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Abstract

This thesis presents two experimental platforms for performing cognitive behavioral studies
in natural settings: one for wake time and one for sleep. The equipment utilized today
in behavioral and sleep labs is not very accessible, comfortable, portable, or simple to
operate. The systems documented in this dissertation demanded the creation of novel
wearables, sensors, signal processing, communications, and machine learning solutions that
vastly outperformed current systems.

The first platform introduced here is Entwine, a toolkit for behavioral researchers to create
VR experiments. The first half of this toolkit includes Unity modules to help create a VR
behavioral experiment. These modules are meant to lower the barrier of entry rather than
replace Unity development, and they can be built on or modified by the user. I present a
study that is able to identify the spatiotemporal dynamics between the autonomic nervous
system (HR, EDA) and the central nervous system (Frontal and Parietal cortices) during a
high cognitive demand task. I also explored how such a system can help measure and test
the field of vision to evaluate retinal and early afferent visual pathways.

The second contribution of this dissertation is the Fascia Ecosystem, which reinvents sleep
studies using three key technologies. First, the Fascia Sleep Mask uses fabric-based sensing
to collect polysomnogram-like data in a soft sleep mask. Second, the Fascia Hub lets a
researcher or scientist give the patient audio and visual feedback and stimulation. This helps
with sleep and dream research by allowing for interventions to be made. Finally, the machine
learning API provides real-time sleep staging, spindles, and slow-wave saliency maps in
the Fascia Portal, where sleep researchers can view patient signals and store experiment
data. The presented work streamlines cognitive study procedures by introducing two novel
solutions that will be shared with the scientific community. I have shown through user
studies that these prototypes are easy to use and have the ability to significantly enhance
cognitive research, diagnosis, and understanding of sleep structure.
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A roadmap for this thesis

Chapter 1 introduces this dissertation, provides some background on

the differences between data collection and running experiments in the

lab vs. in the wild, and highlights the benefits of collecting data in more

naturalistic settings. It also describes the primary contributions of this

thesis. This thesis is divided into two major sections: Into the Day and

Into the Night.

The "Into the Day" section begins with Chapter 2, where the PhysioHMD

project is introduced. This project becomes the core technology that is

later used in other devices. It describes the technology and presents

validation analyses and examples using machine learning to recognize

facial expressions. Chapter 3 presents the Galea headset, a headset

that takes the physioHMD design and expands the number of brain

sensing capabilities. The device was created in collaboration with an

open-source company with the goal of making devices available to a

wider audience outside of research labs. This chapter delves into signal

validation in depth and serves as an introduction for those new to the

field of physiological computing. Two Brain-Computer Interfaces (BCI)

paradigms are presented in this chapter: one for Steady State Visual

Evoked Potential (SSVEP) and another for electrooculographic (EOG)

visual attention.

Chapter 4 is where the Entwine toolkit is introduced as a way to support

developers using the Galea headset. We assume that not everyone in

the field of cognitive-behavioral neuroscience would have the skills to

make virtual reality apps, so we made a series of VR experiments and

put them in a Github repository under the name "Entwine." Chapter

5 and Chapter 6 document two in-depth studies for which the code is

available in the Entwine repository. Chapter 5 is a study conducted to

evaluate the health of the visual pathway. This is done by exploring the

effect of different stimulus configurations on the Visual Evoked Potentials

(VEP) in VR. VEPs provide a more accurate measurement of optic circuit

functional integrity than MRIs because VEP is used to examine the retina,

optic nerves, and visual cortex in the brain. The study presents VEP

56 recordings from 8 subjects, showing differences in the visual field

for participants with and without eye correction. Chapter 6 explores
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the relationship between the Central Nervous System (CNS) and the

Autonomic Nervous System (ANS). This chapter describes a study in

which 32 people played a modified version of the popular game Tetris

while wearing the Galea headset in order to learn how the CNS and ANS

respond during a high-spatial and mental workload task. A model is

then presented based on these findings.

The "Into the Night" section begins with the introduction of the Fascia

ecosystem in Chapter 7. This chapter provides a background on sleep re-

search and the types of sleep tests, according to the American Association

for Sleep Medicine. Background on sleep architecture and the physiology

of sleep is also provided in this chapter, all with the goal of providing the

reader with enough contextual information for the latest chapters. This

chapter concludes with an introduction to the main components of the

Fascia ecosystem. Chapter 8 describes the Fascia sleep mask. This chapter

goes through the design process of developing the Fascia sleep mask.

A detailed description is provided for the hardware components that

make up the sleep mask. A section on the different signals and modalities

provided by the device is presented.

Chapter 9 provides an overview of the Fascia hub. The Fascia hub is a

companion to the Fascia sleep mask for stimulation and communication

with the person sleeping in a remote location. The Fascia hub is designed

to be placed on a nightstand near the person sleeping in order to receive

stimulation or monitoring via an infrared camera. In this chapter, back-

ground on different types of sleep interventions and descriptions of the

modalities available via the hub are presented. Chapter 10 provides an

overview of the Fascia portal and its different parts. The Fascia Portal is

where sleep researchers can inspect the patient’s signals in real-time and

store experiment information that is analyzed by the machine learning

API that provides sleep staging, spindles, and slow-wave recognition

in real-time. Fascia’s pilot study and signal validation from 12 sleep

nights recording at home are presented in Chapter 11. The findings of

ten interviews with sleep experts, dubbed "super users," are presented.

The interviews sought to learn from the super users how useful and

viable the Fascia Ecosystem is in comparison to the current systems

available to these researchers. A comparison to existing gold standard

polysomnography data is also presented. The comparison data for Fascia

comes from the 12-night recording, and for the polysomnographam data,

we used datasets available via the PhysioNet database. Finally, Chapter
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12 provides the conclusion to this thesis.
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1.1 What Does Data In The Wild Tell Us, That

Lab Data Doesn’t

Data collected from users in the "wild" (i.e., outside of a controlled

laboratory environment) can provide insights into the true behavior,

mental state, and emotions of subjects. This is because the data reflects the

users’ natural behavior and interactions in their everyday environment,

rather than being influenced by the artificial constraints of a lab setting.

For example, data collected from users interacting with a product or

service in the wild might include:

▶ The frequency and duration of use

▶ The specific features or tasks the user engages with

▶ The user’s location and context of use

▶ The user’s actions and interactions with other people or devices

▶ More accurate physiological data during use, as the context is more

natural

Naturalistic observation can be used to understand how users are actually

using a product or service, and can provide insights into their needs,

motivations, and emotions. It can give us insight into complex behaviors

and interactions that we may not see in the controlled setting of a lab, or

under the limited guise of an experimental research question. It can also

help identify areas for improvement or opportunities for innovation.

The main advantage of naturalistic observation approaches are that they

allow us to see everyday behavior. When we bring people into a lab, they

know they are being observed and may act differently, which is called the

Hawthorne effect. The Hawthorne effect is a type of reactivity in which

individuals modify a behavior trait in response to their awareness of

being observed [1][2]. The effect was discovered in the context of research

conducted at the Hawthorne Western Electric plant; however, one of

the later interpretations by Landsberger suggested that the novelty of

being research subjects and the increased attention received could lead

to temporary increases in workers’ productivity[3]. This interpretation

was dubbed "the Hawthorne effect."
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When conducting sleep studies, a similar effect is observed. The first

night effect, also known as the first night phenomenon, is a phenomenon

that occurs during sleep studies in which data collected on the first night

of a study is frequently disrupted as a result of unfamiliarity with the

environment and the study. This disruption may cause the data collected

on the first night to differ significantly from those collected on subsequent

nights. The first night effect is believed to be caused by the body’s natural

reaction to a new environment and the stress of participating in a sleep

study. This can result in a decrease in the quality of sleep as well as the

amount of time spent in each sleep stage. This may cause inaccuracies in

the data collected from the first night, as it may not accurately reflect the

user’s natural sleep patterns.

The first night effect can have a significant impact on the results of

sleep studies, particularly those conducted over multiple nights[4]. It

is essential that researchers are aware of this phenomenon and take

measures to mitigate its effects. For instance, researchers can ensure that

the environment is as comfortable and familiar as possible, and that

participants are adequately prepared for the experiment. In addition,

researchers can use techniques such as data averaging to mitigate the

impact of the first-night effect on data collected over multiple nights. By

taking measures to mitigate the effects of the first-night effect, researchers

can ensure that the collected data is more accurate and representative of

the user’s true sleep patterns.

In general, data collected for behavioral studies in a lab setting might be

more limited and may not accurately reflect the full range of user behavior

and experience. Lab studies can be useful for controlled experimentation

and testing specific hypotheses, but they may not always provide a

complete picture of user behavior in the real world. For example, in a

lab setting, participants may be more self-conscious or aware of being

observed, which could affect their behavior and physiological responses.

Similarly, the lab environment itself may be unfamiliar or artificial, which

could also influence the participants’ behavior and responses.

An experiment conducted in a natural setting allows the participant to

feel at ease with his or her surroundings. Plus, the outcome of such an

experiment may be more valid because the participant may open up

more in reference to thoughts and feelings. A downside is that such

experiments require obtaining permission to complete the experiment at

any chosen location. If permission is not granted, then there will be a halt
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to the experimental process. A controlled setting allows the researcher to

have complete control over other factors that may affect the study. He

or she will be able to manipulate the environment to allow for a more

concise experiment.

In summary, by collecting user physiological data in the wild, we can

gain more accurate insights into user behavior without introducing

any external factors that may skew the results. This can provide a better

understanding of user experience and response than what can be obtained

from a lab setting.

Data in the wild can give us insight into the user’s true emotional

states and motivations which may not be present in a lab setting. For

example, data collected in the wild can show us how users interact with

an application when they are in a hurry, or in a different social setting.

Additionally, data in the wild can provide evidence of how users feel

about an application or feature, as opposed to the response they may

provide in a lab setting, where they may be more inclined to give a

socially acceptable reaction. By collecting physiological data in the wild,

we can gain a more accurate understanding of user behavior that can

inform product and design decisions.

1.2 Problem Statement And Goals

Figure 1-1: Subjects interacted with the

virtual task by controlling a robotic in-

terface (i.e., haptic device). Physiological

response (e.g., EEG, GSR, EMG) and user

kinematic movements were recorded

from wireless inertial measurement units

(IMUs) on the upper-arm and forearm,

as well as encoder readings from the hap-

tic device. Image by Wang et al.

Typically, immersive environment-based therapy requires that the user
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not just wear a Head-Mounted Display, but also an array of other sensors

and devices that enable real-time monitoring of the user’s physiological

and cognitive state[5]. For instance, Electrocardiogram (ECG) and Elec-

trodermal Activity (EDA) are used to understand emotional arousal and

identify the magnitude of the emotional response[6]. Electrooculography

(EOG) and Electroencephalography (EEG) provide data relevant to atten-

tion and valence[7]. These sensing technologies are not just cumbersome

to set up and wear, but they are also very costly, not standardized, and

often prone to errors. The lack of standardization contributes to a growing

body of datasets that are not cross-compatible since different devices

sample data at different frequencies. Some datasets share data that has

already been preprocessed through some proprietary algorithm, and in

some cases, there is no documentation at all of the processes used for the

data collection.

To better understand this problem, we can look at how closed-source/closed-

data ecosystems limit research in the scope of possible questions. When

examining EEG data, if only power-band statistics (alpha, beta, gamma,

etc.) are made available (the case for the standard Emotiv license), much

of the information about synchrony in the brain is lost. Specifically, it

is impossible to investigate whether two brain regions exhibit coher-

ence or phase-lock with one another. There is a widespread consensus

among neuroscientists [8] that synchrony is important in determining

the efficacy of neuronal communication, plasticity, learning, and possi-

bly even for governing aspects of consciousness [9]. For example, the

phase-locking of EEG oscillations has been shown to increase between

different medial temporal lobe regions during successful memory forma-

tion[10], suggesting an essential role in memory encoding or selective

attention[11].

Timing and synchrony in the brain are important for researching some

of the most interesting cognitive functions including memory encoding

and retrieval, associative learning, attention, and likely others. When

EEG data is reduced to power-band statistics, the phase relationships

and cycle-by-cycle timing information is inherently lost and in doing

so, some of the most important information about the operation of the

brain and how it relates to cognition may be irreversibly irretrievable.

Similarly, if only power-band data or other potentially impoverished

derivative metrics are used as inputs when gathering EEG data, this may

fundamentally limit the effectiveness of the resulting machine learning
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models. In some cases, the resulting models may lack statistical power

to make reliable predictions. In other cases, the models may overfit

the power-band data and cannot adequately generalize and replicate

the results. As neuroscience and computer science fields continue to

work together to understand the most important parameters of brain

function and derive cognitive processes, using large and powerful neural

networks in addition to having access to the raw EEG data will likely be

critical to unlocking discoveries. My goal is to make devices available to

researchers that provide state-of-the-art signal quality, while at the same

time providing the base for creating a standardized approach to sharing

data from behavioral experiments. Apart from making EEG data openly

available, and facilitating integration with machine learning models for

feature extraction, our devices also collect additional physiological data

including Electrooculography, Electromyography, Electrodermal Activity,

Heart Rate, and Skin Temperature to provide a more comprehensive

view of the subjects’ cognitive and affective state.

In the past number of years, research in Human-Computer Interaction

has explored how to best integrate Physiological Computing into our

everyday life. A large portion of design decisions made in this dissertation

are based on the theory of behavior settings, which states that the

behavior of individuals is strongly influenced by the physical and social

environment in which they function[12]. One example in which the

setting of an experiment can heavily influence the results is with sleep

studies, where researchers often struggle to create a natural setting since

these studies are conducted in sleep labs where the patient has to sleep

overnight while wearing a minimum of 22 wires attached to their body

to track physiological signals. While they do so, a sleep technician or

"scorer" observes in real-time their biometric signals and interprets the

data to diagnose sleep disorders and quality of sleep. This environment is

far from the natural setting in which the patient lives, and the data likely

reflects inaccuracies and variations due to this unfamiliar setting.

The limitations of conventional lab-based experiments often result in the

use of a narrow set of participants, typically university students, with

similar cognitive abilities, low variance in age, education, income, etc. A

natural concern is whether results obtained in this specific population

represent behavior in a more diverse population. Henrich, Heine, and

Norenzayan (2010) argue that participants in laboratory experiments

are typically drawn from Western, Educated, Industrialized, Rich, and
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Democratic (WEIRD) societies, and results obtained from such studies

may not generalize to other populations and settings[13]. One of the goals

of this research is to make technology that can translate from the lab into

the wild while preserving signal integrity and quality, thereby making

these devices easy to access for a broader demographic population,

while at the same time being conformable to the user and their natural

environment. The first contribution of this dissertation is that of hardware

and software platforms that support (1) standardized data collection and

feature extraction from a wide range of physiological sensors, and (2)

system for real-time adaptation of the stimuli based on the user’s current

mental and affective state as inferred from the sensor data. We believe

that these platforms will be scalable and adaptable to a broad range

of applications and are poised to impact cognitive-behavior research

significantly. A second contribution of this work involves potential

variations that can be achieved, one of which is Fascia, a smart sleep mask

that aims to gather all relevant polysomnography (PSG) data without

disturbing sleep quality, the other being Galea and Entwine, designed

for VR based physiological experiments. A third and final contribution

consists of the design and evaluation of 2-3 use cases that demonstrate

the utility of the proposed platforms.

1.3 Vision And Framework Questions

The work presented in this thesis aims to address several important

questions related to the development and validation of platforms for

conducting cognitive experiments and collecting physiological data

during wake and sleep time. These questions encompass various aspects

of the systems, ranging from technical feasibility to user experience and

privacy concerns.

How can we develop hardware and software platforms that enable

closed-loop cognitive experiments in more naturalistic settings, both

during wake and sleep time? This question pertains to the design and

implementation of the core technology, such as the physioHMD, Galea

headset, and Fascia ecosystem, as well as the integration of these devices

with virtual reality and other experimental paradigms.

What are the key technical challenges in designing, validating, and

deploying these platforms? This question explores the technical aspects

of the systems, including signal quality, hardware performance, and
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integration with existing experimental setups.

How can we ensure that the platforms are accessible and useful to

researchers with varying levels of expertise in cognitive-behavioral

neuroscience and virtual reality? This question highlights the importance

of creating user-friendly tools and frameworks, such as the Entwine

toolkit, to support the wider adoption of these platforms by the research

community.

What are the potential applications and implications of using these

platforms for studying various cognitive and physiological processes

during wake and sleep time? This question delves into the potential

benefits and challenges of conducting experiments in more naturalistic

settings and the insights that can be gained from studying the relationship

between the central nervous system (CNS) and the autonomic nervous

system (ANS), as well as sleep research.

How can we address the privacy and ethical concerns associated with

collecting and sharing sensitive physiological data? This question em-

phasizes the importance of incorporating privacy safeguards and data

protection measures into the design and implementation of these plat-

forms, as well as fostering transparency and trust among users and

researchers.

By addressing these questions, the thesis aims to provide a comprehen-

sive and in-depth understanding of the development and validation of

platforms for cognitive experiments and physiological data collection,

as well as their potential applications and implications in the field of

cognitive-behavioral neuroscience and beyond.

1.4 Neurofeedback Research

In recent years, neurofeedback research has emerged as an increasingly

significant area of study due to its potential applications in various do-

mains such as cognitive enhancement, mental health, and rehabilitation

[14, 15] Neurofeedback, a form of biofeedback, enables individuals to

modulate their brain activity by providing real-time feedback about their

neural signals [16]. Understanding and contextualizing neurofeedback

research is crucial as it sheds light on the underlying neural mechanisms

and offers insights into how individuals can learn to self-regulate their

brain activity [17]. This, in turn, can lead to the development of targeted

interventions and personalized therapies for a range of neurological and
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psychiatric disorders, as well as optimizing cognitive performance in

healthy individuals [14, 18]. Furthermore, advancements in neurofeed-

back research have the potential to transform not only clinical practice

but also educational and occupational settings, thereby enhancing overall

human performance and well-being [19].

Early neuroanatomy studies relied on a lesion approach to study prin-

ciples of cognition. In contrast, neurofeedback studies cognition with a

perturbative approach. There are two types of neurofeedback approaches:

direct and indirect. Traditionally, direct neurofeedback allows for scien-

tific inquiry by directly eliciting the subject’s brain dynamics based on a

stimulus that perturbs their current brain state.[20]. Indirect feedback

elicits brain dynamics by engaging the subject in a mental task and com-

paring “healthy subjects with patients to better diagnose individuals with

disabilities and mental illness.” The ability to elicit the behavioral state

based on underlying brain dynamics has extensive benefits in exposing

functional mechanisms underlying changes in behavior[21].
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Neurofeedback begins with the observation of physiological activity.

Electrophysiological methods to detect such activity include electroen-

cephalography (EEG), Electromyography (EMG), and Electrodermal Ac-

tivity (EDA). Haemodynamic imaging methods for detecting blood flow

activity include Photoplethysmography (PPG). Sample signals that are

extracted from both types of these sensor channels provide a qualitative

representation of the difference in temporal resolution. Electrophysio-

logical and haemodynamic signals can be processed in similar ways.

Univariate approaches extract a signal from a single channel or region of

interest, for example, an evoked potential. Features from a set of sensors,

such as the power at a frequency window or the level of activation, can

be classified as multivariate patterns of activity (MVPAs). The calculated

signal is then presented to the individual via visual, auditory, haptic

or electrical stimulation feedback, allowing the user to alter the neural

function and complete the loop with neural processing of feedback[22,

-60pt].

To test whether a subject’s capacity to modulate the target brain region

directly increases task performance, researchers can present sensory

feedback that scales with the amplitude of brain activity.

The use of neurofeedback has revealed that subjects can learn to regulate

the activity of subcortical areas, for example, the amygdala[23, -80pt], and

extended areas of the limbic systems[24, pp. –30]. Prior work has shown

that subjects who learned to modulate regional activity demonstrated

improved performance on various cognitive tasks, including processes

critical for memory[25, pp. –15], mood[26], motor imagery[27], and

perception of pain[28].

1.5 Physiological Computing Research In HCI

In the past number of years, research in Human-Computer Interaction has

explored how to best integrate Physiological Computing into everyday

products and services. Early work explored adding sensing actuators

to eye-wear to collect facial deformation[29] and more recently Bernal

et al.[30] developed EmotionalBeasts, a system to track and visualize

emotions using avatars in a virtual environment. This was done by

adding a sensor to a virtual reality headset that would record the user’s

Electrodermal Activity (EDA) and Heart Rate (HR), and then train a

neural network to estimate four emotions from the raw EDA and HR data.
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Figure 1-3: Goggles worn by a person

with the small board for EOG signal am-

plification attached to the left side of the

frame. Image from Bulling 2009

The PhysioHMD project demonstrated that multi-sensory physiological

recordings can be integrated into a Head-Mounted Display (HMD) in a

way that provides better fit and comfort[31].

The wearable EOG goggles are designed to meet certain requirements,

including being lightweight and low-power for long-term use, providing

real-time signal processing capabilities and compensating for EOG signal

artifacts through the use of a light sensor and accelerometer [32]. The

hardware is made up of two components, the goggles and a wearable

processing unit, and has a weight of 188g and can last for 7.2 hours of use.

The EOG signals are processed in real-time and can be transmitted via

Bluetooth or stored on an Memory card. Eye gesture recognition involves

detecting and removing blinks, detecting saccades, mapping them to

basic directions, combining diagonal saccades into a string sequence,

and recognizing eye gestures through string matching with templates.

A case study showed that EOG signals can be efficiently processed for

eye gesture recognition, with eye gestures quickly learned by subjects,

although 30% reported difficulties staying focused during use.

The implementation of PhysioHMD consists of a flexible printed

circuit board with a wide range of electrodes (heart rate, electrodermal

activity, facial expression from muscle activity, eye movement, and brain

signal from the prefrontal cortex region). Shaped as an eye mask, it

takes advantage of the close contact of an HMD to the face to collect

the physiological signals. These signals allow for Affective Computing

integration (such as recognition of emotions and facial expressions) into

Virtual Reality Environment applications. The work described here goes

beyond PhysioHMD by creating an open platform for the community to

utilize Physiological Computing in VR.

PsychicVR, developed by Amores, is a VR system that integrates the

Muse, a consumer BCI headband, with a VR headset to teach mindfulness

while enjoying a playful, immersive experience[33]. The setup can be

seen in Figure 1-4. Another relevant study is by Casanova et. al. who

demonstrated that VR can be used to understand a patient’s cognitive

state in the operating room during awake brain surgery. Typically awake

brain surgery makes use of language mapping to avoid critical brain

regions, however cognitive functions such as visuo-spatial cognition

and non-verbal language, including facial expressions and eye gaze, are
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Figure 1-4: Image from psychicVR publi-

cation

rarely used during brain surgery even though they are equally important.

Casanova’s work uses physiological computing and VR to make these

tasks compatible with the restrictive environment of an operating room

and awake brain surgery procedures[34].

These research projects share a common need for the sensing and feedback

system to be more integrated. Amores’ and Casanova’s research makes

valuable contributions, but the replicability and scaling of these works

are very limited due to their ad-hoc nature. With the platforms presented

in this dissertation, we hope to remove these limitations.

The MindFlex® game is one of the few BCI technologies that has gone

on to become a commercial entertainment product. In a study conducted

by O’Hara et. al. participants were asked to play the game at home with

others and videotape their sessions. The collected video data (about

4 hours) was analyzed to understand the embodied nature of interac-

tions and collaborations during the game play. The study showed the

importance of considering the social organization of bodily and mindful

behavior in BCI gaming and how it affects the application of BCI design

in social contexts. The study also highlighted the role of actions, gestures,

expressions, and utterances in making internal brain states and intentions

visible to others, which is important for creating social meaning and

forming social relationships between players and audiences [35].

1.6 The Need For A Standard Platform

All of the projects mentioned before are tackling similar challenges,

namely how to monitor and gain insights from the user’s physiology into

virtual environments. More recently, Looxid Labs, Neurable, and Emte-

qVR have taken a similar approach to Bernal et. al. and commercialized a

sensing add-on for VR headsets. In the case of Looxid Labs, their product

reads brain signals from the prefrontal cortex region in order to assess the

user’s attention and relaxation[36]. Neurable released a limited number

of units as a proof of concept that collected signals from the occipital

region of the brain, enabling it to collect signals related to the stimulus

presented to the participant’s visual field[37]. The EmteqVR add-on uses

the facial muscle signals generated by the person wearing the device to

understand the user’s affective state[38]. Each of these products looks at

one specific physiological signal which provides insight into one domain,

but they do not result in a novel research tool that allows researchers
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to examine how these individual signals may work together or impact

one another. In order to understand more complex human behavioral

processes, it is important to be able to monitor and assess multiple signals,

as is possible with the platforms proposed in this dissertation.

The development of sensing devices that are comfortable to wear

and maintain signal fidelity is essential for realizing the full potential

of Physiological Computing. Despite the research developed to date,

the Physiological Computing community still lacks adequate hardware

platforms for collecting large multi-sensory datasets and facilitating

collaborative sharing of experimental protocols and data aggregation,

which is especially important for creating the large datasets needed for

machine learning.
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To bridge the gap between the current limitations of Physiological Com-

puting and realizing its full potential, a new solution was needed. This

solution presented itself in the form of virtual and augmented reality

headsets. With their unique access to the facial area, these headsets pro-

vide a prime opportunity for collecting bio-signals and facial expressions

for insight into the user’s state. To take advantage of this opportunity,

the PhysioHMD platform was developed. This software and hardware

modular interface allows for the collection of affect and physiological

data from a user wearing a head-mounted display. With its flexible archi-

tecture, PhysioHMD enables real-time aggregation and interpretation of

signals, leading to the development of novel, personalized interactions

and evaluation of virtual experiences. Additionally, PhysioHMD offers a

user-friendly interface that is easily extendable and accompanied by a

suite of tools for testing and analysis.

PhysioHMD Publications

The research presented in this chapter has resulted in the following

peer-reviewed publications to date.

Bernal, Guillermo, Tao Yang, Abhinandan Jain, and Pattie Maes. Phys-

ioHMD: a conformable, modular toolkit for collecting physiological

data from head-mounted displays. In Proceedings of the 2018 ACM

International Symposium on Wearable Computers, pp. 160-167. 2018.

Bernal, Guillermo, and Pattie Maes. Emotional beasts: visually express-

ing emotions through avatars in VR. In Proceedings of the 2017 CHI
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conference extended abstracts on human factors in computing systems, pp.

2395-2402. 2017.

2.1 Background

Augmented Reality (AR) and Virtual Reality (VR) technologies, hereafter

referred to jointly as extended reality (XR) technologies, have enjoyed

increasing popularity in the last few years thanks to the emergence of

inexpensive and easy to deploy headsets. While XR technologies primarily

support applications in the entertainment and gaming industry, they

are also increasingly used in health care and human behavior research

to treat anxiety, phobias, psychosis, and post-traumatic stress disorder

(PTSD). In both entertainment and health care applications, it is essential

to understand the behavior, performance, and engagement of the user

[39–41]. In clinical settings, XR technology has recently gained much

interest because it enables novel, promising methods for treating anxiety

and other mental disorders [42]. XR-based therapy is also opening up

new and exciting opportunities for pain management and personalized

physical and sports therapy [43, 44].

Typically, XR based therapies require that the user not just wear a head-

mounted display but also an array of other sensors and devices that

enable real-time monitoring of the user’s physiological and cognitive

state. For instance, Electrocardiogram (ECG) and Electrodermal Activity

(EDA) are used to understand emotional arousal and are used to identify

the magnitude of the emotional response. Electrooculography (EOG)

and Electroencephalography (EEG) provide data relevant to information

about attention as well as valence, and Electromyography (EMG) provides

data on facial expressions linked to positive or negative valence. This

sensing technology is not just cumbersome to set up and wear, but it is also

very costly, not standardized, and often error-prone. To overcome these

problems, this chapter introduces a new platform called PhysioHMD

that consists of both hardware and software, and that makes collecting

and using information about the internal state of the user cheap and easy.

This platform offers a standard for obtaining and comparing data across

different users, sessions, and study settings across multiple disciplines.

XR technologies offer the potential to develop human testing and training

environments that allow for the precise control of elaborate stimulus

presentations in which human cognitive and functional performance can

be carefully evaluated and rehabilitated. In the case of AR, measuring
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focus and attention in learning/training scenarios is a novel application

which is gaining traction in industry.

Emotions are multifaceted events with corresponding physiological signs

as well as human expressions [45]. Even though the majority of existing

methods for automatic emotion recognition are based on audio-visual

analysis [46], there is an increasing body of research on emotion recogni-

tion from peripheral and central nervous system physiological responses

[47, 48]. There are multiple advantages to using physiological signals

for emotion recognition as opposed to using only audio-visual signals:

they cannot easily be faked, they do not require a front-facing camera,

and they can be used in any degree of illumination/noise. Moreover,

they can be combined with audio-visual modalities to construct a more

robust and accurate multi-modal emotion recognizer [46]. A system like

BIOPAC [49] is now being employed in a variety of applications [50,

51] for measuring facial movements using standardized tools such as

Ekman and Friesen’s Facial Action Coding System (FACS) and facial

electromyography (sEMG). There are some startup companies like Emteq

Labs [52] and MindMaze [53] that are working on toolkits focused on

bringing affective data into VR. However these setups focus only on

EMG, and not much it is known about their setup and high price tag.

Filmmakers, entertainers and other storytellers are trying to figure out

what XR as a medium might mean for their respective fields. Some

interesting experiments that make use of physiological or affect data

include PsychicVR [54], a VR system that integrates a brain-computer

interface device with a VR headset to improve mindfulness while enjoying

a playful, immersive experience. The interactive storytelling platform

PINTER [55] uses physiological data to drive the unfolding of a plot.

PINTER features an underlying narrative that consists of a medical

drama which combines aspects of medical practice with the evolution of

personal relationships between lead characters. Entertainment works like

those mentioned above can leverage a system like PhysioHMD to drive

the immersive experience with the audience’s data, thereby exploring

new ways of telling a story.

2.2 System Description

PhysioHMD is a sensor and computing platform developed to support

the analysis of multi-modal data related to the behavior and responses of
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Figure 2-1: Exploded view of PhysioHMD hardware setup for a VR experience. Electrodes are embedded into a foam face cushion in

order for the flexible PCB to record data through contact with the user’s skin. The assembly for AR headsets is similar, with the addition

of a rigid face plate that allows for electrode contact with the skin.

a user, with the goal of enabling evaluation and customization of virtual

experiences.

Although hardware costs have come down for XR devices, researchers still

do not have access to simple interfaces for deploying Virtual Environments

(VEs), interfaces that require little knowledge of game engine content

creation, sensor data, data logging, or data visualization. Given these

constraints, the following list of requirements was developed for the

PhysioHMD platform:

1. A plug and play pipeline that can be deployed with minimal

development effort.

2. Physical form factor must be comfortable to the user and easy to

use.

3. System supports standard implementations of existing algorithms,

feature extraction, and classification.

4. Offers a publicly available open-source code base for use and

further improvement by the community interested in this body of

work.

5. Includes a game engine interface with sample scenes and relevant

tools.
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Figure 2-2: The process of our classification system and the CNN architecture used.

2.2.1 Hardware

There are two main components to the PhysioHMD hardware: first

there is the main PCB, an analog front end that collects bio-potential

signals from muscle movements, eye movements, skin response and

brain signals. The second component is an ergo-electronics face-pad;

a flexible PCB with gold-plated pickup electrodes that can connect to

electrodes like Ag/AgCl (silver/silver chloride), hydro-gels or can be

used by themselves as depicted in Figure 2-4. The PhysioHMD system

collects sEMG, EEG, EDA, ECG and eye-tracking data.

Electronics

Figure 2-3: a) PCB configuration is de-

picting locations of main components on

top and bottom planes. b) A sample of

signals gathered from PhysioHMD and

their relevance in gathering affect data.

The PhysioHMD hardware was built to capture bio-signals coherently

and to avoid the inconvenience caused during the setup of multiple

signal acquisition devices as shown in Figure 2-3 a. A pair of TI ADS1299

(ADS) were used as the front-end for the Analog-to-digital converter

(ADC) operations: one ADS is used for sEMG and the possibility for

EOG data acquisition, while the other ADS acquires the frontal EEG data.

Both the ADS’s are controlled by an ARM Cortex M0+ processor using

SPI communication standard. This PCB design provides flexibility on

the board configuration by exposing multiple jumpers of both ADC’s
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Reference and Bias. Communication with the PC is done by using the

inbuilt USB interface. Anti-aliasing filters are used before both ADC’s

and sample at 500Hz. EDA measurement is integrated by using a voltage

divider and a bandpass filter of 1.5 Hz to 15 Hz to remove artifacts. The

signal is then buffered with an amplifier of gain 2 V/V and use ARM’s

ADC to sample the data.

Electrodes

The sensing face pad that integrates the bio-signal sensors for detecting af-

fect of users (Figure 2-4) was built into and tested on two HMD platforms:

into the face cushion of an HTC VIVE VR headset and into the Meta 2 AR

headset. To fit into an HMD face-pad, it was quickly determined that a

flexible PCB that connects directly into the PhysioHMD’s face pad would

be the best solution for integration. The flexible PCB has gold plated

pads which can either be used as standalone electrodes or as a connector

compatible with external electrodes.

The EDA electrodes were placed on the forehead region because it is

one of the regions most dense with sweat glands to provide arousal

information. The sEMG electrodes were placed above the eyebrows on the

frontalis muscle and on the cheeks on the zygomaticus muscle, providing

insight into facial muscle activation. Eye movement is measured by

setting EOG Vertical (EOGV) and EOG Horizontal (EOGH) electrodes in

a standard placement. Furthermore, EEG electrodes were set according

to the 10-20 international electrode system on the user’s frontal lobe.

Figure 2-4: The image depicts every headset variation explored during this research. a) AR headset with flexible PCB & gold plated

electrodes. b) VR headset with flexible PCB & gold plated electrodes. c) VR headset with hydrogel electrodes. d) VR headset with

Ag/AgCI electrodes.

2.2.2 Software

The software side is similarly composed of two main components. First,

a signal processing component with normative data for signal pre-

processing and feature extraction. This component also features a multi-
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variate visualization method for data interpretation by end-users. The

second element within the software is a game engine package that can

be dropped into any virtual scene.

Machine Learning for Pattern Recognition

A LeNet-5 [56] five-layer CNN architecture is used to classify the collected

data as shown in Figure 2-2. There are two convolution layers and two

pooling layers, with one full-connection layer. Convolution layers are

used to extract the main feature, while pooling layers will sub-sample

the feature maps. The multichannel data is reshaped into a matrix and a

3*3 size convolution kernel is used in the first layer and third layer. In

the second and fourth layers, the sub-sample window size is 2*2, and

max-pooling is used. In the full-connection layer, rectified linear units[57]

are used to improve the nonlinear performance of the network.

To train the network, data was collected from 6 users (three females and

three males ages 19-30) for 12 different expressions. As part of the data

collection procedure, the users were asked to put on the PhysioHMD

prototype and repeat an expression 12 times for 5 seconds each with

intervals of 3 seconds. The captured data is then pre-processed before

feeding it into the network. Notch filters are used to remove the power

line interference at 60Hz and 120Hz, and a high-pass filter is applied to

cut off the low frequencies below 30Hz. The time sequence sEMG data

for each expression is then labeled.

A 0.5 second time window is used to segment the multichannel time

series data into sub-sequences. Every sub-sequence is a training or testing

sample. The label for a sample is decided by choosing the principal

type, which takes the maximum percentage in marker vector. One-hot

encoding [58] is then followed to re-encode the labels.

The data augmentation paradigm [59] is utilized to reduce the effects

of over-fitting. The augmentation generates sEMG signal translations

and horizontal reflections increasing the size of the dataset. Whenever

different expression samples are collected, neutral expression samples

are obtained in addition to the specific expression being measured.This

results in a dataset that is mostly comprised of neutral samples.

A 0.5 dropout rate is used to avoid over-fitting [60] in the training process.

From this, a learning rate of 0.001 is established which tells the optimizer

how far to move the weights in the direction of the gradient for a mini-

batch. In 30 minutes and 800 iterations, the optimized network sees
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a classification accuracy of 99.8% in the training set and 92.3% in the

testing dataset.

Skin conductance response (SCR) is considered useful as it signifies a

response to internal/external stimuli. The Kim’s et al.[61] method for SCR

extraction from EDA signals was followed by reducing the sampling rate

to 20 samples per second, differentiation and subsequent convolution

with a 20-point Bartlett window. This procedure yielded the output

waveform shown in Figure 2-5b for the input signal shown in Figure

2-5a. The occurrence of the SCR was detected by finding two consecutive

zero-crossings, from negative to positive and positive to negative. From

this, the SCR was determined in addition to the peak, which does not

show exponential decay depending on the context (e.g., if two SCRs

occur close together in time, the first response may not decay before the

second begins, yet this is not considered an artifact).

Figure 2-5: Six seconds of EDA signal

recording showing a signal peak due

to abrupt arousal. a) Typical waveform

of EDA under emotional stimulation. b)

Output signal from detection module

from signal in a).

Figure 2-6: Unity package main dash-

board, where users can select signals to

measure, methods in which to segment

data, and environments to test within.

2.2.3 Game Engine Integration

To facilitate integration, the PhysioHMD platform has been encapsulated

into a Unity3D package. By encapsulating the platform, less experienced

users can drop the package into an empty or already built environment

to access the tools. The sample scenes included within the package are

set with default configurations that can easily be customized with the
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exposed parameters in the editor. The main scene is a dashboard (Figure

2-6) for the person running the study, and here the user can select the

signals of interest, choose the data segmentation tool, or merely record

raw data. Once those parameters are selected, the user can choose to

use one of the demo scenes. Lastly, the user can also choose to take

information from external API or SDKs. Those utilities are shown by

integrating aGlass SDK[62] to provide point of regard (POR) data and

Beyond Verbal affective speech recognition. The following demo scenes

were created with the intention to meet most user cases in XR behavioral

research.

1. A full body inverse kinematic (IK) scene, where the user can have

a room scale experience while embodying a full-size avatar.

2. A mimicry scene where a 3D avatar replicates the facial expressions

made by the user wearing the HMD.

3. A 360
◦

scene where 360
◦

video is played.

4. A scene with a particle system that can instantiate animals or

objects that the user may have an aversion to or a phobia.

2.3 Evaluation

A set of tests were conducted to evaluate the accuracy of the system and

the signal quality vs. ergonomic comfort levels once worn by the user. The

primary focus was testing the robustness and usability of the prototype

for long periods of time in multiple scenarios. Eight participants (four

females and four males), 18-32 years old were asked to put on the

PhysioHMD prototype and repeat an expression 12 times for 5 seconds

each with intervals of 3 seconds. Each electrode was also evaluated on

the following parameters: level of comfort, signal quality, and shelf life.

After wearing the headset for 15 minutes for each face pad, we asked the

user to self-report on the level of comfort.

2.3.1 Qualitative Analysis

The training and identification processes noted above were conducted for

each individual that participated in the study. The recognition accuracy

values of the facial expressions are shown in Figure 2-7. This figure shows

the testing confusion matrix, which shows the different performance

of each expression. Due to obvious signal patterns and high-intensity

signal amplitude, Happy, Excited, Angry, Rage, Snarl, and Wink have the
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Figure 2-7: Confusion matrix. a) Con-

fusion matrix of prediction accuracy. b)

Confusion matrix of prediction amount.

highest recognition accuracy. For Sad, Flirt, Quiver, Sarcastic and Shock,

because of the similar signal pattern with other expressions and weak

signal amplitude, lower accuracy levels were obtained. Compared with

the state-of-the-art results, the PhysioHMD platform can deal with more

complex expressions and shows better performance in recognizing basic

expressions which Katsuhiro et al. also showed in their paper[63].

Table 2.1 compares the facial recognition model’s accuracy of Katsuhiro’s

et al. research in comparison to the PhysioHMD facial recognition

model.

2.3.2 Ergo-Electronics Evaluation

During prototype testing, the three different face pad electrodes were

compared: gold-plated pads, standard Ag/AgCl electrodes, and hydrogel-

based electrodes. Each electrode was evaluated on the following param-

eters: level of comfort, signal quality, and shelf life. In this experiment,
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Table 2.1: A comparison of facial expression recognition accuracy between Katsuhiro’s method and our method

Method Natural Happy Sad Excited Angry Flirt Quiver Rage Sarcastic Shock Snarl Wink

Kats. 95.7% 98.9% 76.2% —– 80.0% —– —– —– —– 92.1% —– —–

Ours 97.2% 98.8% 79.4% 97.1% 97.6% 54.4% 74.0% 96.8% 84.9% 79.3% 97.9% 99.2%

participants were asked how comfortable each type of electrode was

on the face while creating different facial expressions while wearing

the HMD. A scale of 1-5 was used, where 1 is uncomfortable and 5 is

maximum comfort. A standard face pad was also used as a the neutral

reference. Hydrogels matched closely to the standard face pad in terms

of comfort, whereas gold plated electrodes were the least comfortable for

the participants.

Faceplate Comfort Signal Gain(dB) Shelf Life(months)

Facepad 4.5 NA NA

Gold Plated 3.1 0 >12

Ag/AgCl 4.1 -1 <6

Hydrogel 4.4 +7 <1

Table 2.2: Comparison of comfort, signal

quality and shelf life of different elec-

trodes

Table 2.2 gives a summary of the average comfort felt by the participants,

the average signal gain, and the shelf life of each electrode.

Further, the signal-to-noise ratio of the signals acquired by each different

electrode were compared and evaluated. This evaluation concluded

that the Ag/AgCl electrodes had -1dB signal gain and hydrogels had

+7dB signal gain on average with the same expression. The shelf life

of gold plated electrodes is estimated to be >1 year whereas the shelf

life of Ag/AgCl and hydrogels is <6 months and <1 month respectively.

The hydrogels also require frequent treatment with saline solution for

keeping the signal quality high. Also, based on observations during

signal analysis from all three different electrodes, it was found that

hydrogels and Ag/AgCl had better mechanical contact compared to

gold-plated electrodes because they protrude from the face pad. Given

this information, it was concluded that hydrogels will be suitable for

physiological data acquisition where high signal quality and comfort

are both desirable. Ag/AgCl electrodes will be desirable where both

contact requirement and cost are constraints. Gold plated electrodes will

be desirable where longevity and minimum cost are required.
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2.4 Applications

Four demonstrations were created that demonstrate the capabilities of

the PhysioHMD system. First, a demo that uses the system to create more

expressive avatars in a social VR setting. Second, a demo that maps user’s

real-time expression and emotion into the user’s VR avatar. Third, a 360

video scene was presented that monitors the user’s reactions towards the

VE content and modulates the scene based on the user’s response. Last,

a demostration that presents stimuli for users in VR exposure therapy

settings that offers gradual hierarchies of fearful stimuli.

Figure 2-8: The depiction of the range

of possible transformations and quali-

ties for an avatar’s emotional expressions

with a particle system. The figure shows

the particle system’s variations in par-

ticle size, density, brightness, and color

which can all adjust to express the emo-

tions of the user visually.

Figure 2-9: The user’s real-time expres-

sion and emotion are mapped into the

user’s VR avatar. Natural, Happy, Sad,

Excited, Angry, Flirt, Irritated, Rage, Sar-

castic, Shock, Snarl, Wink.

2.4.1 Affective Avatars

The first of the two affective avatar demonstrations shows how the system

can allow users to express emotions in abstract ways using full-size

avatars in a virtual environment while embodying a full-size avatar using

an inverse kinematics (IK) system with the PhysioHMD headset (Figure

2-8). The affect of the user is represented visually in two different ways:

(1) the fur of the avatar can grow when arousal is high and (2) the color of
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the avatar can intensify in brightness or change color to highlight when

the user is in a high arousal situation. More detailed information can be

found in the publication Emotional Beasts [30]. Within this application

area, the goal is to provide agency and express affect in VR through

avatars to produce the compelling human-to-human connection.

The second scene expresses affect through facial expressions (Figure

2-9), which is done by mapping the facial expression of the user wearing

PhysioHMD into a 3D rigged model avatar. Mimicry was investigated

due to its relevance in areas such as autism spectrum disorder research

[64]. Participants played an imitation game with both a socially engaged

avatar and socially disengaged avatar. This application presents a direct

mapping of the user’s facial expressions and affect state onto the VR

avatar.

2.4.2 Dynamic Occlusion

Figure 2-10: a) Frames from the 360 experience. b) Heatmap from point-of-regard (POR) from user’s gaze. c) Electrodermal activity in

Siemens. d) Diagram showing how the occlusion shader works.

Monitoring user’s reactions towards VE content has been a hot topic [65],

as it enables the generation of personalized VR experiences. The demo

scene presented here uses arousal levels to provides real-time, reliable

information about the user’s reception of the content and can help the

system adapt the content seamlessly. In the 360 video demo player scene,

gaze data and SCR data are used to increase the levels of arousal in

the user. Figure 2-10 shows how the demo takes standard footage from

people in a basement and makes a darker flashing more dramatic 360

captured video, similar to those seen in horror movies.
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To direct the user’s focus to the people within the video, a surfaces shader

is dynamically modulated to occlude locations informed by the Point of

Regard (POR) data; the gaze tracking system has the ability to identify

areas that are not of interest to the user. The detected Skin Conductance

Response (SCR) and peak values are then used to pulse the occlusion

shader with modulation.

𝐷 =
𝑘𝐴 − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
(2.1)

Formula 2.1 shows the simple equation that drives the visibility guided

by the user’s affective state. D is Duty Ratio of the PWM signal. A is the

amplitude of EDA signal. k is the constant coefficient, Ymin and Ymax

are the minimal and maximum value about the PWM signal. The POR

data is collected by dividing the HTC vive HMD screen into two halves,

and each half screen is used for one eye. So, for monocular eye aGlass

module, the coordinate is mapping to the half of the screen which size

is half of the HTC HMD screen (1080 pixel * 1200 pixel). The coordinate

system is normalized, the coordinate of top left is (0, 0) and the coordinate

of the right bottom corner is (1, 1). For example, the pixel coordinate of

HTC Vive screen where aGlass [62] coordinate (0.5, 0.5) map to is (540,

600). Then this coordinates (POR) are mapped onto a plane at a specific

location within the eye tracker coordinate system.

2.4.3 Adaptable Exposure

The PhysioHMD system was also explored in a phobia treatment scenario

where a subject is presented stimuli of a feared object using a particle

system. The images (sprites) spawned through the particle system can

be modified (speed, size, the rate of spawn, movement) in the Unity

inspector to increase or decrease the arousal level of the user. This

demo shows in Figure 2-11 a participant with entomophobia and her

response to the stimulus of the spawning of more insects. The images

(sprites) spawned by the particle system can be modified in the Unity

inspector, allowing the organizer of the study to control the virtual animal

by choosing different functions (e.g., increase/decrease the number of

animals; increase/decrease the size of animals; make the animal move

continuously or randomly; make the animal stay still).

Taking data input from the EDA signal, control changes were sent to

the particle system and synchronously relayed to trigger occurrences in
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Figure 2-11: Visualization of how users can be exposed to phobias in a therapeutic VR setting. Here, a user with entomophobia is

exposed to a virtual setting containing insects. The physiological response recorded by the PhysioHMD modulates the quantity of insects

the user is exposed to within the environment.

the behavior of the critters in the scene meant to represent or provoke

arousal in the participants. Three levels of participant arousal were

determined to range from low to high. Such levels were established based

on simple rules regarding how the data from the sensors changed in the

short, medium and long-term. Since EDA readings can vary significantly

from one participant to another, where possible, the control system was

designed to change the criteria by which these rules were based to more

accurately reflect the arousal levels of the user group throughout the

installation.
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2.5 Limitations and Future Work

The applications presented in this research aimed to expose advantages

of using physiological computing tools that provide multi-modal sensing

for VR psychotherapy, behavioral studies or expression explorations, but

there are many features we plan to add in upcoming versions.

For future work, the performance of our CNN on the raw data from

more than four channels in the dataset should be investigated. Since the

dimensionality of the data is high, an effective channel selection algorithm

is necessary. Secondly, the relationship between our CNN structure and

its performance is of interest for finding appropriate trade-offs between

solution quality and training time. For these reasons, we would like to

expand the PhysioHMD platform to a broader community to help grow

the quality and quantity of the data.

2.6 Conclusion

In this chapter, we introduced PhysioHMD, a sensor and computing plat-

form designed to analyze multi-modal data related to a user’s behavior

and responses while utilizing XR technology to enable evaluation and

customization of virtual experiences. The toolkit is intended to assist

both researchers and non-experts in the arduous task of collecting and

processing physiological signals and creating experiences in a game en-

gine. The software provides signal processing methods and data logging

for physiological signals in order to provide researchers with accurate,

real-time information regarding a user’s response to content in a virtual

environment. Our intention is to grow a community that contributes to

HCI and XR technology research through the pluggable open source

platform.
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3.1 Introduction

As described earlier, before the development of PhysioHMD, there were

no readily available headsets designed to collect the physiological data

needed for immersive and adaptive XR experiences. The only approach

involved custom integrations using separate sensors and software, which

posed significant challenges for potential users. Recognizing the need

for a more accessible solution, we set out to create a robust, reliable,

and open-source device that could be easily adopted by researchers and

practitioners alike.

The journey towards developing a deployable and sustainable solution in-

volved extensive work, from manufacturing and flexible sensor design to

collaborating with other researchers and exploring potential partnerships.

This chapter will discuss the pivotal collaboration with an Open-Source

BCI company dedicated to creating tools for neuroscience and biosensing.

Through this collaboration, Galea, a hardware and software platform

designed to integrate multi-modal biometrics with mixed reality, was

developed. Drawing on the work done with PhysioHMD, Galea expands

upon its capabilities and offers a more advanced and accessible solution.

Galea’s sensors are strategically placed throughout a custom facepad and

head strap, designed to be compatible with existing AR and VR headsets,

such as the Valve Index. Building on the foundations of PhysioHMD,

Galea incorporates sensors for EEG, EMG, EDA, PPG, and EOG. Its soft-

ware allows for raw data access in various programming languages and

supports compatibility with LSL for data merging with other devices.
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Galea Publications

The research presented in this chapter has resulted in the following

peer-reviewed publications to date.

Bernal, Guillermo, Nelson Hidalgo, Conor Russomanno, and Pattie Maes.

Galea: A physiological sensing system for behavioral research in

Virtual Environments. In 2022 IEEE Conference on Virtual Reality and

3D User Interfaces (VR), pp. 66-76. IEEE, 2022. Bernal, Guillermo, Sean M.

Montgomery, and Pattie Maes. Brain-computer interfaces, open-source,

and democratizing the future of augmented consciousness. Frontiers

in Computer Science 3 (2021): 661300.

In this chapter, we will delve into the development process and po-

tential applications of Galea, highlighting its role as a powerful tool

for researchers, developers, and creators working to better understand

and augment human cognition and behavior in the context of extended

reality technologies. With its roots in PhysioHMD, Galea represents the

next step in the evolution of physiological sensing for XR applications,

enabling a new era of research and innovation in this rapidly growing

field.

3.2 Related Work

3.2.1 Assessment of Cognitive Responses

Physiological measures are often used to evaluate a user’s underlying

cognitive process in virtual environments. In the last decade, researchers

have employed devices (e.g., head-mounted displays, EEG caps, video

capture systems, eye tracking systems, wearable sensing) to improve re-

habilitation outcomes of VR-based interventions, such as anxiety therapy

[66–68].

The work done by Gupta et al. exploring the measurement of attention

or mental workload using physiological sensors to understand trust

in virtual agents shows how this approach can provide insights to

researchers and designers when developing virtual assistants [69].

Faller et al. in their custom VR closed-loop study have shown that

neurofeedback can be used to down-regulate arousal and improve human

performance in a demanding sensory-motor task in real time [70].
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3.2.2 Commercially Available Devices

The projects mentioned above tackle similar challenges, namely how

to utilize insights from the user’s physiology in virtual environments.

More recently, Looxid Labs, Neurable, and EmteqVR have taken a similar

approach as Bernal et. al. and commercialized a sensing add-on for

VR headsets. The Looxid Labs product reads brain signals from the

prefrontal cortex region in order to assess the user’s attention and

relaxation [36]. Neurable’s proof of concept units collected signals from

the occipital region, enabling collection of brain signals related to the

visual stimulus presented [37]. The EmteqVR add-on uses facial muscle

signals to understand the user’s affective state [38]. Each of these products

looks at one specific physiological signal, which provides insight into one

domain, but does not result in a novel research tool that allows researchers

to examine how individual signals may work together or impact each

other. In order to understand more complex human behavioral processes,

it is important to be able to monitor multiple signals, as is possible with

Galea.
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Figure 3-1: System diagram depicting main components: 1) User wearing Galea headset. 2) The device collects indexed data packets from

all of the sensors. 3) The packets are sent over WiFi using the UDP protocol. 4) A host computer processes the physiological data, and

runs virtual reality experiences. 5) Galea’s GUI enables data communication with the headset, hardware settings, and communication

with other scripts or software. 6) Lab streaming layer is used to synchronize data received from the headset with events and stimuli

generated in the game engine and any middleware scripts. 7) Python scripts are used to do real-time signal processing and classification.

8) Unity3D generated scenes are then presented to the user.

3.3 System Overview

The Galea system simplifies the previously mentioned efforts by pro-

viding a solution in the form of open-source hardware and software

accessible to the research community. Figure 3-1 shows a flow diagram of
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Figure 3-2: Block diagram for Galea’s hardware architecture

the system for closed-loop immersive experiences in VR. The sequence

of events starts by first connecting the device to a windows machine

host over Wifi. Once the communication has been established, the ex-

perimenter (or individual using the STEAMVR VR [71] desktop view)

uses Galea’s Graphical User Interface (GUI), developed by OpenBCI, to

check for good conductivity on all channels (below 5uVrms per channel).

Next, using the network widget, the LSL stream is initialized. Python

scripts are then initialized to process the signal, recognize patterns and

do other signal conditioning. Finally, Unity 3D is used to play the VR

scenes according to the desired experimental paradigm.

Galea’s compact multi-signal hardware architecture can be described in

three main blocks: A The digital signals block. B The analog signals block. C

The sensing touch-points block. The relationship of these three blocks is

shown in Figure 3-2.

The digital signals block manages its own wireless communication

in addition to the communication with the other sensing blocks. The

analog sensing block is dedicated to collecting data from the brain

(Electroencephalogram, EEG), muscles (Electromyogram, EMG) and

eyes (Electrooculogram, EOG), and includes an optoisolated section

that collects data on the electrical conductance of the skin as a result

of sweat secretion (Electro Dermal Activity, or EDA). The third, or

sensing touch-points block, utilizes the ergo-electronics face-pad: a

flexible Printed Circuit Board (PCB) with gold-plated pickup electrodes

that can connect to electrodes like Ag/AgCl (silver/silver chloride), or

conductive polymers. This flexible PCB also connects to the optical digital

sensing sub-block that detects blood volume changes in the microvascular

bed of tissue and skin temperature (Photoplethysmography, PPG).
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3.3.1 Signal Characterization

This section, delves into the exploration and analysis of the multi-modal

signals captured by Galea. We begin by determining the system’s internal

noise floor, which is essential for understanding the underlying quality

of the data. Next, we present the characteristics for each sensing modality,

using both raw and pre-processed in-vivo data. We have made our Python

notebooks and anonymized data available at this repository https:

//github.com/gbernal/IEEEVR_paper_code, which includes the code

used for generating each of the plots in this section. The data visualizations

employed Neurokit2 [72], MNE-Python package [73], and Lab Streaming

Layer ( LSL) [74].

Input Noise Floor

One of the biggest challenges in building physiological sensing electronics

is ensuring that the smallest measurable signal is not drowned in the

system amplifier’s own noise. At the core of the system is the Texas

Instruments ADS1299 [75], a "low-noise, 8-channel, 24-bit analog front-

end for biopotential measurements". The device’s data sheet states that

it has a self-noise of 1 uV over a bandwidth of 0.01 Hz to 70 Hz. When

evaluating how the design might introduce other background noise,

the desired measurement is the amplitude of the signal that the device

measures, even when there is no "real" signal present. Shorting the inputs

to ground allows for observing this condition, as anything present is

noise.

4 6 8 10 12 14 16
Time (sec)

−1.0

−0.5

0.0

0.5

1.0

In
(−

t−
Re

 e
rre

d 
No

ise
 (µ

V)

Analog Signal
Gain 24
high(ass  iltering at: 1.0 H.
notch  iltering: 57.0-63.0 Hz
RMS Value 0.011 uV/sqrt(Hz)

Figure 3-3: Galea physio2 V4, input

shorted to AGND, Channel 1.

https://github.com/gbernal/IEEEVR_paper_code
https://github.com/gbernal/IEEEVR_paper_code
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For the purpose of measuring the input noise floor as shown in Figure

3-3, "input 1" was shorted to "SRB2" with jumper wire, and then "SRB2"

was shorted to analog ground with another jumper wire. Figure 3-3

shows 20 seconds of the analog signal recorded by the analog digital

converter (ADC) after scaling the raw counts into volts (1 count = 0.022

uV), and after filtering the noise to a bandwidth of 0.1-65 Hz. The root

mean square (RMS) value is 0.011 uV/sqrt(Hz). These values are very

close to those provided by the manufacturer in the data sheet. The Galea

system aims to capture EEG signals which, when measured from the

scalp, are typically about 10 µV to 100 µV in amplitude. Having a system

with an internal noise of 0.16 uVrms ensures that the device’s own noise

won’t envelop the desired observed signals.

Electrodes

Dry electrodes are becoming popular for both lab-based and consumer-

level electro-physiological recordings because they allow for traditional

lab-based research to move into the real world. Galea is fitted with two

types of dry electrodes: (a) passive-dry electrodes with no on-board

amplification, and (b) active-dry electrodes with very high impedance.

Conventional sensing areas were utilized using the international 10-20

system, a recognized method to choose the locations of scalp electrodes

for brain signal sensing [76]. The face pad electrode placements are based

on prior literature reporting of signal activity for each of the signals of

interest [sato_physiological_2020 , 77].

Figure 3-4: Close up view of the elec-

trodes used in Galea. On the left

Ag/AgCl passive electrodes are embed-

ded into the face pad. On the right active

electrodes with conductive polymer are

fit onto the head strap

The face-pad is fitted with Ag/AgCl electrodes and the active electrodes

house an op-amp buffer circuit for amplification and a flexible conduc-

tive polymer. The signals presented in the following subsections were

recorded with both of the electrodes. EEG signals Fp1 and Fp2, EMG from

Corrugator Supercilii, EMG from Zygomaticus Major, hEOG Horizontal,



3.3 System Overview 65

vEOG Vertical and EDA were recorded using the face-pad per Figure 3-4

(Left) and its corresponding mapping in Figure 3-5 (Left).

All of these signals are recorded by the differential circuit module config-

ured for 24-bit resolution, a 500Hz sampling rate, and an amplification

gain of 8 for EEG channels, gain of 4 for EMG and EOG, with a 10MΩ

input impedance, -110dB CMRR, and a [5-500] Hz passing band.

For the EEG recordings that use the active electrodes, the differential

circuit module was used with a 500Hz sampling rate, and an amplification

gain of 2 with a [5-50] Hz passing band.

3.3.2 Differential Circuit Module Characterization

Electroencephalogram (EEG)

Electroencephalogram is a technique used to measure the electrical

activity of the brain. In EEG, electrodes are most commonly placed on

the scalp of a patient to detect the electrical activity of neurons in the

cerebral cortex [79]. The electrodes of an EEG device capture electrical

activity expressed in various frequencies. Using a Fast Fourier Transform

(FFT) algorithm, these raw EEG signals can be identified as distinct waves

with different frequencies. Frequency, which refers to the speed of the

electrical oscillations, is measured in cycles per second, where one Hertz

(Hz) is equal to one cycle per second. These are grouped into frequency

bands that are defined by logarithmically increasing center frequencies

and frequency widths. Brain rhythm frequency bands include delta (𝛿)

(2 – 4 Hz), theta (𝜃) (4 – 8 Hz), alpha (𝛼) (8 – 12 Hz), beta (𝛽) (15 – 30 Hz),

lower gamma (𝛾) (30 – 80 Hz), and upper gamma ( Γ) (80 – 150 Hz).

Corrugator Supercilii

Electrodermal Activity

Midline Vein Cluster

EOG Veritical

EOG Horizontal

Zygomaticus Major

CPZ

INION

NASION

O2O1

PO3 POZ PO4

OZ

Fp1 Fp2

Fz

Figure 3-5: (Left) Mapping of sensing

touch-points available on the face pad for

the Galea system including Fp1 and Fp2,

EMG from Corrugator Supercilii, EMG

from Zygomaticus Major, hEOG Hori-

zontal, vEOG Vertical, EDA and PPG -

(Right) Top view of a 10-20 system map-

ping for the EEG touch-points available

in the Galea system including Fp1, Fp2,

Fz, Cpz, Poz, Po3, Po4, Oz, O1, and O2.

When validating EEG recording systems, a standard technique is to

analyze alpha waves [80]. Following prior research, such signals were

recorded in a wakeful human subject during relaxation when the subject’s

eyes were closed. The EEG detection and recording of alpha waves were

tested by measuring the readings from the electrodes shown on the left

image of Figure 3-5 and asking the subject to relax, open their eyes for 30
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seconds and then stay relaxed with closed eyes for another 30 seconds.

First, the Fourier Transform is applied to the input signal,

𝑋
(
𝑒 𝑗𝜔

)
=

𝑁−1∑
0

𝑥 (𝑛) 𝑒−𝑗𝜔𝑛
(3.1)

where 𝑥 (𝑛) is the input signal, N is the size of the input signal, 𝜔 = 2𝜋
𝑁 ,

and 𝑋
(
𝑒 𝑗𝜔

)
is the corresponding output after Discrete Fourier Transform.

Then, the output of Equation 3.1 is squared and divided by the length of

the original signal.

𝑆̂𝑁𝑋(𝜔) =
1

𝑁

��𝑋(𝑒 𝑗𝜔)
��2

(3.2)

where 𝑆̂𝑁𝑋(𝜔) is the Power Spectral Density, Equation 3.2.

Figure 3-6-3 shows the average power spectral density for EEG electrodes

Fp1, Fp2, Fz, Cpz, Poz, Po3, Po4, Oz, O1, and O2 for subject 2 in response

to the open and closed eyes intervals while wearing the headset in VR.

This increased activity in the 7.5–12.5 Hz region in the frequency domain

showed a typical alpha wave signal depicted in Figure 3-6.a & b of the

brain’s occipital lobe area.

Figure 3-6: Topographical map of aver-

age power spectral density in the alpha

band across all channels for eyes closed

(a) and eyes open (b) states. The power

spectral density across all channels in re-

sponse to the open and closed eyes task

while wearing the headset in VR. The in-

crease in power density at the 10Hz mark

is generated by the closed eyes condition.

(c)

a

b c

To assess the quality of the alpha power difference detected, it was

compared to the existing literature. The average alpha power spectrum

difference between the closed eyes state and the open eyes state in the

Galea system was 7.86 𝑢𝑉2
, which is comparable to the power difference

of 10.67 𝑢𝑉2
reported in a wet electrode system for a similar task [81]. In

addition, Galea’s alpha power had a signal to noise ratio (SNR) value of

5.01 dB calculated based on Equation 3.3, where 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 includes the alpha

power band of 10-12 Hz and 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 includes the power spectrum for

less than 10 Hz.

𝑆𝑁𝑅 = 10 · log
10

(
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

)
(3.3)
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Electromyogram (EMG)

Electromyography is a clinical technique used to study and analyze

electrical signals produced by muscles. This section details the EMG

signals collected from the facial muscles involved in facial expressions

using Galea.

The surface EMG signals are affected by baseline perturbations introduced

by undesired movements, which are generated by talking, walking, and

contact shifting of the electrodes. A common method to detrend the

signal is by using a fourth-order high-pass filter. In Figure 3-7 a high pass

filter at 100Hz has been used to detrend the signal.

A standard way of processing an EMG signal is to calculate an activation

level of the signal, a process which is called the linear envelope [82, 83].

Based on the square root calculation, the RMS reflects the mean power

of the signal and is the preferred recommendation for smoothing.

𝑋𝑟𝑚𝑠 =

√
1

𝑇2 − 𝑇1

∫ 𝑇2

𝑇1

[
𝑓 (𝑡)2

]
𝑑𝑡 (3.4)

The RMS Equation 3.4 represents the square root of the average power of

the EMG signal for a given period of time. It is known as a time domain

variable because the amplitude of the signal is measured as a function of

time.

The recorded EMG signal was compared to Agostini et al. [84] extensive

methods for evaluating signal-to-noise ratio (SNR) for EMG signals using

Equation 3.5

𝑆𝑁𝑅𝑒𝑚𝑔 = 10 · log
10

𝑃𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑃𝑁𝑜𝑖𝑠𝑒

𝑃𝑁𝑜𝑖𝑠𝑒
(3.5)

Where 𝑃𝑁𝑜𝑠𝑖𝑒 is the estimate of the mean power of the noise, averaging

five bins around 𝐼𝑁𝑜𝑖𝑠𝑒 and 𝑃𝑆𝑖𝑔𝑛𝑎𝑙 is the estimate of the mean power of

the signal, averaging five bins around 𝐼𝑆𝑖𝑔𝑛𝑎𝑙 .

An SNR value of 27.6 dB is calculated from the recorded signal from

the zygomaticus major muscle, whereas Agostini et al. reported an SNR

value of 28.0 dB from the tibialis anterior, a much larger muscle.

The linear envelope consists of two steps: first, the signal is full-wave

rectified by computing the absolute value of the signal; then the rectified

signal is low-pass filtered with a cutoff frequency typically in the range

of 3 to 8 Hz, depending of the contraction muscle characteristics and the

specific application for the linear envelope processing. This last step can



68 3 Galea

also be reproduced with a moving average of the rectified signal with a

moving window of 100 to 200 ms of duration.

Figure 3-7: Raw and processed EMG sig-

nal from Galea
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Electrooculogram (EOG)

Electrooculography is the measurement of eye movements based on

recording the standing corneal–retinal potential emerging from the

hyper-polarization and de-polarization existing between the cornea

and the retina. The standing potential in the eye can be evaluated by

measuring the voltage induced across the pair of electrodes placed across

the vertical and horizontal axes of the eyes as the eye gaze changes. The

spatial orientation of the subject’s eyes, as they fixate on a particular

target point, can then be determined using the identified EOG signal

relative to the sphere’s origin.

The EOG signal recorded with the Galea system varies from 50 to 350 mV

and has a frequency range of about DC-100 Hz. These types of signals

are not considered deterministic, and the magnitude varies with time, as

shown by the raw signal in Figure 3-8. This means that the variability of

the electrooculogram reading depends on many factors that are difficult

to limit: perturbations caused by other biopotentials such as EEG or EMG,

in turn, brought about by the acquisition system, plus those due to the

positioning of the electrodes, skin-electrode contacts, head and facial

movements, or blinking. One of the contributions of this research is to

mitigate some of these challenges by integrating these electrodes into the

face pad.

Figure 3-8 shows the changes in polarity of the signal for hEOG, which

was bandpass filtered between 0.01-100Hz and detrended based on an

unsupervised signal detrending algorithm [85]. It also shows how blinks,

shown in Figure 3-8.B and Figure 3-8.C, can be calculated from the
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EOG channels automatically [86, 87]. These artifacts can be used for HCI

interaction inputs, or passed along as a feature for eye blink removal to

an algorithm processing EEG.

To assess the accuracy of the EOG signal, its SNR was computed based

on equation 3.3. In this case, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 was the EOG frequency of interest

from 0 to 10 Hz and 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 was the rest of the signal. An SNR value

of 13.61 dB was obtained.

c

a

b

Figure 3-8: Raw and processed vEOG

signal from Galea: (A) the detrended

and filtered vEOG signal, (B) 1 second

window of all blinks detected and their

median value, dark dashed line, and (C)

the time interval between blinks.

3.3.3 Electrodermal Activity (EDA)

Electrodermal activity measures the variations in conductivity produced

in the skin due to accretions in the activity of sweat glands. The preferred

sites for EDA measurements are located in the palms of the hands and

the soles of the feet. However, it has been shown that the forehead has

significantly higher baseline Skin Conductance Levels than any other

site, followed by the fingers, which have a considerably higher baseline

for Skin Conductance Levels than the wrist and the arch [77].

EDA signals are composed of two different components. The phasic

component or Skin Conductance Response (SCR) is seen when the

sudomotor nerve is activated. Given this connection, SCR has been

broadly used to measure the sympathetic nervous system [88, 89]. SCR is

represented by a peak or a burst of peaks with different amplitudes, slopes,

and declines depending on the constitution of the person’s response to a

stimulus [90]. Figure 3-9 shows the SCR components extracted from a 16

second recording wearing the Galea headset and asking the user to sit

and stand quickly 3 times. This method is commonly used to elicit EDA

response and to collect a baseline from the participant [91, 92].

The other component of EDA is the tonic component, a constant, slowly-

changing Skin Conductance Level (SCL). SCL represents the baseline
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of skin conductance. SCL varies among people, depending on their

physiological states and autonomic regulation [93]. Consequently, the

EDA signal is represented by a fast-changing SCR signal modulated by a

gradually changing SCL element. This slow response in SCL ranges from

0 to 0.05 Hz, whereas the energy of the SCR component ranges from 0.05

to 1.5 Hz.

Figure 3-9: Raw and processed EDA sig-

nal from Galea
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To assess the reliability of the EDA signal collected by Galea, the SNR of

the signal was calculated based on Equation 3.3. As proposed by Wan et

al. in section 5.3.1 [94], the 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 value is the sum of the power spectrum

in the frequency range 0 to 5 Hz, which is the range of useful EDA signals,

and it is divided by 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, the sum of the power spectrum of the

rest of the signal. The Galea EDA signal had an SNR value of 33.09 dB

on a physical stress task, whereas a reference EDA sensor by Wan et al.

showed 28.52 dB for a similar physical stress task.

A challenge for a configuration like Galea’s is that electrodermal activity

(EDA) sensors introduce a small DC current applied to the epidermis’

outermost layer under the electrodes. When measuring EEG near these

electrodes, noise artifacts can be introduced since both sensing circuits

share a common ground. These can lead to a ground loop or ripple effect

noise generation. To prevent this issue, the EDA signal was optoisolated

from the other circuitry on the board.

3.3.4 Optical Digital Sensing

Photoplethysmography Sensor (PPG)

The MAX30105 was used in the Galea headset, which is a particle and

proximity sensor with PPG and temperature sensing. This device is

placed in its own Printed Circuit Board (PCB). This separation from the

main and even secondary PCBs allows the temperature sensor to be
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more accurate in representing the temperature of the person wearing the

device since any nearby hardware does not skew it. It also enables the

PPG sensor to have reduced noise data, as it uses a red LED and infrared

sensor to measure the pulses from the blood flow. The forehead region

has been reported to be well-perfused by arteries branching from the

internal carotid, hence, providing great quality and stable signals [95, 96].

Heart-rate measurements acquired from the forehead have been reported

to be less affected by vasoconstriction and to be quicker than fingers in

indicating deoxygenations [95, 97]. Figure 3-10 shows a sample recording

from the Galea device, where the peaks are calculated to measure heart

rate.
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Figure 3-10: Raw and processed PPG

signal from Galea

The heart rate typically varies slightly: during a deep breath, it speeds

up, and during a deep exhalation, it slows down. An RR tachograph

visualizes the recorded values of the RR-interval against time. The RR

interval will shorten when the heart speeds up, and lengthen when it

slows down.

Several research papers [98, 99] demonstrate the potential of PPG signal-

based Poincaré plots in detecting heart-related disorders or irregularities.

Figure 3-11 shows a Poincaré plot from a 2 min PPG signal recording from

a healthy person at rest. A quantitative examination of the HRV attractor

displayed by the Poincaré plot can be made by modifying it to an ellipse.

For the performance analysis, the SD1 (Standard Deviation1): 20.699445,

SD2 (Standard Deviation 2): 70.189299 and s (area of ellipse described by

SD1 and SD2): 4564.355626 are used as evaluation parameters [100].

In addition, The MAX30105 is capable of producing temperature readings

from the on-board temperature sensor in both Celsius and Fahrenheit.

The temperature sensor is accurate to +/-1 C with the precision of 0.0625

C.
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Figure 3-11: Poincaré plot from a 2 min

record of PPG signal from a healthy per-

son while at rest

3.4 Validation Use Cases

To help contextualize the signals presented in the previous section, two

examples that shows how researchers can use this platform in their

research are presented below, thus demonstrating how Physiological

Computing can be utilized in VR.

Six healthy subjects with normal or corrected-to-normal vision were

recruited to participate in the experiment, ages 18 to 34. Protocols for

data collection were approved by MIT COUHES. Before the experiment,

subjects were asked to sit in an office chair and wear the Galea headset

fitted with Valve Index VR headset. The VR headset was configured

for 90Hz FPS which allowed stimulating signals to be generated at

frequencies up to 45Hz. The test was run on a desktop fitted with a

GeForce GTX 1080 GPU. The experiments were tightly synchronized

using LSL due to the small timing errors of less than 1-millisecond [101]

between all the physiological signals and the event markers (i.e., Visual

stimulus).
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3.4.1 SSVEP Accessibility In VR

BCI systems often rely on recognizing specific brain activities such as

motor imagery, P300, and steady-state visually evoked potential (SSVEP)

[102, 103]. Among them, SSVEP is one of the most broadly used brain

responses for developing BCI-based interactions. SSVEP occurs when the

user is stimulated by a visual stimulus that has a specific frequency [104].

A VR top-view maze game in which the user controls an avatar using

real-time biofeedback was created with SSVEP as the main mechanism

for character movement due to the robust nature of the interaction. This

game is a great exemplification of how EEG signals can be used in HCI.

The SSVEP game mechanic shown in Figure 3-12 works by utilizing the

user’s voluntary engagement to look at checkerboard stimuli flickering

at different frequencies, which are produced using a sampled sinusoidal

stimulation method. Equation 3.6 [105] was followed to generate the

stimulus, where 𝐿 ( 𝑓𝑠𝑡 , 𝑘) is the luminance of the stimulus, 𝑓𝑠 𝑡 is the target

frequency, 𝑅𝑟𝑒 𝑓 is the refresh rate of the display, and k is the sample

which is drawn iteratively in Unity.

Time

Freq.

Figure 3-12: The top diagram shows how

the stimulus is presented to the user. The

triangle changes its visibility at a fixed

frequency from fully transparent to fully

opaque. On the Bottom is the experi-

ment view, where the left monitor shows

the user’s perspective view in VR. The

maze has checkered patterns flickering

at different frequencies used for visual

stimulation. On the right monitor is a

view of the data being streamed from

the GUI to Unity3D via LSL.

𝐿 ( 𝑓𝑠𝑡 , 𝑘) = 0.5 sin

(
2𝜋 𝑓𝑠𝑡𝜅

𝑅𝑟𝑒 𝑓

)
+ 0.5 (3.6)

𝑋 = [𝑋𝑃𝑂𝑧𝑋𝑂𝑧𝑋𝑃𝑂3𝑋𝑃𝑂4𝑋𝑂1𝑋𝑂2 (3.7)
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𝑌𝑓 =


𝑠𝑖𝑛(2𝜋 𝑓 ) 𝑐𝑜𝑠(2𝜋 𝑓 )

... ...

𝑠 𝑖𝑛(2𝜋 𝑓 𝑁) 𝑐𝑜𝑠(2𝜋 𝑓 𝑁)

 (3.8)

max

𝑊𝑥 ,𝑊𝑦

𝜌 𝑓 =

𝐸
[
𝑊𝑥𝑋

𝑇𝑌𝑓𝑊
𝑇
𝑦

]
√

𝐸
[
𝑊𝑥𝑋𝑇𝑋𝑊𝑇

𝑥

]
𝐸
[
𝑊𝑦𝑌

𝑇
𝑓
𝑌𝑓𝑊

𝑇
𝑦

] (3.9)

The EEG response provoked by these stimuli is analyzed using a Canoni-

cal Correlation Analysis (CCA) based algorithm, which is a widely used

technique for SSVEP detection [bin_online_2009 , 106, 107]. CCA com-

putes the correlation between the EEG signal, represented in Equation 3.7

where X is N samples by 6 channels, and the expected stimulus frequency,

represented in Equation 3.8 where 𝑌𝑓 is a sinusoid of frequency f and

N samples. Then, based on the canonical correlation Equation 3.9, the

frequency 𝑓 which produces maximum correlation 𝜌 𝑓 is picked as the

SSVEP prediction. This allows the user to move the avatar to different

designated locations in the maze.

To assess the quality and accuracy of SSVEP detection in a more controlled

environment, offline experiments were run in VR on 6 users who had

normal or minor visual impairment and no history of photosensitive

epilepsy. The users looked at 8 stimuli flickering from 16 to 23 Hz for 10

seconds which were presented for a total of 4 trials, each in a randomized

order. The results shown in Figure 3-13 exemplify the SSVEP signal

obtained from one of the users showing clear peaks at each stimulus

frequency in the power spectral density (PSD) plots. In Figure 3-14, the

results of the offline CCA analysis across all users is presented. The

different window sizes represent the length N of the signal, where 1

second corresponds to 250 samples, used to compute CCA. Shorter

time windows mean faster detection time. However, a trade-off between

detection time and accuracy was observed: window sizes of 3 and 4

seconds provide a good balance of classification accuracy and time

delay.

Comparative Benchmark Results

The SNR of the signal was computed by finding a ratio between the target

frequency and adjacent frequencies based on Equation 3.10, where 𝑦( 𝑓 )
is the power of the target frequency computed based on the Fast Fourier

Transform, Δ 𝑓 is the frequency resolution of 1 Hz, and the denominator
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Figure 3-13: PSD of SSVEP response

for stimulus frequencies between 16Hz-

23Hz. Each PSD is averaged across 4

trials lasting 8 seconds.

performs averaging over adjacent frequencies to 𝑓 [109, 110].

Table 3.1 is a comparison between the Galea system and other systems

that share similarities to the experimental design and methodologies. The

Galea system performs similarly to state-of-the-art CCA-based SSVEP ex-

periments using dry-electrode EEG. Galea achieved higher performance

(78%) for 3 second time windows, but lower performance for shorter

time windows. One possible explanation for the lower performance of

the Galea CCA results compared to other systems is that for the shorter

time windows, Galea used a sampling rate of 250 Hz while the studies

referenced used 1000 Hz.

𝑆𝑁𝑅𝑠𝑠𝑣𝑒𝑝 =
𝑦 ( 𝑓 )

1/8

∑
4

𝑘=1
(𝑦 ( 𝑓 − Δ 𝑓 · 𝑘) + 𝑦 ( 𝑓 + Δ 𝑓 · 𝑘))

(3.10)

Literature Avg. SNR Avg. SNR (dB values) Exp. Properties

1 [111] - 11.0

40 stimuli, 8-14 Hz,

Freq. resolution 0.2 Hz

2[107] 4.08 -

45 stimuli, 7-15.8 Hz,

Freq. resolution 0.2 Hz

3[110] 4.71 - 1 stimulus, 5Hz-30Hz

4[112] - 8.17

12 stimuli, 9.25-14.75 Hz,

Freq. resolution 0.5 Hz

5 [Ours] 4.29 11.76

8 Stimuli, 16-23 Hz,

Freq. resolution 1Hz

Table 3.1: Quality of SSVEPs from dry

electrode based BCI in recent years.

The system’s information transfer rate (ITR) in bits/min was also calcu-

lated based on Equation 3.11, where 𝑁 is the number of targets, 𝑃 the

average classification accuracy, and 𝑇 the seconds per stimulus selection.

Galea achieved similar or higher ITRs than some of the other systems

for the two-second and three-second windows, 32.08 bits/minute and
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Figure 3-14: Classification accuracy of

stimuli 16-23 Hz based on Canonical

Correlation Analysis with a maximum

correlation coefficient. The plot displays

accuracy versus different window sizes,

spanning 1 to 5 seconds across 6 users.
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29.78 bits/minute respectively. The Galea experimental set-up was not

optimized to improve ITR, which is an aim for future work. Improve-

ments in this area may be achieved with the system by using the 360 VR

environment to capture more stimuli.

𝐼𝑇𝑅 =
60

𝑇

[
log

2
𝑁 + 𝑃 log

2
𝑃 + (1 − 𝑃) log

2

(
(1 − 𝑃)
(𝑁 − 1)

)]
(3.11)

3.4.2 EOG Visual Attention

A simple VR scene, resembling a museum, was modeled to help develop-

ers get started with the use of EOG signals to determine visual attention

in VR.

Figure 3-15: Screenshot from partici-

pant’s point of view in VR when per-

forming the visual attention task.

Figure 3-15 Shows the VR scene that was constructed as a test bed to test

and process the signal generated by the EOG. The participant was asked
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to look at the different objects starting from the upper left corner and

moving their eyes counter-clockwise to each corner every one second.

This cycle was repeated six times. This section of the experiment was

used to set the threshold value and set an empirical upper bound for the

EOG signal corresponding to different saccades. This experiment was

performed offline in order to demonstrate a simple use of EOG signals as

a tool to assess user attention.

The EOG signals were processed with a bandpass filter in the 1-10 Hz

range. This allowed for correction for the offset due to frequencies lower

than 1 Hz that are present in the EOG, making the signal more robust to

classification based on thresholding. However, this algorithm is not able to

separate saccades from blinks, a property that is a goal to be implemented

in future work. The EOG signal may be classified with an upper and

lower threshold given its characteristic depolarization/repolarization

properties [113]. The application first computes a threshold for each EOG

channel based on the root mean square value over sliding, 500 ms time

windows during the first 1 second of the experiment when the user is

instructed to move their eyes between the 4 corners of the gallery.

Based on the threshold, a decision tree tool was manually crafted, Al-

gorithm 1, to classify between right, left, up, down, up left, down left,

up right, and down right depending on the activation of the hEOG or

vEOG channel. The threshold boundaries showed precise partitions of

different saccade directions as shown in Figure 3-16. The location of each

section corresponds to saccades moving in that direction, i.e. the magenta

region would correspond to looking up and the grey to looking left.

These partitions are shown based on the absolute maximum, meaning

the positive or negative voltage value which is greatest in magnitude, for

each EOG channel across 120 saccades from one user.
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Figure 3-16: Visualization of the thresh-

old partitions when considering the high-

est magnitude peak of vEOG and vEOG

Each partition represents the directions

in real space of a saccade.
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3.5 Discussion

Some of the most significant challenges that BCI and VR research en-

counters are the long preparation time to instrument subjects, data

synchronization, and comfort levels due to physical constraints that the

device’s weight puts on the user during long VR experiences. In this

work, a novel design has been introduced for collecting physiological data

while using a VR headset that helps reduce the setup time and simplifies

data wrangling. However, more work still needs to be done for the device

to be used during long periods; VR headsets need to become lighter to

be comfortable for long-term use. With the current Galea setup, sessions

longer than 30 minutes cannot be run without causing strain levels for

the participant. As part of the device’s ongoing development, these

limitations have to be prioritized for successful long-term use. Galea’s

platform has the potential to enable researchers to develop human testing

and training environments in which they can precisely control elaborate

stimulus presentations and monitor the resulting physiological responses.

As a result, human cognitive and functional performance can be carefully

evaluated and rehabilitated.

This writing only touches upon some initial applications and use cases

to help readers contextualize the system’s advantages. More studies

are needed to thoroughly understand the potential of the Galea tool

for the target community. Workshops with psychologists, cognitive

science departments, and HCI groups will need to be planned to build a

community of users and collect valuable feedback informing updates to
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the system.

3.6 Conclusion

Galea offers a useful tool for anyone who is interested in collecting

and processing physiological signals and creating adaptive experiences

in VR by improving the access and ease of use for researchers and

practitioners and decreasing the delay between data collection and

obtaining results. This section presented a system consisting of hardware

and Python notebooks that makes working with physiological sensors

in VR straightforward, and can offer a standard for inter and intra

experiment comparisons. A primer on detectable human physiology

from the signals available through the device was presented and the

primary design considerations and circuit characterization results of

in-vivo recordings from the wearer’s brain, eyes, heart, skin, and facial

muscles were discussed. An example to help illustrate how these signals

can be used in a virtual reality setting has been presented in detail.

Galea is intended to encourage users to become part of a supportive,

open-science community with diverse areas of expertise rather than

relying on closed-source and proprietary tools, thus shaping the future

of physiological computing and its related fields.

With the introduction of PhysioHMD and Galea, researchers now have

the tools to measure and analyze multi-modal signals related to a user’s

behavior and responses in virtual environments. The aim is to provide

a platform for evaluation and customization of virtual experiences and

to advance the field of Physiological Computing and Human-Computer

Interaction through the collection of real-time, accurate physiological

data. The next section explores the application of these tools in virtual

reality, showcasing how the detected signals can be used to enhance the

user’s experience and create a more immersive environment.
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4.1 Introduction

With the growing need for virtual interactions and the increasing de-

mand for physiological computing, the development of a toolkit that can

streamline the process of setting up virtual reality experiments becomes

essential. That is where Entwine comes into the picture. Designed specif-

ically for use with the Galea headset, the Entwine Toolkit was created

to reduce the amount of time required to setup experiments and make

it easier for researchers and practitioners to collect and process physi-

ological signals and create adaptive experiences in virtual reality. The

constantly growing set of tools and VR experiments stored in a central

repository allow for easy access and collaboration, further facilitating the

virtual reality experiment process.

Entwine was developed as a toolkit where evaluating focus and attention

in user response scenarios is especially relevant given today’s increased

need for virtual interactions to help support the aforementioned claim.

The Entwine Toolkit is meant to be a constantly growing set of tools that

empower behavioral researchers to create virtual reality experiments. All

of the code and VR experiments are kept in a git repository, which is a

space where all repositories are kept for ease of access. This space can be

found at the GitHub repository.

Entwine is a set of useful modules built in Unity that are meant to help

with the necessary features of creating a VR behavioral experiment. These

modules are designed so that they can easily be built on or modified

however the user sees fit; in fact, the intention is not that they will act

as a replacement for Unity development, but rather an aid in lowering

the barrier to entry. Entwine can also be thought of as a group of VR

experiences that can be used as is, expended, or modified. This chapter

introduces Entwine at a high level; a proposed solution that serves to

provide both tools and fully featured experiments to researchers that

allow for quick development and collaboration in the behavioral VR

research space. Chapter 5 and Chapter 6 are focused on studies made

using the Entwine experiments available.

https://github.mit.edu/PhysioML
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4.2 Motivation

As VR becomes more mainstream in both the entertainment and enter-

prise industries, the interest in VR-focused behavioral research continues

to grow. Although many tools help researchers design and build their

experiments, there is no existing toolkit or space that allows researchers

to collaborate and replicate behavioral VR experiments.

In recent years, virtual reality has continued to grow and gain attention

in the consumer space [114]. Low-cost VR headsets such as the Oculus

Quest 2 or the recently announced PlayStation VR 2 have continued

to bring more users into the industry and appeal to a wide variety of

customers and developers. Even the more expensive headsets like the

Valve Index have generated a strong hobbyist VR community. VR is

making its way into more homes than ever before and will most likely

continue to do so in the future, but what’s interesting is that these same

low-cost headsets are assisting VR in making its way into behavioral

lab environments that may not have previously considered VR in their

research [115]. Just as consumers have become more aware and more

interested in the growing VR industry, researchers from various scientific

backgrounds have taken to VR as both an exciting focus of study [116, 117]

and a tool to help answer their own questions [115, 118]. Specifically for

behavioral researchers, virtual reality is a valuable platform for studying

participants’ behaviors as it’s easy to create any number of environments.

These environments can be designed to be safe, controllable, replicable,

and accessible to participants from a variety of backgrounds and with

a variety of needs [119, 120]. A key concept of behavioral research is

analyzing the participant’s response to an environment, so VR’s capability

to efficiently create and share new environments makes it a powerful tool

for researchers [121, 122].

As interest in VR continues to grow among behavioral researchers, more

and more tools to help researchers in the development of VR experiments

are being created. It can be difficult for researchers to keep up with the

growing technical requirements for experiment development as the field

continues to grow and shift focus.

As described in the previous section, Galea’s combination of this multi-

modal sensor technology with immersive augmented and virtual reality

gives researchers, developers, and artists a powerful new way to study

and improve the human mind and body.

Using a multi-signal method, researchers may be able to set up training
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and testing environments for people that allow for the precise manage-

ment of complex stimulus presentations. This would allow the cognitive

and functional performance of people to be carefully tested.

Partial Illustration by Freepik Storyset
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Figure 4-1: Entwines potential impact area based on the sensing capabilities from the Galea headset.

4.3 Entwine Unity Toolkit prefabs

The Unity plugin for creating VR behavioral experiments make up the

first half of this chapter. These modules (or prefabs as they are called

in Unity) are meant to lower the barrier to entry to Unity development

by allowing users to build on top of or modify them. This section will

go through some of the modules available in this toolkit. First, we will

examine the modules that directly connect to the experiment participant’s

experience. This consists of user interface, user interaction, and surveys.

A more detailed information on the classes and the code available, please

look at my collaborator Yodahe Alemu Master of Engineering thesis

document

4.3.1 User Interfaces

The User Interface is perhaps one of the most crucial components of

developing a VR project. Using the user interface, researchers can provide

participants with crucial information throughout an experiment. This

includes offering directions on what to do next, explaining the context of

https://dspace.mit.edu/handle/1721.1/144783
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what is occurring, and allowing participants to provide feedback. This is

extremely important for trials that require the researcher to be remote

from the experiment, as the UI will be the only means of communication.

Despite the fact that user interfaces represent a fairly general field, we’ve

designed a few templates, building blocks, and classes that should

facilitate the creation of UIs for the majority of purposes. These classes

also provide certain programmatic interactions with the user interface,

such as the fading in and out of panels and the activation and deactivation

of interactive components.

UIComponent

Adding a UIComponent to any UI game object in Unity is all it takes to take

advantage of the UIComponent class and begin using the programmable

interactions. The class has four primary methods that function as both

setters and getters for the UI element’s visibility. Adding this component

to a gameobject won’t do much on its own, but you may utilize its

functions and trigger state changes from any other Unity component or

C# script that references it.

1 public virtual void Show ( float duration = 0, float delay = 0);

2 public virtual void Hide ( float duration = 0, float delay = 0);

3 public bool IsShowing ();

4 public bool IsHiding ();

Listing 4.1: UIComponent method

signatures

The Show and Hide methods leverage the custom built OpacityHandler

class to change the visibility of the UI element. Visual UI elements in

Unity, such as text or images, can have their opacity animated with

fade-ins and fade-outs with the help of the OpacityHandler.

1 public void FadeIn ( float duration , float delay = 0) =>

2 StartCoroutine ( FadingIn ( duration , delay ));

3 private IEnumerator FadingIn ( float duration , float delay )

4 {

5 SetOpacity (0);

6 if ( delay > 0) yield return new WaitForSeconds ( delay );

7 float fadingStartTime = Time . time ;

8 while ( Time . time - fadingStartTime <= duration )

9 {

10 float interpolant = ( Time . time - fadingStartTime ) / duration

11 ;

12 SetOpacity ( interpolant );

13 yield return null ;

14 }

15 SetOpacity (1);
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16 }

Listing 4.2: OpacityHandler fade-in

implementation

The OpacityHandler component can be used by simply adding it to a

Unity game object that already contains or is a child of a game object

that already contains a UI visual element of some kind. Unity’s Image

and TextMeshPro components are two examples of UI visual elements

that have been used extensively in our illustrative experiments. After

the component is added, all that remains to be configured is the initial

opacity and whether or not the visual element should be faded in at

the beginning of Unity’s playback. Unity’s OpacityHandler is most useful

when referenced from another component, when its public functions

can be called to do an on-demand fade-in or fade-out. Additionally, the

UIComponent class can act as a base class which other classes extend upon

to add additional features for specific UI components that need it. As an

example and usable component, we’ve implemented the ButtonComponent

class which extends the base OpacityHandler class with the following

two methods which control the component’s interactivity state. These

methods can be used to make sure a button won’t be interacted with

when it’s not shown to the participant.

1 public void EnablePress ( float delay );

2 public void DisablePress ( float delay );

Listing 4.3: ButtonComponent extension

VRInteractables

Although we can decide when a UI component is interactive, the UICom-

ponent class lacks the essential features for adding interactions. The

VRInteractable is another component that may be applied to interactive

Unity game objects. The class employs an event system to manage its

interaction state changes. Other functions or classes can subscribe to the

event system of VRInteractable, and when the state changes, the listeners

will be invoked. The class exposes public methods for triggering state

transitions.

1 private UnityEvent onEnter ;

2 private UnityEvent onPressUp ;

3 private UnityEvent onPressDown ;

4 private UnityEvent onExit ;

5 private UnityEvent onCancel ;

6

7 public void OnEnter () {

8 onEnter . Invoke ();
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9 }

Listing 4.4: VRInteractable

implementation

To use the VRInteractable component, the user only needs to add the

component to any UI gameobject that they wish to make interactive. The

VRLaserPointer will manage all interactions between the user and the

VRInteractable component. The toolkit presently includes two interactive

components: the button and the slider. Each of these relies on the VRInter-

actable component in order to function, with the slider utilizing a unique

extension class to handle its specific instances. The VRSliderController

class responds to any event triggers from the VRInteractable component

by manipulating the slider accordingly. For instance, if a user clicks the

trigger button on their controller while hovering over the slider’s handle,

the VRSliderController will begin to track the controller’s movements,

allowing the user to effectively drag the slider’s handle.

4.3.2 Behavioral Questionnaires

In behavioral research, questionnaires are an effective method for measur-

ing the behaviors and opinions of experiment participants. However, the

use of questionnaires in VR-based behavioral investigations might result

in complexities and undesirable compromises. Considering preparation

of the participant, physical setup of the headset, and signal calibration, the

setup time for a virtual reality (VR) experiment can be rather lengthy. In

some behavioral experiments, such as an assessment of participant reac-

tions to different videos, it is advantageous to administer questionnaires

intermittently; however, doing so in a virtual reality (VR) experiment

- where the participant taking off their headset requires repeating the

setup process - can unnecessarily prolong the experiment and irritate

the participant.

Recognizing the significance of surveys, we’ve integrated the option

to construct questionnaires directly into the Unity VR experiment. Im-

plemented as a sequencer that can be activated programmatically, the

Questionnaire component will loop over your questions one at a time,

showing them to the participant and preserving their response. This com-

ponent can be applied to any Unity gameobject and then used by other

Unity scripts in order to allow the user to control the questionnaire.
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Usage

To utilize this questionnaire, you must construct your own Unity com-

ponent - a C# script - that accepts a reference to the questionnaire as an

input and then executes the questionnaire’s start and end functions. As

an illustration, this is accomplished in our Affective World experiment
1

1: Only available in github repo

in both the VideoManager and UIManager helper components. The UI

portion of the questionnaire is constructed using the UI components

we’ve already covered and consists of four main parts: the instructions, a

UI panel that explains to the participant what they can expect and what

they will need to do; the questions, a series of UI panels and UI inputs; a

next question button, which participants will use to navigate through the

questionnaire; and the end card, which serves as the questionnaire’s off-

boarding. In fact, these UI components will exist as different Unity game

objects, and references to them should be passed to the Questionnaire

component.

While these questionnaires can be modified by the researcher for a variety

of purposes, they are primarily utilized in our example experiments to

measure a participant’s Likert scale response to an experience. A Likert

scale is a visual analog scale that is often used in behavioral research

to measure qualitative information, such as participant’s opinions and

behaviors in reaction to an experience [123]. In the post-video question-

naires for the affective world experiment Affective Worlds, we employ

the Likert scale to ask participants to assess the intensity with which they

experienced specific emotions as a result of viewing the movie. The Likert

scale employs the UI slider component Section 4.3.1 (User Interfaces),

and participants are prompted to drag the slider handle to the response

option that they believe best represents their opinion.

The questionnaire replies are then saved in a JSON file for examination

after the experiment. This procedure is detailed in further depth in the

following section.

4.3.3 Data Management

Saving experiment data, such as questionnaire replies, can be handled

on a case-by-case basis; however, the more access points to our data we

build in the code, the more susceptible our studies become to user error,

such as entering the incorrect user id or data location for the experiment.

To mitigate this issue and facilitate data manipulation, we’ve developed
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the DataManager class, which provides a centralized access point for all

data saving.

Usage

To utilize the DataManager component, you must first perform a fast

setup in the Unity editor. Upon adding the component to any game

object, you may change the DataPath variable6 to specify where the data

is kept. Once this has been established, you may configure the UserID

and SessionID variables to be unique to the participant and experiment

trial you will conduct. By doing so, whatever data you save using the

class’s public methods will be automatically stored in the participant’s

organized data folder. The data is organized according to the path struc-

ture DataPath/UserID/SessionID. When our Questionnaire script calls

DataManager::WriteToJSON with the filename example-questionnaire,

the new file is saved as [DataPath]/[UserID]/[SessionID]/example-

questionnaire.json.

4.3.4 Data Pipeline

Several softwares have become standard across the behavioral research

space for inter-device communication and post-experiment data analysis,

among other things; therefore, integrating as many of these as possible

into the Entwine Toolkit will help researchers overcome the remaining

barriers to VR experimentation.

Lab Streaming Layer

Lab Streaming Layer (LSL) is a system for the unified collection of

measurement time series in research experiments that handles both the

networking, time-synchronization, (near-) real-time access as well as

optionally the centralized collection, viewing and disk recording of the

data [124].

To facilitate Unity integration, LSL provides a C# library with an API for

making connections (inlets and outputs), reading data (streams), and

more. As an extension to LSL’s library, I developed two utility classes:

LSLOutput and LSLInput. Through the use of these auxiliary classes, LSL

may be loaded into Unity and managed like any other component, with

full access to the Unity editor for property editing and modification.

LSLOutput With the LSLOutput class, users can quickly make new output

streams and add new outputs.
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LSLOutput The LSLOutput class allows the user to easily create output

streams as well as write to the stream.

1 public class LSLOutput : MonoBehaviour

2 {

3 // Variables serialized to be set by users in the Unity editor

4 [ SerializeField ] private string streamName ; // The name of the created

output stream which can be used to find the stream from an external

program

5 [ SerializeField ] private string streamType ; // The content - type of

the created output stream which can be used to find the stream from

an external program

6 [ SerializeField ] private string streamSourceID ; // The source ID of the

created output stream which can be used to find the stream from an

external program

7 [ SerializeField ] private bool initializeOnAwake = true ; // Determines

whether or not the stream is started when Unity enters play mode

8

9 /**

10 Attempts to initialize the output stream using the input

11 variables .

12 If ’initializeOnAwake’ variable is set to false , then this

13 function must be called before the user is able to send any

14 messages over the stream .

15 **/

16 public void TryInitStream ();

17

18 /**

19 Sends a string message over the output stream , if one has

20 been initialized .

21 Should be called from external scripts .

22 **/

23 public void Write ( string message );

24 /**

25 Overloaded function for writing multiple messages

26 **/

27 public void Write ( string [] messages );

28 /**

29 Automatically called when Unity stops playing .

30 Closes the LSL stream and frees up any resources .

31 **/

32 private void OnApplicationQuit ();

33 }

Listing 4.5: LSLOutput implementation

LSLInput The LSLInput class enables the user to quickly search for

input streams making use of a variety of search strategies. Additionally,

the user is able to transmit information received via the stream to other
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classes and functions.

1

2 public class LSLInput : MonoBehaviour {

3 // Stream search settings

4 public string streamName ;

5 public enum SearchMethod

6 {

7 SearchAtStart ,

8 SearchContinuously

9 }

10 public SearchMethod streamSearchMethod ;

11 public double streamSearchTimeout ;

12

13 public UnityEvent <string > onReceived ;

14

15 /**

16 Automatically called when Unity starts playing .

17 Starts the stream search by calling the appropriate function

18 based on the selected stream search method .

19 **/

20 private void Start ();

21 /**

22 Asks LSL to search for the specified stream name , and will

23 search for up to [ streamSearchTimeout ] seconds before giving up.

24 Runs on a separate thread so as to not block the main Unity

25 thread .

26 **/

27 private void SearchForInputStream ();

28

29 /**

30 Continuously polls LSL for the specified stream name until

31 finds the stream . Runs on a separate thread so as to not block

32 the main Unity thread .

33 **/

34 private void ContinuouslySearchForInputStream ();

35

36 /**

37 Automatically called once every frame by Unity while Unity is running .

38 If the input stream has been found and any new data is

39 received , the onReceived event will be triggered in order to

40 notify and share the new data with any listeners .

41 **/

42 private void Update ();

43 /**

44 Automatically called when Unity stops playing .

45 Closes the LSL stream and frees up any resources .

46 **/

47 private void OnApplicationQuit ();
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48 }

Listing 4.6: LSLInput implementation

Usage

Both of these classes, LSLOutput and LSLInput, operate in the same man-

ner. Add the relevant component to a Unity game object for each input or

output stream you want to create (this means these steps must be repeated

for each stream). The only required input for both components is the

name of the stream. One thing to consider for the LSLOutput component

is if you want the stream to be initialized immediately when Unity starts

playing, in which case you must set the toggle initializeOnAwake to true.

Another factor to consider, this time for the LSLInput class, is the search

mechanism for your input stream. If you do not select Continuous Search,

the component will only look for the input stream once when Unity

starts, which means that if the stream is not found right away, there will

be no input stream into Unity for the rest of the play session; if you select

Continuous Search, this will not be an issue because the component will

continue to search for the duration of the Unity session. The LSLOutput

class is used in all of the supplied Entwine Toolkit experiments. The

class is primarily used to generate an LSL output stream for transferring

BrainFlow [125] data from Unity to NeuroPype[126].

This pipeline is explained further in Chapter 5 Section 5.2.6 (Pre-

processing Data). The LSLInput class is utilized in our experiments

where we want data to be delivered to Unity from an external program.

In Chapter 5, for the Tetris game, we build an LSL input stream and

expect NeuroPype to feed us the processed alpha levels of the participant,

which we then utilize to trigger changes to the participant’s environment

and the game in Unity. Another example is the Maze VR project’s use

of an LSL input stream Chapter 3 Section 3.4.1 (SSVEP Accessibility In

VR). When an SSVEP is triggered in a subject, NeuroPype retrieves the

frequency of the stimuli that elicited the reaction; this frequency is then

set to Unity over an LSL input.

Neuropype

Neuropype, unlike LSL, does not provide C# libraries or tools for Unity

engine integration. It does, however, offer a Python API that allows you

to initiate a pipeline without utilizing its graphical user interface. Even

though Python is no longer directly supported by Unity, we can still use
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C#’s.NET Process API to initiate the pipeline from within Unity. In order

to accomplish this, we’ve developed a new script called ShellIntegration

that allows you to execute.bat files that you provide during the play

mode of Unity. We chose to use.bat files instead of directly using the

Neuropype python function because Neuropype required that it be called

from a certain Python environment, which can be ensured via a batch

script.

1 public enum ShellTiming {

2 OnStart ,

3 BeforeStart ,

4 AfterDelay

5 }

6

7 public class ShellRoutine {

8 public string FilePath ;

9 public bool RunScript ;

10 public ShellTiming Timing ;

11 public float TimingDelay ;

12 }

13 public class ShellIntegration : MonoBehaviour {

14 // All the shell commands that will be run

15 public List < ShellRoutine > routines ;

16

17 // The process IDs for each of the running shell instances

18 private List <int > processIDs ;

19

20 /**

21 Start () is automatically called by the Unity Engine when the engine

starts playing . In this function , all shell routines are passed to

one of the running functions based on what timing is selected . e.g.

routines that have selected ShellTiming . AfterDelay will be passed

to the RunShellFileAfter () function .

22 **/

23 private void Start ();

24

25 /**

26 OnApplicationQuit () is automatically called by the Unity

27 Engine when the engine stops playing . In this function , all still -

running shell routines are shutdown using their process IDs.

28 **/

29 private void OnApplicationQuit ();

30

31 /**

32 RunShellFile () takes in a shell file and its arguments , and uses .NET’s

Process api in order to run it on the command line .

33 **/
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34 private RunShellFile ( string filename , string args = "");

35 /**

36 This function creates a new separate thread before calling the

RunShellFile () command . This keeps the shell file from being on the

same main thread that the Unity Engine is running on.

37 **/

38 private RunShellFileThreaded ( string filename , string args = "");

39

40 /**

41 This function uses Unity’s Coroutine API in order to run the RunShellFile

() function after [ delay ] amount of time in seconds has passed .

42 **/

43 private RunShellFileAfter ( float delay , string filename , string, args

44 }

Listing 4.7: ShellIntegration

implementation

Usage

To utilize the ShellIntegration component, just add its script to any

Unity gameobject - though it’s recommended to build a new, separate

gameobject for organizational purposes - and then add the path to

your.bat file and specify the component’s desired routine. You can

add as many.bat files as you wish, each of which will execute its own

procedure.

In each of our experiments, we use this ShellIntegration component to

launch our NeuroPype pipelines; however, the component can execute

any.bat files or shell commands, even those unrelated to Neuropype. We

developed a custom property inspector so that whenever a user adds a

new routine - a.bat file to execute - they can additionally choose when

they want the script to run: before Unity starts, when Unity starts, or

after Unity starts with a delay. Additionally, these operations execute on

a separate thread to ensure that they do not impede Unity. Whenever

the Unity play session ends, the thread and any spawned processes are

automatically terminated using the Windows Task Kill utility. This can

be a very helpful feature, but it can also have unintended consequences,

such as if the generated process is unable to save its data. There is an

option to disable this feature, allowing users to manually terminate

foreign processes.
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4.4 Brain-Computer Interfaces — Paradigm

Models

A BCI paradigm use a particular signal source to investigate many phe-

nomena. These occurrences can be divided into two classes: Endogenous

and Exogenous

4.4.1 Endogenous

A subject produces aware brain signals when executing mental tasks

such as imagining a movement or a word sequence. It does not require

external inputs to function, but completing a specific mental job is not

easy because the subject must be trained for proper execution and it is

notoriously difficult and time-consuming. Fortunately, training makes

it easier as it progresses. There are now two primary examples of an

endogenous paradigm:

Motor Imagery

Mental simulation involves mental rehearsal of moves without actual

movement. The individual must visualize himself/herself performing

a bodily action, such as moving the arm from left to right or closing

the hand. It investigates the observation that visualizing and doing a

movement elicit comparable brain wave patterns. This phenomena has

been implemented in a variety of contexts, including robotic prostheses,

rehabilitative therapy, and video games.

Non-motor Imagery

Imagining sounds, phrases, pictures, or even completing mental calcu-

lations leads to brain wave patterns that can be identified. This is true

whether you are imagining sounds, words, or pictures.

Chapter 5 shows an example of a endogenous paradigm. Mental and

spatial workloads are among the key drivers when studying cognitive

processes. When studying cognitive processes, large portions of research

focus on the central nervous system, more specifically the prefrontal

cortex and the parietal region. However, the activity of the autonomic ner-

vous system and the interaction between it’s two parts, the sympathetic

and parasympathetic systems, are involved in both directions in these

cognitive processes and the balance in the functioning of these systems
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is deeply connected with mental health and wellbeing. Maintaining

optimum levels of mental workload during a task is essential for max-

imizing performance and having balanced autonomic nervous system

activity, as further explained by previous studies. In this exploratory

study, our aim is to unravel the interconnected nature of the aforemen-

tioned domains—specifically, areas of interest such as cognition, affective

responses, and physiological reactions—by employing the Galea headset

as a key research tool.

4.4.2 Exogenous

Subjects generate brain signals involuntarily in response to external

stimuli, which can be auditory, visual, or tactile. This method requires

the subject to concentrate on the stimuli, a technique known as selec-

tive attention, and typically requires little or no training prior to BCI

application. These are the most well-known exogenous approaches:

Auditory Continuous Response (ASSR)

The user is presented with an auditory stimulus, such as a beep-like

sound at a constant frequency, in this method. The structures of the inner

ear encode auditory information such that the electrical current to be

processed by the auditory cortex synchronizes with the source frequency.

It is known that an ASSR functions satisfactorily at a bandwidth between

40 and 80 Hz.

Potential Is Visually Evoked by Steady State (SSVEP)

Similar to ASSR, SSVEP investigates the synchronization between the

frequency of the external stimulus, now visual, and the frequency of the

evoked potential in the visual cortex.

The bandwidth between 5 and 30 Hz is enough for working with SSVEP

in terms of accuracy, and although an SSVEP-based BCI would be

less unpleasant above 30 Hz, the evoked potential power diminishes

dramatically and provides a challenge for SSVEP identification.

For an SSVEP-BCI to function, the user’s gaze must be narrowly focused

on the visual stimulus of interest; hence, any distracting peripheral

stimulus may interfere with the recordings. This paridigm was shown in

Chapter 3 Section 3.4.1 (SSVEP Accessibility In VR).
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The effects of different stimulus configurations on the Visual Evoked

Potentials (VEP)

VEP offer information on the visual pathways from the retina to the

occipital cortex. VEPs provide a more accurate measurement of optic

circuit functional integrity than MRIs because VEP is used to examine

the retina, optic nerves, and visual cortex in the brain.

VEPs are generated from an electroencephalogram by averaging transi-

tory visual stimuli recorded from the visual cortex.

Due to the constraints of a 2D screen, little research has been done on

the variations and ramifications of these stimuli being displayed in a 3D

space. This study described in chapter Chapter 6 investigates VEP and

Event-related Potentials (ERP) BCI paradigms, stimulus onset asynchrony

in VR, and characteristics that correlate strongly with these potentials.

Rare disorders limit the amount of data available for vision research

studies. Using the Galea headset, it is possible to simulate visual impair-

ments for normally-sighted people so that a person with normal vision

can feel low-acuity, color-blindness, or tunnel vision. Then, EEG data can

be captured to analyze occipital brain responses.

4.5 Discussion

This chapter discussed components that enable users to develop behav-

ioral studies with the Entwine toolkit and how to integrate these with

other software such as NeuroPype pipelines; however, it can also be used

to execute any.bat or.sh files. The custom property inspector enables the

user to select when the script will execute: before Unity starts, when

Unity starts, or with a delay after Unity starts. To prevent them from

interfering with Unity, these operations execute on a separate thread.

When the Unity play session ends, Windows Task Kill terminates the

thread and any spawned processes. This feature can be advantageous,

but it may have unintended results if the generated process cannot save

its data. There is an option to disable this feature so that foreign processes

can be terminated manually.

In our investigation of brain-computer interfaces and paradigm mod-

els, we investigated two distinct types of phenomena: endogenous and

exogenous. Endogenous processes involve conscious brain signals pro-

duced by the subject when performing mental tasks, such as imagining a

movement or a sequence of words. Exogenous processes, on the other
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hand, involve brain signals generated involuntary in response to external

stimuli, such as auditory, visual, or tactile inputs.

Motor imagery and non-motor imagery are two primary examples of

endogenous paradigms that have been described. Non-motor imagery

includes imagining sounds, phrases, and images, as well as performing

mental calculations. Our study in Chapter 5 aims to explore the spa-

tiotemporal dynamics between the autonomic nervous system and the

central nervous system during a high cognitive demand task. This study

utilized the Galea headset to shed light on the entwined nature of mental

workload and the functioning of the autonomic nervous system. Two

well-known exogenous approaches are also discussed Auditory Contin-

uous Response (ASSR) and Potential Visually Evoked by Steady State

(SSVEP). In ASSR, the subject is presented with an auditory stimulus,

such as a constant-frequency beep, and the electrical current processed by

the auditory cortex synchronizes with the source frequency. On the other

hand, SSVEP investigates the synchronization between the frequency of

the external visual stimulus and the frequency of the evoked potential

in the visual cortex. For SSVEP-based BCIs to function effectively, the

user’s gaze must be narrowly focused on the visual stimulus, and any

distracting peripheral stimulus may interfere with the accuracy of the

results.
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This chapter shifts the focus to the examination of the potential for virtual

reality technology to study cognitive function. This study investigates

the relationship between working memory, spatial attention, physiolog-

ical arousal, and performance during a high-demand task in a virtual

reality (VR) environment. We utilized a modified version of the popu-

lar computer game TETRIS as the task, involving 34 participants, and

employed a physiological computing VR headset that simultaneously

records physiological data. Our findings indicate a broadband increase

in brain power just prior to a helper event, followed by a spike of spa-

tial attention (parietal beta 1-3 seconds) occurring concurrently with a

decrease in cognitive load (frontal theta 2-4 seconds), and a subsequent

decrease in spatial attention (parietal theta at 14s) and physiological

arousal (HRV at 20 seconds). The subjective relief and helpfulness of the

helper event were found to be more driven by physiological arousal and

the spatial attention response. These findings highlight the importance of

multi-modal physiological recording in rich environments, such as real

world scenarios and VR, to understand the interplay between the various

physiological responses involved in mental workload and attention.

5.1 Background

The interconnected systems of working memory and spatial attention are

critical for human interaction with rich stimulus environments. These
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systems are mediated by the frontoparietal network, though the degree

to which they are dissociable is debated, with both working memory

and spatial attention associated with activity in both the prefrontal

cortex and the posterior parietal [127]. Mental and spatial workload are

among the key drivers in human cognitive processes [128–131]. Studies

in this field have particularly focused on the prefrontal and parietal

cortex. The prefrontal cortex plays important roles in executive functions,

such as the capacity for self-control and long-term planning, which

are widely regarded as among the most crucial aspects of a human

mind [132, 133]. The parietal cortex, on the other hand, is regarded

to be critically important in spatial information processing and in the

control of behavioral responses. [134–136] In addition, the autonomic

nervous system and the interaction between its two parts, the sympathetic

and parasympathetic systems, are involved in top-down and bottom-

up directions of mental workload [137, 138]. Maintaining a healthy

equilibrium in the operation of these systems can help people achieve

optimal performance, better mental health, and improved well-being

[139–141].

Studies focused on detecting and quantifying mental workload have

increasingly used physiological measures, which have various advantages

over using only self-reported measures, as the latter are not optimal in

continuous assessment and prone to retrospective reconstruction of the

perceived mental workload [142]. Common physiological metrics include

electroencephalography (EEG) recordings from parietal and prefrontal

regions of the brain [143, 144] and measures of cardiac activity such as

heart rate and heart rate variability [145, 146]. These indices of mental

workload [147] are among the most studied in this domain. As discussed

in previous research, while these measures provide valuable insights

on their own, using a multimodal approach can provide more robust

representations of mental workload, as each individual multimodal

signal represent different facets of mental workload [148, 149].

While measuring physiological markers is critical in mental workload

studies, the experimental environment and behavioral response elicited

in participants are equally important. In behavioural sciences, researches

have studied virtual reality (VR) experiment environments as both an

exciting focus of study [116, 117] and a tool for designing realistic exper-

iments [115, 118]. VR is a valuable platform for studying participants’

behaviors as it is easy to create any number of environments. These
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environments can be designed to be safe, controllable, replicable, and ac-

cessible to participants from a variety of backgrounds and with a variety

of needs [119, 120]. Most importantly, VR is capable of efficiently generat-

ing realistic new environments that are a powerful tool for psychological

researchers [121, 122, 150]. There have been important advancements in

using VR as an experimental platform to study mental workload. Gupta

et al. [151] tracked multiple signal modalities (EEG, Heart-Rate Variability

(HRV) and Electrodermal Activity (EDA)) and subjective questionnaires

to investigate the trust level towards an auditory virtual agent under

different mental workload levels. In another study, Zhang et al. [152] used

multimodal physiological data (EEG, EDA, Electromyography (EMG)

and skin temperature) in a VR-based driving system to track the mental

workload of users with Autism Spectrum Disorder, aiming to build a

system that facilitates learning by adjusting task difficulty. Utilizing real-

time EEG data in a VR environment, Dey et al. [153] presented an adaptive

training system that can adjust task difficulty to an optimal challenging

level to facilitate learning. While these recent studies provide valuable

insights in terms of mental workload corresponding to the prefrontal

cortex activity, little attention has been given to spatial cognitive load in

the literature. Furthermore, the temporal dynamics of the central and

autonomic nervous system activity in the context of mental workload in

VR environments requires further research.

The study presented here aims to explore the relationship between spatial

cognitive demands, prefrontal cognitive workload, and the autonomic

nervous system during a high-demand task in virtual reality. The popular

computer game TETRIS was modified and used as the task in the experi-

ment, which involved 34 participants. We used Galea, a physiological

computing VR headset that simultaneously records physiological data

(EEG, EDA, EMG, and PPG) [154]. We study the dynamics of the auto-

nomic and central nervous systems, with a focus on the activity of spatial

workload in the parietal region and the balance between the sympathetic

and parasympathetic responses. The findings of the study highlight

the importance of cognitive load and spatial attention in subjective ex-

perience and tension relief, as well as the significance of maintaining

optimum mental workload for maximizing performance and balanced

autonomic nervous system activity. This exploratory study contributes to

the growing understanding of the relationship between working memory,

spatial attention, the autonomic nervous system, and performance.
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The study hypothesizes a decrease in cognitive load, spatial attention, and

physiological arousal following the helper clear event, which suddenly

makes the game easier.

Our "helper event" is a new feature we’ve added to the classic game of

Tetris. Once the stack of pieces reaches 60% of the height of the playing

field, a ball-shaped helper piece appears. It can be played like any other

tetromino piece and when placed, it clears the four rows of squares

underneath it and sets the game level to 5, slowing down the speed at

which the pieces fall.

The study also hypothesizes that the physiological signals examined

would be correlated with subjective questionnaire responses about the

impact of the helper clear event.

Overall, the study aims to explore the relationship between the central and

autonomic nervous system phenomena and cognitive state, particularly

in the context of the helper clear event in a highly demanding scenario.

5.2 Methods

5.2.1 Experiment Task

To establish a group of participants for the experiment, 34 individuals

were recruited via emails sent to student organizations across the uni-

versity and dormitories. Six participants were excluded because of a

technical failure with the headset and failure to follow the experiment

instructions. Participants were compensated 15 dollars per session for

their participation, with a bonus of 30 dollars for the person to reach the

highest line clear score.

All procedures were approved by MIT’s institutional review board, and

every participant provided informed consent. In total, there were 34

participants, ages 18 to 44, 15 males, 16 females, three non-binary, 15

Asian or Pacific Islander, 10 Caucasian, 5 Hispanic, 4 African American.

Participants reported having normal to corrected-to-normal vision, no

known history of epileptic seizures, migraines, or vestibular dysfunction.

The individuals also had no known history of claustrophobic events

when using VR headsets, and had the ability to sit and follow instructions

for 30 minutes.
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5.2.2 Test Environment

Physiological measures and instruments Physiological signals were

recorded with a Galea headset, and signals were visually inspected

after setup at the start of each session. Participants were asked to stay

still for calibration and close their eyes for alpha baseline collection. A

complete system review can be found in this publication [redacted for

anonymity]

5.2.3 Experimental Protocol

The experiment involved playing a modified version of the well-known

computer game TETRIS. The game implementation followed the original

source code and was implemented in Unity3D. In this game, tetrominoes,

which are geometric shapes made of four squares linked edge to edge

in various arrangements, descend one at a time vertically from the top

of the computer screen. While a tetromino piece falls, the player can

move it sideways and rotate it, using the joystick and A and B buttons in

the game controller. The object is to arrange the pieces so that complete

horizontal rows of squares are formed. When this is done, the squares

vanish, giving the player points. The pace of the falling pieces could be

changed in the game’s current iteration in 13 distinct increments, each of

which equated to a different degree of difficulty.

To ensure a variation in mental workload during the experiment, par-

ticipants played TETRIS in two sessions, which differed in only one

condition. Session one has a helper condition that appears in the form of

a sphere when the number of tetromino pieces has reached 60% of the

height of the TETRIS playing field. Session two is the control condition

and no variation from the standard TETRIS rules is made during this

session. To reduce any confusion that the helper condition could create

for the participant, the researchers explained that there would be a new

piece that would appear at some point during the game and that the

piece could be used like any other tetromino with the difference that this

piece will clear three rows.

Experimental Procedure

The study design follows the structure shown in Figure 5-1 where the

experiment started with participants filling out two pre-experiment

questionnaires (5 min). Immediately following the questionnaire, the
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participant is met with a headset fitting and signal impedance check

(5min), and following that, the participant experiences a calibration phase

to remove motion artifacts and eyes closed baseline (1 min). During this

calibration phase, participants were asked to reduce the number of blinks

for 50 seconds and to relax. The next phase in the calibration section was

to collect signals for baseline alpha signals. This was done by asking the

user to close their eyes for 30 seconds and to open their eyes when they

heard a beep sound.
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Figure 5-1: Experiment design for the Cognitive load study

After the calibration phase, the participants were asked to play TETRIS

for 30 seconds to familiarize themselves with the game controllers. This

was done to help reduce the increase of cognitive load that the new

controllers might introduce to participants with fewer familiarities with

the joystick, or with the game of TETRIS.

Before the participant’s first session, participants were randomly assigned

to session 1 (experimental) or session 2 (control), each lasting about

7 minutes. Once the user had finished playing the game, they were

prompted to fill out a post-experiment questionnaire (5min). At last, the

participants were given a debriefing, explaining what the researchers

were looking to see during the experiment and the opportunity to provide

feedback.

5.2.4 Modifications to the Tetris Game

The game’s construction was quite straightforward, as its core is merely a

copy of the original Tetris game. The Group class, the Grid class, and the

TetrisSpawner class are the most crucial classes in our implementation
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of Tetris. The game’s construction was quite straightforward, as its core

is merely a copy of the original Tetris game. The Group class, the Grid

class, and the TetrisSpawner class are the most crucial classes in our

implementation of Tetris.

The Group class represents the groupings of blocks that make up tetromi-

nos and contains the majority of their falling and moving logic. The class

listens for user input from the controllers and moves itself accordingly; for

example, moving the controller’s joystick to the left moves the tetromino

to the left if possible. It also handles the game over state when it detects

that the grid is full and the piece has nowhere to go. The Group class

is a Unity component on the tetromino gameobject, therefore there are

multiple instances of this class in use at any given moment, each of which

is concerned only with its own pieces’ placements on the game grid. The

component is utilized on each of the tetromino piece prefabs - the game

objects that are instantiated during game play - and an example of one of

these prefab pieces can be seen in the image file Figure 5-2.

Figure 5-2: The Unity inspector view of

the Group component (on the left) and

the associated tetromino piece for the

prefab (on the right)

Since the core of the game has been established at this point, we are

ready to move on to the experiment itself. The objective of this Tetris

experiment is to establish a feedback loop centered on changes in the

participant’s brain signals and the autonomic nervous system during the

experiment. The following order of events is what is ideally desired:

▶ Unity collects EEG data from the Galea headset using BrainFlow.

▶ Unity shares received data through an LSL output stream to the

Neuropype pipeline.
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▶ Neuropype takes in this data, processes it, and analyzes the partici-

pant’s alpha.

▶ Neuropype then sends a value ranging from 0 to 1 indicating the

strength of the alpha to Unity.

▶ Based on this value, Unity will infer how easy or difficult the

current experience is for the participant and change the difficulty

to compensate.

▶ This cycle continues.

5.2.5 Data Analysis Methodology

The results represent data from 28 subjects, although data was collected

from 34 subjects. one subject was excluded based on signal quality, five

subjects were excluded based on performance criteria, and one subject

was excluded based on outlier timing.

5.2.6 Pre-processing Data

Neuropype is used to pre-process the data collected. Figure 5-3 shows

the pipeline used for cleaning the data. The stream data node is used

with deterministic timing mode and a chunk length of 2 seconds. The

select range node is used to grab EEG data from a specific range (7-17

Hz).

A 1-35 Hz FIR bandpass filter is applied, and certain channels are

protected in the remove unlocalized channels and bad channel removal

nodes.

In the artifact removal node, specific settings are used, such as a removal

threshold of 4.0, sliding window length of 1.0, and a maximum simulta-

neous artifact fraction of 0.6, with a calibration data gathering time of 50

seconds.

The Jupyter notebook is used to analyze the data and generate plots, with

the option to also use an Artifact Regression node to remove heart rate

artifacts.

The sampling frequency of the data is 250 Hz, and markers are used

to indicate specific events in the data. The baseline data used is 30s of

calibration data, 30s of tutorial data, and 10s of eyes closed data. The

used frequency bands are the following: 1. Alpha = 8-13 Hz, Beta = 15-30

Hz, Theta = 4-8 Hz and Welch parameters for power spectral density

calculations are the following nperseg (window size): 250 and noverlap
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Figure 5-3: Pipeline used for removing artifact and filtering raw data

(overlap): 0. The data is also analyzed using 10s and 2s time bins to

examine different time dynamics of the EEG signal.

5.2.7 Power Data

For each subject, for each of the target electrodes, power measures were

calculated at each second using a 4 second window on the processed

channel data (processing done prior to the work highlighted in this report

is not described here). The matlab ’bandpower’ function was used to

calculate the average power in the target frequency range. This function

uses a modified periodogram to determine the average alpha power in

each window. While the experimental sampling rate was 250Hz, a single

alpha measure was obtained for each second.

The timestamps, obtained at the experimental sampling rate, were

rounded to the nearest second for subsequent analysis. The power

bands of interest were Alpha and Beta power bands. The frequency band

considered here as the "Alpha" frequency band was between [8-12] Hz

and for "Beta" the frequency band was between [12.5-30] Hz.

5.2.8 PPG Data

In addition to channel power, PPG data was gathered and analyzed.

The PPG data was preprocessed to remove artifacts. Two measures were

taken from the processed PPG data:

1. BPM (beats per minute)

2. HRV (heart rate variability)

BPM and HRV were calculated each second using a 10 second sliding

window. BPM were obtained via a simple average. HRV can be calculated
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many ways, the methodology used here is RMSSD (Root Mean Square of

Successive Differences). To obtain this measure, first the time difference

between each heartbeat 𝑠𝑑𝑖 𝑓 is obtained. Those differences are then

squared, the mean is taken, and finally a square root is applied.

5.2.9 Time Series Analysis

Power and PPG data were examined over time at the group level. After

the power and PPG measures were calculated, they were centered over

time for each subject on the helper clear event. There were three available

helper clear labels: the first corresponding to a notification the helper was

coming, the second corresponding to the helper appearing, and the third

corresponding to the helper clearing the game tiles. The latter is what the

data was centered on. The data was then normalized and standardized,

and then group level deviations were identified from baseline power

within a time window affected by the helper clear event.

Normalization

Given that power values are bounded (at 0), the alpha power data at any

given second was highly non-normal, with a rightward skew. As such, a

log transform was performed to normalize the data. For each data point

for each subject, the log of the alpha power was taken; this allowed for

the use of statistics that assume normally distributed data for subsequent

analysis. (!graphical example below on the way!).

𝑥𝑛𝑜𝑟𝑚 = 𝑙𝑜𝑔(𝑥)

Baseline

Baseline measures of the means and standard deviations of the power and

PPG data for each subject/electrode were taken from the time period after

the start of the experiment until the first helper event label (the helper

notification). The helper was presented at different times for different

subjects, so for each subject a different amount of time was avaialble

from which to calculate the baseline measures. Two methodologies were

used:

1. All available time for each subject

2. The last s seconds, where s is the smallest number of available

seconds for any subject
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The first method takes more data into account, but that data is more varied

in its temporal distance to the event in question. As such, the second,

while taking less overall data into account, is less likely to be affected

by changes in power measures that may occur over time as a result of

gameplay. Because many subjects showed significant overall changes

in power and PPG data correlating with time played (see section 4.2),

the second baseline measure is the primary baseline this report focuses

on. For results using the first baseline methodology, see supplementary

materials (see section 4.3).

Standardization

Given that the channel signal for each electrode/subject, as well as the

corresponding power signals, vary based on factors beyond differences

in underlying neural activity (e.g. signal impedance), the power signal

was standardized for each electrode for each subject.

𝑥𝑠𝑡𝑎𝑛𝑑 =
(𝑥 − 𝑥𝑏𝑎𝑠𝑒)

𝑠𝑏𝑎𝑠𝑒

The standardized data was used for subsequent analysis. This effectively

weights the contribution of each electrode for each subject’s power signal

equally, preventing large variations due to signal quality across subjects

or electrodes from distorting the group level data.

Analysis Window

Group level second by second analysis was done during the approximate

period after the first helper clear label until the end of the recording. The

number of seconds between the first helper clear label and the target

helper clear label is different for each subject (see results). Analysis

was done for any second in which any subjects had recieved the helper

notification.

Statistics

Once the standardized and normalized data was obtained and centered

on the helper clear label, the data was collapsed across electrodes.

Subsequent analysis was done for each second within the analysis

window. For each second, a group level one sample t-test was done to

detect deviations from the baseline. A p-value cutoff of 0.05 was used to
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Table 5.1: Significant events across multi-

channels
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0.0332 0.4499 -4

0.0314 -0.2924 4

0.0422 -0.2932 51

0.0031 -0.3696 52

PAP-

CAE

0.0157 -0.3995 0

0.0162 -0.3977 1

0.0198 0.3977 36

0.0496 0.4674 46

FBP-

CAE

0.0181 0.5170 -4

0.0065 0.4408 -3

0.0440 0.3164 0

PBP-

CAE

0.0146 0.4917 -3

0.0487 0.4533 -2

0.0203 0.2963 1

0.0317 0.4025 2

0.0191 0.4699 3

PPG-

BPM

0.0221 -0.3912 -5

0.0276 -0.5192 -1

0.0235 -0.5427 0

0.0232 -0.4698 7

PPG-

RMSSD

0.0250 0.5353 -2

0.0411 0.4936 12

0.0402 0.5047 13

0.0476 0.5202 14

0.0447 0.5547 20

determine a significant event.

5.3 Results

5.3.1 Time Series Analysis

Below are the results for the time series analysis, both of the power and

PPG data. Alpha and Beta power results are shown in a collection of

frontal [Fp1 Fp2 Fz] and parietal [PO3 PO4 Pz] electrodes. As described

above, power data is collapsed across electrodes in the corresponding

region of interest. Time series analysis for the PPG data is shown below for

both heart rate as well as heart rate variability. This section highlights the

significant events identified for each data stream. For all data streams, the

time series analysis are graphically depicted with the x-axis representing

time and the y-axis representing normalized and standardized group

data. Positive values mean increases in the corresponding measure

relative to baseline and negative values indicate decreases relative to the

baseline measurement. The dark blue line represents the estimated mean

value, flanked by the the upper (yellow) and lower (light blue) bounds of

a 95% confidence interval of the estimated mean. Significant events, as

measured by single sample t-tests, are shown as vertical dotted lines and

reported in the corresponding Table 5.1.

Frontal Alpha Significant deviations in frontal alpha power from base-

line were observed at -4, 4, 51 and 52 seconds. The first event, an increase

of alpha power from baseline at -4 seconds, occurs prior to the moment

the helper clears the tiles, but after the helper notification for most sub-

jects (see supplementary section 0.4.1). Shortly after the helper clears the

game tiles at 4 seconds, there is a significant decrease of alpha power

from baseline. At 51-52 seconds, after the helper clears the game tiles,

there is a two second sustained significant negativity in the frontal alpha

power when compared to the baseline.

Parietal Alpha Significant deviations in parietal alpha power were

observed at 0, 1, 36, and 46 seconds. The first event was a significant

sustained decrease from baseline parietal alpha from 0 - 1 seconds, corre-

sponding to the time during and immediately following the helper clear

event. At 36 and 46 seconds, following the helper clear event, significant

increases from baseline parietal alpha power were also observed.
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Frontal Beta Significant deviations in frontal beta power were observed

at -4, -3, and 0 seconds. The first event was a sustained significant increase

from frontal beta power from -4 - -3 seconds, corresponding to the time

period after the helper had appeared for the majority (16/25) of subjects

(see section 0.4.1 for more info on helper clear event distributions). There

was additionally a significant increase from frontal beta baseline power

at 0 seconds, when the helper clear event occurred itself.

Parietal Beta Significant deviations in parietal beta power were ob-

served at -3, -2, 1, 2, and 3 seconds. The first event was a sustained

significant increase from baseline parietal beta power from -3 - -2 sec-

onds, corresponding to the time period after the helper appeared but

before the helper cleared the game tiles for most subjects, and the second

event was a sustained significant increase from 1 - 3 seconds, the period

immediately following the clear event.
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Figure 5-4: The array of figures show the significant deviations from baseline for EEG signal and PPG signal before and after the clear

event.i) Shows the Frontal alpha power collapsed for electrodes Fp1, Fp2, FpZ.ii) Shows the Frontal beta power collapsed for electrodes

Fp1, Fp2, FpZ.iii) Shows the Parietal alpha power collapsed for electrodes Poz, Po3, Po4,iv) Shows the Parietal beta power collapsed for

electrodes Poz, Po3, Po4.v) Shows the heart rate in beats per minutes deviation form baselinevi) Shows the RMSSD, a measure of HRV,

deviation from baseline.

Heart Rate - BPM Significant deviations from baseline heart rate were

observed at -5, -1, 0, and 7 seconds. The first significant event was a

decrease from baseline at -5 seconds, after the helper notification but

before the appearance of the helper clear for most subjects. The second
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significant event was a decrease from baseline at -1 second, corresponding

to the period where the helper had appeared but had not yet cleared the

tile for all subjects. There were also significant decreases from baseline at

0 and 7 seconds.

Heart Rate Variability - RMSSD Significant deviations from baseline

heart rate variability were observed at -2, 12, 13, 14, and 20 seconds.

The first significant event was an increase from baseline HRV at -2

seconds. There was also a sustained significant increase from baseline

HRV from 12-14 seconds, as well as a significant increase from baseline

at 20 seconds.

5.3.2 Correlations Between Events

Correlation coefficients across significant events
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Figure 5-5: Figure (a) shows correlation-coefficient across significant events. Figure (b) shows significant Correlation across significant

events

Once significant deviations from baseline were identified, the correlations

between significant events were examined. Figure 5-5 (A) shows the

correlations coefficients across significant events. Horizontal and vertical

lines delineate data streams. Within each resultant box, the correlations

between the data streams labeled on the x and y axis can be seen.

Correlations within data source overall were larger than correlations

between data sources.

Figure 5-5 (B) highlights the significant correlations between data streams

(considered as those with a p<0.05). Each location on the significance

figure corresponds to the same location on the correlation coefficient

above.
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5.3.3 Linear Regression

This section shows the results of a linear regression analysis predicting

questionnaire responses by deviations from baseline EEG & PPG activity.

Given the large number of significant deviations from baseline observed

across data streams we subselected based on the significance of the

correlation between the data at a given deviation from baseline and the

target questionnaire response.

For each investigated question, linear models were iteratively created

and tested. Of the group level deviations from baseline activity the

deviation with the most significant (lowest p-value) correlation between

the subject’s EEG/PPG data and the target questionnaire response was

used as the first predictor variable for a linear model. Then the next

most significant correlation between subject EEG/PPG data and the

questionnaire was added to the model, provided it wasn’t correlated with

the previous predictor. This iteratively continued until the p-value of the

corresponding linear model began to increase as additional predictors

were added. This iterative approach, rather than an exploratory approach

searching a broad combination of predictor variables, both provides

a simple means of model comparison as well as helps control type II

statistical error.

Questions were subselected from the post experiment questionnaires on

the basis of their relevance to the helper and the helper clear event.

The selected questions were:

Question 5.3.1. Was the ball shaped piece helpful in the game? If yes, how

helpful was it?

Question 5.3.2. "Was the effects of ball shaped piece relieving? If yes, how

relieving was it?"

Question 5.3.3. "Did you notice that the game became slower immediately

after the ball cleared some rows? If not, how much longer did it take for you to

realize that the game was now slower?"
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Question 5.3.4. "After [the] ball cleared some rows and slowed down the

game, did you feel a tension relief in your body? If yes, to what degree did you

feel this?"

Questionnaire responses were

scored

For questions 1, 2, & 4 responses

were scored as:

"Very" = 4

"Moderately" = 3

"Fairly" = 2

"Slightly" = 1

"Not at all" = 0

Question 3 was scored as:

"I did not realize" = 4

"Within a couple moves" = 3

"Within one move" = 2

"Almost immediately" = 1

"Immediately" = 0

The results of the most statistically significant of the observed models are

reported here for each of the four investigated questions. Questions 1,2, &

4 each had significant models, as measured both by the significance of the

F-statistic corresponding to the linear model as well as the significance of

the correlation coefficient between the estimated values using the linear

model and the observed values. As a note, in the cases where the selected

linear model used only a single predictor, the statistical significance of

both the linear model and the correlation coefficient are equivalent. In the

cases where multiple predictors are used the linear regression statistical

results indicate the degree to which one or more of the predictors has

a significant linear relationship with the questionnaire response. The

correlation results are a more direct measure of the predictive validity

of the model, indicating the extent and significance of the relationship

between the predicted and observed values. The 𝑅2
value indicates the

percentage of variance in the observed data explained by the linear model

of the predictor variables.

Question 1: Was the ball shaped piece helpful in the game? If yes, how

helpful was it?

𝑦̂𝑄1 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

𝑥1 ≡ PPG HRV at 20 seconds

𝑥2 ≡ Parietal Beta at 3 seconds

The table below shows the individual contributions of the estimated

components.

Table 5.2: Individual contributions of the

estimated components for question 1

Coefficient estimate SE tstat pValue

𝛽0 2.8113 0.2444 11.503 8.9201e-11

𝛽1 0.30002 0. 16285 1.8423 0.078946

𝛽2 0.388 0.22799 1.7019 0.10287

The results of the linear model as a whole, as determined by the F-statistic

vs. constant model (3.65) was significant with a p-value(df = 22) = 0.0426.

There was furthermore a significant correlation (𝑝 = 0.011; 𝑅2 = 0.2494)

between the predicted and observed questionnaire response values.
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Figure 5-6: Estimated questionnaire response from the linear model for each question

Our findings indicate that the parietal beta activity just following the

helper clear event and the heart rate variability 20 seconds following the

helper clear event are significantly related to subjective reports of how

helpful the helper was. The correlation results indicate that 25% of the

variance in subject questionnaire responses to question 1 is explained by a

linear combination of the PPG HRV data 20 seconds after the helper clear

event and parietal beta activity 3 seconds after the helper clear event.

While the individual predictor variables were not significant when indi-

vidually tested (see table), the significance of the overall model indicates

a significant effect. This may indicate a degree of correlation between the

predictor variables, though a statistically significant correlation was not

observed (𝑝 > 0.05). Given that this model’s performance exceeded the

performance of a model with only a single predictor variable, both terms

likely contribute. The significant intercept term indicates, as expected,

that the mean questionnaire responses differ from 0.
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Question 2: "Was the effects of ball shaped piece relieving? If yes, how

relieving was it?"

𝑦̂𝑄2 = 𝛽0 + 𝛽1𝑥1 + 𝛽1𝑥2

𝑥1 ≡ Parietal Theta at 14 seconds 𝑥2 ≡ Parietal Beta at 2 seconds

The table below shows the individual contributions of the estimated

components.

Table 5.3: Individual contributions of the

estimated components for question 2

Coefficient estimate SE tstat pValue

𝛽0 2.5109 0.20266 12.389 2.1483e-11

𝛽1 -0.48211 0.22578 -2.1353 0.044115

𝛽2 0.40724 0.20894 1.9491 0.06415

The results of the linear model as a whole, as determined by the F-statistic

vs. constant model (5.39) was significant with a p-value(df = 22) = 0.0124.

There was furthermore a significant correlation (𝑝 = 0.0027; 𝑅2 = 0.329).

Our findings indicate that the parietal beta activity just following the

helper, and parietal theta 14 seconds following the helper, is significantly

related to subjective reports of the relief experienced following the helper

clear event. The correlation results indicate that 33% of the variance

in the subject questionnaire responses can be explained by this linear

model.

Question 3: Did you notice that the game became slower immediately

after the ball cleared some rows? If not, how much longer did it take

for you to realize that the game was now slower?

𝑦̂𝑄3 = 𝛽0 + 𝛽1𝑥1

𝑥1 ≡Parietal Theta at 9 seconds

The table below shows the individual contributions of the estimated

components.

Table 5.4: Individual contributions of the

estimated components for question 3

Coefficient estimate SE tstat pValue

𝛽0 1.6421 0.35602 4.6124 0.00012231

𝛽1 -0.76436 0.43776 -1.7461 0.094145

The results of the linear model as a whole, as determined by the F-statistic

vs. constant model (3.05) was not significant with a p-value (df = 22)

= 0.0941. There was furthermore no significant correlation (p = 0.0953)



5.4 Discussion 119

between the predicted and observed questionnaire response values.

The intercept term, as expected, was significant. This indicates that the

average questionnaire responses were greater than zero, though the

insignificant finding of the linear model as a whole indicates there is no

linear relationship between the investigated predictor variables and this

particular questionnaire response.

Question 4: After the ball cleared some rows and slowed down the

game, did you feel a tension relief in your body? If yes, to what degree

did you feel this?

𝑦̂𝑄4 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2

𝑥1 ≡Frontal Beta at -3 seconds

𝑥2 ≡ Parietal Beta at 3 seconds

The table below shows the individual contributions of the estimated

components.

Coefficient estimate SE tstat pValue

𝛽0 1.6765 0.25031 6.6977 9.8599e-07

𝛽1 0.62915 0.28374 2.2173 0.037241

𝛽2 0.43876 0.22425 1.9566 0.063211

Table 5.5: Individual contributions of the

estimated components for question 4

The results of the linear model as a whole, as determined by the F-statistic

vs. constant model (5.36) was significant with a p-value(df = 22) = 0.0127.

There was furthermore a significant correlation (𝑝 = 0.0028; 𝑅2 = 0.3276)

between the predicted and observed questionnaire response values.

Our findings indicate that the frontal beta activity just prior to the helper

clear and parietal beta activity just following are significantly related to

subjective reports regarding the degree of tension relief subjects report

following the helper clear event. The correlation results indicate that

33% of the variance in the subject questionnaire responses is explained

by a linear combination of the Frontal Beta activity just prior and Parietal

Beta just following the helper clear event.

5.4 Discussion

The differences from baseline across data streams were largely focused

on here in terms of those that contributed to substantial linear models of
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subjective questionnaire responses regarding the helper event, as well as

those that provide specific insight in relation to our stated hypotheses.

The first event of note is an increase of both frontal and parietal beta power

from baseline 3 seconds prior to the helper clear event, corresponding

for most subjects to the time after the helper notification but before

the clear event itself. This corresponds to an elevation across power

signals. While significant deviations were observed in Frontal Alpha

and Beta as well as Parietal Beta, there was a positive trend among all

other power signals.This broadband increase in power from baseline may

indicate a generalized increase in engagement, mental load, and fatigue,

corresponding to an increase in both cognitive load (frontal beta) and

spatial attention (parietal beta). This may reflect either the impact of the

expectation of the helper, or the high degree of task difficulty that subjects

faced prior to the helper event occurring. The frontal beta at -3 seconds

was a selected predictor variable with a positive coefficient in the linear

model of questionnaire responses related to the subjective sensation of

tension relief from the body, indicating the larger the positive deviation

from baseline the more tension relief subjects reported. The tension relief

may actually reflect the return to baseline rather than the elevated cognitive

load itself. While this result differs from our hypothesis of a decrease

in beta power following the helper clear event, the general pattern of a

return to baseline from an elevated cognitive load preceding the helper

clear event is consistent with the model underlying the hypothesis. In

particular that the helper clear event itself reduces cognitive load.

The second event of note is a sustained increase in parietal beta from

baseline 1-3 seconds following the helper clear. At 1 second there is

additionally a significant decrease from parietal alpha. This is consistent

with a spike in spatial attention following the helper clear. This increase

in spatial attention may reflect the subject’s re-evaluation of the game

state. Subject’s parietal beta power in this period is one of the selected

predictive variables for linear models for all three of significant linear

models reported, regarding how helpful and relieving the helper was,

as well as the degree to which subjects reported tension leaving their

body. The subjective reporting of how helpful/relieving the helper was

is significantly and robustly (across question wording) related to degree

to which spatial attention was devoted to re-evaluating the game state

post helper clear event. At the same time, as predicted, was a large

decrease in theta power indicating a decrease in cognitive load. While
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the decrease in cognitive load was significant, subjective reports of how

helpful/relieving the helper tile was were more driven by the broadband

increase in power in anticipation of the helper clear, as well as spatial

attention and physiological arousal after the helper event occurred.

While the directionality of the cognitive load finding is in line with our

hypothesized result, that subjective reports of the helpfulness was driven

more by parietal activity was a deviation from our hypothesis.

The third event of note is a decrease in parietal theta power at 14 seconds

and a subsequent increase in heart rate variability 20 seconds following

the helper clear event. There were additional significant increases from

baseline in heart rate variability 12-14 seconds following the helper clear

and a significant decrease in heart rate 7 seconds following the helper

clear. The decrease in parietal theta (a selected predictor in the linear

model of how relieving the ball was) may indicate a corresponding

decrease in sustained spatial attention in return reflecting a more relaxed

approach to game-play. This is consistent with the hypothesized and

observed decrease in physiological arousal following the helper clear

event as evidenced by the heart rate data.. Furthermore the heart rate

variability at 20 seconds was a selected predictor variable with a positive

coefficient in the linear model of the question relating to the helpfulness

of the helper clear.

An additional set of events, though not significant with our primary

baseline measurement, may be of note. With an alternate baseline (see

supplementary materials) several positive deviations from baseline alpha

power were observed (19-20s, 24-25s, 30-31s). The sustained positivity,

overlapping with a significant increase in heart rate variability, may

indicate a sustained increase in frontal alpha power that our current

statistical power may not be capturing. This would be consistent with

our hypothesis of a decreased cognitive load following the helper clear,

and consistent with a more reflective and relaxed game-play post tile

clears and the difficulty level decreasing.

The effects of the helper clear event observed here spans multiple data

streams across a time interval of over 20 seconds. The data streams

include frontal and parietal EEG data as well as PPG heart rate variability

data that in turn predict 25-33% of the variance observed in subjective

questionnaire responses about how helpful or relieving the helper event

was. In this study we observed a broadband increase in brain power just

prior to the helper event followed by a spike of spatial attention (parietal
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beta 1-3 seconds) that occurred concurrently with decrease in cognitive

load (frontal theta 2-4 seconds), in turn followed by a subsequent decrease

in spatial attention (parietal theta at 14s) and decrease in physiological

arousal (hrv at 20 seconds). While as expected there was a decrease in

cognitive load in response the helper clear event, subjective relief and the

subjective reports about how helpful the event was were more driven by

physiological arousal and the spatial attention response to the helper.

5.5 Conclusion

In conclusion, this study investigated the spatio-temporal dynamics of the

autonomic and central nervous systems during a high cognitive demand

task. The data streams were analyzed to identify differences from baseline

that contributed to linear models of subjective questionnaire responses

related to the helper event. Three main events of note were identified. The

first event was an increase of both frontal and parietal beta power from

baseline 3 seconds prior to the helper clear event, indicating a generalized

increase in engagement, mental load, and fatigue. This was found to

be a predictor of subjective tension relief reported by the subjects. The

second event was a sustained increase in parietal beta from baseline

1-3 seconds following the helper clear, which corresponded to a spike

in spatial attention and was found to be a significant predictor of how

helpful and relieving the helper was, as well as tension relief reported by

the subjects. The third event was a decrease in parietal theta power and a

subsequent increase in heart rate variability following the helper clear

event, which may indicate a corresponding decrease in sustained spatial

attention and return to a more relaxed state.

Overall, the findings suggest that both cognitive load and spatial attention

play important roles in subjective experience of the helper event and the

level of tension relief felt by the subjects. Deviating from the hypothesis,

subjects found the helper helpful, due to the anticipation of the helper

clear event. Additionally, the helper event caused an spike in spatial

attention after it occurs, which helped individuals to re-evaluate the

game state. This exploratory study found that the results indicate that it

is possible to detect and intervene with the mental and spatial workload

if multimodal physiological activity is tracked during a task. Changing

the mental workload enables the researcher to alter the activity of

the autonomic nervous system, which ultimately results in prolonged
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performance and improved mental wellbeing. This is made possible by

the well-explained coupling that exists between these domains. In light of

these findings, it can be presumed that by applying the same principles in

a closed loop setting, it might be possible to further guide the activity of

the central and autonomic nervous systems while performing a mentally

taxing task. This would open the door for applications in a wide variety

of fields, including gaming, education, and medicine.
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Visual evoked potentials (VEPs) are a commonly used method to study

the functional integrity of the visual pathways that extend from the retina

to the occipital cortex. These potentials are generated using electroen-

cephalograms (EEGs) by averaging the transitory visual stimuli captured

from the visual cortex. Due to the limitations of 2D screens, not much

research has been done on how these stimuli change and affect us in a 3D

space, even though they are important. The purpose of this study is to

look into the VEP-BCI paradigms, as well as stimulus onset asynchrony in

VR and variables that are closely related to these potentials. Furthermore,

this study intends to investigate the feasibility of using the Galea headset

for early stage diagnostics by analyzing EEG data from the occipital brain

response of individuals with simulated visual impairments. The results

of this study may provide insights into the potential utility of such a

system for early detection and diagnosis of visual impairments.

6.1 Light, Eye and Vision

Some theoretical groundwork for understanding human’s vision physi-

ology is laid out in this section. The section begins with a definition of

light and concludes with a presentation of a BCI application for neuro-

physiological measurements of the visual field and visual pathways.

Figure 6-1 depicts the "path of the light" that a visual stimulus takes from

its origin to the human eye. The visual cortex of the brain receives the data,

and from there the object’s impact on the brain’s electrical activity can
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be evaluated. A brain-computer interface (BCI) converts the measurable

signal into an analog signal. This section presents a quick introduction to

the fundamentals of how the human eye and brain perceive and process

light. A description of how the visual cortex responds to an image is

followed by a discussion of image formation, the visual pathway, the

topographic representation of the image, and the visual cortex itself.

After that, EEG and VEP will be discussed.

Figure 6-1: Representation of the visual

system, together with a stimulus, visual

field and single cell electrode
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Figure 6-2: The electromagnetic spec-

trum. The numbers indicate wavelength

in nanometers (1 nm = 1 × 10-9 m). The
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ble light is highlighted. It was consider

green color has primarily wavelength in

the 500-570 nm range

Light is an electromagnetic radiation form emitted by electrically charged

materials during their oscillation. The only time the direction of light’s

motion changes is when it encounters an object that causes it to be

reflected or refracted, sending it back along its original path at an angle.

In the electromagnetic spectrum, the wavelength corresponds to the color

perceived by the human eye. The electromagnetic spectrum is depicted

in Figure 6-2. Electromagnetic waves with approximate wavelengths

between 450 and 750 nm make up visible light [3, 7]. There is a direct

relationship between the brightness of an object and the degree to

which it is reflected light. Color contrast allows complex organisms to

distinguish surfaces that reflect different parts of the visual spectrum,

which is the primary basis for vision. Around 125 million neurons, called

photoreceptors, are specialized to convert light into electrical signals in

the human eye’s complex optic system [2].

Vision occurs when light enters the human eye through the cornea and

travels to the pupil. The retinal surface, which functions like the movie

screen of the eye, receives a projection of whatever is being looked at.

When the lens is properly focused on the object, the image projected is

crisp. Retinal images should trigger nerves to send a signal to the brain

via the optic nerve. Phototransduction, or the conversion of light energy

into electrical energy, takes place in the retina, the innermost layer of the
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eye. The photoreceptor cells that detect light waves are located in neural

tissue on the retinal surface. Rods and cones are the names given to

photoreceptors that respond to low and high levels of light, respectively.

The axons of retinal neurons make up the optic nerve, which carries

visual data to the brain. Light coming from the visual center is focused

in the fovea, located in the center of the retina. It’s the sharpest spot on

your retina. The optic disk is the area of the retina through which the

optic nerve travels.

Retinal
image 
of far
object

Retinal
image
of near
object

Lens Near object Far object

Flattened for weak refraction

Rounded for strong refraction

Ciliary muscles

Figure 6-3: Focusing both far-off and

nearby sources of light. A The light waves

reflected from a distant object on the

retina can be brought closer together

with a relatively flat (weak) lens. B To

converge the light waves reflected from

a close object on the retina, a stronger,

rounder lens is required.

All visible objects emit light in all directions, which can be thought of as

a series of diverging waves. Light must first be focused by the human

optical system before it can reach light-sensitive receptor cells of the retina

and then send signals to the brain via the visual pathway. A topographic

relationship between retinal and cortical fields is related to responses

measured in the visual cortex [1].

Focusing the Light To adapt to different viewing distances, the lens is

the primary structural component. Humans are able to focus their vision

on a particular object thanks to a mechanism called accommodation,

which involves a change in the lens’s shape. Tiny muscles attached to

the lens contract or relax to alter its curvature as needed based on the

object’s distance, as shown in Figure 6-3. The ciliary muscle is the name

given to these skeletal muscle filaments. The iris and the pupil regulate
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how much light enters the eye. Stimulation of sympathetic nerves to

the iris causes these involuntary contractions, which then enlarges the

pupil, whilst the stimulation of the parasympathetic nerves induces the

diameter of the iris to get smaller [4].

Seeing the object Cone photoreceptor cells perform transduction,

transforming photons of light into the electrochemical energy that drives

patterns of action potentials in the optic nerve. Rods and cones are both

types of photoreceptors found in human eyes. The fovea is a small, central

area of the retina that is densely packed with cones, which have a wide

field of view and a high sensitivity to light. For this reason, the fovea

is crucial for normal daytime vision. This is also where the image of a

subject of primary attention is projected onto the retina. When exposed

to a certain spectrum of light, cones release molecules that are sensitive

to that color. The fovea is devoid of the rods that allow for some vision in

low light, but the rods are present elsewhere in the eye. A wide spectrum

of wavelengths excites light molecules in rods. Figure 6-4 shows the

ratio of cones to rods in a given area. The fovea, a 1.2-millimeter-wide

spot in the retina known for its dense concentration of photoreceptors, is

essential for sharp central vision. The fovea can be located in the middle

of the inner ring of the insets on the left and right sides of Figure 6-4. The

density of cones here is nearly 200 times higher than in the rest of the

retina [8], reaching a maximum in the very center of this area (Figure 6-7).

Thus, foveal cones achieve their high density by having thinner outer

segments, making them look like rods.
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Figure 6-4: Relative distribution of the

cones and rods on the retina. The y-axis

is the receptor density and the x-axis is

the relative distance from the fovea. Note

that the highest density of cone receptors

is located in the fovea and there are no

receptors where the optic nerve leaves

the eyeball, thus creating a blind spot.

The peripheral vision is primarily due to

rods, hence we have minimal abilities to

detect colors in those areas

Figure 6-5: Contour curves of topo-

graphic maps of cones (Left) and rods

(Right) density on the retinal surface.

The density of cones on the inner cir-

cle of high (exceeds 16000 photorecep-

tors/mm2). The density of rods is very

low on the inner circle. The rings are

spaced at intervals of about 20o. The

fovea is at the center of the inner ring
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The contour lines in Figure 6-5 show that as the density of cones increases

in the fovea, the density of rods decreases dramatically [1, 8]. Cones are

defined as photoreceptors throughout the text.
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Vision Fields Both the left eye’s visual field and its periphery are

shown in Figure 6-6 [2]. The visual area perceived by the eye at any

given time is known as the "field of vision". Calculations are made with

the eyes focused on a point in front of the nose. The eccentricity angle

measures how far away from the fovea a target is. Around 15 degrees to

the side of the optical nerve is a blind spot where rods and cones do not

exist due to the optic disc being in the center of the retina.
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Figure 6-6: Perimeter chart showing the

field of vision for the left eye. White

and Green regions indicate where the

light or object can be seen or it cannot,

respectively
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Figure 6-7: Representation of the visual

field in the fovea and in the primary vi-

sual cortex. This representation is not

proportional, for the neural information

obtained by the receptors within the

fovea projects onto a large portion of

the visual cortex

Topography A topographical map is used to describe the representation

of various points in the visual field by a group of neurons in the cortex.

Numbers in Figure 6-7 represent regions of the primary visual cortex

that are responsible for processing information from specific locations

in the visual field. In order to maintain the integrity of the retina’s map

of visual space, the visual system’s lower levels (beginning with the

ganglion cells) project to the higher levels in a systematic fashion. The

fovea-corresponding central visual field area (areas 1-4) is enlarged in

the cortex to occupy roughly half of the total cortical representation.

6.1.1 Visual Pathway

The visual pathway consist of the nerve fibers and synapses that carry

visual information from the eyes to the brain [1]. This pathway can be

recorded in a single cortical cell [9], as shown in Figure 6-1. Retina, optic

nerve, Lateral Geniculate Nucleus (LGN), and visual cortex make up

what is known as the visual pathway; The optic nerve is formed by the

axons of ganglion cells, which are the output neurons from the retina,

and the LGN, which acts as a sensory relay transmitting information

captured by the retina to the visual cortex, is composed of six layers.
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The first two layers of the cerebral cortex are called the magnocellular

layers, while the third, fourth, fifth, and sixth layers are called the

parvocellular layers; the striated cortex or cortex V1 is the first stage of

cortical processing of visual information. The visual field covered by the

eyes is completely mapped in cortical area V1. The LGN is the primary

source of visual information for this region, and it is also the primary

target of visual information sent to other cortical areas. It is commonly

accepted that Cortex V1 consists of six horizontal layers, each with its

own set of inputs and outputs. On layer 4, we receive inputs from the

LGN. This layer, for instance, is broken up into 4A, 4B, 4C𝛼, and 4C𝛽

sublayers. Important contributions from the LGN are received in 4C,

with magnocellular cells entering 4C𝛼 and parvocellular cells entering

4C𝛽.

Figure 6-8: Functional representation

of visual pathways. The magnocellular

(dark green) pathway starts at the gan-

glion cells, and arrives at the layer 4C 𝛼
of cortex V1 after passing through the

layers 1 and 2 of LGN. The parvocellular

(light green) pathway starts at the gan-

glion cells, passes through the layers 3–6

of LGN and arrives at the layer 4C 𝛽 of

cortex V1. Then, the visual information

flows to superior brain regions such as

V2, V4 or V5; also called MT
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The Parvocellular (or P-pathway) and the Magnocellular (or M-pathway)

are depicted in Figure 6-8. In contrast to the S-pathway, the M-pathway

is unable to detect or process color. The P-pathway is sensitive to hue

but not to subtle contrasts. The large ganglion cells (dark green) trigger

the M-pathway, which then projects into the LGN’s magnocellular layers

and, finally, layer 4C of the primary visual cortex. The P-pathway (light

green) originates in the ganglion cells of the retina, travels through the

parvocellular layers of the LGN, and finally terminates in layer 4C of the

primary visual cortex [1, 2, 9].

In general, the visual system uses distinct brain pathways to interpret and

transmit information about visual properties like motion, color, form, and

depth [1]. Non-invasive EEG electrodes can be used to measure activity in

Cortex V1 even though information is projected to higher visual, temporal,

and parietal areas. Figure 6-8 shows a simplified flowchart of parallel
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Figure 6-9: Diagrammatic simplification

of parallel visual pathways. LGN, lateral

geniculate nucleus; M, magnocellular; P,

parvocellular. P-cell, Parvocellular layers

of LGN, and 4C𝛼 layer of visual cortex

make up the Parvo route. Magno path-

way consists of M-cells, the PMagnocel-

lular layers of the LGN, and the 4C𝛽 layer

of the visual cortex. LPF and 𝜉 represent,

respectively, the effect of the skull and

the spontaneous EEG.

processing for contrast and luminance information, in which the skull

effect, represented by a low-pass filter (LPF) [10], acts over responses of

both layers (4C and 4C). The visual cortex EEG signal, denoted by s(t),

can be thought of as the total of the response owing to parallel pathways,

with spontaneous EEG designated by 𝜉.

6.1.2 Brain Signals and Evoked Potentials 300ms
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Figure 6-10: Three examples of typical

VEP waveforms: pattern reversal (top),

pattern onset/offset (middle), and flash

stimulation (bottom). Two positive peaks

(P50 and P100) and a negative peak (N75)

can be seen in pattern-reversal responses.

There is minimal to no difference in re-

sponses across subjects. There are three

peaks in the on/off pattern response, lo-

cated at 75, 125, and 150 milliseconds

(C1, C5, and C3, respectively). There is

more variation between study partici-

pants. Peaks (N1, N2, and P2) in flash

reactions occur at 30, 90, and 120 ms. The

comments here are more dispersed than

in the past.

The VEP waveforms for pattern reversal, pattern onset/offset, and flash

stimulation are depicted in Figure 6-10. The pattern-reversal stimulus

consists of sudden, recurrent transitions from black and white to white

and black checks. There is little to no fluctuation in brightness since

the stimulus is presented as a checkerboard with roughly the same

numbers of black and white squares. There is a sudden transition in the

pattern’s onset/offset, as the checkerboard is replaced with a muted gray

background. The ambient light level is identical to that of the stimulus.

The stimulus’s average brightness, pattern contrast, and field size can be

modified, as can the frequency of stimulation (in reversals per second)

and the number of reversals [16]. Strobe lights, flashing screens, and

other portable light sources are all useful tools for flash stimulation. They

can also be used to create the illusion of motion in digital graphics. As

such, the VEP can be induced by presenting a short flash in an otherwise

well-lit area.

Repeating the visual stimulus and averaging the resulting responses

allows one to plot a smooth curve. Transient visual responses are wave-

forms that can be used to determine response latency and peak amplitude.

When stimulation is provided at regular intervals, the sensory system

needs time to reset before the next stimulus emerges, hence a low repeti-
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tion rate is necessary (less than two stimuli per second). The usual VEP

response and the brief response generated by a 2 Hz pattern reversal

stimulus are shown in the upper inset of Figure 6-11. The repeated stimu-

lation interval (500 ms) is depicted with a gray background to emphasize

the fact that it is longer than the average reaction time (300 ms).

Visual Evoked Potential and Refractive Error The amplitude of the

pattern of an evoked potential is extremely sensitive to optical blurring,

so technical and physiological factors like pupil diameter or refractive

errors can affect the VEP [19]. Measuring the amplitude of the VEP with

changes in power of trial lenses is one method of determining refractive

error in ophthalmology [20]. As the subject’s visual acuity will play a role

in how the VEP results are interpreted, correcting for refractive errors

is essential. Since the 1970s, it has been established that the pattern’s

amplitude is affected by optical blurring [17].

The sharpness of the checkerboard’s edges is diminished due to defocus.

One example of eliciting VEPs in a single subject with and without lenses

is depicted in Figure 6-12 [21]. To modify the level of defocus, it made use

of lenses with varying dioptric powers. As can be seen, refraction errors

and differences in visual acuity between the two eyes have a negligible

effect on the amplitude of the VEP.

With the increased availability of mixed reality headsets and the ability

to record high fidelity physiological recordings with devices like the ones

presented in this thesis, it is possible to imagine what it would be like to

have more insight into the health of an individual, and potentially diag-

nose diseases early. When waiting too long for treatment, the treatment

efficacy diminishes dramatically, so I ask:

Figure 6-11: Changes in the waveform

of the visual evoked potential (VEP) in

response to varying frequencies of stim-

ulation. Consider the fact that the wave

form is essentially being modulated at

the second harmonic of the stimulus fre-

quency. The components of the transient

VEP become visible at the slowest fre-

quency (2 Hz).
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Figure 6-12: VEP waveforms of a subject

with a refraction deficit are compared

with (left curves) and without the use

of corrective lenses (right curves). Right

eye (RE) and left eye (LE) traces come

first and second, respectively; both eyes

(BE) come third; and the grand average

(AE) of the potentials comes last. With

corrective lenses, the delay is denoted by

tL.

Hypothesis 6.1.1 Can a binocular virtual reality headset be used to improve

early detection of vision and/or neuro-degenerative disease?

Hypothesis 6.1.2 Can the design of the system pave the way for the evaluation

and monitoring of a wide range of other neuro-visual functions?

Prior studies or methods for evaluating the health of visual fields are

replicated in order to provide an objective evaluation of human visual

metrics. EEG data is used to analyze the evoked brain potentials produced

by the system as a result of periodic visual stimuli shown to the patient’s

field of view. The occipital lobe is thought to be the source of these

potentials. Matlab’s EEGlab toolbox [155] is used throughout the signal

validation analysis performed on the continuously monitored EEG data.

Because this system operates in a closed loop, it is possible to make

real-time adjustments to following stimuli, allowing the researcher to

conduct more in-depth inspections of potentially damaged regions, or

increase the granularity of the investigations.

6.2 Method

6.2.1 Experiment Task

This study investigates Visual Evoked Potentials (VEP) that arise when

a flashing visual stimulus is presented. The goal is to explore a novel

paradigm for recording VEPs where the stimulus is presented in virtual

reality (VR). The investigation aims to differentiate time delays and VEP
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1: The experiment was performed us-

ing Presentation® software (Version 18.0,

Neurobehavioral Systems, Inc., Berkeley,

CA, www.neurobs.com)."

properties associated with stimulation of different parts of the visual

field.

Eight individuals were recruited through an email list and each of the

subjects were asked if they had neurological conditions like epilepsy, as

well as whether they have ever had any eye or visual pathway infections.

Recordings only proceeded when it was confirmed that there was no risk

involved. The participants were told that they could leave at any time

without having to give a reason.

All procedures were approved by the Massachusetts Institute of Technol-

ogy institutional review board, and every participant provided informed

consent. Participants (N = 8, ages 18 to 44, 5 males, 3 females, 5 Glasses, 3

No Glasses) reported no known history of epileptic seizures, migraines,

or vestibular dysfunction, and had no known history of claustrophobic

events when using VR headsets. The participants also had to have the

ability to sit and follow instructions for 30 minutes.

6.2.2 Test Environment

Physiological signals were recorded with a Galea headset, and signals

were visually inspected after setup at the start of each session. Participants

were asked to stay still for calibration, and were asked to close their eyes

for alpha baseline collection. A complete system review can be found in

this publication [redacted for anonymity].

The VR headset used during the experiment is a Valve index as described

in Chapter 3 on page 59. The VR headset was configured for a 90Hz FPS

refresh rate which allowed stimulating signals to be generated at frequen-

cies up to 45Hz. Display brightness was set to 130%, motion smoothing

to ON and Dashboard position to NEAR in Steam VR settings.

This setup configures the steamVR Desktop about 37 inches away from

the participants, and 27 inches tall. This results in the stimulus circle

taking up about 36 degrees of the participant’s visual field, a digramatic

representation can be seen in Figure 6-13.

Stimulus was presented through Neurobehavioral System’s Presentation

1
Pattern reversal frequency: 2Hz, one reversal every 0.5 seconds

The brightness of the stimulus was also measured from inside of the

VR headset at a similar distance to where the eye would normally be

located.
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Stimuli Luminescence (FC) Luminescence (LUX)

No-stimuli 0.07 0.6

Full 2.04 21.9

Half 1.15 12.2

Quadrant 0.49 5.3

Table 6.1: Luminescence (LUX) measure-

ment for each of the stimuli.

Stimulus
Ratio

Distance to screen

Steam VR Desktop measurements

Angle of  
visual field
36.83°

24.64in

37 in

θ

27 in

User Virtual Scene

Virtual 
Desktop

Figure 6-13: Distances and dimensions

between the subject and virtual desktop

where stimuli are presented

6.2.3 Experimental Protocol

Participants were told first to fill out a short questionnaire. The purpose

of the questionnaire was to collect demographic information and to learn

about any eye condition, prescription or eye dominance.

Once the questionnaire was filled out, participants received information

about the interactions that they would experience during the experiment

in VR.

The majority of subjects were unfamiliar with EEG/VEP, therefore they

were asked to minimize body movements, eye closures, and talking

during the recording. They were told that the goal of the task was to

remain focused on the center red cross, specifically the yellow dot in

the middle of the red cross, while the checkerboard flashes around it.

No medicines for pupil dilatation were administered, and no artificially

restricted pupils were employed for any of the reported tests.

Shortly after receiving this information, the participants were asked

to put on the headset. During this step, the experimenters adjusted

the headset so the noise level in every channel was under 10 uVRMS,

prioritizing good signals for channels Fz, Poz, Po3, Po4, Oz, O1, and O2.

The electrode locations were as described in Figure 6-14, which have

been previously identified as adequate for high-quality Galea headset

measurements. On the scalp, neither abrasive preparation agents nor

conductive pastes or gels were utilized. Any bulky jewelry or headwear

that could interfere with electrodes or the mounting hardware was

removed prior to experimentation.

After affixing the Galea headset to the subject, the test required subject

alertness for an extended period of time (approximately 15 minutes) in the

presence of repetitive visual displays at low light levels. Subject boredom

and microsleeps were a concern, so participants were encouraged to

count the number of flashes during testing.

CPZ

INION

NASION

O2O1

PO3 POZ PO4

OZ

Fp1 Fp2

Fz

Figure 6-14: Top view of a 10-20 system

mapping for the EEG touch-points avail-

able in the Galea system including Fp1,

Fp2, Fz, Cpz, Poz, Po3, Po4, Oz, O1, and

O2.

One session routine, from start to finish, has a duration of about 30

minutes. Seven routines in total were divided into three, two, and two
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sessions of measurements for the binocular recording for each subject.

The experiment structure was as follows: 1 block = 5 second rest (small

white cross in the middle of a black screen), followed by 30 pattern

reversals (total of 20 seconds). The entire experiment has 6 blocks -> 20

second rest -> 6 blocks for a total 12x30 = 360 pattern reversals.

This sequence is also shown in the diagram found in Figure 6-15.
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Figure 6-15: Representative normal pattern reversal VEP recorded from mid-occipital scalp using 50’ checkerboard pattern stimuli.

Figure 6-16: Inside view of the VR scene

used for the experiment

6.2.4 Data Collection

The data collection follows the same principles mentioned in Chapter 3

on page 59. 3.3

6.2.5 Data Processing

The collected data was processed for further analysis in EEGLAB [155].

10 channels (Fp1, Fp2, Fz, Cz, Pz, Oz, PO3, PO4, O1, O2) were selected

from the full 16-channel recording. A band-stop filter of 48Hz-62Hz was

applied to remove line noise. Then, a band-pass filter with a low cut-off
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frequency of 0.1Hz to 1Hz and a high cut-off frequency of 30Hz to 35Hz

was applied to extract the VEP response. The exact cut-off frequencies

were determined by the amount of low frequency and/or high frequency

noise in each recording. In one extreme case, we applied a band-stop

filter of 8Hz-13Hz to remove strong alpha oscillations from the signal.

Once the raw signal was filtered, it was epoched from 0 seconds to 0.5

seconds after each pattern reversal. For each epoch, its average over the

duration of the epoch was removed via baseline removal. Of the 360

total epochs, the first 2 epochs after each rest were rejected to remove

the effects of the stimulus appearing on screen from the aggregated

VEP. The remaining 336 epochs underwent another round of rejection

using a simple voltage threshold. We included all 10 channels. The

minimum rejection threshold was -40uV, and the maximum rejection

threshold was 40uV. These values were selected based on preliminary

recordings, which showed that these settings do not excessively reject

epochs while effectively removing epochs containing large noises, such as

blinks. We ignored certain channels when applying the voltage threshold,

depending on the amount of noise in that channel. Additionally, we

increased the rejection thresholds to ±50uV or to ±60uV if the ±40uV

threshold flagged too many epochs (100+ out of 336) for rejection. In

extreme cases, epochs had to be manually rejected to remove oscillations

that were not getting caught by the voltage threshold but influencing the

VEP we were getting.

After rejecting epochs, the data was re-referenced to the Fz channel, and

channels Pz, Oz, PO3, PO4, O1, O2 were selected. The average value over

all epochs was calculated and plotted for each channel.

At this point, we noticed that our system produced a mean P100 latency

of 178.428 ms for full visual field stimulus across 7 users. In order to align

our P100 latency with the normal range of P100 latency reported in the

literature, we shifted the data points by an offset of 78.428ms so that our

P100 latency would be within the normal range.

6.3 Results

The VEP amplitude and latency were assessed for the seven visual fields

stimuli.
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Figure 6-17: Section a) shows the seven stimuli used for the data collection. Each stimulus tries to elicit a response from the visual field.

Section b) is a series of VEP plots from subject 4. Each plot shows the signal collected at that specific electrode when presented with one

of the seven stimuli. Section c) is a top-down view of the channels following the 10-20 system used for these VEP recordings.



6.3 Results 139

6.3.1 Inverse Visual Evoked Potentials Morphology

At first glance, we noticed that the recorded potentials did not correspond

to those depicted in the ISCEV guidelines [156]. The temporal resolution

appeared accurate, but the amplitude appeared to be inverted from

what we had observed previously for a VEP type in which the P100 is a

positive deflection. Through further investigation, we learned that this

morphology has previously been described. Two factors appear to account

for the positive or negative orientation of the VEP. The configuration of

the amplifier can determine the polarity of the waveform. Amplifiers

can be configured uni-polar or bi-polar; the polarity will change if the

lead is connected to the negative side instead of the positive side when

configured with uni-polar leads.

Since the 1970s, when Michael and Halliday [157] explained these inver-

sion effects in terms of changes in the form and polarity of the surface

distribution of constant latency components, the second factor has been

the subject of research. These changes are the result of the vastly different

topography and orientation of the visual cortex regions that represent

the upper and lower regions of the visual field, which produce inverted

effects [158] Di Russo et al [159] hypothesize that (N75) changes polarity

depending on upper or lower field stimulus because "stimulation above

and below the horizontal meridian of the visual field should activate

neural populations with geometrically opposite orientations" and that

(P100) does not change polarity depending on upper or lower field stim-

ulus because it is primarily generated in extratriate visual areas that lack

the retinotopic organization of the calcarine cortex.

With these understandings and in order to help the readability of the

findings here, from this section forward the signals are mirrored 180

degrees for ease of comparisons.

6.3.2 Visual Evoked Potentials Analysis

For the seven stimulus patterns that were shown to all eight subjects, the

VEP waveforms (i.e., the polarity and latency of the individual peaks)

were similar, but variations were observed in the actual peak amplitudes

for each subject. Subject 4’s stimulus and evoked potentials are depicted

in Figure 6-17. Section a) shows the seven stimuli used for the data

collection. Each stimulus tries to elicit a response from the visual field.

Section b) shows a series of VEP waveforms for each channel. The traces
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Figure 6-18: On the left, wave-forms from visual evoked potentials generated by the full field of view stimulation recorded using A2

reference electrode. On the right is the signal collected from our system flipped 180 degrees to match standards

in each graph correspond to the stimulus from which they were elicited.

The center plot is for the Oz channels, with the largest potential of 8

uV. This observation compares to what has been previously reported by

Sharma et al. [160] and the ISCEV standard for clinical visual evoked

potentials report for clinical use [156].

6.3.3 VEP Amplitude

Table 6.2 reveal the primary components average amplitudes for all

users when presented each of the visual fields stimuli. On average the

two largest responses potentials (P100) were recorded for the full and

bottom visual field with an amplitude of 5.6 uV and 5.8uV. A comparison

between subjects who need prescription lenses and subjects with perfect

vision was also calculated. Figure 6-19 shows the difference in amplitude

for both groups for each of the stimuli presented. Across the different

fields we observed an increase in amplitude for the group with perfect

vision and smaller amplitude for those that need prescription glasses.

Table 6.2: Amplitude across visual fields for all users

Full Top Bottom Q1 Q2 Q3 Q4

P100 5.615143333 4.086039429 5.899372789 2.380506667 3.130152952 3.104096735 3.209792789

N75 0.25727875 0.743542 0.196309286 0.276114 0.17821 0.954635714 0.339243571

N135 3.50224125 1.896242 3.470952143 1.785654 1.906593333 1.264121429 1.751672143

Since the amount of light flashed to the visual field increases based on

the visual field stimulus pattern as described in Table 6.1, we decided
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Figure 6-19: Comparison between subjects who need prescription lenses and subjects with perfect vision for each of the stimuli presented.

Across all stimuli, the data shows that users with perfect vision have a stronger response in mV than the subjects that need prescription

glasses.
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Figure 6-20: Average response for a vi-

sual field region in micro-volts to the

location and size of the stimulating re-

gion.

to measure the amplitude size for each one of the patterns. Figure 6-20

shows the

6.3.4 VEP Latency

Figure 6-21 i shows in green the average signal for Channel Oz for all

subjects, and the standard deviation is shown in peach when a full-

field stimulus is presented. The most relevant event-related potentials
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for N75, P100, and N135 are also shown. The latency of these events

matches the ISCEV standard as shown in Figure 6-10. The P100 latency

response across all users for each stimulus is shown in Figure 6-22.

Figure 6-21 ii is an example of each channel’s response to a full-field

stimulus for Subject 4. Figure 6-21 iii shows the average signal for the

Channel Oz in green, and the standard deviation in peach when a

bottom-field stimulus is shown. Figure 6-21 iv shows the response to the

full-field stimulus for each channel averaged across all subjects. Figure

6-22 presents the average across all users’ latency values at P100 for all

visual field stimuli. It is shown that the full, bottom, and lower quadrants

have a 100 ms or closer stimulus than the upper or top stimulus. The

latency for upper visual-fields seems to be consistent across users. Table

6.3 reveals the average latency across all users’ temporal changes for each

one of the VEP components. P100 and N75 show similar latency as those

previously reported. We do observe a larger than usual latency for the

N135 components. The reasons for these findings might have to do with

the refraction from the VR headset lenses and the noise levels that are

averaged across all users.

Figure 6-21: In section i), the average sig-

nal for the channel Oz is shown in green,

and the standard deviation is shown

in peach when a full-field stimulus is

shown. Section ii) is an example of each

channel’s response to a full-field stimu-

lus for Subject 4. Section iii) shows the av-

erage signal for the channel Oz in green,

and the standard deviation is shown in

peach when a bottom-field stimulus is

shown. Section iv) shows the response to

the full-field stimulus for each channel

averaged across all subjects.
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Table 6.3: Latency

Full Top Bottom Q1 Q2 Q3 Q4

P100 97.572 114.572 90.572 111.072 108.072 90.572 97.072

N75 65.572 73.572 57.572 69.572 65.572 57.572 57.572

N135 161.572 193.572 149.572 201.572 233.572 145.572 149.572
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Figure 6-22: P100 latency response across

all users for each stimulus.

6.4 Limitations

One of the limitations of this study is the limited adjustability of the Galea

headset, which may create challenges when placing electrodes in precise

locations of the scalp. This can potentially affect the accuracy of the EEG

recordings and the resulting VEP waveform. For example, the limited

adjustability of the headset may make it difficult to achieve a consistent

and comfortable fit for participants, which can lead to variations in the

EEG recordings. Additionally, the limited adjustability of the headset

may also make it more challenging to accurately place electrodes in

the specific locations on the scalp required to capture the desired EEG

signals.

Another limitation of this study is the potential for lens refraction of

the VR goggles to create distortions in the VEP waveform. VR goggles

are known to create distortions due to the curvature of the lens. These

distortions can affect the perception of visual stimuli and create artifacts

in the EEG recordings that can affect the accuracy of the VEP waveform.

Another limitation is the weight of the headset, which may prevent studies

from being conducted for longer than 20 minutes. Participants may begin

to experience discomfort and this may compromise the experimental

results. The weight of the headset may lead to discomfort and fatigue

for participants, which can affect the accuracy and consistency of the

EEG recordings. This can lead to variations in the VEP waveform and

potentially limit the conclusions that can be drawn from the study.

Additionally, if the headset is too heavy, it may not be comfortable for

participants to wear for long periods of time, which can also affect the

data collected.

These limitations may affect the accuracy and generalizability of the

results and must be taken into account when interpreting the findings of

the study.

6.5 Conclusion

In conclusion, this study aimed to investigate the potential of using visual

evoked potentials (VEPs) and the Galea headset to study the functional

integrity of the visual pathways and to improve early detection and
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diagnosis of visual impairments. By using the Galea headset, we were

able to simulate visual impairments for normally-sighted individuals and

analyze the EEG data from the occipital brain response to gain insights

into the potential utility of such a system. The results of this study, as

presented in Table 6.3, Table 6.2, Figure 6-21 and Figure 6-22, demonstrate

the potential of the Galea headset and VEP-BCI paradigms to provide

objective evaluations of human visual metrics, and the potential of this

system to pave the way for the evaluation and monitoring of a wide range

of other neuro-visual functions.

The study also explored the limitations of the system, such as the limited

adjustability of the Galea headset, the potential for lens refraction to

create distortions in the VEP waveform, and the weight of the headset,

which prevents studies from being conducted for longer than 20 minutes.

Despite these limitations, the study was able to provide insights into

the potential utility of using the Galea headset for early detection and

diagnosis of visual impairments.

The above mentioned limitations should be considered when interpreting

the findings of this study and when designing further research in this

field. The hypothesis evaluated in this study, namely that a binocular

virtual reality headset can be used to improve early detection of vision

and/or neuro-degenerative disease, and that the design of the system

can pave the way for the evaluation and monitoring of a wide range of

other neuro-visual functions, are yet to be proven. However, this study

provides a strong foundation for future research to explore the potential

of this system in more detail.

This is the final chapter of the awake state investigations. The previous

chapter demonstrated that the usage of this sort of system can provide

useful insights into researching cognitive processes as well as in the

diagnostic aspect by evaluating visual evoked potentials. Such research is

critical in order to build more effective, human-centered technology and

solutions. The findings provided here have substantial implications for

future study on cognitive processes, diagnostics, and tailored treatment

development.



Part III: Tools For Sleep Studies In The

Wild
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7.1 Into The Night

In the previous chapters of this thesis, we focused on investigating the

relationship between the awake state and various physiological and

psychological factors such as cognitive demands, mental workload, and

autonomic nervous system activity. In contrast, in this chapter, we will

shift our focus from the awake state to the realm of sleep. As highlighted in

previous studies, sleep plays a crucial role in various mental and physical

processes, making it an important area for research and investigation.

Fascia Publications

The research presented in this chapter has resulted in the following

peer-reviewed publications to date.

Bernal, Guillermo, Malika Chhibber, Mradul Bhatnagar, Urvil Jivani, Nelson

Hidalgo, Anthony Levasseur, and Pattie Maes. Pioneering Remote Sleep

Research: A Comparative Study of Sleep Stage Parameters in Diverse

Datasets for Enhanced Interventions.SLEEP 2023, the 37th Annual

Meeting of the Associated Professional Sleep Societies, LLC (APSS), June 6,

2023.

Bernal, Guillermo, Malika Chhibber, Mradul Bhatnagar, Urvil Jivani, Nelson

Hidalgo, Anthony Levasseur, and Pattie Maes. 2023. Fascia Ecosystem:

A Step Forward in Sleep Engineering and Research. 45th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC’23), no. Sydney Australia, (July).

Carr, Michelle, Adam Haar, Judith Amores, Pedro Lopes, Guillermo Bernal,

Tomás Vega, Oscar Rosello, Abhinandan Jain, and Pattie Maes. Dream

engineering: Simulating worlds through sensory stimulation. Con-

sciousness and cognition 83 (2020).

In order to fully understand the impact of sleep on the human body, it is

necessary to delve into the methods and techniques used to study sleep,

specifically the use of polysomnography in sleep studies and diagnosis of

sleep disorders. This shift in focus will allow us to gain a comprehensive
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understanding of the interplay between sleep, physiological processes,

and disorders affecting sleep.

We know that it is essential for humankind to get sufficient and regular

sleep, not just for good rest, but also for a collection of critical cognitive

developments in the brain [161]. Although very little is still understood

about sleep, we know that some of the most important mental and

physical processes in the human body happen during sleep, such as

memory consolidation [162] and immune system fortification [163]. Sleep

studies are imperative because they help sleep experts diagnose patients

with sleep disorders that would otherwise be very difficult to find

conclusive symptoms. Sleep studies require patients to sleep in “sleep

centers” which are equipped for people to sleep while the brain and

body of the subjects are monitored. The data typically collected involves

EEG sensing, eye movement, oxygen levels in the blood, heart rate and

breathing rate, snoring, and body movements [164]. The ’gold standard’

diagnostic approach for sleep disorders is Polysomnography (PSG); this

is a facility-based overnight recording of several channels of biosignals

known as sleep data. This sleep data is then visually analyzed by both

sleep physicians and sleep technologists to arrive at a diagnosis of the

illness after correlating with various other clinical characteristics.

The Rise of Chronic Sleep Disorders and the Need for New Solu-

tions

According to the American Sleep Association, between 50 and 70 mil-

lion Americans have chronic sleep disorders, underpinning revenue

growth for the Sleep Disorder Clinics industry. Over the next five

years, industry revenue is expected to grow at an annualized rate

of 2.6% to $9.3 billion. Sleep clinics have gained demand due to the

rising number of sleep disorders brought on by electronic stimuli in

the form of laptops and smartphones. Research findings show that

the light emitted from these gadgets limits the release of melatonin, a

hormone that regulates sleep. As the usage of devices increases, so

do sleep issues that require attention from industry clinics.
a

a
From IBISWorld report September 2021.

Sleep studies have largely been viewed as a nuisance for the subjects

being studied. This is due to the major discomfort caused when the

subject must come into the research center or hospital to sleep while their

vitals and different physiological signals are constantly monitored by
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bulky equipment. In order to detect these signals, a variety of electrodes

and sensors are distributed across the head and the rest of the body,

and secured using tape or glue, therefore causing significant discomfort.

Centers assure patients that they’ll “still have plenty of room to move

and get comfortable” and that they are being monitored by sleep study

technologists who “can help if they need to use the bathroom” [1]. Still,

according to the National Sleep Foundation, many people wonder how

they will be able to sleep under such conditions. Researchers believe this

setup and procedure results in inaccurate or at least inconsistent data

as the subjects are not sleeping as they normally would in the comfort

of their home, free from unfamiliar wires and electrodes probing their

bodies. Home-based portable devices may provide a solution to these

problems; nevertheless, these devices are, at best, insufficient because of

the limited number of biophysical channels that they are able to capture.

In this chapter, the levels of sleep studies are introduced, in addition to

the instrumentation used and the current state-of-art technology.

7.1.1 Motivation

One of the biggest challenges for patients and sleep researchers alike is

the so-called First-Night Effect [1]. In a sleep lab, the structure of sleep

is disrupted, especially during the first night. The uncomfortable and

incongruous nature of sleep studies requires the patient to sleep with

many electrodes attached to the legs, chest, arms, face, and head in a

clinical setting which leads to a great deal of discomfort, therefore making

it hard for patients to fall asleep and have a full night of restful sleep.

Commercially available sleep devices, such as Muse Sleep, Zmax Hypn-

odyne, Phillips’ SmartSleep Deep Sleep Headband, and Dreem, offer

three to five EEG channels and, in some cases, a heart-rate monitor that

is placed on the forehead. The number of channels and signals provided

by these systems is insufficient for conducting level 1 and 2 sleep studies

as discussed in Section 7.2.1 below. The gold standard of sleep study

systems, polysomnography (PSG), is bulky and uncomfortable, which

disrupts the very thing it aims to measure [165].

The Fascia device introduced in this section meets the requirements of the

PSG in a small, affordable and more comfortable form factor that can be

deployed in a home setting, thereby also providing more typical data. Its

hardware is mounted into an opaque fabric sleep mask and its electrodes

are made of a conductive polymer, whose softness is comparable to
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silicon. It is also completely wireless, battery powered, and weighs as

little as 228 grams (a little lighter than a common grapefruit).

The Fascia ecosystem makes use of three leading technologies that allow

for the reinvention of how sleep studies are conducted. First, the Fascia

Sleep Mask collects similar data to that of a full polysomnogram in the

small, familiar, and comfortable form of a soft sleep mask using the latest

technologies in fabric-based sensing. Second, the Fascia Hub allows a

researcher or scientist to provide stimulation and feedback in the form

of audio and visual stimuli to the patient, expanding the opportunities

to understand sleep and dreams by also issuing interventions. Finally,

the Fascia Portal is where sleep researchers can inspect the patient’s

signals in real-time and store experiment information, analyzed by

the machine learning API that provides sleep staging, spindles, and

k-complex identification information in real-time. The portal also works

as a data collection and labeling platform for developing new and more

robust datasets to train machine learning models for sleep diagnostics.

7.2 Background

Because sleep affects so many different physiological systems, both central

and peripheral, it can have a profound impact on overall health. Yet sleep

exists in a social-environmental context: Neuroscientists would be better

able to translate sleep health into clinical practice if they considered

sleep health in the context of its determinants, which include factors at

both the individual and societal levels. Recognition and investigation of

sleep’s functional roles; clarification of causal mechanisms in relation

to important outcomes; development of richer model systems; linking

of models to known contextual factors; and exploitation of advances in

multisensory technology represent key challenges and opportunities. As

a result of addressing these issues, social-environmental factors related

to sleep will have a more prominent presence in clinical settings.

7.2.1 Types of Sleep Studies

Depending on the number of channels that record various physiological

parameters and the availability of a trained sleep technician during the

recording, sleep studies can be categorized into the following four major

categories.
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Level IV This is the most basic sleep study and involves equipment,

that has one or two channels for recording at least one or two respiratory

parameters throughout the night. Consequently, while the subject is

sleeping, it can record either the oxygen saturation or the respiratory

flow, or both of these signals simultaneously. After placing the channel

in the correct location where it will remain for the duration of the night,

the following morning, the tracing can be derived from the data that

was collected by the device. Screening for obstructive sleep apnea can be

performed with the use of this type of device. On the other hand, the

AASM
*

does not recommend it for use in the diagnosis of obstructive

sleep apnea.

Figure 7-1: Level 3 sleep study singular

sleep device

Level III These devices contain a minimum of four channels, some of

which include ventilation (at least two channels of respiratory movement

or respiratory movement airflow), oxygen saturation (respiratory effort,

oxygen movement, and airflow), heart rate or ECG, and oxygen saturation

(Figure 7-1). Consequently, they have the following channels:

▶ Pulse oximeter

▶ Nasal airflow

▶ Movements in the chest or the abdomen

▶ Electrocardiogram

Level II Another name used for this kind of polysomnography is

complete portable polysomnography. With the exception of video, it has

the ability to record all of the channels recorded during Level I sleep

research. A sleep study with a Level II device does not require the presence

of a sleep technologist and can even be performed in the patient’s own

home. In addition to the electrocardiogram and respiratory monitoring

channels, these devices also contain channels for electroencephalogram,

electrooculogram, and chin electromyogram. As a result, the total number

of channels must be at least seven, and they may include the following:

Figure 7-2: Level 2 sleep study Alice

device

▶ Pulse oximeter

▶ Nasal airflow

▶ Movements in the chest or the abdomen

▶ Electrocardiogram

▶ Electromyogram

▶ Electroencephalogram with a minimum of two channels present

*
The American Academy of Sleep Medicine
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▶ Electro-occulogram

▶ Body position

▶ During these studies, Auto-PAP may be used for the titration of

PAP pressure in patients with sleep apnea

On either the right or the left side of the patient’s head, active electrodes

may be positioned in the frontal, central, or occipital regions of the scalp.

One electrode is placed on the right mastoid and the other electrode is

placed on the left mastoid since they are typically referred to as being in

the opposite location of the mastoid. The information provided by these

channels is adequate for determining the stages of sleep and arousal. On

the other hand, the majority of the monitoring devices that are currently

on the market include an option for recording from other regions of

the brain, such as the prefrontal and temporal regions. Due to the fact

that these devices actually offer capacity for 24–32 channels of EEG,

it is possible to use them for monitoring sleep-related seizures and

parasomnia.

Figure 7-3: Level 1 sleep study full PSG

setup

Level I This study makes use of the same equipment utilized in type II

studies with the significant distinction that a level I sleep study must be

conducted in a sleep laboratory, and a sleep technologist must be present

for the entirety of the investigation. In order to collect more data than

what a type II study can offer, the following channels are added:

▶ Audio and video recordings that are synchronized with the record-

ing of other data.

This type of study can not only diagnose sleep abnormalities, but it can

also manually titrate positive airway pressure therapy for patients who

have sleep-related breathing issues. Therefore, it possesses a channel

for CPAP machines that is utilized during manual titration of CPAP in

individuals who suffer from sleep apnea.

The following are some of the channels that, depending on the circum-

stances, may be added as an option:

▶ Capnograph: measuring end-tidal carbon dioxide levels or taking

readings from the finger capnograph.

▶ Pharyngeal pH monitoring channel, which aids in the diagnosis of

nocturnal gastroesophageal reflux disease (GERD).

▶ Esophageal pressure monitor: Research is the only use for which it

can be used. It is able to distinguish between central and obstructive

sleep apnea in an accurate manner.
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7.2.2 Sleep Stages and Cycles

Sleep is not uniform and is characterized into stages based on Elec-

tromyography (EMG) or muscle electrical activity, EOG or electrical eye

movement activity, and Electroencephalography (EEG) or electrical brain

wave activity [166]. There are two types of sleep: NREM and REM. Stages

N1, N2, and N3 N4 of NREM sleep are further separated. Stages N1, N2,

N3 and N4 are referred to as light sleep, deep sleep, and slow-wave sleep,

respectively. Each of the four or five cycles of sleep consists of an NREM

sleep period and a subsequent REM sleep section. Also during the night,

periods of wakefulness are possible. Each cycle’s length of REM sleep

often lengthens as the night goes on.

Figure 7-4: Sleep architecture

This nomenclature was modified in 2007 by the American Academy of

Sleep Medicine (AASM) and sleep stage 3 and 4 have been merged into

stage N3. In humans, a normal night of sleep consists of a repetition of

four or five cycles in which sleep stages tend to follow each other in a

particular order. Sleep staging is generally done visually by inspecting

consecutive PSG segments of 30s. It results in a hypnogram which

represents the succession of sleep stages across time.

The hypnogram is an easy way to graphically show how sleep is organized

during the night. A level on the graph’s vertical axis and the time of night

on the horizontal axis represent each stage of sleep, respectively. Often a

dark bar is used to indicate REM sleep. In the past, polygraph recordings



154 7 Fascia Ecosystem

Table 7.1: Sleep architecture table.

Sleep stages Types of sleep Other names Normal length

Stage 1 NREM N1 1-5 min

Stage 2 NREM N2 10-60 min

Stage 3 NREM N3, 20-40 min

Stage 4 REM REM sleep 10-60 min

were used to track sleep by leaving traces on paper that could be read

afterwards. It was easy to split the night into periods of time equal to the

width of each paper page. The standard paper speed for tracking sleep is

10 mm per second; a 30-cm sheet equals 30 seconds. Sleep is staged in

epochs, which are each represented by a single page of time. The habit

of grading sleep in 30-second epochs or windows is still the norm even

though most sleep recordings are now done digitally. The sleep stage

that dominates the majority of a specific epoch is used to identify the

stage if there is a transition in sleep stage throughout that time. When

the sleep tracings are occluded by an artifact for longer than a half-epoch,

it is scored as movement time (MT). The epoch is additionally rated as

wake when it is surrounded by epochs that would otherwise be deemed

MT. Some sleep facilities do not tabulate MT separately and instead treat

it as waking.

7.2.3 The Physiology of a Sleep Study

Complex sleep monitoring calls for specialized expertise in areas such

as EEG, respirometry (RM), and electrocardiography (ECG). Being an

expert in just one of these fields does not provide an individual with

effective polysomnogram interpretation.

The functioning of nearly all systems of the body, including the brain,

heart, respiratory system, gastrointestinal system, genitourinary system,

endocrine system, and musculoskeletal tone, shifts between two states

of consciousness, namely wakefulness and sleep. Even during sleep,

the functioning is dynamic, and it gives rise to various sleep stages.

During NREM sleep, for instance, breathing becomes steady, heart rate

slows, and peripheral muscletone decreases. During rapid eye movement

REM sleep, breathing and heart activity become irregular, peripheral

muscular tone is decreased, and periodic muscle spasms develop. There

is also a notable alteration in the EEG. As the individual falls sleep, EEG

activity begins to slow and typical waveforms such as vertex waves, sleep

spindles, K complexes, delta waves, and low-amplitude, mixed-frequency

EEG begin to appear. In addition to information from muscle tone and
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eyechannels, these EEG waves assist in distinguishing sleep stages.

The Electroencephalography Of Sleep

EEG is an electrophysiological detection mechanism used to monitor

electrical activity of the brain and record brain wave patterns. Usually

this sensor takes the form of noninvasive electrodes (small metal surface

connected with thin wire) contacting the scalp, although versions of it

which pierce the skin also exist. EEG wave patterns are well-studied and

there are known patterns that healthy brains emit, so doctors can observe

abnormal patterns and study whether they are a cause for concern and

what they might entail. For the purpose of the Fascia platform, EEG

can be used to monitor sleep stages and cycles whether the patient is

experiencing NREM or NREM sleep.

The frequency in cycles per second or hertz (Hz), amplitude (voltage),

and primary deflection direction (polarity) characterize EEG activity.

Delta (4 Hz), theta (4 to 7 Hz), alpha (8 to 13 Hz), and beta (>13 Hz) are the

conventionally recognized frequency ranges. When the eyes are closed

and the patient is awake but relaxed, alpha waves (8 to 13 Hz) are often

detected. Conversely, when the eyes are open, they are attenuated and are

best documented on the occiput. During sleepy, eyes-closed wakefulness,

alpha activity is prominent, but alpha waves can also be detected during

brief awakenings from sleep, known as arousals, and during REM sleep.

This activity reduces as stage N1 sleep begins. Near the transition from

stage N1 to stage N2 sleep, vertex sharp waves—high-amplitude negative

waves with a brief duration (upward deflection on EEG tracings)—occur;

these are more apparent in central EEG tracings than occipital ones. A

sharp wave is characterized by a deflection lasting between 70 and 200

milliseconds.

Sleep spindles are oscillations of 12 to 14 Hz and 0.5 to 1.5 seconds in

duration and are representative of the N2 sleep state. They may continue

into stage N3, but are typically absent from REM. The K complex is a

high-amplitude, biphasic wave with a minimum duration of 0.5 seconds.

Traditionally, a K complex consists of an initial abrupt negative voltage

(by convention, an upward deflection) followed by a positive deflection

(down) slow wave. K complexes are typically overlaid with spindles.

Sharp waves are smaller, monophasic, and often have a lower amplitude

than K complexes.

As sleep deepens, broad, high-amplitude delta waves occur. For sleep
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staging purposes, delta slow-wave activity is defined as waves slower

than 2 Hz (longer than 0.5-second length) with a peak-to-peak amplitude

of larger than 75 𝜇V. If stage N3 is present, the amount of slow-wave

activity as determined by central EEG derivations (see below). Because a K

complex resembles slow-wave activity, it might be difficult to distinguish

between the two. Nevertheless, a K complex should distinguish itself

from the low-amplitude, background EEG activity and therefore, a

continuous series of high-voltage slow (HVS) waves is not a succession of

K complexes. During REM sleep, sawtooth waves that have a frequency

in the theta range (3 to 7 Hz), may be present. Although they are not

included in the scoring criteria for REM sleep, their presence is indicative

of its presence.

Eye Movement During Sleep

EOG is a physiological signal that detects and measures eye movements

(through the eyelid) by measuring the corneo-retinal distance between

the front and back of the eye. This is done by placing two electrodes on

both sides of the eye, either the right and left, or front and back, and

measuring the potential difference between them, which would vary as

the eye moves. For Fascia, this is used to detect what stage of sleep the

patient is in. REM is an acronym for rapid eye movement, so it is possible

to determine that the patient is in REM by detecting random and rapid

eye movement. Eye movement tracking serves mostly to identify REM

sleep. In order to detect both vertical and horizontal eye movements, an

electrode is positioned slightly above and below the eyes [164]. Electrodes

for EOG (eye movement) are commonly positioned at the outside corners

of the eyes, at the right outer canthus (ROC) and the left outer canthus

(LOC). Commonly, two eye channels are recorded, with eye electrodes

referred to the opposing mastoid (ROC-A1 and LOC-A2), however some

sleep centers utilize the same mastoid reference electrode (ROC-A1 and

LOC-A1). Eye movements can be recorded due to a potential difference

across the eyeball: front positive (+), back negative (-). Voltage fluctuations

are discovered through EOG recordings of eye movements: when the

eyeballs travel toward an electrode, a voltage is recorded as positive. By

convention, polygraphs are calibrated so that a negative voltage results

in a pen deflection to the right (negative polarity up). Consequently, eye

movement toward an electrode causes a downward deflection. Note that

eye movement is typically conjugate, with both eyes moving toward one
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eye electrode while moving away from the other. Eye movements cause

out-of-phase deflections in the two eye tracings if the eye channels are

calibrated with the same polarity settings (e.g., one up and one down).

As ROC is above the eyes and LOC is below, upward eye movements are

directed toward ROC and away from LOC. Consequently, an upward

eye movement causes a downward deflection in the ROC trace and an

upward deflection in the LOC trace.

Muscle Movement During Sleep

EMG is performed to evaluate the healthiness of muscles and the as-

sociated motor neurons (nerves that control those muscles). The motor

neurons transmit signals to the muscles that cause muscles to either

contract or relax. The electrical measurement of such a signal is called

EMG. Monitoring and studying the EMG signal can allow doctors to

detect muscle and nerve disorders. For this application, EMG variance

can be used to assess sleep behaviors in terms of muscle movements

around the body. The Fascia device specifically focuses on the cheek,

forehead, and chin EMG signals.

Common locations for EMG recordings include the submental mus-

cles and the anterior tibialis muscles of both legs. When a movement

disturbance is suspected, however, an EMG may be recorded from the

affected area; for instance, the masseter muscles in bruxism or the arms

in REM sleep behavior disorder. This thesis began with a discussion of

electromyography (EMG), which is a method for recording the collective

electrical activity of the body’s underlying muscles. There is always some

level of muscle tone present, even when the body is at rest. Myocytes,

then, continue to exist in a state where they are only half contracted.

Myocyte contraction is induced by an alteration in the electrical potential,

thus, the EMG channels show activity even when the body is at rest.

During a muscular contraction, the motor units (a group of myocytes

innervated by a single nerve fiber) are recruited and the firing rate of

the nerve fibers supplying the myocytes increases. However, because of

the unpredictability of the recruitment process, the signal is not synchro-

nized. The amplitude of the EMG signal drops as sleep begins because of

a decrease in basal tone. Because of the substantial physiological atonia

that occurs during REM sleep, EMG signals weaken significantly. Muscle

signals are most effective when they go the shortest distance possible

to the surface from whence they originated. Subcutaneous fat, however,
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extends the separations, reducing the strength of the signals.

Heart Rate During Sleep

Unlike the previous signal, the measuring of this signal of interest is not

different than your standard heart rate monitor.

PSG uses a type of sensor which is an optically detected plethysmogram,

used to measure the volume of blood going through the veins under the

skin. This is often done by shining a light on the skin and measuring

variations in light absorption. Because the volume of blood changes as

the heart pumps it to the periphery, this enables the measurement of the

measure heart rate.

The PSG sensor has been found to provide reliable readings of resting

heart rate, as measured over standard time intervals of a few seconds

[167]. Furthermore, the PPG signal can be analyzed to determine the

intervals between heartbeats, allowing for the potential measurement of

Heart Rate Variability (HRV) overnight. HRV, an expression of the ANS

and its sympathetic and parasympathetic branches, has been extensively

linked to different stages of sleep.

An ECG represents the sum of the heart’s electrical activity during the

pumping process. The heart contains its own conduction system beneath

the endocardium: impulses generated in the sino-atrial (SA) node travel

to the atrioventricular (AV) node and subsequently to the ventricles via

the heart’s specialized conduction system. When the conduction system

is activated, changes similar to those that occur in skeletal muscles

result in contraction and relaxation. There are two atriums and two

ventricles in the heart which do not jointly contract. First, the conduction

system depolarizes the atria (while the ventricles maintain their resting

membrane potential), and a few seconds later, a depolarization wave

travels to the ventricles (at which point the atria have reached their

resting membrane potential). When the atria depolarize, their outer

surface becomes positively charged compared to that of the ventricles.

As a result, a dipole is formed and current flows from the right side to

the left side (because ventricles are on the left side relative to atria) and

also from the back of the chest to the front (because atria are close to the

back while ventricles are closer to the anterior chest wall). During an

ECG, surface electrodes can detect a dipole caused by a localized shift in

the membrane potential of one half of the heart relative to the other. This

dipole is constantly changing in time. The orientation of ECG waveforms
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is determined by the lead used. For instance, a bipolar lead connects to

the right arm and the left arm, with the negative pole of the channel on

the right and the positive pole on the left. Since the heart’s current flows

from right to left, it will produce a positive deflection in this lead, which

will be noticed as the first part of the P wave on the ECG. The second half

of the P wave indicates that action potentials are returning to the resting

membrane potential in the atrial muscles. QRS complex and T waves are

formed in this manner due to the shifting dipoles in the heart.

Respiration During Sleep

Typically, a pressure transducer and a thermocouple or thermistor are

used to record airflow data. Two metals (in the case of a thermocouple or

thermistor) expand and contract in response to changes in temperature

Figure 7-1. For those who breathe through their noses and mouths, in-

coming air is cooler than outgoing air. These metals’ signal-generating

properties shift as their temperature does. Apnea, in which airflow is

blocked in the oro-nasal route, can be detected by these monitors be-

cause of their sensitivity to temperature changes. Some airflow persists

even during hypopnea and airflow limitation, as seen in upper airway

resistance syndrome, resulting in temperature changes and a signal that

is typically of the same magnitude as a normal breath. In a nutshell, ther-

mistors and thermocouples cannot detect hypopneas and flow limitations

Figure 7-1. A piezoelectric detector receives information about changes in

air column pressure via a pressure transducer and converts that data into

an electrical signal. The principle of piezoelectricity is the foundation

of piezoelectric sensors. There are some substances (like quartz) that

can generate an electric charge when subjected to pressure. Piezoelectric

sensors generate an electrical signal that is directly proportional to the

pressure applied, therefore its output waveform is in tune with the

intensity of breathing. It is because of this that pressure transducers are

the best devices for monitoring airflow restrictions.

Plethysmography is another technique used to monitor the expansion

and contraction of the lungs when a person breathes in and out. Chest and

abdominal movement recordings help to distinguish between obstructive

and central sleep apnea. Given the differences in their etiology and

treatment, this is crucial information to have. Belts are connected across

the chest and the abdomen to track the torso’s movement; the chest

and the abdominal area both enlarge with inspiration and contract
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with exhalation. As with the lungs, belts encircling the chest and belly

tighten with each inhale and loosen with each exhale. Nylon elastic

belts are equipped with a tiny sensor at each end and keep track of this

data. A piezoelectric strain gauge, the simplest sort of sensor, generates

electricity whenever there is a change in strain in the belts due to the

breathing movement. Although useful, strain gauge sensors do have

some significant drawbacks. Sometimes the belt’s range of motion is

constrained by the user’s body, and this might result in inaccurate

readings from the sensor due to improper pressure being applied to the

belt. Furthermore, due to the non-linear nature of the piezo technology’s

output signal, it is unable to be employed for hypopnea evaluation. Also,

if the patient moves about while wearing the belt, the tension on the

piezo technology can provide a false paradoxical breathing signal. To get

over this problem, an alternative technology based on inductance was

developed and implemented. According to Faraday’s law, a magnetic

field is generated whenever a current flows through a closed loop of

wire. Any change in the circumference of this loop causes an equal and

opposite current to flow in the opposite direction (Lenz’s law).

Non-physiological Signals Used During Sleep Tests

Body Movement Due to the sleep-dependent nature of Sleep-Disordered

Breathing (SDB), it is crucial to keep track of the patient’s body pos-

ture throughout the PSG. Changes in SDB in supine, lateral, and prone

positions can be captured by monitoring body position, allowing the

technician to precisely assess the genuine severity and appropriate PAP

dosage. A gyroscope inside the body position sensor can pinpoint the

user’s exact location. It has separate signals for the right side, the left side,

supine, prone, and upside down positions of the body. It is crucial to

ensure that the body position sensor is oriented properly on the patient

because the sensor records its own position rather than the patient’s.

Audio Data Signals captured by the microphone are transmitted to the

computer, where they are displayed as waveforms. These waves change

in amplitude and period in response to the loudness and duration of

snoring (or any other sound produced in close proximity to the probe).

This means that any vocalizations or teeth grinding that occur during

sleep will also be recorded. Some labs use a microphone near the head of

the bed in addition to the sensor put on the larynx to record a wide variety
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of audible signals. This is useful for interacting with the patient during

the study if necessary and also adds to the visual data collected while

the patient was sleeping. Due to their importance in situations of sleep

seizures and parasomnias, microphone signals are synchronized with

video recording and other data. If the signal from the cannula airflow

sensor is unfiltered, the snoring signal can be seen superimposed on the

airflow waveform signal, which is recorded when snoring is captured

through nasal pressure cannula.

Video Data The majority of sleep centers that handle suspected sleep-

related seizure and parasomnia patients also collect video footage that

is time-stamped alongside other channels. As darkness is necessary for

sleep, the camera emits infrared light, and its sensors pick up the reflected

infrared signals. Through the use of specialized software, the camera’s

focus and orientation can be adjusted from the control room. By making

these adjustments, a sleep technologist can capture even the smallest of

sleep-related movements.

7.3 Related Work

The main challenges with conventional sleep studies are twofold: the

patient’s comfort, and the accuracy of the collected data, given the context

in which the patient sleep. At the time of this research, there are two

existing products in the market that tackle those issues.

First is a product called Neuroon Open, which is marketed as a sleep

enhancing wearable device. This is an IoT product whose selling point

is helping customers improve the quality of their sleep through EEG

monitoring and lucid dreaming induction, as well as smart meditation

sessions. This is achieved by allowing the IoT device control of the

lighting, music, and temperature in the bedroom of the customer, which

the device adjusts in accordance with what the customer needs are based

on the sleep stage they are in. This device is mainly aimed at helping an

individual sleep better by monitoring brain waves, and less at helping

researchers study sleep in order to diagnose patients with potential sleep

disorders or to better understand sleep in general. Therefore, the use-case

for this product is limited to helping the customer sleep more soundly,

and is thus much narrower than the goal of the Fascia project.

Second is a product called the Muse Headband. Muse monitors mental
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activity and uses it to produce “guiding” nature sounds to help the user

reach a mental state of what they call a “focused calm.” Muse selects

different sounds to represent different states of mind: if the subject is

calm, it plays peaceful weather sounds, and as the customer starts to

get more distracted or busy-minded, it starts to play more stormy and

loud weather sounds to cue the user to focus their attention back to

their meditation routine. Muse is also mostly limited to the use of EEG

sensing to help guide users through immersive meditation sessions. Some

iterations of the product include PPG sensors, as well as a gyroscope and

accelerometers, although all of these added sensors are used to optimize

the same functionality: helping the user to calm their mind.

Both of these products roughly satisfy the form factor for this project,

but they lack the ability to sense many of the signals that the Fascia

ecosystem aims to encompass with a design that supports medical and

scientific sleep research.

7.4 Fascia Ecosystem

The Fascia Ecosystem provides a comprehensive solution for at-home

sleep monitoring and analysis, allowing researchers to collect and analyze

high-quality sleep data remotely. The Fascia Sleep Mask, with its advanced

fabric-based sensors, enables the collection of polysomnogram-like data

during sleep, providing accurate measurements of various physiological

signals. The Fascia Hub offers real-time treatments and feedback, thereby

enhancing the overall understanding of sleep patterns and improving

the quality of sleep research.

The Fascia Portal is an integral component of the Fascia Ecosystem,

enabling researchers to manage, store, and analyze data collected using

the Fascia Sleep Mask. Researchers can monitor patient signals in real-

time and utilize a machine learning API for accurate identification

of sleep stages, spindles, and slow-waves. This platform provides a

robust mechanism for the analysis of sleep patterns, leading to improved

diagnosis and treatment of sleep disorders.

The upcoming sections of this chapter aim to provide a comprehensive

understanding of the interdependence and collaboration among the

various components of the Fascia ecosystem. This exploration will high-

light how the Fascia Sleep Mask, Fascia Hub, Fascia Portal, and machine

learning API are integrated to enable effective collection, analysis, and
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interpretation of sleep data. By examining the intricate functioning of

these components, researchers and clinicians can enhance their under-

standing of sleep patterns and improve the diagnosis and treatment of

sleep disorders.
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7.5 System Design

MQTT Protocol

MQTT is an Internet of Things/machine-to-machine (M2M) connection

protocol. It was created as a lightweight publish/subscribe messaging

transport. It is beneficial for connections with faraway places that require

a minimal code footprint and/or have limited network bandwidth. MQTT

was created by Dr. Andy Stanford-Clark of IBM and Arlen Nipper of

Arcom (now Eurotech) in 1999 [168]. The primary functional basis of

MQTT is the existence of topics in a broker-like entity. When a client

subscribes to or publishes on a particular topic, the broker registers that

topic. A single client can subscribe several times to different topics, and

multiple clients can subscribe to the same topic. The same holds true for

publishers. Therefore, clients who subscribe to topic X will receive all

messages published under that subject [169]. As stated on the website of

one of the various brokers, Mosquitto, the broker and MQTT provide a

simple, universal interface to which everything can connect[170].

Patients at St. Jude Medical Center who are carrying pacemakers or

cardioverter defibrillators can now be monitored continuously from the

comfort of their own homes thanks to a device that was developed by

IBM. In order to accomplish this goal, a specialized device known as
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Merlin@home is attached to the various healthcare devices that are being

discussed. When an unusual event occurs, this device sends a signal and

the relevant data to the medical center [10]. This enables not only a higher

level of patient care and early detection of problems, but also enhanced

administrative efficiency and maintenance, assistance in conforming to

standards, and simple integration of data [171]. Additionally, this enables

a higher degree of administrative efficiency. There are around 100,000

heart pacemakers being monitored through MQTT at St. Jude, according

to the Software part of the official MQTT website [172]. Although our

project’s structure can be compared to the one described in IBM’s Red

Book Building Smarter Planet Solutions with MQTT and IBM WebSphere

MQ Telemetry [173], the fact that there were not discovered to be more

actual uses of MQTT in health made it innovative and demanding.
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7.5.1 Fascia Mask Node

The firmware, after gathering and processing all the sensor data from the

Fascia Mask, packs the collected data and sends it to an MQTT broker

running on a server over WiFi. On the server, there is a Python script

that unpacks data and timestamps the data before inserting it into the

PostgreSQL database.

Data Unpack

All the aforementioned data and signals need to be combined into the

WiFi packet to be sent over to the software. A full data packet has four

EEG data points, three EMG data points, one EOG data point, three

acceleration data points, three gyroscope data points, one EDA data point,

one heart data point, one temperature data point, one serial number, one

valid array, and one time stamp, for a total of 20 data points in the order

shown in the table below. The number and sizes of all the elements total

to 68 bytes for the whole packet.

It is worth noting here that the IMU data, all six data points, are currently

only two bytes each because the conversion has not been deemed as

necessary. However, if the conversion is to be performed and the converted

data is to be packed into the data packet instead, each of the IMU data

points would be four bytes instead of two, which would increase the total

size of the packet by 12 bytes, making it 80 bytes in total instead of 68.

Sequential order Signal Size(Bytes) starting byte

1 Serial packet number 4 0

2 Valid array 4 4

3 EEG 4 8

4 EEG 4 12

5 EEG 4 16

6 EEG 4 20

7 EMG 4 24

8 EMG 4 28

9 EOG 4 32

10 EOG 4 36

11 Acceleration x 4 40

12 Acceleration y 4 42

13 Acceleration z 4 44

14 Gyroscope x 4 46

15 Gyroscope y 4 48

16 Gyroscope z 4 50

17 EDA 4 52

18 Skin temperature 4 56

19 Heart rate 4 60

20 Time stamp 4 64

Table 7.2: Package structure for the sleep

mask
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Due to the fact that not all data is collected at the same (highest) rate,

there are some packets for which the only legitimate data is the ADS1299

data, together with the serial packet number and time stamps. Some data

is transmitted less frequently and is consequently usually invalid because

it was not captured. Some data is actually invalid due to a system error,

such as an ADS1299 detecting a lead-off, or a MAX30101 indicating a

lack of secure patient connection. For these reasons, a component of the

packet known as the valid array, which can be seen as an array of bits,

was introduced. One bit is assigned to each item in the packet: if the bit

that corresponds to a particular element is set to one, then that data point

is invalid. If the element is set to zero, it is determined to be valid.

Calling it a valid array might be a misnomer then, since it could be an

invalid array if a data element is returned as 1. When naming this array,

the decision was made not to call it an "invalid array" in order to combat

the potential confusion of the data that the element contains being invalid

(it is the array which is invalid itself). As described, this array can be used

to figure out which data points were collected in this packet and should

be kept, processed, stored, graphed, filtered, etc., and which ones were

not.

Every time a new packet is created, the field for the valid array is

initialized to zero. Whether the signals are received and inserted into

the packet or not, this array is updated. If a certain signal is not to be

collected at this time and this packet will not be updated with it, then the

valid array is updated with a one-set in the index corresponding to that

data point, marking that signal invalid in this packet. Also, if a sensor

reports that the probe for one or more of its inputs no longer has a good

connection to the patient’s body, the signal from that device for that data

point is thrown away, and the valid array is changed to reflect this by

setting the bit for that device’s specific channel to one.

WiFi Packet Send Rate

In order to increase the system’s efficiency, multiple packets of data

are collected and grouped together into one WiFi packet to send over

to the software. This method allows for the cost of preparing, sending,

and receiving a WiFi packet through the network to be amortized over

the number of data packets it contains. This aggregate WiFi packet, in

the current system, contains 20 data packets. This was a number that

is maximized, given the number of data points in the data packet, and
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therefore a data packet’s size in bytes, to the size limit of the WiFi packet

library appears to be able to support. This number was bigger when

the data packet size was smaller and has needed adjustment as the data

packet size grew.

7.5.2 Fascia Portal Node

The Fascia Portal node is where most of the signal streams come together

for the user to interact with the signals. The Fascia Portal has multiple

functions, and Chapter 10 goes into more detail. The portal provides

three primary functionalities to the Fascia Ecosystem. First, it serves as

a front-facing website for people to learn about the project. The second

function is registration and authentication for the portal users. This

allows for the data to be kept private and management of who has access

to the system. The last function is the portal dashboard where the user

can create experiments, add users, record data, observe data in real-time,

and view the playback, where the data can be replayed once the recording

session has concluded.

The live session segment of the portal at the system level can be described

as a dashboard to send commands to the Fascia Mask and Hub via MQTT

topics. It can also be described as a visualization tool for the incoming

data stream sent by the Fascia Mask. The live session is responsible for

unpacking the data packets received and restructuring the data so it can

be filtered and ready to be visualized. The live session also communicates

to the sleep staging API.

The playback segment as mentioned before allows sleep researchers to

explore and replay the sleep recordings. The Portal Node requests data

from the Fascia Server, the server then goes and fetches the data from

the database storage for the desired recorded session.

7.5.3 Fascia Hub Node

The Fascia Hub enables a researcher or scientist to provide stimulation and

feedback to a patient in the form of audio and visual stimuli, expanding

the possibilities for understanding sleep and dreams, and the ability to

issue interventions.

The Hub operates a Python-based client that monitors the portal for

MQTT messages. After the portal has established a connection, the Hub

applies a decision tree to the incoming message. When a video or audio
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recording is created, a file is generated locally and then sent to the

database.

7.5.4 Database Node

In cloud-based sensor data applications, the number of data points is

frequently in the trillions. How should such enormous data be processed?

How can we perform streaming data processing in real time while at

the same time having a service that can store records and allow data

playback? Fascia’s goal of enabling researchers to store physiological

data, perform experiments with demographic records and consent forms,

review any triggers, analyze, and store data creates a challenging backend

design.

Since physiological data has a well-defined structure, follows a data

model, and stays in the same order, it was clear that a SQL-based storage

system was appropriate, which provides consistent and low-latency

read and write performance. PostgreSQL was chosen for the database

because it has been utilized for stream processing in IoT applications

to process trillions of data records per day in real-time. PostgreSQL is

a good product for stream-based data processing, with the potential to

process up to 100,000 records per second in real time on a single standard

X86 server.

The Fascia database is primarily utilized for cold storage; when the Fascia

mask receives a run command from the Fascia Portal, new data is injected

into the system. When events are sent to the hub through the portal,

markers are added. When the user uses the playback option or decides

to download their data, stored data is retrieved from the database. All

the physiological data is stored in one table as they were almost always

recorded and used together, making it easy to deploy them in one logical

table. A primary key index was introduced because while information

from the board like packet number and timestamp might be unique to

the board, it is not the case globally as there might be more than one

board streaming information at the same time.

To further optimize the read times, the table was indexed based on its

unique session ID and packet number. This was done because most of the

queries query information for a particular session, and to process the data

in batches, the data is divided into smaller batches that are identifiable

using packet numbers. Thus, the indices improve the performance.
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7.6 Discussion

In conclusion, the Fascia Ecosystem represents a major step forward

in the field of sleep studies. The combination of the Sleep Mask, Hub,

and Portal allow for a more comprehensive and convenient approach to

understanding sleep and diagnosing sleep disorders. With the ability

to collect data similar to a traditional polysomnogram, offer patient

stimulation and feedback, and analyze sleep signals in real-time, the

Fascia Ecosystem opens up new avenues for research and advances

in sleep medicine. Additionally, the machine learning API and data

collection platform provide a powerful tool for further developing our

understanding of sleep and improving sleep diagnostics. This innovative

approach to sleep studies holds great promise for improving the diagnosis

and treatment of sleep disorders and improving overall sleep health.

The next sections of this thesis will focus on a more detail exploration

for each one of the main components of the Fascia Ecosystem. The next

focused on the Fascia Sleep Mask in more detail and discuss its potential

as a home-based polysomnogram device for sleep studies.
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8.1 Introduction

Sleep studies have largely been viewed as a nuisance for the subjects being

studied. This is due to the major discomfort caused when the subject

must go into a research center or hospital and sleep there while their

vitals and different physiological signals are constantly monitored by

bulky equipment. In order to detect these signals, a variety of electrodes

and sensors are distributed across the head and the rest of the body, and

secured using tape or glue, and therefore cause significant discomfort.

Centers assure patients that they’ll “still have plenty of room to move

and get comfortable” and that they are being monitored by sleep study

technologists who “can help if they need to use the bathroom”. Still,

according to the National Sleep Foundation, many people wonder how

they will be able to sleep under such conditions. Researchers believe this

setup and procedure result in inaccurate or at least inconsistent data as

the subjects are not sleeping as they normally would in the comfort of

their home, free of unfamiliar wires and electrodes probing their bodies.

Home-based portable devices may provide a solution to these problems;

nevertheless, these devices are, at best, insufficient because of the limited

number of biophysical channels that they are able to capture.

That is where the Fascia Mask comes in. With the previous insights in

mind, this project aims to tackle the challenges noted above by creating a

comfortable and minimal device which houses all the required sensors
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and electrodes to record the vitals and signals needed for sleep studies.

The device takes the form of a sleep mask, which consists of a flexible

printed circuit board with integrated electrodes and sensors that are

close to the skin, and two conventional PCBs to house the components

that perform the signal processing, data analysis, signal forwarding and

storage farther away from the skin. The resulting mask can be taken

home, enabling sleep studies to be conducted “in the wild".

8.2 Background

Conventional sleep studies have two primary obstacles: the patient’s

comfort and the accuracy of the obtained data, given the environment in

which the patient sleeps. We are aware of three products that are compa-

rable to the Fascia Mask on the market that address these concerns.

First, a product called Neuroon Open, which is touted as a wearable

device that improves sleep. The selling point of this IoT device is its

ability to assist clients enhance the quality of their sleep through EEG

monitoring, lucid dream induction, and intelligent meditation sessions.

This is accomplished by allowing the IoT device to manage the lighting,

music, and temperature in the customer’s bedroom, which the device

adjusts according to the customer’s demands based on their current

sleep stage [174]. This gadget is primarily intended to help an individual

sleep better by monitoring brain waves, as opposed to assisting sleep

researchers in diagnosing people with suspected sleep disorders and

gaining a better understanding of sleep in general. Consequently, the

use-case for this product is limited to assisting the consumer in sleeping

more soundly, which is far narrower than the project’s objective.

The second product is the Muse Headband. Muse detects mental activity

and uses it to generate "guiding" nature sounds in order to help the user

achieve a mental state described as "focused calm." Muse selects different

sounds to reflect different states of mind: if the subject is tranquil, it plays

peaceful weather sounds; if the user becomes more distracted or busy-

minded, it plays increasingly stormy and loud weather sounds to remind

them to return to their meditation practice. Muse’s use of EEG sensing

to guide consumers through immersive meditation sessions is similarly

mostly restricted. Some variants of the product feature PPG sensors, as

well as a gyroscope and accelerometers, although all of these additional

sensors are utilized to maximize the same functionality: assisting the
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user to relax [175].

Thirdly, the DREEM headband is a further consumer product for sleep

recording and the one that most closely resembles the signals supplied

by the Fascia Mask. The gadget incorporates five dry EEG electrodes, a

3-D accelerometer, and a pulse oximeter. Despite the fact that DREEM

is designed for sleep research, it has been stated that it is not very

comfortable for sleep [176].

All of these devices approximate the form factor for the Fascia project,

but they lack the ability to detect a large number of the signals that

this project intends to include in a design that supports medical and

scientific sleep research. Few of these device manufacturers have released

their performance relative to PSG, and those who have often only report

aggregated metrics as opposed to raw data, and do not allow open access

to the data set so that results can be independently checked.

8.3 Fascia Mask Design

Figure 8-1: Exploded view, showing the main components on the Fascia sleep mask

The physical form of the device was designed with a minimal footprint

so as to be the least intrusive as possible, to enable the user to be as

comfortable as possible, and the data to be as accurate and error-free

as possible. This resulted in the selection of the sleep mask as the form

of the device. This form factor would allow for the collection of all the

data points that a full PSG system collects, while meeting the minimal
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footprint requirement.

A flexible PCB design was used to maximize user comfort while meeting

the flexibility needs of the sensors and electrodes. Other considerations

included placement of the electrodes on the face region and electrodes

on the strap. The main purpose of the flexible PCB is to be a conductor

between the conductive transfer layer and the sensor PCB board. The

sensor PCB is the module in charge of wirelessly transmitting the signal

collected by the programmable amplifier. By screen-printing silver ink

onto a fabric, the outer layer of the fabric acts as a grid of electrodes

that pick up signals like EOG, EMG, EEG, and EDA. According to the

American Academy of Sleep Medicine, the recommended EEG electrode

positioning involves three measurements covering the frontal, central,

and occipital regions. Using the 10-20 international system, the electrodes

on the midline strap are put on the Cz and Pz areas.

8.4 Hardware Design

There are two main components to the Fascia Mask hardware: a main

sensor PCB, and an ergo-electronics face pad. The main sensor PCB is an

analog front end that collects bio-potential signals from the brain, muscle

signas, eye movements, skin response, heart rate, skin temperature, and

respiration. These signals are then processed and wirelessly streamed

using the MQTT protocol to a remote broker. The ergo-electronics face-

pad is a flexible PCB with gold-plated pickup electrodes that connects to

an electrode array that is screen-printed onto a breathable fabric. This

fabric is then wrapped around a cushion to create the comfortable face

pad and connected to the flexible PCB mechanically using grommets.

Figure 8-2

8.4.1 Hardware Description

With the goal of making the user as comfortable as possible and the data

as accurate, noise-free, and error-free as feasible, the device’s physical

form was settled upon with the smallest possible footprint. As a result, a

sleep mask, a special garment worn solely when sleeping, was chosen

as the shape of the device. A flexible PCB layout was used for the

electrode-based sensors for improved user comfort.

Protection for the main PCBs comes in the form of a 3D-printed case,

foam padding, and cloth, and it rests on the temple region of the forehead
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whether you sleep on your side or back. Each printed circuit board (PCB)

had its footprint shrunk so it would fit within a sleep mask, improving

the wearer’s convenience.

8.4.2 Signals of Interest

Polysomnography records brain waves, the oxygen level in the blood,

heart rate and breathing, and eye and leg movements during the sleep

study.

In order to conduct polysomnography (sleep studies), technologists

typically place sensors on the patient’s scalp, temples, chest, and legs,

as well as a clip on the finger, all of which are connected by wires to a

computer. These are used in preparation to monitor the following signals:

brain waves, eye movements, heart rate, breathing pattern, blood oxygen

level, body position, chest and abdominal movement, limb movement,

and snoring.

In the sections that follow, the role of each of the aforementioned "signals

of interest" in the construction and placement of the Fascia sleep mask

will be detailed.

Figure 8-2: System diagram depicting

the electrode array for the sleep mask

EEG/EMG/EOG Sensing

The ADS1299, a device from Texas Instruments designed for collecting

and measuring biological signals, was used to record all three signals

(EEG, EMG, and EOG) in a single hardware unit. This is the most

expensive part of our setup, but it’s also the most powerful, allowing

us to measure eight distinct biopotential signal channels at once with

separate gains (1, 2, 4, 6, 8, 12, 24) and operating modes. Each channel

can be connected to a positive (P) and a negative (N) lead, and a single
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"bias" probe can be used as a signal reference for an unlimited number

of channels. It also employs a Right-Leg-Drive (RLD or DRL, for Driven-

Right-Leg) circuit that detects "common-mode interference," or noise

in the body that could interfere with the signals of interest, and then

uses an operational amplifier (op-amp) to subtract the noisy signals from

the bio-signals of interest. Connecting the SRB2 for the desired channel

enables the capability. The chip’s internal circuit is highly configurable,

making it possible to determine whether or not the probes and leads are

loose or otherwise incorrectly attached to the human body in the face

of erroneous biosignals. This function is known as "lead-off detection."

This device supports both the I2C and SPI bus types, however we’re

only using SPI for this application. The device offers both a "continuous

conversion" mode, in which it pulls an interrupt pin low when the data

is ready, and a "single shot" mode, in which you poll the device for

data. Fascia is currently using the continuous conversion mode to ensure

the data sampling is done consistently.

Two EOG channels, two EMG channels, and four EEG channels are being

used from the ADS1299. In order to measure the potential across a muscle,

each EOG and EMG channel makes use of two leads, the positive and

negative probes of a channel, which are linked to opposite sides of a

muscle. The ADS1299 uses this configuration, known as a sequential

montage, to assess the potential difference between the two electrodes

that should be positioned across a muscle. Due to their rather large

magnitudes, we utilize a gain of 2 or 4 for each of these channels.

For EEG, we just use one channel probe (either positive or negative) and

attach the other to the bias probe, measuring the EEG signal relative to

a single reference electrode. Due to their significantly lower magnitude

compared to other biopotential signals, EEGs benefit greatly from the

use of a reference montage to remove noise and clean up. Since the

EEG signals are so small, we also employ higher gains of 12 or 24 for

these electrodes. We additionally link these channels to SRB2 to make

use of the RLD circuit’s noise-cancelling capabilities for particularly

delicate and weak communications. We employ both passive (like those

used for EMG and EOG) and active electrodes to detect EEG, with the

latter having in-built electronics to actively amplify the signal as it is

sensed for increased precision. It is possible to utilize a gain of 1 for

the channels formed by the active electrodes. To begin validating this

setup, we first made use of a feature already present in the ADS1299: the
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ability to internally generate test signals. This is another feature of the

device in which it generates square waves internally at a configurable

frequency and amplitude and feeds that signal to the test channels. This

is a fantastic way to ensure that the chip’s wiring, power levels, register

settings, and data out package reception are all functioning properly

during the initialization process.

EDA Sensing

The data for Electrodermal Activity (EDA) is collected through a built-in

Analog-to-Digital Converter (ADC) on the Arduino platform, which

allows for the value at the analog pin corresponding to the EDA data

to be sampled and read at any time. The Arduino bootloader reads the

analog signal at that pin, converts it to a digital value through the ADC,

and returns it to the firmware code that called the analog-pin-reading

function.

Given that EDA signals often have lower frequencies (ranging from 1 to

10 Hz) [177] and the data is fairly irregular and noisy, it is recommended

to smooth the data by averaging a predetermined number of samples. In

this case, it was determined that averaging every 10 EDA data samples to

obtain one mean value, which was then used and sent in the data packet,

was appropriate. This technique, known as oversampling and averaging

[178], also increases the effective resolution of the ADC by allowing for

non-integer averages.

However, the EDA measurement was slower than the firmware code

for the ADS1299. To address this issue, it was decided to only sample

the EDA signal at certain intervals. Sampling the EDA signal every 10

ADS1299 samples was found to be suitable. Additionally, the EDA signal

would be sampled at fEDA = fADS1299/10/10 = fADS1299/100 with this

methodology, assuming a minor conversion delay after adjusting the

prescaler to 16.

The 12-bit ADC count value must then be translated into a practical unit.

The most common method for assessing EDA is skin conductance (G) in

micro-Siemens (S). The relationship between resistance (Rskin) in Ohms

(W), the most direct value obtained by using the voltage level detected

and stored by the ADC, and skin conductance (Gskin) is reciprocal.

Therefore, the conversion is: Gskin = 1/Rskin [177]. To convert ADC

counts to resistance, Rskin is the skin’s resistance as measured between

the two EDA probes placed on the human body. The voltage across Rskin
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is calculated by translating the ADC counts to voltage, and then the

current across Rskin is calculated by determining the voltage across the

reference resistor Rref. Using these two pieces of information, Rskin is

calculated as Vskin/I and skin conductance is calculated as the reciprocal

of Rskin.

PPG

The MAX30101 sensor resides on its own rigid PCB that is attached to

the flexible PCB in order to improve the quality of the data it transmits.

This sensor is supplied with an interrupt pin that we do not utilize at

this time (due to the choice that the ADS1299 will lead the data rate and

set the frequency of signal collection), as well as two I2C lines that we

use to communicate with the device.

The firmware utilizes the SparkFun Arduino library for the MAX30101 to

access the data from the device. The library permits us to configure the

sampling rate, the data averaging rate, and the power consumption level.

Using the library’s API, we can initialize the device with the following

method call:

particleSensor_name.setup(powerLevel, sampleAverage,

ledMode,sampleRate, pulseWidth, adcRange).

Then, using the particleSensor name.getIR() and

particleSensor-name.readTemperature() functions, we can extract

both PPG and temperature data from the device.

The MAX30101 was configured to have a high data rate, however, an

obvious and significant decrease in the device’s data collection rate was

observed. As a result, an investigation was undertaken to determine the

cause of this decrease. Upon further examination of the library’s code

used to communicate with the device, it was discovered that both the

temperature retrieval and IR retrieval routines included a lengthy wait

or delay. Specifically, the procedure for readTemperature() involved a

register-write to request data, followed by a 100-millisecond delay while

the device awaited a response to its request. Additionally, the getIR()

function waited up to 250 milliseconds for fresh data to become available

at the IR sensor output FIFO, and regularly checked for the presence of

new data.

Consequently, the library was updated by removing the delays from both

functions and examining the data they returned. It was observed that

over fifty percent of the time, both of the functions returned that no data
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was available. In light of this, the wait time was modified to a compro-

mise value, and it was found that the majority of the data points were

indeed accessible. The function signatures were also updated in order to

improve efficiency based on the use case of the consumer code. For the

\readTemperature()method, a new function, \requestTemperature(),

was introduced, which makes the temperature reading request without

waiting. Additionally, the \readTemperature() function was updated

to simply check for the availability of a temperature reading without

waiting. The \getIR(wait ms) function is a modified version of the

\getIR() function that accepts as input the number of milliseconds the

consumer wishes to wait for data to become available. In the firmware

code, the sequence of calling functions was updated as well, first calling

\requestTemperature(), then \getIR(1) (which was determined to be a

suitable number, while still allowing for high precision in heart beats and

waveform detection), and then calling \readTemperature(), indirectly

introducing a wait in the temperature collection function. Additionally,

the Sparkfun library collects PPG data and returns it as a 32-bit integer,

despite the fact that the ADC range cannot be configured to values larger

than a 16-bit integer. Since the PPG data units are not relevant to the

current application, no further action was taken in this regard.

From this signal’s structure, it is possible to detect heartbeats and calculate

heart rates, so revealing any anomalies in the patient’s cardiovascular

system. In order to obtain correct data during PPG measurements, it is

crucial to maintain excellent contact with the equipment. Fortunately,

the MAX30101 is also a particle and proximity sensor, and once the

finger (or palm, or, in our case, forehead) loses excellent contact with

the sensor, it immediately changes to proximity sensing, which returns

values that are orders of magnitude less than the PPG data. Thus, we

can determine if the patient is in proper touch with the sensor and,

consequently, if our data are reliable. The Temperature returned by the

library method getTemperature() has the correct units, degrees Celsius,

and is of type Float (four Bytes). Therefore, no processing is necessary for

these data, as the library handles all conversions. Temperature change

is a very slow process, and heart beat signals (ranging from 60 to 100

BPM for average resting heart rate in humans [179]) are relatively slow

signals compared to the other vitals and biological signals being sensed

by our system; therefore, we do not need to sample these signals as

frequently as we sample the others. For this reason, we only sample this
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data once for every ten times we sample the ADS1299 data, resulting in

an effective data rate that is a tenth of the ADS1299’s frequency for both

the PPG and the temperature sensor. In actuality, the data rate for these

signals is significantly less regular, and frequently slower. This is due

to the decreased wait times in API services and the frequency of data

availability (or lack thereof). This does not impact the quality of our data,

since we are able to check the availability of the data and delete it when

it is unavailable, but it does impact the practical sampling rate for certain

signals.

Temperature

By measuring the temperature of the body, it is possible to deduce the

stage and depth of sleep that the patient is in. Sleep stages are associ-

ated with temperature ranges, so drops and changes can be observed

depending on the stage in the cycle.

The same device used to measure the heart rate is used to measure the

skin temperature. It is placed on its own mini PCB board and connected

to the rest of the system via a 4-pin JST connector, which connects

the I2C and power lines to the board. This separation from the main

and even secondary PCBs allows for the temperature sensor to provide

more accurate representation of the patient’s temperature, as it is not

affected by any nearby hardware. Additionally, this separation enables

the PPG sensor to produce data with reduced noise, as it uses a red,

green and infrared LED to measure the pulses in blood flow in the veins.

Furthermore, this separation ensures a more secure connection between

the sensor and the patient’s skin, acting as a probe on their forehead.

Motion sensing

Measuring the movements of the patients via gyroscopes, magnetometers,

or accelerometers enables detection of muscle spasms, and whether the

patient is tossing and turning. This data can be valuable for doctors to be

able to diagnose certain sleep disorders.

The motion sensing unit used in this project is the MPU6050, which

is a device that comprises a three-axis accelerometer and a three-axis

gyroscope, and it communicates through the I2C protocol. It should

be noted that this device lacks a magnetometer, which was initially

considered as a limitation. However, after conducting research and

reviewing relevant literature, it was determined that the accelerometer
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and gyroscope would suffice for the types of analyses planned for the

device in the context of sleep studies.

8.5 Python Data Receiver Portal

8.5.1 WiFi Packet Anatomy

Table 8.1: Table detailing the components of a data packet

Sequential order Signal Size (Bytes) Byte at which it starts

1 Serial packet number 4 0

2 Valid array 4 4

3 EMG 4 8

4 EMG 4 12

5 EOG 4 16

6 EMG 4 20

7 EEG 4 24

8 EEG 4 28

9 EEG 4 32

10 EEG 4 36

11 Acceleration x 2 40

12 Acceleration y 2 42

13 Acceleration z 2 44

14 Gyroscope x 2 46

15 Gyroscope y 2 48

16 Gyroscope z 2 50

17 EDA 4 52

18 Temperature 4 56

19 PPG 4 60

20 Time stamp 4 64

All the signals needs to be combined into the WiFi packet to be sent over

to the software. A full data packet has four EEG data points, two EMG

data points, two EOG data point, three acceleration data points, three

gyroscope data points, one EDA data point, one heart data point, one

temperature data point, one serial number, one valid array, and one time

stamp, for a total of 20 data points, in the order shown in the Packet

Structure in Table 8.1. The number and sizes of all the elements total to

68 Bytes for the whole packet.
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9.1 Introduction

This chapters provides a background discussion of in stimulation in

sleep and describes how the hub operates it also describes the different

modalities available to the sleep researcher so she can experiment with

issuing interventions at specific moments in the sleep cycle.

Some interventions have have shown to benefit sleep quality, memory

consolidation and more. These are just a few of the many areas where

scientists are attempting to better understand the complex interactions

between sleep and the rest of our lives in the hopes of improving our

way of living.

9.2 Background

9.2.1 Sleep Interventions

Despite the fact that consciousness is diminished during sleep, some

bodily systems are still responsive to environmental changes. During

non-rapid eye movement sleep, for instance, the auditory system con-

tinues to assess environmental sounds by altering brain wave patterns,

enhancing delta patterns, and enhancing sleep spindles [180]. Slow-wave

synchronous acoustic stimulation has been shown to be a desired research

area for their promising therapeutic implications [181]. Other senses, like

haptics and vibration stimulation methods, have been used to deliver

a stimulus to interact with the intrinsic heart rhythm and examine the

effects of stimulation on sleep and memory [182].
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Studies demonstrate that the human body is sensitive to ambient tem-

perature during sleep; even mild exposure to heat or cold considerably

impairs sleep quality. Thermoregulatory responses during sleep vary

depending on sleep stage [183]. During REM sleep, the sensitivity to hot

or cold stimuli is not fully suppressed, but it is lowered relative to NREM

sleep. The rate of perspiration is lower in stages N1 and N2 of NREM than

in SWS, and it is lowest in REM sleep [184], with reduced evaporative heat

dissipation and heat tolerance [183]. These thermoregulatory properties

render REM sleep more susceptible to temperature discomfort than other

stages of sleep.

Olfactory interventions during sleep have been researched as strong cues

to reactivate memories [185].Recent research findings support the idea

that memory consolidation during sleep is crucial for actively preserving

the memory bank that individuals carry throughout their lives. It is

possible that the information that is ultimately retrievable is that which

is reactivated during sleep. The discovery that neurocognitive processing

during sleep can improve memory storage when memories are subtly

prompted by auditory or olfactory stimulus is an unique source of

support for this theory [186]. This combination of auditory and olfactory

is also being explored to see if humans can learn new information during

sleep. Using partial-reinforcement trace conditioning, Arzi et al. matched

pleasant and unpleasant scents with various tones during sleep. They

then assessed the sniff response to tones alone during the same night’s

sleep and subsequent wake. The researchers discovered that sleeping

subjects formed unique links between tones and scents, causing them

to sniff in response to tones alone. In addition, these newly learnt tone-

induced sniffs varied according on the pleasantness of the odor previously

connected with the tone during sleep. Without later recognition of the

learning process, this learned habit remained throughout the night and

upon awakening. Thus demonstrating the possibility for individuals to

acquire new information during sleep [187].

Another exciting area that is exploring interventions while asleep is lucid

dreaming and dream structure, where interventions are needed to better

understand the dreamer’s mental condition. Researchers Konkoly et al.

show that people in rapid eye movement (REM) sleep can hear and

respond to an experimenter’s questions, allowing for an instantaneous

dialogue about dreams. During rapid-eye, researchers tested out a method

of two-way communication based on visual and audio cues. The subjects’
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reactions included blinking and twitching of the eyes and tightening of

some facial muscles. Horowitz et al. developed a device called Dormio

consist of a wrist and finger attachment that measures when the person

is about to enter into a hypnagogic state by measuring hand movements

as muscle tone is lost. During the hypnagogic state, a phone app was

used to prompt the user to think about objects and places in order to

guide the person’s dream [188].

These are just a few of the many areas where scientists are attempting to

better understand the complex interactions between sleep and the rest of

our lives in the hopes of making people’s lives easier.

9.3 Fascia Hub

The Fascia Hub is a multi-interface, multi-component Human-Machine

Interface (HMI) device built with modularity in mind. It’s a compact,

powerful, all-in-one board based on the Raspberry Pi, and it enables

the creation of unique Internet of Things based interactions for the

management of auxiliary functions.

At its heart, the Fascia Hub is a Raspberry Pi Compute Module 4 (CM4)

module equipped with one sound and dual microphone cards, dual-band

2.4GHz/5GHz Wi-Fi, and Bluetooth 5.0, operating on a Pi-based Linux

system, and boasting 4 GB RAM and 32 GB eMMC. The board features

a number of easily-accessible components and high-speed connectors,

all of which were made possible by its modular architecture. It is easily

transferable to AI development programs for use in intervention support

and AI assistance systems.

9.3.1 Input and Output Modalities

The hub is equipped with a relay, microphones, lights, a speaker, an

infrared camera, and a diffuser atomizer. The power indicator light as well

as other system user lights on the board can be used by your definition.

The Fascia Hub allows sleep researchers to conduct studies in the wild.

Equipped with a variety of sensors and a powerful data platform, the

Fascia Hub provides researchers with a unique opportunity to study

sleep and gain insights that would otherwise be unavailable. In this

section, we will explore the various modalities of the Fascia Hub, such

as microphones, lights, a speaker, an infrared camera, and a diffuser

atomizer, and how they can be used for sleep studies. We will also discuss
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the benefits of using the Fascia Hub for sleep studies, including how it

can be used to explore new research areas and develop new interventions

and treatments for sleep disorders.

Figure 9-1: Fascia Hub I/O modalities

Privacy Button

The Fascia Hub includes a privacy button, which is an important safety

feature that allows participants to communicate when they are ready

to sleep and for data to be recorded. This ensures that the system won’t

record any data until the participant presses the button, providing

participants with the assurance that they are in control of when they

system collects data.

The privacy button is a critical aspect of conducting sleep studies, as

it ensures that participants are comfortable and willing to have their

data recorded. It also helps to mitigate any potential ethical concerns,

by giving participants control over when their data is being recorded.

This is particularly important when conducting studies with sensitive

populations.

The privacy button also provides researchers with an added layer of

control over the data collection process. By only recording data when

the participant presses the button, researchers can ensure that the data

collected is of high quality and relevant to the study. Additionally, the

privacy button can be used as a trigger for other systems, such as the

atomizer during development stages.

The privacy button on the Fascia Hub is an important safety feature

that ensures participant data protection and helps to mitigate ethical

concerns. It provides participants with control over when their data is

recorded and allows researchers to collect high-quality and relevant data

for their study. Additionally, the privacy button can be used as a trigger

for sending acknowledgements to the remote researcher, making it a
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useful tool for researchers.

Audio

The Fascia Hub is equipped with a speaker that is capable of providing

auditory stimulation, with researchers able to control the volume and

tones using the Fascia Portal. This feature provides participants with

the ability to be stimulated in a controlled environment, which can be

beneficial for sleep studies. The speaker also provides a more immer-

sive experience for participants, as they can listen to different types of

stimulation during their sleep studies.

As mentioned in the background section, auditory stimulation has been

shown to have an impact on sleep, with certain sounds and frequencies

promoting relaxation and better sleep. For example, white noise and

nature sounds have been found to have a calming effect on the body and

can be used to improve sleep quality. The speaker on the Fascia Hub

allows researchers to study how different types of auditory stimulation

can affect sleep, as well as how they can be used to treat sleep disorders.

In addition to providing auditory stimulation, the speaker on the Fascia

Hub can also be used by researchers to communicate with participants

during the study. For example, the speaker can be used to let partici-

pants know if they need to adjust a sensor or if something needs to be

reconnected, which can help to ensure that the data collected is of high

quality.

The speaker on the Fascia Hub is a useful tool for researchers, as it allows

for auditory stimulation in a controlled environment. The speaker can

be used to study how different types of auditory stimulation can affect

sleep, and how they can be used to treat sleep disorders. Additionally, the

speaker is also used by the researcher to communicate with participants

during the study, ensuring the data is of high quality.

Atomizer

The Fascia Hub is equipped with a diffuser atomizer, which allows

researchers to explore the effects of olfactory interventions on sleep. The

Fascia Hub is also equipped with a relay that controls the atomizer,

which can be used to adjust the humidity levels in a room. This allows

researchers to study the effects of different humidity levels on sleep

quality, in particular, how different levels of humidity can affect sleep

duration, quality, and other related factors. Additionally, the atomizer can
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be used to diffuse various scents into the study environment, enabling

researchers to study how different concentrations of scents can affect

sleep duration and memory consolidation.

Studies have shown that certain scents can have a relaxing effect on the

body, promoting better sleep. For example, lavender and vanilla have

been found to have a calming effect on the body and can be used to

improve sleep quality. Researchers can use the atomizer to study how

different concentrations of these scents can affect sleep, as well as how

they can be used to treat sleep disorders [189, 190].

The atomizer can also be used to explore how humidity levels can affect

sleep quality. Humidity levels can have a significant impact on sleep, with

high humidity levels causing difficulty sleeping, and low humidity levels

causing dehydration and sleep disturbance. Researchers can use the relay

controlled atomizer to adjust the humidity levels in a room, allowing

them to study the effects of different humidity levels on sleep quality for

different age groups, such as the elderly, children, and adults.

In conclusion, the atomizer feature on the Fascia Hub provides researchers

with a powerful tool to explore the effects of olfactory interventions on

sleep. The atomizer can be used to study the effects of different scents

on sleep duration and quality, as well as how these scents can be used

to treat sleep disorders. Additionally, the atomizer, controlled by a relay,

can be used to adjust the humidity levels in a room, allowing researchers

to study the effects of different humidity levels on sleep quality and how

different levels of humidity can affect sleep duration, quality, and other

related factors.

Microphone

The Fascia Hub is equipped with two microphones, which can be used

to capture audio from a wide area. These microphones are ideal for

capturing sound levels, recording dreams, and exploring the effects of

environmental noise on sleep quality and duration.

The data collected from the microphones can be used to study the effects

of environmental noise on sleep quality and duration. For example,

researchers can use the microphones to study how different noise levels

can affect sleep in different environments, such as urban versus rural

areas, or in different populations such as shift workers. Additionally, the

microphones can be used to study how different sound frequencies can

affect sleep quality and duration, for example, the calming effect of white
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noise or the disruptive effect of certain high-frequency sounds.

The microphones can also be used to record dream audio, which can be

used to study the relationship between dream content and sleep quality.

This can be especially useful in studying disorders such as REM sleep

behavior disorder (RBD) where abnormal movements or vocalizations

occur during REM sleep.

The microphones on the Fascia Hub provide researchers with a powerful

tool to capture environmental noise and audio data, which can be used

to study the effects of environmental noise on sleep quality and duration,

and how different sound frequencies can affect sleep. Additionally, the

microphones can be used to record dream audio, providing researchers

with a deeper understanding of the relationship between dream content

and sleep quality.

Video

The Fascia Hub is equipped with an infrared camera, which can provide

valuable data for sleep researchers. The American Academy of Sleep

Medicine (AASM) requires that level 1 sleep studies, which are considered

the most comprehensive type of sleep study, include video monitoring

for body movements.

The infrared camera provides clear images even in low-light conditions,

making it ideal for use in a bedroom setting. One example of a sleep study

that would require the use of video recording is a study on sleep-related

movements and disorders such as restless leg syndrome (RLS) or periodic

limb movement disorder (PLMD). These disorders involve repetitive

movements of the limbs during sleep and can greatly impact sleep quality

and duration. By using video recording, researchers can observe and

document these movements in real-time, providing a more accurate and

comprehensive understanding of the disorder. The video recording also

allows researchers to identify patterns and triggers of the movements,

which can aid in the development of more effective treatment options.

Additionally, video recording can be used to monitor the effectiveness of

existing treatments, providing valuable insights into how to best manage

these disorders.

The night camera is particularly useful for nocturnal seizure studies as it

allows researchers to monitor the patient closely if a seizure is suspected

and provide data to study the patterns and triggers of nocturnal seizures,

as well as the effects of interventions on seizure activity. It is worth
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mentioning that for this type of study it is recommended to be done in a

clinic where an attendant can be present for assistance. The night camera

allows the nurses or sleep registered technicians to closely monitor the

patient and quickly respond in case of suspected seizure activity. This is

particularly important for patients who are at a higher risk for seizures,

or for studies that are investigating new treatments for seizures.

In conclusion, the night camera on the Fascia Hub is an essential tool for

researchers studying nocturnal seizures. It provides clear images, even in

low-light conditions, and allows for close monitoring of the patient. The

data collected can be used to study the patterns and triggers of nocturnal

seizures, as well as the effects of interventions on seizure activity. This

can be especially useful for studies of patients who are at a higher risk for

seizures, or for studies that are investigating new treatments for seizures.

The night camera allows the technologist to closely monitor the patient

and quickly respond in case of suspected seizure activity while ensuring

the patient’s safety and following all facility protocols.

9.4 Privacy

Ensuring privacy is an essential consideration for researchers using the

Fascia Hub, especially in regards to its microphone and video recording

capabilities. These features have the potential to collect sensitive personal

data, including conversations and movements during sleep. To address

this, the Fascia Hub includes a privacy button that allows users to turn

off recording at any time, giving them complete control over their data.

Additionally, the Fascia Hub encrypts all data collected by the micro-

phone and video recording functions, ensuring that the data is protected

from unauthorized access. The encrypted data is stored securely on the

device and can only be accessed by authorized users with appropriate

credentials.

Moreover, researchers using the Fascia Hub should take steps to inform

participants about the privacy risks associated with the microphone

and video recording capabilities. Participants should be informed of the

specific data that will be collected, how it will be used, and who will

have access to it. Informed consent should be obtained from participants

before any data collection takes place.

Overall, the Fascia Hub prioritizes privacy by including a privacy button,

encrypting data, and ensuring that participants are fully informed about
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data collection practices. These measures are crucial in maintaining

ethical research practices and protecting the privacy of participants in

sleep studies.

9.5 Conclusion

In conclusion, the Fascia Hub is a powerful tool for sleep researchers,

providing access to a wide variety of sensors and a powerful data platform.

The hub’s relay, microphones, lights, a speaker, an infrared camera, and

a diffuser atomizer provide researchers with a unique opportunity to

study sleep in the wild. Researchers can leverage the Fascia Hub to collect

data from multiple sources, identify patterns and correlations, and gain

insights into how sleep is affected by factors such as stress, diet, and

environment. The privacy button ensures participant data protection and

helps to mitigate ethical concerns. The speaker and microphone provide

auditory stimulation and immersive experience for participants. The

power indicator light is a quick and easy way to monitor the connection

status of the device and ensure that data is being collected correctly. The

Fascia Hub is a powerful tool that can unlock the potential of sleep studies

in the wild, helping sleep researchers to explore new research areas and

develop new interventions and treatments for sleep disorders.
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10.1 Introduction

The Fascia Portal is where sleep researchers can inspect the patient’s

signals in real-time and store experiment information, analyzed by

the machine learning API that provides sleep staging, spindles, and

k-complex identification information in real-time. The portal also works

as a data collection and labeling platform for developing new and more

robust datasets to train machine learning models for sleep diagnostics.

Identifying different sleep stages and analysing them is very important

for diagnosing and treating sleep disorders, as well as understanding the

neuroscience of healthy sleep. Polysomnography (PSG) is a recording of

the major physiological signals associated with sleep. PSG involves the

recording of multiple electrophysiological signals from the body, such

as brain activity from Electroencephalography (EEG), heart rate from

Electrocardiography (ECG), muscle tone through Electromyography

(EMG) and eye-movement through Electrooculography (EOG), along

with respiratory and temperature data.

The collection of PSG data involves a tedious process with several

electrodes throughout the head and body. This results in an unnatural

setting for sleep, and causes the PSG signals to be unfaithful to those

present in true sleep.

Further, the process of manual sleep staging requires sleeping in a

hospital or laboratory with an expert monitoring and scoring signals

in real-time. This results in an unnatural sleep setup for the subject

that affects the diagnosis and is a intensely time-consuming process.

Because of this, there has been a significant development in research on
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automating sleep staging with better devices.

The Fascia mask is designed to combine all of these sensors into a novel

sleep mask which promotes sleep in natural settings. The prototype is

designed to maximize the quantity and quality of sensor signals, as well

as ensuring user comfort so as to produce accurate data and reduce the

first night effect typical of clinical sleep studies.

Thus, we are now presented with a unique opportunity to delve into the

depths of the neuroscience of natural sleep. Several automatic sleep stag-

ing tools currently present in the market don’t provide sleep researchers

with open access to the data collected. Fascia is the one of first real-time

web-based interface to present PSG signals collected, characteristics of

the signal, as well as interpretable and automatic sleep staging for sleep

researchers.

10.2 Background

In the field of polysomnography, data visualization plays an important

role in the analysis and interpretation of sleep study data. The use of

visual representations, such as graphs and charts, can help researchers

and clinicians identify patterns and trends in the data that may not be

immediately apparent from raw numbers. There are several state-of-the-

art software packages available for visualizing polysomnography data,

such as:

Figure 10-1: Screenshot of the profusion

software

Figure 10-2: Screenshot of the Som-

nolyzer software integrated into Sleep-

ware

− Profusion: This software is used to analyze data about sleep and

breathing. It has a number of tools for showing the data, such as

hypnograms, spectral analysis, and event detection
*
.

− Somnolyzer is a clinically-validated, computer-assisted sleep scor-

ing system designed to help simplify and improve manual scoring

productivity, accuracy and consistency. It will score full PSG and

portable studies. This software is an add on that companies can

add to their excisting software pipeline like Phillis Sleepware
†

− Actiware: This software is used for the scoring and analysis of

actigraphy data, which is collected using a wrist-worn device that

measures movement. Actiware has a number of visualization tools

that can be used to look at data from studies
‡
.

*
https://www.compumedics.com.au/en/products/profusion-sleep-software/

†
https://www.philips.ie/healthcare/product/HC1082462/sleepware-g3-sleep-

diagnostic-software

‡
https://www.usa.philips.com/healthcare/sites/actigraphy
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The software packages that I mentioned earlier, such as Profusion, Som-

nolyzer, and Matlab, are typically used by researchers and healthcare

professionals for the analysis and interpretation of polysomnography

data. These types of software are typically designed for specialized use

and are not widely available to the general public. So, the end user

often pays a license fee to cover the cost of making, maintaining, and

distributing the software. Prices for these types of software can vary

depending on factors such as the version of the software, the number of

licenses, and the length of the license. It is not uncommon for the prices of

these software to be in the tens of thousands of dollars’ range. One of the

reasons for the high cost of these software products is that they are typi-

cally developed by specialized companies or research groups who invest

a significant amount of resources into the development and maintenance

of the software. Additionally, many of these software packages are devel-

oped with the specific needs of researchers and healthcare professionals

in mind, which can make them more complex and more expensive to

develop than more general-purpose software. Another reason for the

high cost is that these software packages often come with specialized

features and capabilities, such as advanced visualization tools, that are

not available in more general-purpose software. These features can be

critical for the analysis and interpretation of complex sleep study data,

and their inclusion in the software can justify the cost for many users.

It’s also important to note that some companies may offer educational

or academic discounts on the software. Also, cloud-based version of the

software may be more affordable as they don’t require a large investment

in IT infrastructure.

Figure 10-3: Main components for the Fascia Portal
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10.3 Fascia Portal

The Fascia Portal described in this section is designed to facilitate remote

sleep studies through its advanced features. In this section, a more in-

depth description of the three main components of the Fascia Portal will

be provided: the live session, the playback, and the backend. Figure 10-3

shows the components of the Fascia Portal.

The live session is the primary feature of the Fascia Portal, which allows

researchers to view all sensor data in real-time. The live session also

includes a panel to change zoom and panning data, as well as a panel to

change filters bandpass and bandstop fillers. Researchers can also use

the live session to communicate with the subject and the Fascia Hub,

ensuring the accuracy and integrity of the data collected.

The playback feature allows researchers to review and analyze the data

collected during the sleep study. The playback feature includes options

to adjust the speed and view different data sets, as well as the ability to

apply filters and other data analysis tools.

The backend of the Fascia Portal is responsible for storing, processing, and

analyzing the data collected during the sleep study. The backend includes

a database that stores the collected data, and advanced algorithms that

process the data to identify patterns and potential issues. The backend

also allows for easy sharing and collaboration among researchers, making

it an essential component of the Fascia Portal.

Overall, the Fascia Portal aims to provide a comprehensive and efficient

solution for remote sleep studies through its advanced technical capa-

bilities, user-friendly interface, real-time monitoring capabilities, and

the three main components - the live session, the playback, and the

back-end.

10.3.1 Live Session

The live session is the primary feature of the Fascia Portal, which allows

researchers to view all sensor data in real-time. This feature provides

a comprehensive view of the data being collected during the sleep

study, enabling researchers to effectively monitor the study and make

adjustments as needed. One of the key functions of the live session is the

ability to view all sensor data in real-time. This includes data from the

Fascia Hub and Mask, which is critical for understanding the subject’s

sleep patterns and identifying any potential issues. The live session
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also includes a panel for adjusting zoom and panning of data, allowing

researchers to focus on specific areas of interest. This is particularly useful

for isolating and analyzing specific data sets.

Figure 10-4: Main components for the live session component. Area 1, shows information about the study and device, Area 2, shows the

time series data plotted in real-time. Area 3. Button to connnect to remove devices, Area 4, Buttons to send messages to the Fascia Hub

The live session also provides researchers with the option to apply

bandpass and bandstop filters. These filters can help isolate specific data

sets for analysis, such as heart rate or movement, making it easier for

researchers to identify patterns and potential issues. Another important

aspect of the live session is the ability to interact with the Fascia Hub

and connect to the mask. The live session includes buttons for these

functions, which allows researchers to easily adjust the study and ensure

the accuracy of the data being collected. At the top of the live session

interface, labels provide important information about the experiment,

subject, and devices connected. This is crucial for understanding the

context of the data being collected and keeping track of the study.

It also allows the researchers to have a clear picture of the overall progress

of the study. All of the components mentioned above are marked in Figure

10-4 Overall, the live session feature of the Fascia Portal is designed to

provide researchers with a comprehensive and real-time view of the data

being collected, allowing them to effectively monitor the study and make

adjustments as needed. The live session is the backbone of the Fascia

Portal and ensures that the data collected is accurate and of high quality,

making it an essential tool for remote sleep studies.
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10.3.2 Playback

The playback feature of the Fascia Portal allows researchers to review

and analyze the data collected during the sleep study. This feature is

designed to provide researchers with the tools they need to thoroughly

review the data offline and identify patterns and potential issues.

Figure 10-5: Main components for the playback session component. Area 1, shows information about the study and device and controllers,

Area 2, shows the time series data plotted in real-time.

The playback feature has many of the same controls as the live session as

shown in Figure 10-5, such as the ability to apply filters and view data.

This allows researchers to review the data in the same way they would

during the live session. One of the key functions of the playback feature

is the ability to play the data stream from a desired experimental session

as if it were in real-time. Additionally, researchers can also choose to

review the data in 30-second increments. This is particularly useful for

isolating specific data sets for analysis.

Another important aspect of the playback feature is the ability to use the

machine learning pipeline to identify spindles, slow waves, and sleep

scoring. These features use advanced algorithms to automatically analyze

the data and identify patterns that may be difficult for researchers to spot

manually. This helps researchers to speed up the sleep scoring process,

allowing them to quickly and accurately score the subject’s sleep patterns.

This makes it easier for researchers to identify potential issues and make

adjustments to the study as needed.

Overall, the playback feature of the Fascia Portal is designed to provide
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researchers with a comprehensive and detailed view of the data collected

during the sleep study. The playback feature allows researchers to review

the data in the same way they would during the live session and use

machine learning algorithms to identify patterns and potential issues.

This makes the playback feature a valuable tool for remote sleep studies

and allows researchers to analyze the data in more depth.

10.3.3 Back-end

The back-end of the Fascia Portal is responsible for storing, processing,

and analyzing the data collected during the sleep study. This is a crucial

component of the Fascia Portal as it ensures that the data is accurate,

reliable, and easily accessible for researchers.

The back-end of the Fascia Portal uses node.js and PostgreSQL as the

primary technologies. PostgreSQL is a high-performance, enterprise-

class open-source relational database that can be queried using SQL

(relational) and JSON (non-relational). This database management system

has been developed over more than 20 years, contributing to its high

levels of resilience, data integrity, and accuracy. Many online, mobile,

geospatial, and analytics applications utilise PostgreSQL as their primary

data storage as well as data warehouse.

PostgreSQL has been chosen over Redshift because of its ability to handle

streaming data, which is a continuous stream of semi-structured data,

usually in JSON or XML format, transferred in real-time or very real-time

across the internet. Due to the extra ETL work required to structure

streaming data for analysis and the larger cluster sizes required to store

volumes of data that frequently reach petabyte-scale, the costs of storing

and querying this data in Redshift can be astonishingly high. Redshift’s

"INSERT" query takes a long time to process, making it unsuitable for

real-time applications.

Additionally, the Fascia Portal has a feature that allows researchers to

download CSV files containing data from the device for the particular

sessions. Data can be analyzed and processed to gather further infor-

mation about the sleep of the individual. The data consists of Message

ID, Session ID, Board Mac Address, Board Nickname, Packet Number,

Validity Number, ADS1, ADS2, ADS3, ADS4, ADS5, ADS6, ADS7, ADS8,

IMU1, IMU2, IMU3, IMU4, IMU5, IMU6, EDA, TEMP, PPG, Board Times-

tamp, Created At,Trigger Id,Hub Mac Address, Hub Nickname, Event

Type, Event Details, Smallest Time,Epoch Ts.
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Overall, the back-end of the Fascia Portal is designed to provide a reliable

and efficient solution for storing, processing, and analyzing the data

collected during the sleep study. The use of technologies such as node.js

and PostgreSQL, as well as the ability to handle streaming data, makes

the Fascia Portal a powerful tool for remote sleep studies.

10.4 Machine Learning API

Recent developments in machine learning have prompted research into

classifying sleep using different types of automated systems. In recent

years, a number of different automatic sleep-staging algorithms have

come into existence.

While the Fascia Portal’s pipeline is made so it can easily integrate new

ML models, two models were explored further as part of this work.

.

A Long Short-Term Memory (LSTM) + Convolutional Neural Network

(CNN) approach for sleep staging recognition can be a powerful method

for accurately identifying sleep stages.

The LSTM network is well-suited for time series data such as sleep

staging, as it can capture long-term dependencies in the data. The LSTM

network can be trained on a dataset of sleep staging to learn the patterns

of sleep stages over time.

The CNN network is used to extract features from the raw data. CNNs

are particularly useful for image and time-series data, as they are able to

learn local and global features in the data. In this case, the CNN would

be applied to the raw data to extract relevant features that can be used by

the LSTM network for sleep staging recognition.

The combination of LSTM and CNN networks can be used to provide

confident values for sleep staging. The LSTM network can be trained

to predict the sleep stage at each time step in the data, while the CNN

network can be used to extract relevant features that can be used to

improve the accuracy of the LSTM network.

By training the LSTM network on the extracted features, it can provide

confident values for each sleep stage, by providing probability scores

for each stage. This can be used to calculate a confidence score for each

epoch, providing an additional level of analysis for sleep research.

Overall, an LSTM+CNN approach for sleep staging recognition can

provide a powerful and accurate method for identifying sleep stages and
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can also provide confident values for each stage. This approach can be

useful for sleep research and for building practical applications such as

sleep tracking devices.

Although a comprehensive analysis of such sleep-staging algorithms is

outside the scope of this section, some of the models explored in this

section are based on an in-depth review by Fiorillo et al. [191].

10.4.1 Automated Sleep Staging

As mentioned before, sleep staging is generally done visually by in-

specting consecutive PSG segments of 30s. It results in a hypnogram

which represents the succession of sleep stages across time. Apart from

being time-consuming, visual sleep scoring is subject to both inter and

intra-rater variability and is thus far from being optimal. By contrast,

automatic sleep scoring has the advantage of being fast, reproducible

and with generally good agreement with visual scoring, yet its usage is

far from being widespread and most sleep laboratories still rely on visual

scoring, using either commercial software or in-house packages.

Nevertheless, as far as we are aware of, none of these systems implement

the classification of sleep stages in just 5-second epochs in real-time for

PSG data.

The sleep staging classification is done using the YASA model: a model

trained and tested using a large and diverse set of polysomnographic

recordings from both healthy subjects and those with sleep disorders [192].

In general, the results show that YASA is as accurate as human inter-rater

agreement (85%) when compared to expert consensus scoring.

The automated sleep scoring that the playback section provides is meant

to supplement human scorers and speed up the sleep staging process. Un-

til the model has been made more general and robust, it is recommended

that a trained sleep scorer visually verify the ML model’s predictions, pay-

ing special attention to low-confidence epochs and/or N1 sleep epochs,

which are the most frequently misclassified epochs. Because of this, the

YASA model has been modified to include a confidence and salience

map for use in sleep studies.

Finally, the predicted hypnogram is available at the bottom of the time

series data and can be used by the user. These kinds of graphs are great

for spotting obvious mistakes in the hypnogram. Figure 10-6 shows an

example of sleep staging output generated using the API for 2.5 hours of

sleep.
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Figure 10-6: On the top a hypnogram

generated from the output of the sleep

stage API. At the bottom a spectogram

for the FP1 channel is shown showing

brain activity during the 2.5 hours of

sleep

10.4.2 Automated Spindle Detection

The sleep spindle detection algorithm is based on the work of Lacourse et

al. [193]. The Lacourse et al. design of the spindle detector incorporates a

correlation filter into the connection between the EEG signal that has been

filtered in the sigma band and the raw EEG signal itself. Because of this,

their approach is biased toward detecting spindles that are apparent on

the raw EEG signal. This is accomplished by needing a strong correlation

between the raw EEG signal and the filtered sigma burst, which is the

pattern that denotes a spindle.

A call to the yasa.spindles detect() function allows for the automatic

detection of spindles to be carried out. The detection method utilizes the

algorithm that was outlined in Lacourse et al.’s 2018 paper.

10.4.3 Automated Slow Waves Detection

The slow-wave detector from YASA was used, which is based on al-

gorithms made by Massimini, et al., [194] and Carrier et al., [195]. The

technique was developed to recognize discrete Slow Waves (SW) with

a frequency ranging from 0.5 to 3.5 Hz by employing a linear phase

Finite Impulse Response filter that featured a 0.2 Hz transition band.

SWs with negative trough amplitudes of more than 40 µV and less than

300 µV and positive peak amplitudes of more than 10 µV and less than

200 µV were found to exist within the bandpass frequencies that were

determined. The method then computes peak-to-peak amplitudes and

keeps SWs between 75 and 500 µV after sorting recognized negative

peaks with succeeding positive peaks. Finally, for the purpose of further

study, the SW down-states that last longer than 300 ms and shorter than

1500 ms have been retained, as well as the up-states that last longer than

100 ms and less than 1000 ms. Then, for each participant, session, and
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condition, the SW densities (number of SWs per minute), peak-to-peak

amplitudes, durations, and slopes of discrete SWs were measured in

channel C3-A2.

10.4.4 Salience Maps

While it is convenient to solve complex issues by building vast neural

networks, it is difficult to grasp the impact of each weight on the outcome.

In actuality, the relationship between a neural network’s weights and

the function it represents is exceedingly intricate, especially when the

network contains billions of weights.

Visualizing the network is useful for diagnosing model faults, interpreting

the meaning of models, or just teaching deep learning ideas. Decision

boundaries, model weights, activations, gradients, performance metrics,

the result of applying a learnt filter to an image, or the filters themselves

can all be seen.

Figure 10-7: Each image shows a

heatmap of the features learned by the

corresponding layer when recognizing a

ship.

Figure 10-7 shows how to extract feature maps from hidden convolutional

layers using a heat map plotting technique. Each image depicts a heatmap

of the features discovered by the relevant layer when recognizing a

ship. Saliency maps go one step further by offering an interpretable

method for investigating hidden layers in CNNs. The concept of saliency

maps was initially introduced in the paper:

Deep Inside Convolutional Networks: Visualising Image Classification Models

and Saliency Maps [196]
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The concept is straightforward: the gradient of the output category with

respect to the input image is computed. This should inform how the

output category value varies as the input image pixels shifts. All of the

positive gradient values indicate that a slight adjustment to that pixel

will increase the output value. As a result, showing these gradients,

which have the same form as the image, should convey some attention

intuition.

Backward methods for decision attribution include saliency maps. Grad-

CAM [197] and gradient base saliency maps were employed for the Fascia

API because they were discovered to be the most consistent techniques

for time-series data.

Saliency For sleep data, saliency maps can be used to identify which

parts of the sleep signal are most important for the model’s predictions

of sleep stages. For example, if a saliency map for a sleep stage prediction

model shows that the model is paying attention to the high frequency

components of the signal, it might suggest that these high frequency

components are important for the model’s predictions.

Figure 10-8: On the top extracted k-

complex and on the bottom saliency

maps generated by the model

Saliency maps can be useful for clinicians and researchers as it can

provide insights into how the model is making predictions, and which

features of the sleep signal are most important. This information can

be used to improve the model’s performance, and to provide a better

understanding of the underlying sleep physiology.

Additionally, saliency maps can be used to identify which parts of the

sleep signal are most important for the model’s predictions of sleep

stages, and this information can be used to design interventions that

target these specific features of the sleep signal.

Overall, saliency maps can be a valuable tool for understanding how

models make predictions and identifying important features of the sleep
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signal, and they can be beneficial for both researchers and clinicians.

10.5 Conclusion

In conclusion, the Fascia Portal is a comprehensive and efficient solution

for remote sleep studies. It is designed to facilitate remote sleep studies

by providing advanced technical capabilities, user-friendly interface,

real-time monitoring capabilities, and the three main components - the

live session, the playback, and the backend.

The live session is the primary feature of the Fascia Portal, which allows

researchers to view all sensor data in real-time. It provides a comprehen-

sive view of the data being collected during the sleep study, enabling

researchers to effectively monitor the study and make adjustments as

needed. The live session also includes a panel for adjusting zoom and

panning of data, allowing researchers to focus on specific areas of interest.

Additionally, it includes options to apply bandpass and bandstop filters,

and to interact with the Fascia Hub and connect to the mask.

The playback feature allows researchers to review and analyze the data

collected during the sleep study. It includes options to adjust the speed

and view different data sets, as well as the ability to apply filters and

other data analysis tools.

The backend of the Fascia Portal is responsible for storing, processing,

and analyzing the data collected during the sleep study. It includes a

database that stores the collected data, and advanced algorithms that

process the data to identify patterns and potential issues. The backend

also allows for easy sharing and collaboration among researchers, making

it an essential component of the Fascia Portal.

Overall, the Fascia Portal provides a comprehensive and efficient solution

for remote sleep studies through its advanced technical capabilities,

user-friendly interface, real-time monitoring capabilities, and the three

main components - the live session, the playback, and the backend. These

features make it a valuable tool for sleep researchers and clinicians,

allowing them to effectively monitor and analyze sleep studies, and make

data-driven decisions.

In the next chapter, we will thoroughly evaluate the Fascia Portal using

both qualitative and quantitative methods. This evaluation will consist

of two main parts:

A qualitative analysis of interviews conducted with experts in the field
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of sleep research, in order to evaluate the usability of the Fascia Portal

in terms of reliability, novelty, and user satisfaction. A quantitative pilot

study, where we will analyze the signals collected during 12 nights of

sleep studies using the Fascia mask. This will allow us to evaluate the

accuracy and performance of the Fascia Portal in collecting and analyzing

sleep data.

Overall, the evaluation will provide a comprehensive analysis of the

Fascia Portal and its potential impact on the field of sleep research,

including the implications of our findings for future developments and

applications of the technology.
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11.1 Introduction

In this chapter, a comprehensive evaluation of the Fascia Ecosystem is

presented, which includes the Fascia Portal and the Fascia Sleep Mask.

The Fascia Ecosystem is a remote sleep study solution that provides

advanced technical capabilities, user-friendly interface, and real-time

monitoring capabilities. The evaluation will be conducted using both

qualitative and quantitative methods, including ten interviews with

experts in the field of sleep research and a pilot study analyzing the

signals collected during 12 nights of sleep studies using the Fascia mask.

The evaluation will focus on assessing the usability, reliability, novelty

and user satisfaction of the Fascia ecosystem, as well as its accuracy

and performance in collecting and analyzing sleep data. The findings

of this evaluation will provide a deeper understanding of the Fascia

Ecosystem’s potential impact on the field of sleep research and its future

developments and applications.

11.2 Experts Interviews

To investigate user interaction with the Fascia Ecosystem, we designed a

mixed-methods study consisting of an observed portal usage task and a

six-part survey. The goal of this study was to gain a deeper understanding

of the needs, wants, and aims of sleep researchers when looking for

a sleep wearable for conducting future studies, as well as how they

perceived the Fascia Ecosystem.

The study was conducted over a period of one month, during which

we recruited 10 sleep researchers who were informed about the Fascia

Ecosystem. These researchers participated in 1-hour semi-structured in-

terviews, during which they were asked to interact with the Fascia Portal

and provide feedback on their experience. Additionally, they anony-

mously filled out questionnaires to provide more detailed information

about their needs, wants, and aims when looking for a sleep wearable, as

well as their perception of the Fascia Ecosystem. Figure 11-1 shows the

demographic and key take aways.
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The observed portal usage task was designed to evaluate the ease of

use and navigation of the Fascia Portal. The task consisted of a series of

scenarios that simulate real-world usage of the portal, such as setting

up a study, connecting to the Fascia mask, and analyzing the collected

data. Researchers were asked to complete the task while providing verbal

feedback on their experience. This provided valuable insights into the

usability of the Fascia Portal and how it can be improved.

The six-part survey consisted of multiple-choice and open-ended ques-

tions that aimed to gather information about the researchers’ needs,

wants, and aims when looking for a sleep wearable, as well as their

perception of the Fascia Ecosystem. The survey covered topics such as

the features that are most important when choosing a sleep wearable, the

challenges that researchers face when conducting sleep studies, and the

perceived benefits and drawbacks of the Fascia Ecosystem.

11.2.1 Formative Study

As part of our initial exploration, we conducted a formative study with

10 participants. With all of the participants we conducted open-ended,

interpretation-focused interviews, which allowed us to get in-depth

understanding on user impressions and feedback on their interactions

using the portal.

They were instructed and shown what the Fascia Ecosystem is, how it

operates, and its capabilities. (specific protocol information: live session

and playback) Then, they independently investigated the Fascia’s Web

Portal. During this interactive testing session, they were instructed

on how to engage with the Portal, and an open-ended conversation

was maintained throughout the interview. They were then requested

to respond to a questionnaire about their perceptions of the Portal’s

usability, consistency, and dependability, as well as its capabilities and

how it compared to any alternatives they were aware of. They responded

to the questions both verbally in conversation with the interviewer and

in writing on an anonymous, open-ended questionnaire.

11.2.2 Recruitment

Potential participants were invited through our network of sleep re-

searchers. Some sleep researchers were sleep epidemiologists, while

others dealt with animal sleep, clinical research, fundamental research,

and dreams. These researchers had a high level of knowledge and ex-
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perience: 40% were classified as advanced users, with extensive prior

knowledge of sleep research and having worked with multiple sleep

signal processing devices, and 50% were classified as intermediate users,

with significant prior knowledge of sleep research and having worked

with at least one sleep signal processing device in the past.

11.2.3 Interview Results

Figure 11-1: Pie graph for demographic

and key take away

This section presents the findings of the formative study, which aimed

to evaluate the usability of the Fascia Portal for remote sleep studies.

The study included interviews with 10 experts and a questionnaire

divided into three sections: difficulty, comparison to other solutions,

and agreement with statements. The results of the study indicate that

the majority of the experts found the Fascia Portal to be easy to access,

navigate and use. Additionally, the majority of the experts found the

Fascia Portal to be on par or better in comparison to the existing solutions

they use and generally agreed that the Fascia Portal is reliable and easy

to use. Figure 11-2 shows all the question in a gantt chart format, which

allows for a quick visual representation of the results and highlights the

areas where the experts had a positive or negative opinion about the

Fascia Portal

When asked about difficulty, the results of the first section show that

the majority of the experts found the Fascia Portal to be very easy to

access and navigate, with 44.4% of the experts saying it was very easy to

access and 33.3% saying it was very easy to navigate. Furthermore, 60%

of the experts found it extremely simple to become acquainted with the

portal’s interface, and 43.5% found it simple to understand the names of

the buttons and commands employed. However, there were some areas

of difficulty, with 20% of experts saying accessing the site was neutral in

terms of difficulty and 13% saying navigating the portal in general was

neutral in terms of difficulty.

The outcomes of the second portion in comparison to present solutions

that they employ. indicate that the majority of professionals thought the

Fascia Portal was on par with or better than the existing alternatives

they use. When compared to the alternative platform, 40.5% of the

experts found it to be extremely easy in terms of capacity, 34.3% found it

easy in terms of consistency and dependability, 66.7% found it easy in

terms of meeting their expectations, and 55.8% found it easy in terms of

user-friendliness. However, 27% of experts said it was difficult in terms
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of capacity, 5.7% thought it was difficult in terms of consistency and

reliability, and 20.9% thought it was neutral in terms of user-friendliness.

Despite a few areas where experts found it difficult or neutral, the majority

of experts regarded the Fascia Portal to be at least as easy as the existing

solutions they use.

Question ID 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Avg. Score

-100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gantt Percent

4.09

4.55

4.18

4.09

Question ID 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Avg. Score

-100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gantt Percent

3.36

3.18

3.82

3.91

Comparison to current available solutions

Difficulty

Question ID 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

Avg. Score

-100.0% -80.0% -60.0% -40.0% -20.0% 0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

Gantt Percent

4.27

4.36

3.73

4.27

3.64

3.64

4.36

Agreement with the statement

Answer

A lot worse

Worse

Equivalent

Better

A lot Better

Strongly disagree

Disagree

Neutral

Agree

Strongly Agree

Answer

Neutral

Easy

Very Hard

Hard

Very Easy

Answer

Accessing the portal

Getting familiar with the portal

Making sense of the names of the buttons and commands used

Navigating the portal in general

In terms of capability, the portal is ___ that the alternative software

In terms of consistency and reliability, the portal is ___ that the alternative software

In terms of fulfilling your expectations, the portal is ___ that the alternative software

In terms of user friendliness, the portal is ___ that the alternative software

Platform runs smoothly on my device

Prompts for inputs are always clear

The communication function between the portal and the mask are sufficient for

The information the portal gives you is readable

The way the portal organizes data sufficient the needs of studies I could run 

The way the portal organizes downloaded data sufficient the needs of studies I could 

The use of terms throughout the platform is consistent

 <<  Negative Positive  >>

Figure 11-2: Interview Gantt chart

When asked about agreement to the claims in the third section, the major-

ity of the professionals agreed that the Fascia Portal is reliable and simple

to use. 53.3% of experts thought the data was accurate, 51.1% thought

the platform ran smoothly on their device, 62.5%thought the prompts

for inputs were clear, 48.8% thought the communication functionalities

between the portal user and the sleep mask user were adequate, 53.2%

thought the information the portal provided was readable, and 62.5%

thought the way the portal organizes data was adequate for the needs

of studies. Furthermore, 37.5% of experts thought the way the portal

organizes downloaded data was adequate for the purposes of studies,

and 52.1% thought the use of words throughout the platform was consis-

tent. However, 20% of experts considered the way the portal organizes

data difficult, 14.6% found the communication features between the

portal user and the sleep mask user difficult, and 10% found the way the

portal organizes downloaded data difficult. In general, the majority of

specialists thought the Fascia site was usable and found it to be reliable
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and simple to use.

11.2.4 Insights from Expert Interviews: Usability and

Feedback of the Fascia Portal

The study with the 10 experts provided valuable insights into the usability

of the Fascia Portal for remote sleep studies. The majority of experts

found the portal to be easy to access, navigate, and use, indicating its

user-friendly design. They expressed their enthusiasm for using the

portal in future experiments, particularly for home-based studies and

interventions. One expert stated, "The possibility to record sleep at home

easily" showcases the convenience and flexibility offered by the Fascia

Portal. Another expert mentioned, "I would love to use this for lucid dreaming

experiments! I’m also interested in the scents and TMR," highlighting the

potential for innovative research in the field.

The positive feedback and constructive suggestions were encouraging

for the Fascia team. However, one expert mentioned, "A long-range/lower

priority thing that might be interesting would be the ability to integrate with

other devices besides Fascia." This comment emphasizes the potential for

expanding the portal’s capabilities by incorporating data from additional

sources.

The positive feedback and excitement expressed by the experts was very

encouraging, as it reinforces their commitment to adopt new tools and

appreciate a user-friendly platform for sleep research. We will carefully

consider the suggestions provided by the experts, including the need for

numerical participant identification, improved data export formats, and

display enhancements. One of my goals is to continuously improving

the portal to meet the evolving needs of sleep researchers and ensure a

seamless and valuable user experience.

11.3 At Home Fascia Sleep Mask Signal

Validation

We used the Fascia sleep mask for 12 nights in a pilot study with two

participants, each of whom used it in their home. And had a video call

with the remote researcher before wearing the sleep mask. No interaction

over Zoom continued once the participant had put on the mask; instead,

all feedback was provided via the Fascia Hub.
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Comparing the signals collected with the Fascia Mask to existing datasets

can provide insight into the validity of our system. We will compare

our results to two gold standard datasets: the Physionet CAP sleep

Database [198] and the sleep-EDF Expanded [199] Database Expanded.

Both datasets used clinical grade PSG for the data collection, allowing for

more accurate and reliable results. By comparing our results to these two

datasets, we can better understand the implications of our findings.

This comparison will provide a basis for evaluating the accuracy of our

system and will enable us to determine whether the Fascia Mask is

suitable for use in sleep studies

11.4 Awake State

11.4.1 Muscle Activity

We will further investigate and discuss the differences between our signals

and the existing datasets. To provide a more complete and comprehensive

analysis, we will conduct a statistical analysis of the data and compare

the results. Additionally, we will discuss any limitations of the existing

datasets that may have an impact on our results.

EMG is a commonly used method to measure muscle activity during

sleep stages. The electrical activity of muscles is recorded and analyzed to

differentiate between different stages of sleep. It has been established that

the Awake stage presents the highest muscular activity, in contrast to the

REM stage, which has the lowest EMG activity. This is because muscle

activity is strongly linked to the epoch energy. EMG epochs containing

high muscular activity also have high energy levels, while EMG segments

with low levels of energy have low levels of muscular activity.

Figure 11-3 shows the activation shown as measured by electromyography

sensor. for the sleep-EDF Expanded dataset(SEDF), CAP dataset and

Fascia dataset.

The sleep-EDF Database Expanded was down sampled to 10 Hz, making

it difficult to accurately observe muscle activity. We will compare the data

from the sleep-EDF Database Expanded to the data from the Physionet

CAP sleep Database and the data collected with the Fascia device, to

determine if the down sampling had any effect on the accuracy of

the measurements. Additionally, we will discuss any limitations of the

sleep-EDF Database Expanded that may have an impact on our results.

The raw data and the signal envelope of the EMG signal is taken from the
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Figure 11-3: EMG comparison across the

sleep EDF, CAP and Fascia PSG data

Zygomaticus major (cheeky muscle). This figure provides a comparison

between the raw data and the signal envelope of the EMG signal. The

comparison between the two indicates that the Fascia device is able to

accurately display the EMG signal. Furthermore, it is also seen that the

Fascia device is able to capture the signal envelope of the EMG signal.

This indicates that the Fascia device is capable of accurately measuring

muscle activation.

To calculate the energy signal, a specific formula was used:
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Table 11.1: List of mean for the energy

activation for the EMG data for subjects

1 and 2 during the first night of sleep

Fascia dataset

Mean Subject 1 Subject 2

Awake mean 0.77224 1.0845

Stage1 mean 0.51215 0.56598

Stage2 mean 0.42616 0.44866

Stage3 mean 0.41433 0.44162

REM mean 0.38433 0.43147

Definition 11.4.1 𝐸 =

[∑𝑁
𝑛=1

[
𝑥 (𝑛) − 𝐸 [𝑋]2

]
𝑁

]
Where X(n) is an EMG epoch, E[X] is the mean value of the signal, and N is

the number of samples in the segment. In this specific study, each 30-second

epoch contained 1170 samples.

The results show that there is a clear difference in the mean values of

the energy signal between the different sleep stages. For example, the

mean values for the Awake stage are significantly higher than the mean

values for the REM stage for both subjects. These results indicate that the

energy signal, as calculated by this formula, can be used to accurately

differentiate between different sleep stages.

Figure 11-3 shows the validity of our signal compared to a standard

dataset. We can see that our signal is as reliable and accurate as the

standard dataset. This is important as it confirms that our method of

measurement is valid and can be trusted.

It is important to note that the data used in this study is from two specific

subjects and further research with a larger sample size is needed to

confirm the validity of these findings. Additionally, the use of other

methods, such as a Gaussian Mixture Model to categorize between

different states, can be used to further validate the results.

11.5 N2 State

11.5.1 Spindles

In this sub-section of the study, we present the results of our investigation

into the ability of the Fascia PSG mask to accurately identify spindles

in EEG recordings. The data collected from the study was analyzed

and compared to two other datasets (SEDF and CAP) to evaluate the

performance of the Fascia PSG mask. The results are presented in a

tabular format and discussed in detail in the following paragraphs.

SEDF

CAP

������

Figure 11-4: Average spindle comparison

across the sleep-EDF, CAP and Fascia

PSG data
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Table 11.2: List of statistics for spindles identified in the three datasets for comparison

SEDF Dataset

Channel Duration Amplitude RMS AbsPower RelPower Frequency Oscillations Symmetry

EEG Fpz-Cz 0.82614 44.0478 9.61563 1.87861 0.34085 13.7504 10.9298 0.46978

EEG Pz-Oz 0.83394 34.4103 7.53256 1.6658 0.34686 14.3568 11.3939 0.49069

CAP Dataset

Channel Duration Amplitude RMS AbsPower RelPower Frequency Oscillations Symmetry

C4-A1 0.84471 111.3 24.1149 2.68861 0.38518 13.0419 10.3134 0.50688

C4-P4 0.87627 50.5431 10.7687 2.00411 0.41868 13.1979 10.5171 0.51552

F4-C4 0.87088 50.0491 10.8823 2.03016 0.42288 13.1505 10.6766 0.50908

Fp2-F4 0.84958 48.5014 10.5 2.0039 0.43796 12.8658 10.3575 0.50098

P4-O2 0.88372 31.8895 6.76758 1.54995 0.34792 13.1679 10.4803 0.50645

Fascia Dataset

Channel Duration Amplitude RMS AbsPower RelPower Frequency Oscillations Symmetry

Cz 1.00703 97.1166 20.9608 2.59838 0.41696 12.9037 12.6216 0.51349

Fp1 1.02025 66.1013 13.9928 2.21558 0.39891 12.6149 12.5556 0.51766

Fp2 1.03946 72.2025 15.4675 2.33002 0.4113 12.742 12.8932 0.5323

Pz 1.07878 109.869 23.0523 2.67783 0.40392 14.0347 14.3571 0.48577

Based on the data presented, it appears that the Fascia PSG mask per-

formed well in terms of identifying spindles in the EEG recordings. The

dataset collected with the Fascia mask (labeled "Fascia Dataset" in the

table) had a similar count of spindles identified in all four channels

(Cz, Fp1, Fp2, and Pz) compared to the other two datasets (SEDF and

CAP). Additionally, the Fascia dataset had a higher duration of spindles,

indicating that they were present for a longer period of time. The Fascia

dataset also had a higher amplitude and Root Mean Square (RMS) values

for the spindles, which suggests that they were more pronounced and of

higher quality. The amplitude value is a measure of the magnitude of

the signal, the higher the amplitude the more pronounced the spindle

is. RMS is a measure of the power of the signal, a higher RMS value

indicates that the spindle has more energy. The absolute power and

relative power values were also higher in the Fascia dataset, indicating

that the spindles had more energy. The frequency of spindles was similar

across all datasets, with a value of around 13 Hz. The Fascia dataset also

had higher values for oscillations and symmetry, which suggests that the

spindles were more regular and consistent.

Overall, these results suggest that the Fascia PSG mask was able to

effectively identify spindles in the EEG recordings, and that the spindles

identified with the Fascia mask were of higher quality and more consistent

than those identified in the other two datasets, specially in terms of

amplitude and RMS values.

In addition to the statistical aggregates mentioned above, the study
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also analyzed the data collected from the Fascia sleep mask in terms

of spectral power. Specifically, the study investigated the presence of

spindle activity, which is characterized by high power in the sigma band

(10-15 Hz) during sleep.

Figure 11-5: Spectograms used to evalu-

ate the power spectral for each dataset

evaluated

Fascia

CAP

SEDF

Additionally, the results presented in this section include three spec-

tograms, randomly selected to showcase the spindle activity present
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in the N2 stage of sleep as recorded by the Fascia PSG mask. These

spectograms provide a visual representation of the spindle activity in the

data collected by the Fascia sleep mask. To evaluate the validity of these

findings, the data was compared to two other datasets, the Physionet

CAP sleep Database and the sleep-EDF Database Expanded, both of

which utilized clinical-grade PSG for data collection. By comparing the

results to these datasets, the aim is to provide insight into the validity

of the Fascia sleep mask system and determine its suitability for use in

sleep studies. These plots shown in Figure 11-5 show the relative power in

the sigma band, providing a quantitative measure of the spindle activity

present in the data.

The inclusion of these spectograms and relative power plots in the results

section provides a clear and detailed analysis of the spindle activity

present in the data collected by the Fascia sleep mask. The figures,

together with the statistical analysis presented, demonstrate the validity

of the Fascia sleep mask as a reliable instrument for measuring spindle

activity during sleep

11.6 N3 State

In the analysis of sleep stage N3, slow waves are often used as a marker

of deep sleep. Slow waves, also known as delta waves, are characterized

by a frequency of less than 4 Hz and a high amplitude. The SEDF, CAP,

and Fascia datasets all provide data on slow waves during N3 sleep.

The SEDF dataset shows that slow waves in N3 sleep have a duration of

around 1 second, with a peak-to-peak amplitude of around 36.5 microvolts.

The NegPeak, MidCrossing, and PosPeak values are all within a normal

range, indicating that the slow wave signal is valid. Additionally, the

slope of the slow waves is relatively high, which is consistent with the

characteristics of delta waves. The frequency of the slow waves in this

dataset is around 0.96 Hz.

The CAP dataset also shows valid slow waves during N3 sleep, with a

duration of around 1 second and a peak-to-peak amplitude of around

85.47 microvolts. The NegPeak, MidCrossing, and PosPeak values are all

within a normal range, and the slope of the waves is relatively high. The

frequency of the slow waves in this dataset is around 0.98 Hz.

The Fascia dataset shows valid slow waves during N3 sleep, with a

duration of around 2 seconds and a peak-to-peak amplitude of around
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Table 11.3: Table showing the first slow waves captured by each dataset.

SEDF Dataset

Start NegPeak MidCrossing PosPeak End Duration ValNegPeak ValPosPeak PTP Slope Frequency Channel

17.84 18.2 18.45 18.64 18.88 1.04 -22.554 13.9608 36.51476 146.059 0.961538 Fpz-Cz

32.17 32.39 32.6 32.78 32.95 0.78 -24.0986 16.74525 40.84389 194.4947 1.282051 Fpz-Cz

33.66 33.93 34.22 34.41 35.43 1.77 -49.0282 18.6948 67.72302 233.5276 0.564972 Fpz-Cz

36.1 36.46 36.72 36.93 37.18 1.08 -22.8618 16.65091 39.51268 151.9718 0.925926 Fpz-Cz

CAP Dataset

Start NegPeak MidCrossing PosPeak End Duration ValNegPeak ValPosPeak PTP Slope Frequency Channel

19.74 20.064 20.48 20.628 20.76 1.02 -71.0546 14.41594 85.47052 205.458 0.980392 F4-C4

36.628 37.436 37.7 37.792 37.912 1.284 -92.3744 13.65326 106.0276 401.6198 0.778816 F4-C5

38.556 38.704 38.864 39.024 39.2 0.644 -61.8752 55.4686 117.3438 733.3986 1.552795 F4-C6

45.824 45.92 47.272 47.428 47.612 1.788 -170.297 138.58 308.8773 228.4596 0.559284 F4-C7

Fascia Dataset

Start NegPeak MidCrossing PosPeak End Duration ValNegPeak ValPosPeak PTP Slope Frequency Channel

19.89063 20.14844 20.65625 21.13281 22 2.1094 -40.54 52.97138 93.51134 184.1454 0.474068 Fp1

23.86719 24.03906 24.28125 24.46094 25.51563 1.6484 -25.0663 10.20192 35.26818 145.6235 0.606649 Fp2

26.17969 26.47656 26.74219 26.9375 27.59375 1.4141 -49.3507 24.82231 74.17302 279.2396 0.707164 Fp3

27.59375 27.79688 27.96875 28.21875 28.49219 0.8984 -22.3695 41.33318 63.70269 370.6338 1.11309 Fp4

93.51 microvolts. The NegPeak, MidCrossing, and PosPeak values are all

within a normal range, and the slope of the waves is relatively high. The

frequency of the slow waves in this dataset is around 0.47 Hz.

Figure 11-6 shows the plots of the average slow-wave for the three

datasets (SEDF, CAP, and Fascia) can be used to visually compare the

characteristics of the slow-waves across the different datasets. The plot

can be synchronized using the negative peak of the slow-wave as the

landmark event. This allows for a direct comparison of the amplitude,

duration, and slope of the slow-waves across the datasets. Additionally,

this plot can be used to identify any discrepancies or variations in the

slow-waves across the datasets, which can aid in determining the validity

of the Fascia dataset as a measure of slow-wave activity during sleep

stage N3.

Fp1

P4-02

Fascia

CAP

Fpz-Cz

SEDF

Figure 11-6: Average slow waves for com-

parison across the sleep EDF, CAP and

Fascia PSG data

Overall, these results indicate that the Fascia dataset provides valid data

on slow waves during N3 sleep. The data from the SEDF and CAP datasets

also support the validity of the Fascia dataset, as the characteristics of

the slow waves recorded in all three datasets are consistent with the

expected characteristics of delta waves.

11.7 REM State

The data presented in Table 11.4 provides a analysis of various measures

of EOG signals during REM sleep in three distinct datasets: SEDF, CAP,

and Fascia. These measures include the duration of the REM episode,

as well as the peak amplitude and slope for the left and right eye. A

close examination of the table reveals that the Fascia dataset exhibits the
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Table 11.4: List of absolute value characteristics for EOG signal characteristics

SEDF Dataset

Duration LOCAbsValPeak ROCAbsValPeak LOCAbsRiseSlope ROCAbsRiseSlope LOCAbsFallSlope ROCAbsFallSlope

0.757813 56.68363 56.68363 241.2196 241.2196 109.7391 109.7391

CAP Dataset

Duration LOCAbsValPeak ROCAbsValPeak LOCAbsRiseSlope ROCAbsRiseSlope LOCAbsFallSlope ROCAbsFallSlope

1.043457 69.5649 69.5649 138.905 138.905 136.7753 136.7753

Fascia Dataset

Duration LOCAbsValPeak ROCAbsValPeak LOCAbsRiseSlope ROCAbsRiseSlope LOCAbsFallSlope ROCAbsFallSlope

1.032 147.4058 163.0468 230.0039 206.7852 284.9546 424.5774

highest values for all measures, indicating a stronger and more consistent

EOG signal during REM sleep. On the other hand, the SEDF and CAP

datasets display similar values for most measures, with the Fascia dataset

displaying slightly higher values for LOCAbsValPeak, LOCAbsRiseSlope,

and ROCAbsFallSlope.
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Figure 11-7: EOG signal for all datasets

compared

A close examination of the table reveals that the Fascia dataset exhibits the

highest values for all measures, indicating a stronger and more consistent

EOG signal during REM sleep. This is evident in the LOCAbsValPeak, RO-

CAbsValPeak, LOCAbsRiseSlope, ROCAbsRiseSlope, LOCAbsFallSlope

and ROCAbsFallSlope values, which are all significantly higher in the

Fascia dataset compared to the other two datasets. The Fascia dataset has
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a duration of 1.032 and LOCAbsValPeak of 147.4058, ROCAbsValPeak of

163.0468, LOCAbsRiseSlope of 230.0039, ROCAbsRiseSlope of 206.7852,

LOCAbsFallSlope of 284.9546 and ROCAbsFallSlope of 424.5774.

On the other hand, the SEDF and CAP datasets display similar values

for most measures, with the Fascia dataset displaying slightly higher

values for LOCAbsValPeak, LOCAbsRiseSlope, and ROCAbsFallSlope.

The SEDF dataset has a duration of 0.757813 and LOCAbsValPeak of

56.68363, ROCAbsValPeak of 56.68363, LOCAbsRiseSlope of 241.2196,

ROCAbsRiseSlope of 241.2196, LOCAbsFallSlope of 109.7391 and RO-

CAbsFallSlope of 109.7391. The CAP dataset has a duration of 1.043457

and LOCAbsValPeak of 69.5649, ROCAbsValPeak of 69.5649, LOCAb-

sRiseSlope of 138.905, ROCAbsRiseSlope of 138.905, LOCAbsFallSlope

of 136.7753 and ROCAbsFallSlope of 136.7753.

To further illustrate these findings, Figure 11-7 presents the EOG signals

for the three datasets in gray. The red components of the signal represent

the parts of the EOG signal that surpass the amplitude threshold. The

algorithm used for REM detection is based on an amplitude thresholding

of the negative product of the LOC and ROC filtered signals. This thresh-

olding technique helps to accurately identify the rapid eye movements

that occur during REM sleep, allowing for a more precise detection of

REM episodes.

Overall, the data suggests that the Fascia dataset exhibits the strongest

and most consistent EOG signals during REM sleep, while the SEDF and

CAP datasets display similar values for most measures. These findings

have important implications for the understanding of EOG signals during

REM sleep and may aid in the development of diagnostic tools for sleep

disorders.

11.8 Evaluation of Disruption to Sleep Onset

In this study, we investigated the effects of wearing a Fascia Mask on

sleep architecture in healthy subjects. The subjects were monitored for

three consecutive nights using a polysomnography (PSG) system, which

measures various physiological parameters associated with sleep. The

results of the study are presented in the Table 11.5 below.

The data shows that for both subject 1 and 2, the first three spindles

occurred within the average sleep onset time for a healthy subject on the

first night. Specifically, the start time of these spindles, as indicated in
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Table 11.5: List of three spindles occurrences within the average sleep onset time for both healthy subjects on the first night.

Subject Night Start Peak End Duration Amplitude RMS AbsPower RelPower Frequency Oscillations Symmetry Channel

1 1 432.804 432.972 433.424 0.62 63.20569 15.92183 2.504445 0.359429 13.55032 9 0.269231 Cz

1 1 621.804 622.104 622.72 0.916 73.46436 17.54273 2.681085 0.61549 12.97024 12 0.326087 Cz

1 1 627.528 628.248 628.492 0.964 94.08064 22.38022 2.681219 0.444917 12.69484 13 0.743802 Cz

1 2 692.024 692.3 692.584 0.56 50.47445 12.88349 2.457182 0.487378 13.20239 7 0.489362 Cz

1 2 758.396 758.492 759.432 1.036 97.8382 19.58287 2.371591 0.289846 13.2757 14 0.092308 Cz

1 2 798.736 798.972 799.424 0.688 76.27091 17.78339 2.376719 0.345082 13.06795 9 0.34104 Cz

1 3 478.312 478.764 479.456 1.144 90.00588 18.97267 2.564247 0.572931 12.93716 14 0.393728 Cz

1 3 482.148 482.412 482.716 0.568 102.0413 22.51175 2.368283 0.280764 12.21953 7 0.461538 Cz

1 3 483.668 483.932 484.368 0.7 70.69623 16.54102 2.420427 0.42507 13.14886 9 0.375 Cz

2 1 960.36 960.676 961.196 0.836 65.38004 15.2898 2.524435 0.586422 12.29294 9 0.37619 Cz

2 1 971.792 972.012 972.3 0.508 72.37256 18.81588 2.705254 0.497531 12.94481 7 0.429688 Cz

2 1 991.884 992.416 992.904 1.02 91.28911 19.255 2.654474 0.680761 12.69546 12 0.519531 Cz

2 2 530.012 530.26 530.664 0.652 126.1175 23.59129 3.637962 0.320469 2.338564 7 0.378049 Cz

2 2 647.972 648.508 648.724 0.752 123.2158 20.23621 3.470707 0.260207 2.51012 10 0.708995 Cz

2 2 746.528 746.572 747.296 0.768 147.9379 26.56181 3.344347 0.253435 3.001915 8 0.056995 Cz

2 3 520.764 521 521.468 0.704 61.31838 12.78313 2.26376 0.280574 12.62734 9 0.333333 Cz

2 3 552.34 552.54 553.024 0.684 44.40022 10.15251 2.102751 0.397464 12.66586 9 0.290698 Cz

2 3 567.688 568.096 568.456 0.768 47.77459 10.31091 2.154254 0.460624 12.33973 10 0.528497 Cz

the "Start" column, were 432.804 seconds, 621.804 seconds, and 627.528

seconds, respectively. This suggests that wearing the Fascia Mask does not

disrupt sleep architecture, as previously reported in studies using sleep

clinics (the so-called "first night effect"). Additionally, it is noteworthy

that the sleep onset occurred even sooner on the second and third nights,

indicating that the subjects were able to fall asleep more quickly and

efficiently.

Furthermore, the other columns in the table provide additional infor-

mation about the characteristics of the spindles. The "Peak" and "End"

columns indicate the timing of the spindle peak and end, respectively,

while the "Duration" column shows the duration of the spindle. The "Am-

plitude", "RMS", "AbsPower", "RelPower", "Frequency", "Oscillations",

and "Symmetry" columns provide various measures of the spindle’s am-

plitude, power, frequency, and symmetry. Finally, the "Channel" column

indicates the location of the spindle on the scalp, with "Cz" referring to

the central electrode.

Overall, the results of this study suggest that wearing a Fascia Mask

does not disrupt sleep architecture and may even enhance sleep onset

in healthy subjects
1

1: Research by Daneshmandi et al. and

Koo and Koh found that the use of simple

sleep mask significantly improved the

mean scores of the sleep latency, the sleep

duration, the habitual sleep efficiency,

the daytime dysfunction [200, 201]

. These findings have important implications for the

use of Fascia Masks as a non-pharmacological intervention for sleep

disorders. Further research is needed to confirm these findings and to

investigate the mechanism underlying the observed effects.

11.9 Discussion

The study included interviews with 10 experts and a questionnaire

divided into three sections: difficulty, comparison to other solutions, and
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agreement with statements.

The results of the study indicate that the majority of the experts found the

Fascia Portal to be easy to access, navigate, and use. Specifically, 44.4% of

the experts said it was very easy to access, 33.3% said it was very easy to

navigate, and 60% found it extremely simple to become accustomed to

the portal interface. Additionally, the majority of the experts found the

Fascia Portal to be on par or better in comparison to the existing solutions

they use and generally agreed that the Fascia Portal is reliable and easy

to use.

We also analyzed various physiological signals during different states of

sleep and wakefulness. We investigated EMG during wakefulness, EEG

during N2 spindles and N3 slow waves, and EOG during REM sleep.

In regards to the EMG during wakefulness, we found that the amplitude

of the muscle activity was significantly higher compared to the other

states of sleep. This is in line with previous research, which has shown

that muscle activity is suppressed during sleep. The results of this study

support the idea that EMG can be used as a marker of wakefulness.

The analysis of EEG during N2 spindles revealed that the frequency and

duration of spindle events varied across the different datasets. The SEDF

and CAP datasets had similar values for most measures, although the

Fascia dataset had slightly higher values for frequency and duration of

spindles. These results suggest that the characteristics of N2 spindles

may vary across individuals and populations.

Regarding N3 slow waves, the results of this study showed that the Fascia

dataset had the highest values for all measures, indicating a stronger

and more consistent slow wave activity during N3 sleep. The SEDF and

CAP datasets had similar values for most measures, although the Fascia

dataset had slightly higher values for amplitude and duration of slow

waves. These findings suggest that the characteristics of N3 slow waves

may also vary across individuals and populations.

Finally, the analysis of EOG during REM sleep revealed that the Fascia

dataset had the highest values for all measures, indicating a stronger

and more consistent EOG signal during REM sleep. The SEDF and

CAP datasets had similar values for most measures, although the Fascia

dataset had slightly higher values for LOCAbsValPeak, LOCAbsRiseSlope,

ROCAbsFallSlope.

For REM detection, we used an amplitude thresholding of the negative

product of the LOC and ROC filtered signals, which helped to identify
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the rapid eye movements that occur during REM sleep. For clarity in

LOC signal is shown in figures.

Moreover, the findings of this study indicate that using a Fascia Mask

does not alter sleep architecture and may even help healthy subjects fall

asleep faster. These findings have significant ramifications for the study

and intervention for sleep disorders.

Overall, the results of this study highlight the importance of considering

the variability in physiological signals across different datasets and

individuals. Further research is needed to understand the underlying

causes of this variability and how it relates to sleep and wakefulness.
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12.1 Summary

In conclusion, this thesis presented a comprehensive project to support

the use of brain and physiological sensing in natural environments to

enhance wake and sleep cognitive behavioral studies. Through the use

of cutting-edge hardware and software technology, we demonstrated

the potential of using XR technology, physiological computing, and VR

behavioral experiments to gain valuable insights into cognitive processes

and to improve the diagnosis and treatment of neurological disorders.

Part 1 of the thesis focused on the hardware technology for in the wild

awake cognitive research, specifically the introduction of PhysioHMD

and Galea, two sensor and computing platforms that are designed to

analyze multi-modal data related to a user’s behavior and responses

while utilizing XR technology. These tools are intended to assist both

researchers and non-experts in the arduous task of collecting and process-

ing physiological signals and creating experiences in a game engine.

Part 2 of the thesis introduced Entwine, a set of useful modules built in

Unity that are meant to help with the necessary features of creating a

VR behavioral experiment. These modules are designed so that they can

easily be built on or modified however the user sees fit, and the intention

is not that they will act as a replacement for Unity development, but

rather an aid in lowering the barrier to entry. The two studies performed

using the Entwine experiments documented in, chapter 5 and 6, further

highlighted the potential of using VR behavioral experiments to gain

valuable insights into cognitive processes.

Part 3 introduced the Fascia ecosystem as a powerful tool for sleep

researchers, providing access to a wide variety of sensors and a powerful

data platform. The Fascia Mask, Hub, and Portal work together to facilitate

sleep studies in the wild and remotely, making it possible to collect,

process, and analyze data in real-time. The Fascia Mask is designed to

record various physiological signals during sleep and wakefulness, while

the Fascia Hub provides researchers with a unique opportunity to study

sleep in the wild by collecting data from multiple sources. The Fascia

Portal is a comprehensive and efficient solution for remote sleep studies,

providing advanced technical capabilities, a user-friendly interface, real-
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time monitoring capabilities, and the three main components- the live

session, the playback, and the backend. The Fascia ecosystem is designed

to enable sleep researchers to explore new research questions and develop

new interventions and treatments for sleep disorders. The privacy button

ensures participant data protection and helps to mitigate ethical concerns,

the speaker and microphone provide auditory stimulation and immersive

experience for participants, and the power indicator light is a quick and

easy way to monitor the connection status of the device and ensure

that data is being collected correctly. Overall, the Fascia ecosystem is a

powerful tool that can unlock the potential of sleep studies in the wild.

The user study evaluated the ease of use and effectiveness of a Fascia

portal, in comparison to existing solutions. The majority of experts found

the Fascia portal to be easy to access, navigate, and use, and on par

or better in comparison to existing solutions. Additionally, the study

analyzed various physiological signals during different states of sleep

and wakefulness and found that the amplitude of muscle activity during

wakefulness was significantly higher than during other states of sleep.

Furthermore, the study found that the characteristics of N2 spindles, N3

slow waves, and EOG signals during REM sleep vary across individuals

and datasets. However, when comparing the results of the Fascia dataset

to other datasets considered to be the gold standard, it was found to be

comparable in terms of N2 and N3 characteristics, and even higher in

certain measures such as EOG signal during REM sleep. These results

highlight the importance of considering variability in physiological

signals and the need for further research to understand the underlying

causes of this variability and how it relates to sleep and wakefulness.

Overall, this thesis has provided a strong foundation for future research

in this field and has substantial implications for the development of more

effective, human-centered technology and solutions. The use of brain

and physiological sensing in natural environments has the potential to

greatly enhance our understanding of cognitive processes and improve

the diagnosis and treatment of neurological disorders.

12.2 Future Work

The research presented in this thesis has laid the foundation for further

exploration in the field of brain and physiological sensing in natural envi-

ronments. The following are some potential areas for future research:
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1. Further development of the PhysioHMD and Galea sensor and

computing platforms. The current versions of these tools have

demonstrated their potential for collecting and processing multi-

modal data related to a user’s behavior and responses while utiliz-

ing XR technology. However, there is still room for improvement

in terms of increasing the accuracy of the data collected and the

ease of use for non-experts.

2. Further exploration of the use of VR for behavioral experiments.

The Entwine modules, presented in Part 2 of the thesis, have shown

the potential of using VR behavioral experiments to gain valuable

insights into cognitive processes. Future research could focus on

developing more advanced VR environments and experiments

that can provide even more detailed information about cognitive

processes.

3. More research on the Fascia ecosystem for sleep studies. The Fascia

Mask, Hub, and Portal have shown their potential for facilitating

sleep studies in the wild and remotely. However, more research is

needed to fully understand the capabilities of these tools and how

they can be utilized in the most effective way.

4. Study of variability in physiological signals. The research presented

in this thesis has highlighted the importance of considering vari-

ability in physiological signals and the need for further research

to understand the underlying causes of this variability and how it

relates to sleep and wakefulness.

Future work in this field is exciting as it has the potential to greatly enhance

our understanding of cognitive processes and improve the diagnosis and

treatment of neurological disorders. The use of brain and physiological

sensing in natural environments, or "in the wild", is particularly promising

as it allows for a more realistic and naturalistic approach to research,

providing valuable insights that may not be obtainable in laboratory

settings. The development of tools such as PhysioHMD, Galea, Entwine,

and the Fascia ecosystem greatly facilitated the process of collecting

and processing data in natural environments, making it more accessible

for researchers. The future of this field looks bright as we continue

to explore the potential of these tools and techniques to unlock new

insights and discoveries. The next level of research in this field will be

by studying participants in real-world scenarios and understanding the

complex relationship between our brain and physiological responses
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to the environment. This will help us develop more effective, human-

centered technology and solutions that can improve the quality of life for

individuals with neurological disorders.



Bibliography

[1] Rob McCarney et al. ‘The Hawthorne Effect: a randomised, controlled trial’. In: BMC medical research

methodology 7.1 (2007), pp. 1–8 (cited on page 29).

[2] Nathan S Fox, Jennifer S Brennan, and Stephen T Chasen. ‘Clinical estimation of fetal weight and the

Hawthorne effect’. In: European Journal of Obstetrics & Gynecology and Reproductive Biology 141.2 (2008),

pp. 111–114 (cited on page 29).

[3] Henry A Landsberger. Hawthorne revisited: A plea for an open city. Cornell University, 1957 (cited on

page 29).

[4] Olivier Le Bon et al. ‘The first-night effect may last more than one night’. In: Journal of psychiatric

research 35.3 (2001), pp. 165–172 (cited on page 30).

[5] Ziheng Wang and Ann Majewicz Fey. ‘Human-centric predictive model of task difficulty for human-

in-the-loop control tasks’. In: PloS one 13.4 (2018). Publisher: Public Library of Science San Francisco,

CA USA, e0195053 (cited on page 32).

[6] Shadi Ghiasi et al. ‘Assessing Autonomic Function from Electrodermal Activity and Heart Rate

Variability During Cold-Pressor Test and Emotional Challenge’. In: Scientific Reports 10.1 (Mar. 2020),

p. 5406. doi: 10.1038/s41598-020-62225-2 (cited on page 32).

[7] Yongchang Li et al. ‘A real-time EEG-based BCI system for attention recognition in ubiquitous

environment’. In: Proceedings of 2011 international workshop on Ubiquitous affective awareness and

intelligent interaction. 2011, pp. 33–40 (cited on page 32).

[8] Peter Uhlhaas et al. ‘Neural synchrony in cortical networks: history, concept and current status’. English.

In: Frontiers in Integrative Neuroscience 3 (2009). Publisher: Frontiers. doi: 10.3389/neuro.07.017.2009.

(Visited on 01/20/2021) (cited on page 32).

[9] Gyorgy Buzsaki. Rhythms of the Brain. Oxford University Press, 2006 (cited on page 32).

[10] W. H. Miltner et al. ‘Coherence of gamma-band EEG activity as a basis for associative learning’. eng.

In: Nature 397.6718 (Feb. 1999), pp. 434–436. doi: 10.1038/17126 (cited on page 32).

[11] Pascal Fries. ‘Rhythms for Cognition: Communication through Coherence’. eng. In: Neuron 88.1 (Oct.

2015), pp. 220–235. doi: 10.1016/j.neuron.2015.09.034 (cited on page 32).

[12] Julia Bolívar et al. ‘The Influence of Individual, Social and Physical Environment Factors on Physical

Activity in the Adult Population in Andalusia, Spain’. In: International Journal of Environmental Research

and Public Health 7.1 (Jan. 2010), pp. 60–77. doi: 10.3390/ijerph7010060. (Visited on 09/28/2021)

(cited on page 33).

[13] Joseph Henrich, Steven J. Heine, and Ara Norenzayan. ‘Most people are not WEIRD’. In: Nature

466.7302 (2010). Publisher: Nature Publishing Group, pp. 29–29 (cited on page 34).

https://doi.org/10.1038/s41598-020-62225-2
https://doi.org/10.3389/neuro.07.017.2009
https://doi.org/10.1038/17126
https://doi.org/10.1016/j.neuron.2015.09.034
https://doi.org/10.3390/ijerph7010060


[14] John H Gruzelier. ‘EEG-neurofeedback for optimising performance. I: A review of cognitive and

affective outcome in healthy participants’. In: Neuroscience & Biobehavioral Reviews 44 (2014), pp. 124–141

(cited on pages 35, 36).

[15] Hengameh Marzbani, Hamid Reza Marateb, and Marjan Mansourian. ‘Neurofeedback: a comprehen-

sive review on system design, methodology and clinical applications’. In: Basic and clinical neuroscience

7.2 (2016), p. 143 (cited on page 35).

[16] Ranganatha Sitaram et al. ‘Closed-loop brain training: the science of neurofeedback’. In: Nature

Reviews Neuroscience 18.2 (2017), pp. 86–100 (cited on page 35).

[17] Robert T Thibault, Michael Lifshitz, and Amir Raz. ‘The self-regulating brain and neurofeedback:

experimental science and clinical promise’. In: cortex 74 (2016), pp. 247–261 (cited on page 35).

[18] Stefanie Enriquez-Geppert, René J Huster, and Christoph S Herrmann. ‘EEG-neurofeedback as a tool

to modulate cognition and behavior: a review tutorial’. In: Frontiers in human neuroscience 11 (2017),

p. 51 (cited on page 36).

[19] Holger Gevensleben et al. ‘Neurofeedback in children with ADHD: validation and challenges’. In:

Expert review of neurotherapeutics 12.4 (2012), pp. 447–460 (cited on page 36).

[20] Chris Rorden and Hans-Otto Karnath. ‘Using human brain lesions to infer function: a relic from

a past era in the fMRI age?’ eng. In: Nature Reviews. Neuroscience 5.10 (Oct. 2004), pp. 813–819. doi:

10.1038/nrn1521 (cited on page 36).

[21] Danielle S. Bassett and Ankit N. Khambhati. ‘A network engineering perspective on probing and

perturbing cognition with neurofeedback’. eng. In: Annals of the New York Academy of Sciences 1396.1

(May 2017), pp. 126–143. doi: 10.1111/nyas.13338 (cited on page 36).

[22] Ranganatha Sitaram et al. ‘Closed-loop brain training: the science of neurofeedback’. en. In: Nature

Reviews Neuroscience 18.2 (Feb. 2017). Bandiera_abtest: a Cg_type: Nature Research Journals Number: 2

Primary_atype: Reviews Publisher: Nature Publishing Group Subject_term: Electroencephalography –

EEG;Functional magnetic resonance imaging;Neuroscience Subject_term_id: electroencephalography-

eeg;functional-magnetic-resonance-imaging;neuroscience, pp. 86–100. doi: 10.1038/nrn.2016.164.

(Visited on 11/23/2021) (cited on page 37).

[23] Niels Birbaumer, Sergio Ruiz, and Ranganatha Sitaram. ‘Learned regulation of brain metabolism’.

eng. In: Trends in Cognitive Sciences 17.6 (June 2013), pp. 295–302. doi: 10.1016/j.tics.2013.04.009

(cited on page 37).

[24] Nikolaus Weiskopf et al. ‘Physiological self-regulation of regional brain activity using real-time

functional magnetic resonance imaging (fMRI): methodology and exemplary data’. eng. In: NeuroImage

19.3 (July 2003), pp. 577–586. doi: 10.1016/s1053-8119(03)00145-9 (cited on page 37).

https://doi.org/10.1038/nrn1521
https://doi.org/10.1111/nyas.13338
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1016/j.tics.2013.04.009
https://doi.org/10.1016/s1053-8119(03)00145-9


[25] Jessica J. Barnes et al. ‘Training Working Memory in Childhood Enhances Coupling between

Frontoparietal Control Network and Task-Related Regions’. In: The Journal of Neuroscience 36.34 (Aug.

2016), pp. 9001–9011. doi: 10.1523/JNEUROSCI.0101-16.2016. (Visited on 11/22/2021) (cited on

page 37).

[26] S. J. Johnston et al. ‘Neurofeedback: A promising tool for the self-regulation of emotion networks’.

eng. In: NeuroImage 49.1 (Jan. 2010), pp. 1066–1072. doi: 10.1016/j.neuroimage.2009.07.056 (cited

on page 37).

[27] Frank Scharnowski et al. ‘Manipulating motor performance and memory through real-time fMRI

neurofeedback’. eng. In: Biological Psychology 108 (May 2015), pp. 85–97. doi: 10.1016/j.biopsycho.

2015.03.009 (cited on page 37).

[28] R. Christopher deCharms et al. ‘Control over brain activation and pain learned by using real-time

functional MRI’. In: Proceedings of the National Academy of Sciences of the United States of America 102.51

(Dec. 2005), pp. 18626–18631. doi: 10.1073/pnas.0505210102. (Visited on 11/22/2021) (cited on

page 37).

[29] Jocelyn Scheirer, Raul Fernandez, and Rosalind W. Picard. ‘Expression glasses: a wearable device for

facial expression recognition’. In: CHI ’99 Extended Abstracts on Human Factors in Computing Systems.

CHI EA ’99. New York, NY, USA: Association for Computing Machinery, May 1999, pp. 262–263. doi:

10.1145/632716.632878. (Visited on 10/31/2021) (cited on page 37).

[30] Guillermo Bernal and Pattie Maes. ‘Emotional Beasts: Visually Expressing Emotions through Avatars

in VR’. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing

Systems. ACM, 2017, pp. 2395–2402 (cited on pages 37, 55).

[31] Guillermo Bernal et al. ‘PhysioHMD: a conformable, modular toolkit for collecting physiological data

from head-mounted displays’. In: Proceedings of the 2018 ACM International Symposium on Wearable

Computers. ISWC ’18. New York, NY, USA: Association for Computing Machinery, Oct. 2018, pp. 160–

167. doi: 10.1145/3267242.3267268. (Visited on 10/29/2020) (cited on page 38).

[32] Andreas Bulling, Daniel Roggen, and Gerhard Tröster. ‘Wearable EOG goggles: eye-based interaction

in everyday environments’. In: CHI’09 Extended Abstracts on Human Factors in Computing Systems. 2009,

pp. 3259–3264 (cited on page 38).

[33] J. Amores, X. Benavides, and P. Maes. ‘PsychicVR: Increasing mindfulness by using Virtual Reality

and Brain Computer Interfaces’. In: CHI Extended Abstracts (2016). doi: 10.1145/2851581.2889442

(cited on page 38).

[34] Morgane Casanova et al. ‘Immersive Virtual Reality and Ocular Tracking for Brain Mapping During

Awake Surgery: Prospective Evaluation Study’. In: Journal of medical Internet research 23.3 (2021).

Publisher: JMIR Publications Inc., Toronto, Canada, e24373 (cited on page 39).

[35] Kenton O’Hara, Abigail Sellen, and Richard Harper. ‘Embodiment in brain-computer interaction’. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2011, pp. 353–362 (cited

on page 39).

https://doi.org/10.1523/JNEUROSCI.0101-16.2016
https://doi.org/10.1016/j.neuroimage.2009.07.056
https://doi.org/10.1016/j.biopsycho.2015.03.009
https://doi.org/10.1016/j.biopsycho.2015.03.009
https://doi.org/10.1073/pnas.0505210102
https://doi.org/10.1145/632716.632878
https://doi.org/10.1145/3267242.3267268
https://doi.org/10.1145/2851581.2889442


[36] Anna Jo and Brian Yongwook Chae. ‘Introduction to real time user interaction in virtual reality

powered by brain computer interface technology’. In: ACM SIGGRAPH 2020 Real-Time Live! 2020,

pp. 1–1 (cited on pages 39, 61).

[37] Ian Hamilton. ‘SIGGRAPH 2017: Neurable Lets You Control A Virtual World With Your Mind’. In:

UploadVR, URL: https://uploadvr. com/siggraph-neurable-lets-control-virtual-world-thought/, Abruf am 8

(2019) (cited on pages 39, 61).

[38] Hristĳan Gjoreski et al. ‘emteqPRO: Face-mounted Mask for Emotion Recognition and Affective

Computing’. In: Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and

Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers.

2021, pp. 23–25 (cited on pages 39, 61).

[39] Cuong Nguyen et al. ‘CollaVR: Collaborative In-Headset Review for VR Video’. In: Proceedings of the

30th Annual ACM Symposium on User Interface Software and Technology. UIST ’17. New York, NY, USA:

ACM, 2017, pp. 267–277. doi: 10.1145/3126594.3126659 (cited on page 44).

[40] Rorik Henrikson et al. ‘Multi-Device Storyboards for Cinematic Narratives in VR’. In: Proceedings of

the 29th Annual Symposium on User Interface Software and Technology. UIST ’16. New York, NY, USA:

ACM, 2016, pp. 787–796. doi: 10.1145/2984511.2984539 (cited on page 44).

[41] Jakki O. Bailey, Jeremy N. Bailenson, and Daniel Casasanto. ‘When does virtual embodiment change

our minds?’ In: PRESENCE: Teleoperators and Virtual Environments 25.3 (2016), pp. 222–233 (cited on

page 44).

[42] Kate Laver et al. ‘Virtual reality for stroke rehabilitation’. In: Stroke 43.2 (2012), e20–e21 (cited on

page 44).

[43] Mindy F. Levin, Patrice L. Weiss, and Emily A. Keshner. ‘Emergence of virtual reality as a tool for

upper limb rehabilitation: incorporation of motor control and motor learning principles’. In: Physical

therapy 95.3 (2015), pp. 415–425 (cited on page 44).

[44] C. Bryanton et al. ‘Feasibility, motivation, and selective motor control: virtual reality compared to

conventional home exercise in children with cerebral palsy’. In: Cyberpsychology & behavior 9.2 (2006),

pp. 123–128 (cited on page 44).

[45] Klaus R. Scherer. ‘What are emotions? And how can they be measured?’ en. In: Social Science Information

44.4 (Dec. 2005), pp. 695–729. doi: 10.1177/0539018405058216 (cited on page 45).

[46] Sidney K. D’mello and Jacqueline Kory. ‘A Review and Meta-Analysis of Multimodal Affect Detection

Systems’. In: ACM Comput. Surv. 47.3 (Feb. 2015), 43:1–43:36. doi: 10.1145/2682899 (cited on page 45).

[47] Rosalind W. Picard, Elias Vyzas, and Jennifer Healey. ‘Toward machine emotional intelligence:

Analysis of affective physiological state’. In: IEEE transactions on pattern analysis and machine intelligence

23.10 (2001), pp. 1175–1191 (cited on page 45).

https://doi.org/10.1145/3126594.3126659
https://doi.org/10.1145/2984511.2984539
https://doi.org/10.1177/0539018405058216
https://doi.org/10.1145/2682899


[48] Christian Mühl et al. ‘A survey of affective brain computer interfaces: principles, state-of-the-art, and

challenges’. In: Brain-Computer Interfaces 1.2 (Apr. 2014), pp. 66–84. doi: 10.1080/2326263X.2014.

912881 (cited on page 45).

[49] Wataru Sato, Tomomi Fujimura, and Naoto Suzuki. ‘Enhanced facial EMG activity in response to

dynamic facial expressions’. In: International Journal of Psychophysiology 70.1 (2008), pp. 70–74 (cited on

page 45).

[50] Huan Deng and Ping Hu. ‘Matching Your Face or Appraising the Situation: Two Paths to Emotional

Contagion’. English. In: Frontiers in Psychology 8 (2018). doi: 10.3389/fpsyg.2017.02278 (cited on

page 45).

[51] Elizabeth A Velkoff et al. ‘I Can Stomach That! Fearlessness About Death Predicts Attenuated Facial

Electromyography Activity in Response to Death-Related Images’. In: Suicide & Life-Threatening

Behavior 46.3 (June 2016), pp. 313–322. doi: 10.1111/sltb.12194 (cited on page 45).

[52] LTD FACEteq. Emteq. en-GB. 2017. url: https://emteq.net/ (visited on 06/24/2018) (cited on

page 45).

[53] Mask MindMaze. MASK: real emotions in virtual reality. en-US. 2018. url: https://www.mindmaze.

com/mask/ (visited on 06/24/2018) (cited on page 45).

[54] Judith Amores, Xavier Benavides, and Pattie Maes. ‘PsychicVR: Increasing Mindfulness by Using

Virtual Reality and Brain Computer Interfaces’. In: Proceedings of the 2016 CHI Conference Extended

Abstracts on Human Factors in Computing Systems. CHI EA ’16. New York, NY, USA: ACM, 2016, pp. 2–2.

doi: 10.1145/2851581.2889442 (cited on page 45).

[55] Stephen Gilroy et al. ‘PINTER: interactive storytelling with physiological input’. en. In: ACM Press,

2012, p. 333. doi: 10.1145/2166966.2167039 (cited on page 45).

[56] Song Han et al. ‘Learning both weights and connections for efficient neural network’. In: Advances in

neural information processing systems. 2015, pp. 1135–1143 (cited on page 49).

[57] Vinod Nair and Geoffrey E Hinton. ‘Rectified linear units improve restricted boltzmann machines’. In:

Proceedings of the 27th international conference on machine learning (ICML-10). 2010, pp. 807–814 (cited on

page 49).

[58] Alireza Makhzani et al. ‘Adversarial autoencoders’. In: arXiv preprint arXiv:1511.05644 (2015) (cited on

page 49).

[59] Andrej Karpathy et al. ‘Large-scale Video Classification with Convolutional Neural Networks’. In:

(2014) (cited on page 49).

[60] Nitish Srivastava et al. ‘Dropout: A simple way to prevent neural networks from overfitting’. In: The

Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958 (cited on page 49).

[61] K. H. Kim, S. W. Bang, and S. R. Kim. ‘Emotion recognition system using short-term monitoring

of physiological signals’. en. In: Medical and Biological Engineering and Computing 42.3 (May 2004),

pp. 419–427. doi: 10.1007/BF02344719 (cited on page 50).

https://doi.org/10.1080/2326263X.2014.912881
https://doi.org/10.1080/2326263X.2014.912881
https://doi.org/10.3389/fpsyg.2017.02278
https://doi.org/10.1111/sltb.12194
https://emteq.net/
https://www.mindmaze.com/mask/
https://www.mindmaze.com/mask/
https://doi.org/10.1145/2851581.2889442
https://doi.org/10.1145/2166966.2167039
https://doi.org/10.1007/BF02344719


[62] System aGlass. Eye tracking. Chinese, english. gadget store. 2017. url: http://www.aglass.com (cited

on pages 51, 56).

[63] K. Suzuki et al. ‘Recognition and mapping of facial expressions to avatar by embedded photo reflective

sensors in head mounted display’. In: 2017 IEEE Virtual Reality (VR). Mar. 2017, pp. 177–185. doi:

10.1109/VR.2017.7892245 (cited on page 52).

[64] Paul A. G. Forbes, Xueni Pan, and Antonia F. de C. Hamilton. ‘Reduced Mimicry to Virtual Reality

Avatars in Autism Spectrum Disorder’. en. In: Journal of Autism and Developmental Disorders 46.12 (Dec.

2016), pp. 3788–3797. doi: 10.1007/s10803-016-2930-2 (cited on page 55).

[65] Rachel Metz. Virtual Reality’s Missing Element: Other People - MIT Technology Review. url: https:

//www.technologyreview.com/s/607956/virtual-realitys-missing-element-other-people/

(cited on page 55).

[66] Debra Boeldt et al. ‘Using Virtual Reality Exposure Therapy to Enhance Treatment of Anxiety

Disorders: Identifying Areas of Clinical Adoption and Potential Obstacles’. In: Frontiers in Psychiatry

10 (2019), p. 773. doi: 10.3389/fpsyt.2019.00773. (Visited on 10/25/2021) (cited on page 60).

[67] Meng-Chang Tsai et al. ‘An Intelligent Virtual-Reality System With Multi-Model Sensing for Cue-

Elicited Craving in Patients With Methamphetamine Use Disorder’. eng. In: IEEE transactions on

bio-medical engineering 68.7 (July 2021), pp. 2270–2280. doi: 10.1109/TBME.2021.3058805 (cited on

page 60).

[68] Patrice L. Weiss et al. ‘Virtual reality in neurorehabilitation’. In: Textbook of neural repair and rehabilitation

51.8 (2006). Publisher: Citeseer, pp. 182–97 (cited on page 60).

[69] Kunal Gupta et al. ‘In AI We Trust: Investigating the Relationship between Biosignals, Trust and

Cognitive Load in VR’. In: 25th ACM Symposium on Virtual Reality Software and Technology. VRST

’19. New York, NY, USA: Association for Computing Machinery, Nov. 2019, pp. 1–10. doi: 10.1145/

3359996.3364276. (Visited on 03/05/2022) (cited on page 60).

[70] Josef Faller et al. ‘Regulation of arousal via online neurofeedback improves human performance in a

demanding sensory-motor task’. In: Proceedings of the National Academy of Sciences 116.13 (Mar. 2019).

Publisher: Proceedings of the National Academy of Sciences, pp. 6482–6490. doi: 10.1073/pnas.

1817207116. (Visited on 03/05/2022) (cited on page 60).

[71] SteamVR, https://store.steampowered.com. en. 2021. url: https://store.steampowered.com/app/

250820/SteamVR/ (visited on 01/02/2022) (cited on page 62).

[72] Dominique Makowski et al. ‘NeuroKit2: A Python toolbox for neurophysiological signal processing’.

eng. In: Behavior Research Methods 53.4 (Aug. 2021), pp. 1689–1696. doi: 10.3758/s13428-020-01516-y

(cited on page 63).

[73] Lorenz Esch et al. ‘MNE Scan: Software for real-time processing of electrophysiological data’. eng. In:

Journal of Neuroscience Methods 303 (June 2018), pp. 55–67. doi: 10.1016/j.jneumeth.2018.03.020

(cited on page 63).

http://www.aglass.com
https://doi.org/10.1109/VR.2017.7892245
https://doi.org/10.1007/s10803-016-2930-2
https://www.technologyreview.com/s/607956/virtual-realitys-missing-element-other-people/
https://www.technologyreview.com/s/607956/virtual-realitys-missing-element-other-people/
https://doi.org/10.3389/fpsyt.2019.00773
https://doi.org/10.1109/TBME.2021.3058805
https://doi.org/10.1145/3359996.3364276
https://doi.org/10.1145/3359996.3364276
https://doi.org/10.1073/pnas.1817207116
https://doi.org/10.1073/pnas.1817207116
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/250820/SteamVR/
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1016/j.jneumeth.2018.03.020


[74] C. Kothe, D. Medine, and M. Grivich. ‘Lab Streaming Layer (2014)’. In: URL: https://github. com/scc-

n/labstreaminglayer (visited on 26/02/2020) (2018) (cited on page 63).

[75] Texas Instruments. ‘Ads1299-x low-noise, 4-, 6-, 8-channel, 24-bit, analog-to-digital converter for

eeg and biopotential measurements’. In: Jul-2012.[Online]. Available: http://www. ti. com/lit/ds/sym-

link/ads1299. pdf.[Accessed: 12-May-2017] (2017) (cited on page 63).

[76] Richard W. Homan, John Herman, and Phillip Purdy. ‘Cerebral location of international 10–20 system

electrode placement’. In: Electroencephalography and clinical neurophysiology 66.4 (1987). Publisher:

Elsevier, pp. 376–382 (cited on page 64).

[77] Andrew FH Payne, Anne M. Schell, and Michael E. Dawson. ‘Lapses in skin conductance responding

across anatomical sites: Comparison of fingers, feet, forehead, and wrist’. In: Psychophysiology 53.7

(2016). Publisher: Wiley Online Library, pp. 1084–1092 (cited on pages 64, 69).

[78] Wataru Sato, Takanori Kochiyama, and Sakiko Yoshikawa. ‘Physiological correlates of subjective

emotional valence and arousal dynamics while viewing films’. In: Biological Psychology 157 (2020).

Publisher: Elsevier, p. 107974.

[79] L Haas. ‘Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography’. In: Journal

of Neurology, Neurosurgery, and Psychiatry 74.1 (Jan. 2003), p. 9. doi: 10.1136/jnnp.74.1.9. (Visited on

01/07/2022) (cited on page 65).

[80] Michael J. Aminoff. ‘Chapter 3 - Electroencephalography: General Principles and Clinical Applications’.

en. In: Aminoff’s Electrodiagnosis in Clinical Neurology (Sixth Edition). Ed. by Michael J. Aminoff. London:

W.B. Saunders, Jan. 2012, pp. 37–84. doi: 10.1016/B978-1-4557-0308-1.00003-0. (Visited on

10/10/2021) (cited on page 65).

[81] Robert J. Barry et al. ‘EEG differences between eyes-closed and eyes-open resting conditions’. eng. In:

Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology 118.12

(Dec. 2007), pp. 2765–2773. doi: 10.1016/j.clinph.2007.07.028 (cited on page 66).

[82] J.-JJ Chen, Richard G. Shiavi, and Li-Qun Zhang. ‘A quantitative and qualitative description of

electromyographic linear envelopes for synergy analysis’. In: IEEE transactions on biomedical engineering

39.1 (1992). Publisher: IEEE, pp. 9–18 (cited on page 67).

[83] Sandra Márquez-Figueroa, Yuriy S. Shmaliy, and Oscar Ibarra-Manzano. ‘Optimal extraction of EMG

signal envelope and artifacts removal assuming colored measurement noise’. en. In: Biomedical Signal

Processing and Control 57 (Mar. 2020), p. 101679. doi: 10.1016/j.bspc.2019.101679. (Visited on

10/21/2021) (cited on page 67).

[84] Valentina Agostini and Marco Knaflitz. ‘An Algorithm for the Estimation of the Signal-To-Noise Ratio

in Surface Myoelectric Signals Generated During Cyclic Movements’. In: IEEE Transactions on Biomedical

Engineering 59.1 (Jan. 2012). Conference Name: IEEE Transactions on Biomedical Engineering, pp. 219–

225. doi: 10.1109/TBME.2011.2170687 (cited on page 67).

https://doi.org/10.1136/jnnp.74.1.9
https://doi.org/10.1016/B978-1-4557-0308-1.00003-0
https://doi.org/10.1016/j.clinph.2007.07.028
https://doi.org/10.1016/j.bspc.2019.101679
https://doi.org/10.1109/TBME.2011.2170687


[85] M.P. Tarvainen, P.O. Ranta-aho, and P.A. Karjalainen. ‘An advanced detrending method with

application to HRV analysis’. In: IEEE Transactions on Biomedical Engineering 49.2 (Feb. 2002). Conference

Name: IEEE Transactions on Biomedical Engineering, pp. 172–175. doi: 10.1109/10.979357 (cited on

page 68).

[86] Mohit Agarwal and Raghupathy Sivakumar. ‘Blink: A fully automated unsupervised algorithm for

eye-blink detection in eeg signals’. In: 2019 57th Annual Allerton Conference on Communication, Control,

and Computing (Allerton). IEEE, 2019, pp. 1113–1121 (cited on page 69).

[87] Kelly Kleifges et al. ‘BLINKER: Automated extraction of ocular indices from EEG enabling large-scale

analysis’. In: Frontiers in neuroscience 11 (2017). Publisher: Frontiers, p. 12 (cited on page 69).

[88] Jason J. Braithwaite et al. ‘A guide for analysing electrodermal activity (EDA) & skin conductance

responses (SCRs) for psychological experiments’. In: Psychophysiology 49.1 (2013), pp. 1017–1034 (cited

on page 69).

[89] H. Storm et al. ‘Skin conductance correlates with perioperative stress’. In: Acta Anaesthesiologica

Scandinavica 46.7 (2002). Publisher: Wiley Online Library, pp. 887–895 (cited on page 69).

[90] Wolfram Boucsein. Electrodermal activity. Springer Science & Business Media, 2012 (cited on page 69).

[91] Robert F. Rushmer. ‘Postural Effects on the Baselines of Ventricular Performance’. In: Circulation 20.5

(Nov. 1959). Publisher: American Heart Association, pp. 897–905. doi: 10.1161/01.CIR.20.5.897.

(Visited on 10/21/2021) (cited on page 69).

[92] D. J. van der Mee et al. ‘Validity of electrodermal activity-based measures of sympathetic nervous

system activity from a wrist-worn device’. en. In: International Journal of Psychophysiology 168 (Oct.

2021), pp. 52–64. doi: 10.1016/j.ijpsycho.2021.08.003. (Visited on 10/21/2021) (cited on page 69).

[93] Gaetano Valenza, Antonio Lanata, and Enzo Pasquale Scilingo. ‘The role of nonlinear dynamics

in affective valence and arousal recognition’. In: IEEE transactions on affective computing 3.2 (2011).

Publisher: IEEE, pp. 237–249 (cited on page 70).

[94] Chunting Wan et al. ‘A Wearable Head Mounted Display Bio-Signals Pad System for Emotion

Recognition’. en. In: Sensors 22.1 (Jan. 2022). Number: 1 Publisher: Multidisciplinary Digital Publishing

Institute, p. 142. doi: 10.3390/s22010142. (Visited on 01/07/2022) (cited on page 70).

[95] Tomas Ysehak Abay, Kamran Shafqat, and Panayiotis A. Kyriacou. ‘Perfusion Changes at the Forehead

Measured by Photoplethysmography during a Head-Down Tilt Protocol’. In: Biosensors 9.2 (May

2019), p. 71. doi: 10.3390/bios9020071. (Visited on 10/02/2021) (cited on page 71).

[96] Geeta S. Agashe, Joseph Coakley, and Paul D. Mannheimer. ‘Forehead pulse oximetry: headband

use helps alleviate false low readings likely related to venous pulsation artifact’. In: The Journal of the

American Society of Anesthesiologists 105.6 (2006). Publisher: The American Society of Anesthesiologists,

pp. 1111–1116 (cited on page 71).

https://doi.org/10.1109/10.979357
https://doi.org/10.1161/01.CIR.20.5.897
https://doi.org/10.1016/j.ijpsycho.2021.08.003
https://doi.org/10.3390/s22010142
https://doi.org/10.3390/bios9020071


[97] Alrick B. Hertzman and Laurence W. Roth. ‘The absence of vasoconstrictor reflexes in the forehead

circulation. Effects of cold’. In: American Journal of Physiology-Legacy Content 136.4 (1942). Publisher:

American Physiological Society, pp. 692–697 (cited on page 71).

[98] Guohua Lu et al. ‘A comparison of photoplethysmography and ECG recording to analyse heart rate

variability in healthy subjects’. In: Journal of medical engineering & technology 33.8 (2009). Publisher:

Taylor & Francis, pp. 634–641 (cited on page 71).

[99] Nandakumar Selvaraj et al. ‘Assessment of heart rate variability derived from finger-tip photoplethys-

mography as compared to electrocardiography’. In: Journal of medical engineering & technology 32.6

(2008). Publisher: Taylor & Francis, pp. 479–484 (cited on page 71).

[100] Claudia Lerma et al. ‘Poincaré plot indexes of heart rate variability capture dynamic adaptations after

haemodialysis in chronic renal failure patients’. eng. In: Clinical Physiology and Functional Imaging 23.2

(Mar. 2003), pp. 72–80. doi: 10.1046/j.1475-097x.2003.00466.x (cited on page 71).

[101] Matthew Grivich. LSL Validation. UCSD. May 2013. url: https://sccn.ucsd.edu/~mgrivich/LSL_

Validation.html (visited on 10/26/2021) (cited on page 72).

[102] Gernot R. Müller-Putz et al. ‘Steady-state visual evoked potential (SSVEP)-based communication:

impact of harmonic frequency components’. eng. In: Journal of Neural Engineering 2.4 (Dec. 2005),

pp. 123–130. doi: 10.1088/1741-2560/2/4/008 (cited on page 73).

[103] Danhua Zhu et al. ‘A Survey of Stimulation Methods Used in SSVEP-Based BCIs’. en. In: Computational

Intelligence and Neuroscience 2010 (Mar. 2010). Publisher: Hindawi, e702357. doi: 10.1155/2010/702357.

(Visited on 09/13/2021) (cited on page 73).

[104] Hovagim Bakardjian, Toshihisa Tanaka, and Andrzej Cichocki. ‘Optimization of SSVEP brain responses

with application to eight-command Brain-Computer Interface’. eng. In: Neuroscience Letters 469.1 (Jan.

2010), pp. 34–38. doi: 10.1016/j.neulet.2009.11.039 (cited on page 73).

[105] Nikolay V. Manyakov et al. ‘Sampled sinusoidal stimulation profile and multichannel fuzzy logic

classification for monitor-based phase-coded SSVEP brain–computer interfacing’. In: Journal of neural

engineering 10.3 (2013). Publisher: IOP Publishing, p. 036011 (cited on page 73).

[106] Alexandre Armengol-Urpi and Sanjay E. Sarma. ‘Sublime: a hands-free virtual reality menu navigation

system using a high-frequency SSVEP-based brain-computer interface’. In: Proceedings of the 24th ACM

Symposium on Virtual Reality Software and Technology. 2018, pp. 1–8 (cited on page 74).

[107] Xiaogang Chen et al. ‘A high-itr ssvep-based bci speller’. In: Brain-Computer Interfaces 1.3-4 (2014).

Publisher: Taylor & Francis, pp. 181–191 (cited on pages 74, 75).

[108] Guangyu Bin et al. ‘An online multi-channel SSVEP-based brain–computer interface using a canonical

correlation analysis method’. In: Journal of neural engineering 6.4 (2009). Publisher: IOP Publishing,

p. 046002.

https://doi.org/10.1046/j.1475-097x.2003.00466.x
https://sccn.ucsd.edu/~mgrivich/LSL_Validation.html
https://sccn.ucsd.edu/~mgrivich/LSL_Validation.html
https://doi.org/10.1088/1741-2560/2/4/008
https://doi.org/10.1155/2010/702357
https://doi.org/10.1016/j.neulet.2009.11.039


[109] Bingchuan Liu et al. ‘BETA: A Large Benchmark Database Toward SSVEP-BCI Application’. In:

Frontiers in Neuroscience 14 (2020), p. 627. doi: 10.3389/fnins.2020.00627. (Visited on 01/04/2022)

(cited on page 75).

[110] Xavier Duart et al. ‘Evaluating the Effect of Stimuli Color and Frequency on SSVEP’. In: Sensors

(Basel, Switzerland) 21.1 (Dec. 2020), p. 117. doi: 10.3390/s21010117. (Visited on 01/04/2022) (cited

on page 75).

[111] Bingchuan Liu et al. ‘Align and pool for EEG headset domain adaptation (ALPHA) to facilitate dry

electrode based SSVEP-BCI’. In: IEEE Transactions on Biomedical Engineering (2021). Conference Name:

IEEE Transactions on Biomedical Engineering, pp. 1–1. doi: 10.1109/TBME.2021.3105331 (cited on

page 75).

[112] Fangkun Zhu et al. ‘An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces’. en. In:

Sensors 21.4 (Jan. 2021). Number: 4 Publisher: Multidisciplinary Digital Publishing Institute, p. 1256.

doi: 10.3390/s21041256. (Visited on 01/04/2022) (cited on page 75).

[113] Manuel Merino et al. ‘A Method of EOG Signal Processing to Detect the Direction of Eye Movements’.

In: 2010 First International Conference on Sensor Device Technologies and Applications. July 2010, pp. 100–105.

doi: 10.1109/SENSORDEVICES.2010.25 (cited on page 77).

[114] Li Zeng et al. ‘Landscapes and emerging trends of virtual reality in recent 30 years: a bibliometric

analysis’. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,

Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart

City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (2018), pp. 1852–1858 (cited on

page 84).

[115] Davide Castelvecchi. ‘Low-cost headsets boost virtual reality’s lab appeal’. In: Nature 533.7602 (2016)

(cited on pages 84, 102).

[116] Jaziar Radianti et al. ‘A systematic review of immersive virtual reality applications for higher

education: Design elements, lessons learned, and research agenda’. In: Computers & Education 147

(2020), p. 103778 (cited on pages 84, 102).

[117] P Cipresso et al. The past, present, and future of virtual and augmented reality research: a network and cluster

analysis of the literature. Front. Psychol. 9, 1–20 (2018). 2018 (cited on pages 84, 102).

[118] Alexandre Armengol-Urpi and Sanjay E Sarma. ‘Sublime: a hands-free virtual reality menu navigation

system using a high-frequency SSVEP-based brain-computer interface’. In: Proceedings of the 24th ACM

Symposium on Virtual Reality Software and Technology. 2018, pp. 1–8 (cited on pages 84, 102).

[119] Dorothy Strickland. ‘Virtual reality for the treatment of autism’. In: Virtual reality in neuro-psycho-

physiology (1997), pp. 81–86 (cited on pages 84, 103).

[120] Dorothy Strickland et al. ‘Overcoming phobias by virtual exposure’. In: Communications of the ACM

40.8 (1997), pp. 34–39 (cited on pages 84, 103).

https://doi.org/10.3389/fnins.2020.00627
https://doi.org/10.3390/s21010117
https://doi.org/10.1109/TBME.2021.3105331
https://doi.org/10.3390/s21041256
https://doi.org/10.1109/SENSORDEVICES.2010.25


[121] Wei-Long Zheng and Bao-Liang Lu. ‘A multimodal approach to estimating vigilance using EEG and

forehead EOG’. In: Journal of neural engineering 14.2 (2017), p. 026017 (cited on pages 84, 103).

[122] Catherine RG Jones et al. ‘A multimodal approach to emotion recognition ability in autism spectrum

disorders’. In: Journal of Child Psychology and Psychiatry 52.3 (2011), pp. 275–285 (cited on pages 84,

103).

[123] Todd J Maurer and Heather R Pierce. ‘A comparison of Likert scale and traditional measures of

self-efficacy.’ In: Journal of applied psychology 83.2 (1998), p. 324 (cited on page 89).

[124] Christian Kothe et al. Lab streaming layer (LSL). 2014 (cited on page 90).

[125] Andrey Parfenov. BrainFlow. en. url: https://brainflow.org/ (visited on 01/10/2023) (cited on

page 93).

[126] NeuroPype - Home. url: https://www.neuropype.io/ (visited on 01/10/2023) (cited on page 93).

[127] Joan Stiles et al. ‘Spatial Attention, Working Memory, and Executive Function’. In: Neural Plasticity and

Cognitive Development: Insights from Children with Perinatal Brain Injury. Ed. by Joan Stiles et al. Oxford

University Press, June 2012, p. 0. doi: 10.1093/acprof:osobl/9780195389944.003.0006. (Visited

on 03/22/2023) (cited on page 102).

[128] Sandra G Hart and Lowell E Staveland. ‘Development of NASA-TLX (Task Load Index): Results of

empirical and theoretical research’. In: Advances in psychology. Vol. 52. Elsevier, 1988, pp. 139–183

(cited on page 102).

[129] Mark S Young et al. ‘State of science: mental workload in ergonomics’. In: Ergonomics 58.1 (2015),

pp. 1–17 (cited on page 102).

[130] GM Hancock et al. ‘Mental workload’. In: Handbook of human factors and ergonomics (2021), pp. 203–226

(cited on page 102).

[131] John Sweller. ‘Cognitive load theory: Recent theoretical advances.’ In: (2010) (cited on page 102).

[132] Naomi P Friedman and Trevor W Robbins. ‘The role of prefrontal cortex in cognitive control and

executive function’. In: Neuropsychopharmacology 47.1 (2022), pp. 72–89 (cited on page 102).

[133] Earl K Miller. ‘The prefontral cortex and cognitive control’. In: Nature reviews neuroscience 1.1 (2000),

pp. 59–65 (cited on page 102).

[134] Yale E Cohen and Richard A Andersen. ‘A common reference frame for movement plans in the

posterior parietal cortex’. In: Nature Reviews Neuroscience 3.7 (2002), pp. 553–562 (cited on page 102).

[135] Alexander T Sack. ‘Parietal cortex and spatial cognition’. In: Behavioural brain research 202.2 (2009),

pp. 153–161 (cited on page 102).

[136] Jody C Culham and Nancy G Kanwisher. ‘Neuroimaging of cognitive functions in human parietal

cortex’. In: Current opinion in neurobiology 11.2 (2001), pp. 157–163 (cited on page 102).

[137] Julian F Thayer and Richard D Lane. ‘Claude Bernard and the heart–brain connection: Further

elaboration of a model of neurovisceral integration’. In: Neuroscience & Biobehavioral Reviews 33.2

(2009), pp. 81–88 (cited on page 102).

https://brainflow.org/
https://www.neuropype.io/
https://doi.org/10.1093/acprof:osobl/9780195389944.003.0006


[138] Masaaki Tanaka et al. ‘Central nervous system fatigue alters autonomic nerve activity’. In: Life sciences

84.7-8 (2009), pp. 235–239 (cited on page 102).

[139] G Robert J Hockey. ‘Compensatory control in the regulation of human performance under stress and

high workload: A cognitive-energetical framework’. In: Biological psychology 45.1-3 (1997), pp. 73–93

(cited on page 102).

[140] Robert Mearns Yerkes, John D Dodson, et al. ‘The relation of strength of stimulus to rapidity of

habit-formation’. In: (1908) (cited on page 102).

[141] Julian F Thayer et al. ‘Heart rate variability, prefrontal neural function, and cognitive performance:

the neurovisceral integration perspective on self-regulation, adaptation, and health’. In: Annals of

behavioral medicine 37.2 (2009), pp. 141–153 (cited on page 102).

[142] Pieter Vanneste et al. ‘Towards measuring cognitive load through multimodal physiological data’. In:

Cognition, Technology & Work 23 (2021), pp. 567–585 (cited on page 102).

[143] Raul Fernandez Rojas et al. ‘Electroencephalographic workload indicators during teleoperation

of an unmanned aerial vehicle shepherding a swarm of unmanned ground vehicles in contested

environments’. In: Frontiers in neuroscience 14 (2020), p. 40 (cited on page 102).

[144] Pavlo Antonenko et al. ‘Using electroencephalography to measure cognitive load’. In: Educational

psychology review 22 (2010), pp. 425–438 (cited on page 102).

[145] Rebecca L Charles and Jim Nixon. ‘Measuring mental workload using physiological measures: A

systematic review’. In: Applied ergonomics 74 (2019), pp. 221–232 (cited on page 102).

[146] Soroosh Solhjoo et al. ‘Heart rate and heart rate variability correlate with clinical reasoning performance

and self-reported measures of cognitive load’. In: Scientific reports 9.1 (2019), pp. 1–9 (cited on page 102).

[147] Marek Malik et al. ‘Heart rate variability: Standards of measurement, physiological interpretation,

and clinical use’. In: European heart journal 17.3 (1996), pp. 354–381 (cited on page 102).

[148] Fang Chen et al. Robust multimodal cognitive load measurement. Springer, 2016 (cited on page 102).

[149] Arthur F Kramer. ‘Physiological metrics of mental workload: A review of recent progress’. In:

Multiple-task performance (2020), pp. 279–328 (cited on page 102).

[150] Guillermo Bernal et al. ‘PhysioHMD: a conformable, modular toolkit for collecting physiological data

from head-mounted displays’. In: Proceedings of the 2018 ACM International Symposium on Wearable

Computers. 2018, pp. 160–167 (cited on page 103).

[151] Kunal Gupta et al. ‘Measuring human trust in a virtual assistant using physiological sensing in virtual

reality’. In: 2020 IEEE Conference on virtual reality and 3D user interfaces (VR). IEEE. 2020, pp. 756–765

(cited on page 103).

[152] Lian Zhang et al. ‘Cognitive load measurement in a virtual reality-based driving system for autism

intervention’. In: IEEE transactions on affective computing 8.2 (2017), pp. 176–189 (cited on page 103).



[153] Arindam Dey, Alex Chatburn, and Mark Billinghurst. ‘Exploration of an EEG-based cognitively

adaptive training system in virtual reality’. In: 2019 ieee conference on virtual reality and 3d user interfaces

(vr). IEEE. 2019, pp. 220–226 (cited on page 103).

[154] Guillermo Bernal et al. ‘Galea: A physiological sensing system for behavioral research in Virtual

Environments’. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE. 2022,

pp. 66–76 (cited on page 103).

[155] Arnaud Delorme and Scott Makeig. ‘EEGLAB: an open source toolbox for analysis of single-trial EEG

dynamics including independent component analysis’. In: Journal of neuroscience methods 134.1 (2004),

pp. 9–21 (cited on pages 133, 136).

[156] J Vernon Odom et al. ‘ISCEV standard for clinical visual evoked potentials:(2016 update)’. In: Documenta

Ophthalmologica 133.1 (2016), pp. 1–9 (cited on pages 139, 140).

[157] AM Halliday and WF Michael. ‘Changes in pattern-evoked responses in man associated with the

vertical and horizontal meridians of the visual field’. In: The Journal of Physiology 208.2 (1970), pp. 499–

513 (cited on page 139).

[158] DA Jeffreys and AT Smith. ‘The polarity inversion of scalp potentials evoked by upper and lower

half-field stimulus patterns: latency or surface distribution differences?’ In: Electroencephalography and

Clinical Neurophysiology 46.4 (1979), pp. 409–415 (cited on page 139).

[159] Francesco Di Russo et al. ‘Cortical sources of the early components of the visual evoked potential’. In:

Human brain mapping 15.2 (2002), pp. 95–111 (cited on page 139).

[160] Ruby Sharma et al. ‘Visual evoked potentials: normative values and gender differences’. In: Journal of

clinical and diagnostic research: JCDR 9.7 (2015), p. CC12 (cited on page 140).

[161] Daniel Freeman et al. ‘The effects of improving sleep on mental health (OASIS): a randomised

controlled trial with mediation analysis’. In: The Lancet Psychiatry 4.10 (2017), pp. 749–758 (cited on

page 148).

[162] Robert Stickgold. ‘Sleep-dependent memory consolidation’. In: Nature 437.7063 (2005), pp. 1272–1278

(cited on page 148).

[163] Adriano Zager et al. ‘Effects of acute and chronic sleep loss on immune modulation of rats’. In:

American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293.1 (2007), R504–R509

(cited on page 148).

[164] Jessica Vensel Rundo and Ralph Downey III. ‘Polysomnography’. In: Handbook of clinical neurology 160

(2019), pp. 381–392 (cited on pages 148, 156).

[165] Lisa J Meltzer et al. ‘Use of actigraphy for assessment in pediatric sleep research’. In: Sleep medicine

reviews 16.5 (2012), pp. 463–475 (cited on page 149).

[166] Patrick M Fuller, Joshua J Gooley, and Clifford B Saper. ‘Neurobiology of the sleep-wake cycle: sleep

architecture, circadian regulation, and regulatory feedback’. In: Journal of biological rhythms 21.6 (2006),

pp. 482–493 (cited on page 153).



[167] Brinnae Bent et al. ‘Investigating sources of inaccuracy in wearable optical heart rate sensors’. In: NPJ

digital medicine 3.1 (2020), p. 18 (cited on page 158).

[168] Meet IBM Master Inventor and IoT evangelist Andy Stanford-Clark. en-US. Sept. 2016. url: https:

//www.ibm.com/blogs/internet-of-things/andy-stanford-clark/ (visited on 11/28/2022)

(cited on page 163).

[169] Urs Hunkeler, Hong Linh Truong, and Andy Stanford-Clark. ‘MQTT-S—A publish/subscribe protocol

for Wireless Sensor Networks’. In: 2008 3rd International Conference on Communication Systems Software

and Middleware and Workshops (COMSWARE’08). IEEE. 2008, pp. 791–798 (cited on page 163).

[170] Eclipse Mosquitto. ‘An open source MQTT broker’. In: Eclipse Mosquitto™[cit. 2018-04-23]. Dostupné z:

Mosquitto. org (2018) (cited on page 163).

[171] RICHARD MACMANUS of ReadWriteWeb. MQTT Poised For Big Growth-An RSS For Internet of

Things? - NYTimes.com. Cad: 0. url: https://archive.nytimes.com/www.nytimes.com/external/

readwriteweb/2009/07/23/23readwriteweb-mqtt-poised-for-big-growth---an-rss-for-

int-25425.html (visited on 11/28/2022) (cited on page 164).

[172] Daniel Barata et al. ‘System of acquisition, transmission, storage and visualization of Pulse Oximeter

and ECG data using Android and MQTT’. In: Procedia Technology 9 (2013), pp. 1265–1272 (cited on

page 164).

[173] Valerie Lampkin et al. Building smarter planet solutions with mqtt and ibm websphere mq telemetry. IBM

Redbooks, 2012 (cited on page 164).

[174] Kamil Adamczyk. Neuroon Open - Product Information, Latest Updates, and Reviews 2023. en. url:

https://www.producthunt.com/products/neuroon- open (visited on 01/12/2023) (cited on

page 172).

[175] Neurofeedback EEG Device - How it Works. en-US. url: https://choosemuse.com/how-it-works/

(visited on 01/12/2023) (cited on page 173).

[176] Stanisław Saganowski et al. ‘Review of consumer wearables in emotion, stress, meditation, sleep, and

activity detection and analysis’. In: arXiv preprint arXiv:2005.00093 (2020) (cited on page 173).

[177] Wolfram Boucsein. Electrodermal activity. Springer Science & Business Media, 2012 (cited on page 177).

[178] AN118: Improving ADC Resolution by Oversampling and Averaging. url: https://docslib.org/

doc/1484837/an118-improving-adc-resolution-by-oversampling-and-averaging (visited on

01/12/2023) (cited on page 177).

[179] Robert E Kleiger, Phyllis K Stein, and J Thomas Bigger Jr. ‘Heart rate variability: measurement and

clinical utility’. In: Annals of Noninvasive Electrocardiology 10.1 (2005), pp. 88–101 (cited on page 179).

[180] Caroline Lustenberger et al. ‘High-density EEG characterization of brain responses to auditory

rhythmic stimuli during wakefulness and NREM sleep’. In: NeuroImage 169 (2018), pp. 57–68 (cited on

page 183).

https://www.ibm.com/blogs/internet-of-things/andy-stanford-clark/
https://www.ibm.com/blogs/internet-of-things/andy-stanford-clark/
https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/07/23/23readwriteweb-mqtt-poised-for-big-growth---an-rss-for-int-25425.html
https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/07/23/23readwriteweb-mqtt-poised-for-big-growth---an-rss-for-int-25425.html
https://archive.nytimes.com/www.nytimes.com/external/readwriteweb/2009/07/23/23readwriteweb-mqtt-poised-for-big-growth---an-rss-for-int-25425.html
https://www.producthunt.com/products/neuroon-open
https://choosemuse.com/how-it-works/
https://docslib.org/doc/1484837/an118-improving-adc-resolution-by-oversampling-and-averaging
https://docslib.org/doc/1484837/an118-improving-adc-resolution-by-oversampling-and-averaging


[181] Marek Piorecky et al. ‘Real-Time Excitation of Slow Oscillations during Deep Sleep Using Acoustic

Stimulation’. In: Sensors 21.15 (2021), p. 5169 (cited on page 183).

[182] Sang Ho Choi et al. ‘Weak closed-loop vibrational stimulation improves the depth of slow-wave sleep

and declarative memory consolidation’. In: Sleep 44.6 (2021), zsaa285 (cited on page 183).

[183] Kazue Okamoto-Mizuno and Koh Mizuno. ‘Effects of thermal environment on sleep and circadian

rhythm’. In: Journal of physiological anthropology 31.1 (2012), pp. 1–9 (cited on page 184).

[184] JC Sagot et al. ‘Sweating responses and body temperatures during nocturnal sleep in humans’. In:

American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 252.3 (1987), R462–R470

(cited on page 184).

[185] Julia S Rihm et al. ‘Reactivating memories during sleep by odors: odor specificity and associated

changes in sleep oscillations’. In: Journal of cognitive neuroscience 26.8 (2014), pp. 1806–1818 (cited on

page 184).

[186] Delphine Oudiette and Ken A Paller. ‘Upgrading the sleeping brain with targeted memory reactivation’.

In: Trends in cognitive sciences 17.3 (2013), pp. 142–149 (cited on page 184).

[187] Anat Arzi et al. ‘Humans can learn new information during sleep’. In: Nature neuroscience 15.10 (2012),

pp. 1460–1465 (cited on page 184).

[188] Adam Haar Horowitz et al. ‘Dormio: Interfacing with dreams’. In: Extended Abstracts of the 2018 CHI

Conference on Human Factors in Computing Systems. 2018, pp. 1–10 (cited on page 185).

[189] Namni Goel, Hyungsoo Kim, and Raymund P Lao. ‘An olfactory stimulus modifies nighttime sleep

in young men and women’. In: Chronobiology international 22.5 (2005), pp. 889–904 (cited on page 188).

[190] Peir Hossein Koulivand, Maryam Khaleghi Ghadiri, and Ali Gorji. ‘Lavender and the nervous system’.

In: Evidence-based complementary and alternative medicine 2013 (2013) (cited on page 188).

[191] Luigi Fiorillo et al. ‘Automated sleep scoring: A review of the latest approaches’. In: Sleep medicine

reviews 48 (2019), p. 101204 (cited on page 201).

[192] Raphael Vallat and Matthew P Walker. ‘An open-source, high-performance tool for automated sleep

staging’. In: Elife 10 (2021), e70092 (cited on page 201).

[193] Karine Lacourse et al. ‘A sleep spindle detection algorithm that emulates human expert spindle

scoring’. In: Journal of neuroscience methods 316 (2019), pp. 3–11 (cited on page 202).

[194] Marcello Massimini et al. ‘The sleep slow oscillation as a traveling wave’. In: Journal of Neuroscience

24.31 (2004), pp. 6862–6870 (cited on page 202).

[195] Julie Carrier et al. ‘Sleep slow wave changes during the middle years of life’. In: European Journal of

Neuroscience 33.4 (2011), pp. 758–766 (cited on page 202).

[196] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. ‘Deep inside convolutional networks:

Visualising image classification models and saliency maps’. In: arXiv preprint arXiv:1312.6034 (2013)

(cited on page 203).



[197] Julius Adebayo et al. ‘Sanity checks for saliency maps’. In: Advances in neural information processing

systems 31 (2018) (cited on page 204).

[198] M. G. Terzano et al. ‘Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern

(CAP) in human sleep’. eng. In: Sleep Medicine 2.6 (Nov. 2001), pp. 537–553. doi: 10.1016/s1389-

9457(01)00149-6 (cited on page 212).

[199] B. Kemp et al. ‘Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity

of the EEG’. In: IEEE Transactions on Biomedical Engineering 47.9 (Sept. 2000). Conference Name: IEEE

Transactions on Biomedical Engineering, pp. 1185–1194. doi: 10.1109/10.867928 (cited on page 212).

[200] Mohammad Daneshmandi et al. ‘Effect of eye mask on sleep quality in patients with acute coronary

syndrome’. In: Journal of caring sciences 1.3 (2012), p. 135 (cited on page 221).

[201] Yoon Jung Koo and Hyo Jung Koh. ‘Effects of eye protective device and ear protective device

application on sleep disorder with coronary disease patients in CCU’. In: Journal of Korean Academy of

Nursing 38.4 (2008), pp. 582–592 (cited on page 221).

https://doi.org/10.1016/s1389-9457(01)00149-6
https://doi.org/10.1016/s1389-9457(01)00149-6
https://doi.org/10.1109/10.867928


Special Terms

A

ANS Autonomic Nervous System. 10, 158

B

BCI Brain-Computer Interfaces. 9, 96

C

CNS Central Nervous System. 10

E

EDA Electrodermal Activity. 165

EEG Electroencephalography. 148, 149, 152–156, 161, 162, 165

EMG Electromyography. 153, 157, 165

EOG electrooculographic. 9, 153, 156, 165
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