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Abstract

While artificial intelligence (AI) appears to be surpassing the performance of human experts
on a wide variety of games and real-world tasks, these algorithms are prone to systematic and
surprising failures when deployed. In contrast to today’s state-of-the-art algorithms, humans
are highly capable of adapting to new contexts. The different strengths and weaknesses of
humans and AI motivate a guiding research question for the emerging field of human-AI
collaboration: When, where, why, and how does the combination of human problem solving
and AI systems lead to a hybrid system that surpasses (or fails to surpass) the performance
of either humans or the machine alone? This dissertation addresses various dimensions of
this guiding question by conducting large-scale, digital experiments across three distinct
tasks and domains: deepfake detection, dermatology diagnosis, and Wordle. First, the
experiments in deepfake detection examine the similarities and differences between human
and machine vision in identifying visual manipulations of people’s faces in videos and identify
important performance trade-offs between hybrid systems and human or AI only systems for
deepfake detection. Second, the experiments in dermatology diagnosis reveal that non-visual
information is often essential for diagnosing skin disease, diagnostic accuracy disparities
across skin color exist in image-only store-and-forward teledermatology, and clinical decision
support based on a fair deep learning system can significantly increase physicians’ diagnostic
accuracy in this experimental setting. Third, the experiment on Wordle demonstrates that
digitally mediated expressions of empathy can counteract the negative effect of anger on
human creative problem solving. In addition to these digital experiments, this dissertation
presents two algorithmic audits on clinical dermatology images to reveal where systematic
errors arise in state-of-the-art algorithms, examines how context influences automated affect
recognition, and proposes methods for more effectively incorporating context in applied
machine learning. Together, these contributions provide empirical evidence for why human-
AI collaborations succeed and fail across a variety of tasks and domains, insights into how
to design human-AI collaborations more effectively, and a framework for when and where
hybrid systems should rely on human problem solving.
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Inspiration

“By this art you may contemplate the variations of the 23 letters...” – Robert Burton and

Jorge Luis Borges

“The important thing is not to stop questioning. Curiosity has its own reason for existing.

One cannot help but be in awe when contemplating the mysteries of eternity, of life, of the

marvelous structure of reality.” – Albert Einstein

“Although there is a sense in which the camera does indeed capture reality, not just interpret

it, photographs are as much an interpretation of the work as paintings and drawings are.”

– Susan Sontag

“Understanding a theory means, I suggest, understanding it as an attempt to solve a certain

problem.” – Karl Popper

“The hybrid or the meeting of two media is a moment of truth and revelation from which

new form is born.” – Marshall McLuhan

7



Acknowledgments

Doing a PhD felt like a Type II fun adventure through the world of ideas. I am absolutely

grateful for the gift of this experience, and I feel transformed as a result. And, I will be the

first to admit the journey was hard. I felt quite lost at times. Everybody’s PhD is unique

and it takes time and effort to find one’s way; my experience was no exception. For the

reader considering a PhD, the reader in the midst of the quest, or the reader who is on any

kind of intellectual voyage, I will share a couple insights in case they may helpful for you.

First, curiosity can be both an energy source and a compass that leads you to the place you

didn’t even know you wanted to go. Sometimes it can be helpful to stop searching for an idea

and simply follow your curiosity and let the idea find you. Second, the narrative structure of

the Hero’s Journey can be a useful map for recognizing one’s the obstacles and opportunities

along the PhD process. I did not discover the concept of the Hero’s Journey until part way

through my PhD, but once I did, I realized it offers a map that helped me better know

myself in the context of the PhD process. Ideally, we would all minimize the “Refusal of the

Call” and maximize “Apothesosis” but these are all transitory states that happen over and

over again. The point of sharing this structure is to help promote reflection and recognition

of the many stages that appear along the way of seeking something unique. Finally, the

PhD journey is a balance of the solitary and social. One needs time and space to think

independently, and one also needs help from mentors, peers, strangers, friends, and family.

“Human-human” collaboration underpins the “Human-AI” contributions in this dissertation.

I feel deeply grateful for the many brilliant and kind people who inspired and encourage me

along the way. Now, it’s time for the many, specific acknowledgments of the many friends

made along the way of writing this dissertation:

My Media Lab advisor, Rosalind Picard, for her keen intellect, emotional intelligence, engi-

neering mindset, and brilliant imagination. Thank you for always encouraging deeper levels

of analysis, nurturing interdisciplinary ideas, and genuinely caring.

My outside Media Lab advisors, Chaz Firestone and David Rand for welcoming me into their

8



research labs, demonstrating effective science communication, and sharing countless insights

on how to make research both more timeless and timely. Chaz, thank you for introducing

me to the world of vision science and constantly revealing points of inspiration, creativity,

and curiosity. Dave, thank you for introducing me to social psychology and management

science and always encouraging careful analysis and thoughtful framing.

Thank you Linda Peterson and Tod Machover for helping me navigate the Media Lab.

Thank you Joost Bonsen for always willing to share an ear or a story (or three!). Thank you

Andy Lippman for livening so many conversations with your sharp wit. Thank you Esteban

Moro for always caring and engaging in so many fun science and metascience conversations.

Thank you:

Zivvy Epstein, for a partnership in mystical mischief.

Alex Berke, for always honoring curiosity and exploring ideas to their fullest.

Michiel Bakker, for relentless extraversion and late night class projects.

Morgan Frank, for sociotechnical creativity and his musical keyboard.

Aruna Sankaranarayanan, for the best emoji game and amazing thoughtfulness.

Joy Buolamwini, for showing the way on how interdisciplinary science and art can change

the world.

Amazing labmates in Affective Computing, Asma Ghandeharioun, Rob Lewis, Noah Jones,

Katie Matton, Sable Aragon, Neska Elhaouij, Ila Kumar, Boyu Zhang, Agata Lapedriza,

Szymon Fedor, Kristy Johnson, and Vincent Chen, and fantastic labmates throughout the

Media Lab, Tobin South, Robert Mahari, Nikhil Singh, Manaswi Mishra, Oceane Boulais,

Ramon Weber, Micah Epstein, Sebastien Kamau, David Ramsay, Abdul Alotaibi, Irmandy

Wicaksono, Pat Pataranutaporn, Vald Danry, Devora Najjar, Caroline Jaffe, Filippos Tour-

lomousis, Rubez Ming, Matt Carney, Samantha Gutierrez-Arango, Alessandra Davy-Falconi,

Erik Strand, Dan “Noyvsan” Novy, Tara Sowrirajan, Michael Stern, Adis Ojeda, Mohammed

9



Alsobay, Hope Schroeder, and many more people at the Media Lab, for fantastic cama-

raderie.

Coauthors from outside the Media Lab, Luis Soenksen, Omar Badri, Arash Koochek, Roxana

Daneshjou, and Murali Doraiswamy, for expertise and rigor turned research and friendships.

Aerin Kim, Kira Prentice, Erik Duhaime, and Joanna Molke, who provided ideas and re-

sources for collecting large-scale datasets in this dissertation.

My economist mentors, David McKenzie and Tara Vishwanath. David, thank you for intro-

ducing me to the world of randomized experiments and trusting me as a 22-year-old with

the responsibility for managing research projects across the globe. Tara, thank you for wis-

dom, open-mindedness, and guidance in finding my path, and I am ever grateful that you

encouraged me to go back to school!

My large-scale optimization mentor Matt Kraning, for sharing insights on how to build

technology that is indistinguishable from magic and how to build a business around that

technology.

My undergraduate thesis advisor, Casey Rothschild, for being the first professor to suggest

that I pursue a PhD. It took me awhile to take his sage advice, and I am happy I did.

My many teachers including Tucker Hiatt for inspiring a deep interest in cognitive science

and science communication from his physics courses and Norm Lyons for instilling curiosity

in operations research from his algebra course.

The Lavoie family, for making Boston a home away from home.

My friends, for so many good laughs and wild adventures.

Alex, for her love, support, patience, wisdom, and the joy, inspiration, sanity, conscientious-

ness, and kindness she brings to the world everyday.

Bros, dad, and mom for everything.

10



Contents

Abstract 3

Acknowledgments 8

1 Introduction 27
1.1 Successes and Surprising yet Systematic Failures of Machine Learning . . . . 29
1.2 Speculations on Human-AI Collaboration . . . . . . . . . . . . . . . . . . . . 32
1.3 Building a Theory of Mind and Machine . . . . . . . . . . . . . . . . . . . . . 33
1.4 Model Organisms for Human-AI Collaboration . . . . . . . . . . . . . . . . . 35
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5.1 Deepfake Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.2 Dermatology Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.3 Affective Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.5.4 Robustness in Applied Machine Learning . . . . . . . . . . . . . . . . 40

2 Deepfake Detection by Human Crowds, Machines, and Machine-Informed
Crowds 41
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Experiment 1: Two-Alternative Forced Choice (N=5,524) . . . . . . . 46
2.2.2 Experiment 2: Single Video Design (N=9,492) . . . . . . . . . . . . . . 48

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.5 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Human Detection of Political Deepfakes across Transcripts, Audio, and
Video 69
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Participants (N=41,822) . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2 Discernment Performance across Communication Modalities . . . . . . 75
3.2.3 Heterogeneous Moderating Effects of Discordant Messages . . . . . . . 80

11



3.2.4 Heterogeneous Moderating Effects of the Cognitive Reflection Test
(CRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.1 Virtual Experiment Website . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.2 Multimedia Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.3 Concordance and Discordance Validation . . . . . . . . . . . . . . . . 90
3.4.4 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.5 Consent and Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Evaluating Deep Neural Networks Trained on Clinical Images in Derma-
tology with the Fitzpatrick 17k Dataset 99
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Fitzpatrick 17k Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Classifying Skin Conditions with a Deep Neural Network . . . . . . . . . . . . 105

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Evaluating Individual Typology Angle against Fitzpatrick Skin Type Labels . 107
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Towards Transparency in Dermatology Image Datasets with Experts, Crowds,
and an Algorithm 115
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.1 Data Documentation for Increasing Transparency and Accountability
in Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Designing Transparency into Clinical Decision Support Systems . . . . 123
5.3 Methods for Fitzpatrick Skin Type Annotations . . . . . . . . . . . . . . . . . 125

5.3.1 Expert Labels from Board-Certified Dermatologists (N=3) . . . . . . . 125
5.3.2 Algorithmic Labels from Individual Typology Angle . . . . . . . . . . 126
5.3.3 Dynamic Consensus Protocol for Crowd Labels (N>10,000 participants)127

5.4 Results Comparing Annotations on 320 Textbook Images . . . . . . . . . . . 129
5.4.1 Quantitative Assessment of Inter-Rater Reliability . . . . . . . . . . . 131
5.4.2 Qualitative Assessment of Inter-Rater Reliability . . . . . . . . . . . . 133

5.5 Scaling Annotations on the Fitzpatrick 17k . . . . . . . . . . . . . . . . . . . 134
5.5.1 Expert Review of Scaled Annotations . . . . . . . . . . . . . . . . . . 134

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.9 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

12



5.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Diagnostic Accuracy across Light and Dark Skin by Dermatologists, Pri-
mary Care Physicians, and Physician-Machine Partnerships 149
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Physician Characteristics (N=1,120) . . . . . . . . . . . . . . . . . . . 152
6.2.2 Image quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.3 Overall Diagnostic Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 153
6.2.4 Diagnostic Accuracy across Light and Dark Skin . . . . . . . . . . . . 154
6.2.5 Deep Learning System for Clinical Decision Support . . . . . . . . . . 155
6.2.6 User Interaction Design . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.4 Limitations and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 158
6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.5.2 Experimental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.5.3 Clinical Image Curation . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.5.4 Skin Tone Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.5.5 Deep Learning System Development . . . . . . . . . . . . . . . . . . . 161
6.5.6 Randomization Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.7 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.5.8 Annotating Participants’ Differential Diagnoses . . . . . . . . . . . . . 164
6.5.9 Standards for Reporting Diagnostic Accuracy Studies (STARD) . . . . 165

6.6 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Computational Empathy Counteracts the Effects of Anger on Human Cre-
ative Problem Solving 179
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2.1 Video Games, Emotions, and Cognitive Testing . . . . . . . . . . . . . 181
7.2.2 Empathic Virtual Agents . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.1 Participants (N=1,006) . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.3.3 Dependent Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.4.1 Round Level Performance . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.4.2 Heterogeneity of Treatment Effects on Performance . . . . . . . . . . . 188
7.4.3 Guess Level Entropy Reduction . . . . . . . . . . . . . . . . . . . . . . 189
7.4.4 Self-Reported Affect and Additional Outcomes . . . . . . . . . . . . . 190

7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.7 Contributions and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.8 Ethics and Informed Consent . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

13



7.9 Data and Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Context in Automated Affect Recognition 195
8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2 Building a Framework for Context . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3 Evaluating Automated Affect Recognition . . . . . . . . . . . . . . . . . . . . 198
8.4 Seven Key Categories of Context . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.4.1 Ambient Sensory Environment . . . . . . . . . . . . . . . . . . . . . . 201
8.4.2 Methods of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.4.3 Semantic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.4.4 Situational Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.4.5 Temporal Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.4.6 Sociocultural Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.4.7 Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9 Identifying the Context Shift between Test Benchmarks and Production
Data 213
9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2 Systematic Errors Arise from Context Shift and Lead to Distribution Shift . . 217
9.3 Addressing Robustness with Human Intuition and Expertise . . . . . . . . . . 221
9.4 Addressing Robustness with Dynamic Benchmarking . . . . . . . . . . . . . . 222
9.5 Addressing Robustness by Clarifying a Model’s Limitations . . . . . . . . . . 223
9.6 Case Studies for Addressing Context Shift in Applied Machine Learning . . . 224

9.6.1 Facial Expression Recognition . . . . . . . . . . . . . . . . . . . . . . . 224
9.6.2 Deepfake Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.6.3 Medical Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.7 Towards Robustness in Applied Machine Learning . . . . . . . . . . . . . . . 226

10 Conclusion 229
10.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1.1 Robustness in Applied Machine Learning . . . . . . . . . . . . . . . . 231
10.1.2 Designing Algorithmic Assistance Interfaces . . . . . . . . . . . . . . . 232
10.1.3 Misinformation and Synthetic Media . . . . . . . . . . . . . . . . . . . 232
10.1.4 Medical Diagnosis and Physician-Machine Partnerships . . . . . . . . . 233
10.1.5 Empathy and Digitally Mediated Expressions of Empathy . . . . . . . 233
10.1.6 Generative AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.2 Parting Showcase of Human-AI Collaboration by Rewriting the Abstract in
Iambic Pentameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

11 Citations 237

14



List of Figures

1-1 The data behind the bar plot and 95% confidence intervals are made up and
intended to illustrate the common idealized expectations of integrating human
problem solving with artificial intelligence. . . . . . . . . . . . . . . . . . . . . 29

1-2 The data behind the bar plot and 95% confidence intervals are made up
and intended to illustrate the common realities of integrating human prob-
lem solving with artificial intelligence as revealed in a large literature review
evaluating 79 human-AI collaboration studies [101] . . . . . . . . . . . . . . . 30

1-3 The problem solving space represented as a map with two dimensions: (1)
algorithmic complexity on the x-axis where the left side represents solving
problems with linear regressions, logical rules, and semantically meaningful
features and the right side represents solving problems with neural networks,
reinforcement learning and perceptual data (2) environmental complexity on
the y-axis where the top represents social situations with changing dynamics
and the bottom represents games with well-defined rules. AlphaZero is an ex-
ample of low environmental, high algorithmic complexity because it is based
on reinforcement learning and self-play without any guidance beyond the rules
of Go (or other games like Chess and Shogi) [568, 569]. Predicting GPA rep-
resents high environmental complexity (GPA is a proxy for academic achieve-
ment, which involves complex social dynamics) and low algorithmic complex-
ity (early research on human-AI collaboration involved researchers predicting
GPA using ordinary least squares regression on semantically meaningful fea-
tures) [164]. Medical diagnosis and deepfake detection are problems involv-
ing both high environmental complexity (these are high-context real-world
problems involving dimensions of deception, subjectivity in annotations, and
social influences) and algorithmic complexity (the visual components of these
problems involve neural networks trained on visual features). The Wordle
bot illustrates a game that can be solved exactly with dynamic programming
based on the rules and number of possible words [64], which becomes useful
for examining complex social and emotional phenomena that we address in
Chapter 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1-4 The figure is adapted from Performance vs. competence in human-machine
comparisons [205]. Image credit: Victoria Dimitrova (artist); inspired by
Hans Traxler, and edited by the author using DALL-E. . . . . . . . . . . . . . 39
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2-1 One of these two images is the first frame of a deepfake from Experiment
1; the other is the first frame of the original, authentic video from which
the deepfake was created. Experiment 1 asked whether participants can tell
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which of two video clips is a deepfake). Experiment 2 presented a single video
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the time of filming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2-2 Figure 2a presents the distribution of participant performance across experi-
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dots indicate the mean and the black bars indicate the interquartile range. R
refers to recruited participants, NR refers to non-recruited participants, E1
refers to Experiment 1, and E2 refers to Experiment 2. In the Experiment 1
(two-alternative forced choice), accuracy is defined as identifying a deepfake
from a pair of videos correctly. In Experiment 2 (single video design), accu-
rate identification is defined as responding with the correct answer with more
than 50% confidence. The model’s performance represents a single observa-
tion in each instance, and as such, we present the model’s performance as a
horizontal black line with a white dot in the middle. The crowd mean dis-
tributions are obtained by bootstrapping confidence intervals based on 1000
randomly drawn samples that are each half of the total observations. Figure
2b presents a scatter plot of the model’s accuracy and the distribution of
participants’ accuracy scores for each video. The x-axis of Figure 2b is an
index of the videos, and it is ordered by experiment, true class of each video,
and participant’s average accuracy. The teal lines in Figure 2b represent the
interquartile range of recruited participants’ responses. Figure 2c presents
the distribution of changes in recruited participants’ accuracy after updating
their response based on whether the model’s prediction is correct, incorrect,
or indecisive. Figure 2d presents the receiver operator characteristic curves of
computer performance, recruited participants’ collective performance, and re-
cruited participants’ collective performance with the model’s decision support
across the 50 DFDC videos in Experiment 2. . . . . . . . . . . . . . . . . . . 67
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The 95% confidence interval range is less than 1% for all silent videos. . . . . 75
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conditions. The black lines indicate the 95% confidence interval of the true
mean and the gray dots indicate each of the 32 speeches. Figure 3-2b plots
confidence on a scale that ranges from a minimum of 50% confidence (just
as likely as chance) to 100% confidence (full confidence). Figure 3-2e plots
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T he guiding question of human-AI collaboration is: When, where, why, and how does

the combination of human problem solving and AI systems lead to a hybrid system

that surpasses (or fails to surpass) the performance of either humans or the machine alone?

If a task can be solved perfectly by humans or machines (e.g. multiplying two numbers or

playing tick tack toe), then human-AI collaboration is unnecessary. For any other problem

solving task where both humans and machines are prone to some error, the guiding question

of human-AI collaboration becomes useful for designing hybrid systems. However, this

question is difficult to answer because there is often a trade-off in statistical learning about

what is being optimized: explanations or predictions [83, 278]. The optimization trade-off

leads to an interpretability-accuracy trade-off. For example linear regressions and logical

rules are often much easier to interpret than neural networks and reinforcement learning,

but the more complex algorithms are often more accurate for many perceptual tasks. In

particular, it can be difficult to distinguish when humans should override or defer to machine

predictions (and similarly when machines should be allowed to override or forced to defer to

human decisions). Naturally, the answer depends on human and machine capabilities in a

particular context. Moreover, the answer involves building mental models of how algorithms

and humans perform. Ideally, human-AI collaboration combines the strengths of humans

and machines to produce a system that is more effective than either alone as characterized

in Figure 1-1. However, a recent literature review reveals that more often than not the

reality of human-AI collaboration is it is less effective than either humans or AI alone [101]

as characterized in Figure 1-2. In order to effectively combine human problem solving

with artificial intelligence and develop a generalizable theory of intelligence augmentation,

it is necessary to identify the strengths and weaknesses of humans and machines and how

humans and machines can come to model each other’s strengths and weaknesses across

diverse domains, tasks, and contexts.

The introduction to this dissertation proceeds by highlighting both the successes and the

systematic and surprising failures that have been documented in applications of machine

learning. Next, the introduction provides a brief historical context for the emerging field of

human-AI collaboration and describes the process of building a theory of mind and theory

of machine. With the high level framework in mind, the introduction examines past model
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Figure 1-1: The data behind the bar plot and 95% confidence intervals are made up and
intended to illustrate the common idealized expectations of integrating human problem
solving with artificial intelligence.

organisms for human and machine problem solving and introduces the three domains – deep-

fake detection, dermatology diagnosis, and a digital game for examining digitally mediated

expressions of empathy – that this dissertation examines. Finally, the introduction presents

an overview of the rest of the dissertation.

1.1 Successes and Surprising yet Systematic Failures of Ma-

chine Learning

Recently, researchers have demonstrated that machine learning models can outperform hu-

man experts on a wide variety of games (e.g., Chess [100], Arimaa [594], Go [568], 57 classic

Atari games [557], Poker [84], StarCraft II [622], Crosswords [625], Diplomacy [1], and more).

In reinforcement learning models trained to play games with well-defined rules, the models

benefit from the constraints of the known finite set of actions. Unlike these games with

well-defined rules, most real-world problems are too high-dimensional and data collection

is too constrained for a model to access data on the entire state space of environments
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Figure 1-2: The data behind the bar plot and 95% confidence intervals are made up and
intended to illustrate the common realities of integrating human problem solving with artifi-
cial intelligence as revealed in a large literature review evaluating 79 human-AI collaboration
studies [101]

and agent actions. However, if a problem is sufficiently constrained to collect enough data

across the problem solving state space, then machine learning models have the potential

to perform well. For example, researchers have demonstrated that models can perform at

the level of medical specialists on specific healthcare tasks (e.g., identifying breast cancer in

mammograms [418], classifying skin lesions based on a single image [187], and predicting the

diagnosis of hundreds of diverse skin conditions based on a few images and a brief patient

history [388]) and outperform experts on other specific tasks (e.g. face identification to

determine whether pairs of face images show the same or different person [499] and natural

language understanding tasks [586, 627]). In addition, recent research – that has not yet

been peer-reviewed – reveals large language models – trained on natural language contain-

ing at least a trillion words [361] – can pass professional exams such as the Uniform Bar

Exam and United States Medical Licensing Examination [319, 464] and score highly in other

standardized testing settings. Despite machine learning models’ impressive performance on

many specific tasks and standardized testing, machine learning models tend to be brittle in

the face of changing contexts [242].
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Figure 1-3: The problem solving space represented as a map with two dimensions: (1)
algorithmic complexity on the x-axis where the left side represents solving problems with
linear regressions, logical rules, and semantically meaningful features and the right side
represents solving problems with neural networks, reinforcement learning and perceptual
data (2) environmental complexity on the y-axis where the top represents social situations
with changing dynamics and the bottom represents games with well-defined rules. Alp-
haZero is an example of low environmental, high algorithmic complexity because it is based
on reinforcement learning and self-play without any guidance beyond the rules of Go (or
other games like Chess and Shogi) [568, 569]. Predicting GPA represents high environmen-
tal complexity (GPA is a proxy for academic achievement, which involves complex social
dynamics) and low algorithmic complexity (early research on human-AI collaboration in-
volved researchers predicting GPA using ordinary least squares regression on semantically
meaningful features) [164]. Medical diagnosis and deepfake detection are problems involving
both high environmental complexity (these are high-context real-world problems involving
dimensions of deception, subjectivity in annotations, and social influences) and algorithmic
complexity (the visual components of these problems involve neural networks trained on
visual features). The Wordle bot illustrates a game that can be solved exactly with dynamic
programming based on the rules and number of possible words [64], which becomes useful
for examining complex social and emotional phenomena that we address in Chapter 7.

Machine learning models trained to complete real-world tasks are prone to surprising yet

systematic errors. For example, adversarial perturbations of data lead to errors that reason-

able humans would not make (e.g. misclassifying a stop sign based on a small adversarial
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sticker [85], falling for adversarial perturbations to 3D objects [38], learning false represen-

tations from backdoor poisoning attacks [119], and falling for adversarial Go strategies such

that human Go amateurs can defeat superhuman Go AIs [630]). In the healthcare domain,

machine learning models make errors that appear nonsensical if made by healthcare prac-

titioners (e.g. changing classification of skin lesions in dermoscopic images based on the

presence of surgical markings [643] and mistaking radiographs with chest drains as clini-

cally relevant pneumothorax cases [468]). The development of machine learning models for

human-centered applications requires careful considerations of what is being optimized [24,

114, 444, 589], and poor model design can lead to socially undesirable outcomes (e.g., recog-

nizing faces of women and people with dark skin less accurately than men and people with

light skin [87], amplifying existing inequities [49, 470, 561], and magnifying moral hazard

and error [443]).

The unexpected and unintended errors of machine learning models often arise from a model’s

inability to adapt to contexts in which it has not yet been sufficiently trained. In statistical

learning, supervised models are traditionally developed on a test set, tuned on a validation

set, and evaluated on a test set. When this model is deployed in production, the accuracy

on the production sets is only expected to resemble the accuracy of the test set to the extent

that the test and production data both arise from the same data generating functions i.e. the

same independent and identically distributed (i.i.d) random variables. If production data

deviates from test data (because the sensors to collect the data have changed, the objects of

interest have changed, or anything else has changed), then it is likely that unexpected errors

will arise and the performance on the production data will not match the performance on

the test data.

1.2 Speculations on Human-AI Collaboration

The concept of AI and human-AI collaboration has long existed in the human imagination.

Ancient speculations on human-AI collaboration can be found in the Greek myths such as

Talos, a giant bronze animated statue (what we would call a robot today) who is “made not
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born” and built to defend the island of Crete from invaders [411]. Akin to the surprising

yet systematic machine learning failures, Talos’ ultimate demise came about from an un-

foreseen vulnerability: a single screw coming loose and the subsquent draining of his power

source [411]. More recently, 20th century speculations on human-AI collaboration can be

found in the scholarly work published during the emergence of artificial intelligence as a field

of study. In 1958, Allen Newell, John Shaw, and Herbert Simon conceptualized the neces-

sary elements for developing a theory of human problem solving and presented an example

of how a computer could predict human behavior [455]. Just two years later, Joseph Lick-

lider speculated that a human-machine symbiosis would “facilitate formulative thinking” and

“enable [people] and computers to cooperate in making decisions and controlling complex

situations without inflexible dependence on predetermined programs” [384]. Another two

years later, Douglas Engelbart imagined a conceptual framework for identifying “the factors

that limit the effectiveness of the individual’s basic information-handling capabilities” and

developing systems to enhance and augment these capabilities. In a 1971 review of their the-

ory of human problem solving, Herbert Simon and Allen Newell present an 11-step strategy

for developing a theory of human problem solving, describe human information processing

as a series of “simple schemes of heuristic search,” and speculate on how complex problem

solving programs can develop via a computational step by step process [571]. In 1995, Pattie

Maes speculated on autonomous agents that can reduce information overload and supported

her ideas with a number of prototypes [398]. In the same year, Rosalind Picard published

Technical Report No. 321 introducing the concept of affective computing, which imagines

how computers may come to recognize and respond to affect [500].

1.3 Building a Theory of Mind and Machine

Over the last decade, an empirical science of human-AI collaboration has begun to emerge

across a wide range of fields including organizational behavior [164, 389], human-computer

interaction [101, 359], information systems [40, 369], medicine [445, 608], law [335, 336], and

cognitive science [205, 516, 566].
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In an influential study on human-AI collaboration, which focuses on two tasks in the upper

left quadrant of Figure 1-3 (predicting MBA students’ GPAs from the admission materials

and predicting the rank of U.S. states in terms of the number of airline passengers that

departed from that state in 2011), researchers identify a phenomenon they call “algorithm

aversion” where people lose confidence in an algorithm after it makes an error more quickly

than they otherwise would lose confidence if they thought the algorithm was a human [164].

In another study on human-AI collaboration, which also focuses on tasks (estimating the

weight of an individual from a photograph, forecasting the popularity of songs, estimating

a person’s attractiveness based on a text description from the perspective of a person in a

photograph, and forecasting economic and political events) that would generally be located

in the upper left quadrant of Figure 1-3, researchers identify what they call the “algorithm

appreciation” effect which demonstrates that across a variety of upper left quadrant tasks,

people prefer advice from algorithms to advice from people [389]. Despite what sound like

two contradictory effects, “algorithm aversion” and “algorithm appreciation” are not contra-

dictory because the first refers to how people update and the second refers to overall advice

taking. These experiments “scratch the surface of theory of machine” [389] and provide

initial insights into what we might expect of human-AI collaboration, but many questions

and boundary conditions are left unexplored for future research to examine including the

degree to which the results depend on the level of algorithmic performance, familiarity of the

individual with the algorithm, the interface by which the algorithm provides information,

the kind of problem, people’s expertise in the domain, people’s understanding of how the

algorithm works, whether the decision is high- or low-stakes, the evaluation metrics, and

many other dimensions and interactions between these dimensions.

An understanding of the dynamics of humans’ theory of machine, machine’s theory of mind,

and human-AI collaboration depends on building theories of human problem solving [571],

theories of machine behavior [36, 516], careful consideration of the difference in agents’

internal capacities versus ability to demonstrate those capacities [205], and empirical exam-

ination of hybrid human-AI systems across diverse, real-world problem to address the large

research design space [20].
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1.4 Model Organisms for Human-AI Collaboration

In the 20th century, researchers described the game of chess as the drosophila of both

cognitive psychology and AI [412, 570]. By calling chess a drosophila of these two fields,

researchers were making an analogy to model organisms studied in biology to convey that

chess represents a particularly apt space for studying problem solving. So, why has chess

been a great model organism for cognitive psychology and AI? Chess is a well-known, two-

player, turn-taking game with simple rules, a clear objective, and a large decision-making

possibility space of moves to make. From a high-level problem solving perspective, chess

involves recognizing patterns (heuristic search), planning one’s moves, anticipating one’s

opponent’s moves, considering counterfactuals, and making decisions potentially under time

pressure. Beyond the simple rules and complex strategy that make chess a model organism

for studying problem solving in both cognitive psychology and AI, chess has cultural capital.

Before artificial intelligence got its name, G.H. Hardy wrote, “chess problems are the hymn

tunes of mathematics” [268]. As another example of human-machine collaboration in chess

in the 18th century, Baron von Kempelen toured the Mechanical Turk around Europe and

led his audiences to believe they were witnessing a robot playing chess when the trick was

a human chess master artfully hiding inside and operating the machine.

Chess and other games with simple, well-defined rules and objectives (e.g. Go, Poker, and

Diplomacy) can also serve as model organisms for human-AI collaboration. Former World

Chess Champion, Gary Kasparov, who was the first World Chess Champion to ever be de-

feated by an AI, wrote “There will be cases where an AI will fail to detect exceptions to

their rules. Therefore, we must work together, to combine our strengths. I know better than

most people what it’s like to compete against a machine. Instead of raging against them, it’s

better if we’re all on the same side” [317]. Recent research on chess knowledge acquisition

by AlphaZero, a reinforcement learning model that learns through self-play, reveals that

AlphaZero exhibits many human concepts as it learns to play chess (e.g. material score,

position, king safety, and many more concepts detailed in Table S1 of McGrath et al 2022)

and poses a follow up: “Can we go beyond finding human knowledge and learn something

new?” [416] Following the advent of AlphaGo, researchers have demonstrated that profes-
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sional human Go performance has significantly improved and involves more novel moves

than before [566]. However, open questions remain about the conceptual and qualitative

differences in pre- and post-AlphaGo professional Go decision-making.

While Chess, Go, and other games may serve as model organisms for studying human-AI

collaboration, these games do not represent the complexity of the real-world and expose

human-AI collaboration to the ludic fallacy where insights may be limited to the “narrow

world of games and dice” [596]. In particular, games typically involve well-defined rules

and objective performance criteria, which can be optimized via reinforcement learning with

enough computational resources. In contrast, social settings represent complex environ-

ments with ill-defined, dynamic rules, criteria for success, and dependencies on contextual

information that may be difficult to collect. In Figure 1-3, I offer a map for situating model

organisms in the human-AI collaboration problem solving space; the y-axis represents en-

vironmental complexity and the x-axis represents algorithmic complexity. Chess and Go,

well-defined state spaces that are most appropriately traversed with relatively complex al-

gorithms, are located in the bottom left quadrant. If Chess and Go occupy one part of one

quadrant, then a natural question becomes what model organisms may be appropriate for

examining human-AI collaboration along these other dimensions of problem solving?

Perhaps, the simplest form of human-AI collaboration is a human using a calculator to solve

an arithmetic problem e.g. 7*857 or 6000-1? Back in first grade, I remember discovering it’s

quicker for a human with a calculator to solve the first kind of problem with a calculator but

the second problem in one’s head. Human-calculator collaboration for arithmetic is deter-

ministic, and as such, humans can simply generally rely on arithmetic calculations (though

it is wise to be careful with floating point arithmetic when you need extreme precision).

Moreover, arithmetic is verifiable. If I claim 7*857=5999, then you can verify the result

for yourself. This closed-system, immediate verification sets math and many games apart

from the real world. In games like Wordle, salet (a variant of sallet, which means a com-

bat helmet from Renaissance-era Europe) turns out to be the optimal word for beginning

Wordle, which can be verified by dynamic programming [64]. If a problem can be verifiably

solved perfectly by a set of rules from the given information, then it’s likely not a relevant
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problem for examining how to optimize hybrid system performance. However, the bottom

left quadrant in Figure 1-3 may still be interesting and useful because the problem solving

state space enables systematic examination of human problem solving.

Two recent literature reviews reveal a high degree of diversity in the kinds of tasks evaluated

for human-AI collaboration. In one literature review evaluating 79 experimental results on

the performance of human computer systems, tasks ranged from answering natural language

questions, teaching math concepts, detecting objects in images (general object detection, car

scratches, wildlife conservation, objects in endoscopic images), labeling data, detecting deep-

fakes, predicting survival on the Titanic, playing games, predicting recidivism, distinguishing

truthful and deceptive statements, predicting a person’s profession, predicting fraud, diag-

nosing dermatologic conditions, classifying recyclables, prescribing drugs, and editing food

ingredients [101]. In another literature review synthesizing 80 papers primarily drawn from

the field of human-computer interaction, tasks ranged from legal (predicting recidivism, bail

outcomes and child maltreatment), healthcare (diagnosing disease, classifying cancer, anno-

tating clinical notes, and assessing stroke rehabilitation), business (predicting income, loan

risk, sales, property prices, money laundering, stock prices, marketing, and insurance prices),

education (predicting student performance, student admission, student dropout, and LSAT

answers), leisure (recommending movies, music, dates, news, and trivia, playing chess, and

classifying plants), professional (predicting job promotion, scheduling meetings, classifying

email topics, monitoring cybersecurity, planning military missions), and other (classifying

images, analyzing sentiment, answering natural language questions, detection deception,

predicting forest cover, nutrition, toxicity, person weight, attractiveness, and religion) [359].

Insights on human-collaboration may come from surprising spaces; for example, researchers

revealed that human experts with access to a deep learning model for restoring and dating

ancient texts surpass the time-restricted accuracy of experts or the model alone [37]. In

particular, the model trained on 78,608 inscriptions of ancient text can offer predictions of the

most likely missing characters in a given ancient tablet, but it lacks historical and material

context for what predictions make most sense. As a result, experts can rapidly consider

many reasonable options, which leads to higher concordance with established specialists’
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restorations under time constraints than either experts or the model alone.

This dissertation aims to build towards a theory of intelligence augmentation by considering

three model organisms: deepfake detection, medical diagnosis, and digital games. I pursued

questions across these three domains because the first two domains are model organisms

for complex, visually-oriented problems with high-stakes and important societal implica-

tions (upper right quadrant of Figure 1-3) and the third domain is a simple model organism

for evaluating how expressions of empathy can influence human problem solving (bottom

left quadrant of Figure 1-3). The choice of these three domains draws on solution-oriented

computational social science [364, 366, 633] where a researcher starts with a practical prob-

lem and asks what theories and methods are required to solve the problem. Part of the

art of human-AI collaboration is identifying the relevant contexts for comprehensively and

effectively building mental and statistical models of human and AI performance across do-

mains. For example, professional decision makers (e.g. physicians, judges, managers, content

moderators, digital forensics experts, and others) often have access to private information

unavailable to an algorithm, and it becomes important to characterize how this private

information influences problem solving in order to understand when and why human and

machine performance deviates. The inclusion of a diversity of complex domains and tasks

is intended to allow for embracing the hard challenges of AI [434], uncovering generalizable

insights, and working towards a theory that avoids reductionary comparisons like the one

featured in the caricature in Figure 1-4.

1.5 Overview

This dissertation is divided into an introduction, 4 sections on deepfake detection, derma-

tology diagnosis, affective computing, and robustness in applied machine learning that make

up 8 body chapters, a conclusion, and a final chapter with citations. Each body chapter

is written to stand on its own. Half of the body chapters have been peer-reviewed and

published in journals or conferences (Chapter 2 [243], 4 [248], 5 [246], and 7 [245]) and the

other half are under review or drafts to be submitted for peer review (Chapter 3, 6, 8, and
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Figure 1-4: The figure is adapted from Performance vs. competence in human-machine
comparisons [205]. Image credit: Victoria Dimitrova (artist); inspired by Hans Traxler, and
edited by the author using DALL-E.

9).

1.5.1 Deepfake Detection

The first section – chapters 2 and 3 – presents large digital experiments on deepfake de-

tection. Chapter 2 examines the similarities and differences between human and machine

vision in identifying visual manipulations of people’s faces in videos and identifies important

performance trade-offs between hybrid systems and human or AI only systems for deepfake

detection. Chapter 3 further examines human performance in deepfake detection by exper-

imentally evaluating the degree to which humans can distinguish authentic and fabricated

political speeches relies on the content of what is said versus the audio-visual cues of how it

is said.

1.5.2 Dermatology Diagnosis

The second section – chapters 4, 5, and 6 – presents two algorithmic audits of and a large

digital experiment on dermatology diagnosis. Chapter 4 investigates algorithmic accuracy
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disparities in machine learning applied to open-source data with over 15,000 clinical derma-

tology images and crowdsourced Fitzpatrick skin type labels. Chapter 5 further investigates

the subjectivity of estimating Fitzpatrick skin type labels from clinical dermatology images

by evaluating the inter-rater reliability of experts, crowds, and an algorithm. Chapter 6

examines diagnostic accuracy of specialists, generalists, and physician-machine partnerships

in a store-and-forward dermatology diagnosis experiment with a large number of images of

skin conditions across a diverse range of skin colors.

1.5.3 Affective Computing

The third section – chapters 7 and 8 – presents a large experiment on digitally mediated

expressions of empathy and a systematic review and analysis of how context influences

automated affect recognition. Chapter 7 examines how digitally mediated expressions of

empathy interacts with incidental emotions to influence human problem solving in Wordle.

Chapter 8 reviews research in affective computing, affective science, and artificial intelligence

to build an initial framework for systematically identifying the roles of context in automated

affect recognition.

1.5.4 Robustness in Applied Machine Learning

The fourth section – chapter 9 – proposes methods for more effectively incorporating context

in applied machine learning. Specifically, chapter 9 reveals the conceptual problems with

distribution shift, introduces the concept of context shift, and offers three approaches for

building robustness in applied machine learning: integrating human intuition and expertise

in identifying potential context shifts, evaluating models with dynamic benchmarks, and

articulating the limitations of machine learning models.

Finally, chapter 10 concludes with a discussion, future research questions, and an example

of human-AI collaboration for transforming prose to verse.
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Chapter 2

Deepfake Detection by Human

Crowds, Machines, and

Machine-Informed Crowds

Abstract

The recent emergence of machine-manipulated media raises an important societal question:
how can we know if a video that we watch is real or fake? In two online studies with 15,016
participants, we present authentic videos and deepfakes and ask participants to identify
which is which. We compare the performance of ordinary human observers against the lead-
ing computer vision deepfake detection model and find them similarly accurate while making
different kinds of mistakes. Together, participants with access to the model’s prediction are
more accurate than either alone, but inaccurate model predictions often decrease partici-
pants’ accuracy. To probe the relative strengths and weaknesses of humans and machines
as detectors of deepfakes, we examine human and machine performance across video-level
features, and we evaluate the impact of pre-registered randomized interventions on deepfake
detection. We find that manipulations designed to disrupt visual processing of faces hin-
der human participants’ performance while mostly not affecting the model’s performance,
suggesting a role for specialized cognitive capacities in explaining human deepfake detection
performance.1

1This chapter, which is co-authored by Ziv Epstein, Chaz Firestone, and Rosalind Picard, appeared as a
research article on December 28, 2021 in the Proceedings of the National Academy of Science [243].
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2.1 Motivation

How do we tell the difference between the genuine and the artificial? The emergence of

deepfakes – videos that have been manipulated by neural network models to either swap

one individual’s face for another, or alter the individual’s face to make them appear to say

something they have not said – presents challenges both for individuals and for society at

large. Whereas a video of an individual performing an action or making a statement has

long been one of the strongest pieces of evidence that the relevant event actually occurred,

deepfakes undermine this gold standard, with potentially alarming consequences [120, 365,

371, 484].

How should we best meet this new challenge of evaluating the authenticity of a video? One

approach is to build automated deepfake detection systems that analyze videos and attempt

to classify their authenticity. Recent advances in training neural networks for computer

vision reveal that algorithms are capable of surpassing the performance of human experts

in some complex strategy games [567, 568] and medical diagnoses [187, 418], so we might

expect algorithms to be similarly capable of outperforming people at deepfake detection.

Indeed, such computational methods often surpass human performance in detecting physi-

cal implausibility cues [191], such as geometric inconsistencies of shadows, reflections, and

distortions of perspective images [318, 460, 461]. Similarly, face recognition algorithms of-

ten outperform forensic examiners (who are significantly better than ordinary people) at

identifying whether pairs of face images show the same or different people [499]. This fo-

cus on automating the analysis of visual content has advantages over certain methods from

traditional digital media forensics, which often rely on image metadata [190] that are not

available for many of today’s most concerning deepfakes, which typically appear first on

social media platforms stripped of such metadata [251, 397]. Moreover, metadata from an

individual’s decision to share on social media may not be a reliable predictor of media’s

veracity because social media tends to focus people’s attention on factors other than truth

and accuracy [495, 497].

The artificial intelligence (AI) approach to classifying videos as real or fake focuses on de-
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veloping large datasets and training computer vision algorithms on these datasets [11, 166,

168, 303, 348, 383, 403, 432, 534, 535, 604, 620, 656]. The largest open-source dataset is

the Deepfake Detection Challenge (DFDC) dataset, which consists of 23,654 original videos

showing 960 consenting individuals and 104,500 corresponding deepfake videos produced

from the original videos. The first frames of both a deepfake and original video from this

dataset appear in Figure 2-1. The deepfakes examined here contain only visual manip-

ulations produced using seven synthetic techniques: two deepfake autoencoders, a neural

network face swap model [284], the NTH talking heads model [661], the FSGAN method for

reenactment and inpainting [462], StyleGAN [314], and sharpening refinement on blended

faces [168]. Unlike viral deepfake videos of politicians and other famous people, the videos

from the competition have minimal context: they are all 10 second videos depicting un-

known actors making uncontroversial statements in nondescript locations. As such, the

cues for discerning real from fake can be based only on visual cues and not auditory cues

or background knowledge of an individual or the topic they are discussing. In a contest

run from 2019 to 2020, The Partnership for AI, in collaboration with large companies in-

cluding Facebook, Microsoft, and Amazon, offered $1,000,000 in prize money to the most

accurate deepfake detection models on the DFDC holdout set via Kaggle, a machine learn-

ing competition website. A total of 2,116 teams submitted computer vision models to the

competition, and the leading model achieved an accuracy score of 65% on the 4,000 videos

in the holdout data, which consisted of half deepfake and half real videos [167, 168]. While

there are many proposed techniques for algorithmically detecting fakes (including affective

computing approaches like examining heart rate and breathing rate [513] and looking for

emotion-congruent speech and facial expressions) [12, 435], the most accurate computer vi-

sion model in the contest [560] focused on locating faces in a sample of static frames using

multitask cascaded convolutional neural networks [663], conducting feature encoding based

on EfficientNet B-7 [597], and training the model with a variety of transformations inspired

by albumentations [88] and grid-mask [115]. Based on this model outperforming 2,115 other

models to win significant prize money in a widely publicized competition on the largest

dataset of deepfakes ever produced, we refer to this winning model as the “leading model”

for detecting deepfakes to date.
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The rules of the competition strictly forbid human-in-the-loop approaches, which leaves

open questions surrounding how well human-AI collaborative systems would perform at

discerning between manipulated and authentic videos. In this paper, we address the follow-

ing questions: How accurately do individuals detect deepfakes? Is there a “wisdom of the

crowds” [219, 590] effect when averaging participants’ responses for each video? How does

individual performance compare with the wisdom of the crowds, and how do these perfor-

mances compare to the leading model’s performance? Does access to the model’s predictions

and certainty levels help or hinder participants’ discernment? And, what explains variation

in human and machine performance; specifically, what is the role of video-level characteris-

tics, can emotional priming influence participants’ performance at detecting deepfakes, and

does specialized processing of faces play a role in human and machine deepfake detection?

Crowdsourcing and averaging individuals’ responses are promising and practical solutions for

handling the scale of misinformation that would be otherwise overwhelming for an individual

expert. Recent empirical research finds that averaged responses of ordinary people are on-par

with third-party fact checkers for both factual claims in articles [18] and overall accuracy of

content from URL domain names [185, 493]. In order to comprehensively compare humans

to the leading AI model and evaluate collective intelligence against its artificial counterpart,

we need to conduct two comparisons: How often do individuals outperform the model and

how often does the the crowd wisdom outperform the model’s prediction?

While a machine will consistently predict the same result for the same input, human judg-

ment depends on a range of factors including emotion. Recent research in social psychology

suggests that negative emotions can reduce gullibility [81, 211], which could perhaps improve

individual’s discernment of videos. In particular, anger has been shown to reduce depth of

thought by promoting reliance on stereotypes and previously held beliefs [121]. Moreover,

priming people with emotion has been demonstrated to both increase and decrease people’s

gullibility depending on the category of emotion [210] and hinder people’s ability to discern

real from fake news [404]. The role of emotion in deepfake detection is of practical con-

cern because people share misinformation, especially political misinformation, because of its

novelty and emotional content [624]. While a detailed examination of emotions as potential

44



mechanisms to explain deepfake detection performance is outside the scope of this paper, we

have included a pre-registered randomized experiment to evaluate whether experimentally

elicited anger impairs participants’ performance in detecting deepfakes.

Based on research demonstrating human’s expert visual processing of faces, we may expect

humans to perform quite well at identifying the synthetic face manipulations in deepfake

videos. Research in visual neuroscience and perceptual psychology has shown that the

human visual system is equipped with mechanisms dedicated for face perception [574]. For

example, there is a region of the brain specialized for processing faces [312]. Human infants

show sensitivity to faces even before being exposed to them [236, 526], and adults are less

accurate at recognizing faces when images are inverted or contain misaligned parts [529, 531,

659]. The human visual system is faster and more efficient at locating human faces than

other objects including objects with illusory faces [325]. Whether human visual recognition

of faces is an innate ability or a learned expertise through experience, visual processing of

faces appears to proceed holistically for the vast majority of people [532, 660]. In order

to examine specialized processing of faces as a potential mechanism explaining deepfake

detection performance, we include a randomized experiment where we obstruct specialized

face processing by inverting, misaligning, and occluding videos.

In order to answer questions about human and machine performance at deepfake detection,

we designed and developed a website called Detect Fakes where anyone on the internet could

view deepfake videos sampled from the DFDC and see for themselves how difficult (or easy)

it is to discern deepfakes from real videos. On this website, we conducted two randomized

experiments to evaluate participants’ ability to discern real videos from deepfakes and ex-

amine cognitive mechanisms explaining human and machine performance at detecting fake

videos. We present a screenshot of the user interface of these two experiments in Figure S4

in the Supporting Information. In the first experiment, we present a two-alternative forced

choice design where a deepfake video is presented alongside its corresponding real video. In

the second experiment, we presented participants with a single video design and asked them

to share how confident (from 50% to 100% in 1 percentage point increments) they are that

the video is a deepfake (or is not a deepfake). In this single video framework, we present
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participants with the option to update their confidence after seeing the model’s predicted

likelihood that a video is a deepfake. By doing so, we evaluate how machine predictions

affect human decision-making. In both experiments, we embedded randomized interven-

tions to evaluate whether incidental emotion (emotion unrelated to the task at hand) or

obstruction of specialized processing of faces influence participants’ performance.

Figure 2-1: One of these two images is the first frame of a deepfake from Experiment 1; the
other is the first frame of the original, authentic video from which the deepfake was created.
Experiment 1 asked whether participants can tell which is which, using a two alternative
forced-choice paradigm (i.e., selecting which of two video clips is a deepfake). Experiment 2
presented a single video and asked participants for their confidence the video is a deepfake
or not. In this figure, the left panel is the deepfake; the man was not mustachioed at the
time of filming.

2.2 Results

2.2.1 Experiment 1: Two-Alternative Forced Choice (N=5,524)

In Experiment 1, 5,524 individuals found our website organically and participated in 26,820

trials. The 56 pairs of videos in Experiment 1 were sampled from the DFDC training dataset

because the experiment was conducted before the holdout videos for the DFDC dataset were

publicly released. As such, we compare participants’ performance in Experiment 1 to the

overall performance of the leading model. We leave a direct comparison of participant and

model performance for Experiment 2 which focuses on performance across holdout videos.
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Individual vs. Machine

As stated in our pre-analysis plan2 for Experiment 1, we examined the accuracy of all

participants who saw at least 10 pairs of videos, for a total of 882 participants. 82% of

participants outperform the leading model, which achieves 65% accuracy on the holdout

dataset [167]. Half of the stimuli set (28 of 56 pairs of videos) was identified correctly

by over 83% of participants, 16 pairs of videos were identified correctly by between 65%

and 83% of participants, and 12 pairs of videos were identified correctly by less than 65% of

participants. Out of these 12 pairs of videos, 3 pairs of videos were identified correctly by less

than 50% of participants. Figure 2-2a presents the distribution of participants’ performance

in Experiment 1 (in blue in the second column) next to the model’s overall performance (in

black in the first column).

We do not find any evidence that participants improve in their ability to detect these videos

within the first ten videos seen (p = 0.112) (all p-values reported in this paper are generated

by linear regression with robust standard errors clustered on participants unless otherwise

stated). On average, participants took 42 seconds to respond to each pair of videos, and

we find that for every additional ten seconds participants take to respond, participants’

accuracy decreased by 1.1 percentage points (p < 0.001). We embedded three randomized

experiments in Experiment 1 to evaluate the roles of specialized processing of faces, time

for reflection, and emotion elicitation. We find participants are 5.6 percentage points less

accurate (p = 0.004) at detecting pairs of inverted videos than pairs of upright videos. In

contrast, we do not find statistically significant effects of the additional time for reflection

intervention or this particular emotion elicitation intervention. The custom emotion elicita-

tion intervention in this first experiment did not have a statistically significant influence on

participants’ self-reported emotions, which suggests the custom emotion elicitation experi-

ment did not work here. We provide additional details on the interventions in Experiment

1 in the Supplementary Information section.

2Pre-analysis plan for non-recruited participants in Experiment 1:
https://aspredicted.org/blind.php?x=wg84ic
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2.2.2 Experiment 2: Single Video Design (N=9,492)

In Experiment 2, 9,492 individuals participated: 304 individuals were recruited from Prolific

and completed 6,390 trials; 9,188 individuals found our website organically and completed

67,647 trials.3 In the recruited cohort, all but 3 participants viewed 20 videos. In the

non-recruited cohort, over half of participants viewed 7 videos and the 90th percentile par-

ticipant viewed 17 videos. The website instructed participants about videos that “Half are

deepfakes, half are not.” After viewing each video, participants move a slider to report their

response ranging from “100% confidence this is NOT a DeepFake” to “100% confidence this

is a DeepFake” in one percent increments with “just as likely a DeepFake as not” in the

middle (see Figure S4 in the Supporting Information for a screenshot of the user interface).

Participants can never make a selection with less than 50% confidence; the slider’s default

position is in the center (at the “just as likely a DeepFake as not” position and one incre-

ment to the right becomes “51% confidence this is a DeepFake” and one increment to the

left becomes “51% confidence this is NOT a DeepFake.” The stimuli in Experiment 2 consist

of 50 videos randomly sampled from the competition holdout dataset (half deepfake and

half non-manipulated), 4 videos of Kim Jung-un and Vladimir Putin including both one

deepfake and non-manipulated video of each leader, and a deepfake attention check video.

In Experiment 2, we define the accuracy score as the participant’s response between 0 and

1 normalized for correctness, which is the participant’s response if correct or 1 minus the

participant’s response if incorrect. For example, if a participant responded “82% confidence

this is a DeepFake” and the participant is correct, then the participant is assigned an accu-

racy score of 0.82. If the participant is incorrect, then the participant would be assigned an

accuracy score of 0.18. We define accurate identification as an accuracy score greater than

0.5.

Participants’ and the leading model’s performance on deepfake detection depends on the

population of participants, the population of videos, how performance is measured at the

individual or collective level, and whether videos are presented side by side or by themselves.
3Pre-analysis plan for recruited individuals participating in Experiment 2:

https://aspredicted.org/blind.php?x=mp6yg9
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In some cases, we find a machine advantage and in others, we find a human advantage.

The rest of the results section examines individual participant performance compared with

the leading model, participants’ collective performance compared with the leading model,

participants’ collective performance when participants have access to the model’s predictions,

variations in human and machine performance across videos, and randomized experiments

designed to evaluate the role of emotional priming and specialized visual processing of faces.

Individual vs. Machine

For participants who pass the attention check, recruited participants accurately identified

deepfakes from the randomly sampled holdout videos in 66% of attempts while the non-

recruited participants accurately identified videos in 69% of trials (or 72% of attempts when

limiting the analysis to non-recruited participants who saw at least 10 videos). In compari-

son, the leading model accurately identified deepfakes on 80% of the sampled videos, which

is significantly better than the 65% accuracy rate this model achieves on the full holdout

dataset of 4,000 videos [167].

In a direct comparison of performance, 13% of recruited participants, 27% of non-recruited

participants who saw at least 10 videos, and 37% of non-recruited participants who saw

fewer than 10 videos outperform the model. Figure 2-2a presents the distribution of partic-

ipants’ accuracy on the sampled holdout videos (in teal for recruited participants and gold

for non-recruited participants). Relative to the leading model, participants are less accurate

at identifying deepfakes than they are at identifying real videos. Recruited participants ac-

curately identify deepfakes as deepfakes in 57% of attempts compared to the leading model

identifying deepfakes as deepfakes in 84% of videos while both recruited participants and the

leading model identify real videos as real videos at nearly same rate (75% of participants’ ob-

servations and 76% of videos). Recruited participants predicted the sampled holdout videos

were real (57% of observation) considerably more often than fake (38% of observations) while

the computer vision model predicted videos were real (44% of observations) barely more fre-

quently than fake (42% of observations). In 5% of recruited participant observations and

14% of computer vision model observations, the prediction was a 50-50 split between real
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and fake. We report confusion matrices for each treatment condition in Tables 3-7 in the

Supplemental Information.

On the additional set of videos of political leaders, participants outperform the leading

model. Specifically, 60% of recruited participants and 68% of non-recruited participants

who saw at least ten videos outperform the model on these videos. For the deepfake videos

of Kim Jong-un, Vladimir Putin, and the attention check, the state-of-the-art computer

vision model outputs a 2%, 8%, and 1% probability score that each respective video is a

deepfake, which is both confident and inaccurate.

We do not find any evidence that participants’ overall accuracy changes as participants view

more videos (p = 0.433). However, we find that for every additional video seen by recruited

participants, they are 0.9% (p < 0.001) more likely to report any video as a deepfake.

This corresponds to performing about 18% better at detecting deepfakes and 18% worse at

identifying real videos by the last video.

Recruited participants spent a median duration of 22 seconds before submitting their initial

guess and a median duration of 3 seconds adjusting (or not adjusting) their initial guess

when prompted with the model’s predicted likelihood. Non-recruited participants spend a

similar amount of time. For both sets of participants, we find that for every ten additional

seconds of participant response time, participants’ accuracy decreases by 1 percentage point

(p < 0.001).

Crowd Wisdom vs. Machine

The crowd mean, participants’ responses averaged per video, is on par with the leading

model performance on the sampled holdout videos. For recruited participants, the crowd

mean accurately identifies 74% of videos. For non-recruited participants, the crowd mean

accurately identifies 80% of videos. For the 1,879 non-recruited participants who saw at least

10 videos, the crowd mean is 86% accurate. In comparison, the leading model accurately

identifies 80% of videos.
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In Figure 2-2b, we compare statistics on participants’ accuracy (the mean and interquartile

range) with the model’s predictions for each video. In Table 2 in the Appendix, we present

the mean accuracy of recruited and non-recruited participants and the computer vision

model for all videos. There are 2 videos (both deepfakes) on which both the crowd mean

and the leading model are at or below the 50% threshold. One of these videos (video 7837)

is extremely blurry, while the other video (video 4555) is filmed from a low angle and the

actress’s glasses show significant glare.

There are 8 videos on which the crowd mean is accurate but the model is at or below the

50% threshold and another 5-13 videos on which the model is accurate but the crowd mean

(depending on how the population selected) is below the 50% threshold.

Human-AI Collaboration

In addition to comparing individual and collective performance to the leading model’s per-

formance, we examined how an AI model could complement human performance. After

participants’ submitted their initial response for how confident they are that a video is or is

not a deepfake in Experiment 2, we revealed the likelihood that the video is a deepfake – as

predicted by the leading model – and gave participants a chance to update their response.

After taking into account the model’s prediction, participants updated their confidence in

24% of trials (and crossing the 50% threshold for accurate identification in 12% of trials).

By updating their responses, recruited participant’s accurate identification increased from

66% to 73% of observations (p < 0.001 based on a Student’s t-test). Figure 2-2c presents

the distribution of changes in overall participant accuracy for the 50 videos sampled from

the DFDC. For the 40 videos upon which the model accurately identifies the video as a

deepfake or not, participants updated their responses to be on average 10.4% more accurate

at identification than before seeing the model’s prediction. For the remaining 10 videos on

which the model made an incorrect or equivocal prediction, participants updated their re-

sponses to be on average 2.7% less accurate at identification than before seeing the model’s

predictions. In the most extreme example of incorrect updating, the model predicted a 28%

likelihood the video was a deepfake when it was indeed a deepfake and participants updated
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their responses to be on average 18% less accurate at identifying the deepfake. This partic-

ular video (video 7837) is quite blurry, and perhaps, participants changed their responses

because it’s very difficult to discern manipulations in low quality video.

For the additional deepfake videos of Kim Jung-un and Vladimir Putin that are not included

in the overall analysis, the model predicted a 2% and 8% likelihood the video was a deepfake,

respectively. This prediction is not only incorrect but confidently so, which led participants

to update their responses such that participant’s accurate identification dropped from 56%

to 34% on the Kim Jung-un deepfake and 70% to 55% on the Vladimir Putin deepfake.

In Figure 2-2d, the receiver operating characteristic (ROC) curve of the leading model is

plotted alongside the ROC curves of the crowd mean and crowd-mean responses where

participants have access to the model’s prediction for each video. While the model has a

slightly higher AUC score of 0.957 relative to the crowd means’s AUC score of 0.936, ei-

ther the model or the crowd mean could be considered to perform better depending on the

acceptable false positive rate. However, the crowd mean response after seeing the model’s

predictions strictly outperforms both the performance of the crowd mean and leading model.

When we condition the ROC analysis on confidence following methods for estimating the

reliability of eyewitness identifications [646], we find that medium and high confidence re-

sponses outperform low confidence responses by a large degree. We define low confidence as

responses between 33.5 and 66.5, medium confidence as responses between 17 and 33.5 or

66.5 and 83, and high confidence as responses between 0 and 17 or 83 and 100. Figure S2 in

the Supporting Information ROC curves presents a visual comparison of model performance

to low, medium, and high confidence responses from participants, which reveals medium and

high (but not low) confidence responses can outperform the model’s predictions depending

on the acceptable false positive rate.

Video Features Correlated with Accuracy

Given the heterogeneity in both participants’ and the leading model’s performance on videos,

we extend the analysis of performance across seven video-level features: graininess, blurri-
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ness, darkness, presence of a flickering face, presence of two people, presence of a floating

distraction, and the presence of an individual with dark skin. These video-level charac-

teristics were hand-labeled by the research team. On the 14 videos that are either grainy,

blurry, or dark, the crowd wisdom of recruited participants is correct on 8 videos while the

crowd wisdom of non-recruited participants and the model is correct on 10 videos. When

we examine the 36 videos that are neither grainy, blurry, nor extremely dark, the crowd

wisdom of recruited participants is correct on 29 out of 36 videos, the crowd wisdom of

non-recruited participants is correct on 32 out of 36 videos, and the model is correct on 30

of 36 videos. The presence of a flickering face is associated with an increase in recruited

participants’ accuracy rates by 24.2 percentage points (p < 0.001) and an increase in the

model’s accuracy rates by 21.7 percentage points (p = 0.170) in detecting a deepfake. The

presence of two people in a video instead of a single person is associated with an overall

increase in recruited participants’ accuracy rates by 7.6% (p < 0.001) and a 21.9% decrease

(p = 0.023) by the model in identifying real videos. The presence of a floating distraction is

associated with a decrease in recruited participants’ accuracy rates on real videos of 3.5%

(p = 0.034) and an increase in recruited participants’ accuracy rates on fake videos of 11.3%

(p < 0.001). In 12 of 50 videos, at least one person in the video has dark skin (precisely

defined as skin classified as type 5 or 6 on the Fitzpatrick scoring system, which is a clas-

sification system developed for dermatology that computer vision researchers have used to

examine the context of skin color) [87]. We find that the presence of an individual with

dark skin in the video is associated with a decrease in recruited participants’ accuracy by

8.8% (p < 0.001) and a decrease in the model’s accuracy by 12.0% (p = 0.192). In order to

control for these seven comparisons conducted simultaneously, we can apply a Bonferroni

correction of 1/7 to the standard statistical significance thresholds (e.g., a p-value threshold

of 0.01 becomes 0.0014). Based on this correction, the influence of a flickering face, two

people in the same video, floating distractions, and the presence of an individual with dark

skin continue to be statistically significant for participants if the original p-value threshold

is chosen as 0.01.
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Randomized Experiments for Evaluating Emotion Priming and Specialized Face

Processing

Within Experiment 2, we embedded two randomized experiments to examine potential cog-

nitive mechanisms underpinning how humans discern between real and fake videos. Specifi-

cally, we examine an affective intervention designed to elicit anger based on a well-established

intervention [576] (see Figure S3 in the Supporting Information) and a perceptual interven-

tion designed to obstruct specialized processing of faces via inversion (videos presented

upside down), misalignment (videos presented with actors’ faces horizontally split), and

occlusion (videos presented with a black bar over the actors’ eyes).

We present results of the anger elicitation intervention in columns 1-3 in Table 2.1. We do

not find statistically significant effects (p = 0.280) of the anger elicitation intervention on

overall accuracy. However, in our pre-registered follow-up analysis limiting the dataset to

real videos, we find that participants who were assigned to the anger elicitation treatment

underperformed control participants by 5.2 percentage points (p = 0.032). In other words,

participants in the anger elicitation treatment are more 5.2 percentage points more likely

than participants in the control group to make a false positive identification that a real video

is a deepfake. Notice here that the floor is not 0% accuracy but rather 50% accuracy (i.e.,

chance responding); the maximum effect of the anger elicitation treatment is 21.6 percentage

points (71.6 from the constant term in column 2 of Table 2.1 minus 50), so a 5.2 percentage

point reduction represents an effect that is 24.1% of the maximum possible effects under

these conditions.

Figure S3 in the Supporting Information presents accuracy and confidence scores by treat-

ment assignment to visually reveal the heterogeneous effect of anger elicitation on how

participants discern between real and fake videos. When we examine the relationship be-

tween assignment to the anger elicitation group and how confident participants guess, we

do not find a statistically significant effect (p = 0.347). When we examine real videos and

the relationship between anger elicitation and updating predictions after seeing what the

model would predict, we find that participants assigned to the anger elicitation group are

3.7% (p = 0.100) more likely to change their guess to a correct answer than participants
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assigned to the control group. As a result, we do not find statistically significant effects of

anger elicitation on accuracy after participants update their response (p = 0.246).

We present results of the perceptual obstruction intervention in columns 1-6 in Table 2.1.

We find statistically significant effects of all three specialized processing obstructions on

participants’ ability to accurately identify deepfakes from authentic videos. The overall

effects – reported in column 1 of Table 2.1 – are all statistically significant and range from

a decrease of 4.3 percentage points in accuracy for the inversion treatment (p = 0.002) to a

decrease of 4.4 percentage points in accuracy for the eye occlusion treatment (p = 0.004) to a

decrease of 6.3 percentage points for the misalignment treatment (p < 0.001) on a base rate

of 65.5% accuracy when controlling for video fixed effects. In addition, we find that inverting

the videos decreases participants’ reported confidence scores (absolute distance in guesses

from the 50-50 selection) by 2 percentage points (p = 0.002), but we do not find similar

decreases in reported confidence on videos with misalignment or occlusion transformations.

In the sample of recruited participants, the specialized face processing obstructions have

different effects depending on whether the videos are manipulated or not. When we limit

the analysis to the algorithmically manipulated deepfakes (column 3 of Table 2.1), we do not

find statistically significant effects on the inversion treatment (p = 0.638) but we do find that

the misalignment and eye occlusion treatments show a decrease in 7.7 (p = 0.002) and 6.3

(p = 0.008) percentage points, respectively, relative to the control videos. In contrast, when

we limit the analysis to the other half of videos that have not been manipulated (column 2 of

Table 2.1), we do not find statistically significant effects for misalignment (p = 0.075) or eye

occlusion interventions (p = 0.263), but we find participants’ accuracy on inverted authentic

videos is 9.1 percentage points lower than when the videos are upright (p < 0.001).

The experimental results on non-recruited participants provide a replication and robustness

check for the results on the recruited participants. The results from the non-recruited

participants were not pre-registered because we weren’t expecting many people to continue

visiting our website organically. In fact, 9,188 visitors participated in the single video design

between November 2020 and January 2021. In columns 4 through 6 in Table 2.1, we present

the linear regressions results of the specialized face processing obstruction interventions on

55



non-recruited participants’ accuracy. Similar to the results for the recruited sample, we

find statistically significant effects (p < 0.001) of all three obstruction interventions on

ability to accurately discern deepfakes from authentic videos. The number of observations

in the non-recruited sample is over 16 times larger than the number of observations in the

recruited sample. Likewise, the number of participants is 33 times larger. These numbers

differ because the number of videos seen by participants in the non-recruited sample varied

depending on participants’ interest. With a larger sample size, we see statistically significant

and negative effects of obstructions on all videos ranging from 4% percentage point drop

in accuracy from the eye occlusion intervention (p < 0.001) to a 7% drop on accuracy

from the misalignment intervention (p < 0.001). We also find all three treatments decrease

participants’ confidence scores by one half to one percentage point (p < 0.001).

In the non-recruited sample, each of the 50 videos were viewed by between 945 to 1168 par-

ticipants. We run separate linear regressions for each video and find statistically significant

and negative effects at the 1% significance level for inversion in 24 videos, misalignment in

15 videos, and occlusion in 20 videos. Furthermore, we find at least one of these specialized

processing obstructions is negative and statistically significant at the 1% significance for 29

of the 50 videos.

In the sample of videos of political leaders, the specialized face processing obstructions had a

significant effect on participants’ ability to accurately identify the Vladimir Putin deepfake

as a deepfake. The misalignment obstruction leads to a drop in accuracy of 20.7 percentage

points (p = 0.001). Likewise, the occlusion obstruction leads to a drop of 10.3 percentage

points (p = 0.002) and the inversion obstruction leads to a drop of 5.2 percentage points

(p = 0.072).

In columns 7 through 9 in Table 2.1, we present the linear regression results of the specialized

face processing obstruction interventions on the model’s predictions and find the computer

vision model is affected by one specialized face processing obstruction but not the other two.

We find the computer vision model’s predictive accuracy drops by 12.1 percentage points

on the inverted videos (p = 0.005). We do not find a statistically significant difference in

accuracy between either the control and misalignment sets of videos (p = 0.800) or the
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control and occlusion sets of videos (p = 0.944).

Dependent variable: Accuracy

Recruited Non-recruited Computer

All Real Fake All Real Fake All Real Fake

Constant 0.655∗∗∗ 0.716∗∗∗ 0.567∗∗∗ 0.679∗∗∗ 0.700∗∗∗ 0.632∗∗∗ 0.813∗∗∗ 0.786∗∗∗ 0.841∗∗∗

(0.009) (0.014) (0.015) (0.002) (0.003) (0.003) (0.030) (0.040) (0.044)
Inversion -0.043∗∗∗ -0.091∗∗∗ 0.010 -0.053∗∗∗ -0.080∗∗∗ -0.027∗∗∗ -0.121∗∗∗ -0.110∗ -0.132∗∗

(0.014) (0.021) (0.021) (0.004) (0.006) (0.006) (0.042) (0.056) (0.063)
Misalignment -0.061∗∗∗ -0.042∗ -0.077∗∗∗ -0.070∗∗∗ -0.056∗∗∗ -0.084∗∗∗ 0.011 0.000 0.021

(0.016) (0.024) (0.025) (0.005) (0.007) (0.007) (0.042) (0.056) (0.063)
Eye Occlusion -0.044∗∗∗ -0.023 -0.063∗∗∗ -0.040∗∗∗ -0.035∗∗∗ -0.043∗∗∗ -0.003 -0.007 0.001

(0.015) (0.021) (0.024) (0.004) (0.006) (0.006) (0.042) (0.056) (0.063)

Anger -0.020 -0.052∗∗ 0.012
(0.014) (0.024) (0.021)

Number of Participants 229 229 229 7563 6368 6670 0 0 0
Number of Guesses (Real) 2349 1514 835 27446 18524 8922 81 76 5
Number of Guesses (Deepfake) 1707 549 1158 22766 6316 16450 87 7 80
Number of Guesses (50-50) 180 68 112 3713 1726 1987 32 17 15
Number of Unique Videos 50 25 25 50 25 25 50 25 25

Observations 4,236 2,131 2,105 53,925 26,566 27,359 200 100 100
R2 0.180 0.069 0.225 0.185 0.057 0.273 0.062 0.054 0.073
Adjusted R2 0.170 0.056 0.215 0.184 0.057 0.272 0.048 0.025 0.044
Residual Std. Error 0.340 0.329 0.350 0.349 0.350 0.346 0.210 0.198 0.222
F Statistic 288.686∗∗∗ 164.804∗∗∗ 169.388∗∗∗ 3687.143∗∗∗ 2150.874∗∗∗ 4525.903∗∗∗ 4.337∗∗∗ 1.841 2.514∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2.1: Treatment effects of interventions on accuracy. Linear regressions on participant
data includes video fixed effects with Eicker-Huber-White standard errors clustered at the
participant level.

2.3 Discussion

How do ordinary human observers compare with the leading deepfake detection models? Our

results are at odds with the commonly held view in media forensics that ordinary people have

extremely limited ability to detect media manipulations. Past work in the cognitive science

of media forensics has demonstrated that people are not good at perceiving and reasoning

about shadow, reflection, and other physical implausibility cues [191, 318, 460, 461]. On

first glance, deepfakes and other algorithmically generated images of people (e.g., images

generated by StyleGAN) look quite realistic [314]. But, we show that deepfake algorithms

generate artifacts that are perceptible to ordinary people, which may be partially explained

by human’s specialized visual processing of faces. In contrast to recent research showing

ordinary people quickly learn to detect AI generated absences in photos [244], we do not

find evidence that participants improve in their ability to detect deepfakes.
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By showing participants videos of unknown individuals making uncontroversial statements,

we focused the truth discernment task specifically on visual perception. The lack of addi-

tional context creates a level playing field for a reasonably fair comparison of human and

machine vision because humans cannot also reason about contextual, conceptual clues in

these videos [206]. In the two alternative forced-choice paradigm of Experiment 1, 82% of

participants respond with higher accuracy than the leading model. In the more challenging

single video framework in Experiment 2, participants still perform really well, and we find

that between 13% and 37% of ordinary people outperform the leading deepfake detection

model. When we aggregate participants’ responses in Experiment 2, we find that collective

intelligence, as measured by the crowd mean, is just as accurate as the model’s prediction.

In the extension of the experiment to videos of well-known political leaders (Vladimir Putin

and Kim Jong-un), participants significantly outperform the leading model, which is likely

explained by participants’ ability to go beyond visual perception of faces. Unlike the 50

sample holdout videos, participants could critically contemplate the authenticity of the

video of the political leader. For example, participants might have considered whether

Vladimir Putin or Kim Jong-un speak English, whether they actually sound like they do

in the video, and whether such a well-known political figure would say such a thing. Not

only do the majority of participants identify the deepfake status of videos of political leaders

correctly, but the computer vision model is confident in its wrong predictions. Perhaps, the

model failed because it was trained on face swapping deepfake manipulations as opposed

to synthetic lip syncing manipulations. What the evidence shows is that today’s leading

model does not generalize well to stylistically different videos than the videos on which

it has been trained, whereas human deepfake detection abilities do generalize across these

different contexts.

The model’s predictions helped participants improve their accuracy overall, but whether

a participant’s accuracy increased depended on whether the model accurately identified

the video as a deepfake or not. Participants often made significant adjustments based

on the model’s predictions, and inaccurate or equivocal model predictions led participants

astray in 8 of 10 instances. Moreover, the model’s incorrect assessment of the political
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leader deepfake videos is associated with a decrease in participant accuracy, which is in line

with recent empirical research that shows deepfake warnings do not improve discernment of

political videos [601]. Likewise, these results mirror other recent research revealing human-

AI collaborative decision making does not necessarily lead to more accurate results than

either humans or AI alone [5, 221, 299, 608, 615].

Videos are heterogeneous, high-dimensional media, and as a result, participants were accu-

rate on some videos on which the leading model failed and vice versa. In line with recent

research examining perceptual differences between authentic and deepfake videos [647], we

identified 7 salient dimensions across the 50 sampled holdout videos to evaluate differences

in how participants and the leading model discern authenticity: We find that the leading

model performs slightly better than participants on low-quality videos that were categorized

as grainy, blurry, and very dark. This differential performance suggests that the model is

picking up on low-level details that participants appear to ignore. On the other hand, we

find both recruited and non-recruited participants attain similar accuracies as the model on

standard quality videos. Both participants and the model are quite adept at picking up on

flickering faces. The model has trouble discerning between real and deepfake videos when

two actors appear in the video while participants have no trouble in this context. This

suggests that the model may be vulnerable to changes in context whereas participants are

more robust to varying context. With respect to visual distractions, we find distractions are

associated with participants identifying videos more often as deepfakes. While we showed

recruited participants examples of distraction videos that should not be reported as deep-

fakes and we explicitly described these distractions in the instructions as not necessarily

characteristic of deepfakes, we imagine the results concerning the distraction videos may

possibly reflect confusion by the participants. Nonetheless, all reported results are robust

to the exclusion of distraction videos. In light of recent research showing intersectional dis-

parities in accuracy of commercial facial recognition software [87] and the impact of race on

credibility with deepfakes [271], we examine accuracy on the videos with dark skin actors.

Participants and the leading model are both less accurate on videos with dark skin actors,

but as we reported in the results section, we only find a statistically significant difference in

participants’ performance not the model’s performance.
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In Experiment 2, we find some evidence for our pre-registered hypothesis that anger would

impair participants’ ability to identify manipulated media. When we elicit incidental anger

(i.e., anger unrelated to the task at hand), participants’ accuracy at identifying real videos

decreases, a pattern that held across almost all videos (see Figure S3 in the Supporting

Information where participants assigned to the anger elicitation under perform participants

assigned to the control in 22 out of 25 real videos, and see the Limitations section below).

The negative and heterogeneous effect of incidental anger on the discernment of real (but not

fake) videos may be related to the negative and heterogeneous effect of emotion priming on

accuracy ratings of fake (but not real) news headlines [404]. Drawing on Martel et al 2020,

one potential explanation for the negative effects of anger elicitation on the discernment

of authentic but not deepfake videos is emotion leading to an over-reliance on intuition; in

this experiment, if a participant sees something that looks like a deepfake manipulation,

then she is unlikely to think the video is real, but if a participant does not see something

that looks like a deepfake manipulation, then he might think he’s simply unable to spot the

detailed manipulation and may respond based on his intuition that a video is fake rather

than whether he clearly saw a manipulation or not.

Both Experiments 1 and 2 provide support for the claim that specialized processing of faces

helps people discern authenticity in visual media. In particular, we show that three visual

obstructions designed to hinder specialized processing – inversion, misalignment, and partial

occlusion – decrease participants’ accuracy. In contrast to human visual processing, we find

only inversion and not misalignment or partial occlusion change the model’s performance.

While the computer vision model is robust to misalignment and occlusion, this robustness

may be a bug – the model overfitting to the training data – rather than a feature. Future re-

search should explore whether specialized processing in computer vision models for deepfake

detection enables better generalization to new contexts.

60



2.4 Limitations

We evaluated human and machine performance on 167 videos (84 deepfake and 83 authentic

videos) across Experiments 1 and 2. While these videos represent a balanced group of

individuals across demographic dimensions and a variety of deepfake models, only the two

political deepfake videos include lip syncing manipulations, which are some of the most

commonly used models for producing political deepfakes [13, 168, 510, 592]. Moreover, we

do not specifically recruit expert fact-checkers or expert media forensic analysts, and as

such, our results only generalize to the performance of ordinary people. Our comparison of

untrained participants’ predictions to the predictions of the leading computer vision model

is limited to the best performance in 2020. If current trends continue as we expect they

would, computer vision detection models will continue to improve (and possibly incorporate

more human-like specialized processing of faces to better generalize across contexts) just

as the realism of synthetic media generation algorithms will continue to improve. As a

consequence, society will require more than just visual-based classification algorithms to

protect against the potentially harmful threats that deepfakes pose [432].

The minimal context videos used here may not resemble the most problematic deepfakes

because the videos here show unknown people saying non-controversial things in nondescript

settings. On one hand, this minimal context makes the human participants’ performance

all the more impressive because such videos are missing many of the contextual cues they

might normally use to discern authentic videos from deepfakes. On the other hand, perhaps

videos designed to deceive are stylistically very different than the videos from the sampled

holdout. As such, persuasive, manipulated video is important to consider in future research.

The role of persuasion in synthetic media is beginning to be explored across varying media

modalities [165, 645], but it is not the central focus of this paper. Instead, we ask how

well the human visual processing system can detect the visual manipulations characteristic

of deepfakes. We limit the bulk of our evaluation to uncontroversial videos of unknown

actors to focus on the visual component of truth discernment. We begin to examine more

realistic examples based on four videos of political leaders, but a larger sample size and

further experimentation is necessary before making conclusions about how people judge the
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authenticity of political deepfakes. Furthermore, there is still much to learn about how AI

systems and ordinary people can incorporate all the other information beyond facial features

to make accurate judgments about a video’s authenticity.

In this experiment, half of the videos were real and half deepfakes. This is useful for com-

paring human and machine performance, but this base rate of deepfakes does not reflect the

base rate of misinformation in today’s media ecosystems [19]. In 2021, less than a fraction of

a percent of news was misinformation [634]. Future experiments might consider examining

people’s ability to identify deepfakes when they do not have foreknowledge of the base rate

of deepfakes. Moreover, an experiment embedded in a social media ecosystem could fur-

ther identify how well people identify deepfakes within an ecologically valid context where

people have access to contextual information such as who shared the video and how many

others have shared or commented on the video. Ultimately, there are many ways to discern

between real and fake videos, and visual perception should be considered as one tool in a

user’s toolkit for truth discernment.

We also considered how incidental emotions (i.e., emotions unrelated to the task at hand)

affect participants’ discernment of real and fake videos. Here, our two experiments found

different results, and so we do not draw firm conclusions about the role of emotion on

deepfake detection. In Experiment 1, the custom emotion elicitation interventions did not

significantly alter deepfake detection performance — though it also did not significantly

alter self-reported emotions, making it unclear how much to read into the lack of effects on

performance. The results from Experiment 2, though statistically significant by conventional

standards, were near the cutoff for statistical significance for authentic videos and not sta-

tistically significant for deepfake videos. As such, future research could further explore the

role of emotions in deepfake detection by running experiments with larger samples, exam-

ining additional emotions, ensuring effective elicitation, and focusing on integral emotions

(emotions elicited directly from the stimuli). Recent research shows that inferences from

feelings are context-sensitive and incidental emotions may be more likely to lead individuals

astray in judgment tasks than integral emotions [559].
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2.5 Implications

Relative to today’s leading computer vision model, groups of individuals are just as accurate

or more accurate depending on which videos are considered. Participants and the model per-

form equally well on standard resolution, visual-only deepfake manipulations. Participants

perform better on the four political videos and attention check video while the computer

vision model performs slightly better on blurry, grainy, and very dark videos. The model’s

poor performance on both deepfakes of world leaders and videos with two people instead of

one suggests that the model may not generalize well to stylistically different videos than the

videos on which it has been trained. Humans have no problem with this kind of generaliza-

tion, and as a consequence, social media content moderation of video-based misinformation

is likely to be more accurate when performed by teams of people than today’s leading al-

gorithm. As such, future research in crowd-based deepfake detection may consider how to

most effectively aggregate wisdom of the crowds to improve discernment accuracy beyond

the crowd mean (e.g., using algorithms such as the surprisingly popular answer [511] and

revealed confidence [665]).

Sociotechnical systems may benefit from the combination of artificial intelligence and crowd-

wisdom, but decision support tools for content moderation must be carefully designed to

appropriately weigh human and model predictions. The confidently wrong predictions of the

model on out-of-sample videos reveals the leading model is not ready to replace humans in

detecting real-world deepfakes. Moreover, decision support tools can be counter-productive

to accurate identification as evidenced by the many instances in which participants saw

incorrect predictions from the model and subsequently adjusted their predictions to be less

accurate. Instead of solely informing people on the likelihood that a model is a deepfake,

crowd-wisdom could likely benefit from more explainable AI. Given that the leading model

was more accurate at detecting certain classes of videos while humans were better at other

classes, a future human-AI collaborative system might include additional information on

video sub-types and how humans and machines perform across these sub-types. For example,

video-level qualities (e.g., blurry, grainy, dark, specialized obstruction, stylistic similarities

to training set, or other components upon which human and machine performance tends to
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diverge) and individual-level qualities could be factored into the interface and information

presented by a human-AI collaborative system. By presenting model predictions alongside

this information, it is possible humans could develop a better sense for confronting conflicting

model predictions and deciding between second-guessing their own judgments and overriding

the model’s prediction. Machine-informed crowd-wisdom can be a promising approach to

deepfake detection and other classification tasks more generally where human and machine

classification performance is heterogeneous on sub-types of the data.

Specialized visual processing of faces helps humans discern between real and deepfake videos.

In future instances when humans are tasked with deepfake detection, it is important to

consider whether a video has been manipulated in such a way as to reduce specialized

processing. Moreover, given the usefulness of specialized processing of faces for humans in

detecting deepfakes, it is possible that computer vision models for deepfake detection may

find use in incorporating (and/or learning) such specialized processing [193].

Visual cues will continue to be helpful in deepfake detection, but ultimately, identifying

authentic video can involve much more than visual processing. When attempting to discern

the truth from a lie, people rely on the available context, their knowledge of the world, their

ability to critically reason, and their capacity to learn and update their beliefs. Similarly,

the future of deepfake detection by both humans and machines should consider not only the

perceptual clues but the greater context of a video and whether its message resembles an

ordinary lie.

2.6 Methods

This research complies with all relevant ethical regulations and the Massachusetts Institute

of Technology’s Committee on the Use of Humans as Experimental Subjects determined

this study to fall under Exempt Category 3 – Benign Behavioral Intervention. This study’s

exemption identification number is E-2070. All participants are informed that “Detect Fakes

is an MIT research project. All guesses will be collected for research purposes. All data

for research is collected anonymously. For questions, please contact detectfakes@mit.edu.
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If you are under 18 years old, you need consent from your parents to use Deep Fakes.”

Most participants arrived at the website via organic links on the Internet. For recruited

participants, we compensated each individual at a rate of $7.28 an hour and provided bonus

payments of 20% to the top 10% of participants. Before beginning the experiment, all

recruited participants were also provided a research statement, “The findings of this study

are being used to shape science. It is very important that you honestly follow the instructions

requested of you on this task, which should take a total of 15 minutes. Check the box below

based on your promise:” with two options “I promise to do the tasks with honesty and

integrity, trying to do them uninterrupted with focus for the next 15 minutes.” or “I cannot

promise this at this time.” Participants who responded that they could not do this at this

time were re-directed to the end of the experiment.

We hosted the experiment on a website called Detect Fakes at https://detectfakes.

media.mit.edu/. Figure S4 in the Supporting Information presents a screenshot of the

user interface for both Experiments 1 and 2. The rest of the methods are described in the

Supplementary Information section.

2.7 Data and Code Availability

The datasets and code generated and analyzed during the current study are available in

our public Github repository, https://github.com/mattgroh/cognitive-science-det

ecting-deepfakes. All DFDC videos are available at https://dfdc.ai/ [168] and the 5

non-DFDC videos are available in our public Github repository.
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Figure 2-2: Figure 2a presents the distribution of participant performance across experi-
ments compared to the model’s performance via violin plots where the white dots indicate
the mean and the black bars indicate the interquartile range. R refers to recruited partici-
pants, NR refers to non-recruited participants, E1 refers to Experiment 1, and E2 refers to
Experiment 2. In the Experiment 1 (two-alternative forced choice), accuracy is defined as
identifying a deepfake from a pair of videos correctly. In Experiment 2 (single video design),
accurate identification is defined as responding with the correct answer with more than 50%
confidence. The model’s performance represents a single observation in each instance, and as
such, we present the model’s performance as a horizontal black line with a white dot in the
middle. The crowd mean distributions are obtained by bootstrapping confidence intervals
based on 1000 randomly drawn samples that are each half of the total observations. Figure
2b presents a scatter plot of the model’s accuracy and the distribution of participants’ accu-
racy scores for each video. The x-axis of Figure 2b is an index of the videos, and it is ordered
by experiment, true class of each video, and participant’s average accuracy. The teal lines
in Figure 2b represent the interquartile range of recruited participants’ responses. Figure 2c
presents the distribution of changes in recruited participants’ accuracy after updating their
response based on whether the model’s prediction is correct, incorrect, or indecisive. Figure
2d presents the receiver operator characteristic curves of computer performance, recruited
participants’ collective performance, and recruited participants’ collective performance with
the model’s decision support across the 50 DFDC videos in Experiment 2.
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Chapter 3

Human Detection of Political

Deepfakes across Transcripts, Audio,

and Video

Abstract

Recent advances in technology for hyper-realistic visual effects provoke the concern that
deepfake videos of political speeches will soon be visually indistinguishable from authentic
video recordings. The conventional wisdom in communications research predicts people will
fall for fake news more often when the same version of a story is presented as a video rather
than text. Here, we evaluate how accurately 41,822 participants distinguish real political
speeches from fabrications in an experiment where speeches are randomized to appear as
permutations of text, audio, and video. We find access to audio and visual communication
modalities improve participants’ accuracy. Here, human judgment relies more on how some-
thing is said, the audio-visual cues, than what is said, the speech content. However, we find
that reflective reasoning moderates the degree to which participants consider visual informa-
tion: low performance on the Cognitive Reflection Test is associated with an over-reliance
on what is said.1

1This chapter, which is co-authored by Aruna Sankaranarayanan, Andrew Lippman, and Rosalind Picard,
is currently under review and available as a pre-print [247].
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3.1 Motivation

Recent advances in technology for algorithmically applying hyper-realistic manipulations to

video are simultaneously enabling new forms of interpersonal communication and posing a

threat to traditional standards of evidence and trust in media [13, 120, 250, 264, 371, 484,

486]. In the last few years, computer scientists have trained machine learning models to

generate photorealistic images of people who do not exist [314, 315, 458], inpaint people

out of images [244, 591], clone voices based on a few samples [31, 396], modulate the lip

movements of people in videos to make them appear to say something they have not said [358,

510], and create fake videos based on simple text prompts [281]. The synthetic videos’ false

appearance of indexicality – the presence of a direct relationship between the photographed

scene and reality [425, 489] – has the potential to lead people to believe video-based messages

that they otherwise would not have believed if the messages were communicated via text.

This potential influence is particularly concerning because research demonstrates that videos,

especially videos of an injustice, elicit more engagement and emotional reactions (e.g., anger,

sympathy) than text descriptions displaying the same information [27, 230, 653] (although,

see ref. [509]). Moreover, visual misinformation is common on social media [220] and the

emotional and motivational influences of visual communication have been attributed to why

fake, viral videos have provoked mob-violence [231, 588]. While people are more likely to

believe a real event occurred after watching a video of the event than reading a description

of the event [645], an open question remains: Does visual communication relative to text

increase the believability of fabricated events?

The realism heuristic [587, 588] predicts “people are more likely to trust audiovisual modal-

ity [relative to text] because its content has a higher resemblance to the real world.” This

prediction is relevant for many deepfake videos [265] and suggests fabricated video would

be more believable than fabricated text conditional on the absence of obvious perceptual

distortions. Yet there exists little direct empirical evidence for this heuristic applied to

algorithmically manipulated video. In an experiment using three fake videos as stimuli, re-

searchers found that stories presented as videos are perceived as more credible than stories

presented as text or read aloud in audio form [588]. In contrast, in an experiment showing 6
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political deepfake videos (videos manipulated by artificial intelligence to make someone say

something they did not say) and 9 non-manipulated videos, researchers did not find differ-

ences between truth discernment rates in video, audio, and text [46]. Perhaps some of the

experiments’ participants did not take the videos’ “indexicality” as evidence of authenticity

because participants were aware of how easily such videos could be manipulated. Alter-

natively, some participants may have noticed perceptual distortions in the videos, which

would naturally lead one to believe the video has been manipulated. The mixed evidence on

how communication modalities mediate people’s ability to discern fabricated content may

be due to the small samples of stimuli in media effects research [524]. In related work on

how fake images can be persuasive and difficult to distinguish from real images: research

finds people rarely question the authenticity of images even when primed [318], images can

increase the credibility of disinformation [258], and images of synthetic faces produced by

StyleGAN2 [315] are indistinguishable from the original photos on which the StyleGAN2

algorithm was trained [459]. Moreover, research shows that non-probative and uninfor-

mative photos can lead people to believe false claims [103], lead people to believe they

know more than they actually know [104], promote “truthiness” by creating illusory truth

effects [456, 457], which can lead people to believe falsehoods they previously knew to be

falsehoods [180, 194]. When it comes to ostensibly probative videos of political speeches,

the question whether people are more likely to believe an event occurred because they saw

it as opposed to only read about it remains open.

In fact, today’s algorithmically generated deepfakes are not yet consistently indistinguishable

from real videos. On a sample of 166 videos from the largest publicly available dataset of

deepfake videos to date [168], people are significantly better than chance but far from perfect

at discerning whether an unknown actor’s face has been visually manipulated by a deepfake

algorithm [243]. This finding is significant because it demonstrates that people can identify

deepfake videos from real videos based solely on visual cues. However, some videos are more

difficult than others to distinguish due to blurry, dark, or grainy visual features. On a subset

of 11 of the 166 videos, researchers do not find that people can detect deepfakes better than

chance [340]. In another experiment with 25 deepfake videos and 4 real videos but only 94

participants, researchers found that the overall discernment accuracy is 51% and a media

71



literacy training increases discernment accuracy by 24 percentage points for participants

assigned to the training relative to the control group [595]. In experiments examining how

people react to deepfake videos of politicians, researchers find people are more likely to feel

uncertain than misled after viewing a deepfake of Barack Obama [614] and people consider

a deepfake of a Dutch politician significantly less credible than the real video from which it

was adapted [165] and the deepfake video is not more persuasive than the text alone [259].

In the experiment examining the fabricated video of a Dutch politician, some respondents

explained their credibility judgements by indicating audio-visual cues of how the message

was communicated (e.g., unnatural mouth movements); others indicated inconsistency in

the content of the message itself (e.g., contextually unrealistic speeches) [165].

People’s capacity to identify multimedia manipulations raises questions: how do various

kinds of fabricated media (e.g., audio and video of fake political speeches) alter the per-

ceived credibility of misinformation, how do audience characteristics (e.g., reflective reason-

ing) moderate media effects, and how does the source and content of a message interact

with the fabricated media and audience characteristics [370]? A growing field of misinfor-

mation science is beginning to address these questions. Research on news source quality

demonstrates that people in the United States are generally accurate at identifying high

and low-quality publishers [493] and the salience of source information does not appear to

change how accurately people identify fabricated news stories [41], manipulated images [563],

or fake news headlines [163, 302] although evidence on fake news headlines is mixed [330,

451]. Research on political fake news content suggests an individual’s tendency to rely

on intuition instead of analytic thinking is a stronger factor than motivated reasoning in

explaining why people fall for fake news [496], and similarly, people with more analytic cog-

nitive styles worldwide are more accurate at discerning between authentic and fabricated

political videos [26] and true and false headlines related to COVID-19 [29]. In fact, people

tend to be better at discerning truth from falsehood when evaluating news headlines that

are concordant with their political partisanship relative to when evaluating news headlines

that are discordant [495]. While the science of fake news has generally focused on the mes-

sengers (the source credibility of publishers) [365] and the message of what is said (the media

credibility of written articles and headlines) [495], the relevance of audio-visual communi-
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cation channels to the psychology of misinformation has received less attention [140] and is

important for addressing the problem of misinformation [97].

In this paper, we evaluate discernment across 32 political speeches by two well-known politi-

cians. We present these speeches to participants via the 7 possible permutations of 3 dig-

ital media communication modalities: text, audio, and video. Based on 46,713 responses

from 3,317 individuals who participated in a pre-registered (and an additional 387,274 re-

sponses from 38,510 participants who participated after the pre-registration window) 2 cross-

randomized experiment, we examine ordinary people’s performance at discerning political

speeches randomized to appear in each of the following seven conditions: a transcript, an

audio clip, a silent video, audio with subtitles, silent video with subtitles, video with audio,

and video with audio and subtitles. By randomly assigning political speeches to these per-

mutations of text, audio, and video modalities and asking participants to discern truth from

falsehood, this experiment is designed to disentangle the degree to which participants attend

to and consider the content of what is said and the audio-visual cues as to how it is said. In

addition, we evaluate these disentangled components across message types (speeches that

are either concordant or discordant with the general public’s perception of a speaker’s politi-

cal identity) and audience characteristics (reflective reasoning as measured by the Cognitive

Reflection Test (CRT) [214]), which is a robust test for measuring an individual’s tendency

towards reflecting on questions before answering [66, 492, 583] that helps explain why people

fall for fakes news [494, 496] and is strongly associated with the reliability of news sources

people engage with and share on social media [441].

2The pre-registered analysis is available at https://aspredicted.org/VFZ_6HK. We continued collecting
responses from participants who found our experiment organically after the pre-registered cut-off date for
data collection passed, and our final sample includes 432,987 responses from 41,822 participants who passed
the attention check. Our results are robust to include or exclusion of participants who participate after the
pre-registered cut-off date.
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3.2 Results

3.2.1 Participants (N=41,822)

A total of 73,236 individuals participated in the experiment. We used the Prolific plat-

form [480] to recruit 554 individuals from the United States who completed 16,699 trials.

In addition to the recruited participants, 5,106 individuals (76% of whom visited from out-

side the United States) participated in the experiment during the pre-registration window

from March 4, 2021 to June 1, 2021. These participants found the website organically and

completed 44,461 trials. Between June 1, 2021 and July 1, 2022, an additional 67,576 indi-

viduals (70% of whom visited from outside the United States) completed 566,343 trials. We

focus our analysis on 41,822 participants: the 509 of 554 recruited participants and 41,313

of 72,682 non-recruited participants who passed the attention check where we presented

an obvious deepfake and explicitly instructed participants to respond that the video is a

deepfake with 100% confidence.

The sample of 509 recruited participants is balanced across political identities (in this ex-

periment failure on the attention check does not correlate with political identities [63]); 257

recruited participants self-report as Democrats, and the other 252 recruited participants

self-report as Republicans. We do not find demographic differences in recruited participants

who passed the attention check. We did not collect data for recruited participants who failed

the attention check, but we did collect data for the non-recruited participants who failed the

attention check. In the Supplementary Information, we demonstrate that the main results

are robust to including participants who failed the attention check and robust to including

or excluding participants who participated after June 1, 2021.

Many but not all participants responded to all 32 speeches; 482 recruited participants and

6,374 non-recruited participants viewed all 32 speeches. Before the experiment began, par-

ticipants in the recruited cohort (but not the non-recruited cohort) responded to a baseline

survey that included questions on political preferences, trust in media and politics, and the

three questions from the CRT.
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Figure 3-1: Mean identification accuracy across the 32 silent videos (with no subtitles)
to illustrate the heterogeneity in how difficult the visual deepfake manipulations are to
detect. There are 8 fabricated videos and 10 non-fabricated videos out of the 32 on which
participants identify less than 67% of the time. There are 2 fabricated videos accurately
identified in more than 80% of observations. The 95% confidence interval range is less than
1% for all silent videos.

3.2.2 Discernment Performance across Communication Modalities

We begin by examining how frequently participants correctly identified the stimuli as fab-

ricated or not. Across all 224 stimuli, recruited and non-recruited participants correctly

identified the stimuli in 75% and 70% of observations, respectively.

We find the fabricated political speech transcripts and visual deepfake manipulations are

difficult for participants to discern. The proportion of people who accurately identified

fabrications from authentic text varied by stimuli. Across the 32 text transcripts, the least

accurately identified transcript is identified correctly in 26% of trials, the most accurately

identified one is identified correctly in 67% of trials, and the median accurately identified

one is identified correctly in 43% of trials. Similarly, the range for accurate identification

across the 32 silent videos (silent videos refers to only silent videos and not silent videos

with subtitles) is 37% to 86% with a median of 66%. There are 8 out of 16 fabricated silent

videos and 10 out of 16 non-fabricated silent videos that participants accurately identify

less than than 67% of the time. Figure 3-1 illustrates the proportion of participants who

accurately distinguish between authentic and fabricated for the 32 silent videos.

In contrast, we find audio clips are easier to discern than text transcripts or silent videos.
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On the audio clips with no subtitles, the accurate identification ranges from 56% to 86%

with a median of 79%.

Figure 3-2 presents participants’ weighted accuracy, confidence, perceived fabrications in

fabricated speeches, perceived fabrications in non-fabricated speeches, and response duration

across modality conditions. Weighted accuracy indicates participants’ accuracy weighted

by confidence (e.g., if a participant responded “82% confidence this is fabricated” and the

participant is correct, then the participant is assigned a weighted accuracy score of 82, and

otherwise, if the participant is incorrect, then the participant would be assigned a weighted

accuracy score of 18). Confidence indicates participants’ self-reported level of confidence

which ranges from 50 (just as likely as chance) to 100 (full certainty). Perceived fabrications

in fabricated and non-fabricated speeches is defined as a participant indicating a 51% or

higher confidence that a stimulus is fabricated. Response time is measured in seconds and

windsorized at the 99th percentile to control for time response outliers, which are an artifact

of participants who return to the experiment after an extended time.

We evaluate the marginal effect of each condition on participants’ weighted accuracy (and

additional outcomes) via an ordinary least squares regression with standard robust errors

clustered at the participant level following Abadie et al (2017) [2]. We find both recruited and

non-recruited participants’ accuracy increase as political speeches are presented with video

and audio modalities. In this regression, which is also presented in column 1 of Table 3.1 in

the Appendix, the dependent variable is weighted accuracy and the independent variables

are binary indicators for assignment to communication modalities. Recruited participants’

accuracy is 58% (p < 0.001) on transcripts, 7% (p < 0.001) higher on silent videos, 9%

(p < 0.001) higher on silent videos with subtitles, 19% (p < 0.001) higher on audio clips

and audio clips with subtitles, and 25% (p < 0.001) higher on videos with audio and videos

with audio and subtitles.3 Similarly in column 3 of Table 3.1, non-recruited participants’

accuracy is 53% on transcripts, 13% (p < 0.001) higher on silent videos and silent videos

with subtitles, 21% (p < 0.001) higher on audio clips and audio clips with subtitles, and 28-

29% (p < 0.001) higher on videos with audio and videos with audio and subtitles. Overall,
3All p-values reported in this paper are generated by linear regression with robust standard errors clus-

tered at the participant level unless otherwise noted.
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Figure 3-2: The mean and distribution of (a) weighted accuracy, (b) confidence, (c) per-
ceived fabrications in fabricated speeches, (d) perceived fabrications in real speeches, and
(e) response time are plotted for each of the seven modality conditions. The black lines
indicate the 95% confidence interval of the true mean and the gray dots indicate each of the
32 speeches. Figure 3-2b plots confidence on a scale that ranges from a minimum of 50%
confidence (just as likely as chance) to 100% confidence (full confidence). Figure 3-2e plots
response time windsorized at the 99th percentile to control for time response outliers, which
are an artifact of participants who return to the experiment after an extended time.

participants are better at identifying whether an event actually happened when watching

videos or listening to audio than reading transcripts.

In contrast to the high variability in participants’ accuracy across speeches and modality

conditions, participants’ confidence is less variable. On text transcripts, participants’ mean

confidence is 79%. Speeches presented via video and audio increase participants’ confidence

relative to text transcripts by 9% and 11% (p < 0.001) independently, respectively, and

15% together (p < 0.001). We find small effects of learning over time; for every stimuli

seen, participants’ accuracy increases by 0.27% (p = 0.001) and participants’ confidence

increases by 0.03% (p = 0.006), which means that on average accuracy increased by 8.64%
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and confidence increase by 0.96% from the first stimulus seen to the last one seen.

As participants have access to additional communication modalities, participants’ weighted

accuracy, confidence, discernment of fabricated speeches, and discernment of real speeches

increase on average. However, we do not find any significant, marginal effects of subtitles

on any of the dependent variables for modality conditions that already include audio. The

median response time across all stimuli was 27 seconds, which is 6 seconds longer than the

average video length. The median response time for the silent, subtitled videos is 34 seconds,

which is slightly longer than the response time for all other modality conditions. Across all

7 modality conditions, the median response time for fabricated stimuli is shorter than the

median response time for non-fabricated stimuli; fabricated text, video, and audio have 3.8

seconds (p < 0.001), 5.6 seconds (p < 0.001), and 3.5 seconds (p < 0.001) shorter response

times than their non-fabricated counterparts.

Based on this experiment’s large sample size of 432,987 observations by participants who

passed the attention check, the 224 stimuli in this experiment have a mean of 1,932 observa-

tions each. This large sample size per stimuli provides high statistical power to individually

evaluate whether participants are discerning stimuli more accurately than chance. Specifi-

cally, using 1,933 observations provides over 99% statistical power to detect a 15 percentage

point increase beyond chance at the p < 0.05 threshold. We evaluate the degree to which

participants’ discernment surpasses random chance by running a binomial test on responses

to each stimuli within a modality condition and applying a Bonferonni correction [76], which

means multiplying each p-value by 32 (the number of speeches per modality condition) to

correct for multiple hypothesis testing.

After applying this correction for multiple hypothesis testing, we find participants’ discern-

ment is statistically significantly better than chance (p < 0.05) on 5 of 32 text transcripts and

26 of the 32 silent videos. In particular, participants are no better than chance (p < 0.05)

on 4 of the 16 non-fabricated, silent videos and 2 of the 16 fabricated, silent videos. In other

words, we have high statistical power, and we do not find evidence that participants are

better than chance on 6 of the silent videos and 27 of the 32 text transcripts.

When the information from the political speech transcript and video are combined in the
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silent, subtitled videos, we find participants discern better than chance (p < 0.05) on all

16 of 16 fabricated, silent videos with subtitles and 9 of 16 non-fabricated, silent videos

with subtitles. Likewise, the addition of audio significantly increases discernment rates; in

all modality conditions with audio, participants discern better than chance (p < 0.05) on

between 31 to 32 of the 32 political speeches.

Figure 3-2c and Figure 3-2d show the distributions of discernment rates across modality

conditions for fabricated and real videos. Similarly to Figure 3-2a and Figure 3-2b, these

plots show that regardless of whether the stimuli are fabricated or not, the addition of

audio or video is associated with an increase in participants’ discernment. However, we

find slight differences in response bias: participants tend to identify text transcripts as

real and the rest of the modalities as fabricated more often than random chance would

suggest. For participants who did not select “Just as likely real or fabricated,” participants

respond that text transcripts and silent videos are fabricated in 44% (p < 0.001) and 53%

(p = 0.002) of trials, respectively, while participants respond that the other 5 modality

conditions are fabricated in 55% to 57% of trials (p < 0.001) (see Figure 3-8 for the percent

of participants guessing a video is fabricated over the number of speeches a participant has

seen). Participants selected “Just as likely real or fabricated” in 21% of text transcripts, 7%

of silent videos, 6% of silent videos with subtitles, 6% of audio, 5% of audio with subtitles,

and 3% of video and audio with or without subtitles.

In Figure 3-3, we present participants’ marginal accuracy on transcripts, silent videos, and

video with audio relative to silent, subtitled videos for each of the 32 speeches. Figure 3-3a

reveals that participants are mostly less accurate on text transcripts than silent, subtitled

videos. Likewise, Figure 3-3c shows participants are consistently more accurate on videos

with audio than silent, subtitled videos. In contrast, Figure 3-3b illustrates heterogeneity in

participants’ performance with and without subtitles. In the following section, we examine

this heterogeneity along two dimensions: whether the video is fabricated or not and whether

the speech content is considered discordant with the politician’s identity or not.
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Figure 3-3: Participants’ accuracy on silent, subtitled videos is compared against accuracy
on transcripts, silent videos, and videos with audio for each of the 32 speeches. The error
bars represent 95% confidence intervals. The 32 speeches are ordered by the absolute value
of the difference in accuracy between the silent, subtitled video and the modality condition
to which it is being compared. The legend indicates whether the video shows the politician
expressing political views concordant or discordant with his expected political ideology and
“F” and “NF” refer to fabricated and not fabricated, respectively.

3.2.3 Heterogeneous Moderating Effects of Discordant Messages

We evaluate how discordant messages influence participants’ discernment by examining the

interactions between discordance and modality conditions in the linear regressions on par-

ticipants’ weighted accuracy presented in Table 3.2 and Table 3.3 in the Appendix. We limit

this analysis to recruited participants for two reasons: first, recruited participants are all

from the United States while the majority of non-recruited participants visited the website

from outside the United States and it is unclear how familiar non-recruited participants

are with United States politicians’ viewpoints; second, we also evaluate these effects with

respect to CRT performance, which we only collected for recruited participants.

When considering all 32 fabricated and real speeches together (see column 1 of Table 3.2 in

the Appendix), we find participants are 4.7 percentage points (p = 0.002) more accurate on

silent, subtitled videos than the same videos without subtitles. However, we find participants

are 5.0 percentage points (p = 0.018) less accurate on the discordant silent, subtitled videos

than the same silent videos without subtitles. In other words, the addition of subtitles

reduces discernment accuracy for political speeches that are discordant with the general

public’s perception of what politicians would say.

In order to further evaluate this effect, we consider fabricated videos and non-fabricated

videos separately in columns 2 and 3 in Table 3.2 in the Appendix. We find the negative effect

80



of discordance on subtitled videos is driven by participants’ discernment of non-fabricated

videos. We find participants are 6.8 percentage points (p = 0.021) less accurate on discordant

silent, subtitled videos that are not fabricated compared to the same silent videos without

subtitles. In contrast, we do not find a statistically significant difference (p = 0.341) between

participants’ performance on discordant silent, subtitled videos that have been fabricated

and the same silent videos without subtitles. The negative effects of subtitles on non-

fabricated yet discordant silent videos indicates the content of a message can change how

participants weigh visual information.

The heterogeneous effects of subtitles on the discernment of silent videos is robust to our

specification of discordance. In Table 3.3 in the Appendix, we consider the same regressions

as Table 3.2 in the Appendix except we replace the binary variable indicating discordance

with a continuous variable for how discordant the speech is with the speaker based on the

independent survey with 84 participants on how well the political speeches match either

politicians’ political views. The regressions in columns 2 and 3 of Table 3.3 in the Appendix

present qualitatively similar results as Table 3.2 in the Appendix. When we consider discor-

dance based on the public’s perceived discordance, we find participants are 4.2 percentage

points (p = 0.003) less accurate on discordant silent, subtitled videos that are not fabricated

compared to the same silent videos without subtitles. Likewise, we do not find a statisti-

cally significant difference (p = .751) between participants’ performance on discordant silent,

subtitled videos that have been fabricated and the same silent videos without subtitles.

3.2.4 Heterogeneous Moderating Effects of the Cognitive Reflection Test

(CRT)

We find that participants’ performance on the CRT moderates participants’ discernment

accuracy. In this analysis, the CRT score is a continuous variable ranging from 0 to 3 with

124 participants answering none correctly and 109, 122, and 154 participants answering

1, 2, and 3 questions correctly, respectively. For every question that participants answer

correctly on the CRT, participants are 2.9 percentage points (p = 0.002) more accurate (see

column 4 in Table 3.2 in the Appendix). Likewise, participants who respond correctly to all 3
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items on the CRT are 8.7 percentage points (p = 0.002) more accurate than participants who

respond incorrectly to all 3 items. In Figure 3-7 in the Appendix, we present the distribution

of media truth discernment scores following Pennycook and Rand (2019) [496] for “intuitive”

participants who incorrectly answered all 3 CRT items and “deliberative” participants who

correctly answered all 3 CRT items.

We also find that participants’ performance on the CRT moderates the influence of subtitles

on the discernment accuracy of discordant messages in silent videos. In columns 4-6 of Ta-

ble 3.2 in the Appendix, we report regressions that include the same independent variables as

columns 1-3 plus interaction effects of these independent variables with participants’ scores

on the CRT. As a visual aid, we present these results in Figure 3-4. In column 6 where

we consider only non-fabricated videos, we find the coefficient on the interaction between

“Discordant” and “Silent Subtitled Video” is negative 17.5 percentage points (p < 0.001),

which means that participants are that much less accurate on non-fabricated discordant

silent, subtitled videos than the same silent videos without subtitles while holding all else

constant. The interaction between “CRT Score,” “Discordant,” and “Silent Subtitled Video”

is 6.3 percentage points (p = 0.011), which means for each correct response to the CRT,

participants are 6.3 percentage points more accurate at identifying discordant silent, subti-

tled videos while holding all else constant. This means that participants who answered all 3

CRT items correctly would be 18.9 percentage points (p = 0.011) more accurate on discor-

dant silent, subtitled videos than participants who failed to answer any CRT item correctly.

This improvement by 18.9 percentage points for answering all CRT items correctly cancels

out the 17.5 percentage point decrease associated with discordant silent, subtitled videos

compared to the same silent videos without subtitles. In other words, perfect performance

on the CRT moderates the negative effects of discordant content such that participants are

considering visual information and discerning just as accurately on silent subtitled videos

as the same silent videos without subtitles. These results are qualitatively similar when we

replace the binary variable for discordance with the continuous variable for discordance in

Table 3.3.
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Figure 3-4: Average treatment effect of assignment to modality conditions and their inter-
action with discordant speeches and participants’ performance on the Cognitive Reflection
Test. The error bars represent 95% confidence intervals.

3.3 Discussion

This work provides evidence, via a randomized experiment with 224 authentic and fabri-

cated stimuli and 41,822 participants, that visual and auditory communication modalities

increase people’s ability to distinguish authentic political speeches from fabricated politi-

cal speeches. In particular, we provide corroborating evidence to the conventional wisdom

around the “seeing is believing” narrative (the realism heuristic that suggests people will

tend to trust video over text[587] and recent results showing people “are more likely to

believe an event occurred when it is presented in video versus textual form” [645]) in the

context of authentic speeches: people are significantly more accurate at identifying authentic

speeches as authentic when the speeches include audio and visual modalities as opposed to

only text. However, these results add considerable nuance to the seeing is believing narrative

when considering fabricated speeches: people are significantly more accurate at identifying

fabricated speeches as fabricated when the speeches include audio and visual modalities as

opposed to only text. In other words, we find participants are significantly more accurate

at distinguishing between authentic and fabricated political videos than transcripts.

These results are based on an experiment with a stimuli set that is much larger than most
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stimuli sets for the psychology of media effects research [524] and deepfake detection [46,

165, 614], but it is important to add a caveat that we focused on a single context, political

speeches, and algorithm, the deepfake lip-syncing wav2lip algorithm, which is very effective

at manipulating a person who is facing forward and already speaking into a convincing

fake video. While we present evidence that adds considerable nuance to the media effects

literature on communication modalities, future work may consider additional nuances by

exploring heterogeneity based on other kinds of deepfake manipulations like face swapping

and head puppetry [397], contexts that require more sophistication to produce a convincing

fake (e.g. where a person is moving, turning their head, and interacting with other people),

and who is being manipulated [86].

These results cannot simply be explained by the deepfake manipulations being too obvious

or unrealistic. On silent videos without subtitles, we find participants are only 64% accurate

at identifying manipulations (see Figure 3-2c and Figure 3-2d for the distribution of people

guessing stimuli are fabricated across the seven modalities). Moreover, we find participants

do not perform better than chance in nearly half of the silent videos. Participants’ perfor-

mance on the silent videos is relevant to the quality of the deepfake manipulations because

it avoids the confounding from the speech content and the audio. The participants’ low

performance on silent videos offers evidence that visual artefacts and inconsistencies created

by the lip syncing deepfake manipulations are not readily apparent to most people, and

as such, these videos represent a reasonable stimuli set for examining how well people can

distinguish real from fake videos.

People distinguish authentic from fabricated videos based on perceptual cues from video

and audio and considerations about the content (e.g., the degree to which what is said

matches participants’ expectations of what the speaker would say, which is known as the

expectancy violation heuristic [426]). With the message content alone, participants are

only slightly better than random guessing at 57% accuracy on average. With perceptual

information from video and the message content via subtitles, participants are slightly more

accurate (and more confident) at 66% accuracy on average, and with information from

both video and audio, participants are even more accurate (and more confident) at 82%

84



accuracy on average. Our finding that participants are more accurate at distinguishing

between real and fabricated on audio than silent video with subtitles aligns with the social

psychology literature demonstrating people tend to rely on auditory information more than

visual information for both discerning sincerity [47] and ascribing authorship of a script to

a human (as opposed to a computer) [558]. Overall, the experiment’s results show that as

participants have access to more information via audio and video, they are better able to

distinguish whether a political speech has been fabricated.

However, we find one notable exception to the result that more information leads to higher

accuracy in distinguishing fabricated speeches from authentic ones: political speeches that

conflict with the public’s perspective of what a politician would say are harder to discern

in silent, subtitled videos than the same silent videos without subtitles. This effect on

discordant speeches (but not concordant speeches) is not driven by subtitles distracting par-

ticipants. We do not find any evidence of any effect on subtitles when audio is included.

Instead, the heterogeneous effects of concordant and discordant speech content are a con-

sequence of how participants handle cognitive dissonance and balance the consideration of

perceptual and content-based information. We find that these effects are driven by responses

to non-fabricated videos and are moderated by deliberative, reflective thinking as measured

by the CRT.

Fabricated videos differ from non-fabricated videos in how people can discern their authen-

ticity. Fabricated videos involve visual manipulations, which can sometimes be explicitly

identified (e.g., a glitch, a flicker, or mechanical and otherwise out of place lip movement).

If someone finds a suspicious visual artefact, then that individual can be quite confident

the video has been fabricated. In contrast, non-fabricated videos have not been visually

manipulated. As a result, there is no single bit of information to signify fabrication or

authenticity. Furthermore, we find people take on average 2.5s to 3.8s longer to provide

a response to non-fabricated speeches than fabricated speeches. If someone cannot find a

visual distortion, then that individual cannot be perfectly certain that the video has or has

not been fabricated; for example, the video may have been fabricated without any percep-

tible distortion, or perhaps, the individual has yet to find the subtle visual distortion. This
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asymmetry between assessing fabricated and non-fabricated speeches exacerbates the “liar’s

dividend” where the general possibility that speeches can be fabricated calls into question

whether any speech is fabricated and thus enables “liars to avoid accountability for things

that are in fact true.” [120, 601] Clear articulation of the precise state-of-the-art algorithms

and associated contexts in which audio-visual content can be fabricated to be indistinguish-

able from the real thing can help inform how people assess the content they consume and

reduce the effects of the “liar’s dividend.”

We find that participants’ performance on the CRT moderates the effects of subtitles on the

discernment accuracy of silent videos. In particular, participants who correctly answered

all three CRT items show no difference in discernment rates of discordant silent, subtitled

videos relative to the same silent videos without subtitles. But, for every CRT item that

participants incorrectly answer, participants are 6.3 percentage points less accurate on real

discordant silent, subtitled videos than the same silent videos without subtitles. In other

words, reflective thinking moderates how participants balance what is said (the content

of the speech) with how it is said (visual information). Our results show that the least

reflective participants tend to rely on the expectancy violation heuristic and discount visual

information more than the most reflective participants.

Unlike for videos and transcripts, we cannot disentangle the content and perceptual infor-

mation for audio modalities. Nevertheless, we find that the interaction between discordant

speeches and any audio condition is negative after controlling for the level effects of discor-

dance and any audio. This suggests that discordant media not only impair the incorporation

of visual cues but may also impair attention to and incorporation of auditory cues as well.

The danger of fabricated videos may not be the average algorithmically produced deepfake

but rather a single, highly polished, and extremely convincing video. For example, hyper-

realistic deepfakes like the Tom Cruise deepfakes on Tiktok (see https://www.tiktok.com

/@deeptomcruise) are produced by visual effects artists using both artificial intelligence al-

gorithms and video editing software. While these hyper-realistic deepfakes may still contain

manipulation artifacts (e.g., unattached earlobes that do not match Tom Cruise’s attached

earlobes [10]), future work on the psychology of multimedia misinformation may consider
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hyper-realistic videos produced by visual effects studios in addition to algorithmically ma-

nipulated videos.

Political deepfakes are most dangerous when people are least expecting information to be

manipulated, and this experiment on multimedia truth discernment does not match the

ecological realities that people typically face when confronted with fake news. In this ex-

periment, 50% of content is fake, and we explicitly inform participants of this base rate. In

today’s media ecosystem, fake news is relatively rare: less than a fraction of a percent [19,

634] of news is fake news. As such, this experiment is useful to study how people dis-

cern multimedia information when attending to questions of accuracy, but it is less useful

in understanding how people will share misinformation they read on social media. People

are generally highly accurate in discerning the veracity of news headlines yet share fake

news headlines because their attention is not focused on accuracy [497]. On social media,

video-based misinformation will often be designed to incorporate characteristics (e.g., fear,

disgust, surprise, novelty) that divert people’s focus from accuracy and make content go

viral [61, 624]. Given that multimedia misinformation may be both easier to discern and

more frequently shared on social media than text-based media, more research needs to be

done to understand how people allocate attention while browsing the Internet [363]. Re-

cent research shows that educational material on common misinformation techniques can

improve people’s ability to discern trustworthy from untrustworthy videos [533]. Finally,

discernment – how accurately people discern misinformation – is different than belief – how

much people report they believe misinformation. It is possible (though quite peculiar) that

someone could be highly accurate at discerning truth from falsehood while also tending to

believe the fabricated content and not believe the true content. For example, research on

fake news headlines and articles finds that people are better at discerning news concordant

with their political leanings than discordant news while also believing concordant news more

often than discordant news [495].

The finding that videos of political speeches are easier to distinguish as authentic or fabri-

cated than text transcripts highlights the need to re-introduce and explain the oft-forgotten

second half of the “seeing is believing” adage. In 1732, the old English adage appears as:
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“Seeing is believing but feeling is the truth.” [218] Here, “feeling” does not refer to emotion

but rather direct experience. Since the advent of photography, society has generally under-

stood that what we see in a photograph is not always the truth and further assessment is

often necessary [189, 331, 424].

In this paper, we examined a bounded question – how well can ordinary people discern

whether or not a short soundbite of a political speech by a well-known politician in text,

audio, or video has been fabricated – and we find that more information via communication

modalities – text transcripts vs. silent, subtitled video vs. video with audio – enables people

to more accurately discern fabricated and real political speeches. These results are partic-

ularly relevant for the design of content moderation systems for flagging misinformation

on social media. In particular, we suggest content moderation flags include explanations

that address which component part of a video appears to be fabricated. These explanations

could allow people to appropriately allocate attention to the content [360] or perceptual cues

(e.g., low-level pixel features, high-level semantic features, and biometric-based features [14])

when trying to assess the content’s authenticity.

Finally, these findings offer insights into political communication and communication theory

more generally; there is more to how humans form beliefs than the “seeing is believing”

narrative would suggest because people are paying attention to both what is said and how

something is said.

3.4 Methods

3.4.1 Virtual Experiment Website

We hosted multimedia stimuli – transcripts, audio, and video of fabricated and authentic

political speeches – on a custom designed website called Detect Fakes4. In the experiment,

we asked participants to identify fabricated and non-fabricated stimuli. After collecting

informed consent and presenting participants with instructions, we show participants a short
4Detect Fakes is currently hosted at https://detectfakes.media.mit.edu/.
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political speech and ask “Did [Joseph Biden/Donald Trump] say that?” followed by “Please

[read/listen/watch] this [transcript/audio clip/video] from [Joseph Biden/Donald Trump]

and share how confident you are that it is fabricated. Remember half the media snippets we

show are real and half are fabricated.” Figure 3-5 in the Supplementary Information section

presents a screenshot of the user interface, which shows participants were instructed to move

a slider to report their confidence from 50% to 100% that a stimulus is fabricated (or 50%

to 100% that a stimulus is not fabricated). After each response, we informed participants

whether the stimulus was actually fabricated and then presented participants with another

stimulus selected at random until participants viewed all 32 stimuli or decided to leave the

experiment. Each participant began the experiment with an attention check stimulus.

3.4.2 Multimedia Stimuli

The multimedia stimuli are drawn from the Presidential Deepfake Dataset (PDD)[550],

which is made up of 32 videos showing two United States presidents making political

speeches. Half the videos are authentic videos that have not been altered by a deepfake

algorithm. The other half have been fabricated to make the politicians appear to say some-

thing that they have not said. The fabricated videos were produced by writing a fabricated

script, recording professional voice-actors reading the script, and applying a deepfake lip-

syncing algorithm [510] to real videos of Joseph Biden and Donald Trump to make it appear

as if the politicians actually gave such a fabricated speech. The mean duration of the videos

is 21 seconds and all videos are recorded at 30 frames per second and have a resolution of

854 by 480 pixels. The PDD is balanced across three dimensions: (1) videos that have and

have not been fabricated, (2) videos of Joseph Biden and Donald Trump, and (3) videos of

the two politicians making concordant and discordant speeches with what the general public

believes are the politicians’ political views.

In this experiment, we transform each of the original videos from the PDD into 7 different

forms of media: a transcript, an audio clip, a silent video, audio with subtitles, silent video

with subtitles, video with audio, and video with audio and subtitles. As a result, there

are 7 modality conditions, 32 unique speeches, and 224 unique stimuli. On the experiment
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website, the transcript appears as HTML text and the six other forms of media content

appear in a video player. The audio clip shows a black screen in the video player and the

audio clip with subtitles shows a black screen with subtitles at the bottom. Each participant

encounters each political speech in only one modality.

3.4.3 Concordance and Discordance Validation

In order to validate the concordance and discordance of speeches, we conducted an inde-

pendent survey where 84 participants who passed an attention check rated each of the 32

transcripts for how well the political speeches match either politicians’ political views. Par-

ticipants were instructed “For each statement, we want you to rank how closely the statement

matches your understanding of President Joseph Biden or President Donald Trump’s politi-

cal views” and asked to provide a judgment on a 5-point Likert scale from “Strongly Disagree”

(-2) to “Strongly Agree” (2) that “This statement matches President [Joseph Biden’s/Donald

Trump’s] political viewpoint: [statement].” Participants’ responses confirm that speeches

designed to be concordant and discordant with the two politicians views were indeed con-

cordant and discordant with the average participants’ perception of the politicians’ views.

The Z-values of participants responses to concordant and discordant speeches are -0.25 and

0.21, respectively, and this difference is statistically significant with p < 0.001 based on a

T-Test. In Table 3.2, the “Discordant (Binary)” variable refers to the categories as outlined

in the PDD, and in Table 3.3 the “Discordant (Continuous)” variable refers to these Z-values.

3.4.4 Randomization

We randomly assigned the order in which the 32 unique political speeches are presented to

participants and each political speech is randomly assigned to one of the seven conditions.

By randomly assigning the order of political speeches and the modality condition in which

speeches were presented, we can identify the causal impact of media modality on participants’

ability to discern misinformation.

90



3.4.5 Consent and Ethics

This research complies with all relevant ethical regulations and the Massachusetts Institute

of Technology’s Committee on the Use of Humans as Experimental Subjects determined

this study to fall under Exempt Category 3 – Benign Behavioral Intervention. This study’s

exemption identification number is E-3105. All participants are informed that “Detect Fakes

is an MIT research project. All guesses will be collected for research purposes. All data

for research were collected anonymously. For questions, please contact detectfakes@mit.edu.

If you are under 18 years old, you need consent from your parents to use Detect Fakes.”

Most participants arrived at the website via organic links on the Internet. For participants

recruited from Prolific, we compensated participants at a rate of $9.78 an hour and provided

bonus payments of $5 to the top 1% of participants. Before beginning the experiment, all

participants from Prolific were also provided a research statement, “The findings of this

study are being used to shape science. It is very important that you honestly follow the

instructions requested of you on this task, which should take a total of 15 minutes. Check

the box below based on your promise:” with two options, “I promise to do the tasks with

honesty and integrity, trying to do them uninterrupted with focus for the next 15 minutes.”

or “I cannot promise this at this time.” Participants who responded that they could not do

this at this time were re-directed to the end of the experiment.

3.5 Data and Code Availability

The datasets and code generated and analyzed during the current study are available in our

public Github repository, https://github.com/mattgroh/fabricated-political-speec

hes (the Github repository will be set to public upon peer-reviewed publication). All PDD

videos are available on Youtube with links provided in the Presidential Deepfakes Dataset

paper [550].
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3.6 Appendix

Figure 3-5: Screenshot of experimental user interface.
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Figure 3-6: Image from Sankaranarayan et al. (2021) showing the first frame at the 10
second mark of each of the 32 videos in the Presidential Deepfake Dataset, which is where
the stimuli from this experiment are drawn.

Dependent variable: Weighted Accuracy

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 57.61∗∗∗ 56.19∗∗∗ 52.70∗∗∗ 53.14∗∗∗ 53.11∗∗∗ 52.09∗∗∗ 52.77∗∗∗ 51.76∗∗∗

(0.83) (1.11) (0.58) (0.15) (0.15) (0.19) (0.13) (0.17)
Silent Video 6.58∗∗∗ 4.52∗∗ 11.70∗∗∗ 12.82∗∗∗ 12.74∗∗∗ 6.83∗∗∗ 11.97∗∗∗ 6.45∗∗∗

(1.19) (1.55) (0.86) (0.23) (0.22) (0.30) (0.20) (0.26)
Silent Video with Subtitles 8.80∗∗∗ 5.80∗∗∗ 12.45∗∗∗ 12.85∗∗∗ 12.82∗∗∗ 8.16∗∗∗ 11.95∗∗∗ 7.57∗∗∗

(1.11) (1.47) (0.87) (0.23) (0.22) (0.29) (0.19) (0.25)
Audio 19.48∗∗∗ 18.52∗∗∗ 20.45∗∗∗ 20.66∗∗∗ 20.65∗∗∗ 19.32∗∗∗ 19.30∗∗∗ 18.07∗∗∗

(1.17) (1.50) (0.84) (0.23) (0.22) (0.29) (0.19) (0.25)
Audio with Subtitles 19.41∗∗∗ 18.76∗∗∗ 19.71∗∗∗ 20.89∗∗∗ 20.80∗∗∗ 19.56∗∗∗ 19.25∗∗∗ 18.13∗∗∗

(1.05) (1.46) (0.89) (0.23) (0.22) (0.29) (0.19) (0.25)
Video with Audio 25.12∗∗∗ 24.27∗∗∗ 27.97∗∗∗ 28.54∗∗∗ 28.50∗∗∗ 25.57∗∗∗ 26.81∗∗∗ 24.10∗∗∗

(1.09) (1.46) (0.80) (0.21) (0.21) (0.28) (0.18) (0.24)
Video with Audio and Subtitles 24.75∗∗∗ 22.87∗∗∗ 27.42∗∗∗ 27.82∗∗∗ 27.79∗∗∗ 24.96∗∗∗ 26.18∗∗∗ 23.50∗∗∗

(1.08) (1.46) (0.81) (0.22) (0.21) (0.28) (0.19) (0.25)

Number of Individuals 509 509 2807 38510 41313 37688 58344 52428
Number of Speeches 32 18 32 32 32 18 32 18
Observations 16,086 9,053 29,627 387,274 416,901 234,899 537,936 303,264
R2 0.07 0.07 0.06 0.07 0.06 0.06 0.06 0.05

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.1: Ordinary least squares regressions with robust standard errors clustered on partic-
ipants. Weighted accuracy is the dependent variable. The “Transcript” condition is held out
and represented by the constant term. Column (1) shows recruited participants, column (2)
shows recruited participants on “difficult” videos with lower than 67% accurate identification,
column (3) shows pre-registered non-recruited participants, column (4) shows non-recruited
participants after the pre-registration window, column (5) shows all non-recruited partici-
pants, column (6) shows non-recruited participants on “difficult” videos, column (7) shows
non-recruited participants including participants who fail the attention check, column (8)
shows non-recruited participants including participants who fail the attention check on “dif-
ficult videos.”
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Figure 3-7: Distribution of media truth discernment scores following Pennycook and Rand
(2019) where the score is positively associated with accuracy at distinguishing fabricated
media from authentic media.

Figure 3-8: Percent of participants who respond that the speech is fabricated across modal-
ities and the number of videos seen.
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Dependent variable: Weighted Accuracy

All Fabricated Not Fabricated All Fabricated Not Fabricated

(1) (2) (3) (4) (5) (6)

Constant (Silent Video) 61.97∗∗∗ 57.97∗∗∗ 66.17∗∗∗ 57.28∗∗∗ 53.94∗∗∗ 61.22∗∗∗

(1.14) (1.66) (1.55) (1.92) (2.79) (2.90)

Transcript -3.92∗ -9.24∗∗∗ 0.84 -0.85 -10.71∗∗ 6.34
(1.58) (2.43) (2.01) (2.68) (4.01) (3.55)

Subtitled Silent Video 4.67∗∗ 6.20∗∗ 2.88 8.67∗∗ 4.92 11.75∗∗

(1.53) (2.14) (2.13) (2.69) (3.58) (3.89)

Any Audio 18.22∗∗∗ 23.73∗∗∗ 12.49∗∗∗ 19.06∗∗∗ 22.23∗∗∗ 15.31∗∗∗

(1.19) (1.83) (1.57) (2.06) (3.19) (3.02)

Discordant (Binary) 4.57∗∗ 8.09∗∗∗ 0.85 6.64∗ 8.97∗ 3.72
(1.54) (2.25) (2.17) (2.71) (3.86) (3.82)

Discordant (Binary) * Transcript -5.46∗ -2.68 -7.97∗∗ -10.18∗∗ -4.67 -13.45∗∗

(2.21) (3.28) (3.01) (3.90) (5.70) (5.07)

Discordant (Binary) * Subtitled Silent Video -5.02∗ -2.91 -6.81∗ -10.86∗∗ -3.56 -17.52∗∗∗

(2.12) (3.06) (2.96) (3.75) (5.47) (5.20)

Discordant (Binary) * Any Audio -5.42∗∗ -6.54∗∗ -4.20 -7.30∗ -7.71 -6.30
(1.68) (2.43) (2.36) (3.01) (4.15) (4.26)

CRT Score 2.90∗∗ 2.56 2.97∗

(0.95) (1.39) (1.35)

CRT Score * Transcript -1.90 0.71 -3.32
(1.32) (2.00) (1.73)

CRT Score * Subtitled Silent Video -2.48 0.72 -5.34∗∗

(1.32) (1.79) (1.86)

CRT Score * Any Audio -0.48 0.90 -1.63
(1.01) (1.57) (1.40)

CRT Score * Discordant (Binary) -1.20 -0.51 -1.63
(1.31) (1.88) (1.85)

CRT Score * Discordant (Binary) * Transcript 2.83 1.36 3.23
(1.84) (2.76) (2.53)

CRT Score * Discordant (Binary) * Subtitled Silent Video 3.46 0.29 6.34∗

(1.86) (2.64) (2.51)

CRT Score * Discordant (Binary) * Any Audio 1.08 0.67 1.15
(1.43) (2.03) (2.10)

Number of Individuals 509 507 509 509 507 509
Number of Speeches 32 16 16 32 16 16
Observations 16,086 8,042 8,044 16,086 8,042 8,044
R2 0.07 0.12 0.04 0.07 0.13 0.04

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.2: Ordinary least squares regressions with robust standard errors clustered on par-
ticipants. Weighted accuracy is the dependent variable. The “Silent Video” condition is held
out and represented by the constant term. The "Discordance (Binary)" variable is defined
in Sankaranarayanan et al. (2021) by whether the speaker’s political views are discordant
with the speech content.
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Dependent variable: Weighted Accuracy

All Fabricated Not Fabricated All Fabricated Not Fabricated

(1) (2) (3) (4) (5) (6)

Constant (Silent Video) 64.19∗∗∗ 61.64∗∗∗ 66.76∗∗∗ 60.60∗∗∗ 58.03∗∗∗ 63.48∗∗∗

(0.88) (1.29) (1.19) (1.55) (2.24) (2.27)

Transcript -6.62∗∗∗ -12.21∗∗∗ -5.47∗∗∗ -6.02∗∗ -14.99∗∗∗ -3.19
(1.19) (1.84) (1.54) (2.11) (3.19) (2.81)

Subtitled Silent Video 2.22∗ 4.78∗∗ -1.52 3.26 3.05 1.15
(1.05) (1.61) (1.61) (1.87) (2.76) (3.10)

Any Audio 15.58∗∗∗ 20.49∗∗∗ 9.35∗∗∗ 15.40∗∗∗ 18.34∗∗∗ 10.95∗∗∗

(0.89) (1.42) (1.21) (1.53) (2.54) (2.27)

Discordance (Continuous) 0.29 0.99 0.73 0.93 1.30 1.74
(0.76) (1.25) (0.97) (1.32) (2.11) (1.74)

Discordance (Continuous) * Transcript -2.80∗∗ 7.07∗∗∗ -8.99∗∗∗ -4.43∗ 6.79∗ -9.92∗∗∗

(1.07) (1.61) (1.41) (2.00) (2.92) (2.52)

Discordance (Continuous) * Subtitled Silent Video -1.36 0.56 -4.19∗∗ -4.13∗ 0.73 -8.51∗∗∗

(1.10) (1.77) (1.39) (1.97) (3.22) (2.44)

Discordance (Continuous) * Any Audio -0.94 0.46 -4.55∗∗∗ -1.59 0.52 -4.91∗∗

(0.80) (1.29) (1.10) (1.41) (2.20) (1.89)

CRT Score 2.26∗∗ 2.32∗ 2.03
(0.76) (1.11) (1.06)

CRT Score * Transcript -0.43 1.55 -1.42
(1.03) (1.55) (1.35)

CRT Score * Subtitled Silent Video -0.71 0.96 -1.66
(0.91) (1.35) (1.46)

CRT Score * Any Audio 0.09 1.28 -0.98
(0.75) (1.22) (1.05)

CRT Score * Discordance (Continuous) -0.36 -0.17 -0.58
(0.65) (1.06) (0.87)

CRT Score * Discordance (Continuous) * Transcript 0.96 0.28 0.51
(0.96) (1.39) (1.26)

CRT Score * Discordance (Continuous) * Subtitled Silent Video 1.62 -0.16 2.51∗

(0.97) (1.59) (1.23)

CRT Score * Discordance (Continuous) * Any Audio 0.34 -0.07 0.16
(0.69) (1.10) (0.96)

Number of Individuals 509 507 509 509 507 509
Number of Speeches 32 16 16 32 16 16
Observations 16,086 8,042 8,044 16,086 8,042 8,044
R2 0.07 0.12 0.04 0.07 0.13 0.04

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.3: Ordinary least squares regressions with robust standard errors clustered on par-
ticipants. Weighted accuracy is the dependent variable. The “Silent Video” condition is
held out and represented by the constant term. The "Discordance (Continuous)" variable is
computed by calculating the z-transformation of participants’ mean response on a 5-point
Likert scale for how well a speech aligns with the public’s perception of the politicians’
viewpoints.
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Chapter 4

Evaluating Deep Neural Networks

Trained on Clinical Images in

Dermatology with the Fitzpatrick 17k

Dataset

Abstract

How does the accuracy of deep neural network models trained to classify clinical images of
skin conditions vary across skin color? While recent studies demonstrate computer vision
models can serve as a useful decision support tool in healthcare and provide dermatologist-
level classification on a number of specific tasks, darker skin is underrepresented in the
data. Most publicly available data sets do not include Fitzpatrick skin type labels. We
annotate 16,577 clinical images sourced from two dermatology atlases with Fitzpatrick skin
type labels and open-source these annotations. Based on these labels, we find that there
are significantly more images of light skin types than dark skin types in this dataset. We
train a deep neural network model to classify 114 skin conditions and find that the model
is most accurate on skin types similar to those it was trained on. In addition, we evaluate
how an algorithmic approach to identifying skin tones, individual typology angle, compares
with Fitzpatrick skin type labels annotated by a team of human labelers.1

1This chapter, which is co-authored by Caleb Harris, Luis Soenksen, Felix Lau, Rachel Han, Aerin
Kim, Arash Koochek, and Omar Badri, appeared in the proceedings for the Computer Vision and Pattern
Recognition (CVPR) International Skin Imaging Collaboration (ISIC) workshop in 2021 [248].
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4.1 Motivation

How does the accuracy of deep neural network models trained to classify clinical images

of skin conditions vary across skin color? The emergence of deep neural network models

that can accurately classify images of skin conditions presents an opportunity to improve

dermatology and healthcare at large [107, 187, 388, 580, 608]. But, the data upon which these

models are trained are mostly made up of images of people with light skin. In the United

States, dark skin is underrepresented in dermatology residency programs [380], textbooks [9,

23], dermatology research [378], and dermatology diagnoses [253, 481]. With the exception

of PAD-UFES-20 [478], none of the publicly available data sets identified by the Sixth ISIC

Skin Image Analysis Workshop at CVPR 2021 (Derm7pt [321], Dermofit Image Library,

ISIC 2018 [123, 607], ISIC 2019 [122, 129, 607], ISIC 2020[128, 536], MED-NODE [229],

PH2 [422], SD-128 [585], SD-198, SD-260) include skin type or skin color labels or any other

information related to race and ethnicity. The only dataset with such skin type labels, PAD-

UFES-20, contains Fitzpatrick skin type labels for 579 out of 1,373 patients in the dataset.

The lack of consideration of subgroups within a population has been shown to lead deep

neural networks to produce large accuracy disparities across gender and skin color for facial

recognition [87], across images with and without surgical markings in dermatology [69, 643],

and across treated and untreated conditions in radiology [468]. These inaccuracies arise from

dataset biases, and these underlying data biases can unexpectedly lead to systematic bias

against groups of people [3, 49]. If these dataset biases are left unexamined in dermatology

images, machine learning models have the potential to increase healthcare disparities in

dermatology [7].

By creating transparency and explicitly identifying likely sources of bias, it is possible to

develop machine learning models that are not only accurate but also serve as discrimination

detectors [133, 337, 470]. By rigorously examining potentials for discrimination across the

entire pipeline for machine learning model development in healthcare [114], we can identify

opportunities to address discrimination such as collecting additional data from underrep-

resented groups [112] or disentangling the source of the disparities [503]. In this paper,

we present the Fitzpatrick 17k dataset which is a collection of images from two online der-
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matology atlases annotated with Fitzpatrick skin types by a team of humans. We train a

deep neural network to classify skin conditions solely from images, and we evaluate accuracy

across skin types.

We also use the Fitzpatrick 17k dataset to compare Fitzpatrick skin type labels to a compu-

tational method for estimating skin tone: individual typology angle (ITA). ITA is promising

because it can be computed directly from images, but its performance varies with lighting

conditions and may not always be effective for accurately annotating clinical images with

skin types [332, 344, 640].

4.2 Fitzpatrick 17k Dataset

The Fitzpatrick 17k dataset contains 16,577 clinical images with skin condition labels and

skin type labels based on the Fitzpatrick scoring system [209]. The dataset is accessible at

https://github.com/mattgroh/fitzpatrick17k.

The images are sourced from two online open-source dermatology atlases: 12,672 images

from DermaAmin and 3,905 images from Atlas Dermatologico [16, 215]. These sources

include images and their corresponding skin condition label. While these labels are not

known to be confirmed by a biopsy, these images and their skin condition labels have been

used and cited in dermatology and computer vision literature a number of times [30, 70,

187, 262, 521, 593, 618]. As a data quality check, we asked a board-certified dermatologist

to evaluate the diagnostic accuracy of 3% of the dataset. Based on a random sample of

504 images, a board-certified dermatologist identified 69.0% of images as diagnostic of the

labeled condition, 19.2% of images as potentially diagnostic (not clearly diagnostic but not

necessarily mislabeled, further testing would be required), 6.3% as characteristic (resembling

the appearance of such a condition but not clearly diagnostic), 3.4% are considered wrongly

labeled, and 2.0% are labeled as other. A second board-certified dermatologist also examined

this sample of images and confirmed the error rate. This error rate is consistent with the

3.4% average error rate in the most commonly used test datasets for computer vision, natural

language processing, and audio processing [465].
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We selected images to annotate based on the most common dermatology conditions across

these two data sources excluding the following 22 categories of skin conditions: (1) viral

diseases, HPV, herpes, molluscum, exanthems, and others (2) fungal infections, (3) bac-

terial infections, (4) acquired autoimmune bullous disease, (5) mycobacterial infection (6)

benign vascular lesions (7) scarring alopecia, (8) non-scarring alopecia (9) keratoderma (10)

ichthyosis, (11) vasculitis, (12) pellagra like eruption (13) reiters disease (14) epidermolysis

bullosa pruriginosa (15) amyloidosis, (16) pernio and mimics (17) skin metastases of tumours

of internal organs (18) erythrokeratodermia progressive symmetric, (19) epidermolytic hy-

perkeratosis, (20) infections, (21) generalized eruptive histiocytoma, (21) dry skin eczema.

We excluded these categories because they were either too broad, the images were of poor

quality, or the categories represented a rare genodermatosis. The final sample includes 114

conditions with at least 53 images (and a maximum of 653 images) per skin condition.

This dataset also includes two additional aggregated levels of skin condition classification

based on the skin lesion taxonomy developed by Esteva et al. 2017, which can be helpful to

improve the explainability of a deep learning system in dermatology [48, 187]. At the highest

level, skin conditions are split into three categories: 2,234 benign lesions, 2,263 malignant

lesions, and 12,080 non-neoplastic lesions. At a slightly more granular level, images of

skin conditions are split into nine categories: 10,886 images labeled inflammatory, 1,352

malignant epidermal, 1,194 genodermatoses, 1,067 benign dermal, 931 benign epidermal,

573 malignant melanoma, 236 benign melanocyte, 182 malignant cutaneous lymphoma, and

156 malignant dermal. At the most granular level, images are labeled by skin condition.

The images are annotated with Fitzpatrick skin type labels by a team of human annotators

from Scale AI. The Fitzpatrick labeling system is a six-point scale originally developed for

classifying sun reactivity of skin and adjusting clinical medicine according to skin pheno-

type [209]. Recently, the Fitzpatrick scale has been used in computer vision for evaluating

algorithmic fairness and model accuracy across skin type [87, 174, 388]. Fitzpatrick labels

allow us to begin assessing algorithmic fairness, but we note that the Fitzpatrick scale does

not capture the full diversity of skin types [632]. Each image is annotated with a Fitzpatrick

skin type label by two to five annotators based on Scale AI’s dynamic consensus process.

102



The number of annotators per image is determined by a minimal threshold for agreement,

which takes into account an annotator’s historical accuracy evaluated against a gold stan-

dard dataset, which consists of 312 images with Fitzpatrick skin type annotations provided

by a board-certified dermatologist. This annotation process resulted in 72,277 annotations

in total.

In the Fitzpatrick 17k dataset, there are significantly more images of light skin types than

dark skin. There are 7,755 images of the lightest skin types (1 & 2), 6,089 images of the mid-

dle skin types (3 & 4), and 2,168 images of the darkest skin types (5 & 6). Table 4.1 presents

the distribution of images by skin type for each of the three highest level categorizations of

skin conditions. A small portion of the dataset (565 images) are labeled as unknown, which

indicates that the team of annotators could not reasonably identify the skin type within the

image.

The imbalance of skin types across images is paired with an imbalance of skin types across

skin condition labels. The Fitzpatrick 17k dataset has at least one image of all 114 skin

conditions for Fitzpatrick skin types 1 through 3. For the remaining Fitpatrick skin types,

there are 113 skin conditions represented in type 4, 112 represented in type 5, and 89 rep-

resented in type 6. In other words, 25 of the 114 skin conditions in this dataset have no

examples in Fitzparick type 6 skin. The mean Fitzpatrick skin types across these skin con-

dition labels ranges from 1.77 for basal cell carcionma morpheaform to 4.25 for pityriasis

rubra pilaris. Only 10 skin conditions have a mean Fitzpatrick skin type above 3.5, which

is the expected mean for a balanced dataset across Fitzpatrick skin types. These 10 condi-

tions include: pityriasis rubra pilaris, xeroderma pigmentosum, vitiligo, neurofibromatosis,

lichen amyloidosis, confluent and reticulated papillomatosis, acanthosis nigricans, prurigo

nodularis, lichen simplex, and erythema elevatum diutinum.
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Non-Neoplastic Benign Malignant

# Images 12,080 2,234 2,263

Type 1 17.0% 19.9% 20.2%
Type 2 28.1% 30.0% 32.8%
Type 3 19.7% 21.2% 20.2%
Type 4 17.5% 16.4% 13.3%
Type 5 10.1% 7.1% 6.5%
Type 6 4.4% 2.0% 2.7%
Unknown 3.2% 3.3% 4.6%

Table 4.1: Distribution of skin conditions in Fitzpatrick 17k by Fitzpatrick skin type and
high level skin condition categorization.

Accuracy Accuracy (off-by-one) # of Images

Type 1 49% 79% 10
Type 2 38% 84% 100
Type 3 25% 71% 98
Type 4 26% 71% 47
Type 5 34% 85% 44
Type 6 59% 83% 13

Table 4.2: Accuracy of human annotators relative to the gold standard dataset of 312
Fitzpatrick skin type annotations provided by a board-certified dermatologist.
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4.3 Classifying Skin Conditions with a Deep Neural Network

4.3.1 Methodology

We train a transfer learning model based on a VGG-16 deep neural network architecture [572]

pre-trained on ImageNet [153]. We replace the last fully connected 1000 unit layer with the

following sequence of layers: a fully connected 256 unit layer, a ReLU layer, dropout layer

with a 40% change of dropping, a layer with the number of predicted categories, and finally

a softmax layer. As a result, the model has 135,335,076 total parameters of which 1,074,532

are trainable. We train the model by using the Adam optimization algorithm to minimize

negative log likelihood loss. We address class imbalance by using a weighted random sampler

where the weights are determined by each skin condition’s inverse frequency in the dataset.

We perform a number of transformations to images before training the model which include:

randomly resizing images to 256 pixels by 256 pixels, randomly rotating images 0 to 15

degrees, randomly altering the brightness, contrast, saturation, and hue of each image,

randomly flipping the image horizontally or not, center cropping the image to be 224 pixels

by 224 pixels, and normalizing the image arrays by the ImageNet means and standard

deviations.

We evaluate the classifier’s performance via 5 approaches: (1) testing on the subset of

images labeled by a board-certified dermatologist as diagnostic of the labeled condition and

training on the rest of the data (2) testing on a randomly selected 20% of the images where

the random selection was stratified on skin conditions and training on the rest of the data

(3) testing on images from Atlas Dermatologico and training on images from Derma Amin

(4) testing on images from Derma Amin and training on images from Atlas Dermatologico

(5) training on images labeled as Fitzpatrick skin types 1-2 (or 3-4 or 5-6) and testing on the

rest of the data. The accuracy on the validation set begins to flatten after 10 to 20 epochs

for each validation fold. We trained the same architecture on each fold and report accuracy

scores for the epoch with the lowest loss on the validation set.
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Holdout Set Verified Random Source A Source B Fitz 3-6 Fitz 1-2 & 5-6 Fitz 1-4

# Train Images 16,229 12,751 12,672 3,905 7,755 6,089 2,168
# Test Images 348 3,826 3,905 12,672 8,257 10,488 14,409

Overall 26.7% 20.2% 27.4% 11.4% 13.8% 13.4% 7.7%
Type 1 15.1% 15.8% 40.1% 6.6% - 10.0% 4.4%
Type 2 23.9% 16.9% 27.7% 8.6% - 13.0% 5.5%
Type 3 27.9% 22.2% 25.3% 13.7% 15.9% - 9.1%
Type 4 30.9% 24.1% 26.2% 17.1% 14.2% - 12.9%
Type 5 37.2% 28.9% 28.4% 17.6% 10.1% 21.1% -
Type 6 28.2% 15.5% 25.7% 14.9% 9.0% 12.1% -

Table 4.3: Accuracy rates classifying 114 skin conditions across skin types on six selections
of holdout sets. The verified holdout set is a subset of a randomly sampled set of images ver-
ified by a board-certified dermatologist as diagnostic of the labeled condition. The random
holdout set is a randomly sampled set of images. The source A holdout set are all images
from Atlas Dermatologico. The source B holdout set are all images from Derma Amin.
The 3 Fitzpatrick holdout sets are selected according to Fitzpatrick labels. In all cases, the
training data are the remaining non-held out images from the Fitzpatrick 17k dataset.

Predicted Class
Benign Malignant Non-neoplastic

Actual Class

Benign 275 52 54

Malignant 106 487 109

Non-neoplastic 788 448 1586

Table 4.4: Confusion matrix for deep neural network performance on predicting the high-
level skin condition categories in the holdout set of images from Atlas Dermatologico.

4.3.2 Results

We report results of training the model on all 114 skin conditions across 7 different selections

of holdout sets in Table 4.3.

In the random holdout, the model produces a 20.2% overall accuracy on exactly identifying

the labeled skin condition present in the image. The top-2 accuracy (the rate at which the

first or second prediction of the model is the same as the image’s label) is 29.0% and the

top-3 accuracy is 35.4%. These numbers can be evaluated against random guessing, which

would be 1/114 or 0.9% accuracy. Across the 114 skin conditions, the median accuracy is

20.0% and ranges from a minimum of 0% accuracy on 10 conditions (433 images in the

random holdout) and a maximum of 93.3% accuracy on 1 condition (30 images).
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When we train the model on the 3 category partition of non-neoplastic, benign, and malig-

nant, the model produces an accuracy of 62.4% on the random holdout (random guessing

would produce 33.3% accuracy). Likewise, the model trained on the 9 category partition

produces an accuracy of 36.1% on the random holdout (random guessing would produce

11.1% accuracy). Another benchmark for this 3 partition and 9 partition comes from Es-

teva et al. which trained a model on a dataset 7.5 times larger to produce 72.1% accuracy

on the 3 category task and 55.4% accuracy on the 9 category task [187].

Depending on each holdout selection, the accuracy rates produced by the model vary across

skin types. For the first four holdout selections in Table 4.3 – the verified selection, the

random holdout, the source A holdout based on images from Atlas Dermatologico, and

the source B holdout based on images from Derma Amin – we do not find a systematic

pattern in accuracy scores across skin type. For the second three holdout selections where

the model is trained on images from two Fitzpatrick types and evaluated on images in the

other four Fitzpatrick types, we find the model is most accurate on the images with the

closest Fitzpatrick skin types to the training images. Specifically, the model trained on

images labeled as Fitzpatrick skin types 1 and 2 performed better on types 3 and 4 than

types 5 and 6. Likewise, the model trained on types 3 and 4 performed better on types 2

and 5 than 1 and 6. Finally, the model trained on types 5 and 6 performed better on types

3 and 4 than types 1 and 2.

4.4 Evaluating Individual Typology Angle against Fitzpatrick

Skin Type Labels

4.4.1 Methodology

An alternative approach to annotating images with Fitzpatrick labels is estimating skin

tone via individual typology angle (ITA), which is calculated based on statistical features

of image pixels and is negatively correlated with the melanin index [640]. Ideally, ITA is

calculated over pixels in a segmented region highlighting only non-diseased skin [332]. But,
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segmentation masks are expensive to obtain, and instead of directly segmenting healthy skin,

we apply the YCbCr algorithm to mask skin pixels [344]. We compare Fitzpatrick labels on

the entire dataset with ITA calculated on the full images and the YCbCr masks.

The YCbCr algorithm takes as input an image in RGBA color space and applies the following

masking thresholds.

R > 95 (4.1)

R > G (4.2)

R > B (4.3)

G > 40 (4.4)

B > 20 (4.5)

|R−G| > 15 (4.6)

A > 15 (4.7)

Then, the image is converted from RGBA to YCbCr color space, and applies a further

masking along the following thresholds:

Cr > 135 (4.8)

Cr ≥ (0.3448 · Cb) + 76.2069 (4.9)

Cr ≥ (−4.5652 · Cb) + 234.5652 (4.10)

Cr ≤ (−1.15 · Cb) + 301.75 (4.11)

Cr ≤ (−2.2857 · Cb) + 432.85 (4.12)

where R − G − B − A are the respective Red-Green-Blue-Alpha components of the input

image, and Y − Cb− Cr are the respective luminance and chrominance components of the

color-converted image. As a result, the YCbCr algorithm attempts to segment healthy skin

from the rest of an image.

We calculate the ITA of each full and YCbCr masked image by converting the input image

to CIE − LAB color space, which contains L: luminance and B: yellow, and applying the

108



following formula [423]:

ITA = arctan(
L∗ − 50

B∗ ) · 180
π

(4.13)

where L∗ and B∗ are the mean of non-masked pixels with values within one standard devi-

ation of the actual mean.

4.4.2 Results

In Table 4.5, we compare ITA calculations on both the full images and YCbCr masks with

Fitzpatrick skin type labels. Furthermore, we compare two different methods for calculating

Fitzpatrick type given ITA, as described in Equations 4.14 and 4.15. For each entry, we

calculate the proportion of ITA scores in the range of plus or minus one of the annotated

Fitzpatrick score.

Fitzpatrick(ITA) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ITA > 55

2 55 ≥ ITA > 41

3 41 ≥ ITA > 28

4 28 ≥ ITA > 19

5 19 ≥ ITA > 10

6 10 ≥ ITA

(4.14)

Fitzpatrick(ITA) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ITA > 40

2 40 ≥ ITA > 23

3 23 ≥ ITA > 12

4 12 ≥ ITA > 0

5 0 ≥ ITA > −25

6 −25 ≥ ITA

(4.15)
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Figure 4-1: Observed distribution of individual typology angles by Fitzpatrick.

In Table 4.5, the columns labeled “Kinyananjui” compare Fitzpatrick skin type labels with

ITA following Equation 4.14, a modified version of the ITA thresholds described by Kinyanjui

et al. [332]. The columns labeled “Empirical” follow Equation 4.15, which we developed

based on the empirical distribution of ITA scores minimizing overall error. Figure 4-1 plots

the empirical distribution of ITA scores for each Fitzpatrick skin type label. The discrepancy

between Fitzpatrick skin type labels and the ITA approach appears to be driven mostly by

high variance in the ITA algorithm as Figure 4-3 reveals.

4.5 Conclusion

We present the Fitzpatrick 17k, a new dataset consisting of 16,577 clinical images of 114 dif-

ferent skin conditions annotated with Fitzpatrick skin type labels. These images are sourced

from Atlas Dermatologico and Derma Amin and contain 3.6 times more images of the two

lightest Fitzpatrick skin types than the two darkest Fitzpatrick skin types. By annotating

this dataset with Fitzpatrick skin type labels, we reveal both an underrepresentation of dark
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Full Image YCbCr Mask
Kinyanjui Empirical Kinyanjui Empirical

Overall 45.87% 60.34% 53.30% 70.38%
Type 1 50.97% 65.35% 52.22% 66.00%
Type 2 42.60% 59.57% 49.15% 69.47%
Type 3 35.43% 55.20% 45.13% 66.41%
Type 4 34.09% 58.54% 40.24% 72.10%
Type 5 78.21% 65.49% 93.41% 82.26%
Type 6 74.80% 65.04% 90.71% 79.69%

Table 4.5: Plus or minus one concordance of individual typology angle (ITA) with Fitzpatrick
skin type labels. Each column shows the percent of ITA scores that are within plus or minus
1 point of the annotated Fitzpatrick labels after converting ITA to Fitzpatrick types via
Equations 4.14 and 4.15.

skin images in online dermatology atlases and accuracy disparities that arise from training

a neural network on only a subset of skin types.

By training a deep neural network based on an adapted VGG-16 architecture pre-trained on

ImageNet, we achieve accuracy results that approach the levels reported on a much larger

dataset [187]. We find that the skin type in the images on which a model is trained affects

the accuracy scores across Fitzpatrick skin types. Specifically, we find that models trained

on data from only two Fitzpatrick skin types are most accurate on holdout images of the

closest Fitzpatrick skin types to the training data. These relationships between the type of

training data and holdout accuracy across skin types are consistent with what has been long

known by dermatologists: skin conditions appear differently across skin types [9].

An open question for future research is in which skin conditions do accuracy disparities

appear largest across skin types. Recent research shows that diagnoses by medical students

and physicians appears to vary across skin types [161, 198]. Future research at the intersec-

tion of dermatology and computer vision should focus on specific groups of skin conditions

where accuracy disparities are expected to arise because visual features of skin conditions

(e.g. redness in inflammatory conditions) do not appear universally across skin types.

The large set of Fitzpatrick skin type labels enable an empirical evaluation of ITA as an

automated tool for assessing skin tone. Our comparison reveals that ITA is prone to error
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Figure 4-2: Example images of pityriasis rubra pilaris from Atlas Dermatologico that were
accurately classified by the neural network trained on DermaAmin images. On the 174 im-
ages from Atlas Dermatologico labeled pityriasis rubra pilaris, 24% are accurately identified,
35% are accurately identified in the top 2 most likely predictions, and 45% are accurately
identified in the top 3 most likely predictions.

on images that human labelers can easily agree upon. The most accurate ITA scores are

off by more than one point on the Fitzpatrick scale in about one third of the dataset. One

limitation of this comparison is that we calculated ITA based on either the entire image or

an automatic segmentation mask. Future work should refine this comparison based on more

precise segmentation masks.

We present this dataset and paper in the hopes that it inspires future research at the

intersection of dermatology and computer vision to evaluate accuracy across sub-populations

where classification accuracy is suspected to be heterogeneous.
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Figure 4-3: 18 images plot arranged based on ITA values and Fitzpatrick labels.

4.6 Data and Code Availability

The datasets and code generated and analyzed during the current study are available in our

public Github repository, https://github.com/mattgroh/fitzpatrick17k.
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Chapter 5

Towards Transparency in

Dermatology Image Datasets with

Experts, Crowds, and an Algorithm

Abstract

While artificial intelligence (AI) holds promise for supporting healthcare providers and im-
proving the accuracy of medical diagnoses, a lack of transparency in the composition of
datasets exposes AI models to the possibility of unintentional and avoidable mistakes. In
particular, public and private image datasets of dermatological conditions rarely include
information on skin color. As a start towards increasing transparency, AI researchers have
appropriated the use of the Fitzpatrick skin type (FST) from a measure of patient photo-
sensitivity to a measure for estimating skin tone in algorithmic audits of computer vision
applications including facial recognition and dermatology diagnosis. In order to understand
the variability of estimated FST annotations on images, we compare several FST annota-
tion methods on a diverse set of 460 images of skin conditions from both textbooks and
online dermatology atlases. These methods include expert annotation by board-certified
dermatologists, algorithmic annotation via the Individual Typology Angle algorithm, which
is then converted to estimated FST (ITA-FST), and two crowd-sourced, dynamic consen-
sus protocols for annotating estimated FSTs. We find the inter-rater reliability between
three board-certified dermatologists is comparable to the inter-rater reliability between the
board-certified dermatologists and either of the crowdsourcing methods. In contrast, we
find that the ITA-FST method produces annotations that are significantly less correlated
with the experts’ annotations than the experts’ annotations are correlated with each other.
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These results demonstrate that algorithms based on ITA-FST are not reliable for annotat-
ing large-scale image datasets, but human-centered, crowd-based protocols can reliably add
skin type transparency to dermatology datasets. Furthermore, we introduce the concept of
dynamic consensus protocols with tunable parameters including expert review that increase
the visibility of crowdwork and provide guidance for future crowdsourced annotations of
large image datasets.1

5.1 Motivation

Artificial intelligence (AI) algorithms hold promise for improving image-based clinical diag-

nosis tasks ranging from identifying breast cancer in mammograms [418] to classifying skin

lesions based on a single image [187] to predicting the diagnosis of hundreds of diverse skin

conditions based on a few images and a brief patient history [388]. The combination of algo-

rithmic predictions with physician diagnostic skill has the potential to create large efficiency

and welfare gains in healthcare [530]. In particular, AI systems can enhance specialists’ diag-

nostic performance on specific tasks (e.g. identifying pneumonia on chest radiographs [487]

and predicting hypoxaemia risk from operating room data [395]) but incorrect predictions

from an AI system can mislead specialists and generalists alike [243, 299, 608]. In fact,

inaccurate advice regardless of whether it comes from an AI or human tends to decrease

physicians’ accuracy on diagnostic tasks [221]. Moreover, the algorithm appreciation ef-

fect [389] suggests that inaccurate advice from an algorithm is likely to have more negative

effects than the same advice given by a human.

Given the consequences of inaccurate advice in healthcare, ethical and responsible algorithm-

in-the-loop decision systems should require the systems to be both accurate and also unbiased

with regard to sensitive attributes like race and gender. Moreover, these systems should be

transparent such that medical experts can reliably assess algorithmic performance [238, 256].

These principles for ethical systems are particularly important because algorithms are prone

to make unexpected errors on out-of-distribution data. Due to biases in dataset represen-

tation, protected classes are more likely to be out-of-distribution [17, 49, 386]. Moreover,

1This chapter, which is co-authored by Caleb Harris, Roxana Daneshjou, Arash Koochek, and Omar
Badri, appeared in the proceedings for the Computer Supported Collaborative Work (CSCW) 2022 [246].
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when accurate yet non-equitable algorithmic risk assessments are used as decision support

tools they have been shown to alter decision maker’s risk aversion and lead to unexpected

and sometimes unwanted shifts in human decision-making [239].

Yet the vast majority of AI algorithms for diagnostic tasks in dermatology are trained on

datasets that lack transparency with regards to demographic and skin tone attributes [142,

635]. Due to this lack of transparency, it is difficult to assess what data may be out-of-

distribution and this leads to the potential for unexpected errors that could have otherwise

been addressed. For example, given the under representation of dark skin in educational

resources [9, 23, 179, 378, 391] and online dermatology atlases [248], it is unknown the full

extent to which dark skin is under-represented in many of the large dermatology image

datasets. For the few datasets that do include skin type information, dark skin types are

underrepresented [142]. This is particularly problematic because AI algorithms for classi-

fying the skin condition in an image are more accurate on images that match the skin color

upon which the algorithm is trained than images that do not match the skin color [248]. An

analysis of three AI algorithms (ModelDerm [263], DeepDerm [187], and Ham 1000 [607])

reveal that images of dark skin show a drop in all three models’ accuracy rates relative to

rates in images of light skin [145].

One approach for increasing transparency in dermatology image datasets and their resulting

AI algorithms is to annotate skin tone with Fitzpatrick Skin Type (FST) like the algorithmic

audit of accuracy disparities in facial recognition by Buolamwini and Gebru 2018 [87]. FST

is a clinical measurement developed and used by dermatologists to assess patients’ sun

sensitivity for dosing phototherapy or chemophototherapy. Clinical FST has been criticized

for subjectivity [254], is not designed for classifying race or skin color [632], and often involves

not just assessing skin tone but assessing a patient’s hair color and eye color. Despite the

imperfections and biases of clinical FST as a proxy for skin tone and an assessment of

differential healthcare risks [472], AI researchers have appropriated FST to estimate skin

tone labels for algorithmic audits of tasks like classifying skin disease [174, 248, 388, 498]

and facial recognition algorithms [87, 272]. In this paper, we distinguish FST as recorded

in a clinical patient-provider interaction as “clinical FST” and FST as recorded based on a
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single image as “estimated FST.”

While estimated FST has been frequently used in computer vision tasks, basic questions

have not been explored about its use for labeling image datasets: Who is qualified to an-

notate images with estimated FSTs? More specifically, should estimated FST annotations

on large-scale datasets be limited to board-certified dermatologists? How concordant are

board-certified dermatologists, particularly on the kinds of datasets used in computer vi-

sion? Would the annotations of trained annotators, crowdsourced labor, or algorithms differ

significantly from board-certified dermatologists? These are empirical questions, which are

connected more broadly to questions about what makes desirable data and how race and

gender should be annotated in image datasets [553, 554]. Notably, we limit the focus on

estimated FST because it is a method used in algorithmic audits based on clinical medicine

and it allows granular analysis which would not be captured by race alone [87]. While most

large image datasets with estimated FST annotations are labeled by dermatologists [87, 174,

388, 498], the “Casual Conversations” dataset is annotated by trained annotators [272] and

the “Fitzpatrick 17k” annotations are generated by applying a dynamic consensus protocol

to crowdsourced annotations [248].

As an alternative to human-annotated estimated FST, researchers have proposed and used

the Individual Typology Angle to FST (ITA-FST) algorithm, a computer vision algorithm

that converts the RGB values of an image into a single metric for constitutive pigmentation,

to estimate apparent skin tone from images [332, 352]. Prior work shows that ITA-FST is

strongly correlated with Melanin Index [640], which is sometimes used in assigning clini-

cal FSTs [182]. However, recent research in photodermatology suggests that ITA used for

constitutive pigmentation is a poor proxy for clinical FST [477].

Prior work suggests that crowdsourced estimated FST annotations are generally within 1

point of an expert board-certified dermatologist’s annotation, but Groh et al (2021) com-

pared crowd annotations with only a single expert, do not include statistical analyses of

inter-rater reliability, do not compare ITA with experts’ annotations, and do not examine

nuances around the compositions of the crowd or edge cases where the crowd is prone to

err [248]. We present evidence that the inter-rater reliability between three board-certified
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dermatologists is comparable to the inter-rater reliability between board-certified dermatol-

ogists and crowdsourcing methods but not the ITA-FST algorithm. However, for a subset

of images with high disagreement between crowd annotators, we find higher inter-rater re-

liability between board-certified dermatologists than board-certified dermatologists and the

crowd.

In summary, our contributions are the following:

(1) We evaluate the inter-rater reliability between three medical experts, a computer vi-

sion algorithm, and two crowdsourcing approaches for annotating images of skin conditions

with estimated FST, which is useful for increasing transparency into how algorithms per-

form on images of different skin tones. On a set of 320 images drawn from dermatology

textbooks [73, 241, 255, 298, 309, 311, 430, 648], we do not find a statistically significant

difference when comparing the Pearson Correlation Coefficients (ρ) between three medical

experts with the ρ between each medical expert and either of the crowdsourcing methods.

In contrast, we do find a statistically significant difference in the annotations produced by

the ITA-FST algorithm. These results suggest that crowdsourcing (but not the ITA-FST

algorithm) can be a reliable source for generating estimated FST annotations on large-scale

datasets of images intended for training and evaluating AI models to classify skin disease.

However, we include important caveats. First, our qualitative results show the crowd will

sometimes make errors that the medical experts would be unlikely to make. Second, a

quantitative follow-up with 140 images drawn from two online dermatology atlases [16, 215]

shows the results are robust to 70 images randomly sampled from the 91% of images with

relatively low crowd disagreement but on a random sample of 70 images from the 9% of

images with relatively high crowd disagreement, we find the crowd annotations can be sig-

nificantly different from the experts’ annotations. Third, the image-based estimated FST

annotations are subject to lighting, image quality, and pose variability that are not an issue

for in-person assessments

(2) In order to increase visibility into the process of human annotation of large image

datasets and guide future work, we introduce and describe a dynamic consensus protocol

for aggregating crowdsourced estimated FST annotations using the following transparent,
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adjustable criteria: (1) consensus thresholds, (2) qualified annotations, (3) failure

reports [90], (4) agreement metrics and (5) expert review. We apply this procedure

to the publicly available “Fitzpatrick 17k” dataset of 16,577 images to evaluate inter-rater

reliability across crowdsourcing annotation methods, estimate the proportion of images that

experts should review, and conduct expert review on 140 images.

5.2 Background and Related Work

5.2.1 Data Documentation for Increasing Transparency and Accountabil-

ity in Algorithms

Critical frameworks documenting both machine learning datasets and their resulting mod-

els promote transparency and accountability by enabling nuanced analyses that can expose

unwanted biases. Examples of guiding frameworks for detailing data, its definitions, and

its associated models’ potential harms include Data Statements for Natural Language Pro-

cessing, The Dataset Nutrition Label [279], Model Cards for Model Reporting [433], and

Datasheets for Datasets [222]. The seminal algorithmic audit of accuracy disparities in

facial recognition by Buolamwini and Gebru 2018 relied on documenting estimated FST

annotations and evaluating algorithmic performance across FSTs and found significant in-

tersectional accuracy disparities [87]. Estimated FST annotations have also been helpful in

documenting accuracy in machine learning models for dermatology [145, 248]. With appro-

priate, inclusive data, algorithms can increase accountability by both serving as a diagnostic

tool to detect discrimination and formalizing our definitions around a social problem like

inequities in healthcare across gender, race, and skin color [4, 337].

Beyond cataloguing the elements of a dataset, data documentation can also question the

existence of categories within the data and inform the question posed by Miceli et al 2022:

“Is this information sufficient in itself to explicate unjust outcomes” [427]? For a large

number of datasets with images of humans, the definitions of both race and gender in

databases lack critical engagements, are overly reductive, and require more than an outside
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observer looking at a photograph to annotate appropriately [429, 554]. This is particularly

problematic because the definition of a category, class, or outcome will impact how disparate

treatment and disparate impact arise in the data [49]. For example, Obermeyer et al 2019

report that an algorithm for predicting health risk of millions of people in the United States

using cost of care as a proxy for health needs led to the following bias: “At a given risk

score, Black patients are considerably sicker than White patients, as evidenced by signs of

uncontrolled illnesses” [470]. This racial bias in a healthcare setting is not only a problem

of selecting the right outcome measure, but a deeper problem that involves a history in

the United States of “segregated hospital facilities, racist medical curricula, and unequal

insurance structures, among other factors” [59]. Dataset documentation is an initial step

that enables critical researchers to both identify empirical biases, question the definitions

of specific data features, and inspect the data generating process. Data documentation

is particularly helpful to bridge collaboration between data scientists and subject matter

experts to make knowledge and processes explicit such that both groups of people can ask

the right question [402]. As bias is uncovered in data, researchers can offer new insights into

bias as a starting point for “studying up” [452] with a critical focus on accountability and

power dynamics in the underlying data generation process [45].

Extracting categories and clusters from complex data involves value judgments. For exam-

ple, Scheuerman et al 2021 highlight the tensions in the development of computer vision

datasets between efficiency and care, universality and contextuality, impartiality and posi-

tionality, and model work and and data work [553]. In crowd sourcing tasks, categorizing

can become problematic when crowdworkers have limited attention and expertise [25] and

when crowdworkers are overly constrained by power dynamics such that the crowd anno-

tates data based on their expectations of how a client sees the world rather than their own

sense of how the world looks [428]. One recent applied example from CSCW shows that

accessible interfaces with high degrees of freedom enable crowdworkers to categorize data

that can appropriately filter harmful content generated by AI [401]. Another example from

recent research in CSCW highlights the potential for failure reports [90] – open-ended de-

scriptions of model errors – to help navigate unexpected systematic failures. We expand on

the concept of failure reports in Section 3.3 where crowdworkers can transcend the menu
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of multiple choice annotations (in our case estimated FST I-VI and “not applicable”) to

free-text responses where images can be flagged for being incorrectly labeled, inappropriate,

or irrelevant.

In dataset documentation, epistemic authority is an important value judgment. How should

data be annotated and who or what should do it? Data annotation is often less straightfor-

ward and more complex than it seems. Data work is often time-consuming, opaque (unless

there’s good documentation), and not well rewarded; in field interviews with data workers,

one interviewee exclaimed, “Everyone wants to do the model work, not the data work,” which

is a sentiment shared by many interviewees [549]. Moreover, reasonable people often disagree

on color classification [234] and medical experts often disagree on medical diagnoses [515,

520]. In fact, in one study comparing referral and final diagnoses across 280 patients, signifi-

cant disagreements appear in 21% of cases [617]. Instead of assigning epistemic authority to

any particular individual or algorithm for a subjective task, we follow prior work that treats

epistemic authority based on inter-annotator agreement [124, 207, 208, 283]. Disagreement

between annotators is not necessarily indicative of poor quality annotations or bias, but

instead, disagreement can help reveal the subjectivity involved in a particular task and a

particular example [34].

In order to answer who or what is epistemically qualified to annotate data with information

that can provide transparency and accountability into potential biases, we need to examine

the level of agreement produced by different methods. The first step involves measuring

the subjectivity of the task by measuring the degree of disagreement among experts. Next,

we compare alternative methods (e.g. an algorithm and crowd methods) to the level of

disagreement among experts. If an alternative method does not disagree significantly more

with experts than experts do with each other, then we can call the alternative method

generally comparable to experts. While an alternative method may be generally comparable

to experts, edge cases may arise where experts have significantly lower disagreement among

themselves than with the crowd. For example, in the case of estimated FST images where a

rare skin disease has transformed the color of the skin, non-experts may have higher levels

of disagreement than experts. In the framework of Muller et al 2019 How Data Science
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Workers Work with Data [446], this annotation process would be described as “Ground Truth

as Created” where human expertise applied to images informs an analysis of the similarity

of various methods for annotating estimated FST. While Muller et al 2021 [447] write that

“it is widely agreed that SME-labeled data [data labeled by subject matter experts] is the

"gold standard" data source for high quality labeled data for specialized tasks,” we take a

step back from this assumption and empirically evaluate how well crowds and an algorithm

compare to estimated FST annotations of images by board-certified dermatologists. The

dynamic consensus threshold process described in 3.3 can represent both Muller et al 2021’s

“Principled design” and “Iterative design” to ground truth annotation because the annotation

process is planned and well-defined, but aspects of the dynamic consensus threshold process

(e.g. failure reports and expert review) allow for clarifications, adjustments, and potential re-

definitions based on collaboration back and forth between the human annotators examining

data at the record level and data scientists examining the data at the dataset level.

5.2.2 Designing Transparency into Clinical Decision Support Systems

Clinical decision support systems (CDSSs) are systems designed to support healthcare

providers in medical decision-making. Past work at CSCW has documented the follow-

ing relevant onboarding criteria for healthcare providers to interact with CDSSs: capabili-

ties and limitations, functionality, design objective, relative strengths and weaknesses of an

algorithm, performance of a model on domain specific cases including how the model’s id-

iosyncrasies compare with human idiosyncrasies [91, 92]. Transparency on subgroups within

the data is an integral component to onboarding healthcare providers such that they develop

an understanding for when they should override the system, which is important when an

algorithm makes an erroneous prediction [35]. In practice, healthcare professionals seek to

compare algorithmic errors in CDSSs with their own errors [93]. Well-documented data en-

ables healthcare providers (and researchers) to examine subcategories on which algorithms

are likely to error, which is important for establishing trust that the algorithm will lead to

positive results for vulnerable patients [181, 621] and useful for identifying what kind of data

should be collected to reduce accuracy disparities [112].
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Recent deployments of deep learning systems for health reveal that algorithms trained on

retrospective datasets may not be ecologically valid [56]. In particular, an algorithm ap-

plied to data that deviates from the training data is prone to unexpected errors on the

out-of-distribution examples. One approach to handling out-of-distribution data is training

a classifier to predict whether an image is out-of-distribution and if it is to abstain from gen-

erating an algorithmic classification [537]. Decision support systems tend to be less effective

on out-of-distribution examples; in evaluations of algorithms that generally outperform hu-

mans, the performance gap in accuracy between humans informed by the algorithm and the

algorithm is lower in out-of-distribution examples than in-distribution examples [386]. If a

particular skin tone is out-of-distribution for a particular disease, this is important for clin-

icians and model developers to know, so they are aware what kind of data might constitute

a context shift [242].

Recently, Jain et al 2021 completed a retrospective study that showed how a deep learning

based CDSS may help non-specialists such as primary care physicians and nurse practitioners

diagnose skin disease with higher accuracy (defined as agreement with reference conditions)

and possibly reduce biopsy and referral rates to dermatologists than the providers would

without the system [300]. Decision support systems have the potential to improve the quality

of dermatological care, and as such, it is important to evaluate the underlying skin disease

classification algorithm on diverse skin tones to address potential accuracy disparities given

the context of skin tone and race in the United States healthcare system and computer

vision applications. However the algorithm used in Jain et al 2021 was trained on only 46

images of FST VI skin and 510 images of FST V, which was 0.3% and 3.2% of the entire

training set, respectively [388]. The lack of images of dark skin types in this dataset means

this model may be prone to a higher level of unexpected algorithmic errors on future images

of dark skin types [248].
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5.3 Methods for Fitzpatrick Skin Type Annotations

The Fitzpatrick labeling system is a six-point clinical scale used by dermatologists for classi-

fying skin types based on photo-reactivity of skin and was originally intended to be used for

photochemotherapy [209]. See Table 5.3 in Appendix for a copy of the original description of

the Fitzpatrick Scale. We note that the original scale does not include nuanced skin tones or

color beyond white, brown, and black. While the Fitzpatrick scale is highly correlated with

an individual’s melanin index (measured by narrow-band spectrophotometric devices), the

Fitzpatrick scale is a subjective measure [326]. In clinical practice, clinical FSTs are visually

assessed by dermatologists based on the colors of a patient’s skin, hair, and eyes and their

history of sunburns [640]. In a study comparing self-reports to a single dermatologist’s clin-

ical FST determination, the dermatologist’s assessment was found to be significantly more

reliable than individuals’ self reports [182]. Recently, researchers have used the estimated

FST to annotate images and evaluate algorithmic fairness of AI models across apparent

skin tones [87, 142, 248, 300, 388]. While the original Fitzpatrick scale was not designed

to categorize skin color, it is often used as such in clinical practice [632] and it serves as a

starting point (albeit imperfect given the coarseness of categories for skin color along sepia

tones) for algorithmic audits [87].

5.3.1 Expert Labels from Board-Certified Dermatologists (N=3)

We asked three board-certified dermatologists – experts with deep experience examining

skin conditions and assessing patients’ clinical FST – to annotate images with the estimated

FST. Each expert provided independent estimated FST annotations for 320 images collected

from dermatology textbooks and 160 images collected from online dermatology Atlases. We

collected 1,380 estimated FST annotations from experts. Given the inherent subjectivity of

this task, we present ranges of experts’ annotation across these images: 3-5% Type I, 28-31%

Type II, 29-30% Type III, 14-15% Type IV, 14-15% Type V, and 4-9% Type VI. Likewise,

the distribution across the the 160 images is 4-20% unknown, 0-3% Type I, 17-28% Type

II, 26-34% Type III, 20-24% Type IV, 9-13% Type 5, and 1-8% Type 6.
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The experts noted that estimated FSTs will not necessarily match in-person assessments

because clinical FST relies on not just skin color but eye color, hair type and color, and

history of sunburns. Moreover, clinical FST based on an in-person assessment considers an

individual’s entire body across varying lighting conditions while estimated FSTs based on

a single image are restricted to a limited view of the body under a single lighting condi-

tion. As such, image-based estimated FST assessments will be have less information and

be fundamentally more noisy with less inter-annotator agreement than clinical, in-person

assessments. For example, clinical images of dermatological conditions differ in what part

of the body is photographed, how the photograph is framed (from the camera’s angle and

zoom level to the patient’s pose), how the lighting illuminates the image, and how the skin

disease has transformed the patient’s skin. We discuss further limitations of estimated FST

annotations in the Limitations section.

5.3.2 Algorithmic Labels from Individual Typology Angle

Following computer vision papers using ITA-FST for algorithmic audits [332, 352], we com-

pute ITA-FST annotations for each image. ITA was designed to classify skin color in a

Caucasian population based on healthy skin in an image [109]. While ITA was not designed

for all people, research shows ITA-FST correlates with both Melanin Index and clinical

FST [151, 640]. However, ITA-FST and clinical FST are designed to measure constitutive

pigmentation and sun-reactivity, respectively, and recent research suggests they are poor

proxies of one another [477]. In order to calculate ITA-FST more precisely, researchers de-

veloped YCbCr masks to mask pixels outside a range of pre-specified colors [344] to reduce

the noise of ITA-FST estimates. YCbCr masks are imperfect and often mask healthy skin

or fail to mask non-skin parts of an image in the range of skin colors, but without YCbCr

masks ITA-FST estimates are even more varied because very light or very dark backgrounds

can influence the estimate. For example, YCbCr often fails to mask white underwear of

dark skin people leading to the ITA-FST algorithm making errors in estimating skin tone

that a reasonable human would not make.

We calculate ITA using the default D65 illuminant over the healthy skin pixels identified
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by YCbCr masks, and we convert the scores to estimated FSTs that minimize discrepancy

between algorithmic labels and the experts’ labels on the 320 textbook images and 140

images from dermatology atlases following procedures described by Groh et al 2021 and

Krishnapriya et al 2022 [248, 352]. See Algorithm 2 in Appendix for details on transforming

ITA scores to FSTs.

5.3.3 Dynamic Consensus Protocol for Crowd Labels (N>10,000 partic-

ipants)

In order to crowdsource estimated FST annotations for images, we collaborated with Scale

AI and Centaur Labs, two companies that specialize in labeling large image datasets via dy-

namic consensus protocols applied to crowdworkers’ annotations. In this section, we identify

five key components of a dynamic consensus protocol based on the process at Centaur Labs.

Dynamic consensus refers to the process of transforming multiple annotations from indepen-

dent sources at different times on a single image into a consensus annotation. A dynamic

consensus differs from a standard consensus metric like a mean, median, or mode because a

dynamic consensus pre-specifies a consensus threshold, which must be met before anno-

tations are transformed into accepted responses. For example, the annotations produced by

Centaur Labs included a consensus threshold defined as either (a) a single category (across

the 6 FSTs and a category for not applicable) has 3 more annotations than any other category

or (b) the majority label if a consensus has not been reached after 20 annotations.

Qualified annotations are defined as annotations by individuals who have passed a task

specific quality control procedure. In contrast, disqualified annotations are annotations

by individuals who have failed the task specific quality control. The third category, non-

qualified annotations, are annotations by individuals who have not yet been assessed by

a task specific quality control procedure. In general, quality control is determined by the

proportion of an individual’s annotations that correspond to a set of expert annotations.

Given the subjectivity of estimated FST, we use both an expert’s annotations to compare

against 320 annotations collected from both Scale AI and Centaur Labs and the dynamic
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crowd consensus annotations on the rest of the images as measures on which to evaluate

annotation quality. For both Scale AI and Centaur Labs, we seed the dynamic crowd con-

sensus protocol with expert annotations to avoid crowd prejudice equilibria that can arise

in cold-start annotation tasks [152]. In the dynamic crowd consensus protocol devised with

Centaur Labs, we included a qualified minimum agreement of 40% and qualified minimum

and maximum annotations at 25 and 50, which means an individual is qualified only after

attaining 40% agreement on 25 images and then an individual only remains qualified as

long as her agreement remains above 40% for the 50 most recently annotated images. We

selected the 40% minimum agreement threshold with Centaur Labs for two reasons: first,

it is significantly above random guessing, which would be 16.7%, and second, we had previ-

ously found that 48% of consensus annotations by Scale AI matched expert 1’s annotation

exactly, so we rounded down to the nearest multiple of ten. The qualified minimum and

maximum annotation levels were suggested by Centaur Labs based on past performance of

their crowdworkers on other similar datasets. We did not include a dynamic quality control

procedure for (dis)qualifying annotations with Scale AI.

For the 320 textbook images, Scale AI provided 156,566 annotations (ranging from 378 to

1094 annotations per image) and Centaur Labs provided 7,999 qualified annotations (ranging

from 2 to 93 qualified annotations per image). For an additional 16,577 images from the

Fitzpatrick 17k dataset, Scale AI provided 62,710 annotations (with an interquartile range

of 4 to 4 annotations per image) and Centaur Labs provided 265,279 qualified annotations

(with an interquartile range of 9 to 20 qualified annotations per image) [248]. In total, we

collected 492,554 estimated FST annotations from crowd workers.

In addition to estimated FST annotations, we collected agreement metrics for measuring

the agreement and difficulty of annotating images with estimated FSTs. These agreement

metrics are weighted by each individual annotator’s agreement with the expert annotations

and defined for each image as follows: agreement is the weighted, qualified annotations

with the consensus label divided by the weighted, qualified annotations; difficulty is the

weighted, qualified annotations without the consensus label divided by the weighted, quali-

fied annotations. In algebraic notation, agreement and difficulty can be written as A = Qc

Q
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and difficulty as D = Q ̸∈Qc

Q where Qc is the weighted number of qualified annotations with

the consensus label, Q is the weighted number of qualified annotations, and Q ̸∈ Qc is the

weighted number of qualified annotations that are not the consensus label.

Another criteria for assessing and improving the reliability of an images’ annotations is the

incorporation of failure reports [90]. Failure reports are comments on flagged images

by annotators indicating that an image is either incorrectly labeled or inappropriate or

irrelevant. Failure reports allow crowdsourced workers to transcend the 7 multiple choice

labels (the FST scale and the not applicable option) to provide text-based feedback on the

image. In the annotations by Centaur Labs, we stop labeling any image which was flagged

as inappropriate or irrelevant once or flagged as incorrect twice. Across, the 320 textbook

images, we received 20 failure reports on 17 images. We discuss the details of these failure

reports in Section 4.2.

The final criteria for crowdsourcing is expert review, which is particularly useful for focus-

ing the efforts by experts on the edge cases with high disagreement among crowd annotators.

Expert review consists of experts reviewing flagged images without seeing the distribution

of labels to adjudicate the annotation. We discuss the results of expert review in Section

4.3.

5.4 Results Comparing Annotations on 320 Textbook Images

We asked three board-certified dermatologists to annotate 320 images with FSTs, and we

find that the annotations of any two experts match exactly on 50-55% of images and match

within one unit on 92-94% of images. Figure 5-1 presents a confusion matrix comparing the

annotations of the first two experts.

In comparison to the two experts’ labels, the algorithmically generated annotations for the

320 images are much less similar. The ITA-FST algorithm produces Fitzpatrick labels

identical to expert 1, 2, and 3 in 27%, 31%, and 40% of images, respectively, and is off

by no more than a single unit (i.e., FST I vs FST II) in 70%, 69%, and 76% of images,
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respectively. See Figure 5-6 and Figure 5-7 in the Appendix for confusion matrices examining

annotation discrepancies between experts 1 and 2 and the Scale AI, Centaur Labs, and ITA-

FST algorithm.

The inter-rater reliability between the two experts’ and the crowds’ annotations is much

more similar across the 320 images. The labels produced by Scale AI and Centaur Labs

match expert 1 exactly in 48% and 40% of images, match expert 2 exactly in 50% and 38%

of images, and match expert 3 exactly in 58% and 43% of images, all respectively. Likewise,

the annotations produced by Scale AI and Centaur Labs are off by no more than a single

unit from expert 1’s annotations in 94% and 87% of images, expert 2’s annotations in 91%

and 79% of images, and expert 3’s annotations in 93% and 88% of images.
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Figure 5-1: Confusion matrix comparing two board-certified dermatologists’ Fitzpatrick skin
type annotations on 320 images from dermatology textbooks.
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5.4.1 Quantitative Assessment of Inter-Rater Reliability

In light of the subjectivity of estimated FST annotations, we evaluate annotation perfor-

mance by comparing inter-rater reliability between pairs of experts with the inter-rater re-

liability between experts and each non-expert annotation method. Specifically, we measure

inter-rater reliability using the Pearson Correlation Coefficient (ρ) between two annotation

methods, and we evaluate the statistical significance following the Fisher Z transformation

for comparing independent correlations [207]. We describe the pseudocode for comparing

ρEi,Ej with ρEi,Method
in Algorithm 1 in the Appendix where Ei and Ej refer to one of the

three experts and EMethod refers to one of the non-expert annotation methods. When calcu-

lating the ρX,Y between two annotation methods X and Y, we drop annotations that either

method marks as not applicable.

We find the inter-rater reliability of the ITA-FST algorithm is significantly lower than the

inter-rater reliability of experts. The correlation between the first two experts’ annotations

is ρE1,E2 = .84 (E1 and E2 refer to expert 1 and 2, respectively) whereas the correlation

between the ITA-FST algorithm and any of the experts is ρITA,E1 = .57, ρITA,E2 = .52,

and ρITA,E3 = .55. The differences between any pair of experts ρEi,Ej and ρE1,ITA, ρE2,ITA,

and ρE3,ITA are statistically significant (p < 0.00000001). We present the correlations and

the p-value of the comparisons of correlations in Table 5.1. We also present a heatmap of

inter-rater reliability as measured by ρ in Figure 5-2.

In contrast to the low inter-rater reliability between experts and the algorithm, we find the

inter-rater reliability of expert and crowdsourced annotations to be comparable. Notably,

the crowdsourced annotations are slightly more correlated with experts’ annotations in five

of six comparisons – ρE1,S = .88, ρE1,C = .88, ρE2,S = .86, ρE2,C = .83, ρE3,S = .87,

ρE3,C = .87 (S and C refer to Scale AI and Centaur Labs, respectively) – than experts’

annotations are correlated with each other (ρE1,E2 = .84, ρE2,E3 = .85, and ρE1,E3 = .86).

We do not find statistically significant differences between the experts’ correlation with each

other and either expert’s correlation with any of the crowdsourced methods.

131



Method E1 (ρ) E1 p-value E2 (ρ) E2 p-value E3 (ρ) E3 p-value

E1 0.84 0.73 0.86 0.66
E2 0.84 0.44 0.85 0.66
E3 0.86 0.44 0.85 0.73
ITA-FST 0.57 <0.001 0.52 <0.001 0.55 <0.001
Scale AI 0.88 0.08 0.86 0.43 0.88 0.08
Centaur Labs 0.88 0.08 0.83 0.50 0.87 0.32

Table 5.1: Inter-rater reliability based on Fisher Z transformations of Pearson Correlation
Coefficients (ρ). The Ex (ρ) columns display the correlation between the method in the row
and the method in the column. The p-value columns show the minimum p-value based on
Algorithm 1 in the Appendix applied to all pairwise correlations of experts; as an example,
the cell in the E1 p-value column and ITA-FST row presents the minimum p-value comparing
(a) ρE1,ITA and ρE1,E2 , (b) ρE1,ITA and ρE1,E3 , and (c) ρE1,ITA and ρE2,E3

.

In addition to examining the inter-rater reliability across methods, we examine how inter-

rater reliability changes depending on the number of non-qualified annotations. Instead of

assessing FSTs based on a dynamic consensus procedure, we compare expert 1’s annotations

with the crowd mean of 25 random draws from the Scale AI annotations (which were non-

qualified meaning that crowdworkers were not filtered by a task specific quality control

procedure) in samples of the following sizes: 3, 6, 12, 24, 48, and 96 annotations. We find a

logarithmic relationship between ρS,E1 and sample size that plateaus with ρS,E1 approaching

0.88; see Figure 5-2 for a visualization of this relationship. For example, an increase from 3

to 12 annotations per image is associated with a 10 percentage point increase in ρS,E1 ; the

mean ρS,E1 is 0.74 with a standard deviation of 0.026 when evaluating across 3 annotations

per image and 0.84 with a standard deviation of 0.01 when evaluating across 12 annotations

per image. A further increase from 12 to 24 annotations per image is associated with another

2 percentage points increase in ρS,E1 . We also find a similar relationship when comparing

the varying size of the crowd with expert 2 and 3.
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Figure 5-2: Left: Heatmaps showing inter-rater reliability as measured by Pearson’s Corre-
lation Coefficient. These heatmaps include 296 images and exclude the 24 images rated by
any expert or crowdsourcing method as “Not Applicable.” Right: Inter-rater reliability by
crowd size based on 25 random bootstrapped samples from the Scale AI annotations. The
y-axis presents the correlation between expert 1’s annotations and the crowd’s mean FST
annotation. The x-axis presents the number of annotations per image. The gray bars rep-
resent the 95% confidence interval. As the number of annotations increases the confidence
interval decreases and the Pearson Correlation Coefficient (ρ) approaches 0.88.

5.4.2 Qualitative Assessment of Inter-Rater Reliability

We examine inter-rater reliability qualitatively by illustrating similarities and differences in

annotations across methods and examining images flagged by failure reports. In Figure 5-

3, we present qualitative confusion matrices that showcase how different annotation

methods lead to different annotations. These qualitative confusion matrices are intended

to contextualize and illustrate similarities and discrepancies in subjective annotations and

build upon the finding that alternative representation of confusion matrices can improve

non-expert understanding of performance [564].

Across the 320 textbook images, annotators flagged 17 images as inappropriate or incorrect.

Three of these flagged images were originally marked by expert 1 as "Not Applicable."

Unlike most images, all three of these images contain multiple photographs under multiple

lighting conditions, expert 2 provided a different annotation than expert 1, and the Centaur
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Labs and Scale AI crowd labels are discordant. Another two of these flagged images are

marked as confusing and neither the expert annotations or the crowd annotations agree

with one another. The final 12 of the flagged images contain messages that the annotator

is confident that the expert’s label is wrong; in 5 of these 12 images, expert 2 and both

crowd consensuses agree that expert 1’s annotation is one unit off, in 6 of these 12 images,

expert 2 agrees with expert 1 while both crowd consensuses disagree with the experts, and

in 1 of these 12 images, there is disagreement across experts and crowd consensuses. These

results suggest failure reports are generally useful in identifying images that are likely to be

problematic and extremely subjective for one reason or another.

5.5 Scaling Annotations on the Fitzpatrick 17k

For resource constrained developers of large-scale image datasets, it is orders of magnitude

less resource intensive to annotate images with an algorithm or crowdsourcing than with

board-certified dermatologists [476, 545, 611]. Given the lower inter-rater reliability of the

ITA-FST algorithm, we limit our analysis of scaling annotations on the full Fitzpatrick 17k

dataset [248] to crowdsourcing methods. 85% of consensus FST annotations by Scale AI

and Centaur Labs are within one unit of each other. In Figure 5-4, we present a confusion

matrix, which reveals that large discrepancies in annotations between sources are rare. An

expert review of all applicable annotation discrepancies that are off by more than one unit

would involve examining 9% (1,365 of the 13,865 images) of the Fitzpatrick 17k dataset.

Error reports by annotators from Centaur Labs indicate that the consensus annotation for

166 images are incorrectly labeled and 21 images are inappropriate or irrelevant for the task.

5.5.1 Expert Review of Scaled Annotations

As a final step in evaluating dynamic consensus protocols, we collect labels from 3 board-

certified dermatologists on 140 images randomly selected from the 16,577 images in the
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Fitzpatrick 17k dataset. We stratified this random selection on two features: (1) Scale AI’s

estimated FST annotations and (2) a binary variable for discrepancy between Scale AI’s and

Centaur Labs’ annotations of more than 1 estimated FST annotation. As a result, there

are 20 images with each Scale AI estimated FST type and 20 images annotated by Scale

AI as not applicable. In addition, 70 of these images have been annotated by Scale AI and

Centaur Labs within 1 estimated FST of each other and the other 70 images have been

annotated with estimated FST that differ by more than 1.

For the 70 images with similar annotations, the correlation between experts ranges from

83% to 87% and the crowds correlation with experts ranges from 86% to 89%. We do not

see any statistically significant difference between experts and crowds.

However, for the 70 images with greater than 1 unit discrepancies across the two crowd

methods, we do find significant differences between inter-annotator reliability across experts

and the crowd. The correlation between experts ranges from 59% to 66% and the crowds’

correlation with experts ranges from 32% to 63%. We examine the inter-rater reliability

between Scale AI and Centaur Labs and experts by conducting 12 tests of statistical sig-

nificance to cover all possible comparison permutations. We find that 3 of 6 comparisons

of inter-rater reliability between Scale AI and experts show Scale AI’s annotations are less

correlated and the p-value is less than the standard 5% threshold for statistical significance.

Likewise, we find that 1 of 6 comparisons of inter-rater reliability between Centaur Labs

and experts show Centaur Labs’ annotations are less correlated and the p-value is less than

the standard 5% threshold for statistical significance. In Table 5.2, we present the inter-

rater reliability Pearson correlation coefficients and lowest p-values for tests of statistical

significance. This table also includes an examination of estimated ITA-FST on these 70

images, and we find estimated the correlation between ITA-FST and experts’ annotations

approaches 0 for this selection of images for expert review.

The comparison of inter-annotator agreement on the images selected for expert review reveals

important nuances that researchers should keep in mind when annotating future datasets.
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Method E1 (ρ) E1 p-value E2 (ρ) E2 p-value E3 (ρ) E3 p-value

E1 0.59 0.29 0.66 0.29
E2 0.59 0.29 0.66 0.58
E3 0.66 0.29 0.66 0.58
ITA-FST 0.05 <0.001 -0.06 <0.001 0.08 <0.001
Scale AI 0.50 0.04 0.32 <0.001 0.57 0.19
Centaur Labs 0.63 0.54 0.47 0.02 0.53 0.09

Table 5.2: Analysis of subset of 70 images with high disagreement showing the inter-rater
reliability based on Fisher Z transformations of Pearson Correlation Coefficients (ρ). The
Ex (ρ) columns display the correlation between the method in the row and the method in
the column. The p-value columns show the minimum p-value based on Algorithm 1 in the
Appendix applied to all pairwise correlations of experts; as an example, the cell in the E1

p-value column and ITA-FST row presents the minimum p-value comparing (a) ρE1,ITA and
ρE1,E2 , (b) ρE1,ITA and ρE1,E3 , and (c) ρE1,ITA and ρE2,E3

.

While the inter-rater reliability on estimated FST is just as high between experts as it is

between experts and the crowd consensus for most images, the annotations by crowds on

images with low agreement may be less reliable than experts’ annotations. By incorporating

expert review into a subset of crowd annotations with low agreement, a dynamic consensus

protocol can adjudicate edge cases such that adjudication leads to a higher likelihood of

agreement with other experts.

This particular expert review of 140 images highlights edge cases where experts tend to

agree with each other more often than they agree with dynamic consensus labels from

crowdworkers. However, it is important to note that inter-rater reliability across experts on

the 70 images randomly drawn from the 9% of images with two discordant crowd ratings

ranges from 59% to 66% whereas inter-rater reliablity on the other 70 images (randomly

drawn from the 91% of images with two concordant crowd ratings) ranges from 83% to

87%. On these 70 images with discordant crowd annotations, experts agree with each other

significantly less than they do on the overwhelming majority of images. This lower rate

of expert agreement and significantly lower rate of crowd worker and expert agreement

demonstrates the subjectivity of estimating FST of an individual in an image can vary

considerably across images.
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5.6 Discussion

How well does the ITA-FST algorithm and various crowdsourcing methods compare to

board-certified dermatologists in annotating images with estimated FSTs? Our results reveal

that the inter-rater reliability between three board-certified dermatologists (as measured by

ρEx,Ey) is comparable to the inter-rater reliability between each board-certified dermatologist

and each of the two crowdsourcing methods (as measured by ρE,Crowd). However, inter-rater

reliability of the ITA-FST algorithm (as measured by ρE,ITA) is significantly lower than the

inter-rater reliability between any two experts.

Estimated FST annotations on images are highly subjective. We find that three experts

agree with each other exactly on estimated FST in only 50-55% of images (although they

agree with each other within a one unit difference in 92-94% of images). Rather than treat

this subjectivity as a bias, we treat subjectivity on a per annotation basis as a measure

of signal and noise. We find the differences between the three experts’ annotations are

not significantly larger than the differences between the experts and either crowdsourced

method. In other words, expert annotations generally have the same amount of signal and

noise as crowd annotations. This general finding comes with a caveat: there are identifiable

edge cases where experts’ annotations demonstrated significantly higher inter-rater relia-

bility than crowdsourced annotations. Nonetheless, our results suggest that crowdsourcing

methods (but not the ITA-FST algorithm) can be reliable for annotating large scale derma-

tology image datasets with skin type annotations especially when expert review is included.

This is particularly important for increasing transparency in machine learning for dermatol-

ogy because skin type annotations are one of the items on the CLEAR Derm checklist for the

evaluation of image-based AI algorithms [144] and an important consideration for evaluating

medical AI devices for FDA approvals [651]. Transparency on skin tone information can be

useful for evaluating both the distribution (and potential under-representation) of various

skin tones in image datasets and how AI algorithms in dermatology perform across different

skin tones, which is then useful as evidence for holding the fields of computer vision and

dermatology accountable for addressing the unwanted biases.
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While crowdsourced annotations are comparable with experts’ annotations in aggregate,

there are many examples where experts agree with each other yet the crowd differs. One

approach for reducing crowdsourcing disagreement with experts is to include more annota-

tions per image, which we find is effective for reducing errors from crowd sizes of 3 to 12 but

less effective for reducing errors from larger crowd sizes. A second approach is to integrate

expert review into crowdsourcing. In particular, expert review examines edge cases that

are flagged based on failure reports, agreement metrics (e.g. low agreement scores, high

difficulty scores), and random samples for review. For the overwhelming majority of images,

experts and the crowd have similar inter-rater reliability, but for the edge cases, expert re-

view can offer additional reliability because inter-rater reliability of experts on edge cases

can be higher than inter-rater reliability of crowds on edge cases.

The comparison between methods for annotating subjective labels provides a replicable

methodology for answering when an algorithm or crowdsourced methodology can reliably

be used in lieu of experts for annotating data. The goal of this kind of data annotation is

to increase transparency in dataset biases to motivate greater accountability in sociotechni-

cal decision-making systems. However, this kind of transparency comes at a cost. Human

labor by experts or crowd annotators requires time and energy and should be compensated

appropriately whereas the resources needed to compute ITA-FST scores are neglible. The

low agreement between ITA-FST and experts is best to avoid because it may leave analyses

prone to data cascade errors [549]. On the other hand, the relatively high agreement between

experts and the crowd (and the opportunity to augment crowd labels with expert review)

makes crowd annotations of estimated FST on images more attractive than expensive ex-

perts. We note that the crowd labels here come from Scale AI and Centaur labs, which

represent very different ecosystems than the decentralized requester marketplace of Ama-

zon Mechanical Turk (AMT) [405]. In particular, Scale AI and Centaur Labs work directly

with individuals rather than through AMT, and as such, both these services avoid the “root

problem... of unfair requesters” [267] in the AMT marketplace and the problem of turk-

ers’ uncertainty about the fairness of a particular requester [293]. Moreover, the ability to

submit error reports with Centaur Labs creates a tractable opportunity for communication

between crowdworkers analyzing the images and data scientists analyzing the data.
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5.7 Limitations

We focused our comparisons on how three experts, one algorithm, and two crowdsourcing

methods retrospectively annotate estimated FST across 320 images collected from derma-

tology textbooks and 140 images collected from online dermatology atlases. The 320 images

showcase skin of all six skin types, but the distribution of skin types is not uniform across

these images because dark skin types are underrepresented in dermatology textbooks [9, 23,

179]. Based on experts’ annotations, only 18-26% of the 320 images show the two darkest

skin types.

In our evaluation, we consider the ITA-FST algorithm applied to images with YCbCr masks,

and we find it exhibits higher variability than expert and crowd-based annotations. While

the ITA-FST algorithm may not be a reliable method for annotating estimated FST, future

algorithms applied to images (especially segmented portions of images) may be able to match

the inter-rater reliability of experts.

The lighting conditions are heterogeneous across these images, which makes assessing esti-

mated FST more difficult than it would be in images with a single, consistent cross-polarized

light source. Guidelines for photographing images of skin conditions on dark skin suggest

images use indirect, natural light and a separate light for the hair and should avoid back-

grounds with bright colors or patterns [379]. A recent perspective piece in the British Journal

of Dermatology presents a series of images where the only difference is lighting source (cross-

polarized light vs. white light) that reveals cross-polarized light reduces specular reflections

and increases the contrast between healthy and unhealthy skin [471].

The variability of estimated FST annotations in images is much higher than in-person as-

sessments because in-person assessments are not limited by lighting sources and enable a

dermatologist to include an assessment of the patients’ skin color, eye color, hair color, and

history of sunburns. We leave the comparison of in-person FST annotation to image-based

estimated FST annotations to future research.

The Fitzpatrick scale is a starting point but not a perfect method for annotating skin

color [87, 632]. The Fitzpatrick classification system was originally designed for classifying
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skin based on skin’s reaction to the sun (burning vs tanning) and not skin color [209].

Moreover, the original Fitzpatrick classification labeled FST I-IV as white, FST V as brown,

and FST VI as black, which contrasts with how researchers describe today’s usage of FST

as pale-white for I, white for II, beige for III, brown for IV, dark brown for V, and black for

VI [537]. We re-created the original scale in Table 5.3 in the Appendix for quick reference.

Annotating images with estimated FSTs helps to document the diversity of dermatology

datasets and inspect algorithms for discrimination based on the color of one’s skin, but

estimated FSTs serve as a blunt proxy (biased towards lighter skin colors) that fail to

capture the global diversity of skin colors [632]. In order to avoid singularly optimizing

future AI algorithms on a biased proxy [444], future research and data collection should

consider additional methods and metrics for annotating the diversity and complexity of

skin color including factors such as self-reported versus observer reported skin tone [437],

in-person or image based assessment, and the number of response categories [512].

5.8 Conclusion

By annotating large datasets of dermatology images with FSTs, researchers can increase

transparency and enable relatively straight-forward evaluations of algorithmic performance

across skin types for AI models trained to classify skin conditions. While image-based

FST annotations are subjective, we find the annotations of experts and crowds are highly

comparable while the annotations produced by the ITA-FST algorithm are more variable.

In light of the higher variability of annotations generated by the ITA-FST algorithm, we

recommend that researchers do not augment their datasets of clinical dermatology images

algorithmically and instead use a crowdsourcing or expert-based approach.

We find some instances where the experts concur yet the crowd consensus disagrees. We

recommend the most efficient and thorough approach to annotating images of skin condi-

tions with FSTs is to combine experts and the crowd. Expert review can adjudicate both

images flagged for error reports and images with low agreement or high difficulty scores.

While we propose this approach for annotation of FSTs, our recommendation for hybrid dy-
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namic consensus protocols with experts and crowds may extend to other domains in which

annotations are similarly subjective for experts and non-experts alike.

5.9 Data and Code Availability

The datasets and code generated and analyzed during the current study are available in our

public Github repository, https://github.com/mattgroh/fitzpatrick17k.
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5.10 Appendix

Algorithm 1 Fisher Z transformation for comparing independent correlations
1: for Each Expert do
2: for Each Method do
3: zEA,EB

← 1
2 ln

1+ρEA,EB
1−ρEA,EB

4: zExpert,Method ← 1
2 ln

1+ρExpert,Method

1−ρExpert,Method

5: Z ← | zEA,EB
−zExpert,Method√
2/(n−3)

| where n= # of images

6: Convert Z score to p-value
7: end for
8: end for

Algorithm 2 Individual typology angle threshold adjustment
1: T12 ←Mean(ITA1.Quantile(1), ITA2.Quantile(3))
2: T23 ←Mean(ITA2.Quantile(1), ITA3.Quantile(3))
3: T34 ←Mean(ITA3.Quantile(1), ITA4.Quantile(3))
4: T45 ←Mean(ITA4.Quantile(1), ITA5.Quantile(3))
5: T56 ←Mean(ITA5.Quantile(1), ITA6.Quantile(3))
6: T ← {T12, T23, T34, T45, T56}
7: for all t ∈ T do
8: Max_Concordant← Sum(Annotation_E1 = Annotation_E2 = ITA(t))
9: I ← {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}

10: for all i ∈ I do
11: ti ← t+ i
12: Concordant← Sum(Annotation_E1 = Annotation_E2 = ITA(ti))
13: if Concordant > Max_Concordant then
14: Max_Concordant← Concordant
15: t← ti
16: end if
17: end for
18: end for
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Skin Type Skin Color Sunburn Tan

I White Yes No
II White Yes Minimal
III White Yes Yes
IV White No Yes
V Brown No Yes
VI Black No Yes

Table 5.3: The Fitzpatrick skin type scale from Fitzpatrick et al 1988 [209]. The scale is
intended for classifying sun-reactive skin types. Notably, the original scale does not include
nuanced skin tones or color beyond white, brown, and black. In dermatology practice,
the Fitzpatrick scale is commonly used to describe constitutive skin color [632]. Recent
research published in the Medical Image Analysis describes the Fitzpatrick skin types as
pale-white, white, beige, brown, dark brown, and black [537]. We informed crowd annotators
by presenting example images of each FST.
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Figure 5-3: Textbook images [73, 241, 255, 298, 309, 311, 430, 648] of skin conditions plotted
according to Expert 1’s annotations (on the Y-axis) and 4 other methods (Expert 2, ITA-
FST algorithm Scale AI, and Centaur Labs on the X-axis).
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Figure 5-4: Confusion matrix comparing two crowdsourcing methods for annotating the
16,577 images in the Fitzpatrick 17k dataset

Figure 5-5: Inter-rater reliability measured via mean Cohen’s kappa between experts and
other annotators. Cohen’s kappa based on categorical weighting is lower than Cohen’s kappa
based on linear and quadratic weighting. Many annotations are only off by a single unit and
categorical weighting penalizes annotations off by a single unit the same as annotation off
by multiple units.
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Figure 5-6: Confusion matrices comparing experts 1 and 2 to the ITA algorithm and crowd-
sourcing methods.
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Figure 5-7: Confusion matrices comparing expert 3 to the ITA algorithm and crowdsourcing
methods.
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Chapter 6

Diagnostic Accuracy across Light and

Dark Skin by Dermatologists,

Primary Care Physicians, and

Physician-Machine Partnerships

Abstract

Recent advances in deep learning systems (DLS) for image-based medical diagnosis demon-
strate the potential to augment clinical decision-making, but the effectiveness of physician-
machine partnerships remains an open question because physicians and algorithms are sus-
ceptible to systematic errors especially on underrepresented populations. We present results
from a large-scale digital experiment (N=390 board-certified dermatologists and N=460 pri-
mary care physicians from 39 countries) to evaluate the accuracy of physicians submitting up
to 4 differential diagnoses on 364 images of 46 skin conditions in a store-and-forward teled-
ermatology simulation. We find specialists achieve 38% accuracy, specialists and generalists
alike are 4 percentage points less accurate on images of dark skin than light skin, and fair DLS
decision support improves physicians’ diagnostic accuracy by 33%, possibly reduces accuracy
disparities of specialists, but exacerbates accuracy disparities of generalists. These results re-
veal image-based diagnosis is challenging, but well-designed physician-machine partnerships
can enhance physician performance. 1

1This chapter, which is co-authored by Omar Badri, Roxana Daneshjou, Arash Koochek, Caleb Harris,
Luis Soenksen, P. Murali Doraiswamy, and Rosalind Picard is currently under peer review.
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6.1 Motivation

The future of machine learning in medicine is unlikely to involve substituting machines for
physicians but instead involves physician-machine partnerships where domain-specific inter-
faces built on top of machine learning models may support clinical expertise in providing
more accurate diagnoses for patients [111, 300, 327, 351, 487, 608, 619, 638]. However, an
emerging literature on human and artificial intelligence collaboration reveals that physician-
machine partnerships are not guaranteed to be better than either physicians or machines
alone [101, 221, 243, 369, 561, 575]. In particular, experts may have trouble recognizing
when to override or defer to algorithmic advice, which may be systematically biased in ways
unknown to the expert. Initial research in store-and-forward teledermatology suggests clini-
cal decision support based on a deep learning system (DLS) can improve diagnostic accuracy
by generalists [300], but open questions remain about how physician-machine partnerships
perform across levels of physician expertise and across underrepresented populations [519,
612].

Racial bias in medicine is well documented [21, 150, 470, 573, 641]. In dermatology, there
is a lack of representation of diverse skin tones that permeates textbooks [9, 23], residency
programs [380], dermatology research [378], non-specialists’ diagnostic accuracy [162, 198],
and training data for machine learning algorithms [143]. While deep learning models show
promise for enhancing clinical decision-making in dermatology [187, 388], algorithmic audits
of deep learning models for dermatology reveal these applied models often exhibit system-
atic errors on subsets of the data, especially on dark skin [146, 248]. Recent research in
machine learning applied to dermatology has focused on increasing transparency in large-
scale dermatology image datasets by annotating images with estimated Fitzpatrick skin type
(FST) [246], developing new datasets with a focus on diversity [146] and creating synthetic
images with diffusion models [547]. These solutions can address some of the current issues
of transparency and performance disparities [113], but an open question remains of how
accurately specialist and generalist physicians diagnose skin disease across skin tones with
store-and-forward teledermatology and how a physician-machine partnership may help to
reduce (or possibly exacerbate) any potential differences in diagnostic accuracy across skin
color.

Methods from digital experiments in social sciences can be used for evaluating accuracy
and bias in medical decision making and physician-AI interaction. Similarly to how crowd-
workers on MTurk enabled the transformation of experimentation in social and behavioral
science a decade ago [62, 483, 522], physician platforms offer an opportunity to recruit large
numbers of physicians for surveys and diagnostic accuracy experiments [169–171]. We re-
cruit a large number of physician participants by paying a nominal fee and designing the
experiment to be a fun learning experience drawing on research on gamified behavioral ex-
periments [390]. In addition to following designs from gamified experimentation, we follow
guidance from integrative experimentation [20] and identify a reproducible experimental
design space that covers the following dimensions: skin conditions, skin color, physician
expertise, physician-machine partnerships, clinical decision support accuracy, and user in-
teraction designs. Our experiment focuses on diagnostic accuracy and follows methods from
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algorithmic audits [387], which serve as a useful tool for systematically evaluating errors,
exposing bias, and promoting transparency in machine learning algorithms [87]. We build
upon recent work in diagnosing physician error [445] to demonstrate that diagnostic accu-
racy experiments can offer insights into performance of physicians and physician-machine
partnerships.

Specifically, we designed a custom, digital experiment to evaluate physicians’ diagnostic
accuracy on images of inflammatory appearing skin conditions. We curated 364 images of
46 skin conditions. The vast majority of images (78%) depict the following 8 main diseases
of which we have at least 29 images for each disease: atopic dermatitis, cutaneous t-cell
lymphoma, dermatomyositis, lichen planus, lyme disease, pityriasis rosea, pityriasis rubra
pilaris, and secondary syphilis. The selected images represent a near uniform distribution
across skin color as measured by estimated FST. We hosted these images in a image-only,
simulated store-and-forward experiment, which is outlined in Figure 6-1 and is a setting
that limits the amount of information available to the physician relative to the information
available in an in-person clinical visit. The experiment begins with randomized assignment of
participants to two sets of conditions: two versions of the DLS and two interfaces for clinical
decision support. The control DLS is a neural network architecture trained to classify 9
classes (the 8 main conditions and an other class to represent all other conditions) and has a
top-1 accuracy of 47% and is a fair classifier in the sense that accuracy is highly similar across
FST. The treatment DLS is Wizard of Oz classifier, which is a synthetically enhanced version
of the control DLS, where we randomly re-assigned 65% of wrong classifications to be correct
classifications resulting in 84% top-1 accuracy. The synthetically enhanced DLS is designed
to anticipate future DLS systems that may be significantly more accurate than today’s
leading systems. The control clinical decision support interface consists of three buttons
in the follow order “Update my top prediction with [condition]” “Update my differential
to include [condition]” and “Keep my differential.” The treatment interface consists of the
same three buttons in reverse order as seen in Figure 6-11. For full details about either the
DLS or interface for clinical decision support, see the Deep Learning System Development
subsection in the Methods.

The experiment began by presenting participants with 7 pre-survey questions, instructions,
and the diagnostic accuracy task where we ask participants to provide a differential diagnosis
of 3 diseases (see Figure 6-7, Figure 6-8, Figure 6-9 in the Appendix for screenshots of
the experimental interface). Next, we presented physicians with clinical decision support
and asked physicians to decide whether or not to include the decision support suggested
diagnosis in their differential (see Figure 6-11 in the Appendix). In this experiment, we
motivated participant engagement by showing the reference condition after each trial and
overall performance after 10 trials, which allowed physicians to learn about the content (e.g.
Which images correspond to which condition? How often is the decision support correct?)
and themselves (e.g. Did the participant diagnose the image correctly? How accurate is the
participant compared to other specialists, generalists, and the DLS?).

In the results section, we evaluate how accurately specialist and generalist physicians diag-
nose images of inflammatory appearing skin disease. We consider three measures of accuracy:
top-1 accuracy (Does the participant’s leading diagnosis match the skin condition in the im-
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age?), top-3 accuracy (Do any of the participant’s initial three differential diagnoses match
the skin condition in the image?), and top-4 accuracy (Do any of the participant’s initial
three differential diagnoses or the decision support suggestion – if included by the participant
– match the skin condition in the image?). We further evaluate how diagnostic accuracy
differs across different skin tones in the images and physicians’ experience with different skin
tones. Finally, we consider how DLS-based decision support influences diagnostic accuracy.

Figure 6-1: Illustration of the experimental design. See Figures 6-7 - 6-12 for screenshots of
the experiment’s user interface.

6.2 Results

6.2.1 Physician Characteristics (N=1,120)

In our digital, diagnostic accuracy experiment, we collected 14,261 differential diagnoses
from 1,118 individuals on 364 images. This includes 5,365 differentials from 389 board-
certified dermatologists (BCDs), 1,691 differentials from 116 dermatology residents, 5,458
differentials from 459 individual primary care physicians (PCPs), and 1,747 differentials
from 154 other physicians. The first image shown in the experiment is an image of a woman
with acne, which serves as an attention check that physicians at all levels of expertise should
be able to diagnose accurately. We find 98% of BCDs, PCPs, and other physicians pass the
attention check and 96% of dermatology residents pass the attention check. Moreover, 76%
of BCDs and PCPs, 73% of other physicians, and 72% of dermatology residents pass the
attention check and provide differential diagnoses on at least 10 images. After participants
provide 10 differential diagnoses, we thank each participant for completing the experiment,
reveal the aggregate performance of other participants to the participant, and offer the
participant to continue diagnosing skin conditions in the experiment if they would like (see
Figure 6-1 for an illustration of the experimental design).

In the results sections on diagnostic accuracy, we focus our analysis on the first ten differ-
entials provided by participants who passed the attention check and provided at least 10
differentials. This includes 2,660 differentials from 296 BCDs, 747 differentials from 83 der-
matology residents, 3,150 differentials from 350 PCPs, and 1,015 differentials from 113 other
physicians. Our results are robust to other selection criteria, such as only participants from
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the United States, participants who provided fewer than 10 differentials, and all participants
who pass the attention check. This experiment includes physicians living in 39 countries;
half of these physicians live in the United States.

6.2.2 Image quality

In order to ensure the skin condition reference labels accurately represent the skin conditions
in the images, we followed a five-step quality control process with three BCDs, conducted
a post-hoc quality review, and evaluated accuracy rates across image sources which we
describe in the Methods section.

6.2.3 Overall Diagnostic Accuracy

In this experiment, participants do not know which skin conditions will appear, and as
such, the accuracy of random guessing is near 0% (see Experimental Interface subsection
in Methods for more details). The top-3 accuracy of BCDs, dermatology residents, PCPs,
and other physicians, as measured by any of their three differential diagnoses matching the
reference label, is 38%, 36%, 19%, and 18%, respectively across all images in this experiment
(excluding the attention check image) and 37%, 35%, 17%, and 16%, respectively across
images of the eight main conditions in this experiment.

The top-1 accuracy, the accuracy of the leading diagnosis only, for BCDs, dermatology
residents, PCPs, and other physicians is 27%, 24%, 14%, and 13%, respectively across all
images in this experiment (excluding the attention check image) and 27%, 24%, 13%, and
12%, respectively across images of the eight main conditions in this experiment.

The top row of Figure 6-2 presents the mean diagnostic accuracy of participants’ split by
their primary, secondary, and tertiary diagnoses for images of the eight main conditions in
this experiment.

The bottom row of Figure 6-2 presents the top-3 accuracy of BCDs’ and PCPs’ full dif-
ferential diagnosis across the eight main conditions and a category labeled “Other”, which
aggregates the auxiliary 38 skin conditions into a single category. BCDs significantly out-
perform PCPs at visually diagnosing skin conditions from images across seven of the eight
skin conditions and the other category.

We find the most common leading diagnosis for each image by BCDs and PCPs is correct
in 48% and 33% of observations, respectively. At least one BCD identified the reference
label in their differential diagnosis in 77% of images while at least one PCP identified the
reference label in their differential diagnosis in 58% of images. After seeing a correct DLS
prediction, at least one BCD included the reference label in their differential diagnosis in
98% of images.
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6.2.4 Diagnostic Accuracy across Light and Dark Skin

Across all images, we find skin conditions in dark skin (estimated FST 5 & 6) are diagnosed
less accurately than skin conditions in light skin (estimated FST 1-4). Across all participants,
we find the top-1 and top-3 accuracy for skin conditions in dark skin is 4 percentage points
(p < 0.001 and p = 0.001, respectively) lower than skin conditions in light skin. All statistical
comparisons in this paper are based on ordinary least squares regression with robust standard
errors clustered at the participant level unless otherwise noted. When we examine the
physician types separately, we find BCDs, dermatology residents, PCPs, and other physicians
are lower by 5 percentage points (p = 0.011), 5 percentage points (p = 0.114), 3 percentage
points (p = 0.006), and 5 percentage points (p = 0.012) for images of dark skin than
light skin, respectively. The top-3 diagnostic accuracy of BCDs, dermatology residents,
PCPs, and other physicians is lower by 3 percentage points(p = 0.117), 5 percentage points
(p = 0.113), 4 percentage points (p = 0.008), and 4 percentage points (p = 0.092) for images
of dark skin than light skin, respectively. We find qualitatively similar results in a series of
robust checks including only participants who live in the United States, include participants
who provide fewer than 10 responses, and include all responses from all participants who
pass the attention check reveal similar results.

The top and middle row of Figure 6-3 presents top-3 diagnostic accuracy across skin condi-
tions for BCDs and PCPs, respectively. BCDs diagnosed seven out of eight skin conditions
and the other category with higher accuracy for light skin than dark skin images. The
only skin condition in which BCDs are more accurate on dark skin than light skin is lichen
planus. We do not find statistically significant differences in top-3 accuracy across skin color
across individual skin conditions for BCDs, but we find statistically significant differences in
BCDs’ top-1 accuracy across light and dark skin images in four conditions: atopic dermati-
tis, Lyme disease, pityriasis rosea, and CTCL, respectively, which are 18 percentage points
(p = 0.007), 20 percentage points (p < 0.001), 19 percentage points (p = 0.001), and 10 per-
centage points (p = 0.009) lower on dark skin, respectively. We find statistically significant
and large differences in the top-3 and top-1 diagnostic accuracy of PCPs across light and
dark skin images in three conditions: atopic dermatitis, Lyme disease, and pityriasis rosea,
respectively.

We find that accuracy disparities across skin color are moderated by the diversity of patients
seen by PCPs and PCPs’ training. In particular, we find that PCPs who report seeing mostly
or all white patients are 7 percentage points (p = 0.009) less accurate (top-3) on dark
skin images than light skin images. We do not find statistically significant differences for
BCDs based on self-reported patient diversity. Likewise, we find PCPs’ who report sufficient
training are 5 percentage points (p = 0.079) more accurate (top-3) than PCPs’ who report
insufficient training on images of dark skin than light skin. We do not find statistically
significant differences in BCDs’ top-1 or top-3 accuracy with respect to their self-reported
sufficient training on dark skin. Likewise, we do not find statistically significant differences
in BCDs’ or PCPs’ top-1 or top-3 accuracy with respect to their years of experience or
self-reported difficulty with white patients relative to non-white patients.
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6.2.5 Deep Learning System for Clinical Decision Support

We find the decision support tool significantly increases diagnostic accuracy while leading
to the inclusion of relatively few incorrect diagnoses. With access to suggestions from the
control DLS, BCDs’ and PCPs’ top-1 accuracy on the main eight conditions increases from
27% to 36% (p < 0.001, t-test) and 13% to 22% (p < 0.001, t-test), respectively. We find even
larger accuracy gains when moving from top-3 accuracy without the DLS support to top-4
accuracy with the DLS support on the main eight conditions: BCDs’ accuracy increases from
37% to 60% and PCPs’ accuracy increases from 17% to 47%. Figure 6-4 shows physicians’
top-1 accuracy (on the top) and top-3 and top-4 accuracy (on the bottom) before and after
participants see the DLS-based suggestions.

On images where the DLS makes an incorrect suggestion, we find minimal effects on BCDs’
and PCPs’ top-1 accuracy, which both decrease by 1.2 percentage points (p = 0.517 and
0.312, respectively, t-test). In instances where the DLS provides an incorrect suggestion,
we find that BCDs and PCPs override their correct leading diagnosis with an incorrect
suggestion in fewer than 2% of observations. In contrast when the decision support provides
an incorrect suggestion and BCDs’ and PCPs’ three differential diagnoses are all incorrect,
we find that BCDs and PCPs include incorrect suggestions as leading diagnoses in 10% and
14% of observations, respectively. The BCDs’ top-4 accuracy with decision support includes
1.58 incorrect diagnoses per observation and a top-3, top-2, and top-1 accuracy without
the decision support of 1.40, 1.05, and 0.59 incorrect diagnoses per image, respectively. In
contrast, PCPs’ top-4 accuracy with the decision support includes 1.72 incorrect diagnoses
per observation whereas top-3, top-2, and top-1 accuracy without the decision support
includes 1.55, 1.26, and 0.82 incorrect diagnoses per image, respectively.

With respect to top-1 accuracy, we find BCDs without decision support are 5 percentage
points (p < 0.001, t-test) more accurate than PCPs with the control DLS decision support
but 4 percentage points (p = 0.022, t-test) less accurate than PCPs with enhanced DLS
decision support.

In Table 6.2 in the Appendix, we present main effects of physician expertise, skin tone in an
image, DLS suggestions, and interactions between these variables. In this regression table
where we focus on BCDs and PCPs, we present top-1 accuracy in the first column and top-4
accuracy in the second column. For top-1 accuracy, we find BCDs are 13 percentage points
more accurate than PCPs (p < 0.001), participants are 3 percentage points less accurate on
images of dark skin (p = 0.006), the DLS suggestions leads to 8 percentage points higher
performance overall (p < 0.001), and the treatment DLS leads to an additional 8 percentage
point increase in accuracy (p = 0.002). Likewise, we find the control DLS suggestion exac-
erbates the accuracy disparities in PCPs’ diagnoses by 5 percentage points (p = 0.008 and
0.048, respectively for top-1 and top-4 accuracy), but we do not find statistically significant
evidence that accuracy disparities increase for BCDs. The three way interaction between
BCDs, dark skin, and the DLS suggestion shows that the DLS suggestions on dark skin
lead to a marginal 4 and 8 percentage point increase top-1 and top-4 accuracy (p = 0.227
and p = 0.034), respectively. As a result in Figure 6-5, we continue to find statistically
significant evidence for accuracy disparities for PCPs but not for BCDs.
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6.2.6 User Interaction Design

We do not find any statistically significant differences in whether participants chose to ignore
or include suggestions in their differential diagnoses between the control and treatment con-
ditions. However, we find a significant effect of the order of options on participants’ choice
to update their leading diagnosis with suggestion versus updating their differential diagnosis
to include the suggestion. Specifically, we find the treatment condition (with “Update my
top prediction” on the bottom) leads participants to select “Update my differential” 9 per-
centage points (p < 0.001) more often and “Update my top prediction” 9 percentage points
(p < 0.001) less often. Table 6.3 in the Appendix presents regressions showing average
treatment effects of the interface randomization on participants’ choices to update their dif-
ferential diagnoses. As a consequence, we find BCD-machine partnerships and PCP-machine
partnerships assigned to the treatment condition are 12 percentage points (p < 0.001) and
7 percentage points (p = 0.011) lower, respectively, in top-1 accuracy than the partnerships
assigned to the control condition.

6.3 Discussion

As we move towards a future where algorithms and physicians work collaboratively, it is
important to understand the baseline bias of physicians and how algorithms will influence
those biases. Using skin disease as a case study, we assessed the baseline accuracy of spe-
cialist and generalist physicians in diagnosing skin disease across skin tones in a simulated
store-and-forward teledermatology setting. By first establishing a benchmark for diagnostic
accuracy of physicians in this well-defined task, we then assessed how specialist and gener-
alist physicians perform with suggestions from a decision support interface based on a deep
learning system (DLS).

As a baseline, we find the top-3 diagnostic accuracy of BCDs is 38% and PCPs is 19% (and
42% and 19% for United States based BCDs and PCPs, respectively) on images of inflam-
matory appearing skin conditions in this experiment. These results match past research
demonstrating specialists significantly outperform generalists at skin disease diagnosis but
show lower diagnostic accuracy than past studies with different experimental setups [116,
195, 196, 438, 606]. Given our quality control protocol, the post-hoc qualitative review,
and the similar error rates across sources, which are described in the Methods, these results
cannot be explained by mislabeled images. Instead, our results, which may seem surpris-
ing due to the low accuracy rate of specialists on inflammatory appearing skin conditions,
are best explained by the difficulty of diagnosing these conditions with free response (as
opposed to multiple choice) answers and the differences between this store-and-forward tele-
dermatology setting (where a physician has access to only a single image) and an in-person
patient interaction (where a physician has access to much more information such as better
lighting, field of view, and ability to inquire about the patient’s symptoms, lifestyle, clinical
history, family history, and more). While in person clinical visits are the gold standard,
image-based store and forward teledermatology has gained traction in triage [579] and can
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serve as a use case for looking at baseline physician accuracy and physician-AI interaction.
Future research in applied machine learning for classifying skin conditions should expand to
consider non-visual features in addition to visual features.

We find diagnostic accuracy disparities across patients’ skin color for specialists and general-
ists alike. When comparing participants’ three differential diagnoses to the quality controlled
skin disease reference labels, we find BCDs and PCPs are four percentage points more ac-
curate on images of light skin (FST 1-4) than dark skin (FST 5-6), and these differences are
statistically significant. Given BCDs’ and PCPs’ accuracy rates of 38% and 19%, respec-
tively, images of dark skin are diagnosed 10% less accurately than images of light skin by
BCDs and 22% less accurately by PCPs. These results contribute to an emerging literature
on diagnostic accuracy disparities across patient skin color [162, 198] and present evidence
that the diagnostic accuracy of medical professionals on images of dark skin is lower than
images of light skin.

We find that PCPs who report seeing mostly or all white patients or report insufficient
training on skin of color are less accurate on dark skin images than light skin images. This
accuracy disparity across skin color for PCPs who see few non-white patients or report
insufficient training reveals a gap in healthcare expertise that disproportionately affects
people of color. In contrast for BCDs, we do not find evidence that self-reported sufficient
training on dark skin or self-reported difficulty with non-white patients is associated with
accuracy disparities across images of light and dark skin in this experiment. However,
absence of evidence does not mean evidence of absence.

In this experiment, we operationalized the concept of physician-machine partnerships by
providing decision support to physicians after they provide an initial differential diagnosis
for the skin condition in an image. We find the decision support increases top-1 diagnostic
accuracy by 33% for BCDs and 69% for PCPs. However, DLS-based decision support
exacerbates diagnostic accuracy disparities in light and dark skin of non-specialists although
it does not significantly influence diagnostic accuracy disparities of specialists. These results,
though in a limited diagnostic setting, suggest that physician-machine partnerships may
improve diagnostic accuracy beyond the performance of unaided physicians but may increase
diagnostic accuracy disparities of physicians.

The physician-machine partnerships in the form of physicians interacting with decision sup-
port based on a DLS in this experiment led to minimal errors. We find physicians rarely
override their leading diagnosis when it is correct, but specialists and generalists can be
influenced by the DLS to include incorrect diagnoses in their differential diagnosis. We
find that a minor design choice – the order of whether to include a DLS suggestion as a
leading diagnosis, one of the diagnoses, or ignore the suggestion – significantly influences
participants’ choices. This indicates that in addition to the accuracy of the classifier, the
presentation interface is an important consideration for human-AI interactions.
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6.4 Limitations and Recommendations

This digital experiment for evaluating diagnostic accuracy resembles a store-and-forward
teledermatology setting but does not fully match a clinical evaluation in either telederma-
tology or an in-person examination. A single image contains significantly less information
than an in-person interaction (or even a video call), which could include additional visual
information (e.g., adjustments in light and angle of view), a patient’s symptoms, clinical his-
tory, behavioral information, and more. This paper serves as an assessment of physicians’
“know what” on a very specific, constrained task where a physician has access to a single
image, but not physicians’ “know how” [368] of interacting with a patient and diagnosing the
patient’s condition. Nonetheless, BCDs’ top-1 accuracy without decision support remains
higher than PCPs’ top-1 accuracy with decision support.

Future work should consider diagnostic accuracy in clinical settings and further examine
how DLS based decision support compares to collective human intelligence based decision
support [108, 450]. In the meantime, physicians should seek additional support in diagnosing
dark skin conditions to avoid the potential for systematic misdiagnoses in clinical settings
that may mirror the systematic differences found in diagnosing light and dark skin in this
experiment.

6.5 Methods

6.5.1 Ethics Approval

This research complies with all relevant ethical regulations, and the Massachusetts Institute
of Technology’s Committee on the Use of Humans as Experimental Subjects determined
this study to fall under Exempt Category 3 – Benign Behavioral Intervention. This study’s
exemption identification numbers are E-2875 and E-3675. All participants who participated
in the experiment on https://diagnosing-diagnosis.media.mit.edu are informed that
“This is an MIT research project. We will first ask 7 brief survey questions. Then, we will
show you images of skin conditions and ask you to try to diagnose the skin conditions. After
you diagnose conditions in 10 images, we will show you how you perform relative to other
healthcare providers. All submissions are collected anonymously for research purposes. For
questions, please contact dermatology-diagnosis@mit.edu. Participation is voluntary.”

6.5.2 Experimental Interface

We designed and deployed a custom website at https://diagnosing-diagnosis.media.m
it.edu to host the diagnostic accuracy experiment. Upon clicking the link to our website,
participants are directed to the landing page where we provide informed consent and ask
several questions as shown in Figure 6-7. After participants fill out the survey, the web-
site directs participants to instructions via a modal window as shown in Figure 6-8. Once

158

https://diagnosing-diagnosis.media.mit.edu
https://diagnosing-diagnosis.media.mit.edu
https://diagnosing-diagnosis.media.mit.edu


participants close the modal, they can begin the experiment as shown in Figure 6-9. All
participants see the same first image of a woman with acne, which serves as a relatively easy
image to diagnose and a robustness check to confirm participants are participating seriously.
Participants are asked, “Can you accurately diagnose this skin condition?” and they are
informed how many images they have seen and that they will see how they compare to
others after seeing ten images. Participants can provide up to three differential diagnoses,
and the three text response forms say “Type leading diagnosis,” “Type secondary differential
diagnosis,” and “Type tertiary differential diagnosis.” Participants can move a slider to pro-
vide how confident they are from 0% confident to 100% confident. In addition, participants
(with the exception of BCDs) are asked to check the boxes for whether they would refer the
patient for a biopsy or a dermatologist for a second opinion.

When a participant begins to type their diagnosis in the free response text boxes, predictive
text appears as shown in Figure 6-10. We designed this experiment with free responses in-
stead of multiple choice responses to maintain as much ecological validity to clinical practice
as possible. Free response is more difficult than multiple choice for two main reasons: first,
multiple choice enables correct answers via uninformed guessing whereas free responses do
not, and second, multiple choice primes the participant on what a particular condition might
be whereas free responses do not. We supported free responses with predictive text based on
445 possible diagnoses to promote standardized responses. These 445 diagnoses include the
46 skin conditions in this experiment, the 419 skin conditions in Liu et al 2020 [388], which
have significant overlap with the skin conditions in this experiment, and similar clinical
terms for skin conditions. Three examples of similar clinical terms include atopic dermati-
tis and eczema, cutaneous t-cell lymphoma and mycosis fungoides, and lyme disease and
erythema migrans. The predictive text appears as a function of the first characters typed,
and in order to encourage participants to choose from the list, we attempted to include as
many ways of writing conditions as possible (e.g. “erythema migrans (Lyme)” and “lyme
(erythema migrans)” or “ctcl (cutaneous t-cell lymphoma)” and “cutaneous t-cell lymphoma
(ctcl).”

Once a participant clicks submit (and assuming the participants’ differential diagnosis dif-
fers from the AI’s prediction), the website directs participants to a page showing the AI’s
prediction. Participants have three options: “Keep my differential,” “Update my differential
to include [suggestion condition],” or “Update my top prediction with [suggested condition]”
as shown in Figure 6-11. Next (or if the participant’s differential matched the suggestion),
the website directs participants to a page offering feedback on what the correct diagnosis is
and what the most common incorrect diagnosis for this image was as shown in Figure 6-12.
When participants click “Next Image” on the feedback page, participants are redirected to a
page that looks like Figure 6-9 with a different image and the experiment repeats for as long
as a participant is willing to participate. After a participant sees 10 images, we show partic-
ipants a bar graph showing how diagnostic accuracy compares across the DLS, specialists,
and generalists.
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6.5.3 Clinical Image Curation

The experiment contains 364 images of 46 different skin conditions. The vast majority of
images show eight relatively common skin conditions; there are 31 images of atopic dermati-
tis, 48 of cutaneous t-cell lymphoma, 34 of dermatomyositis, 30 of erythema migrans (lyme
disease), 32 of lichen planus, 33 of pityriasis rosea, 47 of pityriasis rubra pilaris, and 29 of
secondary syphilis. We decided to focus our analysis on these 8 conditions based on three
criteria: first, three practicing BCDs identified these conditions as the most likely condi-
tions on which we may find accuracy disparities across patients’ skin color; second, these
conditions are relatively common, and third, these conditions appear frequently enough in
dermatology textbooks and dermatology image atlases such that we could select at least 5
images of the two darkest skin types after applying a quality control review by BCDs. We
sourced the 284 images of the eight conditions based on 241 publicly available images online
from dermatology atlases and search engines, 30 images from 14 textbooks, and 13 images
from dermatologists’ slides and education material [16, 22, 28, 33, 39, 73, 89, 96, 155–157,
173, 184, 215, 241, 280, 290, 310, 339, 466, 469, 525, 548, 585, 613]. The number of images
from each source is provided in Table 6.1 in the Appendix.

The remaining 80 images represent 38 skin conditions and are all drawn from the Fitzpatrick
17k dataset [248] except for the attention check, which is sourced from a magazine article
on inflammatory conditions in dark skin [329]. We included these additional conditions
primarily to promote the ecological validity of the experiment. In particular, we designed
this experiment such that participants do not know which skin conditions will appear in
the experiment, and as such, participants cannot simply treat this as a multiple-choice test.
Beyond the eight conditions of direct interest, there are 8 images of scleroderma, 6 of lupus
erythematosus, 6 of acne, 4 of vitiligo, 3 of rosacea, 3 of tungiasis, 3 of urticaria pigmentosa,
3 of sarcoidosis, 2 of cheilitis, 2 of calcinosis cutis, 2 of allergic contact dermatitis, 2 of
factitial dermatitis, 2 of fixed eruptions, 2 of granuloma annulare, 2 of keloid, 2 of keratosis
pilaris, 2 of acanthosis nigricans, 2 of rhinophyma, 2 of necrobiosis lipoidica, 2 of tick bite, 2
of papilomatosis confluentes and reticulate, 2 of psoriasis, 2 of scabies, 1 of livedo reticularis,
1 urticaria, 1 of Steven Johnson syndrome, 1 of statis edema, 1 of seborrheic dermatitis, 1
of erythema nodosum, 1 of erythema elevatum diutinum, 1 of lichen simplex, 1 of neurotic
excoriations, 1 of hidradenitis, 1 of nematode infection, 1 of lichen amyloidosis, and 1 of
xanthomas.

We curated the images of skin conditions via the following five steps. First, we collected all
images of the eight skin conditions from online sources and textbooks and the attention check
image from an online magazine. Second, we annotated images with estimated Fitzpatrick
skin type (FST) labels. One BCD curated 351 of the highest quality images of the eight
conditions of interest for each of the six Fitzpatrick skin types by dragging and dropping
images into folders on their computer specifying the skin condition and FST label. Due to
a lack of images of secondary syphilis in light-skin instances and lyme disease in dark skin,
this first BCD supplemented the dataset with 11 images from their educational materials.
Third, a second BCD reviewed the initially selected images and identified 66 images as
low-quality due to image resolution or questions about the diagnostic label. We removed

160



these 66 images from the data set to leave 285 images of the eight conditions remaining.
Fourth, we added 79 images of 38 skin conditions from the Fitzpatrick 17k dataset that have
been reviewed and assessed by two BCDs as high-quality and diagnostic of the underlying
condition. Fifth, a third BCD reviewed the images and found no clear objections.

While the gold standard label for skin conditions such as cutaneous malignant neoplasm is
histopathological diagnosis [141], the majority of non-neoplastic skin conditions (including
skin conditions) are considered readily diagnosable with an in-patient exam and a patient’s
clinical history [269]. The images in this experiment come from external sources (textbooks,
dermatology atlases, online search engines, and dermatologist education materials) and were
curated and confirmed to be correctly labeled by three BCDs to the best of their knowledge
based on the visual features in the images.

As a post-hoc quality review, three board certified dermatologists reviewed the three most
and least accurately diagnosed images for light and dark skin in each of the eight skin
conditions. The analysis of these images by three BCDs indicates that the most accurately
diagnosed images appear to be relatively classic presentations of each skin condition (e.g.
a heliotrope sign and gottron’s papules for dermatomyositis, rashes of the hands and feet
for secondary syphilis, bullseye rash for Lyme) while the least accurately diagnosed images
appear to be atypical presentations.

As an additional quality control measure, we also present Table 6.1 in the Appendix to sum-
marize the sources upon which we draw these images and how accurately BCDs identify the
reference label across sources. For images of the main 8 conditions that no BCD diagnosed
correctly, 15% of those images come from dermatology textbooks. This is slightly higher
than the proportion of textbook images in the 284 images of the 8 conditions, which is 11%.

6.5.4 Skin Tone Annotations

We annotated images by initially hiring crowdworkers to provide estimated FSTs for each
image and then asking BCDs to update the FST label appropriately. The images are rel-
atively balanced across FST; 32% of images show people with the two darkest FST (FST
5-6) and 68% of images show people with the four lightest FST (FST 1-4). We compare the
two darkest FST to the four lightest FST because the original FST scale indicates FST 1-4
as “white” and FST 5 and 6 as “black” and “brown.” Our findings are robust to comparisons
between the three lightest and three darkest skin conditions and comparisons between the
two lightest and two darkest skin conditions. We note the Fitzpatrick skin type scale is
imperfect (and its imperfections have been widely discussed [87, 246, 437, 472, 632]) but
remains a useful starting point for examining diagnostic accuracy disparities across skin
color.

6.5.5 Deep Learning System Development

In order to offer computer vision-based predictions of diagnoses, we trained a convolutional
neural network to classify nine labels: the eight skin conditions of interest and an other
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category. This neural network is a VGG-16 architecture pre-trained on ImageNet, which is
the same general architecture as Esteva et al 2017 and the identical architecture of Groh et
al 2021 [187, 248]. Following insights that fine-tuning on diverse data can close performance
gaps between light and dark skin tones [146], we fine-tuned the model on 31,219 diverse
clinical dermatology images which come from the Fitzpatrick 17k dataset and an additional
collection of images collected from textbooks, dermatology atlases, and online search engines.
The fine-tuning includes a number of transformations to images including randomly resizing
images to 256x256 pixels, randomly rotating images 0 to 15 degrees, randomly altering
the brightness, contrast, saturation, and hue of each image, randomly flipping the image
horizontally or not, center cropping the image ot be 224x224 pixels, and normalizing the
image arrays by the ImageNet means and standard deviations.

We evaluated the model on the 364 images in this experiment, which neither appear in the
pre-training ImageNet data nor in the fine-tuning clinical dermatology images dataset, and
we find the model is 47% accurate at predicting the nine labels on the 364 images.

We do not compare the DLS system directly to physician performance because the DLS
system is trained to classify only nine labels whereas physicians are tasked with diagnosing
images without knowing the short list of what the possible skin conditions might be.

In this experiment, we refer to the VGG-16 architecture pre-trained on ImageNet and fine-
tuned on 31,219 clinical dermatology images as the control DLS.

In addition to the control DLS, we consider a treatment DLS, which is Wizard of Oz classifier
that is a synthetically enhanced version of the control DLS. In order to create the treatment
DLS, we randomly re-assigned 65% of wrong classifications by the control DLS to be correct
classifications, which resulted in 84% top-1 accuracy.

We note that the control and treatment DLS are fair classifiers from a disparate impact
perspective. Both classifiers have relatively similar top-1 accuracy across skin tones on the
eight conditions; the control DLS is 58% accurate on dark skin and 56% accurate on light
skin and the enhanced DLS is 82% accurate on dark skin and 84% accurate on light skin.

Following the MI-CLAIM [463] checklist, we examine the control DLS performance with two
examination techniques. First, specialists examined the model’s performance across images
and find that correct predictions often (but not always) correspond to classic presentations
of a disease. Second, we examined the model’s performance across FST and we do not
find meaningful differences in the model’s performance across skin types. In the context of
the visual diagnosis of skin disease task, we did not find saliency maps particularly helpful
for interpretability because they highlighted skin lesions but did not provide any additional
information on what differentiates one skin lesion from another.

6.5.6 Randomization Protocol

We randomly assigned the order in which images appear to participants for all images except
the first. All participants see the same first image, and all subsequent images are drawn
randomly from the remaining images.
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We conducted two randomized experiments where participants were assigned to control and
treatment conditions. We randomly assigned participants to see suggestions from a control
model (the 47% accurate model) or a synthetically enhanced treatment model (the 84%
accurate model). We also randomly assigned the order in which the options appear for
including or ignoring the suggestion in a participant’s differential diagnosis. The treatment
group saw “Keep my differential” on top and “Update my top prediction with [condition]”
on the bottom as seen in Figure 6-11 whereas the control group saw the opposite where
“Update my top prediction with [condition]” appeared on the top.

6.5.7 Participants

We recruited participants by word-of-mouth and direct emails by Sermo, a secure digital
(online) platform designed for physician networking and anonymous survey research, to their
verified physician network. Sermo sent emails to 7,900 BCDs and 10,000 PCPs and offered
$10 for BCDs and $5 for PCPs to complete the survey (see 6-13 for a copy of the invitation
email). 68% of BCDs and 94% of PCPs in this experiment came from Sermo and the rest
came from authors reaching out to other physicians via email and social media. We recruited
dermatology residents by identifying the email addresses of dermatology resident coordina-
tors at 142 programs across the United States and requesting coordinators to forward an
invitation to residents to participate in this study.

The countries with more than 10 participants include: United States (551 total with 167
BCDs, 47 dermatology residents, 295 PCPs, and 42 other physicians), India (134 total with
67 BCDs, 15 dermatology residents, 20 PCPs, and 32 other physicians), Canada (91 total
with 18 BCDs, 1 dermatology resident, 59 PCPs, and 13 other physicians), United Kingdom
(53 total with 18 BCDs, 3 dermatology residents, 25 PCPs, and 7 other physicians), Italy (45
total with 13 BCDs, 18 dermatology residents, 6 PCPs, and 8 other physicians), Germany
(35 total with 16 BCDs, 8 dermatology residents, 5 PCPs, and 6 other physicians), Nigeria
(30 total with 3 dermatology residents, 6 PCPs, and 21 other physicians), Brazil (22 total
with 11 BCDs, 4 dermatology residents, 5 PCPs, and 2 other physicians), Spain (21 total
with 19 BCDs and 2 dermatology residents), Australia (18 total with 3 BCDs, 1 dermatology
resident, 8 PCPs, and 6 other physicians), France (14 total with 5 BCDs, 2 dermatology
residents, 3 PCPs, and 4 other physicians), and South Africa (14 total with 3 BCDs, 7
PCPs, and 4 other physicians).

In the pre-experiment survey, we asked physicians how many years they have practiced
medicine, what is the distribution of their patients’ skin color, what is the frequency of
difficulty for diagnosing skin conditions in white and non-white patients, and how do they
view the training they received for diagnosing skin conditions in patients with skin of color.
In this experiment, 40% of physicians have been practicing medicine for 20 years or more,
26% have been practicing for 10 to 20 years, 22% have been practicing for 2 to 10 years,
3% have been practicing for 0 to 2 years, and the rest are doing residencies, fellowships, or
internships. In response to the question “How would you describe the distribution of your
patients’ skin colors?”, 32% of participants responded about an equal portion of white and
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non-white patients, 43% responded mostly white patients, 2% responded all white patients,
15% responded mostly non-white, 7% responded all non-white patients, and 1% responded
that the question is not applicable. This overall distribution is similar but slightly more
diverse than the distribution for participants from the United States, which is skewed slightly
more towards mostly white patients with 49% mostly white patients, 36% equal portion of
white and non-white patients, and 13% mostly or all non-white patients.

We find PCPs report significantly higher rates of difficulty in diagnosing skin conditions for
both light and dark skin than BCDs. Specifically, we find 8% of PCPs report difficulties
diagnosing skin conditions in one in two white patients and 15% of PCPs report difficulties
diagnosing skin conditions in one in two non-white patients while less than 3% of BCDs
report difficulties diagnosing skin conditions in one in two patients of any skin color. For
participants in the United States, 70% of BCDs and 72% of PCPs report the same diagnostic
difficulty between white and non-white patients while 10% of BCDs and 20% of PCPs
reporting more difficulties in diagnosing non-white patients compared to white patients.
When asked, “Do you feel you received sufficient training for diagnosing skin conditions in
patients with skin of color (non-white patients)?” 67% of all PCPs respond no and 33% of
all BCDs respond no (similarly, 68% of United States PCPs respond no and 28% of United
States BCDs respond no).

6.5.8 Annotating Participants’ Differential Diagnoses

We collected 14,261 differential diagnoses, which include 2,348 unique text strings. As a
function of our experimental interface which asked participants to provide differential diag-
noses in free response text boxes supported by predictive text, 43% of the leading diagnosis
text strings do not exactly match any of the text strings in the initial list of 445 conditions.
However, the majority of these off-list responses are easily matched to the list. For exam-
ple, 14% of the 14,261 leading diagnoses are “atopic dermatitis” which we match to “atopic
dermatitis (eczema)” in the list, 4% of participants submitted “Lyme” which we match to
“lyme (erythema migrans)” in the list, 3% of participants submitted “pityriasis rubra pilaris”
which we match to “pityriasis rubra pilaris (prp)” in the list, and 3% of participants submit-
ted “cutaneous t-cell lymphoma” which we match to “cutaneous t-cell lymphoma (ctcl)” in
the list). The remaining 19% of leading diagnoses match 1,447 unique text strings. In order
to evaluate diagnostic accuracy as accurately as possible, we reviewed all diagnoses and
marked responses as correct if they appear to be misspellings or shorthand for the correct
answer. For example, we included the following answer as correct for lichen planus: lichen
planus, lichen ruber planus, lichens planus, lichen plan, lichen planes, lichen planhs, lichen
planis, lichen plannus, lichen plans, lichen planus linearis, lichen planus., luchen planus,
lichen_planus, lichen plane, linear lichen planus, linen planu, and liquen plano. As a sec-
ond example, we included the following answers as correct for cutaneous t-cell lymphoma:
cutaneous t-cell lymphoma, t cell lymphoma, cutaneous t cell lymphoma, cutaneous t cell,
ctcl, mycosis fungoides, lymphoma, mucosità fungoide, micosi fungoide, myocses fungoides,
mycosis fungiodies, mycoses fungoides, plaque type, mf, cuttaneoua t-cell lymph, linfoma,
linfoma células t,linfoma t, lmphoma, lymphome, malignant skin cancer, t cell lyphoma,
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t-cell lyphoma, mucosis fungoides, mycoses fungoides, mycoses glfungoide, mycosis, mycosis
fongicide, mycosis fungoides/ctcl, mycosis fungoidis, mycosis fungoidus, micose fungoide,
micosis fungoide, micosis fungoides, cutaneous t-cell lymphoma (ctcl), ctcl (cutaneous t-
cell lymphoma), cutaneous_t-cell_lymphoma, t-cell lymphoma, cutaneous lymphoma, and
cutaneous lympoma.

6.5.9 Standards for Reporting Diagnostic Accuracy Studies (STARD)

The updated STARD 2015 guidelines are designed to help readers of diagnostic accuracy
studies recognize for which patient groups and settings a diagnostic accuracy study is rel-
evant [79, 125]. While this study focuses on physician diagnostic accuracy, which differs
significantly from standard diagnostic accuracy studies which focus on medical test accu-
racy, we followed the STARD 2015 checklist to clarify the study objectives, experimental
design, analysis, limitations, and implications for clinical dermatology practice and designing
physician-machine partnerships.

6.6 Data and Code Availability

The images and data collected during the study and the code to reproduce the results of
this study are available in our Github repository, https: //github.com/mattgroh/diagnosis-
diagnosis, which will be set to public upon peer-reviewed publication.
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Image Source P N

Textbook (Stratigos 2009) 0.00 1
Textbook (Oakley 2017) 0.00 1
Textbook (Du Vivier 2002) 0.33 3
Textbook (Bolognia 2018) 0.50 2
Dermatologist Education Material 0.55 11
DermisNet 0.57 7
Textbook (James 2020) 0.67 3
Regional Derm 0.67 3
Textbook (Archer 2008) 0.67 3
Textbook (Callen 1993) 0.67 3
Textbook (Buxton 2009) 0.67 3
Derma Amin 0.71 85
Atlas Dermatologico 0.72 95
Dermato Web Net 0.73 15
Textbook (Usatine 2009) 0.75 4
Enzyklopaedie Dermatologie 0.75 4
Hellenic Derm Atlas 0.75 4
Google Derm 0.77 22
Bing Derm 0.88 43
Dermnet 0.92 13
AAD Slides 1.00 2
Textbook (Wolf 2017) 1.00 1
Textbook (Griffiths 2016) 1.00 2
Textbook (Nouri 2008) 1.00 1
Textbook (Salzman 2020) 1.00 2
Textbook (Knoop 2010) 1.00 1
Danderm 1.00 2
Derm 101 1.00 4
Dermnet NZ 1.00 13
Iconique 1.00 1
SD198 1.00 1

Table 6.1: Table of image sources with P indicating the proportion of images from a par-
ticular source in which at least one board-certified dermatologist provided a top-3 diagnosis
matching the source image’s label. N indicates the number of images from each source.
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Top-1 Top-4

(1) (2)

Constant 0.15∗∗∗ 0.20∗∗∗

(0.01) (0.01)
Specialist 0.13∗∗∗ 0.19∗∗∗

(0.02) (0.02)
Dark Skin -0.03∗∗ -0.04∗∗

(0.01) (0.01)
DLS Assistant 0.08∗∗∗ 0.25∗∗∗

(0.02) (0.02)
Enhanced DLS Assistant 0.08∗∗ 0.16∗∗∗

(0.03) (0.03)
DLS Assistant * Specialist -0.01 -0.09∗∗∗

(0.02) (0.03)
Enhanced DLS Assistant * Specialist -0.03∗ -0.06∗

(0.04) (0.04)
DLS Assistant * Dark Skin -0.05∗∗ -0.05∗

(0.02) (0.02)
Enhanced DLS Assistant * Dark Skin 0.05∗ 0.01

(0.03) (0.03)
Specialist * Dark Skin -0.01 0.01

(0.02) (0.02)
DLS Assistant * Specialist * Dark Skin 0.04∗ 0.08∗

(0.03) (0.04)
Enhanced DLS Assistant * Specialist * Dark Skin -0.03 -0.07∗

(0.05) (0.05)

Observations 11,619 11,619
Number of Board-Certified Dermatologists 296 296
Number of Primary Care Physicians 350 350
R2 0.04 0.11

Note: ∗p<0.5; ∗∗p<0.01; ∗∗∗p<0.001

Table 6.2: Ordinary Least Squares regressions with robust standard errors clustered on
physician participants. This regression includes only board-certified dermatologist (BCD)
and primary care physician (PCP) participants. We code the Specialist, Dark Skin, AI
Assistance binary variables as follows: Specialist equals 1 for BCDs and 0 for PCPs, Dark
Skin equals 1 for FST 5 and 6 and 0 for FST 1 to 4, and AI Assistance equals 1 for
participant responses with access to the DLS prediction and 0 for participant responses
before access to the DLS predictions.
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No Update Update Differential Update Leading

(1) (2) (3)

Constant 0.47∗∗∗ 0.28∗∗∗ 0.24∗∗∗

(0.02) (0.01) (0.02)
Keep My Differential on Top -0.00 0.09∗∗∗ -0.09∗∗∗

(0.02) (0.02) (0.02)

Observations 5,982 5,982 5,982
R2 0.00 0.01 0.01

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 6.3: Average treatment effects of user interaction design with “Keep My Differential”
on top based on ordinary least squares regressions with robust standard errors clustered on
participants.
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Figure 6-2: Top: Diagnostic accuracy of physician participants on the eight main inflamma-
tory skin conditions in this experiment with shades of blue indicating the diagnostic accu-
racy of the first, second, and third differential, respectively. BCD and PCP are acronyms
for board-certified dermatologist and primary care physician; residents refer strictly to der-
matology residents. Bottom: Top-3 diagnostic accuracy of BCDs and PCPs on each of the
eight main skin conditions and the auxiliary 38 conditions aggregated in the other category.
The error bars represent the 95% confidence interval of the true mean. *** indicates the
p-value is less than 0.001 and ns indicates the p-value is greater than 0.05.
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Figure 6-3: Top left: Top-1 diagnostic accuracy of physician participants – board certified
dermatologists (BCDs), dermatology residents, primary care physicians (PCPs), and other
physicians – across estimated Fitzpatrick skin types (FSTs) on the eight main inflammatory
conditions. The error bars represent the 95% confidence interval of the true mean. *, **, and
*** indicates the p-value is less than 0.05, 0.01, and 0.001, respectively and ns indicates the
p-value is greater than 0.05. Top right: Top-3 diagnostic accuracy of physician participants
across estimated FSTs on the eight main inflammatory conditions. Middle: Top-3 diagnostic
accuracy of BCDs across skin diseases and FSTs. Bottom: Top-3 diagnostic accuracy of
PCPs across skin diseases and FSTs.
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Figure 6-4: Top: Top-1 accuracy for physicians before and after seeing either the control or
treatment deep learning system (DLS) suggestion. Bottom: Top-3 and top-4 accuracy for
physician before and after seeing the control or treatment DLS suggestion. BCD and PCP
refer to board-certified dermatologist and primary care physician, respectively, and resident
refers to dermatology resident. The error bars represent the 95% confidence interval of the
true mean.

Figure 6-5: Top-1 and Top-4 accuracy of physician-machine partnerships across light and
dark skin. *, **, and *** indicates the p-value is less than 0.05, 0.01, and 0.001, respectively
and ns indicates the p-value is greater than 0.05
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Figure 6-6: Network graph of eight inflammatory skin conditions (red) and the most common
conditions listed in differential diagnoses (blue) for images labeled with these eight inflamma-
tory skin conditions: Lyme, dermatomyositis, pityriasis rubra pilaris, lichen planus, atopic
dermatitis, pityriasis rosea, secondary syphilis, and cutaneous t-cell lymphoma (CTCL). We
show all conditions listed in differential diagnoses by board-certified dermatologists that ap-
peared at least five times for each skin condition category.
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Figure 6-7: Screenshot from the Diagnosing Diagnosis experiment website showing the wel-
come landing page

173



Figure 6-8: Screenshot from the Diagnosing Diagnosis experiment website showing the in-
structions
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Figure 6-9: Screenshot from the Diagnosing Diagnosis experiment website showing diagnos-
tic task
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Figure 6-10: Screenshot from the Diagnosing Diagnosis experiment website showing predic-
tive text for selecting diagnoses
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Figure 6-11: Screenshot from the Diagnosing Diagnosis experiment website showing the
DLS suggestion. Participants are randomly assigned to either see the three options in the
order presented or the reverse order with “Update my top prediction..." on top, “Update my
differential” in the middle, and “Keep my differential” on the bottom.

Figure 6-12: Screenshot from the Diagnosing Diagnosis experiment website showing the
feedback based on the original label.
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Figure 6-13: Screenshot from the email to healthcare providers on Sermo’s platform.
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Chapter 7

Computational Empathy Counteracts
the Effects of Anger on Human
Creative Problem Solving

Abstract

How does empathy influence creative problem solving? We introduce a computational em-
pathy intervention based on context-specific affective mimicry and perspective taking by a
virtual agent appearing in the form of a well-dressed polar bear. In an online experiment
with 1,006 participants randomly assigned to an emotion elicitation intervention (with a
control elicitation condition and anger elicitation condition) and a computational empathy
intervention (with a control virtual agent and an empathic virtual agent), we examine how
anger and empathy influence participants’ performance in solving a word game based on
Wordle. We find participants who are assigned to the anger elicitation condition perform
significantly worse on multiple performance metrics than participants assigned to the control
condition. However, we find the empathic virtual agent counteracts the drop in performance
induced by the anger condition such that participants assigned to both the empathic virtual
agent and the anger condition perform no differently than participants in the control elicita-
tion condition and significantly better than participants assigned to the control virtual agent
and the anger elicitation condition. While empathy reduces the negative effects of anger,
we do not find evidence that the empathic virtual agent influences performance of partic-
ipants who are assigned to the control elicitation condition. By introducing a framework
for computational empathy interventions and conducting a two-by-two factorial design ran-
domized experiment, we provide rigorous, empirical evidence that computational empathy
can counteract the negative effects of anger on creative problem solving.1

1This chapter, which is co-authored by Craig Ferguson, Robert Lewis, and Rosalind Picard appeared in
the proceedings for the Affective Computing and Intelligent Interactions (ACII) 2022 [245].
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7.1 Motivation

Empathic virtual agents are artificial intelligence systems designed to perceive and express
affect in order to simulate the appearance of empathy in interactions with humans. Compu-
tational empathy involves recognizing an individual’s emotional state and responding appro-
priately via affective mimicry and perspective taking [479]. While affective computing [500]
seeks to address the challenges of recognizing emotions and responding empathically, these
are not solved problems and there remain many open questions on how to evaluate computa-
tional empathy [654]. In evaluating empathy in humans, psychologically validated methods
like the Interpersonal Reactivity Index [147], Empathy Quotient [50, 362], and Toronto Em-
pathy Questionnaire [581] involve measuring the self-reported empathy traits and preferences
of an individual, but these first-person scales are not relevant for evaluating how individuals
perceive empathy expressed by others. In order to evaluate perceived empathy, recent evalu-
ations have transformed previously validated methods into evaluations by outside observers,
which can be either an interaction partner or a third party [270, 655]. However, these eval-
uations by outside observers can be affected by a range of factors including observer-level
factors (sociocultural background and experience with computers), context-level factors (the
role of the agent as a companion or trainer and the quality of experience from a perspec-
tive of effectiveness, efficiency, utility, and acceptability), and agent-level factors (likeability,
anthropomorphism, animacy, perceived intelligence and safety) [654].

Rather than evaluating how empathic a virtual agent appears, we focus this paper on two
contributions: (1) the introduction of a constrained context and a virtual agent designed to
respond to humans with contextually appropriate affective mimicry and perspective taking
and (2) the evaluation of the effectiveness of such an empathic virtual agent in enhancing a
human’s cognitive performance [398]. Motivated by the question, “How does computational
empathy influence creative problem solving?,” we evaluate how an empathic virtual agent,
which is integrated into an online word guessing game, Affective Wordle Lab (based closely
on Wordle [60]), influences cognitive performance.

Many research experiments have shown that emotions influence creative problem solving and
decision-making. For example, past research has experimentally demonstrated that positive
affect (as elicited in the late 1980s by either a short blooper reel or a small gift of candy)
facilitates creative problem solving [295]. This research operationalized creative problem
solving based on two tasks, Duncker’s Candle task [175] and the Remote Associates Test
(RAT) [419], which involve finding the “relatedness in diverse stimuli that normally seem
unrelated” [295] and require “breaking set” – e.g., recognizing the box of tacks in Duncker’s
Candle task as a box and tacks and recognizing relatedness of words in the RAT based on
many different kinds of associations. In contrast to the effects of positive affect on creative
problem solving and decision-making [296], past research on experimentally elicited anger
shows anger inhibits decision-making by reducing depth of processing and increasing reliance
on heuristic processing [374–377].
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7.2 Related Work

7.2.1 Video Games, Emotions, and Cognitive Testing

Video games are an area of growing interest in affective computing and other computational
sciences, where much of the work benefits from two key properties of video games. First,
video games can deeply engage players and evoke poignant emotional experiences, thus
enabling the study of various psychological constructs on large study or real-world user
populations [15, 199, 544]. Second, video games can be customised to create highly controlled
environments that probe specific cognitive and affective processes, thus giving researchers
fine-grained control of their experiments and the ability to objectively measure constructs
of interest by analyzing the game telemetry data of player actions and decisions [417, 658].
For example, numerous mini-games have been developed to assess cognitive processes such
as working memory, motivation, appraisal of and aversion to risk or reward, creativity, and
other general executive functions. These tests aid our understanding of the mechanisms
of human decision-making and problem solving, and have found utility in various contexts
including mental health monitoring where impairments in decision-making processes may
be indicative of disorders like anxiety or anhedonia [228, 394].

7.2.2 Empathic Virtual Agents

In the past twenty years, many experiments have empirically demonstrated the power of
empathic virtual agents to influence human affect including undoing negative feelings of
frustration [334], increasing people’s feelings of being cared for [67, 82], altering people’s
feelings of fear into neutral feelings [440], and reducing public speaking anxiety [449]. While
the fundamental tenets of affective mimicry and perspective taking drive computational
empathy, the design space for computational empathy is combinatorically large. One re-
cent study examined the systematic manipulation of animation quality, speech quality, and
rendering style and their impacts on people’s perceptions of virtual agents in terms of natu-
ralness, engagement, trust, credibility, and persuasion in a health counseling domain [485].
In virtual agent chatbots that are limited to text interfaces, the range of possible conversa-
tions remains very large yet examples of personalized machine-learning based chatbots have
been shown to interact empathically with humans and be perceived as likable [204, 225, 226].
While past experiments have examined human perception of computational empathy, the
authors are not aware of past experiments examining the impact of computational empathy
on cognitive performance metrics.
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7.3 Methods

7.3.1 Participants (N=1,006)

We recruited 1,006 participants from Prolific, an online platform for recruiting research
participants. We restricted recruitment to individuals on Prolific who live in the United
States and speak English as a first language. As a robustness check to the inclusion criteria,
we ask participants “Are you a native English speaker?”, and 99.7% of participants respond
“Yes.” Participants’ ages range from 18 to 84 with a median of 35, and 53% of participants
identify as female. Before participants played Wordle in this experiment, we asked “How
many times have you played Wordle” to which 31% of participants respond they have never
played Wordle, 4% just once, 19% 2 to 10 times, 42% 11 to 100 times, and 3% have played
Wordle over 100 times.

7.3.2 Experimental Design

We pre-registered the experiment on AsPredicted at https://aspredicted.org/yx4k3.pdf.

Participants are randomly assigned to two interventions: an emotion elicitation intervention
with two conditions (control and anger) and a virtual agent personality intervention with
two conditions (control personality and empathic personality). In this 2x2 factorial design,
we assign participants to control and treatment conditions with equal likelihoods; 26% of
participants were assigned to the control-control group, 26% of participants were assigned
to the anger-control group, 24% of participants were assigned to the control-empathy group,
and 24% of participants were assigned to the anger-empathy group.

Emotion Elicitation

We based the emotion elicitation intervention on a reflective writing exercise from Small
and Lerner (2008) [576]. In both conditions, we ask participants to respond to two similarly
structured questions with a minimum response of 150 characters each. The goal of these
questions is to generate equivalent cognitive loads while activating incidental anger in one
condition and not activating any specific emotion in the other condition. An incidental
emotion refers to an emotion unrelated to the main task, which contrasts with an integral
emotion, which refers to an emotion intrinsically tied to the main task. In this experiment,
we focus on incidental anger.

For participants assigned to the control elicitation condition, we first ask: “What are three to
five activities that you did today? Please write two-three sentences about each activity that
you decide to share. (Examples of things you might write about include: walking, eating
lunch, brushing your teeth, etc.)” After they answer, we follow up with a second question:
“Now, we’d like you to describe in more detail the way you typically spend your evenings.
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Begin by writing down a description of your activities and then figure out how much time
you devote to each activity. Examples of things you might describe include eating dinner,
studying for an exam, working, talking to friends, watching TV, etc. If you can, please write
your description so that someone reading this might be able to reconstruct the way in which
you, specifically, spend your evenings.”

For participants assigned to the anger elicitation condition, we first ask: “What are the
three to five things that fill you with anger? Please write two-three sentences about each
thing that fills you with anger. (Examples of things you might write about include: being
treated unfairly by someone, being insulted or offended, etc.)” After they answer, we follow
up with a second question: “Now, we’d like you to describe in more detail the one situation
that makes you (or has made you) experience the most anger. This could be something you
are presently experiencing or something from the past. Begin by writing down what you
remember of the anger-inducing event(s) and continue by writing as detailed a description of
the event(s) as is possible. If you can, please write your description so that someone reading
this might even feel anger just from learning about the situation. What is it like to be in
this situation? Why does it make you so feel such anger?”

Affective Wordle Lab

After responding to the reflective writing exercise, we provide instructions to participants
for playing Wordle and invite participants to play four rounds of Wordle. The rules of the
Affective Wordle Lab experiment are the same as the rules in the official version of Wordle
hosted by the New York Times [60]. The goal of each round is to guess a 5-letter-word within
6 guesses. After each guess, players are informed whether each letter in their guess is: (a)
in the correct position for the solution word, (b) in the solution word but not the correct
position, or (c) not in the solution word. Players can use this information to home in on
the 5-letter-word solution. Wordle closely resembles the word game Jotto, which attracted
the interest of computer programmers in the early 1970s for studying information theory
aspects of the game [57].

We adapted Wordle’s game mechanics such that participants play 4 rounds and have the
option to play additional bonus rounds, which stands in contrast to the official version of
Wordle’s standard limit of a single round per day. The list of 12,972 acceptable guesses in
the Affective Wordle Lab is identical to the list of acceptable guesses in the official version
of Wordle and all solutions are chosen from the official list of 2,315 acceptable solutions
(the solutions are a subset of the acceptable guesses, which are based on common word use).
12,972 acceptable guesses corresponds to a possibility space of about 1024 (precisely bounded
above by 12, 972 ∗ 12, 971 ∗ 12, 970 ∗ 12, 969 ∗ 12, 968 ∗ 12, 967) combinations of guesses for
arriving at the correct 5-letter-word.

We selected four neutral words as solutions to the four rounds in the following order: “plant,”
“fuzzy,” “diner,” and “image.” We expected “plant” and “diner” to be relatively easy, “image”
to be moderately difficult because it begins with a vowel, and “fuzzy” to be difficult because
it contains uncommon double letters.
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We hosted the Affective Wordle Lab version of Wordle at https://wordlelab.media.mit.edu/
based on an open-source clone of Wordle that we extended with a Django backend and a
MySQL database.

Virtual Agent Personalities

In a deviation from the popular Wordle game, the Affective Wordle Lab includes a virtual
agent, a dynamic cartoon polar bear wearing a red scarf based on the Animated Login
Screen by JcToon on Rive. We designed the virtual agent to either display a “control” or
“empathic” personality.

Just a doodle

In the control condition, the virtual agent is always idle and is programmed to only com-
municate obvious game status information. Specifically, the virtual agent’s speech bubble is
limited to “Guess [1-6] of 6” for each guess iteration or “You [won/lost] after [1-6] guesses”
between each round.

In the empathy condition, the virtual agent makes expressions based on game-specific con-
texts to empathize with the participant via affective mimicry and perspective taking. In
particular, we programmed the virtual agent to take into account how many possible words
remain, how many guesses the participant has made, how quickly a participant responds,
how many letters a participant has uncovered, whether a guess is valid, whether a partici-
pant wins or loses, and whether a participant is idling. In Figure 7-2, we present screenshots
of the virtual agent’s six expressions, and in Table 7.1, we detail the 6 expressions and 39
messages paired with 13 game-specific contexts. We draw on the management science of
nonverbal behavior [105] to pair these expressions, messages, and contexts.

Each context is associated with 1 or 2 expressions paired with 1, 4, or 6 messages. The
virtual agent never repeats the same message in the same round and always selects a new
message for each round for contexts with 4 messages. The virtual agent selects a message
based on the order of contexts presented in Table 7.1; for example, “Fewer than 6 words
remaining” trumps “Fast Guess (under 4 seconds),” which trumps “5th guess” and so forth.

Post-Game Questionnaire

After participants complete 4 rounds of Wordle, we ask participants two additional sets of
follow-up questions. First, we ask participants “How are you feeling right now?” and the
experiment interface provides affective sliders [65] for participants to report their valence and
arousal. Second, we ask participants to answer 3 questions from the Cognitive Reflection Test
(CRT) designed to measure depth of reflective reasoning [214]. After participants respond to
the questions from the Cognitive Reflection Test, we congratulate participants for finishing
the experiment and provide a link back to the Prolific website where participants can collect
their payment. After collecting payment, participants have the option to continue playing
more rounds of Wordle.

184

https://wordlelab.media.mit.edu/
https://github.com/cwackerfuss/react-wordle
https://rive.app/community/2244-4463-animated-login-screen/
https://rive.app/community/2244-4463-animated-login-screen/


Figure 7-1: Screenshot of the Affective Wordle Lab experiment with an empathic virtual
agent.
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Figure 7-2: Screenshots of the virtual agent in the six dynamic displays designed for affective
mimicry. The idle display shows the bear moving his eye brows up and down every few
seconds; success shows the bear shrug and burst into a wide smile with raised eyebrows;
sadness shows the bear shrug, raise head, and shrug again while frowning and wiggling
its ears; slightly happy shows the bear shrug and raise its head into a smile with raised
eyebrows; the wave shows the bear waving buoyantly three times with raised eyebrows; the
short wave shows the bear waving two times with raised eyebrows.
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Context Expression Message Message

Fewer than 6 words remaining Wave Short You’re so, so close. You got this!
Fast Guess (under 4 seconds) Wave Short Wow, you’re so fast! Incredible!
Slow Guess (over 60 seconds) Wave Short Taking your time really paid off!
1st guess Wave Short Good luck! You got this! Another round! You can do this!
1st guess Wave Short You’ve got the hang of this! I know you can get this one!
5th guess Idle Two guesses left, that’s plenty of time! Last two guesses! Trust yourself, you got this.
5th guess Idle This is a tough one, but you’re close! This one can be hard, but I believe in you!
6th guess Wave Just breathe and think it through. You got this! Stay calm and use all the facts you uncovered.
6th guess Wave You final chance. You can do it! Don’t give up now! Stay calm and breathe.
Fewer than 101 words remaining Wave Short You’re getting closer! Oh nice, that really narrowed the field!
Fewer than 101 words remaining Wave Short Ooh, you’re getting close now! That was a really good guess!
Additional letters revealed Success Wow! What a great guess! Ooh nice one! I didn’t think of that.
Additional letters revealed Success You learned more information! Nice work! Great guess!
No additional letters revealed Slightly Happy Okay! Well now we know what doesn’t work. Nice! Now we know what to avoid
No additional letters revealed Sadness Aww, I was sure that would be it. Hmm, what could it be?!
Invalid Sadness Oops! I don’t know that word! Give it another try.
Win Win This must be your lucky day Two guesses?! Are you a wizard?!
Win Win Three guesses? You’re a rock star! Great job! You won in four guesses!
Win Success You did it! You won in five guesses! That was close, but you did it!
Loss Sadness You almost had it! Let’s try again.
Idle (triggered at 90 seconds) Wave Short It’s good to think it through carefully. I believe in you!
Idle (triggered at 90 seconds) Wave Short It’s okay to feel stumped. You’ll get it!
Idle (triggered at 90 seconds) Sadness This one is a toughy, isn’t it?

Table 7.1: The 6 expressions and 39 messages associated with 13 game-specific contexts.
Each context is associated with 1 or 2 expressions and 1, 4 or 6 messages.

7.3.3 Dependent Variables

We examine four measures of game performance: (1) a binary variable for winning for
each round, (2) the number of guesses per round, (3) an adjusted number of guesses per
round where participants who lost are assigned 7 instead of 6 guesses, and (4) entropy
reduction at the guess level, which is computed as the number of bits remaining: log2(w)
where w is the mean number of words remaining for all possible solutions after each guess.
We consider entropy reduction based on both a reduction of the 2,315 possible 5-letter
solutions and the 12,972 possible 5-letter guesses in the official Wordle game. These are two
approaches to evaluating entropy reduction of guesses, but other reasonable approaches could
alternatively consider the five-letter-words from Scrabble, the Oxford English dictionary,
or another source. Likewise, other reasonable approaches to evaluating entropy reduction
could also take into account the word frequency. We limit our analysis to the reduction of
the possible 5-letter solutions and guesses in the official Wordle game and leave additional
analyses for future work.

In addition to game performance, we examine self-reported valence and arousal from the
post-game questionnaire, whether participants engage in additional game play immediately
after finishing the experiment, the sentiment of participants’ guesses based on the VADER
rule-based model [287], the time between guesses, the word frequency of participants’ guesses,
and the number of invalid attempts submitted (e.g. a guess of “QQQQQ” is an example of
an invalid attempt).
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7.4 Results

7.4.1 Round Level Performance

We evaluate treatment effects of the anger elicitation intervention and the empathic virtual
agent personality by running the following pre-registered ordinary least squares (OLS) re-
gression where Yi,t is a dependent variable (specified above) for individual, i, in round t, A
is a binary variable for assignment to the anger elicitation condition, E is a binary variable
for assignment to the computational empathy intervention, α and β1−3 are the regression
intercept and coefficients, respectively, and ϵ is the error term clustered at the individual
level [2]:

Yi,t = α+ β1Ai,t + β2Ei,t + β3Ai,tEi,t + ϵi (7.1)

We find the effects of both the anger condition and the interaction between the anger and
empathy condition are statistically significant at the p < 0.05 significance level. We report
these results in Table 7.2. Relative to the control group, participants assigned to the anger
condition won 7 percentage points less frequently (p = 0.021), made an additional 0.15
guesses (p = 0.017), and made an additional 0.21 adjusted guesses (p = 0.012). Relative
to participants assigned to the anger condition but not the empathy condition, participants
assigned to both the anger and empathy condition won 8 percentage points more often
(p = 0.040), made 0.21 fewer guesses (p = 0.018), and made 0.30 fewer adjusted guesses
(p = 0.016). We do not find assignment to the empathy intervention increases performance
relative to participants assigned to the control emotion elicitation condition; participants
assigned to the empathy condition won 2 percentage points less frequently (p = 0.45), made
an additional 0.11 guesses (p = 0.10), and made 0.13 additional adjusted guesses (p = 0.143).
These results remain the same with the inclusion of round fixed effects to the linear model.

With 1,006 participants and 4 rounds of Wordle, we should have 4,024 observations in
the regression analysis, but instead we have 3,975 observations. We are missing 1.2% of
observations due to interruptions in some participant’s internet connections that allowed 24
participants (2.4% of participants) to continue the experiment without all their responses
logged to the experiment’s server.

7.4.2 Heterogeneity of Treatment Effects on Performance

We examine heterogeneity of treatment effects on round-level performance by including
experience playing Wordle at least once before, depth of reflective reasoning as proxied by
the CRT measured from 0-3, and self-reported sex [598] in the OLS regressions.

Formally, Equation 2 includes the same terms as Equation 1 but also includes Hi, which is
the heterogeneous feature of interest (either a binary variable for playing Wordle at least
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Did Win Guesses Guesses (Adjusted)

Constant 0.72∗∗∗ 4.82∗∗∗ 5.10∗∗∗

(0.02) (0.04) (0.06)
Anger -0.07∗ 0.15∗ 0.21∗

(0.03) (0.06) (0.08)
Empathy -0.02 0.11 0.13

(0.03) (0.06) (0.09)
Anger * Empathy 0.08∗ -0.21∗ -0.30∗

(0.04) (0.09) (0.12)

Observations 3,975 3,975 3,975
Number of Participants 1006 1006 1006

∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 7.2: Ordinary least squares (OLS) regressions with robust standard errors clustered
at the participant level.

once before, a continuous variable from 0 to 3 indicating performance on the CRT, or
a binary variable for Female). β4 represents the direct association of the heterogeneous
feature with the dependent variable, while β5−7 are the associations of its interactions (i.e.,
the heterogeneous effects):

Yi,t = α+ β1Ai,t + β2Ei,t + β3Ai,tEi,t+

β4Hi + β5HiAi,t + β6HiEi,t+

β7HiAi,tEi,t + ϵi

(7.2)

We find that participants who had played Wordle at least once before this experiment won
20% more frequently (p < 0.001), took 0.35 fewer guesses (p < 0.001), and took 0.55 fewer
adjusted guesses (p < 0.001). Likewise, we find that for every CRT question participants
answered correctly, they won 9% more frequently (p < 0.001), took 0.20 fewer guesses
(p < 0.001), and took 0.29 fewer adjusted guesses (p < 0.001). We do not find significant
difference between men and women’s performance. Moreover, we do not find statistically
significant effects of interactions (i.e., β5−7) between either experience playing Wordle, CRT
performance, or sex and the experimental conditions on round-level performance.

7.4.3 Guess Level Entropy Reduction

We evaluate treatment effects on entropy reduction at the guess level as an additional perfor-
mance metric. Specifically, we run OLS regressions following Equation 1 with an additional
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index g on each term to denote the guess index. We measure entropy reduction by com-
puting the log2(w) where w is the mean number of possible words (out of either the 2,315
solutions or 12,972 valid words) remaining after each guess.

In Figure 7-3, we present the 95% confidence intervals for treatment effects on the mean
marginal bits remaining from the 2,315 solutions for each guess iteration. We find that
participants assigned to the anger elicitation condition have 0.11 to 0.16 additional bits of
information remaining in their first four guesses (p = 0.01, p = 0.06, p = 0.03, p = 0.03)
compared to the participants assigned to the control elicitation condition. In contrast, the
Anger * Empathy interaction term ranges from -0.22 to -0.10 for the first four guesses
(p = 0.09, p = 0.06, p = 0.04, p = 0.10). By the fifth and sixth guesses many participants
have already identified the word and the average remaining bits is 0.6 and 0.47, respectively,
so the lack of statistical differences across the anger elicitation and anger elicitation paired
with computational empathy interventions in the fifth and sixth guesses can be explained
by differential dropout and floor effects.

As a robustness check, we also examine the treatment effects on the mean marginal bits
remaining from the 12,972 valid words. We find that participants assigned to the anger
elicitation condition have 0.13 to 0.17 additional bits of information remaining (based on
the 12,972 valid words) in their first four guesses (p = 0.003, p = 0.13, p = 0.10, p = 0.16)
compared to the participants assigned to the control elicitation condition. In contrast, the
Anger * Empathy interaction term ranges from -0.25 to -0.10 for the first four guesses
(p = 0.08, p = 0.08, p = 0.18, p = 0.24).

7.4.4 Self-Reported Affect and Additional Outcomes

Based on OLS regressions of treatment effects following Equation 1 on self-reported valence
and arousal that participants provided after completing the four rounds of Wordle, we find
the anger elicitation has a statistically significant, negative effect on self-report affect. On
a scale from 0 to 100, participants assigned to the anger condition report a 5.1 point lower
arousal (p = 0.030) and a 4.6 point lower valence (p = 0.064) relative to participants assigned
to the control emotion elicitation condition. We do not find statistically significant effects on
self-reported valence and arousal from assignment to the computational empathy condition
or the interaction between anger and computational empathy.

Based on OLS regressions of treatment effects on additional outcomes measured at the guess-
level following Equation 1 including whether participants engaged in additional rounds of
Wordle, guess sentiment based on the VADER rule-based model, the response time between
guesses, the word frequency of participants’ guesses, and the number of invalid attempts, we
do not find statistically significant treatment effects of anger, empathy, or the interaction of
anger and empathy. While we did not find significant treatment effects on these additional
outcomes, we do see variation across participants across these features. 17% of participants
participated in at least one bonus round. Participants’ guesses were classified by VADER as
neutral for 86% of words, positive for 7% of words, and negative for 7% of words. The mean
time between each guess was 35 seconds. Participants submitted 6,074 5-letter strings, 3,175
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Figure 7-3: Mean marginal bits remaining for all 2,315 possible Wordle solutions after each
guess based on OLS regressions with robust standard errors clustered at the participant
level. Bits are computed as log2(w) where w is the mean number of words remaining out of
the 2,315 solutions. Error bars represent 95% confidence intervals.

unique valid words, and 1,609 unique words that are possible Wordle solutions, and 1,045
different first guesses of which 727 were valid Wordle solutions. Finally, 77% of participants
submitted at least 1 invalid guess.

7.5 Discussion

How do incidental anger and computational empathy influence creative problem solving in
a word guessing game?

The results from our pre-registered experiment corroborate past research finding anger im-
pairs decision-making and reduces depth of cognitive processing [374–377]. In particular,
we find the anger elicitation condition (relative to the control elicitation condition) leads
participants to lose more often, make more guesses (and adjusted guesses), and submit
less informative guesses (as measured by entropy reduction); these results are statistically
significant.

In contrast, we find the computational empathy intervention counteracts the negative effect
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of anger on performance. Participants assigned to both the anger elicitation condition and
the empathic virtual agent perform better than participants assigned to the anger elicitation
condition and the control virtual agent on all performance metrics, which are statistically
significant at the p < 0.05 level for round-level performance metrics and statistically signif-
icant at the p < 0.10 level for guess-level entropy reduction. While computational empathy
counteracts the negative effects of anger on cognitive performance, we do not find compu-
tational empathy changes performance for participants assigned to the control elicitation
condition.

We find experience playing Wordle and depth of reflective reasoning as proxied by the
CRT is strongly associated with performance, but we do not find significant heterogeneous
treatment effects based on either participants’ experience playing Wordle or participants’
depth of reflective reasoning. The lack of heterogeneous treatment effects on both these
characteristics and also participants’ sex suggest that none of these characteristics make
participants more or less vulnerable to the negative effects of anger or to the counterbalancing
effects of computational empathy.

While anger and empathy influence overall performance, we do not find treatment effects
on other outcomes like sentiment of guesses, response time between guesses, word frequency
of guesses, number of invalid guesses, or whether participants engaged in additional rounds
of Wordle after collecting payment for participating. The lack of treatment effects on these
outcomes narrows possible mechanisms by which anger and empathy influence cognitive
performance.

After participants complete four rounds in the Affective Wordle Lab, we present participants
an opportunity to self-report their valence and arousal with an affective slider [65]. We find
effects of the anger elicitation condition but not the empathic virtual agent personality on
both arousal and valence. As expected, we find lower valence and arousal in participants
assigned to the anger elicitation condition relative to the control condition. This may be
surprising because anger is associated with positive arousal in the circumplex model of
affect [541], but recent research that clusters semantic emotion categories and affective di-
mensions reveal different variations of anger that include both high and low arousal [130].
The persistent effects of anger on self-reported affect – that last through multiple rounds
of the Affective Wordle Lab and are not counteracted by the computational empathy inter-
vention – reveal the effectiveness of the reflective writing exercise from Small and Lerner
(2008) [576] for eliciting incidental anger.

7.6 Limitations

We evaluate treatment effects of an anger elicitation intervention and computational empa-
thy intervention in a 2x2 factorial design on performance in an online word guessing game
that involves creative problem solving. Similar to Duncker’s Candle task and the RAT,
this game represents only one kind of creative problem solving and it does not represent all
creative problem solving. Moreover, we focused this experiment on incidental anger because
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it is more straightforward to elicit in experimental settings than integral anger. Future work
may consider how integral emotions influence both creative problem solving and the ability
of computational empathy to counteract the negative influence of anger.

In this experiment, we avoid precisely defining computational empathy and treat computa-
tional empathy as a gestalt of contextualized interactions involving affective mimicry and
perspective taking. This gestalt treatment allows us to operationalize computational em-
pathy as an intervention, but it prevents us from identifying the precise features that help
counteract the negative effects of the anger elicitation intervention. Future research may
consider the effectiveness of the empathic virtual agent without affective mimicry or without
perspective taking or without some contexts to identify the most effective component parts
and combination of component parts of computational empathy for improving an angry in-
dividual’s performance. Likewise, future research may consider how computational empathy
influences emotion regulation.

7.7 Contributions and Implications

We present a conceptual replication of experiments on anger and decision-making, and we
corroborate previous findings that anger inhibits problem solving. Moreover, we present
experimental evidence that computational empathy can counteract the negative effects of
anger on creative problem solving. The countervailing force of computational empathy on
anger highlights the importance of designing empathy into virtual agents to not only make
people feel cared for but to boost people’s creative performance.

Affective Wordle Lab presents a new tool and paradigm for interweaving a virtual agent
within the constrained context of a game such that researchers can experimentally elicit
emotions and manipulate virtual agents to evaluate computational empathy not only based
on self-reports of how people feel but also as an assistive technology that can influence
human decision-making and creative problem solving.

7.8 Ethics and Informed Consent

This research complies with all relevant ethical regulations. The Massachusetts Institute
of Technology’s Committee on the Use of Humans as Experimental Subjects determined
this study to fall under Exempt Category 3: Benign Behavioral Intervention and Exempt
Category 2: Educational Testing, Surveys, Interviews or Observation with id E-3888.

All participants are informed that “WordleLab is a research project created by the MIT
Media Lab” and “All submissions are collected anonymously for research purposes, and
participation is entirely voluntary. For questions, please contact wordlelab@media.mit.edu.”
All participants are recruited from the Prolific survey platform with the following message:
“The Wordle Lab Experiment is a research project created at the MIT Media Lab to study
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how people play Wordle. First, we’ll ask you to share three to five examples of something
relevant to you, then you’ll play 4 rounds of Wordle, and last we’ll ask you a few follow up
questions. All data is collected anonymously. We estimate this experiment to take about 15
minutes.” We compensated participants with $2.38 each, which is a rate of $9.52 an hour.

7.9 Data and Code Availability

We open-sourced the code for Affective Wordle Lab at https://github.com/MITMediaLab
AffectiveComputing/WordleLab and share anonymized participant data and replication
code at https://github.com/mattgroh/affective_wordle_lab_replication.
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Chapter 8

Context in Automated Affect
Recognition

Abstract

Affect recognition depends on interpreting both expressions and their associated context.
While expressions can be explicitly measured with sensor technologies, the role of context
is more difficult to measure because context is often left undefined. In an effort to explic-
itly incorporate pragmatics in automated affect recognition, we develop a framework for
categorizing context. Building upon ontologies in affective science and symbolic artificial
intelligence, we highlight seven key categories: ambient sensory environment, methods of
measurement, semantic representation, situational constraints, temporal dynamics, socio-
cultural dimensions, and personalization. In this chapter, we focus on how the epistemolog-
ical categories of context influence the training and evaluation of machine learning models
for affect recognition. Incorporating context in the practical and theoretical development
of affect recognition models is an important step to developing more precise and accurate
models.1

8.1 Motivation

In an early 20th century film experiment, cinematographer Lev Kuleshov presented audi-
ences with a short clip of an actor expressing a neutral facial expression followed by one
of three scenes: a bowl of soup, a young girl in a coffin, and a woman lying on a couch.
Depending on which scene the audience saw, the audience described the actor’s expression
as indicative of different emotions; hunger for the soup, sadness for the deceased, and lust

1This chapter, which is co-authored with Rosalind Picard, is a draft that was presented as an abstract at
the Meaning in Context workshop at the Conference for Neural Information Processing Systems in December
2021 and the Affective Cognition Workshop at Cognitive Science Society in July 2021.
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for the woman. Two recent experiments replicated the results of the original Kuleshov ex-
periment and extended it to show that scenes conveying fear and desire also lead audiences
to report neutral facial expressions as expressions matching the sentiment in the juxtaposed
scenes [51, 94].

Context shapes how humans perceive and recognize emotions. For example, the art of
transforming a script into a heart-wrenching movie involves not only actors’ dialogue and
physicality (their observable expressions) but also how these expressions relate to scene
transitions, the musical accompaniment, lighting conditions, costume and set design, and
narrative devices. Likewise, how an observer interprets another person’s smile depends on
contextual cues like whether a person is acting earnestly, whether a person is in a pain-
eliciting situation, or whether social display rules might influence a person to mask their
inner feelings.

In affective computing, emotion recognition has been described as a combination of “observa-
tions of emotional expressions” and “reasoning about an emotion-generating situation” [500].
This dual focus of emotion recognition on expressions and context matches research in af-
fective science, which shows observable expressions are often ambiguous without context [6,
43, 52, 55, 149, 178, 200, 201, 223, 275, 409, 639, 642]. Emotion recognition is a subset
of affect recognition, which is sometimes referred to as affect detection, affect estimation,
and affect measurement in the field of affective computing. Emotion recognition has also
been called empathic accuracy in the field of affective science and emotion reasoning in the
field of developmental psychology [288, 538]. Automated affect recognition applies methods
from signal processing and machine learning to situated expression data, which are data on
observable expressions and their associated context [139]. While facial expressions, physical
gestures, speech prosody, physiology (heart-rate, breathing-rate, and electrodermal activ-
ity), and other human behavior are all concrete examples of observable expressions, context
is more amorphous and generally refers to the relationship of these expressions to each other
and the external environment [99]. Moreover, context is multidimensional and difficult to
circumscribe with a single label. In a recent experiment examining facial expressions across
contexts in video, context is defined as the 653 categories that a neural network has been
trained to classify, which include categories such as breakfast, car, humor, airport, lake,
bottle, and mother where mother can refer or “pertain to mothers in any number of ways,
ranging from footage of actual parenting to a man discussing his mother” [132]. This def-
inition describes an algorithmic classification schema that identifies potentially useful yet
vague aspects of context.

8.2 Building a Framework for Context

How can we systematically identify the roles of context in automated affect recognition?
First, we need a language to discuss what we mean by context in affect recognition. In
the abstract, context represents a complex high-dimensional feature space representing the
inter-relatedness of elements that are often only partially available to observers. In affective
science, context has been described as the collective “unmeasured factors” that contribute
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to how emotions are constructed; in the same paper, the authors describe the most salient,
yet often unmeasured contexts as situational, social, physical, mental, temporal, personal,
and cultural [54]. Likewise, in another review of context in emotion research, context is
presented as a framework made up by three major components: personal, situational, and
cultural features [240]. By explicitly identifying these categories rather than leaving context
as a catch-all term for anything unmeasured, we can begin to build a framework to more
precisely evaluate and discuss the varying roles of context in affect recognition.

When we examine affect recognition performed by computers, we need to take additional
context into account. In the field of symbolic artificial intelligence (AI), ontology engineers
have developed frameworks for incorporating context in common sense reasoning on natural
language processing tasks [252, 372]. These frameworks have been useful for identifying
assumptions that are often taken for granted in human communication but necessary for
machine communication. In particular, the context identified in symbolic AI includes epis-
temological components addressing system-level questions like how to arbitrate opposing
perspectives, what serves as evidence, what can be assumed, what expertise is required for
making observations and judgments, and who believes a claim and why. In affect recognition
within the context of affective computing, these questions become: how do we semantically
represent affect, how do we label data, what do we assume about the accuracy of any human
or machine appraisal of affect, what qualifies someone to label data, and how do we evaluate
a model’s performance.

Drawing from and expanding on entry points from both affective science and symbolic
AI, we identify seven key categories to consider in automated affect recognition: ambient
sensory environment, methods of measurement, semantic representation, situational con-
straints, temporal dynamics, sociocultural perspectives, and personalization. Our aim in
establishing this seven-category framework is not to establish a new theory of emotions nor
to claim there cannot be an eighth category, but instead, our aim is to take concrete steps
toward unifying the many useful elements of context for affect recognition that have been
already articulated in the affective science and affective computing literature. As such, we
aim to synthesize a framework that provides both a theoretical foundation and a practical set
of constructs. We are most inspired when theory and practice support each other, and since
practice in affect recognition is growing rapidly, we seek to advance a theoretical framework
for context that can grow with it, supporting and strengthening the growing practice. We
describe the seven categories briefly below.

The first category, ambient sensory environment, refers to the sensory aspects of one’s imme-
diate surrounding settings e.g., the weather, soundscape, scenery, and smells. While ambient
sensory environment does not neatly fit into any of the categories specified by Lenat 1998
or Barrett et al 2019, ambient sensory environment includes the face-context pairings de-
scribed in earlier affective science research e.g., “face imbedding” (information within an
image around a target face) and “response coherence” (information on congruence of facial
expressions with non-facial expressions) [408]. The next two categories, methods of mea-
surement and semantic representation are based on the five categories in the symbolic AI
framework which focus on the system-level, epistemological concerns that are relevant for
training machine learning models to predict affect labels. The final four categories occur in
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both Lenat 1998 and Barrett et al 2019. Situational constraints refer to constraints imposed
by the activity or venue within which something is happening. For example, the inability
to safely take one’s eyes off the road while driving is a situational constraint. In the Lenat
1998 framework, situational constraints are further divided into topic/usage (referring to
activity) and absolute place (referring to a place like the pyramids of Giza or the Golden
Gate bridge) and type of place (referring to a place like a pizza joint or a shower), and here,
we address all three of these categories together. Temporal dynamics refer to the dynamic
nature of expressions and the trajectory and seasonality of emotional events. Sociocultural
dimensions are the components of context related to other people. Finally, personalization
refers to individuals’ idiosyncrasies, which can range from an individuals’ tastes and pref-
erences to mental disabilities. All of these categories of context can overlap, and they are
not mutually exclusive. These categories serve as a starting point to systematically examine
how each different component of context situates expressions and shapes the appraisal and
recognition of emotions.

8.3 Evaluating Automated Affect Recognition

Instead of detailing the role of each category here, we address the epistemological categories
(methods of measurement and semantic representation) by asking: how can we evaluate
the accuracy of an affect recognition model? In order to empirically evaluate a statistical
learning model, we identify a source of human-provided (ground truth) labels, y, upon which
to compare the model’s predictions, ŷ. For affect recognition, ground truth labels usually
come from one or more of these sources: individuals’ self-reports of what they feel, external
observers’ reports of what they perceive others to experience, and experimentally-elicited or
situationally-driven emotions. These three different methods of measurement are all useful
yet imperfect for representing ground truth.

Self-reports provide an opportunity to collect ground truth labels based on an individual’s
inner feelings, but self-reports are subject to willful deception, can be inhibited by intero-
ceptive ability and alexithymia, and are subject to social and cognitive biases [308]. For
example, acquiescence bias is one particularly pernicious bias where research participants
tend to agree with what they think the researchers want to hear [578].

External observers’ reports can be collected by impartial and emotionally intelligent third
parties. Most adult human observers know that outward appearance of affect does not
necessarily reflect an individual’s inner feelings, and as such, observation generally involves
applying theory of mind and pragmatic reasoning about the target individual’s expressions
and situation before assigning an emotion label. Nonetheless, external observers’ reports
(just like self-reports) are not guaranteed to match an individuals’ inner feelings. Moreover,
while this approach allays concerns about willful deception and interoceptive ability, it
cannot rule out social and behavioral biases of observers. One advantage of examining
external observers’ labels (as opposed to self-reports) is the ability to control the information
to which the observers have access (e.g., a video with audio, audio only, silent video, a video
with a mask over the target individual or background, a full body photograph, a photograph
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Figure 8-1: Key categories of contxt in automated affect recognition. Previously articulated
components are listed verbatim as they have been described in previous frameworks except
for “Domain Assumption” and “Epistemology,” which are paraphrased for clarity.
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showing only the face, or many other permutations), because manipulation of information
modalities enables research into context effects.

The third approach to collecting ground truth labels is generating situations known to elicit
particular emotions. For example, an experiment could elicit affect by asking a participant
to reflect on a past emotional experience, ask a participant to count backwards from 100
by 7s (which often elicits stress), or routing a participant’s car into rather than away from
traffic jams (which often elicits stress or sometimes anger) [333, 373]. However, experiments
designed to elicit emotions in participants do no always elicit the intended emotions because
people respond to different situations differently. Moreover, laboratory conditions often do
not match real-world settings, which raises questions about how well the findings of an
experiment generalize to the real-world.

Measuring affect requires selecting a method for representing affect. It is well known that
affect can be represented as: continuous affective dimensions (e.g., valence, arousal, dom-
inance) and discrete emotion categories (e.g., joy, anger, fear, sadness, disgust, surprise).
Affect can also be represented as: emotion categories connected by continuous gradients
(e.g., horror, fear, disgust, anxiety), mixtures of emotion categories (e.g., angrily surprised,
sadly fearful), enduring states (e.g., frustration, stress, pain, anxiety, depression), or even
by sets of symbols like emojis, which can represent discrete or mixed and overlapping states.
For example, emojis can represent emotions that are otherwise difficult to express via text.
By training a machine learning model on a large corpus of tweets using sets of emojis
as labels, researchers achieved state-of-the-art performance on three natural language pro-
cessing benchmark tasks including emotion classification, sentiment analysis, and sarcasm
detection [197]. While there are many competing theories of emotion, there is no universal
agreement on how emotion should be represented [53, 135, 137, 172, 183, 276, 322, 338, 542,
543, 552]. The choice of how affect is represented will influence how an affect recognition
model is trained and ultimately how accurately it recognizes affective states.

Figure 8-2: Probability distribution of the five most likely emojis associated with the two
lines of text that both begin with “I love...” Only the first line is generally accepted by
people as positive. By training natural language processing models on more than one billion
tweets with emojis, Felbo et al 2017 obtained state-of-the-art performance on eight different
benchmark datasets for sentiment, emotion, and sarcasm detection with a single pretrained
model. Figure 2 is adapted from Felbo et al 2017 [197].

We evaluate the accuracy of an affect recognition model and its generalizability on data the
model has never previously seen. Consider a model represented algebraically as ŷ = f(x, c)
where ŷ represents the predicted affect label, x indicates the physical expression data, and
c signifies context. Once the model has been trained on an initial dataset, we can evaluate
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its performance on a hold-out set and compare ŷ, the machine-predicted affect labels, to y,
the human-provided labels. This allows us to evaluate a range of accuracy metrics including
sensitivity, specificity, F1-score, AUC, log-loss, Pearson correlation coefficient, Matthew’s
correlation coefficient, and Cohen’s kappa among others. In assessing how well a model
recognizes self-reported emotions or observed emotional states, “a reasonable criterion of
success is to get a computer to recognize affect as well as another person, i.e., better than
chance, but below 100% accuracy” [500]. In some instances where physiological signals
from the autonomic nervous system are imperceptible to humans without computational
tools, the evaluation criteria shift to how well these otherwise imperceptible signals predict
experimentally elicited emotions or long-term measures of mental health like reduced stress,
reduced casualties while driving, or better learning outcomes [102, 341].

In practice, the assumption that the training and holdout data are independent and iden-
tically distributed (i.i.d.) often does not hold because context changes. As such, real-world
implementation of automated affect recognition systems needs to explicitly incorporate as
much contextual information as possible to most effectively generalize and avoid spurious
correlations between observable expressions and affective labels. A recent review on facial
expressions and emotions concludes that context matters for interpreting emotions from
facial expressions: “When facial movements do express emotional states, they are consid-
erably more variable and depend on context,” [54]. This conclusion refreshes the need to
examine an engineering question: Can we measure the contexts that inform the relationship
between facial expressions and emotional states? This is not a new question in the field
of affective computing; the development of large-scale datasets for facial expression recog-
nition in the wild (e.g., EmotiW, Aff-Wild) draws from the premise that context mediates
how facial expressions are interpreted [158]. The limitations of context-free affect detection
and the importance of context-awareness were discussed as core challenges to building affect
recognition systems a decade ago [98, 260, 623].

Recent advances in sensing technology and neural networks have enabled researchers to in-
corporate context more effectively than ever before, which now raises additional questions:
What contexts are informative for affect recognition, and how can we measure these con-
texts? In this chapter, we identify seven key categories of context that should be considered
in artificial intelligence systems for affect recognition.

8.4 Seven Key Categories of Context

8.4.1 Ambient Sensory Environment

Imagine yourself on a road-trip with friends driving through beautiful countryside with your
windows rolled down. As you approach a large farm, the paved road turns into dirt and the
ride becomes not only bumpy as you drive over potholes but also smelly from piles of cow
manure. The sensorimotor and olfactory aspects of the car ride have changed. If the car is
equipped with an affect recognition system using sensors to detect heart-rate variability or
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respiration rate, then the potholes will likely overwhelm the sensor’s measures and produce
errors if the movement from the potholes is not accounted for. If you roll up the windows
to avoid the smell, then you will reduce the ambient noise in the car. As a result, you
no longer need to speak over the wind and an affect recognition system might adjust its
sensitivity to vocal stress features because they are related to ambient noise [266, 392].
Now imagine clouds begin to appear overhead. If the clouds change how the driver’s face is
illuminated, then the system’s ability to recognize facial expressions may change [584]. All of
these sudden environmental changes along this imaginary road-trip could be measured with
sensors, which would allow an automobile-based affect recognition system to incorporate the
ambient sensory environment and provide a more accurate assessment of the driver’s affective
state and the system’s uncertainty about the driver’s affective state than any system could
provide given only the driver’s expressions.

Recent research in affective science provides a series of examples demonstrating the role of
immediate visual surroundings on how accurately humans appraise affect. In a study exam-
ining how well participants can distinguish between tennis players’ emotions after winning
or losing points, participants could not reliably distinguish between intense positive and
negative emotions based only on the athlete’s facial expressions; however, participants could
accurately recognize the athlete’s emotions when considering the athlete’s full body expres-
sion [42]. Facial expressions can be ambiguous and factors as simple as facial orientation
toward an observer can change perceptions of dominance in expressions of emotion [355,
644]. Moreover, different stereotypical facial expressions of the same emotion may interact
differently with background scenery; in a recent study, researchers paired the same open and
closed-mouth facial expressions of disgust with varying background scenes and found par-
ticipants’ appraisal of facial expressions varies more when the facial expressions were open-
mouth [528]. Likewise, a recent study demonstrated that appraisals of facial expressions
can be influenced by digitally manipulating body postures and background scenery [527]. In
another recent experiment, participants were randomly assigned to view either silent videos
or silent videos with human bodies occluded; participants inferred valence and arousal with
high inter-rater reliability and similar accuracy to a group of participants who viewed the
same videos without occlusions [113] What these experiments show is that immediate sur-
roundings can be just as informative as (and sometimes more so than) facial expressions
or physical gestures for how humans visually appraise emotion. Figure 3 provides a vi-
sual example demonstrating the importance of visual surroundings for accurately appraising
emotion.

Like the human visual system, computer vision models can leverage statistical properties of
a scene to more accurately recognize the affective state of an individual. In an experiment
comparing a neural network trained on facial expressions, body gestures, and background
scenes from non-posed, static images, researchers found that including the background scene
improves recognition accuracy over a neural network trained solely on the face and body for
twenty-six out of twenty-six different emotion categories and two out of three affective dimen-
sions (valence and dominance but not arousal) [349]. This demonstration that background
scenery informs automated affect recognition is a specific example of a more general con-
cept in computer vision and pattern recognition: the relationship between elements within
a scene helps to inform what any particular element is recognized as [473, 652].
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Figure 8-3: Close-cropped photo of a young girl’s face. With no context beyond the close-
cropped photo, the young girl’s facial expression could easily be perceived as rage, excite-
ment, or perhaps some other emotion. See Figure 4 to see the uncropped photo of the young
girl. Figure 3 has a Creative Commons Zero License.
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While the background can offer important contextual cues, it can also produce misleading
heuristics that work for most examples but do not always hold. For example, neural networks
trained to classify a bird as a land bird or water bird without proper regularization will use
the presence of water in the background as a shortcut, which leads to misclassifying images of
water birds temporarily resting on land [400, 546]. In contrast, only focusing on the object
of interest (e.g. birds or facial expressions) can lead to ignoring important information.
One solution for integrating background information without making errors from shortcut
learning is to characterize the relationship between the central object and its surroundings.
For example, consider individuals with extreme sensory sensitivities; if a screaming baby
enters the room of an autistic sound-hypersenstive child, we would predict the child would
experience a strong stress reaction because we recognize a relationship between the child’s
stress and her surrounding sensory environment.

Figure 8-4: A photo of a young girl about to blow out candles on her birthday cake. See
Figure 3 for a cropped version of this photo. Figure 4 has Creative Commons Zero License

8.4.2 Methods of Measurement

Addressing how affect is measured includes addressing how human-provided labels are gen-
erated, how data collection influences human behavior, how sensors are situated to collect
data, and how variability in human-provided labels are handled.

The observer effect – the disturbance of a system by the act of observation – is important
to consider in automated affect recognition. If people believe they are being watched and
analyzed, they will behave and express emotions differently [216]. Recent research shows
that machine learning and signal processing applied to webcam video and wi-fi radio waves
can accurately estimate respiration, heart-rate variability, and affective states using infor-
mation that most people cannot see without special sensing technology [112, 414, 415, 504,
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666]. These new developments raise privacy concerns and may already be changing individ-
uals’ behavior. In response, recent research has focused on building algorithms to remove
physiological signals by making subtle alterations to video that confuse a computer system
but are imperceptible to the human visual system [119, 491]. As technology for measuring
affect and preserving individuals’ privacy progresses, people’s behavior will adapt, which is
another aspect that affect recognition models should consider.

The accuracy of an affect recognition model can depend on how sensors collect physiological
features. For example, electrodermal activity (EDA) is a signal that changes with sudomotor
innervation, which can be elicited by changes in temperature, exertion, and arousal. The
ability to measure arousal depends on the ability to control for artifacts from physical
movement and other noise [600]. Moreover, EDA measurements depend on where an EDA
sensor is placed on the human body. Traditionally, EDA measures are obtained from a pair
of electrodes placed on a palmar or plantar site. Recent research shows that alternative
electrode locations carry meaningful, and different, signals related to emotion, likely arising
from pathways that connect different regions of the brain to different regions of the skin [316,
502]. By evaluating varying placements of sensors and developing algorithms to control for
varying physiological artifacts, it is possible to reduce – though likely not eliminate – several
kinds of measurement error.

Another approach to reducing errors in affect recognition models involves examining and
controlling for inter and intra-annotator variability in third party appraisals. For example,
a Monte Carlo dropout method for disambiguating annotator bias (variance from inter-
annotator agreement of subjective judgements) from data bias (variance across clusters
of similar images) can highlight a model’s accuracy disparities across subsets of the data
e.g., images of dark-skinned people and highly illuminated images [224]. One technique for
incorporating inter-annotator variability in affect recognition models is to represent emotion
labels as a statistical distribution of annotations provided by multiple observers, which allows
a model to incorporate both diverse perspectives and the relative subtlety of an emotional
expression [261, 662]. Additional work shows that the labeling process can improve inter-
annotator reliability when it is performed via relative ordinal rankings rather than absolute
values or categories because rankings force observers to contextualize expressions relative to
one another [657]. Furthermore, many experiments have shown affective priming on third-
party observers can alter the labeling processes; affective primes change how an observer
recognizes both neutral words and expressions [80, 257, 556, 565]. By highlighting where
bias can creep into the labeling processes, we can identify where an affect recognition model
is likely to make inaccurate predictions.

8.4.3 Semantic Representation

The representation people use to describe affect influences the evaluation of affect appraisal
tasks. For example, a convolutional neural network trained to predict twenty-six emotion
categories from images is more accurate when trained on people’s faces and bodies than the
background for twenty-five of twenty-six emotion categories while the same model architec-
tures, re-trained to predict affective dimensions (valence, arousal, and dominance), are just
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as accurate or more accurate when trained on the background than when trained on people’s
faces and bodies [349].

Depending on the medium and the specific content within that medium, the most useful
semantic representation can change. In a recent experiment where participants reported
the emotional states elicited by short videos, a dimensionality reduction technique applied
to participants’ responses revealed that twenty-seven emotional categories reliably capture
the variance in self-reported responses better than affective dimensions like valence, arousal,
dominance, and others [130]. With the same dimensionality reduction methodology, another
experiment reveals that for participants across two different cultures speech prosody can be
best characterized by twelve categories of emotion [131].

Moreover, words conveying emotions are not always perfectly translatable across languages
and cultures. For example, saudade in Portuguese and natsukashii in Japanese are similar
to nostalgia in English but not exactly the same, and there’s no exact translation in Hindi or
Malayalam for disgust [192, 345, 346]. Neologisms like vemödalen – the fear that everything
has already been done – can help people recognize an emotion they have experienced that
they have not yet been able to articulate [342].

In affect appraisal tasks, researchers may ask participants to choose the best fitting word
from a list, select degrees of affective dimensions, describe an affective state in one’s own
words, find a story that has matching emotions, or react with one or more facial expressions
or perhaps even emojis. In a recent experiment on emotion recognition in storytelling where
participants were randomly assigned to three conditions – watch a silent video, listen to the
audio, watch the video with audio – participants were less accurate at recognizing emotions
in the silent video condition than the other two conditions, but the silent video condition
was associated with a higher degree of heartrate synchrony between the participant and the
storyteller [305] Different contextual modalities yield different levels of agreement across
how affect appraisal is measured.

In practice, commercially available facial expression recognition systems typically detect and
label facial expressions as facial action units or classify expressions into a small number of
categories such as happy, sad, surprise, disgust, fear, anger. This pre-set list of categories
naturally imposes limits on what these commercial systems can do. In a recent comparison
of eight commercially-available APIs with human observers on classifying facial expressions
into six categories, humans outperform all eight APIs on videos showing people making facial
expressions [176]. What is particularly notable in this study is that humans perform better
on spontaneous expressions than on posed expressions while computers perform better on
posed than on spontaneous expressions [176] Without details about the training data or the
models used to create the commercial APIs, it is difficult to precisely identify the source
of the model error in these commercial APIs, but these results suggest the commercial
APIs may be trained on mostly posed (not spontaneous expressions), static images (not
dynamic video), homogenous populations, or some other contextual component that differs
from the videos in this experiment. If posed and spontaneous expressions represent emotions
differently, then a useful affect recognition model might output two predictions: a predicted
emotion category and a prediction for whether the expression is posed or spontaneous.
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In contrast to commercial APIs, the latest research competitions in affect recognition focus
on recognizing affect in the wild across multiple representations of emotional expressions
(including facial action units, student engagement, physiological signals in response to video,
and group-level cohesion) and across a variety of specific situations [159, 347, 636]. There is
no single agreed upon semantic representation of affect, and as such, scientific research should
continue to evaluate affect along its many semantic representations to avoid unintentional
semantic biases across people, situations, and cultures.

8.4.4 Situational Constraints

Figure 8-5: Figure 5 presents examples of affect recognition in three contexts: automobile
driving, online learning, and human-robot interaction. Sensors in a constrained environment
collect signals data to predict an individual’s affective state. The sensors (and the signals
that these sensors measure) are not an exhaustive list but rather examples of what are
currently available for use in automated affect recognition.

Beyond driving, specific situations like online learning and human-robot interaction can
reduce the state-space of possible behaviors and improve the accuracy of affective predictions.

207



In online learning, affect recognition systems can detect mind wandering and boredom from
dynamic face expressions, posture, and keystrokes [71, 77]. This is particularly useful because
the negative effects of mind wandering on learning outcomes can be counteracted with
interventions like just-in-time questions and re-reading [138, 431]. As a separate example
confined to people walking around their homes, mobile robots can use video of dynamic,
three-dimension gaits to predict a small set of affective-states – happy, angry, sad, and
neutral – significantly better than chance [454].

Depending on the situation, observers will appraise similar expressions as different emotions.
For concrete examples, an open mouth and furrowed brow may be perceived as expressing
different emotions in the context of a wedding, a job interview, a poker match, or a nego-
tiation. Emotion is such a powerful tool in negotiations that human negotiators actively
seek to deceive their human and machine counterparties by expressing emotions they do not
inwardly feel [148, 420, 421]. In a prisoner’s dilemma game, automated affect recognition
has been shown to be as accurate as players at appraising their opponents’ emotional state;
moreover, information on the state of the game improves the accuracy of the model beyond
what the model predicts based on facial expressions alone [277]

Previously, affect appraisal has been described as an automatic, effortless, and seamless
process that can be applied to a photograph of a facial expression [307] However, rapid affect
appraisal without reasoning about the context can lead to errors in both professional contexts
and simple tasks like appraising an emotion from a photograph (e.g. Figure 2 and Figure
3). In an experiment on reasoning about emotion, researchers found that affect appraisal
by participants of computer-generated facial expressions and associated situational cues are
better predicted by a Bayesian integration of the two signals (the facial expressions and
situational cues) than by either signal alone [475] Building upon these findings, researchers
have proposed an intuitive theory framework for predicting emotions based on Bayesian
inference over a graphical model incorporating an individual’s expressions and actions in
response to a particular situation [474] According to such a model, identical expressions and
behaviors could be appraised as completely different emotions depending on the situation,
which suggests that affect recognition systems will be most accurate when considering both
observable expressions and the associated context.

8.4.5 Temporal Dynamics

Imagine watching a friend listen to an audio recording of her favorite standup comedian. As
the stand-up comedian sets up the joke, the corners of your friend’s lips begin to rise. When
the comedian delivers the punchline, a large smile shoots across her face as she tilts her
head back in laughter. If you only saw a static photograph of her smile, you may wonder if
her smile was sincere or not, but with the perfectly synchronized temporal dynamics of her
expression with the comedic timing, you have strong evidence that her smile is expressing
sincere amusement. Research shows that temporal dynamics help humans discern between
genuine and fake smiles [356, 357] This is important because smiles do not always indicate
joy or amusement; in fact, researchers found pre-school children will smile after a failure
more often than after a success [555]
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A static photograph of a smile is much less informative than a video showing a smile’s dy-
namic trajectory. In an experiment where neither human annotators nor machine learning
models could discern between smiles of frustration or smiles of delight in photographs better
than random, a model trained to identify smile type via dynamic muscle movements from
videos could classify smile type significantly better than both random guessing and human
participants [282] In another experiment where participants recorded themselves watching
clips of the 2012 Obama-Romney presidential debate, researchers found that smirks followed
by smiles tend to express a different affective state than smirks without an accompanied
smile [413]. In a submission to the EmotioNet Challenge 2020, researchers demonstrated
that different facial action units converge at various speeds and as such choosing the optimal
checkpoint improves the recognition accuracy of facial action units [629]. While temporal
dynamics can improve recognition accuracy, recent research reveals a human tendency for
outside observers to overestimate a target individual’s emotional state when viewing se-
quences of images and videos, which suggests videos labeled by outside observers may in-
clude a biased amplification of emotion [232]. Despite the importance of temporal dynamics,
a recent review of research on automated facial expression recognition shows that only 4 out
of 17 publicly available datasets currently include videos or image sequences [382].

Beyond facial expressions, temporal dynamics play a role in recognition of body posture and
evaluating speech and conversation. For example, models can automatically recognize stu-
dents’ level of interest and boredom during learning experiences from posture dynamics [78,
442]. Likewise, models can consider varying emotion states and non-linguistic utterances
throughout the flow of a conversation to improve emotion classification accuracy [399, 507,
508].

Future emotions can be predicted by current expressions and emotions. Recent experimental
evidence supports the facial feedback hypothesis that facial expressions may influence the
subsequent emotions people feel, e.g., happy poses lead to happy feelings [127]. Likewise,
third party observers’ mental models of others’ emotional dynamics predict future emotions
based on current emotions much better than both chance and reductionary models based
only on valence or the holistic similarity between emotions [603].

Another component of temporal dynamics is recurrence and seasonality. People behave
differently in the morning versus night, weekdays versus weekends, summer versus winter,
and workday versus holiday. These temporal dynamics are often related to other categories
of context. For example, seasonality is intertwined with weather – it’s often cold in the
winter and hot in the summer, but it can be the reverse in San Francisco – and culture – the
weekend starts on Friday evening in the United States but it starts on Thursday evening in
Arabic-speaking countries.

8.4.6 Sociocultural Dimensions

In lab experiments, social and cultural context play a significant role in how humans per-
ceive facial expressions. For example, in an experiment presenting dynamic, virtual facial
expressions to participants, western Caucasian participants perceive six emotions (happy,
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sad, surprise, disgust, fear, anger) as a distinct clustering of facial movements while East
Asians do not [297]. In a follow-up experiment, participants perceived the same kinds of
facial expressions as pain regardless of their cultural heritage whereas participants perceived
facial expressions of orgasms differently depending on their cultural heritage [110]. Multi-
ple studies show East Asian cultures are more sensitive than Anglophone cultures to social
context when appraising emotion [406, 407]. In addition to cultural context, gender stereo-
types can make it difficult to disentangle facial expressions of emotion from gender such
that the same facial expression is perceived differently depending on whether it’s a man’s
or woman’s face [306]. Moreover, age matters; results from a recent experiment show older
adults are better at discerning emotionally incongruent information between face expressions
and physical gestures [213] The social context – whether one’s friends or other people are
around – changes how individuals express their emotions, and as such, it changes how ob-
servers should appraise expressions [136, 217]. In an experiment on appraising virtual facial
expression blends (e.g., shame-sadness), participants are often influenced by the expressions
on other virtual faces that appear to be socially interacting with the blended face [448].
Beyond lab experiments, there is plenty of evidence that people hide their emotions or ex-
press the opposite of what they feel, particularly at work in the midst of relationships with
power dynamics [237] While these are not an exhaustive list of sociocultural dimensions at
play in affect recognition, these examples help to identify the kinds of social and cultural
information that need to be considered when incorporating labels from external observers
for affect recognition models.

The relative social status of third-party observers to observed subjects may serve as an af-
fective prime that can influence how emotions are annotated. For example, people tend to
evaluate ingroup faces as more positive in a circumplex affect grid than outgroup faces [367].
Previously, we highlighted research showing that affective priming can bias third-party an-
notations of expressions [565]. If third-party observers claim to feel empathy towards the
subject whose emotion they are annotating, then a question arises whether the observer’s
emotion really matches the observed person’s emotions. In fact, perceived social status and
agency can mediate envy, pity, and feelings of anger versus sadness for another person’s
situation [467, 649]. Recent research on facial expression reactions to positive and negative
images reveal wide variation in facial action unit intensity between observers’ reactions to
the same images [273].

The data and labels upon which affect recognition models are optimized come with a social
and cultural context. Models trained with biased data on the basis of race and gender lead
to models that produce similarly biased outputs [74, 87, 95, 248]. If an annotator racially
stereotypes people as calm or angry, then this bias will likely appear in the algorithm’s
outputs. Without diverse representation in both the labeling community and the data,
biases are likely to be encoded in affect recognition algorithms and will correspondingly
bias predictions when the model is applied to new datasets. As more datasets are labeled,
researchers should be careful to include social and cultural information from annotators such
that label bias can be inspected for expected sociocultural biases. Recent research in fairness
and transparency in machine learning highlights several approaches for how to effectively
document information for future algorithmic auditing [87, 433, 518].

210



8.4.7 Personalization

Instead of optimizing for accuracy across a group of individuals, personalized machine learn-
ing optimizes for accuracy within each individual. People not only vary from others in how
they express affect, but they also vary from themselves over time. In one of the earliest iter-
ations of an automated affect recognition system, researchers discovered that there is more
variation in day-to-day physiological measurements of a single emotion than there is across
eight different emotions on the same day [501]. By normalizing physiological measurements
according to an individual’s daily baseline, researchers significantly increased the accuracy at
which the system recognized emotional states [501]. In a more recent example demonstrat-
ing the effectiveness of personalized machine learning, researchers applied multitask learning
to longitudinal data (surveys, electrodermal activity, sleep activity, smartphone usage, and
weather) to predict self-reported next-day levels of mood, stress, and overall health [106,
599]. By customizing for the needs of each individual, accuracy on predicting mood, stress,
and health increased from 66%, 68%, and 59% to 78%, 82%, and 82%, respectively [599]
These performance improvements mirror work on recognizing affect in paralinguistic speech
that exploits the speakers’ demographic features and personality characteristics to improve
recognition accuracy [664].

Personalized affect recognition models are designed to learn to recognize how individuals
express affect rather than how affect is expressed on average. In another recent example,
researchers designed a neural network architecture – a feature layer, a context layer (includ-
ing demographics, behavioral assessment scores, and information varying at the individual
layer), and an inference layer, which are illustrated in Figure 6 – for predicting valence,
arousal, and engagement of autistic children that outperforms a neural network architecture
that does not include a personalization component [539].

Individuals’ responses to an emotional cue or particular situation depend on personal ex-
perience. For example, individuals categorize verbal and nonverbal vocalizations as calm or
upset not according to a universal cut-off but rather depending on the recent distribution
of vocalizations they encountered [650]. Another example revealing how personal experi-
ence influences affect appraisal comes from developmental psychology research on children
who have suffered from abuse: abused children identify dynamic facial expressions of anger
faster than a control group and abused children over identify anger in facial expressions
conveying mixed emotions relative to a control group of children who under identify anger
in these same stimuli [505, 506]. In some cases, there may exist no more than a single
outside observer or small cohort of observers who can recognize an individual’s affective
state. In research on non-verbal or minimally-verbal individuals who express their affective
states in diverse, non-traditional, audible ways, researchers designed a personalized labeling
and machine-learning system to recognize non-verbal individuals’ affective-cognitive states,
e.g., frustration, delight, dysregulation, self-talk, request [453]. The labels were recorded in
real-world environments by caregivers who intimately knew the individuals. While affect
recognition models often benefit from labels produced by a diverse population of third-party
observers, this is an example where deep knowledge of the non-verbal individual’s commu-
nication style is essential for identifying the correct label. By applying transfer learning to
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the personalized labels, personalized affect recognition models can incorporate individuals’
specific idiosyncrasies such that generally unrecognized sounds can be automatically recog-
nized by a computer and communicated to caregivers who would otherwise not be able to
understand these non-verbal and minimally verbal individuals.

8.5 Conclusion

Context in automated affect recognition has been difficult to precisely define because context
refers to everything, past, present, and anticipated, that influences the elicitation and per-
sistence of emotion, its expression, display, interpretation, and measurement. Nonetheless,
we can develop a framework, which allows us to systematically evaluate the most salient
categories of context: the visual, olfactory, auditory, and scene-specific elements, how emo-
tions are labeled, measured, and represented, the activity and venue in which something
occurs, temporal dynamics, social and cultural factors, and individuals’ idiosyncrasies. By
explicitly naming each of these categories of context in Figure 1 and discussing the role of
each, we have presented a framework intended to help researchers more precisely consider
varying aspects of context in affect recognition. This framework is intended to be useful
for studies that involve gathering human provided labels on emotion, studies on develop-
ing models for automated affect recognition, and studies evaluating models for automated
affect recognition. In this article, we have shown how this framework can be used to orga-
nize many examples of recent research addressing contextual influences on automated affect
recognition.

As we continue to name and measure the categories of context, aggregating and organizing
the huge effort of many researchers, we build a language that enables us to precisely dis-
cuss variability arising in human-centered statistical learning. Moreover, these categories
highlight important generalizability considerations for affect recognition models and experi-
mental findings. Future models and experiments can frame their implications and limitations
with respect to the contexts they were and were not able to incorporate. There will likely al-
ways be unexplained variance that neither models nor third-party observers can account for.
Automated affect recognition does not require hard and fast rules or unique emotion signa-
tures, but rather, it infers or predicts an unobserved state based on patterns in expressions
and their associated contexts, which are becoming increasingly observable as technology
advances.
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Chapter 9

Identifying the Context Shift between
Test Benchmarks and Production
Data
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Abstract

Machine learning models are often brittle on production data despite achieving high accuracy
on benchmark datasets. Benchmark datasets have traditionally served dual purposes: first,
benchmarks offer a standard on which machine learning researchers can compare different
methods, and second, benchmarks provide a model, albeit imperfect, of the real world. The
incompleteness of test benchmarks (and the data upon which models are trained) hinder
robustness in machine learning, enable shortcut learning, and leave models systematically
prone to err on out-of-distribution and adversarially perturbed data. The mismatch be-
tween two datasets has traditionally been described as dataset shift. In an effort to clarify
how to address the mismatch between test benchmarks and production data, we introduce
context shift to describe semantically meaningful changes in the underlying data generation
process. In this paper, we identify three methods for addressing context shift that would
otherwise lead to model prediction errors: first, we describe how human intuition and expert
knowledge can identify semantically meaningful features upon which models make system-
atic errors, second, we detail how dynamic benchmarking – with its focus on capturing the
data generation process – can promote generalizability through corroboration, and third,
we highlight how clarifying a model’s limitations can reduce unexpected errors. Robust
machine learning concerns real-world model performance beyond benchmarks, and as such,
we consider three domains for machine learning applications – facial expression recognition,
deepfake detection, and medical diagnosis – to highlight how implicit assumptions in bench-
mark tasks lead to errors in practice. By paying close attention to the role of context in
a prediction task, researchers can design more comprehensive benchmarks, reduce context
shift errors, and increase generalization performance.1

9.1 Motivation

Dataset benchmarks offer a standard for comparing and evaluating the performance of ma-
chine learning models on real-world tasks like object detection [153], handwritten digit recog-
nition [154], image captioning [118], general language understanding [626], affect recogni-
tion [350], deepfake detection [168], medical diagnosis (e.g. for skin disease [146], pneumo-
nia [294], critical care [304], etc.), and many other tasks. As a standard for comparison,
dataset benchmarks have enabled rapid progress in computer vision and natural language
processing.

Despite intentions to create and curate data that match the real-world as closely as possible,
the dynamic, high-dimensional, combinatoric complexity of many real-world tasks is often
difficult to capture in a single static benchmark. Indeed, the development and evaluation of
machine learning models on benchmarks often suffer from a variety of historical, representa-
tional, measurement, aggregation, and evaluation biases [582]. These biases can be further
exacerbated by deployment biases where the task that a benchmark is intended to measure
differs from the real-world task [589]. Moreover, data for benchmarks are often collected

1This chapter is currently available as a pre-print [242].
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at scale with minimal oversight [540], which leaves data open to poisoning attacks [119],
leakage [313], multiple interpretations [235] and error [465]. As a consequence, machine
learning models that appear to be approaching (and sometimes surpassing) human-level
ability on a test benchmark will often error when shown out-of-distribution data [605]. In
other words, the reliance on static test benchmarks as metrics for projecting production
performance inflates the accuracy of machine learning model performance [602] and leaves
open the questions, “Can you trust your model? Will it work in deployment?” [385]

The meaning of out-of-distribution data depends on a task’s context. Two canonical ex-
amples of out-of-distribution data in object detection tasks are images of either a cow on a
sandy beach or a camel on a green pasture [32]. Today’s commonly used training data rarely
contain such animal-environment pairs, and as a result, machine learning models often learn
spurious correlations such as cloven hoofed mammals next to sand are camels but the ones
next to grass are cows. With a priori knowledge of potentially spurious correlations, one
approach for addressing this kind of model brittleness is to include auxiliary labels that
can serve as a causally-motivated regularization framework [400]. However, post hoc model
explanations are often ineffective for identifying previously unknown shortcuts [8] (though
both explanations via concept traversals [227] and identifying model failures as directions
in latent space via contrastive learning where images and natural language are embedded
in a shared latent space show promise [301]). In contrast, human intuition can identify
many out-of-distribution contexts on which spurious correlations (sometimes called shortcut
learning) may occur.

In one of the clearest examples of spurious correlations that lead to the benchmark-production
gap, researchers recreated ImageNet [153] and CIFAR-10 [353] with new images and demon-
strated that the state-of-the-art models’ performances are significantly lower on the recre-
ated versions of these datasets [523]. The benchmark-production gap is particularly salient
in this example because these two datasets have been the most commonly used benchmarks
for object recognition over the last decade. Recht et al 2019 explain that the drop in perfor-
mance does not appear to be explained by random sampling error, hyperparameter tuning
for optimizing performance on the original test set, or obvious changes in semantically mean-
ingful features, but instead, the performance gap appears to arise from subtle changes in the
data [523]. Object recognition is not as straightforward a task as it might appear at first
glance and involves edge cases arising from a variety of contexts.

In complex human-centered machine learning applications, a task’s context involves answers
to the following kinds of questions: What is the task? For whom is the task designed? When
and where does it take place? Why is it done? Are there any interventions happening that
might alter features and labels associated with the task? And how is the task measured?
The lack of clear answers to these questions indicates that the model and its evaluation
lack generalizability simply because it is not clear to what the model should generalize.
Likewise, clear answers to these questions without a corresponding diverse representation
in the benchmark dataset to evaluate performance leaves open the question of whether the
dataset generalizes to the contexts in which the model is intended to generalize.

As an example of a generalization failure in a human-centered machine learning application,
consider facial recognition. In Joy Buolamwini’s and Timnit Gebru’s algorithmic audit
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of facial recognition benchmarks and classifiers, the authors reveal the most commonly
used benchmarks for evaluating facial recognition accuracy were composed of images of
people with predominantly light skin. In other words, images of people with dark skin
were relatively out-of-distribution [87]. Furthermore, the Buolamwini and Gebru 2018 audit
presented a new benchmark to evaluate accuracy across intersectional identities. Commercial
gender classification models performed extremely accurately in identifying men with light
skin (with a maximum error rate of less than 1%) but incorrectly in women with dark skin
(with a maximum error rate of 35%) [87]. This large accuracy disparity reveals how failures
to generalize can be hidden by benchmarks that do not represent the diversity of the real
world. Research on machine learning applied to the diagnosis of skin disease reveals a similar
story: models trained to classify skin disease based on images of only light or dark skin are
more accurate in skin tones closest to the skin tones in the images in which the model was
trained [248]. These examples corroborate the notion that simply optimizing for predictive
accuracy with very large datasets can often misrepresent the true data generating process
and lead to systematic errors [285].

In other domains like affect recognition, an out-of-distribution context can be very task
specific. For example, spontaneous facial expressions can be out-of-distribution for facial
expression benchmarks that primarily contain posed expressions [177]. Likewise, images
labeled with emotions such as anger or surprise can be out-of-distribution for the same
benchmarks where happy and neutral labels are most common [382].

Machine learning models that have been trained on perceptual data are subject to systematic
failures on a special case of out-of-distribution data: adversarial perturbations. Adversar-
ial perturbations refer to minor changes in data that do not influence classification of the
data by humans but radically alter a model’s classification. As an example, researchers have
demonstrated that adding a small sticker to a stop sign can alter the classification of machine
learning models’ such that the models incorrectly classify the stop sign as a yield sign [85,
188]. Researchers have shown that one can generalize adversarial perturbations by attaching
a mainly translucent sticker on the lens of a camera [381]. Likewise, researchers have demon-
strated that adversarial perturbations can be applied to medical data e.g. noise or rotations
in medical images and text substitution in medical notes and reimbursement codes [202].
In general, adversarial perturbations demonstrate a lack of model robustness [292], lead to
model errors that reasonable humans would rarely make, and open the question: How can
we build models that are invariant to the same semantically meaningful features to which
humans are invariant? Training robust models with adversarial perturbations is a starting
point for aligning model performance more closely with human perceptions [610], but it is
often difficult to identify the comprehensive possibility space of adversarial perturbations.

What drives the systematic errors by machine learning models on out-of-distribution data?
The next section discusses two perspectives for characterizing the benchmark-production
gap: the distribution shift perspective and the context shift perspective. The rest of the
paper describes three methods for addressing context shift and considers three case studies
of context shift in facial expression recognition, deepfake detection, and medical diagnosis.
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9.2 Systematic Errors Arise from Context Shift and Lead to
Distribution Shift

The mismatch between two datasets (e.g. the train and test splits or a test benchmark
and production data) has been traditionally described as dataset shift [514]. More recently,
machine learning researchers have described the same concept as distribution shift. In order
to illustrate the growing attention to and evolving semantics of distribution shift, we present
the number of papers on Google Scholar containing both “machine learning” and “distribution
shift” (and other sub-components of distribution shift) in Figure 9-1.

Figure 9-1: Number of papers on Google Scholar from 2012 to 2021 for search queries
combining “machine learning” + the four most common terms for distribution shifts. For
context, “machine learning” returns 185,000 articles in 2012, 597,000 articles in 2019 (the
peak over the last decade), and 188,000 article in 2022. The terms “prior probability shift”
and “concept shift” return 445 and 1,050 papers over all time, respectively, when paired with
“machine learning”.

Distribution shift refers to the non-equivalence of the joint distributions between two datasets.
Formally, distribution shift describes the following equation P1(y, x) ̸= P2(y, x) where
Pn(y, x) is the joint distribution of labels, y, and covariates, x for a particular dataset,
n [439]. Based on Moreno et al 2012, the four subcategories of distribution shift include
covariate shift when the distribution of features changes but everything else remains the
same, prior probability shift when the distribution of labels changes but everything else
remains the same, concept shift (more commonly referred to as concept drift) when the
distribution of labels conditional on features changes but everything else remains the same,
and other distribution shift when none of the other three shifts hold but the joint distri-
butions between two datasets is different. We illustrate examples of each shift in Figure 9-2
to motivate intuition as to how the changes appear. Moreno et al 2012 formally specify the
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Figure 9-2: Illustrations of the four kinds of distribution shifts as defined in Moreno et
al. 2012 [439]. The spatial positions represents the feature space, geometric shapes and
colors represents the ground truth label, the solid boundary line represents the learned
representation of labels from the original sample, and the dotted boundary line represents
the learned representation of labels from the shifted sample. Most real-world distribution
shifts involve changes across features, labels, and the relationship between features and
labels, and as such would be characterized as “Other Distribution Shift.” The core problem
with the conceptual framework of distribution shift is that it is merely a symptom of changes
in data-generating processes - how data are created, collected, and curated – but not part
of the data-generating process itself. In order to improve model reliability and robustness,
a data-centric perspective takes into consideration the data generating process.
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four subcategories of distribution shifts as follows [439]:

• Covariate shift: P1(x) ̸= P2(x) but P1(y|x) = P2(y|x)

• Prior probability shift: P1(y) ̸= P2(y) but P1(y|x) = P2(y|x)

• Concept drift: P1(y|x) ̸= P2(y|x) but P1(x) = P2(x)

• Other distribution shift: P1(y, x) ̸= P2(y, x) where none of the above three shifts
applies.

In theory (and with synthetic data), these four subcategories of distribution shift can be dis-
entangled. However, production data, especially in human-centered applications, is subject
to changing distributions that are most often characterized by the catch-all “Other distri-
bution shift” sub-category. As such, the concept of distribution shift is a useful abstraction
for understanding why machine learning models trained on one dataset may not generalize
to the next but distribution shift is not sufficient for addressing a model’s generalizability.
Ultimately, distribution shift is downstream of the data generating process, which needs to
be taken into consideration to address model robustness.

Machine learning researchers have long combined data-centric and model-centric perspec-
tives in applications of machine learning (e.g. examining the hidden contexts that drive
distribution shift [637]), but there is no clear terminology for referring to changes in the
semantically meaningful features that influence data-generating processes. As such, we in-
troduce “context shift” to refer to changes in the semantically meaningful features that
influence data-generating processes. In order to address context shift and how it may affect
a model’s generalizability, researchers must begin to identify the dimensions that guide the
creation, collection, and curation of data.

Instead of distribution shift, which focuses on the differences in two distributions without
regard for the reasons behind the difference, context shift focuses on the dimensions that
drive differences in distributions. We can identify these dimensions by looking at sample
selection bias (e.g. the new dataset contains images of people from a demographic not
represented in the old dataset), adversarial perturbations (e.g. the new dataset contains
noise injections that are imperceptible to human perception but change model performance),
or non-stationarity (e.g. the new dataset contains images of smart phones post 2018 but the
old dataset only contains flip phones before 2010). While we list non-stationarity separately
from sample selection bias, non-stationarity can be considered as a special case of sample
selection bias where sample selection bias arises from the inability to sample from features
and labels in the future. We present Figure 9-3 to illustrate sample selection bias and
adversarial perturbations, which can be formally described as follows:

• Sample selection bias: P1(s) ̸⊂ P2(s) where s indicates x, y, or y|x

• Adversarial perturbations: P1(x) ̸= P2(x) but P1(y|H(x)) = P2(y|H(x)) where H(x)
represents human perception of the data

219



Figure 9-3: Illustrations of sample selection bias and adversarial perturbations with colors
representing the ground truth label, geometric shapes and spatial positions representing the
features, the top of the funnel representing the full populations, the bottom of the funnel
representing the samples drawn from the population, and the solid boundary line represent-
ing the learned representation of labels from the original sample. On the left, the population
contains upright stars, rotated stars, hexagons, rectangles, and circles, but the biased original
sample only contains circles and stars. The random sample contains much higher diversity of
features and relationships between features and labels. As such, the learned representation
fails in more than 50% of observations. On the right, the population contains upright stars
and blue circles. The original sample contains the same set of features, but the perturbed
sample includes both rotated hexagons and stars, which may not be immediately noticeable
to humans at first glance. Depending on the rotation, the learned representation misclassi-
fies the perturbed shapes. Both pairs of samples present changes in features and changes in
labels conditional on the features, which would make these examples of “Other Distribution
Shift.” This figure is intended to provide intuition for where the perspective of distribution
shift is inadequate and where the perspective of identifying semantically meaningful features
that influence how samples are curated and created may inform approaches for addressing
robustness in applications of machine learning.
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Unlike distribution shift, which can be measured between two datasets, context shift can
only be fully addressed by learning the entire population’s data distribution, the kinds
of changes that are and are not perceptible to humans, and how the population’s data
distribution changes over time and space. Outside of artificially constrained spaces like
synthetic datasets or games, access to the entire populations data distribution (or the rules
governing the distribution) across space and time is rare. Nevertheless, people generally
have intuition and the ability to reason about data distributions of combinatoric contexts
that they might never experience. In fact, cognitive science research shows that intuitive
reasoning about statistical distributions (e.g. statistical power analysis [490]) begins early
in childhood.

By addressing the benchmark-production gap problem from the data-centric perspective of
context shift as opposed to distribution shift, we can consider three approaches for increasing
generalizaibility: human intuition and subject matter expertise in machine learning model
development, dynamic benchmarking in the evaluation of machine learning models, and
limitations statements that clarify how a machine learning model will generalize.

9.3 Addressing Robustness with Human Intuition and Exper-
tise

Over the last few years, researchers have been developing data-centered frameworks to of-
fer guidance for breaking down the data generating process into relevant component parts
that reveal where context shift may lead to benchmark-production performance gaps. These
frameworks include Data Statements for Natural Language Processing [58], The Dataset Nu-
trition Label [279], Model Cards for Model Reporting [433], Datasheets for Datasets [222],
Closing the AI accountability gap [517], The Ethical Pipeline for Healthcare Model Develop-
ment [114], The Clinician and Dataset Shift in Artificial Intelligence [203], and Interactive
Model Cards [134]. Likewise, meta-frameworks offer guidance for ensuring data documenta-
tion frameworks are useful and actionable [274].

As a heuristic for human-centered machine learning applications, teams of conscientious,
creative, and skilled model developers, data engineers, and subject matter experts may find
it useful to identify a first-order, non-exhaustive list of dimensions on which context shift is
likely to occur. This list of dimensions depends largely on the context and the degree to which
the data are subjective, representative, and missing [443]. In ethnographic interviews with
machine learning engineers, researchers find that engineers often address changes in context
with “elaborate rule-based guardrails to avoid incorrect outputs” [562]. Recent examples
of semantically meaningful dimensions that have been demonstrated as useful for evaluat-
ing robustness in applied machine learning include skin color in face recognition [87] and
dermatology diagnosis [146, 248], gender in facial attribute recognition [631], intersection-
ality in human-centered applications [628], background scenery for affect recognition [350],
number of people in a video for deepfake detection [243], number of chronic illnesses for
algorithmic healthcare risk prediction [470], data artifacts like surgical markings [643] or
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clinically irrelevant labels [468] for medical diagnosis classification, patients’ self reports of
pain for quantifying severity of knee osteoarthritis [503], and image similarity characteristics
for pathologists to disambiguate between machine learning and user errors [93].

Knowledge elicitation for identifying semantically meaningful features is not a solved prob-
lem, but helpful questions that may guide the identification of potential context shifts in
complex, human-centered machine learning applications include (and are not limited to):
who are represented in the data and as annotators of the data, when and where is the data
collected, how do social, geographical, temporal, technological, aesthetic, financial incen-
tives and other idiosyncrasies influence the creation of the data, and why the data is curated
as it is. Knowledge elicitation has been historically ill-defined in artificial intelligence ap-
plications [212], and recent work developing taxonomies for knowledge elicitation helps to
formalize the process and increase transparency along the way [117, 324]. In a specific exam-
ple of machine learning applied to radiology, Lebovitz et al 2022 reveals how subject matter
experts (radiologists) currently evaluate machine learning based decision support tools not
based on the tools’ “know-what” (accuracy on a holdout set) but the tools’ “know-how” (qual-
itative performance as judged by reaching reasonable level of certainty in situated contexts
relative to professional standards) [368]. By asking experts to evaluate model performance,
researchers can begin to fill the evaluation gaps in machine learning practice [286] that have
emerged due to the machine learning field’s focus on accuracy on benchmark datasets [68].

Another expert intuition guided approach to closing the benchmark-production gap involves
developing test benchmarks with adequate diversity in the data along the contextual dimen-
sions upon which human intuition and expertise suggests model performance is most likely
to vary. Recent examples of benchmark datasets working towards this goal are BREEDS:
Benchmarks for Subpopulation Shift [551] and WILDS: A Benchmark of in-the-Wild Distri-
bution Shifts [343], which includes labels for relative contexts and sub-populations for the
explicit examination of context shifts.

9.4 Addressing Robustness with Dynamic Benchmarking

A second approach to addressing the benchmark-production gap is to transform the practice
of evaluation from static benchmarks to dynamic benchmarks where models’ performance is
not evaluated on a single dataset, but rather continually evaluated on datasets produced via
well-specified, quality controlled data generation processes. Examples of this dynamic bench-
marking include “Beat the Machine” [40] (designed for any prediction tasks and evaluated
on specific tasks including detecting hate speech and adult content) and dynabench [328]
(designed for evaluating natural language processing tasks). For general development of
dynamic benchmarks, data generation process desiderata should include specifying the fol-
lowing dimensions of a dynamic benchmark:

• Prediction task: What are the input features and output labels? For example,
inputs may be images and outputs may be lists of objects or inputs may be described
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more specifically as images of skin lesions photographed by dermatoscopes and outputs
may be classifications of benign and malignant by board-certified dermatologists in the
United States. It is important to be careful that the task matches the expected goal
because unexpected mismatches between tasks and goals are relatively common [323,
444].

• Ground truth annotation arbitration: Who has the authority to annotate the
data? How do experts differ from crowdworkers or an algorithm [246]? How should
the data be annotated? How should inter-annotator disagreement be represented?
What categories should be included?

• Data inclusion and exclusion criteria: What are the possible data sources? How
are data curated from these sources? What is the data distribution of categories and
subcategories? What are the quality constraints?

• Benchmark size and shape: What is the minimum size of a batch of data to serve
as a benchmark? How should benchmarks by different groups for the same task be
combined together?

These desiderata enable the development of dynamic benchmarks that further enable quan-
titative evaluation of model robustness via corroborated accuracy, which is the distribution
of accuracy scores across dynamic benchmarks. Rather than simply evaluating a model on
a single or a few static test benchmarks, we might consider a well-corroborated model to
be one that meets two criteria: first, it is reasonably available for evaluation, and second,
all attempts to uncover systematic errors in well-specified contexts reveal no significant ac-
curacy disparities. The practice of dynamic benchmarking could be particularly relevant
for addressing the AI Knowledge Gap [186] characterized by the disparity between the large
number of machine learning models and the small number of studies evaluating these models’
performance. Furthermore, dynamic benchmarking can be combined with benchmark task
misalignment methodologies [291, 609] to assess how aligned (or misaligned) model predic-
tions are with human annotations and considering diverse examples that bring transparency
to the ethical implications and societal impact of model development [488].

The transition from static benchmarks on a particular instance (or set of instances) to
dynamic benchmarks on data generation processes defined by explicit desiderata may be
useful for addressing the fundamental issue of construct validity that arises in singular,
static benchmarks [517].

9.5 Addressing Robustness by Clarifying a Model’s Limita-
tions

A third approach to reducing the benchmark-production gap is to appropriately specify the
contexts in which a model is expected to work via a limitations section [577].
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To clarify domain-specific limitations driving the benchmark-production gap, we consider
implicit assumptions that lead to a context shift in three real-world computer vision tasks:
facial expression recognition, deepfake detection, and medical diagnosis.

9.6 Case Studies for Addressing Context Shift in Applied Ma-
chine Learning

9.6.1 Facial Expression Recognition

In the field of affective computing, facial expression recognition (FER) is a task to classify
human facial expressions with affective labels [126, 382], which can be a useful component in
designing human-AI interactions with computational empathy [245, 479, 500]. Model-based
FER is similar to how humans recognize the emotions of others (called empathic accuracy in
affective science [289] and emotion reasoning in developmental psychology [538]) except that
FER is based solely on facial expressions, whereas affect recognition can include information
about someone’s gestures, language, tone, physiological measurements, and the long-tail of
context, which can include factors such as the temperature outside, the social relationship
between two individuals, what happened the day before, and more.

Consider an example from relatively recent research [436] where a standard neural network
architecture, AlexNet [354], is trained on a large number of images of spontaneous and
posed facial expressions to classify images into seven categories (anger, disgust, fear, hap-
piness, sadness, surprise, and neutral) and achieves accuracy scores ranging from 48.6% in
SFEW [160] to 56.0% in MMI [482] to 56.1% in DISFA [410] to 61.1% in FER2013 [233] to
77.4% in FERA [44, 616] to 92.2% in CK + [393] to 94.8% in MultiPie [249]. While this
model’s accuracy is significantly better than random guessing, which would be 14.2%, it
varies dramatically depending on the chosen benchmark dataset. How should we interpret a
performance gain of 21.9 percentage points on one dataset and an average performance gain
of 3.5 percentage points on the other 6 datasets in an alternative network architecture? How
should we interpret the model’s ability to achieve higher accuracy scores than non-neural
network methods on three of the seven benchmark datasets? What does the distribution
of performance tell us about how this model would perform on real-world production data?
There is no clear answer to any of these questions, yet an implicit assumption in the well-
cited, peer-reviewed publication of this FER paper is the slightly improved performance on
several benchmark datasets appears to mark a contribution to the field of facial expression
recognition. This assumption has the potential to lead to another more pernicious and mis-
taken assumption: the role of contextual features for real-world performance can be ignored
when assessing the state-of-the-art methodology in applied problems like FER.

Clearly, models can learn facial expression features that map to human annotations for a
handful of emotion categories to classify images at significantly better than chance rates.
But, it is not reported nor clear how changes in lighting, head pose, occlusion, skin tone,
ethnicity, age, gender, and background scenery influence both the model’s performance
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or human annotations. It is also underexplored how well FER models would perform if
humans of diverse cultures annotated these images. Likewise, it is unclear how the model
would perform on more fine-grained emotion categories [132] or labels based on affective
dimensions like valence, arousal, and dominance. Furthermore, in many real-world settings
where people may feign smiles to appease their managers, cry to express joy, or appear
neutral to hide a winning poker hand, the perspective of outside observers may be very
different than the perspective of close friends or individuals themselves. While these are
not an exhaustive list of contextual features, these represent intuitive, first-order contexts
for conducting algorithmic audits, developing future benchmark datasets with these labeled
contexts, and adapting models to handle these dimensions. In a recent study, researchers
show that including workplace activity and context data improves alignment of FER with
self-reported emotions [320]. While researchers build the next version of contextualized
dynamic benchmarks, other researchers who are focused on developing models should at the
very least include caveats in their papers about the likely contextual dimensions that may
affect performance.

9.6.2 Deepfake Detection

As a second case study of context shift in real-world applications of computer vision, we
consider deepfake detection. Deepfakes are videos that have been manipulated to make
someone appear to do or say something they have not said [75]. These types of manipulation
can be qualitatively characterized as face swapping where two people’s faces are swapped,
head puppetry where facial landmarks are adjusted to make someone appear to be speaking,
and lip-syncing where an individual’s lips are moved in sync with the phonemes from an
external audio track [397].

The largest deepfake detection benchmark dataset to date is the Deepfake Detection Com-
petition Dataset (DFDC) [166, 168], which consists of 128,154 videos based on performances
by 960 consenting actors representing diversity across sex and ethnicity. However, Groh et
al 2022 point out,“Unlike viral deepfake videos of politicians and other famous people, the
videos from [this benchmark dataset] have minimal context: These are all 10 [second] videos
depicting unknown actors making uncontroversial statements in nondescript locations” [243].
This deepfake test benchmark is designed to evaluate algorithmic performance in identifying
videos that have (and have not) been manipulated by seven synthetic techniques.

But, the real-world deepfake detection problem is not simply identifying whether one of
seven synthetic techniques has been applied to a video. Instead, the real-world problem
is identifying videos that have been algorithmically altered to impersonate innocent people
and deceive the viewer. This problem is more than just a computer vision problem; it is
a deception detection problem that involves both searching for artifacts that reveal that a
manipulation has occurred and applying prior knowledge and critical reasoning to assess the
likelihood that the video has been fabricated.

The DFDC does not include politicians or any scenes of news conferences or people speaking
to a large audience. If we assume that harmful deepfakes will involve these kinds of contexts
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(like a deepfake of President Volodomyr Zelensky that appeared in March 2022 [72]), then it
is important to evaluate models on videos with these kinds of dimensions, such as those from
the Presidential Deepfakes Dataset [247, 550] and the Protecting World Leaders against
Deepfakes Dataset [13]. When Groh et al 2022 examined the leading state-of-the-art for
detecting DFDC videos on deepfakes of Kim Jung-un and Vladimir Putin, they found the
the leading model predicted a 2% and 8% likelihood these videos are deepfakes. While
failure on two examples is only an anecdote, this failure speaks to an important need:
diverse test benchmarks that cover the first-order dimensions where human intuition and
expertise suggests context shift is most likely to occur.

9.6.3 Medical Diagnosis

As a third case study of context shift, we consider medical diagnosis in store-and-forward
teledermatology settings where clinical data are collected at one site and sent electronically
for evaluation at another site. Recent research on machine learning applied to skin disease
classification has demonstrated the human expert-level performance of models in a number of
specific tasks [187, 388]. However, it is unclear how these models will perform in production
especially on people with dark skin because the first paper does not describe the distribution
of ethnicity or skin tone in the evaluation benchmark [187] and the evaluation benchmark in
the second paper contains only 2.7% of people with the second darkest of the six Fitzpatrick
Skin Types (FSTs) and 1 person with the darkest of the FSTs [388]. Given the accuracy
disparities that appeared across skin types in facial recognition, expert intuition suggests
that systematic errors are likely to also appear in skin disease classifiers.

In fact, empirical research corroborates this intuition [248], and the Diverse Dermatology
Images (DDI) dataset [146] reveals that state-of-the-art skin disease classification models
make systematically more errors on dark skin than on light skin. The DDI represents a
more comprehensive benchmark than previous datasets, and as a result, the DDI exposed
errors that should guide and motivate the future development of machine learning models
towards more robustness. However, the DDI is not perfectly comprehensive; the dataset is
de-identified for privacy reasons and lacks free text clinical notes and other information that
physicians would acquire via an in-person examination [146]. Given that many skin diseases
appear similarly and expert diagnoses are based on clinical history and non-visual features,
expert intuition would expect, once again, that systematic errors lurk in the state-of-the-art
machine learning models for store-and-forward skin disease classification.

9.7 Towards Robustness in Applied Machine Learning

Supervised machine learning models are very good at identifying statistical regularities in
a given dataset but tend to err on out-of-distribution data that may arise from sample se-
lection bias, adversarial perturbation, or nonstationarity. On the other hand, humans can
be quite good at identifying contextual examples of out-of-distribution data. By combining
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the strengths of machine learning models with human intuition and expertise, early career
ancient historians can quickly restore and date ancient texts [37], content moderation teams
can more accurately distinguish between real and fake videos [243], and general practition-
ers can more accurately diagnose skin conditions from images [300] (although AI advice can
also mislead experts; see [5, 221, 299, 608, 615]). In fact, initial evidence suggests that
human intuition is fairly accurate in predicting model misclassifications on common object
detection tasks [667]. The integration of machine predictions with human decisions in col-
laborative decision making systems may be the most immediately effective way to avoid
errors from context shift. The three case studies suggest the following advice for applied
machine learning researchers:

• Human intuition and subject matter expertise can be useful for identifying
first-order dimensions where context shift is likely to occur. These dimensions can
inform the write-up of a limitations section, the development of a test benchmark, the
collection of new data, or changes to model architecture.

• The practice of dynamic benchmarking mirrors the real-world more closely than
static benchmarking and can enable insights from anywhere into systematic model
failures.

• The inclusion of limitations statements in peer-reviewed research can increase
model generalizability by simply clarifying the contexts in which a model is expected
to generalize or not.

Promising future research directions for developing robust machine learning models under
distribution shift involve the following iterative process: first, identify missing contexts in
test benchmarks, second, collect data that contain those missing contexts, and third, adjust
the model accordingly. Researchers can begin to identify missing contexts by collaborating
with human experts who may be able to identify first-order drivers of context shift on a
task-by-task basis. Similarly, researchers can further identify missing contexts by evaluating
models against data generation process desiderata rather than a single or a few datasets.

Finally, one of the most effective solutions for addressing the benchmark-production gap is
for researchers to clearly communicate the contexts in which a model has been evaluated
and the contexts in which the model’s performance is unknown.
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Chapter 10

Conclusion
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Overall, this dissertation examines human-AI collaboration across a variety of domains and
tasks via (1) large-scale digital experiments (Chapters 2, 3, 6, and 7), (2) algorithmic audits
(Chapters 4 and 5), and (3) proposed frameworks for addressing context in applied machine
learning (Chapters 8 and 9). The science of human-AI collaboration is concerned with the
rigorous evaluation of human, machine, and hybrid problem solving approaches and the
art of human-AI collaboration is concerned with the design of hybrid systems, intuition for
identifying systematic errors of humans and machines, and consideration to which contexts
a system (human, machine, or hybrid) should attend. The goal of this dissertation has been
to build an understanding of augmented intelligence, communicate this understanding as
explicitly as possible, and address real-world problems in all their complexity along the way.

Chapter 2 introduces an experimental paradigm for comparing human performance (individ-
ual accuracy and crowd wisdom), machine performance, and AI-assisted human performance
in deepfake detection. In the highly focused task of distinguishing whether a minimal con-
text video has been manipulated by a deepfake algorithm or not, we find crowd wisdom
is comparable to the leading algorithm. Moreover, we find that AI-assisted human perfor-
mance is more accurate than the performance of humans or the leading algorithm alone, but
we find this overall performance comes with a major caveat: AI-assisted human performance
is significantly worse than human performance without AI assistance when the leading algo-
rithm is wrong or equivocal. We demonstrate that algorithm anchoring – the tendency
of humans to update towards algorithms’ predictions whether the predictions are correct or
not – extends to instances where the algorithm makes relatively surprising and systematic
errors (e.g. the canonical deepfake videos of Kim Jung-un and Vladimir Putin). Notably,
the leading algorithm is only trained to detect manipulations to the pixels in videos whereas
humans could identify these political leader deepfakes by any number of contextual clues.
In order to further understand how people use context to distinguish between authentic and
fabricated media, Chapter 3 examines how people incorporate the visual-audio cues versus
the content of what is said in authentic and fabricated political speeches by US presidents.
It is important to note that in these deepfake experiments, participants are generally not
experts and are far from certain about what is a deepfake and what is not, which may leave
them to be more susceptible to algorithm anchoring than experts would be.

Chapter 6 adapts and extends the experimental paradigm of Chapter 2 for store-and-forward
teledermatology diagnosis. In the diagnostic accuracy task, we find that generalists are much
more likely to accept algorithmic advice than specialists, which provides further evidence
that algorithm anchoring is moderated by human expertise. However, in contrast to hu-
man performance with AI-assistance in the deepfake detection task in Chapter 3, Chapter 6
demonstrates that the physicians rarely override a correct diagnosis with an incorrect sug-
gestion by the AI support system. One potential explanation for resilience to algorithmic
anchoring is the positive asymmetry (physicians including correct suggestions and ignoring
incorrect suggestions) is AI diagnostic assistance in dermatology encourages mental explo-
ration: there are 1,000s of dermatological conditions, which are not necessarily the first
condition to come to a physician’s mind but relatively easy for a physician to rule out if
the image does not look like the suggested condition. One potentially surprising finding
in Chapter 6 is the low performance of specialists (specialists are nearly twice as accurate
as generalists but only 38% accurate overall), which reveals the importance of contextual
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information for dermatology diagnosis. In particular, different skin diseases can appear vi-
sually similar and a physician would distinguish between these diseases with more in-depth
visual information, non-visual information like a patient’s clinical history or recent activi-
ties, or how the condition plays out over times and in response to different interventions.
As practitioners begin to design human-AI collaborations in the real-world, it becomes very
important to help physicians (or whomever the AI assistance is designed for) recognize what
information the algorithm has access, so they can build a mental model for how they expect
an algorithm to perform and identify the contexts where the algorithm is susceptible to
systematic failures.

Chapters 4 and 5 reveal where systematic failures of algorithms lurk and present insights
for promoting transparency in machine learning applied to clinical dermatology. In an
effort to reduce systematic errors in applied machine learning, Chapter 8 presents a frame-
work for identifying relevant contexts in affect recognition tasks and Chapter 9 discusses
the importance of human intuition, expert knowledge, dynamic benchmarking, and clearly
communicating a model’s capabilities.

Drawing on insights from affective computing, chapter 7 examines how AI assistance could
augment human performance without providing any strategic information and only offering
empathetic support. In Chapter 7, we enumerated empathetic responses to players’ potential
actions in Wordle and evaluated players’ performance objectively based on their win-rate
and entropy reduction of their guesses, which allowed us to evaluate the effectiveness of the
empathetic responses. We find that the empathetic agent counteracts the negative effects
of anger on human problem solving, which offers initial evidence that digitally mediated
expressions of empathy can objectively improve human problem solving in a single task.
The natural follow-up question is to which contexts does this generalize; when, where, how,
and why does digitally mediated expressions of empathy influence human problem solving?

10.1 Future Work

This dissertation pulls back the curtains on the complexities of building and evaluating
hybrid human-AI decision making systems for addressing real-world problems. With the
insights (and proverbial curtains!) drawn from this dissertation, the stage of human-AI
collaboration is set for building principles of human-AI collaboration via rigorously exam-
ining performance in “model organisms” and carefully considering how context influences
performance.

10.1.1 Robustness in Applied Machine Learning

In the field of machine learning, the current paradigmatic question for addressing robustness
and generalization can be paraphrased as followed: “How can we design machine learning
models that are (a) robust to adversarial attacks, (b) adverse to distribution shifts, (c)
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robust to dataset biases, and (d) interpretable and transparent?” In Chapter 9, I propose
a paradigm shift that would integrate human capacity in applied machine learning such
that context is incorporated into the common task framework of evaluating performance on
benchmarks. Future work may explore how to create systematic, dynamic benchmark tasks
where the data is left unspecified but the data generating process is precisely specified. This
shift is particularly timely because many models often appear to be performing at human-
level when evaluating on select, static benchmarks but countless examples reveal that models
fail in ways that reasonable humans would not.

10.1.2 Designing Algorithmic Assistance Interfaces

In Chapter 6, we present evidence that the order in which choices to include or ignore al-
gorithmic advice are presented to humans influences what humans choose. What are the
principles that guide the design of interfaces for algorithmic assistance? Future research
questions abound in how interface designs will influence human-AI collaboration. For ex-
ample, how should designers select the examples in algorithmic assistance tutorials to help
users build mental models of machine performance? When should AI assistance be shown
before human input and when should AI assistance be reserved for after a human finalizes
their initial judgment? Should AI assistance ever create friction to force a human to delib-
erate longer, and if so when? How should an interface effectively communicate algorithmic
uncertainty and data attributes like quality, relevance, similarity to past examples, and out-
of-distribution status? What information should the algorithmic assistance provide? For
example, in store-and-forward dermatology, models are often trained to predict the diagnosis
but a potentially more effective model and interface might provide classifications of an image
by its visual features e.g. heliotrope signs, gottron’s papules, bullseye rashess, and other
known visual signatures of skin disease. While some past research has touched on aspects
of each of these questions, open questions remain on what a succinct list of principles looks
like and the boundary conditions of when and where these principles apply.

10.1.3 Misinformation and Synthetic Media

How can technology assist people in distinguishing authentic photographs, audio, and video
from synthetic media online? In the future, it is possible that synthetic media generated
by AI will be perceptually indistinguishable from media recorded by people. In fact, some
synthetic media appears hyperrealistic today. In a future where multimedia is no longer
considered reasonable evidence of indexicality, we may treat image-based evidence similarly
to how we treat something we read. While this future of perceptually indistinguishable
media is possible, the near term future is more likely to involve intermittently perceptually
indistinguishable media in certain contexts. Future research on deepfake detection and the
effects of synthetic media may center around the question of when and how people trust
media. For example, how do people calibrate what media to believe? How realistic is
synthetic media, and how can we evaluate the photorealistic capacities of an algorithm?
What does a framework look like that clarifies the contexts (both within an image and
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outside an image) in which synthetic media is perceptually indistinguishable from human
recorded media and the contexts where synthetic media often leaves perceptual artifacts?
What are the tell-tale signs of physical implausibilities and biometrics that can help people
identify future synthetic media? How do technologies to track the source and provenance
of media influence the spread of synthetic media? How should law and content moderation
policies address synthetic media? How will centralized (newspapers, television channels)
versus decentralized (social media) media institutions evolve as synthetic media evolves?

10.1.4 Medical Diagnosis and Physician-Machine Partnerships

Future directions in physician-machine partnerships may address the following questions:
How do physicians build intuition about clinical decision support tools based on AI assistance
over time? How accurate are physician-machine partnerships across diverse characteristics
in a longitudinal settings? How do physicians’ calibrations of the AI assistance change
over time? How does this depend on level of expertise and the presence of algorithmic
bias? How would the results in Chapter 6 generalize to an experimental set-up consisting
of in-person clinical visits? How would second opinions from specialists or other generalists
change the results? How could medical organizations triage patients most effectively based
on the dynamics of physician-machine partnerships?

10.1.5 Empathy and Digitally Mediated Expressions of Empathy

The results from Chapter 7 lay the groundwork for a research program on the design and
implications of digitally mediated expressions of empathy. Research questions on empathy
include: How to systematically evaluate digitally mediated expressions of empathy (e.g.
text-based conversations)? How do contexts (e.g. peer support, therapy, customer service,
etc.) influence the evaluation of digitally mediated expressions of empathy? How can we
guide humans and large language models towards empathetic communication? When is
digitally mediated expressions of empathy helpful in real-world applications? How can dig-
itally mediated expressions of empathy go awry? What are the ethics of designing digitally
mediated expressions of empathy?

10.1.6 Generative AI

This dissertation focused on AI assistance in the form of discriminative machine learning
models and a wizard of oz model for digitally mediated expressions of empathy, and future
work may consider generative AI including generative computer vision (e.g. diffusion models,
generative adversarial networks, and autoencoders), large language models (LLMs), and
text-to-speech. While we examined the detection of deepfakes, the production of deepfakes
is one example of human and generative AI collaboration. For example, the Tom Cruise
deepfake mentioned in Chapter 3 involves an autoencoder, a visual effects artist, and a
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look alike actor. The expert visual effects and acting are key components in producing
a deepfake that appears hyperrealistic. Future research may consider how to characterize
the quality of generative AI and how to characterize the marginal quality improvements in
human-generative AI systems. Likewise, future research may consider evaluating the quality
of diffusion models across contexts and human-AI collaboration depth. Diffusion models can
transform a text prompt into a relatively high quality image in less than a second (though
quality is remains imprecisely defined), but high quality images often take minutes to hours
to curate as the human iterates through prompts and variations on the same prompt. A
rigorous evaluation of the quality of generated images and the time it takes to produce these
images can provide insight into the future applications of diffusion models.

Similarly, rigorous evaluations of LLMs and LLM assistance to humans is another opportu-
nity for future work. Where can LLMs be effective in coaching humans? Where and why
do LLMs fail in improving human performance? How do statements produced by LLMs
influence human beliefs? How do LLMs transformed into perceptually believable speech by
text-to-speech algorithms influence human beliefs? And, how can we design benchmarks
that demonstrate LLMs’ capacity (or lack thereof) to solve general problems rather than
showcase performance that may be contaminated by memorizing the answers?

10.2 Parting Showcase of Human-AI Collaboration by Rewrit-
ing the Abstract in Iambic Pentameter

As a parting showcase of human-AI collaboration in writing verse, I prompted an LLM to
rewrite the abstract in iambic pentameter and copied the results below on the left. Techni-
cally, iambic pentameter has ten syllables per line, and the majority of lines in the prompt
generated abstract do not have ten syllables. Despite the wrong number of syllables for most
lines, the generated verse still feels a bit like verse because the rhyming scheme resembles
the heroic couplets that often appear in iambic pentameter verse. In the right column, as a
showcase of the iterative potential of human-LLM collaboration, I edited the LLM-produced
abstract verse to strictly adhere to iambic pentameter and evoke more precise meaning.
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Prompt Generated Abstract

Though AI seems to outperform
Expert humans in tasks the norm
When deployed, it sometimes fails
And leaves us with unexpected tales

Humans, on the other hand
Adapt to new contexts with ease, unplanned
Their strengths and flaws in contrast to AI
Motivate research question: where and why

Can human-AI hybrid systems lead
To surpassing performance, to succeed
This dissertation seeks to answer how
And when we should rely on the now

Experiments in three domains are run
To shed light on the question, one by one
Deepfake detection, dermatology diagnosis
And Wordle, creative problem solving for theosis

In deepfake detection, we explore
Similarities, differences, performance galore
Between human and machine vision, trade-offs we find
In hybrid systems, AI and humans combined

Dermatology diagnosis, non-visual info in demand
Disparities across skin colors, we understand
Decision support from a fair deep learning system
Can increase accuracy and reduce disparities, an important wis-
dom

Wordle shows us how digitally mediated empathy
Counters the negative effects of anger, a key
Algorithmic audits on clinical dermatology images too
Reveal systematic errors, and how context influences what’s true

These contributions, empirical evidence in hand
Guide us in designing human-AI collaborations more grand
And provide a framework for when and where
Hybrid systems should rely on human problem-solving care.

Prompt Scaffolded Abstract

Although AI appears to outperform
Expert humans in games and tasks the norm,
When deployed, the algorithm often fails
And leaves us with – oops – unexpected tales!

Humans, sweet earthlings, on the other hand
Adapt to new contexts with ease, unplanned.
Their strengths and flaws in contrast to AI
Motivate research questions: where and why

Can human-AI hybrid systems lead
To surpassing performance, to succeed?
This dissertation seeks to answer how
And when to rely on or disavow.

Experiments in three domains are run
To shed light on the question, one by one:
Deepfake detection, derm diagnosis
And Wordle, solve for apotheosis!

In deepfake detection, we do explore
Similarities, diffs, results galore
Between human, machine, hybrid combined
Systems involve real tough trade-offs we find.

In derm, non-viz info is in demand;
Disparities put on the witness stand;
Fair clinical diagnostic support
Builds accuracy and doctor rapport.

When it comes to games, we find empathy
Counters the effects of anger, a key;
Algo audits on derm images too;
Plus how context influences what’s true.

These contributions, evidence in hand,
Guide us in designing collabs more grand
And provide a framework for when and where
Hybrid systems should rely on human care.
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Figure 10-1: Photo of extended family visiting the “Detect a Fake” exhibit at the MIT
Museum, which is based on the experiments in chapter 2.
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