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This thesis examines existing turbulence theories through
numerical methods. Two different methods are used to model a
premixed turbulent flame: a moment model and a Monte Carlo
model.

The moment model solves the transport equation for the
nondimensional progress variable, C, and assumes small
fluctuations of © about the mean. The Monte Carlo model solves
the probability density function (pdf) equation of C using
statistical methods. The flame is described by a
nondimensional grid composed of ensembles of elements. The
Monte Carlo model assumes the steepest scalar gradients are due
to scalar dissipation caused by turbulent straining. Mixing is
modeled by the Curl mixing model and reaction is simulated by
integrating the nondimensional rate equation. Both models
provide information about flame speed, flame thickness, and
profiles of C.

Numerical calculations from the moment model show that the
moment model is valid for only a limited range of the operating
conditions. From the pdf calculations of the Monte Carlo model
it 1is shown that the basic assumptions behind the moment model
are invalid. The results from the Monte Carlo calculations
show good agreement with the theory. Pdf calculations show
that the model is mixing limited. Results of calculated values
of flame speed and flame thickness show that the assumption of
gradient diffusion is invalid for the case of a laminar flame.
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NOMENCLATURE
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s(c),s*(c)
S(®P)

S, ,s;
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u,u*
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X,x*

nondimensional product concentration
fluctuations of C about the mean
turbulence model constants

mixing term, Equation (2.2)

number of ensembles

turbulent kinetic energy’

laminar flame thickness, normalized laminar flame
thickness

turbulent flame thickness, normalized turbulent flame
thickness

integral macroscale
number of elements in an ensemble
number of elements involved in diffusion process

number of elements involved in mixing process

pdf of ¢

turbulent Reynolds number

reaction rate, normalized reaction rate

rate of change of @ due to chemcial reaction

laminar flame speed, normalized laminar flame speed
turbulent flame speed, normalized turbulent flame speed
time, nondimensional time

velocity, normalized velocity

turbulent intensity, fluctutation of U about the mean

position, nondimensional position



Greek Letters

]WT turbulent diffusion coefficient
n Kolomogorov length scale

A Taylor microscale

v transport coefficient

Uyt effective tra?sport coefficient
v T turbulent transport coefficient
g standard deviation

¢ scalar variahle

Y independent space variable corresponding to ¢
Q Damkohler number

w turbulent frequency

T Kolmogorov time scale

Th chenical reaction rate

Subscritps and Superscripts

D y refers to Damkohler theory
i coordinate direction i

/ . laminar

M refers to Moment model

MC refers to Monte Carlo model
T turbulent

Averages

<s> mean value

s* normalized wvalue
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INTRODUCTION

Turbulent flames occur in power plants, industry, and
transportation. The properties of a turbulent flame affect the
efficiency of the process involved. For example, in a
spark—ignition engine, the turbulent flame speed and thickness'
are two of the parameters used as empirical inputs in analyzing
engine performance. If the flame speed and flame thickness
could be obtained theoretically, the engine simulations could
be performed for a wide range of operating conditions without

having to make actual experimental measurements.

The purpose of this research project 1is to- deyelpp - a
theory to determine quantitively the flame speed and flame
thickness of premixed turbulent flames. The motivation for
this project arose from inconsistencies 1in the literature,
dimensionally incorrect rélationships, and conflicting
assumptions in turbulence models. One objective of this study
i1s to identify important dimensionless parameters which define
operating conditions of a turbulent flame and to determine the
normalized flame speed and thickness as a function of these
parameters. Another goal is to identify different regimes of
combustion and the limits of these regimes. Two turbulence
models are examined and the results of the models are compared

to theory.



CHAPTER 1

The simple case of a one-step irreversible reaction
between a fuel and an oxidant to form a singie product is
considered. Initially, the fuel and oxidant are homogeneously
premixed. The density 1is assumed to be constant and the
transport properties of all the species and enthalpy are
assumed to be equal and constant. The chemistry can be
described by a single scalar variable which can be chosen to be
the progress variable C. This variable may be thought of as
the nondimensional product concentration: in the unburnt
mixture C 1is equal to zero, after complete combustion C is

equal to unity.

The conservation equation for C(X,t) is

ac 9C _ ,9°C 4 5(c) . (1.1)
St + Ui axi Y X% (

where U(X,t) is the velocity at location X and time t, ¥ is
the transport coefficient, and S(C) is the source term due to
chemical reaction. The source S(C) is zero for C=0 and C=I
since neither cold, pure reactants nor fully burnt products can
react. Since the reaction is irreversible, S(C) 1is
non-negative. A characteristic chemical time scale, T, , is

defined by

T

- Sap |S(C)} . (1.2)
R



and the normalized reaction rate is defined by
s¥(c) = T.5(C). (1.3)

x
Thus, S (C) is a nondimensional source term that varies

between zero and unity.

In a quiescent fluid, Equation (l.l1) admits a solution
corresponding to a plane laminar flame. If the flame
propagates at a speed S£ (the 1laminar flame speed), then

Equation (l.1) written in a frame moving with the flame becomes

de d2c
S‘ I - )’—2 + s(C), (1.4)

dx

This equatioﬁ can be nondimensionalized using the known

parameters ¥ and 7. - Therefore, defining

*
— 1
Sy = 5,0 T /») /2 (1.5)
and
* _ 1.2
B = E(T¥) , (1.6)
Equation (l.4) can now be written as
* dc a’c *
S.e *= *2+S (C)n (l 7)
dXx dX *

Figure 1 shows a graphical representation of the solution to
this equation. S; is the nondimensional flame speed and .e; is

the nondimensional flame thickness defined by

%
4e = X - X . (1.8)



where ‘ 10

c(x:.g) = 0.9 (1.9)
and
“ 0.1
C(Xy,1) = 0. (1.10)

as shown in Figure l. These nondimensional flame properties,
S; and Jq; s depend upon 5®(c) and are of order unity. For
different values of ¥ and 7} » the dimensional quantities

SL and.l% can be recovered from

8, = (7/ *I‘R)l’/2 S: (1.11)
and
o 1/2 %
£, = (YTp) J £,. (1.12)

In all of the calculations reported here, the normalized

reaction rate was taken to be'I

s*(cy = 6.llxl[)?C(l—C)exp[-30,000/(300 + 6000)] (1.13)

For this reaction rate, numerical solution of Equation (1.7)

(see Chapter 3) yields

S, = 0.768 (1.14)

and

*



These values are wused in all subsequent calculations and

figures.

For the artificial case of homogeneous, nondecaying
turbulence, the combustion of a turbulent mixture of fuel and
oxidant prodgces a turbulent flame. The properties of the
flame are determined by severdl parameters: u',aee sTR s
and ? . The turbulent intensity, u', is defined as the
square root of the turbulent kinetic energy, K. The integral

macroscale,i! is the characteristic size of the largest

e 3
eddies and is defined so that

£, = x3/2) ¢ (1.16)

where € 1s the rate of dissipation of the turbulent kinetic
energy. Molecular transport is described by the kinematie

viscosity, ¥ .

From the four quantities, u‘,,ﬂe » ¥ , and T, two

independent, dimensionless groups can be obtained. The choice

is not unique: here the two groups are chosen to be

R = u'lly
’ (1.17)

and
Q=2 Ka' ‘r.R)- (1.18)

R is the turbulent Reynolds number and § is the ratio of

11



chemical frequency to turbulent frequency or the Damkohler
number. All other dimensionless groups ecan be expressed in

terms of R and £ . For example,

1j2
s, (7/ TR)llz x [ 2\ 8 (1.19)
A u’ 5y T R o

and

1/2
4 7 TR ‘: =(_._ng)1/2 £, . (1.20)
£ F 4

€

€

Any flame can be described in terms of R and £ only, and each
point on the R-Q plane corresponds to a set of operating
conditions for a flame. Figure 2 shows contours of S£. /fu' and
.Zz /.ee plotted on the 3—9 plane. In the region of the plane
where ‘e.ﬁ >>£€ » the turbulent eddies are too small to affect
the flame structure, but they augment the transport process in
the flame. This transport process governs the flame speed by
increasing the transfer of fluid between the preheat zone and
the reaction zone in the flame.2 The effective transport

coefficient, ¥, , can be defined by

- 7.31
Yege = ¥+ 7p (ha21)

where Y; 1is the turbulent viscosity. An expression for 7‘, is

3
obtained from the k—=€ turbulence model.

Yr = Cuuvlg, (1.22)

12



13
where the constant C” is ascribed the value 0.09,

Since the only effect on the flame is the increase in the
transport coefficient, the same laminar equations apply (e.g.
Equations (1.19) and (1.2)), but with ¥,;; replacing ¥ .
Noting that  both S£ and.ez are proportional to y‘/z,

expressions for S_ /S and ¢_/4 are written as
T "4 T 74

1r2

EE‘= Yeff
S£ Y (1.23)
and
1/2
£ _ ”eff) (1.264)
a££ ? L3

Substituting Equations (l1.11) and (1.12) for S£ and 1& » the
turbulent flame speed and the turbulent flame thickness may be

written as

= L/2 =%
and
1/2 ,*
.CT = ( Yoee TR) ,eze (1.26)

Using the definitions for ¥, and Y, as given in Equations

(1.21) and (1.22), the expressions for S; and er can be

1/2
y+ Cuu:ee S*
ST = T £

R

rewritten as

(1.27)



and

*

1/2
£y = ((V+ Cuu'l)Tg) / £, - (1.28)

Normalizing S_ and £ ; with the turbulent intensity and the
integral macroscale, respectively, and substituting for R and

£ , Equations (1.27) and (1.28) become

S Q 1/2 . * (1.29)
_u;{"- = (E + C"Q) S£
and
1/2
‘eT 1 C") * 1.30
_—e: - E_.Q— - .Q 'e£ " bl )

Figures 3 and 4 show contours of S, /u' and £T /.ee using the

=

values in Equations (l.14) and (1.15) for SI and .g: « For

large Reynolds numbers, these contours become independent of R.

In fact, as long as the turbulent flame thickness is much
greater than the integral macroscale, this theory still
applies, since the transport process still governs the flame
speed and the turbulent eddies are still too small to affect
the flame structure. As R approaches 1infinity 'ZT/’eé becomes
inversely proportional to the square root of the Damkohler
number. Thus, the Damkohler theory is valid below some value

of Q . The calculations in Chapter 3 suggest this value is

14



<

Q =0.1.

The ratio of turbulent transport, );” , to molecular
transport, ¥ , can be express-ed in terms of the Reynolds
number only. Using Equations (1.21), (1.22), and (1.17), this

ratio becomes

Yefsf ut' L
—_— =1+ —m =] 4+ C R. .31
y y u (131

Thus, at least at high Reynolds number,turbulent transport
dominates molecular transport for values of the Damkohler
number less than O.l. The ratio of turbulent straining to

laminar straining is

(strain)T T-l
— e S e (1.32)
(straln)z S£/££
where T 1s the Kolmogorov time scale:
1/2
r= (27 (1.33)
Equation (1.32) written in terms of R and § becomes
i 1/2 2
(strain), _ ( R ) L, (1.34)
—_— 2 *
(strain)‘e’ 2 S£
Since £2< 0.1, this expression is greater than unity and

the turbulent strain rate is greater than the laminar strain
rate. The laminar flame speed and the laminar flame thickness

are directly affected by the reaction rate, 7; , as seen in

15



equations (l.11) and (1.12).

At the other extreme,if the laminar flame speed is mch
greater than the turbulent intensity, then the laminar flame
front propagates very quickly through the turbulent fluid. The
ratio of the laminar time scale to the turbulent time scale is
expressed in Equation (1.32) which is less than unity in this
reglon of the RrSé plane. Therefore, the laminar time scale
is mich smaller than the turbulent time scale and | thé
turbulence has little effect on the flame. This region of the
R-£ plane (see Figure 5) represents a laminar flame.
Transport is due to molecular diffusion and the steepest

gradients are caused by the reaction zone in the laminar flame.

The behavior of flames in the region of the R-Q plané
between the Damkohler theory region ( £ < 0.1) and the plane
laminar flame region (S PR u') is less certain. This region
can be subdivided by the 1line _ez =n , where 1 is the

Kolmogorov length scale

- 3 (1.35)
Nn=(r"/¢ )1/4.
The Kolmogorov scale 7 1is the characteristic length scale of
the steepest scalar gradients. Figure 6 shows these regions as
well as the Damkohler theory region and the laminar flame

region. ]

16



Region I is characterized by Damkohler numbers greater
than 0.1 and .€£> N . Since u' >> S, and ,££> n , both
transport and mixing are dominated by the turbulence. Also,
for most of the region £ > 1.0, the rate of combustion is
limited by turbulent mixing rather than by the reaction rate.
Since both transport and mixing are governed by the turbulence,
it is reasonable to assume S; /u' and £ /£, to be independent
of £ and R (for high Reynolds numbers). In this region of
the R-& plane the eddy-break-up model appears to be

applicable.

In Region II, which 1s characterized by .e£< n and
§ 3 <Ku', turbulent transport still dominates molecular
transport since the turbulent intensity is much greater than
the laminar flame speed. " The steepest gradients can now be
attributed to laminar flamlets since the laminar flame
thickness 1is less than the Kolmogorov length scale. This

effect on the flame properties S; /u' and ,KT [£¢ is mot clear.

For the purposes of this study the Reynolds number is
chosen to be very high (106 )e Therefore, for values of the
Damkohler number less than 0.1, S, /u'  and .CT/lG are
independent of the Reynolds number. Figure 7 shows contours of
known dimensional parameters plotted in terms of £ only. The

expression ,Z-a /A is the ratio of laminar flame speed to the

Taylor microscale. As Q approaches infinity, SJZ /u'

17



increases and the other ratios tend to zero. For small values
of £ , Damkohler's theory applies. As 2 1is increased,
S; /u' becomes independent of £ and for large values of the
Damkohler number a fast laminar flame exists. Figure 8 shows
S; /u' for these three theories. Since in the intermediate
region S; /u' is independent of Q , the magnitude of S; /u'
is not known, but the result will be a horizontal line. The
actual ST /u' for a turbulent flame will follow the asymptote
for Damkohler's theory, become independent of £ and then
pick up the result for a laminar flame as £ varies from
small to large values. As shown in Chapter 3, the asymptote of
Regions I and II is actually not reached until 2 = 104 .
The reasons behind the behavior of this transition are

discussed in Chapter 3.

18



CHAPTER 2

This chapter contains the description of the two models
studied. The first model uses a Monte Carlo method to solve
the pdf equation of the scalar variable, C. The second model,
the moment model, solves Equation (l.7) and assumes small
scalar fluctuations of C about the mean, <C>. Both methods
assume homogeneous, nondgcaying turbulence in a fluid which,
upon combustion, produces a plane propagating flame. Also,
both models are independent of Reynolds number and are valid
for a limited range of the Damkohler number. The moment model
is valid where the Damkohler theory is applicable and also for
slightly larger values of £ . The Monte Carlo model is valid
for the Damkohlerl theory regime and Regions I and II of the
R-Q plane. Values of £ .beyond which these models fail are
discussed in Chapter 3. In the limit of small fluctutations
(i.e. <c'* > K 1.0), the pdf equation reduces to the moment
model. In the limit of zero fluctuations (i.e. <C'2 > <<

1.0), both models reduce to Damkohler's theory.

Monte Carlo Model

. The Monte Carlo method®solves the pdf equation for the
scalar variable, C, which is denoted by @ and the pdf of
¢ is P( ¢ ;X,t) where iss the one—dimensional

4
composition space variable corresponding to @ . The

19



expression P( ¥ ;X,t) can be simplified as P( ¥ ). The
one-dimensional transport equation for P( ¥ ) assumes
turbulent transport is modeled by simple gradient diffusion and

can be written as

apgnl)) PEPG-)1 () R T kP(:p)S(tP)) %x T ag =

St ok oY

‘j

pdl~

+ E(W;X,t) (2.1)

where <U> is the mean velocity in the X-direction, S( ¢@ ) is
the rate of change of ¢ due to reaction, and ]_;(X,t) is
the turbulent diffusion coefficient. The term E( ¥ ;X,t)
represents the effect of molecular mixing. The mixing term and
the diffusion term must be modeled while the remainder of the

terms are exact. Curl's inixiﬁg model 1s employed to model

5
EC ¥ ;X,t):
E(P;X,t) = zwfﬂnbwf:')?(w-w')dw' -wPW  (2.2)

where @ 1is the turbulent mixing frequency and Y=Y’ is a
location in composition space corresponding to fluid with

property ¢ =l,b' . The expressions for /.

. and w are

3
obtained from the K-~ € turbulence model:

2
Cy K ; (2.3)

E — —

r‘l‘ g & €

and

€
w= 20— (2.4)

20



where K is the turbulent kinetic energy and the constants C g
Oy and C¢ are assigned the values of 0.09, 0.7, and 2.0,
respectively. The normalized diffusion coefficient, I-': » and

the normalized turbulent frequency, «®, are defined by

r* = Iy
T = u'g (2.5)
€
and
w
o = — (2.6)
u_ze
Using the definitions of u' and er » Equations (2.5) and (2.6)
give
C
I* -t (2.7)
T Ob
and
*
w = 2C4 , (2.8)

The model solves equation (2.1) for the case of a
statistically stationary, planar flame in  homogeneous
turbulence. The model uses a one-dimensional finite difference
grid of length X* and composed of J grid nodes spaced
Y| X.distance apart. Each grid node contains an ensemble, or
group, of N elements and each element carries the value of the
nondimensional product concentration, C. The ensemble average

concentration at the jth node, <C>; , is

I 8 z n 2.9
<C> - g (2.9)

(N



where C? is the concentration of the nth element. The boundary

conditions for the grid are

<C>l =1.0 (2.10)
and
0>y = 0.0 . (2.11)

The scalar fluctutation from the mean, C' , is

/ 2
C_“j =/ <C' >j (2.12)

where

N : |
2 i
2 12(c“-<0>) 2.13)
Ci‘ ). = -— ) 3 - (o
< 3 anl h| ]

The pdf, P( ¥ ), at a chosen grid node can be determined
by creating a histogram of P( {¥ ) versus ¢ from the known
scalar values In the ensemble. 1f @, represents a random

scalar variable, then the probability distribution function,

FC Y ), is

F(P) = Probl ¢ <V l (2.14)
and
_ dF(¥)
P(Y) = Tag - (2.15)

If Y, and d’b are two independent scalar variables and

wb <lfla , then

22



Prob qbb< ¢r< :,ba

- -

= F(¥) - F(P),  (2.16)

This equation can be applied to form the histogram of P( ¥ ).
The X—-axis of the histogram is ‘divided into K divisions of

A Y width. Equation (2.16) now becomes

Prob,.pb< @< Yy tAV| = F(P +AY) - F( ). (2.17)

AsAgb approaches zero, the histogram approaches the true shape
of the pdf. For each value of C in a given ensemble, the

corresponding block in the histogram, K , is determined using
k" = ¢ . (2.18)

The pdf is found by normalizing the number of elements in ~each
block with the total number of elements, N. Therefore, F(Y¥ )
varies between zero and unity and the pdf of a fully burned

mixture (KC> =1.0) is a Dirac delta function at e &

The ensembles are modifi'ed at each time step in order to
simulate the four processes "governing the evolution of P( ¥ ):
convection, reaction, diffusion, and mixing. The convection
process 1is ignored since the coordinate system is chosen so

that the mean velocity is zero.

With At' being the normalized time step,then the number
of pairs from each ensemble involved in the mixing process at

each step, N , and the number of elements involved in the

23



‘diffusion process, N, , are

1 * *
Nm =35 Nw At (2.19)

snd
N, = F1ACN/ (AXH? (2.20)

Mixing occurs by choosing two different elements within an
-enisemble at random and allowing the elements to mix completely
8¢ that they reach a mean scalar concentration. Both elements
ate assigned a new scalar concentration equal to the average of
the two prior to mixing. This process is repeated N, times for

‘pch ensemble at each time step.

Diffusion 1is simulated by selecting two sets of
Ng elements at random from each ensemble and commuting one set
furwards (from node j to node j+l) and the other set backwards
{from node j to node j~1). This process is repeated for each
gcid node and the boundary conditions are applied so that there

iz no loss of elements in each ensemble.

Reaction 1is simulated deterministically from Equation
{1.13):

dC *
—“t* = 5 (C), (2.21)

(=N

.Eguation (2.21) can be rewritten as

*
dt (€) 1
= (2.22)
dc "1 e)

24



where t®(C) is the nondimensional time associated with C.
Since C" at time t®(C") is known, C"at time t®(C" )+ At} , where
A I: is the time elapsed since the element last reacted, can
be found by integrating equation (2.22) with respect to C using
a fourth-order Runge-Kutta scheme. It would be computationally
inefficient to perform this integration for every element at
each time step. Therefore, the results of the integration
scheme are tabulated and the reaction process is updated only
when needed (e.g. when mixing occurs or pdf calculations are
performed.) For a given value of C", the table is searched,
using linear interpdlation, for a corresponding t*(C"). The
new concentration after reaction, C® , is found by locating the

corresponding value of C* for t®(C®) which is determined by

*c*y = ™ + AL, (2.23)

Actually, At® for the mixing and diffusion processes are
not the same. The At® for each process is chosen so that not
more than 10%Z of the elements from each ensemble are involved

in the process at a given time. Therefore, from Equations

(2.19) and (2.20),

* *
At = Nm/(%' Nw ) (2.24)

and

* . % 2 *
Aty = N, (AX)AC ¥) (2.25)

25



where

N, = (0.05)N (2.26)

and

N, = .
d (0.1) N (2.27)

and At;and At:are the time steps for the mixing and diffusion

processes, respectively.

The flame thickness 1s measured according to Equation
(1.8) with 1: replacing .e; . The location of <C(X;_9 )> and
<C(X;_])> are determined using linear interpolatiom. The
normalized turbulent flame speed, which is defined as

St

s¥ = L | (2.28)
T ’ \
u

is determined by calculating the speed of the flame at X; 5 *
The velocity of the reference frame is known and, therefore,
the flame speed is the velocity of the reference frame

(velocity of the grid) plus the velocity of the flame with

respect to the grid.
Moment Model

The moment model solves the scalar transport equation

~

ac 3 ) ,
3t axi(UiC) s + vpc (2.29)

26



27
for <C> and <C'2? > where

C = <C> + (!

(2.30)
and
U, = <U;> 4 ui {2.31)
By taking the mean of Equation (2.29)
a;? +gxi <U; C>=<5(C)> +VV2<C> (2.32)

and subtracting (2.32) from (2.29) a transport equation for C'

is obtained:

g: aax [U‘<C>+UC'-<U'C>]-S(C)

- <5(C)> +ppic’ (2.33)

To derive the one—dimensional transport equation for «'? >
Equation (2.33) is multiplied by 2C' and the mean of the

resulting equation is

2 2 2 3<c>
g;g' > . <U>,3_aSC__ - -§X—<U' c%> - 2<U.C'> S5 3K, (2.36)
2 12 ac' oct
+2<C's(C)> + PV <c't> - < X, 3%, ~

Turbulent transport is modeled by gradient diffusion:

r a<ce>
' ' = —
<Ui o' T

35X (2.35)

-

and



2
L]
<y c'?> = ]}%—- (2.36)
and the scalar dissipation is modeled by
2p<@ 3> 2 w<er?s, (2.37)

BX. BX

Since the flame 1s assumed to be statistically one dimensional,
derivatives with respect to X2 and Xs are zero and the equation
can be written in terms of Xl s, or X. Therefore, equation

(2.34) becomes

2 2
Sk d<c'S R ILE -3 s, 2 [ (3552)

=

2
+ 2<C'S(C)> -w<C' > (2.38)

where @ and [; are defined in Equations (2.3) and (2.4).
This model assumes a Taylor expansion of <S(C)> up to and

including second order terms:

2 .2
<S(C)> = SC>) + 2 S(<g>) “2::) (2.39)
ac
and
<C'S(C)> = _3_5?%9& «<'® . (2.40)

Therefore, the transport equations for <C> and <C'2 > are

Jd~=C> 3<C> .9 a<C>
ot TSPRx T ax frax *SECY
;2
a S(<C>) <C'™>
5 = (2.41)

ac
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and

a<C'2> +<U>‘ B<C'2> -° r -a<C'2> + 21; 9<C> 3<(C>

ot X 3X . T ax 3X 3X
+ 2____asa(zc>)_ <c'? -—w<c'? . (2.42)

These equations can be normalized by.ee and u'. Defining

*

X = X/&, {2.53)
¥ = <u>/u’ (2.44)
ef = (u' Lt (2.45)

%*

s (c) = (£ /u')s(C)
¢ € (2.46)

and using the definitions in Equations (2.5) and (2.6) for

. :
]'; and w®* the normalized equations for <C> and <C'2 > can be

written as

C

*
3<C: +<US a<§> .M - a«:i + S (<C>)
dt dx Oy Odx . dX
2 _* 2
+ 98 (<€) <g: > (2.47)
dc €
and
3<c'?> b Eih a<c'2> Cu 3 a<c'®> +f£a<c> 3<C>
- =% = x % * o
at X % 23X ax o, 3x" X
3s (< c>) 2 2
88 (£C>) ' - ' 2.48
+ 2 3¢ <C'> C¢<C > ( )

where <U* > is the mean flame speed.



These equations are solved for <C> and <C' 2> using the
finite difference technique described in Appendix A. The
finite difference grid is similar to the grid described for the
Monte Carlo model. Each node has a value of<C> and <C'%>
associated with it and the flame thickness is defined by

Equation (1.8).
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CHAPTER 3

In this chapter, calculations based on the two models
described in Chapter 2 are reported. The calculations are for
a Reynolds number of 10% and for a range of Damkohler numbers.
The results reported include turbulent flame speeds,

thicknesses and profiles of <C> and <C'2> i

From Damkohler's theory, it has been shown in Chapter 1
(see Equations (1.29) and (1.30)) that the turbulent flame

speed and thickness are

S

= T _ 1/2 % .
¢ (L, +1/R)™" 5, (3.1)
and
* ET ) 1/2 ) *
Ly = 7. = (CCut 1UR/Q) L. (3.2)
€

These theoretical values of flame speed and thickness, denoted
by (S:)D and (‘g:)n, are compared to the calculations from the

Monte Carlo and moment models.

The moment model reduces to the Damkohler theory as
Q approaches zero. Therefore, values of flame speed, (S?%“,
and flame thickness,(ﬂt%n, calculated from the moment model

approach (S;)Dand (f’;)nas the Damkohler number decreases. For

small Damkohler numbers, calculated values of (S:%“and ) %ﬂcan
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*
be used to determine S; and,ﬂl from Equations (3.1) and (3.2).
Figures 9 and 10 show plots of flame speed and flame thickness
calculated from the moment model. For Damkohler numbers of

0.01 and 1less, S:and,gt are determined to be 0.768 and 4.78,

respectively. As 1in previous chapters, these values of S:and

,Z;are used in all subsequent calculations. Figure 11 shows
the ratios of (S:}“/(S:?Dand (ﬂ:%“/(fr)nas a function of Q .
These ratios are calculated using Equations (3.1) and (3.2) and
the results from Figures 9 and 10. The moment model departs
from the Damkohler theory for Damkohler numbers greater than
0.1 and the model fails to reach the convergence criterion

described in Appendix A for values of  greater than 0.165.

The moment model assumes small fluctuations of C about the

mean (i.e. c'?> <« 1.0). Figure 12 shows a plot of the

1/2

maximum value of <C'2>’%, or C!

ot axs versus £ . As

Q increases, C!  increases. Since C' is nonzero and the
reaction rate (see Equation (1.13)) is highly nonlinear, the
assumption of small fluctuations of C about the mean is not
valid for large Damkohler numbers. Figure 13 shows contours of
the reaction rate S*(<XC>) and
32 s"(<cy) <
aCZ 21

versus <C> for $£2=0.165. The second derivative term is much

larger than S®™(<C>) for small values of <C>. This region of
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the flame is characterized by small changes in <C> and is the
preheat zone. Chemical reaction is limited by the growth of

this zone.

Figures 14 and 15 show the results of calculations from

the Monte Carlo model of flame speed, (S:) and flame

mc’?
thickness, ( l:)Mc, as a function of the Damkohler number. The
figures shows the mean values of (S:)Mc and (ﬂ:)Mc(indicated by
dark squares) with plus and minus one standard deviation
(indicated by the circles and triangles ). The standard

deviation ¢ of (Sn\«c is calculated from the values of

ST obtained in M independent trials,

M

1 = 2 % 1
= (_M_é [(Sphye] = = <(ST)MC)2 ) R (3.3)

where ((S*)

e )i is the value of the ith trial. For a given

value of Q , the flame speed and flame thickness are

calculated M times so that the standard error is

error = _— . = (3.4)

vm

For the calculations shown in Figures 14 and 15, N is 25.
Therefore, the 1likely error of (S:%cis one fifth of - the

standard deviation.

For simplicity, these results are redrawn in Figure 16 and

17 using only the mean values. Figure 16 also shows the
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curves of flame speed and flame thickness obtained from the
Damkohler theory and laminar flame theory (Equations (l.11) and
(1.12)). Figure 17 shows values of l: from the Damkohler
theory and calculated values of (l ?;AGFOI' a Reynolds number of

10 ¢ » the laminar flame thickness is of the order one millionth

and is not shown in Figure l7. The Monte Carlo model departs

from the Damkohler theory for values of the Damkohler mnumber
= e * 'l
greater than O0O.l. Below £=0.1, (ST}Mc and (ﬂT)Mcare within
. ® ] L
one standard deviation of (ST)D and (IT)D n Both (ST%AC and
(l: %A " depart from the Damkohler theory and approach horizontal
asymptotes as £ 1increases. These asymptotes are

characteristic of Reglons I and II of Figure 6 which is

described in Chapter 1.7 According to Figure 8, - (S;%Ac should

depart from the Damkohler theory and tend to a horizontal
asymptote as £ increases. As may be seen in Figure 16,
(S;%ﬁc does reach such an asymptote but not until =10%. This
result can be explained by examining the pdf's of C for a range

of Damkohler numbers.

Figure 18 shows the calculated pdf's of C at five
different grid locations for a Damkohler number of 10.0. The
mean concentration of C at each grid location is indicated by
an arrow. For <C>=0.5, the magnitude of a spike at Y =1.0
represents the probability of fully burnt fluid at XJ;. As <C>

increases, the probability of fluid with a concentration of 1.0
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increases. Figure 19 shows the pdf's at Xaﬁfor five different
Damkohler numbers. In the 1limit of zero Damkohler number,
there are no fluctuations and so the pdf is a Dirac delta
function at <C>. For the smallest Damkohler number shown,
£ =0.05, the pdf is a bimodal distribution. As Q approaches
zero, the shape of the pdf will approach a delta function at
<C>=0.5. As £ increases the pdf changes from the bimodal
distribution to two spikes located at l[)=0.0, and ¥ =1.0.
This change is due to the increase in the chemical reaction
rate. As the reaction rate increases, the probability of fully
burnt fluid increases. Also, the probability of intermediate
values of C (in the range 0.0< Y¥<1.0) decreases. Since a
fluid with a concentration of 0.0 cannot react (i.e. S$°(0.0)=
0.0), reaction does not occur until after the mixing process
begins. As suggested by Figure 19, once fluid reaches a
certain value of C, say C', complete reaction occurs almost
ins;antaneously. Therefore, the probability of fluid with a
concentration in the range C'<1,b <1.0 1is very small. This
value of C° is dependent on £ and, as increases,
C®decreases. For 1larger values of Q , although the chemical
reaction is very fast, the Monte Carlo model is mixing limited

since reaction does not occur until after mixing.

The Monte Carlo model assumes the steepest scalar

gradients are due to scalar dissipation caused by turbulent
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straining. This assumption is invalid when laminar flamlets
give rise to even steeper scalar gradients. Therefore, the
Monte Carlo model does not apply in the laminar flame region of
the R~ plane and the calculated flame speeds and flame

thicknesses do not match SE and ﬂ; from laminar flame theory.

Figures 20,21, and 22 compare the results of the moment
model to the Monte Carlo model. Although it would have been
desirable to have more data points in Figures 20 and 21,
conclusions can be drawn from the data shown. In Figure 20,
the ratios of (S;;)MCI(S{)Dand (SE)M/(SE)D are plotted in terms
of Q . | Both models depart from the Damkohler theory for
Damkohler numbers greater than 0.1, but the moment model
predicts a greater value of SE than the Damkohler theory while
the Monte Carlo model predicts a smaller value of SrT. In

'Figure 21, the ratios of (ﬁ)mc/(f;:)n and (l;)ml(f'f)oare
plotted in terms of . For Damkohler numbers greater than
0.1, the Monte Carlo model predicts a larger flame thickness
than the Damkohler theory and the moment model predicts a

smaller flame thickness.

Figure 22 shows maximum values of C' versus £ for the
Monte Carlo model and the moment model. For Damkohler numbers

larger than 0.1, value of C!_ calculated from the moment model

max

are larger than the values of C_,, calculated from the Monte
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Carlo model. Due to these larger values of q;ﬂx, the moment
model predicts larger values of S;than the Monte Carlo model.

The value of C! according to the Monte Carlo method

max
approaches an asymptotic value of 0.5 as §2 tends to infinity.
This is the maximum possible value, . corresponding to a double

delta function distributioh.

The results of the moment model need more explanation. In
the 1limit of zero Damkohler number, the moment model assumes a
pdf of a Dirac delta function at <C>. Even for a Damkohler
number of 0.05, the pdf calculated from the Monte Carlo model
(see Figure 19) is a bimodal distribution. Therefore, this

assumption is incorrect and the moment model is invalid.
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CONCLUSIONS

Through dimensional analysis, two indepenent,
dimensionless parameters are defined. These parameters are the
Reynolds number, R, and the Damkohler number, £ . Any point
on the R= plane correpsonds to a set of operating conditions
for a turbul?nt flame. Three different regimes of combustion
on the R-{ plane are defined: the Damkohler theory regime
where Damkohler's theory is applicable, the regime where the
turbulent flame speed and thickness are independent of R and

Q , and the laminar flame regime.

Two different models are used to predict turbulent Fflame
speeds and thicknesses fof a range of Damkohler numbers. Both
models are independent of Reynolds number. The first model,
the moment model, solves the scalar transport equation and
assumes small fluctuations of C about the mean. The moment
model fails because it assumes a pdf of a Dirac delta function

at <C>. As explained in Chapter 3, this assumption is invalid.

The second model uses a Monte Carlo method to solve the
pdf equation of C. It assumes the steepest scalar gradients
are due to scalar dissipation caused by turhulent straining.
For small wvalues of £, the results of the Monte Carlo model

match those of the Damkohler theory. For Damkohler numbers
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greater than 0.1, the Monte Carlo model departs from the
Damkoﬁler theory and reaches an asymptote where the flame speed
and flame thickness are independent of R and 2 . For the
laminar flame regime, the results of the Monte Carlo model do
not match the values of flame speed and flame thickness
obtained from laminar flame theory. This is because laminar
flamelets cause steeper scalar gradients than assumed by
gradient diffusion. From the pdf's calculated by the Monte

Carlo model, it is shown that the model is mixing limited.
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Appendix A

A finite difference scheme is used to solve Equations
(2.47) and (2.48), The following equations list some of the

terms found in (2.47) and (2.48)and their finite difference

expressions.

n
<C> <C.> - <C >
) J j (Al)

* *
ot At
n
where <Cj > is the scalar concentration at node j and the

current time, n.

ol n
<c> £y ~ £ >
0 C . J> i cj_l (a2)
o0Xx 4x
The term <C" > can be simplified as <C_j> with the n being
i
understood.
2 - - >
d°<c> | SCy4p> - 24, Ci g (a3)
ax*z AX*Z
2 2l n-1
a<c>|? _ |1[f<Cy4r>-<c> Y AL <cj_li)
& N 5
ax 2 Ax* 2 ax*
2 v 2
* n-1
* 9SS (<C; 7>
95 (<c>) <c'? = J <c!'? (46)
ocC aC | 3
2 * -1 2
32s* (can) <c' 2> d°s (<c? >) <c!>

(A7)

dc? g1 302 21
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From these expressions, Equations (2.45) and (2.46) can be

written in the form

I 1>

X =238 (A8)

where X is a column vector of the form

i 2
X = [<Cl>’<ci >”'°’<Cj>’<03 >,0005<C > y<C! ] (49)

and A 1s a block tri-diagonal matrix composed of 2 x 2

matrices.

Therefore, Equations (2.47) and (2.48) can be solved
simultaneously for <C j> and (C!?>,j=1,...,J using a Gaussian
elimination routine which solves Equation (A8) for X. Initial

2
conditions for <C j> and <C'j>“are assumed and the criterion

-3
for convergence is Error <10 “where

J
Error = z j " A. X ) (AL0)
i=1



Appendix B
This appendix contains the software listings of the computer
programs used in this project. The following programs are
listed:
Monte Carle Model..sssessseseomens vonvae snues s sones ves s sasa 08
Moment modeleeceeeecsccesscesacnsesassscessscosascnoccoscenol?
Matrix inversion routin@.essesscsssesssesscsnssosassenessensS3

Runge—Kutta integration Scheme----ooouooooctv-ouoooooe----0090
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MONTE CARLO MODEL

THIS PROGRAM USES THE MONTE CARLO METHOD TO PREDICT
FLAME SPEED AND FLAME THICKNESS OF A PREMIXED TURBULENT

FLAME

USAGE

INPUT FILE CONTAINING VALUE OF DAMKOHLER NUMBER
SUBROUTINE RXN

DESCRIPTION OF PARAMETERS

A-

C—-

DAMK~-
DELT-
DELX~-
DTIDIF-
DTMIX-
F—

FAVG—-
FDIFF~-

FLUCT-
FREQ-

FSPEED-
INIT-

NDIFST-
ND-
NEL-
NGRID-
NJ-
m—
NMIXST-
NOSHIF-
NV-
POUT-
Pl
P2
RAN-
SD1-
SD2-
SPBAR-
T-
TAU-

2 X NCOUNT MATRIX USED TO CALCULATE

STANDARD DEVIATION OF FLAME THICKNESS

AND FLAME SPEED
SCALAR CONCENTRATION OF CURRENT ELEMENT-

WHICH IS TRANSFERED TO SUBROUTINE RXN

DAMKOHLER NUMBER :

TIME ELAPSED SINCE CURRENT ELEMENT LAST REACTED
NONDIMESIONAL DISTANCE BETWEEM GRID NODES
CHARACTERISTIC TIME STEP FOR DIFFUSION PROCESS
CHARACTERISTIC TIME STEP FOR MIXING PROCESS
ARRAY DIMENSIONED F(NV,NEL,NJ) WHICH

CONTAINS INFORMATION ABOUT C AND T
MEAN CONCENTRATION AT EACH NODE
A CHECK WHICH SHOULD BE POSITIVE IF THE

FLUCTUATIONS ARE CORRECT
FLUCTUTATION FROM THE MEAN AT EACH NODE
THE FREQUENCY WITH WHICH THE PDF

CALCULATIONS ARE PERFORMED
INSTANTANEOUS FLAME SPEED
TRANSFERED TO SUBROUTINE RXN SO THAT INPUT

FILE INTE.DAT IS READ ONCE
NUMBER OF DIFFUSION STEPS PERFORMED
NUMBER OF ELEMENTS COMMUTED DURING DIFFUSION
NUMBER OF ELEMENTS IN EACH ENSEMBLE
NUMBER OF BLOCKS IN PDF HISTOGRAM
NUMBER OF GRID NODES, OR ENSEMBLES
NUMBER OF PAIRS MIXED DURING EACH TIME STEP
NUMBER OF MIXING STEPS PERFORMED

NUMBER OF CONVECTION SHIFTS
NUMBER OF SPECIES

ARRAY USED TO DETERMINE PDF
ARRAY USED TO DETERMINE PDF
ARRAY USED TO DETERMINE PDF
SYSTEM RANDOM NUMBER GENERATOR

STANDARD DEVIATION OF TBAR
STANDARD DEVIATION OF SPBAR

MEAN FLAME SPEED
TIME
INVERSE OF THE DAMKOHLER NUMBER, OR THE CHEMICAL

REACTION TIME



TBAR- MEAN FLAME THICKNESS

TFINAL- FINAL TIME VALUE

THICK=- INSTANTANEOUS FLAME THICKNESS
TSS- PREDICTED VALUE OF T AT STEADY-STATE
XI.- NONDIMENSIONAL LENGTH OF THE GRID

+»NyResNeNeNeNe Nl

2 NeNeNoNeNe]

2N EeE2NT]

a0

OO0

e NeoNesNe]

PARAMETER NV=2,NEL=200,NJ=51,NGRID=41
VIRTUAL F(NV,NEL,NJ),A(2,200)

DIMENSION FAVG(NJ),FLUCT(NJ),FDIFF (NJ)
DIMENSION P1(NGRID),P2(NGRID),POUT(9,NGRID)
COMMON /ILIST/INIT,C,DELT

SET INITIAL VALUES

DATA T/0./

DATA NMIXST,NDIFST,NOSHIF,NCOUNT,IPDF,INLT/6%0/

OPEN (UNIT=4,NAME="MONTE .DAT ' ,FORM="FORMATTED ' ,TYPE="OLD"',
& READONLY)

READ (4, * )DAMK

CLOSE (UNIT=4)

TAU=1. /DAMK

TSTART=SECNDS (0. )

FREQ=.1

TSS=100, .

TFINAL=625. * (NGRID - 1)/FLOAT(NEL) * FREQ + TSS

IY=INT(SECNDS (0.0)/60. )

CALL IDATE (L,M,N)
THE ABOVE LINES SUPPLY THE SEEDS FOR THE RANDOM NUMBER
GENERATOR

NM=NEL#*,05
ND=NEL * .1

DELX=,2/(DAMK**,5)

XL=DELX * (NJ-1)

DTDIF=ND * DELX ** 2/(FLOAT(NEL) * .129)
DTMIX= NM/(FLOAT(NEL) * 2,)

INITIALIZE POUT ARRAY
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DO 111 J=1,NGRID
DO 111 I=1,9
111  POUT(I,J)=0,

oo NeoNe!

OPEN (UNIT=4 ,NAME="MONTE.OUT' ,FORM="FORMATTED ' , TYPE="NEW')
OPEN (UNIT=2,NAME ="MONTE.TMP ' , FORM="'FORMATTED ' ,TYPE="NEW ")
CLOSE (UNIT=2)
WRITE (4, 995)TAU, DAMK
995  FORMAT(IX, 'THE RXN RATE IS ',E10.3,/IX,
&' DAMK. = ',E10.3)

WRITE (4,99)
99 FORMAT (1X, 'THIS PROGRAM UTILIZES THE CURL MIXING MODEL
& WITH REALISTIC RXN RATE')
WRITE (4, *)IY,M
C INITIALIZE
C ASSUME STEP FUNCTION FOR INITIAL CONDITIONS
NJ2=NJ /2
NEW=NJ2 - 1
NEW1=NEW + 1
c
3 DO 11 J=1,NEW
DO 11 I=1,NEL
F(2,I,7)=0.
11 F(1,1,J)=1.

DO 1000 J=NEWl,NJ

DO 1000 I=I1,NEL

DO 1000 N=1,NV
1000 F(N,I,J)=0.0

XOLD=(NEW1+NEW)/2.
4 WRITE (4,2 )DELX
2 FORMAT (1X, ' DELX = ',F10.4)
WRITE (4,1)XL,NJ,NEL
1 FORMAT (1X, ' LENGTH IS ',F10.4,1X,'NJ IS',I4,

& 1X,'NEL IS',I4)
WRITE (4,5000)DTDIF,DTMIX
5000  FORMAT(1X, 'DTDIF IS',F10.4,1X,'DTMIX IS',1X,F10.4)
c
c
SHOLD=0.
TOLD=0.

CALL ROUTINES TO SIMULATE RXN,MIXING,DIFFUSION AND
CONVECTION,DEPENDING ON CHRONOLOGICAL ORDER

" EeNesNsNesNeoNesNe!

IF(((T+DTDIF) .GT. TFINAL) .AND.

& ((T+DTMIX) .GT. TFINAL))GOTO 999
TMIX= (NMIXST + 1) * DTMIX
TDIF=(NDIFST + 1) * DIDIF
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IF((TDIF .NE. TMIX) .AND. (TDIF .LT. TMIX)) GOTO 6
NMIXST=NMIXST + 1
T=TMIX

THIS ROUTINE SIMULATES MIXING BY SELECTING NM
PAIRS OF ELEMENTS AT EACH NODE AT RANDOM AND
REPLACING THEIR CONC. VALUES BY THE

AVERAGE CONCENTRATIONS

DO 6010 J=1,NJ
DO 6010 I=1,NM
I1=INT(NEL * RAN(IY,M)) + 1
I2=INT(NEL * RAN(IY,M)) + 1
C=F(1,I1,J)
DELT=(T - F(2,I1,J))/TAU

CALL SUBROUTINE TO PERFORM REACTION PROCESS
SUBROUTINE MUST BE CALLED FOR EACH ELEMENT

CALL RXN
F(1,11,J)=C

F(2,11,J)=T

Cc=F(1,12,J)

DELT=(T - F(2,12,J))/TAU

CALL RXN

F(1,I2,J)=C

F(2,12,J)=T L .
F(1,11,J)=.5 * (F(1,I1,J) + F(1,12,J))

6010 - F(1,12,J)=F(1,I1,J)

[eReNeoNsReNeNeNeNeNe] (=)

OO0

IF((TDIF - TMIX) .GT. .00001) GOTO 13
NDIFST=NDIFST + 1
T=TDIF

THIS ROUTINE SIMULATES DIFFUSION BY COMMUTING ND
ELEMENTS CHOSEN AT RANDOM FIRST IN THE FORWARD
DIRECTION THAN IN THE REVERSE DIRECTION.(FORWARD
WAS CHOSEN AS BEING IN THE POSITIVE X-DIRECTION,
FROM BURNT TO UNBURNT)

ND2=ND*2

SELECT 2 SETS OF ND ELEMENTS AT RANDOM AND PLACE AT TOP
COORDINATES OF ELEMENT ARRAY

DO 7020 J=1,NJ
DO 7020 I=1,ND2
ITOP=NEL - I + 1
I1=INT (ITOP*RAN(IY,M)) + 1

69



DO 7020 NSPEC=I1,NV
STORE=F (NSPEC,I1,J)
F(NSPEC,I1,J)=F (NSPEC,ITOP,J)
F (NSPEC, ITOP,J )=STORE
7020  CONTINUE
c
C FORWARD DIFFUSION
C COMMUTE ND ELEMENTS AT TOP OF ELEMENT ARRAY FROM
C NODE I TO NODE (I + 1)
c
NJ1=NJ - 1
DO 7030 N=1,ND
NUMEL=NEL - N + 1
DO 7030 I=1,NJ1 -
NODEB=NJ - I
NODEF= NODEB + 1
DO 7030 NSPEC=1,NV
7030  F(NSPEC,NUMEL,NODEF )=F (NSPEC ,NUMEL , NODEB )
c
C SET CONCENTRATION OF ELEMENTS AT FIRST NODE TO THAT OF B.C.'S
c
NBEG=NEL - ND + 1
DO 7040 J=NBEG,NEL

F(2,J,1)=T
7040 F(1,J,1)= 1.0
c
C BACKWARD DIFFUSION (FROM UNBURNT TO BURNT)
C )

DO 7050 N=1,ND
NUMEL= NEL - ND - N + 1
DO 7050 I=NJ1,1,-1
NODEB=NJ - I
NODEF= NODEB + 1
DO 7050 NSPEC=l,NV
7050  F(NSPEC,NUMEL,NODEB )=F (NSPEC ,NUMEL , NODEF )
C

C SET CONCENTRATION ON ELEMENTS AT LAST NODE TO THAT OF B.C.'S.
c

c
NBEG1=NEL - ND2 + 1
NEND = NEL - ND
DO 7060 J=NBEGI,NEND

F(2,J,NJ)=T

7060 F(1,J,NJ)=0.0

7010  CONTINUE

c

g

C CHECK ON WHETHER CONVECTION CORRECTION IS NECCESSARY
C ( IF AVG CONC. OF ELEMENTS AT NODE NJ2 HAS REACHED 0.5)
c
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13 SuM=0,
DO 7 I=1,NEL
c=F(1,I,NEWl)
DELT=(T - F(2,I,NEW1))/TAU
CALL RXN
F(1,I,NEWl)=C
F(2,I,NEW1)=T
7 SUM=SUM + C
AVG=SUM/FLOAT (NEL)
IF(AVG .LT. .5) GOTO 50
NOSHIF=NOSHIF + 1

aAaoan

C THIS ROUTINE SIMULATES THE CONVECTION PROCESS BY MOVING
C THE ELEMENTS AT NODE 1 TO THE LAST NODAL COORDINATE AND
C SHIFTING ALL OF THE VALUES OF THE ELEMENTS ACCORDINGLY
c
DO 8010 J=2,NJ
NJ1=J - 1
DO 8010 I=1,NEL
DO 8010 NSPEC=1,NV
F(NSPEC,I,NJ1)=F(NSPEC,I,J)
8010  CONTINUE |
DO 8020 I=1,NEL

F(2,I,NJ)=T
8020 F(1,I,NJ)=0.0
c
c -
C DETERMINE PDF AT EVERY .l TIME STEP
c
50 IF((MOD(T,FREQ) .GT. .0001) .OR. (T .LT. TSS)) GOTO 5
c :
C UPDATE RXN PROCESS OF ALL ELEMENTS
C
DO 9010 J=1,NJ
DO 9010 I=1,NEL

C=F(1,1,J)

DELT=(T - F(2,I,J))/TAU

CALL RXN

F(1,1,J)=C

F(2,1,J)=T
9010 CONTINUE
G
c
C DETERMINE MEAN CONCENTRATION AT EACH NODE
C

DO 200 J=1,NJ
SUM=0.
DO 100 I=1,NEL
SUM=SUM + F(1,1,J)
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100 CONTINUE
200 - FAVG(J)=SUM/FLOAT(NEL)
C

IX=1

AMEAN=.9

601 DO 602 J=IX,NJ
IF(FAVG(J) .GT. AMEAN) IX1l=J
IF(FAVG(J) .LT. AMEAN) GOTO 603
602 CONTINUE
603 IX2=J
IX=IX2 + 1
DO 605 N=1,NGRID
P1(N)=0.
605 P2(N)=0,
DO 606 I=1,NEL
JBOX1=NINT(F(1,I,IX1) * (NGRID - 1) + 1.)
JBOX2=NINT(F(1,I,IX2) * (NGRID - 1) + 1.)
-P1(JROX1)=P1(JBOX1) + 1.
606 P2(JBOX2)=P2(JBOX2) + 1.
WIl=1 - (FAVG(IX1) - AMEAN)/(FAVG(IX1l) - FAVG(IX2))
WT2=1 + (FAVG(IX2) - AMEAN)/(FAVG(IX1) - FAVG(IX2))
MEAN=NINT(AMEAN * 10.)
DO 607 J=1,NGRID
607 POUT (MEAN,J)=POUT (MEAN,J) +P1(J) *WT1 + P2(J) * WT2
AMEAN=AMEAN - .1
IF (AMEAN .GT. .01) GOTO 601

c
IPDF=IPDF + 1
444 IF((MOD(T,.5) .GT. .0001) .OR. (T .LT. TSS)) GOTO 5

THIS ROUTINE DOES THE CALCULATIONS TO PRODUCE THE
OUTPUT FILE

CALCULATE FLAME THICKNESS AS NODE WHERE AVG CONC. IS .9 TO
WHERE AVG. CONC. IS .1
FIND X COORDINATE WHERE CONC. IS .5 TO DETERMINE FLAME SPEED

Oaoaoaooaoo0a0aoaoo0n0n

DO 222 J=1,NJ
IF (FAVG(J) .GT. .9) IXl=J
IF( FAVG(J) .LT. .9) GOTO 201
222 CONTINUE
201 IX2=J
XLL=(.9 = FAVG(IX1l)) * (IX2 - IX1)/(FAVG(IX2)-FAVG(IX1))
& + IX1
IXNEW=IX2 + 1



DO 202 J=IXNEW,NJ
IF(FAVG(J) .GT. .5) IXl=J
IF(FAVG(J) .LT. .5)GOTO 204
202 CONTINUE
204 IX2=J
XPT5=(.5 = FAVG(IX1)) * (IX2 - IX1)/(FAVG(IX2)
& = FAVG(IX1)) + IX1
IXNEW=IX2 + 1
DO 300 J=IXNEW,NJ
IF (FAVG(J) .GT. .l1) IXl1=J
IF(FAVG(J) .LT. .1) GoTO 301
300 CONTINUE
301 IX2=J
XR=(.1 = FAVG(IX1)) * (IX2- IX1)/(FAVG(IX2)
& = FAVG(IX1)) + IX1
C
c
C CALCULATE FLAME THICKNESS
c
THICK=(XR - XLL) * DELX
WRITE(4,223) THICK,XLL,XR
223 FORMAT (1X, "FLAME THICKNESS IS ',E12.4,1X,
& 'COORDS ARE ',F10.4,F10.4)
&
C CALCULATE FLAME SPEED
C
DELSH=NOSHIF - SHOLD
FSPEED=(XPT5 - XOLD + DELSH) * DELX/(T -~ TOLD)
OPEN (UNIT=2,NAME="'MONTE.TMP ' ,FORM="FORMATTED',
&TYPE='OLD',SHARED,ACCESS='APPEND"')
WRITE(2, *)THICK,FSPEED
CLOSE (UNIT=2)
XOLD=XPT5
TOLD=T
SHOLD=NOSHIF
WRITE (4,224 )FSPEED,T
224 FORMAT (1X, 'FLAME SPEED IS ',F10.4,1X,' TIME IS ',F10.4)
NCOUNT=NCOUNT + 1

A(1,NCOUNT )=THICK

A(2,NCOUNT )=FSPEED
c
C CALCULATE THE FLUCTUATION FROM THE MEAN
c
996 DO 500 J=1,NJ

SUM= 0.0

DO 700 I=1,NEL

700 SUM= SUM + (F(1,I,J) = FAVG(J))**2

FLUCT (J )=(SUM/FLOAT (NEL) )**, 5
500  CONTINUE
DO 600 J=1,NJ
600  FDIFF(J)=(FAVG(J) * (l. — FAVG(J)))**,5 —FLUCT(J) :
WRITE(4,1002) :
1002  FORMAT(' F AVERAGE',2X, 'FLUCTUATIONS',2X, 'FLUC. CHECK')
DO 1003 J=1,NJ
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1003  WRITE(4,1001)FAVG(J),FLUCT(J),FDIFF(J)
1001 FORMAT(1X,F10.4,2X,F10.4,2X,F10.4)
GOTO 5
999 WRITE(4,2000) NDIFST,NMIXST,NOSHIF
2000 FORMAT(' NDIFST IS',I5,' NMIXST IS ',
& I5,1X,',NOSHIF IS ',I5)
AVG=IPDF * NEL
DO 888 J=9,1,-1
AMEAN=J /10,
WRITE (4,891 )AMEAN
891 FORMAT(1X,' AVG. CONC. IS ',F8.1)
892 DO 894 I=1,NGRID
894 POUT (J,I)=POUT(J,I)/AVG
WRITE (4,893)(POUT(J,I),I=1,NGRID)
893 FORMAT (1X,10F12.4)
888 CONTINUE

c
c
C CALCULATE MEAN
C
SUM1=0.
SuM2=0,

DO 991 J=1,NCOUNT
SUM1=SUML + A(1,J)
991 SUM2=SUM2 + A(2,J)
TBAR=SUM1 /FLOAT (NCOUNT)
SPBAR=SUM2 /FLOAT (NCOUNT)

C
C CALCULATE STANDARD DEVIATION
c

SuM1=0,

SUM2=0,

DO 992 J=1,NCOUNT
SUMI=SUM1 + A(l,J)**2
992 SUM2=SUM2 + A(2,J)**2
SD1=SQRT ((SUM1 — NCOUNT * TBAR**2)/FLOAT (NCOUNT-1))
SD2=SQRT ((SUM2 - NCOUNT * SPBAR**2)/FLOAT (NCOUNT - 1))
WRITE (4,997 )TBAR,SD1,SPBAR,SD2
997 FORMAT (1X, '"MEAN FLAME THICKNESS IS ',F10.4,
&',ST.DEV. IS ',F10.4/',MEAN FLAME SPEED IS ',F10.4,
&',ST.DEV. IS ',F10.4)
TT=(SECNDS (0. )-TSTART)/60.
WRITE (4, *)TT
CLOSE (UNIT=4)
STOP
END
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SUBROUTINE RXN

THIS SUBROUTINE SIMULATES THE MIXING BY INTERPOLATING
VALUES OBTAINED FROM THE INTEGRATION SCHEME, RUNGE

USAGE
CALL RXN

COMMON/ILIST/INIT,C,DELT
DESCRIPTION OF PARAMETERS

c- MEAN CONCENTRATION OF CURRENT ELEMENT

DELT- TIME SINCE LAST REACTION STEP OCCURED FOR

CURRENT ELEMENT

INIT- IF O READIN DATA FROM INTEGRATION OF SOURCE TERM

SET TO 1 AFTER INITIAL READING OF DATA

INPUT FILES
INTE.DAT- CONTAINS DATA FROM FOURTH ORDER INTEGRATION
OF SOURCE TERM

METHOD

AN INPUT FILE CONTAINING THAT RESULT OF THE FOURTH ORDER
INTEGRATION OF THE SOURCE TERM IS NEEDED. FROM THE MEAN
CONCENTRATION OF THE CURRENT ELEMENT, THE CORRESPONDING
TIME IS FOUND USING LINEAR INTERPOLATION. THEN DELT

IS ADDED TO THAT TIME AND THE NEW, CORRESPONDING
CONCENTRATION IS FOUND USING LINEAR INTERPOLATION

an

oNeNe

READ

SUBROUTINE RXN

DIMENSION CT(502)
COMMON/ILIST/INIT,C,DELT
STEP=,002

I1TOP=502

INPUT FILE

IF(INIT .NE. 0) GOTO 10

INIT =1

OPEN (UNIT=3,NAME="INTE.DAT"',FORM="'FORMATTED ' ,READONLY,
TYPE='OLD')

READ (3, *)(CT(J),J=1,ITOP)

CLOSE (UNIT=3)
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C IF C IS LESS THAN .00l OR GREATER THAN .999 SUBROUTINE
C RETURNS

C
10 IF(C .LE. .001)RETURN
IF(C .LT. .999) GOTO 20
c=1.
RETURN
C ]
C DETERMINE LOCATION IN ARRAY
C
20 I=(C + .001)/STEP + 1
Il=I + 1
¢
C CALCULATE VALUE OF TO USING LINEAR INTERPOLATION
o
TO=CT(I) + (C - STEP*(I-1) + .001)*(CT(Il) = CT(I))/STEP
T=TO + DELT
e
C SEARCH FOR LOCATION OF NEW VALUE OF T
C .
NSTEP2=ITOP/2
J=I + (ITOP -~ I)/2
DO 45 K=1,NSTEP2
ISUM=NINT (FLOAT (ITOP = J)/2.)
IF(CT(J) .LT. T) GOTO 46
ISIGN=-1
ITOP=J
GOTO 44
46 ISIGN=1
4t J=J + ISUM * ISIGN
IF(ISUM .EQ. 1)GOTO 40
45 CONTINUE
40 IF(CT(J) .GT. T) J=J - 1
J1=J + 1
C

C CALCULATE NEW CONCENTRATION USING LINEAR INTERPOLATION
C
C=STEP * (J - 1.) - .00l + (T - CT(J)) *
& STEP/(CT(J1) - CT(J))
C=AMIN1(C,1.)
RETURN
END
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MAIN PROGRAM

THIS PROGRAM

SOLVES THE SCALAR EQUATION USING THE

DAMKOHLER LIMIT AND ASSUMES GRADIENT DIFFUSION
WITH SCALAR FLUCTUATIONS.

DESCRIPTION OF PARAMETERS:

NJ-
F—
A=
B-
c-

D_.

FOLD-

G_

Ccl-
s(cl)-
Ds(cl)-
Ds2(cl)-
~  DELX-
XL-

DAMK-
DT=

SIGPHI-

NUMBER OF GRID NODES
AN ARRAY CONTAINING CHANGES IN <C> AND <C'*#*2>

THESE ARE ARRAYS WHICH COMPOSE THE TRI-DIAGONAL
MATRIX FORMED FROM THE FINITE DIFFERENCE METHOD

A NULL ARRAY USED BY THE MATRIX INVERSION

SUBROUTINE

CONTAINS THE LAST VALUES OF <C> AND <C'#**2>

CONTAINS THE OLD VALUES FROM F

THE VALUE OF <C> AT THE CURRENT GRID NODE

THE SOURCE TERM EVALUATED AT <C>=Cl

THE FIRST DERIVATIVE OF THE SOURCE TERM

EVALUATED AT <C>=Cl

THE SECOND DERIVATIVE OF THE SOURCE TERM

EVALUATED AT <C>=Cl

THE SPACING BETWEEN GRID NODES,CALCULATED USING
DELX=X*/(DAMK*%*,5), WHERE X*=,03

NONDIMENSIONAL LENGTH OF GRID,DELX*(NJ-1)

DAMKOHLER NUMBER

TIME STEP CALCULATED USING DT=DT*/DAMK

DT*=,025

LOCATION WHERE <C>=0.5

FLAME SPEED

FLAME THICKNESS

CURRENT TIME

FINAL TIME

A CONSTANT FROM TURBULENCE THEORY,CMU=0.09

A CONSTANT FROM TURBULENCE THEORY,SIGPHI=0,7

ROUTINES NEEDED

MATRIX

INPUT FILES NEEDED

PARAM.DAT: THIS FILE CONTAINS THE DAMKOHLER NUMBER
CONC.DAT: THIS FILE CONTAINS <C> AND <C'*%*2> FROM

A PREVIOUS RUN TO BE USED AS INITIAL
CONDITIONS FOR CURRENT RUN
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THE ROUTINE SOLVES TWO SIMULTANEOUS PARTIAL DIFFERENTIAL
EQUATIONS FOR <C> AND <C'##*2>, INPUTS CONSIST OF THE
DAMKOHLER NUMBER, GEOMETRY SPECIFICATIONS, AND TIME
STEP.THE OUTPUT FROM THE PROGRAM IS A LIST OF THE
ITERATIONS OF FLAME THICKNESS, FLAME SPEED, ERROR FOR
EACH EQUATION,AND FINAL VALUES OF <C> AND <C'#*%*2>,
AFTER AN INITIAL RUN,THE RESULTS FROM THAT RUN MAY
USED FOR INITIAL CONDITIONS FOR SEQUENTIAL RUNS.

[+NeNeNeNesNeoNeNeRs N+ N KT

PARAMETER NJ=301  °
VIRTUAL F(2,NJ),A(2,2,NJ),B(2,2,NJ),C(2,2,N),
& D(2,2,NJ),FOLD(2,NJ),G(2,NJ)

S(C1)=6.11E07 * Cl1*(1,-C1)*EXP(-100./(1+6.%*Cl))
DS(C1)=6.11E07*EXP(-100./(l.+6.*C1))*(1,-2,*C1 +

& C1*(1.-C1)*600./((1.+6.*C1)**2))
DS2(C1)=6,11E07*EXP (=100, /(l.+6.*C1))*(600./((1l.+6.*C1)

G**2)%(2, = 4,*Cl +C1*(1,~C1)*600,/((1.+6.*C1)**2)

& = C1*(l.-Cl1)*12./(l.+6.%Cl)) -2.)

DATA SL,TFINAL,T/1.,10000.,0./
DATA CMU,SIGPHI,CPHI,DAMK/.09,.7,2.,.001/
OPEN(UNIT=4,NAME='FLUCTV.OUT',FORM='FORMATTED',

& TYPE='NEW') C ' ,
OPEN (UNIT=2,NAME="'FLUCTV.DAT ", FORM="FORMATTED ",

& TYPE='NEW')
OPEN(UNIT=3,NAME="'FLUCT.OUT',FORM="FORMATTED',

& TYPE='NEW')
OPEN (UNIT=1,NAME="'PARAM.DAT' ,FORM="FORMATTED"

& TYPE='OLD',READONLY)
CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
CALL ERRSET(73,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
READ (1, *)DAMK
CLOSE (UNIT=1)
WRITE (4,111)

111 FORMAT (1X,' THIS PROGRAM SOLVES THE MEAN SCALAR
& EQTN. W/ FLUCT.') g

WRITE (4,1)SL,NJ
1 FORMAT (1X,' INITIAL FLAME SPEED = ' F10.4/,
& ' GRID SIZE = ',TI4)
¢
C CALC. DELX.,DT,USING NORMALIZED DELX* AND DT*
Cc
DELX=.03/(DAMK**,5)
XL=DELX* (NJ-1) ~
DT=.025/DAMK
e
WRITE (4, 3)XL,DELX,DT
3 FORMAT(1X,' LENGTH = ',F10.4,' DELX =',F10.4/,

& ' TIME STEP = ',E12.4)

78



12

WRITE (4,555 )DAMK
555 FORMAT(1X,' DAMKOHLER NUMBER = ',E12.4)
WRITE (4,223)
223 FORMAT(1X/,' FLAME THICKNESS',4X,' FLAME SPEED',4X,
& ' FLUCTUATIONS'/)
C -
C
CLOSE (UNIT=3)
CI=—CMU/(SIGPHI * DELX*%2)
NJ1=NJ - 1

DEFINE FLAME FRONT
***********************************************************
NOTE:THIS SECTION IS USED FOR INITIAL RUN AND THEN COMMENTED
OUT AND REPLACED BY THE FOLLOWING SECTION WHICH READS IN THE
RESULTS FROM A PREVIOUS RUN
hhhhhhhhthhihhdhhhitthrhhhbhihhirdhihithrhhbhhhhtthhhhhhtihtd
DO 20 J=1,NJ

FOLD(2,J)=0.
NJ4=NJ /4
NJ43=NJ4 * 3
NJDIF=NJ43 - NJ4
DO 40 J=1,NJ4

FOLD(1,J)=0.
DO 21 J=NJ4,NJ43
FOLD(1,J)=1. + SIN(3.14159%((J-NJ4)/(2. * NIDIF) - .5))
DO 41 J=NJ43,NJ

FOLD(1,J)=1.
DO 2002 J=NJ4,NJ

[
o

N £~
- o

5
—

IF(FOLD(1,J) .LT. .5) IXl=J
IF(FOLD(1,J) .GT. .5)GOTO 2004
€2002 CONTINUE
C2004 TIX2=J
c XMEAN=(.5-FOLD(1,IX1)) * (IX2 — IX1)/(FOLD(1,IX2) -
C &FOLD(1,IX1)) + IX1 .
C Fhhhkhkdhhhhhdihhihbhhhhihhhhhdihhbhhihbbhbihrhirdhrbhhthhbhidtk
C NOTE: THIS SECTION IS USED ONLY AFTER AN INITIAL RUN HAS BEEN
C MADE READ INITIAL CONDITIONS FROM DATA FILE AND CALC. WHERE
C THE MEAN CONC. IS TO CALC. FLAME SPEED,
OPEN (UNIT=1,NAME="'CONC.DAT ', FORM='FORMATTED' ,TYPE="OLD",
& READONLY)
DO 40 I=1,2
40 READ (1, *)(FOLD(I,J),J=1,301)
DO 41 J=1,301
41 FOLD(2,J)=ABS (FOLD (2,J))
CLOSE (UNIT=1)
et b e E s e T T T T T T s L L Ty
c
C DETERMINE WHERE <C> IS 0.5
G

oo 0o00000000000

DO 2002 J=1,NJ
IF(FOLD(1,J) .LT. .5) IX1=J
IF(FOLD(1,J) .GT. .5)GOTO 2004



2002  CONTINUE
2004  IX2=J
XMEAN=(.5-FOLD(1,IX1)) * (IX2 - IX1)/(FOLD(1,IX2) -
& FOLD(1,IX1)) + IX1
5 T=T + DT
IF((SL .LT. O0.) .AND. (T .LT. (5. * DT)))SL=l.
IF(T .GT. TFINAL) GOTO 999

c
C INITIALIZE D
c
DO 65 J=1,NJ
DO 65 I=1,2
Do 65 L=1,2
65 D(L,I,J)=0.
c
C SET BOUNDARY CONDITIONS
g
DO 6 L=1,NJ,NJ1
DO 6 I=1,2
D0 7 J=1,2
A(1,J,L)=0.
B(I,J,L)=0,
7 c(1,J,L)=0.
B(I,I,L)=1,
F(I,L)=0.
6 FOLD(I,L)=0.
c F(1,NJ)=1,
FOLD(1,NJ)=1.
g
g
C DETERMINE A,B,C AND RESIDUE AT EACH GRID NODE
C
DO 30 J=2,NJ1
Cl=FOLD(1,J)
A(1,1,J7)=CI - SL/DELX
A(1,2,J)=0,
A(2,1,3)=0,
A(2,2,7)=A(1,1,J)
C
g
B(1,1,J3)=1/DT + SL/DELX - 2. * CI
B(1,2,J)=-.5 * DAMK *DS2(cl)
B(2,1,J)=0.
B(2,2,J)=B(1,1,J) + CPHI - 2,*DAMK*DS(Cl)
C
g
C(1,1,J)=CI
c(1,2,7)=0,
c(2,1,J)=0.
€(2,2,J)=CI
c
C

R1=DAMK*S(Cl) + C!/DT
R2=-CI * ((FOLD(1l,J+1)-CLl)#**2 + (C1-FOLD(1,J-1))#**2)
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c
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& + FOLD(2,J)/DT
F(1,J)=R1- A(1,1,J)*FOLD(1,J-1) - A(l,2,J)*FOLD(2,J~1)

& - B(1,1,J)*FOLD(1,J) - B(1,2,J)*FOLD(2,J)

& - C€(1,1,J)*FOLD(1,J+1) = C(1,2,J)*FOLD(2,J+1)
F(2,J)=R2- A(2,1,J)*FOLD(1,J-1) - A(2,2,J)*FOLD(2,J-1)

& - B(2,1,J)*FOLD(1,J) - B(2,2,J)*FOLD(2,J)

& - €(2,1,J)*FOLD(1,J+1) - C(2,2,J)*FOLD(2,J+1)

A(2,1,3)=A(2,1,J) = CI*2,*(FOLD(1,J)=FOLD(1,J=1))
B(2,1,3)=B(2,1,J) + CI*2.*(2,*FOLD(1,J) - FOLD(1,J+1)

& - FOLD(1,J-1))
c(2,1,J)=c(2,1,J) + CI*2,*(FOLD(1,J+1) - FOLD(1,J))
G(1,J)=F(1,J)
c(2,J)=F(2,J)
CONTINUE

CALL MATRIX(A,B,C,D,F,NJ)

F(1,1)=-FOLD(1,1)
F(l,NJ)=1., - FOLD(1,NJ)
F(2,1)=-FOLD(2,1)
F(2,NJ)=-FOLD(2,NJ)

C SOLVE FOR NEW VALUES OF <C> AND <C'#*#2>

c

DO 31 J=1,NJ
DO 31 I=1,2
FOLD(I,J)=FOLD(I,J) + F(I,J)

C FIND LOCATIONS ON GRID WHERE <C>=0.1,0.5,0.9

222
201

202
204

955
301

a0

DO 222 J=1,NJ
IF (FOLD(1,J) .LT. .1) IXl=J

IF( FOLD(l,J) .GT. .1) GOTO 201

CONTINUE

IX2=J

XLL=(.1 - FOLD(1,IX1)) * (IX2 - IX1)/
& (FOLD(1,IX2)-FOLD(1,IX1)) + IX1

IXNEW=IX2 + 1

DO 202 J=IXNEW,NJ

IF(FOLD(1,J) .LT. .5) IX1=J

IF(FOLD(1,J) .GT. .5)GOTO 204

CONTINUE

IX2=J

XPT5=(.5-FOLD(1,IX1)) * (IX2 - IX1)/
& (FOLD(1,IX2) = FOLD(1,IX1)) + IX1

IXNEW=IX2 + 1

DO 955 J=IXNEW,NJ

IF (FOLD(1,J) .LT. .9) IXl=J

IF (FOLD(1,J) .GT. .9) GOTO 301

CONTINUE

IX2=J

XR=(.9 - FOLD(1,IX1)) * (IX2- IX1)/
& (FOLD(1,IX2) - FOLD(1,IX1)) + IX1



C CALCULATE FLAME THICKNESS

s
THICK=(XR - XLL) * DELX
C
C CALCULATE FLAME SPEED
C
XDIFF=XMEAN - XPT5
XMEAN=XPT5
C
C DETERMINE ERROR
C
SL=SL + XDIFF * DELX/DT
SUM1=0,
SUM2=0.
DO 50 J=1,NJ

SUM1=SUM1 + (G(1,J)/DAMK)*#*2
SUM2=SUM2 + (G(2,J)/DAMK)**2
50 CONTINUE
OPEN (UNIT=3,NAME="FLUCT.OUT ' ,FORM="FORMATTED'
& TYPE='OLD',SHARED,ACCESS="APPEND')
WRITE (4, 115)THICK, SL,SUMI,SUM2
WRITE(3,115)THICK, SL,SUMI, SUM2
CLOSE (UNIT=3)
115  FORMAT(1X,4E12.4)
g
C CHECK WHETHER CONVERGENCE CRITERION IS MET
c
IF((ABS(SUMLl) .GT. .001) .OR.
& (ABS(SUM2) .GT. .001))GOTO 5
999  WRITE(2,%)(FOLD(1,I),I=1,NJ)
WRITE (2,*)(FOLD(2,I),I=1,NJ)
WRITE(4,*)(FOLD(1,I),I=1,NJ)
WRITE (4,%*)(FOLD(2,1),I=1,NJ)
CLOSE (UNIT=4)
CLOSE (UNIT=2)
STOP
END
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SUBROUTINE MATRIX(A,B,C,D,F,N)
THIS SUBROUTINE SOLVES A BLOCK TRIDIAGONAL SYSTEM USING

GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING. THE FORM
OF THE SYSTEM IS AS FOLLOWS :

B(1) c(1) E(1) X(1) F(1)
A(2) B(2) c(2) D(2) X(2) F(2)
A(3) BG3) c(3) X(3) F(3)
il X aeee = i
A(N-2) B(N-2) C(N-2) D(-2) X(N-2)  FN-2)
A(N-1)" B(-1) c(N-1)  X(N-1)  F(N-1)

E(N) A(N) B(N) x(N) F(N)

WHERE A, B, C, D, AND E ARE KxK BLOCKS, X AND F ARE K
COLUMN VECTORS. D BLOCKS ARE USED IN PARTIAL PIVOTING WHICH
REQUIRES D(2), D(3), ..., D(N~-2) TO BE ZERO WHEN BEGINNING
COMPUTATION.E(1) AND E(N) ARE REPLACED BY D(1) AND D(N),
RESPECTIVELY. ALSO, F IS SUBSTITUTED FOR X TO GET THE
FINAL SOLUTION IN F.THUS, INPUTS TO THE SUBROUTINE ARE
A, B, C, D, F, K, KD, AND N WHERE A, B, C, AND D ARE
EXPLAINED ABOVE, F AS AN INPUT CONTAINS KNOWN TERMS, K IS
THE DIMENSION OF BLOCKS, KD IS THE DIMENSION OF K, AND N IS
THE NUMBER OF BLOCK ROWS. OUTPUT OF THE SUBROUTINE, WHICH IS
THE FINAL SOLUTION, IS RETURNED IN F.

WRITTEN BY B.MINAIE
PARAMETER KD=2,K=2

DIMENSION A(KD KD l) B (KD,KD, 1),C(KD,KD,1),D(KD, KD, 1),
& F(KD,1)

c
DATA ZRO /1.E-10/
c
NM1=N~-1
NM2=N-2
DO 270 M=1,N
DO 270 JJ=1,K
MM1=M~1
MP 1=M+1
MP2=M+2
c
Cx*#% FIND LARGEST ELEMENT IN ABSOLUTE VALUE IN BLOCK B(M),
C M=l,...,N
c
BMX=0,0

DO 10 I=JJ,K
IF (ABS(B(I,JJ,M)) .LT. BMX) GO TO 10
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BMX=ABS (B(I,JJ,M))
IB=I

10 CONTINUE
IF (M .EQ. N) GO TO 50

C**%%* FIND LARGEST ELEMENT IN ABSOLUTE VALUE IN BLOCK A(M+1)

AMX=0,0
DO 20 I=1,K
IF (ABS(A(I,JJ,MP1)) .LT. AMX) GO TO 20
AMX=ABS (A(I,JJ,MP1))
IA=L
20 CONTINUE
c
C**%% WHEN M=N-2, FIND LARGEST ELEMENT IN ARSOLUTE VALUE IN
C BLOCK D(N)

C
IF (M .NE. NM2) GO TO 40
DMX=0.0
DO 30 I=1,K
IF (ABS(D(I,JJ,MP2)) .LT. DMX) GO TO 30
DMX=ABS (D(I,JJ,MP2))
ID=I
30 CONTINUE
IF (DMX .GT. AMX .AND. DMX .GT. BMX) GO TO 120
¢
C--  CHECK FOR PIVOT IN A
¢
40 IF (AMX .GT. BMX) GO TO 90
C

C**** COMMUTE ROWS IF OVERALL MAX. OCCURS IN BLOCK B(M)

50 IF (BMX .LE. ZRO) GO TO 340
IF (IB .EQ. JJ) GO TO 150

c
C— COMMUTE WLTHIN B(M)
C
DO 60 J=JJ,K
BTMP=B (JJ,J,M)
B(JJ,J,M)=B(IB,J,M)
60 B(IB,J,M)=BTMP
IF (M .EQ. N) GO TO 80
C
C— COMMUTE WITHIN C(M) FOR M .LT. N
C
DO 70 J=1,K
CTMP=C (JJ,J,M)
c(JJ,J,M)=C(1B,J M)
70 C(IB,J,M)=CTMP
C

Coe= COMMUTE WITHIN D(M) FOR M .LT. N-1



IF (M .GE. NM1) GO TO 74
DO 72 J=1,K
DTMP=D(JJ,J, M)
D(JJ,J,M)=D(IB,J,M)

72 D(IB,J,M)=DTMP

74 CONTINUE

C

C-- COMMUTE WITHIN F(M)
c

80 FTMP=F (JJ,M)

F(JJ,M)=F (IB,M)
F (IB,M)=FTMP .
GO TO 150

90 - CONTINUE

C**** COMMUTE ROWS IF OVERALL MAX. OCCURS IN BLOCK A(M+1)
IF (AMX .LE. ZRO) GO TO 340
G COMMUTE BETWEEN B(M) AND A(M+1)
DO 100 J=JJ,K
BTMP=B (JJ,J,M)
B(JJ,J,M)=A(IA,J,MP1)
100 A(IA,J,MP1)=BTMP
c— COMMUTE BETWEEN C(M) AND B(M+l)
DO 110 J=1,K
CIMP=C(JJ,J,M)

€(JJ,J,M)=B(IA,J,MP1)
110  B(IA,J,MP1)=CTMP

e
C—- COMMUTE BETWEEN D(M) AND C(M+l) FOR M .LT. N-1
C
3 IF (M .GE. NM1) GO TO 114

DO 112 J=1,K

DTMP=D(JJ,J,M)

D(JJ,J,M)=C(IA,J,MP1)

112 c(IA,J,MP1)=DTMP
114  CONTINUE

C
C—- COMMUTE BETWEEN F(M) AND F(M+l)
¢
FIMP=F (JJ,M)
F(JJ,M)=F (IA,MP1)
F(IA,MP1)=FTMP
GO TO 150
c

Cx**% WHEN M=N-2, COMMUTE ROWS IF OVERALL MAX. OCCURS IN



C BLOCK D(N)

c

120 IF (DMX .LE. ZRO) GO TO 340

C

C— COMIUTE BETWEEN B(M) AND D(M+2)
C

DO 130 J=JJ,K

BTMP=B(JJ,J,M)

B(JJ,J,M)=D(ID,J,MP2)
130  D(ID,J,MP2)=BTMP

C
DO 140 J=1,K

C

C-- COMMUTE BETWEEN C(M) AND A(M+2)

o
CTMP=C(JJ,J M)
c(JJ,J,M)=A(ID,J,MP2)
A(ID,J,MP2)=CTMP

G

G- COMMUTE BETWEEN D(M) AND B(M+2)

¢
DTMP=D(JJ,J,M)
D(JJ,J,M)=B(ID,J,MP2)
B(ID,J,MP2)=DTMP

140 CONTINUE

C 4

C-- COMMUTE BETWEEN F(M) AND F(M+2)

C
FTMP=F (JJ,M)
F(JJ,M)=F (ID,MP2)
F(ID,MP2)=FTMP

150 CONTINUE

£

C**%%* ELIMINATE ELEMENTS IN BLOCK B(M), M=l,...,N

JIP1=JJ+1

IF (JJ .EQ. K) GO TO 200
DO 190 I=JJP1,K
BFACT=B(I,JJ,M)/B(JJ,JJ,M)

C--  COMPUTE NEW VALUES IN B(M)
DO 160 J=JJ,K

B(I,J,M)=B(I,J,M)-BFACT*B(JJ,J, M)
160 CONTINUE

c
C—- COMPUTE NEW VALUES IN C(M) FOR M .LT. N
c
IF (M .EQ. N) GO TO 180"
c

DO 170 J=1,K



170

220
C--
230

Chkdedk
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c(1,J,M)=C(I,J,M)-BFACT*C(JJ,J M)
COMPUTE NEW VALUES IN D(M) FOR M .LT. N-1
IF (M .GE. NM1) GO To 174

DO 172 J=1,K
D(I,J,M)=D(I,J,M)=BFACT*D(JJ,J, M)
CONTINUE

COMPUTE NEW VALUES IN F(M)

F(I,M)=F(I,M)-BFACT*F (JJ,M)
CONTINUE

ELIMINATE ELEMENTS IN BLOCK A(M+l) FOR M .LT. N
IF (M .EQ. N) GO TO 270

DO 230 I=1,K
AFACT=A(I,JJ,MP1)/B(JJ,JJ,M) .

COMPUTE NEW VALUES IN A(M+1)

DO 210 J=JJ,K
A(I,J,MP1)=A(I,J,MP1)=AFACT*B(JJ,J,M)
CONTINUE

COMPUTE NEW VALUES IN B(M+l) AND C(M+1)
DO 220 J=1,K
B(I,J,MP1)=B(I,J,MP1)~AFACT*C(JJ,J M)
€(1,J,MP1)=C(I,J,MP1)=~AFACT*D(JJ,J ,M)
CONTINUE

COMPUTE NEW VALUES IN F(M+1)

F(I,MP1)=F (I,MP1)-AFACT*F (JJ,M)

WHEN M=N-2, ELIMINATE ELEMENTS IN BLOCK D(N)
IF (M .NE. NM2) GO TO 270 '

DO 260 I=1,K
DFACT=D(I,JJ,MP2)/B(JJ,JI M)

COMPUTE NEW VALUES IN D(M+2)

DO 240 J=JJ,K
D(I,J,MP2)=D(I,J,MP2)-DFACT*B(JJ,J,M)
CONTINUE

COMPUTE NEW VALUES IN A(M+2), B(M+2), AND F(M+2)



250
260
270

Chkxk
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DO 250 J=1,K
A(I,J,MP2)=A(1,J,MP2)-DFACT*C(JJ,J,M)
B(I,J,MP2)=B(I,J,MP2)-DFACT*D(JJ,J,M)
CONTINUE
F(I,MP2)=F(I,MP2)=DFACT*F (JJ,M)
CONTINUE

BACK SUBSTITUTE TO GET FINAL SOLUTION IN F(M), M=l,...,N

DO 330 MM=IL,N
M=N-MM+1

MP 1=}+1
MP2=M+2

DO 320 II=1,K
I=K-TI+1
IP1=I+1

COMPUTE SUM OF PRODUCTS WHEN MULTIPLYING B(M) BY F(M)

BSUM=0,0

IF (I .EQ. K) GO TO 290
DO 280 J=IPl,K
BSUM=BSUM+B (I,J ,M)*F (J,M)
CONTINUE

CSUM=0.0

IF (M .EQ. N) GO TO 310

COMPUTE SUM OF PRODUCTS WHEN MULYIPLYING C(M) BY F(M+1)

CSUM=0.0

IF (M .EQ. N) GO TO 310

DO 300 J=1,K

CSUM=CSUM+C (I,J,M)*F (J,MP1)

COMPUTE SUM OF PRODUCTS WHEN MULTIPLYING D(M) BY F(M+2)

DSUM=0.0

IF (M .GE. NM1) GO TO 304
DO 302 J=1,K

DSUM=DSUM-+D (I,J,M)*F (J ,MP2)
CONTINUE
SUM=BSUM-+CSUM-+DSUM

COMPUTE AND STORE THE FINAL SOLUTION IN F(M)
F(I,M)=(F(I,M)-SUM)/B(I,I M)

CONTINUE

GO TO 360

WRITE (4,350) JJ,M,BMX,AMX,ZRO



FORMAT (10X,' PIVOT ELEMENT IS . LE . ZRO ', 2I5,3El4.7)
STOP

RETURN

END

89
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RUNGE-KUTTA INTEGRATION SCHEME

PURPOSE

1

THE PURPOSE OF THE PROGRAM IS TO INTEGRATION THE
SOURCE TERM, DT/DC, USING A FOURTH ORDER RUNGE-KUTTA
SCHEME. THE RESULTS OF THE INTEGRATION ARE TABULATED
AND STORED IN AN OUTPUT FILE.

DESCRIPTION OF PARAMETERS

CINIT-
CFINAL-
CFIN2-
CcT-

DTDC-
He

ICOUNT-
INIT-

NJ-
N2J-

NUMBER-

STEP-

INITIAL VALUE OF C-SET TO WHERE FUNCTION IS A
MINIMUM (0.933).
FINAL VALUE OF C FOR THE FORWARD INTEGRATION
FINAL VALUE OF C FOR THE BACKWARD INTEGRATION
AN ARRAY OF SIZE NJ CONTAINING THE RESULTS
OF THE INTEGRATION
THE FUNCTION TO BE INTEGRATED
THE STEP SIZE OF THE INTEGRATION SCHEME-
MUST BE LESS THAN CHANGES IN C.
A COUNTER TO DETERMINE WHEN VALUES SHOULD BE
WRITTEN
THE LOCATION IN THE ARRAY AT WHICH INTEGRATION
BEGINS
NUMBER OF DATA POINTS STORED IN TABLE
DEPENDS ON NJ-USED TO DETERMINE STEP SIZE
OF SAMPLING

DETERMINES THE FREQUENCY WITH WHICH VALUES ARE

WRITTEN
THE RATE OF SAMPLING BASED ON THE STEP SIZE H
AND NJ

PARAMETER NJ=502
DIMENSION CT(NJ)

DTDC(C)=EXP(100./(l. + 6. * C) = 57.) * EXP(39.1)/
& (C * (1. - C))
DATA CINIT,H,CFINAL,CFIN2/.933,.0005,.999,.001/

OPEN (UNIT=2,NAME="'INTE.DAT ' ,FORM="FORMATTED',
& TYPE='NEW')
CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
N2J=NJ-2
STEP=1/FLOAT (N2J)
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INIT=(CINIT + l. = CFINAL) * FLOAT(N2J) + 1

c
c
C=CINIT
CT (INIT)=0.
ICOUNT=0
NUMBER=STEP /H
c
c
I=INIT
C
C FORWARD INTEGRATION BEGINNING AT C= ,933
c
10 IF(C .GT. CFINAL) GOTO 999

ICOUNT=ICOUNT + 1
AKR1=H * DTDC(C)
AK2=H * DTDC(C + H/2.)
AK3=AK2
AK4=H * DTDC(C + H)
TO=TO + (AK1l + 2. * AK2 + 2., * AK3 + AK4)/6.
IF (ICOUNT .NE. NUMBER) GOTO 6
I=I + 1
CT(1)=TO
ICOUNT=0
6 C=C + H
GOTO 10
C o
C BACKWARD INTEGRATION BEGINNING WITH C= .933
&
999 T0=0.
C=CINIT
ICOUNT=0
I=INIT
21 IF (C .LT. CFIN2) GOTO 99
ICOUNT=ICOUNT + 1
AKl=H * DTDC(C)
AR2=H * DTDC(C + H/2.)
AK3=AK2
AK4=H * DTDC(C + H)
TO=TO = (AKl + 2. * AR2 + 2, * AK3 + AK4)/6.
IF (ICOUNT .NE. NUMBER) GOTO 7
I=I -1
CT(I)=TO
ICOUNT=0
7 c=C - H
GOTO 21
99 CT(1)=CT(2)
CT (NJ)=ABS(CT(1))
WRITE (2, *)(CT(1),I=1,NJ)
CLOSE (UNIT=2)
STOP
END



