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"

Dinah Georgianna McNutt

Submitted to the Department of Mechanical Engineering
on December 21, 1981 in partial fulfillment of the
requirements for the Degree of Master of Science

in Mechanical Enigneering.

This thesis examines existing turbulence theories through
numerical methods. Two different methods are used to model a
premixed turbulent flame: a moment model and a Monte Carlo
model.

The moment model solves the transport equation for the
nondimensional progress variable, C, and assumes small
fluctuations of © about the mean. The Monte Carlo model solves
the probability density function (pdf) equation of C using
statistical methods. The flame is described by a
nondimensional grid composed of ensembles of elements. The
Monte Carlo model assumes the steepest scalar gradients are due
to scalar dissipation caused by turbulent straining. Mixing is
modeled by the Curl mixing model and reaction is simulated by
integrating the nondimensional rate equation. Both models
provide information about flame speed, flame thickness, and
profiles of C.

Numerical calculations from the moment model show that the

moment model is valid for only a limited range of the operating
conditions. From the pdf calculations of the Monte Carlo model
it is shown that the basic assumptions behind the moment model
are invalid. The results from the Monte Carlo calculations
show good agreement with the theory. Pdf calculations show
that the model is mixing limited. Results of calculated values
of flame speed and flame thickness show that the assumption of
gradient diffusion is invalid for the case of a laminar flame.

Thesis Supervisor: Stephen B. Pope
Title: Associate Professor of Mechanical Engineering
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NOMENCLATURE

nondimensional product concentration

Cu Co

ECU)

- fluctuations of C about the mean

turbulence model constants

mixing term, Equation (2.2)

number of ensembles

turbulent kinetic energy

{, 1,
£. 4°

h

ko

laminar flame thickness, normalized laminar flame
thickness

turbulent flame thickness, normalized turbulent flame
thickness

integral macroscale

number of elements in an ensemble

Ny
RT

m

20)

R

s(c),s*(c)

S(P)

S, 8,
g_ 3

=

mn g®

1]

X.X"*

number of elements involved in diffusion process

number of elements involved in mixing process

pdf of ¢@

turbulent Reynolds number

reaction rate, normalized reaction rate

rate of change of @ due to chemcial reaction

laminar flame speed, normalized laminar flame speed

turbulent flame speed, normalized turbulent flame speed

time, nondimensional time

velocity, normalized velocity

turbulent intensity, fluctutation of U about the mean

position, nondimensional position
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Greek Letters

I.
3

A

"

Us
J

-

turbulent diffusion coefficient

Kolomogorov length scale

Taylor microscale

transport coefficient

effective transport coefficient

turbulent transport coefficient

standard deviation

4

JJ]

Q

1)

scalar variable

independent space variable corresponding to @

Damkohler number

turbulent frequency

Kolmogorov time scale

Ta chemical reaction rate

Subscritps and Superscrip*-2

refers to Damkohler theory

J

M

AC

1

coordinate direction

laminar

4

refers to Moment model

refers to Monte Carlo model

turbulent

Averages
 - N

We ww

qe

mean value

normalized value
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INTRODUCTION

Turbulent flames occur in power plants, industry, and

transportation. The properties of a turbulent flame affect the

efficiency of the process involved. For example, in a

spark—ignition engine, the turbulent flame speed and thickness

are two of the parameters used as empirical inputs in analyzing

engine performance. If the flame speed and flame thickness

could be obtained theoretically, the engine simulations could

be performed for a wide range of operating conditions without

having to make actual experimental measurements.

The purpose of this research project is to: develop a

theory to determine quantitively the flame speed and flame

thickness of premixed turbulent flames. The motivation for

this project arose from inconsistencies in the literature,

dimensionally incorrect selationdiins, and conflicting

assumptions in turbulence models. One objective of this study

is to identify important dimensionless parameters which define

operating conditions of a turbulent flame and to determine the

normalized flame speed and thickness as a function of these

parameters. Another goal is to identify different regimes of

combustion and the limits of these regimes. Two turbulence

models are examined and the results of the models are compared

Fo theo



3

CHAPTER 1

The simple case of a one-step irreversible reaction

between a fuel and an oxidant to form a single product is

considered. Initially, the fuel and oxidant are homogeneously

premixed. The density is assumed to be constant and the

transport properties of all the species and enthalpy are

assumed to be equal and constant. The chemistry can be

described by a single scalar variable which can be chosen to be

the progress variable C. This variable may be thought of as

the nondimensional product concentration: in the wunburnt

mixture C is equal to zero, after complete combustion C is

equal to unity.

The conservation equation for C(X,t) is

2
3 , 5 3 2%a "lien, Tz TO

i

{ a 1)

where U(X,t) is the velocity at location X and time t, ¥ is

the transport coefficient, and S(C) is the source term due to

chemical reaction. The source S(C) is zero for C=0 and C=1

since neither cold, pure reactants nor fully burnt products can

react. Since the reaction is irreversible, s(C) is

non-negative. A characteristic chemical time scale, Te y 1s

defined by

= = Sup s(C) 1.")
l-
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and the normalized reaction rate is defined by

~

5

%

(C) = T.S FN

= 1

Thus, S (C) is a nondimensional

(1.3)

source term that varies

between zero and unity

In a quiescent fluid, Equation (l.1) admits a solution

corresponding to a plane laminar flame. If the flame

propagates at a speed S, (the laminar flame speed), then

Equation (l.1) written in a frame moving with the flame becomes

S

2
de _ d c

Tx Y— + S(C)
dx

This equation can be nondimensionalized using the

“4A

known

parameters ¢¥ and Te - Therefore, defining

3
j

= 1/2
= 5,07, /9) { y L

a1)

and

x" = x( Ty) 2,
(1 =)~~

Equation (l.4) can now be written as

2
* xs d€_ dC 5%)
LT _® *2

ax. dx (1.7)

Figure 1 shows a graphical representation of the solution to

this equation. Ss) is the nondimensional flame speed and £; is

the nondimensional flame thickness defined by

iY
1x J

&lt;

y gq — KX 0.1 71.8)



wo
1
ure

 Xx
C(Xy 9) = 0.9 (=1 #7)

0

and

C{&amp;y 1) = 0.1 (1.20)

as shown in Figure l. These nondimensional flame properties,

S7 and £; » depend upon S®(¢) and are of order unity. For

different values of ¥ and Ty s» the dimensional quantities

5, and £, can be recovered from

Cyl Ts)  oe gid)

and

£ = (7 rg) 1/2 2 (L q22)

In all of the calculations reported here, the normalized

reaction rate was taken to be

Re 1.13)

For this reaction rate, numerical solution of f£quac1on iol)

(see Chapter 3) vields

~

bh]
/

= 0.768 (1.14)

and

-»

A
4

= 4.780 «

{.tal
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These values are used in all subsequent calculations and

figures.

For the artificial case of homogeneous, nondecaying

turbulence, the combustion of a turbulent mixture of fuel and

oxidant produces a turbulent flame. The properties of the

flame are determined by several parameters: u', £, s TR

and 7? . The turbulent intensity, u', is defined as the

square root of the turbulent kinetic energy, K. The integral

macroscale, £ » is the characteristic size of the largest

addies and is defined so that

£. 3127 %1.7 3)

where € 1s the rate of dissipation of the turbulent kinetic

energy. Molecular transport is described by the kinematic

viscosity, ¥Y

From the four quantities, u', £, » ¥ , and TT , two

independent, dimensionless groups can be obtained. The choice

is not unique: here the two groups are chosen to be

a 1'2. b
\ 1.7)

and

R =£_/u' Tz)

R is the turbulent Reynolds number and

4
’

8)

2 is the ratio of
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A

chemical frequency to turbulent frequency or the Damkohler

number. All other dimensionless groups can be expressed in

terms of R and £2 . For example,

Sy Cr/ rot? %* Q 1/2 *
 RT gta = S

=r a 4 R 4
(1a

and

1/2
 £4 rT? * 1 JH? gx
Z. 7 £, =(zg) 4H. @0

Any flame can be described in terms of R and only, and each

point on the R-§ plane corresponds to a set of operating

conditions for a flame. Figure 2 shows contours of S 4 /u' and

£, 1€, plotted on the R= plane. In the region of the plane

where £, &gt;&gt;£ » the turbulent eddies are too small to affect

the flame structure, but they augment the transport process in

the flame. This transport process governs the flame speed by

increasing the transfer of fluid between the preheat zone and

the reaction zone in the flame.’ The effective transport

coefficient, Yes » can be defined by

Yogg = YY + Y JL - 7113

where VY; 1s the turbulent viscosity. An expression for Y. is
3

obtained from the k—€ turbulence model.

y. = C,u’ 7 (1.72)
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where the constant Cy is ascribed the value 0.09.

Since the only effect on the flame is the increase in the

transport coefficient, the same laminar equations apply (e.g.

Equations (1.19) and (1.2)), but with Yess replacing y

Noting that both Sy and £, are proportional to y 1/2

expressions for S. /S, and £./1€, are written as

1/2
St_ [Pets
Sy y  ‘+ =LI 7)

and

1/2

Ly = Zs)
£, y

(2.2%)

Substituting Equations (1.11) and (1.12) for S, and £, , the

turbulent flame speed and the turbulent flame thickness may be

written as

-
- Yape! Toi05

®

(L.23)
 4

and

x.
1/2 ,*

= ( Yost TR) £ (1.26)

Using the definitions for Yess and Y; as given in Equations

(1.21) and (1.22), the expressions for S. and £. can be

rewritten as

‘ 1/2

. -( y + Le ) J NTT 4
R ‘1.2
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and

£. = (. y+ Cyu' R12uu’) TR) £, 1Cwm®&amp;3)

Normalizing S_ and £_ with the turbulent intensity and the

integral macroscale, respectively, and substituting for R and

2 , Equations (1.27) and (1.28) become

S (£2 HZ
t

_29)

and

¢ . , 1/2
Zz “\gag 7 @ 2
. 2

21. 1)

Figures 3 and 4 show contours of S, /u' and £ [£, using the
=

values in Equations (1.14) and (1.15) for Ss} and £, « For

large Reynolds numbers, these contours become independent of R.

In fact, as long as the turbulent flame thickness is much

greater than the integral macroscale, this theory still

applies, since the transport process still governs the flame

speed and the turbulent eddies are still too small to affect

the flame structure. As R approaches infinity £ IL, becomes

inversely proportional to the square root of the Damkohler

number. Thus, the Damkohler theory is valid below some value

rf Q . The calculations in Chapter 3 suggest this value is
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2 =0.1.

The ratio of turbulent transport, Vos , to molecular

transport, ¥ , can be expressed in terms of the Reynolds

number only. Using Equations (1.21), (1.22), and (1.17), this

ratio becomes

Yeff_,,_Cut le-
C R 1.3.2)

Thus, at least at high Reynolds number,turbulent transport

dominates molecular transport for values of the Damkohler

number less than O.l. The ratio of turbulent straining to

laminar straining is

(strain),
(strain), Sy lL,

(1.3:2)

where 7 1s the Kolmogorov cime scale:

ye (v/¢1/2 \ =“53)

Equation (1.32) written in terms of R and § becomes

(strain), R 1/2 £,
(strain), . (22) 5

\
y 3

2» _4)

Since Q&lt; 0.1, this expression is greater than unity and

the turbulent strain rate is greater than the laminar strain

rate. The laminar flame speed and the laminar flame thickness

are directly affected by the reaction rate, Te , as seen in
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equations (1.11) and (1.12).

At the other extreme,if the laminar flame speed is much

greater than the turbulent intensity, then the laminar flame

front propagates very quickly through the turbulent fluid. The

ratio of the laminar time scale to the turbulent time scale is

expressed in Equation (1.32) which is less than unity in this

region of the R-0 plane. Therefore, the laminar time scale

is mich smaller than the turbulent time scale and the

turbulence has little effect on the flame. This region of the

R-Q plane (see Figure 5) represents a laminar flame.

Transport 1s due to molecular diffusion and the steepest

gradients are caused by the reaction zone in the laminar flame.

The behavior of flames in the region of the R-Q plane

between the Damkohler theory region (  &lt; 0.1) and the plane

laminar flame region (S 4 &gt; u') is less certain. This region

can be subdivided by the line £,=7n , where 7 is the

Kolmogorov length scale

n = (v3 /e LA
{ 1.353%)

The Kolmogorov scale 7) is the characteristic length scale of

the steepest scalar gradients. Figure 6 shows these regions as

well as the Damkohler theory region and the laminar flame

reo! an a
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Region I is characterized by Damkohler numbers greater

than 0.1 and £,&gt; n . Since u' &gt;&gt; Sy and £,&gt; n , both

transport and mixing are dominated by the turbulence. Also,

for most of the region 0 &gt;&gt; 1.0, the rate of combustion is

limited by turbulent mixing rather than by the reaction rate.

Since both transport and mixing are governed by the turbulence,

it is reasonable to assume Sy /u' and £ IL, to be independent

of £2 and R (for high Reynolds numbers). In this region of

the R-£ plane the eddy-break-up model appears to be

applicable.

In Region II, which 1s characterized by £,&lt; n and

5 4 Ku’, turbulent transport still dominates molecular

transport since the turbulent intensity is much greater than

the laminar flame speed. The steepest gradients can now be

attributed to laminar flamlets since the laminar flame

thickness 1s less than the Kolmogorov length scale. This

effect on the flame properties S /u' and £. IL ¢ is not clear.

For the purposes of this study the Reynolds number is

chosen to be very high (10° Je Therefore, for values of the

Damkohler number less than 0.1, S; /u' and £_[L, are

independent of the Reynolds number. Figure 7 shows contours of

known dimensional parameters plotted in terms of £2 only. The

expression £, /A is the ratio of laminar flame speed to the

Taylor microscale. As £2 approaches infinity, S, /u'



E
increases and the other ratios tend to zero. For small values

of Q , Damkohler's theory applies. As £2 is increased,

St /u' becomes independent of 2 and for large values of the

Damkohler number a fast laminar flame exists. Figure 8 shows

St /u' for these three theories. Since in the intermediate

region S, /u' is independent of  , the magnitude of S; /u'

is not known, but the result will be a horizontal line. The

actual Ss: /u' for a turbulent flame will follow the asymptote

for Damkohler's theory, become independent of 2 and then

pick up the result for a laminar flame as £2 varies from

small to large values. As shown in Chapter 3, the asymptote of

Regions I and II is actually not reached until Q = 10" .

The reasons behind the behavior of this transition are

discussed in Chapter 3
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CHAPTER 2

This chapter contains the description of the two models

studied. The first model uses a Monte Carlo method to solve

the pdf equation of the scalar variable, C. The second model,

the moment model, solves Equation (1.7) and assumes small

scalar fluctuations of C about the mean, &lt;C&gt;. Both methods

assume homogeneous, nondecaying turbulence in a fluid which,

upon combustion, produces a plane propagating flame. Also,

both models are independent of Reynolds number and are valid

for a limited range of the Damkohler number. The moment model

is valid where the Damkohler theory is applicable and also for

slightly larger values of £ . The Monte Carlo model is valid

for the Damkohler | theory regime and Regions I and II of the

R-Q2 plane. Values of £2 .beyond which these models fail are

discussed in Chapter 3. In the limit of small fluctutations

(i.e. «&gt; « 1.0), the pdf equation reduces to the moment

model. In the 1limit of zero fluctuations (i.e. «€'? &gt; «

1.0), both models reduce to Damkohler's theory.

Monte Carlo Model

The Monte Carlo method®solves the pdf equation for the

scalar variable, C, which is denoted by @ and the pdf of

d is PC ¥ ;X,t) where iss the one-dimensional

composition space variable corresponding to d 4 The
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expression P( ¥ ;X,t) can be simplified as P(¥ ). The

one—dimensional transport equation for  P( ¥ ) assumes

turbulent transport is modeled by simple gradient diffusion and

can be written as

| 2 (WY)

ye) RA ZW + Em (Ps) = 2 I “3XA
wu
om

3 R(Y:X.t) ; 7 1)

where &lt;U&gt; is the mean velocity in the X~-direction, S(¢@ ) is

the rate of change of ¢@ due to reaction, and I (X,t) is

the turbulent diffusion coefficient. The term E( ¥ ;X,t)

represents the effect of molecular mixing. The mixing term and

the diffusion term must be modeled while the remainder of the

terms are exact. Curl's mixing model is employed to model
5

EC YY X.t):

E(P;X,t) = ne YP (Y-y') dP - WP)

where w is the turbulent mixing frequency and Y=y’

(2.2)

is a

location in composition space corresponding to fluid with

property o=y’ . The expressions for I: and w are
3

obtained from the K=- € turbulence model:

C R°
u

EE eee e—

T Op €

\
~ *

Z- .3)

and

- pm
w= 2C4—x (2.4 J]
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where K is the turbulent kinetic energy and the constants C uy

Oy &gt; and Cys are assigned the values of 0.09, 0.7, and 2.0,

respectively. The normalized diffusion coefficient, re ,» and

the normalized turbulent frequency, «w®, are defined by

+o dT
TT ul

£m
\

L
a Bm MN)

and

Jz2
ug, (2.3)Bb

Using the definitions of u' and £ » Equations (2.5) and (2.6)

&gt;Ve

ag,
2.7 2

and

la) 2G, (2) Ct

The model solves equation (2.1) for the case of a

statistically stationary, planar flame in homogeneous

turbulence. The model uses a one-dimensional finite difference

grid of length X* and composed of J grid nodes spaced

a X*distance apart. Each grid node contains an ensemble, or

group, of N elements and each element carries the value of the

nondimensional product concentration, C. The ensemble average

concentration at the jth node, &lt;C&gt;; , is

+
_m

he 1= So
N &amp; J

72.9)
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where cl is the concentration of the nth element. The boundary

conditions for the grid are

7  1] = 1.0 (2.10)

and

&lt;C p = 0.0 a (2.11)

The scalar fluctutation from the mean, C' , is

’
/&lt;c'c (2.12)

iere

ss
0|

N

z, “1S et -&lt;e)
 TN 4 ] 2

n=1
(2 °3)

The pdf, P( ¥ ), at a chosen grid node can be determined

by creating a histogram of P( ¥ ) versus ¢ from the known

scalar values in the ensemble. If o¢, represents a random

scalar variable, then the probability distribution function,

F( Y ). is

0 = Prob | ¢.&lt;¥ | (2 1%)

and

If Y, and v, are

dF (¥)p(y=EGE) (2 35)

wo independent scalar variables and

Ww. LY , then
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Prob| $&lt; @&lt;¥ i = F(¥P) - FP), (2.16)

This equation can be applied to form the histogram of P( Y ).

The X-axis of the histogram is ‘divided into K divisions of

A YY width. Equation (2.16) now becomes

Prob |, &lt; @ &lt; by, +49] = F(¥,+4¥) - F(P,), (2.17)

As AY approaches zero, the histogram approaches the true shape

of the pdf. For each value of C in a given ensemble, the

corresponding block in the histogram, K , is determined using

I cB (? 19)a

The pdf is found by normalizing the number of elements in each

block with the total number of elements, N. Therefore, F({¥ )

varies between zero and unity and the pdf of a fully burned

mixture (&lt;C&gt; =1.0) is a Dirac delta function at ES

The ensembles are modified at each time step in order to

simulate the four processes ‘governing the evolution of P( v):

convection, reaction, diffusion, and mixing. The convection

process 1s ignored since the coordinate system is chosen so

that the mean velocity is zero.

With At being the normalized time step,then the number

of pairs from each ensemble involved in the mixing process at

each step, N_ , and the number of elements involved in the
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diffusion process, N, , are

N
+ * *

— NW At (2 19)*

aud

N, = CAN Ax")? (2.20)

Mixing occurs by choosing two different elements within an

2nisemble at random and allowing the elements to mix completely

@¢. that they reach a mean scalar concentration. Both elements

sre assigned a new scalar concentration equal to the average of

the two prior to mixing. This process is repeated N_ times for

mach ensemble at each time step.

Diffusion 1s simulated by selecting two sets of

K elements at random from each ensemble and commuting one set

furwards (from node j to node j+l) and, the other set backwards

(from node j to node j~1). This process is repeated for each

£-1d node and the boundary conditions are applied so that there

ie no loss of elements in each ensemble.

7

-

Reaction 1s simulaced deterministically from

13):

ic = s”(c).
dt

Equation

(2.21)

Eguation (2.21) can be rewritten as

de"(€) _ _1
1 ~ = Tx

- S (C)
(2.2.7)
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where t®(C) is the nondimensional time associated with C.

Since C" at time t®(C") is known, C"at time t®*(C")+ At? , where

A t? is the time elapsed since the element last reacted, can

be found by integrating equation (2.22) with respect to C using

a fourth-order Runge-Kutta scheme. It would be computationally

inefficient to perform this integration for every element at

each time step. Therefore, the results of the integration

scheme are tabulated and the reaction process is updated only

when needed (e.g. when mixing occurs or pdf calculations are

performed.) For a given value of Cc", the table is searched,

using linear interpdlation, for a corresponding t*(C"). The

new concentration after reaction, C® , is found by locating the

corresponding value of C® for t*(C®) which is determined by

"  Nn WF
y = t cy + a (2.23)

Actually, At® for the mixing and diffusion processes are

not the same. The At® for each process is chosen so that not

more than 10%Z of the elements from each ensemble are involved

in the process at a given time. Therefore, from Equations

(2.19) and (2.20),

3 “m
_ 1N_/ (5 N Ww) (2.24)

and

* . 2 0k

at, = N, (4X ) Ar, N) rPa'3)
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«

wii@Ye

N_ = (0.05)N £0
a 0 Ll)
~

)

and

and At;and At are the

N = (0.1) N

time steps

(2.27)

for the mixing and diffusion

processes, respective

The flame thickness 1s measured according to Equation

’ * » *

(1.8) with £. replacing £, « The location of LCXyo )&gt; and

C(Xg &gt; are determined using linear interpolation. The

normalized turbulent flame speed, which is defined as

5 = _°r
1 =

(2.23)

is determined by calculating the speed of the flame at X, 5

The velocity of the reference frame is known and, therefore,

the flame speed is the velocity of the reference frame

(velocity of the grid) plus the velocity of the flame with

respect to the grid.

Moment Model

The moment model solves the scalar transport equation

3
A+

he 9oX . (vc ) = S(O) de 1
rT

Shy bo

(2 V)“
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for &lt;C&gt; and &lt;C' 2 where

~1
v4 = &lt;C&gt; + (¢!

2.30)

and

U = &lt;U.&gt; + U!
1 1

By taking the mean of Equation (2.29)

0 &lt;C&gt; o___ . 2
St Tx, &lt;u, C&gt;=&lt;S(C)&gt; +ry&lt;c&gt;

(2.31)

&amp;

L J"
So. 22)

and subtracting (2.32) from (2.29) a transport equation for C'

Is obtained:

3C , 0 (yr &lt;C&gt; + U.C' =&lt;U! ¢c'&gt;] = s(C)
dt AK, i i 1

2©)&gt; +rvic \7) 33)

To derive the one-dimensional transport equation for «c'?

Equation (2.33) is multiplied by 2C' and the mean of the

resulting equation is

~~

a
A

2 2
JTS a&lt;C'™&gt; _ _ 9 a rN 0&lt;C&gt;

+ &lt;UpP7 3x. Sx SUp €'&gt; - 2&lt;U,C7&gt; Fx (2.34)
1 1 1

2 2 dC' ac’
Kv &gt; Vv &lt;C! —- CE —_— o_Oc's(c)&gt; + vVo&lt;c'o&gt; 2V 5 3X, ©

timc

Turbulent transport is modeled by gradient diffusion:

&lt;C&gt;1 = _ I ob

c'&gt; T 3X, (- 5)3
. -

and
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2
2 a&lt;C'™&gt;&lt;7]! eS = ny —

s © T 3X, (2 73)= vpNe

and the scalar dissipation is modeled by

c' ac’ 22 pS 25 &gt; 2 wee
ox, OX,

(2.37)

Since the flame 1s assumed to be statistically one dimensional,

derivatives with respect to X, and X, are zero and the equation

can be written in terms of X, , or X, Therefore, equation

(2.34) becomes

2 2 2 2
3&lt;C' &gt; 3&lt;C'5_ 9 o&lt;C'™&gt; 92)- + &lt;I&gt;T = 3% Trax + 2 (5%

-y

&gt;
4 TY wen? (2.38)

where w and I are defined in Equations (2.3) and (2.4).

This model assumes a Taylor expansion of &lt;S(C)&gt; up to and

including second order terms:

2 2
D&gt; or Sc C&gt;) + ye) &lt;C &gt;

5 C 2.
(2 1)3

and

” “d s(c)&gt; = 25{8E2) (or? (2.49)

Therefore; the transport equations for &lt;C&gt; and €'? &gt; are

9=&lt;C&gt; &lt;u&gt;952&gt; " Se ri5E + S(&lt;C&gt;)hh3

I F502) sc (2.41)
dC *
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and

3&lt;c'®&gt; lO 2&lt;c'® _9 rr 3&lt;c'%&gt; + 2], 3&lt;c&gt;d&lt;cC&gt;
At aX 3X . T ax 3X 3X

0S(sC&gt;) &lt;c'2, -Ww&lt;" (2.42)
A

These equations can be normalized by £, and u'.

X = X/4.

*
U =&lt;U&gt;/u

52 (u'll)
s“(c) = (L./u')s(C)

Defining

(2.43)

(2.44)

(2.45)

(2 "5)a» bs,

and using the definitions in Equations (2.5) and (2.6) for

rr’ and w* the normalized equations for &lt;C&gt; and &lt;C'2 &gt; can be

written as

C
&lt; * ®O&lt;C2 Luh 2se2 LH 9 902, (&lt;C&gt;)
3 Jd ® OX . 9X

1 J25% ¢ 2&lt;| C&gt;) &lt;C''&gt;
3 2:

(2. 47)

and

3&lt;c'?&gt; * a&lt;c's Cu 2 3&lt;c'%&gt; Cu 9&lt;C&gt; &lt;C&gt;
x vt &lt;U&gt; xT = wx tg TF _.*

dt dX Op 3x 3X s OX 3X
*

357(&lt;C2) &lt;c'?. oo on? (2.48)

where &lt;U* &gt; is the mean flame speed.



These equations are solved for &lt;C&gt; and &lt;C' 2 using the

finite difference technique described in Appendix A. The

nn y
ws*

finite difference grid is similar to the grid described for the

Monte Carlo model. Each node has a value of&lt;C&gt; and &lt;C'2&gt;

associated with it and the flame thickness is defined by

Equation (1.8).
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CHAPTER 3

In this chapter, calculations based on the two models

described in Chapter 2 are reported. The calculations are for

a Reynolds number of 108 and for a range of Damkohler numbers.

The results reported include turbulent flame speeds,

thicknesses and profiles of &lt;C&gt; and «ct?

From Damkohler's theory, it has been shown in Chapter 1

(see Equations (1.29) and (1.30)) that the turbulent flame

speed and thickness are

S
x

5° = —1
- 11!

(Q (c, + rn? 5" ( LA
J a .1)

and

L }

€

(: 2)

These theoretical values of flame speed and thickness, denoted

by (s7), and (47)ps are compared to the calculations from the

Monte Carlo and moment models.

The moment model reduces to the Damkohler theory as

Q approaches zero. Therefore, values of flame speed, (STs

and flame thickness, ( LD calculated from the moment model

approach (sr) and £3), as the Damkohler number decreases. For

small Damkohler numbers, calculated values of (sy), and (2 ),, can



32

 ¥*
be used to determine s% and £, from Equations (3.1) and (3.2).

Figures 9 and 10 show plots of flame speed and flame thickness

calculated from the moment model. For Damkohler numbers of

0.01 and less, 5; and 2 are determined to be 0.768 and 4.78,

respectively. As in previous chapters, these values of s, and

£, are used in all subsequent calculations. Figure 11 shows
» . » * .

the ratios of (Sth (8; )pand UD, ULT)pas a function of Q.

These ratios are calculated using Equations (3.1) and (3.2) and

the results from Figures 9 and 10. The moment model departs

from the Damkohler theory for Damkohler numbers greater than

0.1 and the model fails to reach the convergence criterion

described in Appendix A for values of greater than 0.165.

w ph

The moment model assumes small fluctuations of C about the

mean (i.e. C'?&gt; « 1.0). Figure 12 shows a plot of the

maximum value of &lt;C'2% or Cloxs versus £2 . As

Q increases, Crax iNCTeases. Since C' is nonzero and the

reaction rate (see Equation (1.13)) is highly nonlinear, the

assumption of small fluctuations of C about the mean is not

valid for large Damkohler numbers. Figure 13 shows contours of

the reaction rate S*(&lt;XC&gt;) and

3% s*¢(&lt;C&gt;) &lt;c'?
—.2 Zz 2

versus &lt;C&gt; for $2 =0.165. The second derivative term is much

larger than S™(KC&gt;) for small values of &lt;C&gt;. This region of
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the flame is characterized by small changes in &lt;C&gt; and is the

preheat zone. Chemical reaction is limited by the growth of

this zone.

Figures 14 and 15 show the results of calculations from

the Monte Carlo model of flame speed, (ST hues and flame

thickness, UD as a function of the Damkohler number. The

figures shows the mean values of (Th and dU? (indicated byTMC TMC

dark squares) with plus and minus one standard deviation

(indicated by the circles and triangles ). The standard

deviation @ of (5c is calculated from the values of

5S, obtained in M independent trials,

= * 2 \ 1/2
M , -

: = (5 MCy [(Sp)yc]g = (= b» (3.3)

where (Cho ), is the value of the ith trial. For a given

value of § , the flame speed and flame thickness are

calculated M times so that the standard error is

2 TY YTYOY =
ry

‘q4)
 Vv M

For the calculations shown in Figures 14 and 15, N is 25.

Therefore, the likely error of (s?) is one fifth of the

standard deviation.

For simplicity, these results are redrawn in Figure 16 and

l7 using only the mean values. Figure 16 also shows the



-

LY4%

curves of flame speed and flame thickness obtained from the

Damkohler theory and laminar flame theory (Equations (1.11) and

(1.12)). Figure 17 shows values of L} from the Damkohler

theory and calculated values of / The For a Reynolds number of

10 © » the laminar flame thickness is of the order one millionth

and is not shown in Figure 17. The Monte Carlo model departs

from the Damkohler theory for values of the Damkohler number

greater than 0O.l. Below £2=0.1, Ch J and Ue are within

one standard deviation of (87), and £2), . Both (51 c and

3 he depart from the Damkohler theory and approach horizontal

asymptotes as £ increases. These asymptotes are

characteristic of Regions I and II of Figure 6 which is

described in Chapter l. According to Figure 38, - (Sc should

depart from the Damkohler theory and tend to a horizontal

asymptote as £2 increases. As may be seen in Figure 16,

(Tac does reach such an asymptote but not until Q=10%. This

result can be explained by examining the pdf's of C for a range

of Damkohler numbers.

Figure 18 shows the calculated pdf's of C at five

different grid locations for a Damkohler number of 10.0. The

mean concentration of C at each grid location is indicated by

an arrow. For &lt;C&gt;=0.5, the magnitude of a spike at I =1.0

represents the probability of fully burnt fluid at Xose As &lt;C&gt;

increases, the probability of fluid with a concentration of 1.0



$5

increases. Figure 19 shows the pdf's at X2s for five different

Damkohler numbers. In the limit of zero Damkohler number,

there are no fluctuations and so the pdf is a Dirac delta

function at &lt;C&gt;. For the smallest Damkohler number shown,

Q =0.05, the pdf is a bimodal distribution. As £2 approaches

zero, the shape of the pdf will approach a delta function at

&lt;C&gt;=0.5. As increases the pdf changes from the bimodal

distribution to two spikes located at YY =0.0, and Y=1.0.

This change is due to the increase in the chemical reaction

rate. As the reaction rate increases, the probability of fully

burnt fluid increases. Also, the probability of intermediate

values of C (in the range 0.0&lt; Y¥&lt;1.0) decreases. Since a

fluid with a concentration of 0.0 cannot react (i.e. $®(0.0)=

0.0), reaction does not occur until after the mixing process

begins. As suggested by Figure 19, once fluid reaches a

certain value of C, say c*, complete reaction occurs almost

instantaneously. Therefore, the probability of fluid with a

concentration in the range cy &lt;1.0 is very small. This

value of C° is dependent on £2 and, as £2 increases,

C* decreases. For larger values of  , although the chemical

reaction is very fast, the Monte Carlo model is mixing limited

since reaction does not occur until after mixing.

The Monte Carlo model assumes the steepest scalar

gradients are due to scalar dissipation caused by turbulent
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straining. This assumption is invalid when laminar flamlets

give rise to even steeper scalar gradients. Therefore, the

Monte Carlo model does not apply in the laminar flame region of

the R-Q plane and the calculated flame speeds and flame

thicknesses do not match ST and I7 from laminar flame theory.

Figures 20,21, and 22 compare the results of the moment

model to the Monte Carlo model. Although it would have been

desirable to have more data points in Figures 20 and 21,

conclusions can be drawn from the data shown. In Figure 20,

. ® ® ® » .

the ratios of (St), /(ST)pand (ST) / (ST), are plotted in terms

of £2 . Both models depart from the Damkohler theory for

Damkohler numbers greater than 0.1, but the moment model

predicts a greater value of ST than the Damkohler theory while

the Monte Carlo model predicts a smaller value of ST. In

Figure 21, the ratios of Un), dL), and (1), / UD) are
plotted in terms of Q . For Damkohler numbers greater than

0.1, the Monte Carlo model predicts a larger flame thickness

than the Damkohler theory and the moment model predicts a

smaller flame thickness.

Figure 22 shows maximum values of C' versus Q for the

Monte Carlo model and the moment model. For Damkohler numbers

larger than 0.1, value of C! ., calculated from the moment model

are larger than the values of Cl,, calculated from the Monte
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Carlo model. Due to these larger values of Crax , the moment

model predicts larger values of Sh than the Monte Carlo model.

The value of Cg, according to the Monte Carlo method

approaches an asymptotic value of 0.5 as §2 tends to infinity.

This is the maximum possible value,.correspondingtoadouble

delta function distribution.

The results of the moment model need more explanation. In

the limit of zero Damkohler number, the moment model assumes a

pdf of a Dirac delta function at &lt;CD. Even for a Damkohler

number of 0.05, the pdf calculated from the Monte Carlo model

(see Figure 19) is a bimodal distribution. Therefore, this

assumption is incorrect and the moment model is invalid.
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CONCLUSIONS

Through dimensional analysis, two indepenent,

dimensionless parameters are defined. These parameters are the

Reynolds number, R, and the Damkohler number, 2 . Any point

on the R-£ plane correpsonds to a set of operating conditions

for a turbulent flame. Three different regimes of combustion

on the R-{ plane are defined: the Damkohler theory regime

where Damkohler's theory is applicable, the regime where the

turbulent flame speed and thickness are independent of R and

Q 5 and the laminar flame regime.

Two different models are used to predict turbulent flame

speeds and thicknesses for a range of Damkohler numbers. -Both

models are independent of Reynolds number. The first model,

the moment model, solves the scalar transport equation and

assumes small fluctuations of C about the mean. The moment

model fails because it assumes a pdf of a Dirac delta function

at &lt;C&gt;. As explained in Chapter 3, this assumption is invalid.

The second model uses a Monte Carlo method to solve the

pdf equation of C. It assumes the steepest scalar gradients

are due to scalar dissipation caused by turbulent straining.

For small values of £2 , the results of the Monte Carlo model

match those of the Damkohler theory. For Damkohler numbers
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greater than 0.1, the Monte Carlo model departs from the

Damkohler theory and reaches an asymptote where the flame speed

and flame thickness are independent of R and Q . For the

laminar flame regime, the results of the Monte Carlo model do

not match the values of flame speed and flame thickness

obtained from laminar flame theory. This is because laminar

flamelets cause steeper scalar gradients than assumed by

gradient diffusion. From the pdf's calculated by the Monte

Carlo model, it is shown that the model is mixing limited.
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Appendix A

A finite difference scheme is used to solve Equations

(2.47) and (2.48), The following equations list some of the

terms found in (2.47) and (2.48 and their finite difference

axprassions.

&lt;C&gt; &lt;c®&gt; - ct?
= J J &gt;

at Lo

a’
('1)yo

n

where &lt;C j &gt; is the scalar concentration at node j and the

current time, n.

9&lt;C&gt; &lt;c¥&gt; -  &lt;c® 2
—_— = J 00 J=1

*
0X Ax”

The term &lt;CT &gt; can be simplified as &lt;C .&gt; with the n being

A

understood

2 ]

87&lt;C&gt;  &lt;C,.&gt;- 2&lt;C.o + &lt;C&gt;
ax*2

( A3Y

AY

d&lt;c&gt;|? &lt;C..ox” = 3 {+&gt; "&lt;C&gt; 2
&lt;

Ax” )  ( 7 &lt;C, &gt;\?| n-1; . -1

| + 35 n (A%)

sn 1ig &gt; = Cy &lt;r ® (0).
a

35" (&lt;c&gt;) 2
3c &lt;C &gt; =

%* _-

ds” («cts )
&lt;C&gt; (0)= E

a ——— LTE UY &lt;C &gt; —
| —

2 x3s («ct 298 («Gy &gt; &lt;6&gt;
A 7

(51)
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From these expressions, Equations (2.45) and (2.46) can be

written in the form

A A = 3 (A8)

where X is a column vector of the form

and A

£ [&lt;c » &lt;C

is a block

)
sees €C. &gt; LO

I
2 21T

&gt; ®@ © © &gt; &lt; !sees &lt;C2 eS] Tu)

rq ~diagonal matrix composed of 2

matrices.

Therefore, Equations (2.47) and (2.48) can be solved

simultaneously for &lt;C i” and C5, 151, 000,3 using a Gaussian

elimination routine which solves Equation (A8) for X. Initial

conditions for &lt;C 3 and &gt;. are assumed and the criterion

for convergence is Error &lt;10 where

Error
J,

&gt; (B. - A,X3 J
i=1

\
)

( asBY
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Appendix B

This appendix contains the software listings of the computer

programs used in this project. The following programs are

listed:

Monte Carlo Modeleaa--.-.

Moment model... 2 &amp; ® » 9

Matrix inversion routineececeoese

Runge-Kutta integration scheme.

oH Ry + @&amp;@ @ &amp; 6&amp;

.66

AAP TARE RRB E NTC hod

seoasc83

coecccseescedl
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\

CS
1

 ft
re

w

\

”.

~

\

~~

LC
”~

 ry ea omg

¢ MONTE CARLO MODEL

THIS PROGRAM USES THE MONTE CARLO METHOD TO PREDICT
FLAME SPEED AND FLAME THICKNESS OF A PREMIXED TURBULENT
FLAME

USAGE
INPUT FILE CONTAINING VALUE OF DAMKOHLER

SUBROUTINE RXN

DESCRIPTION OF PARAMETERS

A — 2 X NCOUNT MATRIX USED TO CALCULATE
STANDARD DEVIATION OF FLAME THICKNESS
AND FLAME SPEED

SCALAR CONCENTRATION OF CURRENT ELEMENT-
WHICH IS TRANSFERED TO SUBROUTINE RXN
DAMKOHLER NUMBER
TIME ELAPSED SINCE CURRENT ELEMENT LAST REACTED

NONDIMESIONAL DISTANCE BETWEEM GRID NODES
CHARACTERISTIC TIME STEP FOR DIFFUSION PROCESS
CHARACTERISTIC TIME STEP FOR MIXING PROCESS
ARRAY DIMENSIONED F(NV,NEL,NJ) WHICH

CONTAINS INFORMATION ABOUT C AND T
MEAN CONCENTRATION AT EACH NODE
A CHECK WHICH SHOULD BE POSITIVE IF THE

FLUCTUATIONS ARE CORRECT
FLUCTUTATION FROM THE MEAN AT EACH NODE
THE FREQUENCY WITH WHICH THE PDF

CALCULATIONS ARE PERFORMED
INSTANTANEOUS FLAME SPEED
TRANSFERED TO SUBROUTINE RXN SO THAT INPUT
FILE INTE.DAT IS READ ONCE

NUMBER OF DIFFUSION STEPS PERFORMED
NUMBER OF ELEMENTS COMMUTED DURING DIFFUSION
NUMBER OF ELEMENTS IN EACH ENSEMBLE
NUMBER OF BLOCKS IN PDF HISTOGRAM
NUMBER OF GRID NODES, OR ENSEMBLES
NUMBER OF PAIRS MIXED DURING EACH TIME STEP
NUMBER OF MIXING STEPS PERFORMED

NUMBER OF CONVECTION SHIFTS
NUMBER OF SPECIES
ARRAY USED TO DETERMINE PDF

ARRAY USED TO DETERMINE PDF
ARRAY USED TO DETERMINE PDF
SYSTEM RANDOM NUMBER GENERATOR

STANDARD DEVIATION OF TBAR
STANDARD DEVIATION OF SPBAR

MEAN FLAME SPEED
TIME

INVERSE OF THE DAMKOHLER NUMBER, OR THE CHEMICAL
REACTION TIME

C=—-

DAMK-
DELT-
DELX~-

DTDIF-
DTMIX-

F=-

FAVG—-
FDIFF-

FLUCT-

FREQ-

FSPEED-
INIT-

NDIFST-
ND=-

NEL-
NGRID-

NJ-
NM-

NMIXST-
NOSHIF-

NV-
POUT-

Pl-
pP2-

RAN-
SD1-
SD2-

SPBAR-
T=

TAU=-
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Cc

c
L

TBAR-
TFINAL-
THICK-

TSS-
XI,-

MEAN FLAME THICKNESS

FINAL TIME VALUE
INSTANTANEOUS FLAME THICKNESS
PREDICTED VALUE OF T AT STEADY-STATE

NONDIMENSIONAL LENGTH OF THE GRID

PARAMETER NV=2,NEL=200,NJ=51,NGRID=41
VIRTUAL F(NV,NEL,NJ),A(2,200)
DIMENSION FAVG(NJ),FLUCT(NJ),FDIFF (NJ)
DIMENSION P1(NGRID),P2(NGRID),POUT(9,NGRID)
COMMON /ILIST/INIT,C,DELT

3

od

mm
1a

i

Cc
SET INITIAL VALUES

DATA T/0./
~
b

“s
oo

a

3
 dd

DATA NMIXST,NDIFST,NOSHIF,NCOUNT,IPDF,INIT/6%0/

a

OPEN (UNIT=4,NAME="MONTE.DAT',FORM="FORMATTED' ,TYPE="0LD',
READONLY)
READ(4,*)DAMK
CLOSE (UNIT=4)
TAU=1. /DAMK
TSTART=SECNDS(0.)
FREQ=.1
TSS=100.,
TFINAL=625. * (NGRID - 1)/FLOAT(NEL) * FREQ + TSS

IY=INT (SECNDS (0.0) /60.)
CALL IDATE (L,M,N)

C THE ABOVE LINES SUPPLY THE SEEDS FOR THE RANDOM
C GENERATOR

NM=NEL*,05
ND=NEL * .1

DELX=,2/(DAMK*%*,5)
XL=DELX * (NJ-1)
DIDIF=ND * DELX ** 2/(FLOAT(NEL) * .129)
DTMIX= NM/(FLOAT (NEL) * 2.)

~
,

, INITIALIZE POUT ARRAY
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111

DO 111 J=1,NGRID
DO 111 I=1,9
POUT (I,J)=0.

Bh
[%)

~
4

»
a

9
3

OPEN (UNIT=4,NAME="MONTE.OUT' ,FORM="'FORMATTED' ,TYPE="NEW')
OPEN (UNIT=2,NAME="MONTE.TMP' ,FORM="'FORMATTED' ,TYPE="NEW')
CLOSE (UNIT=2)
ARITE(4, 995)TAU,DAMK
FORMAT (1X, 'THE RXN RATE IS ',E10.3 /1IX

DAMK. = ',E10.3)

WRITE(4,99)
FORMAT (1X, "THIS PROGRAM UTILIZES THE CURL MIXING MODEL
WITH REALISTIC RXN RATE')
WRITE (4,*)IY ,M

C INITIALIZE
C ASSUME STEP FUNCTION FOR INITIAL

NJ2=NJ/2
NEW=NJ2 - 1

NEW1=NEW + 1

11

1000

f

\r

3000

DO 11 J=1 NEW
DO 11 I=I1,NEL
F(2,1,J)=0.
F(1,I,J)=1.
DO 1000 J=NEW1,NJ
DO 1000 I=1,NEL
DO 1000 N=1,NV
F(N,I1,J)=0.0
XOLD=(NEW1+NEW)/2.
WRITE (4,2 )DELX
FORMAT (1X, ' DELX = ' F10.4)

#RITE (4,1)XL,NJ,NEL
FORMAT (1X, ' LENGTH IS ',F10.4,1X,'NJ IS',I4,

X, "NEL IS',I4)
WRITE (4,5000)DTDIF,DTMIX
FORMAT (1X, 'DTDIF IS',F10.4,1X, 'DTMIX IS’, iX,F10.4)

~
oP

~N
8

SHOLD=0.
TOLD=0.

&gt; CALL ROUTINES TO SIMULATE RXN,MIXING,DIFFUSION AND
&gt; CONVECTION,DEPENDING ON CHRONOLOGICAL ORDER

IF(((T+DTDIF) .GT. TFINAL) .AND.
&amp; ((T+DTMIX) .GT. TFINAL))GOTO 999

TMIX= (NMIXST + 1) * DTMIX
TDIF=(NDIFST + 1) * DTDIF
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IF((TDIF .NE. TMIX) .AND. (TDIF .LT. TMIX)) GOTO 6
NMIXST=NMIXST + 1
T=TMIX

C THIS ROUTINE SIMULATES MIXING BY SELECTING NM
C PAIRS OF ELEMENTS AT EACH NODE AT RANDOM AND
C REPLACING THEIR CONC. VALUES BY THE
C AVERAGE CONCENTRATIONS
C

DO 6010 J=1,NJ
DO 6010 I=1,NM

I1=INT (NEL * RAN(IY,M)) + 1
I2=INT(NEL * RAN(IY,M)) + 1
C=F(1,I1,J)
DELT=(T - F(2,11,J))/TAU

C
C CALL SUBROUTINE TO PERFORM REACTION PROCESS

SUBROUTINE MUST BE CALLED FOR EACH ELEMENT

CALL RXN

F(1,11,J)=C
F(2,I1,J)=T
C=F(1,12,J)
DELT=(T = F(2,12,J))/TAU
CALL RXN

F(1,12,J)=C
F(2,12,J)=T Lo :

F(1,I11,J)=.5 * (F(1,11,J) + F(1,12,J))
F(1,12,J)=F(1,11,J)
IF((TDIF - TMIX) .GT. .00001) GOTO 13
NDIFST=NDIFST + 1
T=TDIF

5010 -

5

c

C
c
c
c

THIS ROUTINE SIMULATES DIFFUSION BY COMMUTING ND
ELEMENTS CHOSEN AT RANDOM FIRST IN THE FORWARD
DIRECTION THAN IN THE REVERSE DIRECTION. (FORWARD
WAS CHOSEN AS BEING IN THE POSITIVE X-DIRECTION,
FROM BURNT TO UNBURNT)b

=]

-

”.

?
\a

ND2=ND%*?2
C
C SELECT 2 SETS OF ND ELEMENTS AT RANDOM AND PLACE AT TOP
C COORDINATES OF ELEMENT ARRAY

DO 7020 J=1,NJ
DO 7020 I=1,ND2

ITOP=NEL - I + 1

I1=INT (ITOP*RAN(IY ,M)) + 1
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DO 7020 NSPEC=1,NV
STORE=F (NSPEC,I1,J)
F(NSPEC,I1,J)=F(NSPEC,ITOP,J)
F (NSPEC,ITOP,J)=STORE

7020 CONTINUE
2
C FORWARD DIFFUSION
C COMMUTE ND ELEMENTS AT TOP OF ELEMENT ARRAY FROM
C NODE I TO NODE (I + 1)

NJ1=NJ - 1

DO 7030 N=1,ND
NUMEL=NEL - N + 1

DO 7030 I=1,NJI
NODEB=NJ - I

NODEF= NODEB + 1

DO 7030 NSPEC=1,NV
7030  F(NSPEC,NUMEL,NODEF)=F(NSPEC,NUMEL,NODEB)
c

C SET CONCENTRATION OF ELEMENTS AT FIRST NODE TO THAT OF B.C.'S

NBEG=NEL - ND + 1

DO 7040 J=NBEG,NEL
F(2,J,1)=T

7040 F(1,J,1)= 1,0
C

C BACKWARD DIFFUSION (FROM UNBURNT TO BURNT)
r

DO 7050 N=1,ND
NUMEL= NEL - ND - N + 1

DO 7050 I=NJ1,1,-1
NODEB=NJ - I

NODEF= NODEB + 1
DO 7050 NSPEC=1,NV

7050  F(NSPEC,NUMEL,NODEB)=F(NSPEC,NUMEL,NODEF)
C

C SET CONCENTRATION ON ELEMENTS AT LAST NODE TO THAT OF B.C.'S.

NBEG1=NEL —- ND2 + 1

NEND = NEL - ND

DO 7060 J=NBEG1,NEND
F(2,J,NJ)=T

7060 F(1,J,NJ)=0,0
7010 CONTINUE

I

“

CHECK ON WHETHER CONVECTION CORRECTION IS NECCESSARY
( IF AVG CONC. OF ELEMENTS AT NODE NJ2 HAS REACHED 0.5)



71

3 SUM=0.
DO 7 I=1,NEL

c=F(1,I,NEW1)
DELT=(T - F(2,I,NEWl))/TAU
CALL RXN

F(1,I,NEWl)=C
F(2,1,NEW1)=T

SUM=SUM + C

AVG=SUM/FLOAT (NEL)
IF (AVG .LT. .5) GOTO 50
NOSHIF=NOSHIF + 1

c

3

C
c
¢

THIS ROUTINE SIMULATES THE CONVECTION PROCESS BY MOVING
THE ELEMENTS AT NODE 1 TO THE LAST NODAL COORDINATE AND
SHIFTING ALL OF THE VALUES OF THE ELEMENTS ACCORDINGLY

DO 8010 J=2,NJ
NJ1=J - 1

DO 8010 I=1,NEL
DO 8010 NSPEC=1,NV
F(NSPEC,I,NJ1)=F(NSPEC,I,J)

8010 CONTINUE |

DO 8020 I=1,NEL
F(2,I,NJ)=T

8020 F(1,I,NJ)=0.0

&gt; DETERMINE PDF AT EVERY .l TIME STEP

50 IF ((MOD(T,FREQ) .GT. .0001) .OR. (T .LT. TSS)) GOTO 5
G
C UPDATE RXN PROCESS OF ALL ELEMENTS
n

DO 9010 J=1,NJ
DO 9010 I=1,NEL

C=F(l,I,J)
DELT=(T - F(2,1,J))/TAU
CALL RXN

F(1,I,J)=C
F(2,1,J)=T

9010 CONTINUE

DETERMINE MEAN CONCENTRATION AT EACH NODE

DO 200 J=1,NJ
SUM=0.
DO 100 I=1,NEL

SUM=SUM + F(1,I,J)
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100 CONTINUE
200 - FAVG(J)=SUM/FLOAT (NEL)

501

602
603

505

906

£ J
.q

ry »

[X=1
AMEAN=,9
DO 602 J=IX,NJ
I[F(FAVG(J) .GT. AMEAN) IX1=J
I[F(FAVG(J) .LT. AMEAN) GOTO 603
CONTINUE
I[X2=J
IX=IX2 + 1

DO 605 N=1,NGRID
PL1(N)=0,
P2(N)=0.
DO 606 I=1,NEL
JBOX1=NINT(F(1,I,IX1) * (NGRID - 1) + 1.)
JBOX2=NINT(F(1,I,IX2) * (NGRID - 1) + 1.)
P1(JBOX1)=P1(JBOX1) + 1.
P2(JBOX2)=P2(JBOX2) + 1.
WTl=1 = (FAVG(IX1) - AMEAN)/(FAVG(IX1) = FAVG(IX2))

WT2=1 + (FAVG(IX2) - AMEAN)/(FAVG(IX1) = FAVG(IX2))

MEAN=NINT (AMEAN * 10.)
DO 607 J=1,NGRID
POUT (MEAN, J )=POUT (MEAN,J) +P1(J) *WT1 + P2(J) * WT2
AMEAN=AMEAN =- ,.1

IF (AMEAN .GT. .0l1) GOTO 601
i

bhi
 -~
J

A

?

IPDF=IPDF + 1

IF ((MOD(T,.5) «GT. .0001) «OR. (T .LT. TSS)) GOTO 5

THIS ROUTINE DOES THE CALCULATIONS TO PRODUCE
OUTPUT FILE

THE

CALCULATE FLAME THICKNESS AS NODE WHERE AVG CONC. IS .9 TO
WHERE AVG. CONC. IS .l
FIND X COORDINATE WHERE CONC. IS .5 TO DETERMINE FLAME SPEED

-
v

222
201

DO 222 J=1,NJ
IF (FAVG(J) .GT. .9) IX1=J

IF( FAVG(J) .LT. .9) GOTO 201
CONTINUE
IX2=J
KLL=(.9 = FAVG(IX1)) * (IX2 - IX1)/(FAVG(IX2)-FAVG(IX1))
+ IX1
I[XNEW=IX2 + 1

X
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202
204

300
301

~
2

DO 202 J=IXNEW,NJ
IF(FAVG(J) .GT. .5) IXl=J

IF (FAVG(J) LT. .5)GOTO 204
CONTINUE
IX2=J
XPT5=(.5 = FAVG(IX1)) * (IX2 - IX1)/(FAVG(IX2)
~ FAVG(IX1)) + 1X1

IXNEW=IX2 + 1

DO 300 J=IXNEW,NJ
IF (FAVG(J) .GT. .l1) IX1=J
IF(FAVG(J) .LT. .l1) GOTO 301
CONTINUE
IX2=J
XR=(.1 = FAVG(IX1)) * (IX2- IX1)/(FAVG(IX2)
= FAVG(IX1)) + IX1

A

S

 LU
C CALCULATE FLAME THICKNESS

223
&amp;

THICK=(XR =- XLL) * DELX

WRITE (4,223) THICK,XLL,XR
FORMAT (1X, 'FLAME THICKNESS
"COORDS ARE ',F10.4,F10.4)

IS ',E12.4,1X,

C
C CALCULATE FLAME SPEED

324

DELSH=NOSHIF - SHOLD

FSPEED=(XPT5 - XOLD + DELSH) * DELX/(T —- TOLD)

OPEN (UNIT=2,NAME="MONTE.TMP' ,FORM="'FORMATTED',
sTYPE='OLD', SHARED ,ACCESS="'APPEND"')

WRITE(2,*)THICK,FSPEED
CLOSE (UNIT=2)
XOLD=XPT5
TOLD=T
SHOLD=NOSHIF

WRITE (4,224)FSPEED,T
FORMAT (1X, 'FLAME SPEED IS ',F10.4,1X,' TIME IS ',F10.4)
NCOUNT=NCOUNT + 1

A(1,NCOUNT )=THICK
A(2,NCOUNT )=FSPEED

C

C CALCULATE THE FLUCTUATION FROM THE MEAN
c

996 DO 500 J=1,NJ
SUM= 0.0

DO 700 I=1,NEL
SUM= SUM + (F(1,I,J) = FAVG(J))##*2

FLUCT (J )=(SUM/FLOAT(NEL))**,5
CONTINUE
DO 600 J=1,NJ
FDIFF(J)=(FAVG(J) * (l. = FAVG(J)))**.5 -FLUCT(J)

WRITE(4,1002)
FORMAT (' F AVERAGE', 2X, 'FLUCTUATIONS',2X, 'FLUC. CHECK')
DO 1003 J=1,NJ
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1003
1001

999
2000

891
892
294

393
888

WRITE (4,1001)FAVG(J),FLUCT(J),FDIFF(J)
FORMAT (1X,F10.4,2X,F10.4,2X,F10.4)
GOTO 5

WRITE (4,2000) NDIFST,NMIXST,NOSHIF
FORMAT('NDIFST IS',I5,' NMIXST IS ',
5,1X, ' ,NOSHIF IS ',I5)
AVG=IPDF * NEL

DO 888 J=9,1,-1
AMEAN=J/10.,
WRITE (4, 891 )AMEAN
FORMAT (1X,' AVG. CONC. IS ',F8.1)
DO 894 I=1,NGRID
POUT (J,1)=POUT(J,I)/AVG
WRITE (4,893) (POUT(J,I),I=1,NGRID)
FORMAT (1X, 10F12.4)
CONTINUE

3

C
.

3 CALCULATE MEAN

SUM1=0.
SUM2=0.
DO 991 J=1,NCOUNT

SUM1=SUM1 + A(1,J)
SUM2=SUM2 + A(2,J)
TBAR=SUM1 /FLOAT (NCOUNT )
SPBAR=SUM2 /FLOAT (NCOUNT )

391

C
C CALCULATE STANDARD DEVIATION
C

392

997

SUM1=0.
SUM2=0.
DO 992 J=1,NCOUNT

SUM1=SUM1 + A(1,J)**2
SUM2=SUM2 + A(2,J)%**2
SD1=SQRT ((SUM1 - NCOUNT #* TBAR*%*2)/FLOAT(NCOUNT-1))
SD2=SQRT ((SUM2 = NCOUNT * SPBAR**2)/FLOAT(NCOUNT - 1))

WRITE(4,997)TBAR,SD1,SPBAR,SD2
FORMAT (1X, 'MEAN FLAME THICKNESS IS ',F10.4,

%',ST.DEV. IS ',F10.4/',MEAN FLAME SPEED IS ',F10.4,
s!,ST.DEV. IS ',F10.4)

TT=(SECNDS(0.)=TSTART)/60.
WRITE(4,*)TT
CLOSE (UNIT=4)
STOP
END
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SUBROUTINE RXN

THIS SUBROUTINE SIMULATES THE MIXING BY INTERPOLATING
VALUES OBTAINED FROM THE INTEGRATION SCHEME, RUNGE

USAGE
CALL RXN
COMMON /ILIST/INIT,C,DELT

DESCRIPTION OF PARAMETERS

c-
DELT-

INIT-

MEAN CONCENTRATION OF CURRENT ELEMENT
TIME SINCE LAST REACTION STEP OCCURED FOR
CURRENT ELEMENT
IF 0 READIN DATA FROM INTEGRATION OF SOURCE TERM
SET TO 1 AFTER INITIAL READING OF DATA

INPUT FILES
INTE.DAT- CONTAINS DATA FROM FOURTH ORDER INTEGRATION

OF SOURCE TERM
”

~

METHOD

a

AN INPUT FILE CONTAINING THAT RESULT OF THE FOURTH ORDER
INTEGRATION OF THE SOURCE TERM IS NEEDED. FROM THE MEAN
CONCENTRATION OF THE CURRENT ELEMENT, THE CORRESPONDING
TIME IS FOUND USING LINEAR INTERPOLATION. THEN DELT
IS ADDED TO THAT TIME AND THE NEW, CORRESPONDING
CONCENTRATION IS FOUND USING LINEAR INTERPOLATION

SUBROUTINE RY.
v
»

DIMENSION CT(502)
COMMON /ILIST /INIT,C,DELT
STEP=.002
ITOP=502

c
C READ INPUT FILE

S

IF (INIT .NE. 0) GOTO 10
INIT =1

OPEN (UNIT=3,NAME='INTE.DAT',FORM="'FORMATTED' READONLY,
TYPE='0OLD')
READ(3, *)(CT(J),J=1,ITOP)
CLOSE (UNIT=3)

Ee
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C IF C IS LESS THAN .001 OR GREATER THAN .999 SUBROUTINE
C RETURNS
Cc

10 IF(C LE. .00l)RETURN
IF(C LT. .999) GOTO 20
c=l.
RETURN

c
C DETERMINE LOCATION IN ARRAY

20 I=(C + .001)/STEP + 1
I1=I +1

C

C CALCULATE VALUE OF TO USING LINEAR INTERPOLATION
C

TO=CT(I) + (C = STEP*(I-1) + .001)*(CT(Il) - CT(I))/STEP
T=TO + DELT

Cc

C SEARCH FOR LOCATION OF NEW VALUE OF T

NSTEP2=ITOP/2
J=I + (ITOP - I)/2

DO 45 K=1,NSTEP2
ISUM=NINT (FLOAT (ITOP - J)/2.)
IF(CT(J) .LT. T) GOTO 46
ISIGN=-1
ITOP=J
GOTO 44 :

ISIGN=1
J=J + ISUM * ISIGN

IF(ISUM .EQ. 1)GOTO 40
CONTINUE
IF(CT(J) .GT. T) J=J = |
J1=J + 1

4
A

45
40

C

C CALCULATE NEW CONCENTRATION USING LINEAR INTERPOLATION

C=STEP * (J - 1.) = .001 + (T - CT(J)) *

STEP /(CT(J1) = CT(J))
C=AMIN1(C,1.)
RETURN
IND

5
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MAIN PROGRAM

r~
w

-
S

C

-

3

THIS PROGRAM SOLVES THE SCALAR EQUATION USING THE
DAMKOHLER LIMIT AND ASSUMES GRADIENT DIFFUSION
WITH SCALAR FLUCTUATIONS.

DESCRIPTION OF PARAMETERS:

NJ-

A-
B—
fe

NUMBER OF GRID NODES
AN ARRAY CONTAINING CHANGES IN &lt;C&gt; AND &lt;C'**2&gt;

THESE ARE ARRAYS WHICH COMPOSE THE TRI-DIAGONAL
MATRIX FORMED FROM THE FINITE DIFFERENCE METHOD

= A NULL ARRAY USED BY THE MATRIX INVERSION
SUBROUTINE
CONTAINS THE LAST VALUES OF &lt;C&gt; AND &lt;C'#**2&gt;
CONTAINS THE OLD VALUES FROM F
THE VALUE OF &lt;C&gt; AT THE CURRENT GRID NODE
THE SOURCE TERM EVALUATED AT &lt;C&gt;=Cl
THE FIRST DERIVATIVE OF THE SOURCE TERM
EVALUATED AT &lt;C&gt;=Cl
THE SECOND DERIVATIVE OF THE SOURCE TERM
EVALUATED AT &lt;C&gt;=Cl
THE SPACING BETWEEN GRID NODES,CALCULATED USING

DELX=X*/(DAMK**,5), WHERE X*=,03
NONDIMENSIONAL LENGTH OF GRID,DELX*(NJ-1)
DAMKOHLER NUMBER
TIME STEP CALCULATED USING DT=DT*/DAMK
DT*=,025
LOCATION WHERE &lt;C&gt;=0.5
FLAME SPEED
FLAME THICKNESS
CURRENT TIME
FINAL TIME

A CONSTANT FROM TURBULENCE THEORY,CMU=0.09
A CONSTANT FROM TURBULENCE THEORY ,SIGPHI=O0.7

FOLD-
G=-

Ccl-
s(cl)-

Ds(cl)-

DS2(cl)-

DELX-

XL-
DAMK-

DT=—

XMEAN-
SL-

THICK-
T-—

TFINAL-
CMU-

SIGPHI-

»

bh)

ROUTINES NEEDED

MATRIX

INPUT FILES NEEDED

9
Ae

§

v

-

; B

w METHOD

PARAM.DAT: THIS FILE CONTAINS THE DAMKOHLER NUMBER
CONC.DAT: THIS FILE CONTAINS &lt;C&gt; AND &lt;C'*#*2&gt; FROM

A PREVIOUS RUN TO BE USED AS INITIAL
CONDITIONS FOR CURRENT RUN
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~
L
U3
“J

\J

-+

kh.

*

A

THE ROUTINE SOLVES TWO SIMULTANEOUS PARTIAL DIFFERENTIAL
EQUATIONS FOR &lt;C&gt; AND &lt;C'##*2&gt;, INPUTS CONSIST OF THE
DAMKOHLER NUMBER, GEOMETRY SPECIFICATIONS, AND TIME

STEP.THE OUTPUT FROM THE PROGRAM IS A LIST OF THE
ITERATIONS OF FLAME THICKNESS, FLAME SPEED, ERROR FOR
EACH EQUATION,AND FINAL VALUES OF &lt;C&gt; AND &lt;C'*%*2&gt;,
AFTER AN INITIAL RUN,THE RESULTS FROM THAT RUN MAY
USED FOR INITIAL CONDITIONS FOR SEQUENTIAL RUNS.

PARAMETER NJ=301 .

VIRTUAL F(2,NJ),A(2,2,NJ),B(2,2,NJ),C(2,2,NJ),
D(2,2,NJ),FOLD(2,NJ),G(2,NJ)

S(C1)=6.11E07 * Cl*(1.,-Cl)*EXP(-100,/(1+6.%Cl))
DS(C1)=6.11EO07*EXP(=100./(1l.+6.*C1))*(1l.=2.*Cl +

Cl*(l.-Cl)#*600./((l.+6.*C1)**2))
DS2(C1)=6.11EQ07*EXP (=100./(l.+6.*C1))*(600,/((l.+6.*C1)

§**2)%(2, = 4o*Cl +C1*(1.-C1)*600./((1l.+6.%*C1)*%2)
&amp; = Cl*(1l.-Cl)*12./(1.+6.*Cl)) =2.)

oo?

~

DATA SL,TFINAL,T/1.,10000.,0./
DATA CMU,SIGPHI,CPHI,DAMK/.09,.7,2.,.001/
OPEN (UNIT=4 ,NAME='FLUCTV.OUT' ,FORM="FORMATTED',

TYPE='NEW') CT

OPEN (UNIT=2,NAME="'FLUCTV.DAT ',FORM="FORMATTED *,
IYPE='NEW')
OPEN(UNIT=3,NAME='FLUCT.OUT',FORM="'FORMATTED',
TYPE='NEW')
OPEN (UNIT=1,NAME="'PARAM.DAT' ,FORM="'FORMATTED',
TYPE='OLD' ,READONLY)
CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
CALL ERRSET(73,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
READ(1, *)DAMK
CLOSE (UNIT=1)
WRITE(4,111)
FORMAT (1X, ' THIS PROGRAM SOLVES THE MEAN SCALAR
EQTN. W/ FLUCT.')
WRITE (4,1)SL NJ
FORMAT (1X, ' INITIAL FLAME SPEED = ' F10.4/
' GRID SIZE = ',I4)

 vs

C CALC. DELX.,DT,USING NORMALIZED DELX* AND

DELX=.03/ (DAMK *%*, 5)
XL=DELX*(NJ-1)
DT=.025/DAMK

a
wd

WRITE (4, 3)XL,DELX,DT
FORMAT (1X, ' LENGTH = ',F10.4," DELX =',F10.4/,
' TIME STEP = ',E12,4)&amp;
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555

223

WRITE (4,555)DAMK
FORMAT (1X, ' DAMKOHLER NUMBER = ',E12.4)

WRITE (4,223)
FORMAT (1X/,' FLAME THICKNESS',4X,' FLAME SPEED',4X,
' FLUCTUATIONS'/)5

 nN
wv]

CLOSE (UNIT=3)
CI=—-CMU/(SIGPHI * DELX**2)
NJ1=NJ - 1

C
C DEFINE FLAME FRONT
C hhkkhhhdhhthhhkdhhhdhhhhbhhhhhhhhhhthhhtdrhd bhhkdhihhhirrdhtrk
C NOTE:THIS SECTION IS USED FOR INITIAL RUN AND THEN COMMENTED
C OUT AND REPLACED BY THE FOLLOWING SECTION WHICH READS IN THE
C RESULTS FROM A PREVIOUS RUN
 Fddkkdhdhhkthhdhhdihhhhhhhhrihhbhhihhhlhihhhhtdhhdthdhithhhhhidd
z DO 20 J=1,NJ
220 FOLD(2,J)=0.
2 NJ4=NJ/4
C NJ43=NJ4 * 3
c NJDIF=NJ43 —- NJ4

L DO 40 J=1,NJ4
C40 FOLD(1,J)=O0.
g DO 21 J=NJ4,NJ43
C21  FOLD(1l,J)=l. + SIN(3.14159*((J-NJ4)/(2. * NJDIF) = .5))
C DO 41 J=NJ43,NJ
C4l FOLD(1,J)=1.
3 DO 2002 J=NJ4,NJ

C IF(FOLD(1,J) .LT. .5) IXl=J
C IF(FOLD(1,J) .GT. .5)GOTO 2004
C2002 CONTINUE
C2004 IX2=J
z XMEAN=(.5-FOLD(1,IX1)) * (IX2 - IX1)/(FOLD(1,IX2) -

S &amp;FOLD(1,IX1)) + IX1
C %kkkhhhhhhhihhdhhhhhhhidhdhhhthihihhhlhhthitihlhhhtdhdllthtttk

C NOTE: THIS SECTION IS USED ONLY AFTER AN INITIAL RUN HAS BEEN
C MADE READ INITIAL CONDITIONS FROM DATA FILE AND CALC. WHERE
C THE MEAN CONC. IS TO CALC. FLAME SPEED.

OPEN (UNIT=1,NAME="'CONC.DAT', FORM='FORMATTED' ,TYPE="0OLD",
READONLY)
DO 40 I=1,2
READ(1, *)(FOLD(I,J),J=1,301)
DO 41 J=1,301
FOLD(2,J)=ABS(FOLD(2,J))
CLOSE (UNIT=1)

Chdedkdhbhdhhhhthhdhhhdhhhhdddds * = 70% Ththd "TE" C CLL Lbbedehhhddhlhd

\¥]

C DETERMINE WHERE &lt;C&gt; IS 0.5

DO 2002 J=1,NJ
IF(FOLD(1,J) .LT. .5) IX1=J

IF(FOLD(1,J) .GT. .5)GOTO 2004
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2002
2004

ste

n

CONTINUE
1X2=J
RMEAN=(.5-FOLD(1,IX1)) * (IX2 =- IX1)/(FOLD(1,IX2) -
FOLD(1,IX1)) + IX1
T=T + DT

IF((SL .LT. 0.) (AND. (T .LT. (5. * DT)))SL=!
IF(T .GT. TFINAL) GOTO 999

&amp;

c
C INITIALIZE D

DO 65 J=1,NJ
DO 65 I=1,2

DO 65 L=1,2
65 D(L,I,J)=0.
C
C SET BOUNDARY CONDITIONS

&gt;”
-

&gt;
ld

DO 6 L=1,NJ,NJ1
DO 6 I=1,2

DO 7 J=1,2
A(1,J,L)=0.
B(I,J,L)=0.

c(1,J,L)=0,
B(I,I,L)=l.
F(I,L)=0.

FOLD (I,L)=0.
F(1,NJ)=1.
FOLD(1,NJ)=1.

C
“

 NY

&gt; DETERMINE A,B,C AND RESIDUE AT EACH GRID NODE

DO 30 J=2,NJ1
C1=FOLD(1,J)
A(1,1,7)=CI ~- SL/DELX

A(1,2,J)=0,
A(2,1,3)=0.
A(2,2,3)=A(1,1,J)

al

4

+

B(1,1,J)=1/DT + SL/DELX - 2. * CI

B(1,2,J)=-.5 * DAMK *DS2(Cl)
B(2,1,J)=0.
B(2,2,J)=B(1,1,J) + CPHI ~- 2.*DAMK*DS(C1)

“
wt

3

c(1,1,J)=CI
c(1,2,J)=0.
c(2,1,J)=0.
c(2,2,J)=CcI

#

J

~

R1=DAMK*S(Cl) + Cl1/DT
R2==CI * ((FOLD(1,J+1)=Cl)#**2 + (Cl1-FOLD(l,J-1))#**2)
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1 MN

&amp; + FOLD(2,J)/DT
F(1,J)=R1- A(1,1,J)*FOLD(1,J-1) - A(1,2,J)*FOLD(2,J~1)

- B(1,1,J)*FOLD(1,J) = B(1,2,J)*FOLD(2,J)

- C(1,1,J)*FOLD(1,J+1) - C(1,2,J)*FOLD(2,J+1)

F(2,J)=R2- A(2,1,J)*FOLD(1,J-1) = A(2,2,J)*FOLD(2,J-1)
- B(2,1,J)*FOLD(1,J) = B(2,2,J)*FOLD(2,J)

- ¢(2,1,J)*FOLD(1,J+1) - C(2,2,J)*FOLD(2,J+1)

A(2,1,7)=A(2,1,J) = CI*2,*(FOLD(1,J)-FOLD(1,J-1))
B(2,1,J)=B(2,1,J) + CI*2,*(2,*FOLD(1,J) —- FOLD(1l,J+1)

- FOLD(1,J-1))

C(2,1,J7)=C(2,1,J) + CI*2,*(FOLD(1,J+l) - FOLD(1,J))
G(1,J)=F(1,J)
G(2,J)=F(2,J)
CONTINUE

CALL MATRIX(A,B,C,D,F,NJ)

F(1,1)=-FOLD(1,1)
F(1,NJ)=1. - FOLD(1,NJ)
F(2,1)=-FOLD(2,1)
F(2,NJ)=-FOLD(2,NJ)

I

C
C SOLVE FOR NEW VALUES OF &lt;C&gt; AND &lt;C'#*#%2&gt;

DO 31 J=1,NJ
DO 31 I=1,2

31 FOLD(I,J)=FOLD(I,J) + F(I,J)
C

C FIND LOCATIONS ON GRID WHERE &lt;C&gt;=0.1,0.5,0.9

DO 222 J=1,NJ
IF (FOLD(1,J) .LT. .1) IXl=J

IF( FOLD(1,J) .GT. .1) GOTO 201
CONTINUE
IX2=J
XLL=(.1 = FOLD(1,IX1)) * (IX2 - IX1)/

(FOLD (1,IX2)-FOLD(1,IX1)) + IX1
IXNEW=IX2 + 1

DO 202 J=IXNEW,NJ
IF(FOLD(1,J) .LT. .5) IX1=J

IF(FOLD(1,J) .GT. .5)GOTO 204
CONTINUE
IX2=J
XPT5=(.5-FOLD(1,IX1)) * (IX2 - IX1)/
(FOLD(1,IX2) - FOLD(1,IX1)) + IX1
IXNEW=IX2 + 1

DO 955 J=IXNEW,NJ
IF (FOLD(1,J) .LT. .9) IX1=J
IF (FOLD(1,J) .GT. .9) GOTO 301
CONTINUE
IX2=J
XR=(.9 - FOLD(1,IX1)) * (IX2- IX1)/
(FOLD(1,IX2) - FOLD(1,IX1)) + IX1

222
201

202
204

EY
-

~
4
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C CALCULATE FLAME THICKNESS

’ THICK=(XR - XLL) * DELX

; CALCULATE FLAME SPEED

’ XDIFF=XMEAN - XPT5

XMEAN=XPTS5
C
C DETERMINE ERROR
Cc

SL=SL + XDIFF * DELX/DT
SUM1=0.
SUM2=0,
DO 50 J=1,NJ
SUM1=SUM1 + (G(1,J)/DAMK)*#*2
SUM2=SUM2 + (G(2,J)/DAMK )#**2
CONTINUE

OPEN (UNIT=3,NAME="FLUCT.OUT' ,FORM="FORMATTED',
TYPE='OLD',SHARED,ACCESS="APPEND')
WRITE (4, 115)THICK,SL,SUM],SUM2
WRITE(3,115)THICK, SL,SUMI1, SUM2
CLOSE (UNIT=3)

115  FORMAT(1X,4E12.4) - oo

c

C CHECK WHETHER CONVERGENCE CRITERION IS MET

L

IF ((ABS(SUM1) .GT. .001) .OR.
(ABS (SUM2) .GT. .001))GOTO 5
WRITE (2,*)(FOLD(1,I),I=1,NJ)
WRITE (2, *)(FOLD(2,1),I=1,NJ)
WRITE (4,*)(FOLD(1,I),I=1,NJ)
WRITE (4,%)(FOLD(2,1),I=1,NJ)
CLOSE (UNIT=4)
CLOSE (UNIT=2)
STOP
SND

909
h



83

~
SUBROUTINE MATRIX(A,B,C,D,F,N)

THIS SUBROUTINE SOLVES A BLOCK TRIDIAGONAL SYSTEM USING
GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING. THE FORM
OF THE SYSTEM IS AS FOLLOWS :

B(1) c(1) E(1)
A(2) B(2) c(2) D(2)

A(3) B(3) c(3)

X(1) F(1)
X(2) F(2)
X(3) F(3)

“998420060000

AQ2) B(N-2) CN-2) D(N-2)  X(N-2)  F(N-2)
A(N-1) B(N-1) c(N-1) X(N-1) F(N-1)
E(N) A(N) B(N) X(N) F(N)

B

&lt;

c
C
Cc
C
C
C

WHERE A, B, C, D, AND E ARE KxK BLOCKS, X AND F ARE K
COLUMN VECTORS. D BLOCKS ARE USED IN PARTIAL PIVOTING WHICH
REQUIRES D(2), D(3), «..., D(N-2) TO BE ZERO WHEN BEGINNING
COMPUTATION.E(1) AND E(N) ARE REPLACED BY D(l) AND D(N),

RESPECTIVELY. ALSO, F IS SUBSTITUTED FOR X TO GET THE
FINAL SOLUTION IN F.THUS, INPUTS TO THE SUBROUTINE ARE
A, B, C, D, F, K, KD, AND N WHERE A, B, C, AND D ARE
EXPLAINED ABOVE, F AS AN INPUT CONTAINS KNOWN TERMS, K IS
THE DIMENSION OF BLOCKS, KD IS THE DIMENSION OF K, AND N IS
THE NUMBER OF BLOCK ROWS. OUTPUT OF THE SUBROUTINE, WHICH IS
THE FINAL SOLUTION, IS RETURNED IN F.

-
~ WRITTEN BY B.MINAIE

PARAMETER KD=2,6K=2
DIMENSION A(XD,KD, 1),B(KD,KD,1),C(KD,KD,1),D(KD,KD,1),
F(KD,1)

DATA ZRO /1.E-10/

&amp;
-y

ad

NM1=N-1
NM2=N-2
DO 270 M=1,N
DO 270 JJ=1,K
MM1=M-1
MP 1=M+1
MP2=M+2

C

C**x% FIND LARGEST ELEMENT IN ABSOLUTE VALUE IN BLOCK B(M),
Cc M=1,...,N
0

BMX=0,0
DO 10 I=JJ,K
IF (ABS(B(I,JJ,M)) .LT. BMX) GO TO 10
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BMX=ABS (B(I,JJ,M))
IB=I
CONTINUE
IF (M .EQ. N) GO TO 50

10

c
Chkkk
=

FIND LARGEST ELEMENT IN ABSOLUTE VALUE IN BLOCK A(M+1)

AMX=0.0
DO 20 I=1,K
IF (ABS(A(I,JJ,MP1)) .LT. AMX) GO
AMX=ABS (A(I,JJ ,MP1))
IA=I

20 CONTINUE
C

C*%%%* WHEN M=N-2, FIND LARGEST ELEMENT IN ABSOLUTE VALUE IN
C BLOCK D(N)
r

20

IF (M .NE. NM2) GO TO 40
DMX=0.0
DO 30 I=1,K
IF (ABS(D(I,JJ,MP2)) .LT. DMX) GO TO 30
DMX=ABS (D(I,JJ,MP2))
ID=I
CONTINUE
I[F (DMX .GT. AMX LAND. DMX .GT. BMX) GO TO 120

30

Cnn CHECK FOR PIVOT IN A

i” IF (AMX .GT. BMX) GO TO 90

Pn COMMUTE ROWS IF OVERALL MAX.

So
OCCURS IN BLOCK B(M)

IF (BMX .LE. ZRO) GO TO 340
IF (IB .EQ. JJ) GO TO 150

C
C=

20

C
Mem ema~~

~
“8

70
Cc
(===

COMMUTE WITHIN B(M)

DO 60 J=JJ,K
BTMP=B (JJ, J ,M)
B(JJ,J,M)=B(IB,J,M)
B(IB,J,M)=BTMP
IF (M .EQ. N) GO TO 80

COMMUTE WITHIN C(M) FOR M .LT. N

DO 70 J=1,K
CTMP=C (JJ, JM)
C(JJ,J,M)=C(IB,J,M)
c(IB,J ,M)=CTMP

COMMUTE WITHIN D(M) FOR M .LT. N-1
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br

72
74

80

90
C
Chidk

C
f=

100
c
C=

110
c
Comm

J

112
114
C
Cm

c
Cdkdesk

IF (M .GE. NM1) GO TO 74
DO 72 J=1,K
DTMP=D(JJ, J,M)
D(JJ,J,M)=D(IB,J,M)
D(IB,J,M)=DTMP
CONTINUE

COMMUTE WITHIN F(M)

FIMP=F (JJ ,M)
F (JJ ,M)=F (IBM)
F(IB,M)=FTMP
GO TO 150
CONTINUE

COMMUTE ROWS IF OVERALL MAX. OCCURS IN BLOCK A(M+1)

IF (AMX .LE. ZRO) GO TO 340

COMMUTE BETWEEN B(M) AND A(M+1)

DO 100 J=JJ,K
BTMP=B (JJ, J,M)
B(JJ,J,M)=A(IA,JMP1)
A(IA,J,MP1)=BTMP

COMMUTE BETWEEN C(M) AND B(M+1)

DO 110 J=1,K
CTMP=C (JJ, J,M)
c(3J,J,M)=B(IA,J MP1)
B(IA,J,MP1)=CTMP

COMMUTE BETWEEN D() AND C(M+l1) FOR M .LT. N-1

IF (M .GE. NM1) GO TO 114
DO 112 J=1,K
DTMP=D(JJ,J,M)
D(JJ,J,M)=C(IA,JMP1)
C(IA,J,MP1)=DTMP
CONTINUE

COMMUTE BETWEEN F(M) AND F(M+1)

FIMP=F (JJ,M)
F(JJ,M)=F(IA,MP1)
F(IA,MP1)=FTMP
GO TO 150

WHEN M=N-2, COMMUTE ROWS IF OVERALL MAX. OCCURS IN
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C BLOCK D(N)
c

120 IF (DMX .LE. ZRO) GO TO 340
c

S== COMMUTE BETWEEN B(M) AND D(M+2)

130

re
~

Vea
)

is |

fv

C
aren

140
C
(=
0

150
al

Oddsk
~~

C
C——

160
c

DO 130 J=JJ,K
BTMP=B(JJ,J,M)
B(JJ,J,M)=D(ID,J,MP2)
D(ID,J,MP2)=BTMP

DO 140 J=1,K

COMMUTE BETWEEN C(M) AND A(M+2)

CTMP=C (JJ,J ,M)
c(J3J,J,M)=A(ID,J,1MP2)
A(ID,J,MP2)=CTMP

COMMUTE BETWEEN D(M) AND B(M+2)

DTMP=D (JJ,J ,M)
D(JJ,J,M)=B(ID,J,MP2)
8(ID,J,MP2)=DTMP
JONTINUE

COMMUTE BETWEEN F(M) AND F(M+2)

FTMP=F (JJ,M)
#(JJ,M)=F (ID,MP2)
F (ID,MP2)=FTMP
CONTINUE

ELIMINATE ELEMENTS IN BLOCK B(M), M=l,...,N

JIP1=JJ+1
IF (JJ .EQ. K) GO TO 200
DO 190 I=JJPI1,K
BFACT=B(I1,JJ,M)/B(JJ,JJ,M)

COMPUTE NEW VALUES IN B(M)

DO 160 J=JJ,K
B(I,J,M)=B(I,J,M)-BFACT*B(JJ,JM)
CONTINUE

COMPUTE NEW VALUES IN C(M) FOR M .LT. N

IF (M .EQ. N) GO TO 180

DO 170 J=1_.K
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170  c(I,J,M)=C(I,J,M)-BFACT*C(JJ,J,M)
c

C--— COMPUTE NEW VALUES IN D(M) FOR M .LT. N-l
:

IF (M .GE. NM1) GO TO 174
DO 172 J=1,K
D(I,J,M)=D(I,J,M)~BFACT*D(JJ,J,M)
CONTINUE

COMPUTE NEW VALUES IN F(M)

172
174
g
[==
C

180  F(I,M)=F(I,M)-BFACT*F(JJ,M)
190 CONTINUE
C

C**%% ELIMINATE ELEMENTS IN BLOCK A(M+1) FOR M .LT. N
C
200 IF (M .EQ. N) GO TO 270

DO 230 I=1,K
AFACT=A(I,JJ,MP1)/B(JJ,JJ,M) .

COMPUTE NEW VALUES IN A(M+1)
Cc
C=
§

DO 210 J=JJ,K

A(I,J,MP1)=A(I,J,MP1)=-AFACT*B(JJ,JM)
CONTINUE

COMPUTE NEW VALUES IN B(M+l) AND C(M+1)

DO 220 J=1,K
B(I,J,MP1)=B(I,J,MP1)=AFACT*C(JJ,J ,M)
c(1,J,MP1)=C(I,J,MP1)=AFACT*D(JJ,JM)
CONTINUE

COMPUTE NEW VALUES IN F(M+1)

F(I,MP1)=F (I,MP1)=AFACT*F (JJM)
WHEN M=N-2, ELIMINATE ELEMENTS IN BLOCK D(N)

210
C
Com
n

220

C=
c
230
c
Chk
C

IF (M .NE. NM2) GO TO 270
DO 260 I=I,K
DFACT=D(I,JJ,MP2)/B(JJ,JJ,M)

COMPUTE NEW VALUES IN D(M-+2)

DO 240 J=JJ,K
D(I,J,MP2)=D(I,J,MP2)-DFACT*B(JJ,J,M)

240 CONTINUE
C

C-— COMPUTE NEW VALUES IN A(M+2), B(M+2), AND F(M+2)
a

c
Cm



88

DO 250 J=1,K

A(I,J,MP2)=A(I,J,MP2)-DFACT*C(JJ,JM)
B(I,J,MP2)=B(I,J,MP2)-DFACT*D(JJ,J,M)

250 CONTINUE

260  F(I,MP2)=F(I,MP2)-DFACT*F (JJ ,M)
270 CONTINUE
C

C**** BACK SUBSTITUTE TO GET FINAL SOLUTION IN F(M), M=l,...,N
C

DO 330 MM=1,N
M=N-1}-+1
MP 1=M-+1
MP 2=M+2

DO 320 II=1,K
I=K-II+1
IP1=I+1

C

fo
Cc

280
290

Cc
C—

300

C=——

302
304
310

C=-—
Cc
320
330

COMPUTE SUM OF PRODUCTS WHEN MULTIPLYING B(M) BY F(M)

BSUM=0,0
IF (I .EQ. K) GO TO 290
DO 280 J=IP1,K
BSUM=BSUM+B(I,J,M)*F(J,M)
CONTINUE
CSUM=0.0
IF (M .EQ. N) GO TO 310

COMPUTE SUM OF PRODUCTS WHEN MULYIPLYING C(M) BY F(M+1)

CSUM=0.0
IF (M .EQ. N) GO TO 310
DO 300 J=1,K
CSUM=CSUM+C (I,J, M)*F (J,MP1)

COMPUTE SUM OF PRODUCTS WHEN MULTIPLYING D(M) BY F(M+2)

DSUM=0,0
IF (M .GE. NM1) GO TO 304
DO 302 J=1,K
DSUM=DSUM+D (I,J, M)*F (J ,MP2)
CONTINUE
SUM=BSUM-+CSUM-+DSUM

COMPUTE AND STORE THE FINAL SOLUTION IN F(M)

F(I,M)=(F(I,M)-SUM)/B(I,I,M)
CONTINUE
GO TO 360

C

340 WRITE (4,350) JJ, M,BMX,AMX.ZRO



Q0

FORMAT (10X,' PIVOT ELEMENT IS . LE . ZRO °, 215,3E14.7)
STOP

C
360 RETURN

350

ENT)
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os

RUNGE-KUTTA INTEGRATION SCH¥

PURPOSE

fe

THE PURPOSE OF THE PROGRAM IS TO INTEGRATION THE
SOURCE TERM, DT/DC, USING A FOURTH ORDER RUNGE-KUTTA
SCHEME. THE RESULTS OF THE INTEGRATION ARE TABULATED
AND STORED IN AN OUTPUT FILE.

DESCRIPTION OF PARAMETERS

CINIT-

CFINAL-
CFIN2-

CT-

x

a

fs

a

INITIAL VALUE OF C-SET TO WHERE FUNCTION IS A
MINIMUM (0.933).
FINAL VALUE OF C FOR THE FORWARD INTEGRATION
FINAL VALUE OF C FOR THE BACKWARD INTEGRATION
AN ARRAY OF SIZE NJ CONTAINING THE RESULTS
OF THE INTEGRATION
THE FUNCTION TO BE INTEGRATED
THE STEP SIZE OF THE INTEGRATION SCHEME-
MUST BE LESS THAN CHANGES IN C.
A COUNTER TO DETERMINE WHEN VALUES SHOULD BE
WRITTEN
THE LOCATION IN THE ARRAY AT WHICH INTEGRATION
BEGINS
NUMBER OF DATA POINTS STORED IN TABLE
DEPENDS ON NJ-USED TO DETERMINE STEP SIZE
OF SAMPLING

DETERMINES THE FREQUENCY WITH WHICH VALUES ARE

u
»

['

4a

3 DTDC-
H==

LCOUNT-

INIT-

NJ-
N2J-

“

&gt; NUMBER=-

™
+

a]
VJ

la
\

STEP-
WRITTEN

THE RATE OF SAMPLING BASED ON
AND NJ

THE STEP SIZE H

Pp————

PARAMETER NJ=502
DIMENSION CT(NJ)

A

2

DTDC(C)=EXP(100./(l. + 6. * C) ~ 57.) * EXP(39.1)/
(C * (1. -C))
DATA CINIT,H,CFINAL,CFIN2/.933,.0005,.999,.001/

5

—

a

a

5
OPEN (UNIT=2,NAME="INTE.DAT',FORM="FORMATTED'
TYPE="NEW')
CALL ERRSET(72,.TRUE.,.FALSE.,.FALSE.,.FALSE.,15)
N2J=NJ-2

STEP=1 /FLOAT (N2J)
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INIT=(CINIT + 1. = CFINAL) * FLOAT(N2J) + 1
x

-y

C=CINIT
CT (INIT)=0.
ICOUNT=0
NUMBER=STEP /H

C
C

I=INIT

3

/ t

J 4

0

C FORWARD INTEGRATION BEGINNING AT C= .933
C

10 IF(C .GT. CFINAL) GOTO 999
ICOUNT=ICOUNT + 1
AK1=H * DTDC(C)
AK2=H * DTDC(C + H/2.)
AR3=AK2
AR4=H * DTDC(C + H)
TO=TO + (AK1 + 2. * AK2 + 2. * AK3 + AK4)/6.
IF (ICOUNT .NE. NUMBER) GOTO 6
I=I + 1

CT(I)=TO
ICOUNT=0
C=C + H
GOTO 10

c ]

C BACKWARD INTEGRATION BEGINNING WITH C= .933
C
999 T0=0.

C=CINIT
LCOUNT=0
I=INIT
IF (C .LT. CFIN2) GOTO 99
LCOUNT=ICOUNT + 1
AK1=H * DTDC(C)
AR2=H * DTDC(C + H/2.)
AK3=AK2
AK4=H * DTDC(C + H)
TO=TO —- (AKl + 2. * AK2 + 2, * AK3 + AR4)/6.
IF (ICOUNT .NE. NUMBER) GOTO 7
I=I - 1

CT(I)=TO
ICOUNT=0
C=C - H

GOTO 21
CT (1)=CT(2)
CT (NJ )=ABS (CT(1))
WRITE(2,*)(CT(I),I=1,NJ)
CLOSE (UNIT=2)
STOP
END


