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Abstract

How-To questions (e.g., “How do I cook rice?”, “How do I write a check?”, or “How
do I send pictures to my family from my iPhone?”) are some of the most common
questions asked of search engines [37] and presumably of conversational agents as
well. Answers to How-To questions should generally be in the form of a procedure;
step-by-step instructions that users perform in sequence. However, people find read-
ing instructions cognitively demanding and often prefer that another person guide
them through a procedure [44]. Prior work in automating procedural guidance either
concentrates on how to communicate instructions or how to reason about procedural
knowledge to extract states of entities. In this work, we present an end-to-end proce-
dural voice guidance system that automatically generates and presents step-by-step
instructions to users through a conversational agent. This system overcomes three
significant challenges: generating a contextual knowledge graph of the procedure, or-
dering necessary information through reasoning on that graph and converting it to
procedural steps, and finally constructing a conversational system that delivers the
procedure in a way that is easily followed by users. Our approach improves upon
the current state-of-the-art in conversational agents, which often hand off the inter-
action to a web search. We demonstrate that our system can be utilized for end-user
guidance, and that a contextual commonsense inference system can be used for proce-
dural knowledge graph generation and ultimately procedural step generation. We also
show that reasoning for procedural step generation is essential for the task. Lastly,
we show that combining our knowledge driven system, both its steps and contextual
commonsense assertions with a large language model (LLM) provides more accurate
and reliable procedural guidance in tasks that the LLM may have trouble recalling/or
were created after training. This work opens up paths to perform contextual graph-
based reasoning for story-based applications and helps inform the design of future
conversational agents within the domain of procedural guidance.

Thesis Supervisor: Dr. Cynthia Breazeal
Title: Professor of Media Arts and Sciences
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4-4 Overview of the proposed GAN architecture. A story and a target

sentence are fed into the generator, which infers a contextual com-

monsense fact. This fact, along with the story and target sentence, is

passed into a discriminator to determine whether it is from a generator

or not and whether it is factual or not. . . . . . . . . . . . . . . . . . 110
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4-11 Procedure for abstracting Step 1 in the procedure how to write a check.

We can see the extracted noun/verb phrases and how these are used in

permutations with relations to produce hints to guide the generation.
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5-5 Validation metric results for different ordering schemes. We see that

the rouge sorting gives the best performance, as it is a metric that can
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5-12 Here we can visually see how a sub-procedure exception can be handled.

It can be handled either with a simple clarification question which lets

a user proceed to the next step, or with a sub-procedure to fix the

error. In the case of the sub-procedure, it may also be possible to

complete the process in an attempt to fix an error. This can be seen as

an alternative way of doing the procedure, and is the reason why there

is a dashed line (possible discontinuity) in the end of the exception

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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7-15 Distribution of whether the conversation felt natural or not. Most

people thought the conversation was not natural. . . . . . . . . . . . 201
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7-44 Distribution of participants reported monthly performance of tasks.
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Chapter 1

Introduction

Start by doing what’s necessary; then do what’s possible; and suddenly you

are doing the impossible. - St. Francis of Assisi

1.1 Preamble

In recent years, machine learning has been used to perform astonishing tasks, such

as autonomous driving vehicles [158], self-landing rockets [175], and even systems

that teach themselves to play video games [172]. Although we have progressed far

and wide in applying machine learning to a variety of tasks, the seemingly simple

task of providing automated instructions with error-handling capabilities seems to

have been evaded by researchers. Now, with the advent of transformer-based natural

language processing systems [14], it has suddenly become a very real possibility to

develop a fully automated voice-based procedural guidance system. In this work, we

will describe one way to achieve this.

1.2 Motivation

Instructed learning (for example, how-tos) is commonplace throughout our daily lives

(e.g., "How do I prepare rice?" or "How do I send images to my family from my

iPhone?", and many more). We routinely learn or teach new procedures through sets
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of instructions communicated through conversation or written documents. Alterna-

tively, one can obtain direction for procedures by viewing examples, improvising,

conversing with other people, or receiving instruction from a skilled individual. It

has been found that human beings find reading instructions intellectually taxing and

would often prefer to be guided through a procedure by another person [44].

Modern conversational agents, such as Alexa1, Siri 2, or Google Assistant3, offer a

scalable platform that could be leveraged to try and help users in instructed learning.

However, only a very small subset of procedures (e.g., cooking 45) are implemented and

can be told by the agent. Additionally, these procedures are implemented by scraping

popular sites verbatim for the written instructions, which in turn can produce some

awkward steps which in the website were intended to be additional information. Since

starting this work, more general how-to’s have now been made accessible in Alexa

using the wikiHow skill 6. However these “conversational” skills, provide very limited

capabilities: forwards, backwards, repetition, and a predetermined set of procedures

available for guidance. This makes them relatively inflexible for users, especially in

the case that errors occur in the procedure, or alternatives are needed in steps.

It is worth noting that procedure-related "How-to" questions were once the second

most prevalent type of query in web queries [37]. We could only guess that for modern

conversational agents such as Siri, Alexa, or the Google Assistant, that have a user-

base in the millions, and that presumably people ask questions from all parts of life,

the number of “how-to” queries is just maybe even more voluminous. This indicates a

large demand in this area for a way to satisfy this need for guidance. This is further

demonstrated by the large amount of instructional how-to content found in online

video sites such as YouTube. Given all of this, it is incredibly frustrating that most

modern conversational agents tend to give results similar to those seen in Figures 1-1

and 1-2. We see that they either give a small snippet of what might be the procedure

1https://en.wikipedia.org/wiki/Amazon_Alexa
2https://www.apple.com/siri/
3https://assistant.google.com
4https://support.google.com/googlenest/answer/7309433?hl=en
5https://www.amazon.com/alexa-kitchen-hacks-recipes/b?node=21440412011
6https://vixenlabs.co/learn-how-to-do-anything-with-the-wikihow-alexa-skill
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or answer, or a list of web results. In the case that the assistants return a list of web

search results, this has been seen as a failure on the agent’s part [96].

Figure 1-1: Behavior of Siri when asked
for guidance . The assistant falls back
to a web search for the topic and gives
no guidance.

Figure 1-2: Behavior of Google Assis-
tant when asked for guidance. The as-
sistant gives a copied and pasted re-
sponse from Wikihow as guidance.

More recently, very large language models, with human-like responses have been

made publicly accessible through chat interfaces. A popular example of these is Chat-

GPT7. These large language models have enough parameters that they are capable of

memorizing some procedural knowledge and can provide access to it through chat-like

prompting. However, although these models seem to produce incredible results, they

are still capable of hallucinating knowledge [69]. One alternative to minimize this, is
7https://openai.com/blog/chatgpt/
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to train/fine-tune these very large language models on a specific domain, however that

may be time consuming and expensive. One thing that is also lacking for voice-driven

guidance in these very large language models, is that they are trained on written text,

which may not necessarily translate effectively to an actual spoken conversation and

may not follow patterns of how we, as humans, communicate.

Prior to this, there has been research into automated systems for guiding people

through procedures. We discuss these in detail in the Background chapter and Prior

Work subsections later on. In summary, these works have focused on two distinct

aspects of procedural interactions: how procedural information is presented and how

procedural information is understood. What this means is that some projects do not

consider how to obtain the knowledge and instead assume it is provided, focusing

exclusively on the communication component. On the other hand, the other set

of systems does not consider how to convey effectively the information that they

have. Instead, they focus on novel techniques of extracting and reasoning with the

information. This creates a dichotomy without any connecting work between good

procedural understanding techniques and good procedural communication techniques.

To the best of our knowledge, no attempt has been made to develop a conversa-

tional agent with an underlying end-to-end system capable of automatically

understanding, abstracting, and generating on-the-fly procedural instruc-

tions. In our work, we present a novel knowledge driven procedural step guidance

system (KDPSG). We name this agent for user interactions as Winston. A conver-

sational agent that can automatically abstract, understand and generate on-the-fly

procedural guidance. A system like this would be beneficial to society, since it would

enable conversational agents to teach users new practices and procedures interactively

via a conversation on a device, rather than deferring to a web search or providing a

highly constrained interaction. Additionally, the work relies on contextual procedure

knowledge graphs, which may enable conversational agents to engage in explainable,

informed conversational experiences related to procedures, similar to the system in

[107], which uses a KG to discuss a particular topic.

This intermediate contextual KG also allows modifications to the knowledge to ad-
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dress issues such as mistakes, misunderstandings, and alternate methods of perform-

ing a procedure. Additionally, the work serves as a starting point for understanding

procedures for other means such as linking textual directions to actions that can be

performed on a smartphone. With the use of the intermediate knowledge graphs, we

could learn effective mappings between sets of assertions and a corresponding Siri

shortcut action for example. If such a technique were applied it could teach unskilled

users how to operate a piece of technology and could even enable end-user voice pro-

gramming. Altogether, with this work, we move towards bridging the gap between

modern conversational agents and modern procedural understanding systems.

1.3 Overview

In the following subsection, we give a very broad overview of the different techniques

and systems that we have developed to be able to create a conversational agent for

procedures.

1.3.1 Abstracting procedures to knowledge graphs

To have a machine understand a procedure and be capable of reasoning through it

to produce steps, the procedure needs to be abstracted into a contextual Knowledge

Graph (KG) and operated on by a separate reasoner. We define a KG as a collection

of knowledge, in the form of tuples, that represents information that is true about

the world. We give a more formal definition later in Chapter 2. This abstraction

of a procedure into a KG can enable things such as combining several methods of

completing the procedure (i.e., many sources) and removing/modifying information

in the graph to accommodate changing circumstances (e.g., a person is on a diet and

wants a substitute for white rice in a cooking procedure). Additionally, it may enable

systems to discover various paths through the graph that might be used to complete

the same procedure in a different way.

Briefly, to perform this abstraction of a procedure into a knowledge graph, we

utilize a contextual commonsense inference model which we describe in Chapter 4.
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Figure 1-3: Overview of the process for generating contextual procedural knowledge
graphs and steps. From left to right, a given text (e.g., story or procedure description)
is iterated sentence by sentence. For each sentence, we provide a hint of what a
contextual commonsense inference model should infer a fact about. We then collect
these facts for a contextual knowledge graph of the input text.

What this model does is that it takes in a certain textual context (in our case a

procedure) and goes sentence-by-sentence inferring facts that may stem from the

sentence within the specified context. The model is also controllable and can infer

facts along specified dimensions of commonsense and about entities/events. Once the

model has iterated through all the sentences using the controlling mechanism which

we call “hinting” to derive facts about entities/events in the sentence/context, we are

left with a collection of facts that can be viewed as a contextual knowledge graph of a

procedure which represents all the knowledge necessary to accomplish or understand

a certain procedure. A visualization of this process can be seen in Figure 1-3. We give

much more details of this process of controllable commonsense inference in Chapter

4.

1.3.2 Reasoning over procedural knowledge graphs for step

generation

Once we have abstracted the procedures into knowledge graphs, we proceed to reason

on these graphs to generate steps. To do this, we develop a ranking system that goes

through the knowledge available for a procedure and ranks it based on the plausibility

of the assertion given the context. Although this ranking is not perfect, it provides
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good performance and can be done as assertions are generated. We leave for future

work, exploration of more complex, reinforcement learning methods for assertion plan

generation. With this ranking, we pick the top 64 facts and pass them into a graph-to-

text system that generates the next procedural step. By operating in the knowledge

space, it is also possible to combine different knowledge graphs to be able to resolve

issues that may occur within procedures. With the contextual knowledge graphs, we

have a prior of all the information available up to the moment the failure occurred.

We can then combine this knowledge of how to perform an error-handling procedure

and the prior knowledge of what was happening on the step, to be able to generate

steps for sub-procedures or sub-goals that would solve a person’s issue and put them

back on track to complete their original goal.

Figure 1-4: Overview of the process for generating contextual procedural knowledge
graphs for error handling. Similarly to the previous figure, the controllable com-
monsense inference model is used to generate the contextual knowledge graph of the
procedure to perform error handling. However, to generate a step for the procedure,
the knowledge graph from the prior goal is utilized in addition to the one for the
error.
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1.3.3 Conversational agent and patterns for communicating

steps

Finally, now that we have generated a contextual knowledge graph from a procedure

and leveraged it to generate steps for a procedure, we have to provide these to people

so that they can utilize them to actually complete a procedure. To accomplish this, we

developed a conversational-pattern-based agent. These agents provide a natural way

for users to receive guidance. Additionally, conversational agents can provide users

with the ability to ask follow-up questions, making it easier for users to understand

the agent’s response.

Figure 1-5: Extended telling conversa-
tional pattern. Taken from [108]

Figure 1-6: Extended telling example.
Taken from [108]

To develop a conversational agent we used conversational patterns [108] that have

been developed in an effort to handle interactions in a manner that the end user

feels conversational. These patterns have been extracted from watching many con-

versations between individuals from the field of Conversational Analysis [108]. These

patterns serve as a template that when supplied with the correct information, and

with an adequate combination of patterns can dictate the behavior of an agent that

actually does conversational procedural guidance.

In our particular work, we make heavy usage of the Extended Telling [108] pattern,

which can be seen along with an example in Figures 1-5 and 1-6. In addition to this,

we leverage other patterns such as the Open Request [108] to be able to handle

users’ requests for guidance. We give a detailed explanation of the patterns and how

they are arranged for interactions in Chapter 6. Additionally, we implement these

patterns utilizing IBM’s Watson assistant in combination with a custom Flask server

that supplies required information (e.g., steps). To make the system conversational
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rather than a chatbot, we incorporate speech-to-text and text-to-speech capabilities

within a React Native interface that has the conversation transcript. We can see this

interface in Figure 1-7.

Figure 1-7: Example of Graphical User Interface (GUI) utilized to communicate
with our conversational agent. The outputs of the agent are relayed to users through
speech-to-text, and the user communicates with the agent by pressing the microphone
button and recording a message.

1.3.4 Guiding Example

To take all of this together, we now give an example of how the system would operate.

We frame the scenario such that it is a person that wants to get guidance with an

agent on their phone. The particular task that the person wants guidance with, is

“how to write a check”.

We set up a hypothetical conversation with an agent in Table 1.1. In this con-

versation, we can see firstly that a user requests guidance for writing a check. Then

we see that the user commits a mistake, and notifies the mistake to the agent. The
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agent then begins guidance on how to fix the mistake. We see how the user progresses

through the conversation until they finish.

Actor Example
User How do I write a check?

Agent The procedure I know how to do is writing a
check, is this OK?

User Yes exactly

Agent Alright! The first thing that you need to do
is date the check.

User Where do I write the date?
Agent On the line in the top right corner
User I made a mistake! I wrote the wrong date.

Agent No worries! Let’s try to fix this. Cross out the
mistake and write the correct date.

User What’s next?
Agent Sign next to the crossed out mistake.
User Ok
Agent That’s it!
User Ok then! What do I do now?

Agent The next step in writing a check is
to write the name of the recipient

User What’s next?

Agent Write the amount in both word and number
forms.

User Anything else?
Agent Yes, the last step is to sign the check!
User Got it thanks!
Agent You’re welcome!

Table 1.1: Simple example of how a user would interact with our agent for procedural
guidance and error recovery

Breaking this interaction down, we see that there was a request for guidance, a

question about the procedure, a request for error recovery within the procedure, then

continued guidance on the original procedure. We see that the procedural guidance

follows the extended-telling conversational pattern, in which the larger procedure is

broken into steps, one at a time. We also see that the error recovery follows the same

pattern after declaration of the error. Ultimately, the person finishes the procedure

and gives thanks. Once more, all of this is handled by conversational patterns. These

can be instantiated by using an intent-driven system.
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Now, we look into the first instruction that was given: “The first thing that you

need to do is date the check”. If we are using a knowledge graph to generate this

content, we would need facts such as:

• Step has the property first

• Step requires writing

• Writing is used for the date

• Writing requires pen

• The date is located in the upper-right-hand corner

• Check contains date

With these facts, we could translate them into a sentence such as the one we see in

the Table. Now, with this knowledge graph at hand, when the user makes a mistake,

such as writing the wrong date, the system can take into consideration that a pen

was used, and that the mistake needs to be crossed out. Altogether, we could come

up with a set of contextual facts that can be translated to this error handling. In

our work, we present a contextual commonsense inference system that is capable of

generating such facts. We also present a realizer system that can take these facts

and convert them into a procedural step such as the ones that we see in the example.

Now, these generated facts can be given to a conversational management system that

implements the conversational patterns that we mention before to bring about an

experience such as the one given in our example.

1.4 Research Questions and Novelty

1.4.1 Research questions

In this work, we address the following research questions to build an automated

agent with modern natural language processing systems that can provide guidance in

procedures.
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• Can all the necessary knowledge of a procedure be abstracted successfully into

a knowledge graph?

– Importance and Relevance:

If a procedure cannot be abstracted into a knowledge graph (with the

appropriate context for the knowledge) there may be no effective way to

reconstruct the procedure or find alternative ways of performing it. Fur-

thermore, operating within the KG space to add additional information on

how to perform error resolution would be extremely limited or impossible,

since error-resolution procedures cannot be abstracted successfully either.

• Can I utilize a contextual knowledge graph of a procedure to generate conver-

sational steps for a procedure?

– Importance and Relevance:

This question goes hand-in-hand with the prior one. If we have a successful

abstraction mechanism, we need a successful reconstruction mechanism.

With such a mechanism, we can then generate a variety of ways to complete

a procedure. Additionally, this would suggest that operations that we

perform in the knowledge graph space (such as removing or adding certain

facts to handle an error or personalize a procedure) could be converted

back into the language space.

• Can I combine procedure knowledge graphs to handle exceptions in a procedure?

– Importance and Relevance:

In this question hinges the error-handling capabilities of our system. If we

cannot combine knowledge graphs effectively, or at least a way to leverage

new information when changing a goal within a procedure, we have no way

of being able to use the information to be able to guide users out of an

error.

56



• Can I use the generated steps in natural conversational patterns to effectively

guide a human through a procedure and the exceptions that may occur in it?

– Importance and Relevance:

Although conversational patterns should produce natural/conversational

interactions when utilized in agents, we are evaluating them with infor-

mation that is dynamic (e.g., generated steps) in addition to a situation

(e.g., procedure) that may fail at any point. We need to make sure that

the patterns can still function and that a user can complete a procedure

whenever this happens.

• Can I establish some guidelines for the development of conversational agents

that handle procedures?

– Importance and Relevance:

Finally, we are developing a system that is conversational, but it is limited

in its understanding of the world; it is only capable of reading/processing

textual content. Because of this, it is very likely that certain types of

procedures, such as intricate assemblies, or procedures that require good

visual descriptions, may not be effective. By developing and testing our

system, we are attempting to give some guidance on which procedures are

effective/ineffective within the context of a conversational assistant.

1.4.2 Novelty

Current Limitations

Currently, conversational agents have a very limited capacity to provide procedural

guidance in a comprehensive and accurate manner. In the best of cases, instruc-

tions from a pre-made set of procedures are available in a limited navigation system

(wikiHow skill8). In the worst and arguably the most average cases, the agent de-

8https://vixenlabs.co/learn-how-to-do-anything-with-the-wikihow-alexa-skill
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faults to a web search. As a result, there is a need for the development of advanced

conversational agents that can provide effective procedural guidance.

Additionally, large language models such as GPT-3 [20] or even ChatGPT 9 could

be utilized, out of the box, for this process. Although it is possible, it is important to

note that even advanced language models such as GPT-3 and ChatGPT are capable of

hallucinating knowledge, which means that they may generate incorrect procedures.

This is because these models are trained on vast amounts of text data, including

information that may be inaccurate or outdated. As such, other methods, such as

the ones that we present in this work, may be needed to give factual accuracy for

these large language models in very specific, or constantly changing domains.

Unique aspects of this work

To our knowledge, this work is unique in various ways. First, this is the first research

work to use large language model-based systems for procedural guidance tasks within

a conversational agent context. Second, this is the first work that utilizes a con-

textual commonsense inference system to perform procedural understanding, along

with a ranking strategy to filter procedural contextual knowledge. Third, this work

is the first work that leverages conversational patterns with dynamically generated

information for open-domain instructional dialogue. Finally, this is the first work

to utilize contextual commonsense knowledge on-demand as an aid for very large-

language model guidance systems to update their knowledge on unseen/outdated

procedures.

Implications

The completion of our work leaves the following implications. First, contextual

knowledge graphs can be utilized for the generation of procedural steps. This means

that any improvements in filtering, ordering, and reasoning of contextual knowledge

graphs, can be leveraged to produce more useful steps, and in the future may be

used to provide alternative ways of performing a procedure. Second, conversational
9https://openai.com/blog/chatgpt/
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patterns with dynamically generated information, can help improve the overall user

experience, providing more natural and engaging conversations. Overall, this work

has the potential to make task-oriented conversational agents more effective and effi-

cient in providing procedural guidance. The system presented in this work provides

an alternative for handling the static response of "here is a web search that may have

your answer" with a more concrete answer, at least in the case of procedural guidance.

1.5 Contributions

We now provide a list which summarizes all the contributions of this work.

1. Controllable Contextual Commonsense Inference System

A novel transformer-based, sequence-to system that is capable of taking a story,

a sentence from that story, and a hint, and controllably produces a contextual

commonsense assertion (fact) that is relevant to the story and sentence. The

system is novel in that it utilizes the hint to guide the generation process, it

uses a co-trained classifier to rate the plausibility of the assertions, and a single

contextual commonsense inference model learns commonsense information from

multiple aligned sources.

2. Graph-to-Step System & Assertion Ranking Strategy

A novel transformer-based sequence-to-sequence system that takes a procedure

name, a number of a step, prior steps, and a set of assertions and produces the

indicated step for a procedure. This is the first system which applies the Data-

to-text task for procedural step generation. This is combined with grounding

the contextual inference process and sorting assertions by plausibility to select

the essential knowledge for a procedural step.

3. Conversational Procedure Error Handling Strategy

Novel utilization of an expanded Inquiry conversational pattern to handle pro-

cedural errors. Inquiries for error handling procedures are treated as Extended
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Tellings to provide error handling guidance. In addition to this, we combine

contextual knowledge graphs to contextualize the generated steps for this error

handling extended telling.

4. Conversational agents for procedural guidance & error handling

Design and implementation of conversational agents that provide guidance with

our novel contextual commonsense system. We show that the use of this conver-

sational agent with the patterns along with our dynamic step generation system

can be utilized to guide people through procedures and through error recovery

in procedures.

5. Hybrid Agent that uses Large-Language Models in combination with

Graph-to-Step and Contextual Commonsense Inference

Implementation and evaluation of a novel conversational agent that leverages

the flexibility of large language models and the explainability and knowledge-

based approach of the contextual commonsense and graph-to-step system. We

show that this hybrid system produces more accurate and reliable information

that a plain large-language model. We also provide a first evaluation of large-

language models applied to general procedure guidance

6. Guidelines for Future Agent Development

From our evaluations and feedback we provide a list of guidelines that should be

taken into consideration when developing conversational agents for procedures.
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Chapter 2

Background

When I was young, I had to learn the fundamentals of basketball. You can

have all the physical ability in the world, but you still have to know the

fundamentals. - Michael Jordan

2.1 Procedures and Instructions

Procedural inquiries in the form of "How-To" questions used to be the second-largest

class of questions in web queries [38]. This raises the question of what exactly is

a procedure, and how could we provide guidance for this effectively. A procedure

is performing a series of tasks to achieve a goal [145]. The knowledge necessary to

complete these tasks is known as procedural knowledge [116]. An instance of pro-

cedural knowledge is procedural instructions or as they are more commonly known:

instructions [44]. In a procedure, there are various ways that instructions can be con-

structed: the regular procedural instruction, (task-oriented instructions), principles

(system-oriented instructions), or examples (instance-oriented instructions). Proce-

dural instructions describe how to complete tasks in a step-wise manner, principles

describe rules governing the tasks, and examples demonstrate how instances of the

task are carried out [44]. An example of the three types of instructions can be seen

in Table 2.1.
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Type of instruction Example Usage

Procedural Instruction

To send a fax:
1) Place the document in the tray, text facing up
2) Dial 011
3) Dial the country and the city code

Principle

To send a fax:
1) Place the document in the tray, text facing up
2) Dial 011, then input international access code.
This code is used to dial out of countries.
The International Telecommunication Union recommends
using the standard of 00.
3) Dial the country and the city code

Example

To send a fax to Berlin from a particular fax machine in Iceland:
1) Place document in the tray on the right side of the machine,
text facing up.
2) Dial 00-49-30-5555
3) Press the start (green) button

Table 2.1: The three different instructions in the procedure of sending a fax. Examples
were adapted from [44]

The content and type of instructions influence their effectiveness for the goals of

good initial performance, learning, and transfer. If the goal is good initial perfor-

mance, then instructions should highly resemble the task at hand (e.g., in the form of

detailed procedural instructions and examples), but if the goal is good learning and

transfer, then instructions should be more abstract, inducing learners to expend the

necessary cognitive effort for learning [44]. These types of instructions can be modi-

fied in such ways that they can benefit/hinder both initial performance and transfer

and learning of a process. Some modifications and their effects can be seen in table

2.2. All of this taken together means that instructions have to be carefully thought

out to be effective for a task at hand. It also implies that good instruction generation

needs to have at its disposal a good understanding of why a certain task must be

done (Principle), along with concrete, contextual information on how to perform that

task (Procedural Instruction, Example). It may also imply that the styling of the

instructions needs to be controllable to give more or less detail or to give examples.
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Type of
instruction

Initial Performance Learning and Transfer
Helped By Hurt By Helped By Hurt By

Procedural
Instruction

•Being specific in
the step descriptions
•Combining a general
step description
with a principle
•Combining a general
step description
with a specific example
•Giving a specific goal
with the instruction

•General step
description

•General step
description
•Combining a
general step
description
with a principle
•Exercise with
goal provided

•Being specific in
the step descriptions
•Giving a specific goal
with the instruction

Principle •Combining with a
general step description

•Combining a
general step
description
with a principle
•Adding principles
that clearly
relate to the
interface at hand

•Adding principles to
specific procedural
instructions
•Providing principles
only

Example •Similar to task at hand •Less similar
to task at hand •Emphasizing Sub-goals

•Using examples
without support to
guide generalization

Table 2.2: The ways that each specific type of instruction can be improved/hindered
with regards to initial performance/transfer and learning. Adapted from [44]

2.2 Knowledge Graphs

2.2.1 General Knowledge Graphs

In this work, we define a knowledge graph (KG) as “a graph of data intended to

accumulate and convey knowledge of the real world, whose nodes represent entities

of interest and whose edges represent relations between these entities" [59].

Broadly speaking, KGs are a collection of tuples that represent facts or assertions1

that should be true within the knowledge of a represented world. As an example,

consider the assertion "generally, a dog is an animal". In our work, we represent

this assertion as the tuple: (general, dog, is a, animal), where each element of the

tuple (demarcated by a comma “,”) is: assertion type, subject, relation, and object

respectively. The assertion type indicates whether the assertion is a generic rule or

a specific instance of a rule. The subject, relation, and object elements are like those

found in subject-verb-object triples; however, the relation element may be more than

1In this work, we use interchangeably “fact” and “assertion”. It is worth noting that a fact is
something that is objectively true, whereas an assertion is a declaration of something.
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just a verb and subjects and objects need not be noun phrases (e.g., they can be

events).

A knowledge graph can be a directed graph, and the edges in the graphs may have

weights. In our case, the graph is directed, and the weights of the edges of the graph

represent the strength of the assertions. We try to normalize this weight between 0

and 1, but other works may have weights that are not in that range (e.g., ConceptNet

[162]) An aspect that makes knowledge graphs useful is that new knowledge can be

added and linked or removed and unlinked. Some definitions of knowledge graphs

categorize them as a more dynamic system that acquires and integrates information

and applies a reasoner to derive new knowledge [43].

Mathematically, a knowledge graph is a tuple 𝐺 := (𝑉,𝐸, 𝐿) [59]. The set of

edges (𝐸) or assertions is composed of triples 𝐸 ⊆ 𝑉 × 𝐿 × 𝑉 which are seen as

a subject (a concept or event), a relation (a label), and object (another concept or

event) respectively (e.g. (𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜𝑏𝑗𝑒𝑐𝑡)). We extend this definition to

additionally include the assertion type which can be seen as 𝐴 ∈ {𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐};

when put together, the knowledge graphs that we work with are in the form of

𝐺 := (𝐴, 𝑉,𝐸, 𝐿).

2.2.2 Commonsense Knowledge Graphs

ConceptNet [92] is an example of a commonsense knowledge graph. It is a collec-

tion of crowdsourced assertions of what people think is commonsense information.

This collection is mostly taxonomic (e.g. a dog is an animal), and not causal (e.g.

𝑥 causes 𝑦). An example of a sub-graph of ConceptNet can be found in figure 2-1.

To address this lack of causal information, ATOMIC [155] was built. ATOMIC is

another knowledge graph that collects causal, person-related if-then assertions that

complement ConceptNet. An example of a sub-graph of ATOMIC can be seen in

figure 2-2. Although ATOMIC provides a good causal knowledge graph, it is person-

centric and non-contextual which leads to conflating information about an event that

may have occurred under different scenarios [113]. To address these shortcomings and

shortcomings, also found in ConceptNet, GLUCOSE [113] was collected. GLUCOSE
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Figure 2-1: Sample sub-graph from
ConceptNet [92]

Figure 2-2: Sample sub-graph from
ATOMIC [155]

is a dataset that combines assertions with textual examples of them. Although GLU-

Figure 2-3: Sample data from GLUCOSE[113]. The sentence in the gray box is
the assertion. We can convert these assertions similar to how ATOMIC converts its
assertions as seen in figure 2-2

COSE is a dataset for pairing causes with context, the assertions found in GLUCOSE

can be compiled to form a knowledge graph. An example of a subset of data from

GLUCOSE can be seen in figure 2-3.

A follow-up work developed ATOMIC-2020 [65]. ATOMIC-2020, which we utilize

in our work, is an improved version of ATOMIC that seeks to incorporate some of the

taxonomic information found in ConceptNet and expand on the causal information

provided by ATOMIC.We use ATOMIC-2020 in our work because it was one of the

most comprehensive, documented and well-backed resource available at the time.

However, we do note that the ATOMIC work has expanded more recently to distilling

knowledge from very large language models such as GPT-3 [178]. The resulting KG

from this work we leave as future work to explore contextualizing and incorporating

into our work.
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Lastly, we incorporate Ascent++ [119] into our work. ASCENT++ was developed

through automatic construction methods, extracting the information from the C4

corpus [142]. Some of the salient features, apart from the scale of the data used for

the automatic construction, are that it has refined expressiveness and both better

precision and recall than prior works [119]. It captures composite concepts with

subgroups and aspects, and by refining assertions with semantic facets. This is useful

because it helps express the temporal and spatial validity of assertions and further

qualifiers [119]. This work can be seen as a massive addition to both ATOMIC and

ConceptNet and contains approximately 2.4M assertions.

2.3 Transformers and Natural Language Processing

In this work, we rely heavily on the utilization of Transformer-based systems [171].

A transformer-based system is a neural model that relies on the use of an attention

mechanism [8, 171] to build powerful and generalizable contextual representations of

an input text. Through the attention mechanism, tokens in an input text learn to

“attend” to other tokens in the input text to build a representation for themselves.

The original system developed in [171] was an encoder-decoder model utilized for

sequence-to-sequence tasks. We give a simplified overview of this model in Figure 2-4.

In this model a transformer-based encoder would generate a hidden representation of a

text, and a decoder would convert that hidden representation into some other output.

Around the same time that the transformer architecture was introduced, studies were

being carried out to determine how best to train models for effective transfer learning

in the language domain [62]. Following this, it was discovered that if these systems

were given large amounts of data, they could be utilized as pre-trained models, and

through transfer learning and fine-tuning, could be adapted to a wide variety of tasks

[40, 140]. Two of the most popular systems used to achieve state-of-the-art scores

in a wide variety of tasks were BERT [40] and GPT-2 [141]. Briefly, BERT is a

transformer-based model that consists of only the encoder part from the original

transformer work. To be able to utilize only this encoder model for downstream
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Figure 2-4: Simplified overview of the encoder-decoder transformer model. Cutouts
and overall architecture from [171]

tasks, the authors developed a masked language modeling task. This consisted of a

Cloze-like approach [169] (i.e., fill in the blanks) in which the model had to figure out

a masked token, from the other tokens surrounding it. Some issues that arose from

this were that it was not immediately clear how this could be utilized to generate

language, as there was no apparent way for the model to recurrently generate text.

Later, this was addressed [174], but by then encoder-decoder architectures were being

reintroduced as being capable of doing this and performing better in other downstream

applications. GPT-2 or the General Pretrained Transformer 2, is a transformer-based

model that consists of only the decoder part of the original transformer-based model.
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This model was trained on the regular language modeling objective (which consists

of predicting the next token in a sentence, given all the prior ones). The way this

was done utilizing this transformer model, which had no sense of recurrence, was by

masking out future tokens when performing the self-attention. In other words, the

model can only see the past and current token, when predicting the next token.

Following the success and wide application of these models to a variety of tasks,

it was then discovered that different strategies could be employed when pre-training

these transformer models that could yield improved performance [94, 184]. It was also

found that by scaling these systems, both in the amount of data used in pretraining

and in parameters, the models could achieve even higher performance when used for

downstream tasks [142, 20, 79]. Additionally, it was found that different pre-training

strategies could be utilized in the originally proposed encoder-decoder transformer

model, and achieve comparable and in many cases better performance on downstream

tasks than any of the encoder-only or decoder-only approaches [79, 142]. In addition

to this, these encoder-decoder models could function as general sequence-to-sequence

models that had already been applied to many tasks, such as translation [8].

More recently, there have been some promising directions in this field of large-

language models. One of the more interesting of those is the incorporation of exter-

nal knowledge from sources such as knowledge graphs. We have explored some of

the ways of injecting this knowledge into transformer encoder-based models, such as

BERT [30]. In general, there appeared to be many promising methods to incorporate

structured information. One of the most popular, and simple, was utilizing additional

information (e.g., facts) as additional prompts for a language model. We explored

some of this work to examine the incorporation of information through graph embed-

dings and found that there was indeed an improvement in performance in downstream

tasks [186]. Another area that has been promising is that of prompting [93]. Prompt-

ing is a series of techniques in which a prompt in the form of text, or a vector, is

strategically chosen or learned to tap into information that a language model may

have acquired from pre-training. We give more details of this in Chapter 3.1.1. Fi-

nally, as of this writing, one of the more recent and promising directions has been to
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utilize reinforcement learning with very large language models to have them refine

their outputs based on feedback on certain tasks [27]. This type of refinement has

been shown to increase general task performance and zero-shot capabilities of large-

language models. In our work, we utilize these models, (in particular the FLAN-T5

model) as they are the current state-of-the-art in various benchmarks.

2.3.1 Very Large Language Models

Recently, it has been seen that there is a strong correlation between increasing the

amount of parameters in a transformer-based model (i.e., transformer layers and con-

text size), and the performance of such models. Large language models, typically

larger than 10B parameters, such as GPT-3 [20], ChatGPT2, and LLaMA [170] and

others have shown state-of-the-art performance, in a zero-shot setting in many NLP

tasks. Many people have also started researching what is called emergent behav-

iors in language models. This is the phenomenon that after a certain amount of

parameters and training, a very large, transformer-based language model can begin

to perform reasoning-like behavior in some tasks[177]. Some researchers have even

begun to speculate that the dawn of artificial general intelligence has come about

with extremely large, multi-modal, language models [21]. While only time will tell,

these models permit extremely flexible behaviors like filtering information, extracting

information, and even serving as chatbots. However, given these model’s scales, and

that they are based on the transformer architecture, these models can still halluci-

nate or come up with misinformation [68]. Given that these large language models

are very good zero-shot systems, yet are expensive to train and fine-tune, retrieval

based systems are an excellent way to supply these models with accurate information

that they may need to improve their zero-shot reasoning. We do note, that there is

a very large body of work on utilizing reinforcement learning to fine-tune and train

these large-language models to minimize some of the hallucinations that they have

and to improve zero-shot reasoning capabilities [157, 95]. Later on in Chapter 6, we

will show how we can leverage our contextual commonsense inference work to supple-
2https://chat.openai.com/
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ment large-language-models. We also look at utilizing these large-language models as

a proxy for a reasoner system.
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Chapter 3

Related Work

If I have seen further, it is by standing on the shoulders of Giants -Isaac

Newton

3.1 Relevant work for Abstracting Procedures into

Facts

3.1.1 Large Language Model Prompting

Recently, there has been a shift in Natural Language Processing from pre-training

and fine-tuning a model to pre-training, prompting, and predicting [93]. One reason

for this shift is the creation of ever-larger language models, which have become com-

putationally expensive to fine-tune. Prompting is finding a way to convert a model’s

input sequence into another sequence that resembles what the model has seen during

pre-training, which makes it recall certain information. In our work, we consider the

task of prompting for language generation, an open-ended formulation.

Recall that prefix prompting modifies the input to a language model, by adding

either a hard prompt (additional words to the input sequence) [160] or a soft prompt

(i.e., adding trainable vectors that represent, but are not equivalent to, additional

words) [86, 78, 93]. Unlike classic prefix prompting, the technique we develop and

present in the next chapter,hinting, uses both hard and soft prompts. The soft
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prompts are in the form of symbols that represent the different parts of the assertion

(i.e., subject (<subj>), relation type (<relation>), and an object (<obj>)), and the

hard prompts are in the form of the actual parts of the assertion that are selected to

be appended as part of the hint as seen in our example in section 3.1.1. Hinting is

similar to KnowPrompt [24], except that they use a masked language model and soft

prompts for relationship extraction. AutoPrompt [160] is also similar, but finds a set

of “trigger” words that give the best performance on a cloze-related task, whereas we

provide specific structured input for the model to guide text generation.

We classify hinting as a hybrid prefix-prompting technique due to the inclusion

of trainable symbols that are not part of the model’s original vocabulary and can be

viewed as soft-prompts given to the model, as well as the combination of these soft-

prompts with actual hard prompts to generate a contextual inference. We refer to

[93]’s definition of prompting as a three-step process. To begin, we define a function

that converts the input to an intermediate template and fills it out with information

about the target task (i.e. contextual commonsense inference. In our case, by in-

cluding what we call the hint, a random subset of the tuple that is to be predicted,

between parenthesis at the end of the input (i.e., the input of the model follows the

structure of [STORY CONTEXT](HINT)). Second, the model must generate an an-

swer using this template, hence the prefix prompting. Finally, as training progresses,

the prompt is directly mapped to a 𝑌 , which corresponds to the target contextual

assertion in the contextual commonsense inference task. We give much more details

on the actual process for hinting later in Section 4.3.1.

3.1.2 Controllable Generation

Controllable generation can be described as ways to control a language model’s text

generation given some kind of guidance. One work that tries to implement controllable

generation is CTRL [74]. The authors supply control signals during the pre-training

of a language model. This approach is intended to provide a generally applicable

language model. A body of work in controllable generation has focused on how it can

be used for summarization. Representative work that uses techniques similar to ours
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is GSum [42]. In contrast to GSum, our method of hinting is model-independent,

allows for the source document to interact with the guidance signal, and contains soft

prompts in the form of trainable embeddings that represent the parts of a tuple. The

GSum system gives an interesting insight into the fact that highlighted sentences, and

the provision of triples, does in fact help with the factual correctness of abstractive

summarization.

We make the distinction that hinting falls more under prompting for the reason

that we utilize additionally the trainable soft embeddings rather than purely addi-

tional hard tokens and that our task of contextual commonsense generation is not

explored in the controllable generation works, whose main focus is on controlling un-

structured text generation. Some works that are in this area are also [127] who utilize

what they call ”control factors” as keywords or phrases that are supplied by a human-

in-the-loop to guide a conversation. More similar to our work, but tailored for the task

of interactive story generation and without trainable soft-embeddings, is the work by

[18] which uses automatically extracted keywords to generate a story. In future work,

we could possibly utilize the automatic keyword extraction to supply parts of a hint,

rather than our approach of complete parts of an assertion, and expand this to utilize

synonyms and antonyms of keywords. During inference time, later for procedural

understanding, we do utilize keyword extraction along with noun-phrase and verb-

phrase extraction to produce procedural contextual commonsense facts. Additionally,

we are exploring synonymy-based hinting and have found that it does significantly

help with the recall ability of the model, however, we do not have any conclusive

results yet. Lastly, there is the work by [159] which looks at controllable text gener-

ation for the purpose of conversation and utilizes an embedding to give quantitative

control signals as part of conditional training.

3.1.3 Story and Assertion Alignment

The closest works to ours, with respect to constructing a story-aligned assertion

dataset, are ParaCOMET and GLUCOSE [50, 114]. GLUCOSE uses human anno-

tation to perform the alignment between stories and commonsense assertions. Para-
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COMET takes an automated approach in which assertions are aligned either by giving

the sentence to a COMET model as an input and producing a relevant inferred as-

sertion or by calculating the cross entropy of combining the story up until the target

sentence with an assertion from a knowledge base. Our method differs from this in

that we utilize the cosine distance between semantic representations of the story and

its sentences and an assertion from a knowledge base. Some possible difference that

arises from this is that our method could match assertions that may not be explicit

in a story to that story. Whereas ParaCOMET’s approaches, which are based on

cross-entropy for coherence and n-gram matching, are likely to produce assertions

that have parts that are explicit in the text. Overall, our approach can match more

abstract assertions to stories. Additionally, our method permits us to use the opti-

mized FAISS library to scale up to billions of stories and assertions, and gives us the

freedom to select how to embed the stories/sentences/assertions.

More recently, the work by Gao, et.al., (ComFact [51]), does a similar procedure

to how we do the joint alignment. They perform contextual alignment with parts

of the triple, utilizing the same cosine distance approach. It is worth noting that

apart from the ROCStories dataset, they also utilize a conversational dataset for

additional contextual fact matching. This work came out later as we were conducting

our studies, but it provides good insight into some of the problems that the task of

contextual fact-matching systems must face.

3.2 Relevant work for Processing Abstracted Proce-

dural Knowledge into Steps

3.2.1 Text Generation and Reasoning with Knowledge Graphs

Although knowledge graphs are useful for reasoning about questions and procedures,

they can be used for other purposes such as text generation and guidance for the text

generation. Some of the aforementioned works generate a reasoning chain to arrive

at an answer, but in our case, we need to convert this reasoning chain to a natural
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language instruction.

The line of work by Moryossef et al. [110, 109] addresses this by breaking up neural

text generation into a planning system that takes sub-graphs combined with a neural

text generation system that generates text based on these sub-graphs. The planning

system generates a tree-like structure, which when input into the text generation

system produces text that matches the relations/facts in the tree-like structure. This

is particularly interesting, because it makes it feasible to go straight from a graph

structure into natural language text. If we contextualize this into a procedural system,

the reasoner that we would need for procedural step generation could generate a path

that represents the steps, and a system such as the one presented by Moryossef could

be utilized to translate the path that the reasoner determines is a step, as an input

to a text generation system that produces the actual steps that would be relayed to

the user.

Figure 3-1: Procedure utilized by [110] to translate a an input graph into natural
language text

There has been some notable work in planning for text generation, apart from the

work from Moryossef et al. [110, 109], there has been work at looking at reinforcement

learning for automatically generating plans. This began before the explicit need for

planning by works such as [135], that provides a way of utilizing reinforcement learning

for controllable story generation. Other works have focused explicitly on planning out

what the text generation should generate. There has been research into justifying
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even further the need for planning for data to text generation [45], saying that there

is a correlation between higher quality planning and more natural, cohesive text. In

our work later on, we show similar results. This work consists of what are micro or

sentence-level plans. A similar work, by Puduppully et al., [137], focuses also on this

micro planning scale. They train a model that can jointly learn to select content

and decode it into text. They find improvements in the number of relevant facts

contained in the output text, and the order according to which these are presented.

They also see improvements in the grammaticality, and conciseness of the generated

text. Although that model seems very useful and the approach well justified, it

may not be able to generalize well as it is trained to generate text within a certain

domain. In our case, we would like to have a transformer based model such that it

could be fine-tuned and perform well even in an out of domain situation. In another

work, they consider higher level planning (i.e., planning paragraph and composition

level structure) [138]. They find that this scale of planning, is more advantageous

for generation tasks expected to produce longer texts with multiple discourse units.

However, they note that Other approaches focusing on micro planning (Puduppully

et al., [137]; Moryossef et al., [110]) might be better tailored for generating shorter

texts. In our work, we are interested in mostly shorter texts (as our data is on average

around 10 sentences).

We also note that there have been other works in sentence-level planning [100]. We

note that there have been creative approaches to planning for language generation,

such as the DYPLOC [63] in which authors use language models to generate plausible

alternatives by encoding an input and have a final selector that picks one of them. We

also look at some work which shows some promise in pre-training models for graph-

to-text [73] by incorporating explicit structure-based graph representations, and at

work that looks at using language models for zero-shot graph-to-text generation [83]

and shows promise of the abilities of large language models for this task. There is

also work that focuses on the controllability aspects of plan then generate systems

[165] particularly for table-to-text [84] generations.

More recently, there has been work on utilizing large language models as zero-

76



shot planners for embodied reasoning [64]. This direction seems very promising,

particularly because one could specify a task without much complexity (through plain

text prompting) and parse through the answer as needed. We look at the work

by Yang et al. [183] which is the most applicable work to ours. They develop a

reinforcement learning-based planner that can learn to plan the knowledge needed

(ordering and selection) for text realization. Their method is particularly interesting

because the planner can, based on the text that has been generated or realized until

the moment, adapt its planning. In our case, this might be particularly useful if it

could navigate through all the available knowledge and find the knowledge needed

for an exception. In our work, we try to implement a system similar to the one they

propose.

A similar area to this is prompting for language models. Prompting, as explained

in Chapter 4, consists of selecting or providing a language model with an input that

can help maximize its performance (ideally without any fine-tuning of the model).

A work that is of particular interest is RLPrompt [39], in which the authors learn

through reinforcement learning and feedback signals, an optimal input for language

models for a task. They provide some key insights, such as that the rewards need

to be normalized because of the wide range of responses that can be had from the

language model. There has also been work on reinforcement learning for guiding text

generation [185] and [117], but it is on using RL for learning to generate open-domain

text, however it uses semantic similarity for guidance.

3.3 Relevant work for Relaying Steps through Con-

versational Agents

3.3.1 Modern Collaborative Agents

Modern collaborative agents have started to explore the possibility of automatically

mining procedures and presenting them. This somewhat addresses the issue of acquir-

ing domain knowledge, but there is no explicit understanding of underlying procedural
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knowledge. It is worth noting that there is still a part of the research that is focused

on the presentation of the information, however, this seems to have centered around

utilizing augmented reality (AR).

Enabling Interactive Answering of Procedural Questions [99]

The work by [99] presents an alternate way of generating intermediate representations

(tree-like structures) from procedural instructions. They do this by first identifying

the procedure from sources, splitting it into steps, then extracting decision points

to generate procedure branches, and finally generate closed domain questions on the

decision points to ask a user where to go. The authors do not incorporate it into an

actual agent, but they mention that it is the machinery necessary to be able to do

procedure guidance. The authors also do not mention what happens if a user makes

a mistake in a procedure.

Figure 3-2: Architecture for “Enabling Interactive Answering of Procedural Ques-
tions" [99]

Cognition-based interactive Augmented Reality Assembly Guidance Sys-

tem (CARAGS) [176]

The other line of more recent work is on how to present the information in a procedure.

The work in [176] presents an augmented reality system called CARAGS, which based

on the user’s cognitive state either presents the information, visually (images, videos,

or text) or through audio. For the procedures that the system provides guidance, a

domain expert must generate an Ontology for Assembly Tasks Procedure (OATP) to
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describe the properties and parts of the procedure. The system, based on the cog-

nitive state (perception, attention, memory, and execution), will provide information

through a different modality. Once more, this system is primarily concerned with

which modality to present the information in, and it is successful in minimizing a

user’s attention shifts because of this; however, it makes no attempt to automatically

generate the OATP to automate the creation of the procedures.

Figure 3-3: Architecture for CARAGS [176]

Intelligent Augmented Reality Training for Motherboard Assembly[179]

The work by [179] focused on incorporating an intelligent tutoring system (ITS) into

a mixed reality system for teaching a user how to assemble a motherboard and its

components. The authors found that it was extremely useful to incorporate the ITS to

help users perform the task. The system that the authors utilize is ASPIRE[105] and

based on a description and constraints of the task that is wanted to be performed, it

generates a tutoring system to guide users. They combine this with a head-mounted

augmented device that provides audio and visual text instructions of the step along

with graphics for guidance. This system still suffers from the need to supply all of

the domain knowledge necessary to be able to successfully complete the task.
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Figure 3-4: Example of MAT agent guidance from [179]

Cognitive Embodied Conversational Agents in Virtual Learning Environ-

ment [118]

The work [118] dives back into Virtual Reality and focuses on instantiating an envi-

ronment with different embodied conversational agents (ECA) imbued with cognitive

systems to be able to effectively teach a task. The authors extend the MASCARET

[22] to incorporate a Belief Desire Intent-like framework that should be able to give

an ECA the ability to convey the correct action based on the world that it is in,

to most effectively teach a task. Although they automate the instantiation of the

environment and the agents, one must supply a UML description of all the knowledge

necessary to carry out the task that will be performed.

Popular Assistants

Currently, some of the most popular, and widely accessible assistants are the Google

Assistant, Siri, and Alexa. Siri as of the time of this writing is incapable of giving

guidance on procedural tasks. It defaults to a list of web results. The Google Assistant

is sometimes slightly better, in that it sometimes gives snippets, directly cut from a

website, on how to perform short tasks (around 7 steps); however it only reads out

loud the result and has no conversational management skills. It is however capable of

guiding users through cooking procedures that once more are scraped from the web.

Alexa is also capable of similar cooking guidance, but does not offer snippet guidance
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Figure 3-5: Architecture for [118]

nor web search results. Alexa has access to the wikiHow skill, which is the closest

thing to an open-domain guidance system.

wikiHow conversational system

The wikiHow skill for Amazon Alexa provides step-by-step instructions on how to do

a wide variety of tasks. It has over 180,000 articles that cover a wide range of topics

such as cooking, tech, fitness, relationships, life skills and more. You can ask Alexa

to open the wikiHow skill and then ask for instructions on how to do something. The

skill will then provide you with detailed instructions on how to complete the task.

You can also ask Alexa to read the instructions out loud or send them to your phone

via text message.

We note that users seem to struggle with similar problems of intent matching and

slot filling and that there are some issues in the navigation. A review from the skill’s

website1 is the following:

“You really have to use the exact words that you’re looking for to find

any answers. It’s very frustrating if you’d like to hear something again

because you can’t make it go back 30 seconds or it’ll just start over from

the very beginning introducing wikiHow. It’s difficult to navigate and
1The website is https://www.amazon.com/wikiHow/dp/B01NAI70T7/ref=sr_1_1?keywords=

wikihow&qid=1684170734&s=digital-skills&sr=1-1
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often I’ll say next, to go to the next step and it will just go back to the

beginning introducing wikiHow again. I wish that there was someway to

rewind or go back 15 seconds without it flipping out by Unk canceling

everything you’ve gone through already.”

To compare against this, we implement a very similar system, which we call the

Gold Instructions later on. It consists of an intent-based system that can take a

request for a procedure and look up the instructions from the wikiHow dataset that

we scrape.

GRILLBot

The most recent work that is similar to ours is GRILLBot[53]. GRILLBot is the win-

ner of the first Alexa TaskBot Challenge, in which participants have to build a system

that can guide people through tasks. GRILLBot is a multi-modal task-oriented voice

assistant that guides users through complex real-world tasks for the Alexa TaskBot

Challenge. It helps search over a large task corpus with mixed-initiative and exe-

cuting those tasks with neural dialogue management, knowledge grounded question

answering, and web information extraction. To represent each task, TaskGraphs

are proposed as a dynamic graph unifying steps, requirements, and curated domain

knowledge enabling detailed contextual explanations and adaptable task execution.

Automatic linking of multi-modal elements helps the user navigate through the task

and enrich the experience with helpful videos and images. Broad use of neural lan-

guage models makes for flexible chit-chat, contextual intent parsing, and accurate

task retrieval. This work was released late 2022 and we were not aware of it until at

the end of our work. GRILLBot is similar to the agent we develop, but it differs in

that they utilize what they call TaskGraph: “a novel dynamic representation of steps,

requirements, and extra elements to walk users through intricate tasks. TaskGraph

enables fluid and adaptable conversations by providing a structured abstraction of

the task. It allows GRILLBot to take the initiative, or for the user to make deci-

sions on the task at hand.”. We note that this is a similar approach to the one we

are proposing on generating a contextual knowledge graph, but it does not take into
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account facts, rather curated content. The authors mention also that it is somewhat

heavily curated in the tasks that it can perform. In future work it would be promising

to see how this system performs on the tasks that we evaluated, and whether it could

be augmented with the contextual knowledge graph that we utilize.
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Chapter 4

Abstracting Procedures into Facts

Remember that every science is based upon an abstraction. An abstraction

is taking a point of view or looking at things under a certain aspect or from

a particular angle. All sciences are differentiated by their abstraction. -

Fulton J. Sheen

4.1 Overview

Since the agent that we propose in this work requires knowledge graphs to work, we

first look into how we can produce these graphs. These knowledge graphs have to

be contextual to a given story, and have to be commonsense, so information that is

implied in the process can be made explicit in the graphs. For this, we develop a con-

trollable contextual commonsense inference model that works to generate assertions

about a certain context. Then, we examine how we can leverage this model towards

our task of converting procedural texts to contextual procedural knowledge graphs.

4.2 Contextual Knowledge Graph Generation

Contextualized or discourse-aware commonsense inference [50] is a task in which we

are given a text context (e.g., story) and a selected sentence from that context, and

we have to infer a coherent and contextual commonsense assertion (i.e., fact) from the
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given context and target sentence. We make a note that in our work, a story can be a

procedure, but not every story is a procedure. We may interchangeably use story later

on to refer to procedures, but it is worth making this distinction. We extend this

definition to additionally include story-specific assertion inferences (i.e., templates

that are instanced by elements from a story), or general assertion inferences (i.e.,

fact templates) as used in [114]. This very broad framing of just requiring a textual

context and a target sentence is important because the text could be a story or a

procedure among others. We give an example of the task in Figure 4-1.

Figure 4-1: Overview of the task of contextual commonsense inference. From the
story on the left, and the bolded sentence, a model should infer assertions such as
the ones on the right.

Recall that we define an assertion as a tuple that represents a fact. This tuple

contains at least a subject, a relation type, and an object (similar to subject-verb-

object triples). We add a field to this tuple, which is specificity. We define specificity

as whether the assertion’s content is about specific entities in the text context, or if

it is a generalized version of an assertion. This can be seen as whether the assertion

is a general template with variables, or a specific instance of this template. In the

case of a story, contextual commonsense inference can help with story understanding

(e.g., a contextual commonsense inference system could infer assertions in a story

that indicate a revenge plot [180]). In the more interesting and relevant use case

of procedural understanding, it helps with step explanations and step rephrasing by

giving possibly unstated assertions (e.g., a pen is required for the first step of writing

a check which is writing the date).

Such framing additionally allows us to utilize a trained contextual commonsense
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inference model downstream by going sentence-by-sentence, inferring assertions as

the context changes. To clarify the task of contextual commonsense inference even

further, below we give an example with a story, a target sentence, and some cor-

responding story-specific and general commonsense assertion inferences. The story

comes directly from the ROCStories corpus [111]:

Story: The hockey game was tied up. The red team had the puck. They

sprinted down the ice. They cracked a shot on goal! They scored a final

goal!

Story Specific Commonsense Inference: The red team, is capable of, win-

ning the game

General Commonsense Inference: Some people scored a final goal , causes,

some people to be happy

This task is hard for modern pre-trained contextual language models [50]. This

may be because it may rely on information that a model may not have seen during

pre-training, or the model has to figure out what topic to infer information about. The

first issue is exacerbated because commonsense knowledge, present in everyone and

the target for a model trained in this task, tends to not be written explicitly in text

[191, 92, 33, 36]. In addition to these problems, the correctness of the information

that is generated by the models is hard to evaluate and usually involves a costly

human-in-the-loop setup.

Prior work, such as COMET [17], has tried to do sentence-level commonsense

inference: generating a commonsense assertion, with at most a sentence as context.

ParaCOMET [50] is an extension of COMET that was developed to work at a para-

graph level (i.e., what we describe as the contextual commonsense inference task).

ParaCOMET utilizes a recurrent memory and is trained on a corpus of aligned stories

and assertions. ParaCOMET builds this dataset to address the contextual common-

sense inference task by aligning facts from a commonsense knowledge graph (i.e.,
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ATOMIC [155]) with a story (i.e., sampled from ROCStories [112]) through a heuris-

tic based on the ROUGE [90] metric. It goes a step further by utilizing the cross

entropy of the tokens (story and a fact) pre-trained language model, as a measure of

coherence to keep only assertion matches that are coherent to the narrative. They ad-

ditionally address the need for memory (i.e., for the model to remember prior events)

by using and saving prior aligned assertions in a memory system. An example of an

input and expected output from ParaCOMET can be seen below:

Model Input: The hockey game was tied up. The red team had the puck.

They sprinted down the ice. They cracked a shot on goal! They scored a

final goal! <|sent5|> <|xEffect|>

Model Target/Output: win the game

We note that our broader work consists of applying this for procedural understanding.

However, as we mentioned before, all procedures are stories, but not all stories are

procedures. Early in this Chapter, we utilize the hockey game story as a guiding

example of how we can apply contextual commonsense inference. However, at the

end of the chapter, we switch to applying this contextual commonsense inference for

procedural understanding.

In this example, since the model is predicting ATOMIC objects, the output is a

single phrase (i.e., win the game). Additionally, the symbols <|sent5|> and <|xEf-

fect|> mean that the target sentence is sentence number five1, and that the relation

we want to generate a tuple about is the “has the effect on a certain person(s)” re-

spectively2.

Another parallel work that has tackled contextual commonsense inference is GLU-

COSE [114]. GLUCOSE annotates the ROCStories [112] corpus along ten dimensions

of commonsense. The authors annotate every sentence with an assertion that is either

1We note that in the original ParaCOMET work, the sentences were 0-start indexed. We utilize
1-start indexing for clearer understanding.

2This textual explanation of the relation is taken from the original ATOMIC[155] work.
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present or implied in it for a given dimension. Additionally, they annotate each asser-

tion with a general version of it, as we defined previously as general inferences, which

includes variables and their descriptions. What this means is that any person(s) or

object(s) in the assertion is(are) replaced with a token such as Person_A, etc. to

represent a “general” or templated version of the fact. An example of the GLUCOSE

formulation’s inputs and expected outputs is given below:

Model Input: 1: The hockey game was tied up. The red team had the puck.

They sprinted down the ice. They cracked a shot on goal! *They scored a

final goal!*

Model Target/Output: The red team scores, Causes/Enables, they win the

game ** People_A score, Causes/Enables, People_A win a game

This formulation of contextual commonsense inference is harder than the Para-

COMET one because it has to generate two sets of assertions a subject, relation,

and an object tuples, where one is the story specific one and the other is the general

version of the assertion. These are seen above, separated by the ** respectively. In

this example additionally, we can see the symbol 1: which tells the model to predict

along a dimension of commonsense described by GLUCOSE (i.e., 1: Event that di-

rectly causes or enables X), and the sentence enclosed by asterisks (*) which signifies

it is the target sentence. With this corpus of annotated stories, the authors train

a T5 [142] model to, given a dimension, target sentence, and story, generate both a

story-specific and general assertion. It is worth noting that in both works, the models

have no way to control their inference; they have to do it using only the story, a target

sentence, and a relation.

None of these works address controllability in the generation, which means that

the models can generate assertions that may be irrelevant to the sentence, or may not

be about a topic needed for a downstream application. Additionally, these models

are only trained on one dataset at a time, which can hinder a model’s capability to

infer knowledge if it has not seen the knowledge elsewhere. Lastly, these models do
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not score the factuality or correctness of the assertions; at most they can generate a

beam/sequence score, which indicates the likelihood of the generated phrase.

In this chapter, we attempt to address all of these shortcomings through various

techniques. Firstly, we construct a dataset of contextualized assertions consisting of

assertions from ConceptNet [163], ATOMIC 2020 [65], and GLUCOSE [114]3. To

construct this dataset, we align the ROCStories [112] with an assertion by generat-

ing sentence/paragraph embeddings for the stories and the assertions by using the

sentence-transformers [146] library. We then use cosine distance to find the closest

story for each assertion. With this closest story, we repeat the process once more,

now with the sentences from the story, to find the closest sentence in the story to

the assertion. This contextualization and alignment technique, while simple, puts all

the knowledge bases in the same contextual universe. When we train models uti-

lizing this aligned dataset, we call them models that perform joint inference (as we

have joined multiple knowledge bases and are leveraging them for commonsense fact

generation). We refer to this later on as joint inference. Secondly, we augment this

dataset of aligned assertions, stories, and target sentences, with “hints”, as a method

to communicate constraints when performing contextual commonsense inference. We

automatically generate “hints” by selecting parts of a target assertion, along with a

symbol identifying the parts, and include them as input to our contextual common-

sense inference model. Lastly, we use this dataset to train two language models; one

to infer assertions from the story and target sentence, and a second to validate or score

the assertion given the story and the target sentence. We also explore training these

models in an adversarial manner. We utilize this set of models, in the downstream

application of contextual procedural knowledge graph construction.

Altogether, our contributions in this area are:

• The utilization of a hinting mechanism to help condition and control a generative

model for contextual commonsense inference.

• A simple method for contextualizing assertions to a given text with the purpose
3For our final model, which we utilize for procedural understanding, we additionally include the

Ascent++ dataset [119]
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of performing joint inference.

• A method for adversarial training of language models to infer and evaluate

assertions from a story context.

4.3 Hinting for Controllable Generation

In this section, we detail a technique that we propose called “Hinting” to address the

lack of controllability in contextual commonsense inference. Later on, we utilize this

hinting technique in procedures to convert them from text into contextual procedure

knowledge graphs.

4.3.1 What exactly is hinting?

Recently, there has been work on exploring prompting strategies [93] for pre-trained,

transformer-based language models [171, 41]. These are methods that alter the input

to a language model such that it matches or approximates templates that it has seen

during pre-training and can reuse or exploit this information. Prompting helps achieve

higher performance in tasks with less training data, can help with controllability in

the case of text generation, and is more parameter-efficient and data-efficient than

fine-tuning, in some cases [86]. One type of prompting is prefix prompting [86, 78].

Prefix prompting consists of altering a language model’s input (i.e. prefix) by adding

additional words. These words can be explicit hard prompts such as actual phrases

or words, or they can be soft prompts, embeddings that are input into a model and

can be trained to converge on some virtual template or virtual prompt that can help

the model.

Prompting holds the potential for improving contextualized commonsense infer-

ence. We utilize the idea of a hint, a hybrid of hard and soft prompts. We define

a hint as the part(s) of an assertion that a model has to predict, along with special

identifiers for these parts, wrapped within parenthesis characters.

Syntactically, a hint takes the form of: “([specificity], [subject symbol,subject],

[relation symbol,relation], [object symbol,object] )” where the actual content of the hint
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between the parenthesis would be a permutation of all but one of the elements in the

target tuple. Hints are provided during training by sampling a binomial distribution

(𝑝 = 0.5) for each element in a minibatch, which determines whether to give a hint

or not. The actual content of the hint would then be generated by random sampling

without replacement up to all but one of the elements in a target tuple. In Table 4.1

we can see various examples of how the hinting mechanism works for a model trained

for contextual commonsense inference on GLUCOSE.

Model Input Model Output
7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *

They scored a final goal >Causes>They feel(s) happy **
Some People_A scored a final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|subj|>the red team scores the final goal)

the red team scores the final goal >Causes>the red team feel(s) happy **
Some People_A (who are a team) score the final goal >Causes>Some People_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|subj|>the blue team does not score the final goal)

the blue team does not score the final goal >Causes>the blue team feel(s) disappoinment **
Some People_A do not score the final goal >Causes>Some People_A feel(s) disappointment

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|specific|><|obj|>a child)

they scored a final goal >Causes>a child feel(s) happy **
Some People_A scored a final goal >Causes>Someone_A feel(s) happy

7: The hockey game was tied up.
The red team had the puck. They sprinted down the ice.
They cracked a shot on goal!. * They scored a final goal!. *
hint: (<|general|><|subj|> Something_A (that is a point))

They scored a final goal >Causes>They feel(s) happy **
Something_A (that is a point)) is scored >Causes>Some People_A feel(s) happy

Table 4.1: Example of inputs and outputs for the GLUCOSE trained contextual
commonsense inference model with hints. The hint is bolded and the parts of the
hint are colored (subject, relation, object). Without a hint we can see that the model
tries to infer directly on the content of the sentence, however with hints, the model
tries to include an inference based on the target sentence with the contents of the
hint.

Here we can see more clearly that whenever we give a hint a model trained with

hints (i.e., hinting) tends to produce generations that include the components given in

the hint. We utilize hinting in training our models from here on out unless otherwise

stated. The controllability that hinting enables can permit us to use models trained

with it in downstream applications such as contextual knowledge graph generation.

An example of Hinting

A simple example of hinting is the following:

Story: The hockey game was tied up. The red team had the puck. They sprinted

down the ice. They cracked a shot on goal! They scored a final goal!

Target sentence: They scored a final goal!
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Target assertion: (subject: the red team, relation: are capable of, object:

winning the game.)

A hint can be any permutation of the target assertion, except the complete asser-

tion, along with some symbol that indicates which part it is:

Possible Hints: (<|subj|> the red team), (<|subj|> the red team, <|rel|> ca-

pable of), (<|subj|> the red team, <|obj|> winning the game), (<|rel|> capable

of, <|obj|> winning the game), (<|obj|> winning the game), (<|rel|> capable

of)

A hint for the given story, target sentence, and target assertion, yields the follow-

ing:

Hint: (<|subj|> the red team, <|rel|> capable of)

Putting everything all together, the input for the model would be:

Story with Hint: The hockey game was tied up. The red team had the puck.

They sprinted down the ice. They cracked a shot on goal! They scored a final

goal! (<|subj|> the red team, <|rel|> capable of).

We note that this is a generic version of how the hinting mechanism works, and

individual datasets (i.e., ParaCOMET and GLUCOSE) have slightly different varia-

tions of this.

4.3.2 Discourse-aware/contextual commonsense inference

Recall that commonsense inference is the task of generating a commonsense assertion.

Discourse-aware/contextual commonsense inference is the task of, given a certain con-

text, inferring commonsense assertions that are coherent within the narrative [50].

This task is particularly hard because commonsense knowledge may not be explicitly

stated in text [92] and the model needs to keep track of entities and their states ei-

ther explicitly or implicitly. Research into the knowledge that pre-trained language

models learn has yielded good results in that they do contain various types of factual
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knowledge, as well as some commonsense knowledge [33, 130, 36]. The amount of

commonsense knowledge in these models can be improved by supplementing sparsely

covered subject areas with structured knowledge sources such as ConceptNet [163, 36].

Knowing that these pre-trained language models may contain some commonsense in-

formation has led to the development of knowledge models such as COMET [17]. This

line of research has been extended from the sentence-by-sentence level in COMET

to the paragraph-level in ParaCOMET [50]. Contemporaneously, GLUCOSE [114]

builds a dataset of commonsense assertions that are contextualized to a set of stories,

and generalized (e.g., John is a human is generalized to Someone_A is a human).

The general task of contextual commonsense inference can be formally described

as follows. We are given a story 𝑆 composed of 𝑛 sentences, 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑛} , a

target sentence from that story, 𝑆𝑡, where 𝑆𝑡 ∈ 𝑆, and a relation type 𝑅. Given all

this, we want to generate a tuple in the form of (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝑅, 𝑜𝑏𝑗𝑒𝑐𝑡) that

represents an assertion, present or implied, in 𝑆𝑡 given the context 𝑆, and the relation

type 𝑅.

4.3.3 Testing Hinting: Experimental Setup

We run two sets of experiments to show the effectiveness of hinting. The first is utiliz-

ing the original ParaCOMET dataset and setup and adding hints. The ParaCOMET

setup consists of given a story 𝑆 composed of 𝑛 sentences, 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑛}, a

relation type 𝑅, and a target sentence token (i.e. < |𝑠𝑒𝑛𝑡0| >, < |𝑠𝑒𝑛𝑡1| >, . . . ,

< |𝑠𝑒𝑛𝑡(𝑛 − 1)| >). In the ParaCOMET dataset, we must predict the object of a

triple, utilizing implicitly the sentence as a subject and explicitly the supplied sen-

tence symbol and relation 𝑅 symbol.

Within this framework, after the relation 𝑅, we add our hint between parenthesis

(i.e. “([hint ])”). In this framing, our hint can be composed of: a subject symbol

(<|subj|>) along with the target sentence to serve as a subject, a relation symbol

along with the relation 𝑅, or an object symbol along with the object of the triple. Us-

ing the hockey example, a possible hint in this set of experiments would be: “(<|rel|>

<|xEffect|>,<|obj|> they win the game)”.
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In our experiments on the ParaCOMET formulation with the GPT-2 model, we

utilize the same cross-entropy loss as in [50]. We note that we utilize a sequence-

to-sequence [166] formulation for the T5 and the BART models. This in contrast

to the GPT-2-based system requires encoding a source sequence (i.e., story, target

sentence, and relation symbol), and decoding it into a target sequence (i.e., the object

of an assertion). For the T5 model, we add the prefix “source:” before the story 𝑆,

and the prefix “hint:” for placing our hints. For simplicity, we construct the same

“heuristic” dataset as ParaCOMET which utilizes a heuristic matching technique to

align ATOMIC [155] triples to story sentences.

For our second set of experiments, we utilize the formulation utilized in GLUCOSE

[114]. The formulation utilizes the T5 model in a sequence-to-sequence formulation

once more. In this formulation, the source text is composed of a prefix of a dimension

to predict 𝐷 ∈ 1, 2, . . . 104, followed by the story 𝑆 with the marked target sentence.

The target sentence, 𝑆𝑡, is marked with * before and after the sentence. An example

input is: ”1: The first sentence. *The target sentence.* The third sentence.”. This

task is slightly different from the ParaCOMET one, in that in addition to predicting a

context-specific assertion, the model has to predict a generalized assertion (i.e., in this

task we have to infer a general and context-specific subject, object and a relation).

For our hints, we provide up to five out of these six things, along with a symbol that

represents whether it is the subject, object or a relation, and another symbol that

represents whether it is part of the general or specific assertion. We add our hint after

the story 𝑆, utilizing the prefix “hint:” and supplying the hints between parenthesis.

We run the ParaCOMET experiments for 10 epochs on the dataset’s training data

and evaluation data. We utilize a max source sequence length for the BART and T5

models of 256, and a max target length of 128. For the GPT-2 models, we utilize a

max sequence length of 384. Additionally, we use the ADAM [75] optimizer with a

learning rate of 2e-5, and a linear warm-up of 0.2 percent of the total iterations. For

the T5 models, we utilize a learning rate of 1e-4 because early experiments showed

4The definition for each dimension number is given in the GLUCOSE work. Dimensions in GLU-
COSE are (explicit or implicit) relations that help explain causality between the entities mentioned.
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that the model would not converge with lesser learning rates. We utilize the scripts

from [50] for data generation. We also utilize a batch size of 4 for training and we

accumulate gradients for 4 steps for an effective batch size of 16. The results that

we present are the average of the 10 runs over 4 seeds for hinted and non-hinted

conditions.

We run GLUCOSE experiments for 5 epochs and 4 seeds on the original GLU-

COSE data. Additionally, we utilize a linear warm-up of 3000 steps. We utilize the

ADAM optimizer with a learning rate of 3e-4, a train batch size of 4, with gradient

accumulation of 4 steps for an effective batch size of 16, and a max source length

of 256 and a max target length of 128. In our results, we present the average of

the 4 seeds across the 5 epochs. In both experiments we report the scores given by

SacreBLEU [134], ROUGE [90], and METEOR [10] using the datasets library [81]

metrics system. We run our experiments in a machine with an AMD ThreadRipper

3970 Pro and 4 NVIDIA A6000s. Every epoch per model is approximately an hour.

Additionally, we run a small Mechanical Turk study similar to the one presented

in the original ParaCOMET [50] in which a human judges a generated assertion and

judges the plausibility of it on a 5-point Likert scale: obviously true (5), generally

true (4), plausible (3), neutral or unclear (2), and doesn’t make sense (1). We present

the results in the same manner where Table 4.4 displays the percent of inferences

judged as plausible or true (3-5) and the average rating per inference. Participants

were given $0.1 to complete the task. We sample from each of the ParaCOMET and

GLUCOSE test sets, 100 entries. Then based on the models for each dataset, we pick

the epoch that had the highest automated scores and we proceed to randomly sample

one of the trained hint and non-hinted models. We then select one sentence from the

randomly sampled test entries and ask both models to generate an inference along a

randomly sampled relation or dimension for that sentence.
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Model BLEU METEOR ROUGE1 ROUGE2 ROUGE L ROUGE L SUM
Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint

ParaCOMET 42.705* 41.960 59.411* 59.045 63.339* 61.454 52.483* 50.513 63.292* 61.395 63.294* 61.399
Bart 41.765* 41.639 58.766* 58.639 61.054 61.013 49.970 49.889 61.004 60.964 61.010 60.969
T5 41.070 41.102 58.004 58.000 59.535 59.631 48.695 48.823 59.488 59.588 59.494 59.597

Table 4.2: Averages of 4 different seeds over 10 epochs for hinted (Hint) and non-
hinted (No Hint) runs of the ParaCOMET dataset from [50]. The largest scores are
bolded and significantly different scores have an asterisk (*) next to them. We can
see from the results that hinted systems tend to achieve higher performance even if
slightly and in some cases significantly, and do not decrease performance significantly.
For significance we use the t-Test: Paired Two Sample for Means.

BLEU Meteor Rouge 1 Rouge 2 ROUGE L Rouge LSUM
No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint No Hint Hint
58.542 59.099* 66.829 66.917 66.387 66.681* 47.850 48.141 62.542 62.874* 62.528 62.868*

Table 4.3: Averages of 4 different seeds over 5 epochs for hinted (Hint) and non-hinted
(No Hint) runs of the GLUCOSE contextual inference task dataset. This is the same
dataset as the work in [114] The largest scores are bolded and significantly different
scores have an asterisk (*) next to them. Once more, we see that hinting provides a
small, increase in performance, all the while permitting controllability. We use the
t-Test: Paired Two Sample for Means for significance

4.3.4 Results and Effects of hinting

Experiment 1: ParaCOMET with hints

The aggregated (averaged) results for this set of experiments can be found in Table

4.2. We can see here that on average, hinting does tend to improve the score even if

slightly. It seems that providing a hint is beneficial and not detrimental for contextual

commonsense inference. Given the way that this task is framed, a possibility that

could explain the relative similarity of the performances is that hinting only adds

the object of the assertion as additional possible data that the model may see during

training; the subject and the relation can be repeated with hinting. We note that the

performance of the T5 model was less than that of the other models, and we believe

that it may be a lack of hyperparameter tuning, as it was seen that the model was

sensitive to the learning rate and had to use a higher than usual learning rate.

Experiment 2: GLUCOSE with hints

The aggregated results for this set of experiments can be found in Table 4.3. Once

more, we notice that hinting does tend to improve the performance of the contextual
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Model Non-Hinted Hinted
ParaCOMET 3.71 3.76
Bart 3.72 3.48
T5 3.73 3.68
T5-GLUCOSE 4.10 4.06

Model Non-Hinted Hinted
ParaCOMET 81% 84%
Bart 83% 74%
T5 81% 81%
T5-GLUCOSE 92% 90%

Table 4.4: Results of human evaluation of ParaCOMET and GLUCOSE datasets.
The largest scores are bolded and significantly different scores have an asterisk (*)
next to them. We sampled 100 test points for each model from their test datasets
and had the hinted and non-hinted models infer assertions. Humans judged these
assertions on a 5 point Likert scale where above 3 was plausible similar to [50]. On
the left we can see the average values of the human judgments and on the right we
can see the percentage of plausible inferences (rated >= 3). We can see that hinting
provides comparable performance.

commonsense inference task. This suggests that hinting is indeed beneficial for the

task, especially when faced with the harder task of generating both a general and

specific assertion. We believe that this improvement is because hinting gives the

model the clues it may need to decide on what to focus or attend to, to generate

useful inferences, but further experimentation would be needed to verify this.

Experiment 3: Human Judgements

The results of the small Mechanical Turk study for human evaluation of model in-

ferences can be seen in Table 4.4. Overall, we can see here that hinted systems are

judged as less plausible. Interestingly, after inspecting the results where there was a

large difference (more than two points between the systems), we see that there are

some cases in which the same or very similar responses got completely different scores.

We also see upon looking at some of the inferences that the hinted model tends to be

more general and provide shorter responses than the non-hinted model (e.g., hinted

inference: “satisfied” vs. non-hinted inference: “happy and satisfied”).

4.3.5 Final Remarks on Hinting

From the results of our experiments, we can see that hinting tends to increase the per-

formance of contextualized commonsense inference at least with regard to automated

metrics, and does not significantly degrade or improve human judgments. Without
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any significant cost, by utilizing hinting, we gain controllability in the generation.

By supplying thesehints, we are teaching the model to pay attention and generate

inferences about a certain subject, relation, or object. This in turn, after training,

can be leveraged by a user or downstream application to guide the model to generate

assertions from parts that are manually supplied. Although this is not very clear

within the ParaCOMET formulation, it becomes clearer in the GLUCOSE formula-

tion of the problem. We give an illustrative example of the usefulness of hinting in

Table 4.1. We can see that by giving a model the hint, the model could be capable of

inferring information that may not be present in the story. We note that this behavior

is useful in downstream tasks such as story understanding and contextual knowledge

graph generation, in which we may need a model to have a specific subject or object.

4.4 Joint Inference of Commonsense Assertions

Given that we have presented hinting, which is a method to help with the controlla-

bility of contextual commonsense inference generation, we now look at how we can

combine multiple knowledge bases for this task along with hinting.

4.4.1 What is joint commonsense inference?

In this work, we define joint commonsense inference as inferring commonsense knowl-

edge assertions by leveraging knowledge from multiple knowledge bases. To illustrate

this, we give the following example, story:

John is a regular person who has a dog. John, every day, goes out to

walk his dog. John met a friend when walking his dog. They exchanged

stories about their dogs.

From this story, we want to infer the general version of the commonsense assertion of

“John is capable of walking his dog”, derived from the second sentence. This general

version can look similar to “Someone_A who has an animal (that is a dog) enables

Someone_A to walk the animal (that is a dog)”. To generalize this, we must know
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that: John is a person’s name, which we can find from a semantic tagger. A much

more commonsensical fact needed to infer the assertion is that: a dog is an animal,

which is a fact found in ConceptNet. Lastly, to infer the assertion, we need to know

that: A person having a dog has the effect that a person goes to walk their dog, which is

a fact that we could find from ATOMIC 2020. Therefore, to infer the general assertion

that we presented, we must join information from at least two knowledge bases to

infer our general assertion. This process of joining the information from multiple

sources is what we call joint commonsense inference. Joint commonsense inference

is useful because it could lead to implicitly applying or combining knowledge and/or

analogies that might be present in the different knowledge sources, which may lead

to better results when performing contextual commonsense inference.

4.4.2 Joint Inference Approach Overview

To perform joint inference in the task of contextual commonsense inference, we pro-

pose the following approach:

1. For each knowledge base that we have, we convert each of the as-

sertion found in them into a tuple format of {subject, relation,

object, specificity}5. We note that each part of the tuple must be

text6 (i.e., if the symbolic version of a relation is “IsA”, the textual

version would be “is a”).

2. We align each knowledge base tuple with a story (e.g., the ROCSto-

ries corpus) and target sentence from the story. The target sentence

is the sentence that is most likely to be used to infer the tuple. We

perform the alignment by vectorizing the tuples and stories and uti-

lizing nearest neighbors with the cosine distance as a metric. We give

details of this alignment in section 4.4.4.
5This follows a similar pattern to subject-verb-object triples, but has the added field of specificity

which is whether the assertion is contextual to a story, or a generally applicable assertion
6This ultimately helps us express the assertion in a textual way (i.e., (a dog, IsA, animal) when

converted to the tuple (a dog, is a, animal, specific) and passed to a string representation function
can be expressed as “Specifically, a dog is an animal”.

100



3. We combine all of the aligned assertions and context into one list and

shuffle it.

4. We replace the naming scheme of variables that may be present in

general assertions with the naming scheme from GLUCOSE (e.g.,

PersonX is replaced with Person_A).

5. We train a contextual commonsense inference model on this dataset,

whose inferences are joint inferences.

By following this procedure, we will end up with a dataset of story-aligned assertions.

In this dataset, all of the assertions are grounded in the same set of stories. With

this, we can train models that can perform joint contextual commonsense inference.

Now we will go into some details of this process.

4.4.3 Specificity in assertions

Recall that we define specificity as whether an assertion’s content is about specific

entities in the aligned story, or if it is a generalized version of an assertion. This can be

seen as whether the assertion is a general template with variables, or a specific instance

of this template. To make the difference between specific and general assertions

clearer, we give the following example. Using the same story as before:

John is a regular person who has a dog. John, every day, goes out to

walk his dog. John met a friend when walking his dog. They exchanged

stories about their dogs.

As before, we focus on the second sentence: John, every day, goes out to walk

his dog. From here, we can infer the specific assertion: “John is capable of walking

his dog”. The assertion is specific because it fills out a broadly applicable template,

which we will present next, based on the story context about John and his dog. From

the sentence, we can also infer the general or templated version of the assertion:

“Someone_A who has Something_A (that is a dog) enables Someone_A to walk

the Something_A (that is a dog)”. This latter assertion is general because it states
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the assertion in a template format (i.e., broader terms) the same fact. A general

assertion is not the story-dependent instance of the template, but the broader, story-

independent template. These general assertions contain variables in them.

In this section, we describe our approach for joint inference in which we utilize

ConceptNet, ATOMIC 2020, and GLUCOSE as our knowledge bases. We start by

looking at the specificities in these KBs. In Table 4.5 we give the different avail-

able specificities for these knowledge bases. From this, we can see that ConceptNet

Knowledge Base General Specific
ConceptNet ✗* ✓

ATOMIC 2020 ✓ ✗*
GLUCOSE ✓ ✓

Table 4.5: Here we can see the available specificities in ConceptNet, ATOMIC 2020,
and GLUCOSE. We mark with ✗ the specificities that are not available by default,
and add * to those that can be generated.

does not have general specificity assertions. Although this may sound counterintu-

itive, ConceptNet gives specific, untemplated, instances of assertions, in contrast to

ATOMIC and GLUCOSE, which describe general versions of assertions. ATOMIC

2020 has the opposite problem, it gives general versions of rules, (e.g., PersonX par-

ticipates in some event, has some effect on PersonX or Y around them), and does not

give, within our contextual commonsense inference framework, the specific instance

of the templates (e.g., filling out PersonX, PersonY, etc.). To remedy this lack of

specificity within two of our sources, we mention ways to generate examples of the

missing specificity and implement the solution for ATOMIC 2020.

Generating Missing Specificity

ConceptNet To generate general assertions for ConceptNet, one possibility is to

run a classifier that would determine whether a given set of tokens is a person, place,

or object, among others. With this information, we could fill out, as an example, the

template that GLUCOSE broadly utilizes which is: {Category}({Description}), rela-

tion, {Possibly Other Category} ({Possibly Other Description}). From ConceptNet,

we could find the relation: “a dog, IsA, animal”. A general version of this assertion
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Replacement Type General Assertion Generated Specific Assertion

Instantiate Person Variable PersonX has a dog has the effect on
PersonX they are happy

John has a dog has the effect on
John they are happy

Fill in the blanks PersonX absolutely loved ____ makes
PersonX have the attribute compassionate

PersonX absolutely loved his dog makes
PersonX have the attribute compassionate

Table 4.6: Here we see two examples of instantiating general information based on
the context of the story of John and his dog to generate story-specific information.

can be “Something_A (that is a dog), IsA, Something_B (that is a animal)”. Al-

though we describe this process, we do not implement it in our work and leave it as

future work.

ATOMIC 2020 To generate specific assertions for ATOMIC 2020 we can do the

following. We can first identify variables (PersonX, PersonY, etc.) that are in the

ATOMIC-2020 assertion. We can then replace these variables with a Mask token from

a language model that was trained with the masked language modeling objective

[41, 94], and use the language model to fill in the Mask token similar to a Cloze

[169] (i.e., fill-in-the-blanks) task. To give the model sufficient context, we insert

the assertion to the right of the nearest aligned sentence (we describe the process to

get this in the next section). In the case of PersonN (e.g., PersonX, PersonY, etc.)

variable, this usually leads to the variable being replaced with a character from the

story. In addition to this, ATOMIC 2020 contains blanks demarcated by underscore

characters (i.e., ____ ), which we can once more replace with a Mask token and

have the model fill it out with the given context. We use this process in our work,

filling in the blanks with a ROBERTA [94] large model. An example of generating

the specificities can be seen in Table 4.6.

4.4.4 Aligning Assertions with Stories

To align assertions with stories, we do the following procedure. On a high level,

we vectorize the stories, we vectorize the assertions and we then utilize the cosine

distance to find the nearest story for each assertion. We then go into more detail and

repeat the same procedure (i.e., vectorization and similarity search) for each sentence

in the previously found nearest story. Ultimately, we are left with the story and
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sentence that is most relevant or similar to the assertion. On a low level, we utilize

the sentence transformers package along with the “paraphrase-mpnet-base-v2” model

from the repository, to generate a representative vector for every story and for every

assertion from each of our knowledge bases. We then utilize the FAISS package [70] to

perform a fast approximate cosine similarity search to find, for each assertion, what

is the nearest story. Once we have this nearest story, we again utilize the sentence

transformers model to vectorize every sentence in that story along with the FAISS

package for the cosine similarity search, to find the nearest sentence to the assertion.

This process can be visualized and figures 4-2 and 4-3.

Figure 4-2: Step 1: The story and
assertion corpus are vectorized. In
our work we utilize the sentence-
transformers package [146] to achieve
this.

Figure 4-3: Step 2: The resulting as-
sertion vectors are utilized as queries,
and the resulting story vectors are
used as keys for a memory-like lookup.
In this work, we use the FAISS package
for this. The output of the memory-
like lookup is the nearest story for each
vector. This process is repeated for the
sentences in the nearest story, to align
the assertion with a sentence.

4.4.5 Experimental Setup

To evaluate the effects of joint inference by combining multiple knowledge bases in

the task of contextual commonsense inference we do the following. We generate a

story-aligned assertion dataset for each knowledge base individually (i.e., for Concept-
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Net, for ATOMIC 2020, and for GLUCOSE) as described in the previous sections.

Once we have generated a dataset for each, we proceed to perform combinations

of the datasets: ConceptNet-ATOMIC 2020, ConceptNet-GLUCOSE, GLUCOSE-

ATOMIC, and ConceptNet-ATOMIC-GLUCOSE. For the individual and the com-

bined datasets, we perform three sets of automated tests. One that includes hinting

the specificity, subject, and relation during evaluation, one that includes hinting the

subject during evaluation, and the other without these.

Although this may seem counterintuitive and like “cheating”, the hinting gives us

a mechanism to be able to force the model to predict assertions in the format of

the knowledge base that they were pulled from (i.e., we would use certain relations

such as “located at” in ConceptNet for ConceptNet inferences, and “results in” for

GLUCOSE inferences). Expanding on this, the rationale behind these setups is that

we want to evaluate what the model infers without any guidance, and see what it

infers with varying levels of guidance with multiple knowledge sources. To train our

joint inference models, we use a batch size of 50, on 4x NVIDIA A6000, a learning rate

of 1e-5 for an ADAM [75] optimizer, and 3 epochs over all the contextually aligned

assertions.

We note that the data for ConceptNet we utilize is the dataset given by [85],

specifically the data in the “train_600k.txt” which are approximately 600,000 exam-

ples of assertions from ConceptNet, and as a test set we utilize the “test.txt” that they

provide. For ATOMIC 2020 we utilize the training and testing data files provided by

the authors [65]. Lastly, for GLUCOSE we use the training and evaluation files also

provided by the authors in the corresponding repository.

Additionally, we look into running a small Mechanical Turk evaluation of gener-

ated test assertions, because we suspect that automated metrics may hurt the model’s

evaluation when not using hinting. We sample 100 entries from the testing files of

each knowledge base (ATOMIC 2020, ConceptNet, and GLUCOSE), and run these

through a set of models trained firstly with only one of the test knowledge bases (i.e.

a model trained only ConceptNet, a model trained in ATOMIC 2020, and a model

trained in GLUCOSE) and secondly a model trained with the combination of knowl-
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edge bases and evaluated with and without hinting. We take the generated inferences

and ask 2 raters from Amazon Mechanical Turk to determine whether the assertion

is acceptable, whether it is acceptable with the context that it was aligned with,

and whether the gold standard assertion was acceptably aligned with the context.

We mark as acceptable the answers that both human annotators agree as valid and

anything else as invalid.

4.4.6 Effects of joint inference

The results for our automated experiments can be found in Table 4.7 and from our

human experiments in 4.8. From our experiments in this area, we notice the following.

Firstly, when training with hinting, joint inference does not seem to improve the

performance of synthetic tests. In other words, without any hints, and with multiple

knowledge sources, we do not get any large differences in automated metrics. What

this may mean is that when we utilize hinting effectively, it may manage to utilize

the format (e.g., relation types) of the knowledge base that it is tapping into for

information. Additionally, some of the knowledge sources that we are using have a

little overlap (GLUCOSE and ConceptNet had approximately 0.34% of overlap [114],

and ATOMIC 2020 has approximately 9.4% of overlap with ConceptNet [65]), which

means that once hinting is utilized to give control signals to the models, this lack

of overlap may attribute to why the metrics do not decrease drastically. Secondly,

without hinting, in the automated tests that we run, performance seems to degrade

when we add knowledge bases. Upon further inspection of the results, the reason for

this seems to be that the model thinks that an assertion in the format of another

knowledge base (e.g., generalized assertions from GLUCOSE on the ConceptNet test

set, relation type from ATOMIC in the GLUCOSE test set) may be more relevant

than the test assertion types that we are evaluating. Upon inspecting some of the test

results, this seems to be the case. We give one such example now, where a model that

was trained on all the knowledge bases (ATOMIC 2020, ConceptNet, GLUCOSE)

has to predict assertions for a test set from ConceptNet:
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Training Set(s) Test Set Hint BLEU METEOR ROUGE
ATOMIC 2020, ConceptNet, GLUCOSE ATOMIC 2020 No 51.114 52.224 52.681
ATOMIC 2020, ConceptNet ATOMIC 2020 No 51.164 52.151 52.713
ATOMIC 2020 ATOMIC 2020 No 51.139 52.699 52.904
ATOMIC 2020, ConceptNet, GLUCOSE ATOMIC 2020 Subject 79.89 80.956 82.927
ATOMIC 2020, ConceptNet ATOMIC 2020 Subject 80.046 81.144 83.087
ATOMIC 2020 ATOMIC 2020 Subject 80.203 81.221 83.079
ATOMIC 2020, ConceptNet, GLUCOSE ATOMIC 2020 Subject, Specificity, Relation 87.031 88.172 89.606
ATOMIC 2020, ConceptNet ATOMIC 2020 Subject, Specificity, Relation 87.091 88.242 89.645
ATOMIC 2020 ATOMIC 2020 Subject, Specificity, Relation 87.095 88.226 89.621
ATOMIC 2020, ConceptNet, GLUCOSE ConceptNet No 51.892 58.803 60.302
ATOMIC 2020, ConceptNet ConceptNet No 56.136 62.114 63.532
ConceptNet, GLUCOSE ConceptNet No 59.285 63.685 65.65
ConceptNet ConceptNet No 60.63 64.653 66.46
ATOMIC 2020, ConceptNet, GLUCOSE ConceptNet Subject 76.404 79.484 78.413
ATOMIC 2020, ConceptNet ConceptNet Subject 76.7 79.614 78.617
ConceptNet, GLUCOSE ConceptNet Subject 76.014 78.664 77.841
ConceptNet ConceptNet Subject 76.635 79.108 78.314
ATOMIC 2020, ConceptNet, GLUCOSE ConceptNet Subject, Specificity, Relation 92.695 94.253 94.171
ATOMIC 2020, ConceptNet ConceptNet Subject, Specificity, Relation 92.892 94.286 94.378
ConceptNet, GLUCOSE ConceptNet Subject, Specificity, Relation 92.729 94.071 94.109
ConceptNet ConceptNet Subject, Specificity, Relation 92.77 94.159 94.232
ATOMIC 2020, ConceptNet, GLUCOSE GLUCOSE No 36.23 41.338 48.629
ConceptNet, GLUCOSE GLUCOSE No 37.823 41.997 49.577
GLUCOSE GLUCOSE No 42.51 47.186 53.856
ATOMIC 2020, ConceptNet, GLUCOSE GLUCOSE Subject 80.879 82.014 85.664
ConceptNet, GLUCOSE GLUCOSE Subject 81.349 82.775 85.926
GLUCOSE GLUCOSE Subject 80.928 82.076 85.681
ATOMIC 2020, ConceptNet, GLUCOSE GLUCOSE Subject, Specificity, Relation 85.721 87.433 90.04
ConceptNet, GLUCOSE GLUCOSE Subject, Specificity, Relation 85.72 87.518 90.034
GLUCOSE GLUCOSE Subject, Specificity, Relation 85.65 87.473 89.967

Table 4.7: Here we present the results of our joint inference tests. We color code
sets of rows as a testing run on ATOMIC 2020, GLUCOSE, and ConceptNet. The
Training Set(s) column contains the knowledge bases that were used to train the
model. The Test set column contains which knowledge base test set was used to
evaluate the models. The Hint column represents the Hints that were given to the
model during testing. Overall, we can see that with hinting on the test set (i.e.,
hinting the subject or the subject and the relation type), the addition of knowledge
bases for inference does not improve nor degrade substantially the performance. To
view this in the table, we can compare the rows in which the Hint column is either
“Subject” or “Subject, Relation, Specificity”. Additionally, we can see that without
hinting on the test set (i.e., rows that Hint is “No”), the addition of knowledge bases
for inference tends to decrease the performance.

Model Input: Someone I went to school with had a funny laugh. He

would chuckle. Then he would make a whew sound. He had not realized it

before. He could not stop his crazy laugh.

Expected Output: <general> <subject> person <relation> is/are capable

of <object> laugh at joke
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Model Acceptable Contextually
Acceptable

Alignment
Acceptable Acceptable Contextually

Acceptable
Alignment
Acceptable Acceptable Contextually

Acceptable
Alignment
Acceptable

ATOMIC 2020 - No Hint 0.70 0.66 0.6 - - - - -
ConceptNet - No Hint - - - 0.77 0.71 0.72 - - -
GLUCOSE - No Hint - - - - - - 0.81 0.68 0.8
ATOMIC 2020 - ConceptNet-
GLUCOSE - No Hint 0.76 0.68 0.63 0.83 0.7 0.65 0.79 0.67 0.59

ATOMIC 2020 - ConceptNet-
GLUCOSE - Hint 0.71 0.53 0.57 0.77 0.64 0.68 0.77 0.64 0.68

Table 4.8: Results for human annotation of 100 randomly sampled assertions from
ATOMIC 2020, GLUCOSE, and ConceptNet test sets and the inferred commonsense
from these. We have three sets of three columns Acceptable, Contextually Accept-
able, and Alignment Acceptable. Each set of columns is color-coded to represent
a knowledge base. Firstly, the Acceptable column is the ratio of whether humans
thought that inferred assertions, without context, were acceptably commonsense or
not. The Contextually Acceptable, column represents the ratio of whether humans
thought that inferred assertions given the context, were acceptable or not. Lastly,
the Alignment Acceptable column is whether humans thought that the gold standard
(from a knowledge base) assertion was correctly matched to the context. We can see
that without hinting, the joint inference model (i.e ATOMIC 2020 - ConceptNet -
GLUCOSE - No Hint) improves the acceptability, both with and without context, of
assertions predicted in the ATOMIC 2020 test set. We can also see that performance
does not degrade much in whether it produces assertions that are contextually accept-
able throughout the test sets. We can see that with hinting, however, the performance
is decreased and becomes closer to what the individually trained models can achieve.
This suggests that with hinting, the model tries to channel the knowledge base that
we are targetting, and aligns with what we see in the automated metrics.

Model Output: <general> <subject> Someone I went to school with had a

funny laugh. <relation> makes others react <object> entertained

Model Output with Subject, Relation, Specificity Hint (<general>

<subject> person <relation> is/are capable of): <general> <subject>

person <relation> desires <object> laugh at joke

The relation “makes others react” is not from ConceptNet, but from ATOMIC

2020. If we hint the model to the subject, relation type, and specificity, it produces

a result similar to what we are expecting, where it only defers to using the “desires”

relation for the contextual inference. Which, in this case, would not be an incorrect

inference.

Following this, we look at the results of our Mechanical Turk study, which can

be found in Table 4.8. We can see that without hinting, the joint inference model

(i.e. ATOMIC 2020 - ConceptNet - GLUCOSE - No Hint) improves the acceptability,

108



both with and without context, of assertions predicted in the ATOMIC 2020 test set.

We can also see that performance does not degrade much in whether it produces

assertions that are contextually acceptable throughout the test sets. We can see

that with hinting, however, the performance decreases and becomes closer to what

the individually trained models can achieve. This suggests that with hinting, the

model tries to channel the knowledge base that we are targeting, and this aligns with

what we see in the automated metrics. This is reinforced by the test example given

previously, and similar examples can be found for the different test sets.

Now, taking these results together, when we use hinting and join our multiple

knowledge sources to perform this joint inference, we are able to within one model,

essentially fit all the knowledge bases, that we are evaluating, at hardly any loss in

plausibility/acceptability, or at the cost of automated metrics. This has implications

for downstream applications because they no longer require multiple models. With

one model and hinting we can do what three separate models would do. We also note

that the performance that we get, is based on the “base” version of the BART model.

Presumably, with larger models, the performance will increase adequately.

Lastly, we also note that on average our alignment technique has 60% approval

rate for ATOMIC 2020, 68.3% for ConceptNet, and 69% for GLUCOSE, which gives

us on average 65% approval for our alignment strategy of using sentence-transformers

with the FAISS similarity search, which means that through our automated method,

more than half of the assertions are presumably aligned correctly. We note that there

are thresholds of similarity that can be fine-tuned to possibly improve this approval

rating.

4.5 Adversarial Language Models

4.5.1 Joint and Adversarially training language models

Lastly, we provide and demonstrate the usefulness of a method for joint and adversar-

ially training language models for the task of contextual commonsense inference. In
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the broader literature of generative adversarial networks (GANs) [54], the adversarial

training of models, tends to lead to better results than training each model individ-

ually, possibly because of the gradients flowing from the discriminator informing the

generator on how to improve. Additionally, the discriminative model can give a mea-

sure (usually in a 0-1 range) of how plausible the generations are. We propose using

the generative language model (i.e., a generator) that we trained for contextual com-

monsense inference and combining it with a discriminative model (i.e., discriminator)

whose inputs are the same story and target sentence along with the generator’s infer-

ence. The discriminator can give a measure of how plausible the generated inference

is for the given context. This general architecture can be seen in Figure 4-4.7

Figure 4-4: Overview of the proposed GAN architecture. A story and a target sen-
tence are fed into the generator, which infers a contextual commonsense fact. This
fact, along with the story and target sentence, is passed into a discriminator to de-
termine whether it is from a generator or not and whether it is factual or not.

To be able to achieve this architecture, we need to be able to connect a gener-

ative language model to a regular language model with some additional final layers

that produce a score. In our work, we utilize a transformer-based encoder-decoder

generative model. Specifically, we use the BART model [79] for conditional genera-

tion, provided by the Huggingface Transformers library [182]. For our discriminator,

we utilize a regular BART for sequence classification model also from Huggingface

Transformers. However, it is not as simple as conditionally generating, and passing

into the discriminator the generated assertions. The generative process utilized is re-

7One interesting aspect of this formulation, is that it becomes a kind of conditional GAN [101],
which could reinforce the control signals given in hints.

110



current next-token generation. Recall that to pick the next token with this method,

a non-differentiable argmax operation is used. This impedes the gradients from be-

ing calculated in backpropagation. The issue becomes even more complex, in that

the generation process can utilize beam search to find even better generations, and

each beam at the end of each generation step selects the next best token also with

an argmax. To address this discontinuity, we utilize an approximation of the argmax

(i.e., a soft argmax ) described in the next section and similar to the work described in

Section C.1.2, and perform a dot operation on the scores from this soft-argmax with

the embeddings from the embedding layer to get an approximate and differentiable

input embedding for the discriminator. Finally, we pick two of the same types of

base model (e.g., BART), in order for both the generator and discriminator to share

a vocabulary. The reason for sharing the vocabulary is addressed in the next section,

however, this may not be necessary, and we give an alternative way of being able to

“splice” together different models for this task in section 4.5.4.

We give some formal notations to describe the GAN framework. Let 𝐺 be a

learnable function (implemented as a Generative Neural model) that can take an

input from a domain 𝑋 and convert it to an output in another domain 𝑌 , namely

𝐺 : 𝑋 → 𝑌 . That output 𝑌 is evaluated by a learnable function 𝐷 that scores the

output 𝑌 . A generative adversarial network (GAN) is an interplay between 𝐺 and 𝐷,

in which 𝐺 tries to minimize the difference between what it generates, and 𝐷 tries to

maximize its discrimination of fake generations [54]. We note that we are not the first

to attempt utilizing GAN systems for text generation as seen in Section C.1.2, but

we are the first to apply this system to the task of contextual commonsense inference.

4.5.2 Addressing the Discontinuity in Generation

Recall that during recurrent conditional language generation, a next token, 𝑁 , is

selected by finding the 𝑎𝑟𝑔𝑚𝑎𝑥 of a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 of all the vocabulary, after a language

model is given the generated phrase up until step 𝑁 − 1. This is also called “greedy

decoding”. Also recall that an embedding layer is a neural network component that

given an index 𝑖, returns a row vector, from a vocabulary matrix, that corresponds
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to 𝑖. This lookup operation can also be achieved by performing a dot product of a

one-hot vector that represents the index 𝑖 and the vocabulary matrix. This essentially

scales every row in the matrix by the corresponding vector component and sums all

the vectors. In the literature, this is also referred to as the Gumbel-Softmax [67]. In

the case of a one-hot vector, it scales all but one vector to zero, therefore leaving only

the desired 𝑖 at the end of the summation.

Figure 4-5: We visualize an example that shows the discontinuity when combin-
ing a generative language model with a discriminative language model. The dashed
line represents where the gradients are discontinued because of the non-differentiable
argmax operation.

Figure 4-6: We visualize an example that shows how we address the discontinuity by
replacing the non-differentiable argmax with a dot product between the softmax and
the embedding layer matrix. Additionally, we highlight where the scaling factor is
inserted to make the approximation more accurate. We mark our approach in green.

Now, to maintain the gradients, we need to connect the output of our generative

model, which is the softmax, to the embedding layer of our discriminator model so that

it can be input, scored, and backpropagated correctly. To do this, we simply replace

the aforementioned one-hot vector that represents our index, with the softmax that

the generative model produces at a given generation step, and perform a dot product

of this softmax with the embedding matrix. This method is approximate, given that
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there may be noise from other non-zero elements in the softmax, and the top element

is not an exact 1. To somewhat remedy this approximation, we can multiply the

input of the softmax by a certain factor to essentially give a more approximate one-

hot vector. However, this factor cannot be very large, because it may cause instability

during backpropagation. In our work, we use a scaling factor of 1, as this seems to

be accurate enough. We repeat this approximation for every generation step, and are

left with a list of input embeddings for the discriminator that represent the output

of the generator with usable gradients. Since we are using the same vocabulary, we

can verify how accurate the output is, by training a K-Nearest Neighbors system,

and finding the K=1 neighbor of the output of the softmax and embedding matrix

dot product against the embedding matrix. We can use this test to determine an

appropriate factor for scaling the softmax. Altogether, this approximation permits

us to train our two language models adversarially by having gradients flow from the

discriminator to the generator. We note that there is work that utilizes a similar

simplification to permit gradient flow in an adversarial system in Section C.1.2.

4.5.3 Addressing Different Generation Types

The aforementioned approximation for the discontinuity, as we described it, can be

utilized for greedy selection of the next-token (i.e., we always pick the maximal one

from the final softmax). We can also apply this technique to beam-search generation,

and at every point in constructing the top scored beam, we utilize the softmax of the

maximal scoring beam, essentially simplifying the problem back down to a greedy

generation-like formulation. In this work however, we do not explore top-k generation,

top-p generation, nor sampling during generation. Top-k and top-p generation can be

seen as masking out with zeros, tokens that do not meet a certain criteria. Sampling

is more complicated. To use our approximation with sampling, we would need to

model the sampling function at every generation step with something like a recurrent

neural network. We leave this line of research for future work.
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4.5.4 Splicing different models

We come back to address the issue of having to utilize models that have the same

vocabulary. The reason for this is that the soft-argmax operation matches in matrix

multiplication dimensions between models. We now give an alternative, although

unexplored, option. Given that a generative model will produce a softmax vector

of vocabulary size 𝑉 , and we have another model that has a different vocabulary

size of 𝑀 , we can train decoding layers that can convert the output tokens of the

generative model, into corresponding tokens from the discriminative model. However,

this conversion layer would need to be trained beforehand, and may need to be frozen

during the adversarial training, otherwise it would be a disconnect between the two

models, and the input given to the discriminator may be corrupted. To train this

conversion layer beforehand, one could use as a ground truth, the results that a

tokenizer from model B, with the vocabulary size of 𝑀 , would use as the targets in a

cross entropy loss, and the results that a tokenizer from model A, with the vocabulary

size of 𝑉 , uses as the input to the layer.

4.5.5 Factuality in the Discriminator

Given that we can now adversarially train our models, we explore enhancing the

discriminator with some way to determine factuality. We take a simple approach that

in addition to the normal discriminator training objective (i.e., the discriminator is

given a batch of generated text and a batch of real text and evaluated whether it

inferred this correctly), we add a confounder loss. Our additional confounder loss

is based on the confounder loss by [85], in that we shuffle around the subjects and

objects and expect our model to determine that when shuffled objects are false. Since

our generated outputs are structured (i.e., we have symbol tokens that delimit the

different parts of assertions), we can do this shuffling easily and in-batch. Although

shuffling may incur some false negatives (we may have a shuffled configuration that

is factually correct), since we supply the story and target sentence, we expect the

discriminator to be able to discern this correctly. We believe that we could also apply
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the max-margin loss utilized to great effectiveness by other language GAN literature

[132, 31], although we leave this for future work.

4.5.6 Experimental Setup

For our GAN experiments, we had the following setup. We built a joint inference

dataset using the procedure given in section 4.4, and we augmented it with hinting.

Hinting was done in the same manner as in Section 4.3.1, by sampling a binomial

distribution (𝑝 = 0.5) and if the sample is true we provide a hint by randomly sampling

parts of the target assertion. This dataset is composed of 1,479,811 training examples,

and 30,183 testing examples. We fed this data to a model with the adversarial setup

described in the previous sections. The generator model utilized was the BART-base

for conditional generation, and the discriminator model was a BART-base model for

sequence classification.

For the sake of time, we run our model on only 100,000 examples, with a batch

size of 32, on 3xNVIDIA A6000 for 3 epochs. In addition to this, to see the effects of

the adversarial formulation and of the confounder loss, we train a model without the

adversarial approach that we propose (a separated Generator and Discriminator with

the confounder loss), and an adversarial model without the confounder loss to be able

to gauge the effects of it. We train 4 random seeds for each of these 3 conditions.

Additionally, to test the performance of the discriminator, we used the alignment

technique from Section 4.4 to align the ConceptNet test set of [85] to the ROCStories

corpus. We then passed the story, target sentence, and the test assertion to the

discriminator to determine whether it was true or not. We used a threshold of 0.5 to

determine whether an assertion was marked as true (1) or false (0).

4.5.7 Effects of adversarial training

After running automated tests, we see some mixed results between the three condi-

tions (Adversarial+Confounder, -Adversarial+Confounder, Adversarial-Confounder).

These results are in Table 4.9. We can see that the Adversarial models tend to have
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Model ROUGE1 ROUGE2 ROUGEL ROUGELSUM BLEU METEOR Accuracy of Discriminator
+ADVERSARIAL+CONFOUNDER 43.656 10.544 40.380 40.379 31.335 61.683 0.690
+ADVERSARIAL-CONFOUNDER 43.747 10.559 40.530 40.531 31.279 61.623 0.481
-ADVERSARIAL+CONFOUNDER 43.715 10.680 40.292 40.292 31.470 61.776 0.794

Table 4.9: We present the results of the adversarial test with ablations. We can
see that the Adversarial models tend to have improved recall (ROUGE) scores, but
lower precision (BLEU/METEOR) scores and lower accuracy on classifying a Con-
ceptNet test set of assertions. The adversarial model with everything (+ADVER-
SARIAL+CONFOUNDER) strikes a balance of the benefits of precision and recall
that the non-adversarial, and non-confounder loss models give respectively.

improved recall (ROUGE) scores, but lower precision (BLEU/METEOR) scores and

lower accuracy on classifying a ConceptNet test set of assertions. The adversar-

ial model with everything (+ADVERSARIAL+CONFOUNDER) strikes a balance

of the benefits of precision and accuracy, and recall that the non-adversarial, and

non-confounder loss models give respectively. Some possible causes for these mixed

results may be that our approach may be too naive, and possibly an improved GAN

formulation such as the Wasserstein GAN [7] used in [136] may help our results, our

approximation to connect the generator and discriminator may be too naive and may

need a more complex approach such as utilizing a recurrent neural network during

the generation steps to encode them then decode them into the discriminator.

4.6 Contextual Commonsense Inference Summary

These systems (namely the “hinting”, “joint-inference”, and the adversarial/joint model)

are novel contributions that are part of this thesis. Prior work was unable to con-

trol commonsense inference ([50], [113], [65]). This made utilizing these systems for

specific purposes complicated or impossible, as it would need to be coerced in some

other manner to be able to perform contextual commonsense inference about a spe-

cific topic/entity. Additionally, prior work trained one model per knowledge base,

which can hinder inferences that utilize multiple knowledge bases, and requires one

model per source which may require vast amounts of memory and compute capability

to do inference. The work we have presented in joint inference is an innovative way

to address these problems and works for different types of contexts and knowledge
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bases. Lastly, prior work did not have a unified method to score contextual common-

sense assertions from multiple sources, which can lead to different scales in scores and

makes it complicated to prioritize one fact over another. Our adversarial/joint model

addresses this last point, through the Discriminator that learns to score contextual

assertions as the generative model trains or separately by giving it context and a fact

to score. Altogether, these systems push the boundaries in contextual commonsense

inference and serve as a text-to-graph system. We use these as a text-to-graph engine

to power the procedural abstraction that we present in the next section.

4.7 Procedure Ingestion and Abstraction System

So far, we have constructed a system to perform text-to-graph of a certain story

context. For our particular use case, the stories that we will analyze and abstract

into graphs will be procedures. This is important because we want to be able to utilize

these contextual procedure knowledge graphs to generate procedures. However, we

need a corpus of knowledge graphs from procedures first, to be able to train our step

generation models and our reasoners. We now describe our approach to collecting

this dataset and extracting graphs from it. We also describe our general approach to

ingesting a procedure and converting it into a knowledge graph.

4.7.1 Procedural Abstraction Overview

The overall process to abstract a procedure into a knowledge graph is the following.

First, we need to find a document that matches a certain procedure that we want

to abstract. Following this, we need to extract the steps from this document. With

the set of steps, we can then pass them as a story into our contextual commonsense

inference system and generate assertions for the procedure. We utilize our hinting

mechanism to be able to drive this inference process. The resulting assertions repre-

sent the facts that are necessary to perform a procedure, however these facts are not

ordered, which poses an issue, because some facts may be more relevant/useful than

others. We tackle this issue in the next Chapter. All along in this process, we can
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store the documents we have found, and we can store the facts that we have generated

for easier retrieval later. The general process can be visualized in Figure 4-7.

Figure 4-7: Process to ingest and abstract a procedure. We go from a procedure
title, to a document that contains the procedure, to steps that are extracted from
the procedure, and finally into facts that are generated from a hinted controllable
commonsense inference system. The original data, the steps, and the extracted com-
monsense assertions are all stored in ElasticSearch.

4.7.2 wikiHow as a Procedure Dataset

For our step generation model, and our baseline gold instruction model later on,

we require a large corpus of procedures to be able to train and develop them. The

simplest way to acquire this, is by scraping the wikiHow website. wikiHow is a

website that provides how-to guides on a wide range of topics. It was created in 2005

as a platform where people could share their knowledge with others. The site has

grown to become one of the largest how-to websites in the world, with over 200,000

articles covering topics such as cooking, gardening, home improvement, and more8.

wikiHow is particularly useful, because the structure of procedures are in a step-by-

step manner. In addition to this, there is what can be seen as a summary step, and a

longer detailed step. There is an existing wikiHow dataset [76], however this dataset

was focused on summarization. The authors focus on utilizing the detailed steps as

an input to a summarization model, and producing the summarized steps. There

are also requirements to do the procedure, warnings, and references to validate the

procedure.
8https://www.wikiHow.com/

118

https://www.wikiHow.com/


In our work, we require the structure of the procedure: we need the order of the

steps and any additional information that may have been provided in the procedure

(such as the requirements and warnings). We need the steps for our step generation

model presented in the next chapter, and we need the additional knowledge, because

we utilize this as an additional knowledge base for our contextual commonsense infer-

ence model, which we describe further below. Because of this requirement, we opted

to scrape our own version of wikiHow.

Scraping wikiHow

To be able to scrape wikiHow, we utilized the scrapy Python package 9. Through

scrapy, we implement a Spider that utilizes the Beautifulsoup 410 package to parse the

HTML from wikiHow into usable fields. The scrapy package handles following links

into related pages, along with any timeouts and retries that might be encountered

while scraping. We note that wikiHow provides a Creative Commons license for their

articles11. Ultimately, from pages that we scrape, we extract the items found in Table

4.10. We note that in the Table, we additionally include fields that we utilize for

other purposes when storing the data in an ElasticSearch instance.

We additionally save the HTML content of the article for future endeavors that

may utilize it. In our effort, we let our crawler run for one week. In that week,

the crawler was able to collect 93144 articles. The articles contain on average 2.77

sub-procedures, and contain on average 5.15 steps per sub-procedure. There are a

total of 258230 sub-procedures, and 1331020 steps in our dataset. Sub-procedures in

this case can be seen as and/or trees to accomplish a higher level goal (procedure).

The “and” trees, or set of steps that are required to accomplish a goal, in this case are

sub-procedures that wikiHow calls “parts”, and the “or” trees, or alternate (possibly

not required) set of steps that represent different ways of accomplishing a goal, are

what wikiHow calls “methods”.

9https://scrapy.org/
10https://pypi.org/project/beautifulsoup4/
11https://www.wikiHow.com/wikiHow:Terms-of-Use
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Field Description Example

Content Field that is utilized to generate an embedding for
fast nearest neighbors search of procedures. Consists of the title of the procedure. How to Connect Your PC to Your TV Wirelessly

Embedding Field that stores an embedding that represents the
encoded value of the Content field [0.12, 0.123, 0.213 [...], 0.0102]

Gold Knowledge Graph Completed Field that indicates if there is a corresponding
knowledge graph generated for the procedure True

Ingredients Field that contains any ingredients (in the case of
cooking procedures) ["lettuce", "salt"]

Intro
Field that contains any introduction or preamble
to the procedure. Usually there is a brief summary
of the procedure at hand.

Connecting your PC to your TV can help when you
want to cast videos such as sporting events or
playing video games.

KDPSG Cache Field that contains steps generated from the
Knowledge Driven Procedural Step Generation system. These are cached for speed. [["Step 1: Open Settings", "Step: ..."]]

References In the case of a procedure, any references that the
procedure may contain

Luigi Oppido. Computer & Tech Specialist.
Expert Interview. 31 July 2019

sub-procedures - Steps - Detailed step Longer more detailed description
of a procedural step

If your TV is an Android TV, is powered by Chromecast, or has
a Chromecast device attached, you can mirror any
Chromecast-enabled Windows apps to the screen.
Many Windows apps support Chromecast, including
Google Chrome, Netflix, Spotify, and Plex.
If you have the Google Chrome web browser,
you can use it to mirror any website to the TV.
This includes websites like YouTube, Netflix, and Facebook.
Google Chrome also lets you mirror your Windows PC’s entire screen!

sub-procedures - Steps - Step Num The number of the step in a sub-procedure. 1
sub-procedures - Steps - Summary Step A sentence that summarizes a step in a procedure. These can be seen as lower level goals in a procedure. Turn on your Chromecast-enabled TV.
sub-procedures - Title The title for a sub-procedure Using Chromecast

sub-procedures - Type

Whether a given sub-procedure is a part
(set of sequence of steps) that needs to be done in order
or a method (alternate way of doing something).
Methods can be seen as OR nodes in goal trees and Parts can be seen as AND nodes. [FIND REFERENCE]

Methods

Summary A summary of the steps that need to be done in the procedure

1. Turn on your Smart TV. 2. Connect your
PC to the same Wi-Fi network as the TV.
3. Open Google Chrome. 4. Click the three-dot menu and select
Cast. 5. Choose what you want to cast. 6. Click your TV.

Things Needed Any requirements that may be needed apart from
ingredients Chromecast enabled TV, PC

Title The title of a procedure. This is the higher level goal that is to be achieved by the procedure. How to Connect Your PC to Your TV Wirelessly
Warnings Any warnings that the procedure may have Be careful with flashing lights if a person is epileptic.

Table 4.10: Table that describes extracted fields from the scraper.

Storing wikiHow

To be able to store and search through our procedures, we utilize ElasticSearch. It

provides a simple and efficient platform for ingesting and indexing large amounts of

data. We have 4 separate indexes in ElasticSearch: an index for generated procedural

knowledge, an index for registered users for our conversational agent, an index for

user interactions with the conversational agent, and an index for ingested procedures.

Indexes can roughly be seen as tables in a SQL database; an index is a collection

of documents that have somewhat similar characteristics. We store our scraped and

parsed wikiHow dataset in this last index. Later on, the facts that we generate from

our text-to-graph systems are stored in the first index mentioned. The other two

indices are for the conversational system that we present in Chapter 6. We now give

a description of the indices and the data that they hold:

• Ingested Procedure Index In this index, we store any procedure that we

may have ingested through our systems. We use the following fields: con-

tent, embedding, ingredients, intro, references, sub-procedures - steps - detailed

step, sub-procedures - steps - step num, sub-procedures - steps - summary step

sub-procedures - title, sub-procedures - type, summary, things needed, title,

120



warnings. These are based on the aforementioned scraping. The description of

these fields can be found in Table 4.10.

• Contextual Procedure Knowledge Index In this index, we store any fact

that is generated from the Contextual Commonsense Inference model applied

to a procedure. The fields that we save are the following: discriminator score,

generation score, content, general, object, relation, sentence, step, story, sub-

ject, sub-procedure. We describe these fields in Table 4.11. We opted to store

these assertions in a separate index, because in earlier tests, if stored within a

field in a procedure, the ElasticSearch indexing would eventually crash because

of too many sub-fields and variations.

Field Description Example
Discriminator Score Score given by discriminator described in Section 4.5 0.900

Generation Score Generated sequence score given by the generator model
described in Section \ref{} -0.272

Content
Searchable field which contains the name of the
procedure that the fact was extracted from, and a
textual form of the assertion

Procedure: How to do screen mirroring and projecting to your PC
Step: 1 Fact: Specifically, mirroring SimilarTo projection.

General
The specificity of the assertion as defined in
Section \ref{}, in the form of a boolean confirming
if the assertion is general or not

False

Object The object of the assertion projection

Relation The relation that joins the subject and
object node. We store it as it is found in other KGs. SimilarTo

Sentence The sentence from which the fact was derived Step 1,
Select Start>Settings>System>Projecting to this PC

Step In the case of a procedure, the step from which a fact
was derived from. step_1

Story The story/procedure from which the fact was
generated from

How to do screen mirroring and projecting to your PC:
Windows 10. Step 1,
Select Start>Settings>System>Projecting to this PC

Subject The subject of the assertion mirroring

Sub-procedure In the case of a procedure, the index of the
sub-procedure from which the assertion was generated 0

Document Index The id of the document in the
Ingested Procedure Document index oeQUGocBi6St9mxkQhTf

Table 4.11: Fields and their descriptions for the index that stores contextual procedure
facts.

Retrieving procedures from wikiHow

Once the procedures are in ElasticSearch, we utilize the haystack library [131] to

implement a semantic search that utilizes the sentence-transformer [146] library.

Haystack additionally utilizes the FAISS library [71] to quickly index and perform

fast approximate nearest neighbors on the knowledge. With this, we can additionally

retrieve procedures for training our step generation models. The haystack library
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generates a sentence-transformer embedding for a “content” field. In our work, for

procedure documents, the “content’ field is the title of the procedure, and for con-

textual procedure assertions, the field consists of the textual form of the assertion

(simple English description of the tuple e.g. a dog, isA, animal is described as A dog

is a animal.) along with the step and the procedure that it was extracted from. For

future work, we note that this storage strategy could be utilized to search for facts

that may have been used in similar procedures.

4.7.3 When retrieval doesn’t match: dynamic lookup and ex-

traction

We tested the haystack-based procedural retrieval system, and found that items with

a cosine similarity of less than 0.9, tended to be procedures that are not in our dataset.

This is an issue later on when utilizing conversational agents, because a user may ask

them for a specific how-to and if we rely purely on the most similar item to a user’s

query, we may retrieve an irrelevant procedure. An example of this would be with

the query: "How to organize applications on an iPhone". From our collection of

procedures, the top procedure is "How to Organize iPhone applications into folders"

with a cosine similarity of 0.945. However, if this procedure were not available, the

next most similar procedure is: “How to Move Apps on the iPhone”, with a score

of 0.86 which is similar but not exactly the same as organizing apps in folders. We

tried out several other procedures, and found that typically the desired procedure

had a similarity of higher than 0.9. In future work, this however may not be an issue

directly: if we had a system that retrieved facts based on an input query, it would be

able to come up with the steps for a procedure.

Now, we address the issue of what if the similarity is lower than this, and we

do not have the procedure available? This could also be seen in future work, as

if the similarity of the facts to the query for a procedure was on average below a

certain threshold. This question is key to our approach, because ideally we would

want an agent that can handle procedures that are not in our collection of knowledge.
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The way we do this is by performing a web-search for the procedure, using a span

extraction model to extract steps, and storing the procedure. In Future Work, an

even more ideal way to handle the procedure generation process would be to utilize

the semantic search for assertions in combination with a reasoner to be able to not

have to rely on a search engine nor on a span extraction model. The semantic search

retrieves whatever facts it deems necessary for the procedure, and the reasoner orders

them into something useful. For this work, we utilize an unofficial wrapper around

the Google search engine12, however any other web search would work well, and input

the user’s query (or unknown procedure) along with a prompt: "How to [DESIRED

PROCEDURE]". We then take the first of the results and proceed to do the following.

We note that it might be possible to do this for all the results that are retrieved in

parallel to have as much coverage as possible.

To be able to ingest the procedure, and it is useful further down in our pipeline,

we need to have, at a minimum, the title of the procedure, and the summary steps.

However, in websites, procedures are sometimes spread out through the page, and

formatting is inconsistent. What this means is that there may be a procedure con-

tained in an ordered list (<ol>) element in one page, in another the procedure may

be in explicit text with numbers (e.g., 1. [STEP 1 TEXT]), and in a third page, the

procedure might be in an unordered list (<ul>) element. Therefore, it is important

to have a viable way of extracting or delineating where procedure steps are.

To perform some initial filtering and standardization, we run the resulting page

through a programmatic readability system13 to try to remove most of the junk/ads

that may be present. Additionally, this standardizes lists (both ordered and un-

ordered) into asterisk lists (*). Now, prior work has used models to find spans of text

that represent individual steps [87]. While this is a viable approach, we would need a

much larger annotated dataset to be able to train a span extraction model on general

web-based procedures.

This inspired us to utilize a LLM to do step extraction. We note that this LLM

12https://github.com/abenassi/Google-Search-API
13We use the “readabilipy” library: https://github.com/alan-turing-institute/ReadabiliPy
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can be seen as a module that can be replaced with another model or sub-system

that ingests text and produces steps found in the text. We used the LLM simply for

convenience. The input only needs to be a web page’s text, and the output a list of

steps. Ultimately, whatever system is used in this stage, one will have a list of steps at

the end. This list of steps can be utilized as a baseline for how to do the procedure,

and in our case, we can use it to convert it to a contextual procedure knowledge

graph which we describe in the next section. We now show how this process would

look like for the procedure of “How to open a wine bottle", taken from the website:

https://winefolly.com/episode/how-to-open-a-bottle-of-wine/, found by a

Google search for the procedure. This can be seen in Figure 4-8.

Figure 4-8: Web page view for wine opening procedure. Note that above it there is
more text and below there are more steps and images.

Following this, we apply readability to the page. To visualize the effect of this, we

use the Firefox readability view, which is an equivalent of the “readabilipy” library

that we utilize. The resulting text can be seen in Figure 4-9.

After this, we take the textual content of the simplified page, and pass it to our

LLM. In our case, we utilize the GPT-3, “text-davinci-003 model”. We give the model
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Figure 4-9: Readability view for wine opening procedure. Note that the advertise-
ments from above have been removed, however there is still extra text above the
procedure.

the following prompt to perform the task: “For the procedure:[PROCEDURE NAME]

Described by: [READABILITY CONTENT] Extract a list of steps, remember lines

with * are items in a list, do not list unessential steps:”. We see an example of how

this works, we show the OpenAI Playground in Figure 4-10.

Ultimately, the LLM produces the following list of steps:

1. Hold the bottle of wine stationary.

2. Cut across the front, back, and top of the foil.

3. Set the screw just off center and insert, rotating straight into the cork.

4. Continue to screw into the cork until only one curl remains.

125



Figure 4-10: Visualization of a LLM being utilized for step extraction. Note that the
LLM removed unessential text from the procedure, and ignored useless text.

5. Lever on the first step, then the second, finally easing the cork out with your

hand.

We can then parse these steps and use them as summary steps to ingest into our

data-store. We note that although we showed this in the OpenAI Playground, that

there is a programmatic equivalent with the “openai” Python package.

With this strategy, whenever a procedure that is not exactly or close enough to

what a user wants, we can extract a way to do it from the web on the fly.

We note that some behaviors that we observed in this process, were that it may

be the case that the web-page has more than one procedure. If this is the case,

sometimes the large language model may intermix procedures, it may also ignore

procedures. Because of this, other more specifically trained procedure step span

extraction methods may be preferable. However, we find that this method is effective

as a proof-of-concept.
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4.7.4 Contextual Procedural Knowledge Generation

With our wikiHow dataset, and our method to generate procedure documents, we

now focus on how to convert these texts into contextual knowledge graphs.

To convert our procedural steps into knowledge graphs, we do the following proce-

dure. For every step in a procedure (assuming that it is a single sentence), we extract

the noun and verb phrases of the step utilizing the spaCy [60] library. Following this,

we use these noun and verb-phrases as subjects in permutations with the relations

from ATOMIC-2020 for hinting. In essence, for every step in a procedure our contex-

tual commonsense inference system generates a specific assertion without any hint,

and with hints consisting of a noun/verb phrase as a subject, and a hint consisting

of permutations of noun/verb phrases and ATOMIC-2020 relations.

We can visualize this in Figure 4-11.

Figure 4-11: Procedure for abstracting Step 1 in the procedure how to write a check.
We can see the extracted noun/verb phrases and how these are used in permutations
with relations to produce hints to guide the generation. We note that this is a small
example of the contextual knowledge graph for Step 1, and that there are more
assertions that are generated from the permutations.

We note that although we can control the contextual commonsense inference pro-

cess, even for a small amount of steps, it is possible to generate thousands of assertions.

Before we perform the optimization found in Section 5.3.1 (grounding the inference

to be about noun/verb phrases on a target sentence), we were utilizing keywords and
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noun/verb phrases from the complete procedure, along with relation-object and ob-

ject hints. The process for generation that we use for most experiments until Section

5.3.1, although more comprehensive in the knowledge that it generates, generated

thousands of facts per step. Which, for a language model with a limited context,

raised the challenge of which facts can we utilize to optimize our step generation. As

we generate facts, we score the generated facts for their plausibility given the context

with the discriminator that we describe in Section 4.5. When we combine the gener-

ation with the scoring system. we can construct a knowledge graph that is grounded

on entities (noun/verb phrases), and has a metric of the strength of the assertion.

Performance Optimizations

The generation procedure for assertions is recurrent, what this means is that for a

large scale generation of facts the process can be computationally slow. If we add

to this, the scoring in the discriminator, what happens is that the whole process

becomes even slower. To remedy this, we opted to use ONNX-runtime14 along with

the huggingface Optimum library15 to try and optimize our models for generation.

ONNX runtime provides a way to perform compute level graph, optimizations, which

when performing inference in a model speeds it up. We found that this speed up

was very effective for the discriminator, to the point that after optimizing it through

ONNX, it can compute scores for a batch of 32 items on average at ∼ 0.2 seconds.

However, we found that the gains were marginal for the generator (∼ 5 seconds for 32

items vs. ∼ 7 seconds), and the quality of the results of the generated text seemed to

be inferior to the original model. Since graph-level optimizations did not work all that

well on the generator, we opted to parallelize the process. One optimization that we

did, was to do a multithreaded inference in which four threads would process a queue

of contextual common sense inference requests, and this way we could parallelize and

speed up the generation process. The times that we noted above for inference are for

the multithreaded system, we used four GPUs in parallel. The original compute time

14https://onnx.ai/
15https://huggingface.co/docs/optimum/index
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was approximately 4X the times that we stated. We note that in much of this work,

we utilize Nvidia’s A6000 or A40 GPUs.

We note that by taking the optimizations, and abstracting process shown in Figure

4-7 and in more detail in Figure 4-11, we can build a function that can take the name

of a procedure and output a contextual knowledge graph for it in a relatively small

(∼2 minutes per procedure).

4.8 Summary

In this fourth chapter, we describe the systems we developed to perform contextual,

common sense inference for procedures. These systems utilize large language models,

specifically transformer models, to ingest a story or procedure and goal. We then

generate a knowledge graph for each sentence or step of the procedure, incorporating

multiple knowledge sources and enabling us to score generated assertions. A unique

contribution of our system is that it can be controlled, which allows us to fine-tune

its performance for specific tasks. We also provide a proof-of-concept system that can

extract procedural steps from web searches for a specific procedure. To train our step

generation model and apply our reasoner, we contribute a more detailed wikiHow

dataset. Our work addresses the problem of providing contextual, common sense

inference for procedures, and our contributions enable more accurate and effective

procedural guidance.
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Chapter 5

Processing Abstracted Procedural

Knowledge into Steps

Life doesn’t come with an instruction manual. -Scott Westerfeld

5.1 Overview

By now, we have discussed how we can generate knowledge graphs that represent

procedures. However, what can we do with those graphs? Here, we discuss utilizing

portions of them to generate procedural steps. We look at the need for knowledge in

the task of procedural step generation, and look at different ways of trying to organize

knowledge into something that is effective for step generation. The overall process

consists of selecting a certain set of facts and converting it into text that is a step in

a procedure. As we will show, the order and the content of these facts matter greatly.

This task can also be seen as data-to-text or graph-to-text, with the added constraint

that it needs to be coherent with past steps, and needs to be accurate for completion.

We show that it is indeed possible to do this, and that this can be done to generate

steps for out-of-domain procedures.
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5.2 Knowledge Driven Procedural Step Generation

5.2.1 Problem Statement

The task that we are trying to tackle can be formally called graph-to-text generation,

a subtask of data-to-text generation [52]. We have a knowledge graph that represents

a step in a procedure, and we need some system that can convert that knowledge

graph into text that would be seen as the procedural step. However, we have two

problems that we need to address in this task. The first one is selecting the correct

graph to input into the system, and the second one is actually the translation of that

graph into text. Formally, we utilize the notation from [183]. Our task consists of

given a source-target data pair 𝑋, 𝑌 , we aim to generate a procedure step sentence 𝑌

from the input 𝑋. The sentence 𝑌 , or the target text, can be decomposed in such a

way that 𝑌 = 𝑦1, 𝑦2, ..., 𝑦𝑚 in which 𝑦 is a token. The task can also be generalized to

say that 𝑌 can also be represented as 𝑌 = 𝑠1, ..., 𝑠𝑘, where 𝑠 is a sentence including

multiple tokens. We diverge from the definition given in [183], such that we define our

input 𝑋 source text, to have the following components. Firstly, a collection of facts

that can be seen as 𝑋𝑓 = 𝑥1, 𝑥2, ..., 𝑥𝑛 which denotes the input records. An element

𝑥 represents a record that is a tuple including multiple features, i.e. 𝑥 = (𝑟1, ..., 𝑟|𝑥|).

Recall that in Chapter 4, we have developed a system that can generate a contextual

knowledge graph of a procedure. The contextual knowledge graph contains assertions

in the form of tuples, that can be mapped directly to this definition of 𝑥. 𝑋 also

contains the title of a procedure, 𝑥𝑃𝑇 , the step that we want to generate in the

procedure 𝑥𝑆𝑁 := {𝑆𝑡𝑒𝑝 1, 𝑆𝑡𝑒𝑝 2, ..., 𝑆𝑡𝑒𝑝 𝑖} (the step to be generated), and any

steps prior to 𝑆𝑡𝑒𝑝 𝑖: 𝑥𝑃𝑆 = ∅, 𝑠1, 𝑠2, ..., 𝑠𝑖−1. Now, the records that we include as

inputs for our step generation model, can be ordered in a variety of ways. We call

each ordering of these a plan, 𝒫 ∈ 𝑋𝑓 . Now, all together, our task can be seen as:

𝑌 = 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑟(𝑥𝑃𝑇 , 𝑥𝑆𝑁 , 𝑥𝑃𝑆,𝒫) = 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑟(𝑋), where 𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑟 is a generative text

model that takes the given inputs and produces a procedural step 𝑌 . We call it the

“realizer”, because it realizes the plan that was given as the input.

We utilize this formulation, because there is a limit for the amount of information
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that can be contained in the plan 𝒫 , due to memory and compute constraints, a

maximum amount of inputs that can be given as input to the realizer model. Addi-

tionally, the space of facts 𝑋𝑓 may contain more facts than are actually needed for

a step. Because of these considerations, we would need a planner system that can,

given the all the facts and the appropriate context, generate a suitable 𝒫 . This can

be defined as: 𝒫 = 𝑝𝑙𝑎𝑛𝑛𝑒𝑟(𝑥𝑃𝑇 , 𝑥𝑆𝑁 , 𝑥𝑃𝑆, 𝑋𝑓 ).

We note that we simplified the formulation of this task in such a way that we

constrain 𝑋𝑓 to be only the knowledge that was generated from a step. There is a more

complex formulation in which 𝑋𝑓 can be all the facts that stem from the procedure

(from every step, and any other text that we include in the contextual commonsense

inference). We additionally note that we are simplifying to only generate one step at

a time. A more complicated scenario would also be to generate all the procedure steps

at once. These formulations remain future work, and we leave all the data necessary

to explore these.

5.2.2 Procedural Step Realization Model

Before exploring the planner aspect of this work, we first decide to implement the

realization model. Our reasoning for this, is that we can train the model in a general

capacity by making plans 𝒫 by randomly sampling the step knowledge available.

Then, once the model is trained to realize the plans, we can find a way to generate

better plans. This approach of pre-training the model is one that has been utilized in

other refinement approaches, such as for reinforcement learning [185]. As a realization

model, we utilize a transformer encoder-decoder model. In our work, we utilize the

transformer FlanT5[95] base model, as it was currently one of the highest performing

base models in a variety of tasks. We utilize encoder-decoder systems, as these have

been shown to have good performance in the task of graph-to-text generation [148].
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5.2.3 Dataset

To be able to train our procedural step realization/generation model, we first need to

generate a dataset of procedures aligned with their corresponding contextual knowl-

edge graphs. We utilize our contextual commonsense inference model from Chapter

4 for this. We note that the model that we utilized, in addition to having ATOMIC-

2020, ConceptNet, and GLUCOSE, it also has Ascent++ and facts that were ex-

tracted from the wikiHow dataset. These facts were: requirements and ingredients

for a procedure, warnings for a procedure, along with has first/last sub-event facts.

These were extracted from the scraped procedures, typically in the format of (spe-

cific, [PROCEDURE NAME], [RELATION], [WARNING / REQUIREMENTS /

INGREDIENTS / SUB-EVENT]). We additionally used the summary steps in the

procedures to serve as is before/is after assertions (i.e., [Step 1 content] is before

[Step 2 content]). Lastly, we utilized the procedures that we scraped from wikiHow

as an additional corpus of stories, where every story’s first sentence is the name of the

procedure, and every other sentence is the summary steps that were extracted. We

did this so that our contextual commonsense inference would be able to generate as-

sertions from stories longer than 5 sentences, and so that we could have commonsense

knowledge applied to procedures.

With our contextual commonsense inference model, we then proceeded to go

through the procedures that we had scraped, and perform contextual commonsense

inference. Initially, we opted to generate as many inferences as possible. To do this,

we would extract keywords/noun phrases/verb phrases from the complete procedure,

and we would use these as subjects and objects in hints, with permutations of relation

types. This process can be seen in Figure 5-1, and we describe the general approach

in Section 4.7.4.

Excess of Assertions

While our strategy to generate assertions may be a comprehensive process, it is a very

computationally intensive process, what this means is that it took approximately 5–10
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Figure 5-1: Visualization of process to generate contextual commonsense assertions.
Note that the extraction systems receive all of the procedure’s text including the
title to generate keywords/phrases from, and this is what is utilized to do contextual
commonsense inference.

minutes to produce a knowledge graph for 1 procedure. Because of this, we were only

able to produce 37,172 of 93,144 procedures. However, these graphs contain upwards

of 349 million assertions. There are close to 10,000 assertions for every procedure.

We found that this strategy of using procedure-level keywords/phrases produced

too much information and had to apply some filtering to reduce this. We kept asser-

tions whose rouge [90] scores between the assertion and the target step were above the

average of all step related knowledge and a small delta (i.e., 𝑟𝑜𝑢𝑔𝑒(𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑠𝑡𝑒𝑝) >

1
𝑁

∑︀𝑁
𝑛=1 𝑟𝑜𝑢𝑔𝑒(𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑛, 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑠𝑡𝑒𝑝) + 𝛿 ). We select 𝛿 = 0.04. This strategy

leaves us with assertions that have some overlap (and hopefully semantic relevance)

to the procedure step. We utilize rouge as a way to try and enforce that the model

is grounded in what it utilizes to generate steps. We note that other metrics such as

BLEU[124], or BERT-Score[190] could be utilized for this.

135



Validation Test
Condition BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM
No Knowledge 23.327 54.022 46.738 26.203 45.652 45.667 23.157 53.701 45.978 25.942 45.194 45.238
Noisy Knowledge 33.995 62.098 57.861 40.413 56.961 56.885 34.596 62.592 59.103 42.213 58.173 58.194
Filtered Knowledge 49.565 75.994 77.256 63.733 75.213 75.217 51.646 77.616 79.143 65.807 76.976 76.995

Table 5.1: Validation and test results for training models for procedural step genera-
tion with and without knowledge.

This strategy filters out approximately 60% of facts from all of our assertions.

However, this is not a viable strategy at inference time, because we would need the

generated step or some equivalent of it to be able to calculate it. We discuss in the

reasoner section later on our approach to handle this.

5.2.4 Experiments, Results, and Analysis

The need for contextual knowledge

The first thing that we set out to check, was whether knowledge the contextual

commonsense assertions were necessary for the procedural step generation. To test

this, we picked a subset of 1000 procedures, which were the most semantically related

to the search term “software, smartphones, apps”. We picked this so that the subset

would be as similar as possible and would hopefully generalize well. With this subset

of 1000 procedures, we trained the realizer model from scratch without any contextual

knowledge, then we trained one with 32 facts that were randomly sampled without

any rouge filtering, and finally we trained one with 32 facts that were randomly

sampled from the rouge filtered knowledge. The results of this experiment can be

seen in Table 5.1 and in Figures 5-2. We ran 3 seeds for every one of these test cases

for 3 epochs. Additionally, we utilized a batch size of 8 and a learning rate of 4e-5

with a linear decay with 20% of the batches as warm up. Additionally, we use a

train/dev/test split of 80/10/10.

We note that we remove duplicate knowledge to try and minimize, albeit slightly,

the amount of information that the model has to process, and we also remove any

assertion that is very similar (cosine similarity higher than 0.7 with respect to the

target procedural step 𝑌 ). To remove the duplicates, we go through the assertions

that we have for a given step, and find any following assertion whose cosine similarity
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Figure 5-2: Validation results for tests of whether knowledge was present or not. We
can see that without knowledge, the model’s performance stays almost constant on au-
tomated metrics. However, we see that with some noisy knowledge, the performance
of the model slowly improves. We see that with filtered (i.e. more relevant/grounded)
knowledge, the model performs considerably better.

is higher than 0.98 of a given assertion.

From these experiments, one thing is very clear. There is a definite need for

knowledge; without any knowledge, the system underperforms. Even with some noisy

knowledge, we can see that the performance jumps considerably. We can also see

that if we have higher quality, or more relevant knowledge, that the performance goes

up even further. Now, this raises the question of what is an adequate amount of

knowledge for this task.

How much knowledge?

Now that we know that we need knowledge to be able to do procedural step generation,

we now try various values of the amount of knowledge to determine what is the sweet

spot for the maximum length of our plan. We evaluate the following values of 𝑗 in

|𝒫| = 𝑗; 𝑗 = {1, 2, 4, 8, 16, 32, 48, 64, 128}. We note that values higher than 64 tend to

be truncated (the T5 model that we use has a maximum context size of 1024 tokens,

which, if we take an assertion to be a sentence, and a sentence has roughly 10-20+
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tokens, in an optimistic setting where assertions are relatively short, we have filled

more than half of the context with the facts. If we include the procedure name, the

step that we want to generate, and prior steps, it makes it almost impossible to be

able to consistently include more than 64 facts. We include 128 to see what benefits

arise from including facts until truncation. In contrast to the prior set of experiments,

we only utilize the case with the random sampling from the rouge-filtered facts. We

do this so that the quality of the facts is the highest, so we can see what the quantity

does.

Once more, we perform our tests on a subset of 1000 procedures that are the

most similar to the query “smartphones, software, apps”. Additionally, we once again

use a similar setup: we ran 2 seeds for every one of these test cases for 3 epochs.

Additionally, we utilized a batch size of 8 and a learning rate of 4e-5 with a linear

decay with 20% of the batches as warm up. Additionally, we use a train/dev/test

split of 80/10/10. The results of these experiments can be seen in Table 5.2 and in

Figure 5-3 and 5-4.

Figure 5-3: Training loss plots for varying amounts of commonsense assertions. We
see that typically, the more assertions that are given, the lower the loss will be,
indicating that more knowledge in the task tends to make it easier.
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Figure 5-4: Validation BLEU results for varying amounts of information. We see that
performance keeps increasing as we increase the amount of information. Interestingly,
the performance with 48 facts tends to be at first better than that of 64. We see that
at the final epochs, the performance of 64 narrowly beats that of 48. In the tables
that we present, this does not seem apparent.

From our results, there are a few things that we can see, firstly, the more knowl-

edge we add into the process, even with random sampling of it, the better the step

generation model performs. The second observation that we can see is that above a

certain amount (32), the returns begin to diminish.

Interestingly, some of these observations align well with other more recent and

parallel work [82]. In the work by Li et al. [82], they find that a few interesting

and relevant observations. The first is that larger models are more likely to ignore

contexts, which means that smaller models like the ones we utilize will try to leverage

context as much as possible, hence performance continually increasing as we increase

the amount of facts. They also find that context noise reduces controllability. What

this means in our case is that if our context contains too much noise/irrelevant facts

the performance of our task, in particular the generation will probably be less, as the

facts do not guide the generation of the model. We have evidence of both of these
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Validation Test
Assertion Amount LM Loss BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM LM Loss BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM

1 1.541 23.566 53.723 48.388 27.898 47.485 47.516 1.489 24.873 55.767 50.309 29.705 49.313 49.379
2 1.459 27.033 57.535 53.233 32.783 52.127 52.116 1.429 29.142 59.885 54.539 34.360 53.571 53.574
4 1.279 30.846 60.760 57.596 37.683 56.333 56.388 1.281 32.149 62.037 58.571 39.040 57.251 57.271
8 1.079 38.464 67.371 65.564 46.864 63.966 63.892 1.031 39.833 68.097 66.668 48.743 65.384 65.364
16 0.800 47.149 74.281 73.810 58.386 72.146 72.162 0.880 43.005 71.233 70.645 53.591 68.862 68.865
32 0.669 50.248 76.485 76.913 63.348 74.952 74.970 0.667 51.710 76.963 78.010 64.291 76.205 76.216
48 0.621 53.123 78.753 80.428 68.049 78.486 78.514 0.548 56.775 80.098 81.210 69.243 79.409 79.420
64 0.587 52.906 78.329 79.832 66.927 77.430 77.417 0.608 52.473 78.434 79.817 67.110 77.441 77.453
128 0.595 53.804 78.886 80.637 68.383 78.523 78.544 0.576 54.744 79.640 81.013 68.877 79.057 79.017

Table 5.2: Results for test and validation averages for varying amounts of contextual
commonsense assertions. We see the trend that generally, the more assertions given,
the better the performance. Around 64, we see that performance starts to become
unsteady. This is most likely due to context length constraints, since we are using
the FlanT5 model, the context is limited to 1024 tokens.

behaviors in the prior tests.

Does the quality of the knowledge matter?

By now, we have seen that we need knowledge for procedural step generation, and

we need a certain amount of it to perform well in our task. Now, we explore if the

quality of the information matters. To test this, we run three cases: we do not order

the information (i.e., we randomly sample facts), we order the facts based on their

rouge vs. the procedure step (i.e., which facts have more surface overlap with the

step), and we order them based on the plausibility score given by the discriminator

(i.e., which facts are more plausible for the given steps).

Once more, we perform our tests on a subset of 1000 procedures that are the most

similar to the query “smartphones, software, apps”. We run our experiments with a

similar setup: 2 seeds for every one of these test cases, each for 3 epochs. Additionally,

we utilized a batch size of 8 and a learning rate of 4e-5 with a linear decay with 20%

of the batches as warm up. Additionally, we use a train/dev/test split of 80/10/10.

The results of these experiments can be seen in Table 5.3 and in Figure 5-5. We select

64 as the amount of knowledge for this.

From this, we can see that there is a clear benefit to ordering the information.

We see that the ordering that is based on how close it is to the ground truth (rouge

scoring) tends to be the best performing, while the one based on plausibility is a close

second, and random ordering performs inconsistently. From all these tests, we gather

that the inclusion of knowledge is necessary, the order of it matters, and the quantity
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Figure 5-5: Validation metric results for different ordering schemes. We see that the
rouge sorting gives the best performance, as it is a metric that can see the output,
however the plausibility-based scoring gives the second best ordering.

Validation Test
Name BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM

Random Ordering 32.849 61.155 59.124 43.106 58.187 58.176 35.121 62.625 60.622 45.552 59.703 59.676
Plausibility Sorted 47.128 74.772 76.124 61.862 73.943 74.026 50.555 76.718 78.128 65.275 76.477 76.456

Rouge Sorted 58.311 82.045 85.550 74.806 83.023 83.096 60.178 82.916 86.782 77.235 84.468 84.468

Table 5.3: Results on the validation and testing set for different ordering styles. We
see that the rouge-based filtering provides the best performance, but note that to get
this score, we need to know the step we are going to generate ahead of time. Whereas
random ordering gives the worst performance, and plausibility-based ordering gives
an intermediate performance.

of it matters.

Complete training

Before we dive into our explorations of the reasoner, we finally train a procedural step

generation model on our full (contextual knowledge graph generated) dataset. For

this training, we use a batch size of 2, and we accumulate the gradient for 4 steps,

which gives us an effective batch size of 8. We train for 5 epochs with a plan size of

64, and we use the rouge-filtering with random sampling.

We perform our test with a learning rate of 5e-5 with a linear decay with 20% of

the batches as warm up. Additionally, we use a train/dev/test split of 80/10/10. The
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results of these experiments can be seen in Table 5.4 and in Figure 5-6.

Figure 5-6: Validation results of complete model training. We can see that by sup-
plying useful information and enough procedures, even on the first epoch we achieve
good performance on a withheld validation set.

Split Language Modeling Loss BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-LSUM
Train 0.042 - - - - - -
Val. 0.345 71.686 89.754 91.736 82.524 88.513 88.512
Test 0.338 72.246 89.955 91.881 82.931 88.742 88.749

Table 5.4: Results of complete (with the procedures that have a generated knowledge
graph) training, and random sampling of knowledge with rouge filtering.

From these results, we can see that we have a fairly strong model that can indeed

generalize to procedures that it has not seen.

5.2.5 Conclusions

From our results, we see evidence of few trends. Firstly, the task of procedural

step generation requires additional knowledge, such as the one that is provided by

contextual commonsense inference. Secondly, the amount and quality of the knowl-

edge greatly impact the performance of an encoder-decoder model in the task; higher

amounts of quality knowledge positively impact the model, whereas noisy knowledge

gives some benefits, but they are not as large as utilizing cleaner knowledge. Thirdly,
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we see that if we keep the amount and quality of knowledge constant, that by varying

the order of the knowledge we can impact performance; however it is not immediately

clear how to order the knowledge.

5.3 Reasoner

With all the experiments we ran, it was evident that there is a need for order-

ing/selection of high quality knowledge. We now discuss the approaches that we

tried and the results that we achieved with this.

5.3.1 Reasoner Models

Rouge-filter approximation

Since the rouge filtering approach worked so well, we first began by testing out a

way of regressing on this rouge score. The reasoner has to, given the procedure title,

the step number, and a fact, give an estimate of the overlap between that input

and whatever internal representation of what the target step is. For this model, we

utilized the mean squared error as our metric to evaluate the system. We also look at

a simpler formulation in which the model has to do binary classification of a fact of

whether it is in the rouge filtered set or not. We utilized the F1 score for the binary

classification as our metric to evaluate the system.

As before, we perform our tests on a subset of 1000 procedures that are the most

similar to the query “smartphones, software, apps”. In this set of experiments, we run

1 seed for 3 epochs. Additionally, we utilized a batch size of 8 and a learning rate

of 4e-5 with a linear decay with 20% of the batches as warm up. Additionally, we

use a train/dev/test split of 80/10/10. The results of these experiments can be seen

in Table 5.5 and in Figure 5-7 and 5-8. From our results, we can see a few things.

Firstly, the simplified task of doing binary prediction is apparently quite a complex

task. The model is hardly able to achieve an F1 score higher than 0.7. We would have

wanted a score of 0.8 or higher to have some confidence in the classification system.
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Task Validation F1 Validation MSE Test F1 Test MSE
Regression - 0.011 - 0.011
Classification 0.671 - 0.677 -

Table 5.5: Here we see the actual values for the metrics used to evaluate whether the
approximation for the rouge score for filtering would be effective.

Figure 5-7: Here we see the training metrics for the approximation for the rouge score
filtering. We see that the F1 performance plateaus, similar for the MSE loss.

Figure 5-8: Here we see the validation metrics for the approximation for the rouge
score filtering. We see that the F1 performance plateaus, similar for the MSE loss.
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Similarly, the regression of the rouge score does not go below a mean squared error

of 0.01 which roughly translates to an average error of 0.1. From some exploration

of finding the average values of the rouge score used for filtering in our experimental

dataset, we see that the score averages around 0.2. What all of this together means is

that the model is also unable to regress on the score. We believe that the reason for

the performance is that the model is not able to generate an effective representation

of what the steps in each procedure are. Because of this, there is no effective way

to approximate overlaps between the step representations and the input given to the

model. Future work should explore this further, as a good approximation for this

would give (from our previous tests) good results. Because of these two reasons, we

move on to another model for the reasoner. We use mean squared error to calculate

the loss for the cosine distance approximation and use binary cross entropy for the

confounder loss.

Grounding the Contextual Commonsense Inference

So far, the experiments that we were running contained all the possible assertions

that we were generating. What this means is that for a given step, there may be

an assertion about a keyword/(noun/verb) phrase that may have been at some other

point in the procedure. We decided to tackle this issue and see how we could improve

it. The reasoning for trying to improve this was that if we could give the reasoner

model cleaner data, it may be able to organize it more effectively than trying to sort

out between facts that may be related or useful for a step and those that are not.

To address this, we did the following simple change in our contextual commonsense

assertion process: we only generated assertions whose hints contained noun/verb

phrases that were found in the step. Although this may be a relatively simple thing

to do, we found that it decreased the amount of generated facts to be roughly the same

amount as when we performed the rouge filtering. We additionally did a small test on

our 1000 procedures subset, and found that the overlap between the procedures that

were generated with this strategy and those that were left after the rouge filtering

was of 80%, indicating that by just constraining the generation, we may not need

145



much more for having a high quality set of data for procedural step generation.

Plausibility: A Strong Baseline Reasoner

After grounding our contextual commonsense inference, we performed a small exper-

iment. We decided to sort our assertions based on the discriminator score from our

model. By doing this, we have a simple metric to sort generated assertions and can

pick the top 𝑗 ones. We find that this surprisingly simple strategy, seen originally

in our initial experiments of determining that ordering was necessary, serves as an

incredibly strong baseline. Evidence of this performance can be seen in Table 5.3,

under the “Plausibility Sorted” row. We also perform a small test on 100 procedures

to find that if we pick the top 64 plausible assertions, roughly 73% of them (47/64)

will be in the top 128 rouge-sorted assertions.

Experimenting with REINFORCE

From surveying the literature of data-to-text, we found the work by Yang et al. [183]

to be the most similar to what we would like in our reasoner system. They develop a

reasoner that learns to select assertions into a plan 𝒫 through reinforcement learning.

Their approach is fascinating in that the planner can adapt a plan as the text is

being generated. If we were to apply this to our scenario, the planner could adapt

to a change in goal when generating steps for a procedure. This would facilitate

generating contextual error handling for our work. We do make note that the effects of

the planning, at least in the dataset that the authors evaluate on seems to be marginal;

they attribute it to a small record vocabulary which makes the model learn the data

distribution easily and that the effects of planning are not as evident when evaluated

on a sentence-level evaluation (i.e. the planning mechanism is more appropriate for

long text generation). What this may mean in our case is that although the planner

may provide a boost in performance, if there is a good enough plan such as the

plausibility-based sorting, that the improvement may be marginal.

Because of all this, we explore implementing a similar structure in our work. In

our work, we implement the record encoder with a sentence-transformer model to
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Figure 5-9: Objective function for the unsupervised planner in [183]. We see three
terms, the first being the language modeling loss of the system, the second being the
term that gets maximized which is the likelihood of the plan given the likelihood of
the generated text, and the third an exploration term which is if the likelihood of the
generated text has not been maximized, there may be an unseen plan that may be
explored.

generate a contextual embedding of the record and then encode all records with a

bidirectional Gated Recurrent Unit (GRU)[28]. For the planner, we also utilize a

GRU, however we only use the static version of the planner, since our output is of 1

sentence. The authors utilize the regular language modeling loss, in combination with

a reward function that consists of maximizing the likelihood of the selected plan and

scaling it with the likelihood of the generated sequence. They also utilize a reward

term that consists of the likelihood of unseen plans to encourage exploration in the

system. This objective function can be seen in Figure 5-9.

We tried this approach utilizing a BART model as a realizer (i.e., the graph-to-

step model that me mention in a previous section), and we also incorporated the

goal context (procedure name and the number of the step) by concatenating them

to the fact embedding so that the planner would take them into consideration when

selecting. We also looked at the work by Deng et al. [39] on utilizing reinforcement

learning to be able to learn an efficient prompt for a language model on a task.

Although this may seem like a very separate topic (of prompting vs. data-to-text),

we note that the authors are looking for a system that can find a suitable textual

input (which in our case can be seen as a plan) for a language model in a language

generation task (which in our case is the graph-to-text task). We utilize their key

finding that by utilizing the z-score of the reward batch, instead of the direct reward
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from the reinforcement learning, that it stabilizes the training. We tested this system

on a subset of 100 procedures for 5 epochs, with a plan size of 64, and utilizing the

realizer as a frozen, pre-trained on random golden knowledge, model that described

previously to generate the next steps. What we found is that performance increased

inconsistently throughout the epochs. We see this in Figure ??. We ran this system

with 200 procedures and for 15 epochs, and obtained the results found in Figure 5-11.

Figure 5-10: Performance of reinforcement learning planner with frozen, pre-trained
realizer. The system somewhat inconsistently improves in performance

However, our run with the 15 epochs and 200 procedures took approximately 2

hours, and the one with 100 procedures and 5 epochs took approximately 30 minutes.

We note that in our dataset we have approximately 30k procedures, and that rein-

forcement learning usually takes hundreds if not thousands of epochs to converge. If

we were to run this system with all our data for one epoch it would take 600 minutes

to run one epoch. If we were to run 15 epochs as before it would take 9000 minutes

or approximately 6 days. This is too long for a system that is not consistent in its

behavior. The reason that the reinforcement learning process is slow, is that it has to

generate a sentence based on the plan that it is giving the step generation model to be
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Figure 5-11: Performance of reinforcement learning planner with frozen, pre-trained
realizer, for more data and a longer amount of epochs (15 vs. 5). The system
somewhat inconsistently improves in performance

able to receive a reward. Although this can be optimized with greedy decoding rather

than other alternatives, it might have negative effects on the reward signal that is

generated. From all of this, we determine the following. There is some evidence that

a reinforcement learning agent can actually learn a plan that is better than sorting

by plausibility; however this process is somewhat inconsistent and is too slow to test

for hundreds of epochs. We leave it as future work to optimize this into something

more useful.

Experimenting with LLM-based planning

While exploring alternatives for a planner, we wanted to see if there was a way of

leveraging the contextual power of LLMs for this task. To test this, we devised the

following prompt:

“Which (minimum [MINIMUM AMOUNT] and maximum [MAXIMUM

AMOUNT]) of these facts, as they are written (verbatim), are needed for
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step [STEP INDEX] in the procedure “[PROCEDURE NAME]”? Respond

with only a numbered list that avoids duplicate facts, if there are any Uni-

code characters replace them with textual descriptions, avoid facts that

state the step verbatim, and only if necessary, add facts that may be miss-

ing. [FACT LIST]”

Here, [MINIMUM/MAXIMUM AMOUNT] represent the minimum and maximum

amount of facts that the plan can contain. We set this to 48 and 64 respectively.

[STEP INDEX] is the index of the step that we are going to generate, and [PRO-

CEDURE NAME] is the name of the procedure that we are generating the step for.

Lastly, [FACT LIST] is a list, separated by new line characters, of the assertions. In

our work, we pick the top 256 facts to supply for this list. The reason is that we

utilize the ChatGPT API which has a maximum context size of 4096. We find that

with more than 256 facts, the chances of exceeding the maximum context length were

high, seeing as the system has to repeat 48-64 of these facts.

To test this system out, we pick a small subset (100) of sub-procedures, and sample

randomly 40% of steps and check the overlap of the LLM-based reasoner with the

top 128 facts sorted by the rouge score. We note that roughly 63% of the assertions

selected by the model are in the set of the top 128 rouge-sorted assertions. What this

means is that more than half of what the LLM model selects is likely to be useful for

the reasoner. Because of this and the aleatory nature of the generation process for

the LLM, we use this reasoner as a backup in case that the first generated procedure

(based on the plausibility) does not produce a satisfactory result. We note that this is

a relatively naive approach. There is no fine-tuning or prompt engineering approach

involved in this.

Experimenting with Retrieval Augmented Generation (RAG)

We explore one last alternative for both planning and generation. Retrieval based

generation methods have recently gained popularity. They serve as a simple way to

augment a generative language model with information that it may not have seen

during its pre-training, or with updated information [129, 57, 80]. We opted to
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test out the RAG [80] model to see how it performed in our task. We utilize the

RAG-token model, because it permits conditioning the text generation on multiple

source documents. Now, if we take the source documents to be facts, and the text

generation to be the task of procedural step generation, we see that it is possible to

adapt the RAG model for our work. We generate a small dataset, consisting of 100

procedures along with the steps and their contextual commonsense assertions, without

the grounding. We treat the assertions as individual documents for the generation

task. Although this might be a slightly more complicated scenario than having the

relevant step subset of assertions, it is a more interesting scenario in that it has to

look through all the facts that it has to find relevant ones for the procedure. This

is a desirable behavior, because it would permit completely dynamic procedure step

generation. With a single title for a procedure, we could generate all of its steps

without having to know which knowledge belongs to it. We find that the RAG model

in this manner underperforms. We train it for 5 epochs and find that it is able to

reach a maximum validation BLEU score of 27.437. We note that the validation loss

in these runs kept increasing and that the BLEU score kept decreasing as epochs

went on. We note that for future work, more exploration of the RAG model should

be done, as it would permit much more flexibility come inference time.

5.3.2 Conclusions

After exploring a variety of ways on how to reason with the contextual commonsense

assertions (i.e., contextual procedure knowledge graph) we determined that the sim-

plest approach is to ground the generation process on noun/verb phrases, and to sort

these grounded assertions by the plausibility score given by the contextual common-

sense inference discriminator. With this strategy, we now have a way to be able to

convert a knowledge graph into a procedure. We do note however that there is an

assumption that the graph can be split into the portions that correspond to each step.

At the moment, there is no other work that has explored this idea of graph-based

procedural step generation, so we take this for granted. We note that in the future, a

more robust method that only requires the goal/name of a procedure, would be able
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to automatically look up, from all our generated assertions, the ones that would be

useful for generating the steps for a procedure. It would essentially perform reasoning

on a scale that would be considerably more ambitious.

5.4 Procedure Error Handling

Up until now, we have described the process to be able to generate the steps for a

certain procedure from a knowledge graph. We now address what the process is to

generate the steps for an exception or error within a procedure.

5.4.1 Algorithm

Broadly, the algorithm for handling errors within procedures can be seen as an ex-

tended telling within an extended telling. An extended telling is a conversational

pattern in which an agent needs to convey to a user a large amount of information,

and does so by splitting the information into bite sized chunks and relaying them to

a user. The complete pattern and an example can be seen in Section 6.2. Extended

telling can be utilized for telling stories and giving instructional guidance on a pro-

cedure. In the case of a procedure, the information is split into steps and conveyed

to a user. However, it may be the case that a user performs a step incorrectly as the

guidance is being given. In many cases, a simple clarifying question (which can be

seen as a repair operation) can be asked to a conversational agent, and guidance can

continue. However, we think about the case where such a question is not enough, and

a person would need to embark on a sub-procedure to fix the mistake. Visually, this

can be seen in Figure 5-12.

We treat a request for help within a certain procedure as a recursive process.

However, we have some additional information which is the context in which we were

in: the step where the error occurred, and the procedure that we were attempting

originally. With this, we can make a query for the procedures that we know in a way

that is structured as: “How to fix [ERROR] when doing [ORIGINAL PROCEDURE]”.

After this, we can follow the same process of extracting steps and generating the graph
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Figure 5-12: Here we can visually see how a sub-procedure exception can be handled.
It can be handled either with a simple clarification question which lets a user proceed
to the next step, or with a sub-procedure to fix the error. In the case of the sub-
procedure, it may also be possible to complete the process in an attempt to fix an
error. This can be seen as an alternative way of doing the procedure, and is the
reason why there is a dashed line (possible discontinuity) in the end of the exception
process.

as in Section 4.7.3 and 4.7.4.

We note that we can additionally utilize the prior context when generating the

instructions. To do this, we interleave the knowledge from the last step that was done,

with the knowledge of the first 𝑡 steps in the procedure. To give more importance

to using prior knowledge at the beginning of the exception procedure, we exponen-

tially decay the amount of information that is interleaved as the exception procedure

continues until the 𝑖th step of the exception procedure, where we stop interleaving

knowledge. We note that we can do a similar process to incorporate the knowledge

of the original upcoming step, to gradually add more facts in until the last step of

the exception; however, we do not implement this in our work. By interleaving the

knowledge from the original procedure, we empirically see that some aspects of the
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exception instruction take into consideration the context that was being done before.

One example is on the writing a check procedure. If a person puts the wrong date,

then the person needs to correct the date mistake on the check. If we look at a pro-

cedure for correcting a check, typically the mistake is crossed out and initialed. If we

generate an exception step without the context that a person was writing the date,

the knowledge based generation would look like this:

Step 1: Cross out the mistake and write the correction on the check.

Step 2: Write your initials next to the corrected mistake.

Step 3: Write your check again if it hasn’t been accepted or corrected.

Although it is a perfectly acceptable error handling procedure, the steps are not

entirely contextual to it being a mistake about the wrong date. If we included some

facts, especially ones that indicate that the procedure was related to the date, and

we interleaved them, with the ones on how to fix a mistake, the generated step would

look like the following:

Step 1: Cross out the date and write the correction.

Step 2: Write your initials next to the corrected date.

Step 3: Write your check again if it hasn’t been accepted or corrected.

We can see that the mistake is contextualized to be the date, and would make

it more straightforward for the user. We utilize this strategy in our error handling.

Future work should explore improved contextualization of errors.

5.5 Summary

In this fifth chapter, from our experimentation and our results, we can say that it is

possible to generate steps for procedural guidance by formulating the problem as a

graph to text task, in which the graph is generated from a contextual commonsense

inference model and the text is the procedural step. We also find that the quality and

amount of information greatly impacts the generation system. Because of this obser-

vation, it is highly recommended that the system is split into a planning stage and
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a generation stage, in which the planner tries to come up with a useful plan for the

generation. For the planner in this task, we explored unsupervised, semi-supervised,

and reinforcement learning systems and found that they all unperformed when com-

pared to the simple baseline of ranking the knowledge based on the plausibility of

the context it was acquired from. We also explored utilizing a LLM as a proxy for

a reasoner, and found that it is an interesting possibility, however it has a limited

context that it can process. Following this, we explore and devise a simple recursive

algorithm to be able to handle exceptions / issues within procedures, and explore the

effects of combining knowledge from different procedures to contextualize the error

handling.
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Chapter 6

Relaying Steps through

Conversational Agents

The first ingredient in conversation is truth, the next good sense, the third

good humor, and the fourth wit. -William Temple

6.1 Overview

Up until now, we have described a system that is capable of generating procedural

steps from a knowledge graph about a procedure. If we simply gave these instructions

as text, we might run into the issue that people find that reading instructions can be

intellectually taxing. People often prefer to be guided through a procedure by another

person [44]. To address this, we decided to give these instructions to a conversational

agent. Conversational agents provide a natural and intuitive way for people to re-

ceive guidance on completing tasks. Conversational agents simulate human-to-human

interactions and present information in a more natural and intuitive way. They al-

low people to interact through speech, which is widely available and less taxing than

reading[88, 9]. In this chapter, we describe how a conversational agent would convey

instructions generated instructions through patterns from the natural conversation

framework [108]. We then describe how to build two conversational agents, one uti-

lizing intent-based actions, natural conversation patterns, and our generated steps,
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and one that is zero-shot based on large language models (ChatGPT).

6.2 Conversational Patterns

Although it may seem trivial to just give users the steps, there are certain princi-

ples and structures that are needed for conversations to both flow and feel natural

[108]. Through Conversation Analysis (CA), certain patterns of interactions have

been observed that help to inform the design of conversational agents. The Natural

Conversation Framework (NCF), developed at IBM Research [108] is a systematic

framework for designing interfaces that work like natural conversation. It consists

of four main components: 1) an interaction model of “expandable sequences,” 2) a

corresponding content format, 3) a pattern language with 100 generic patterns and

4) a navigation method of six basic user actions [108].

Altogether, patterns from this framework, along with guidelines of how content

should be structured, can be mixed and matched to construct a conversational agent

for a task such as procedural guidance. We now give an overview of key conversational

patterns and how they could be applicable to our procedural system. Next to the

name of the pattern, we give the identifier for it found in [108] in case the reader

wants more details. The combination of these patterns would serve as a foundation

for a general conversation regarding a procedure and some of the possible events that

occur within it.

Extended Telling – A3.0 The base pattern that we will utilize for our conver-

sation system is the Extended Telling pattern. This pattern describes how a conver-

sational system can break down a large body of information (e.g. storytelling and

instruction giving) into manageable chunks that a person can work with. From [108]:

“[The interaction is usually started by phrases such as] “how do I meditate?," “how

do I do that?," etc. The telling is then done as: the teller gives the first part of the

telling and then waits for an indication from the recipient to continue the telling. Such

“continuers" [156] may be verbal tokens, like “uh-huh," “mhmm," “okay," “all right,"
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Turn
Number

Turn
Agent Action Example

1 User STORY REQUEST/INSTRUCTION
INVITATION How do I meditate?

2 Agent PART/STEP 1 First, sit comfortably
and breathe slowly.

3 User CONTINUER/PAUSE Ok

4 Agent PART/STEP 2
Next, count each in breath
and out breath until you get to ten.
Then repeat.

5 User REPAIR INITIATOR What do you mean?

6 Agent REPAIR
As you breathe in, out, in,
count one, two, three all the way
to ten.

7 User CONTINUER/PAUSE All right

8 Agent PART/STEP 3 Finally, continue counting
your breaths for ten minutes.

9 User SEQUENCE CLOSER Thanks
10 Agent RECEIPT You’re welcome!

Table 6.1: Example of extended telling pattern (A3.0) taken from [108]

“yeah,". In our work we utilize, in addition to this, variations of “Yes”, “Done”, “Go

on”, “What’s next”, “Continue”,“keep going”, “next step”, among others as continuers.

An overview along with an example how-to of this pattern with repairs [108] can be

seen in table 6.1. This is the main pattern that handles our procedural interactions.

It describes broadly how the interactions occur, and it describes what happens when

there is a misunderstanding in a step. However, it does not describe the case that

there is an error in a procedure. The way we treat that we describe later as the error

handling procedure. Briefly, errors occur in the form of an inquiry (explicit as “I made

a mistake, what do I do” or implicit “I made a mistake (How do I fix it)”). If the error

handling procedure is simple (approximately 2-3 steps or less) we can respond with

how to fix the error. However, if it is longer than that, we may enter into a recursive

extended telling to relay the instructions of how to complete a procedure.

Repair (Agent) B1.0 The extended telling pattern requires that an agent is ca-

pable of both initiating and handling repair procedures. This conversational pattern

and following one describe how an agent can initiate a repair to clarify steps for a user

(among other repair interactions). In the Conversation Analysis literature, “repair"
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Turn
Number

Turn
Agent Action Example

1 User <UTTERANCE> whats shakin bruh
2 Agent <PARAPHRASE> You mean, what’s new?
3 User CONFIRMATION yeah
4 Agent <RESPONSE> Nothing really. I don’t get out much.
5 User SEQUENCE CLOSER ha!

Table 6.2: Hearing Check (B1.1.0) pattern taken from [108]

is a technical term referring specifically to the repeating and paraphrasing of prior

utterances or parts of them. [108] In this specific pattern these requests originate

from the agent, in the following pattern, they initiate from the user. Within this

larger pattern, there are two different repair mechanisms: hearing checks (B1.1.0)

and paraphrase requests(B1.2.0). These can be seen in tables 6.2, 6.3,respectively.

We note that this strategy can be employed also whenever a user asks the system a

procedure that it may not know exactly, in the case of a simple curated procedural

lookup system.

Turn
Number

Turn
Agent Action Example

1 Agent <ANY UTTERANCE> Hello. How are you?
2 User <UNKNOWN UTTERANCE> bitchin’ !
3 Agent INITIAL PARAPHRASE REQUEST What do you mean?
4 User <KNOWN PARAPHRASE> I’m great!
5 Agent <APPROPRIATE RESPONSE> That’s great!

Table 6.3: Paraphrase Request (Agent) (B1.1.0) pattern taken from [108]

Repair (User) B2.0 The previous pattern describes how an agent can initiate a

repair to achieve understanding. However, it is more than likely that a user will

also initiate a repair. Users may not understand what the agent is saying, and may

require paraphrases, or they may not have heard what the agent said and may require

a repeat. Handling repairs is a critical aspect of conversational competence. [108]

Here we focus on repetition and paraphrasing requests (B2.1.0 and B2.4.0), which on

a preliminary user study that we will describe in a coming section seemed to be the

most useful/requested.

160



Turn
Number

Turn
Agent Action Example

1 User <ANY UTTERANCE> I guess I like movies with a strong AI lead.
2 Agent REPEAT REQUEST what did you say?
3 User REPEAT I guess I like movies with a strong AI lead.

Table 6.4: Repeat (User) B2.1.0 pattern taken from [108]

Turn
Number

Turn
Agent Action Example

1 Agent <ANY UTTERANCE> I guess I like movies with a strong AI lead.
2 User PARAPHRASE REQUEST what do you mean?

3 Agent PARAPHRASE I enjoy movies in which the main character is
an Artificial Intelligence

Table 6.5: Paraphrase Request (User) B2.4.0 pattern taken from [108]

Although simple repetitions may be effective at clearing up hearing troubles, the

user may not be satisfied or may not have reached understanding with a simple repeat

of what was said. A paraphrase may be needed to restate the agent’s utterance in

a way that a user could understand. Observing the principle of minimization, the

system’s initial utterance should be concise, but if a particular user indicates a trouble

in understanding, minimization should be relaxed and a more understandable version

should be offered.

In our use case, repairs in the conversation while in an extended telling, may not

be as simple as a question/answer pair; a repair may lead to sub-procedures, in which

case they would once more be handled by the extended telling pattern.

Inquiry (User) – A1.0 This pattern gives a description of the basic conversational

sequence that would occur with a conversational system. It describes what happens

when a user asks an agent an inquiry. In our procedural case, we can leverage the

intermediate knowledge graph to attempt to give an answer, however we simply defer

to a LLM to handle this, and leave as future work leveraging the intermediate graph.

We opted to do this, because the inquiry may be more than broad than just about a

procedural step.
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Turn
Number

Turn
Agent Action Example

1 User INQUIRY what computer won Jeopardy?
2 Agent ANSWER An IBM computer named Watson.

3 User SEQUENCE
CLOSER ok.

Table 6.6: Inquiry (User) A1.0 pattern taken from [108]

Turn
Number

Turn
Agent Action Example

1 Agent OPEN INQUIRY What did you think of Marios’s?

2 User ANSWER the food was really good, and
I loved the cantina atmosphere!

3 Agent HEARING
CHECK

You said: the food was really good,
and I loved the cantina
atmosphere! Is that correct?

4 User CONFIRMATION yep

5 Agent SEQUENCE
CLOSER Thank You!

6 User RECEIPT you’re welcome

Table 6.7: Confirmation A5.2 pattern taken from [108]

Confirmation A5.2 This pattern builds on the Inquiry (Agent) pattern by de-

scribing how an agent would react in cases where the information that the agent

heard may need to be confirmed before proceeding. In our case, one possible use case

would be confirming before embarking on processing a procedure.

Disconfirmation A5.3 Similarly, this pattern would handle when the previous

pattern (Confirmation A5.2) was not successful and may involve some repairs (e.g.

Repeat B2.1.0) to achieve understanding.

Completion Check - A5.4 We may also need the agent to essentially go through

confirming acknowledgement of certain parts and possibly request additional infor-

mation. This can be done to get different parameters that may be needed.

Open Request A2.0 This pattern is the canonical request from a user. The user

requests something and the agent grants that request. In our case, the grant could

be handled by the extended telling if a user asked for a how-to.
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Turn
Number

Turn
Agent Action Example

1 Agent OPEN INQUIRY What did you think of Marios’s?

2 User ANSWER the food was really good, and
I loved the cantina atmosphere!

3 Agent HEARING
CHECK

You said: the food was really good and
I loved the can I
atmosphere. Is that correct?

4 User DISCONFIRMATION no
5 Agent REPEAT REQUEST What did you say?

6 User ANSWER food was good and I loved the
CANTINA atmosphere

7 Agent HEARING CHECK
You said: food was good and I loved
the cantina atmosphere.
Is that correct?

8 User CONFIRMATION yes
9 Agent SEQUENCE CLOSER Thank You
10 User RECEIPT You’re welcome

Table 6.8: Disconfirmation A5.3 pattern taken from [108].

Turn
Number

Turn
Agent Action Example

1 Agent OPEN INQUIRY What did you think of Marios’s?
2 User ANSWER the food was really good!
3 Agent COMPLETION CHECK Anything else?
4 User NEXT ANSWER PART and I loved the cantina atmosphere
5 Agent COMPLETION CHECK Anything else?
6 User DISCONFIRMATION no

7 Agent REPEAT. RECORDING REQUEST
You said: the food was really good
and I loved the cantina atmosphere
Shall I record your review?

8 User CONFIRMATION yes
9 Agent SEQUENCE CLOSER Thank You
10 User RECEIPT You’re welcome

Table 6.9: Completion Check A5.4 pattern taken from [108]

Turn
Number

Turn
Agent Action Example

1 User FULL REQUEST can you recommend a nearby
Mexican restaurant?

2 Agent GRANT Mario’s is located at Beach and Main.
3 User SEQUENCE CLOSER thanks
4 Agent RECEIPT You’re welcome!

Table 6.10: Open Request A2.0 pattern taken from [108]
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Turn
Number

Turn
Agent Action Example

1 Agent GREETING. SELF-IDENTIFICATION. OFFER OF HELP. Hi. My name is Winston.
How can I help you today?

2 User <RESPONSE> Can you show me how to write a check?

Table 6.11: Opening Self-Identification C1.1 pattern, taken from [108], and applied
to our conversational agent

Opening Self-Identification C1.1 This pattern handles the initial conversation

from the voice assistant. It presents itself and offers help at the end, leaving the user

to respond to the offer for help.

6.3 Conversational Interaction Considerations

For a conversational system to be usable, conversational, and to a certain point feel

natural, the following criteria should be addressed in its construction. These crite-

ria/guidelines were taken from [29, 144, 4, 108, 3, 1, 2, 125, 122].

6.3.1 Simple, user-oriented language

If possible, no technical jargon should be used. This means that commands and com-

munication should be with common/naturally occurring words and not uncommon

words or phrases. In turn, the system that generates our steps should take its output

into consideration and possibly supply synonyms for more complex words, or some

explanations if no simpler words appear. However, technical jargon may be intro-

duced to help teach users concepts that may be within certain procedures. In such a

case, the term can be used, but repairing of the conversation needs to be available if

the user does not understand it.

6.3.2 User control

Users should be able to undo, redo, go back, and even exit without any complicated

dialogues. If a user gets into a feature or space they didn’t intend, they should be

able to leave easily. The system that manages the conversation should be able to exit

a sub-procedure or an interaction itself easily if asked by a user.
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6.3.3 Consistency in platform

Commands should be consistent throughout the whole application and not context

dependent. The system should follow platform standards for Voice User Interfaces

(VUIs) if present (e.g. standards for Amazon’s Alexa or Google’s Assistant). This

means that if we have a command (e.g. next step, previous step), this command

should be the same in every procedure that we want to guide a user in and not

change even if the domain changes.

6.3.4 Error prevention and handling

The conversational system should avoid confusing situations or situations that may

be prone to errors. The system should also have methods for repeating, paraphrasing

or rephrasing all or parts of a prior turn to clear up any doubts that may be due to

hearing misunderstandings, or for explanations that may not be effective. The system

should have methods for dealing with errors, misunderstandings, and interruptions

in conversation (the system should have some repair sequences which we will see in

Section 6.2).

6.3.5 Recognition rather than recall

The system should at some point make actions and options visible or easily retrievable.

This would mean that a help function should be present within the application, and

possibly “missable" actions should be noted in some way possibly with cues. This

way, it would be clear for a user what he/she can do with the system and not have

to guess possible actions.

6.3.6 Minimalistic design or principle of minimization

Dialogues should be to the point and try to convey the message in the most effective

way possible. This means that the interactions should minimize the amount of words

to convey a message. In order to exploit the efficiency built into natural conversation,
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a conversational agent’s responses should be as short as possible while still enabling

most users to understand. A simple metric is that turns should be at most a sentence,

and in exceptional cases possibly 2 or more.

6.3.7 Error messages

If there are error messages, the user should be able to understand them and try to

help the system to snap out of the error states. These messages should not be cryptic

or not understandable. If possible, the error messages should help the user to correct

course and fix the error.

6.3.8 Help and documentation

The system should be, to a certain extent, usable without any instructions, but a

help functionality should be put in place anyways. This help functionality should be

easily accessible and relevant to what is being done.

6.3.9 Conversation first rather than visual, system, or content

first

The system should be conversation first. In broad terms it means that it should

rely only on mechanisms that facilitate communication only through conversation,

this excludes relying on screens and other means. The system should keep track of

some context of what has been said. This means that additional information that

may not be used immediately should be stored appropriately. If the messages the

system conveys are not understood some paraphrasing mechanism should be used to

try to reconvey them. At a minimum, the system should have the ability to repeat

a message. The system should be able to handle some preliminaries (e.g. checking

if a capability is possible, introductions, these will be presented in section 6.2). The

system should use mostly or purely voice input/output. All of this means that the

procedures that we want to be able to help a user with should be doable purely by

voice as a minimum, and could be enhanced with visuals if needed.
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Caveat Since we are utilizing these conversational patterns for procedural guidance,

this requirement can be somewhat flexible. We say this because it may be the case

that some instructed learning step is too complicated to understand via voice. An

example of this is tasks that include very visual descriptions (e.g., assembly tasks that

require a specific piece that is not labeled, repair tasks that require identification of

a piece that is not labeled). In these cases, we recommend that some visual is given,

whether as a link to the visual or as an image in the conversation app, this may help

greatly to achieve completion.

6.3.10 Content formatting

The system should limit its utterances to a single sentence or less whenever possible.

It should also break paragraphs down as adequately as possible. It should also let

users control the level of detail (i.e. gives more information when asked).

6.3.11 Basic conversational functionality

The system should be able to respond to capability checks (i.e. what can you do?),

repeat requests (due to the transient nature of voice), and paraphrase requests The

system’s utterances should be short and its paraphrases longer. It should also have

sequence closers (e.g. thanks) and sequence aborts. It should respond to simple

hello and goodbyes. The system should permit non-linear interactions (Expert users

should be able to move around with speed-ups/shortcuts) if and whenever possible.

Additionally, if possible, pauses when relaying content, fine-tuning the text-to-speech

should be taken into consideration.

6.3.12 Consistent persona

The system’s persona should be consistent through the application and should be

polite to whatever extent possible.
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6.3.13 Feedback & Responsiveness

The system should demonstrate that it is working on a task if it takes time or give

some kind of immediate feedback at every step. The system’s status should also

be evident (people should be able to ask what is happening, and the system should

answer). If we put this in the procedural interaction domain, the system should be

able to give the user information of where they are in the procedure and possibly how

many steps are remaining, or in the case that some extensive processing needs to be

done, that it notifies the user that it is working on the task.

6.4 Conversational System for Procedural Guidance

We have described subsystems that would take an input query for how to perform a

procedure such as “How to write a check?” and look up a relevant page using a web

search. Then, utilizing our contextual commonsense inference engine, we generate a

knowledge graph for the given procedure, as described in Chapter 4. We then utilize

a reasoning system, as seen in Chapter 5 to order the most essential knowledge of this

procedure in order to generate a set of steps for the given knowledge. We also demon-

strated in Section 5.4, that this same mechanism can be utilized to generate steps for

errors by combining the knowledge from a sub-procedure, and contextualizing it by

interleaving it and reasoning on it.

With these subsystems, we have the technical means to handle how-to procedures

along with exceptions1. As a side-note, if we combine the intermediate graph that is

generated along with the reasoner ordered knowledge, we also have an interpretable

representation of the procedure that we are trying to solve. However, we have not

yet described how the system would actually respond to a user nor how a user would

interact with the system. We address that now, and note that we will refer to the

conversational system interchangeably with the conversational agent.

1We note that future work may look into an additional styling system may be required to massage
the output of the text generation system into something that is more conversational.
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6.4.1 Approach Overview

To convey these steps in an understandable and actionable fashion by an end-user we

implement a conversational interface that incorporates conversational design patterns

and guidelines [108] to have users navigate the procedure, ask questions, ask for repe-

titions or rephrasing, and for handling exceptions such as not being able to complete

a step. Such an interface would make the technology be usable by people, and would

hopefully feel like a knowledgeable friend was guiding you through a procedure. We

combine the patterns that we mentioned in Sub-section 6.2, the considerations that

we had mentioned, along with observations that we have acquired from a small us-

ability user study in the Appendix B.2. into an intent recognition system utilizing the

IBM Watson Assistant platform2 to build a conversational agent to handle procedural

interactions.

Within this system, we dedicate intents that attempt to catch when there is an

error in a procedure (e.g., a person writes their name erroneously in the amount field

of a check). The way this works in a very high level is that within a conversation, a

user has to tell the system that something went wrong. The system will then try to

parse what went wrong and proceed to find steps for how to fix the issue within the

context of the procedure. In the case that the agent does not identify the error, it will

try to ask a user for a description of the error. Within the conversational framework,

this can be seen as a modification within the extended telling pattern as seen in Table

6.12

We developed the system incrementally, starting with a reference implementation

of conversational patterns, and continuing to combine the reference implementation

with the knowledge driven generated steps and with open domain question answer-

ing. Following this, we incorporated the exception handling mechanism as additional

intents and modifications within the patterns. We then tested this system as we de-

scribe in the following Chapter, reading out loud a gold set of instructions against

our knowledge driven instructions. We additionally tested this approach out against

a conversational agent using the ChatGPT model in a zero-shot manner with some
2https://www.ibm.com/products/watson-assistant
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Turn
Number

Turn
Agent Action Example

1 User STORY REQUEST/INSTRUCTION
INVITATION How do I write a check?

2 Agent PART/STEP 1 First, write the name
of the recipient.

3 User CONTINUER/PAUSE Ok

4 Agent PART/STEP 2 Next, write the date
in the upper-right hand corner.

5 User ERROR REPORT & EXTENDED TELLING REQUEST I made a mistake, I wrote the wrong date. What do I do?

6 Agent EXTENDED TELLING
(INQUIRY STEP 1) .

No worries! We can fix this.
Start by crossing out the wrong date.

7 User CONTINUER I did that what now?

8 Agent EXTENDED TELLING
(INQUIRY STEP 2) . Write the correct date with your initials next to it.

9 User CONTINUER Ok
10 Agent COMPLETION CHECK Thats it! Should we continue where we left off writing a check?
11 User CONFIRMATION Yeah
12 Agent COMPLETION CHECK OK then! Write the name of the recipient.
13 User REPAIR INITIATOR What’s that?
14 Agent REPAIR The recipient is the person receiving your check.
15 User SEQUENCE ABORT Let’s stop for now.
16 Agent RECEIPT Ok! If you’d like to continue later just let me know!

Table 6.12: Modified extended telling pattern. This occurs in the case that a simple
inquiry triggers a longer explanation of how to do a process.

setup guidance prompts. We now describe the architecture for both of these systems.

6.4.2 Architecture

The architecture that we utilize to power our agent can be summarized as three

large components. The first one is a graphical user interface which is where the user

either dictates or writes their query, and receives a voice and text response for the

agent. The second large component is a backend web-sever that converts a user’s

conversation into usable input for a selected model (Baseline Gold Instruction Model,

Knowledge Driven Procedural Step Generation Model, or a fully automated GPT-3

based agent). The backend is also in charge of querying the third large component: a

data-store. The data-store holds the procedural dataset scraped from Wikihow, any

procedure that has been looked up from the web-search, and all the knowledge that

has been extracted from the contextual commonsense inference model for a specific

procedure. This is the ElasticSearch instance that we described in Chapter 4. The

need for this is that both the knowledge generation and step generation operation

can take time that will slow down a user interaction and possibly frustrate a user, so

we try to cache as much as we can.
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Figure 6-1: Architecture used to power conversational agent for procedures. Users
interface with a Graphical User Interface (GUI) which lets them talk or type to an
agent. The interface pings the backend server for a selected model (Baseline-Gold
Instruction Reading Model, KDPSG-Knowledge Driven Procedural Step Generation
Model, or GPT- GPT-3 fully driven agent) and gets a response which it then converts
to audio. The user receives the textual response and the audio one (if audio is enabled)

.

Conversational Agent Graphical User Interface

We developed a Graphical User Interface (GUI) utilizing primarily the React-Native,

Expo, and react-native-gifted-chat packages. Screenshots of the application are shown

below.

The GUI contains 2 primary screens. In Figure 6.4.2, we can see the first of

these, which is a login screen. Here, users can log in with an account, or register

for one and then log in. The second screen, shown in Figure 6-3 is the chat screen.

Here, users can interact with the agent either by typing or dictating by pressing the

microphone button. When users log in, the GUI pings the backend to begin the
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Figure 6-2: The GUI consists of two main screens, the login screen (pictured here)
and the conversation screen (pictured below). In the login screen, users can register
to have access to a voice assistant or can log in with a registered account

.

conversation. The backend returns with the initial turn(s) from the agent indicating

availability for help. The agent’s responses are shown in text bubbles and through

audio if the user has it enabled. Audio can be enabled or disabled by pressing the

sound button in the top right of the screen. For speech-to-text, on the native version

of the apps (iOS and Android) we utilize the react-native-voice package, which is a

wrapper around the device’s native dictation functionality. In the web version of the

app, we utilize the react-native-webrtc-web-shim3 package which permits the use of

streaming sound which is sent to the IBM Watson Speech-to-Text Streaming API

and returns transcriptions on the fly.

The interface was designed using react-native in order for it to work over a variety

of devices and screens, while maintaining the core functionality of the interaction.

Because of this, the interface works in most browsers on most devices, and it can be

installed as a native app on Android and iOS. We utilize the Expo library to host the

3https://github.com/react-native-webrtc/react-native-webrtc-web-shim
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Figure 6-3: In the chat screen, after logging in, is where a user would communicate
with the agent. Here, a user can either dictate (by pressing the microphone button)
or type their responses to the agent. The user can also mute the agent by pressing
the sound button at the top right

.

web version of the app and to make builds that can be downloaded and installed on

iOS and Android devices.

With the agents that utilize the IBM Watson Assistant in the backend, the GUI

pings the Assistant 3 times for the assistant to introduce itself and leave an open

question of what can it help with. This follows the self-identification (Agent) C1.1

pattern along with an offer of help. We now give details on the backend server that

the GUI communicates with.
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Back-end Web Server

The backend server which interacts with the GUI for the back and forth conversa-

tional exchanges was developed utilizing Python and the Flask library. The server

implements a variety of endpoints. These endpoints serve as abstractions for things

such as, generating contextual procedure knowledge graphs, generating steps from

knowledge graphs, performing web searches for unseen procedures, querying large

language models, and querying the Watson API for Assistant, transcription, and

speech generation capabilities.

Performing Web Searches for Unknown Procedures To handle unknown pro-

cedures, we utilize the process described in Section 4.7.3. We rely on the IBM Watson

assistant to successfully extract what the user desires to learn to do and pass it into

our server to kick-start the search, extraction, and generation process.

Generating Contextual Procedure Knowledge Graphs & Generating Steps

Now with the steps that we have extracted, we can run the procedure that we de-

scribe in Section 4.7.4, to generate a contextual knowledge graph, reason through it,

and generate steps as we describe throughout Chapter 5. Briefly, the process is the

following:

1. For a given procedure, we iterate through all of its steps.

2. We extract any noun phrases and keywords that are found in the step

3. We generate, using hints, contextual assertions (specific), for permutations of

the noun phrases as subjects, and specifying the relations types

4. We collect the resulting assertions as a KG of the given step

5. After we have generated a KG for every one of the steps, we pass this graph to

our Knowledge Driven Procedural Step Generator

6. The generator takes the top-rated K of those facts and hands them off to the

reasoner, to return a subset of at most 64 of the top-rated facts
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7. We then pass this subset into the realizer to get a procedural step

In the case that an exception occurs, we once more utilize the process in Section

5.4 to handle the exception.

Querying Large Language Models We query a Large Language Model to help

with reasoning, step extraction, and to serve as a baseline. In our server, we utilize

the OpenAI API Python package to do this. For our conversational agent, and for

the step extraction, we utilize the ChatGPT API with a prompt that we describe

in Section 6.5. We note that although our backend queries the OpenAI Models, this

could be replaced with other more efficient/open-sourced models such as LlaMA [170]

or PaLM [25]. Additionally, we note that the components that utilize these LLMs, can

be replaced in their entirety with simpler components (e.g., reasoner can be replaced

with some reasoning agent, step extraction can be replaced with a smaller LM that

gives spans, and the baseline conversational agent can be replaced with a procedure

lookup system similar to the baseline that we utilize in our tests. We utilize this

LLM querying functionality to handle user inquiries whenever they come up with our

intent-based agent. If possible, we give the LLM the context of the procedure we are

in along with the user’s question and request and answer from the LLM.

Watson API We now describe the APIs that we access from IBM to, build a basic

conversational agent, convert speech to text for inputs, and convert text to speech

for responses. We note that we utilized IBM services for our work, as we had access

to a reference implementation for conversational patterns, but any other service such

as DialogFlow from Google and any other speech-to-text/text-to-speech could be

utilized.

IBM Watson Assistant

IBM Watson Assistant is a chatbot development platform that allows businesses to

create conversational interfaces for a variety of user interactions. It uses natural lan-

guage processing (NLP) and machine learning (ML) technologies to understand user

queries and respond with relevant and accurate information. Watson Assistant can
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be integrated with various messaging platforms and can also be trained to recognize

customer intents and personalize responses.

In our work, for every user, we start a Watson Assistant session in which the

system can receive inputs and provide outputs. We combine the Watson Assistant

with our server by leveraging web-hooks from the service. These hooks are just REST

requests into our server to query for procedures and instructions.

IBM Speech-to-Text

IBM Speech-to-Text is a cloud-based service that converts audio and voice into

written text. It uses advanced machine learning algorithms to recognize and tran-

scribe speech in real-time, with support for a variety of languages and accents.

In our work, we utilize this speech-to-text functionality to develop a streaming

transcription system. When a user presses the microphone button, seen in Figure

6-3, the audio streams to the Watson service, which provides partial and final tran-

scriptions. The partial transcriptions are displayed as they come in from the service,

and when the final transcription comes in, it replaces the partial ones.

IBM Text-to-Speech

IBM Text-to-Speech is a cloud-based service that converts written text into natural-

sounding speech. It uses deep learning neural networks to generate speech that sounds

more human-like than traditional text-to-speech engines. This service supports a wide

range of languages and voices, allowing customization of the voice and tone of the

text-to-speech output.

We utilize this system to convert agent text responses to voice responses. We use

the “US Allison” voice in our system, but note that this can be customized.

Registered Users and Interactions Indices These two indices serve to store

users and their encrypted passwords, along with any interactions that they may have

had with an agent. We store the username, the password (encrypted in Base64 for

simplicity) in the registered user index. In the User Interactions index we store

a timestamp of the interaction, the content of the interaction, who initiated the

interaction (whether it is a message from our agents or from a user), a Session ID,
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and a User ID. We don’t list tables with descriptions and examples for these for

brevity.

6.4.3 Intent-Based Procedural Guidance

We incorporate a reference version of the conversational patterns described in Section

6.2. We implement these patterns in the Watson Assistant. This conversational agent

uses intents to determine what a user is saying and wants. Some examples of intents

are: requesting instructions, affirmations and disaffirmations, continuers, definitions

requests, among others. We utilize over 80 intents in our agent. Intents also serve

to perform slot-filling to extract things such as the procedure that the person wants

to do or the error that they encountered. The Watson Assistant utilizes a dialogue

tree that, after intent classification, the dialogue tree is navigated and dialogue nodes

are evaluated to determine what is the agent’s next action. The dialogue nodes

serve as the implementation of the conversational patterns. The Watson Assistant

also provides functionality to perform web-hooks in dialogue nodes. web-hooks serve

to call remote resources such as our server with the gold procedures and with the

dynamic procedures.

To provide some flexibility in our agent, we implement definition requests and

general and procedure question answering utilizing large language models. The reason

for this is that users may provide contextual questions that it may be hard to pre-

script the answers for. One example is, when writing a check, our procedural guidance

agent may give the instruction: “Write the amount in numbers”, and a user may

respond to that by saying: “Where do I do that?”. If we had to pre-script answers,

we would have to determine what possible values would “that” refer to, within the

context of the procedure that we are guiding on. We found that a simpler way to do

this would be to, utilizing a Webhook, call a large language model, and prompt it

for an answer. In the case that a person is being guided in a procedure, we can give

the large language model enough context (the procedure name, the person’s question,

the last step given) for it to come up with a reasonable answer. In the case that we

are not in a procedure, we rely on the large language model’s capacity to answer
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open-domain questions. We note that in the way our system is implemented, there is

no option for barging-in [164]. What this means is that even if users speak while the

agent is talking, the agent will not pause/respond to users barging in. Future work

should investigate incorporating barging in behavior for procedural guidance, as this

may give users the chance to interrupt and ask for clarification for an agent. We also

note that it is possible, although we did not implement it, to add a timer after the

last utterance by the agent. If this timer completes without any user interaction, the

system should either continue guidance or ask if the user is still there.

Gold-Lookup Agent

For our agent that gives gold instructions, we utilize web-hooks to perform a large-

scale search for procedures in our collection. This search is performed on the “Content”

field of the procedure documents that we have saved in ElasticSearch, and it is done

with the FAISS library with embeddings produced from the Sentence-transformers

library and the model “all-mpnet-base-v2” which currently has the strongest perfor-

mance in a variety of semantic tasks4.

After a procedure is retrieved, a user is questioned on whether that is the correct

procedure or not, and if the user disaffirms, the agent asks the user to rephrase the

procedure. If a user affirms the procedure, then the agent begins the extended telling

with the instructions from the ingested procedure. If an error occurs, a user needs

to notify the system that the error has occurred, and give details of the error. When

this happens, another search is performed, and the closest matching procedure is then

utilized for a recursive extended telling.

Knowledge Driven Dynamic Agent

For our dynamic agent, we utilize a similar strategy as the gold-lookup agent. The

only difference is that steps are generated dynamically from the contextual knowledge

graph that is derived from the procedure. We keep the procedural search to be able

to easily determine if we have the knowledge/information necessary to give guidance
4https://www.sbert.net/docs/pretrained_models.html#sentence-embedding-models/
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on a topic. In contrast to the gold-lookup agent, our dynamic agent also implements

a web-search and LLM powered extraction to find out how to do procedures that

are not in our collection. This same process can be used for the gold-lookup agent,

but we have no way to enforce that the extracted steps are useful, whereas with

our Knowledge Driven agent, we can re-synthesize the procedure from knowledge

which may add a layer of verification, although future work should explore this more

in-depth.

In the case that an error occurs, we perform a call into our server to, look up

the graph of the current procedure, look up/generate a graph for an error-fixing

procedure, and combine the knowledge from the last step that was performed with

the initial knowledge of the steps that are to be performed. The reason for the

knowledge combination is to give context to the error-fixing procedure of what was

being done before.

6.5 Large Language Model-Based Guidance

6.5.1 Plain, zero-shot guidance agent

In addition to providing guidance with an intent-based agent, we developed a LLM-

based agent to evaluate for procedural guidance. Large language models (LLMs)

(i.e., models that have 10B parameters or more) have recently been shown to perform

incredibly in a multitude of zero-shot scenarios [192]. In particular, we look at the

more popular GPT-3 [20] and ChatGPT. These models have appeared in the news in

many use cases, but in our work, we explore utilizing them for procedural guidance.

We explore how well these models fare when prompted simply to give guidance and to

give it in a step-by-step manner. From initial tests, these models perform incredibly

well to recall procedures that they are prompted for, and in the case of any error

guidance, they seem to be able to take context into consideration when responding.

However, as we will see later on in Chapter 8, these models are not perfect. We discuss

later some of the shortcomings of these models and how they could be addressed in
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future work.

Initial Prompt

In our work, we utilize the following prompt to guide conversations that are powered

by the LLM:

You are in a conversation with another person. You must always answer

in one sentence. If you need to provide guidance, provide it one step at

a time. Your name is Winston and you are here to help. You always

introduce yourself at the beginning of a conversation.

We find that with this, it is enough to converse with users on procedural guidance

topics.

6.5.2 Hybrid: Knowledge Driven LLM

As a final system, we developed a hybrid of the knowledge driven procedural step

generation system, and a LLM (ChatGPT-based) system. This hybrid system tries

to leverage the advantages of very large language models, such as robust context,

understanding, and question answering capabilities, with the steps and knowledge

from our graph-based step generation. An advantage of our graph-based system is

that it can come up with procedures dynamically from up-to-date sources and generate

steps for them. Additionally, In contrast, and as will be shown in Section 7.4, LLMs

have knowledge of the world up until the point in time that they are trained in. What

this means is that on domains that change (e.g., operating systems and software with

updates), the knowledge of how to perform tasks needs to be updated or refreshed in

some way. Although this addresses coming up with unseen procedures, for mission-

critical domains such as medicine, more care needs to be taken in getting up to date

and referable information. We essentially replace the complete conversational system

that we developed in Watson with LLM prompts. However, when we do this, we still

need a procedure name to guide our step generation system.
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LLM-based intent recognition and slot filling

We utilize the LLM system with the prompt:

(While giving instructions to share duration on iPhone)

Would a person require guidance if they said this (Respond with An-

swer(Yes/No) and Procedure Name)?

While sharing my location, I made a mistake, I need to change duration

of the share"

Answer(Yes/No):

Yes

Procedure Name:

Change duration of location sharing on an iPhone

Would a person require guidance if they said this (Respond with An-

swer(Yes/No) and Procedure Name)?

Hi Winston

Answer(Yes/No):

No

Procedure Name:

None

Would a person require guidance if they said this (Respond with An-

swer(Yes/No) and Procedure Name. Respond with a No and Procedure

Name: None if it is some kind of clarification or request for breaking down

a process)?

[User Input]

Where “[User Input]” is the user’s last utterance. In addition, since we are using

the ChatGPT system as our LLM, we can send each example question as a system

question with an agent answer. We give these examples so that the system will be
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consistent in its formatting, and we can parse whether it is a request for a procedure

and what.

We do notice, however, that the system sometimes misclassifies continuers and

clarifications as procedures in themselves, sometimes throwing off the KDPSG system.

However, this usually occurs after the user has requested a procedure, and the result

of this is ignored in future turns.

When this simple procedural intent classification returns true, and the name of

the intent is returned, the KDPSG system is called to generate knowledge and steps

for the user’s procedure

KDPSG+LLM

Now, after the KDPSG system returns, it returns with a set of sets of assertions

and with the steps that correspond to those sets. We then sample from each set of

assertions, the top 256/number of steps. We divide 256 between the number of steps,

because from some testing, more than this amount, in combination with the steps,

would overflow the context for the LLM. We then combine them into one list along

with the steps from the KDPSG system and supply them in a prompt:

"If asked for instructions on how to do something use the following pattern

to convey the instructions: Confirm if needed what the person wants to

get guidance on, begin the interaction by providing one step at a time,

never give a full list of steps unless the person asks for it wait for a person

to confirm or acknowledge a step before providing the next one. If you

are asked a question about the procedure, you will try to answer it, but

remind the user that you should continue once you are done, and that

your information may be outdated. If you are giving instructions on a

procedure, and a person makes a mistake that cannot be addressed with

a question, you will guide them on how to fix the issue with the same

pattern as above. When the person finishes the procedure you thank them

and ask if there is anything else that you can help with. You also start

the conversation with is there anything I can help you with. If you are
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responding with a procedure about [PROCEDURE NAME] incorporate

these facts if possible:

[FACT LIST]

Use the following steps if needed (always correct grammar errors):

[KDPSG STEPS].

Make sure to paraphrase the steps to make them easy to understand."

We substitute [PROCEDURE NAME] with the inferred procedure name from

the slot filling from above, [FACT LIST] with the list of facts of the procedure, and

[KDPSG STEPS] with the knowledge driven steps. What we observed is that the

LLM tends to utilize these steps in its instruction giving. We also explored giving a

description of the extended-telling pattern similar to Section 8.4. We also observed

that the LLM does not always use the description of the conversational pattern, and

that it does not always use the knowledge/steps that are given to it.

6.6 Summary

In this sixth Chapter, we present the conversational agent architecture, a web-server

backend and GUI frontend, that we will utilize in the next Chapter for user testing.

Our primary agent consists of an intent-based system that incorporates conversational

patterns to convey procedural instructions. We incorporate a small extension to

the extended telling conversational pattern to be able to handle longer repairs. We

additionally present a LLM powered agent that we prompt to provide guidance for

people, and a hybrid Knowledge Driven LLM to see if we can make up for the later

discovered usability faults of the intent-based systems. With all of this, we are now

ready to try a conversational agent for procedures on people.
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Chapter 7

Evaluating a Conversational Agent

for Procedures

My point is to take user interface evaluation with a grain of salt. Let’s

continue to do, and to encourage doing, user testing, but let’s keep in

mind that the results will not be definitive and need to be understood and

interpreted in depth. Let’s not reject out of hand new interface innovations

that have not been tested or don’t immediately show spectacular results in

testing. Let’s not let knee-jerk "tests have shown that" replace detailed

analysis. We need more judgment in evaluation of user interfaces, not

just more calculation. -Henry Lieberman

7.1 Overview

In the past two chapters, we were able to generate contextual knowledge graphs that

stem from procedures. We were also able to ingest these graphs, using a simple metric,

or a large language model powered reasoner, and filter them to produce procedural

steps. We also described how to wrap this procedural step generation system in a

conversational agent. We now evaluate this agent in a variety of studies to see its

effectiveness and its usability. Additionally, we test a hybrid approach to get the

best of both worlds: the robustness of LLM based agents with the factuality of our
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knowledge-based approach.

7.2 Evaluation 1: Task Completion

7.2.1 Overview

We conducted a study to evaluate the effectiveness of our conversational agent in

guiding users through procedures. The study involved asking users to perform a

smartphone related task by asking for and receiving guidance from one of three agents:

a gold-instruction retrieval system, a knowledge-driven procedural step generation

agent (KDPSG), and a ChatGPT-based agent (GPT).1 Users were then asked to

report back on whether they were able to successfully complete the task and give

feedback on the task. Throughout the chapter, we refer to these agents as our baseline,

KDPSG, and GPT, respectively. Our findings show that all three agents are capable

of guiding most people (70%+ of participants) through procedures. Our findings also

suggest that our two intent-based agents need improvements in usability, particularly

in the intent-matching and slot-filling capabilities. Lastly, we find that LLMs are very

capable of, in a zero-shot setting, providing guidance in most procedures, although

their information may be out-of-date.

7.2.2 Research Questions

The explicit questions that we set out to solve with this experiment are the following:

1. H1: Can a conversational agent with conversational patterns guide people

through procedures?

2. H2: Can generated instructions be as effective as gold-standard ones in proce-

dural guidance?

3. H3: Is this agent natural and conversational?

4. H4: Can we get some design feedback on our procedural guidance agent?
1These are the agents that we describe in Chapter 6.
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7.2.3 Study Design

To assess the effectiveness of our guidance, we devised a set of tasks that individuals

may encounter in their day-to-day lives, with a particular focus on technology. Our

ultimate goal is to develop an agent that can provide guidance on any task, and we

designed these tasks with the intention of making them unusual enough that users

may not be familiar with them, but accessible enough that a wide audience could be

capable of performing them. This ensured that individuals would have to rely heavily

on the voice assistant for guidance. The tasks that we selected for this study are as

follows:

1. Mirror a smartphone to a display wirelessly

2. Share your location through text messages on a smartphone

3. Compose an email in your smartphone with an attachment/embedded image

4. Organize smartphone applications into folders

5. Compose a Multi-media note in your smartphone

6. Create a calendar entry in your smartphone with a video conference link

7. Set up an automation on your smartphone

8. Set up an email signature on your smartphone

We aimed to keep our study as varied as possible, so we did not specify a particular

type of smartphone for the tasks. However, we were able to leverage gold-standard

procedures for the tasks in our backend. These are procedures that are written by the

manufacturer or a reputable entity, ensuring that they are up-to-date and reliable,

as the writers have in-depth knowledge on the topic. In particular, we made sure to

have the most up-to-date version of these procedures for both iPhone and Android

users.

In our work, we opted to perform this study with the Prolific2 platform. Prolific

is an online platform that researchers use to find people who are willing to participate

2https://www.prolific.co/
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in their studies. It is a widely used platform because it offers a large pool of partici-

pants who can be screened based on specific criteria. The platform allows researchers

to create and publish their studies, set eligibility requirements, and compensate par-

ticipants for their involvement. Additionally, participants in Prolific are vetted, and

fair pay is enforced, which typically results in higher quality responses than other

platforms.

In Chapter 6, we created an agent that could be accessed through a web application

available to anyone. To enable remote participants to use a specific agent in our study,

we used URL query parameters to generate links that specified a certain agent for

participants to access.

To test the effectiveness of our agents on a set of tasks, we devised a strategy

using a within-subjects design [13] to maximize the population of the study. First,

we asked users to rate their frequency of performing the tasks on a Likert scale of 1-5,

with 1 indicating they had not performed the task in the past month and 5 indicating

they performed the task almost daily. From the tasks that users had performed the

least, we randomly selected one and had the user ask for guidance on how to perform

the task using a voice agent. We had the user perform the task twice and provide

feedback each time, with the guidance of a different agent. We conducted the study

in blocks of two, with the baseline agent compared against another agent, which may

be the GPT agent or our KDPSG. We note that we indicated that users should try

to utilize the microphone as much as possible, but that they were free to utilize the

keyboard and write to the agent if there were issues.

In addition to the feedback form, the users had to fill out a pre-study questionnaire

which consisted of the following questions:

• How familiar are you with conversational agents (e.g. voice assistants like Siri,

Alexa, Google Assistant)?

• What is your perception on the usefulness of conversational agents (e.g., Siri,

Alexa, Google Assistant)?

• In a typical day, how many times do you interact with a conversational agent
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(e.g., Siri, Alexa, Google Assistant)?

and a post-study questionnaire that consisted of these questions:

• What is your perception on the usefulness of conversational agents (e.g., Siri,

Alexa, Google Assistant)?

• Do you think the tasks given were appropriate for this kind of agent? Why or

why not?

• Anything else? Is there any other feedback that you would like to give? This

can be on the survey, the interactions, the interface, etc.

Finally, after every procedural interaction with a specified agent, a participant has to

answer the following questions:

1. I felt the agent was conversational (5 point Likert scale)

2. I felt the conversation was natural (5 point Likert scale)

3. I had to pay special attention regarding my phrasing when communicating with

the agent (5 point Likert scale)

4. I find that the agent understands what I want and helps me achieve my goal (5

point Likert scale)

5. The agent gives me the appropriate amount of information (5 point Likert scale)

6. The agent gave relevant information during the whole conversation (5 point

Likert scale)

7. I thought the agent was easy to use (5 point Likert scale)

8. I would imagine that most people would learn to use this agent very quickly (5

point Likert scale)

9. I found the agent unnecessarily complex (5 point Likert scale)

10. I think that I would like to use this agent frequently (5 point Likert scale)

11. Did you succeed in your task (what the agent guided you on)? (Binary Yes/No)

12. Did you accomplish your goal (what you were told to do)? (Binary Yes/No)
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13. Did the agent misunderstand you? If so, how? Otherwise, write N/A. (Open

response)

14. Did the interaction with the agent frustrate you? If so, how? Otherwise, write

N/A. (Open response)

15. Did you encounter any problems when interacting with the agent? Otherwise,

write N/A. (Open response)

16. Did you encounter any problems when performing your task? If so, what?

Otherwise, write N/A. (Open response)

17. What did you feel worked very well when completing the task? (Open response)

18. What did you feel did not work well when completing the task? (Open response)

19. What did you feel was useful or effective when interacting with the agent?

(Open response)

20. What did you feel was not useful or effective when interacting with the agent?

(Open response)

21. Anything else? How could this interaction be improved? (Open response)

These may seem like many questions, but they cover the research questions that we

wanted in both a qualitative (open-response) and quantitative (Likert scale) manner.

We sample some of the general usability questions for conversational agents from [15].

The complete survey can be seen in Appendix A.1.

During the study, we assigned each participant a unique random identifier that was

used to create an account in our backend system to keep a record of their interactions.

We captured the conversation turns between the participant and the system, as well

as the system’s responses, and associated them with a unique session identifier and

timestamp. By doing so, we were able to track which agent the participant was using

during the session and order by time the sessions. We note that through the Prolific

platform, we recruited participants with the following demographics:

• Participants from the US, and the UK.
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• A balanced sample of genders

• Minimum Age of 18 and a Maximum Age of 55

• Technology use at work: not at all, less than once a week, about once a week,

2 or 3 times a week, 4 or 6 times a week, about once a day, more than once a

day

• Weekly device usage: Never, Once a week, 2-6 times a week, Every day, Multiple

times every day

• Exclude participants from previous studies

With these demographics, we could somewhat guarantee that we would have a

mostly English speaking, maybe experienced or inexperienced with technology use

participant. We selected participants between the ages of 18-55, because this is where

currently most of the usage market for voice assistants lies[139], [citepewresearch.

Additionally, below and above those ages the participants would be considered a

vulnerable population, and we may have to do some accessibility changes to our

work, which given time constraints was not possible.

7.2.4 Study Results

Golden Instruction Retrieval vs. KDPSG

We had 30 participants in our study (N=30). We now go through the results of our

survey. We find that participants took on average 27.56 minutes to complete the

survey. We find that most (N=28 or 93%) of the participants are moderately or more

familiar with conversational agents, and that a minority of participants are slightly

familiar with them. None of the users were unfamiliar of conversational agents. A

view of this distribution can be seen in Figure 7-1. We also saw from the pre-study

questions that most people (86%) find conversational agents to be moderately useful

or more, as seen in Figure 7-2. Lastly, we see that most participants interact with a

conversational agent at least once a day (83%) as seen in Figure 7-3.

Now, in Figure 7-4 we report the reported performance of tasks.
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Figure 7-1: User distribution of familiarity with conversational agents. We see most
people are at least moderately familiar with conversational agents.

Figure 7-2: Distribution of participant’s perception of general usefulness of conversa-
tional agents. We see that most people find the agents useful.

Figure 7-3: Distribution of participants reported interaction quantities with conver-
sational agents. We see that more than half of people use an agent at least once a
day or more.
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Figure 7-4: Distribution of participants reported monthly performance of tasks. We
see that almost all the selected procedures fell into the “rarely” category (value=1),
with only the composing an email procedure being the one that people perform the
most.
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Figure 7-5: Distribution of the procedures that were assigned to participants. We see
that this follows an inverse distribution as the task ranking, where the procedures
that were ranked as most familiar are the least that we select for participants.

We see that most tasks, save for composing an email with an embedded image,

have been performed “rarely (1-3 times)” or less in the past month. This is means that

our selection of tasks was good, with 7/8 tasks that people do not perform frequently.

From this reported performance, we then sampled 1 task randomly from the set of

least performed tasks. The distribution of tasks that a participant was given can be

seen in Figure 7-5

Then, we reviewed the feedback of whether the tasks that were given were appro-

priate or not for a conversational agent, out of the 30 feedback statements provided,

19 of them were positive, saying that the tasks were appropriate for conversational

agents, 8 were negative saying that this agent cannot be used for these tasks, and

3 were neutral. The most common positive feedback was that the task was simple

and appropriate for an agent, while the most common negative feedback was that the

agent struggled to understand the user and therefore could not be used for such a

task unless it was developed further. Several participants suggested that the agent

would be more useful for simple tasks, while others mentioned that they would still

prefer to use Google for instructions. Overall, while there were some concerns about

the agent’s ability to understand tasks, most participants felt that the task that was

picked for them, was appropriate for such a conversational agent and had potential

for future development.

Now we move on to the more important results from the study. The most impor-

tant results can be seen in Figures 7-6 and 7-7. From here, we can see that a significant

portion of (p=0.005 with a binomial test assuming a 50% hypothetical success rate)

participants (22/30 interactions in both the baseline agent and the knowledge driven
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Step Number Gold Procedure Step Knowledge Driven Step

1 Open the notes app Step 1: Open the Notes app to make
notes on multi-media instead of paper

2 Tap the compose icon Step 2: Tap the compose icon to make
sure it is in multi-media.

3 Tap on the camera icon and choose a photo or video
from your photo library, or take a new photo or video

Step 3: Tap the camera icon to choose a new photo or
video to take from your photo library

4 Use the other icons to add different media like bulleted list Step 4: Add other media like bulleted list or
format to use different media

Table 7.1: Side-by-side example of golden instructions vs. procedural instructions.
We note that this procedure was unseen by the knowledge driven system.

agent) were able to complete the task that they were assigned, independent of the

agent, and that they were able to follow the instructions that an agent gave them.

We note that there is no significant difference (p=1.0 using a Fisher exact test, and

a 𝜒2 test) between the baseline and the knowledge driven approach in regard to task

completion (what the agent guided the participant in) and goal completion (what the

participant was told to do). This indicates that the instructions that were given were

just as effective as the gold standard ones. . We now give an example of a generated

procedure vs. a gold-standard one for the procedure of “Compose a Multi-media note

in your iPhone” in Table 7.1.

We can see that our model is able to reconstruct the procedure somewhat effec-

tively, although it is not perfect. This is similar to the automated metrics that we

have obtained in Chapter 5, which say that there is a high overlap between what

the step contains and what we generate, but it is not perfect. We note that the

reconstruction is based on having an aligned set of facts and steps, hence the order

of the steps is similar. This is a limitation that is acknowledged further on and could

be resolved by using retrieval methods which learn to automatically align facts and

steps. However, we leave this as future work.

From this, we can gather that the instructions that the agent gave were useful

enough, that most people with both agents, (upwards of 73% of the interactions

(44/60), or respectively 22/30 for each agent) were able to accomplish the task they

were assigned. For the KDPSG agent, 6/8 interactions failed because of intent match-

ing/slot filling issues, and the other 2 were because of other issues. We note that in

roughly 27% of the interactions (16), participants were unable to complete their tasks.

When we look at the percentage that struggled to complete the task, from the feed-
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Figure 7-6: Distribution of whether a
participant was able to accomplish the
goal they were given or not. We see
that most of the participants succeeded
in this.

Figure 7-7: Distribution of whether a
participant was able to accomplish the
instructions that the agent gives. We
see that most participants were able to
follow what the assistant guided them
on.

back that they give along with the interactions that were recorded, multiple users

experienced difficulties using the assistants due to various issues, including accent,

microphone problems, and difficulty in phrasing, and the agent understanding, their

questions. The users note that the assistants consistently misunderstood them, tran-

scribing incorrect sentences, and asking them to repeat or paraphrase their requests.

In some cases, the assistant would not understand specific queries. Lastly, the assis-

tants often asked users to clarify their requests.

We observed that some people only utilized the microphone to interact with the

agent. Although this would bring more natural responses, there were some cases,

at least 3/60 (5%), in which the speech to text failed catastrophically and blocked

the user from completing the task. When we look at this in the case of failures to

complete the task, these 3 transcription errors account for more than 18% of the

failures (3/16) One such interaction can be seen in Figure 7-8

For other interactions that fail (8 for each agent), we find that most users were

unable to either start the extended telling dialog tree due to a misunderstood intent

(8/16), or users were unable to find the procedure that they needed to do with the

semantic matcher(2/16), which was because of very vague phrasing or problematic

slot filling in the intent. We looked through the successes when completing the tasks,

and found that these participants sometimes rephrased their requests in such a way

that the agent would understand. In Figure 7-9 we can see how a successful attempt
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Figure 7-8: Example of a catastrophic transcription error that blocked a user.

looked like, in contrast to an intent matching failure in Figure 7-10.

Now after analyzing the failures and successes, we can see more clearly that the

people that were able to achieve the guidance, were able to navigate the intent match-

ing and slot filling successfully, whereas many of the people that failed the task were

not. We also saw that people had to paraphrase many times to try to succeed in the

intent matching. This need to paraphrase multiple times is likely to have influenced

people’s perception of the usability of the system negatively. Since we utilized the

same agent for dialogue management, it is unsurprising to see that the flaws that

were found in the baseline retrieval method were also found in our KDPSG agent.

In all the usability questions, there were no significant differences in the agents

(p>0.05 with a Wilcoxon Signed Rank Test). We first begin with Figure 7-11 which

shows that people were neutral on whether the amount of information that was given

to them was appropriate when interacting with the agent. We move on to Figure 7-12

which shows that people did not find the agent to be conversational. We observed

from the feedback given in the open responses, and it is more evident in Figure 7-16

that people had to be very careful with the phrasing that they used with the agent;

they had to be very specific in the procedure that they asked for. In the open response
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Figure 7-9: Example of successful in-
tent matching and guidance.

Figure 7-10: Example of failed intent
matching. Examples originally did not
include the phrasing “set up [PROCE-
DURE NAME]”.

feedbacks of “Anything else? How can this interaction be improved”, many people (15)

said that the agent needs some work in “understanding” better what the user said. All

of this then leads to the other results that participants did not think that the agent

was easy to use (Figure 7-13), that people would not use the agent frequently (Figure

7-14), and that they did not think that the conversation felt natural (Figure 7-15). All

of these results, suggest that there needs to be more engineering work in improving

the intent-recognition system, and that it adversely affects people’s perception of the

usability of the agents that they tested.

Finally, we conclude with some notable quotes from the feedback. On feedback

regarding what worked well in the interaction, some people said:

“Everything seems to function properly especially when the agent replies

to me”

“It was very straightforward and quick to get answers. ”

“The instructions were spot on”

“I feel the instructions were very easy to follow.”

“The step by step instructions”
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Figure 7-11: Distribution of whether an agent gave an appropriate amount of infor-
mation or not. We see that most people were neutral.

Figure 7-12: Distribution of whether a participant found the agent conversational or
not. Most people did not think the agent was conversational.
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Figure 7-13: Distribution of whether an agent was easy to use or not. Most people
did not find the agent easy to use.

Figure 7-14: Distribution of whether a participant would use the agent frequently or
not. Most people would not use the agent frequently.
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Figure 7-15: Distribution of whether the conversation felt natural or not. Most people
thought the conversation was not natural.

Figure 7-16: Distribution of whether a participant had to use special phrasing or not.
Most people had to use special phrasing to communicate effectively.
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Figure 7-17: Distribution of whether participants would learn to use the agents quickly
or not. Most people would not learn to use the agent quickly.

Figure 7-18: Distribution of whether an agent gave relevant information or not. Most
people were neutral on the agent giving relevant information.
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Figure 7-19: Distribution of whether participants thought that the agent understood
them and helped them achieve their goals. Most people leaned towards thinking that
the agent did not understand them.

Figure 7-20: Distribution of whether a participant thought that an agent was un-
necessarily complex or not. Most people were neutral on whether the agent was too
complex or not.

203



In contrast, on things that did not go well in the interaction:

“Having to rephrase my question multiple times for the bot to understand.”

“Some of my phrases did not work”

“I needed to say "ok" to tell it to move to the next step”

“It wasn’t giving me the what I was asking for ”

“The agent only gave me one step at a time which felt very tedious.”

We now move on to the other block, which consisted of the instruction retrieval

system against a ChatGPT powered agent.

Golden Instruction Retrieval vs. GPT

For the second set of conditions (the baseline golden instruction retrieval system

vs. the LLM based system), we had 30 participants in our study (N=30), and the

same setup of tasks as the prior study. We now go through the results. We find that

participants took on average 31.05 minutes to complete the survey. We find that most

(N=25 or 83%) of the participants are moderately or more familiar with conversational

agents. Only one of the participants was unfamiliar of conversational agents. A view

of this distribution can be seen in Figure 7-21. We also saw from the pre-study

questions that most people (73%) find conversational agents to be moderately useful

or more, as seen in Figure 7-22. Lastly, we see that most participants interact with a

conversational agent at least once a day (63%) as seen in Figure 7-23.

Now, in Figure 7-24 we report participant’s familiarity with performing our selec-

tion of tasks.

We see that, once more, most tasks, save for composing an email with an embedded

image, have been performed “rarely (1-3 times)” or less in the past month. This can

confirm that our selection of tasks was good, with 7/8 tasks that people do not perform

frequently. From this reported performance, we then sampled 1 task randomly from

the set of least performed tasks. The distribution of tasks that a participant was

given can be seen in Figure 7-25
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Figure 7-21: Distribution of participants’ familiarity with conversational agents.Most
people are moderately or more familiar.

Figure 7-22: Distribution of participant’s perception of conversational agents. Most
people think they are moderately useful or more.

When we reviewed the feedback of whether the tasks that were given were appro-

priate or not for a conversational agent, the feedback is generally positive and suggests

that the selected task is appropriate for a conversational agent. Many users found

the tasks to be simple and easy to follow (24/30), and appreciated the convenience of

having an agent guide them through the process instead of having to search for tu-

torials. Some users expressed doubts about the agent’s ability to understand certain

questions or perform the task effectively, but overall the feedback was positive.

Now we move on to the more important results from the study in Figures 7-26

and 7-27. From here, we can see that a significant portion of participants were able

to complete the task that they were assigned, and that they were able to follow

the instructions that an agent gave them. Namely, 25/30 people were able to do

what the agent guided them on (goal completion) with ChatGPT, and 19/30 were

able to do what the baseline agent told them to do. In addition to this, 27/30
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Figure 7-23: Distribution of people’s daily interactions with conversational agents.
1/3 of people do not interact with them, and most people interact at least once with
them.

participants were able to complete their goal with the ChatGPT agent and 21/30

with the baseline. Both of these results present a significant difference (p<0.05)

against an estimated success rate of 50% using a binomial test. We note that there is

no significant difference between the agents in either case (p=0.55 with a Fisher exact

test for task completion and p=0.1 for goal completion, p=0.056 p=0.07 respectively

for a for 𝜒2 test), indicating that the quality of the guidance was similar.

Now we look at some of the failures and the successes of the interactions. Overall,

with our baseline agent, we see the same behavior as in the other block: if the intent

matching and slot filling fail (7/9, 1/9 failed interactions respectively), people cannot

receive guidance or the procedure search is completely thrown off to the point that

people are not capable of completing the procedure. Vice versa, if it does match, users

are able to receive appropriate guidance. In the case of the ChatGPT-based agent,

we saw that the failures were because of outdated information (1/3) (in iOS based

devices, it gave directions about older applications/settings), and from extremely

general phrasing of how to do certain actions (2/3). There is one particular error in

the GPT-based agent that is interesting. One participant said:

“The agent needs more of an idea of how various email services allow you

to set up a signature. I went to where it told me, and I ended up in my

Gmail account settings. Nothing to do with the actual email settings.”

Now, we look into the conversation that the user had with the agent that failed. That
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Figure 7-24: Distribution of participants reported monthly performance of tasks. We
see that most tasks have been done rarely, except for organizing folders and sending
emails with images.
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Figure 7-25: Distribution of the procedures that were assigned to participants. Once
more, the selection process follows an inverse of the reported performance, with com-
posing an email and organizing into folders being some of the least performed.

Figure 7-26: Distribution of whether
a participant was able to accomplish
the goal they were given or not. We
see that most interactions (70%+) were
able to accomplish their goals with the
given agents. The GPT based agent
was able to guide more interactions suc-
cessfully.

Figure 7-27: Distribution of whether a
participant was able to accomplish the
instructions that the agent gives. We
see that most people were able to follow
the instructions that the agents gave.
Interactions with the GPT based agent
were followed more successfully.
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conversation can be seen in Figure 7-28. We can see that this is a combination of a

hallucination along with very general instructions on how to set up a signature on

an email. Similarly, another user that wanted an automation on their device for a

reminder tried to get directions on how to do it, but eventually the agent mixed in

two procedures (how to make a shortcut in iOS with how to make a reminder). The

interaction can be seen in Figure 7-29.

We see that the GPT-based agent knew a broad way of how to make a shortcut, but

it did was not able to put together how to do one that sends reminders appropriately.

Instead, it gives general instructions on making a reminder. Lastly, we note that

the ChatGPT-based agent sometimes does not respond adequately to conversational

patterns that we use. What this means is that sometimes the ChatGPT based agent

will engage in simple back and forth conversation without moving the conversation

forward in the direction that the person wants. In the case seen in Figure 7-30, we

see that there is a back and forth of the agent trying to get some details but always

informing the person that it’s ready to start, even though the person says to start

a couple of times. This could be seen as the agent misunderstanding the person’s

intent to begin receiving guidance on the procedure at hand, and simply continuing

chit-chat with a person.

Now, after analyzing the failures and successes, we look at the usability. In all

the questions except whether special attention had to be paid to phrasing and the

agent was unnecessarily complex, there was a significant difference between the base-

line agent and the LLM-based agent (p>0.05 with a Wilcoxon signed-rank test). We

find that the baseline system performs very similar to the other experimental setup.

People disagreed that the baseline was conversational, and were neutral on whether

GPT was conversational (Figure 7-32. and there was a significant difference between

the ChatGPT-based agent and our baseline (p=0.001 with a Wilcoxon signed rank

test). Additionally, participants felt that the conversation from the Baseline was not

natural, and that conversation from GPT leaned towards somewhat conversational

(Figure 7-35, and there was a significant difference between the ChatGPT-based agent

and our baseline (p=0.0001 in a Wilcoxon signed rank test). Interestingly, we see that
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Figure 7-28: Failed GPT-based agent conversation. We can see the GPT-based agent
making up very broad instructions on setting a signature in “G. email”
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Figure 7-29: Failed GPT-based agent conversation. We can see once more that the
GPT agent tries to make very broad instructions on how to make a reminder Shortcut.
Eventually, the agent mixes in the information of how to make a general reminder,
but it does not mix it well within how to make the automation.
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Figure 7-30: Failed GPT-based agent conversation. We can see the agent always
trying to get more information and not starting the process even though the user
indicates this.

participants tended to agree that in both systems one would need to pay attention

when addressing the systems (Figure 7-36), and there was no significant difference

(p=0.055 in a Wilcoxon signed rank test) between agents in this perception. People

also leaned towards disagreeing that the Baseline agent understood and tried to help

on what wanted to be done and leaned towards agreeing that the ChatGPT agent

understood and tried to help (Figure 7-39), and there was a significant difference be-

tween the ChatGPT-based agent and our baseline (p=0.002 in a Wilcoxon signed rank

test). Another interesting observation is that participants would somewhat not want

to use either agent frequently, and that they leaned towards the agent not being com-

plex (Figures 7-34 and 7-40 respectively), with a significant difference (p=0.01) and

no significant difference (p=0.25 on Wilcoxon signed rank test) respectively). Now,

we look at the final set of usability metrics, which are that participants neutral that

the baseline gave relevant information, and participants leaned towards somewhat

agreeing that the ChatGPT based agent gave relevant information (Figure 7-38) and

there was a significant difference between both agents (p=0.04 for paired Wilcoxon

signed rank test). Most participants disagreed that the baseline was easy to use, and
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Figure 7-31: Distribution of whether an agent gave an appropriate amount of infor-
mation or not. People thought the GPT based agent gave more appropriate amounts
of information and leaned towards disagreeing on the baseline

leaned towards agreeing that the ChatGPT agent was easy to use, with a signifi-

cant difference as seen in Figure 7-33 between the agents (p=0.002 for a Wilcoxon

signed rank test). Finally, participants leaned towards disagreeing that people would

learn to use the agent quickly, and participants leaned towards agreeing this for the

ChatGPT-based agent (Figure 7-37). There was a significant difference (p=0.004 for

a Wilcoxon signed rank test) between the two agents.

From these results we get the following. One of the major differences between

the baseline agent, and the GPT based agent, is the flexibility with which the GPT

based agent can respond to user’s input. The GPT agent can take spelling errors

as input and produce effective outputs, and people can ask for the general version

of a procedure (“how to do [X] in my smartphone” instead of “how to do [X] in my

[iPhone/Android]), and later on fine tune details through the conversation. This

flexibility, which our intent-based system does not have, we believe is what gives

the ChatGPT-based agent improved usability metrics in all the categories that we

evaluated. Users were usually able to, with the first query or two, receive guidance

on the ChatGPT-based agent, whereas if intent matching failed on the baseline, they

would need to rephrase a few more times until it picked up.

Finally, we look at some quotes regarding what went well during the interaction:
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Figure 7-32: Distribution of whether a participant found the agent conversational or
not. People found the GPT agent conversational in contrast to the baseline agent.

Figure 7-33: Distribution of whether an agent was easy to use or not. People leaned
towards agreeing on the GPT based agent, in contrast to disagreeing on the baseline.
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Figure 7-34: Distribution of whether a participant would use the agent frequently or
not. In both cases, people leaned towards not utilizing the agents frequently.

Figure 7-35: Distribution of whether the conversation felt natural or not. In the case
of the GPT based agent, people leaned towards agreeing it was natural, in contrast
to disagreeing with the baseline.
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Figure 7-36: Distribution of whether a participant had to use special phrasing or not.
Interestingly, people felt that they needed special phrasing for both agents.

Figure 7-37: Distribution of whether participants would learn to use the agent quickly
or not. People leaned towards disagreeing with the baseline agent, and agreeing with
the GPT based agent.
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Figure 7-38: Distribution of whether an agent gave relevant information or not. Peo-
ple were neutral to positive that both agents gave relevant information.

Figure 7-39: Distribution of whether participants thought that the agent understood
them and helped them achieve their goals.People thought the GPT based agent un-
derstood them more than the baseline.
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Figure 7-40: Distribution of whether a participant thought that an agent was unnec-
essarily complex or not. People disagreed that both agents were complex.

“The agent worked really well and was very clear in what was said to be

done”

“All instructions were exact to what was happening on my phone”

“All the steps provided were clear and precise, worked well”

“The agent understood everything i asked/said”

In contrast, things that did not go well while doing the interaction:

“needed to prompt to get next step”

“I need to search a bit for specific tools, images would be nice”

“Had to push the AI to go to the next step”

“I had to ask the right question”

“The buttons I was told to use they don’t exist on either phone the three

dots do not either not wear I was instructed to anyways”

7.2.5 Overall Findings

We now list some of the findings from this study:

• Our results indicate that all three of the conversational agents tested can be

utilized for procedural guidance on the tasks that were given [H1].
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• Our results indicate that our generated steps are comparable in effectiveness for

procedural guidance as gold-standard instructions [H2].

• Our results indicate that our intent-based system is not very usable and is not

natural nor conversational [H3].

• Our results suggest that usability problems our baseline and knowledge-driven

step generation system mostly focus on problems related to intent matching and

slot filling, as users had to rephrase multiple times for the system to understand

them and use very specific vocabulary to get adequate guidance. [H4]

• Our results suggest that in contrast to the baseline, the LLM based agent’s

flexibility to parse the user’s intent along and respond adequately, influence

heavily on people’s perception of the usability of the agent. [H4]

• Our results show that the LLM based model is not perfect, notably it sometimes

conveys information that is outdated, or does not follow established conversa-

tional patterns for driving interactions. [H4]

7.3 Evaluation 2: Error Recovery

7.3.1 Overview

Now that given that we have shown that it is indeed possible to receive guidance

from conversational agents, including our knowledge driven agent, we set out to see

if people can utilize the same agents, with some error recovery functionality, to fix

errors that might arise in a procedure. Our results show that all three agents are

indeed capable of guiding people, however similar to our first study, the intent-based

agent needs work on the understanding capabilities.

7.3.2 Research Questions

The explicit questions that we set out to solve with this experiment are the following:
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1. H5: Can a conversational agent with patterns guide people through procedure

error recovery?

2. H6: Can generated instructions be as effective as gold-standard ones in error

recovery?

3. H7: Is this error-recovery capable agent natural and conversational?

4. H8: Can we get design feedback on our error-recovery capable agent?

7.3.3 Study Design

In our second study, we utilized almost the same format as the first evaluation in

Section 7.2.3. Since we wanted to evaluate the performance of the agents when

exceptions were handled, we came up with the strategy that within one of the given

tasks, we would tell the participant to stop at a given step, and listen to an error

that happened. Then the participants were told to utilize the agent that they were

utilizing to address the error and continue the procedure. We selected the following

procedures, and a corresponding error within the procedure.

1. Share your location through text messages on a smartphone

• Users were told to change the duration of the location share, as they had

picked a duration that was incorrect

2. Compose an email in your smartphone with an attachment/embedded image

• Users were told to replace the image that was embedded as it was the

wrong image

3. Organize smartphone applications into folders

• Users were told that they had put the wrong app in a folder

4. Create a calendar entry in your smartphone with a video conference link

• Users were told that instead of the links that the calendars provide, that

they wanted to utilize a Zoom link
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We aimed to keep our study as varied as possible (with regards to devices), so once

more we did not specify a particular type of smartphone for the tasks. We note that

in one of the tasks, we did pick a specific conference link provider (Zoom). Once

more, we use gold-standard procedures for the errors and procedures in our backend.

In particular, we made sure to have the most up-to-date version of these procedures

for both iPhone and Android users. Again, we opted to perform this study with the

Prolific3 platform and use URL query parameters to generate links that participants

can access different agents with. We also use the same within-subjects design [13] to

maximize the population of the study.

In the process, we first asked users to rate their frequency of performing the

tasks that were listed above on a Likert scale of 1-5, with 1 indicating they had not

performed the task in the past month and 5 indicating they performed the task almost

daily. From the tasks that users had performed the least, we randomly selected one

and had the user ask for guidance on how to perform the task using a voice agent. We

had the user perform the task twice and provide feedback each time, with the guidance

of a different agent. We conducted the study in blocks of two, with the baseline agent

compared against the other agent, which may be the GPT agent or our KDPSG. We

note that we indicated that users should try to utilize the microphone as much as

possible, but that they were free to utilize the keyboard and write to the agent if

there were issues. In contrast to the first study, we indicate that users should pause

at a certain point in a procedure:

1. Share your location through text messages on a smartphone: After selecting the

duration of the location share, come back here and continue on to the next page

in the study.

2. Compose an email in your smartphone with an attachment/embedded image:

After selecting the image, come back here and continue on to the next page in

the study.,

3. Organize smartphone applications into folders : After making a folder with apps,
3https://www.prolific.co/
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come back here and continue on to the next page in the study.,

4. Create a calendar entry in your smartphone with a video conference link : When

the agent tells you to select the Facetime or Google Meet link, come back here

and continue on to the next page in the study.

After the users pause, they are informed of the error that has happened and are

told to use the agent to help fix this error. Following this, they fill out a feedback

form, and move on to repeat the process with a different agent. We note that most

of the study questions are the same as in the first study in Section 7.2.3. The only

difference is the inclusion of the following error recovery questions:

• Did you succeed in the mistake fixing task (what the agent guided you on to fix

the mistake)?

• Were you able to recover from the problem that was given [ERROR DESCRIP-

TION] and finish the original task? Describe any issues or things that went

well.

• How would you ask a virtual agent for help if you made a mistake following

instructions?

We opted to take this approach, rather than giving out a wrong instruction, because

we felt that people may lose faith/perceive the agent as not being capable of general

guidance.

7.3.4 Study Results

Golden Instruction Retrieval vs. KDPSG

We had 30 participants in our study (N=30). We now go through the results of our

survey. We find that participants took on average 50.33 minutes to complete the

survey. We find that most (N=27 or 90%) of the participants are moderately or more

familiar with conversational agents, and that a minority of participants are slightly

familiar with them. None of the users were unfamiliar of conversational agents. A
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Figure 7-41: User distribution of familiarity with conversational agents. We see most
participants were mostly familiar with voice agents.

Figure 7-42: Distribution of participant’s perception of general usefulness of conver-
sational agents. We see that most people perceive conversational agents as being
moderately useful or more.

view of this distribution can be seen in Figure 7-41. We also saw from the pre-study

questions that most people (80%) find conversational agents to be moderately useful

or more, as seen in Figure 7-42. Lastly, we see that most participants interact with a

conversational agent at least once a day (70%) as seen in Figure 7-43.

Now, in Figure 7-44 we report the participant’s familiarity with tasks.

We see, similar to the first study, that most tasks, save for composing an email

with an embedded image, have been performed close to “rarely (1-3 times)” or less in

the past month. We note that this is means that our selection of tasks was decent,

with 3/4 tasks that people do not perform frequently. We do note that in this sample
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Figure 7-43: Distribution of participants reported interaction quantities with conver-
sational agents. We see that 2/3 of participants use their assistants 1 time or more
daily.

Figure 7-44: Distribution of participants reported monthly performance of tasks. We
see once again relatively low frequency of performing all task save sending an email
with an image attachment.
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Figure 7-45: Distribution of the procedures that were assigned to participants.

of participants, the averages for the tasks were higher than in the prior study. From

this reported performance, we then sampled 1 task randomly from the set of least

performed tasks. The distribution of tasks that a participant was given can be seen

in Figure 7-45. We note that since users reported the email task as the most pop-

ular/familiar, this was the task that was sampled the least (1/30 participants were

given this task).

When then moved on to review the feedback of whether the tasks that were given

were appropriate or not for a conversational agent. Overall, the feedback suggests

that the tasks given to the agents were appropriate and easy enough for them to

handle (20/30). However, some users felt that the agents were not always able to

understand their queries and did not seem to remember previous interactions, which

might be essential for this task. Some found the agents to be helpful for simple tasks,

particularly for technical issues (3/30).

Now we move on to the more important results from the study. Some important

results can be seen in Figures 7-46, 7-47, 7-48. From here, we can see that a significant

portion of participants (26/30 in each group) were able to complete the task that they

were assigned, and slightly more (27/30) were able to follow the instructions that an

agent gave them. The most important of all results of this study can be seen in Figure

7-48, which is that for both agents, more than half of the participants were able to

recover from the error that they were given (36/60, for the baseline 17/30 and for the

KDPSG agent 19/30). We note that this number as is in both cases is insignificant, if

we perform a binomial test with an estimated 50% success rate (p>=0.05), and there

is no significant difference between both agents (p>0.05 with Fisher’s exact test).

Now, there is a significant difference between this amount, and the amount of
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interactions that were able to complete the original process (p=0.0017, with Fisher

exact). We looked into the cases where these agents failed (24/60 interactions) to

examine what happened. We found that in most of the interactions that did fail, it

was due to some intent matching/slot-filling issue (17/24 or 70% of the interactions

that failed). An example (and other interactions were very similar to this) of this can

be seen in Figure 7-49. Additionally, there was 1 interaction that failed completely

because of the speech-to-text, and 4/17 that failed were because of a transcription

error. We note that if we were to remove these interactions that suffered from techni-

cal issues, that the overall recovery rates would be 85% (36/42 for both interactions).

Individually, for the KDPSG agent, we would have 17/21 (80.9% of interactions),

and for the baseline agent we would have 19/21 (90.4% of the interactions) in which

the error recovery was successful which are both significantly higher (p<0.05) when

performing a binomial test with an estimated 50% chance of completing the error

recovery. We note that this analysis of errors highlights even more than need for flex-

ible, intent, matching. We saw from the feedback of how people would describe that

they made a mistake that many people would simply say a statement without indicat-

ing that there was a mistake. This makes it especially hard for the intent recognition

system to determine that it should go into a recovery mode. We looked into the open

text feedback given from the survey question: “Were you able to recover from the

problem that was given ([ERROR]) and finish the original task? Describe any issues

or things that went well”. There were several instances of negative feedback where

users expressed frustration with the conversational agent’s inability to understand

their requests or respond appropriately (10 interactions reported this). Some users

had to restart the conversation multiple times or reword their requests several times

before the agent understood them. In some cases, the agent was unable to address

the user’s issue at all, and some users found the agent unresponsive or unhelpful.

Additionally, there were some instances where the agent gave unclear or irrelevant

instructions, or where users found the conversation to be confusing or nonsensical.

Now we move on to the usability questions. We see a very similar distribution of

usability results as in Evaluation/Study 1. In all the examined metrics, both systems
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Figure 7-46: Distribution of whether a
participant was able to accomplish the
goal they were given or not. Most peo-
ple were able to complete the original
task, even if they were not able to re-
cover from an error.

Figure 7-47: Distribution of whether a
participant was able to accomplish the
instructions that the agent gives. Most
people were able to follow the instruc-
tions that the agent gave.

Figure 7-48: Distribution of whether a participant was able to resolve the error that
they were given. More than half of the interactions were able to recover from errors.

Figure 7-49: Interaction where exception handling intent fails. We can see that there
is no clear indicator that an error has occurred. Later on, we see that the person does
declare there was an error, but in the form of “[ERROR DESCRIPTION], how do I
fix this”
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Figure 7-50: Distribution of whether an agent gave an appropriate amount of infor-
mation or not. Participants leaned to agreeing that it was an appropriate amount of
information.

are comparable. We tried to improve the intent detection for getting help for the orig-

inal task by adding a few examples of failures that should have been handled, however

both Study 1 and this one ran somewhat parallel, which limited the incorporation of

the intent example improvements. We also see from the open response feedbacks that

the intent detection for the error recovery needs to be improved. When we looked

at the feedback of what went wrong in the error recovery, it is clear that we were

once more heavily impacted by the intent detection and slot filling performance. The

majority of the feedback on whether the agent misunderstood the user suggests that

the agent struggled with understanding user input and frequently required users to

rephrase or clarify their questions. Some users reported that the agent would forget

previous conversation context, causing confusion. In the question of if participants

were able to recover from the problem that was given, some interactions were able to

recover from their mistakes relatively quickly and the agent gave them relevant infor-

mation to fix the problem (33/60 interactions). However, other interactions struggled

to communicate their mistakes to the agent and the agent did not understand them.

In some cases, users had to start the conversation again, while in others, they gave

up.

Interestingly, we examined the question of how would people ask a virtual agent

228



Figure 7-51: Distribution of whether a participant found the agent conversational or
not. Most people thought that the agents were not conversational.

Figure 7-52: Distribution of whether an agent was easy to use or not. Most people
did not find the agents easy to use.

229



Figure 7-53: Distribution of whether a participant would use the agent frequently or
not. Most people would not use the agents frequently

Figure 7-54: Distribution of whether the conversation felt natural or not. Most people
did disagree that the conversation was natural.
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Figure 7-55: Distribution of whether a participant had to use special phrasing or not.
Most people agreed that they had to use special phrasing with the agents.

Figure 7-56: Distribution of whether participants would learn to use the agent quickly
or not. Most people disagreed that others would learn to use the agents quickly.
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Figure 7-57: Distribution of whether an agent gave relevant information or not. Most
people leaned towards that the agents gave relevant information.

Figure 7-58: Distribution of whether participants thought that the agent understood
them and helped them achieve their goals. Most people were neutral to negative that
the agents understood them.
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Figure 7-59: Distribution of whether a participant thought that an agent was un-
necessarily complex or not. Most people were neutral on whether the agents were
unnecessarily complex.

for help if they made a mistake and found the following. Some people would just ask

for help directly, some would ask for instructions to be repeated, some would describe

the mistake and expect the agent to understand this, and some would restart the

process again. By looking at this feedback, we get some certainty that the way that

we handled the exceptions in a procedure are justified, 19/60 feedbacks say they would

declare that they made a mistake and describe it. However, a case that we did not

anticipate is that some people would formulate the mistake as a question or declare

what the mistake was (19/60 error recovery phrasing feedbacks). In the case that

people describe what the mistake is, this is incredibly hard for an intent recognition

system, and in the case that users framed it as a question, we tried to handle open-

domain question answering as described in Chapter 6, however sometimes the intent

recognition did not work and users would not have their question answered.

Finally, we looked at what participants felt worked very well when doing the pro-

cedure and when interacting with the agent. Overall, many users found the instruc-

tions to be clear, concise, helpful, and participants appreciated step-by-step guidance.

Some users found that using specific language and keeping responses short and to the

point helped the AI understand them better.

We note some quotes from what worked well during the interaction, and from
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people that were able to recover from the errors:

“ I was able to recover from the problem relatively quickly and finished

the original task. The agent gave me relevant information when it came

to fixing the problem which allowed me to deal with the problem very

quickly”

“I feel that once the AI understood what was being asked of it, it explained

how to perform the task well - instructions were incredibly clear and easy

to follow.”

“The agent provided simple and easy instructions”

“The stepwise instructions were to the point and worked well at making

the task easily comprehensible chunks”

“The agent was very conversational and it felt like a real person.”

“The instructions were very easy to follow and it felt like a real person

was talking.”

“Yes, I did recover but it took a while to communicate the mistake. ”

And some quotes of what did not work well in the interaction or from people that

were unable to recover:

“It was difficult to paraphrase/word sentences in such a way that would

allow the AI to understand what I wanted it to do.”

“Getting the agent to understand my mistake”

“Understanding, lack of human abilities when it comes to memory”

“I couldn’t get it to understand. It kept telling me how to change the

timezone settings on my phone, which is not what I was asking. Eventually

I gave up as it was just repeating the same information over and over

again.”
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Figure 7-60: User distribution of familiarity with conversational agents. Most people
were moderately familiar or more with agents.

Figure 7-61: Distribution of participant’s perception of general usefulness of conver-
sational agents. Most people thought voice agents were moderately useful or more.

Golden Instruction Retrieval vs. GPT

We had 30 participants in our study (N=30). We now go through the results of

our survey. We find that participants took on average 42.2 minutes to complete the

survey. We find that most (N=27 or 90%) of the participants are moderately or more

familiar with conversational agents, and that a minority of participants are slightly

familiar with them. None of the users were unfamiliar of conversational agents. A

view of this distribution can be seen in Figure 7-60. We also saw from the pre-study

questions that most people (80%) find conversational agents to be moderately useful

or more, as seen in Figure 7-61. Lastly, we see that most participants interact with a

conversational agent at least once a day (70%) as seen in Figure 7-62. Now, in Figure

7-63 we report the reported performance of tasks.

We see, similar to the first study, that most tasks, save for composing an email
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Figure 7-62: Distribution of participants reported interaction quantities with conver-
sational agents. Most people interacted with agents 1 or more times, although almost
half did not interact with them regularly.

Figure 7-63: Distribution of participants reported monthly performance of tasks. We
note that in this sample of participants, many had not made a calendar invite with
video, and many (as in the other studies) had composed an email with an image
attachment.
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Figure 7-64: Distribution of the procedures that were assigned to participants. We
note that from the reported procedures, the one that people had done the least is
composed the calendar entry with a video link, so our selection strategy picked this
one the most.

with an embedded image, have been performed “rarely (1-3 times)” or less in the

past month. In this sample of participants, we also note that the amounts that the

task were performed were higher than in the first study. Overall, we note that our

selection of tasks was decent, with 3/4 tasks that people do not perform frequently.

From this reported performance, we then sampled 1 task randomly from the set of

least performed tasks. The distribution of tasks that a participant was given can be

seen in Figure 7-64. We note that since users reported the email task as the most

popular/familiar, this was the task that was sampled the least (1/30 participants were

given this task).

When then moved on to review the feedback of whether the tasks that were given

were appropriate or not for a conversational agent. Most participants (26/30) agreed

that the tasks were simple and straightforward, making them suitable for a virtual

assistant to provide step-by-step instructions. Some participants also mentioned that

the tasks were tech-related, making them ideal for an AI assistant to handle. How-

ever, some participants were skeptical, stating that they would prefer to do the task

themselves or that the AI assistant might not be able to handle more complex tasks.

Now we move on to the more important results from the study. These can be

seen in Figures 7-65, 7-66, 7-67. From here, we can see that a significant portion of

participants (29/30 for GPT and 27/30 for the gold instruction baseline) were able

to follow the instructions that an agent gave them and that the majority (29/30 for
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Figure 7-65: Distribution of whether a
participant was able to accomplish the
goal they were given or not. Most in-
teractions were able to complete their
goals.

Figure 7-66: Distribution of whether
a participant was able to accomplish
the instructions that the agent gives.
Most interactions were able to follow
the agents’ instructions.

Figure 7-67: Distribution of whether a participant was able to resolve the
error that they were given. We note that almost everyone was able to recover
from errors (70%+) for both agents, and all but one recovered with the GPT
based agent.

the LLM (ChatGPT) agent and 26/30 for the gold instruction baseline agent, both of

which are significantly higher than a 50% success rate with a binomial test (p<0.05))

were able to complete the original that they were assigned. Now, the most important

of results of this study can be seen in Figure 7-67, which is that for both agents, more

than 70% of the participants were able to recover from the error that they were given,

and in the case of the ChatGPT-based agent all but one were able to recover from

the error.

Now, in the case of the baseline agent, there is a difference between the amount

of people that were able to complete the original process (26/30) and the amount

of people that were able to recover from the error (21/30). We then looked into the

cases where these agents failed (1/30 for the GPT agent, and 9/30 for the Baseline)

to examine what happened. In the case of the interaction that failed from GPT, the

participant did not perform the error handling, because there was no option to change

the duration on their phone. We then moved on to examine the 9 interactions that

failed in the Baseline. We found that, similar to all other interactions that involved
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Figure 7-68: Distribution of whether an agent gave an appropriate amount of in-
formation or not. We see that participants found that the GPT agent gave more
appropriate amounts than the baseline.

the intent based agent, most failed due to some intent matching/slot-filling issue (5/9

or 56% of the interactions that failed). The ones in which the intent matching did not

fail, the users were unable to understand the instructions given, or had some other

difficulty completing the steps. Once more, as in the other block in this study, in the

open text question of what they would do if they made a mistake that many people

would explain the mistake that was made and ask for specific and clear instructions

on how to fix it or move forward. Once more, we see that our approach of trying to

catch the intent by a declaration of a mistake is acceptable, but it does not cover the

case in which the person only describes what went wrong. Next, we looked into the

open text feedback given from the survey question: “Were you able to recover from

the problem that was given ([ERROR]) and finish the original task? Describe any

issues or things that went well”. Here most people mentioned that they were able

to fix the error, and that in the case of the ChatGPT-based agent, people praised it

answered in simple, concise responses. In the case of the baseline agent, some people

had to rephrase to get the system to understand, but were eventually able to fix the

issue. Now we move on to the usability questions.

We once see that there were significant usability issues with the baseline agent. In

all usability dimensions that we evaluated, the GPT agent had significantly different
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Figure 7-69: Distribution of whether a participant found the agent conversational or
not. Most participants were neutral on whether the GPT agent was conversational,
and people disagreed that the baseline was conversational.

Figure 7-70: Distribution of whether an agent was easy to use or not. Most people
leaned towards agreeing that the GPT based agent was easy to use in contrast to the
baseline which was seen as not easy to use.
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Figure 7-71: Distribution of whether a participant would use the agent frequently or
not. Most people were neutral on whether they would use the GPT-based agent in
contrast to the baseline which people would not use frequently

Figure 7-72: Distribution of whether the conversation felt natural or not. Most
people felt that the GPT-based conversation was more natural than the baseline
conversation.
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Figure 7-73: Distribution of whether a participant had to use special phrasing or not.
Most people found that they needed to use special phrasing with the baseline and
were neutral with respect to the GPT agent.

Figure 7-74: Distribution of whether participants would learn to use the agent quickly
or not. Most people thought the GPT agent would be quicker to learn to use than
the baseline agent.
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Figure 7-75: Distribution of whether an agent gave relevant information or not. More
people felt that the GPT agent gave relevant information and were neutral on the
baseline agent.

Figure 7-76: Distribution of whether participants thought that the agent understood
them and helped them achieve their goals. Most participants felt that the GPT agent
understood them better than the baseline agent.
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Figure 7-77: Distribution of whether a participant thought that an agent was un-
necessarily complex or not. Most people disagreed that the GPT-based agent was
complex, and were neutral on the baseline.

results (p<0.05 with a Wilcoxon signed rank test). When we looked into the open

text responses for things that did not go well in the interaction or with the task, we

see that participants were frustrated with the baseline agent’s ability to understand

instructions and questions, as well as some comments about poor voice recognition

and transcription, and the need for very specific questions to get to the end goal. We

saw that in the feedback for the ChatGPT based agent, people praised being able to

communicate with the agent more naturally, but sometimes wanted to go step-by-step

rather than the long responses that the system gave.

Some quotes on what people found that worked well in the interaction and about

people that were able to recover successfully are the following:

“The ease and clearness of the instruction”

“instructions were very accurate and easy to follow, did not feel lost for a

single second”

“Everything. In both the original task and the recovery from the mistake

the agent answered in one efficient message.”

“Yes, it was very easy, only a small change that the agent told me to do

immediately.”
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Finally, some quotes about what did not work well in the interaction and from

people that were unable to recover:

“The agent struggling to understand, and the voice dictation”

“The agent was slow to explain each step, I would appreciate more haste.”

“The instructions were too basic and slow, especially the zoom link one.

Also the agent got confused easily”

“No. He couldn’t understand I what I said no matter how many times I

tried to paraphrase.”

We note here that in most of these studies, at least 1 person complained of the use

of continuers in the process. Especially for the intent-based agents. One possibility

for this is that the instructions may have been too simple for the user (as was noted

in the quote), or that different users prefer different amounts of information at once

(as was seen in a quote in a prior study). Nevertheless, for future work it should

be taken into consideration the ability to either give all the steps at once or to not

require continuers (set a timer to move the conversation forward and give another

step after a certain time).

In a conversation-first system, producing a continuer can be faster than waiting

for the next instruction. However, in a voice+visual first system, continuers may be

bothersome as the person can read the screen to get the step. Future work should

look into evaluating a voice-only interface to better demonstrate the value of the

extended telling pattern, where users cannot just look back at the list of instructions

in the chat history and would need to let the system know when to continue or go

back/forth.

7.3.5 Overall Findings

We now list the findings from our study.

• Our evidence shows that technical intent-based / slot filling issues aside the

systems we evaluated (Intent based Gold-instruction retrieval KDPSG and
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ChatGPT-based system) can provide guidance in error recovery situations [H5].

• Our evidence also shows that there is no significant difference in error recov-

ery guidance between the baseline gold instruction retrieval system and our

knowledge driven instructions [H6].

• Our evidence suggests that guidance in error situations has to be flexible enough

to understand first that there was an issue in the step, which may be possible

with an LLM-based model, but may be hard with an intent-based system [H8]

• Our evidence suggests, that maintaining context in these error interactions may

be essential, as sometimes people referred to things in the prior steps and asked

to change parts of it or framed their mistake in the context of prior steps [H8]

• Our evidence shows once more, that our baseline and knowledge driven agent

were impacted negatively in usability to the point that they are not natural nor

conversational because of the intent matching and slot filling capabilities and

further improvement is needed [H7]

• Our evidence shows that the LLM based agent was much more flexible in error

handling, and could easily provide guidance in an exception process, leading to

a more natural and conversational system [H7]

• Our evidence suggests that sometimes people preferred the step-by-step instruc-

tions rather than a single long answer [H8]

• Our evidence shows that step-by-step instructions, especially if they are clear

and concise, can help guide people in procedures and out of errors [H8]

• Our evidence suggests that some users may want to get all instructions at once

or not have to give continuers to get the next step. This behavior should be

supported, whether through inquiries or timers, to satisfy users. [H8]

246



7.4 Evaluation 3: Leveraging both flexibility of LLMs

and knowledge driven steps

7.4.1 Overview

So far, we have seen that our intent-based knowledge driven procedural step genera-

tion system, is lacking severely in the flexibility that the intent recognition and slot

filling allow. We also saw that the ChatGPT-based agent did not suffer from these

flaws, but that it was possible for the system to hallucinate if the information it has

to give is outdated or if it is a niche/expert domain. In this final evaluation, we

test whether supplying the ChatGPT powered agent with the up-to-date, knowledge

driven steps and some facts, can leverage both the flexibility of the LLM models and

the ability to from knowledge (possibly updated) to generate procedure steps. Our re-

sults show that indeed this hybrid, retrieval-like approach can inform the LLM model

in such a way that people find it to provide more relevant, accurate, and reliable

information, than without it.

7.4.2 Research Questions

The explicit questions that we set out to solve with this experiment are the following:

1. H9: Can a LLM conversational agent combined with our knowledge driven

system and description of conversational patterns be more accurate and reliable

than a plain LLM system?

2. H10: Is this agent natural and conversational?

3. H11: Can we get some design feedback on our procedural guidance agent?

7.4.3 Study Design

In our third study, we utilize a similar format as the first evaluation in Section 7.2.3.

Since we wanted to evaluate the performance of the agents in possibly outdated or
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unknown procedures, we had to change the procedures that we gave to users. We

came up with the following set of tasks:

1. How to unsend a text message on iPhone

2. How to edit a sent message on iPhone

3. How to change the clock style on the Lock Screen on iPhone

4. How to share location on messages on iPhone

We note that we selected the procedures for iPhones, and controlled for this in the

Prolific settings, because it was simple to trace the dates for operating system releases,

most users consistently update to the latest version of iOS, and the experience is

almost uniform throughout a wide range of devices. We note that as of the time of

this writing, the training data with which ChatGPT (our LLM agent) was trained on

(ca. 2021), would show that the first three of those procedures were impossible to do

on iPhone. The fourth procedure, changed (there used to be an “i” icon in message

threads, which is now a video icon).

Again, we opted to perform this study with the Prolific4 platform and use URL

query parameters to generate links that participants can access different agents with.

We also use the same within-subjects design [13] to maximize the population of the

study.

In the process, we first asked users to rate their frequency of performing the

tasks that were listed above on a Likert scale of 1-5, with 1 indicating they had not

performed the task in the past month and 5 indicating they performed the task almost

daily. From the tasks that users had performed the least, we randomly selected one

and had the user ask for guidance on how to perform the task using a voice agent. We

had the user perform the task twice and provide feedback each time, with the guidance

of a different agent. We conducted the study in blocks of two, with the baseline agent

(plain ChatGPT) compared against the other agent, the hybrid (ChatGPT+KDPSG

prompt). We note that we indicated that users should try to utilize the microphone

as much as possible, but that they were free to utilize the keyboard and write to the
4https://www.prolific.co/

248

https://www.prolific.co/


agent if there were issues. A difference from the first procedure is that we include the

following factuality/reliability questions:

• I think the guidance I was given is up-to-date (Yes/No)

• I feel like the agent’s responses were accurate. (5 point Likert)

• I believe that the agent only states reliable information. (5 point Likert)

• It appeared that the agent provided accurate and reliable information. (5 point

Likert)

We also asked the following questions about procedural interactions:

• What kinds of procedures do you think these conversational agents would be

helpful for? (Open response)

• What kinds of procedures do you think these conversational agents would NOT

be helpful for? (Open response)

7.4.4 Study Results

We now discuss the primary results of the study. In Figures 7-79 and 7-78, we see

that people with the Hybrid Knowledge Driven + GPT (KGPT) had a significantly

higher (p<0.05 for both 𝜒2 and Fisher’s exact test) success rate than with the plain

GPT. Similarly, there is a significant difference (p<0.05 for 𝜒2 test) for being able to

complete their goals when using the GPT vs. the KGPT agent. We see then that

on the questions relating to the accuracy and reliability of the information given by

an agent, that there is a significant difference (p<0.05 with a Wilcoxon signed-rank

test) in Figures 7-80,7-81,7-82. Lastly, we see that in Figure 7-90, that there is a

significant increase (p<0.05 with a Wilcoxon signed rank test and t-test) in people’s

agreement of the agent giving relevant information for the KGPT agent.

Altogether, these results show that the inclusion of the outputs of the KDPSG

system (both facts and steps) helps the agent provide more accurate and reliable

information than without these. Although we do not explore other methods of re-

trieval, this test is a good indicator that retrieval, whether based on the KDPSG, or
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Figure 7-78: Distribution of whether par-
ticipant were able to succeed in their
goals or not. Most interactions were able
to succeed in their goals, but the ones
with the knowledge driven hybrid had
higher success rates

Figure 7-79: Distribution of whether par-
ticipant were able to succeed in what the
agent told them to do. We see once more
that most interactions were able to suc-
ceed in what the agent guided them on,
but the knowledge driven hybrid had a
higher success rate of participants being
able to follow its instructions.

Figure 7-80: Distribution of whether participant thought the agent’s content was
accurate. On the baseline ChatGPT agent, people were neutral leaning to agree,
but there was a significantly higher agreement that the hybrid approach was more
accurate
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Figure 7-81: Distribution of whether participant thought the agent’s content was
reliable. On the baseline ChatGPT agent, people were neutral leaning to agree, but
there was a significantly higher agreement that the hybrid approach was more reliable

Figure 7-82: Distribution of whether participant thought the agent’s content was
accurate and reliable. On the baseline ChatGPT agent, people were neutral leaning
to agree, but there was a significantly higher agreement that the hybrid approach was
both more accurate and reliable
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Figure 7-83: Distribution of whether an agent gave an appropriate amount of in-
formation or not. We see that participants found that the GPT agent gave more
appropriate amounts than the baseline.

Figure 7-84: Distribution of whether a participant found the agent conversational or
not. Most participants were neutral on whether the GPT agent was conversational,
and people disagreed that the baseline was conversational.
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Figure 7-85: Distribution of whether an agent was easy to use or not. Most people
agreed that both agents were easy to use.

Figure 7-86: Distribution of whether a participant would use the agent frequently or
not. Most people thought that they would use both agents frequently
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Figure 7-87: Distribution of whether the conversation felt natural or not. Most people
felt that both agents were somewhat conversational

Figure 7-88: Distribution of whether a participant had to pay special attention to
phrasing or not. People were neutral on whether special attention phrasing needed
to be used, and slightly more agreed that it was needed on the Hybrid system.
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Figure 7-89: Distribution of whether participants would learn to use the agent quickly
or not. Most people thought that both agents could be learned to use quickly.

Figure 7-90: Distribution of whether an agent gave relevant information or not. More
people felt that the Hybrid agent gave relevant information than the plain ChatGPT
based agent.
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Figure 7-91: Distribution of whether participants thought that the agent understood
them and helped them achieve their goals. Most participants felt that both agents
understood and helped them achieve their goals.

Figure 7-92: Distribution of whether a participant thought that an agent was unnec-
essarily complex or not. Most people agreed that both systems were not complex,
with slightly more agreeing on the Hybrid system.
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other methods, is an interesting route for future systems in the area. We also note

that this may be applicable in domains where the procedures may often change (e.g.,

software-related procedures), although through user feedback, we can see that it may

be applicable to expert or mission-critical domains.

Interestingly, upon looking at “What kinds of procedures do you think these con-

versational agents [NOT] would be helpful for?”, we found that people believe that

these agents should be capable of guiding people in technology related procedures

(9/30 participants). Many people (16/30) interpreted procedures as capabilities of

the agent, and listed virtual assistant capabilities. Interestingly, people mentioned

cooking, household chores, and “simple procedures that are unchanging”. This may

give some idea of why the ChatGPT agent was so effective in prior studies, as many of

the procedures that were utilized were of this nature. When we looked at things that

people do not think that these agents will work in, people mentioned that they may

not be helpful for nuanced situations, complex tech issues, and complex problem-

solving. They are also not recommended for critical (essential) tasks, tasks that

require frequent updates or changes, subjective decision-making, emotional support,

and physical tasks.

Upon looking at the rest of the usability questions, we see that there is an increase,

although insignificant, in general usability. Further testing needs to be done to verify

whether this increase is due to providing the correct procedure, or from the description

of the conversational pattern that was given.

7.4.5 Overall findings

Summarizing our findings:

• Our results show that the inclusion of up-to-date, knowledge driven generated

steps and facts, combined with descriptions of conversational patters, can pro-

vide more accurate and reliable procedures for users of conversational agents

[H9]

• Our results show that LLM based agents are conversational, natural, and easy
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to use. [H10]

• Our results suggest that technical guidance with these conversational agents,

especially in devices that have voice assistants, would be effective [H11]

• Our results suggest that for procedural guidance, LLM based conversational

agents would perform well in general, unchanging procedures, but require some

updating mechanism for domains that change yearly, and require even more

factuality and reliability in mission-critical domains [H11]

• Our results suggest that voice assistants on devices would need to have proce-

dural guidance as a complementary ability, and would need other functionality

such as basic intents for weather, alarms, etc. [H11]

• Our results suggest that the inclusion of conversational pattern descriptions as

prompts for the language models could potentially improve the overall usability,

but more experimentation needs to be done on this [H11]

7.5 Future Guidelines

From our studies and our observations, even those listed in Appendices, B.4, B.5,

we were able to gather the following insights to help inform future development of

conversational agents for procedures.

• If developing an agent with an intent-based/slot-filling system, there needs to

be a wide variety of examples of how people may phrase their intentions. Some

examples of this phrasing are: “Can you help me with [X]”, “How to/How do I

do [X]”, “I want to do [X]”, “Show me how to do [X]”, “[X]” (Where [X] is the

task that guidance is being requested for)

• Similarly, for error handling, intent-based systems should handle multiple vari-

ations of requesting for help: “[X MISTAKE], How can I fix this?”, “How can I

fix [X]”, “I did [X] and it should have been [Y]”, “[X MISTAKE]”
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• Having the functionality to give the steps one at a time is a nice to have, but

possibly for shorter procedures around 1-3 steps, it may be convenient to give

them all at once. For longer procedures, it may get tedious to keep saying

continuers, so other forms of indicating continuation may want to be taken into

account, such as a timer, or the ability to give all the steps at once to a user.

• To have the ability to restart, jump to a step with a summary of the context

is also a nice to have, and some people want this behavior for error handling

thinking that they may have done something wrong.

• If guidance is being performed in mission-critical domains, LLM-based systems

should try to utilize retrieval methods or other forms of access to find up-to-date

ways of performing procedures

• LLM models sometimes hallucinate steps if prompted on too specific a domain

• Many participants agree that these conversational agents are better suited for

“simple” procedures, these would be procedures that may not require specialized

knowledge and are less prone to user error

• Some participants are skeptical that these agents can be used for very specific/expert-

level domains

• Step-by-step guidance is effective, but steps should be simplified as much as

possible to ease a user’s understanding

7.6 Limitations in Studies

7.6.1 Reading Instructions from a Web-page

Noticeably, in our work, we do not test the condition in which users are told to ex-

plicitly read the instructions from a website to complete a procedure. The primary

reason for this is because that would involve no form of conversational interaction.

Additionally, as was found in [44], people find reading instructions cognitively de-

manding. We leave it as future work to see how the voice guidance agents fare, at
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least in task completion, against having the user look up or read a set of instructions

on how to perform a procedure.

7.6.2 Lack of usage tutorial

All the studies that were run would have benefitted from having a tutorial, prior to

beginning the interactions. This would have helped users identify ways of how to

formulate their queries, and may have decreased the intent/slot filling issues. We

note this for future works that are done with intent-based agents.

7.7 Summary

In this seventh Chapter, in two separate studies, we evaluated the effectiveness of

conversational agents in guiding users through procedures, including error recovery

situations. In the first study, our findings showed that all three agents were capable

of guiding most people through procedures, but our two intent-based agents need

improvements in usability, particularly in the intent-matching and slot-filling capa-

bilities. We also found that LLMs are very capable of providing guidance in most

procedures, although their information may be out-of-date.

In the second study, we evaluated the agents’ ability to provide guidance in error

recovery situations. We found that all three agents were capable of guiding people

in such situations, but the intent-based agent needed improvement in understanding

capabilities. Our evidence suggested that maintaining context in these error interac-

tions was essential, and step-by-step instructions, especially if clear and concise, could

help guide people in procedures and out of errors. We also found that the LLM-based

agent was much more flexible in error handling and could easily provide guidance in

an exception process.

In the third and final study, we try to leverage the flexibility of the LLM agent in

regard to intent recognition, slot-filling, and chit-chat capabilities and combine this

with our knowledge driven step generation system and the contextual commonsense

inference facts to build a hybrid system that is capable of identifying requests for
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procedural guidance and retrieving the top ranked facts and generated steps for it.

The system uses this as a prompt to give guidance to a user. We find that this hybrid

system is capable of providing more accurate and reliable knowledge than a baseline

LLM. Additionally, we see that this hybrid agent that also utilizes descriptions of

conversational patterns (as we will see in the next chapter) seems to improve usability

of the system.

With all of this, we show that our contextual commonsense knowledge-based

pipeline can be applied to end users effectively both in the form of an intent-based

system and as a more capably hybrid knowledge-LLM to help guide them through

procedures and for the recovery of procedures.
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Chapter 8

Limitations and Discussion

The future depends on what you do today. -Mahatma Gandhi

8.1 Expert-Domain Guidance

While LLMs are excellent for general procedural guidance, their effectiveness dimin-

ishes in domains that are not well documented or seen multiple times in their training

data. We examine the domain of video games for these agents. In particular, we ex-

amine getting an undead horse called Shadowmere in the Elder Scrolls V: Skyrim1.

Skyrim has been a very popular video game since its release in 2011; it is a role-

playing video game in which a player plays as a character that goes around a large

game world performing quests.

To get the Shadowmere (a magical horse in the video game), the instructions are

the following2:

1. Start the quest: “The Cure for Madness”

2. Talk to Astrid

3. Find and Search Cicero’s room

4. Read Cicero’s diary
1https://en.wikipedia.org/wiki/The_Elder_Scrolls_V:_Skyrim
2Taken from: https://elderscrolls.fandom.com/wiki/The_Cure_for_Madness

263

https://en.wikipedia.org/wiki/The_Elder_Scrolls_V:_Skyrim
https://elderscrolls.fandom.com/wiki/The_Cure_for_Madness


Figure 8-1: LLMs step generation performance in specific domain. People that have
played the video game, will know that Shadowmere is a horse, and that horses are
not found in a chest.

5. Talk to Astrid

6. Get Shadowmere

While it is a straightforward process, just consisting of completing a quest, when a

LLM is prompted on this domain, we get a response such as the one in Figure 8-1. If

we gave this objective to our KDPSG system, which relies on explicit knowledge to

generate procedural steps, we would get the following steps:

• Step 1: Start the Cure for Madness quest.

• Step 2: Look for clues about where Cicero is.

• Step 3: Report Astrid.

• Step 4: Go to Dawnstar Sanctuary.
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Figure 8-2: Bing chat, powered by GPT-4, failing on providing specific instructions
for how to get Shadowmere.

• Step 5: Complete the quest to find Shadowmere.

What this suggests, is that very specific domain guidance, may not be very effective

with LLMs. However a system may be able to do this task if provided with the

knowledge for it. By augmenting a LLM with a retrieval mechanism this shortcoming

might be fixed. However, that even with explicit retrieval mechanisms, LLMs may

not be able to do this task on specific domains, as they might ignore the additional

information. An example of this is utilizing the Bing-Chat system which has the Bing

search engine to help it retrieve results and is also based on GPT-4, the successor to

the GPT-3 systems. We show how it fails in Figure 8-2.

Overall, retrieval methods seem a very promising approach, but ways into effec-

tively incorporating their retrievals need to be further explored.

8.2 Reasoning Assumptions

The work that we developed makes the assumption that the reasoner system is handed

a set of assertions belongs to a certain step. While this may be acceptable to develop
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and test our systems, it limits the capabilities of the system to dynamically come

up with procedures. A more flexible system should be able to search through all

the knowledge that it has acquired to help it come up with a procedural step. This

is what we attempted to do by testing the RAG-token model. However, we found

that it was not very effective. To make this system work, we may need to rework

the creation of documents to feed the retriever. We initially made every document

contain an assertion, it may be more effective for a document to contain clusters of

similar assertions. When thinking about this problem, future endeavors are faced

with a search at scale issue. We have a large knowledge base of contextual assertions,

from which we need to retrieve and order a subset of them. We have seen in our work

that it is indeed possible to operate in this knowledge space, adding information helps

contextualize error handling. Future work should look at how to adapt the knowledge

that the realizer has to personalization inquiries from a user (i.e., a user modifies a

certain aspect of a procedure, and the rest of the procedure generation should take

this into account.

8.3 Intent recognition systems

From the feedback and the results that we received from our user studies, it is evident

that an intent-recognition system needs to be heavily improved, especially for open-

domain procedural guidance. Much of the feedback that was received, and seen in the

results of the usability, concerned the system “not understanding” what users wanted.

This is due mostly to new phrasing of what a user wants to do (the intent matcher

does not have enough examples to discern that it is a request for guidance/fixing

an error). Because of this, we recommend that future work that wants to explore

this area take into consideration utilizing more flexible intent recognition systems, or

replacing the intent recognition system altogether with a knowledge-enhanced large

language model.
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8.4 Large Language Models - Lack of conversational

patterns

Language models are trained on large datasets of text, which can include conversa-

tional data, but also includes many other types of text such as news articles, books,

and scientific papers. As a result, these models may not always follow conversational

patterns when generating text. For example, they may generate responses that are

too formal or too technical for a conversation, or they may generate responses that

are not relevant to the conversation at hand. Additionally, language models may not

always understand the context of a conversation or be able to generate responses that

are appropriate for the situation. This has been called a lack of conversational intent

[11]. One example of this can be seen in Figure 8-3, where the LLM-based agent

just keeps responding without actually providing the guidance that was required. In

many other cases, what happens is that the language model gives a response that is

much longer than what the working memory of a person serves. This can be seen in

Figure 8-4.

One potential way to address this issue, is to inform the language model of how a

procedural interaction or extended telling works. We now try this with the procedure

of “how to write a check” in two different ways: giving a summary paragraph of how

extended telling works, and by giving the LLM the conversational pattern.

Firstly, we give the following directive to the LLM:

If asked for instructions on how to do something use the following pattern

to convey the instructions. First confirm what the person wants to get

guidance on. Then begin the interaction by providing one step at a time.

You will wait for a person to confirm/acknowledge the step, and then

you will provide the next one. If someone asks you a question about the

procedure, you will try to answer it, but remind the user that you should

continue. If you are giving instructions on a procedure, and a person

makes a mistake that cannot be addressed with a question, you will guide

them on how to fix the issue with the same strategy as above. When the
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Figure 8-3: LLM-based conversation in which the language model does not begin an
extended telling or does not move the conversation forward towards guidance.
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Figure 8-4: Conversation in which a LLM is not given directions on how to interact
with users.
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Figure 8-5: Conversation in which a LLM is given directions on how to interact with
users. We note that the answers are shorter and to the point, and wait for a user to
continue.

person finishes the procedure you thank them and ask if there is anything

else that you can help with. You also start the conversation with is there

anything I can help you with.

We observe some immediate effects in Figure 8-5 and Figure 8-6

The model tries to structure its responses and wait for a user before continuing.

However, it does not follow the description perfectly, and eventually gives two steps

in one. This avenue of research seems very promising, especially because while these

agents are “conversational” they are conversational in a visual-centric [108] manner
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Figure 8-6: Conversation in which a LLM is given directions on how to interact with
users. We note that the model does not exactly follow the given instructions, when
an error occurs, but it approximates them.
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Figure 8-7: Providing an example conversation as a prompt for a LLM.

(i.e., you would probably need to read the responses that they give to understand them

rather than just simply hearing them out loud), and there has not been research on

how to enforce conversation-centric responses.

We also tried to give the system an example extended telling conversation with

annotations, and see if it followed the pattern. However, the system hallucinated

a whole conversation (albeit somewhat correctly) on how the interaction would be.

These can be seen in Figures 8-7 and 8-8

We see some success in this, however the generation process needs to be controlled

further, and examples of different turn types/sequences need to be given. Altogether,

there needs to be future work in incorporating well known conversational patterns
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Figure 8-8: Follow up of providing an example conversation as a prompt for a LLM.
We see that the LLM hallucinates an entire conversation to a certain correct degree.
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into these LLMs, especially if they are to be used for voice/chat guidance.

8.4.1 Outdated training data

From the feedback and observations that we gathered, although LLMs are good for

procedural guidance, they are limited to what they know based on their training data,

and are limited in the generality of the procedures that they know. What this implies

is that there needs to be some way to inform these models of knowledge that they may

not have. Retrieval methods are an excellent alternative for this, but these methods

typically consist of finding an exact document with the results. However, as we have

argued before, commonsense knowledge may be needed in a wide variety of tasks that

a user might engage in with an agent. We believe that one possibly useful alternative

to explicit retrieval, is to supply organized/planned assertions for models so that it

can use them as they see fit. In our particular case, we could supply a LLM with the

contextual commonsense assertions that our contextual commonsense inference model

generates about a relevant text to a model to guide its language generation. We now

take an example from one of our studies. In this particular interaction, without any

additional knowledge, the language model gives erroneous information of what needs

to be done, because its information is outdated. This can be seen in Figure 8-9.

We see in this interaction that first the agent tries a general sub-procedure to try

and fix the problem (give location permissions to the app), then it moves on to use

information from other procedures (sharing location by downloading some app from

the Messages App store). We see much later on in the interaction that even though

the model was corrected on what the options were, it reverts to what it knows. From

this interaction, we see that the LLM’s understanding of what can be done in the

Messages app is limited and outdated, and when pressed on to give more information,

the agent simply hallucinates some other very general procedure.

If we look at what the language model knows in a zero-shot setting just for this

procedure, we see the following in Figure 8-10. Now, if we prompt it with the follow-
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Figure 8-9: Conversation in which a LLM does not have up-to-date information and
begins hallucinating when pressed on a topic that it does not have knowledge on.
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Figure 8-10: Outdated, zero-shot, ChatGPT generated procedure for how to share
location on an iPhone.
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ing:

Only using the following facts: Your iPhone desires share location.

Open can be characterized by being/having text messaging. The messages

app used for send a message. Your iPhone used for send a message. The

person located or found at/in/on contact. Your location to do this, one

requires contact. Want includes the event/action share location. Select

because share location. Would want is a step towards accomplishing the

goal share location. Select can receive or be affected by the action the loca-

tion. Select desires share location. The contact picture is a location. The

contact picture is related to location. The contact picture has, possesses

or contains location. Tap has, possesses or contains location. Tap has the

subevent share location. The contact picture is a form of the contact mes-

sage. The top is a form of the top. The contact picture used for sharing

location. "Select is related to location. ", "Send made (up) of location. ",

"Choose is related to location. ", "Will see is a form of see. ", "Will see

is related to location. ", "Your recipient is related to location. ", "Send

is related to location. ", "The map made (up) of location. ", "See is re-

lated to location. ", "Share is defined as location. ", "Want is related to

location. ", "Select send is related to location. ", "Share made (up) of

location. ", "Your recipient is/are capable of location. ", "Share is related

to location. ", Based only on the list of facts, what are the steps

for sharing your location through messages on an iPhone. Be

as detailed as possible.

As seen in Figure 8-11, we see that the language model is actually able to un-

derstand the facts and piece them together in such a way as to generate a more

correct/up-to-date procedure.

Now, if we had some background process to perform contextual commonsense in-

ference, and supply a list of essential steps, about a process, we could utilize this

to keep a language model that has old information up-to-date on how to do modern
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Figure 8-11: Generated text in which a LLM is given contextual commonsense asser-
tions to help with procedural step generation.

processes. Another alternative is to retrieve a web page with the actual steps. In

contrast to a simple retrieval and augmentation, some benefits that adding contex-

tual assertions brings is that it makes very explicit the facts, both domain specific

and commonsense that govern a procedure, thereby making constraints explicit for a

language model. This exploration was what we utilized to develop our Hybrid model.

8.5 Explainability

One reason that we followed the route of generating and incorporating a knowledge

graph, is because it can provide a visualizable explanation of what makes up a step

(both explicitly and implicitly). Before the advent of very large language models,

we needed to find a way to supply information that the model may not know (e.g.,

commonsense information). Now, however, very large language models have the ca-

pability of storing a vast amount of both factual and contextual knowledge[178]. One

benefit, in this age of the LLM, of including a knowledge graph in our systems, is
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that it can give the user some insight into what the model used to reason to generate

the steps that it was giving.

Figure 8-12: Asking the hybrid
KDPSG + LLM model to explain its
reasoning for a specific step that the
base model does not know how to do.

Figure 8-13: Asking the hybrid
KDPSG + LLM model for an expla-
nation of a known step based on addi-
tional KG information

In Figures 8-12 and 8-13, we ask our Hybrid KDPSG+LLM agent to give an

explanation on a certain step based on what it knows. Figure 8-12 asks it to explain

a step that the base LLM model has outdated/unseen information on. We see that

from the knowledge graph that we give it (based on the spelling that the agent uses),

that it can begin to pick out facts that may be essential to understand the steps from

the knowledge we supplied. We also see that this is applicable to seen procedures also.

Although this is an exploration into this area, our Hybrid LLM+KDPSG system is

capable of using the knowledge graph that was given in a way that we could post

process and visualize to understand its reasoning.
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8.6 Summary

In this eight Chapter, we discussed some of the limitations found in our work. In

particular, the limitations of large language models (LLMs) in providing procedural

guidance for specific domains. While LLMs excel in providing general procedural

guidance, their effectiveness decreases in domains that are not well-documented or

not seen multiple times in their training data. We also note their lack of rigid uti-

lization of conversational patterns, which can result in generating responses that are

useless for advancing a conversational. We suggest a promising direction of inform-

ing the language model of how a procedural interaction or extended telling works to

address this issue. We also look at a promising direction of utilizing our contextual

commonsense inference system for informing LLMs of the necessary information to

do a procedure. We also explore the challenges in creating a flexible intent-based

system such as the one we use for general procedure handling, and how this may

be improved by leveraging LLMs to serve as the intent-recognition and interaction

system. We looked at limitations in our reasoner system, and how a more general

knowledge retrieval system may improve the system’s ability to generate procedures

on the fly.
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Chapter 9

Contributions and Future Work

Don’t cry because it’s over, smile because it happened.-Dr. Seuss

9.1 Future Work

9.1.1 Embodiment

Although the system that we have mentioned up until now has been focused on

being purely conversational with no other interface, it is possible to place it inside

an embodied conversational agent (ECA). This additional embodiment may provide

more focus and attention from users of the system. Embodiment may be beneficial

because an embodied conversation agent will elicit significantly more sympathetic

social behavior than those agents without physical form. This frames embodiment as

a means to natural interaction.[96] Embodied conversational agents are “specifically

conversational in their behaviors, and specifically human-like in the way they use

their bodies in conversation”. [96] In addition to this, if the embodied system has

a screen, we can leverage it to provide visualizations of the intermediate knowledge

graph and the reasoning paths to give the user insight into how the system functions.
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9.1.2 Visual Outputs for Guidance

We note that this entire work focuses on procedures being conveyed through text.

Recently, there have been large advances in text-to-image generation models [32].

These models are now capable of providing incredibly realistic images if a given text

prompt is good enough. These models could be leveraged for multi-modal procedural

step generation. We give an example of this now utilizing the Dall-E model[143]1

For the prompt:

Write the date in the line in the upper-right hand of a paper check. Use a

wikiHow art style.

In Figure 9-1 we see the result.

We note a couple of things, the Dall-E is a very general model for text-to-

image generation. Additionally, there may not be training data in it for generating

procedure-oriented clarification/representation images. While this particular image

may not be useful, we note that for GUI descriptions, this may be more effective.

Future work should explore combining visual descriptions of objects in steps to help

with guidance. This was feedback that was given throughout the studies that we

performed.

9.1.3 Multi-modal Inputs for Guidance

In the same way that we could hypothetically incorporate visual guidance outputs

for our system, we could incorporate visual inputs to the model. This could help to

guide people in the case that there are visually tasks that may require some kind

of confirmation that a step that requires visual confirmation has been performed

correctly. In other words, a user could take a picture of a result, and have the system

confirm that it was the correct output. With GPT-4, which is capable of ingesting

pictures, this could be tested out in future work.

1https://labs.openai.com
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Figure 9-1: Dall-E’s generation of prompt: Write the date in the line in the upper-
right hand of a paper check. Use a wikiHow art style. We note that while it is a rough
image, there is some semblance of a check and of writing something.

283



9.2 Final Remarks

We set out to build a conversational agent for helping people perform procedures that

they may not know how to do, and having the ability to recover from errors if they ran

into them while performing the procedures. We wanted to build such a system to help

people understand and utilize technology. What began as a dream many years ago has

now concretized into an agent that works and can be deployed. We wanted to make

this agent rely solely on knowledge such that if needed it could explain its reasoning

process clearly, and could combine its knowledge with new knowledge whenever it

may be lacking to help with error handling. We now summarize everything that we

did to make this dream come true.

In this fourth chapter, we describe the systems we developed to perform contex-

tual, common sense inference for procedures. These systems utilize large language

models, specifically transformer models, to ingest a story or procedure. We then

generate a knowledge graph for each sentence or step of the procedure, by using a

model that incorporates multiple knowledge sources and enables us to score generated

assertions. Another unique contribution of our system is that it can be controlled,

which allows us to apply it to generate facts about specific items. We also provide

a proof-of-concept system that can extract procedural steps from web searches for a

specific procedure. To train our step generation model and apply our reasoner, we

contribute a wikiHow dataset with detailed steps, requirements and other data. This

particular aspect of our work addresses the problem of providing contextual, common

sense inference for procedures, and our contributions enable us to leverage this for

procedural guidance later on.

In the fifth chapter, we demonstrate the possibility of generating steps for proce-

dural guidance by formulating the problem as a graph-to-text task, where the graph

is generated from a contextual commonsense inference model and the text represents

the procedural step. We observe that the quality and amount of information signif-

icantly impact the generation system’s performance. Based on this observation, we

recommend a two-stage system with a planning stage and a generation stage, where
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the planner devises a useful plan for the generation process. We explore unsuper-

vised, semi-supervised, and reinforcement learning systems for the planner but find

that they underperform compared to a simple baseline of ranking knowledge based on

the plausibility of the context. We also investigate using a large language model as

a proxy for a reasoner, but find limitations in its contextual processing capabilities.

Additionally, we devise a simple recursive algorithm to handle exceptions and issues

within procedures, and explore the benefits of combining knowledge from different

procedures to contextualize error handling.

In this sixth chapter, we introduce our conversational agent architecture consist-

ing of a web-server backend and GUI frontend, which we utilize for user testing.

Our primary agent employs an intent-based system that incorporates conversational

patterns to convey procedural instructions. One contribution we make is to extend

the telling conversational pattern to handle inquiries for error recovery, along with

recursive extended tellings for this. Additionally, we present an agent powered by a

large language model (LLM) that provides guidance through prompts, and a hybrid

Knowledge Driven LLM that addresses usability issues discovered with the intent-

based systems.

In the seventh chapter, we conduct two separate studies to evaluate the effec-

tiveness of conversational agents in guiding users through procedures, including error

recovery situations, and a third and final study to test a hybrid system approach. In

the first study, we find that all three agents can successfully guide most users through

procedures, although the intent-based agents require improvements in usability, par-

ticularly in intent-matching and slot-filling capabilities. We also observe that LLMs

are highly capable of providing guidance in most procedures, but their information

may be outdated.

In the second study, we assess the agents’ ability to guide users in error recovery

situations. We determine that all three agents can effectively guide individuals in

such scenarios, but the intent-based agent struggles with understanding requests and

requires improvement. Our findings highlight the importance of maintaining con-

text during error interactions and emphasize the value of clear, concise step-by-step
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instructions in guiding users through procedures and error resolution. The LLM-

based agent demonstrates greater flexibility in error handling and excels at providing

guidance during exception processes.

In the third and final study, we leverage the LLM agent’s flexibility in intent

recognition, slot-filling, and chit-chat capabilities, combining it with our knowledge-

driven step generation system and contextual commonsense inference facts. This

hybrid system effectively identifies requests for procedural guidance, retrieves top-

ranked facts and generated steps, and utilizes them as prompts to offer guidance to

users. We observe that this hybrid system outperforms a baseline LLM in terms

of providing more accurate and reliable knowledge. Additionally, we discover that

incorporating descriptions of conversational patterns further improves the system’s

usability.

Based on our comprehensive research, we demonstrate that our contextual com-

monsense knowledge-based pipeline can effectively assist end-users through proce-

dures, both in the form of an intent-based system and a more capable hybrid knowledge-

LLM approach for procedure guidance and recovery.

In the eighth chapter, we discuss the limitations encountered during our work.

Specifically, we address the limitations of large language models (LLMs) in providing

procedural guidance for specific domains. While LLMs excel at offering general proce-

dural guidance, their effectiveness diminishes in domains with limited documentation

or insufficient training data. We also note their lack of adherence to conversational

patterns, resulting in the generation of unhelpful responses for advancing a conversa-

tion. To overcome these issues, we propose informing the language model about the

procedure at hand and extended telling to enhance its performance. Additionally,

we explore leveraging our contextual commonsense inference system to provide the

necessary information to LLMs for procedural tasks. Furthermore, we discuss the

challenges in creating a flexible intent-based system, such as the one we utilized for

general procedure handling, and propose leveraging LLMs as the intent recognition

and interaction system to improve its capabilities. We also examine the limitations

of our reasoner system and suggest that a more comprehensive knowledge retrieval
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system could enhance the ability to generate procedures on-the-fly.

In conclusion, we demonstrate that our contextual commonsense knowledge-based

pipeline, integrated with conversational agents, is effective in providing procedural

guidance and error recovery. We acknowledge the limitations encountered during our

research and propose potential solutions to improve the performance of large language

models and intent-based systems. Overall, our work contributes to the advancement

of procedural guidance systems and highlights the importance of incorporating con-

textual facts and conversational patterns for more accurate and reliable assistance to

users.

In summary, we present our work on developing a contextual commonsense in-

ference system for procedures, which utilizes large language models and a knowledge

graph to generate accurate and effective procedural guidance. We present an ap-

proach for generating procedural steps. We also developed a conversational agent

architecture that incorporates conversational patterns to convey procedural instruc-

tions, and evaluated the effectiveness of our system through user testing. While we

acknowledge some limitations in our work, we show the potential of our system in

providing procedural guidance and error recovery for end-users. We also provide first

insights into the use of more contemporary very large language models for this task

of procedural guidance.

Overall, we find that we can do this task, and are hopeful that for the future,

these agents will be deployed on a wide scale and utilized by everyone ranging from

amateurs to experts for procedural guidance.

We make one final note. When we began research on this area around 5 years

ago, such a system as the one that we proposed did not exist, nor did we have the

slightest idea of how fast natural language processing would move with the advent

of transformers. Although now it is possible to perform good zero-shot procedural

guidance with very large language models, we have found that it is not perfect and

has room to improve. We do not see this as obviating the need for work like ours, on

contextual commonsense inference, nor on guidance, but as a complementary thing, a

stepping stone in the right direction for providing guidance for the general audience.
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9.2.1 Summary of Contributions

1. Controllable Contextual Commonsense Inference System

A novel transformer-based, sequence-to system that is capable of taking a story,

a sentence from that story, and a hint, and controllably produces a contextual

commonsense assertion (fact) that is relevant to the story and sentence. The

system is novel in that it utilizes the hint to guide the generation process, it

uses a co-trained classifier to rate the plausibility of the assertions, and a single

contextual commonsense inference model learns commonsense information from

multiple aligned sources.

2. Graph-to-Step System & Assertion Ranking Strategy

A novel transformer-based sequence-to-sequence system that takes a procedure

name, a number of a step, prior steps, and a set of assertions and produces the

indicated step for a procedure. This is the first system which applies the Data-

to-text task for procedural step generation. This is combined with grounding

the contextual inference process and sorting assertions by plausibility to select

the essential knowledge for a procedural step.

3. Conversational Procedure Error Handling Strategy

Novel utilization of an expanded Inquiry conversational pattern to handle pro-

cedural errors. Inquiries for error handling procedures are treated as Extended

Tellings to provide error handling guidance. In addition to this, we combine

contextual knowledge graphs to contextualize the generated steps for this error

handling extended telling.

4. Conversational agents for procedural guidance & error handling

Design and implementation of conversational agents that provide guidance with

our novel contextual commonsense system. We show that the use of this conver-

sational agent with the patterns along with our dynamic step generation system

can be utilized to guide people through procedures and through error recovery

in procedures.
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5. Hybrid Agent that uses Large-Language Models in combination with

Graph-to-Step and Contextual Commonsense Inference

Implementation and evaluation of a novel conversational agent that leverages

the flexibility of large language models and the explainability and knowledge-

based approach of the contextual commonsense and graph-to-step system. We

show that this hybrid system produces more accurate and reliable information

that a plain large-language model. We also provide a first evaluation of large-

language models applied to general procedure guidance

6. Guidelines for Future Agent Development

From our evaluations and feedback we provide a list of guidelines that should be

taken into consideration when developing conversational agents for procedures.
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Appendix A

Study Questionnaires

A.1 Study 1

Here we show the questionnaire that we utilized for Study 1 (evaluating whether users

could receive effective guidance from a system or not).
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 Page 1 of 19 

Procedural Guidance using 
Conversational Agents GPT 
 

 

Start of Block: Intro Block 

 
 

Q1 Thank you for participating in this study.  An overview of how the study will work is 

the following:  First, you'll need to complete a pre-study questionnaire. Then, you'll be given a 

link to a conversational agent and asked to follow a specific procedure. Once you've interacted 

with the agent and attempted the procedure, you'll be asked to provide feedback on your 

experience. You'll repeat this process with another agent and provide feedback again. Finally, 

you'll complete a final questionnaire about your overall experience. Please be sure to read all 

instructions carefully to avoid having your task rejected and not receiving payment. 

  Disclaimer:  This study is part of a MIT scientific research project. Your decision to complete 

this study is voluntary.  By completing the study, participants will share the audio from their 

conversation with the agent, transcripts of the conversation, and the time it takes to complete 

the process. If a participant is uncomfortable with this we ask that you do not accept the task. In 

this study some possible uncomfortable things are: although uncommon, strange responses 

from the voice assistant ranging from incoherent to possibly offensive voice responses.  After 

completing the study, researchers will asses the results and reward participants within a week. 

Audio information will not be kept. There is no way for us to identify you. The only information 

we will have, in addition to your responses, is the time at which you completed the survey. The 

results of the research may be presented at scientific meetings or published in scientific 

journals. Clicking on the 'START' button on this page and the 'SUBMIT' button at the end of this 

study indicates that you are at least 18 years of age and agree to complete this study 

voluntarily.     Survey ID: ${e://Field/RandomId}(In case of questions) 

 

 

 

Q49 Write your Prolific ID (this will be used to link this survey with the Prolific one for validation 

and compensation) 

 

________________________________________________________________ 
 

End of Block: Intro Block 
 

Start of Block: Pre-Study Block 
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Q1 How familiar are you with conversational agents (e.g. voice assistants like Siri, Alexa, 

Google Assistant)?  

 

o Not familiar at all  (1)  

o Slightly familiar  (2)  

o Moderately familiar  (3)  

o Very familiar  (4)  

o Extremely familiar  (5)  
 

 

 

Q2  What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
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Q3 In a typical day, how many times do you interact with a conversational agents (e.g., Siri, 

Alexa, Google Assistant)? 

o 0 times  (1)  

o 1-2 times  (2)  

o 3-5 times  (3)  

o 6-10 times  (4)  

o 11+ times  (5)  
 

 

 
 

Q4 How many times have you performed these procedures in the past month 

 Never (0 
times in 
the past 
month) 

Rarely 
(1-3 

times in 
the past 
month) 

Occasionally 
(4-6 times in 

the past 
month) 

Often (7-
10 times 
a month) 

Very 
Often 

(almost 
every 
day in 

the past 
month) 

 

 0 1 2 3 4 5 
 

Mirror a smartphone to a display wirelessly () 

 

Share your location through text messages on 
a smartphone ()  

Compose an email in your smartphone with an 
attachment/embedded image ()  

Organize smartphone applications into folders 
()  

Compose a Multi-media note in your 
smartphone ()  

Create a calendar entry in your smartphone 
with a video conference link ()  

Set up an automation on your smartphone () 

 

Set up an email signature on your smartphone 
()  
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End of Block: Pre-Study Block 
 

Start of Block: Agent1 Launch 

 

Q6 Based on your previous answers you have been selected to perform the following procedure 

on your smartphone:  

  

 ${e://Field/SelectedProcedure} 

  

 Make sure to adapt the procedure to devices that you have (for example, How do I edit a 

picture on my iPhone/Android? instead of How do I edit a picture on my smartphone) 

when asking for guidance. 

  

 To accomplish this, follow the link below. It will open a page to a conversational assistant. 

Please turn On/Up the Volume in your browser and utilize the microphone button to dictate your 

conversation. If needed you may type it also. 

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

 for a device you own. 

  

 Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure. 

  

 Once you are done with this click next.  

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

 

Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 

and message us. 

  

 ${e://Field/AgentOpt1}" rel="noopener" target="_blank">Click Here to Launch the Agent Page 
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  Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

 

End of Block: Agent1 Launch 
 

Start of Block: Feedback 1 

 

Q9 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q10 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q11 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q12 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q13 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q14 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q15 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q16 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q17 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q18 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q19 Did you succeed in your task (what the agent guided you on)? 

o Yes  (1)  

o No  (2)  
 

 

 

Q20 Did you accomplish your goal (what you were told to do)? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q21 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q22 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q23 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

Page Break  
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Q24 Did you encounter any problems when performing your task? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q25 What did you feel worked very well when completing the task? 

________________________________________________________________ 
 

 

 

Q53 What did you feel did not work well when completing the task? 

________________________________________________________________ 
 

 

 

Q26 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q54 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q27 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 1 
 

Start of Block: Agent2 Launch 

 

Q52 Based on your previous answers you have been selected to perform the following 

procedure on your smartphone:  

  

 ${e://Field/SelectedProcedure} 
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*note that you may have to do the same procedure as before* 

 Make sure to adapt the procedure to devices that you have (for example, How do I edit a 

picture on my iPhone/Android? instead of How do I edit a picture on my smartphone) 

when asking for guidance. 

  

 To accomplish this, follow the link below. It will open a page to a conversational assistant. 

Please turn On/Up the Volume in your browser and utilize the microphone button to dictate your 

conversation. If needed you may type it also. 

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

 for a device you own. 

  

 Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure. 

  

 Once you are done with this click next.  

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

 

Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 

and message us. 

  

 ${e://Field/AgentOpt2}" rel="noopener" target="_blank">Click Here to Launch the Agent Page 

   

 

 

 

Q52 Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

End of Block: Agent2 Launch 
 

Start of Block: Feedback 2 
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Q33 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q34 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q35 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q36 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q37 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q38 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q39 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q40 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q41 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q42 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  

  



 

 

 Page 17 of 19 

 

Q43 Did you succeed in your task (what the agent guided you on)? 

o Yes  (1)  

o No  (2)  
 

 

 

Q44 Did you accomplish your goal (what you were told to do)? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q45 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q46 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q47 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q48 Did you encounter any problems when performing your task? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q49 What did you feel worked very well when completing the tasks? 

________________________________________________________________ 
 

 

 

Q55 What did you feel did not work well when completing the tasks? 

________________________________________________________________ 
 

 

 

Q50 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
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Q56 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q51 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 2 
 

Start of Block: Final Remarks 

 

Q57 What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
 

 

 

Q58 Do you think the tasks given were appropriate for this kind of agent? Why or why not? 

________________________________________________________________ 
 

 

 

Q48 Anything else? Is there any other feedback that you would like to give? This can be on the 

survey, the interactions, the interface, etc. 

________________________________________________________________ 
 

End of Block: Final Remarks 
 

 



A.2 Study 2

Here we show the questionnaire that we utilized for Study 2 (evaluating whether users

could recover from an error in guidance or not).
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Procedural Guidance with Errors using 
Conversational Agents KDPG 
 

 

Start of Block: Intro Block 

 
 

Q1 Thank you for participating in this study.  An overview of how the study will work is 

the following:  First, you'll need to complete a pre-study questionnaire. Then, you'll be given a 

link to a conversational agent and asked to follow a specific procedure. At a certain point in the 

procedure, you will have to utilize the agent to guide you to fix a mistake. Once you've 

interacted with the agent and attempted the procedure, you'll be asked to provide feedback on 

your experience. You'll repeat this process with another agent and provide feedback again. 

Finally, you'll complete a final questionnaire about your overall experience. Please be sure to 

read all instructions carefully to avoid having your task rejected and not receiving payment. 

  Disclaimer:  This study is part of a MIT scientific research project. Your decision to complete 

this study is voluntary.  By completing the study, participants will share the audio from their 

conversation with the agent, transcripts of the conversation, and the time it takes to complete 

the process. If a participant is uncomfortable with this we ask that you do not accept the task. In 

this study some possible uncomfortable things are: although uncommon, strange responses 

from the voice assistant ranging from incoherent to possibly offensive voice responses.  After 

completing the study, researchers will asses the results and reward participants within a week. 

Audio information will not be kept. There is no way for us to identify you. The only information 

we will have, in addition to your responses, is the time at which you completed the survey. The 

results of the research may be presented at scientific meetings or published in scientific 

journals. Clicking on the 'START' button on this page and the 'SUBMIT' button at the end of this 

study indicates that you are at least 18 years of age and agree to complete this study 

voluntarily.     Survey ID: ${e://Field/RandomId}(In case of questions) 

 

 

 

Q49 Write your Prolific ID (this will be used to link this survey with the Prolific one for validation 

and compensation) 

 

________________________________________________________________ 
 

End of Block: Intro Block 
 

Start of Block: Pre-Study Block 
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Q1 How familiar are you with conversational agents (e.g. voice assistants like Siri, Alexa, 

Google Assistant)?  

 

o Not familiar at all  (1)  

o Slightly familiar  (2)  

o Moderately familiar  (3)  

o Very familiar  (4)  

o Extremely familiar  (5)  
 

 

 

Q2  What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
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Q3 In a typical day, how many times do you interact with a conversational agents (e.g., Siri, 

Alexa, Google Assistant)? 

o 0 times  (1)  

o 1-2 times  (2)  

o 3-5 times  (3)  

o 6-10 times  (4)  

o 11+ times  (5)  
 

 

 
 

Q4 How many times have you performed these procedures in the past month 

 Never (0 
times in 
the past 
month) 

Rarely 
(1-3 

times in 
the past 
month) 

Occasionally 
(4-6 times in 

the past 
month) 

Often (7-
10 times 
a month) 

Very 
Often 

(almost 
every 
day in 

the past 
month) 

 

 0 1 2 3 4 5 
 

Share your location through text messages on 
a smartphone ()  

Compose an email in your smartphone with an 
attachment/embedded image ()  

Organize smartphone applications into folders 
()  

Create a calendar entry in your smartphone 
with a video conference link ()  

 

 

End of Block: Pre-Study Block 
 

Start of Block: Agent1 Launch 

 

Q6 Based on your previous answers you have been selected to perform the following procedure 

on your smartphone:  
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 ${e://Field/SelectedProcedure} 

  

 Make sure to adapt the procedure to devices that you have (for example, How do I edit a 

picture on my iPhone/Android? instead of How do I edit a picture on my smartphone) 

when asking for guidance. 

  

 To accomplish this, follow the link below. It will open a page to a conversational assistant. 

Please turn On/Up the Volume in your browser and utilize the microphone button to dictate your 

conversation. If needed you may type it also. 

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

 for a device you own. 

  

 Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure. 

  

 ${e://Field/SelectedStop} 

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

  

 Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 

and message us. 

  

 ${e://Field/AgentOpt1}" rel="noopener" target="_blank">Click Here to Launch the Agent Page 

   

 

 

 

  Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

 

End of Block: Agent1 Launch 
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Start of Block: Error 1 

 

Q60 Now: 

 

${e://Field/SelectedError} 

 

Follow the agent's instructions to remedy the situation, and after the agent has guided you on 

attempting to fix this, try to complete the original procedure: 

 

${e://Field/SelectedProcedure}  

 

Once more note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will result in 

invalidation of the task and no payment.  Finally, note that the agent may give an error to wait a 

couple of minutes. Please wait and try again, this time has been taken into account when 

calculating the time for the study. If the error keeps happening, try to paraphrase your question. 

If the error still keeps happening, continue and message us.  

 

 

 

 

 

Q61 Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

 

End of Block: Error 1 
 

Start of Block: Feedback 1 

 

Q9 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q10 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q11 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q12 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q13 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q14 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q15 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q16 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q17 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q18 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Page Break  
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Q19 Did you succeed in your task (what the agent guided you on)? 

o Yes  (1)  

o No  (2)  
 

 

 

Q66 Did you succeed in the mistake fixing task (what the agent guided you on to fix the 

mistake)? 

o Yes  (4)  

o No  (5)  
 

 

 

Q20 Did you accomplish your goal (what you were told originally to do)? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q21 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q22 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q23 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

Page Break  
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Q24 Did you encounter any problems when performing your tasks? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q64 Were you able to recover from the problem that was given (${e://Field/SelectedError}) and 

finish the original task? Describe any issues or things that went well. 

 

________________________________________________________________ 
 

 

 

Q67 How would you ask a virtual agent for help if you made a mistake following instructions? 

 

________________________________________________________________ 
 

 

Page Break  
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Q25 What did you feel worked very well when completing the task? 

________________________________________________________________ 
 

 

 

Q53 What did you feel did not work well when completing the task? 

________________________________________________________________ 
 

 

Page Break  
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Q26 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q54 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

Page Break  
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Q27 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 1 
 

Start of Block: Agent2 Launch 

 

Q52 Now you will perform the same task, with a different agent. Based on your previous 

answers you had been selected to perform the following procedure on your smartphone:  

  

 ${e://Field/SelectedProcedure} 

  

*note that you may have to do the same procedure as before* 

 Make sure to adapt the procedure to devices that you have (for example, How do I edit a 

picture on my iPhone/Android? instead of How do I edit a picture on my smartphone) 

when asking for guidance. 

  

 To accomplish this, follow the link below. It will open a page to a conversational assistant. 

Please turn On/Up the Volume in your browser and utilize the microphone button to dictate your 

conversation. If needed you may type it also. 

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

 for a device you own. 

  

  Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure.  

${e://Field/SelectedStop}  

 Once you are done with this click next.  

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

 

Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 
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and message us. 

  

 ${e://Field/AgentOpt2}" rel="noopener" target="_blank">Click Here to Launch the Agent Page 

   

 

 

 

 

 

Q52 Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

End of Block: Agent2 Launch 
 

Start of Block: Error 2 

 

Q73 Now: 

 

${e://Field/SelectedError} 

 

Follow the agent's instructions to remedy the situation, and after the agent has guided you on 

attempting to fix this, try to complete the original procedure: 

 

${e://Field/SelectedProcedure}  

 

Once more note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will result in 

invalidation of the task and no payment.  Finally, note that the agent may give an error to wait a 

couple of minutes. Please wait and try again, this time has been taken into account when 

calculating the time for the study. If the error keeps happening, try to paraphrase your question. 

If the error still keeps happening, continue and message us.  

 

 

 

 

 

Q74 Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

 

End of Block: Error 2 
 

Start of Block: Feedback 2 
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Q75 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q76 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q77 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q78 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q79 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q80 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q81 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q82 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q83 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q84 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q85 Did you succeed in your task (what the agent guided you on)? 

o Yes  (1)  

o No  (2)  
 

 

 

Q86 Did you succeed in the mistake fixing task (what the agent guided you on to fix the 

mistake)? 

o Yes  (4)  

o No  (5)  
 

 

 

Q87 Did you accomplish your goal (what you were told originally to do)? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q88 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q89 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q90 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

Page Break  
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Q91 Did you encounter any problems when performing your tasks? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q92 Were you able to recover from the problem that was given (${e://Field/SelectedError}) and 

finish the original task? Describe any issues or things that went well. 

 

________________________________________________________________ 
 

 

 

Q93 How would you ask a virtual agent for help if you made a mistake following instructions? 

 

________________________________________________________________ 
 

 

Page Break  
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Q94 What did you feel worked very well when completing the task? 

________________________________________________________________ 
 

 

 

Q95 What did you feel did not work well when completing the task? 

________________________________________________________________ 
 

 

Page Break  

  



 

 

 Page 25 of 26 

 

Q96 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q97 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

Page Break  
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Q98 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 2 
 

Start of Block: Final Remarks 

 

Q57 What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
 

 

 

Q58 Do you think the tasks given were appropriate for this kind of agent? Why or why not? 

________________________________________________________________ 
 

 

 

Q48 Anything else? Is there any other feedback that you would like to give? This can be on the 

survey, the interactions, the interface, etc. 

________________________________________________________________ 
 

End of Block: Final Remarks 
 

 



A.3 Study 3

Here, we show the questionnaire that we utilized for Study 3 (evaluating whether

a hybrid KDPSG and ChatGPT agent would provide more accurate/reliable proce-

dures).

338
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Procedural Guidance using 
Conversational Agents GPT-kGPT 
 

 

Start of Block: Intro Block 

 
 

Q1 Thank you for participating in this study.  An overview of how the study will work is 

the following:  First, you'll need to complete a pre-study questionnaire. Then, you'll be given a 

link to a conversational agent and asked to follow a specific procedure on a iOS device. Once 

you've interacted with the agent and attempted the procedure, you'll be asked to provide 

feedback on your experience. You'll repeat this process with another agent and provide 

feedback again. Note that you will be given the same task twice. Finally, you'll complete a final 

questionnaire about your overall experience. Please be sure to read all instructions carefully to 

avoid having your task rejected and not receiving payment. 

  Disclaimer:  This study is part of a MIT scientific research project. Your decision to complete 

this study is voluntary.  By completing the study, participants will share the audio from their 

conversation with the agent, transcripts of the conversation, and the time it takes to complete 

the process. If a participant is uncomfortable with this we ask that you do not accept the task. In 

this study some possible uncomfortable things are: although uncommon, strange responses 

from the voice assistant ranging from incoherent to possibly offensive voice responses.  After 

completing the study, researchers will asses the results and reward participants within a week. 

Audio information will not be kept. There is no way for us to identify you. The only information 

we will have, in addition to your responses, is the time at which you completed the survey. The 

results of the research may be presented at scientific meetings or published in scientific 

journals. Clicking on the 'START' button on this page and the 'SUBMIT' button at the end of this 

study indicates that you are at least 18 years of age and agree to complete this study 

voluntarily.     Survey ID: ${e://Field/RandomId}(In case of questions) 

 

 

 

Q49 Write your Prolific ID (this will be used to link this survey with the Prolific one for validation 

and compensation) 

 

________________________________________________________________ 
 

End of Block: Intro Block 
 

Start of Block: Pre-Study Block 
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Q1 How familiar are you with conversational agents (e.g. voice assistants like Siri, Alexa, 

Google Assistant)?  

 

o Not familiar at all  (1)  

o Slightly familiar  (2)  

o Moderately familiar  (3)  

o Very familiar  (4)  

o Extremely familiar  (5)  
 

 

 

Q2  What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
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Q3 In a typical day, how many times do you interact with a conversational agents (e.g., Siri, 

Alexa, Google Assistant)? 

o 0 times  (1)  

o 1-2 times  (2)  

o 3-5 times  (3)  

o 6-10 times  (4)  

o 11+ times  (5)  
 

 

 
 

Q4 How many times have you performed these procedures in the past month 

 Never (0 
times in 
the past 
month) 

Rarely 
(1-3 

times in 
the past 
month) 

Occasionally 
(4-6 times in 

the past 
month) 

Often (7-
10 times 
a month) 

Very 
Often 

(almost 
every 
day in 

the past 
month) 

 

 0 1 2 3 4 5 
 

Unsend a text message on iPhone () 

 

Edit a sent message on iPhone () 

 

Share location on messages in iPhone () 

 

Change the clock style on the Lock Screen 
on iPhone ()  

 

 

End of Block: Pre-Study Block 
 

Start of Block: Agent1 Launch 

 

Q6 Based on your previous answers you have been selected to perform the following procedure 

on your smartphone:  
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 ${e://Field/SelectedProcedure} 

  

 To accomplish this, follow the link below. It will open a page to a conversational assistant. 

Please turn On/Up the Volume in your browser and try to utilize the microphone button to 

dictate your conversation. If the transcription is not very good, please type the message. 

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

  

 Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure. 

  

 Once you are done with this click next.  

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

  

 Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 

and message us. 

  

 ${e://Field/AgentOpt1}" rel="noopener" target="_blank">Click Here to Launch the Agent Page 

   

 

 

 

  Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

 

End of Block: Agent1 Launch 
 

Start of Block: Feedback 1 
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Q9 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q10 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q11 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q12 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q13 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q14 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q15 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q16 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q17 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q18 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q19 Did you succeed in your task (what the agent guided you on) with the agent? 

o Yes  (1)  

o No  (2)  
 

 

 

Q20 Did you accomplish your goal (what you were told to do) with the agent? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q65 I think the guidance I was given is up-to-date 

 

o Yes  (1)  

o No  (2)  
 

 

 

Q66 I feel like the chatbot’s responses were accurate. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q68 I believe that the chatbot only states reliable information. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q67 It appeared that the chatbot provided accurate and reliable information. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q21 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q22 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q23 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

Page Break  

  



 

 

 Page 13 of 24 

 

Q24 Did you encounter any problems when performing your task? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q25 What did you feel worked very well when completing the task? 

________________________________________________________________ 
 

 

 

Q53 What did you feel did not work well when completing the task? 

________________________________________________________________ 
 

 

 

Q26 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q54 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q27 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 1 
 

Start of Block: Agent2 Launch 

 

Q52 Based on your previous answers you have been selected to perform the following 

procedure on your smartphone:  

  

 ${e://Field/SelectedProcedure} 
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 *note that you have to do the same procedure as before* 

  

 To accomplish this, follow the link below. It will open a page to a conversational 

assistant.Please turn On/Up the Volume in your browser and try to utilize the microphone 

button to dictate your conversation. If the transcription is not very good, please type the 

message. 

  

  

 Remember, you have to ask this assistant for help/how to perform: 

 ${e://Field/SelectedProcedure}. 

  

 Follow the agent's instructions on how to perform the procedure and attempt to perform the 

procedure. 

  

 Once you are done with this click next.  

  

 Note that you must log in utilizing the following credentials: 

  

 Username: ${e://Field/RandomId} 

 Password: ${e://Field/RandomId} 

  

 Also note that the interaction with the agent will be recorded (audio and text transcripts). 

Failure to ask for instructions with the agent and follow through until the last step will 

result in invalidation of the task and no payment. 

  

 Finally, note that the agent may give an error to wait a couple of minutes. Please wait and try 

again, this time has been taken into account when calculating the time for the study. If the error 

keeps happening, try to paraphrase your question. If the error still keeps happening, continue 

and message us. 

 

Note that you may have the transcript of the previous conversation, it is fine to ignore this, and 

the agent will not know this past conversation. 

  

 ${e://Field/AgentOpt2}">Click Here to Launch the Agent Page 

   

 

 

 

Q52 Optional: Upload an image with evidence that you did the procedure (This will expedite our 

review of the task) 

 

End of Block: Agent2 Launch 
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Start of Block: Feedback 2 

 

Q33 I felt the agent was conversational 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q34 I felt the conversation was natural 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q35 I had to pay special attention regarding my phrasing when communicating with the agent 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q36 I find that the agent understands what I want and helps me achieve my goal 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q37 The agent gives me the appropriate amount of information 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q38 The agent gave relevant information during the whole conversation 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q39 I thought the agent was easy to use 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q40 I would imagine that most people would learn to use this agent very quickly 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q41 I found the agent unnecessarily complex 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 



 

 

 Page 18 of 24 

 

Q42 I think that I would like to use this agent frequently 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q43 Did you succeed in your task (what the agent guided you on) with the agent? 

o Yes  (1)  

o No  (2)  
 

 

 

Q44 Did you accomplish your goal (what you were told to do) with the agent? 

o Yes  (1)  

o No  (2)  
 

 

Page Break  
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Q61 I think the guidance I was given is up-to-date 

 

o Yes  (1)  

o No  (2)  
 

 

 

Q62 I feel like the chatbot’s responses were accurate. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

 

Q69 I believe that the chatbot only states reliable information. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
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Q64 It appeared that the chatbot provided accurate and reliable information. 

o Strongly disagree  (4)  

o Somewhat disagree  (5)  

o Neither agree nor disagree  (6)  

o Somewhat agree  (7)  

o Strongly agree  (8)  
 

 

Page Break  
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Q45 Did the agent misunderstand you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q46 Did the interaction with the agent frustrate you? If so, how? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q47 Did you encounter any problems when interacting with the agent? Otherwise write N/A. 

________________________________________________________________ 
 

 

 

Q48 Did you encounter any problems when performing your task? If so, what? Otherwise write 

N/A. 

________________________________________________________________ 
 

 

 

Q49 What did you feel worked very well when completing the tasks? 

________________________________________________________________ 
 

 

 

Q55 What did you feel did not work well when completing the tasks? 

________________________________________________________________ 
 

 

 

Q50 What did you feel was useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 



 

 

 Page 23 of 24 

Q56 What did you feel was not useful or effective when interacting with the agent? 

________________________________________________________________ 
 

 

 

Q51 Anything else? How could this interaction be improved? 

________________________________________________________________ 
 

End of Block: Feedback 2 
 

Start of Block: Final Remarks 

 

Q57 What is your perception on the usefulness of conversational agents (e.g., Siri, Alexa, 

Google Assistant)? 

o Not at all useful  (1)  

o Slightly useful  (2)  

o Moderately useful  (3)  

o Very useful  (4)  

o Extremely useful  (5)  
 

 

 

Q59 What kinds of procedures do you think these conversational agents would be helpful for? 

________________________________________________________________ 
 

 

 

Q60 What kinds of procedures do you think these conversational agents would NOT be helpful 

for? 

________________________________________________________________ 
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Q58 Do you think the tasks given were appropriate for this kind of agent? Why or why not? 

________________________________________________________________ 
 

 

 

Q48 Anything else? Is there any other feedback that you would like to give? This can be on the 

survey, the interactions, the interface, etc. 

________________________________________________________________ 
 

End of Block: Final Remarks 
 

 



Appendix B

Additional

B.1 Cosine Reasoner

Following our exploration of approximating the rouge score, we try to approximate

and minimize the cosine distance between the embedding of a fact, a procedure title

and the step number. We use a cosine embedding loss with confounders1 to help max-

imize the cosine distance between the embedding of a fact from a different procedure,

and a given procedure title and the step number. This serves a similar purpose as

the rouge score, because high values of this score, will be more semantically similar

to the step number of a certain procedure and therefore hopefully more relevant to

the realization model. It is also a more relaxed problem in that it does not need to

match exactly the step, it just needs to align with the step and procedure.

We tested this on a subset of 100 procedures, and from our results we found some

interesting things. The first is that this model seems to converge on facts that are

generally related to the procedure, but that may be irrelevant to the step at hand.

The second is that when we look at the plans that it comes up with, we see that there

are some useful facts for steps, but that it is still noisy. Although this is a promising

reasoner, it is possible that some different kind of loss (e.g. a contrastive loss) should

be used to try and remove the generally applicable facts, and keep the step-specific

ones.
1https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
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B.2 Existing Procedural Interaction: Cooking

Before going on to design a conversational agent for procedural interactions, we looked

at existing agents to see what the state of the art was for publicly available agents.

B.2.1 Heuristic Evaluation

We wanted to see how effective current conversational systems are at procedural tasks.

To do this, we selected cooking as a procedural task and ran a heuristic evaluation

of the interaction. We evaluated on an Amazon Alexa and on a Google Assistant the

procedure of cooking rice. We took into consideration the criteria described in 6.3.

A summary of the results of the evaluation were the following:

• Navigation in the interaction is inconsistent, going back and forth and jumping

around the steps in a procedure worked in different systems in different ways

(jumping worked for a specific step, in other cases it moved forward or backward)

• No contextual inquiries, during the interaction: a user cannot ask for more

information about the step or about anything given in the step

• No variation in levels of information and no rephrasing, the system always gives

the same steps for the procedure, therefore if the person does not understand,

then they cannot complete the procedure

• Repetitions are possible and a mere request for a repetition to the agent is

handled appropriately

• Barging in works as expected stopping the agent from saying anything else

• No useful help, the help mechanism is not contextual to the procedural in-

teraction. The help mechanisms, if present gave information about general

interactions with the assistant

• Somewhat effective information breakdown, the systems make a good effort

to parse and convey the procedure. The procedure that they parse has an

appropriate length (usually a sentence or two per step)
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• The initial start cooking intent is sometimes hard to nail down and may give

a short answer, this means that a more guided process to start the interaction

may be necessary

B.2.2 Small User Study for Usability of the Agents

We then ran this same interaction in a small user study (n=28) to validate that these

concerns were present. In summary, we told users to cook rice using either an Amazon

Alexa or a Google Assistant. In the study that was performed we found that the rice

cooking application used a good, simple vocabulary and effective communication. We

also found that the system lacks context of what is being discussed in the conversation

and that it would benefit from having access to different levels of information. We

found that the cooking interaction would benefit greatly from contextual question

answering and needs to adhere to sequence closers (exiting when saying “enjoy" at

the end of the recipe). We found that for the most part, the system had a good length

of the utterances, although there are pieces that could be broken down further. We

observed that most people tended to repeat and paraphrase themselves to get the

assistant to understand them rather than ask the assistant to repeat or rephrase. We

note that the cooking interaction system does not have the capability to paraphrase.

Overall, it seems that for cooking, this basic system may be sufficient, and could be

enhanced with a contextual question answering and paraphrasing system. This gave

some hope that in other areas these agents might be useful too2.

2For the complete study and its details, please check the following link
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B.3 Additional Studies

B.4 Long-Term Open-domain Guidance

B.4.1 Overview

In the studies in Chapter 7, we evaluated whether a conversational agent can be used

or not for guidance and if it helps people recover in procedures. For this study, we

wanted to evaluate what domains people would use it in, and which domains may

be better or not for this task. The overall results suggest that people tend to find

simple, minimal complexity/ambiguity procedures, that procedural guidance agents

should not only do procedures (i.e., they should have basic intent capabilities), and

that even with robust intent detection it might not match the capabilities of a LLM

powered agent.

B.4.2 Study Design

For this third study, we wanted to take a more open approach. We assigned each par-

ticipant a particular agent. The options for the agent were the Google Assistant, the

knowledge based procedural step generation system, or the ChatGPT-based system.

We then told participants to use this agent for one week and ask it for guidance on

whatever task they may need to do that requires instructions. After every interaction,

participants were told to fill out a feedback form with the following questions:

• How would you rate your interaction (5 point Likert)

• What were you trying to do? (Open response)

• Did you succeed in your task (what the agent guided you on)? (Yes/No)

• Did you accomplish your goal (what you wanted to do)? (Yes/No)

• Did the agent misunderstand you? If so, how? If not write N/A (Open response)

• Did you encounter any problems when interacting with the agent? If so, what?

If not write N/A (Open response)

366



• Did you encounter any problems when performing your task? If so, what? If

not write N/A (Open response)

• If you encountered any problem, were you able to recover from the problem and

finish the original task? If so, how? If not write N/A (Open response)

Our primary objective was to gather which domains procedural agents might be

best suited or unsuited for. We also wanted to gather what was the performance

of the Google Assistant, what we could call the most popular (or one of) state-of-

the-art agent. We also wanted to see if there was any use of the exception handling

mechanism in daily interactions.

We separated participants into 3 different groups and assigned them an agent to

use either through an app or through a web-app. The Google Assistant users, if

they had an iPhone, would download the Assistant app and in the case they had an

Android phone, configure the on-device assistant to be the Google Assistant. For the

KDPSG and ChatGPT-based agents, participants could either download an app for

their device, or access the web-interface. In either case, the system worked in the

same manner as the code was implemented in react-native and would have the same

functionality in all the platforms.

In this study, we had 10 people participate, and the distribution was 3 people for

the Google Assistant, 3 people for the ChatGPT agent, and 4 people for the KDPSG

agent.

B.4.3 Study Results

Usability

We now describe the reported usability questions. We describe the “Instance Us-

ability”, which is participants’ reported usability in each question, and the “Overall

Usability”, which is the reported general usability in the post-study questionnaire.

Instance Usability We see in Figures B-3 and B-2 that the ChatGPT agent was

able to satisfy most requests that people made to it, whereas the intent-based systems.
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We see a similar, but distribution in how people rated the agent interactions in Figure

B-1. From the feedback that we got, we saw that people were using the agents for more

than just procedural tasks. We believe that this contributed to the KDPSG system

receiving lower ratings for success and overall interaction rating. Additionally, the

same intent/slot filling issues that came up in other studies happened here, which

also possibly attributes to the lower score. We also see in the feedback that most

people did not encounter an error in their interactions (108/163 recorded interactions

or 66%), suggesting that they search for simple, probably unlikely to fail, interactions.

In the cases that there were errors, participants were able to recover from the prob-

lem and finish the original task by using common sense knowledge, asking again with

different prompts, searching for information online, watching videos, or performing

the task by themselves.

Overall Usability In the overall usability, we see a similar pattern as in the prior

studies. However, we see that the Google Assistant follows the same, albeit slightly

improved, perception as the intent-based KDPSG agent. We see that overall people

that were assigned the ChatGPT agent, thought it was easier to use, more natural,

conversational, and gave more relevant information during a conversation. We also

see that the Google Assistant and the KDPSG agent have very similar distributions

in all usability questions. This suggests, that if our KDPSG agent were made more

robust, it might still not be capable of matching the ChatGPT agent in usability

metrics. In the Figures presented below, the scale runs from 1 (Strongly Disagree) to

5 (Strongly Agree).

Areas of Usage

Summarizing the feedback from asking participants, “What areas/tasks do you think

conversational agents would be good for?”, it suggests that these conversational agents

are best suited for simple and precise tasks with straightforward and general solutions,

such as, querying legal documents, cooking instructions, and tasks with pre-defined

steps like installing software, hardware, or furniture. It can also be helpful for tasks
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Figure B-1: Distribution of overall rat-
ing of interactions. We see the Google
Assistant interaction rated as neutral,
while the ChatGPT ones rated positively
and the KDPSG ones rated slightly neg-
atively.

Figure B-2: Distribution of whether a
participant succeeded in following steps
given by the agent. We see that the
Google Assistant had mixed results with
half the people failing to follow what the
assistant said, the KDPSG system trail-
ing behind it, and that in most interac-
tions people could follow what the Chat-
GPT agent said.

Figure B-3: Distribution of whether a participant succeeded in accomplishing their
goals. We see a similar distribution to people’s rating of the interaction. The Google
Assistant satisfied half of the participant’s goals, the KDPSG system satisfied slightly
less than that, and the ChatGPT agent satisfied most people’s goals.

that require common sense or involve learning a new thing.

However, the conversational agents may not be suitable for tasks that require

sensorimotor skills, hands-on experience, or customized solutions. The feedback also

indicates that the agents may not work for specific work-related issues such as permits

or providing travel guidance. It may also not be suitable for tasks that are not

straightforward or require visual guidance. Additionally, it may not be reliable for

answering health-related questions unless it uses and can provide trusted sources. The

agents may also not be helpful for tasks that require creative inputs or complicated
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Figure B-4: Overall interaction rating. We see that the Google Assistant and the
KDPSG assistant were rated close to neutral, and that the ChatGPT based agent
was rated close to very good.

procedures.

We looked into the individual responses to find the following areas that people

asked, in some form, for how-to guidance:

Cooking and Recipes: Several goals involve learning how to cook or prepare

specific foods, such as scones, lamb kebabs, and alcoholic drinks. Additionally, some

goals involve finding recipes, such as for enchilada sauce and banana chips.

Travel and Directions: Many goals involve finding information on how to get to

a specific location or how to travel between two places. One example is finding the

best time to visit Morocco.

Health and Wellness: Some goals involve learning how to perform specific health-

related tasks, such as treating a sprained ankle, preparing for an MRI, and dealing

with muscle soreness. Some people also wanted to find out how to improve their sleep

and organize their day.

Technology and Devices: Several goals involve learning how to use or trou-

bleshoot various devices, such as resetting a Samsung Smart TV, downloading an

app on a TV, and activating a new phone.

Personal Finance: A few goals involve learning how to perform financial tasks,

such as filing taxes. Additionally, some people looked at how to cancel a debit card.
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Figure B-5: Distribution of whether an
agent gave an appropriate amount of in-
formation or not. We see that people
were neutral on intent-based agents and
agreed on the ChatGPT agent.

Figure B-6: Distribution of whether a
participant found the agent conversa-
tional or not. Most participants agreed
that the ChatGPT agent was conver-
sational and disagreed that the intent
based ones were.

Figure B-7: Distribution of whether an
agent was easy to use or not. Most people
leaned towards agreeing that all agents
were easy to use.

Figure B-8: Distribution of whether
a participant would use the agent fre-
quently or not. People agreed that they
would use the ChatGPT agent frequently
and disagreed on the intent-based ones.
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Figure B-9: Distribution of whether the
conversation felt natural or not. We see
that the intent-based agents were rated
neutral to disagree and that the Chat-
GPT one was rated higher than agree.

Figure B-10: Distribution of whether a
participant had to use special phrasing
or not. Most people found that they
needed to use special phrasing with the
intent-based agents and leaned towards
disagreeing on the ChatGPT agent.

Figure B-11: Distribution of whether
participants would learn to use the agent
quickly or not. Most people leaned to-
wards agreeing that all the agents could
be learned quickly.

Figure B-12: Distribution of whether an
agent gave relevant information or not.
The ChatGPT agent was rated as giv-
ing the most relevant information, and
the intent based agents people leaned to-
wards disagreeing.

Figure B-13: Distribution of whether
participants thought that the agent un-
derstood them and helped them achieve
their goals. We see that the KDPSG
agent was rated as the least understand-
ing/useful for goal accomplishment, and
the ChatGPT and Google Assistant be-
ing rated higher. This once more sug-
gests that the intent mechanism needs to
be made robust.

Figure B-14: Distribution of whether a
participant thought that an agent was
unnecessarily complex or not. Most peo-
ple disagreed that the agents were com-
plex.
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General Education and Learning: Some goals involve learning how to do specific

things, such as tie a tie, fold a fitted sheet, and draw a face.

We make an interesting note that while people were instructed in the onboarding

to ask/report only behaviors for how-tos, people also reported some general assistant

queries such as currency conversions, definitions, and general factoids, among others.

What this suggests is that, the ability to perform procedural guidance should be

added as one of these basic/default intents to agents or vice versa, that a procedural

guidance agent should have the ability to handle other general open requests.

B.4.4 Overall Findings

We summarize the findings of this study:

• The results suggest that procedural guidance should be a complementary ad-

ditional behavior in conversational agents, and not an exclusive behavior as

people query for a wide variety of possibly non-procedural things.

• The results suggest that procedural guidance agents seem to be likely to have

good effects on what people called “simple” procedures. Expanding on this,

a simple procedure should be clear and concise, with minimal complexity or

ambiguity, so that it can be easily executed by someone with basic knowledge

or skills.

• The results suggest that people do not expect the agent to work in highly

specialized domains such as medicine, or scientific fields. That more verification

and sourcing mechanisms need to be added to make these agents work in these

specialized domains.

• The results suggest that agents would be very effective in technology related

fields such as device usage, setup, and troubleshooting. From these results

and feedback from other studies, people expect that the agents that are on

smartphones know the ins and outs of the device that they run in.
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• The results suggest that in most interactions, participants did not encounter an

error in the process that they were performing, reinforcing the idea that they

only search for simple, unlikely to fail, procedures

B.5 Closed Domain (in-person) Guidance

B.5.1 Overview

For our last study, since we ran the first two studies on an online platform, we wanted

to get a hands-on, in-depth study of how people interacted with the agents. We reused

the same task from Study 2, to be able to see how people deal with doing a procedure

and fixing an error in it. In contrast to study two, we have users alternate between

using the knowledge driven approach, and the GPT based agent.

B.5.2 Study Design

We have the same design as in study two, people were given a form to fill out from

which a certain task would be picked, and the person would have to do that task.

Once more, in comparison to study 2, people were given the KDPSG agent, and the

GPT agent rather than the gold instruction retrieval baseline. As participants went

through the form, we ask them questions such as: would you be able to do this if it was

purely conversational (i.e., if there was no screen), we also asked: “what happened?”,

whenever they hit an error, and we asked them to explain whenever we noticed that

they were surprised or frustrated by something. We also try to enforce as much as

possible, the participants actually stopping while in an interaction, and receiving the

news that they had made a mistake. In this study, we had 9 participants.

B.5.3 Study Results

In this study, we wanted to focus more on the qualitative feedback of the experience.

We found that in regard to frustration and misunderstandings for KDPSG, the agent

struggled to understand specific details and context, leading to frustrations for the
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participants. The participants had to be very specific in their queries for the agent to

understand, and there were instances where the agent did not pick up on follow-up

questions or forgot the history of the chat. We noted, during all the interactions, that

users ran into intent recognition problems. Most users were able to overcome it and

rephrase into something the agent understood. When asked during the failure, some

participants mentioned that they noticed that they had to be very precise in what was

said so that the agent could pick up the intent correctly and perform the slot-filling

correctly. It is also worth noting that every time intent-based agent kept asking for

a rephrase, people would sometimes laugh in frustration. We would also see that the

phrasing when declaring that an error occurred, participants would sometimes phrase

it as a description of the error that had occurred. For intent-recognition and slot

filling, this would also be a complicated task, because firstly how does one determine

if there was an error from a statement, and secondly how do we know that the user

is asking for help with the error. Contextual cues would help in this, however the

current intent-recognition does not use past history, exacerbating the issue.

Overall, we could see very clearly that the intent system needed to be considerably

more robust than what was implemented. Although it may be possible to address

this in these studies, considering the semi-limited amount of procedures that could

have been done, in a real world scenario this may be more complicated. If we wanted

truly open-domain guidance, it would need to be much more robust for the slot filling

to be able to capture or discern what the person wants to accomplish.

With the ChatGPT agent, participants never complained about the agent not

understanding them. It was able to provide an adequate response, even with typing

errors in the prompt. Most of the ChatGPT agent interactions went smoothly. People

were able to communicate with it in simple terms and would get the correct/expected

response. In one particular case, the participant found that the agent provided out-

dated information. The participant kept probing the agent trying to fix the issue,

and was ultimately able to figure out how to do it by themselves. The participant

corrected the ChatGPT-based system, but even with the correction, the system kept

reusing its old information. In this probing that the participant did, we could find
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that in the case that the agent did not know how to perform the procedure, it could

make up procedures to seem as if it were able to fix the issue. We noted these be-

haviors, and based on this interaction, we were able to design the final study that we

ran.

Figure B-15: Distribution of participants
that were able to accomplish their goal.
We see that most people were able to
with both agents.

Figure B-16: Distribution of participants
that were able to complete the task that
the agent gave them guidance. Once
more, we see that most people were able
to accomplish what the agent suggested
doing

Figure B-17: Distribution of interactions that were able to recover from errors. We
see that with the ChatGPT based agent most people could recover, however with the
intent-based agent not many people could recover. In the interactions, and from the
usability feedback, we see that this in large part is due to lack of understanding in
the intent detection/slot filling

B.5.4 Overall Findings

We now list some of the findings that we observed.

• The results suggest that the intent-recognition and slot-filling issues were per-

vasive in the intent-based agent.

• The results show that people were still able to utilize the agent for guidance,

even in the face of intent recognition problems.

• The results show that people struggled to recover from the errors if the intent-

detection failed to understand their phrasing of the error.
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Figure B-18: Distribution of whether an
agent gave an appropriate amount of in-
formation or not. We see that the par-
ticipants find that both agents give an
appropriate amount of information.

Figure B-19: Distribution of whether
a participant found the agent conversa-
tional or not. Most participants agreed
that the ChatGPT agent was conversa-
tional and were neutral on the KDPSG.

Figure B-20: Distribution of whether an
agent was easy to use or not. Most people
leaned towards agreeing that the Chat-
GPT agent was easy to use and were neu-
tral, leaning to negative on the KDPSG..

Figure B-21: Distribution of whether
a participant would use the agent fre-
quently or not. People agreed that
they would use the ChatGPT agent fre-
quently, and leaned towards disagreeing
on the KDSPG.

Figure B-22: Distribution of whether the
conversation felt natural or not. We
see that leaned towards disagree for the
KDPSG and agree for the ChatGPT
agent.

Figure B-23: Distribution of whether a
participant had to use special phrasing
or not. Most people found that they
needed to use special phrasing with the
intent-based agents and leaned towards
disagreeing on the ChatGPT agent.

Figure B-24: Distribution of whether
participants would learn to use the agent
quickly or not. People agreed that the
ChatGPT agent would be quick to use
and were neutral leaning to positive on
the KDPSG.

Figure B-25: Distribution of whether an
agent gave relevant information or not.
The ChatGPT agent was rated as giving
the most relevant information, and neu-
tral on the KDPSG.
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Figure B-26: Distribution of whether
participants thought that the agent un-
derstood them and helped them achieve
their goals. We see that the KDPSG
agent was rated neutral leaning to pos-
itive, and the ChatGPT based agent was
rated as, agree.

Figure B-27: Distribution of whether a
participant thought that an agent was
unnecessarily complex or not. Most peo-
ple disagreed that the agents were com-
plex.
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Appendix C

Related Works

C.1 Related Work for

Abstracting Procedures to Knowledge Graphs

C.1.1 Commonsense: Grounding, Reasoning, and Knowledge

A related line of work has been in grounding commonsense statements for inference.

However, this line of work is more aligned with natural language inference rather

than assertions. One contribution in this area is HellaSwag [187] which constructs a

question-answering dataset whose plausible answers are intended to be confounders

to language models. Our work differs from this line of work in that we intend to

produce structured outputs.

Other work looks at reasoning with commonsense knowledge graphs. One work

that utilizes the explicit graph structure to perform multi-hop reasoning is “Common-

sense for Generative Multi-Hop Question Answering Tasks” [91]. The authors look

to select grounded multi-hop relational commonsense information from ConceptNet

via a pointwise mutual information and term-frequency based scoring function to fill

in gaps of reasoning between context hops for a model they use. In contrast to this

work, we are not looking at the task of question answering.

Some older work that looks at doing something similar to what we define as joint
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inference is blending [58]. This technique essentially consists of constructing and

adding or blending together matrices of embeddings to find the commonalities between

discrete knowledge sources and commonsense knowledge. This method, however,

is hard to scale to large knowledge bases and is not easily applied to the task of

contextual knowledge inference. An even older project that looks into a certain kind

of joint inference is Cyc [77]. Cyc uses the idea of “micro-theories”; there would be a

small set of commonsense assertions that you could reason with, then combine them

with the more general Cyc KB. However, this is not really joint inference in our

context, but rather trying to address the problem of local vs. global inference.

We examine also the work by [23] which utilizes formal logic and restructuring of

assertions to be able to combine and perform joint inference over knowledge bases,

however, the system as it is cannot be used for contextual commonsense inference

because it requires explicit knowledge to be already present in a knowledge base to

make inferences, whereas in our work through the underlying language models can

produce inferences for unseen concepts. Additionally, we look at the work [120], which

uses a combination of systems to extract high-quality non-triple formatted facts from

the text. However, the system is based on grammatical structures in an input text,

which means that implied facts may not be extracted from this if such a system were

utilized for contextual commonsense inference.

Other works that have tried to consolidate commonsense knowledge are the fol-

lowing. [66] examines multiple sources of knowledge and unifies the relations in these

under 13 dimensions of commonsense, however, it still remains a challenge to unify the

nodes in the different sources, and such a broad unification may make it challenging

to generate inferences for detailed relations (i.e., a specific relation type).

Lastly, we mention some works on open knowledge bases that could be leveraged

in future work for utilization in joint inference: TupleKB [104], Quasimodo [154],

Ascent [121], GenericsKB [12].
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C.1.2 Adversarial Language Models

Here we look into work that utilizes adversarial or pair training with language mod-

els. One such work is [178] in which the authors utilize a GPT-3 [19] model as

a teacher in order to distill commonsense knowledge into a student model that is

considerably smaller. This task is different from ours in that they do not explore

contextual/discourse-aware commonsense inference, instead, they look at extracting

the knowledge already found in a model.

Other work more similar to ours, albeit older, is [136]. In this work, the au-

thors take a similar approach to our adversarial configuration, however, they utilize

the Wasserstein GAN objective [7] rather than the basic GAN formulation that we

use. The authors additionally use the same approximation that we utilize in section

4.5.2. We note that they employ other strategies such as teacher helping, curriculum

learning, and variable length that are worth looking into for future work. We also

note that the authors tackle general language generation, rather than our task of

contextual commonsense inference.

C.2 Related Work for Reasoning and Generation of

Procedural Steps

C.2.1 Procedural Knowledge Extraction and Understanding

We start with DESIRE [56], a system that was built by IBM to mine procedures

from their support website. As an attempt on improving the handling of "How-to"

questions, IBM performed a study on a set of support tickets that they had. It

turned out that 26% of the tickets that they analyzed were about people directly

seeking a procedure [56]. To attempt to address this, they built an agent that helps

people access procedures by chatting. The agent they built would extract the steps

in the procedure, and build an instruction flow-graph-like structure that could be

traversed to relay a procedure through a chatbot. The system that we present in this

broader work (i.e. Winston), defers from this primarily in that we will be generating
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a full intermediate knowledge graph, giving extra information on principles/relations

and properties of the entities that appear in the procedure, not only on the high-level

procedure text. Additionally, the system we give guidance on would be able to support

just-in-time exceptions in the procedure by splicing in additional knowledge and uses

a reasoner to generate the conversational text from a walk through an intermediate

graph rather than using the HTML structure.

Figure C-1: DESIRE Chatbot Interaction (left), DESIRE Intermediate Procedural
Representation (right)[56]

The aforementioned work on the DESIRE chatbot builds a flow graph of a pro-

cedure. This can be seen as a high-level understanding of what happens across the

steps. It, however, does not have a low-level understanding of the entities and their

states within the individual steps. The DESIRE system uses a search system com-

bined with a classifier to determine where the steps in a procedure are located. The

classifier in their system utilizes features such as the number of sentences or steps

with at least one imperative, the number of sentences or steps that start with an

imperative, and the density of extracted imperatives in text, to determine whether

an HTML formatted list is a procedure or not.

When they find the instructions, they take the ordering as-is to construct their

instruction flow graph. They also highlight decision points, which are points where,

depending on a condition, the procedure forks to a different path[56]. Formally, we

give the notation that every sentence 𝑠𝑡 and each entity 𝑒𝑙 in a procedural docu-

ment 𝑃𝐷. A procedural document can be seen as a text that contains procedural

instructions. The DESIRE system builds a tree-like structure with the ordered pro-
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cedure sentences found in 𝑃𝐷 with |𝑃𝐷| = 1. We additionally use the notation of

𝑃𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑡, ..., 𝑠𝑇−1, 𝑠𝑇}, 𝑃𝑆 ⊂ 𝑃𝐷𝑖; 𝑖 = 1...𝑘 for the 𝑇 sentences contained

in a procedural document 𝑃𝐷𝑖. The system that powers DESIRE, although it ab-

stracts the procedure into a tree-like, flow graph, gives no insight as to how people

could handle possible problems that occur during steps. The nodes in this graph are

sentences from 𝑃𝑆 and the edges are directional towards the next sentence this can

be seen in Figure C-2 (i.e. 𝑠1 → 𝑠2 and so on unless there is a decision point, in which

case it would go from a sentence to the possible paths).

Figure C-2: Flow graph generated by DESIRE[56]

Explaining Action Dependencies (XPAD) [103] is a model which tries to under-

stand dependencies between steps and how these change the states of entities. For

every sentence 𝑠𝑡 and each entity 𝑒𝑙 in a procedural document 𝑃𝐷, an encoder cre-

ates a contextual vector 𝑐𝑡𝑙, capturing how the actions in 𝑠𝑡 affect 𝑒𝑙. The vectors

𝑐𝑡𝑙 are then handed to a decoder that determines what state changes (create, move,

destroy, none) has the entity undergone. The decoder then performs a beam search

of possible decoding options and selects one that is globally consistent based on a

scoring function. In their work, they define the scoring function as 𝜑(𝜋𝑡,𝒢𝑡), where

𝜋𝑡 and 𝒢𝑡 are the state change matrix for step 𝑠𝑡 and the dependency graph between

steps up to step 𝑠𝑡 respectively. The decoder’s output is a combination of the state

matrix along with a dependency graph of the steps. The dependency graph can be

plotted out to give more clarity on what the understanding model believes to be true
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the correct sequence of events for the explainability of the causes or requirements of

steps. An example of this can be seen in figure C-3.

Figure C-3: Dependency visualization for XPAD system [103]

DynaPro [5] goes one step further and incorporates a contextual language model

(BERT [40]) to further understand how entities change through steps. The authors

develop an end-to-end neural procedural reading comprehension model that jointly

identifies entity attributes and transitions, leveraging dynamic contextual encoding of

the procedural text. DynaPro starts by getting the contextual representation of each

entity at every time step, then it identifies entity attributes for current and previous

time steps and builds an attribute-aware representation of the procedural context.

Lastly, it uses the contextual entity representation and the attribute representation

to state transitions at a time step.[5] If we utilize our notation, and try to keep in

line with XPAD, DynaPro generates a different contextual timestep-entity vector 𝑐𝑡𝑙

by using the representation provided by BERT up until the timestep 𝑡.

Additionally, they use this BERT representation to find attributes that appear in

the text and encode them along with the BERT representation. Keeping with our

notation, we call what they refer to as the entity and attribute aware representation

the modified contextual vector 𝑐′𝑡𝑙, Additionally, rather than using a decoder with a

beam search as in XPAD, they use an LSTM that takes into account this modified

context vector, 𝑐′𝑡𝑙 to predict state transitions for the attributes. An interesting feature

of this system is that it is able to pick up entity attributes directly from the procedural

text and track them as the steps go on. If combined with an entity linker, this system

could potentially pull in external information by replacing the BERT model with
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KnowBERT[128] to incorporate encoded entities, although more research would be

required on this idea.

XPAD and Dynapro work by only looking at extracting the procedures from one

procedural document (i.e. |𝑃𝐷| = 1). They also do not incorporate any external

world information that could make their tasks easier. Lastly, these works offer no

insight as to how we could stitch in a sub-procedure in the case that something went

wrong. These systems serve to give us an insight into the internal mechanisms of

procedures (i.e. how things are created/moved/destroyed/located), however, they

are disconnected from world knowledge such as the commonsense information found

in knowledge graphs such as ATOMIC [155], ConceptNet [162], and more recently

GLUCOSE [113]. This could hinder the systems’ understanding of how the entities

in the procedure interact with the world and in addition to this, may hinder the gen-

eralization of understanding of entities’ states to previously unseen entities, however,

more experimentation is needed to confirm this.

We highlight in this space the work by Li Zhang ??????. Zhang et al. have

developed their work concurrently, and has shown very similar things to some of the

points that we make in this work, in particular that knowledge is essential to proce-

dural understanding, and in particular, procedure knowledge needs to be extracted

and structured well to be able to perform inference for next steps [189]. We could see

our contextual commonsense inference as a superset of this information extraction.

Zhang proposes many interesting ideas and gives an excellent summary of the current

state of procedural understanding [188].

C.2.2 Commonsense and Procedures

Commonsense information refers to the millions of basic facts and understandings

possessed by most people [92]. There is some evidence that the incorporation of com-

monsense information can be useful in procedural understanding in ProStruct [167].

The authors take a handful of commonsense facts (e.g. an entity cannot be created

if it already exists) and use it to filter out impossible or improbable states from an

encoder-decoder system. The authors mention that: "The commonsense constraints
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Figure C-4: ProStruct decoder architecture that utilizes commonsense constraints to
filter out impossible/improbable states [167]

we have used for ProPara1 are general, covering the large variety of topics contain in

ProPara, [however to use it for] other genres of procedural text, or [to] broaden the

state change vocabulary, different commonsense constraints may be needed". These

constraints could be injected from one of the commonsense knowledge graphs that

we have mentioned (ConceptNet, ATOMIC, GLUCOSE). With our prior work on

contextual commonsense inference, this information could be even generated on the

fly. Keeping in line with our aforementioned notation, this work would modify XPAD

in that the scoring function from XPAD: 𝜑(𝜋𝑡,𝒢𝑡), would be modified to include a

set of commonsense constraints 𝐶𝑐𝑠: 𝜑′(𝜋𝑡,𝒢𝑡, 𝐶𝑐𝑠) We discuss knowledge graphs and

their use in procedures in the next section.

The work by Ribeiro et al. [147]. also shows that by leveraging commonsense

information, one can generalize better the ability to infer how an entity behaves

in a procedure for unseen entities. The work builds a collection of relevant "query

cases" which are "link[s from] annotated answers to semantic interpretations (i.e.

logical statements)". These query cases are essentially mappings of text examples

to semantic assertions. When the system performs an evaluation, it retrieves these

1ProPara is a dataset designed to train and test comprehension of simple paragraphs describing
processes for the task of predicting, tracking, and answering questions about how entities change
during the process[102]
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query cases to solve a question through analogy like reasoning (i.e. if the query cases

give evidence of the answer, then it is likely that the question at hand has a similar

answer).

Finally, we look into some of the results of a collaboration [126]. The author

explored incorporating symbolic information, in the form of knowledge graph triples,

into the task of Open-Domain prediction of state changes in procedures [168]. Some

of the findings are that relationships that stem from highly useful or relevant entities

in the procedure, help in this task of procedural understanding of state changes.

Additionally, the author finds that incorporating the Goal of the procedure, helps

the model infer state changes in the entities involved. Both of these findings suggest

that procedural understanding requires information that may not be explicit in the

procedure, such as extra knowledge, and at least some formulation of the final goal

of the procedure.

C.2.3 Procedure Representations

We have described knowledge graphs to represent commonsense information, but they

can also be used to represent and analyze procedures. We have already described

DESIRE [56] and how it generates a flow-graph of steps in a procedure. Although

not explicitly a knowledge graph, it could be interpreted as one, by giving the edges

a label such as “hasSubEvent" or "leads to" similar to ConceptNet. We now describe

other works that have used graphs to work with procedures.

The first is “Distilling Task Knowledge from How-To Communities” [26]. In [26]

the authors build task frames which are a task phrase2 enhanced with attributes

(e.g. location, time, participating agent, participating object, category), hierarchical

relations (e.g. parent task and sub-tasks), and temporal relations (e.g. previous task

and next task). The authors use OpenIE [46] systems to extract the frames along with

2A phrase consisting of (𝑣, 𝑝𝑟𝑒𝑝, 𝑜) where 𝑣 is a verb or a normalized extended verb phrase and 𝑜
is a noun or a normalized extended noun phrase and 𝑝𝑟𝑒𝑝 is a preposition linked with 𝑣. An extended
phrase is a phrase (noun phrase or verb phrase) whose head-word is present in WordNet [48]. These
phrases can be normalized either strongly or weakly by reducing the phrase to its headword or
stemming and removing leading articles respectively.
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their information. They then cluster these frames to remove redundant and duplicate

frames/tasks. The frames the authors create can also be seen as a knowledge graph,

where the nodes are extended phrases and each of the attributes of the frame are

relations between other nodes. The authors use the resulting knowledge base to be

able to link WikiHow tasks with YouTube videos and find that it helps to expand the

search space for relevant videos.

Another work that somewhat utilizes a knowledge graph to work with procedures

is “A Framework for Procedural Text Understanding"[98]. Here, the authors use entity

recognition to extract concepts from each step in a procedure and link them to other

concepts throughout the step and across the step by utilizing dependency parsing.

What this creates is a flow graph of how every concept is used in a step, and after

what concept should the step jump to the following step. Once more, this is not an

explicit knowledge graph, but the flow graph can be converted into a knowledge graph.

The approach that the authors take is context-less, since they are only extracting the

concepts without taking into account their usage, the approach would be improved by

taking into account the context. On this topic, the authors mention that: “the simple

application of dependency parsing to flow graph estimation does not work well, and

that it is important to focus on not only concepts but also words surrounding them".

It is worth noting, however, that the approach taken in [98] gives a visual explanation

as to what is occurring in a procedure (although incomplete because of the lack of

context). An image of the results of their system can be seen in Figure C-5.

Figure C-5: Inferred procedure flow graph from [98].

Although [98], [26], and [56] utilize knowledge graphs in different forms to un-
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derstand and operate on procedures, there have been other avenues of research in

procedural understanding with regards to visualizing procedures in graph-like ways.

In [106] the authors test visualizing a procedure (e.g. cooking a recipe) as a workflow

(see figure C-6 for an example of how this looks like). The authors find that the

Figure C-6: Redesign of a recipe as a workflow[106]

redesigned graph-like representation of a recipe can result in significant speed and

accuracy gains across a technically inclined user base. This gives some indication

that knowledge graphs can also be utilized for visualizing a procedure, which could

aid in the visual explainability of the steps of a procedure, although more tests with

a more traditional knowledge graph-like structure are needed.
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C.2.4 Combining structured information and language models

Overall, we have seen that knowledge graphs aid in both the semantic understand-

ing of a procedure and in the visual explanation of a procedure. We have seen that

both language models and structured commonsense information (i.e. commonsense

knowledge graphs) can play a key role in understanding procedures, by narrowing

down the space of predictions for what happens within the steps, for generalizing to

unseen entities and facts by analogy, by contextualizing and embedding entities along

with their attributes from text, and by visualizing the actual procedure. There is a

disconnect however between language models and structured commonsense informa-

tion. We have looked at how to combine this structured information with what a

language model contains [30]. We now give an overview of some approaches at com-

bining structured information with language models. We note that since writing this

work, there have been even more analysis of even more models (not only transformer

based encoder systems) [193, 97, 61, 181].

Broadly speaking, there are three discrete approaches (and combinations of these)

to inject structured knowledge into pre-trained transformer-based encoder language

models. We call these input focused injections, architecture focused injections, and

output focused injections. In figure C-7 We define an input injection as any tech-

nique that modifies the data pre-processing or the pre-transformer layer inputs that

the base model uses(i.e. injecting knowledge graph triples into the training data to

pre-train/fine-tune on them or combining entity embeddings into the static word em-

beddings that the models have). We define architecture injections as techniques that

alter a base model’s transformer layers (i.e. adding additional layers that inject in

some representation). Lastly, we define an output injection as any techniques that ei-

ther modify the output of the base models or that modify/add custom loss functions.

In addition to these three basic types, there are approaches that utilize combinations

of these (i.e. a system that uses both input and output injections), which we call

combination injections.

For more information and examples of approaches that implement different types
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Figure C-7: Visualization of boundaries of the different categories of knowledge in-
jections.

of injections, we defer to a survey paper that we developed [30]. Additionally, we have

looked into the effects of applying knowledge graph embeddings into these injections

and have found that they do indeed improve the performance of a baseline model in a

downstream semantic task. As seen in [186], there is evidence that wider vocabulary

in the knowledge graph in combination with more information from the entities in

that vocabulary contribute to the performance increase. We address how to improve

out-of-vocabulary graph embeddings and leave as future work the incorporation of

graph embeddings produced from a system that we developed called RetroGAN [31].

RetroGAN is a Cycle-GAN based embedding post-specialization system that is used

to learn and generalize a retrofitting mapping. Retrofitting word embeddings with

a knowledge graph [47, 161, 115] means taking a vector space of word embeddings

and finding a mapping that moves some of these word vectors closer together and

others further apart, such that these vectors’ new positions in the vector space are

in better agreement with the relationships between the same words (a.k.a., concepts)

in the knowledge graph [161, 115]. However, the retrofitting process can only work

on concepts that are actually present in the knowledge graph or in the constraints,

which means that retrofitting can only get us improved performance in semantic tasks

on only the subset of the embedding vocabulary that overlaps with the knowledge

graph’s vocabulary.

Post-specialization[173, 72] is a solution to this problem; it is a series of techniques

that try to (1) learn the mapping that retrofitting establishes and (2) generalize the

mapping to the rest of the embedding vocabulary. We developed a post-specialization
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system called RetroGAN that builds upon the approach presented as AuxGAN [133]

by extending it to have a CycleGAN-like[194] architecture rather than a regular Gen-

erative Adversarial Network (GAN[55]) architecture. By using this cyclic adversarial

technique, we further constrain the outputs for unseen data in both our domains by

ensuring that there is a one-to-one mapping between domains. This leads to achiev-

ing higher performance for unseen concepts in semantic comparison tasks, and in a

downstream task of lexical simplification. An overview of the RetroGAN architecture

can be found in Figure C-8 and more details of the performance of the system can be

found in [31].

Figure C-8: RetroGAN System Architecture

The reason that we mention all of this work, is that the models that we utilize in

our work (T5, BART), could, in future work, leverage many of these techniques to ex-

plicitly incorporate some of the graph structure that we generate from our contextual

commonsense inference, and from broader more general knowledge graphs.

We will also note that there have been recent developments in retrieval-based

methods for improving language models[129, 57, 80]. In general, retrieval methods

consist of, namely, a retriever system that is in charge of finding useful information

from some curated or trusted source of knowledge. This retriever is in charge of

finding relevant information for a language model to inform a language model with

necessary/possibly auxiliary information to perform a certain task. One popular and

highly relevant work is the RAG (Retrieval Augmented Generation) model. This

model utilizes a similarity based transformer retrieval system that retrieves parts of

a document or from multiple documents to augment/prepend to a generation model
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(BART) for certain tasks. The authors find that this style of system can help generate

more factual and consistent summaries. We believe, although more exploration and

experimentation need to be performed to show this, that this kind of system is what

will be utilized in future language modelling systems.

C.2.5 Knowledge Graph Reasoning

Now, we will explore systems that have been utilized to reason on knowledge graphs.

The benefit of these systems is that they are generally applicable to knowledge graphs,

and could be used in future work with our graphs. The first system that we mention

is called “Meandering In Networks of Entities to Reach Verisimilar Answers" (MIN-

ERVA) [34]. MINERVA is a method for efficiently searching a knowledge graph for an

answer to a question, providing paths using reinforcement learning (RL) conditioned

on the input question. An interesting aspect is that this system will learn an effective

path to provide an answer by itself. Although not directly applicable to the problem

that we have at hand, which is finding a path that represents a step, and combining

these paths in order to represent a procedure, it provides a good starting point as

a framework. To possibly adapt it for our purposes, we may need to append to our

knowledge graph nodes that represent the start or the finish of the procedure, nodes

that would serve as checkpoints in the RL system to let us know it has reached its

intended destination.

A similar model falling along the lines of neuro-symbolic models is CORGI [6].

The authors develop a system that has a human in the loop in order to perform

commonsense reasoning. The system takes inputs such as “if ⟨ state holds ⟩ then

⟨ perform action ⟩ because ⟨ I want to achieve goal⟩" and tries to find all the

presumptions to support achieving the goal given that the state holds. An example

that the authors use is if there is a thunderstorm in the forecast, then a person will

take an umbrella with them. Their system then converses with a user until it finds

that the user wants to remain dry. The authors implement a neuro-symbolic theorem

prover and apply it to extract a multi-hop reasoning chain that reveals commonsense

presumptions. It then prompts the user for additional information that it believes to
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be necessary to complete the proof. The authors noted that having the human in the

loop is essential to their system working as some of the popular large commonsense

knowledge graphs (ATOMIC, ConceptNet), were lacking some content needed for the

system to reason.

Another model that reasons with a dynamically generated knowledge graph is

[35]. The authors construct, at every sentence in a procedure, a graph of entities

and some of their attributes (e.g. location) to help answer questions. They utilize

a machine reading comprehension model to extract new entities and update existing

ones as a procedure progresses. A visualization of the process can be seen in Figure

C-9. It is interesting that the model keeps adding and updating the knowledge it has

as information is streamed, however there is no insight as to how multiple sources

could be utilized to update a model. Our model for procedural step generation does a

similar approach, however we leverage the contextual commonsense inference model

to generate more commonsense assertions to help us understand what is happening

in the procedure to be able to generate steps for it.

Figure C-9: Dynamic graph construction example for [35]. When the system reads
the bolded sentence, it adds a leaf node into its knowledge graph and updates the
states of other entities in the graph.

Yet another model that constructs a knowledge graph to reason on is Dynamic

Knowledge Graph Construction for Zero-shot Commonsense Question Answering[16].

The authors utilize COMET to build a dynamic reasoning chain until they arrive to

a possible answer. The system that we are proposing would utilize a similar idea to

this, however rather than generating plausible answers, it would be generating a path
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Figure C-10: Dynamic graph construction and reasoning example for [16]. The au-
thors build hops and perform inference on the combination of these hops to determine
what is the likeliest output.

that can be translated directly into instructions for a procedure.

A more directly applicable technique is the system described by [123]. It uses a

reinforcement learning agent to traverse and execute a list of instructions in a 3D envi-

ronment. The system has various interesting parts. In particular, the authors handle

generalization over unseen instructions, by using an analogy-like objective which en-

courages learning correspondences between similar sub-tasks by making analogies.

The authors also present a hierarchical architecture where a meta controller learns to

Figure C-11: Visualization of instruc-
tion tasks for the system presented by
[123]

Figure C-12: Architecture for system
described in [123]. The system takes in
a pair of instructions and observations
of the environment and produces an ac-
tion.
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use the acquired skills for executing the instructions, the architecture handles poten-

tial interruptions by learning when to update the sub-task. The sub-tasks that the

authors mention are trained by learning an optimal policy network that maps a given

task embedding (e.g. a one hot vector for pickup, visit, etc.) into a set of actions.

The authors make these networks that represent tasks, learn by an analogy objective

in order to generalize to unseen procedures (i.e. if the sub-task is applicable to x

input, and y input is similar, then the sub-task may be applicable).

C.3 Additional Work for Text Generation from Knowl-

edge Graphs

Other work that has been done in the area of using knowledge graphs for text gen-

eration is OpenDialKG [107]. In this work, the authors extract concepts from user

input text and use this to find topics/concepts that a chatbot could respond with.

Although less applicable due to its primary use being to keep a user interested in an

open-domain conversation, rather than a task-oriented conversation, it nonetheless

provides an interesting way to utilize a knowledge graph to guide text-generation.

We note that the authors explore what they call “walkable" patterns within a KG

or a preferred sequence of graph traversal steps, which often leads to more engaging

entities or attributes than others while pruning non-ideal (factually incorrect) KG

paths.

C.3.1 Additional

We make a small note of two last topics, data formatting and the CommonGen [89]

problem. Data formatting plays a role on additional pre-processing that we can do to

understand procedures. It is possible to leverage the presence of ordered lists within

HTML documents to determine where the steps in a procedure are. Additionally, we

can leverage the numbering in them to determine the order that a procedure can be

undertaken. This could possibly be leveraged in a reasoner to guide the ordering of

396



Figure C-13: Procedure utilized by [107] to respond with natural language text,
utilizing a knowledge graph as a grounding mechanism to guide the conversation

steps.

The CommonGen [89] is a task in which a system is presented with a series of

concepts, and expected to predict how these concepts can or are interacting with each

other. We note that our reasoning system has to perform a similar task: interpret how

elements in a knowledge graph can be traversed in such a way that we can produce

steps in a procedure. Although this is similar to the CommonGen task, there is one

small difference and that is that since we are pulling in additional information from

the web, and that web information can serve as a ground truth to the generation

problem, although we would need a way to quantify divergence from this ground

truth to fine-tune the system.

C.4 Related Work for Conversational Agents

Knowing that people often prefer someone else to guide them through a procedure,

there have been attempts at building agents that automate the process. There have

been many successful systems that do this, although they have been mostly focused
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on the presentation of the information rather than on the acquisition and processing

of it. Conversely, there have been systems that have focused on the acquisition and

processing, but not on the presentation.

C.4.1 Classical Collaborative Agents

Around the ’90s there was a series of works that were done around collaborative

agents. A collaborative agent can be broadly defined as “a system that mimics the

relationships that hold when two humans collaborate on a task involving a shared

artifact, such as two mechanics working on a car engine together"[149]. These rela-

tively early works did not focus too much on how they got the procedural knowledge,

rather on how to convey necessary information effectively to accomplish goals or to

reinforce knowledge. The assumptions being that an expert could come up with the

information and that they were small enough domains that scaling would not be an

issue. The following is an overview of these classical agents.

TRAINS-95 [49]

TRAINS-95 is a mixed-initiative system that utilizes voice and textual input to help

a user plan some train schedules. The authors wanted to build a robust, modular,

multi-modal, mixed-initiative planning assistant that would, no matter what, indicate

its understanding of the user’s intentions and its own attempts to further the plan.

This system used a domain reasoner (the domain of train schedule planning) to be

able to determine whether a proposed route was valid or could be improved and

relayed this back to a user through a textual and visual interface. This collaborative

system was evaluated and 73 of the 80 test sessions resulted in successful completion

of the route planning task and according to the authors "this is probably a record for

naive users of AI planning system". Although not explicitly a procedural guidance

system, the TRAINS-95 system gave suggestions on how to perform some tasks that

had an objective. The system also evaluated a user input in accordance to achieving

that common goal, and it did this through both voice and text, showing that voice
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as a means of communication in these collaborative tasks was effective.

Figure C-14: Architecture for TRAINS-95 system[49]

COLLAGEN [150]

Research started converging on leveraging collaborative agents and on collaborative

discourse theory (CDT). CDT is empirical and computational research about how

people communicate in the context of a collaboration[151]. COLLAGEN is a system

that utilizes techniques from CDT combined with a given task and its domain knowl-

edge to create an agent that can work with a user to accomplish a common goal.

The importance of this work is that the presentation is handled as long as a user can

provide the domain knowledge necessary for the system to collaborate on achieving

the task. One last important feature of this work is that it used dialogue as the means

of communication, once more showcasing the effectiveness of conversation.

PACO [153]

Eventually, researchers incorporated the idea of not only collaborating on a task but

also teaching the person how to do this task while it is being performed. Towards

this end, intelligent tutoring systems (ITS) techniques were incorporated into COL-

LAGEN in an agent called PACO (Pedagogical Agent for COllagen). The authors
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Figure C-15: Architecture for COLLAGEN based-system[150]

then map some tutorial discourse acts into a collaborative dialogue system and eval-

uate the use of these within the PACO system. Their results are summarized as

follows: Most users commented positively on Paco’s overall teaching skills, explana-

tions, feedback, clarity of communication, and ability to understand what the user

was doing, a user wanted the ability to ask “why” questions, others wanted more

rationales for actions, and after their session with Paco, users felt somewhat or very

confident in their ability to perform the task. [153]. This system served to showcase

that it is indeed feasible to through CDT systems to actually teach people how to per-

form procedures (or tutorials as they refer to them), and here we see the necessity to

give combinations of instruction types as we mentioned in section 2.1 (i.e. principle,

example, and procedural instruction).

Figure C-16: Architecture for PACO[153]
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Soar Training Expert for Virtual Environments (STEVE)[152]

Later on, research started to evaluate the incorporation of embodiment into collab-

orative agents for procedures. One such work is STEVE, a virtual reality embodied

agent whose objective is to help students learn to perform physical, procedural tasks.

In the work presented by [152], STEVE is evaluated on teaching a variety of naval

operating procedures such as how to operate and maintain the gas turbine engines

aboard naval ships. It is interesting to note that the authors mention that “Steve is

not limited to this domain; he can provide instruction in a new domain when given

only the appropriate declarative domain knowledge". We see that the issue of ac-

quiring the necessary domain knowledge begin to rise in these systems. It is also

interesting to note that since STEVE is embodied, he can point and look at objects

of interest which helps the student in the procedure.

Figure C-17: STEVE embodied agent (left), architecture for STEVE (right)[153]

Summary

Altogether, these classic agents showed that it is indeed possible to build voice agents

that can guide people through procedures. However, all of them assume that the

knowledge necessary for them will be provided by a domain expert, which for a small

domain or a handful of tasks may not be a problem, but for thousands or millions of

tasks and various domains, quickly becomes an issue.
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