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Abstract

Protein-DNA interactions play a critical role in various biological processes, such as
gene regulation and genome maintenance. Designing protein backbones specifically
tailored for DNA binding remains a challenging task, requiring the exploration of
novel computational approaches. This thesis presents a novel framework for gen-
erating protein backbones that exhibit affinity for DNA molecules. The proposed
methodology leverages Graph Neural Networks (GNNs) for encoding protein struc-
tures and diffusion models for conditional sampling. The GNNs capture the intricate
relationships between amino acids in the protein backbone, allowing for the effective
encoding of structural information relevant to DNA binding. The diffusion models
enable the conditional generation of protein backbones, given specific DNA sequences
as input. The thesis proposes a Transformer architecture and provides a practical way
to diffuse from its protein encoding. The findings from this research have significant
implications for the design and engineering of DNA binding proteins, facilitating ad-
vancements in fields such as synthetic biology, gene therapy, and drug development.
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Chapter 1

Introduction

1.1 Background

Targeted genome engineering is a broadly applicable tool in therapeutic design, plant

and animal research, and many other biomedical purposes. For example, Sickle Cell

Disease (SCD) is caused by a single DNA mutation in the 𝛽-globin gene HBB [1].

This mutation is associated with an inversion of one base pair in the sixth codon of the

𝛽-globin chain such that the translated amino acid, originally Glutamine is replaced

by Valine [2]. Recent in-vivo gene therapy solutions which rely on the CRISPR-Cas9

system show promising results in targeting this locus and cure SCD on mice [3]. One

of the main challenges is to predetermine the precise region in a genome and guide

the cleaving protein to it. Targeting the desired DNA region is normally the task

of the binding domain in the synthetically engineered nuclease. Different approaches

for genome engineering protein design explore various methods for constructing pro-

grammable binding domains, and specificity is reached by binding to longer DNA

regions.

1.2 Natural Protein-DNA Binders

Proteins that bind to single-stranded and double-stranded DNA exist in nature and

function in various ways. For instance, transcription factors (TFs) are protein molecules
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that bind to specific DNA sequences and modulate the initiation or rate of RNA syn-

thesis by recruiting or blocking the RNA polymerase complex, thereby playing a

crucial role in the regulation of gene expression and transcriptional control in the

cell.

Transcription factor proteins have high binding affinity to specific DNA sequences

in the promoter part of the gene, and thus when their concentration in the cell

increases, they inhibit more promoter and repress the gene transcription to mRNA.

This process is commonly known as feedback inhibition. TFs can function as either

repressors or operators depending on their structure. The genome engineering field

seeks to explore synthetic possibilities that mimic this type of interaction between

proteins and DNA in order to design custom nucleases which bind to the desired

genetic address.

1.3 Traditional Genome Engineering

1.3.1 Zinc Finger Nuclease

Traditional methods of engineering programmable ZFNs involve designing two main

components: the binding domain and the cleavage domain. In most cases, cleaving

is performed by FokI, a type II restriction enzyme that can cleave non-specifically

a short distance from a bound DNA sequence [4]. Programmability of the binding

domain is achieved by assembly of multiple Zinc Finger motifs, each responsible for

recognition of three base pairs (Fig 1-1). 𝐶𝑦𝑠2−𝐻𝑖𝑠2 domains are the most abundant

DNA-binding motif in eukaryotes and consist of ∼ 30 residues that fold into a 𝛽𝛽𝛼

-structure coordinated by a zinc ion [5].

A key challenge in effectively utilizing ZFN technology is the inherent difficulty

and time-consuming nature of ZFN design [6]. This is primarily attributed to the

imperfect modular nature of tandem zinc fingers, wherein the assembled ZFNs may

not consistently exhibit high affinity for the targeted sequence, which is a composite

of the 3-base pair binding sequence of each individual zinc finger.
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Figure 1-1: An 18-base pair ZFN. Each Zinc Finger motif recognizes 3 bases. 3 fingers
are synthesized in a complex with the FokI restriction enzyme which performs a non-
specific cleavage. Programmability is achieved by handpicking the 6 different fingers
to match the desired sequence from both ends.

1.3.2 Transcription Activator-like Effector Nuclease

Transcription activator-like effector nucleases (TALENs) are yet another type of en-

gineered DNA-binding protein that can be used to introduce targeted changes in the

genome of living cells. TALENs are composed of a DNA-binding domain derived from

transcription activator-like effectors (TALEs), which are naturally occurring proteins

found in some bacteria, fused to a nuclease domain derived from the FokI endonucle-

ase.

The DNA-binding domain of TALENs consists of a repeating unit of 34 amino

acids that can be rearranged to create a specific DNA-binding sequence. The DNA-

binding specificity of TALENs is determined by the amino acid sequence of a series of

tandem repeats within the DNA-binding domain, each of which recognizes a specific

nucleotide in the target DNA sequence. By linking these repeating units together in

a specific order, TALENs can be designed to recognize virtually any DNA sequence.

Once TALENs have bound to their target DNA sequence, the FokI nuclease do-

main induces a double-stranded break in the DNA. This break can be repaired by

the cell’s natural repair mechanisms, either by non-homologous end joining (NHEJ),

which often results in the insertion or deletion of a small number of nucleotides at
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the site of the break, or by homology-directed repair (HDR), which can be used to

introduce specific changes or insertions at the site of the break using a DNA repair

template [7].

One notable drawback of TALENs is their considerably larger size in comparison

to ZFNs. Typically, the cDNA encoding a TALEN spans around 3 kb, while a ZFN’s

cDNA is approximately 1 kb. This size disparity presents challenges in delivering and

expressing TALENs in cells, especially when compared to ZFNs [8]. Moreover, the

larger size of TALENs makes them less favorable for therapeutic applications where

delivery is accomplished through viral vectors with limited cargo capacity, such as

adeno-associated virus (AAV) with less than 5 kb, or as RNA molecules.

1.3.3 CRISPR-Cas9

CRISPR-Cas9 is a revolutionary genome editing technology that utilizes the bacterial

adaptive immune system to target and modify specific DNA sequences in a variety

of organisms. The CRISPR system consists of two main components: the CRISPR

RNA (crRNA) and the CRISPR-associated protein 9 (Cas9). The crRNA is designed

to recognize and bind to a specific target DNA sequence, while Cas9 functions as a

molecular scissors that cuts the DNA at the targeted location.

The CRISPR-Cas9 system is guided by a short RNA molecule, which is designed

to match the specific DNA sequence to be edited. The RNA molecule is part of

a complex with the Cas9 protein, which is responsible for cutting the DNA at the

designated location. Once the RNA molecule and Cas9 protein complex find their

target DNA sequence, the Cas9 protein cuts the DNA, creating a double-strand break.

This break then triggers the cell’s natural DNA repair mechanisms, which can be

harnessed to introduce specific changes to the DNA sequence. This process can be

used to create specific genetic mutations, insert new genes or remove unwanted ones,

and study the function of specific genes.

Although CRISPR-Cas9 has many advantages for genome engineering, there are

also some potential limitations and flaws that need to be considered.

Off-target effects: One of the main concerns with CRISPR-Cas9 is the potential for
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off-target effects, where the system cuts DNA at unintended sites that have sequence

similarities to the intended target. This can lead to unintended mutations and other

negative consequences. Despite the presence of off-target effects in all genome editing

systems, the significant drawback of CRISPR-Cas9 technology lies in its elevated

occurrence rate (≥ 50%) of unpredictable off-target effects, which poses a considerable

disadvantage [9].

Delivery challenges: Another limitation is the difficulty of delivering the CRISPR-

Cas9 components to specific cells or tissues in vivo. Efficient and targeted delivery is

important for clinical applications, but this remains a challenge for many applications.

An instance of this can be seen in the extensive utilization of viral vectors in both

in vivo and in vitro contexts; however, this approach carries numerous limitations,

including immune responses and insertional constraints. [10].

Complexity: While CRISPR-Cas9 is simpler and more efficient than previous

genome editing methods, it still requires specialized knowledge and resources to im-

plement effectively, which could limit its accessibility to some researchers and insti-

tutions.

1.4 Technological Background

Deep learning-driven approaches to protein design are becoming more and more evi-

dent as ways to generate de novo amino acid sequences for a predetermined function.

Deep neural networks turned into a transformative biotechnology approach increas-

ingly following DeepMind’s AlphaFold [11] results in the CASP13 [12] and CASP14

[13] competition which have beaten decades-long benchmarks in protein folding. Later

in 2021 they published an extensive folding inference on the entire human proteome

[14].

Diaz et al. showed capabilities of 3D convolutional neural networks (3DCNN)

in predicting neighboring amino acids based on the atomic backbone structure of a

protein in what they refer to as "microenvironment" [15]. These machine-learning

methods were examined on enzymatic depolymerization of Polyethylene terephthalate
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(PET), which resulted in generation of newly designed PET hydrolases.

Developments in deep neural networks for protein design gave rise to the research

of de novo generation, a field which were mostly dominated by physics-based models

before [16]. Anishchenko et. al [17] used gradient descent on pre-trained sequence-to-

structure networks (AlphaFold and RoseTTAFold) in order to "hallucinate" proteins

from noise. Some of these generated proteins were synthesized and their X-ray crys-

tallography showed that they indeed fold in nature to the predicted structure. Later

on, ProteinMPNN [18] was introduced to address the problem of Motif Scaffolding,

that is, generation of a rigid structure which incorporates some motif of interest.

With a Graph Neural Network (GNN) architecture, the authors trained a model that

goes from structure to sequence. They used some tradition methods to produce a

template scaffold structure and then made the GNN suggest novel sequences. This

problem is of great significance since it would demonstrate a way to produce artificial

proteins with some known function.

The astonishing results of the aforementioned generation of text and images in-

spired the research of solving protein interaction problems using Diffusion models.

DiffDock [19] achieved state of the art results by a large margin for the protein-ligand

docking task. They used diffusion to generate translation and rotation of a known

binder to determine the exact point of interaction. SCMDiff [20] applied diffusion

models to sample from an E3 equivarient GNN to solve the motif scaffolding prob-

lem.

Language models are known to play a key role in a variety of Natural Language

Processing (NLP) tasks. In 2019 Attention [21] models were introduced and archi-

tectures such as BERT, GPT3 and T5 [22, 23, 24] are only a short list of attention-

based models that gained popularity and prevailed over traditional machine learning

approaches. Similar techniques were followed to learn latent representation of pro-

teins in the form of amino acid sequences. One of the most dominant large models

that were trained was ESM [25]. Representations learned from this model produced

high accuracy in structural supervised tasks such as mutational effects and secondary

structure prediction. Later, researcher showed that a complete sequence to structure
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model competitive with AlphaFold can be achieved from the ESM representations

only [26]. Language models were utilized not only on amino acid sequences but on

genome-scale as well [27] and exhibited promising results in downstream tasks such

as prediction of SARS-CoV-2 evolutionary dynamics.

1.5 Related Work

The field of protein backbone generation continues to witness active research and

advancements as researchers strive to improve the understanding and modeling of

protein structures. Among the various approaches explored, deep learning models

combined with diffusion methods have gained significant attention due to their ability

to capture complex dependencies and generate diverse and novel protein structures.

This approach leverages the power of deep neural networks to learn representations of

protein sequences and utilize diffusion-based algorithms to explore the conformational

space of protein backbones. By incorporating unsupervised learning techniques, these

models can effectively capture the underlying patterns and intricacies of protein struc-

tures without relying on labeled data. The use of diffusion methods further facilitates

the exploration of new structures by enabling the sampling of diverse conformations

and providing a rich set of potential solutions. To date, there is a lack of published

methodologies that showcase the conditional generation of protein structures based

on DNA, which is the central contribution of this thesis.

Currently, RFDiffusion stands as the prominent diffusion-based algorithm for pro-

tein backbone generation, as evidenced by its widespread recognition [28]. This al-

gorithm builds upon the highly acclaimed RoseTTAfold protein folding network [29],

which has demonstrated comparable performance to AlphaFold, a state-of-the-art

protein structure prediction model. RFDiffusion initializes its model weights based

on the pretraining of the folding algorithm and subsequently learns to predict the

diffusion noise. This model generates backbone both conditionally unconditionally

and it has shown some promising results in designing symmetric oligomers and in the

motif scaffolding problem.
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In the context of addressing the motif-scaffolding problem using diffusion mod-

els, SMCDiff [20] introduces a viable solution. Their proposed approach involves

employing an equivariant graph neural network, which shares similarities with the

architecture presented in this thesis. The generation process in SMCDiff employs

particle filtering based on sequential Monte Carlo sampling, as outlined by Doucet et

al. [30]. Notably, this methodology has demonstrated preliminary success in gener-

ating scaffolds with sequences spanning up to 80 residues.

SE(3)-Diffusion [31] is a follow-up work by the same authors which is the closest

approach to the work done in this thesis. The key observation is the deployment of

"frames" instead of pure three-dimensional coordinates. The frames are an alternative

parametrization to the 𝑁 − 𝐶𝛼 − 𝐶 − 𝑂 obtained by performing the Gram-Schmidt

operation on the vectors directed from 𝐶𝛼 to the Nitrogen and Carbon. That pa-

rameterizes the 𝑁 −𝐶𝛼 −𝐶 placements with respect to the frame translation, set to

the 𝐶𝛼 coordinates. An additional torsion angle is, thus, required to determine the

placement of the Oxygen atom. The neural network architecture used in this paper

is the well-known SE(3)-Transformer which is at the heart of many other trending

architectures. While this paper demonstrates a clean approach to diffusion sampling

of proteins, it does not tackle the conditional problem which is crucial to derive DNA

binders.

1.6 Datasets and Methods

1.6.1 Evaluation Metrics

Ideally, generated protein candidates should be evaluated with a binding affinity assay.

However, these are considered expensive and require expertise in protein expression,

purification and assay control. Instead, we adopt an in-silico approximation to the

validity of generated proteins that is performed with protein folding systems. A

generated structure is considered valid if it reaches a high Reconstruction Score which

is described as follows: First, we apply a structure-to-sequence prediction to the
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Figure 1-2: Reconstruction score. The pipeline involves two algorithms - inverse
folding (ProteinMPNN) and folding (AlphaFold). The final result is compared with
the generated backbone.

generated backbone. Then, we fold the resulting sequence using a well-proven folding

algorithm (e.g. AlphaFold2). Finally, our score is the TM-alignment of our newly

generated backbone and the last step’s output. Let 𝜉(x) : R3×𝑛 → |𝑉 |𝑛 be our

sequence-to-structure (inverse-folding) algorithm. |𝑉 | = 20 is the vocabulary of all

possible amino acids and 𝑛 is the protein’s sequence length. Let 𝜓(t) : |𝑉 |𝑛 → R3×𝑛

be our folding algorithm. Then our reconstruction metric for a protein generation

process 𝜑(x) is:

𝑅𝑆𝜑(x) :=
√︀
‖𝜑(x)− 𝜓(𝜉(𝜑(x)))‖2 (1.1)

1.6.2 Data Mining

In the lack of a standard Protein-DNA dataset, we sought to filter X-ray crystallized

structures from the Protein Data Bank (PDB). There exists a trade off between

the number of instances and the quality of data we pursue. An accurate X-ray

crystallization is considered below 2Å, and the "simplest" instances contain one DNA

strand and one protein chain. However, due to the sparsity of such available structures

we experiment with multiple different datasets.

In order to obtain a comprehensive and refined dataset of protein-DNA com-

plexes, we employed a clustering and splitting methodology. This approach involved

applying a series of systematic procedures to group similar complexes together and

subsequently partitioning the dataset into distinct subsets, resulting in an extensive

and well-curated collection of protein-DNA complexes (see fig 1-4). Our protocol
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involves:

• Eliminating non-interacting chains: A criterion was established whereby a

minimum of 10 contacts (with distances less than 6Å) were required between the

protein’s 𝐶𝛼 atom and any non-hydrogen atom from the DNA. By implementing

this criterion, protein-DNA pairs lacking substantial interaction were effectively

filtered out.

• Hydrogen bonds: The Baker-Hubbard algorithm was employed to assess the

presence of hydrogen bonds within the protein structure. Within the PDB, the

representation of DNA often involves storing the two strands as separate chains.

In order to identify the complementary DNA strands accurately, a sequence-

based search was initially conducted. However, it was observed that certain

cases exhibited discrepancies such as variations in DNA lengths. To address

such inconsistencies, an additional step was introduced to identify hydrogen

bonds between the two strands. Subsequently, the strand exhibiting the highest

number of hydrogen bonds was selected as the complementary strand, ensuring

a more reliable determination of the complementary DNA strands.

• Manual error detection: To ensure the reliability and accuracy of the filtered

structures following the aforementioned selection criteria, a manual verification

process was conducted. This meticulous examination involved a thorough in-

spection of the structures to identify and eliminate any erroneous or misleading

entries.

The outlined protocol not only facilitated the exclusion of redundant protein com-

plexes as distinct examples but also facilitated the expansion of the dataset by par-

titioning complexes into interaction motifs. As a result, the processed dataset exclu-

sively comprised monomers featuring a singular double-stranded DNA chain. This

approach ensured the generation of a diverse and representative dataset, free from du-

plications and characterized by distinct interaction motifs, thus enhancing the breadth

and richness of the dataset for subsequent analyses and investigations.
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Figure 1-3: Examples of extracted protein-DNA complexes from the PDB.

DNA Protein Resolution Instances

≥ 1 ≥ 1 Any 7382

≥ 1 ≥ 1 ≤ 2.5Å 3452

1 1 Any 1388

1 1 ≤ 2.5Å 857

Table 1.1: Available Protein-DNA data instances
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Figure 1-4: Splitting multi-chain protein complexes. Top: the PDB instance with
multiple amino acid and nucleic chains. Left: a detected non-interaction which is
disregarded. Right: a protein-dna monomer interaction.
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Chapter 2

Protein Deep Learning

Representation

Protein backbone generation is a fundamental step in computational protein struc-

ture prediction, with wide-ranging implications for drug discovery, biotechnology, and

molecular biology research. Designing novel proteins in the computational context is

the ability to determine the coordinates of amino acid chains in a Euclidean three-

dimensional space. The term "backbone" is referred to the common atoms of all

twenty different amino acids: 𝑁 −𝐶𝛼−𝐶 (See figure 2-1). Amino acids differ in a set

of atoms which are bound to the 𝐶𝛼 atom which are referred as "side chain". These

atoms are usually not subject to generation and are considered implied, so generation

of the three backbone atoms coordinates suffices in a structure prediction.

Deep learning methods such as AlphaFold, OmegaFold and RoseTTAFold [11] [29]

[32] have emerged as a highly effective means of predicting accurate protein back-

bone structures from primary amino acid sequences. Mathematically, these neural

networks approximate the distribution of P(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒|𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) For given pairs of

amino acid tokens and three-dimensional coordinates for of corresponding backbone

atoms. Protein generation, in its unconditional form, strives to learn the distribu-

tion: P(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) A valid approach to learning such distribution can be thought of

29



Figure 2-1: Amino acid general structure. In bold are the common Nitrogen and two
Carbon atoms which are common to all amino acids. The side chain bound to 𝐶𝛼

differs between different types of amino acid.

as learning in a Bayesian fashion with a known protein structure predictor:

P(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒) = P(𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒|𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) ·P(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) (2.1)

Where P(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) can be learned, for example, by a language model such as ESM

[25] [33]. In that formulation, generation of an arbitrary protein would be achieved

by sampling from the language model, followed by prediction of its structure using

a sequence-to-structure predictor. However, recent research shows that the structure

distribution can be learned unsupervised directly. Modelling structural distribution is

beneficial to problems where a sequence is completely or partially missing and when

structures are to be generated conditioned on other structural sub-components such

as the Motif Scaffolding problem.
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2.1 Equivariant Neural Networks

A key aspect to a deep neural network’s capability to generalize is being able to

capture symmetries within input data. This is particularly true to problems where

similar data instances may have varied values, but the relations between segments of

the instance are preserved. In molecular structural data, the numerical values of the

coordinates in space are less meaningful than the distances between individual atoms.

This rapidly growing field is often referred as geometric deep learning [34]. Our goal

in this field is to construct deep learning architectures that are compatible with a

symmetry group 𝐺 that acts transitively on the input data. We say that a function

𝜑 : 𝑋 → 𝑌 is equivariant [35] to transformations 𝑇𝑔 : 𝑋 → 𝑋 and 𝑆𝑔 : 𝑌 → 𝑌 , 𝑔 ∈ 𝐺

if for every input x it suffices:

𝜑(𝑇𝑔(x)) = 𝑆𝑔(𝜑(x)) (2.2)

In the case of proteins, we are particularly interested in the set of transformations

E(3) which are the rotation, translation and permutation in 3D space.

1. Equivariance to translation of input x ∈ R𝑛×3 by 𝑔 ∈ R3 where addition is

element-wise: x+ 𝑔 = (x1 + 𝑔, ...,x𝑛 + 𝑔) is defined as: 𝜑(x+ 𝑔) = y + 𝑔.

2. Equivariance to rotation and reflection by some orthogonal matrix Q ∈ R3×3,

Qx = (Qx1, ...,Qx𝑛) is defined as: 𝜑(Qx) = Qy.

3. Equivariance to permutation simply means that if x = (x1, ...,x𝑛) were to be

permuted in some different order P(x), then: 𝜑(P(x)) = P(y).

These three conditions should suffice for any deep neural network architecture we

choose that would capture protein structural data.

2.2 Protein Graph Representation

A natural choice for representing protein data and molecular data in general is the

graph structure. Molecules are in essence a collection of atoms and bonds, which
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conveniently fits in the 𝐺 = (𝑉,𝐸) formulation, where 𝑉 = {x1,x2, ...,x𝑛} is a set

of vertices assigned to each atom x𝑖 ∈ R3 in the molecule and 𝐸 ⊆ 𝑉 × 𝑉 is the

set of edges that encompasses an atom-to-atom relation. We denote 𝑒𝑖𝑗 the edge

between atom x𝑖 to x𝑗. In most cases we are interested in a fully connected graph so

𝐸 = {𝑒𝑖𝑗}𝑛𝑖,𝑗=1 and we introduce an adjacency (symmetric) matrix 𝐴 ∈ R𝑛×𝑛 which

would store local information, primarily for computational efficiency. Most commonly

the adjacency matrix will indicate whether nodes belong to the same neighborhood,

meaning:

𝐴𝑖𝑗 = 𝐴𝑗𝑖 =

⎧⎨⎩ 1, x𝑖 ↔ x𝑗

0, 𝑒𝑙𝑠𝑒

⎫⎬⎭

2.3 Graph Neural Networks

With our goal to learn the atomic coordinates distribution in mind, we strive to learn

representations in some latent space for our molecules described as a graph. Graph

Neural Networks (GNNs) provide solutions to processing the graphical structured

data and learn meaningful vector representations for nodes, edges and the graph in

its entirety. GNNs gained popularity in recent years thanks to successes in social

networks analysis [36], stock market predictions [37], physical system dynamics [38]

and many other research fields [39].

With the graph formulation, a protein latent representation is being updated in

the following manner: Assume ℎ𝑘𝑖 ∈ R𝑑 is the representation of x𝑖 within layer 𝑘. And

let 𝐻𝑘 ∈ R𝑛×𝑑 be the matrix of all such hidden vectors. We also denote 𝐴 = 𝐴 + I

the adjacency matrix with self-reference so every node is adjacent to itself. Then we

apply:

𝐻𝑘+1 = 𝜎(𝐴𝐻𝑘𝑊𝑘)

Where 𝑊𝑘 is a learnable linear transformation and 𝜎 is some non-linear function.

Or equivalently:
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Figure 2-2: Transformation of a plain protein intro a graph formulation. Features ℎ𝑖
are updated at each network step according to neighbor 𝑁(𝑖) features.

ℎ𝑘+1
𝑖 = 𝜎

⎛⎝ ∑︁
𝑗∈𝑁(𝑖)

𝑊𝑘ℎ
𝑘
𝑗

⎞⎠
Where 𝑁(𝑖) is the set of all neighboring atoms to node x𝑖. Finally, notice that

the matrix 𝐴 may induce scaling issues since nodes with more neighbors would result

in a larger value, so the neighborhood normalization 1
|𝑁(𝑖)| normalisation brings the

layer update rule to:

ℎ𝑘+1
𝑖 = 𝜎

⎛⎝ 1

|𝑁(𝑖)|
∑︁

𝑗∈𝑁(𝑖)

𝑊𝑘ℎ
𝑘
𝑗

⎞⎠ (2.3)

2.3.1 Graph Convolutional Layer

Normalization of neighboring nodes, as simply presented in equation 2.3 can be ex-

pressed in a more symmetric way. Kipf & Welling [40] popularized such update rule,

namely the Graph Convolutional Layer (GCL) with a slight moderation to the former

equation:

𝐻𝑘+1 = 𝜎
(︁
𝐷̃− 1

2𝐴𝐷̃− 1
2𝐻𝑘𝑊𝑘

)︁
(2.4)

Here the matrix 𝐷̃𝑖𝑖 =
∑︀
𝑗

𝐴𝑖𝑗 is the degree matrix of 𝐴. Or in other words:

ℎ𝑘+1
𝑖 = 𝜎

⎛⎝ ∑︁
𝑗∈𝑁(𝑖)

1

|𝑁(𝑖)||𝑁(𝑗)|
𝑊𝑘ℎ

𝑘
𝑗

⎞⎠
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The GCL method, presented in ICLR 2017 is currently the most cited GNN

paper and considered a simple but effective way to process node information in semi-

supervised learning problems. One of the problems with GCL for protein representa-

tions lies in its lack of explicit edge features, that is, we wish to encourage accumu-

lation of potential atom-to-atom dynamics, which will be represented in latent edge

vectors.

2.3.2 Message Passing Neural Networks

As a possible solution to a system that focuses on edge features, a suggested method

is the notion of a message, which is a bit of information that is passed from one

node to its neighbors in each layer of the network. The nodes then aggregate all the

messages they receive to produce a more graph-aware representation. The Message

Passing Neural Network (MPNN) suggested by Gilmer et al. [41] consists of messages

𝑚𝑖𝑗 between nodes 𝑖 → 𝑗 computed via some message function 𝑀(ℎ𝑖, ℎ𝑗, 𝑒𝑖𝑗) and is

referred to as the message passing phase:

𝑚𝑘+1
𝑖𝑗 =

∑︁
𝑗∈𝑁(𝑖)

𝑀𝑘(ℎ𝑘𝑖 , ℎ
𝑘
𝑗 , 𝑒

𝑘
𝑖𝑗) (2.5)

Note that the sum over neighboring nodes corresponds to the aggregation of all

incoming messages. The second step is updating the latent variables ℎ𝑖 and is referred

to as the 𝑟𝑒𝑎𝑑𝑜𝑢𝑡𝑝ℎ𝑎𝑠𝑒. Readout is performed via the function 𝑈(ℎ𝑖,𝑚𝑖):

ℎ𝑘+1
𝑖 = 𝑈𝑘(ℎ𝑘𝑖 ,𝑚

𝑘+1
𝑖 ) (2.6)

The functions 𝑀 and 𝑈 are most-commonly being calculated with an MLP. The

MPNNs are considered very potent in terms of edge features expressibility however,

in practice they suffer from problems with storage when facing a large amount of

edges. MPNNs are thus practically applicable mostly to small graphs. So as a middle

ground, we step back to our original normalized update rule as described in equation

2.3 and define the normalization term 1
|𝑁(𝑖)| in a more general manner:
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ℎ𝑘+1
𝑖 = 𝜎

⎛⎝ ∑︁
𝑗∈𝑁(𝑖)

𝛼𝑖𝑗𝑊𝑘ℎ
𝑘
𝑗

⎞⎠ (2.7)

2.3.3 Graph Attention Layer

To mitigate on MPNNs scalability issues, instead of applying the message passing

phase on each update step with cost 𝑂(𝑑2𝑛2), Velic̆kovic̀ et al. [42] presented a

method that takes advantage of the recently popular self-attention mechanism.

𝑒𝑘+1
𝑖𝑗 = 𝑎𝑘(𝑊 𝑘ℎ𝑘𝑖 ,𝑊

𝑘ℎ𝑘𝑗 )

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖𝑗) =
exp (𝑒𝑖𝑗)∑︀

𝑘∈𝑁(𝑖) exp (𝑒𝑖𝑘)

(2.8)

Where 𝑎 : R𝑑 × R𝑑 → R is the self-attention coefficients function over the nodes.

This update rule is referred to as Graph Attention Layer (GAT). The GAT formu-

lation lays the foundation for the proposed architecture in this thesis that will be

unveiled in the next section.

2.3.4 Equivariant Graph Neural Networks

Combining our two interests: representing proteins as a graph and preserving E(3)

equivariance we arrive at a pathway for architectures that address our concerns. The

Equivariant Convolutional Layer (EGCL) was proposed [43] for these purposes and

is a slight modification from the MPNN layer presented in section 2.3.2. To preserve

E(3) equivariance (that is: rotation, translation and reflection) the authors suggest

the following update rule:

𝑚𝑖𝑗 =𝑀(ℎ𝑘𝑖 , ℎ
𝑘
𝑗 , ‖x𝑘

𝑖 − x𝑘
𝑗‖2, 𝑒𝑘𝑖𝑗)

x𝑘+1
𝑖 = x𝑘

𝑖 + 𝐶
∑︀

𝑗∈𝑁(𝑖)

(x𝑘
𝑖 − x𝑘

𝑗 )𝜑𝑥(𝑚𝑖𝑗)
(2.9)

Where 𝜑𝑥 : R𝑑 → R is some function that produces a scalar output from the

messages 𝑚𝑖𝑗. 𝐶 is a scalar normalization factor chosen to be 1
|𝑁(𝑖)|−1

. Notice that
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the message passing network now receives as an input the (updating) square distance

‖x𝑖 − x𝑗‖2 between neighboring inputs x𝑖 and x𝑗. The addition of distances between

inputs is key to preserve equivariance.

2.4 Transformers

Inspired by the remarkable success of the Transformer architecture [21]. in natural

language processing (NLP), this study aims to adapt its principles to the domain of

protein design. Proteins play crucial roles in biological processes and exhibit complex

structural and functional relationships. By leveraging the Transformer’s attention

mechanism, which excels at capturing long-range dependencies, we aim to enhance

the modeling of protein sequences and structures. We propose a modified version

of the Transformer that incorporates domain-specific adaptations, such as utilizing

physicochemical features and incorporating protein-specific positional encoding. This

allows the model to effectively capture the intricate relationships between amino acids

and their spatial arrangements.

The Self-Attention mechanism in the Transformer is based on the concept of scaled

dot-product attention. Given an input sequence of length 𝑁 , the self-attention mech-

anism computes three key components: query, key, and value. In matrix form, denote

Q, K, and V. These components are linearly transformed using learnable weight ma-

trices, and their dot products determine the attention scores. The attention scores

are then scaled and softmaxed to obtain the attention weights. The weighted sum of

the values, weighted by the attention weights, is computed to produce the attention

output.

Z = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
Q ·K𝑇

√
𝑑

)V (2.10)

In the protein formulation, these would correspond to connections between back-

bone coordinates. The learned weights between the input amino acids refer to how

much attention should their representation contribute to the output calculation. All

representation matrices are achieved by training the respective 𝑊Q, 𝑊K and 𝑊V
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weights and multiplying by the input X so for instance: Q = X𝑊Q. The normaliz-

ing factor 𝑑 refers to the dimension of K. The hidden output Z of this component,

commonly referred as the attention head can be further propagated into following

similar layers.

2.5 E(n)-Transformer

With the acquisition of all the necessary components, we are now equipped to con-

struct the ultimate architecture selection for the representation of protein graphs.

The architecture we propose is a graph neural network that extends the principles

of EGNN (see 2.3.4). The hidden layers are calculated using a Transformer model,

incorporating multi-head attention layers. Additionally, the network incorporates an

adjacency matrix to confine computations to local neighborhoods, enabling efficient

and targeted information propagation within the graph structure. Here we present

a protein encoder, a neural network designed to process coordinate representations

of proteins and generate output coordinates of the same dimensionality. The protein

encoder serves as a foundation for subsequent extensions, enabling the encoding of

diverse sets of coordinates that are crucial for protein design purposes. In order to

provide a comprehensive description of the architecture, we present each component

individually:

2.5.1 Rotary Embeddings

To preserve E(n) equivariance we calculate a relative distance matrix 𝐷𝑟. This matrix

is the input for a multi-layer perceptron (MLP) which converts the distances into some

higher dimensionality vector.

𝐷𝑟
𝑖𝑗 = ‖x𝑖 − x𝑗‖
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Figure 2-3: Rotary and sequence positional embeddings. on the left, the input is
divided to the coordinates and an array of indices. Then, the matrics 𝐷𝑠 and 𝐷𝑟 are
calculated respectively. Finally, a block with two multi-layer perceptrons outputs the
positional embeddings for QK and V. The chosen activation function for each layer
is SiLU and the || icon stands for matrix concatenation.

2.5.2 Sequence Position Embeddings

Given that our current input solely consists of a spatial graph comprising coordinates

in R3, our objective was to incorporate positional information regarding each coordi-

nate’s location within the protein sequence. By integrating this information, we aim

to guide the network towards learning a set of coordinates that accurately corresponds

to a chain of amino acids, rather than arbitrary point clouds. The relative sequence

position matrix 𝐷𝑠 is given by:

𝐷𝑠
𝑖𝑗 = 𝑖− 𝑗

Both positional embeddings are concatenated and fed through a common position

MLP with 2 vector outputs. (See fig 2-3).

2.5.3 Coordinate Update Layer

The output of the cross product QK of the query and attention layers is passed

through another single linear layer with GELU [44] activation function. This layer

assures that we have one unified hidden representation for both the queries and the
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Figure 2-4: Coordinates Update Layer (CUL). We apply a softmax and multiplication
for QK and V to achieve the output hidden state Z. In parallel, QK is passing
through another MLP which is softmaxed and multiplied by the distance matrix to
calculate a new coordination set. The network has dual output: hidden state for the
next attention layers and an updated coordinate set for downstream task.

keys. This layer will is multiplied by the V learned representation to achieve the

attention mechanism described in 2.4. In addition to this hidden representation we

also calculate the gated relative coordinate differences, this is in order to return as

output a set of coordinates in addition to the hidden state.
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Figure 2-5: The full Equivariant Attention Layer. The architecture incorporates both
positional embeddings and self-attention learned weights. In addition, the adjacency
matrix A and an edge embedding E are featured and are concatenated to the QV
attention representations. The layer has 2 outputs: coordinates ℎ𝑖 and a feature
embedding matrix Z which are propagated to the next layer.
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Figure 2-6: Multi Layer Equivariant Attention. This diagram describes how infor-
mation propagates between attention layers. Note that the edge embeddings and
adjacency matrix are constant and do not get interpolated.
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Chapter 3

Protein Generation with Diffusion

3.1 Denoising Diffusion Probabilistic Models

Unsupervised generation of data instances from an unknown distribution has been a

vast research field in Machine Learning. In this type of tasks the goal is not to find

some correlation 𝑋 → 𝑌 but instead to find an approximation for 𝑃 (𝑋) and sample

instances 𝑥̂ ∼ 𝑃 (𝑋) which resemble the input data. While not too far in the past

highest-scoring models were flavors of Generative Adversarial Networks (GANs) [45],

it appears that nowadays Denoising Diffusion Probabilistic Models (DDPMs) [46]

constitute the predominant methodology. Diffusion models provide a powerful tool

for modeling complex phenomena that are governed by stochastic processes. DDPMs

leverage a diffusion process to generate noise samples that can be transformed into

data samples using neural networks.

In essence, the DDPM operates over two processes - the forward process is fixed

so that it gradually adds Gaussian noise to the data:

𝑞(x𝑡|x𝑡−1) := 𝒩 (x𝑡;
√︀

1− 𝛽𝑡x𝑡−1, 𝛽𝑡I) (3.1)

Here 𝑡 ∈ {1, ..., 𝑇} is a timestep and 𝛽𝑡 is a variance schedule that can be set to

a constant, some function of 𝑡, or to be learned by the model. The entire process for

all timesteps is defined as the Markov Chain:
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Figure 3-1: Diffusion forward process begins with x0 as a protein from our dataset,
then in step 𝑞(x𝑡|x𝑡−1) coordinates are perturbed. Then in the backward process
𝑝𝜃(x𝑡−1|x𝑡) the model tries to restore the denoised sample.

𝑞(x1:𝑇 |x0) :=
𝑇∏︁
𝑡=1

𝑞(x𝑡|x𝑡−1) (3.2)

Calculating 𝑞(x𝑡|x0) can be rewritten using the notation 𝛼𝑡 = 1 − 𝛽𝑡 and the

commutative product 𝛼̄𝑡 =
∏︀𝑡

𝑠=1 𝛼𝑠 with the following formula:

𝑞(x𝑡|x0) := 𝒩 (x𝑡;
√
1− 𝛼̄𝑡x𝑡−1, (1− 𝛼̄𝑡)I) (3.3)

Now that a fixed forward diffusion process is in place, and when 𝑇 →∞ we have

a mechanism that gradually turns datum x0 ∼ 𝑃 (𝑋) into x𝑇 ∼ 𝒩 (0, I). Denoising

the seemingly random noise back to such that comes from the original distribution is

the learned backward process 𝑝𝜃(x𝑡−1|x𝑡). In the backward process we learn mean 𝜇𝜃

and variance Σ𝜃 such that:

𝑝𝜃(x𝑡−1|x𝑡) := 𝒩 (x𝑡;𝜇𝜃(x𝑡, 𝑡),Σ𝜃(x𝑡, 𝑡))

𝑝𝜃(x0:𝑇 ) = 𝑝(x𝑇 )
𝑇∏︀
𝑡=1

𝑝𝜃(x𝑡−1|x𝑡)

(3.4)
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3.1.1 Learning Routine

Recall that ultimately our goal is to approximate 𝑃 (𝑋) via 𝑝𝜃(x0), our negative log-

likelihood loss can be lower-bound:

E(− log 𝑝𝜃(x0)) ≤ E𝑞

[︃
− log 𝑝𝜃(x0)−

∑︁
𝑡≥1

log
𝑝𝜃(x𝑡−1|x𝑡)

𝑞(x𝑡|x𝑡−1)

]︃
(3.5)

Using Sohl-Dickstein [47] this can be further interpreted in Kullback-Leibler (KL)

divergence notation (See Appendix for derivation):

E𝑞

[︃
𝐷𝐾𝐿(𝑞(x𝑇 |x0)‖𝑝(x𝑇 )) +

∑︁
𝑡>1

𝐷𝐾𝐿(𝑞(x𝑡−1|x𝑡,x0)‖𝑝𝜃(x𝑡−1|x𝑡))− log 𝑝𝜃(x0|x1)

]︃

In practice, we use a simpler loss function which proves to be roughly equivalent.

Sampling 𝜖 ∼ 𝒩 (0, I), now x𝑇 (x0, 𝑡) =
√
𝛼𝑡x0 +

√
1− 𝛼𝑡𝜖 and we try to find a

function 𝜖𝜃(x, 𝑡) that approximates 𝜖 as close as possible to the generated noise. So

the simplified version of the loss is:

𝐿(𝜃) := E
[︀
‖𝜖− 𝜖𝜃(

√
𝛼𝑡x0 +

√
1− 𝛼𝑡𝜖, 𝑡)‖2

]︀
(3.6)

Concretely, training is performed With a simple gradient descent algorithm which

optimizes for 𝜃, for example, with a neural network:

Algorithm 1 Train diffusion process
Require: 𝜃, 𝜆 ≥ 0
1: repeat
2: x0 ∼ 𝑃 (𝑋)
3: 𝜖 ∼ 𝒩 (0, I)
4: 𝜖 := 𝜖𝜃(

√
𝛼𝑡x0 +

√
1− 𝛼𝑡𝜖, 𝑡)

5: 𝜃 ← 𝜃 + 𝜆∇𝜃‖𝜖− 𝜖‖2
6: until converged
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3.1.2 Unconditional Sampling

The possession of a function 𝜖𝜃 that has been sufficiently trained indicates our capa-

bility to carry out the process of sampling. Unconditional sampling refers to simply

generating data instances from the similar distribution of our training data without

any further constraints. According to Ho et al. [46] we choose:

Σ𝜃(x𝑡, 𝑡) := 𝜎2
𝑡 I = 𝛽𝑡

𝜇𝜃(x𝑡, 𝑡) :=
1√
𝛼𝑡

(︁
x𝑡 − 𝛽𝑡√

1−𝛼̄𝑡
𝜖𝜃(x𝑡, 𝑡)

)︁ (3.7)

Applying the reverse diffusion process 𝑝𝜃(x𝑡−1|x𝑡) using algorithm 2 results in

denoising x𝑇 into a dataset-like instance.

Algorithm 2 Sample from diffusion model
Require: 𝜖𝜃
1: x𝑇 ∼ 𝒩 (0, I)
2: for 𝑡 = {𝑇, ..., 1} do
3: if 𝑡 > 1 then
4: z ∼ 𝒩 (0, I)
5: else
6: 𝑧 = 0
7: end if
8: x𝑡−1 ← 1√

𝛼𝑡

(︁
x𝑡 − 𝛽𝑡√

1−𝛼̄𝑡
𝜖𝜃(x𝑡, 𝑡)

)︁
+ 𝛽𝑡z

9: end for
10: return x0

3.1.3 Conditional Sampling

Achieving many downstream tasks using sampling may involve some components

which remain constant throughout the process. In our case, designing proteins that

bind to specific target can be formulated in the context of conditional sampling.

Instead of arbitrarily producing samples from the learned distribution we sought

to provide additional context. This is done by introducing to the diffusion process

another input u ∈ R𝑚×3 and denote [·, ·] the matrix row-wise concatenation operation,

then our new input is [x,u] ∈ R(𝑚+𝑛)×3.
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3.2 Protein Diffusion with E(n)-Transformer

The utilized architecture from 2.5 is employed to compute the Gaussian diffusion noise

in the current study. It is important to note that the approximation of the backward

diffusion noise 𝜖 is sufficient, and that it shares the same dimensional characteristics

as our input x ∈ R𝑛×3. Nevertheless, there are still significant components missing

from the architecture that are crucial for proper diffusion adoption.

3.2.1 Sinusoidal Time Embeddings

Backward diffusion noise at timestep 𝑡 is calculated from noisy coordinates, namely:

x̂𝑡 =
√
𝛼𝑡x0 +

√
1− 𝛼𝑡𝜖. This means that our network is required to be aware of

the time at which the noise was added to the input. For this purpose, we introduce

another layer which takes as input the scalar 𝑡 and transforms it into some higher

dimensional vector. The Sinusoidal embedding function is defined as follows:

𝜉(𝑡)(𝑖) :=

⎧⎨⎩ sin (𝜔𝑘 · 𝑡), if 𝑖 = 2𝑘

cos (𝜔𝑘 · 𝑡), if 𝑖 = 2𝑘 + 1

⎫⎬⎭
Where:

𝜔𝑘 =
1

100002𝑘/𝑑

This alternating cosine and sine representation results in vectors with convenient

characteristics to represent some notion of order (see fig 3-2).

3.2.2 Sequence Embeddings

In our conditional diffusion model, we have devised a method to incorporate the

DNA sequence as input using one-hot encoding vectors. One-hot encoding allows us

to represent each nucleotide in the DNA sequence as a binary vector. To integrate the

DNA sequential information effectively, we propose attaching it to the initial hidden

representation denoted as Z. The hidden representation Z serves as a starting point

for the subsequent modeling and generation process. Typically, the feature embedding
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Figure 3-2: Sinusoidal embeddings for dimension 𝑑 = 128. Here the maximum input
length is 50. Each row in this image represents the corresponding time embeddings
𝜉(𝑡)

process begins with a constant vector, which acts as a baseline or initial state for the

model. However, in our case, to incorporate the DNA sequence, we suggest replacing

the constant vector with the corresponding one-hot encoded sequence vector.

By substituting the constant vector with the one-hot encoded sequence vector

in the feature embedding step, we ensure that the DNA sequence information is

present right from the beginning of the modeling process. This modification allows the

model to leverage the specific nucleotide information encoded in the DNA sequence,

capturing its unique patterns and correlations. Consequently, this enriched initial

hidden representation facilitates more accurate and context-aware generation of the

desired outputs based on the DNA input.

3.3 DNA-Conditional Protein Sampling

Adopting the conditional diffusion sampling method we now propose a novel way

to generate DNA-specific binders. Let 𝛿 ∈ {𝐴,𝐶,𝐺, 𝑇}𝑚 be some DNA sequence

comprised of the nucleotides Adenine (A), Cytosine (C), Guanine (G) and Thymine

(T). We construct a matrix ∆ ∈ R2𝑚×3 to represent a double-stranded coordinates
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Figure 3-3: The full E(n)-Transformer architecture adopted to diffusion. Time em-
beddings and DNA conditions are added as additional inputs.
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Figure 3-4: All four nucleotides structural formulas.

Figure 3-5: DNA-condition diffusion sampling. The left hand side is the initial step
𝑥0 where the DNA structure is fixed in place. Then throughout the diffusion process
atom coordinates are denoised into DNA binders.

set that corresponds to the atoms in the sequence 𝛿. Nucleotides consist of multiple

Carbon, Oxygen and Hydrogen atoms (see fig 3-4), however, to reduce computational

complexity we compute a central atom position for each nucleotide. This central

position (referred to as "centroid") serves an anchor for the entire nucleotide in future

processing.

Recall that with our diffusion modelling we do not explicitly approximate the

recovered coordinates, but rather we train the network to learn the noise 𝜖. In this

sense, conditioning as it is shown in figure 3-5 is not trivial. We suggest that our

learning process is done in a two-fold fashion: First, the network initiates the features

embedding vector with the one-hot encoded sequence. Second, since we do not noise

the DNA structural representation, the noise at these coordinates is zero. This means

that
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Chapter 4

DNA-binding Protein Design

4.1 Protein-DNA Interaction

A definition for nucleotide-amino acid residue interaction is not trivial from the com-

putational perspective. While we know that binds are often formed by hydrogen

bonds, these are usually missing from X-ray crystallized structures and are consid-

ered expensive to compute. We propose here a simpler method for determining which

amino acids in a protein make contact with corresponding nucleotides by measuring

the Euclidean proximity between their atoms. We experiment with two metrics: 𝑑𝑚𝑖𝑛

and 𝑑𝑐𝑒𝑛𝑡𝑒𝑟. The first method measures the distance between the two nearest atoms

in each molecule and the second compares the distance between the two molecule

centroids (See fig 4-1). Weaker interactions are existent in the form of Van der Waals

bonds and are commonly classified into two systems of forces: London dispersion

forces and Dipole-dipole interactions.

London dispersion forces occur between all atoms and molecules, regardless of their

polarity. They arise from temporary fluctuations in electron distribution, leading

to the creation of temporary dipoles. These temporary dipoles induce additional

temporary dipoles in neighboring atoms or molecules, resulting in an attractive force.

London dispersion forces generally increase with the size and shape of the molecules

involved.

Dipole-dipole interactions: These forces occur between polar molecules. Polar
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molecules have a permanent dipole moment due to the unequal sharing of electrons

between atoms. The positive end of one molecule is attracted to the negative end

of a neighboring molecule, resulting in dipole-dipole interactions. The strength of

dipole-dipole interactions depends on the magnitude of the dipole moment and the

proximity of the molecules.

4.2 Hallucination

As a benchmark to protein generation, we describe here a naive attempt to generate

de novo DNA binders using the protein hallucination approach [17]. This approach

relies on an existing sequence-to-structure folding algorithm such as AlphaFold. We

initiate with a random amino acid sequence, then perform a recursive Markov Chain

Monte Carlo (MCMC) sampling to predict a distance map. We optimize our MCMC

by mutating the random sequence so that its resulting distance map is less and less

"blurry".

To conduct an experiment with hallucination we first detect the amino acids which

interact with most neighboring nucleotides in the sequence (see fig 4-2). We assign

𝑘 to be the number of nearest amino acids to each nucleotide and aggregate across

the entire sequence. Finally, we pick regions with more neighboring amino acids and

preserve them, then mask the rest of the sequence and let the protein hallucination

algorithm "inpaint" the remaining of the sequence. The main problem with this

approach to solve our problem is that while it produces valid proteins, it does not

take into account any DNA constraints, so the hallucinated proteins do not comply

with amino-acid nucleotide bonds.

4.3 Experiment Validation

4.3.1 Distance-map Loss

To validate that our network indeed learns to generate proteins, it is not sufficient to

observe the noise prediction loss. Instead, while training we perform a full sampling
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Figure 4-1: Contact between amino acids and nucleotides. a) Zoomed-in interaction
within a sample X-ray crystallized structure. b) The definition of the two metrics
experimented - 𝑑𝑚𝑖𝑛 selects the two nearest atoms and 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 computes the point
cloud centroids. c) Two typical value spectroscopes for 𝑑𝑚𝑖𝑛 and 𝑑𝑐𝑒𝑛𝑡𝑒𝑟, lighter colors
indicate closer Euclidean proximity.
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Figure 4-2: Nearest amino acids by position. For each nucleotide we pick the 𝑘
nearest amino acids. The Y-axis value sums the number of occurrences for each
indexed amino acid within this metric. The graphs show some amino acids are closer
to multiple nucleotides and thus get a higher score.
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procedure by running Algorithm 2 for timesteps 1, 2, ..., 𝑇 . We now strip the generated

backbone complex to it’s amino acid part only and compute a distance map similar

to

4.3.2 TM-score

Template modeling score is another method of measuring similarity between two

protein structures. Commonly, a TM-score higher than 0.5 indicates that the two

proteins fold to the same structure. In our experiments we sought to maximize the

score not only to indicate same fold, but rather to perfectly fit the structure. The

TM-score is defined by:

𝑇𝑀(𝑥, 𝑥̂) = max

⎛⎝ 1

𝑛

𝑛∑︁
𝑖=1

1

1 +
(︁

𝑥𝑖−𝑥̂𝑖

1.24 3√𝑛−15−1.8

)︁
⎞⎠

4.3.3 Quantile Loss

Diffusion noise prediction loss can be misleading because on average it is hard to pre-

dict a random Markov process. A useful observation is to divide the noise prediction

loss based on the timestep 𝑡 at which the forward diffusion process was generated

from. In our experiments, indeed it shows clearly that in timesteps the loss is in-

deed unstable, as it is more difficult for the network to distinguish noisy coordinates

within similar structures. It is much easier for the network to push towards a zero-

mean gaussian from noise that is seemingly completely random. In our experiments

we used 10 quantiles 𝑞1, ..., 𝑞10, and plotted the loss of timestep 𝑡 to separate graphs

⌊(𝑡/𝑇 ) * 10⌋.

4.4 Results

The work presented in this thesis has yielded some initial promising results in gen-

erating novel genome engineering proteins. While it is important to note that our

trained model is not fully optimized or fine-tuned, it has demonstrated the capabil-
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Figure 4-3: Loss quantiles. From top to bottom and left to right are earlier to later
stage loss quantiles. Later quantiles losses are substantially lower than earlier ones.
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Figure 4-4: TM-score. scores > 0.5 indicate same protein folds. Here we show that
the network learns to produce not only same-fold proteins but rather it fits perfectly
to a TM-score close to 1.
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Figure 4-5: 1ZBI [48] diffusion over 250 timesteps. From left: we initiate a multi-
variate zero-mean normal noise. The forward diffusion noise predictions iteratively
recover the protein.

ity to condition the generation process on DNA atoms and produce DNA protein

binders with reasonable properties. Through rigorous evaluation and analysis, we

have observed encouraging indications of the potential of deep learning techniques in

the context of genome engineering. However, further refinement and optimization of

the model are required to achieve more robust and reliable results. These preliminary

findings highlight the early progress made in exploring the generation of DNA protein

binders, setting the stage for future research and development in this area. In this

sections figures we demonstrate some of the backbones which emerge from running

the diffusion process for 𝑇 timesteps and with some specific DNA condition.
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Figure 4-6: 1AZP [49] diffusion over 250 timesteps. From left: we initiate a multi-
variate zero-mean normal noise. The forward diffusion noise predictions iteratively
recover the protein.
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Figure 4-7: Model depth analysis. We experimented with various model depth (num-
ber of Equivariant Attention blocks). Deeper network converge faster but consume
more memory and GPU computation time.
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Figure 4-8: DNA-Conditional generation for sequence GCGATCGC. From top to
bottom: the reference protein complex, the reference stripped to backbone atoms
only and our predicted protein.
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4.5 Programmable DNA Binders

The model proposed in this thesis offers the potential for extension towards the gen-

eration of programmable DNA binders. By replacing the initial features layer with

a one-hot encoded vector representing the desired DNA sequence, the model can be

adapted to specifically generate protein binders that target and interact with the

given DNA sequence. This modification allows for precise control and customization

of the generated binders, enabling the design of DNA-protein complexes. Since DNA

structures is more predictable than protein folded structure, we may leave the struc-

tural DNA representation as it is in a reference complex. This idea is to be fully

explored when we train the network on a larger dataset.
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Chapter 5

Conclusions

5.1 Thesis Contribution

To the best of my knowledge, this thesis exhibits the first diffusion-based model to

integrate nucleic information, marking a significant advancement in the field. While

diffusion models for protein backbone generation have been explored in previous stud-

ies, none of them have proposed incorporating a prior condition in the form of DNA

sequence and structure. This innovation opens up new possibilities for understanding

the intricate relationship between DNA and protein structures. By leveraging diffu-

sion models in combination with GNNs, we not only provide a novel framework for

generating protein backbones conditioned on DNA information, but also uncover the

potential of this approach for accurately capturing the intricate interplay between

these two biomolecules. Our findings shed light on the feasibility of employing dif-

fusion models as a powerful tool in the field of structural biology, offering valuable

insights into the generation and exploration of complex macromolecular structures.

This thesis highlights the superiority of employing GNNs for encoding, and diffu-

sion probabilistic models for sampling, compared to previously investigated methods

like Hallucination and sampling from language models. The research showcases the

distinct advantages of this novel approach, emphasizing its effectiveness in captur-

ing complex relationships and generating high-quality samples. By leveraging GNNs

and diffusion models, we surpass the limitations of existing approaches and provide a
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robust framework for encoding and sampling that significantly improves upon prior

methodologies. Our protein representation proves to preserve E(n) equivariance, and

our noise prediction demonstrates high quality backbone generation from this repre-

sentation.

We present compelling evidence supporting the efficacy of the recently introduced

E(n)-Transformer architecture for protein design. The findings suggest that utilizing

Transformer architectures in protein design represents a notable advancement in cap-

turing the geometric latent representation of proteins. The E(n)-Transformer offers

a promising alternative to the widely employed SE(3)-Transformer, offering a more

compact and efficient framework.

The field of diffusion probabilistic models continues to be a promising and rel-

atively unexplored area of research. Our work contributes to the expansion of this

field by uncovering yet another valuable application. By exposing practical aspects

and insights derived from our investigations, we not only advance the understanding

of diffusion probabilistic models but also provide a framework that can be lever-

aged in various unsupervised sampling tasks beyond the immediate scope of protein

structure generation. These practical aspects may include strategies for enhancing

exploration, handling uncertainty, optimizing sampling efficiency, or adapting the

models to different types of data. By identifying and sharing these insights, we aim

to foster cross-disciplinary collaborations and inspire further research in utilizing dif-

fusion probabilistic models for diverse unsupervised sampling tasks, opening up new

avenues for scientific exploration and innovation.

5.2 Ethics

The ethics surrounding synthetic genome engineering proteins is a topic of significant

concern and debate within the scientific community and broader society. At the core

of this discussion lies the potential for scientists to manipulate and engineer genetic

material, including the creation of synthetic proteins with specific functions. While

synthetic genome engineering proteins hold immense promise for various applications,
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such as disease treatment, biofuel production, and environmental remediation, their

ethical implications cannot be ignored. One of the primary concerns is the poten-

tial for unintended consequences and unforeseen risks associated with releasing these

proteins into the environment or introducing them into organisms. The long-term

effects and ecological impacts of such manipulations are uncertain and require careful

consideration. Additionally, questions surrounding the equitable access to synthetic

genome engineering technologies and the potential for their misuse or weaponization

raise important ethical considerations. The responsible development and use of syn-

thetic genome engineering proteins necessitate robust ethical frameworks, transparent

communication, and rigorous oversight to balance the potential benefits with the risks

and ensure the well-being of both humans and the environment.

5.3 Future Discussion

5.3.1 Large Scale Training

As a crucial next step following this thesis, a significantly larger-scale training en-

compassing all available Protein-DNA complexes is underway. This expanded train-

ing aims to leverage a comprehensive dataset of diverse Protein-DNA interactions

to further enhance the model’s performance and broaden its applicability. By incor-

porating a wider range of Protein-DNA complexes, the model can effectively learn

intricate patterns, dependencies, and preferences specific to various DNA sequences

and their corresponding protein binders. The ongoing training procedure, which is

anticipated to be completed within a few weeks, holds great promise for advancing the

accuracy, versatility, and generalizability of the model. The comprehensive training

will empower the model to generate programmable DNA binders with enhanced preci-

sion, specificity, and affinity, thereby fostering breakthroughs in genome engineering,

synthetic biology, and related fields. The expected outcomes of this extended training

will provide valuable insights and resources for the scientific community, unlocking

new possibilities in the design and engineering of functional Protein-DNA interac-
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tions, and catalyzing advancements in the fields of genome engineering, synthetic

biology, and beyond.

5.3.2 In-vitro Experiments

In the realm of protein-DNA interactions, the most accurate and reliable assessment

of affinity necessitates conducting wet lab experiments. While computational meth-

ods can provide valuable insights and predictions, they often rely on simplified models

and approximations, limiting their ability to capture the intricacies of the complex

protein-DNA binding process. Wet lab experiments, on the other hand, offer a direct

and comprehensive approach to measure the actual binding affinity between proteins

and DNA molecules. These experiments employ techniques such as electrophoretic

mobility shift assays (EMSAs), isothermal titration calorimetry (ITC), and surface

plasmon resonance (SPR), which allow for precise characterization of the binding ki-

netics, thermodynamics, and specificity of protein-DNA interactions. By combining

computational predictions with rigorous wet lab experiments, a more holistic and

accurate understanding of protein-DNA affinity can be achieved, enabling the de-

velopment of effective strategies for genome engineering, gene regulation, and other

applications reliant on precise protein-DNA interactions.

5.4 Published Artifacts

The majority of the research presented in this paper stems from a thorough exami-

nation of a meticulously crafted codebase, which affords the necessary versatility for

conducting comprehensive experiments involving all aspects of the project. Notably,

all the code developed during this study has been made openly accessible to the

public, adhering to the MIT license.
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5.4.1 Open-source Code

We publish the full code including both the configurable equivariant GNN and the

diffusion sampling procedures. Some of the components include protein preprocessing,

validation metrics, experiment management and a GPU-scalable training script. The

codebase is available at https://github.com/molecularmachines/genomator

5.4.2 Moleculib

In parallel to this project we developed a platform to represent molecules in a for-

mat that is suitable and optimal for deep learning. Moleculib is extended to in-

clude Protein-DNA complexes with proper masking to allow post-processing separa-

tion. The Python library is available at: https://github.com/molecularmachines/

moleculib
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