

we solve for each x*
l environment map separately. Updating the albedo scaling factor,

𝜌, only requires one solution once each environment map, xl, is computed.

Multi-Viewpoint If there are 𝑃 viewpoints, we find x* by solving a larger system

of equations, by stacking the light transport matrix associated with each camera

125

Figure 5-4: An object of known shape (a bunny) is placed in a controlled illumination
environment. Illumination patterns are displayed on an LCD display placed above the
object, and a camera observes the shadows that the object casts onto a flat surface.
From this single image we produce an estimate of the illumination pattern seen by
the object. A chrome ball is used to collect ground truth data in the object’s position
for each test pattern.

pose, Ap, and observed images yp. We estimate a single environment map while

incorporating information from all viewpoints. To find 𝜌p for each camera, the set of

yp,Ap are used to solve each 𝜌p
* separately.

5.2 Implementation

Image Capture For all of our experiments, we capture a single “target image”, y,

using a DSLR camera (Canon EOS Rebel T5). For alignment to the object, we use

a photogrammetry pipeline that includes structure from motion, mesh generation,

and surface albedo estimation. In some of our real experiments, we use the known

geometry. For the ground truth environment map, we photograph a chrome ball with

exposure bracketing for high-dynamic-range (HDR).

Rendering System For all experiments, we performed the rendering computations

on a single Nvidia RTX 2080. Ray transport matrices took between 200-300 seconds

(scene dependent) to render 2048 total images with environment map textures sized

32×64. Results in Fig. 5-3 converged in about 5 iterations (∼25 secs/iter) running on

the CPU.

126

5.2.1 Synthetic Results

Realistic HDR Environments We rendered the ray transport matrix with known

geometry and albedo for the black albedo bunny supported by a white planar surface.

Each row of the ray transport matrix was rendered using 32 bit floats with 768 samples

per pixel (spp). Observed images were rendered with 25.6k spp using freely available

high dynamic range (HDR) probe images of real environments.1. We show the effect

of renders with fewer spp and larger variance in the supplement, as well as an analysis

of additive noise.

To solve Equation 5.5, each ray transport matrix requires approximately 500 MB

of memory. We found that reconstructions took a few seconds on our machine using

an Intel Xeon Silver 4210 CPU with 256GB RAM. As we see in Figure 5-2, we achieve

reconstructions of the HDR environment maps with a reasonable recovery of the

relative intensity of the bright sources.

Unknown Albedo and Illumination Conditions In practical scenarios, the

surface albedo of an object may be unknown. We can overcome poor estimates of

the surface albedo by jointly recovering the albedo and illumination. In Figure 3,

we separate the albedo and illumination for three different textured versions of the

bunny under a bright moving illumination source. Our initial ray transport matrix is

generated using an all-white albedo for both the bunny and shadow surface. Upon

initializing the albedo and environment map to all ones, we apply the update scheme

in Equation 5.7 with 𝛾 = 0.9 for 20 iterations. We notice that the first update quickly

resolves the albedo, but it often takes an additional iteration before the environment

maps begin to converge. While both Equation 5.5 and Equation 5.6 can be solved

in one step, we found it useful to reduce the learning rate such that the projection

operator could enforce the constraints without collapsing the environment map solution

to all zeros.

1https://hdrihaven.com

127

Failure Cases We found that HDR environment maps with extreme dynamic range

can pose a challenge for reconstruction. In Figure 5-2, the bright sun has a radiance

of ∼ 10000 : 1 compared to the sky. Our approach attempts to estimate the HDR

scene, but primarily resolves the brightest sources and ignores the detail in darker

areas of the scene. When the environment map is clipped, producing a low-dynamic

range (LDR) scene (only possible in simulation), our method is able to recover finer

details. While we did not investigate further in this work, encouraging the recovery

of darker regions is challenging because any HDR compression added to the output

of the forward model would make it nonlinear. Similarly, since our method relies on

tiny variations in the observed scene, our method is susceptible to errors in the HDR

capture process.

The recovered albedo maps contain minor artifacts resembling the shadows in

the observed images. We unsuccessfully applied a wide range of values for the

regularization proposed in [101]. However, diverse and extended sources help reduce

the appearance of these artifacts, but that may be due in part to the softer shadows

cast by these objects. We were able to estimate convincing albedo using environment

maps of real scenes, but the associated estimated environment maps often contain

“retro-reflection” artifacts along the retro-reflective direction from the camera to object.

These artifacts only appear after the first few iterations of projected gradient descent,

and so reasonable results are achieved using early stopping. We show additional results

in the supplement highlighting these failure modes.

Gradient Descent Baseline We compared our method in Table 5.1 to a stochastic

gradient descent (SGD) baseline by minimizing reconstruction error using Mitsuba 2’s

auto-differentiation capabilities. We update both the scene albedo and environment

map using Mitsuba 2’s Adam optimizer, with learning rate 0.01. For the multi-

illumination/unknown albedo scenes, the recovered albedo using Mitsuba 2+Adam

was slightly better in terms of RMSE, but remained quite noisy, reducing SSIM. We

believe Mitsuba 2’s improved albedo estimation is due to the fact that our linear

diffuse albedo model does not account for global illumination. As such, applying our

128

proposed method to quickly solve the linear approximation and then fine-tuning for

non-linear effects using a differentiable renderer is a promising direction for future

work.

Our approach has a number of advantages over gradient descent. In the simpler case

where scene albedo is known, the loss function in Eq. 5.3 can be solved exactly in a single

step using a linear solver (∼4.5 secs in our CPU numpy implementation). Additionally,

once the albedo has been estimated, the regularized inverse, G, can be applied to

new measurements to quickly estimate novel illumination without re-computing A.

Furthermore, our analysis in Section 5.3 is made possible by first rendering A. We

show in Table 5.1 that our method converges faster than Adam+Mitsuba 2. However,

since our method effectively computes the Hessian, A⊤A, this advantage may not

scale to high resolution environment maps. Regardless, faster low resolution estimates,

like the proposed method, would remain useful for initialization.

5.2.2 Real-data Results

3D Printed Probes We 3D printed a 5cm tall “Utah Teapot” and low poly “Stanford

Bunny” in black filament such that the 3D shape of the object is known, but the surface

of the object would make it difficult to use any other cues for incident illumination

estimation.

Each object was placed below an LCD panel (43" LG Desktop Monitor), on a

white sheet of computer paper, approximately one meter away from the display. The

shortest and longest monitor dimensions correspond to a 45 and 90 degree field of

view from the perspective of the object respectively. The display was used to show

different patterns, and an image of the object was captured with a known camera

orientation, about one meter from the 3D printed object. Reconstructions are shown

for each test pattern in Figure 5-4.

Figure 5-4 shows cropped and centered environment maps with each side cor-

responding to a 79 degree field of view. There are some apparent distortions in

the reconstructions, such as a missing corner in Figure 5-4(e). We also produced

reconstructions using much higher environment map resolutions (up to 256 × 512) and

129

Scene
/ Method

Envmap
RMSE

Envmap
SSIM

Albedo
RMSE

Albedo
SSIM

Compute
Time (s)

Multi-
illumination “dots” 0.417 0.43 0.286 0.78 327

+L2 0.075 0.62 0.219 0.81 327
+L2+Smooth (ours) 0.075 0.63 0.219 0.81 327
+L2+Smooth+[101] 0.075 0.63 0.218 0.81 338

Grad Descent
Baseline (early stop) 0.531 0.41 0.202 0.69 327

Grad Descent 0.501 0.68 0.172 0.73 1434
Known albedo “garden” 0.492 0.24 - - 225
+L2 0.078 0.77 - - 225
+L2+Smooth (ours) 0.063 0.83 - - 225

Grad Descent
Baseline (early stop) 0.294 0.31 - - 225

Grad Descent 0.120 0.57 - - 975

Table 5.1: Ablation study: Multi-illumination: RMSE/SSIM relative to the known
synthetic ground truth for the unknown albedo “dots” scene computed for 5 iter-
ations for each set of added regularization terms. Known albedo: RMSE/SSIM
computed for the HDRI “garden” scene for a single iteration. The compute times
include pre-rendering of the ray transport matrix (220 secs) for the proposed method.
Gradient Descent was stopped early to compare results under similar compute times,
corresponding to ∼3461 iterations. The learning rate for Adam, 𝛾 = 0.01, for the
gradient descent baseline was chosen to maximize SSIM after full convergence, which
took significantly more time than the proposed method (+L2+Smooth).

130

Figure 5-5: Ground truth albedo maps used to compute the RMSE/SSIM metrics in
Fig 3 and Table 1 in the paper. Mitsuba2 ‘aov‘ integrator was used to output the
per-pixel uv coordinates, which were then read from the texture. This also enabled
measurements of the RMSE/SSIM of the recovered albedo texture obtained using
Mitsuba2 autodifferentiation and gradient descent in image space for the gradient
descent section of Table 1. Note that some artifacts from the Mitsuba2 ‘aov‘ integrator
are apparent near the feet and ears of the bunny, potentially artificially raising the
RMSE of the estimated albedos.

higher input image resolutions, but found they did not produce significantly improved

reconstructions while taking longer to compute.

5.3 Analysis

5.3.1 Robustness to Sensor Noise

Estimates with Simulated Noise Regardless of the accuracy of a given ray

transport matrix used for reconstruction, any real image will have some amount of

noise from the sensor. This includes shot noise caused by the random arrival time

of photons, which is a Poisson process, and noise from the analog electronics in the

sensor from thermal effects or dark current, which can be approximated by a Gaussian

process. As such, we start with a “No Noise” image obtained from a path tracer

with sufficiently high samples per pixel. We then add Poisson noise based on the

pixel intensities of the “No Noise” image and add Gaussian noise with some standard

deviation to the shot noise image.

We show results in Figure 5-6, where we plot the structural similarity index measure

(SSIM) of the ground truth environment map compared to the estimated environment

131

Figure 5-6: Top Left: Amber the unicorn and space invader. Estimated environment
maps given noisy observations and their corresponding structure similarity index
measure (SSIM). We synthetically added noise to a rendered image with pixel values
between [0,1]. (Right column) Estimated environment maps with no noise, Poisson
(i.e. shot noise) only, and Poisson + additive Gaussian noise with increasing standard
deviation (𝜎) and zero mean. (Bottom left) The SSIM plotted against SNR (20 log10(

1
𝜎
))

in dB.

map given a noisey image. We see that reconstructions only begin to significantly

degrade once sufficient Gaussian noise is added to the observed image. This provides

some confidence that our method should work under realistic noise environments.

Variance from Path Tracer in Synthetic Results For all of our synthetic results,

we render observed images using a path tracer. This is to ensure we are actually

solving the inverse problem, as opposed to generating synthetic observed images using

the ray transport matrix itself. If the observed images are rendered without enough

samples per pixel, estimated environment maps are poor due to the variance of the

path tracer’s monte carlo estimate of the true image. This variance does not have

an obvious physical analog, so we prefer to use sufficient samples to avoid problems.

Figure 5-7 shows a range of values for the samples per pixel and the corresponding

reconstruction results. We used these reconstruction results to determine how many

132

samples per pixel to use in our synthetic experiments.

Using a Higher Resolution Ray Transport Matrix In the main text we used

environment maps with a resolution of 32 × 64, which provided a decent trade-off

between computation time and resolution. However, there is no reason that our method

could not be used with higher resolutions. Unfortunately, the use of higher resolutions

comes at a significant computational cost, as doubling the resolution increases the

ray transport matrix memory requirements and flops for a forward calculation by 4×.

Inverting 𝐴⊤𝐴 has a higher computational cost as the ray transport matrix increases

in size. While out of the scope of the paper, the uncertainty maps in Figure 7 of

the main text may provide a useful cue for irregular-sampling of the ray transport

matrix such that higher resolutions can be preserved while reducing the total size

of the matrix. Below we discuss further some of these issues and potential future

directions when scaling this method.

Regularization Parameters For all experiments in the paper, we used the fol-

lowing values for the regularization parameters in Equation 6 and Equation 7 in the

main text, 𝜆𝑠: 600, 𝜆𝑟: 100, 𝜆𝑝: 1. We used a slightly different set of parameters for

Figure 5-14 in the supplement, due to the challenge of model mismatch, 𝜆𝑠: 1, 𝜆𝑟:

200, 𝜆𝑝: 1.

5.3.2 Additional Results

Teapot In addition to the results in Figure 4 in the main text, we show environment

map estimates using a Utah Teapot in Figure 5-9. The quality of the reconstructions

is not as good as the bunny results shown in the paper, but do appear to be successful.

The teapot is rounded and is comparable to the sphere in Figure 7 of the main text,

which we expect to produce lower resolution reconstructions than the bunny object.

Interestingly, the same bright pixel artifact seen to the top right appears in both the

teapot and bunny reconstructions. We hypothesize that this pixel corresponds roughly

to the retro-reflective path from the perspective of the camera.

133

Figure 5-7: Estimated environment maps compared to ground truth given rendered
observed images with decreasing number of samples per pixel (spp). The left column
shows the rendered observed images with decreasing number of spp, and the right col-
umn shows ground truth and the estimated environment map given the corresponding
observed image.

134

Figure 5-8: Higher resolution estimates. Illumination estimation using a higher
resolution ray transport matrix (environment map 64 × 128), using the same regular-
ization parameters used in the main text. Reconstructions are not significantly better
than the lower resolution case and artifacts are apparent. This suggests that tuning
regularization parameters could improve results for higher resolution reconstructions.

Figure 5-9: Estimated environment maps for a 3D printed teapot. In the top row, we
show a cropped ground truth environment map centered on a display placed above
the object. The middle row shows the estimated environment map with the same crop
applied, and the bottom row shows the observed images captured using the camera.

135

Real Data using 3D Printed Object The main text shows environment map

estimates from rendered models and realistic environment maps. In Figure 5-10, we

show estimated environment maps captured using a 3D printed bunny on a white

sheet of paper placed in various real world environments. For each estimate, we first

determine the pose of the camera using a known printed pattern printed on the white

paper near the bunny location, we obtain correspondences from the camera image to

the known pattern and use the OpenGV [54] library implementation of the UPnP [55]

algorithm to obtain the camera pose. Using the known intrinsic parameters of the

camera, we mirror the scene in Mitsuba2 by matching camera parameters to Mitsuba’s

pinhole camera model. Since the 3D printed object was not affixed to the sheet of

paper, we also perform a manual alignment step to ensure the 2D position and 1D

rotation of the bunny match the captured image. We point out that much of this

pipeline could be automated using standard object detection and pose estimation

techniques. We also suggest that future work could utilize Equation 5.8 to refine the

object position directly using a renderer capable of calculating derivatives of geometric

parameters, such as the pose of a mesh.

Overall, the reconstructions are reasonable, and all major bright sources in the

scene are recovered. It may not be surprising that the sun is recovered, but for the

more indirectly illuminated scenes, the reconstructions contain more interesting detail.

For example, in the second major row of Figure 5-10, most of the blue sky and a

specular reflection of the sun from a building surface are recovered. In the first major

row, the square shape of the window is recovered, as well as the light source in the

upper left corner. There appear to be some artifacts near the horizon, as expected

and discussed in relation to Figure 7 in the main text.

Notably, the reconstructions appear to fixate on the brightest sources, but when

the brightest sources are blocked, as in the last row of Figure 5-10, the resulting

environment map estimates contain less bright sources. It is a topic of future work to

explore the effective dynamic range of estimated environment maps.

136

Figure 5-10: Environment map estimates using real data captured using the 3D printed
bunny placed on a white sheet of paper and placed in various real environments. The
left column shows the observed image captured by the camera and the corresponding
reconstruction from the estimated environment map. The middle two columns shows
a full-resolution ground truth environment map displayed with two gamma correction
factors and the same environment map resized to the dimensions of the estimated
environment map. The right column shows estimated environment maps. All environ-
ment maps are shown with two gamma correction factors to highlight the brightest
sources in the scene.

137

Differential Illumination Estimation One application of using objects as cam-

eras could be for static surveillance cameras that observe a scene over a period of time.

While most of the environment map will remain unchanged, can a person walking by

be detected in the subtle changes to the observed image?

In Figure 5-12, we captured a sequence of four images of the bunny, each at a

different point in time as a person was walking by. As seen in the top row ground

truth environment maps, the person is moving from right to left from the perspective

of the object. We preprocess the observed images by subtracting the first frame from

the last three frames. As such, our observed images contain both positive and negative

values, as seen in the bottom row of Figure 5-12. Given these observed images, we

perform the environment map estimate without the non-negativity constraint, so

the estimated environment map contains both positive and negative values. We can

observe a moving negative region as the person blocks the sky behind them, and a

brighter region where the sky was originally blocked in the first frame.

Such an approach could be used to detect subtle variations in the observed scene,

and this experiment demonstrates the feasibility of estimating “differential environment

maps” that explain how the observed scene changes as the surrounding illumination

changes.

Albedo Estimation using Realistic Environment Maps In the main text we

demonstrated the simultaneous estimation of albedo and illumination for somewhat

simple localized light sources. We show a similar result in Figure 5-13, but in this case

use more realistic environment maps. We found that letting the alternating update

method run to convergence led to poor estimates of the individual environment maps,

while the albedo appeared largely unchanged for much of the optimization. Instead,

we show albedo and environment map estimates after only 3 iterations. The resulting

albedo looks reasonable, and the environment maps appear to correspond far more

closely to ground truth than the results obtained after full convergence.

More analysis is necessary to determine when our alternating update scheme is

successful, but this result highlights some of the inherent difficulty of this setting. In

138

Figure 5-11: Visualization of main text Table 1 results. Predicted environment maps
compared to the gradient descent baseline for two stopping criteria. Within a similar
computation time as the proposed method gradient descent produced lower quality
estimates, requiring a greater number of iterations to converge. While convergence
may be accelerated by using a larger learning rate, this led to poorly converged results.
Table 1 in the paper contains the RMSE/SSIM values for these images.

139

Figure 5-12: Estimated “differential environment maps” given a temporally subtracted
image. The top row shows the starting frame from a sequence of 4 images with
a human figure (magenta). The second row shows the subsequent 3 images in the
sequence as the human figure (cyan) moves from right to left in the frame. The
third row shows the estimated environment maps without a non-negativity constraint
applied, showing how adding a figure subtracts light (cyan), and removing a figure adds
light (magenta) to the scene from particular directions. The bottom row shows the
observed differential images taken by subtracting the observed image corresponding
to the top row from the observed image corresponding to the second row. All images
have been normalized with a maximum value of either [-1,1] for display purposes.

particular, it appears as though an excess of energy was placed in the top center of the

fully converged environment map estimates, which corresponds to the retro-reflective

light direction. This led to a reduction in residual error but did not improve results.

5.4 Discussion

The paper assumes much of the object and surrounding surface is known, such as

the surface geometry and material properties. While we show some ability to handle

unknown diffuse albedo, there are other sources of model mismatch that lead to

failed illumination estimates. To provide such a case study, we attempted to use

photogrammetry to create the surface mesh and approximate material properties from

a partial set of views. In this way, the complete model would not be needed a priori

and could be obtained using standard computer vision tools. Results can be seen in

Figure 5-14. We believe these results highlight additional sources of model mismatch

140

Figure 5-13: Simultaneous estimation of illumination and albedo for realistic outdoor
environment maps. Solving the same problem shown in Figure 3 of the main text,
but with realistic extended sources. On the left column we see three observed images.
Given known geometry but unknown albedo, a ray transport matrix was generated
using a white albedo for all surfaces. The second column shows the per-pixel estimated
albedo after convergence. The environment maps associated with each observed image
are shown in the next 3 columns: (third column) The ground truth environment map
for 3 realistic scenes, (fourth column) estimated environment maps after running all
iterations, (fifth column) estimated environment maps when running for 3 iterations
where more structure is preserved.

that can be addressed in future work. We also propose a simple extension to the paper

that may handle some of these sources of error.

Below, we describe our photogrammetry experiments. We make use of an existing

photogrammetry pipeline Meshroom [80, 44, 6] to recover camera poses, scene geometry,

and diffuse albedo.

Using Meshes captured from Photogrammetry In practical settings, known

3D shape and camera orientation are rarely available. We demonstrate our approach

when the visible surface is entirely estimated by photogrammetry. We capture 10

images along a line about 2 meters away from the object, sampling a limited set of

viewpoints within about a 20 degree angular fan originating from the object. The

recovered surface mesh from photogrammetry does not model the back surfaces of the

objects (see Figure 5-14a).

In order to obtain better results of texture estimates of our surface mesh, we found

it useful to capture two images at each camera pose. The first image is taken with

a flash, and the second with no flash. We subtract out the non-flash image from

the flash image to remove all non-flash illumination from the image. The recovered

141

Figure 5-14: Estimation results from meshes obtained using photogrammetry. The left
set of panels shows the capture and pre-processing approach: (a) Using photogram-
metry, we obtain a camera pose, surface mesh, and diffuse texture. We capture two
images (b) a flash image and (c) an image without a flash. (d) We use the flash-only
image as input to the texture estimation using photogrammetry. On the right section,
we use the approach on the left to recover the 3D geometry and diffuse texture of
three objects: a book, monster, and dragon. For each of these objects we generate
the corresponding ray transfer matrix and produce an estimated environment map.
While the brightest sources can be identified in the estimated environment maps, the
estimates appear to suffer from model mismatch, such as the warped recovery due to
the larger dragon object and nearby light fixture. Addressing these failure modes is
an area for future work.

flash-only images led to much better results in the full surface estimation pipeline.

Masking out Object Surfaces For all of our experiments, we create a seg-

mentation mask to remove the pixels of the object in the scene. We found that

the reconstructions still succeed in these cases, but the region of the environment

map pointed back towards the camera (i.e. the retro-reflective direction) sometimes

contains bright phantom sources. We hypothesize that this is due to the lack of shadow

information for these illumination orientations (the object blocks the image of the

shadow from the camera perspective). For this reason, object surfaces can help reduce

this ambiguity. Adding object surfaces back into the reconstructions reduce these

artifacts, but do not seem to significantly improve reconstruction in other incident

illumination directions.

While the reconstructions in Figure 5-14 show the two brightest reconstructions

(the blue on the left and yellow on the right), the estimated environment map contains

142

other artifacts. To this end, we hypothesize the following sources of error are highly

influential, and could be addressed in future work. Given a ray transport matrix

without these sources of model mismatch, the main text demonstrates that high

frequency environment maps can be estimated.

Surface Mesh Error In Figure 5-14a, the carpet surface seems well captured.

However, the resulting geometric texture produces a complex appearance for grazing

illumination angles near the horizon. If the recovered surface mesh is incorrect, a

small error in this mesh could cause it to cast a shadow over many observed pixels.

Simplifying the resulting mesh and baking in this fine surface detail into normal

maps may reduce the effect of false self-shadowing while still maintaining realistic

appearance for less extreme incident illuimation angles.

Albedo Estimation Error We use flash-only images (using the processing de-

scribed above) for photogrammetry and albedo estimation. While the resulting

textures appear correct, small stitching artifacts and other artifacts from non-uniform

illumination from the flash are apparent upon close inspection. While our method

can be somewhat robust to diffuse albedo under certain conditions, reducing these

artifacts may be beneficial.

Object Large relative to illumination distance Interestingly, the estimated

environment map in Figure 5-14 corresponding the “Dragon” appears compressed

relative to ground truth. The two brightest sources appear to be shifted slightly to

the left and are closer together than expected. It’s important to note that the dragon

is actually fairly large, about 30cm tall, while the nearest illumination source (the

blue-tinted source) is only about 0.5 meters from the dragon. Furthermore, the other

bright source, the yellow-tinted luminaire is only about 2 meters from the dragon

center. In this situation, the dragon’s size may introduce a warped environment map

estimate due to parallax. The use of environment maps may be inappropriate for

nearby light sources, and instead a more general 4D light field may be necessary to

account for such effects. Regardless, warped estimated environment maps may still be

useful for re-lighting or applications where accurate angular recovery is not needed.

143

5.5 Future work

5.5.1 Updating the Ray Transport Matrix

We might attempt to reduce model-mismatch by optimizing the ray-transport matrix

using a differentiable renderer. While we did not make use of the feature in the

experiments, Mitsuba2 [85] can calculate gradients of internal scene parameters with

respect to rendered pixels. We sketch out a simple way to incorporate our lighting

estimates to iteratively update the ray transport matrix. This would be very useful,

as effects such as global illumination are not modeled by our linear diffuse albedo

model, but could be “baked-in” to the ray transport matrix. In this way, we could

alternately solve for illumination and rendering parameters to account for non-linear

interactions of parameters such as color bleeding.

Given an initial guess of the scene parameters, 𝜃, and an illumination estimate, x̃,

we can minimize the following objective.

arg min
𝜃

||𝑓𝜃(x̃) − y||22 + 𝜆𝑖𝑅𝑖(𝜃)

s.t. 𝐶(𝜃) > 0

(5.8)

With regularization terms 𝑅𝑖(𝜃) and constraints, 𝐶(𝜃), which indicates physically

valid parameter values, and y, the pixel data for the captured image. Equation 5.8

can be solved using stochastic gradient descent. The resulting scene can be used to

render a new transport matrix for environment map estimation using the method

described above, alternating until convergence.

5.5.2 Adding robustness to model parameter uncertainty

Estimating scene parameters such as surface geometry using photogrammetry can

produce errors in the forward model. If we know that we are uncertain about certain

scene parameters such as precise geometry, BRDF, or camera intrinsic parameters,

we should use this knowledge to assist in solving the inverse problem. We propose a

simple approach that is analogous to domain randomization used in Chapter 1 for

144

data-driven methods. A detailed overview is provided in Appendix A. The key idea

is to minimize the expected error under model uncertainty, which leads to a simple

model averaging scheme.

5.5.3 Alternative Forward Models

Neural Ray Transport Model: There is an appeal in combining data-driven

methods and the family of model-based linear inversion methods described in Chapter 4.

We show that it is possible to train a neural network to reconstruct the ray transport

matrix from a dataset of input-output pairs in Appendix A. This is an avenue for

future work.

Volumetric Rendering: While we propose to use photogrammetry to estimate

model parameters such as surface geometry, volumetric rendering may better model

the uncertainty of scene parameters relevant to the problem. Volumetric rendering is

also trivially differentiable, making it well suited for both the forward model and to

update model parameters. We introduce a simple volumetric renderer which shows

promise for future work.

5.5.4 Approximate Inverse of Continuous Linear Operator with

Deep Neural Network

A linear operator, which for the discrete case corresponds to a matrix, 𝐴, can have a

corresponding inverse operator. For the ridge regression case, this would be:

𝐺 = (𝐴⊤𝐴 + 𝜆I)−1𝐴⊤ (5.9)

Where G is the linear inverse operator for L2 regularization with regularization

parameter 𝜆.

If we compute G, can we train a neural network to approximate the rows of G?

For illumination estimation, it’s more natural to consider 𝐴 and 𝐺 as 4D functions

of 2D lighting angle, (𝜃, 𝜑), and 2D pixel space, (𝑥, 𝑦). In practice we observe that

145

𝐺 is typically sparse and smoothly varying under perturbations of all parameters

(𝑥, 𝑦, 𝜃, 𝜑). This is due to the structure of (𝐴⊤𝐴 + 𝜆I)−1, which is sparse and similarly

smoothly varying. In special cases, this inverse is Toeplitz, such that it can be modeled

as a convolution.

For the discrete case, we simply generate a dataset from the rows of G, and train a

DNN to approximate the row given a scalar corresponding to row number. We sample

an illumination direction(𝜃, 𝜑), and the DNN generates an image with dimensions

(𝑥, 𝑦) that resembles the corresponding reshaped row in G.

Furthermore, while we can sample rows of A, and potentially the rows of G (using

a differentiable renderer), can we train a DNN to approximate the continuous linear

inverse operator?

For the continuous case, let 𝑓(𝑥, 𝑦, 𝜃, 𝜑) be a function of illumination angle and

observed image pixels, 𝐿𝑖(𝜃, 𝜑) corresponds to the continuous illumination function,

and 𝐿𝑜(𝑥, 𝑦) is the continuous observed image radiance in pixel coords.

Therefore, the linear operator is applied by taking an inner product:

𝐿𝑜(𝑥, 𝑦) =

∫︁
Ω

𝑓(𝑥, 𝑦, 𝜃, 𝜑)𝐿𝑖(𝜃, 𝜑)𝑑𝜔 (5.10)

The function 𝑓(·) is in general smoothly varying in (𝜃, 𝜑) but discontinuities can

exist. However, the inverse operator 𝑓−1 should be sparse and smoothly varying, as

its discrete verions, G, is. Thus the inverse operation can be written:

𝐿𝑖(𝜃, 𝜑) =

∫︁
Ω

𝑓−1(𝑥, 𝑦, 𝜃, 𝜑)𝐿𝑜(𝑥, 𝑦)𝑑𝜔 (5.11)

Can we approximate 𝑓−1 using a DNN? This would be a function of input (𝑥, 𝑦, 𝜃, 𝜑)

and map to a scalar value. Then, at inference time, the DNN approximator would be

queried at samples of the corresponding values for a given image 𝐿𝑜(𝑥, 𝑦) and desired

environment map resolution for (𝜃, 𝜑). A simple extension of this approach would be

for the inverse network approximating 𝑓(𝑥, 𝑦, 𝜃, 𝜑)−1 to estimate the 4D light-field

instead of just (𝜃, 𝜑). In this way, the network would estimate the corresponding

inverse operator over the full spherical light-field, e.g.: (𝜃, 𝜑, 𝑢, 𝑣), for ray direction

146

and position along the hemisphere. In this way, (𝑢, 𝑣) represents a position on the

surface of a sphere surrounding the object and (𝜃, 𝜑) would correspond to a local set

of 2D directions, or positions on a hemisphere with center point at (𝑢, 𝑣).

It would be more convenient to represent the function as an input of (𝜃, 𝜑), and

output as a 2D image with dimensions (𝑥, 𝑦):

DNN(𝜃, 𝜑) → 𝑔𝜃,𝜑 (5.12)

At inference time, we sample from the desired set of illumination directions we

want to reconstruct and generate the corresponding matrix, 𝐺, or perform the inner

products directly.

The intuition is that 𝐺 should be highly compressible given that it is sparse and

smoothly varying, so it would be well approximated by a DNN. Furthermore, if we could

sample from continuous valued input of illumination direction, (𝜃, 𝜑), then training

would be quite easy. Regardless, training on samples of (𝜃, 𝜑) by pre-computing 𝐺

as a dataset may make the learned DNN able to smoothly interpolate for higher

resolution reconstructions. It would also require less memory and reduced amount of

computation depending on the necessary complexity of the DNN architecture.

As an added benefit, the architecture itself could introduce regularization, for

example if it was a CNN decoder, it may benefit from "Deep Image Prior"-like

regularization by exploiting spatial similarity and smoothness in observed image space,

(𝑥, 𝑦).

How to compute a row of G directly using a differentiable renderer?

With a differentiable renderer, could we render a row of G directly?

I’ve observed that (𝐴⊤𝐴 + 𝜆I)−1 is sparse, smooth, and appears to be spatially

localized. For object shadows, it often resembles a laplacian operator, such that in 𝐺,

rows of 𝐴⊤ are selected for such that the image for a ray direction of interest is added

to negative images of surrounding ray directions.

This intuitively makes sense, as it is almost a finite difference approximation of

147

the Hessian? Perhaps the gradient of the image with respect to incident ray angle

could be used to calculate this directly? This would correspond to the gradient

of the visibility function and other shading terms, and could be computed using a

differentiable renderer like Mitsuba2.

5.5.5 Alleviating Storage Requirements for Large Linear Mod-

els

One potential drawback of the linear systems approach to high frequency illumination

estimation is that the size of the model matrix A can become quite large for modestly

sized problems, and this can lead to memory issues. In the main text we largely

avoided this issue by limiting ourselves to low resolution measurement images and

environment map estimates. However there are more sophisticated strategies that

exploit the peculiar nature of the illumination estimation problem to reduce memory

requirements.

The unwieldly size of A is due to the fact that it is effectively a 4-dimensional

structure that maps 2D environment maps to 2D measurement images. However,

all of the information required to generate A can be stored in a lower dimensional

surface mesh and texture map. This suggests the possibility of more memory-efficient

inversion algorithms that could query a rendering engine to obtain necessary matrix

elements rather than forming the entire matrix in memory.

As an example, consider the linear system posed in Eq. 6 of the main text. The

system can be written more simply as

Bx = (A⊤A + R)x = A⊤y = z (5.13)

We note that B has dimensions 𝑁 ×𝑁 and z has dimension 𝑁 , where 𝑁 is the

size of the environment map vector. These dimensions are independent of the number

of pixels (𝑀) in the measurement image. If we could form this sysem directly, without

storing A, this would make the use of high resolution measurement images more

practical. The elements of B and z can be written as

148

𝐵𝑖𝑗 = ai
⊤aj + 𝑟𝑖𝑗 , 𝑧𝑖 = a⊤

𝑖 y. (5.14)

Here 𝑟𝑖𝑗 denotes the 𝑖𝑗𝑡ℎ element of 𝑅, and a𝑖 is the 𝑖𝑡ℎ column of A, which can be

generated using a rendering engine. We see that each element of B can be generated

by rendering and taking the inner product of two frames. Because B is symmetric,

𝑁2 total frames (𝑁2𝑀 total pixels) must be rendered to generate the entire matrix.

These frames could be recycled to generate z.

Although this method allows us to avoid storing A directly, we have traded speed

for memory. Although A may be much larger than A⊤A when the measurement

images are large, A can be generated from just 𝑁 rendered frames (𝑁𝑀 pixels). As

an intermediate option we might instead consider the case where we are allowed to

store blocks of A with a maximum size of 𝑠2 entries. In this case we can compute

the product A⊤A using block matrix multiplication. By re-using elements in the

pre-rendered block, we can reduce the number of pixels that need to be rendered by

approximately a factor of 𝑠, such that we only need to render 1
2𝑠
𝑁(𝑁 − 1)𝑀 pixels

total.

5.6 Conclusion

Reconstruction using the shadows cast by objects onto their surrounding surface can

be practically achieved using tools used commonly in computer vision and graphics

research. Shadows are an important cue for high-frequency incident illumination

estimation and can be essential for solving an otherwise poorly-conditioned problem.

149

150

Chapter 6

Discovering and Exploiting Hidden

Cues

6.1 Data-driven Hidden Cue Discovery

The trained networks can be inspected in a number of different ways. One common

technique is to calculate the class activation map in input image space. These maps

show the gradient of the class prediction with respect to the input pixels. Effectively,

this can be interpreted as a kind of sensitivity analysis. We apply this technique to

the network trained in Chapter 3 in Figure 6-1. We observe that the network learned

to make use of cues in the input image. Perhaps most interesting is that the images

resemble what we might expect to see for an inverse operator.

Appendix A explores this idea a bit further, but mostly focuses on creating networks

that learn the forward model. If the network is trained using input-output pairs from

a simulation or real measurements, it would not be difficult to expand the idea in

Appendix A to learn the inverse operator directly.

We also note that the gradient shown in Figure 6-1 can be interpreted as a column

of a matrix, 𝐺, that is a linear approximation of the neural network. As such,

it may be possible to obtain a linearized forward model from the neural network

directly: 𝐺 = (𝐴⊤𝐴)−1𝐴⊤, where 𝐴 could be found by optimizing for its entries that

have the corresponding equality. Furthermore, applying physical constraints, such as

151

Figure 6-1: (Left): The background subtracted, or differential image used as input
to localize objects in Chapter 3. (Middle): The network is trained to predict the
likelihood of an object located within a 2D area. Since the network is differentiable,
we can show the gradient of the input pixels with respect to the predicted location.
(Right): Incredibly, the gradient resembles an edge filter than identifies the shadow
edge and also reveals important pixels near the corner-floor and back wall.

non-negativity of 𝐴, may be a way of regularizing the neural network.

6.2 Hidden cues from the linear inverse operator

Using the linear inverse operator found in Chapter 5, we can easily extract maps of what

input pixels are important to estimate light from different directions. Furthermore,

we can utilize Cook’s Distance [28] to analyze sensitivity of input pixels for specific

scenes. This approach is analogous to the analysis used by the neural network based

methods above.

Interestingly, we found that these cues were quite similar to the Laplacian of the

rendered image with respect to incident illumination, which could be computed by a

differentiable renderer.

Extracting the Shadow’s Edge In Figure 6-2 we show that our algorithm im-

plicitly amplifies the edge gradients to determine the intensity of illumination from

a particular direction. In the bottom row we plot the rows of the inverse operator

matrix G = (A⊤A+R)−1A⊤ (referred to in [17] as “estimation gain images”). These

rows are correlated with the input image to estimate the intensity of illumination

152

Figure 6-2: Our algorithm implicitly amplifies the edge gradients of shadows cast from
a particular direction. (Top Row) Shadows rendered for point illumination above and
to the right, and behind and to the left of the bunny-shaped occluder. (Bottom row)
Corresponding rows of regularized inverse operator.

153

originating from a particular direction.

Determining Influential Image Pixels Given a target image measurement, we

can quantify the influence that individual pixels have on our estimated environment

map using a statistical tool known as Cook’s distance [28]. The Cook’s distance

measures the effect that removing a measurement has on an estimated curve fit, and

can be expressed as follows:

Di =

∑︀𝑀
𝑗=1(𝑦𝑗 − 𝑦𝑗(𝑖))

2

𝑝𝑠2
=

𝑒2𝑖
𝑝𝑠2

[︂
ℎ𝑖𝑖

(1 − ℎ𝑖𝑖)2

]︂
(6.1)

Here 𝑦𝑗 denotes the re-projected curve fit (that is, the image rendered using our

environment map estimate 𝑥̂) obtained when all measurements are used for the fit,

and 𝑦𝑗(𝑖) denotes the fit obtained after the 𝑖𝑡ℎ data point has been removed from

the measurement set. The quantity 𝑠2 = e𝑇 e
𝑀−𝑁

is the mean square error of the fit

ŷ calculated from the residual vector e = (y − ŷ) and the dimensions of the model

matrix. The value ℎ𝑖𝑖 is referred to as the leverage of the measurement 𝑦𝑖 and is

defined as the 𝑖𝑡ℎ diagonal element of the hat matrix H = A(A⊤A + 𝜆𝑟I)
−1A⊤.

In Figure 6-3 we’ve plotted an image of Cook’s Distance corresponding to a specific

target image measurement. As expected, we notice that the pixels with the largest

Cook’s Distance appear to lie within the shadowed regions.

Assessing Object-Camera Performance Although the Cook’s Distance is useful

for determining which pixels in a specific set of measurements are most influential, we

may also want to assess how influential individual pixels are in general, independent

of any specific set of measurements. For this purpose, the leverage of individual

measurement channels can be a useful metric. The leverage of pixel 𝑖, previously

defined as the 𝑖𝑡ℎ diagonal component of the hat matrix, can also be defined as follows:

ℎ𝑖𝑖 = a*
𝑖 (A

⊤A + 𝜆𝑟I)
−1a*⊤

𝑖 =
𝜕𝑦𝑖
𝜕𝑦𝑖

(6.2)

Here a*
𝑖 corresponds to the 𝑖𝑡ℎ row of the matrix 𝐴. Figure 6-4 includes an

image of per-pixel leverage values calculated for the bunny-camera. We note that, as

154

Figure 6-3: We plot an image of the Cook’s distance (bottom right) associated with
each pixel in the target image shown on the bottom left. The estimated environment
map associated with this image is shown in the top row. The Cook’s distance image
has been compressed with a gamma value of 0.5 to highlight interesting features.

155

Figure 6-4: We illustrate how occluder shape impacts object-camera performance by
generating images of per-pixel leverage (top row) and environment map uncertainties
(bottom) for three occluder shapes: a bunny, a sphere, and a coded aperture mask
[59].

with Cook’s distance, the pixels closest to the base of the bunny appear to be most

influential.

Given a particular object-camera configuration, we might also be interested in

assessing which entries in an environment map we can expect to reconstruct accurately.

We take the square roots of the diagonal entries of the covariance matrix of our

least-squares fit: Σ = (A⊤A + 𝜆𝑟I)
−1—that is, the inverse of the Hessian of the loss

function defined in Eq. 5.3. We ignore the scene smoothness prior for the sake of

analyzing the intrinsic properties of the object-camera.

A plot of these relative uncertainty values is also shown in Figure 6-4. From this

image, we anticipate that the bunny-camera will be best at reconstructing illumination

arriving from above and slightly to the left or right of the bunny.

Effect of Occluder Shape Our analysis of the bunny-camera makes it clear that

the shape of the occluder can have a significant effect on the object camera’s perfor-

mance. This has important practical ramifications. For instance, we might choose to

opportunistically exploit occluders found “in the wild” that are likely to produce accu-

rate reconstructions of illumination originating from certain directions. Alternatively,

we could design an optimized occluder shape that can be 3D printed and used as an

object camera in the real world.

156

We demonstrate the effect of occluder shape in Figure 6-4. We show leverage and

uncertainty maps for three different occluder shapes—a bunny, a sphere, and a 2D

coded aperture mask. Compared to the bunny-camera, the sphere-camera achieves

reconstruction uncertainties that are more uniform across the hemisphere, but that are

higher on average. In contrast, the coded aperture mask achieves very low uncertainties

when the shadow of the mask falls within the camera field of view, but uncertainty is

high when the mask is illuminated edge-on, and very high when light originates near

the horizon.

6.3 Good cues are robust to model parameter uncer-

tainty?

We observed that adding certain types of regularization to the objective used to solve

our inverse problems produced inverse operators, either as a neural network or matrix,

that when analyzed produced intuitive hidden cues. We hypothesize that good cues

are thus a product of inverse operators that are robust to model parameter uncertainty.

By solving inverse problems, we might uncover hidden cues present in certain types

of environments. Once we extract and characterize these cues, is there an opportunity

to develop imaging systems that make use of these cues? This section explores this

question in more detail.

We also suggest and end-to-end framework that might be useful for designing

imaging systems that exploit hidden cues, without the manual process of characterizing

or understanding hidden cues by a human designer.

6.4 Future Outlook: Designing Imaging Systems that

Exploit Hidden Cues

Over the course of billions of years, natural organisms have evolved highly effective

imaging systems that often surpass the best designs produced by humans. Imaging

157

systems are ubiquitous in nature, almost every animal capable of movement has some

form of image-based perception system. Natural designs are highly efficient and robust,

often consisting of hardware and information processing that is well suited for the

actions an animal must perform to survive in their ecological niche. Furthermore, the

perception systems of natural systems often make use of “unusual cues” present in

their environment, leveraging as much of the environment as possible to accomplish

necessary tasks for survival.

As in nature, imaging systems are essential in modern robotics. However, modern

imaging systems are often designed independently of a particular robot’s task, and

thus may be limited in their lack of adaptation to a given environment. For example,

a robot designed to pick up trash may use an RGB video camera, and fail to detect

transparent plastic bottles scattered around it. The robot’s designer must identify an

opportunity to modify the imaging system: perhaps transparent plastic bottles exhibit

florescence when illuminated by UV light. Thus, a more robust imaging system might

incorporate UV illumination. A specialized task often provides an opportunity for

the imaging system designer. Unfortunately, there is presently no systematic way to

discover these unusual cues in the environment. How can we discover how to exploit

these cues in order to close the gap between what humans and nature can create?

Given continued trends in physical simulation, falling costs of computation, and

general purpose large scale optimization techniques, the question is if these capabilities

could enable autonomous “computational discovery” of designs beyond what is possible

with human designers today. Such an approach may lead to more rapid development

of artificial perception systems that are perfectly adapted to a given environment,

making them lower cost and more reliable in accomplishing their tasks.

We propose a computational design framework consisting of an system architec-

ture selection step, followed by parameter tuning for a specific task in a simulated

environment. The performance of the tuned system would then inform future system

architecture selections and enabling an iterative process of imaging and information

processing system design. In order to develop a system that could be implemented in

practice, we introduce a number of trainable optical components that can be composed

158

Figure 6-5: Left: A typical high-level architecture for a perception stack employed in
a real environment. A sensor observes a complex environment, sometimes using active
probing (e.g. LiDAR). Data is then processed to provide suitable information (e.g.
state estimates) for control or other tasks. The raw data can be saved and labeled in
a dataset that can be used for offline training and validation. Right: a) The standard
design process for such a system utilizes an engineered spec, collection and labeling
of data, and then real-world testing. b) The proposed approach makes use of an
end-to-end optimization framework to produce the hardware design and engineering
specification automatically in a process we call “computational discovery.”

and trained end-to-end.

6.5 Computational Discovery of Computational Imag-

ing Platforms

Taking inspiration from nature and the trends in optical design and machine learning,

we propose a framework, we call “computational discovery,” for using computational

methods to design novel perception systems automatically. Since most of the pieces

have been developed in the last few years, we believe an integrated design framework

is now possible. However, there are some remaining open challenges limiting direct

application of these ideas, which we also discuss below.

A high level overview of the approach can be seen in Figure 6-6. This approach

is similar to that described in Section 2.4.5, however it adds an initial architecture

selection step before optimizing the learnable parameters. In essence, the architecture

describes how individual components are combined, with each component containing

parameters that may be trained.

159

Figure 6-6: A high-level overview of the proposed design framework. i) given a library
of components, Architecture Selection proposes a component graph that is used to
encode an instance of a parametric imaging system and neural network for information
processing. ii) The parameters in these components are initialized and the system is
evaluated on a task in a simulated environment. iii) The loss from this task objective is
used to calculate the gradient of the parameters which can be updated using gradient
descent. The loop between ii. and iii. continues until convergence. iv) The final best
task loss value is used to score the selected architecture, which is used to inform better
architecture selection. The entire loop can then be iterated until convergence.

6.5.1 Architecture Selection

In architecture selection, we define graph from a library of components (see Figure 6-7),

each with a set of tunable parameters. The architecture consists of a graph consisting

of components as nodes, and edges describing how each component connects to their

neighbors. We start with a given image sensor component as the root node in the

graph, and add additional optical components. In this way, the architecture selection

step must generate a candidate graph that represents the optical system as a set of

connected components.

We also include the architecture of any information processing neural network as

part of the architecture selection step. This network would take the image sensor

values as input and make predictions depending on the desired task. Importantly, the

entire architecture, both optical and neural network, contains parameters that can be

trained end-to-end given a task objective.

160

Generating the Component Graph

Similar to the architecture selection produced by [9], we can define a deep neural

network (DNN) that iteratively builds the architecture by predicting what other

components to add to a given component. A key feature of this approach is the

addition of a “EXIT” component that represents that nothing is connected, ensuring

the component graph eventually has the equivalent of an entrance pupil, where light

would enter into the optical system.

The architecture selection DNN could be trained using Q-learning or another

reinforcement learning technique, where the reward function could be derived similarly

to Section 6.5.3.

Traditional Optical Components

Components could consist of traditional optical components. For example, a library

could consist of an image sensor, lenses, stand-off distances, and phase masks. Starting

from the image sensor, the architecture selection network would choose relevant

components. For example, it may select a stand-off distance, followed by a phase

mask, a lens, and completed by the EXIT component.

Volumetric Design Component (VDC)

One downside to selecting from a set of traditional optical components is that the

space of possible designs is limited to some valid combination of library components.

We propose to add a general-purpose component that defines a volume, where each

point in the volume contains parameters such as the absorption coefficient, scattering,

and index of refraction. We note that the surface refractive optics, such as lenses, are

important information, and as such this component would be capable of representing

these surfaces using a local normal vector within the volume. We call this a volumetric

design component (VDC).

Such a component is highly general purpose and can simplify much of the component

graph. Given a graph consisting of an image sensor followed by a VDC, most animal-eye

161

like optics could be represented.1

While the VDC concept is highly desirable, real-life implementations would require

a sufficiently advanced 3D printer, or some other way of reproducing the volumetric

information. A simple 3D printer with black plastic filament and a clear plastic

filament could be used to produce a minimal design. It may be possible to use just

black filament, but constraints to ensure the proposed designs are 3D printable would

be necessary. With an optically clear and optically absorbing material, any VDC

using these two plastics could be printed and the design would be structurally stable.

Learnable parameters

Each optical component described so far would contain a number of parameters

that are differentiable with respect to the base image sensor component. Given

modern auto-differentiation frameworks, many components and learnable parameter

combinations are possible. These parameters could include lens curvature, phase mask

codes, or stand-off distances between components. These parameters can be tuned for

a particular application using gradient descent.

In the case of VDC, volumetric path tracers are trivially differentiable, making the

parameters used by the phase function at each point within the volume part of the set

of learnable parameters.

6.5.2 Task-specific Parameter Optimization

Given an architecture consisting of a component graph and the corresponding set of

trainable parameters, we can define a objective to optimize for a particular task. We

do this by creating a simulation of the component graph in a differentiable renderer,

such that we can render the image sensor values given the optical system defined by

the component graph. This image is then fed to the DNN which makes a prediction.

This stage has been explored in related work (see Section 2.4.5), and can make use of

many of the techniques developed so far in the community.

1Not including the curved surface of the retina since the image sensor would likely be flat.

162

Figure 6-7: In order to define an imaging system, we produce a set of optical com-
ponents in an optical library. Each component contains an input, and most also
contain outputs, which represent how they may be connected with other compatible
components. For example, on the left we have library components from left to right:
An image sensor, coded aperture, standoff distance or air gap, lens, and the VDC, or
volumetric region where each point in the volume corresponds to an optical material
(via absorption or refraction) that could be 3D printed. Each of these components
contain some parameters that are differentiable with respect to their outputs or inputs,
making them well suited for propagating gradients using backpropagation. On the
right, we show different instances of component graphs that might be possible. These
graphs encode the optical system design. Note that while not shown here, branches
are possible if components have multiple possible outputs, such as a beamsplitter.

Simulation of Environment

A particular challenge when using a novel imaging system is the collection of training

data. The simplest form of training data is to use existing image datasets. If we

assume the entrance pupil of an imaging system is sufficiently small such we can

approximate the observed scene as optically far away, we could make use of images

taken with a known camera field-of-view (FOV) to obtain the radiance values that

enter the imaging system. In a rendering engine, this could be accomplished by

creating a rectangular light source sufficiently far away and orthogonal to the imaging

system, with a chosen image as a texture to modulate the light source intensity.

While the dataset generation approach enables the use of existing image datasets,

it does not properly account for more complex optical effects. A more general purpose

approach would be to make use of a full simulation of the environment. Using

photogrammetry or other scene reconstruction techniques, a real environment could be

scanned to obtain accurate geometry and surface reflectance data. This environment

model could then be used by the renderer to produce a close to physically accurate

163

simulation of the full optical system. While it may require significant effort to obtain

high-fidelity models real-world scenes, it would enable the “discovery” of unusual cues

within a chosen environment that the optical system could make use of. For example,

if the scene contains many reflections from puddles of water along the ground, a

perception system may make use of these reflections to improve depth estimates by

combining these reflections with direct views to better triangulate an object on the

horizon.

Optimization

Given an architecture selection, dataset, and task objective function, the entire set

of system parameters can be trained end-to-end using gradient descent. The goal of

this optimization would be to discover the best set of parameters to solve a particular

task. While DNNs often find very good local minima, it is less likely the parameters

corresponding to optical components would avoid local minima and poses a potential

challenge for optimization. As such, multiple runs with different initialization would be

needed to select from the best set of parameters. An area of future work would be to

define optical components that are less susceptible to getting trapped in local minima.

Regardless of these challenges, natural evolution appears to have produced the eye

after following incremental steps, so perhaps using a highly configurable component

like the VDC may avoid these issues.

6.5.3 Improved Architecture Selection

After optimizing for the set of imaging parameters on a task, the best task objective

value can be used to score the performance of a particular architecture selection. This

score could serve as a reward function for training the architecture selection network.

In addition to using something like a architecture selection network like that used

by [9], an evolutionary strategy could be employed that would simply perturb the

component graph by randomly adding or removing components. We anticipate such an

approach would be highly inefficient as many proposed architecture selections would

164

be unusable or produce poor images, but may serve as a starting point. This step may

prove extremely challenging since it may require an enormous amount of computation.

For this reason, we are particularly interested in the VDC, as such a general purpose

component may make it unnecessary to apply this step at all. In effect, the VDC

could become any combination of components in the library for a given task, so an

outer loop may not be necessary. Despite the potential of the VDC concept, the

exact configuration of the DNN used for information processing and specific shape

and resolution of the VDC would still need to be decided, making it likely some level

of outer-loop architecture selection will still be necessary.

Regardless of the selection scheme, starting from random guesses for how optical

components may be combined, eventually better architectures will be selected that

will perform better on a given task.

6.6 Experimental Design

In order to validate the integrated computational discovery framework described above,

we envision started with a platform we call “Robobee.”

Our approach would incorporate a simulated model of the environment, optics,

and information processing system (as a DNN), and our goal would be to optimize a

set of parameters that could be easily translated into a manufacturable specification.

We also envision the development of a testing platform that contains a multitude of

configurable sensor designs that would enable a rapid assessment of performance in a

real environment before mass-manufacturing the optimized perception system.

6.6.1 Robobee Platform

We envision Robobee as a small, unmanned aerial vehicle with on-board sensors and

computation. Flight is accomplished using motor powered propellers in a quadcopter

configuration. This choice of propulsion allows us to use a large quadcopter for testing

and more easily scale down the final design.

165

Figure 6-8: The Robobee is a small UAV with a vision system designed to solve a
specific task. In order to automatically discover the imaging system, we use a virtual
environment to evaluate different combinations of possible sensors for a navigation
task. These designs are evaluated in a real platform which is configured with a
general purpose navigation stack. Information from the simulated and real validation
environments are used to refine the final specification defining the Robobee, which
only contains a subset of possible sensors and computation.

6.6.2 Collision-free Movement Task

For all Robobee experiments, we propose a high-level navigation task: move forward

through an environment without collisions. The task will be considered solved if the

Robobee is capable of travelling forward along an approximate heading while avoiding

obstacles. A high-level plan could be defined using GPS or other data to sketch the

approximate local headings. In this way, the Robobee will perform local navigation

using only visual sensors, which would be highly useful for navigating in cluttered

environments.

6.6.3 Experiment 1: Sensor Suite Selection

While full novel imaging system design is an ultimate goal, we first propose to

demonstrate the imaging architecture selection using a restricted scenario. In this

setting, we define a library of sensor modules such as standard video sensors, SPAD

sensors, and active illumination sources. The optical components would enable some

level of configuration, such as coded masks, or a discrete set of lens options, but

the majority of the optical system would be defined ahead of time. In this way,

the architecture selection step would attempt to select the best sensor and optical

166

configuration given a possible suite of options.

Given sensory input from the selected sensor configuration, a DNN would be trained

to predict local control movements that would move the platform forward while avoiding

obstacles. This DNN would output high-level controls such as elevation, rotation, and

lateral movement, while the quadcopter control system using accelerometer, gyroscope,

and barometer would handle the low-level motor control.

Our design pipeline, depicted in Figure 6-8, consists of three steps:

1. Virtual Environment: We first create a simulation of a test environment and

possible sensor components. Using RL techniques to train the navigation DNN,

we iterate over the sensor architectures that produce the best performing control

DNN.

2. Real Environment Validation: A larger quadcopter capable of carrying all

sensors would then be set to match the optimized configuration found in the

virtual environment. This test platform would contain its own navigation stack

as a backup to intervene in case the test platform is at risk of a crash.

3. Final Specification Manufacture: Upon successful validation, a specialized

smaller lightweight drone with only the necessary visual components and compute

would be constructed. This design is well adapted for the given task, but less

general purpose.

If the demonstration of this image architecture selection task is successful, there are

a number of key metrics that would be interesting to investigate. First, the total power

consumption based on the total weight and compute resources could be compared to

the more general purpose navigation stack baseline. A related measure would be the

speed with which the perception system could perform local navigation.

It would also be important to measure the number of optical design candidates

proposed within each step of the design process. We should be able to evaluate orders

of magnitude more candidates for the virtual environment than the real environment,

such that the time spent validating designs in the world world should be reduced. The

167

exact trade-off between simulation performance and modeling compared to real-world

validation would be interesting to understand how quickly and reliably a design could

be produced.

6.6.4 Experiment 2: VDC for collision-free movement and im-

age sensor

In the second experiment, we would optimize component graph consisting of an image

sensor and VDC placed on top of the sensor. This experiment would follow similar

steps and evaluation as the first experiment, but would focus on analyzing the patterns

of the VDC that emerge in different navigation environments. As such, a fully trained

VDC would be produced for a number of navigation environments: forest, indoors,

and urban. We hypothesize that some features may be quite similar, while the exact

VDC pattern may be different depending on the environment used for training.

In practice, we envision the final Robobee using a VDC as a single image sensor

with a 3D printed cube place on top of it, where the cube was printed using 2 plastics:

black and transparent. It is possible the optimized design could resemble a pinhole

camera, regular pinholes near the sensor, or a more complex coded aperture. In

interesting analysis would be to see how the optimized design changes with each

iteration of the corresponding control DNN.

6.7 Discussion

6.7.1 Enabling Manufacturing Technologies

The emergence of 3D printing technologies for manufacture of high-performance

mechanical parts (using materials such as metal, carbon composites, and plastics) has

enabled a large design space of possible part designs. Design tools are increasingly

used to propose parts that are stronger, and more lightweight than would be produced

by a human designer. Often the proposed designs can only be produced by a 3D

printer, but often the improved performance justifies an increased cost of 3D printed

168

parts.

Our VDC concept making use of more complex optical designs described above

would require a 3D printer capable of producing different optical properties within

a 3D volume. In particular, special care would need to be taken to ensure optically

important boundaries—such as at index of refraction changes—are sufficiently smooth.

6.7.2 Nature’s optical design grammar

Natural imaging system are encoded in DNA by a sequence of 4 possible nucleotides,

which encode the amino acid sequence used to construct the proteins that are respon-

sible for the shape and function of all of life’s designs. Rather than encoding the

optical properties directly, the resulting proteins encoded by DNA are more similar to

a complex computer program capable of self-reference and recursion. When eyes are

“manufactured” in nature, proteins are used as structural material, act as scaffolding,

or even trigger the production of other proteins in an unfathomably complex process.

This encoding is not only useful for describing the eye design morphology, but also

because it appears simple perturbations of the DNA sequence can have complex effects

on morphology, such as going from producing only one eye to two. It would be an

interesting future direction to capture some advantages of this encoding using an

artificial approximation.

While it is clearly infeasible to simulate protein interactions on the scale required to

grow an artificial eye, perhaps some other efficient encoding of the desired morphology

could be used. The deep image prior (DIP) appears to exhibit self-reference and

recursion when generating images, and it may be interesting to consider an analogous

approach for producing VDC. A neural network could be trained to output the desired

optical properties given an input representing a 3D point within a volume. In this

way, the neural network could be queried with enough 3D points to generate a VDC.

An advantage of this approach is that the network could efficiently store things like

repeating patterns or simple structures within its parameters that would otherwise

require a large volumetric data-structure. As such, incremental changes to the network

weights may produce more creative and dramatic leaps in design that would otherwise

169

not arise from perturbing the VDC parameters directly.

6.7.3 Making use of the environment

Another key insight from nature is to consider the environment an important part

of the imaging system. While the environment can generally not be modified, it

imposes constraints that might lead to efficiency gains, by obviating certain signals or

introducing new "unusual cues" or signals that a given imaging system can use rather

than directly observing the subject.

In this way, the design optimization should include a realistic environment that

contains these cues. By synthetically evolving the structure and information processing

in a realistic environment, the resulting design may learn to make use of these

environmental cues.

6.7.4 Risks

Complexity of defining task objectives

Initial work would utilize simple task objectives—e.g. “travel fast without colliding

with the environment”—that could be easily encoded in the simulation framework

using standard reinforcement learning reward objectives. As tasks become more

complex or nuanced, it may be useful to develop new ways of encoding task objectives.

Furthermore, there may be certain external considerations, such as power consump-

tion and weight which may be incorporated into the full task objective in order to

constrain solutions that accomplish the task objective. These design constraints may

also act as regularization, selecting more simple designs that solve the task equally

well.

Unfortunately, it is less clear how to take inspiration from nature for defining

the task objectives. Natural selection for survival probably does not contain enough

information to produce a useful perception system. An interesting way this could

produce perception system designs is to create a simulation of “competitive” organisms

capable of eliminating each other. In this way, good perception is required for a given

170

design to survive. It may be possible to define such a synthetic environment that

creates a perception system that could be useful for more specialized tasks as well.

Combinatorial explosion of possible designs

One of the most challenging aspects of this proposed work is efficient sampling of

component graphs defining new imaging systems. Auto-differentiation allows the

parameters of these components (position, size, frequency, etc) to be differentiable

with respect to some objective function. However, the ordering of the components into

a graph is seemingly non-differentiable or even combinatorial. We believe ultimately

this problem can be addressed by learning approximate “component selection functions”

learned through experience.

AI safety and role of human designers

If such a design framework were wildly successful, there is a possibility designs could

be produced that would be detrimental to human flourishing. It remains an interesting

question if a general purpose design framework could incorporate high-level constraints

that would prevent the automatic evolution of undesirable behavior. For example, the

Paper-clip Maximizer by [16], is a well-known theoretical problem where a machine

designed to produce as many paperclips as possible consumes all of Earth’s resources

in order to perfectly solve a given task.

While seemingly far-fetched, it may be useful to consider mitigation strategies

that could include humans in the design process if only to ensure designs do not have

unintended consequences. For example, human intervention might be useful to ensure

perception systems do not unintentionally discriminate based on race, sex, or age in

tasks that serve humans. Such risks are present in existing design methodologies, but

a computational discovery paradigm might present new challenges as humans may not

be able to easily analyze the consequence of design decisions.

171

6.8 Conclusion

We present a computational discovery framework that offers an exciting direction for

perception system design. While previous methods have typically optimized parametric

imaging modules for a specific task, we propose an additional architecture selection

step that has the potential to generate novel imaging systems. We also propose

a trainable imaging component we call the VDC, or volumetric design component,

that could serve as a general purpose optical component and can be trained in an

end-to-end manner. We hypothesize that the combination of the VDC, architecture

selection, and differentiable simulation will enable a broad range of possible artificial

perception systems that may even rival human designs.

We take inspiration from nature, where astounding optical designs have evolved

from incremental improvements. There are some challenges remaining to ensure such

a process is computationally tractable and task objectives can be well defined. Despite

these hurdles, we believe an initial demonstration of computational discovery for novel

imaging platforms is within reach.

172

Chapter 7

Conclusion and Future Work

7.1 Goals and Research Questions

7.1.1 Exploiting hidden cues in photographs

In this thesis, we demonstrated a number of ways to exploit hidden cues in photographs.

We made use of these cues to localize hidden objects and reconstruct images of a scene

outside the line of sight of the camera.

What hidden cues are in photographs?

Hidden cues in photographs are small changes to the observed image that indicate

changes in the hidden scene. The most common of these cues is cast shadows,

which this thesis made extensive use of. There are a number of other cues, such as

specular reflections, that can provide very useful cues in certain scenes. The various

methodology we explored provides a path to automatic discovery of hidden cues.

When and how can we localize hidden objects outside the field of view?

We showed how to localize objects outside the field of view of a camera using data-

driven and model-based approaches. We also provide analysis of the types of scenes

that are amenable to localizing hidden objects outside the line of sight.

173

Figure 7-1: Physics-based and data-driven approaches to solving inverse problems
are sometimes considered incompatible, but are largely complementary. Physics-
based, or model-based, approaches rely on models that are generated using induction,
making their generalization excellent, but may be highly sensitive to model parameter
error and require extensive calibration. Data-driven methods are typically excellent
at interpolating values within the training data domain, but do not make use of
epistemological priors such as Occam’s razor, potentially producing models that are
over parameterized and/or produce hallucinations.

How can machine-learning and physics-based approaches be used?

One of the themes of this work was to explore both data-driven and model-based

approaches for making use of hidden cues. Through the process of implementing these

various approaches, we observed some common patterns that provide insight into their

relative strengths, and sought to combine them when possible. We found that more

tightly coupled integration of these approaches is an exciting direction for future work.

We summarize these complementary approaches below.

In the follow sections, we consider the use of the two paradigms for solving inverse

problems like those investigated in this thesis.1

Computational Complexity Physics-based models are highly accurate, but often

are computationally expensive, particularly when using them to solve an inverse

problem. In order to make the problem tractable, physics-based models often make

approximations which might greatly improve their efficiency, but require additional

assumptions or restrictions on the scene.

In contrast, data-driven approaches have fixed complexity once they have been

1Problems like object classification are difficult to compare to physics-based approaches, and
data-driven methods are clearly the only viable option.

174

trained. Neural networks are surprisingly good at modeling complex phenomena

when sufficient input-output pairs are available. The primary advantage of data-

driven approaches is their flexibility. While physics-based approaches typically achieve

computational efficiency by restricting the problem domain, data-driven approaches

can be used in a large variety of situations.

Model Mismatch Physics-based models can be very accurate, but often fall short in

real-world systems that contain sources of noise that is difficult to model. Furthermore,

the accuracy of these models often depend on precise calibration and as such can be

"brittle" to miscalibration or model uncertainty.

Data-driven methods naturally adapt to the statistics of the data they are trained

on. This typically makes data-driven methods good at handling real-world sources of

noise that are difficult to model using physics-based methods. Furthermore, domain-

randomization techniques provide a simple method to ensure the trained systems are

less susceptible to miscalibration type effects. That said, we consider generalizability

separately—if the data at test time is significantly different than that used in training,

data-driven methods generally do not perform well.

Generalization Perhaps the most powerful aspect of physics-based models is their

incredible generalization. Assuming they make use of appropriate approximations,

physical models should work over a wide range of inputs.

A big challenge for data-driven methods is ensuring generalization. Typically,

general function approximators like neural networks perform excellent interpolation,

but struggle when extrapolating values outside the domain of their training data. For

this reason, domain-randomization can make these models reasonably robust to model-

mismatch, but are not effective at describing a system entirely, like physics-based

models.

Priors Priors in physics-based models are typically quite basic, consisting of things

like minimum norm, smoothness, or sparsity (e.g. total variation). This can be

175

attractive in the sense that it does not bias the solution towards hallucination, but

does not leverage the richness of the prior distribution in many real problems.

Data-driven solutions are reasonably well suited for defining priors if sufficient

training data is available. These priors can often be implemented in two ways. First,

one could train a generative model as a prior. These approaches loosely restrict

the solution to some high-likelihood manifold. The second approach is to train a

discriminator to score the likelihood of various solutions, effectively modeling the prior

distribution directly. While these approaches can be extremely powerful, they require

high-enough capacity and sufficient training data to model the prior distribution.

Confidence in Solution Physics-based models are trustworthy: if a proposed

solution is close to the observed measurements after passing through the forward

model, we can at least ensure the solution is consistent. For some situations, there

may still be an infinite number of possible solutions, but data consistency is powerful

evidence that a solution is reasonable.

In contrast, purely data-driven approaches do not guarantee data consistency.

That said, given a set of solutions that are data-consistent, data-driven methods may

provide better priors. A key part of solution confidence is how this information is

communicated to the end user. Neural networks have a reputation for "hallucinating"

parts of a solution even if the solution achieve data-consistency. If a confidence map

or other visualization of the parts of a solution that are hallucinated by a model were

presented to a user, it may alleviate some of these problems.

7.1.2 Automatically discovering hidden cues

What are the opportunities when developing imaging systems that make

use of hidden cues?

One lesson learned throughout the work presented as part of this thesis is the im-

portance of understanding model uncertainty. Imaging systems that obtain more

information about the visible scene, and thus provide better certainty about the for-

176

ward model, should be better suited to take advantage of hidden cues. Such imaging

systems may probe the visible scene or adaptively capture additional measurements.

This additional information would be invaluable when solving the inverse problem.

What are the design principles that could be used to develop imaging

systems that make use of hidden cues in the environment?

Designing imaging systems in an end-to-end manner may produce novel optical designs

that are well suited to take advantage of hidden cues to solve certain tasks. Most

imaging systems trained end-to-end update a fixed set of parameters as specified by

the meta-designer. However, we may be able to make use of differentiable volumetric

renderers to develop more more general designs. This approach would still optimize

over a fixed set of parameters, but could produce a large variety of possible imaging

system designs more similar in variety and effectiveness to those produced in nature.

Chapter 6 describes this idea as a "Volumetric Design Component" and is an exciting

area for future work.

7.2 Overview of Contributions

• We show that under certain assumptions, point-light localization can be used to

localize moving objects outside the line-of-sight by treating them as differential

illumination sources. We describe the geometry that fundamentally limits

localization using shadow edges and relate this to prior work.

• A data-driven method to localize moving objects outside the line-of-sight when

only partial information is known about the forward model. We show how this

trained neural network can be used to discover hidden cues present in certain

environments.

• Given mild assumptions, we show how an image of shadows cast by objects

can be used to reconstruct a viewpoint of the scene from the perspective of the

object, even when the surrounding surface albedo is unknown.

177

• Using the resulting inverse operator for estimating incident illumination, we

describe a method for highlighting regions of the image that potentially contain

hidden cues.

• We show how the respective inverse problems can be made more robust by

handling uncertain model parameters using a sampling based approach.

• Propose an approach for the development of imaging systems that utilize hidden

cues and are well adapted for a given environment.

7.2.1 Relevant Papers and Presentations

Peer Reviewed Papers

• T Swedish, C Henley, R Raskar. Objects as Cameras: Estimating High-Frequency

Illumination from Shadows. ICCV, 2021.

• C Henley, T Maeda, T Swedish, R Raskar. Imaging Behind Occluders Using

Two-Bounce Light European Conference on Computer Vision (ECCV), 573-588,

2020.

• T Swedish and R Raskar. Deep visual teach and repeat on path networks. CVPR

Workshops, 2018.

White Papers (Arxiv and Non-peer Reviewed Conferences)

• T Swedish, C Henley, R Raskar. Constraining light source localization using

visible occlusion boundaries. arXiv (to be uploaded), 2022.

• T Swedish, G Satat, R Raskar. Learning cues to locate hidden objects. arXiv

(to be uploaded), 2022.

• SC Sadhu, A Singh, T Maeda, T Swedish, R Kim, L Sinha, R Raskar. Automatic

calibration of time of flight based non-line-of-sight reconstruction. arXiv:2105.10603,

2021.

178

• T Maeda, G Satat, T Swedish, L Sinha, R Raskar. Recent advances in imaging

around corners. arXiv:1910.05613, 2019.

• M Tancik, T Swedish, G Satat, R Raskar. Data-driven non-line-of-sight imaging

with a traditional camera, COSI, IW2B 6, 2018.

Presentations and Conference Courses

• R Raskar, A Velten, S Bauer, T Swedish. Seeing around corners using time of

flight. ACM SIGGRAPH Courses, 1-97, 2020.

• G Satat, T Swedish, V Boominathan, A Veeraraghavan, R Raskar. Data Driven

Computational Imaging. CVPR Courses, 2019.

7.2.2 Software Implementations

• Probabilistic Rendering Framework for Synthetic Training Data (Blender +

Python)

• A Simple Differentiable Renderer for Cast Shadows (Python)

• Variational Optimization Library (Python)

• A Volumetric Renderer with Surface Reflectance Phase Function (Python /

C++)

• A direct time-of-flight renderer (Python)

7.2.3 Miscellaneous Contributions

• Demo DARPA REVEAL Program: Real-time localization of Hidden Object

• Blog “Automatic Differentiation from Scratch: Forward and Reverse Modes”.

https://medium.com/camera-culture/automatic-differentiation-from-scratch-forward-

and-reverse-modes-2dcdb9be8cb

179

7.3 Future Work

7.3.1 Summary from Chapters 3-6

We proposed a number of exciting areas for future work at the end of Chapters 3-6.

In this section, we summarize these ideas.

Combining data-driven and model-based approaches Physics-based and data-

driven methods are largely complementary, and more tightly integrating them is an

clear next step throughout this work. A broad set of approaches for incorporating

data-driven priors should improve many of the reconstruction results shown in this

thesis. To this end, a key challenge is finding sufficient training data to learn these

priors.

One exciting area is leveraging physics-based models to verify solutions provided

by data-driven approaches are physically plausible. In particular, ensuring data-

consistency while making use of data-driven priors would provide clear benefits. The

current approach in the literature roughly follows that of [25], where a neural network

might propose solutions that are then verified by a physics-based forward model.

However, this general approach does not directly leverage the ability of data-driven

approaches to handle model mismatch. In other words, understanding and visualizing

the uncertainty in model parameters in addition to the unknowns would be broadly

useful.

Another idea would be to use data-driven methods to learn physical laws directly.

A possible benefit would be to learn extremely efficient but reliable approximations of

computationally intensive forward models. Utilizing neural networks to interpolate

the action of physics-based models, or "lifting" discrete matrix based models to a

continuous domain may be one way to achieve this.

Variational Optimization Perhaps a hidden theme of this thesis is the benefit of

auto-differentiation for many inverse problems. Unfortunately, discontinuous functions

do not have a well defined derivative, and flat areas in an objective can produce

180

zero-valued gradients. Variational optimization is a sampling based approach for

approximating the value of functions that may not be continuous or smooth.

It would be interesting to combine auto-differentiation and variational optimization

to perform gradient descent in inverse problems like reconstructing a hidden scene

when the model parameters are unknown. In this way, variational optimization could

be used to estimate the gradient updates, but also the local curvature or Hessian, of

the gradient updates when there is significant uncertainty about the model parameters.

Efficient discretization of the hidden scene It is often required we discretize

the forward model when solving an inverse problem. We are often given a discretization

of our observations as an image of pixels, but the hidden scene could be subdivided

in many different ways. Coming up with automatic and efficient ways to discretize

the hidden scene volume may be informed by understanding what cues in the visible

scene are possible and how they change with perturbations in the hidden scene.

One way to accomplish this with a differentiable renderer is to calculate the inverse

of 𝐽⊤𝐽 , where 𝐽 is the Jacobian of the image pixels with respect to the location of

a point source at a particular choice of coordinates in the hidden scene. In effect,

(𝐽⊤𝐽)−1 would encode the change in image pixels values when the hidden scene

coordinate position changes as a sort of measure of resolution. Given the expected

noise of the observed images, one could use this information to sample the hidden

scene at discrete points such that each discrete location in the hidden scene would be

distinct enough to produce an observable change in the image.

Differentiable forward models Differentiability has become increasingly practical

for complex forward models using modern autodifferentiation techniques. Simply

applying gradient descent to solve inverse problems is only one application of differen-

tiability. Differentiable forward models could be used to train approximate data-driven

models, or used in higher order optimization methods like Gauss-Newton, sensitivity

analysis, or to add regularization under model uncertainty.

181

Updating the ray transport matrix and handling uncertainty Perhaps the

most direct extension in Chapter 5 is to add regularization that handles model

uncertainty. The sketch of the approach provided in Chapter 5 might be broadly

useful and can be implemented using sampling or a differentiable forward model.

This line of work is exciting, as it provides a nice framework for leveraging

differentiable forward models to solve inverse problems in imaging. This is highly

related to the next area for future work.

Approximating the continuous inverse operator with neural networks Imag-

ing problems can often be best analyzed in terms in continuous space—an integral

over some domain. The light transport matrix is a discretization of the continuous

light transport operator. It would be interesting to "lift" the light transport matrix

and solve for the continuous inverse operator. This may enable better analysis of

things like the expected recoverable resolution of hidden scenes. One tool for enabling

this is training a neural network to approximate the continuous operator.

7.3.2 Updating the Model Matrix

While we propose some methods of handling model mismatch and model uncertainty

in Chapter 5, it still remains a very difficult problem. In particular, if little is known

about the scene, the space of possible models and their parameters, 𝜃, is quite large.

We have mostly assumed that a model and a suitable parameterization has already

been chosen. For example, in Mitsuba2, parameters are defined by an initial scene

when is composed of mesh vertices, textures, and light sources. If we are unable

to estimate any of these scene properties to provide a reasonable initialization, the

space of possible Mitsuba2 scenes is practically infinite. Recently, more general and

expressive scene parameterizations, such as voxel-based phase functions or radiant

fields, provide a possible path forward to ensure the model parameterization is fully

general. These models still have challenges, as they are often over-parameterized and

memory-intensive.

Regardless, there are a few concepts and ideas that might be able to expand on

182

the linearization described in this thesis.

7.3.3 Linearization and tangent spaces of light transport

We often assume we have some model matrix that maps unknowns to our observations.

As we are interested in visualizing the hidden scene radiance, this model is linear.

For 𝑛 unknowns and 𝑚 observations, all possible model matrices are in the set 𝑅𝑚×𝑛.

This set of possible models is enormous, and so we can restrict ourselves to a "physical

model manifold" that is embedded in this set. To extend the idea of parameterization

by 𝜃, the set of model matrices on this manifold could be indexed by the set of all 𝜃

that are physically possible. Figure 7-2 shows this idea visually.

When solving for our unknowns, 𝑥, we may also jointly solve for model parameters,

𝜃, as was done in Chapter 5. There is often a non-linear relationship between the

model and its parameters 𝜃. As such, a model is often linearized to account for

perturbations in the non-linear model parameters. The linear model with a chosen 𝜃

can be thought of as linearization points of the set of physics-based models for the

hidden scene reconstruction problem.

Inspiration: Lie Algebra of SO(3) Differentiable renderers provide linearization

at given points along the physics-based model manifold. We can use Taylor approxima-

tion to create an approximate forward model that is perturbed by a given parameters:

𝐴𝜑 ≈ 𝐴𝜃 + (𝜑 − 𝜃)𝐴′
𝜃. The problem is that even a small perturbation (𝜑 − 𝜃) may

change the entries of 𝐴𝜑 such that it deviates from the physics-based model manifold.

An inspiration for handling this problem could be the Lie Algebra of SO(3), which

is commonly used to generate updates for rotation matrices in bundle adjustment.

Gradients can be calculated for the entries of a rotation matrix, but updated matrices

must be projected back into SO(3). Projection back onto the manifold is not ideal, as

higher-order optimization is made more difficult. It turns out there is a much better

way to perform these updates using the matrix exponential map. While I only provide

an intuitive sketch, the exponential map embeds SO(3) in a vector space—the tangent

space of SO(3) at the identity. Updates to points in this vector space can then be

183

Figure 7-2: Light transport can be described by a linear map from illumination source
to observed image. The set of physically-plausible linear maps are the subset of all
possible linear maps that can be modeled using a physically-based renderer. This
subset is at least locally continuous for perturbations of scene parameters that can
describe the rendering of a particular scene: changes to material reflectance, geometry,
and camera parameters. Loosely, we refer to this as the “Forward Model Manifold.” A
data-driven model does not have a notion of physical plausibility, but may learn an
approximate map from observed image to unknown model parameters given sufficient
training data.

mapped back to SO(3) through the logarithmic map.

For perturbations to our physics-based model, is there something like the matrix

exponential and logarithmic map in SO(3)?

Data Driven: Domain Randomization

In the data driven case, we can train a neural network by collecting samples generated

by a variety points along the physics-based model manifold. In our case, we define a

parametric model of the scene geometry, materials, camera, and lighting, and generate

a wide variety of possible scenes. We then render input-output pairs for these sampled

instances of forward models.

Interestingly, data driven models such as neural networks seem to be robust over a

184

fairly large domain of 𝜃 values when a sufficiently diverse data set is available. For

models trained to solve inverse problems, they are explicitly trained to recover 𝑥

from 𝑦, and implicitly must handle the unknown 𝜃 in some way. In practice, it is

sometimes helpful to add an auxiliary objective at training time such that the network

is explicitly trained to estimate 𝜃 and 𝑥. This training often improves performance,

suggesting that the network benefits from some prior over 𝜃 to make its estimate.

7.3.4 Types of non-linear effects

In the hidden scene recovery problem, there are a number of non-linear effects that

can not be simply incorporated into the linear forward model. Since we are estimating

illumination, which is linear, the non-linear effects appear for geometric perturbations

and material reflectance changes.

Geometric Perturbations

Geometric perturbations include things like camera motion and changes to the scene

geometry such as the vertex position of meshes in the scene. The image gradients

for these perturbations has traditionally been difficult to calculate, but recent work

has made the calculation of these gradients possible for general purpose path tracers

[85, 65].

Optical Flow In practice, the gradients for geometric perturbations often appear

like the gradients used to warp an image from optical flow. For example, a black

square moving to the right in front of a white background could be warped using a

horizontal gradient kernel 𝐼𝑡+1 = 𝐼𝑡 + [1, 0,−1] * 𝐼𝑡 = 𝐼𝑡 + 𝐼 ′𝑡. If we repeatedly apply

this equation, we should see the black square move across the screen from left to right

in a smooth motion. In essence, this equation describes a differential equation that

updates the position of the square. We calculate the new image by integrating this

differential equation for a period of time.

185

Lucas-Kanade Similarly, a differentiable renderer can provide a gradient at a given

linearization point 𝐼𝑡, however it does not describe a suitable differential equation

because the update to the image is spatially varied and changes over time. However, if

we infer the optical flow of the update in screen space, we have a suitable differential

equation. This can be accomplished using the Lucas-Kanade (LK) method [73], since

the gradient image provided by the differential renderer provides us with the image

difference, traditionally 𝐼 ′𝑡, used in LK methods. We can then warp the image by

scaling the optical flow, assuming the screen space motion velocity is constant and we

handle the case of low-texture regions—e.g. with total variation regularization.

If we apply these optical flow updates to each column of the linear model matrix

𝐴, we can update the model matrix over a wider range of geometric changes. This

approximation is not perfect, but may keep the updated model closer to the physics-

based manifold. For example, a differentiable renderer could easily return the local

gradients for the black square example with respect to a camera panning left. The

gradient image could be used to derive the implied optical flow, and the optical flow

could then be scaled for much larger pans, while maintaining the appearance of the

square moving to the right.

Material Properties

Material properties are another type of parameter that is non-linear with respect to the

model matrix. For example, changing the roughness of a microfacet reflectance model

will lead to quickly sharpening specular highlights. A basic specular reflection model

that has this property but is not physically based is the Phong reflection model [91].

The key part of this effect is that the cosine terms for specular paths are exponentiated

to create sharp specular highlights. The specular highlights can be sharpened by

increasing this exponentiation factor.

Exponentiation In a similar fashion to using optical flow to stay close to the

physics-based model manifold, we may be able to define a differential equation to

describe larger changes in parameters that effect the specular reflection of materials.

186

A differentiable renderer can provide us with the local gradient of a specular reflection

with respect to a material property parameter. As such, we may be able to raise

this gradient to some power to simulate the effect of increasing (𝛾 > 1) or decreasing

(𝛾 < 1) the specular reflectance. This is an idea that warrants a more rigorous

treatment, solving the implied differential equation using the known reflectance model

may be a more general approach.

In fact, it may be possible to assume independence between material property

parameters in pixel space, and a differential renderer may provide higher order terms

to the Taylor approximation. Independence assumptions do not hold for multi-bounce

light paths, however, so in general higher order terms would introduce higher order

tensors to approximate the full renderer, which will quickly become impractical.

When to perform re-linearization

While we may be able to extend the region around the current estimate of 𝜃 using

the techniques described above in order to keep 𝐴 close to the physics-based model

manifold, it will be necessary to select a new linearization point and re-run the forward

model and the corresponding derivatives to ensure the model remains physically

plausible.

7.4 Conclusion

Images of real-world scenes are the result of a complex interaction of light with the

environment before being scattered towards a camera lens. For the purpose of image

formation, the computer graphics community has enabled the production of physically-

based photo-realistic renders that are consistent with real captured photographs.

These renders can be parameterized by scene parameters such as surface geometry

and reflectance, and the intensity of a number of illumination sources.

In parallel, the field of inverse graphics has blossomed in recent years as differ-

entiable models have enabled the optimization of scene parameters for renders that

match captured photographs. It is likely that this field will continue to “solve for”

187

the most likely configuration of real-world scene parameters that produced a given

photograph. Since light that forms an image is a result of many scattering events

outside the field of view of a particular camera, a complete solution for a scene will

certainly include information about the scene outside the camera’s line-of-sight.

While inverse graphics is an essential part of this work, simply solving for a

particular scene does not directly teach us about the principles or patterns that can

enable rapid inference of hidden information in general. As such, this thesis explores

the idea of the discovery of common cues, such as shadows. While the ideas and

techniques discussed in this work might inspire improvements to inverse rendering,

such cues may also help inform the design of future perception systems. In a similar

fashion, this work could inspire the design of objects or environments that either make

inverse rendering easier or more difficult, depending on the application.

188

Appendix A

Minimizing the Expected Error with

Model Uncertainty

Let us assume there is a linear map that describes our forward model, discretized

such that we represent it by the matrix 𝐴. We generate this linear map using a

renderer as described in Chapter 5, with scene parameters 𝜃. In this way, for each

set of parameters, 𝜃, we have a corresponding ray transport matrix, 𝐴𝜃. Adjusting

parameters such as position of mesh vertices or material properties will often produce

different 𝐴𝜃.

Given this setting we want to minimize the expected mean squared error to solve

for 𝑥.

arg min
𝑥

E𝜃[||𝐴𝜃𝑥− 𝑦||22 + 𝜆Γ(𝑥)] (A.1)

Where Γ(·) is a regularization/penalty function with regularization factor, 𝜆.

A.1 Sampling Approach

For example, we assume 𝜃 are independently drawn from a Gaussian distribution:

𝜃𝑖 ∼ 𝒩 (𝜃, diag(𝜎2)) (A.2)

189

Now we can draw samples of 𝐴𝜃 by drawing 𝑁 samples, 𝜃𝑖, and rendering the

corresponding ray transport matrix, 𝐴𝜃𝑖 , for each. In order to minimize the expected

error, we have the following objective:

arg min
𝑥

1∑︀𝑁
𝑖=0 𝑝(𝜃𝑖)

𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)(||𝐴𝜃𝑖𝑥− 𝑦||22 + 𝜆Γ(𝑥)) (A.3)

The constant normalization factor does not change the minimum, and can be

removed. By writing out the squared term and setting the derivative with respect to

zero, we obtain the following:

𝜕

𝜕𝑥

(︃
𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)
[︀
𝜆Γ(𝑥) + 𝑥𝐴⊤

𝜃𝑖
𝐴𝜃𝑖𝑥− 2𝑥⊤𝐴⊤

𝜃𝑖
𝑦 + 𝑦⊤𝑦

]︀)︃
= 0 (A.4)

𝜕

𝜕𝑥
𝜆Γ(𝑥) + 2

[︃
𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)𝐴
⊤
𝜃𝑖
𝐴𝜃𝑖

]︃
𝑥 = 2

[︃
𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)𝐴
⊤
𝜃𝑖

]︃
𝑦 (A.5)

Where for large enough samples,
∑︀𝑁

𝑖=0 𝑝(𝜃𝑖) = 1. If Γ(𝑥) is a linear function, we

can use Tikonov regulation, ||Γ𝑥||22, and with some rearranging, we can write:

(︃[︃
𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)(𝐴
⊤
𝜃𝑖
𝐴𝜃𝑖)

]︃
+ 𝜆Γ⊤Γ

)︃
𝑥 =

[︃
𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)𝐴
⊤
𝜃𝑖

]︃
𝑦 (A.6)

Therefore, by rendering to obtain many 𝐴𝜃𝑖 , we can generate a solution for x by

solving the above linear system.

A.2 Taylor Approximation Approach

Another idea is to assume we can calculate 𝜕
𝜕𝜃
𝐴𝜃 using a differentiable renderer, such

that for small perturbation of 𝜃, we can approximate all 𝐴𝜃 around some initial

parameter 𝜃𝑖,0 = 𝜑𝑖:

𝐴𝜃𝑖 ≈ 𝐴𝜑𝑖
+ (𝜃𝑖 − 𝜑𝑖)𝐴

′
𝜑𝑖

(A.7)

For all parameters (over i), 𝜃𝑖, where 𝐴′
𝜑𝑖

= 𝜕
𝜕𝜃𝑖

𝐴𝜑𝑖
, the partial derivative of 𝐴 with

190

respect to some model parameter 𝜃𝑖, around an initial value 𝜑𝑖. We assume model

parameters are independent over i, so we omit the subscript in the following analysis,

however, this approach can be applied to each model parameter 𝜃𝑖.

Now, we solve for the above expectation more efficiently, assuming some "perturba-

tion distribution" around 𝜑. We define a Gaussian random variable, 𝜃𝜖 = 𝜃− 𝜑, which

is centered around 𝜑, such that 𝜃𝜖 ∼ 𝒩 (0, 𝜎2
𝜃). Now we write Equation A.3 by using

the approximation in Equation A.7, omitting the regularization term for brevity:

arg min
𝑥

1∑︀𝑁
𝑖=0 𝑝(𝜃𝑖)

𝑁∑︁
𝑖=0

𝑝(𝜃𝑖)(||𝐴𝜑𝑖
+ (𝜃𝑖 − 𝜑𝑖)𝐴

′
𝜑𝑖
𝑥− 𝑦||22 (A.8)

Using the same approach as above, by setting the gradient of this objective equal

to zero, we obtain the following, noting that 𝐸[𝜃𝜖] = 0 and 𝐸[𝜃𝜖
2] = 𝜎2

𝜃 :(︃
𝐴⊤

𝜑𝐴𝜑 +

[︃
𝑁∑︁
𝑖=0

𝜎2
𝑖 (𝐴′

𝜑𝑖

⊤𝐴′
𝜑𝑖

)

]︃)︃
𝑥 = 𝐴⊤

𝜑 𝑦 (A.9)

Where 𝜎2
𝑖 is equal to the i-th 𝜎2

𝜃 term. This form is much simpler than the more

general version in Equation A.6, but is only valid for small perturbations (small 𝜎𝜃).

Regardless, it reveals that the Jacobian of the forward model with respect to model

parameters can be used to introduce a regularization term that should make the

solution more robust to uncertainty. Considering that the resulting inverse will weight

the "inverse Gramm gradient matrices", (𝐴′
𝜑𝑖

⊤𝐴′
𝜑𝑖

)−1, proportional 1
𝜎2
𝜃
, the solution

makes intuitive sense. When uncertainty is high about a parameter, pixels in 𝑥 that

are most affected by changes in that parameter are weighted less.

A.3 Non-linear Least Squares to update 𝜃

We can also solve for 𝜃𝑖 directly. Rewriting Equation A.8 to solve over a vector of

parameters, 𝜃 for a given 𝑥, we notice that this reveals a non-linear least squares

problem. Given a vector of uncertainties, 𝜎𝜃, we can add a weighting term:

[︂
𝑇𝑥

′⊤diag
(︂

1

𝜎2
𝜃

)︂
𝑇𝑥

′
]︂
𝜃𝜖 = 𝑇𝑥

′⊤diag
(︂

1

𝜎2
𝜃

)︂
(𝑦 − 𝐴𝑥) (A.10)

191

Here, we’ve abused our notation to interpret 𝜃𝜖 as a vector. We also write 𝑇𝑥
′ to

represent a matrix where each column is the per-pixel gradient for each parameter 𝜃𝑖:

𝐴′
𝜑,𝑖𝑥. Note that this makes 𝑇𝑥

′ a Jacobian-vector product, which makes it well suited

to be computed using a differentiable renderer directly instead of computing each 𝐴′
𝜑,𝑖

matrix and computing the product with 𝑥.

Since this approximation is only valid for small perturbations, this update should

be scaled by an appropriate learning rate (<< 1). As such, this approach is a means

of performing gradient descent on 𝜃 that is weighted by a Gauss-Newton term that

incorporates knowledge about the model parameter uncertainty and current estimate,

𝑥.

In this way, 𝜃 and 𝑥 could be updated in an alternating fashion similar to the

approach used in Chapter 5 that updated the albedo of the scene and environment

map. Furthermore, as for the albedo, it is likely that variation in the environment

map would better stabilize the estimate of 𝜃, and the update described in Equation 5.6

could be applied. The parameters we optimize for, 𝜃, could include scene albedo,

material reflectance, or position of objects.

192

Appendix B

Learning Linear Models from Data

One of the most widespread problems in engineering is the linear inverse mapping,

where we estimate some latent value 𝑥 given observations 𝑏 and a linear measurement

model 𝐴:

𝐴𝑥 = 𝑏 (B.1)

In general, 𝐴 is not a square matrix, so this problem can be posed using the

Normal Equation.

(𝐴⊤𝐴)𝑥 = 𝐴⊤𝑏 (B.2)

B.1 Model Driven Linear Inverse Problem

When the matrix 𝐴 is large, solving Equation B.1 directly using a closed-form solution

can become intractable. Instead, we can solve Equation B.1 using optimization, with

many iterative algorithms to choose from, such as gradient descent. The basic idea

is to update an initial guess of 𝑥 in a way that minimizes the difference between 𝐴𝑥

and 𝑏 under some norm (e.g. 𝐿2). We can also include a regularization term, Γ(𝑥), to

weight more likely values of 𝑥.:

193

𝑥̂ = arg min
𝑥

||𝐴𝑥− 𝑏||22 + 𝜆Γ(𝑥) (B.3)

Using modern deep learning frameworks, even if 𝐴 is large, we can define a loss

from Equation B.3 and perform stochastic gradient descent to calculate gradients

for only a batched subset of rows of 𝐴 and 𝑏. In fact, as long as some function 𝑓 is

differentiable (e.g. a neural network), we can solve

𝑥̂ = arg min
𝑥

∑︁
𝑚

||𝑓𝑚(𝑥) − 𝑏𝑚||22 + 𝜆Γ(𝑥) (B.4)

, where 𝑓𝑚 is some function that mimics the action of row, 𝐴𝑚, on 𝑥. How do we

ensure 𝑓 mimics the action of 𝐴? We write 𝑓 as a Taylor Series:

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑥− 𝑎) = 𝐴𝑎 + 𝐴(𝑥− 𝑎) (B.5)

𝑓 ′(𝑥) = 𝐴 (B.6)

If we want a function, 𝑓 , that mimics the transformation 𝐴, the gradient of 𝑓 with

respect to the input should be, ∇𝑥𝐴𝑚𝑥 = 𝐴𝑚, where 𝐴𝑚 is the 𝑚th row of 𝑚 × 𝑛

matrix 𝐴.

B.1.1 Learning an Approximate Inverse

In order to find such a function, we define 𝑔𝜃 as some linear neural network and define

a new optimization problem:

𝑔⋆𝜃 = arg min
𝜃

∑︁
𝑚

||∇𝑎𝑔𝜃,𝑚(𝑎) − 𝐴𝑚||22 (B.7)

Using a deep learning framework, we can construct 𝑔𝜃 using linear operations (e.g.

linear layers, convolutions, einsums) without nonlinear activation functions or affine

bias. Furthermore, since 𝑔𝜃 is a linear function we can set 𝑎 to any convenient input,

such as a vector of zeros.

194

Due to the architecture of the computational graph defining 𝑔𝜃, it may be an

approximation of the action of 𝐴 on 𝑥, but in some special cases, a 𝑔𝜃 with much fewer

parameters (e.g. if 𝐴 performs a convolution) may be a perfectly good representation

of 𝐴. Intuitively, we use the rows of 𝐴 as training data to learn the network 𝑔𝜃.

Our ultimate goal is to approximate 𝑓 using a computationally efficient 𝑔𝜃, thus

making Equation B.4 tractable for large problems without losing the physical con-

straints imposed by 𝐴. Therefore, we aim to solve Equation B.3 as:

𝑥̂ = arg min
𝑥

∑︁
𝑚

||𝑔⋆𝜃,𝑚(𝑥) − 𝑏𝑚||22 + 𝜆Γ(𝑥) (B.8)

We note that the architecture of 𝑔𝜃 given a class of matrices 𝐴 could be automated

using neural architecture search (i.e. AutoML), discovering the efficient, often lower

dimension, latent structure imposed by the physics of the forward model used to create

𝐴.

B.1.2 Extension to Nonlinear Forward Models

We note that this general idea can be applied to any analytic function, not just linear

functions, but Equation B.7 would require higher order derivative terms or multiple

well chosen 𝑎 as linearization points.

B.1.3 Comparison to Supervised Learning

We could instead train 𝑔𝜃 using supervised data pairs (𝑥, 𝑏). We show that for many

model types, models trained in this way are also reasonable solutions to Equation B.7.

Using supervised data pairs enables the implicit learning of priors on the input data

distribution.

Instead, we propose to sample from the Jacobian of the forward model to serve

as the loss function used to train the approximate map. This map is exact for linear

models, and in general could be extended to higher order functions by taking higher

order derivatives (e.g. fitting the Hessian for quadratic functions).

195

B.1.4 Learning Linear Maps

The main idea is to use “model action” (via Taylor Series) as a way to create a scalar

loss to compare two models. We want a way to compare an arbitrary neural network

architecture with the physics based model and ensure they end up doing the same

thing to all inputs. This appraoch does note require any training (input/output) pairs.

In other words, the Taylor Series creates a standard representation for how input is

mapped to output, and thus allows us to compare models via this representation.

B.2 Results

B.2.1 Frontoparallel Ray Transport Matrix

For a pair of frontoparallel planes, 𝑥 and 𝑦, we consider two multiplicative masks

between the planes. The input plane, 𝑥, emits light in all directions, the two masks

block some of these rays, and the observed irradiance pattern on plane 𝑦 can be

described by the light transport tensor, 𝑇 , which encodes how the two intermediate

masks block rays. Writing this using Einstien summation:

𝑇𝑘,𝑙,𝑖,𝑗𝑥𝑖,𝑗 = 𝑦𝑘,𝑙 (B.9)

Each local patch (𝑖, 𝑗) on the 2D plane 𝑥 contributes to the image formed on plane

𝑦, as determined by 𝑇 . In this case, 𝑇 is identical to matrix 𝐴 in Equation B.1 if it

were reshaped into a (𝑘 · 𝑙) × (𝑖 · 𝑗) matrix.

We define 3-layer linear neural network with input size (𝑖 · 𝑗), a hidden layer with

2 units, and a (𝑘 · 𝑙) size output. The total number of parameters of this network is

2(𝑖 · 𝑗 + ·𝑘 · 𝑙), a significant factor reduction from the 𝑖 · 𝑗 · 𝑘 · 𝑙 entries in 𝑇 . We fit

this randomly initialized network using the objective in Equation B.7, using PyTorch

Autograd to compute the gradient for each output pixel, 𝑦𝑘,𝑙, with respect to the

input. Computing the gradient for every pixel of output 𝑦 generates the Jacobian of

the model mapping 𝑥 to 𝑦.

Deep learning libraries like PyTorch typically use reverse mode auto-differentiation,

196

Low Rank Linear NetworkFull Ray Transfer
Gradient Descent

Ground Truth Convolutional Network

Figure B-1: Reconstruction Results

we effectively calculate the Jacobian by performing backpropagation with respect to

each output pixel. If the Jacobian is too large to fit into memory, we can perform

batched updates to 𝜃.

We then use PyTorch to update the model weights, 𝜃, of 𝑔𝜃 using the loss function

in Equation B.7, using the corresponding (𝑘′, 𝑙′) to represent row 𝐴𝑚 as 𝑇𝑘′,𝑙′,𝑖,𝑗.

Figure B-3 shows the gradient of two different positions of the output with respect

to the input for the ground truth ray transfer matrix, a low rank, and convolutional

neural network. This demonstrates that the networks learn to map 𝑥 to 𝑏 as well as 𝐴

(up to a scaling factor). This ray transfer matrix is a challenging deconvolution and

reconstructions using all architectures are comparable.

Figure B-1 shows reconstruction results for the full ray transfer matrix and two

approximate networks.

197

Low Rank Linear Network

Input
 i x j

Output
k x l

= 16 (i * j + k * l) parameters

16

Convolutional Network

= 1 + 4 * 5 * 5 + 8 * k * l parameters

Input
 i x j

Output
k x l

(4, 5, 5) conv
(1, 1, 1) conv

8

Consider Upconv + Linear
Transposer

Figure B-2: Network Architecture

198

bx 𝛁g_i Reconstruction

Figure B-3: Networks and their Gradients. The top row is the ground truth, the
second row is a low-rank approximation network, and the bottom row corresponds to
a convolutional neural network.

199

200

Bibliography

[1] Fadel Adib, Zachary Kabelac, and Dina Katabi. Multi-Person localization via RF
body reflections. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15), pages 279–292, Oakland, CA, May 2015. USENIX
Association.

[2] A. Agrawal, M. Gupta, A. Veeraraghavan, and S. G. Narasimhan. Optimal
coded sampling for temporal super-resolution. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 599–606, 2010.

[3] Byeongjoo Ahn, Akshat Dave, Ashok Veeraraghavan, Ioannis Gkioulekas, and
Aswin C. Sankaranarayanan. Convolutional approximations to the general
non-line-of-sight imaging operator. In The IEEE International Conference on
Computer Vision (ICCV), October 2019.

[4] Miika Aittala, Prafull Sharma, Lukas Murmann, Adam Yedidia, Gregory Wornell,
Bill Freeman, and Fredo Durand. Computational mirrors: Blind inverse light
transport by deep matrix factorization. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 14311–14321. Curran Associates, Inc.,
2019.

[5] Kazunori Akiyama, Andrew Chael, and Dominic W. Pesce. New views of black
holes from computational imaging. Nature Computational Science, 1(5):300–303,
May 2021.

[6] AliceVision. Meshroom: A 3D reconstruction software., 2018.

[7] Ansys. Perception algorithms are the key to autonomous vehicles safety, 2021.

[8] Dejan Azinović, Tzu-Mao Li, Anton Kaplanyan, and Matthias Nießner. Inverse
path tracing for joint material and lighting estimation. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2019.

[9] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing
neural network architectures using reinforcement learning. arXiv preprint
arXiv:1611.02167, 2016.

201

[10] Guha Balakrishnan, Adrian V. Dalca, Amy Zhao, John V. Guttag, Fredo Durand,
and William T. Freeman. Visual deprojection: Probabilistic recovery of collapsed
dimensions. In The IEEE International Conference on Computer Vision (ICCV),
October 2019.

[11] M. Baradad, V. Ye, A. B. Yedidia, F. Durand, W. T. Freeman, G. W. Wornell,
and A. Torralba. Inferring light fields from shadows. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 6267–6275, June
2018.

[12] J. T. Barron and J. Malik. Intrinsic scene properties from a single rgb-d image.
In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pages
17–24, June 2013.

[13] P. Bergeron. A general version of crow’s shadow volumes. IEEE Computer
Graphics and Applications, 6(9):17–28, Sep. 1986.

[14] Dana Berman, Tali Treibitz, and Shai Avidan. Non-local image dehazing. CVPR,
2016.

[15] Blender Foundation. Blender - a 3D modelling and rendering package, 2018.

[16] Nick Bostrom. Ethical issues in advanced artificial intelligence. In Wendell
Wallach and Peter Asaro, editors, Machine Ethics and Robot Ethics. 2017.

[17] Katherine L. Bouman, Vickie Ye, Adam B. Yedidia, Fredo Durand, Gregory W.
Wornell, Antonio Torralba, and William T. Freeman. Turning corners into
cameras: Principles and methods. In ICCV, 2017.

[18] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[19] Mauro Buttafava, Jessica Zeman, Alberto Tosi, Kevin Eliceiri, and Andreas
Velten. Non-line-of-sight imaging using a time-gated single photon avalanche
diode. Opt. Exp., 2015.

[20] Piergiorgio Caramazza, Alessandro Boccolini, Daniel Buschek, Matthias Hullin,
Catherine Higham, Robert Henderson, Roderick Murray-Smith, and Daniele
Faccio. Neural network identification of people hidden from view with a single-
pixel, single-photon detector. arXiv preprint arXiv:1709.07244, 2017.

[21] V. Caselles, A. Chambolle, and M. Novaga. Total Variation in Imaging, pages
1455–1499. Springer New York, New York, NY, 2015.

[22] Ayan Chakrabarti. Learning sensor multiplexing design through back-
propagation. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, page 3089–3097, Red Hook, NY, USA,
2016. Curran Associates Inc.

202

[23] Eric Chan and Frédo Durand. An efficient hybrid shadow rendering algorithm.
In Proceedings of the Eurographics Symposium on Rendering, pages 185–195.
Eurographics Association, 2004.

[24] Julie Chang and Gordon Wetzstein. Deep optics for monocular depth estimation
and 3d object detection. In Proceedings of the IEEE International Conference
on Computer Vision, pages 10193–10202, 2019.

[25] C. Che, F. Luan, S. Zhao, K. Bala, and I. Gkioulekas. Towards learning-
based inverse subsurface scattering. In 2020 IEEE International Conference on
Computational Photography (ICCP), pages 1–12, 2020.

[26] W. Chen, S. Daneau, C. Brosseau, and F. Heide. Steady-state non-line-of-sight
imaging. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6783–6792, June 2019.

[27] A. L. Cohen. Anti-pinhole imaging. Journal of Modern Optics, 29:63–67, 1982.

[28] R. Dennis Cook. Detection of influential observation in linear regression. Tech-
nometrics, 19(1):15–18, 1977.

[29] Franklin C. Crow. Shadow algorithms for computer graphics. SIGGRAPH
Comput. Graph., 11(2):242–248, July 1977.

[30] Paul Debevec. Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and high dynamic range
photography. In Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’98, page 189–198, New York,
NY, USA, 1998. Association for Computing Machinery.

[31] Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Un-
rolled optimization with deep priors. arXiv preprint arXiv:1705.08041, 2017.

[32] Sai kiran Doddalla and Georgios C. Trichopoulos. Non-line of sight terahertz
imaging from a single viewpoint. In 2018 IEEE/MTT-S International Microwave
Symposium - IMS, pages 1527–1529, 2018.

[33] R.D. Fernald. Evolving eyes. Int J Dev Biol., (48(8-9)):701–5, 2004.

[34] Roy Frostig, Matthew Johnson, and Chris Leary. Compiling machine learning
programs via high-level tracing. 2018.

[35] Genevieve Gariepy, Francesco Tonolini, Robert Henderson, Jonathan Leach, and
Daniele Faccio. Detection and tracking of moving objects hidden from view.
Nat. Photon., 2015.

[36] Mathieu Garon, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr, and Jean-
Francois Lalonde. Fast spatially-varying indoor lighting estimation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

203

[37] Stamatios Georgoulis, Konstantinos Rematas, Tobias Ritschel, Mario Fritz,
Tinne Tuytelaars, and Luc Van Gool. What is around the camera? In The
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[38] Davis Gilton, Greg Ongie, and Rebecca Willett. Neumann networks for linear
inverse problems in imaging. IEEE Transactions on Computational Imaging,
6:328–343, 2019.

[39] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

[40] Felix Heide, Lei Xiao, Wolfgang Heidrich, and Matthias B. Hullin. Diffuse
mirrors: 3D reconstruction from diffuse indirect illumination using inexpensive
time-of-flight sensors. CVPR, 2014.

[41] Roarke Horstmeyer, Richard Y Chen, Barbara Kappes, and Benjamin Judkewitz.
Convolutional neural networks that teach microscopes how to image. arXiv
preprint arXiv:1709.07223, 2017.

[42] Thomas Houllier and Thierry Lépine. Comparing optimization algorithms for
conventional and freeform optical design. Opt. Express, 27(13):18940–18957,
Jun 2019.

[43] Julian Iseringhausen and Matthias B. Hullin. Non-line-of-sight reconstruction
using efficient transient rendering. ACM Trans. Graph., 39(1), January 2020.

[44] Michal Jancosek and Tomas Pajdla. Multi-view reconstruction preserving
weakly-supported surfaces. In CVPR 2011. IEEE, jun 2011.

[45] S. Jiddi, P. Robert, and E. Marchand. Estimation of position and intensity of
dynamic light sources using cast shadows on textured real surfaces. In 2018 25th
IEEE International Conference on Image Processing (ICIP), pages 1063–1067,
2018.

[46] Salma Jiddi, Philippe Robert, and Eric Marchand. Detecting specular reflections
and cast shadows to estimate reflectance and illumination of dynamic indoor
scenes. IEEE transactions on visualization and computer graphics, 2020.

[47] Achuta Kadambi, Hang Zhao, Boxin Shi, and Ramesh Raskar. Occluded imaging
with time-of-flight sensors. ACM TOG, 2016.

[48] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph.,
20(4):143–150, August 1986.

[49] Ulugbek S Kamilov, Ioannis N Papadopoulos, Morteza H Shoreh, Alexandre
Goy, Cedric Vonesch, Michael Unser, and Demetri Psaltis. Learning approach
to optical tomography. Optica, 2, 2015.

204

[50] H. Kato, Deniz Beker, M. Morariu, T. Ando, T. Matsuoka, Wadim Kehl, and
Adrien Gaidon. Differentiable rendering: A survey. ArXiv, abs/2006.12057,
2020.

[51] Brendan Kelly, Thomas P Matthews, and Mark A Anastasio. Deep
learning-guided image reconstruction from incomplete data. arXiv preprint
arXiv:1709.00584, 2017.

[52] S. S. Khan, V. Sundar, V. Boominathan, A. Veeraraghavan, and K. Mitra.
Flatnet: Towards photorealistic scene reconstruction from lensless measurements.
IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,
2020.

[53] Jonathan Klein, Christoph Peters, Jaime Martín, Martin Laurenzis, and
Matthias B. Hullin. Tracking objects outside the line of sight using 2D in-
tensity images. Sci. Rep., 2016.

[54] L. Kneip and P. Furgale. Opengv: A unified and generalized approach to real-
time calibrated geometric vision. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 1–8, 2014.

[55] Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp: An optimal o(n) solution
to the absolute pose problem with universal applicability. In David Fleet, Tomas
Pajdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV
2014, pages 127–142, Cham, 2014. Springer International Publishing.

[56] Eric I Knudsen. Evolution of neural processing for visual perception in verte-
brates. Journal of Comparative Neurology, 528(17):2888–2901, 2020.

[57] Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit
Ashok. Reconnet: Non-iterative reconstruction of images from compressively
sensed measurements. In CVPR, 2016.

[58] Jean-François Lalonde, Alexei A. Efros, and Srinivasa G. Narasimhan. Estimat-
ing the natural illumination conditions from a single outdoor image. International
Journal of Computer Vision, 2011.

[59] Douglas Lanman, Ramesh Raskar, Amit Agrawal, and Gabriel Taubin. Shield
fields: Modeling and capturing 3d occluders. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia), 27(5), 2008.

[60] Chloe LeGendre, Wan-Chun Ma, Graham Fyffe, John Flynn, Laurent Char-
bonnel, Jay Busch, and Paul Debevec. Deeplight: Learning illumination for
unconstrained mobile mixed reality. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[61] Chloe LeGendre, Wan-Chun Ma, Rohit Pandey, Sean Fanello, Christoph Rhe-
mann, Jason Dourgarian, Jay Busch, and Paul Debevec. Learning illumination

205

from diverse portraits. In SIGGRAPH Asia 2020 Technical Communications,
SA ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[62] Xin Lei, Liangyu He, Yixuan Tan, Ken Xingze Wang, Xinggang Wang, Yihan
Du, Shanhui Fan, and Zongfu Yu. Direct object recognition without line-of-sight
using optical coherence. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 11729–11738, 2019.

[63] Anat Levin, Rob Fergus, Frédo Durand, and William T. Freeman. Image and
depth from a conventional camera with a coded aperture. ACM Trans. Graph.,
26(3):70–es, July 2007.

[64] Marc Levoy and Pat Hanrahan. Light field rendering. In Proceedings of the
23rd annual conference on Computer graphics and interactive techniques, pages
31–42, 1996.

[65] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. Differentiable
monte carlo ray tracing through edge sampling. ACM Trans. Graph. (Proc.
SIGGRAPH Asia), 37(6):222:1–222:11, 2018.

[66] Yuanzhen Li, Hanqing Lu, Heung-Yeung Shum, et al. Multiple-cue illumina-
tion estimation in textured scenes. In Proceedings Ninth IEEE International
Conference on Computer Vision, pages 1366–1373. IEEE, 2003.

[67] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explain-
able ai: A review of machine learning interpretability methods. Entropy, 23(1),
2021.

[68] David B. Lindell, Gordon Wetzstein, and Vladlen Koltun. Acoustic non-line-of-
sight imaging. 2019.

[69] David B. Lindell, Gordon Wetzstein, and Matthew O’Toole. Wave-based non-
line-of-sight imaging using fast f-k migration. ACM Trans. Graph. (SIGGRAPH),
38(4):116, 2019.

[70] Xiaochun Liu, Ibón Guillén, Marco La Manna, Ji Hyun Nam, Syed Azer Reza,
Toan Huu Le, Adrian Jarabo, Diego Gutierrez, and Andreas Velten. Non-line-of-
sight imaging using phasor-field virtual wave optics. Nature, 572(7771):620–623,
Aug 2019.

[71] Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. Reparameterizing
discontinuous integrands for differentiable rendering. ACM Trans. Graph., 38(6),
November 2019.

[72] Gilles Louppe and Kyle Cranmer. Adversarial variational optimization of non-
differentiable simulators. arXiv preprint arXiv:1707.07113, 2017.

206

[73] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’81, page 674–679,
San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[74] Tomohiro Maeda, Guy Satat, Tristan Swedish, Lagnojita Sinha, and Ramesh
Raskar. Recent advances in imaging around corners, 2019.

[75] Tomohiro Maeda, Yiqin Wang, Ramesh Raskar, and Achuta Kadambi. Thermal
non-line-of-sight imaging. In 2019 IEEE International Conference on Computa-
tional Photography (ICCP), pages 1–11, 2019.

[76] Christopher A. Metzler, Felix Heide, Prasana Rangarajan, Muralidhar Madab-
hushi Balaji, Aparna Viswanath, Ashok Veeraraghavan, and Richard G. Baraniuk.
Deep-inverse correlography: towards real-time high-resolution non-line-of-sight
imaging. Optica, 7(1):63–71, Jan 2020.

[77] Christopher A. Metzler, Ali Mousavi, and Richard G. Baraniuk. Learned d-amp:
Principled neural network based compressive image recovery. In Proceedings of
the 31st International Conference on Neural Information Processing Systems,
NIPS’17, page 1770–1781, Red Hook, NY, USA, 2017. Curran Associates Inc.

[78] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance
fields for view synthesis. In ECCV, 2020.

[79] K. Mitra and A. Veeraraghavan. Light field denoising, light field superresolution
and stereo camera based refocussing using a gmm light field patch prior. In
2012 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, pages 22–28, 2012.

[80] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Adaptive structure from
motion with a contrario model estimation. In Proceedings of the Asian Computer
Vision Conference (ACCV 2012), pages 257–270. Springer Berlin Heidelberg,
2012.

[81] John Murray-Bruce, Charles Saunders, and Vivek K. Goyal. Occlusion-based
computational periscopy with consumer cameras. In Dimitri Van De Ville,
Manos Papadakis, and Yue M. Lu, editors, Wavelets and Sparsity XVIII, volume
11138, pages 286 – 297. International Society for Optics and Photonics, SPIE,
2019.

[82] F. Naser, I. Gilitschenski, G. Rosman, A. Amini, F. Durand, A. Torralba, G. W.
Wornell, W. T. Freeman, S. Karaman, and D. Rus. Shadowcam: Real-time
detection of moving obstacles behind a corner for autonomous vehicles. In 2018
21st International Conference on Intelligent Transportation Systems (ITSC),
pages 560–567, Nov 2018.

207

[83] Ren Ng. Fourier slice photography. In ACM SIGGRAPH 2005 Papers, pages
735–744. 2005.

[84] D. E. Nilsson and S. Pelger. A pessimistic estimate of the time required for an
eye to evolve. In Proc Biol Sci., pages 256(1345):53–8, 1994.

[85] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba
2: A retargetable forward and inverse renderer. Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 38(6), December 2019.

[86] Matthew O’Toole, Ramesh Raskar, and Kiriakos N Kutulakos. Primal-dual
coding to probe light transport. ACM Trans. Graph., 31(4):39–1, 2012.

[87] Matthew O’Toole, David B Lindell, and Gordon Wetzstein. Confocal non-
line-of-sight imaging based on the light-cone transform. Nature, 555(7696):338,
2018.

[88] Jeong Joon Park, Aleksander Holynski, and Steven M Seitz. Seeing the world
in a bag of chips, 2020.

[89] Gustavo Patow and Xavier Pueyo. A survey of inverse rendering problems.
Computer Graphics Forum, 22(4):663–687, 2003.

[90] Yifan (Evan) Peng, Ashok Veeraraghavan, Wolfgang Heidrich, and Gordon
Wetzstein. Deep optics: Joint design of optics and image recovery algorithms
for domain specific cameras. In ACM SIGGRAPH 2020 Courses, SIGGRAPH
2020, New York, NY, USA, 2020. Association for Computing Machinery.

[91] Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311–317, jun 1975.

[92] Louis B. Rall and George F. Corliss. An introduction to automatic differentiation.
In Martin Berz, Christian H. Bischof, George F. Corliss, and Andreas Griewank,
editors, Computational Differentiation: Techniques, Applications, and Tools,
pages 1–17. SIAM, Philadelphia, PA, 1996.

[93] Joshua Rapp, Charles Saunders, Julián Tachella, et al. Seeing around cor-
ners with edge-resolved transient imaging. Nature Communications, 11(5929),
November 2020.

[94] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure photography:
motion deblurring using fluttered shutter. In ACM SIGGRAPH 2006 Papers,
pages 795–804. 2006.

[95] Rendered.ai. Data engineering tools for proveable ai, 2021.

[96] Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh
Raskar. Object classification through scattering media with deep learning on
time resolved measurement. Optics Express, 25, 2017.

208

[97] Guy Satat, Matthew Tancik, and Ramesh Raskar. Towards photography through
realistic fog. In Computational Photography (ICCP), 2018 IEEE International
Conference on, pages 1–10. IEEE, 2018.

[98] Imari Sato, Yoichi Sato, and Katsushi Ikeuchi. Illumination from shadows. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(3):290–300, 2003.

[99] Charles Saunders, John Murray-Bruce, and Vivek K Goyal. Computational
periscopy with an ordinary digital camera. Nature, 565(7740):472–475, January
2019.

[100] I.R. Schwab. The evolution of eyes: major steps. In The Keeler lecture, volume
32(2), pages 302–313, 2017.

[101] S. W. Seidel, Y. Ma, J. Murray-Bruce, C. Saunders, W. T. Freeman, C. C.
Yu, and V. K. Goyal. Corner occluder computational periscopy: Estimating a
hidden scene from a single photograph. In 2019 IEEE International Conference
on Computational Photography (ICCP), pages 1–9, May 2019.

[102] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Oct 2017.

[103] Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark Horowitz,
Marc Levoy, and Hendrik P. A. Lensch. Dual photography. ACM Trans. Graph.,
24(3):745–755, July 2005.

[104] David Shafer. Lens designs with extreme image quality features. Advanced
Optical Technologies, 2(1):53–62, 2013.

[105] Mark Sheinin and Yoav Y. Schechner. The next best underwater view. CVPR,
2016.

[106] Amit Shesh, Antonio Criminisi, Carsten Rother, and Gavin Smyth. 3d-aware
image editing for out of bounds photography. In Proceedings of Graphics Interface
2009, GI ’09, page 47–54, CAN, 2009. Canadian Information Processing Society.

[107] Ayan Sinha, Justin Lee, Shuai Li, and George Barbastathis. Lensless computa-
tional imaging through deep learning. Optica, 4, 2017.

[108] Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd,
Wolfgang Heidrich, Felix Heide, and Gordon Wetzstein. End-to-end optimization
of optics and image processing for achromatic extended depth of field and
super-resolution imaging. ACM Transactions on Graphics (TOG), 37(4):1–13,
2018.

209

[109] Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,
Richard Tucker, and Noah Snavely. Lighthouse: Predicting lighting volumes for
spatially-coherent illumination. In CVPR, 2020.

[110] Joe Staines and David Barber. Variational optimization. arXiv preprint
arXiv:1212.4507, 2012.

[111] Qilin Sun, Jian Zhang, Xiong Dun, Bernard Ghanem, Yifan Peng, and Wolfgang
Heidrich. End-to-end learned, optically coded super-resolution spad camera.
ACM Transactions on Graphics (TOG), 39(2):1–14, 2020.

[112] Yu Sun, Zhihao Xia, and Ulugbek S. Kamilov. Efficient and accurate inversion
of multiple scattering with deep learning. Opt. Express, 26(11):14678–14688,
May 2018.

[113] Richard Szeliski. Computer vision algorithms and applications, 2011.

[114] Matthew Tancik, Guy Satat, and Ramesh Raskar. Flash photography for
data-driven hidden scene recovery. arXiv preprint arXiv:1810.11710, 2018.

[115] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-
Brualla, T. Simon, J. Saragih, M. Nießner, R. Pandey, S. Fanello, G. Wetzstein,
J.-Y. Zhu, C. Theobalt, M. Agrawala, E. Shechtman, D. B Goldman, and
M. Zollhöfer. State of the art on neural rendering. EG, 2020.

[116] C. Thrampoulidis, G. Shulkind, F. Xu, W. T. Freeman, J. H. Shapiro, A. Tor-
ralba, F. N. C. Wong, and G. W. Wornell. Exploiting occlusion in non-line-of-
sight active imaging. IEEE Transactions on Computational Imaging, 4(3):419–
431, Sep. 2018.

[117] Antonio Torralba and William T. Freeman. Accidental pinhole and pinspeck
cameras. International Journal of Computer Vision, 110(2):92–112, March 2014.

[118] Neil Vaughan. Evolution of biological eye in computer simulation. In 2019 IEEE
Congress on Evolutionary Computation (CEC), pages 2537–2543, 2019.

[119] A. Veereraghavan, R. Raskar, A. Agrawal, A. Mohan, and J Tumblin. Dappled
photography: mask enhanced cameras for heterodyned light fields and coded
aperture refocusing. ACM Transactions on Graphics, 26(3), 2007.

[120] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan,
Moungi G Bawendi, and Ramesh Raskar. Recovering three-dimensional shape
around a corner using ultrafast time-of-flight imaging. Nat. Comms., 3, 2012.

[121] Henrique Weber, Donald Prévost, and Jean-François Lalonde. Learning to
estimate indoor lighting from 3d objects. 2018 International Conference on 3D
Vision (3DV), pages 199–207, 2018.

210

[122] Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin Sankaranarayanan, and
Ashok Veeraraghavan. Phasecam3d—learning phase masks for passive single view
depth estimation. In 2019 IEEE International Conference on Computational
Photography (ICCP), pages 1–12. IEEE, 2019.

[123] Chris Wyman and Zeng Dai. Imperfect voxelized shadow volumes. In ACM
SIGGRAPH 2013 Talks, SIGGRAPH ’13, New York, NY, USA, 2013. Association
for Computing Machinery.

[124] Y. Yang and A. Yuille. Sources from shading. In Proceedings. 1991 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pages 534–539, June 1991.

[125] A. B. Yedidia, M. Baradad, C. Thrampoulidis, W. T. Freeman, and G. W.
Wornell. Using unknown occluders to recover hidden scenes. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12223–
12231, June 2019.

[126] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In ECCV, 2014.

[127] Edward Zhang, Michael F. Cohen, and Brian Curless. Discovering point lights
with intensity distance fields. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[128] L. Zhang, Q. Yan, Z. Liu, H. Zou, and C. Xiao. Illumination decomposition for
photograph with multiple light sources. IEEE Transactions on Image Processing,
26(9):4114–4127, 2017.

[129] Xianan Zhang, Lieke Chen, Mingjie Feng, and Tao Jiang. Toward reliable
non-line-of-sight localization using multipath reflections. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 6(1), mar 2022.

[130] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen, and Matthew S
Rosen. Image reconstruction by domain-transform manifold learning. Nature,
555(7697):487–492, 2018.

211

	Introduction
	Scope
	Goals
	Research Questions
	Background
	What is a photograph?
	What is the hidden scene?
	Forward light transport
	The inverse light transport problem

	Overview of contributions
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Related Work
	Capturing and exploiting light transport in computational imaging
	Inverse problems in computational imaging
	Inverse Rendering
	Shadow Volumes and Edge-shadow Boundaries
	Differentiable Rendering
	Learning important features and hidden cues for inverse problems

	Non-line-of-sight (NLoS) Imaging
	NLoS using L-Corner Geometries
	Occlusion Assisted Imaging

	Incident Illumination Estimation
	Computational Discovery of Optical Designs
	Natural Evolution of Animal Eyes
	Traditional Optical Design
	End-to-end optimization of camera designs
	Rendered Synthetic Data for Deep Learning
	Joint Camera and Algorithm Design

	Learning cues to locate hidden objects
	Revealing hidden cues with differential imaging
	Temporal differential imaging

	An imaging system that learns to use differential cues
	Dataset Generation
	Localization Prediction Network
	Implementation Details
	Image Capture
	Evaluation Environment

	Experimental Results
	Trained CNN Models
	Error Metrics
	Varying Geometry and Object Albedo
	Varying corner scene geometry for a single trained network
	Discussion
	Practical real-time implementation

	Limitations
	Future Work
	Combining Data-driven and model-based approaches
	Variational Optimization

	Conclusion

	Constraining Light Source Localization using Visible Occlusion Boundaries
	Solving for point localization with known shadow edges
	Contributions

	Analyzing shadow edges
	Shadows Cast from a Point Source
	Solving for light source location
	Adding Hidden Points
	Relation between Point Sources and Edges

	Validation
	Single Point Localization
	Multi-point Localization
	Localizing shadow edges using image gradients

	Discussion
	Future Work
	Coordinate system for discretizing the hidden scene
	Differentiable Forward Model

	Conclusion

	Reconstructing the Hidden Scene from Object Shadows
	Contributions
	The Object Camera
	Inverse Rendering Problem
	Solving for Incident Illumination

	Implementation
	Synthetic Results
	Real-data Results

	Analysis
	Robustness to Sensor Noise
	Additional Results

	Discussion
	Future work
	Updating the Ray Transport Matrix
	Adding robustness to model parameter uncertainty
	Alternative Forward Models
	Approximate Inverse of Continuous Linear Operator with Deep Neural Network
	Alleviating Storage Requirements for Large Linear Models

	Conclusion

	Discovering and Exploiting Hidden Cues
	Data-driven Hidden Cue Discovery
	Hidden cues from the linear inverse operator
	Good cues are robust to model parameter uncertainty?
	Future Outlook: Designing Imaging Systems that Exploit Hidden Cues
	Computational Discovery of Computational Imaging Platforms
	Architecture Selection
	Task-specific Parameter Optimization
	Improved Architecture Selection

	Experimental Design
	Robobee Platform
	Collision-free Movement Task
	Experiment 1: Sensor Suite Selection
	Experiment 2: VDC for collision-free movement and image sensor

	Discussion
	Enabling Manufacturing Technologies
	Nature's optical design grammar
	Making use of the environment
	Risks

	Conclusion

	Conclusion and Future Work
	Goals and Research Questions
	Exploiting hidden cues in photographs
	Automatically discovering hidden cues

	Overview of Contributions
	Relevant Papers and Presentations
	Software Implementations
	Miscellaneous Contributions

	Future Work
	Summary from Chapters 3-6
	Updating the Model Matrix
	Linearization and tangent spaces of light transport
	Types of non-linear effects

	Conclusion

	Minimizing the Expected Error with Model Uncertainty
	Sampling Approach
	Taylor Approximation Approach
	Non-linear Least Squares to update

	Learning Linear Models from Data
	Model Driven Linear Inverse Problem
	Learning an Approximate Inverse
	Extension to Nonlinear Forward Models
	Comparison to Supervised Learning
	Learning Linear Maps

	Results
	Frontoparallel Ray Transport Matrix

