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ABSTRACT

This thesis 1s concerned with the problem of electro-
magnetic wave propagation through a dielectric whose
propagation constant varies as a function of time. Ferro-
electrics give promise of realizing such media since a
control voltage is capable of changing the permittivities,
and therefore the phase velocity of any electromagnetic
wave passing through them. Artificial dielectrics formed
7ith diode junctions as the conducting "dipole" elements
also appear to be of some interest. The velocity of propa-
gation of these might be switched between discrete levels.
No work has been done on this latter idea.

If the non-linear medium cannot respond to changes of
che electric field of the propagating wave then the fields
within such media will be linear and related through the
corresponding linear Maxwell equations. These are solved
for the general case when the permittivity and permeability
vary independently with time. When M and € vary in such
2 manner so as to keep thelr ratio constant an exact solu-
tion to the wave equation is obtained. Wnen the impedance
1s not invariant an exact solution is not possible, in
general, and a closed form approximation is found. The
field solutions are interpreted physically using the simple
case of a step change in «4 and € to illustrate the funda-
nentals involved. The field energies and electromagnetic
nomenta are derived for such a velocity transient and it is
seen that, in general, there is an energy change while the
momentum remains constant. This energy change is the
result of the work required to vary the dielectric parameters
when there is an internal field and may be an increase or
leecrease.,



The frequency deviation which results when a mono-
chromatic wave is passed through a section of dielectric
with non-constant velocity of propagation is taken up in
detail. Approximate solutions are obtained if the
&gt;lectrical length of such a section 1s small and it is
found that essentially linear phase modulation occurs.
The solution is also found when the length is arbitrarily
long and the permittivity of the medium sinusoidally modu-
lated. The optimum length which gives the greatest
Frequency deviation 1s derived and is shown to be imprac-
sical when known ferroelectric materials are used.

The present state of knowledge of microwave ferro-
electricity is reviewed and the author's attempts to
neasure the complex dielectric constant of certain barium
sitanate ceramics are discussed.

Available data are used to predict the performance of
a modulator operating with a carrier of 2,000 and 10,000

Mcs. The results of a Pbin0, - BaTiC. dielectric modu-
lator operating at 10,000 Mc are also given.

It appears that useful modulators are feasible at
least for low power application. The maximum modulating
rates to which the ferroelectric materials can respond
are unknown.

Inesis Supervisor: Lan Jen Chu
itle: Professor of klectrical

Engineering
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CHAPTER

[INTRODUCTION

This thesis considers the problem of modulating the

velocity of propagation of a dielectric, and the effects

which arise when electromagnetic waves travel through such

nedia.

\ time varying velocity of propagation implies time

sariable permittivity and/or permeability and this imme-

iatel  sugrecte that ferroelectrics or ferrites under the

influence « rw tornal electric and macnetic flelds respec-

sively, mighe he gsnitahle means of obtaining velocity

nodulated media Other possibilities include the mechanical

"ferent dielectrics as a function of time

ond the use ¢ ° time variable "artificial dielectrics." Kock

and others (- have shown that if small conducting particles

substituticr c* 1

such as metal svheres or discs are placed in a supporting

foam dielectric the effective permittivity is higher than

for the foam dielectric alone. If the physical dimensions

&gt;f the objects are small compared to the wavelength of the

electromagnetic field the artificial dielectric appears

aonogeneous . It seems possible to utilize diode junctions

18 the conducting elements. These would be switched "on"



and "off" by means of the modulating field. The effective

dielectric constant would then be double valued and a chopper

nodulator would be possible.

The most promising of the schemes “isted appears to be

the ferroelectric cc ferrite since thev can be modulated

much more ranic-

variable unli’~

‘7m mn mechanical svstem and are continuously

 "™eial diode dielectrics. Ferro-

electrics anv

alectric fie’

Barium titanat

experiment wif’

"~tter than ferrites because ~ biasing

~povide than a magnetic one.

chosen as the dielectric to

a “~rmation is available about its

oroperties tr - 4 - wzleapt~ics,

Sines 7 ferroelectricity in BaTiO over

ten veswe “entt annlications have been proposed

co eve comittieqof this non-linear dilelectric.

Thus 1 meme” for computers and dielectric amplifiers

nave emerse ant the non-linear dielectric constant has been

used to freanency modulate a signal by varving the capacltance

of a simple tank circuit. All of these ar 1*cations of

ferroelectricity have been for relativel-r “crv foeqguency

operation and the dielectric behavior in the microwave region

wes received rather limited attention.(2) Tis 1s presumably

because measurement problems are severe and the fact that

che higher dielectric loss is somewhat discouraging. Never-

theless, 1t 1s quite important that the dielectric parameters

pe obtained in these frequency ranges so that an estimate of

vhat can and cannot be accomplished may be made.



This work consists of the theoretical solution of the

nodulation problem and the experimental results of »reliminary

investigations. Chanter

cion to Maxwell's ecguatior

~mtalnge the mathemat*alsolu-

my

r the “seoANe ane 7 Indepen-

jently time vet = &lt; Chr ~e*ders the

special case . "i velcaitv str pre an ‘  sical

reasonine Togttit ronecent ~N

energy

jensities we Modulanad wr rs. ives the

freauenc= avi. tan of monochrome ~ through

2 dielectr® 1a’ whose “~1ocit- "riag homro-

zeneouslv as ¢ function «¢  time +he

cxperimental results and method 1 others to

neasure the dielectni.. paramete- »omics In the

5,000 and 11,000 megacycle ranc m1
oul rgults fT an

experimental modulator in the X band range are also given.

leferences

(1) Kock, W.E., "Metallic Delay Lenses," Bell System Technical
Journal, Vol.27, p.58., 1948.
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Brown, J. and Jackson, Willis, "The Properties of Artificial
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Vol. 24, No. 9, p.1194, September 1953.



CHAPTER

SOLUTION OF MAXWELL'S EQUATIONS WHEN THE

DERMITTIVITY AND PERMEABILITY ARE TIME VARIABLE

The behavior ¢” nn electromagnetic wave passing through

1 dielectric with time varying velocity of »nropagcation can

ye nredicted if the solution te Maxwell's equations 1s lnhown

vhen the permitti-rit—- ==" -erme Gility are functions of time.

Vaxwell's equations ax

(2-1)

(2-2)

DD AL

(2-3)

(2-4)

(2-5)

(2-05)

Assume a charge and current free region where yg and €

of the medium are functions of space and time. Then @ = O

nd J = 0.

Taking the curl cf both sides of Eq. (2-3) and substi-

suting Eq. (2-0) yields
— 5 —

Tx TUE = gp [Vx ©)
Making use of the vector identity

(0-7)



7x VxE = V(V-E)-VA

~here results

7(V-E) - VE = = |v x (21)]

Equations (2-1) and (2-2) may be expanded

v.D = V-(€eE) = E-Ve + €V-E

V-B = V- (0H) = HV + mu V-H

[ff the uniform plane wave solution is sought { mm

(2-8)

(2-9)

(2-10)

EM

here will exist one component of E, one orthogonal component

sf H and no others.

AssumeE = E (z,t) and H = H (z,t)

If the permeabllity and permittivity are permitted to

vary with respect to distance in the z direction only and to

vary with respect to time, then M=pm(z,t), €=€E(z,t) and
_ oe _ © bm

Ve = kK = ; Vu = kk To

Since E = IE and H = JH (where I, Jj, and k are the

&gt;rthegonal unit vectors in xyz space) it follows that E-Ve

and H Va are both zero and Ens. (2-9) and (2-10) reduce to

V-E

V-H -

(2-11)
(2-12)

Making use of this last result and the well known

identity Vx (MH) = Vw x H + 4V &gt; Eq. (2-8) becomes

or 0 +=v°E = BT [vs x [IT = av (2-13)

Fhe re

Tux II = OA 1y1% (2-14)



1nd

2
2 OE,

Vie =1 —3
Bra®

(2-15)

These results plus Eq. (2-4) transform Eq. (2-13) into

52K
~ xX
i —_—

Sr
2

- 0 E — 23 -

0 +— OU + . x 0,0 BuTT - 1 5% Hy + uh; 522 + seg), + pz

= ueE, + (ME + Sue)E + (ME +MEE, 2.16)

By starting with Eq. (2-4) instead of Eq (2-3) and following

he corresponding steps there will result

_2
 oO H ey.
_Ty, 5 8€y BEL57 553 Ex * Tx

pe H, + (ME + ope YH, + (ME +6H_

The dot notation 1s used to indicate rartial

(2-17)

differentiation

vith respect to time.

These Two partial differential eouations describe the

electric and magnetic fields within the time varying

dielectric. It 1s obvious that the usual procedure of

issuming product solutions will not work because the hoped

for separation 1s rendered impossible by the existence of

the middle term on the left hand sides of Eas. (2-18) and

2.17).

Since the general problem under consideration is one of

finding the frequency variation of a monochromatic wave

passing through a slab of finite thickness whose velocity

of propagation varies homogeneously with time, it will be



sufficient to solve the equations for the case where#4and &amp;

are not functions of z and then match the boundary conditions.

Under the conditions of space invariancy, Eas. (2-16) and

(2-17) become (dropping subscript notation)

2 ov . . . oo .

2% = EE + (he + 24E JE + (ME +4E)E
Hr

(2-18)

nag

5°H = ueH + (me + 2ue YH + (ie +e€ )H (2-19)
. 2
D7

This pair oc? eqguaticns is separable Consider the E

PHield and assune

—4

1, le (2) To (5)
Then

Z!
E

me
_ B

= ME qo
. Tf ve 5

(ME + HE I + (Me +e) = -B (2-20)

he r~imes denote differentiation with respect to the

arguments and B 1s the separation constant. Equations

(2-21) and (~-7") give the space variation differential

equation and th familiar solution respectively. In general,

3 may take on a series of eigenvalues which are determined by

the boundary conditions. The general solution is therefore

an infinite series of which Eq. (2-22) is a typical term.

Z
1w

7 y, -

~ petdPZ | p-IPz

(2-21)

(0.22)



Phe time variation is

1 v . ! oe «

Eo, (fe tomb) TB (ME fu +B 6
To HE Tp HME - (2-23)

squation (2-27 ia 7 standard second order linear differential

2quation with non-constant coef licients of the form

0+ at) TL + b(t) Tn, = 0 (0.0L)

Jith

(6) = ME + DMEWUE. 5 2; (se) = AE SAE vp+
AE -

Any second order equation of this form can be subjected

0 a transformation which causes the first derivative term

(1) Salo)0 vanish. Let Tn = Wo e

-hen

|i, Ae: &amp; ) We (2-25)

There

1A(6) =b(e) - &amp;
1

-=laat 5 . wa. xe 1 _B 12 1M
for Eg. (2-24) a8 “EL and A(t) = UE + 7 (z) - 5(z)

30 that the electric field can be written in

Wl By

E(z,t) ew (a etPZ 4

Fe v 1 4) 2 - 1 gi |
|AE TH 2M

 iw »

‘g

ob

. |
(2.26)

[In exactly the same manner the magnetic field is found

~0 be



(zt) Wy +3BZy = —— (A JPZ -JBzyoe Be + B,J

JT

= oD . ve 1

2
122 + 587-3 |v

(2-27)

It is reassuring to note that if MM and € are constants

Eas. (2-26) and (2-27) reduce to the familiar wave equations.

Special Case

From the form ¢.” Egs. (2-26) and (2-27) it is obvious

Ehat We wil’ equal Wy only if a4 and € are constants or if

their ratio i a always constant. If ey = ye = constant,

then it is seen that the ratio of the electric field to the

magnetic field 1s a constant and so the two fields are every-

vhere in space and time ohase.

i(z,t) = 7 H(z,t) (2.28)

Chis relation is true only for the very special case when

the impedance 7 cf the.time varying medium is alwavs constant

Jnder these conditions an exact solution of the fields is

bossible and is

. 8 [dt

E(z,t) =/H(z,t) = » e1dPz ey Ls {(2-2C]

5 again takes on eigenvalues subject to the boundary con-

ditions and a series of terms like Eq. (2-29) is the general

solution which can be verified by direct substitution. There

will be no reflections as long as the impedance of the

dielectric remains constant and strictly progressive waves

are possible. Since no physical materials are available



whose permeability and permittivity can both be varied

simultaneously so as to keep 7 constant, the result is

largely of academic interest but one whlch sheds a great

deal of light upon the general problem of time varying
¥

dielectrics.

It is seen that

jolene (2-30)

Differentiating

7(¢)= =

N u(t) €(t) y€
The velocity of propagation is given

vhen &amp; and €&amp; are constant.

~~ che

The total phase of the wave giveil oy 5g

Same form as

» (2-29) is

(2-31)

g.= Pe
and the instantaneous frequency is given by

Bp _ ()a(t) = = Be = pv (2-32)

This indicates that the frequency is simply proportional

co the velocity of propagation and this is true if 1t is

remembered that the derivation was based uvon the assumption

that @# and € did not vary with position. This implies

“hat the medium is infinite in extent and, moreover, that

any wave now in the dielectric has always been there and has

It 1s interesting in this connection to speculate on a
ceramic dielectric made up of a mixture of ferroelectric
ond ferrite materials under the influence of both electric
and magnetic control fields.



seen influenced by any variation in velocity that has

securred since the infinite past. It is appropriate to

point out here that the separation of the partial differen-

tial equation implies that the space v “lation of the wave

is unaffected by anv changes in «

connection witiy £° that “ some 77

7 wave train

“0+edistant past

the medium ~

with time

sr y )

&lt; -were stationary

 ~~
 * 7rd by the fre-

qui

the

~ragation V, . It

nppose that the

velcr

Vs

[4 73. Ne some new value

* -n,
  ] -

a re” “r=in will be acted

per ctmultane 7
ov

slewo® dovm o™ sneeded up

Cogether. Tr
2 -r =

tn xr T . fr imefvestillbe L

neters lon:  cveform ~~ + have changed.

This means = ede a same value AL

yut becai ia Tre + r~vayr must have

change

Chat -

fact in gener:

&gt; Tee

“mation (

coe
LL must be

mer.
&gt;

 oo »egsing this

terms. As long as the original wave stays

in the medium its frequency will follow the velocity changes

&gt;f the medium. If a fresh wave enters the dielectric it is.

of course, not subject to the past history of the medium.

For example, 1f a new wave train of length L and frequency £y

(as before) enters the dielectric after the velocity has

changed from V, to V,, then its frequency will still be tf, and



V
its wavelength will change to A, = =A The total length

= 1
#111 no longer be L but 2, meters. If now the velocity

changes to some new value the frequency will change accordingly

wnd the wavelength remain constant.

The exact solution obtained for the special case of con-

stant impedance is illuminating but not very useful since in

practice the impedance will not remain constant. It is

jesirable to solve Eas. (2-26) and (2-27) for the general

case when « and €&amp;€ vary independently with time. No exact

solution is possible in general and the task remains to find

3 sultable approximation. A series solution 1s very difficult

;0 interpret physically, therefore a closed form solution is

preferable. Since the equation to be solved 1s a second

yrder linear differential equation, the Liouville aonproxi-

nation offers hope and turns out to be entirely suitable.

Liouville Approximation 2’

It has been shown vreviously that any second order linear

1ifferential equation can be transformed to the form

Nod =n

[ff a new variable @ is introduced

os - [vx dx

then Eq. (2-37) can be rewritten as ”~

2 3 )

Fra KX) gy - 9

30 that

(0-33)

(2-34)

(2-35)



This transformation of variable has normalized the coefficient

»f v to unity. If use is made of Eq. (2-25) it is evident

hat Eg. (2-35) is equivalent to

rT Gob Wd= y e 2 =

VA
(2-36)

vhere

20 n

33 + Ny =o—
hen a &gt; 1Net =1 + 25 (G2 - 514A

a.’

£) = 0. 1Jia) = 1 +E (A)2

If the last two terms of Eq. (2-38) are small compared

(2-37)

(2_38)

03

nity then JY=1 and

yo pod [VNax
J 2 A

oN
ay[vx dx

The equations of interest. Eas (2-20) and (2-27) are

(2-39)

(oo)

repeated for convenience.

k

s

[9]BS 1 2 1 ji |
TTR -36
eT 1 (ev2 1 (€ ae tn © -5@

—h

iN
J (2-26)

(0.27)

If the Liouville approximation is valid, then

A6 1 J (2-41)

[t can be shown that if A, and A, of Eas. (2-26) and (2-27)



2

respectively fulfill the condition that A, = A= Se

or W, = W, = W, then Eq. (2-41) is automatically satisfied

Ing

rr

c

BS ag
UE

B| dtJ == Ye e” J VME (
(2-42)

Ww W
. E +] @ z H +jPz

E WE gems — To pnSince E(z,t) IK Ae and H(z,t) AVE Ae the

~ompleted approximate solution is

i(z,t ho JIBz IB |
Vue3 ” re (2-43)

ind

dt
4 e

Het) = (2-44)

For slowly varying 4 and € reflections are small and pro-

ocressive waves are possible.

Aa be fore

[vat |iyume (2-45)

Differentiation yields

7(t) = 4
YE

(2-46)

I'he total phase ia

0-5 [2YUE (2-47)

and the instantaneous frequency

d
w(t) =ag = Er = Bv(t) (2-48)



As was shown previously for the speclal case of constant

impedance, the instantaneous frequency 1s proportional to the

velocity of propagation. The physical interpretation,

atilizing a medium of infinite extent given before, 1s

applicable in this situation too. Th» previous remarks con-

cerning eigenvalues of B apply here also so that Eas. (2-43),

(2-44), (2-47) and (2-48) are in general infinite series.

Sinusoidal Variation of the Permittivity

L. Constant Impedance

Let the permittivity be glven by

= 3
K€. (1 +b sin ®t) = pA€ = (2-49)

In this expression € 1s the permittivity of free space;

K *s the dielectric constant at the onerating point; b 1s

the modulating index and w_ is the modulating frequency.

Since € is postulated never to become less than €_ it follows

chat b__ 1 is always less than unity.

Substituting Eq. (2-49) into Eq. (2-29) results in

E(z,t) = H(z,%)
. B dt

 a 3Pz EET 1 +b sin Wt
“usin &amp; tT : m (2-50)

The velocity of propagation is given by

v(t) = WKE, (1 + b sin @ Tt) (2-51)

nd the instantaneous frequency by



: = P

w(t) “yEE,(T Fb sin Wt) (2-52)

2. Approximate Solution when Permeab®llity 1s Constant

The Liouville approximation is valid if

2 . *e

B 1 2 1
re &gt; 7g) - 5(£)

For the case when M=M and € = k€ (1 + b sin

Eq. (2-53) requires that

4p° 5 pW”(1+ sin“@nt) + 2bKEW,® sin Wnt
Ko l + b sin Wt)

wt),

(2-53)

(2-54)

T'he maximum value of the right hand side occurs when

20S Wt = 0. The severest requirement is therefore

24p 0
A. &gt; &gt; 2bk €0, (2-55)

The constant B may be evaluated under the conditions

of a sinusoidal carrier of frequency w, passing through a
1

nedium whose operatin oint velocity is :
EY y V KM E,

In this instance the boundary conditions are chosen sco that

3 has only one value.

W
- Cc3 - 2 = wae, (2-56)

Substituting this value into the inequality Eq. (2-55) gives

Che result

 oyWw) &gt; 2 (2-57)



Tne maximum value of b approaches unity as a limit.

Wo 2 1
ww) &gt;&gt; 5 the approximation will be valid under all con-

m

1itions.

Equations (2-43) and (2-44) give as the fields

3 IW, KMEz au |. ra
i(z,t)=A(1 + b sin wt) Fe a” “Yi +B min Wg

(2-58)

9

Ep
H Ie

he velozity of propagation and in-

(2-59)

sarsaneous frequency

are given by

(6) = = Co
Y1 + b sin Wt

(2-60)

ich VV = eee
0  Ykam E,

1)
1nd

Yi + b sin W,t
(2-61)
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CHAPTER
—

SOLUTIONS BASED ON PHYSICAL REASONING

The fact that the general partial differential ILiquations

2-18) and { 1) were separable led to the physical inter-

pretaticr tr
a

Toney Lo variation of a wave was invariant

rarying dielectric. Theafter 7° one
*

* ed

cransition cm» . “*» poundarv certainly will cause space

distortion. but once this has hanpened no further perturba-

tions ¢*© space wave=form will occur until the wave leaves

the medium. During the journey through the dielectric all

of the individual frequency components of the wave will

follow the variations of the velocity of propagation. The

physical picture of the phase variations of the electric and

magnetic fields is fairly straightforward, namely since the

vave length remains constant and the velocity does not, the

frequency must change to fulfill the condition v = fA. The

important point to be realized is that there is nothing

sacred about the frequency remaining invariant as a wave

passes through a series of different dielectrics. That this

is so in the usual case is due only to the fact that the

velocity of propagation is not a function of time.

It is desirable to understand physically why the ampli-



-udes of the electric and magnetic fields vary as they do.

Consideration of the instantaneous flux and charge offers

3 convenient method of obtaining th ~~

simple sten transient depicted I
——

inalyzed e mn”~ which demonstrat:

The tren” 7 electromagnetic wen

© unicture. The

 an easily

Tevant principles

" through a

variable dieleztric whose ~-mpto

&gt;f time. Both 4 an.

initial values «4 ©

initial velocit™

value is Vs “Tn
2xcent at the jump

except at th FT TT thy From the previcus discussions

it, i&lt; clear 1°

yf the trarcie hee invariant.

At the instant of the Jump 1t is necessary that the

and the total flux ¥ remain constant. Anotal chars:

invariant © and W implies that D and B respectively do not

~hange instantaneously.

Before the step (taf

D —- MH,

D - €.E,

(3-1)

(3-2)

After the step (t &gt;t.)

B = MH,

D = &amp;.5,

(3-3)

(5-4)





The most general form of E, and H, is for both fields

0 have a backward as well as a forward travelling wave com-

ronent.

H nl. H;
_ nt ~-

i, = BE + Ej

(3-5)

(3.6)

in
A difference,sign of the backward components is necessary

pecause one of the field components changes phase by 180°

won reflection and the other does not.

The characteristic impedances of the dielectric are

11 =\e; 4"

12 {2 Hy
The combination of Eas. (3-1). (7 °°

3 - MH, = A(1) - HY)

~

| &gt;
= € tT To€E = 5 (Es + BE,

(3-7)

(3-8)

(5-3), and (3-4) yields

(3-9)

(3-10)

Dividing Eq. (3-1) bv Ea. (3-2) and making use of Eq. (3-7)

gives

| / (3-11)

Substituting Eq. (3-11) into Eq. (3-9) and combining with

Eq. (3-10) results in the following set of equations

[102 © + _-
3=D =E}-E]

“ ot -

(3-12)

(3.13)



The solution for this pair of equations for Ej} and Ey gives

€ ME Mq€
 pa 1-1 1.41 1€1 +37 = pe . ==EB.=¥, 5(= o eH, =)H 5-14)2 2 \&amp;, AE," 1 72 2 Me An€577 72 2

n= 1,61 {a5 1,1 {a[4 = ee | men E == mm| eres oo ttn ——— ay -2 se; Ze) 1 [2 2 ze) J2t2 (2-23)

For the special case when 74 =7 =
4 c 2 7o
7, SE, Eqs. (3-14) and (3-15) reduce to

or

€ M
+ _ _1 = Lt = +

Eos CE, E, Mo lo Hy To Hy

E, =H, =0

my TY2~Jlvalently

(3-16)

(3-17)

Under these conditions of constant impedance Chere 1s no

reflected wave.

It is worth pointing out that the general solution

obtained for this case agrees with Eg. (3-16). From Eq. (2-29)
_ A _ AL _ C1.

|E, | =¢ ond E,] =g- ; 1t follows that IE, == 15}

The amplitude of D is constant as is seen by writing Eq. (2-29)

in the alternate form

) en = petIPZ +I7 &lt;
e 7 € (3-18)

for the case where 4, =A, Egs. (3-14) and (3-15)

oecone

+ _18 J&amp; +gf = LL a = jy H&gt; T2\e; Tle T [Re
¢ ¢-_1,5% 1 -

Br 7 elmer we WY sme J1 a=&gt; 5g; eh 72

(3-19)

(3-20)

\ difference equation may be formulated on the basis of
an incremental jump in the velocity. In the limit of a
lifferential step this passes to the differential equation.

——————————————————————————_—————————————rrYroweattra

“



If €. and €, do not differ greatly, E will be small com-

bared to E; and may be neglected without great loss in

accuracy. In that event ES can be approximated by

€ +ro C1.
~ — EX HBa = gs BF [oth (3-21)

This indicates that the exact solution obtained for the case

»f constant impedance may be a reasonable approximation when

ne ¢® the dielectric parameters remains invariant. The

~~~mevimation. previously derived, is of slightlyLiouvil’

different f~rm ° that the amplitudes of D and B are not

constant. Thi: discrepancy will be discussed in detail in

yn later section.

The previous results can be immediately applied to a

travelling wave of initial frequency @, and velocity V,

vhich undergoes a step to Vo at time Ce Fov tet

3 = Fk ~ Zz =

E, (z,t) = E, cos w(t vo) 71 Hy

 LL A I

1, (z,t = H. cosW, (t vo)

vhere a1 =17 VE and V, = mi The point z = 0
Hy (1 {¢g, 1 HE,

(3.22)

(3-23)

‘a

chosen for convenience in determining the amplitudes of the

forward and backward waves after the velocity discentinuity

YCCUTS . Just prior to the step (t = t_)

E. (0,t7) = E, cos Wt_

1, (0,£7) =H; cos W,t_

(3-24)

(3.05)



Immediately after the step (t = £))

2, (0,67) = (EF + EJ) cos@,(t, + #)

HL(0.8)) = (H) - Hj5 Hy) cos@A(t, + 0)

(3-26)

(3.27)

\ comparison of the two sets of equations shows that

cos Wt = cosW,(t_ + Fg). Solving this expression for ¢
170 VY 0 v

and making use of the fact that W, = 0, gives

7]
V

1
(= - 1)¢

Nn h

The complete form of E and H after

(3-28)

che discontinuity (t &gt;t.)

is therefore

2,(z,t) = BY5 COS

ty COS

\
2 Ee »| “(5

Tr
” Wl. {+

Ww). t -
+

-

W.t i Bz (3-29)
a]

1,(z,t) - HY COS

Hy 20e

\

W(t -- ¢ AL Wt - Bz

WW (; - t SON + Bz
|

(3-30)

 Ww
there B = 7 and E, is given by Egs. (3-14) and (3-15)

1

cy. =v.

ing

Eo (zt = COS

My
1,(z,t) = H, cos

€ 1
“i - t,) +t, =

ba

x—_— Ww - ey -

sal
\

Z

(3-31)

(3-32)



Ir MA, =H,

: &lt;) = ia + 1) cos
2, (2,8 TE, Tle,

€
A2 L(t -t,)) +9,
€ 1 Ww -

&amp;
: fc - ) cos
"2Ve, €, + WE oz)

(3-33)

and |

By €q
I, {z,%t) = of], + e) cos

| Ly
| ele =

re,&amp; “6 -%

: Wt -
~~

2

H E 1
= (1 - c) COS w_ t

2
 sh 7,

|

(3-34)

“nergy Density
The uniform step transient of Fig. 1 has a total energy

ziven by

0 = 1 ces? AL HEY (3-35)

vhere the integration extends throughout the entire volume.

Prior to © the initial energy U, 1s given by

1 2 2
U, = 5(€E] + MH] YV

The volume energy density is defined as u = oe .

(3-36)

RAT

“he initial wave

U
 71 1 2 2 _ 2 2

1 = x = =(€,E] + A HT) = €.E7 = M Hy (3-37)

\fter the velocity transient is over (t &gt;t_) the fields are



. _ mT A= ot -

given by E, = Eq + Eq and Hy = Hs - Hy

density 1s then

dr Ll, us
u

The energy galiln is defined asi:
 3

The energy

and 1s evidently

(3-38)

riven by

218,u,  2'€s Jn (3-39)

I'nis is the energy gain of the el-=tromagnetic wave after

she step transient has occurred.

rc &amp;. - €, and MA. = Hs che energy galn is unity

1s 18s necessary.

If =71 2 then

Wo &amp; 4
uw, €s Mn (3-40)

and if A = Mon

€. . +15 = leUy

The apparent violaiticn © the conservation of energy

is reconciled when it “emembered that the difference in

(3-41)

energies 1s needed t ~~ upon the fields within the

dielectric when A ave changing. If €, &gt; €, work

is done on the field within the dielectric, whereas if

€E,&gt;€ the field does work upon the modulating source. It

1s apparent that here is a mechanism for changing the energy

level of an electromagnetic wave. That the frequency



changes as well has already been shown.

These results may be obtained by another method which

helps t° clarify the situation. Consider that the travelling

vave c¢*© HFig. ’

caral” ~ gro

werapated between two semi-infinite

anes as shown in Fig. 2. If the far end

3f the transmission line is short circuited and a current

source connected across the near terminals then in the steady

state there will be a constant current flowing but no voltage

\11 of the energy stored will be magnetic and given by

4 al
J, = 5 WV (3.02)

there |' is the reciprocal inductance of the line, and

che flux. For a length A the following relationships hold.

 YP

rr =Wadd (3-43)

ol

p =A py [Zo LLL

The current is given by Ampere’s circuital law

fre (3.045)

[f 7. -{52 then initially the energy is given by
1

1'sly?= Lye - S¥3 iTn, 21 p1€a Za
(3-46)

Parallel planes are used for convenience but any
reometrically uniform array could be emploved.





MA 2
= €,that 72SOtersramees 1ts pai changediunmthe mvhen

: _lw2 W
Im, = V2 74a

Since the flux cannot change instantaneously y. =¥,

Un, S271 Jap, A2 my Ahn

(3.7)

and

(3.48)

[f the far end of the transmission line is now open

circuited and a voltage source connected across the near

terminals, then in the steady state the current everywhere

vill be zero and the voltage along the line everywhere a

constant. Now all the energy is stored in the electric

field and is given by

U
AL
—— =

ol

~

fw

where S is the elastance of the line and . , the charge.

(3-49)

nr

1 length the following relationships hold.

~ a!
wl:

 ~-
em
es

7
A

(3-50)
"a

"1 (3-51)

The voltage is given by

(3-52)

-&gt; [1 = = then initially

U, I. 2 le wh

the energy is

(3-53)



 AM
then the medium changes its parameters so that 72 = fe

D

 1 2 4d
Ye, = 2 2 ow

Since the charge cannot change instantancously Qq = Qs

1.2 a € _ €q
Ve, = 2 ol ewl €, Ve, €,

(3-51)

and

(3-55)

[n the original transient problem both electric and

magnetic fields exist and both are constants before and

after the step in velocity. The principle of superposition

is applicable and the total energy is merely the sum of the

“wo energies given in Eqs. (3-42) and (3-49).

wv U,om U,u, (3-56)

Originally the energy is split evenly between the electric

and magnetic fields Ute = Us = xe so that the final total

nergy is given by

Yor “Vere, Tm TENE, YA (3-57)

lhe energy gain is clearly

ot _ 1&amp;1 A
Up 276, My (3-58)

vhich is in agreement with the previous result, Eq. (3-39).

Approximate Energies

Ine Liouville approximation 1s repeated here for con-

renienice.



AL 5 +3 . J&amp;- -p = JBz HB |=

Ee pultele 2 fue

-{ &gt;
—

~ . . at

 gp or tibz wp [&amp;nul el om e (ue

[t is apparent that the amplitudes of UD and 8 are given by

ID]=~ A PE (3-50)

and

[5]  No

—
I

(3-60)

These field amplitudes are not constant and apparently

contradict the statements made regarding the invariancy of

che charge and flux. This difficulfy is resolved if it is

remembered that the approximationisassumedvalid only for

slowly varying dielectric vnarameters. In this case the

fourth root of this variation is even slower and a constant

1s approximated by a very slowly varying time function.

There is a very definite reason why the approximation takes

che form it does. To see this first find the approximate

energy density using Eq. (3-35). If the already overworked

step transient is considered once more and represented by

he Liouville approximation then the final fields will be

yf the form

L

TT

1 ~

—

Sy
+ Nae
——

Hy = Nou

n In

Cor

(3-61)

(3-62)

he velocity transient, incidentally, need not be a step and



1 L
as desired from to so that

may be as gradual as de yr Jn

~he assumptions under which the approximations were derived

sre not violated.

The initial fields are

ToAABs (3=6%)

and

H Tm—— cw Be TE (3-64)

The initial energy density is

2
_ lip 2 2. A

Uy = 5(€E] +M HT) R23 (3-65)

The final energy density is

2
_ 1 2 2y . A

U, = 5(€ ES + MHS) x es (3-66)

lhe energy gain is therefore

V2 “aUy, [4sEs
(3-07)

\1 though Eas. (3-05) and (%3-60) are approximately equal

C0 the exact expressions, their forms are quite different.

The pertinent phvsical interpretation is that Eqs. (%=06)

ond (3-67) are exact expressions for the energy which is

actually provagated by the fields and the energy gain res-

pectively. The energy which is trapped in the standing

vave field is neglected by the approximation since it does

not admit a reflected component. As long as the reflected

vave is small compared to the transmitted one, the approxi-



nation 1s very good. The approximation forces the ampli-

tudes of E and H to vary in order that the approximated

rower wil

Supine

vevnoetlyequal to the propagated power.

‘aattemptedto derive the energy density

Prom power cconsiderations. Poynting's theorem gives for

-he original fields

&gt;. = E.Hy =
2 €1 2

pn = —— BE.Ej BE (3-68)

The total power flowing through an area A 1s simply

2 . | €1 2: = A EAS, = Ey

Che energy propagated through a length L of the wave is

(3-69)

simply

 IT {= 2 2
ol

(3-70)
 ou

~yhere V is the volume AL. The initial energy density is

cherefore

U
| _ 1 _ 2

J. ~ x = €E] (3-71)

1s was derived previously in a different manner. The

oropagated energy of the final fields is similarly given by

iJ

i ( (3-72)
[,

The energy density is therefore

1, =|HRE, S, (3-73)



Poynting's theorem ylelds

~ _ LF nT + = -_ F + re -
3, = (E5 + E) (H, - Hy) =E, Hy - E; Hj

= le - 5)Je
Substituting Egs. (3-14) and (3-15) into Eq. (3-74)

(3-74)

results in

€1,2EL € 3 [aL© M1502 - (5 TZ,€ 5&amp; : a MoCo A2 TV, 2

Le? VAS
171 UAE.Mo€

(3-75)

snd the final energy density becomes

&gt; (M16;
bo = E85 IDE

ns _ 2

Since uy = €5, the energy gain is given by

Yo (41a
u, JE

Equation (3-T4) is the net power passing through a

reference boundary. It * ~~ "Tcrence between the

oowers of the forward anc backward waves. This is why

(3-76)

(3-77)

Eq. (3-76) is th~ transmitted and rio* “7 “&gt;tal energy.

The plus arf minuc wees may be thou

standing and &amp; travelling wave.

distributed throughout the overlan veglion of the plus and

minus waves and is not. taken into account in the above

derivation. Equations (3-77) and (3-67) are exactly equal

which confirms the previous remarks.



Electromagnetic Momentum tL)

The electromagnetic momentum g of a field 1s given by

se ll =
==5Z ": (3-78)

vhere V is the velocity of propagation and J Ls Poynting's

vector. Referring to the problem just discussed, the

&gt;riginal fields are described by Eas. (%-14), (3-15), and

(3-08). Substituting the latter equation into Eq. (3-78)

rields

_ oe

2, = €&amp;4 [4.€, ta

VALEince S,. = €. V115°
&gt; TV aE M1

the final

(3.70)

value of momentum is given

—-r

Fi
SN€ { M4. €, oy

This very imcc

special case c¢” tt

2 y ay ol ’
Lv ot "7hasbeen derived for the

Sammy ye fq Va. deaiia Por Pho

zeneral Canc
’ 2

7 a arr thot “rey may by added

01° suhtract Vem mt ’ +roms # v ovarylng the

Jeo” t- ( -  ich 1t passes,

“he ¢ "nef rome oa : TY NY" “~hanged.
~
57 1Yn MNT, he propagated

field an

Liouvsy

:
-

“nr that the

La ig ad ae alyMAoT a “ion of

momentum a” so. The “aet that the ex. LS given by the

ypproxXximation insures that this is indeed true.
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CHAPTER

THE DIELECTRIC MODULATOR

he frequency variation of monochromatic electro-

magnetic waves passing through time varying dielectrics

#111 be considered in detail in this chapter. Fig. 7

indicates the situation to be studiled. The variable

dielectric extends from z = 0 to z = L and is assumed

nomogeneous throughout. oince the wave solution has just

been found for the interior of such a dielectric and the

incoming wave, of frequency w,, obeys the standard wave

equation outside, 1t is possible to match boundary con-

ditions and obtain a solution valid over the entire range

&gt;f =z. This procedure will solve the problem but the

necessity of matching the boundaries is rather distaste-

ful. An alternate method which clrcumvents this boundary

natching makes use of the transit time concept and will be

1tildized.

It can be shown that the equation for a
Y

oropagating with non-constant velocity 35 b-

3
od -E,_ sin Jo. - ||

wave front

(4-1)





The transit time is defined as

_ dzr- [4 (4-2)

and 1s the time required for the wave front to travel a

listance z. Since the total phase of the wave is given by

—_ W(t _ [47) (4-3)

he instantaneous frequency is simply

d d d
w(t) =H =w,(1 - &amp; | = Ww, (1 EA 7) (4-44)

he change in frequency 1s thus pronortional to the rate of

change of transit time. Usual yvthe transit time for any

jielectric slab is constant and so the frequency variation

Ls nil.

Thin Sections

If the dlelectric slab 1s very thin the velocity of

oropagation will not have had time to change appreciably

cefore the wave has passed completely through. The velocity

can then be approximated as constant for any given wave front

2nd dependent only upon when, during the modulating cycle,

she wave front entered the medium. Under these conditions

o Vv — V(%)
(4-5)

This is analagous to the situation found in Klystrons where
an electron's velocity 1s assumed constant while passing
through the narrow accelerating gap but dependent on when
it entered the gan.



The instantaneous frequency 1s approximated by

owe w [1-0 dedp| a0 E (4-6)

yeneral Solution

T:v practical situations the approximation Eg. (4-6) is

nearl alwavs valid. It is instructive however to consider

he general case when the velocity cannot be assumed constant

for the transit interval. The translit time for the entire

length L is given by

—— {&amp;-..Z.. (U_-7)

[nN this equation t is + entrance time cf a wave front and

&gt;, 1s the exit time c¢© the same wave front. The integral

nav be evaluated as follows

L ~

[vee dt = | az = 1,
tT. 0

(11-8)

Therefore f(t ,t.) =1L o&gt; t= g(t.L) and

T ~.o- t= t, - g(t.,L) (4-9)

I'he case where the velocitv of propagation undergoes a

step discontinultv as depicted in Fig. 2 is instructive and

serves as a check on the previous work.

t
I'he evaluation of a v dt = L takes place in three parts:

tT





If t,&lt;t', v(t) = V, and

[f t €&lt;1'&lt;
0)

_ L
T=

then V =V, + (77, = © “a. Lo = v )] where

(4-10)

1-(tt) is the unit sten function and

on,tego Ly Vo.
TJ “1

Finally if t_° 1d

n
vr

1

The plot of t versus 1. shown in Fig. rives a

(4-11)

(Li.12)

craphlc

representation of the transit time as a function of output

~ime.

The

iT
7

rate J
-

 6b 2hange “J

»

 - transit time is ziven by

(cv +=) (4-13)

\

Since W(t) = Ww (1 ~ a ) the instantaneous frequency is
1

r
a

w(t) é

L 2

&lt;= (gt + v=) (4-14)

1s given in Fig. 4





I'he phase constants involved are

[Wa

C

I'his agrees w'* ec.

the wavelength doce

velocity. I

there wi’ ©

Cuma

~~ A, »  ~~

Che med?
——

mndergoes t - ——

——

4+ 1
~~ r -

show» = T°- . 3 ~

since + Jc lect change

“ime. The

oroceeds in five parts:

c luaticn

.L

(4-15)

"1teroretation that

ig "ransient of the

Car ‘ring the step

Cem - 3 matched to

=which

2ro\

“13%3he orn

“cally

" propagation

&gt;the transit time integral

t
b

Assume that {vas &lt; L.
53

Tage T (t -

(4=16)

Case IT (t_ « 4 Nn 2
u

_ L 1 m e

Poy cave (8-8)
Case III (t, &lt; t

V
(1 +2)t.

Ft, tt.)
y

7 t+ = - 37 (t,, - £ )©

(4-17)

(4-18)





ase IV (t, «&lt; t_ &lt; &amp;,)
v v 2V oo

_ 2 2,2 2L 2 /.oleh ce (2) - == + == (t, - t.) (4-19)

Jase V (t ~t.)

The instantaneous

_ L

frequency is given by W(t) =w (1 - of )

(L-20)

vhe re
1.

\

2 1 a t..

aT
TE

bY

1

 . tft,
vy

7 b I,
3

ie sd
I

2V
 2 2L 2

p vi) - == + —= (%. - t.

1
J

 ry .

yhere m = —

€. ’ ~

L

"0,

It follows that

. L

L421)

V. (t,-t;) + V(t -t,) © +
(E,-T.) n a -

W(t,) =

7,
2 We

\

.

Vv, - ~t_)

I LL (Vv) (yt)a TV, TTNTCD

som fe )

1 Cay

y 24

m

2
m (t,-t,.)

(Vo-vy ) (£y-t,)
2V,, &lt;t, &lt;(ty + 7)

(1-20)



iquation (4-22) is sketched in Fig. 6 as a function of output

slime.
t

b
ff the [vac &gt;I the evaluation of Eq. (4-8) proceeds

t

again in five parts.

Jase I (t, &lt; t,)
L
J

(t « t «~t,)Case II

T L 1 m (= mmm ow ae ea— 1 ~

v, 2 vy 1

’ t. fo. ty)

»

case III (¢

8  . eh_ov a) | 7+ 2 = 0

Case IV (t, &lt;b. to
V v

 a - yf (—2y2 _2L , __Th (t, ty) V2) m + Im (©. — €,)

(4-23)

(L-pl)

m5)

(1-26)40

Jase V (t. &gt;t.)

Phe rate

It.

Lf

m
iW

Ad

~

ange os transit time

|
—ad

m

Ta

‘a

“J

(t, + iLV.
J

—~
» t I

Eto t,FE 1

(4-27)

 bt Lt &lt;b
(Ev? 2L LT 2
V5) m (Ey - ts

(L,-28)





The frequency is given as

(0,
f - : -

(By = 8) PVE - 8)
T(t, -t

bo

(t, F vo) = t

J

re

1

SY1)2 =L dL12, ZLLN (5

W(t.)
lh

———

a

fot.
a “+

Vv, CVJG. by CL.

"s
= W,

all

V(2)° on 2VVin mm m
\

(t. - t,)

L
. t. + -—( 0 Vio

(4-29)

iquation (4-29) is sketched in Fig. 7 as a function of out-

rut time.

sinusoidal Modulation

This section will study the case  monochromatic waves

sassing through a homogeneous dielectric slab whose per-

mittivity 1s a sinusoidal function of time.



[If € is given by

€ = KE (1 + b sin Wt) (4-30)

ind MA = A, then the velocity of propagation is given by

r
: ‘o Vv = 1

AEDCARSLU2 Io) -Ji + b sin Wt VEE A
(4-31)

[£ the dielectric is electrically thin then the approxi-

nation (4-0) can be used. Under these circumstances the

instantaneous freaguency of the wave emerging from the

dielectric is

bl cos Wt
W(t) W 1 - =~(¢) Al Vs Y1 +b sin®@_t (4-%2)

ind the total variation of freauency

lbw _&amp; cosWt
A w(t) ox ——Ti an “

2v 1 +b sin@_t
(11=%7%)

[f b is very small. Eq. (4=%33) becomes

A w(t) = L290
sv cos W §

OO ™
(L310)

his is the form of linear phase nodulation 2) where

1a

bw w, L
Ww. = ——

L
Wg _

 0 Ter TTT

(1-35)

(L4-36)

[ff I is electrically long so that the veloclty cannot

pe assumed constant over the transit time interval then the

integral (4-8) must be evaluated. This becomes



h! Vv dtO

t V1 + sinw_*©
(4-37)

This integral can be evaluated approximately 1f the substi-

Wt "

cution tan (——) = X is used. Then sin W © = —y

1nd 2 EE =( dt. Substituting into Eq. (4-37) results in

Ce = 2

. 3 @

DL sin @W_*%t m

A
of

( . Leoe 4%
1 2bx\! "T=

J

=m

SyWY

-Dh” + Dp + 2x + ]

(4-38)
~ . 2 o
Since (x° + bx + 1'7 = oh

A mn
. no? Oy 2

Pt Yee Oy

5 in seen Lhe if Deed DB
’r

 2
+ D sinw 1 W..

y

J
. by + 1

(4-39)

The re

&gt; can] 22 tb
 + bx +1 Yu _ be Yu =|

(4-40)

The transit time integral may be evaluated from tabulated
functions if the phase 1s changed to a cosine function
(which obviously makes no difference) Then

{ r
1 at _ 2

JV +b cos Wt © 1 +b
Wt

(with a = x and K = —22)

integral.

which is an elliptic



Cnerefore

V_ dt
Oo

{1 +0 sin Qt
ledl

—

oe |
. tan(——) +b

voo_
~~

—

4 vs _
_— - tan © |

Wb - bP \

[he approximate solution of Eq. (4-727) 1x

r WT

) | 2 tan("

I\
J

wi

- ~~
+ rum

w
2. tan |

m

(L471)

( Wt

(4. 0°=b°cof’ san(p) +b’0 WnLYH - v°Yi ou? | oT
Un)

aT dt

Since W(t) = W,(1 - IE) ~4, at, che instantaneous frequency

3:

=,

2 Wnty
Sec {Ld

D tan (==1) +

| Yu -

L(t. )=

w ©

| fe tan( A) + b) © LY4 - 1b
sec (tan — - - ———

Yu ~ &amp;
W,

‘Vi op? ; of -1
| - A tan tan~+ 2 tan zt © - arts - 0° y2|

(4-43)
a



For L = 0, b = 0, or o = 0 the instantaneous frequency is

simply Ww, as is seen from physical reasoning. . Note however

W L{4 - b°
chat if TI = Km (K = (0. °

0

vill again be constant and equal to W . This means that
Rca

if the length L is such as to require -n integral number of

»ont passes com-modulating cycles tr elaosc hof-re

oletely through, then surelv

the same transit time

proportional to tho =

&gt;bvious that nn

rr {ronts will have exactly

frequency vari. lon is

change of transit time it 1s

arigtion will take place. These

null lengths are give: 1 wv

 = gf

om
] A)

= (x (4-40)
A e

Since the frequencv peha~' =
»

*73¢ there
»

0 advantage

0 be gained 1n making -

che first interval. Ine

“un p— 1 some value within

-y a oar

means greater loss.

Hower. The optimumvhich in turn means increas:

length modulator. which wii” result in the greatest frequency

sariation, is evidentlv somewhere within the first interval

Urs
J) &lt;«&lt; L &lt; - _

opt MnWw 0 whe

between the limits. That tnis is actually correct will be

demonstrated in the following section.



VMaximization of the Frequency Variation

The frequency given by Eg. (4-43) can be rewritten in

~-he form

A sec” (p - a) Ww 5
Wi) ee Ny

B[1 fe tan(p - a) - 2} |
w © Y 2

vhere A = sec” (51) , B~1 + tan®p , 0 = 4 - b
Wt, :

w 1Y4 - b° 2 tan (-%2° bp
= gry 2 WH ER 3 — . It is seen

0

(4-45)

V
chat a is the only parameter involving the modulator length L

herefore W(t,) will first be maximized with respect to a.

y
* da

D
wo
JL Nn LaU6)

aN _ ,, dD 2,d==N=(DT# )) (Ua=li7)

shere N = | sec®(p - 0) and D = os + {o tan(p - a) - |

Tf a new variable X is introduced such that X = 2 - a

“hen

}  “4

AN _ |

3 = 24 sec. tan hd

iD _ 2To = BC sec x |c tan x

(4-48)

(LL _4q)

Substituting Eas. (4-48) and (4.49) into Ea. (4 47) leads to

tan v +e tan » - b}

squation (4-50) can be reduced to

_

“x

Liin XX - sin® X +

TX k tan x - | (4-50)

4 - p°
4-0

~~ (4-51)



vhich has the solution

2 +b
sin(B=a)=|—— | 2 + Db- sin~t romerf

[Lf this condition is substituted into Eg. (4-45) the

(4-52)

instantaneous frequency becomes

W(t) = &lt;
max

nin

Wt
sec? (5.4)
tan (—="

; CN (
{

(4-53)

he

{ is either a maximum or minimum value so that if Ey. (4-53)

W..t
is now maximized (minimized) with respect to Zr the value

&gt;f B which is required can be found. Substitution of this

value of B into Eq. (4-52) yields an equation which can be

3o0lved for the maximizing or minimizing values of a.
; Wnty n :

the substitution © = —%= is made, Eq. (4-53) becomes

V(t, ) = Knax
min

pc by N(e
CY = Koy Det
1 + 2 tan © + Db pax

| Y 4 - b°

©

(4-54)

——

vhere N = secco and LU =
- |2 tan6+b

(4 _ 2 "

J)
The

naXimizing condition is

aD dN
Nag =P 335

-
 oD

DT o£ OY (4-55)

The appropriate functions are

IN
0

= 2 seco tan po) (4-56)



1nd

iD
15 by % (= ———7% Seco 2 tan © + DbUL ~ Db ) (4-57)

\fter substitution and simplification Eq. (4-55) becomes

51n%8 = % 1-58)

he solution is

WT
3 = ml _ KIT

oo - (IX odd) (4-59)

'he composite conditions for maxima and minima are

3 - @ = sin”* GE

&amp;,6q _ Kr
—a TI

“™

(4-60)

The choices 7 ~i~ and value of K wi" ' determine whether a

naximum or minimum is found. Utilizing the conditions of

Eq. (4-060) the auant®~“es needed for the evaluation of Wo..

a wwan nin become

2 “ti,
sec (—=) =

sec” (B= a) = —  ——

2 + (-1)1 bp

vy. £ .Wat, _ Jsan (+=)

| 2 + (=1)0 + 1SepaTe
v2 + (-1)% bp

can (Bb ~- a)

(4-61)

(L692)

(L.53)

(4-64)

1 and K are independent and either odd or even to determine



che proper signs for the maximums and minimums. Substituting

hese quantities into Eq. (4-43) gives

LW max
nin

RT . LK
/ 1 n+l b° K Kin+l b™ D
2 (-1)" p)|2 (17 rg (F1)7 bp (nD) 3

(L-£5)

The choice i:1 the numerator comes “Lom UAC qelectd“ion of K

in Ea. (4-60). Clearly the (-) (“ty = 1) is associated

vith &amp; minimum while the (
2 \  Tr(wt, = I is associated with

2 maximum. The denominator can occur in four distinct com-

hinations.

case 1 n od’

Case IT n even.

case IIT n odd

case IV n even,

2VeN

)

rr

=ven

J

 yr

or

~ a

dd

 3)

Dad

 Db

[4-5454)

(4-57)

(L-58)

(1-69)

The primary maximum value of WW requires the minimum

jenominator which is clearly Case III since b 1. The



orimary minimum value of W requires the maximum value of D

tshich is Case II. Equation (4-065) yields

: 2 + Db
Woo. = pW, n odd, K odd, numerator (+) (4-70)

1nd

2 =Df ~~ i. -— UaW. ins 7T% Ww, n even, K even, numerator (-) ( 71)

Jhere it is remembered that bes &amp; ?

If the maximum conditions are chosen,

_ -1 42 + Db
3, ~~ Cm tan V &gt; - D

-1 2 - Db
= tan™" (-{5==2)

Therefore

x
mast

_ -1 2 - Db -1)2 +b _T= tan! (22) - tan 22-7 (principal value

(Li-T72)

[ff minimum conditions are

1!3. - 0. = tan
nin min |

.nosen

Z - Db
z= |

-1d2 + Db2nd Prin ta E

Tnere fore

_ 12 xe 1 2-0 TL* ln = tan 5TH tan - = | = 5 (principal value

(L-73)

The transit angle which produces the maximum also produces

~he minimun.

Since oa
© TVA - be

ST ov.
mn

“he optimum length of the modulator

reconmes

Lot
2m Vy Co _

a) Vu - he
 eT

eu - bb“ in _ ne

mh

(L-74)



It was assumed in the derivation that ble 2, therefore it

is permissible to write

7 T C 1v C ina IA————— —————
_O = e———— —

Lo pt 2 'm ok m ok fu (4-75)

there ¢ 1s the free space velocity of light and II 1s the

jielectric constant at the chosen operating point. TT. is

~he modulatie ne~’cd.

The fre~ snace vel ~*~» 7
- - ve Fo ib . ~ --

Fy [%) 1 roximately

5.10 meters ‘g- A -n oa sd
. “ir shvieonsg that the optimum

length modulat ~*~ Aanlv when the

modulating frecue—

dielectric cont i fies 7

erating point

~h, buf since

“ct is reduced.the square rer’
a

For low mod: ~

length med» °°

deriving LE

v1ally pure

"Tw practical

sgumni;ions used in

Traguency variation is essen-

T+ ~~ © “~1* the »nercent change

in freauenec~r ~ therefcre the optimum

conditions h °

light could b

culty is th

therefore 1c ~

freauency. Lo

~

«an Tv wmataaiple.

- Com tee TesrN Ven dy f=

Ml= oC
- Tamanna constants = -4

 nro wh? oh are dependent on the carrier

"~rroelectrics, such as BaTiO. ceramics.

vhich give the greatest promise for velocity modulation, do

not have variable permittivities much above the microwave bands

nd are therefore inapplicable for very high frequency operation
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CHAPTER
—

’

MICROWAVE IERROELECTRICITY

Introduction

The amount of information concerning the properties of

Ferroelectrics at microwave freauencies is rather limited

nd it was felt that the measurement of the complex

* | - »

dielectric constant of certain barium titanate ceramics.

1t these wavelengths, should precede any attempts to build

yetual modulators.

Several problems need to be resolved. Powles and

Jackson (1) have demonstrated that BaTiO ceramics malilntain

their low frequency dielectric constant, indevendent of

frequency, until some point in the microwave range and then

andergo a relaxation phenomenon after which the dielectric

~onstant is reduced perhaps by a factor of ten and the loss

is substantially higner. Several guestions immediately

resent themselves. If a low frequency voltage is used to

yias the ferroelectric then certainly the low frequency

iielectric constant can be controlled, but what of the high

frequency constant? Does the same percent change of K' take
ep.  anteonamR

I'he complex dielectric constant K° = K -jK" accounts
for dielectric losses and is discussed in detail by
A.R. von Hippel in Dielectrics and Waves, Chap. 1, Sec.II,
7.3 (Wilev and Sons, 1954).



place or 1s control lost more or less completely? Another

question is what factors affect the frequency of the

relaxation? Kittel has calculated that domain resonances
. {©

ire resnona’ Tr 1f so. domain structure is critical and

shifts 7 t+ “wlaxatlon “reguencv appear nossible by

suitably tailor?--+e ferroelectric. The maximum rate of

nodulation to which the materials can respond 1s also an open

question. The present work is merelw

soward solving some of these questions.

Lquipment

The 11.C0C Me. range was chosen for preliminary measure-

nents because strip line (50 ohm) was available for this

hand and could provide a convenient method for applying a

DC high voltage bias across a ceramic sample. It was felt

that the same apparatus could ~*~ be used later on to form

the actual modulators. Figu™

che measuring apparatus. Tha ieh voltage terminal is made

in the form of a low pass filter so that the microwave energy

vill not radiate from it. Band pass filters at either end

yf the sample section of the center conductor were needed to

supply DC isolation. This was necessary because the coax

-0 strip line transitions break down at relatively low field

strengths. The probe of the slotted line detector could

nove back and forth to measure the reflection pattern and the

suner could be used to match the sample to the strip line.

\ standard double detection measuring set utilizing a Kay



coax - strip line —-

connector 3 -

ground plane 3

&gt; umm
center conductor 3 ——

———— rete eee eg

BaTiO, test—
D

sectionTop view (probes removed)

Polyfoam spacers

Slotted line probe
(for VSWR meas.) |

O AL tuning probe

Band pass filter

s Seton pass filter A100

Front view (one ground plane removed)



tlectric meter circuit completed the set up.

Several different procedures are possible for measuring

(3) and the one which was employed is discussed in the next

section.

Measurement of Complex Dielectric Constant

[ntroduction
The dominant mode in strip line is TEM and is sketched

in Fie. 2. The fields are concentrated above and below the

center conductor and so pass through the ceramic section

when it is placed in the line. The geometry of the strio

line cancels out when the reflection coefficient is evaluated

therefore Fig. 3 represents the situation which 1s equivalent
*

The sipnal flow graph associated with this configuration has

3 total reflection coefficient given by

vhere

Z
|r|” +b

the ww velenoth ° oo

- ro

“ .

14 528 ,—20g6
 YT -2ag8 € (5-1)

omnlex and related by

‘nual to 2 where \ is
»

FF» ferroclectrics which

nave laror “elestr-ty constants and relativelv low loss

(tan
- can b

5 -M™Mection and transmission coefficients rv and

assumed realand positive with little error.

first shown by S. Mason.



rround nlane

rent

Dominant mode in strip line (from an unpublished
memorandum by A. C. Schell). Fields are symmetric
71th respect to center line.

Tie, or
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12 + Jl? =
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The magnitude of @ 1s then gilven approximately by

pl 2 r =~
&amp;

= =r ee

i | 1

| - ope e~ Cad cos 26 + oH etoelz

_~20g0
(5-2°J

[ff |p} is known as a function of 6 then r and a may be

~valuated. This leads to an evaluation of the complex

dielectric constant. © may be varied by changing L or )

ind where the dielectric parameters are independent of

frequency the latter method is preferable.

iI. Lossless Dielectrics

For the lossless case a
a

\.’ and Eq
\
1 becomes

axactly

ol = [2]
 -~

3

{ =TT ~ 21° cos 7G

his expressicm ir —~erirdie °° 7 : thn ~djacent maxima

(5=3%"

&gt;r minima are A6 =T radians avart. The change in fre-

juency necessary to produce this A6 is simply

Af = 4 =

eb apr
(5-4)

1

vhere K' = = and K, = 4 ' The ratio of impedances gives
O

Z
1 gl+ nl _ -
Ln 1 - |r| (5-5)

Solving Egs. (5-4) and (5-5) together for K' and K_ yields

LL = GC
Sn = DISBT
 Cs
 = 574p

(5-5)

5-7)



For non-magnetic dielectrics K_ = 1 and Eq. (5-7) becomes

71 — C 2
= {mrp (5-8)

ITI. Lossy Dielectrics

If a #0 and the loss is low so that Eq. (5-2) is valid

then Eq. (5="" will give a very good approximation to the

real part cc“ - Eq. ("=2) gives le] as a damped oscillatory

function of © and the actual maxima and minima occur near the

hoints where the slope of Eq. (5-2) is zero. These roots

are solutions c¢f

-

ye (sin 70 ANT Yr
: a

5 8 \
"

OQ
.E (5-9)

If 6, is a solution of Eq. (5-°" then ©, +7 w* 1 also be
- Tr

solution provided e 20a 1. The maxima are then spaced

radians apart and occur when cos 26=~ -1. The envelope

vhich vasses through the lel values 1s approximately given

lel.aX

anvelont

fC.
A ee oc 20eS

Pa=0 (5.10)

[he various maxima lie on this surve spaced ~T radians apart.

I'he ratio of two adjacent maxima (e, and@,atangles 6, and

T + 6, respectively) is given by

O1 _ (Pe4r2¢72%6Bl)(p4ppd¢77%6S1_;=20601)
Co (1 + re e061 y (1, e2CeT + 2r e=2aB1 _ Tv a C601)

(5-11)



] 2LP .Since ete’ = 1, Eq. (5-11) can be rewritten by cancelling

“he second factor on top and bottom and replacing the appro-

syriate numerator term with e 20 1 + 207 . The transformed

cquation

:
0

2T oy
« n—20g0] fn

(5-12)

If a6, is quite smal” and r is close to unity (as it is for
: 1, ¢€ Lo

3aTi0, ceramics) then a = = 1n &gt;, If a 6. is very lerge
| T ens 8

the exponental term is smal’ compared to unit and a=
1 €1 —
== ln 5—- These two extreme cases differ |2TC A

"sector of

-wo but in zeneral only the magnitude
Ll

¢ 5 1mportent co

yn average can be used

1 Zin tlTg

[f more accuracy is desired the transcendental Eq (5-12)

(5-13)

nay pe solved by iteration but since this equation is only

ypproximate the additional labor is not justified.

The complex propagation constant is given bv

J= qelse = 5 Sy = ep (5-14)

for non-magnet®

s¢. that K -

21
Ay

7 =

, K.a_.

and if Ky and Ks are defined
Cerit = 2m a

then ao = A Ks and

(becar~s aZ = a_0) that= readilv seen

The loss tangent
-

riven by

; K"
an 0 =

)

Tr =
$aKe

(5-15)



[ff tan B«&lt;4£ 1 as assumed then KS &lt;&lt; KS and Eq. (5-15) becomes

2K eAn DB oR ey mg 1
an o X; 2a 57 in oo (5-161

his together with K' = (iar) chara. *&lt;&gt;izes the dielectric.

I'he data required from a plot of lel versus f are the length

of the sample (L), the magnitudes of two successive reflection

coefficient maxima (f, and @ 5) and the difference in frequency

oetween the maxima ( AD)
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space above and below it completely. Since prectically all

Sf the field is concentrated in this region (for the dominant

node) it was assumed that the absence of the ceramic along the

=dges of the center conductor was unimportant.

Author's Results

NDuantitative results obtained from the reflection pattern

ata appear to be unreliable and the straightforward theory

developed inapplicable. The reasons, for this appear to come

from several sources. The first is that other modes are

oresent in the strip line which are caused by the least

dlssymmetry. Normally they are 30 db or more below the maln

signal but the K' being measured was high so that very large

reflections were obtained. When the probe was placed at a

7oltage minimum the signal level may well have been below that

yf the undesirable nodes which were cf arb! trary phase. The

second reason may be that the value of 7 being hign allows

yther modes to exist within the ceramic section itself. These

night be reflected internally many times in various modes

refore emerging. This could put peaks in the reflection

soefficient versus frequency plot not accounted for by the
 ¥*

simple theory. The assumption that KX was invariant over a

narrow frequency range may have been wrong buf this is unlikely

since several different frequency ranges were tried and the

cer cent deviation of freacuency was slight.

Direct insertion loss measurements were made at 11,000 Mc

‘hich indicated about 20 db loss for the 4 mm. samples of both



cypes of ceramics. Any leakage of the

retween the samples would make the True loss higher but the

Figure of » db mm may be a fair estimate.

ualitatively it appears that the relaxation svectrum

nas not set in yet at 12,000 Mc for the FbSn0., ceramics and

that the low frequency dielectric constant. which Coffeen

~laims is around LC0O0O, is still in effect. The corresponding

loss tangent would be on the order of .1. There is a great

deal of uncertainty about these conclusions and they need to

he rechecked very accurate’v.

Tne CuSn0O. ceramics we»e wey Cavay at Jo. Therefore

the PbSnO- samples which were not, (less than 3 mw. was

jissipated when 2COC 7 woo applied) were used exclusively

in the experiments which attempted to vary the value ol ¥

by applying a bias field. This was possible but the quanti-

ative changes are very mucn in doubt.

Davis and Rt cults
 pdDaxria ard R17 Ty have ER

**shed data on SrTi0- - BaTiO,
) . A A 3

wNnich is summarized in(27Cr

Fig.

CypmeoF ' ceramics a“

Their results show that the relaxation spectrum

reporte:. -- Powles and Jackson has not been reached and that

at room ew mature the dielectric consta 1a v1 the order

of ©

Is
-

TA - tangent of .1 (with ne 1° -1d applied)

trength ¢” 1C KV/Cm is maintained the loss

decreases slightly and the dielectric constant drops to about

2000. If it is postulated that their data also holds at



5500 #

10.00 KV/cm

5000

1500
2.13 KV/cn

ny

of

on

hooo
1

5500

WJ
3000

1.25 KT _ all

5.32 KV, cm

1

a

S 14
8. L

2500

2000
—rN r3.5% Lal

0.70
2.7
14.
J.C
19.1

in

L500
/

1 C00
’

&gt; 1 20 30 49
T °C

Temperature and electric field depen-
dence of dielectric constant at

3000 Mc. of 73% BaTiO. and 27% SrTi05

Re, r~

fn oo. =
T °c after Rubin and Davis.

Temperature and electric field depen-
dence of loss tangent at 3000 Mc. of
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11,000 Mc (which is doubtful) then it would appear that the

SrT1i0., and PbSn0O. ceramics might be similar in dielectric

yehavior at least when no bias is applied.

Modulation

[. Theoretical Calculations Based on Experimental Data

On the basis of Rubin and Davig'!'s data 1t 1s possible to

yredict the performance of a orTi0- - BaTin. modulator

sperating with a carrier frequency of 00 Me. IT the

. . 0 .. .

ambient temperature is about 257 C then tan 0 = .1 and K

raries between 4000 and 2000 for 0 KV,/Cm and 10 EV. Cm

respectively. Assuming a linear change of K' with field

strength, it is obvious that a dc bias of 5 KV./Cm in series

vith an ac voltage of magnitude 10 KV. Cm peak to peck will

roduce a permittivity given by

— 3000 € (1 + L sina
) 4 m 5.1¢

—

Substituting the values of b and Kn which were found

ybove into Eq. (4-75) one finds that the length of the

optimum modulator’ is given by

fr , a
on’

_ ....8

mm

yy (5-18)

The loss per meter can be shown to be

L
- _ rar er 1 2 2 dbOSS = 8 « OOO No|: Ka | 1 + tan 0 = 4 Teter

(5-19)

Jith a loss tangent of the loss at 5000 Mc. is approxi-

nately 15 db/em. If the maximum allowable loss through the

wp



modulator were 15 db then Loot = 1 cm and £ = x 207 cps

wnich presumably is above the maximum value to which the

naterial can respond. Therefore as predicted earlier the

optimum modulator 1s probably not realizable. If a lower

value of © is picked and a short L is used so as to keep

the loss down, then Egs. (4-35) and (4 30) apply. The phase

deviation at 3000 Mec is

POLE, imgO
- radians [5220)

where IL 1s 1n cm. For &amp; ¢ 2 4 the carrier disappears

rom the spectrun as is well known. The value of I reguired

ls 2 mm and the corresponding loss is = db.

Lf the questionable data concerning the PoSno., - BaTiO,

ceramic or the Rubin and Davis data extrapolated to 10 KMe

 5s used then the loss is approximately 5 db,/mm. The phase

Jeviation 1s now

re T
14 mw

radlans

for 6 =

is again "bo I.

“+ ~~ - —
“ 1PLE. :

L

dielectric raneters

shrougn a me” :lator which oi

The db loss is linearly proportional To

[5.21

pyres nding loss

tr 94 fhe

"er tency the loss

walrl be 5 db.

to.
1

[T. Optimization of Owerating Temperature

Ahove the Curie temmerature there exists a range where

ferroelectricity is possible and the losses relatively small.



In general the loss decreases with 1lncreasing temperature

out the modulating index b alsc decreases. If assumptions

are me’ a= tt how the values ~~" ~1d tan 7 vary with T in

“his region the 1e¢ cptimum o

computed. Wher e~cnential functions are postulated the
*

results are readllv obtainable. Assume therefore that

Temperature may be

ny oT - T,) T 7 BD

}
2, ~

 ~~ on
2A 1 r. v/

-* 2 -T,) T GF iil (5-073)

from Eg. (4-30)

Wb Wo ©
il Mm OO

(=D)

The loss 1g glven by

TC L
iN -

Loss = 6.080 er 0 (V1 + ano - id db
Ny

(5=25)

Lf Kn is assumed constant with temperature then
Lo
= iD

Logg = { + 5an&lt;6 - |? &gt; [ G3)

K. 6.,V
there A = 8.080 or (0 _d © i

O00 » 5 05 . oubstituting the exoonen-

[If K'(T), regardless of the field strength, obeyed a
Curie-Weiss law exactly, then b(T) would be a constantfor all T which is certainly not true. The exponential
oehavior as postulated allows the ferroelectric effect
So gradually die out above the Curie temperature.



cial functions

088 = afl +f +(L - Je PTT 02
1

|? a(T-T,)1 @

T T, (5-27)

Minimizing with respect to T requires that

1
= , ~

= © tan“o - 1° = 0

Simplifying yields

[y +5an”t 2; 0) - 2) (1+tan6)? = £ 20s (L,-L) 7 (T-T¢

h

wt L oss

=
Fn

tan i:|

 ~- 0) “3

[5-08

(5-20]

or the case vinere tan 0«£«£1 the approximation thet

2 Pad 2 . . Tn ~ =z
[1 + tan 0 = 1 + x tan™0 is permissible and Eq. (5-1%)

NYE CONes

3fi? _ -

Sn ~~ Ag 1) (L, Leo) Pre
. 1. i

(5-30)

Phe solution is simply

~ ! a (Be -~T + 31n frallry fo

p-a -(B-c) (LL)
ar. &gt;1 or

for T = T. (5-31)

“here fore

: L,
TPO p———

} Lobe

bo
“ llows that 1 &gt;t and B2&gt;&gt;&gt;a to meet the

'a ©

(5-30)

Since L &gt; C
as

ninimizing condition. In general, the converse is true so

. . . d Loss ,

chat at no value of T in the interval does SF = 0. The

ninimum loss occurs Therefore at T = T.. This suggests that



if the exponential law holds it is advisable to operate just

above the Curie temperaturc. This would automatically fix

che wv 7 and T. which in some cages mi ht not “e

degirahlc yg pT the "noe wes 1 Ae ce37 possi1ble

It 13 an~wrr CY. a

S Ame Te- -ny PX.
* a1 Ninimizes loss for

111 modulator:
»

No ram’ regarcless 1 the values

&gt;I w_,, or 94: The "this minimum loss is. of course.

1 function of the latter parameter.

[TI. Experimental Modulators

An experimental modulator at 11,C00 Mc was bullt and

cested using the strin line anvaratus previously described

1 8CC volt peak t vel’ orlepeewee Lrancrrnier vias

placed in seri
CI

1Ny  A  Ll Ga vs Tr eavable of

delivering un Tt

(PoSnoy - BaTi

coeing placed in

rr -
SE. Tg Te titan avon ics

TIL “nae enced wlth rovesin viex after

= -

3m ven tn prevent corona discharge.

The Transmission signal Ia ohserved on ao scope after 1t had

coeen beat down tc ¢ 7C VM: 77 signal and fed through the

neter circuit of « Kav Electric measuring set which passes

50 cps. Fig. 5 shows the waveforms obtained for various

ralues of DC bias. The transmission curves are plots of

“he modulator output versus time and also output versus the

amplitude of the modulating voltage. The 5 shaped character

&gt;f these latter curves is explained 17 iv 1s remembered that

she transmission maximum cccurs at an electric lensth of the

nodulator equal to a multiple of half the wavelength. For



14 Mole % PbSnO; g BaT105 Ceramic used as a Dielectric Modu-
lator at 10140 Mec. Output signal versus DC bias voltage for

a fixed 800 volt peak to peak 60 cps modulating voltage.

JSV\NNV
Output noise (no modu-
lating signal applied)

JANA —
500 volts de in series
with modulating voltage

JMU
NOG volts

"WAV
L500 volts

MWY
2800 volts

[ARUS
 a

3000 volts

Modulator output
versus time

m3

Modulator output versus
amplitude of modulating
voltage

—



nore or less applied voltage the value of K' hence changes

she electric length. No matter whether 1t is a plus or

minus change “i= transmission 1s decreased. The hysteresis

is due to : 0fse signal enanating from the meter circuit.

These transmission curves show only the amplitude variations

of the signal, therefore to detect the phase modulation the

signal from the meter circulft wr

SX 62 receiver tuned tc VC WM

"~d into a Hallicrafter

“™cvyeleoutput from the

receiver was observed on « scone and appeared to furnish proof

of the PM component. It was observed however that there was

~ither considerable AM to I'M conversion or a leal math in

he receiver since a standard AM signal generator set on

2» 70 Me carrier also produced an output from the recelver when

it was tuned to the FM band. An AM silgnal which was equal

in amplitude to the titanate modulator output vroduced an

FM output less than one half that observed from the micro-

yave noaulator. Another IM receiver was no* avallable To

~heck the results but it is reasonable t. assume tnat a PM

component was actually produced. If the ceramic section had

ceen matched into the strip line the AM component would have

heen considerably smaller. A nigher mocGulating frequency

Jould have improved the signal to nois~ ~*~ ~ince There

vas a substantial SC cycle noise source in the Kay Electric

neter circuit.
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CHAPTER 6

CONCLUSIONS

[he theoretical analysis has indicated the performance

vhich may be expected from a dielectric modulator. In

oractical situations essentially linear phase niodulacvion

nay be expected together with the inherent AM component.

The electromagnetic momentum of such a wave ig unaffected by

che modulation process but the energy level will in general

oe increased. This encrgy 1s provided by the modulating

source wnich on the average does work upon the electro-

magnetic field.

Dielectrics which apnear suitable for veloclty nodulation

include "artificial" diode dielectrics {which have not been

tried at all so far) and ferroelectric ceramics such as

B3aT10 - PbdSn0 and BaTiO. - SrTiO. compositlons. There is

a temperature range above the Curile Point where these ceramics

are still ferroelectric and where the losses are substantially

reduced. The Curie temperature can be moved over a wide

range by altering the concentrations of the lead and strontium

yEoms.

one possible application for dielectric modulators appears

0 be in microwave double detection measuring sets where the



jifficulty in keeping two frequency sources tuned to the

required IF frequency 1s often a problem and always a

nuisance. If the signal from a monochromatic source 1s

split and one half modulated and then recombined with The

ther (ummodulated) half, an I™ component can be detected.

Ihe apparatus to be tested would be placed in the path of

“he unmodulated signal. The ™7 gignal would not be lost

vhen the mailn source was tune.

then a ferroelectric ii. uses to frequency modulate at

lcw frequencies by varying the capaciltance of a tuned circuit,

the onerating point value of K' determines the overating point

capacitance which in turn determines the carricr frequency.

If this value K' changes a little because of temperature

sariations, etc.. then the carrier will drift also. Observe

shat in the dielectric velocity modulator which nas been

discussed tha carrier frequency is not affected by changes

in K' and will always be as stable as the generating source

decrees. The phase deviation 1s. of course. sensitive to

changes in the dielectric constant and drift due to tempera-

cure changes may be important.

The maximum modulatine rate to which the ferroelectric

ceramics will respond and the amount of microwave power which

can be transmitted through a dielectric modulator are unknown.

The extent to which the pilezoelectric effect enters the

nodulation problem is also unknown.

Lt should be realized that These results assume that the

relocity of propagation of the dielectric medium is not



nodulated by the electromagnetic field passing through 1t,

out only by the modulating blas. If this * true, the linear

analysis ww

relatic
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