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ABSTRACT

This thesls 1s concerned with the problem of electro-
magnetic wave propagation through a dielectric whose
propagation constant varies as a function of time. Ferro-~
electrics give promise of realizing such media since a
control voltage is capable of changing the permittivities,
and therefore the phase veloclty of any electromagnetic
wave passing through them. Artificial dielectrics formed
with diode junctions as the conducting "dipole" elements
also appear to be of some interest. The velocity of propa-
gation of these might be switched between discrete levels.
No work has been done on this latter idea.

If the non-linear medium cannot respond to changes of
the electric field of the propagating wave then the fields
within such media will be linear and related through the
corresponding linear Maxwell equations. These are solved
for the general case when the permittivity and permeability
vary independently with time. When M4 and € vary in such
a manner so as to keep thelr ratio constant an exact solu-
tion to the wave equation 1s obtained. When the impedance
is not invariant an exact solution is not possible, in
general, and a closed form approximation is found. The
field solutions are interpreted physically using the simple
case of a step change in &« and € to illustrate the funda-
mentals involved. The field energles and electromagnetic
momenta are derived for such a velocity translent and it is
seen that, in general, there i1s an energy change while the
momentum remains constant. This energy change 1s the
result of the work required to vary the dielectric parameters
when there is an internal field and may be an increase or
decrease.



The frequency devliation which results when a mono-
chromatic wave is passed through a section of dielectric
with non-constant veloclty of propagation is taken up in
detall. Approximate solutions are obtained if the
electrical length of such a sectlon is small and 1t is
found that essentially linear phase modulation occurs.
The solution is also found when the length 1s arbitrarily
long and the permittivity of the medium sinusoldally modu-
lated. The optimum length which gives the greatest
frequency deviation is derived and is shown to be imprac-
tical when known ferroelectric materials are used.

The present state of knowledge of microwave ferro-
electricity is reviewed and the author's attempts to
measure the complex dielectric constant of certain barium
titanate ceramics are discussed.

Avallable data are used to predict the performance of
a modulator operating with a carrier of 3,000 and 10,000
Mes. The results of a PbSnO3 = BaTiO3 dielectric modu-

lator operating at 10,000 Mc are also given.

It appears that useful modulators are feaslble at
least for low power application. The maximum modulating
rates to which the ferroelectric materials can respond
are unknown.

Thesis Supervisor: Lan Jen Chu
Title: Professor of Eleectrical
Engineering
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CHAPTER 1

INTRODUCTION

This thesis considers the problem of modulating the
velocity of propagation of a dielectric, and the effects
which arise when électromagnetic waves travel through such
media.

A time varying velocity of propagation implies time
variable permittivity and/or permeability and this imme-
diately suggests that ferroelectrics or ferrites under the
influence of external electric and magnetic fields respec-
tively, might be suitable means of obtalning veloclty
modulated media. Other possibilities include the mechanical
sﬁbstitution of different dielectrics as a functlion of Tlime
and the use of time variable "artificial dielectrics." Kock
and others(l) have shown that if small conducting particles
such as metal spheres or discs are placed in a supporting
foam dielectric the effective permitfivity is higher than
for the foam dlelectric alone. If the physlical dimensions
of the objects are small compared to the wavelength of the
electromagnetic field the artificlal dlelectric appears
homogeneous.~ It seems possible to utilize diode Jjunctions

as the conducting elements. These would be switched "on"



and "off" by means of the modulating field. The effective
dielectric constant would then be double valued and a chopper
modulator would be possible.

The most promising of the schemes listed appears to be
the ferroelectric or ferrite since they can be modulated
much more rapidly than a mechanical system and are continuously
variable unlike the artificial diode dielectrics. Ferro-
electrics appear to be better than ferrites because a bilasing
electric field is easier to provide than a magnetic one.
Barium titanate (BaTioj) was chosen as the dielectric to
experiment with since more information is available about 1its
properties than other ferroelectrics.

Since the discovery of ferroelectricity in BaTiO3 over
ten years ago, many circuit applications have been proposed
to exploit the properties of this non-linear dielectric.
Thus "memory cells" for computers and dielectric amplifiers
have emerged and the non-linear dielectric constant has been
used fo frequency modulate a signal by varying the capacitance
of a simple tank circuit. All of these applications of
ferroelectricity have been for relatively low frequency
operation and the dielectric behavior in the microwave region
has received rather limited attention.(a) This 1s presumably
‘because measurement problems are severe and the fact that
the higher dielectric loss 1s somewhat discouraging. Never-
theless, 1t is quite important that the dlelectric parameters
be obtained in these frequency ranges so that an estimate of

what can and cannot be accomplished may be made.



This work consists of the theoretical solution of the
modulation problem and the experimental results of preliminary
investigations. Chapter 2 contains the mathematical solu-
tion to Maxwell's equations for the general case of indepen-
dently time varying A and € . Chapter 3 considers the
special case of a velocity step transient by physical
reasoning and circult concepts and evaluates the energy
densities of the modulated waves. Chapter 4 derives the
frequency variation of monochromatic waves passing through
a dielectric slab whose velocity of propagation varies homo-
geneously as a function of time. Chapter 5 glves the
experimental results and methods of the author and others to
measure the dielectric parameters of BaTiO3 ceramlcs in the
5,000 and 11,000 megacycle ranges. The results of an

experimental modulator in the X band range are also given.
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CHAPTER 2

SOLUTION OF MAXWELL'S EQUATIONS WHEN THE
PERMITTIVITY AND PERMEABILITY ARE TIME VARIABLE

The behavior of an electromagnetic wave passing through
a dielectric with time varying velocity of propagation can
be predicted if the solution to Maxwell's equations 1s known
when the permittivity and permeability are functions of time.

Maxwell's equations are given by

v:D =¢ (2-1)
V'E = © (2-2)
TxE = -B (2-3)
VxH = T + 5 (2-4)
D =€F& (2-5)

B =Mu4H (2-6)

Assume a charge and current free reglon where A and €
of the medium are functions of space and time. Then @ = 0
and J = 0.
Taking the curl of both sides of Eq. (2-3) and substi-
tuting Eq. (2-6) yields
vaXﬁz_s?E[vXoLﬁ)] (2-7)
Making use of the vector identity

o i Lo



VxVxE = V(VE) - V&

there results

VWT-E) - VB = > [Vx (/uﬁ)] (2-8)
bt
Equations (2-1) and (2-2) may be expanded
Vv.D = V-(eE) = E-Ve + eT'E = 0 (2-9)
V-B = V-(pH) = HVa& +4VH = 0 (2-10)

If the uniform plane wave solution is sought ( TE M )
there will exist one component of E, one orthogonal component
of H and no others.

Assume E = Ex(z,t) and H = Hy(z,t)

If the permeabllity and permittivity are permitted to
vary with respect to distance in the z direction only and to
vary with respect to time, then M =4(z,t), € = €(z,t) and
ve = k g—% ; Y = k& g-’g‘

Since E = IEX and H = ij (where I, J, and k are the
orthogonal unit vectors in xyz space) it follows that E-Ve
and H-Y& are both zero and Egs. (2-9) and (2-10) reduce to

V-E =0 (2-11)
V'E=0 (2-12)
Making use of this last result and the well known

identity Vx (#H) = Ve x H + 4V x H, Eq. (2-8) becomes

VE =g |V x H + 4V x E] (2-13)
where
1 E k
vex = |o, 0o g =-TLm (2-14)
' 6 'Hy . ©




and VE=T—3% (2-15)

These results plus Eq. (2-4) transform Eq. (2-13) into

_ 5%

1 X
6zg
9] — oL - 4 BQEX 0 40 (577 gy
=ﬂeﬁx + (;16 + z)ué)E}c + (€ +,éé)Ex (2-16)

By starting with Eq. (2-4) instead of Eq. (2-3) and following
the corresponding steps there wlll result
2

0€
5 " 5xlez)Ex * v

= ,ae'H'y + (,ué o+ 2,2:& )i{y+ ( ue +,&é)Hy (2-17)

The dot notatlon is used to indicate partial differentiation
wlth respect to time.

These two partial differential equations describe the
electric and magnetic fields within the time varying
dielectric. It 1s obvious that the usual procedure of
assuming product solutions will not work because the hoped
for separation 1s rendered impossible by the existence of
the middle term on the left hand sides of Eqs. (2-16) and
(2-17) .

Since the general problem under consideration is one of
finding the frequency variation of a monochromatic wave
© passing through a slab of finite thickness whose velocity

of propagation varies homogeneously with time, it will be



sufficient to solve the equations for the case where A and €
are not functions of z and then match the boundary conditions.
Under the conditions of space invariancy, Egs. (2-16) and
(2-17) become (dropping subscript notation)

2

—-2-6 E _ JeE + (e + 24& )E + (ME +4é)E (2-18)
0z q

and
524 " _ _ ' ’ g
— = meH + (me +Zue )H + (pre +p€)H (2-19)
bz

This palr of equations is separable. Consider the E

field and assume

E = Z;(z) T(t)

Then
i ;e ) S o 0l
%— = ue T—E- + (me +2ume )TE— + (ME +m€ ) = - {32 (2-20)

The primes denote differentlation with respect to the
arguments and P 1s the separation constant. Equations
(2-21) and (2-22) give the space variation differential
equation and the familiar solution respectively. In general,
P may take on a series of eigenvalues which are determined by
the boundary conditions. The general solution is therefore

an infinite series of which Eq. (2-22) is a typical term.

Z + B2z = 0 (2-21)

2, = AeIP? 4 pe=IB2 (2-22)



The time variation is

T” - . Tl e . . 2
B . (H8 T EARy L (ME + ME + By i
-,IE+( e )TE+( he 1 =0 (2-23)

Equation (2-23) 1s a standard second order linear differential

equation with non-constant coefficients of the form

Ty + a(t) Ty + b(t) Ty =0 (2-24)

with

__,ué -+/&é - 62

! _ ME + DME y
a(t) = 4¥——=—= ; b(t) yT-

JE

Any second order equation of this form can be subjected

to a transformation which causes the first derivative term

1
(1) nzsa(t)dt

to vanish. Let TE = WE o
then

Wy + Ag(8) Wy =0 (2-25)
where

o i s il

AE(L:) zb(t) "-I-l_-ii —§c‘

1

——— '-dt 2 - ..
e _2[3'_1 | 285 08 58 Y
For Eq. (2"24) € —é—vﬂﬁ- and AE(t) ~ﬂ——-e- + IT(/T) 3 gg)
so that the electric field can be written in the form

E(z,t) = jﬁi (a etIPZ | B o=IPZ)
€V

2 . N (2-26)
W +{}%§-k%{%)2 -'%g;{]“% =0

In exactly the same manner the magnetic field is found

to be



(2-27)

It is reassuring to note that if &4 and € are constants

Eqs. (2-26) and (2-27) reduce to the familiar wave equations.

Speclal Case

From the form of Egs. (2-26) and (2-27) it 1s obvious

that Wy will equal Wy, only if 4« and € are constants or 1if

their ratio is always constant. If“g{%%-= ?2 constant,
then 1t 1s seen that the ratio of the electric fileld to the
magnetic field 1s a constant and so the two fields are every-

where in space and time phaSe.
E(z,t) = ?H(z,t) (2-28)

This relation is true only for the very specilal case when
the impedanma,?,of the .time varying medium 1is always constant.
Under these conditilons an exact solution of the fields is
possible and is

E(z,t) =4 H(z,t) = 2— etIPz ei'j'?_ [% (2.26)
P again takes on elgenvalues subject to the boundary con-
ditions and a series of terms like Eq. (2-29) is the general
solution .which can be verified by direct substitution. There
will be no reflections as long as the impedance of the
dlelectric remains constant and strictly progressive waves

are possible. Since no physical materlals are avallable

- 9 -



whose permeability and permittivity can both be varied
simultaneously so as to keep ?’ constant, the result 1s
largely of academic interest but one which sheds a great
deal of 1light upon the general problem of time varying
dielectrics.*

It is seen that

a . Jvdt (2-30)

~ |~
m

Differentiating

v(t) = (2-31)

5 i |
y 4(t) €(t) [5
The veloclty of propagation is given by the same form as

when 4« and € are constant.

The total phase of the wave given by Eq. (2-29) is

B.= B Jdt

? €

and the lnstantaneous frequency is given by

w(t) = &8 =ﬁﬁz- = Bv(t) (2-32)

This indicates that the frequency 1ls simply proportional
to the velocity of propagation and this is ftrue i1f 1€ 1is
remembered that the derivatlion was based upon the assumption
that s and € did not vary with position. This implies
that the medium is infinite in extent and, moreover, that

any wave now in the dielectric has always been there and has

* It is interesting in thls connection to speculate on a
ceramic dielectric made up of a mixture of ferroelectric
and ferrite materials under the influence of both electric
and magnetic control fields.

IR A U



been influenced by any variation in veloclty that has
occurred since the infinite past. It is appropriate to
point out here that the separation of the partial differen-
tial equation implies that the space variation of the wave
is unaffected by any changes in &« and € . Consider in
connection with this that at some point in the distant past
a wave traln of length L and frequency fl was started in
the medium and that at that time & and € were statlonary

with time. This wave train 1s characterized by the fre-

quency f1 and some constant velocity of propagation Vl. It
\'

therefore has a wavelength Al = Tl‘ Now suppose that the
1

velocity of propagation suddenly changes to some new value
V2. All portions of the original wave train will be acted
upon simultaneously, that is, slowed down or speeded up
together. The new wave train will therefore still be L
meters long and the space waveform will not have changed.
This means that the wavelength 1s still the same value A|,

_but because V = £\ 1t follows that the frequency must have

Vv
- s
chansig tova value f, = —X-l Since fl = _/TI it must be
e A Equation (2-32) is merely expressing this
o ooy
fact in general terms. As long as the original wave stays

in the medium its frequency will follow the veloclty changes
of the medium. If a fresh wave enters the dielectric it is,
of course, not subject to the past history of the medium.
For example, 1f a new wave train of length L and frequency fl
(as before) enters the dielectric after the velocity has

changed from Vl to V2, then its frequency will still be fl and

o Ay s



\';
its wavelength will change to )\2 = Vg)\l The total length
1

\'
will no longer be L but VEL meters. If now the velocity
1

changes to some new value the frequency will change accordingly
and the wavelength remain constant.

The exact solution obtained for the special case of con-
stant impedance is illuminating but not very useful since in
practice the impedance will not remain constant. It is
desirable to solve Egs. (2-26) and (2-27) for the general
case when « and € vary independently with time. No exact
solution is possible in general and the task remains to find
a sultable approximation. A series solution 1s very difficult
to interpret physically, therefore a closed form solution is
preferable. Since the equation to be solved is a second
order linear differential equation, the Liouville approxi-
mation offers hope and turns out to be entirely suitable.

Liouville Approximation(e)

It has been shown previously that any second order linear

differential equation can be transformed to the form
v' + Ax)y =0 (2-33)

If a new variable @ is introduced so that

g =f\/X dx (2-34)

then Eq. (2-33) can be rewritten as

2
P R gy -o (2-35)

2112 =



This transformation of variable has normalized the coefficient
of ¥y to unity. If use is made of Eq. (2-25) it is evident
that Eq. (2-35) 1s equivalent to

1 al A
=yeZ VW = 2-36
F SR T (2-36)
where
d°y n
+ @)y = o (2-37)
dg
2
e MR -bh o0

If the last two terms of Egq. (2-38) are small compared to
unity then =1 and

HE) Aeﬂfﬁdx

. A ei,jjﬁdx
Y

(2-39)
or y (2-40)

The equations of interest, Eas. (2-26) and (2-27) are

repeated for convenience.

o 2 i ..
p° 0 eles .
Wy "*'LE tx @ -z G| g =0 #=20
o o s s
W, +[§€ M (R L e s o (2-27)

If the Liouville approximation is valid, then

1>> g ®2-1 @ (2-41)

It can be shown that if AE and %H of Egqs. (2-26) and (2-27)

L



o
respectively fulfill the condition that A = AHz p

€
or Wy & W, =W, then Eq. (2-41) is automatically satisfied
and _
W _@_.__ o
W+ e W (2-42)
— dt
W = B’# € e J
W W
E + H
Since E(z,t) €{" @z and Hiz,t) = T petPZ  the
completed approximate solution 1s
A Bz 3B |2
Efz,t) - e—F% e VHE (2-43)
nes
and
A +ipz _+jp | -
H(z,t) e e* ) Yae (2-44)
5/@6

For slowly varying a4 and € reflections are small and pro-

gressive waves are possible.

As before
at
v dt = o4
j Yl ( 5)
Differentiation yields
- i L5
v(t) = == (2-46)
i/te
The total phase is
at
=B —_— 2-4
and the instantaneous frequency
w(t _JQ = t -
(t) = Y“e pv(t) (2-48)

T



As was shown previously for the speclal case of constant
impedance, the instantaneous frequency 1is proportional to the
velocity of propagation. The physical 1nterpretation,
utilizing a medium of infinite extent, given before, is
applicable in this situation too. The previous remarks con-
cerning eigenvalues of P apply here also so that Egs. (213,

(2-44), (2-47) and (2-48) are in general infinite series.

Sinusoidal Variation of the Permlttivlity

1. Constant Impedance

Let the permittivity be given by
€ =K€_ (1 +Dbsin®t) = %‘,u (2-49)

In this expression eo is the permittivity of free space;

K is the dielectric constant at the operating point; b is

the modulating index andtﬂm is the modulating frequency.

Since € is postulated never to become less than GO it follows
_ K-1

that bmax o fro: is always less than unity.

Substituting Eq. (2-49) into Eq. (2-29) results in

E(z,t) =)ZH(z,t)
5) dt

+Jj0z ] 3
- A — —ke l +bslnw €
" T+Dbsindt s 2 'q m (2-50)
The velocity of propagation 1s given by
v(t) = L (2-51)
VKE" (L + b sin mmt)

and the instantaneous frequency by

B,



" B
w(t) TyRE (T T b sin W t) (2-52)

2. Approximate Solution when Permeablllity 1s Constant

The Liouville approximation 1s valid if

,U.E. > 7_1‘(6') # §(e) (2-53)

For the case when MU=/ and € = k€ (1 + b sin W t),
(2-53) requires that

4{3 b () 1 + sin wmt) + 2b sin Wyt
>> S ( (T + b sin __13,_111___ (2-54)

The maximum value of the right hand side occurs when

cos bﬁmt = Q. The severest'r'equirement is therefore
jtf > 2bk&w & (2-55)

The constant P may be evaluated under the conditions
of a sinusoidal carrier of frequency &)c passing through a
. . b !
medium whose operatin oint velocity 1is
p g p y r_rkﬂoé.n
In this instance the boundary conditions are chosen so that

P has only one value.

)
= ol \f -
p = v; WNKK € | (2-56)
Substituting this value into the 1lnequality Eq. (2-55) gives
the result
W L
) >> 3 | (2-57)
m

= 0 i =



The maximum value of b approaches unity as a limlt. 1

W
(53)2‘>;> % the approximation will be valid under all con-
m

ditions.
Equations (2-43) and (2-44) give as the fields
: dt
2 Hiw, kue z +jw
E(z,t) = A(L + b sin W t) F e L R E/;l + b sin Wt
(2-58)

and

E 1

- o

= 7l+bsinﬂmt (2-59)

The velocity of propagation and instantaneous frequency

are given by

v(t) = —l (2-60)

W
— c —
and w(t) —_11 b (2-61)

References

(1) Schelkunoff, S.A., Applied Mathematics for Engineers and
Scientists, Chapfer 1I1. D. Van Nostrand, 194cC.

(2) Schelkunoff, S.A., Applied Mathematics for Engineers and

Scientists, p.210. D. Van Nostrand, 194G.

1



CHAPTER 3

SOLUTIONS BASED ON PHYSICAL REASONING

The fact that the general partial differential Equations
(2-18) and (2-19) were separable led to the physical inter-
pretation that the space variation of a wave was invariant
after it once entered a time varying dielectric. The
transition across the boundary certainly will cause space
distortion, but once this has happened no further perturba-
tions of space wave=form will occur until the wave leaves
the medium. During the Jjourney through the dielectric all
of the individual frequency components of the wave will
follow the variations of the velocity of propagation. The
physical pilcture of the phase variations of the electric and
magnetic fields is fairly straightforward, namely since the
wave length remains constant and the velocity does not, the
frequency must change to fulfill the condition v = fA. The
important point to be realized is that there is nothing
sacred about the frequency remaining invariant as a wave
passes through a series of different dlelectrics. That this
is so in the usual case is due only to the fact that the
velocity of propagation is not a function of time.

It is desirable to understand physically why the ampli-

e e



tudes of the electric and magnetic fields vary as they do.
Consideration of the instantaneous flux and charge offers

a convenient method of obtaining this physical picture. The
simple step transient depicted in Fig. 1 offers an easily
analyzed example which demonstrates all the relevant prineiples.
The transient electromagnetic wave 1s propagated through a
variable dielectric whose constants are given as functions

of time. Both M4 and & are assumed to step from their

initial values 4 and €, to X, and €, respectively. The

: £
initial veloelty of propagation is Vl =i====-and the final

o=
3
value is V5, = 1 Since the veloclty is constant
2 gﬁﬁea 3

except at the jump, the standard wave equatlon must apply
except at the discontinulty. From the previous discussions
it is clear that the space wave-form but not the amplitude
of the transient wlll be invarilant.

At the instant of the Jjump 1t 1s necessary that the
total charge Q and the total flux ?’ remaln constant. An
invariant Q and V’jﬁmﬂies that D and B respectively do not
change instantaneously.

Before the step (t<t )

B = M H (3-1)

D = &E, (3-2)
‘After the step (t,>t0)

B ':/“'2H2 (5"3)

D = ezEg (3‘4)

L )
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The most general form of E2 and H2 is for both fields

to have a backward as well as a forward travelling wave com-

ponent.
+ - -
Hy = Hy - Hj (3-5)
+ o .
Ey = E5 + E, (3-6)

in
A differenceg,sign of the backward components is necessary
because one of the field components changes phase by 180°
upon reflection and the other does not.

The characteristic impedances of the dielectric are

71 z@"

,Mz o
AR & t >t -8
72 62 o > (o) (3 )

The combination of Egs. (3-1), (3-2), (3-3), and (3-4) yields

P

t<t (3-7)

=

I

B = mH) =X (Hy - Hj) (3-9)
D = €E = & (8] +Ej) (3-10)

Dividing Eq. (3-1) by Eq. (3-2) and making use of Eq. (3-7)

gives

B = J,D (3-11)

Substituting Eq. (3-11) into Eq. (3-9) and combining with
Eq. (3-10) results in the following set of equations

12 + =
’Iﬂ-—z P = hs - B (3-12)

1D =8} + 8]
€, 2 o (3-13)



- *
The solution for this pair of equations for EZ and E, glves

€ M€ ) M€
ar RN Tkl 1/~1 gl +
ES = +4 JE, = (7= +4 JH. =) H (3-14)
2 §(€2 ﬁgeg 1 7‘2 2, N ! ?2 2
- 1,84 JM& 1.4 J*MS k L
el T E = - —\l——)H = P H (3-15)
) 2(52 ,a”z'é'e') 1 ?2 2V A€ ?2 2 .

For the special case when 71 ==f2 = ZO or equlvalently

—= = -= Egs. (3-14) and (3-15) reduce to

#ol Ro
< n
+ _=1 1 % !
E, === E. = == H, = H 5-10
gie i~ F e Y T ln T E t7r14)
E; =Hy =0 - (3-17)

Under these conditlons of constant impedance there 1s no
reflected wave.

It is worth pointing out that the general solution
obtained for this case agrees with Eq. (3-16). From Eq.(2-29)

€
2[ =€_2_ lEl'

The amplitude of D is constant as is seen by writing Eq.(2-29)

|E,| =& and [E it follows that |E
1

wa P
Jd =

in the alternate form

et il fae
D =€E = AetIPZ ei*]'y"" f"é" ~ 1 1{3.18)

For the case where 4, =M, Egs. (3-14) and (3-15)

become
+ _ 1.8 ‘lel +
B = =(== + ¥-=)B. = #_H (3-19)
2 TIRYe, En 1 ?2 2
€ €
o= X~ a =
202 €, L—e 1 72 2
* A difference equation may be formulated on the basis of

an incremental jump in the velocity. In the limit of a
differential step this passes to the differential equation.
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I El and 62 do not differ greatly, E; will be small com-

pared to E; and may be neglected without great loss in

accuracy. In that event E; can be approximated by
€
+ o =1 ~ #
E, = e—2 E,= ¥, Hy (3-21)

This indicates that the exact solution obtalined for the case
of constant impedance may be a reasonable approximation when
one of the dielectric parameters remains invariant. The
Liouville approximation, previously derived, is of slightly
different form in that the amplitudes of D and B are not
constant. This discrepancy wlll be discussed in detail in
a later section.

The previous results can be immediately applied to a

travelling wave of initial frequency 0.)1 and velocity Vl

which undergoes a step to V2 at time to. For tcto
= — Z = E —
El(z,t) = E, coswl(t v-l—) 71 Hy (3-22)
Z
Hl(z,t) = H, coswl(t - VI) (3-23)

h 1 4#1 d v x The point
where 77— = SNl T = . e point z =0 18
Hy T €y 1 yRE

chosen for convenience in determining the amplitudes of the
forward and backward waves after the velocity discontinuity

occurs. Just prior to the step (t = t;)

E,(0,5;) = E; cos Wt (3-24)
Hl(O,t;) = H; cos Wt (3-25)

ANE



Immediately after the step (t = t;r)

Eg(o,t;“) = (E'eF + E;) cos(de(to + @) | (3-26)

Il

H,(0,%7) (Hy - Hy) cosWy(t_ + @) (3-27)

A comparison of the two sets of equations shows that

cos W t_ = cos wg(to + #). Solving this expression for ¢

<
0

and making use of the fact that 0-)2 = -V—"G.)l gives
i
Vl i
B (VE = 1)%, (3-28)

The complete form of E and H after the discontinuity (t >to)

is therefore

- o]
+ VE W :
Eg(z,t) = E, cos ' 1(t - to) +@ t - Pz
e |
" _Vg i
+ E, cos v;(dl(t - to) + @t + Bz (3-29)
e
+ Vo \
Hg(z,t) = H, cos V‘l‘”l(t - to) + @t - Bz
N
- H, cos v;(-)l(t - to) + ﬁ-’lto + Bz (3-30)

W
where B = 'Vi and E, is glven by Egs. (3-14) and (3-15).
1

e ly =13 ) .
€ €
e i
Ee(z,t) —e——E-El cos Le—gul(t - to) +0Jlto - Bz (3-31)
and £2 L
M Ay
HE(Z,t) =jj§ Hl COS8 /-'u—gwl(t - tO) +wlt0 - Bz (3"32)

S o)



Ir M -_-./’LE

E,(z,8) = - 1-¢{€34 cos Jgi-w (6 -t) +Wt_ - Bz
o\Z, ", Tl Ga 13 o 1%

and [

H

Energy Density

The uniform step transient of Fig. 1 has a total energy

given by

U = %J(EEE A H®)av

(3-35)

where the integration extends throughout the entire volume.

Prior to to the initial energy U1 is given by

i 2 2
U1 = §(ElE1 +/LH1)V

du

The volume energy density is defined as u = v -

the initial wave

U
T AN S
u = = 5(&,E] + A H) = €ET =M H)

(3-36)

For

(3-37)

After the velocity transient is over (t‘>to) the fields are

- I9R L



glven by E, = EX + B

o 5 and H2 = H

+ =
o - H2 e The energy
density is then

€ M
1 = A 1 AR
e 27171%, M,
The energy galn is defined as il and 1s evidently
1
given by

U 1(51 #9
e w o il (3-39)
Uy 2 62 M

This 1s the energy gain of the electromagnetic wave after
the step transient has occurred.

If Gl = 62 and /“l = /“2 the energy gain is unity
as 1s necessary.

If ?1 = 72 then

i
i e | (3-40)
vy 2 Mo
and if /41 =/u2
Pe 2 AL s (3-41)
b R &

The apparent violation of the conservation of energy
1s reconciled when it 1s remembered that the difference in
energies is needed to do work upon the fields within the
dlelectrlic when 4 and € are changlng. If €, > €, work
is done on the field within the dielectric, whereas if
62>€1 the field does work upon the modulating source. It
i1s apparent that here 1s a mechanism for changing the energy

level of an electromagnetic wave. That the frequency

o EOVEELE 2



changes as well has already been shown.

These results may be obtained by another method which
helps to clarify the situation. Consider that the travelling
wave of Fig. 1 is propagated between two seml-infinite
parallel ground planes* as shown in Fig. 2. If the far end
of the transmission line is short circulted and a current
source connected across the near terminals then in the steady
state there will be a constant current flowing but no voltage.

All of the energy stored will be magnetic and given by

v, =30 ¢ (3-42)

where ' is the reciprocal inductance of the line, and ¥

the flux. For a length.,e the following relationships hold.

M- (3-43)
and
v 24_;%@ 1 = L1 (3-4it)

The current is glven by Ampere’s circuital law

: =J’H . dx (3-45)
T 7 ={4£L then initially the energy is given by
Il El
Td W e W
Uml "'g_'f,l 7§1€ld,?—§lpl /‘l?a (3'46)

Parallel planes are used for convenience but any
geometrically uniform array could be employed.

-






M
When the medium changes its parameters so that ?2 =

€o
el
Um Vglggya (3-47)
Since the flux cannot change instantaneously (Pl =y12 and
A M
1 ~
U, =3 1 ]H_}T" Un, i (3-48)

If the far end of the transmission line is now open
circuited and a voltage source connected across the near
terminals, then in the steady state the current everywhere
will be zero and the voltage along the lilne everywhere a
constant. Now all the energy 1s stored in the electric

field and 1s given by

u, = % 8¢° (3-49)

where S i1s the elastance of the line and Q the charge. For

a length the following relationshilips hold.

gl 3
S = ewi (3-50)

and
Q =CV (3-51)

The voltage is gliven by

v =jE - dy (3-52)

fﬂ
i f]_== gi- then initially the energy is
3

2
U, -3¢ q‘l—me (3-53)
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When the medium changes its parameters so that 72 g
/e
iy U
Ueg 8" € wd (3-54)

Since the charge cannot change instantaneously Ql = Q2 and

DR~ A B | €
U, =5Q = =U, z— (3-55)
€5 eI Elw:Q €, e, €5
In the original translent problem both electric and
magnetic fields exist and both are constants before and
after the step in velocity. The principle of superposition
is applicable and the total energy 1s merely the sum of the

two energies given in Egs. (3-42) and (3-49).
U, =T, + U, (3-56)

Originally the energy is split evenly between the electric

_ Y

and magnetic fields Ule = U1m = -5~ 80 that the final total
energy is given by

€ M U € M

Upy = it Umlﬁg - T(EE +/4_¢'2_) (3-5T)

2t = Yel €.

The energy gain is clearly

U ¢ M
2t g 1
= . p ___) 3-58
U, ¢ §(52 Mo ( )

which is in agreement with the previous result, Eq. (3-39).

Approximate Energies

The Liouville approximation 1s repeated here for con-

venience.

7



3 . A3Be +Jaf-9-t-
£ & A,ULIIEEe_ St

-3 -3 +ibz +JBf—d-t——
H = A/AE‘ e¥ o e Vue

It is apparent that the amplitudes of D and B are given by

L el

Ipje apute® (3-59)
and 1 _l

(B = aut e® (3-60)

These field amplifudes are not constant and apparently
contradict the statements made regarding the invariancy of
the charge and flux. This difficulty 1s resolved if it 1s
remembered that the approximation is assumed valld only for
slowly varying dielectric parameters. In this case the
fourth root of this variation is even slower and a constant
is approximated by a very slowly varylng time function.
There is a very definite reason why the approximation takes
the form it does. To see this first find the approximate
energy density using Eg. (3-35)- If fhe already overworked
step transient 1s considered once more and represented by
the Liouville approximation then the final fields will be

of the form

A2
By A phy LP: 5 # (3-61)

and 3 1
H, = A/JQ—EG_E—E (3-62)

The velocity transient, incidentally, need not be a step and

- 31 -~



L i}
be as gradual as desired from to so that
ST e bty 2P

the assumptions under which the approximatlons were derived

are not violated.

The initial fields are

% -7

El ~ A /ul e 1
and 3 X
i et R

H1 A,Ml El
The initial energy density 1s

>
R g By ok
Uy = 5(€E] +4H)) JF €,

The final energy density is

2
1 2 2 Ll
U2 - é-(egEe +/“2H2)

o
r
N

(3-63)

(3-64)

(3-65)

(3-66)

(3-67)

Although Egs. (3-65) and (3-66) are approximately equal

to the exact expressions, their forms are quite different.

The pertinent physical interpretation is that Egqs. (3-66)

and (3-67) are exact expressions for the energy which is

actually propagated by the flelds and the energy gain res-

pectively. The energy which is trapped in the standing

wave field is heglected by the approximation since 1t does

not admit a reflected component. As long as the reflected

wave is small compared to the transmitted one, the approxi-

= 53 =



mation is very good. The approximation forces the ampli-
tudes of E and H to vary in order that the approximated
power will be exactly equal to the propagated power.
Suppose it is attempted to derive the energy density
from power considerations. Poynting's theorem gives for

the original fields

5 o 2_’5; 2 :
Sl = ElH1 —-7I-El = & E1 (3-68)
The total power flowing through an area A 1s simply
€1 .2 o

The energy propagated through a length L of the wave is

simply
L
Vl p Vl e1 2 2,
U, = k , dt = A EIEI dt = V€,ET (3-70)
0O

where V is the volume AL. The initial energy density is

therefore
U
e T 2 -
By = =iy (3-71)
as was derived previously in a different manner. The

propagated energy of the final fields is simllarly given by

L
LA So

U, = A Jsg cu:=vv5 (3-72)
[a]

The energy density is therefore

uy = jH €, 8, (3-73)

L, [



Poynting's theorem ylelds

8, = (B +E;) (Hj - Hy) =EJ H

P g T Byl g = H - By Hy

+
2
= 2 VED? - (B3)° (3-74)

I]z

Substituting Eqs. (3-14) and (3-15) into Eq. (3-T4) results in

2 2
R ke 0 0 v R T _4/"121)2
2 Vi, TE; NN E M€y
BR- L b )
= €,E] e (3-75)

and the final energy density becomes

o (M€ ¥
U, = €.E \l_-— (3-76)
g TR e
2

Since u ==elEl the energy gain is given by

1
u ’ﬂ =
2 a1 o ( ‘e
e '\ 3_(7)
ul ,M262

Equation (3-74) is the net power passing through a
reference boundary. It is the difference between the
powers of the forward and backward waves. This is why
Eqg. (3-76) is the transmitted and not the total energy.

The plus arM minus waves may be thought of as forming a
standing and a travelling wave. The trapped energy is
distributed throughout the overlap region of the plus and
minus waves and is not taken into account in the above
derivation. Equations (3-77) and (3-67) are exactly equal

which confirms the previous remarks.
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Electromagnetic Momentum

The electromagnetic momentum g of a field is given by

g = ;15 5 (3-78)
where V is the velocity of propagation and S is Poynting's
vector. Referring to the problem just discussed, the
original fields are described by Egqs. (3-14), (3-15), and

(3-68). Substituting the latter equation into Eg. (3-78)

yields
-2
‘Lu €
Since S, = € ——l—l-E2 the final value of momentum is given
2 1 u€, 1

by

= =€ yu € E? (3-80)

&2 < & g LI

This very important result which has been derived for the
special case of the step transient is also true for the
general case and states that even though energy may by added
or subtracted from the electromagnetic field by varying the
velocity of propagation of the medium through which it passes,
the electromagnetic momentum of the field is unchanged.

Since the momentum is assoclated only with the propagated
field and not the standing wave field, it is clear that the
Liouville approximation should predict conservation of
momentum also. The fact that the exact §é is given by the

approximation insures that this is indeed true.

by



Reference

(1) Stratton, J., Electromagnetic Theory, Chapter II,
Sec. 2.6, p.103. Mc%raw-Hill, 1541.
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CHAPTER 4

THE DIELECTRIC MODULATOR

The frequency variation of monochromatic electro-
magnetic waves passing through time varylng dlelectrics
will be considered in detail in this chapter. rig. vk
indicates the situation to be studied. The variable
dielectric extends from z = 0 to z =L and is assumed
homogeneous throughout. Since the wave solution has just
been found for the interior of such a dielectric and the
incoming wave, of frequency'&%, obeys the standard wave
equation outside, 1t is possible to match boundary con-
ditions and obtain a solution valid over the entire range
oF = This procedure will solve the problem but the
necessity of matching the boundaries 1s rather distaste-
ful. An alternate method which circumvents this boundary
matching makes use of the transit time concept and will be
utilized.

It can be shown that the equation for a wave front

propagating with non-constant velocity 15(1)

E =E_ sin [&)c(t A I%Z-) (4-1)
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The transit time is defined as
dz
T = B (1-1-—2)

and is the time required for the wave front to travel a

distance z. Since the total phase of the wave is given by
g =W~ |F (4-3)
c i

the instantaneous frequency is simply
d d dz a
W(t) = a% ='Q£(1 - TE ! = Q%(l ~ a% T} (L4-L)

The change in frequency is thus proportional to the rate of
change of transit time. Usually the transit time for any
dielectric slab is constant and so the frequency variation

i8 nll.

Thin Sections

If the dielectric slab is very thin the velocity of
propagation will not have had time to change appreciably
before the wave has passed completely through. The velocity
can then be approximated as constant for any given wave front
and dependent only upon when, during the modulating cycle,
the wave front entered the medium.* Under these conditions

L
T= |~ vy (4-5)

This is analagous to the situation found in Klystrons where
an electron's velocity is assumed constant while passing
through the narrow accelerating gap but dependent on when
it entered the gap.

_39_



The instantaneous frequency is approximated by

ek
<

W(t)® W, {1 iy a%(v(%)] =@ 1+ ;Lg ) (4-6)

General Solution

In practical situations the approximation Eq. (4-6) is
nearly always valid. It 1s instructive however to consider
the general case when the veloclty cannot be assumed constant
for the transit interval. The transit time for the entire

length L is given by

bl Y L Satd

In this equation to is the entrance time of a wave front and
tl is the exit time of the same wave front. The integral

may be evaluated as follows

tl L
[v(t) dt = (\dz =L (4-8)
t

(0]

Therefore f(tlto) =Lort, = g(tlL) and

T =t -t =t - g(t,L) (4-9)

The case where the velocity of propagation undergoes a
step discontlinuity as depicted in Fig. 2 is instructive and

serves as a check on the previous work.

t
The evaluation of l[ v dt = L takes place in three parts:

tO
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If t,<t, V(tl) = V. and

L
T = =1
Vl

(4-10)

If 4 <t'€t; then V=V + (V5 -V)u, (t = t') where

u_l(t) is the unit step function and

t {
e T 1 @ - 2)
A v A R

Finally if toj>t', vV = V2 and

L
T = o
Vo

(4-11)

(4-12)

The plot of t  versus tl shown in Fig. 3 gilves a graphic

representation of the transit time as a function of output

time.

The rate of change of transit time is given by

‘
0 tl < L
v
ar < 2 :
ﬁl = Pili= v—l— T < tl é(t +
\ 0 ty > ¢!
- aT :
Since @W(t) = Ez(l - = ) the instantaneous frequency 1is
1
( W, tl i e
Vv
- 2 il <
w(t) = 4 Vi-wc T = tl (t' 5
L GJC tl >

as given in Fig. 4.

S

7 )

2

(4-13)

(4-14)
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The phase constants involved are

We

Lo £ ¢V +
T V2
B =
W
Vg B, > b +% (4-15)

This agrees with the previous physical interpretation that
the wavelength does not change during the transient of the
velocity. If the impedance does not change during the step
there will be no reflections assuming the slab is matched to
the media on either side. That portion of the wave which
undergoes the frequency shift has an energy level galn of ;2_
If the velocity step is replaced by the ramp function .
shown in Fig. 5, the problem is more meaningful physically
since no dielectric can change its velocity of propagation

in zero time. The evaluation of the transit time integral

proceeds in five parts:
&

b
Assume that ‘S‘th < L.
t

a
Case I (tl<: ta)

T = %ﬁl- (4-16)

Case II (t;a <t < tb)

o=

ik ok Tl (4-27)
Gage TIT (b <%, &% >t}
' \'
T = (1 - -v-f-)tl 3 (vi. - 1% +v% 3 %v“i- (t, - t,)°  (4-18)

T



tb

1-;.':.[_ | A

5

or
(=]



Case IV (t, < £ < tb)

v v 2V,
o e 2,2 2L 2 |
T""m"+t1‘tb‘\}("ﬁ“) = e (B Rt ) (4-19)
Case V (tO > tb)
- & )
iy Vo (4-20)
2
The instantaneous frequency is given by W(¢t) =a>c(1 - %— )
i
where
[ 0 8 6
m
- W(1:l - t,) £, < t; <
Vo
1—VI to<ta¢tl>tb
T _ i |
i 1 - = b et <t
j 2V AN
(=2) - 22+ =& (£, - t,)
m m m 1 b
& to 2 tb
g
V2 X V]_ (4 21)
where m = e —— It follows that
b a
3§ L
W, b 6y (6 + vg)
V(B -t1) + V(g -t,) " I
Vl(tb-ta) g a i b
v (Vo=Vy ) (6. =t )
20 & L 2 2T s
1 2 2
w (t,) =< V2
m (*)c
Vv 2V
24,2 el 2
4(75‘) “w t w6ty
V-V, )(t,.-%_)
L ( 23 b "a L
k (4-22)



Equation (4-22) is sketched in Fig. 6 as a function of output

time.
7
If the
ta

agaln in five parts.

Case I (t1'< ta) X
T = v
I
Case II (to‘c N <.tl)
L 1l m -
T o= o - e (B, = &)
Vl 2 Vl il a
Case III (%t > ta_¢ £, < ty)
v
2 il _ e SLN L
T 2[m +(%. tJ]TI . 0
Case IV (tO <ty < tl)
' v[‘v 2V
= 8 N A (=2y2 ; 2L 0 R
T (s = %) -y ol USRS
Case V (tO >t) .
=
2
The rate of change of transit time is
L
0 (tb+ V2)4 t <t
- £
A (tl t,) t<t, <ty
ey )
pieE fC = %
aT _ L i} L a
e T = i to>'ta e t.‘L< tb
: Tl (5, <p? - 2
m i a m
']
i m
1 t 4t <ty
v 2V
A o R
\\ m m m 1 b

-1,1_7_.

b
ngt;>L the evaluation of Eq. (4-8) proceeds

(4-23)

(4-24)

(4-25)

(4-26)

(4-27)

(4-28)






The frequency is gliven as

L
We (8, + V2)<tl<ta
V(e - 6y) + V() - 8)) o,

v (E, - &)

Y2
c
& t, <t < (b, + i)
b i | b v
Vv 2V 2
(—R1% - 2 8 - £)
\‘ m Im m 1 b

(4-29)

Equation (ﬂ—29) is sketched in Filg. 7 as a function of out-

put time.

Sinusoidal Modulation

This section will study the case of monochromatic waves

passing through a homogeneous dielectric slab whose per-

mittivity is a sinusoidal function of time.



If € is given by
€=KE (1 +D sind t) (4-30)

and‘#-=/ub, then the velocity of propagation is gilven by

v
() i -
V= e F Y - (4-31)
" o]
Q1 +Db sin@ ¢t QKG.OMO

If the dielectric i1s electrically thin then the approxi-
mation (4-6) can be used. Under these circumstances the
instantaneous frequency of the wave emerging from the

dielectric is

w
w - o~ w l ¥ bL COS m_t }—1-- o)

and the total variation of frequency

bW @ _ cos @ t
Aw(t) = S = (4-33)
2VO 1l + b sin &Jmt

If b is very small, Eq. (4=33) becomes

Aw(t) = —mp—= cos @ & (4=34)

This is the form of linear phase modulation(a) where

b(dmCUC L
2y =g (4-35)
and
_Wg “'b w, b o
Qd -—(':)—I;; i —v—o (4"56)

If L is electrically long so that the velocity cannot
be assumed constant over the transit time interval then the

integral (4-8) must be evaluated. This becomes

....50_



tlf V_ at fy
L = — !'—57
to {:T+ b sin wmt

This integral can be evaluated approximately 1f the substi-

Wt ¥
tution tan (_%_) = X Is used. Then sin @ ¢ x._J237§
S S

and —E—QEE =@ dt, Substituting into Eq. (4-37) results in

1 +x
r
at vz dx
a4 GJ
Vl + b sinW t i f +X2)\ o 3. 2K
) 1l 4+ x
=_2_r___ dx
W 1
& ﬁ"+2bx3+2x2 + 2bx + 1
J
(4-38)
L g 5]
Since (x2 + bx + 1)2 = x7 4 2bx° + (2 + b‘)x2 + 2bx + 1
1t 1s seen that if b << 2
dt 2 dx X3
M-l iy - (4-39)
fl + b sin@_t m 1x° + bx + 1
where
ax 2 -1 2Xx + b
- tan e (4-40)
x° + bx + 1 iq - p° ¥4 be
*

The transit time integral may be evaluated from tabulated
functions if the phase 1s changed to a cosine function
(which obviously makes no difference) Then

at i 2 ax
\jl +Dbeoswt @Y1 +b

41 - K sinzx
(A

(with —%— = x and K = T—%EB) which is an elliptic
integral.
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Therefore

4 v 2 tanl-m-) + b
oF e S B . - (b2<<;2)
&3du e TR
- (4-41)
The approximate solution of Eq. (4=37) is
(th) t]
4 V_ 2 tan ——) t D '
L = = tan™t
W Y4 - p° TN -
m o)
or
L - tan-l
2 m
Wt
. m1 ,w 2
4 W b2 e 2 tdn(T) + b &Jml_. 4 - b b
tan{tan - I v s
TR - "
hi2)
dar dto
Since W(t) = W (1 - ==) =& _ =— the instantaneous frequency
(s Qtl G dti
is
t.
SecQ((“)m J_)
&J(tl)== ﬁhf%l 2
2 tal’l(——-z—) b
I
4 - p°
©
o _1)2 tan(igri) + b (amLiq _ be ]
sec” [tan - W
P 4 v J =
5 . O
W ¢
m 1 /58 2
i .5t _1)2 tan(—=) + b mLiu - b b
L ¥ 5 tan Jtan - - al i
5 b Vo 2
b - b
(4-43)



For L = 0, b = 0, OI'O%n = 0 the instantaneous frequency is

simply a% as 1s seen from physical reasoning. . Note however
w L4 - b°
m
that if 7 =Kw (K=0, 1, 2, 3, ...) the frequency
(o]
will again be constant and equal to &2 ; Thls means that

if the length L is such as to require an integral number of
modulating cycles to elapse before a wave front passes com-
pletely through, then surely all wave fronts will have exactly
the same transit time. Since the frequency variation is
proportional to the rate of change of transit time 1t 1is
obvious that no frequency variation will take place. These
null lengths are given by

LKV
gt g Lo . (R %0, 3,25 13, 5] (4-44)

w Y4 - b2
Since the frequency behavior is periodic there is no advantage
to be gained in making L any longer than some value withiln
the first interval. Increased length meané greater loss,
which in turn means increased modulating power. The optimum
length modulator, which will result in the greatest frequency
variation, is evidently somewhere within the first interval

4V
Lopt< PRIPRE TGSty - T
Cﬂmfu = b2

between the limits. That this is actually correct will be

0 < A guess would place it half-way

demonstrated in the following section.
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Maximization of the Frequency Varilation

The frequency given by Eq. (4=43) can be rewritten in

the form
=
A sec“(B - o) W
W(t, )= S o = W (4-45)
3 B[l +{C tan(Bp - a) - ‘%}72] bile
w t 2
where A = sece(—-mgi) y B=1+ tangﬁ s C = _L‘_'rb__ -
(I

wau-bg 2 tan (—é-——m l)+b

m -
o= T , and tan B = s It is seen

0 {4-—b2

that a is the only parameter involving the modulator length L,

therefore &)(tl) will first be maximized with respect to a.

pE - N E
dw da .
@~ % o il (1240)
or
pP-xg 0 #0) (4=4T)

where N = A secg(a - a) and D = B[l + {C tan(p - a) - -1{21}2]

If a new variable X is introduced such that X =P - a

then
% = 24 sec” x tan x (4-48)
and
ab e b
v 2BC sec™ x [C tan x - 5] (4-49)

Substituting Egs. (4-48) and (4.49) into Egq. (4 47) leads to

tan x [1 + {C tan x - %}2] = C sec2 X [C tan x - %:l (4-50)

Equation (4-50) can be redueed to

]
sinLL x - sin® x + M—I-bij— = 0 (4-51)

o Bl



which has the solution

2 &b 2o
sin (B - a) = ; 5 B =-a =gin i (4-52)

If this condition is substituted into Eq. (4=45) the

instantaneous frequency becomes

@.t
el
sSec (——g—)
Wt,) = K (4-53)
Al 1ax T 2
min f, 2 tan(f%rl) + b
4 - b°

K is elther a maximum or minimum value so that if Eq. (4-53)

wmt il
e the wvalue

is now maximized (minimized) with respect to
of P which is required can be found. Substitution of this
value of B into Eq. (4-52) yields an equation which can be
solved for the maximizing or minimizing values of a. If

W, .t
the substitution 6 = -%?l is made, Eq. (4-53) becomes

2
— sec  © . N(®© T
cu(tl)'_ Knax 2 = Kmax ﬁ%@} (=54

min (1 + m—g—""—b min

Yu - 2

where N = secEQ and D = 1 + 2 tan 6 + bi2 2 The

1y - b2

maximizing condition is

N %g-- D %% = (D° # 0) (4-55)

The appropriate functions are

dN

2 .
qo = 2 sec”® tan o (4-56)
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and
g% - Z__q'_bg sec2@ (2 tan @ + b) (4=57)

After substitution and simplification Eq. (4=55) becomes

81n°6 = 5 (4-58)
The solution is
(A7
o =21 -ET (xoda) (4-59)
P
The composite conditions for maxima and minima are
-1 2+0D
B -a=sin"" (+ —_EL_)
@ (4=60)
ml _ KT (K dd)
s Eaally 2 &

The choices of sign and value of K wlll determine whether a
maximum or minimum is found. Utilizing the conditions of
Eq. (4-60) the quantities needed for the evaluation of W .

3
and (.-Jm. become

in
sec® (—(‘{3;—:5) =2 (4-61)
sec” (B =a) = - (4-62)
2 + (-1)2 b

tan (?E;i) =+ 1 (4-63)

- _aant L
tan (B - a) = (---l)KJ2 b g (4-64)

2 + (-1)" b

n and K are independent and either odd or even to determine
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the proper signs for the maximums and minimums. Substituting

these quantities into Eq. (4-43) gives

W s 5
min
(2 £ b) R
£ 2 =D
(B (-2 b)[z (-1)"* b + 2 (-1)¥ b (-1)FH 2 ]
(4-65)

The choice in the numerator comes from the selection of K

in Eq. (4-60). Clearly the (-) (% t; ='gj is associated

with a minimum while the (+) (Wt = %;) is assoclated with

a maximum. The denominator can occur 1n four distinct com-
binations.
Case 1 n odd, K even

D=4 +2b - b (4-66)

Case II n even, K even

D=4 =2p (4-67)
Case III n odd, K odd

D=4 -2p (4-68)
Case IV n even, K edd

D=24-20+0b (4-69)

The primary maximum value of & requires the minimum

denominator which is clearly Case III since b<«1l. The
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primary minimum value of W requires the maximum value of D

which is Case II. Equation (4-65) ylelds

2+ b

Woox = 775 %% n odd, K odd, numerator (+) (4-70)
and
w PR Pl n even, K even, numerator (-) (L-T71)
min Z + b ¢ f ’

where it is remembered that b2<<: P

If the maximum conditions are chosen,

- -1’2+b Ly 3o 1[2-13
Prax = %max = AP gon Al by - e Y75 -

Therefore

" A -
a . = tan - (-\%—xf%) - tan 1J%—;—% =.g: (principal value)

(4-72)

If minimum conditions are chosen,

- -1 2 - Db » «1.42 + b
Brin = %min = 81 i:" g—qut]and Ppin = ban 2 - b

Therefore

- -1 ’2 + b -1 ‘2 - b i =
L T tan v tan [¥ g—:fB ] - (principal value)

(4-73)

The transit angle which produces the maximum also produces

meiu L =

Since a = T the optimum length of the modulator
o}

the minimum.

becomes
opt
wmllu - B fmh -2 Yy - p2

% BB .

(4-74)



It was assumed in the derivation that b2¢<:2, therefore it

is permissible to write

== 2 (4-T75)

v
o) ._97' = —_—
@ Efﬁ fm

c
L —_— T
B ofg ©

opt

where ¢ is the free space velocity of light and K is the
dielectric constant at the chosen operating point. ’Tm is
the modulating period.

The free space velocity of light is approximately
3-108 meters/sec. Therefore 1t 1s obvious that the optimum
length modulator is feasable (if desirable) only when the
modulating frequency is very high. A large operating point
dielectric constant tends to shorten the length, but since
the square root operation 1s involved the effect 1s reduced.
For low modulating frequencies any physically practical
length modulator is well within the assumptlons used in
deriving Eq. (4-34) and the frequency varlation is essen-
tially pure phase modulation.

In conclusion 1t should be noted that the percent change
in frequency is independent of akzand therefore the optimum
conditions hold for any incoming carrier. In principle,
light could be modulated as well as microwaves. The diffi-
culty is that all media have dielectric constants and
therefore loss factors which are dependent on the carrier
frequency. Known ferroelectrics, such as BaTiO3 ceramics,
which give the greatest promise for velocity modulation, do
not have variable permittivities’ much above the microwave bands

and are therefore inapplicable for very high frequency operation.
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CHAPTER 5

MICROWAVE FERROELECTRICITY

Introduction

The amount of information concerning the properties of
ferroelectrics at microwave frequencies is rather limited
and it was felt that the measurement of the complex
dielectric constant* of certain barium titanate ceramics,
at these wavelengths, should precede any attempts to build
actual modulators.

Several problems need to be resolved. Powles and
Jackson(l) have demonstrated that BaTiO3 ceramics maintain
their low frequency dielectric constant, independent of
frequency, until some point in the microwave range and then
undergo a relaxation phenomenon after which the dielectric
constant 1s reduced perhaps by a factor of ten and the loss
is substantially higher. Several questions immediately
present themselves. If a low frequency voltage is used to
bias the ferroelectric then certainly the low frequency
dielectric constant can be controlled, but what of the high

frequency constant? Does the same percent change of K' take

* *
The complex dielectric constant K = K' -jK" accounts

for dlelectric losses and is discussed in detail by
A.R. von Hippel in Dielectrics and Waves, Chap. 1, Sec.II,
p.3 (Wiley and Sons, 1954).
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place or 1s control lost more or less completely? Another
question is what factors affect the frequency of the
relaxation? Kittel has calculated that domaln resonances
are responsible;(g) if so, domain structure is critical and
shifts of the relaxation frequency appear possible by
suitably tailoring the ferroelectric. The maximum rate of
modulation to which the materials can respond 1s also an open
question. The present work is merely a very small step

toward solving some of these questions.

Equipment

The 11,000 Mec. range was chosen for preliminary measure-
ments because strip line (50 ohm) was avallable for this
band and could provide a convenient method for applying a
DC high voltage blas across a ceramic sample. It was felt
that the same apparatus could also be used later on to form
the actual modulators. Figure 1 gives a representation of
the measuring apparatus. The high voltage terminal is made
in the form of a low pass filter so that the microwave energy
will not radiate from it. Band pass fllters at either end
of the sample section of the center conductor were needed to
supply DC isolation. This was necessary because the coax
to strip line transitions break down at relatively low field
strengths. The probe of the slotted line detector could
move back and forth to measure the reflection pattern and the
tuner could be used to match the sample to the strip line.

A standard double detection measuring set utilizing a Kay
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Electric meter circult completed the set up.
Several different procedures are possible for measuring
K* (3) and the one which was employed is discussed in the next

section.

Measurement of Complex Dielectric Constant

. Introduction

The dominant mode in strip line is TEM and 1s sketched
in Fig. 2. The fields are concentrated above and below the
center conductor and so pass through the ceramic sectilon
when it is placed in the line. The geometry of the strip
line cancels out when the reflection coefficient is evaluated
therefore Fig. 3 represents the situation which is equivalent.
The signal flow graph associated with this configuratioﬁ?has

a total reflection coefficient given by

B o2 o—J20 -200
E

= (5-1)
% 1 _ 2 o926 2ags ~ €

where in general r and t are both complex and related by

|r]2 +rltl2= 1. The angle © 1s equal to §§Q where \ 1is
the wavelength in the dielectric. For ferroelectrics which

have large dielectric constants and relatively low loss
(tan 5 <1) the reflection and transmission coefficients r and

t can be assumed realand positive wilth little error.

First shown by S. Mason.

£



| ground plane

Dominant mode in strip line (from an unpublished
memorandum by A. C. Schell). Fields are symmetric
with respect to center line.
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The magnitude of @ 1s then gilven approximately by

o re) ¢ 0P 5
l?l o T - ) lio, 1 (3“2)
[} - 2r® 69 445 20 + pt " é]?
If |e] is known as a functlon of © then r and a  may be
evaluated. This leads to an evaluation of the complex
dielectric constant. © may be varied by changing L or A
and where the dlielectric parameters are independent of
frequency the latter method is preferable.
I1I. ILossless Dielectrics
For the lossless case a_ = 0 and Eq. (5-2) becomes
exactly
p r(l - r°)
[~ : (5-3)
i (L - 2r° cos 26 + r )%

This expression 1is periodic in 206 so that adjacent maxima
or minima are A6 =T radians apart. The change in fre-

quency necessary to produce this A6 is simply

v C
Af = = (5-4)
I afkr
Kt o= S e
where K' = eo and Km "'ﬁ% . The ratio of impedances gives
Z
1 1 + vl K'
_— = 8 = = 2 "
22 1 - |Jr} Kl (5 5)

! C

Kn = 20387 (5-6)
d oG8 c

K' = m ()-7)



1
For non-magnetic dielectrics Km =1 and Eq. (5-7) becomes

K = (gg) (5-8)

IIT. Lossy Dielectrics

If a, # 0 and the loss is low so that Eq. (5-2) is valiad
then Eq. (5=-8) will give a very good approximation to the
real part of K*. Eq. (5-2) gives l?l as a damped oscillatory
function of © and the actual maxima and minima occur near the
points where the slope of Eg. (5-2) is zero. These roots

are solutions of

(04
-20g0 - L
g~ <9 (gin 20 - a, cos 20) + ;% = 0 (5=9)

If 6, is a solution of Eq. (5-9) then ©, + 7T will also be a

1
=207

solution provided e 1. The maxima are then spaced T

radians apart and occur when cos 20 = -1. The envelope

which passes through the Ielmax values is approximately gilven

by

r(l - r2) g "e®

>~ r - (5-10)
114 r2 '-20-99

letmax
envelope

The various maxima lie on this surve spaced ~W radians apart.

The ratio of two adjacent maxima (Ql and(’2 at angles Ql and

T+ 6 respectively) is given by

ST ” (egae'ﬂ' + pe 6-20!-9@1)(1, + opd =201 _ ., 3“20’991)
€2 (1 + e e'2a991](r 020 | 5.3 =20g6] _ e~2aegl)

(5-11)
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Since e = 1, Eq. (5-11) can be rewritten by cancelling

the second factor on top and bottom and replacing the appro-

2a7

priate numerator term with e = 1 + 207 . The transformed

equation is

(’1 Qn'ae 2
= - 1 = = ln -— (5=-12)
€2 1 4 r- e %Pl f2

If & Q is quite small and r is close to unity (as 1t is for

1

BaTiO, ceramics) then a, =

3 In =—. If a 0, 18 very large

L
C 92 e 1
the exponental term is small compared to unity and aetf

1ln —=—. These two extreme cases differ by a factor of

two but in general only the magnitude of ae is important so

an average can be used
o~ 3 -t >y
%o T L e, (5=-13)

If more accuracy is desired the transcendental Eq. (5-12)
may be solved by iteration but since this equation is only
approximate the additional labor is not justified.

The complex propagation constant is given by

V= gel e’ = g TN = e+l (5-14)
0

For non-magnetic media K =1 and if Kl and K are defined
so that K, - JK, {_~ J - JK" then a = £ K, and
om .

B = T K,. It is readily seen (because aZ = aee) that
o

K2 = Klae. The loss tangent is given by

K" 2K1K2
tan 6 = & = L2 (5-15)

Ky + X5
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and Eq. (5-15) becomes

=)

If tan 6<4£ 1 as assumed then Kéz(l(
2K

2 ~ 3
t g = = 2q = s -16
% b TRl Ll )

This together with K' = (Qé%f)g characterizes the dielectric.
The data required from a plot ofle( versus f are the length

of the sample (L), the magnitudes of two successive reflection
coefficient maxima (Pl andE’e) and the difference in frequency

between the maxima ( Af).

Materials

Two different types of BaTiO3 ceramics were made available
through the efforts of L. Egerton who 1s in charge of ceramic
and glass compositions for Department 1128 at Bell Telephone
Laboratories - Murray Hill, New Jersey. These were

CuSn0, - Ba*I':Lo3 (10 mole % CuSnOB) and PbSnO, - BaTiO.

5 @ 3

(14 mole % PbSnOB) ceramics. Both have been discussed in
the literature at relatively low frequencies(u) but have not
received attention at microwave frequencies as far as this
author knows. These ceramics were chosen because of their
reported good voltage sensitivity and because when made i1n
the proportions listed have Curie points below room temperature.
According to von Hippel there 1s a temperature range above the
Curie point in which BaTiO3 ceramics still exhibit ferro-
electricity and have lower loss characteristics.(5)

The samples were machined to .320" x .100" x 4 mm. and

silver plated on the broad faces. Two of these placed one

on either side of the strip line center conductor filled the
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space above and below it completely. Since practically all
of the field is concentrated in this region (for the dominant
mode) it was assumed that the absence of fthe ceramic along the

edges of the center conductor was unimportant.

Author's Results

Quantitative results obtained from the reflection pattern
data appear to be unreliable and the straightforward theory
developed inapplicable. The reasonshfor this appear to come
from several sources. The first 1s that other modes are
present in the strip line which are caused by the least
dissymmetry. Normally they are 30 db or more below the main
signal but the K' being measured was high so that very large
reflections were obtained. When the probe was placed at a
voltage minimum the signal level may well have been below that
of the undesirable modes which were of arbitrary phase. The
second reason may be that the value of K' being high allows
other modes to exist within the ceramic section itself. These
might be reflected internally many times in various modes
before emerging. This could put peaks in the reflection
coefficient versus frequency plot not accounted for by the
simple theory. The assumption that K* was lnvariant over a
narrow frequency range may have been wrong but this is unlikely
since several different frequency ranges were tried and the
per cent deviation of frequency was slight.

Direct insertion loss measurements were made at 11,000 Mec

which indicated about 20 db loss for the 4 mm. samples of both
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types of ceramics. Any leakage of the field around or
between the samples would make the true loss higher but the
figure of 5 db/mm may be a fair estimate.

Qualitatively it appears that the relaxation spectrum
has not set in yet at 12,000 Mc for the PbSnO3 ceramlics and
that the low frequency dielectric constant, which Coffeen
claims is around 4000, is still in effect. The corresponding
loss tangent would be on the order of .l. There is a great
deal of uncertainty about these conclusions and they need to
be rechecked very accurately.

The CuSnO3 ceramics were very losgy at dc. Therefore
the PbSnO, samples, which were not, (less than 3 mw. was
dissipated when 3000 V. was applied) were used exclusively
in the experiments which attempted to vary the value of K'
by applylng a bias field. This was possible but the quanti-

tative changes are very much in doubt.

Davis and Rubin's Results

Davis and Rubin have published data on SrTiO3 - Ba’I‘iO3
(27% SrTiOB) ceramics at 3000 Mc(6) which is summarized in
Pig. &. Their results show that the relaxation spectrum
reported by Powles and Jackson has not been reached and that
at room temperature the dielectric constant is on the order
of 5000 with a loss tangent of .1 (with no bias field applied).
If a field strength of 10 KV/Cm is maintained the loss
decreases slightly and the dielectric constant drops to about

2000 If 1t is postulated that their data also holds at
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11,000 Me (which is doubtful) then it would appear that the

SrTi0, and PbSnO3 ceramics might be similar in dielectric

3

behavior at least when no bias is applied.

Modulation

I. Theoretical Calculations Based on Experimental Data

On the basis of Rubln and Davis's data 1t is possible to
predict the performance of a SrTiO3 - BaTiO5 modulator
operating with a carrier frequency of 3000 Mc. If the
ambient temperature is about 25° C then tan & = .1 and K!
varies between 4000 and 2000 for O KV/Cm and 10 KV/Cm
respectively. Assuming a linear change of K' with fileld
strength, it is obvious that a dc bias of 5 KV/Cm in series
with an ac voltage of magnitude 10 KV/Cm peak to peak will

produce a permittivity given by
- 2 .
€ = 3000 Eo(l + 3 sin wmt) (5-17)

Substituting the values of b and K, which were found

0
above into Eq. (4-75) one finds that the length of the

"optimum modulator" is given by

8

~ 2% 107 ,
Lopt = 7 cm (5-18)

The loss per meter can be shown to be
3

Loss = 8.686 %{% K, {{1 + tan®6 - 1}}72 b
(5-19)
With a loss tangent of .1 the loss at 3000 Mc. 1s approxi-
mately 15 db/cm. If the maximum allowable loss through the
- T4 -



T r——

8

modulator were 15 db then LO = 1 em and fm = 3 10 cps

pt
which presumably is above the maximum value to which the
material can respond. Therefore as predicted earlier the
optimum modulator is probably not realizable. If a lower
value of wm is picked and a short L is used so as to keep

the loss down, then Egs. (4=35) and (4 36) apply. The phase
deviation at 3000 Me is

of bwcL% UL
i C

64 S radians (5=20)
where L is in cm. For a 64 = 2.4 the carrier disappears
from the spectrum as is well known. The value of L required

is 2 mm and the corresponding loss is 3 db.

If the questionable data concerning the PbSnO., - BaTiO

5
ceramic or the Rubin and Davis data extrapolated to 10 KMc

5

is used then the loss 1s approximately 5 db/mm. The phase

deviation i1s now

oy = HOTL  1hdians (5~-21)
9
For Gd = 2.4 as before, L = %% mm . The corresponding loss

is again 5 db. It is readily seen that as long as the
dielectric parameters are not functions of frequency the loss
through a modulator which gives a 64 = 2.4 will be 3 db.
The db loss 1s linearly proportional to @d.

ITI. Optimization of Operating Temperature

Avove the Curle temperature there exists a range where

ferroelectricity is possible and the losses relatively small.
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In general the loss decreases with increasing temperature
but the modulating index b also decreases. If assumptions
are made as to how the values of b and tan © vary with T in
this region then the optimum operating temperature may be
computed. When exponential functlions are postulated the

*
results are readily obtainable. Assume therefore that

bl aBLT < E T 3T (5-22)
o c
and
: o -3(T - T 2
tan 6 =L + (Lo - Lco) e ( c) T>T, (5-23)
From Eq. (4-30)
8.V 6.V
d o d'o @(T w T ) .
B, | SgPg

The loss is given by
I %
K
Loss = 8.686 )—2\-1—![—?9 (h + tanzﬁ » 1)]2-‘_ db (5-25)
O

i i KO is assumed constant with temperature then

1 e
b
Loss = A[ﬂl + tan“b - %5 'EO_ (5-26)

where A = 8.686 2T e ——b——gdvo Substituting the exponen-
A, 2 W0

If K'(T), regardless of the field strength, obeyed a

Curie-Weiss law exactlg, then b(T% would be a constant
for all T which is certainly not true. The exponential

behavior as postulated allows the ferroelectric effect
to gradually die out above the Curie temperature.
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tial functlons

g ]
Loss = A[{l ‘i"{L _;_.(LO = Lm)e_B(T—TC)}B ) ]]2 - (T Tc)

T 2T, (5-27)
d LOSS
Minimizing with respect to T requires that =g = O or

L
d%{eaTm - 1}2 = (5-28)

Simplifying yields

oj—

- £ (@ -n)eP (T Te) tan o (5-29)

= ‘ e
(1+tan“6) - (1+tan“d) 5

For the case where tan 06«<«£1 the approximation that

L
41 - tanéﬁ = ] % tan“0 1s permissible and Eq. (5-13)
becomes

| B - 1) 1)
eﬂT o~ _O - o oo CBTC (5_50)
8]

The solution is simply

1 (B-a) (L, -Ly) ,
T =T, +71ln T for T T, £5-31)
(B-a) (L L)
therefore ol 21 o
‘ Lo
B pa gt (5-52)
o @ ;
Lo
Since L _> O 1t follows that o >1 and B>>>a to meet the
0 ©
minimizing condition. In general, the converse is true so
that at no value of T in the interval does Q—%%Ei = 0. The
minimum loss occurs therefore at T =T . This suggests that

c
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if the exponential law holds it is advisable to operate Jjust
above the Curie temperature. This would automatically fix
the value of b and L which In some cases might not be
desirable; however, the loss would be the lowest possible.

It is apparent that the same temperature minimizes loss for
all modulators of the same ceramlc regardless of the values
of (00, or ed. The value of this minimum loss 1is, of course,

a function of the latter parameter.

III. Experimental Modulators

An experimental modulator at 11,000 Mc was bullt and
tested using the strip line apparatus previously described.
A 800 volt peak to peak 60 cycle power transformer was
placed in series with a high voltage dc supply capable of
delivering up to 5000 volts. The titanate ceramics
(PbSnO3 - BaTiO3) had been coated with ceresin wax after
being placed in a drylng oven to prevent corona discharge.
The transmission signal was observed on a scope after 1t had
been beat down to a 7O Mec IF signal and fed through the
meter circult of a Kay Electric measuring set whilch passes
60 cps. Fig. 5 shows the waveforms obtalined for varilous
values of DC bias. The transmission curves are plots of
the modulator output versus time and also output versus the
amplitude of the modulating voltage. The S shaped character
of these latter curves is explained if it is remembered that
the transmission maximum occurs at an electric length of the

modulator equal to a multiple of half the wavelength. For
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more or less applied voltage the value of K' hence changes
the electric length. No matter whether it is a plus or
minus change the transmission 1s decreased. The hysteresis
is due to a noise signal emanating from the meter circuit.
These transmission curves show only the amplitude variations
of the signal, therefore to detect the phase modulation the
signal from the meter circuit was fed into a Hallicrafter

SX 62 receiver tuned to 7O Mc. A 60 cyecle output from the
recelver was observed on a scope and appeared to furnish proof
of the PM component. It was observed however that there was
either considerable AM to FM conversion or a leak path in

the receiver since a standard AM signal generator set on

a 70 Mc carrier also produced an output from the recelver when
it was tuned to the FM band. An AM slgnal which was equal
in amplitude to the titanate modulator output produced an

FM output less than one half that observed from the micro-
wave modulator. Another FM receiver was not availlable to
check the results but it 1s reasonable to assume that a PM
component was actually produced. If the ceramic section had
been matched into the strip line the AM component would have
been considerably smaller. A higher modulating frequency
would have improved the signal to noise ratio since there

was a substantial 60 cycle noise source in the Kay Electric

meter circuit.
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CHAPTER 6

CONCLUSIONS

The theoretical analysis has indicated the performance
which may be expected from a dielectric modulator. In
practical situations essentially linear phase modulation
may be expected together with the inherent AM component.

The electromagnetic momentum of such a wave is unaffected by
the modulation process but the energy level will in general
be increased. This energy is provlided by the modulating
source which on the average does work upon the electro-
magnetic field. .

Dielectrics which appear suitable for velocity modulation
include "artificial" diode dilelectrics (which have not been
tried at all so far) and ferroelectric ceramics such as
BaTiO3 ¥ PbSnO3 and BaTiO5 - Sr‘I‘;LO3 compositions. There 1is
a temperature range above the Curle Point where these ceramics
are still ferroelectric and where the losses are substantially
reduced. The Curie temperature can be moved over a wide
range by altering the concentrations of the lead and strontium
atoms.

One possible application for dilielectric modulators appears

to be in microwave double detection measuring sets where the

- 82 -



difficulty in keeping two frequency sources tuned to the
required IF frequency 1s often a problem and always a
nulsance. If the signal from a monochromatic source is
split and one half modulated and then recombined with the
other (ummodulated) half, an IF component can be detected.
The apparatus to be tested would be placed in the path of
the unmodulated signal. The IF signal would not be lost
when the main source was tuned to a different frequency.

When a ferroelectric is used to frequency modulate at
low frequencies by varying the capacitance of a tuned circuit,
the operating point value of K' determines the operating polint
capacitance which in turn determines the carrier frequency.
If this value K' changes a little because of temperature
variations, etec., then the carrier will drift also. Observe
that in the dielectric velocity modulator which has been
dlscussed the carrier frequency is not affected by changes
in K' and will always be as stable as the generating source
decrees. The phase deviation is, of course, sensitive to
changes in the dlelectric constant and drift due to tempera-
ture changes may be important.

The maximum modulating rate to which the ferroelectric
ceramlics will respond and the amount of microwave power which
can be transmitted through a dielectric modulator are unknown.
The extent to which the piezoelectric effect enters the
modulation problem is also unknown.

It should be realized that these results assume that the

velocity of propagation of the dielectric medium is not
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modulated by the electromagnetic field passing through it,

but only by the modulating bias. If this is true, the linear
analysis which has been derived 1s valid; if not, the field
relations are non-linear and much more dlfficult to solve.

The velocity will not be modulated by the microwave fleld

if the medium cannot respond to microwave frequencies and

this 1s apparently the case. Even 1f 1t is not, the results
are applicable if the microwave fileld is not sufficiently
strong to make significant changes in the permittivity.

As far as future experimentation is concerned, this
author feels that the first and quite formidable task which
should be performed is the accurate measurement and tabulation
of the dielectric constant and loss tangent of the most pro-
mising of the barium tifanate ceramics as functions of
composition, temperature, and field strength throughout the

microwave range.
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