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ABSTRACT

.ONG-SPAN BRIDGE LIVE LOADS

HV

NORMAN SIMON KRAM

Submitted to the Department of Civil Engineering on August 13

1973 in partial fulfillment of the requirements for the deg-

ree of Master of Science.

A model of the renewal type is presented to characterize
the truck arrival process on highway bridges. A unique fea-
ture of this model is that it implies the grouping or cluster-
ing of trucks as they cross a bridge. For long-span bridges,
these groups of trucks are treated as the live loading unit
to be considered in design and a method is outlined for pre-
dicting the load effect due to the presence of groups on a
bridge. The model also serves to point out the underlying
mechanisms for reduction of live load intensity with increase
in bridge span length. Data is presented for truck headways
and truck gross weights to substantiate the assumptions made
in developing the model. Numerical examples are included to
illustrate some possible uses of the model for highway bridge
design,
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Chapter 1: Highway Bridge Live Loads

Lsdid JdNtroduction

Presented in this chapter is a summary of the efforts

made during the past sixty years to quantify and standardize

the live loading for highway bridges. These efforts may be

subdivided into two categories: the development of specifica-

tions for use in design of new structures, and the quest for

probabilistic models to rationalize live load selection,

L  7 Development of Specifications

Before World War I, highway bridge live load design was

based, for the most part, on horse-drawn vehicle characteris=

tics, with consideration given to heavy loads produced by

steam-driven traction engines, The earliest printed article

dealing with the effects of motor trucks on bridges appeared

in porutl-1], and it contained recommendations for the use of

design loadings based on actual vehicles then in service rath-

er than a uniform live load of 80-100 psf plus a concentrated

load as used in design up to that point.

Standardization of highway bridge design throughout the

United States began with the passage of the Federal Highway

Act in 1916, and by 1919 the Federal Government was coopera-

ting in a large proportion of highway projects. This partici-



pation by the Federal Government led to the standardization

of loading requirements for highway bridges nationwide. The

early load requirements were generally in terms of motor

trucks with design loads of 10-20 tons, with 15 ton trucks

taken as a minimum loading for main highway structures.

In 1921, the American Association of State Highway

Officials (AASHO) formed a Committee on Bridges and Structures

and in 1923 this Committee produced a tentative specification

in which vehicular live loads were defined in terms of H

loadings (two-axle standard trucks). In 1925, these loadings

were published as part of the Standard Specifications for

Highway Bridges and Incidental Structures, and a novel fea-

ture of the 1925 Specifications was that live loads were to

be placed in definite traffic lanes. In 1941, the H=-S loading

was introduced, to reflect the growing appearance of combina-

tion vehicles (tractor and trailer) and the heavier weights

of these vehicles, In 1944 further changes were made in the

standard loads, by changing axle spacing and concentrated

loads in the H-S loading. The live loadings as specified by

AASHO have not changed since 1944, and are those in common

ise in U.S. bridge design at present.

Two loading patterns are presented in the current AASHO

Specifications, the H loading and the H=-S loading. The H

loading is based on the 1935 truck train loading (Figure [1.1]
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which consists of a string of vehicles spaced to simulate

truck traffic moving at 15 mph. A lane loading is also pre-

sented to be used on longer spans due to the inconvenience

of applying the truck train loadings and carrying out the

calculations that they entail. The H-S loadings presented ir

1944 are designed to duplicate the truck train loading that

was dropped at that time, with the advantage that in design

only a single truck has to be applied to the structure rather

than a whole string of trucks. Figure [1.2] is a graphical

representation of the H-S loading. For design purposes, both

the truck loading and the lane loading must be employed, with

the governing loading being that which produces the maximum

stress. Tabulated values of maximum moment and maximum shear

for simply supported bridges of various loaded lengths less

than or equal to 300 feet are available in the back of each

of the editions of the AASHO Specifications, with notes ex-

plaining which loading governed in the determination of that

maximum load effect,

With regard to spans longer than 300 feet, the Specifi-

cations make no direct recommendation, but suggest (in the

Introduction to the 5th Edition, 1949) that the uniform live

load be reduced for bridges longer than 300-400 feet. The rea-

soning behind the proposed reduction may best be summarized

by a quote from Asplundtl=2],

There is a natural feeling that traffic loads per
unit length of lane are smaller on long bridge spans
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than on short. Observations on actual traffic lanes
corroborate this feeling but no rational analysis of
the proper magnitude of the reduction seems to exist.

In the absence of specifications for design loadings of

bridges of span length in excess of 300-400 feet, the selec-

tion of the design live load magnitude falls into the province

of the individual designers. Many long-span highway bridges

have been designed for a variety of live loads arising from

differences in loading conditions in different geographical

areas and differences in expected service requirements of

individual bridges.

One possible reason for the lack of specifications for

live loading in the long span range of bridges is the infre-

quency of construction of such bridges. Table [1.1] contains

a summary of the frequency distribution of bridge span lengths

in the California State Highway System-: 37, The number of

spans over two hundred feet in length amount to less than one

percent of the total number of spans. Additionally, as the

span length increases, the proportion of dead load to design

live load increases, to the point that on very long spans the

live load is just a small portion of the total design load.

The author has been told in a conversation with an executive

of one of the design firms that has been responsible for the

design of a number of the longest bridges in the world that

live load can sometimes represent only 10% of the total load

&gt;f a bridge, and the doubling of the design live load would



Frequency Distribution of Bridge Span Lengths

in the California State Highway System

Span Length
(feet)

10 to 19

20 to 29

30 to 39

40 to 49

50 to 59

50 to 69

70 to 79

80 to 89

90 to 99

100 to 109

110 to 199

200 to 399

LOO to 999

1000 to 4200

Number of
Spans

7,655

4,078

3,749

1,936

1,414

1,116

416

355

| 42

214

116

| 21

Ee

te

Percent of Total
No. of Spans

35.32

18.85

17.30

8.97

6.54

5.15

1.93

1.64

70

20

k= » 973

36

15

CS7

Cum,
Percent

35432

54,17

71.47

80,44

86.98

92.13

o4,06

95.70

96,40

97.39

99.32

99.88

99,94

100,00

Table [1.1]
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have little effect upon the economics of the construction of

such a bridge. Furthermore, this executive has submitted that

the live load selection within his firm is based upon formu-

lae derived from traffic observations made decades ago on

some of the East River crossings in New York City. It is also

common to read accounts of the addition of second levels or

median strips to existing bridges not designed originally for

these additions, the usual practice being to assume a more

liberal live load magnitude than in the original design and

to let the excess live load cover the additions to the bridge

Thus, it may be seen that the live load selection for long

span bridges is open to various and individual interpreta-

tions, and may be based in some cases on antiquated data.

In the United States, minimum design loads for bridges

designed to carry heavy truck traffic is specified as H15-

S12 (AASHO classification). In designs for less than H20 or

H20=-S16 provision for overload must be made, while for multi-

lane bridges reductions are specified for the live load due

to the decreased probability of the simultaneous loading of

all lanes, much the same as the reductions made for live load

with increased span length in long span bridges. Current prac-

tice is to design for H20-S16-44 loadings on all bridges even

though the specifications permit design for H15-S12, reflect-

ing the probability that even secondary road bridges may be

loaded with heavy industrial vehicles some time during their

service life,
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Foreign practice has generally been to specify several

design loadings to be used depending upon the importance of

the roads and bridges to be designed. In addition, some

countries provide for the presence of abnormally heavy loads

Most foreign design loadings are based on traffic lanes and

uniformly distributed loads in conjunction with a single

vehicle or knife edge load. In the case of multiple traffic

lanes, one or two fully loaded lanes are placed in the worst

position transeversely and the remaining lanes are considered

to contain only a fraction of the maximum lane loadings.

Incidental to state highway officials' enforcement of

state regulations, much highway data has been collected in

the form of loadometer surveys throughout the United States.

The data collected from these surveys has found widespread

usage as a planning tool in the design of new highways. Ad-

ditionally, many investigators have used this data to verify

the realism of the AASHO-specified live loads.

In the area of long-span bridge design, an attempt was
1-4 . .made in 1g53t ] to utilize survey data to establish a speci-

fication of live load magnitudes. Traffic studies of the

lower deck of the San Francisco~ Oakland Bay Bridge (which

when surveyed was restricted to truck traffic) were reported,

in addition to loadometer surveys of heavy rural traffic, and

the weights and arrangements of military convoys. The load-

ing pattern on the bridge was used as the basis of the recom=-
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mended loading, because it approximated the convoy loading

and more than adequately covered all conditions of loadings

when automobiles were present in the traffic stream. Figure

[1.3] shows the recommended loadings and compares them to

the AASHO loading for the short-span ranges. As noted above,

these recommendations were never accepted by the bridge de-

sign community as specifications for the live loading of long

span bridges, and merely serve as a guide to bridge designers.

3

An , 3 Probabilistic Models

A number of investigators have advanced probabilistic

models over the years to represent the live loading of both

short and long span highway bridges. Common to most of these

models is an effort to point out the rationale behind the

reductions of live load intensity with increase in span

length and number of loaded lanes. Much of the work in the

development of probabilistic models for highway bridge live

loads was started in the early 1950's, and interest in this

area seems to have waned since the mid 1950's. Only recently

has renewed interest in this area been exhibited, especially

#ith regard to long-span live loads and fatigue problems.

Asplund in 1955 published a paperLl=5] in which he de-

veloped a model to consider the loading due to stationary

loads on a bridge, The unique features of his model are the

assignment of slots of deterministic length to each vehicle
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and the consideration cf abnormally heavy vehicles along

with average weight vehicles present on the bridge. Asplund

shows through numerical examples that the lane load predicted

by his model is reduced with increase in span length and he

shows how by proper choice of the weight of the abnormally

heavy vehicles the model can be made to fit well with speci-

fications for shorter span lengths.

In the following year a Symposium on the Loading of

Highway Bridges was held in conjunction with the Fifth Con-

gress of the International Association of Bridge and Struc-

tural Engineering in Lisbon. The proceedings of the Symposium

[1-6] and a magazine reportll=7] outline the various views

that were held at that time. Two Japanese investigators,

Tahara and Konishi, presented papers on their work with live

load models, examining the probabilities of severe concentra-

tions of moving vehicles rather than stopped vehicles as

Asplund had considered previously. They too pointed to the

reduction of live load intensity with increase in span length.

In 1957, Stephensontt 81 proposed a model based on the

assumption of Poisson-distributed spacings between vehicles.

He considered traffic in both directions and computed the

return periods of certain combinations of vehicles present

simultaneously on a bridge. He was thus able to show that

certain combinations occur so infrequently as to drop them

from consideration for design purposes.



In recent years, Garson, Goble, and Moses! 9] have

developed a probabilistic description of traffic loading.

While their work has not been concentrated in developing e

live load model but rather a fatigue prediction program,

their description of traffic characteristics is useful for

the development of components for a live loads model.
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Chapter 2s Highway Bridge Live Load Model

p  Bp 4 Introducticn

The model presented herein considers the full range of

highway bridge spans and attempts to rationalize some of the

traditional assumptions made in long=-span bridge live load

selection. The model serves to point out the underlying mech-

anisms leading to a reduction of live load intensities for

longer spans, and may also be useful in quantifying the amount

of reduction. Furthermore, the model presents a unified ap-

proach to live load considerations for all bridge spans,

rather than singular approaches for the more traditional and

arbitrary classifications: short spans and long spans.

Input variables for the model are parameters of vehicle

behavioral characteristics as determined from data either

currently widely available or collected recently by highway

research groups. Verification of the model will depend upon

the furtherance of the efforts of highway research groups

in the collection of data, and the development of new mecha-

nisms of data collection pointed to the verification of the

specific assumptions made in the model.

Strictly speaking, the model is applicable only to

multi-lane traffic streams with passing of vehicles allowed,

Recognizing, however, that heavy vehicular traffic tends to

bear to the right in multi-lane flow, either through conven-



lence or through regulation, the great proportion of heavy

vehicles will appear only in one lane, and hence applicabili-

ty of this model may perhaps also be extended to use for the

single right hand lane, e.g., in the study of the load effect

on single girders,

2
 ~~ Ww Assumptions and Detalls of Model

2.2.1 Trafl.. Characteristics

Traffic on highway bridges is assumed to move at a uni

form, constant speed. Thus, at least while crossing over a

bridge, it is assumed that vehicles maintain constant rela-

tive spacings among themselves.

A certain degree of independence is assumed for vehicles

in the traffic streams under consideration. In the case of

trucks, which are the vehicles of interest in this model,

it is assumed that the weights and driver characteristics of

individual trucks are mutually independent of one another.

For example, a traffic stream dominated by trucks dispatched

in bunches from one location might well contradict the above

assumption of independence.

Traffic of interest may be characterized as consisting

of groups of heavy vehicles, hereafter referred to as trucks

separated either by gaps in the traffic stream, in which no



vehicles are present, or by lighter vehicles, hereafter

referred to as cars. A group may be composed of one or more

heavy vehicles, concentrated in spatial proximity to one an-

other, and maintaining their relative positions while cross-

ing over the bridge. It should be understood, however, that

the groups hypothesized in this model may not be easily

discernible to an observer on the highway. Rather, the groups

serve as a convenient analytic tool; their existence can be

identified after the processing of traffic headway data, as

will be discussed in Chapter 3. They are of practical impor-

tance because they imply larger loads and load effects than

non=-grouped or random (Poisson) traffic streams.

The number of trucks in a group is taken to be the

random number N (where N may take the following values: n=

ly 2, 3544+) A truck is understood to be a vehicle whose

body type resembles one of the general classifications of

truck body types as appears in Figure [2.1].

It is assumed that the distribution of N, the number of

trucks in a group, 1s given by a geometric distribution (a

more complete discussion concerning this choice of distri-

bution appears in Chapter 3, Section 3,2), whose probability

mass function (PMF) is defined as:

Pin)
——
-—— P[ N=n|

probability that a group is composed of

1 vehicles
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) -py(n (1-p)" I= - 3 Z1)900e

which implies that

smaller group.

a larger sroup is less likely than a

The assumed PMF leads t. the following:

Fy(n)= 1- (1-p)
Ny

rs  ,A } yee

1
E[N]= m= 5

1-p
Var[ N]= oN = 2

in which Fyn) denotes the cumulative mass function (CMF) of

n, E[N] denotes the expected value (or mean) of N, and Var[N]

denotes the variance (or square of standard deviation) of N.

2e2¢2

2elelal

Truck Characteristics

Gross Weight

The gross weight of an individual truck may be repre-

sented by the random variable X, and it is assumed that X

is gamma distributed (for a full discussion of the appro=-

priateness of the gamma distribution for truck gross weights

the reader is referred to Chapter 3, Section 3.3). The

probability density function of X may be expressed as:

ry (x)= x(rx) lex
(kk)

 pp So
J



where

-

My = BY

K

H

The cumulative distribution function (CDF) of individual

truck weights may be written as:

= [M(kyAx)
Fy (x) 5

shere [ (k) is the gamma function, evaluated ass

&gt; K
(x)= J e Yu -1 du

and where M(k,\x) is the "incomplete gamma function", eval=-

lated as

B a(kox)= J e~ UK
| u du

It may also be recalled that for integer k,

(k= (k=1)!

[M(kyAx) .
=k) 1s also known

2e2e202 Truck Length

as the "incomplete gamma ratio”.

The variability of individual truck lengths plays only

a minor role in this model, and therefore these lengths may

pe treated as deterministic quantities. The constant a will



be taken to represent the length of a truck for use in the

model. Individual truck lengths themselves play only a minor

role in the model, especially in the long span range of

bridges, where the span length is much greater than the

length of an individual truck.

2ed »3 Group Characteristics

2ele el Group Length

Define L,, the total length of a

N-1
ip = I Hy oo

Tazo Wy

group of N trucks, asi

wnare fy = 0)

where Hy is defined as the headway between two consecutively

arriving trucks within a group and is measured as the dis-

tance from the front axle of the preceding truck to the front

axle of the following truck. A graphical representation of Lm

is presented in Figure [2.2].

The headway between two groups is defined as Hoo and is

measured as the distance between the front axle of the last

car in a preceding group to the front axle of the first car

of the following group.

for N~» 1, define L, the sum of intragroup truck headways

‘J AD
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[1lustration of Group Length of a Group of n Trucks

Figure [2.2]
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N-1
u = &amp; H

YTiE Wy N~~1

The intragroup headway distances Hy and the intergroup

headways Hq are assumed to be characterized by exponential

distributions. (These assumptions are discussed in Chapter 3,

Section 3.2). The probability density function (PDF) of Hy is

Nritten as:

- = hy
Cig, (Pr) - Ay € N

and

2Hy] = oe

where Ny is defined as the average arrival rate of trucks

within groups.

The PDF of H, is

= nh
a &gt; 0

and the expected value of Hn is

1
E[H,] = 5

where Xo may be thought of as the average arrival rate of

trucks following the departure of a preceding group.

For N = n (a specific number n of trucks in a group),

the distribution of L, the sum of n independent, identically



33

distributed exponential intragroup headways, is given by the

gamma aisvrioution 2%,

Define J, the number of intragroup headways in a group

of N trucks:

hen,

ayn) Tew!

Prya=3(1)" (3-1)
5

|
»

N——
J

j= 1432935000

-2 =hygl
oO) Ze

LI N=n(1)= (n-2)! 5
»

mir

 Nn = Ce I ly.

-

J

It should be noted that for a group ¢f only one truck

L is undefined since a group of one truck's length is com-

posed only of its own individual length and no intragroup

headway contribution.

The distribution of L for random N (provided that N&gt;2)

may be expressed as:

fr ins2(1)= on LL n=n(1) Py, (n)] 1 A

where ». (n) is the geometric distribution of N renormalized

~~» This renormalized distribution of N is needed to

provide a distribution for L that is truly an exhaustively

defined distribution, since L is defined only for N &gt; 2,



Py, (n) = PN] n&gt;2(n)

(1-p)" 1p = ( n=
~—(1-p) 1-p) Pp N= 2339490

Substituting in the aoove 3 roression for the distribu=-

-ion of Ls

2 =A,l
@ MyOy1) Te WT n-2

Cp nee (1)* Eller (1-p)" “p]
1?

oige WI Tv Lyl=p)] 1
i'=0 (i)!

J

. -2yl(1-p) .
Introducing a term e in the numerator of the

bracketed summation, and dividing the term outside the

brackets by the same quantity, the distribution may be re-

nritten ast

“Al i* -Ay1(1-p)
_ plye Mi - [2yi(1-p)] ee ¥ F

fp ins2 (= =wl(1-p) L.5, (i*)!

Recalling the form of the Poisson distribution:

Fee

py (x)= a  = U,1 eZ vee

it can be seen by inspection that the summation inside the

brackets is the CDF of a Poisson distribution evaluated at

equal to infinity, so that the bracketed term is equal to

L

unity. Therefore, the distribution of L may be written simply



-r g

-(pAy)1
Lizz (= (Rye  9)

which is recognized as an exponential distribution, with

parameter Phy The cumulative distribution function (CDF) is

thent

LIN HE APM

Returning now to L,, the total group length, it will be

seen that the distribution of IL, is a mixed distribution,

that is, a distribution composed of a discrete part and a

continuous part.

For n=1, it has been stated above that L, the sum of

intragroup headways, is undefined, and hence L,, the total

group length, is equal to the deterministic quantity a.

The distribution of N gives the probability of n=1 as the

finite quantity p, and hence there is a finite probability

that Ln.=a.

bo

For N&gt;2, the distribution of Lin is derived from the

distribution of L, recognizing that Lin is simply a linear

transformation of L, and the distribution of L is weighted by

(1-p) to account for the proportion of groups with two or

more trucks as compared to the whole family of truck groups.

Graphically, the mixed distribution of i. appears in



Figure [2.3].

Recalling, that for arbitrary X,Y,a,b, where X and Y are

random variables and a and b are constants:

If A J
’

then

fyly)= &amp; fy (5)
Therefore, for L,. = L +

1 IN22(10)= £150 (1p-a

,,~(PN)lip-2]- Tvald l.&gt;a

The continuous portion of the distribution of Ln can

then be expressed as:

fr, (1p)= (1-p) (py )e” Pw)L Ina

where (1-p) represents the fraction of groups with two or

more trucks, which is the fraction to which the continuous

portion of the distribution of IL, applies.

In algebraic form the mixed distribution of L. may be

defined as follows:

Fo. (15)= re, Ur + (1-p)Fy (1p)

where F;is a cumulative probability function of L,, and



P[Ly=al= py(1)=
- discrete part

continuous part

(1p)= (1-p) (PR)
 (py) [1n-a)

}
\

~~

area= 1=-p

Graphical Representation of Mixed Distribution of IL,

Figure [2.3]



where Fr is associated with the discrete values that Lip
p  4d

can assume and Ly is associated with the
~

continuous values

that Lm can assume, These may be defined here as:

"Ly (n° I “~~

lh&gt;a

F1,(n= BG

)

» Lp
&gt; wk 1p-al 1m &gt; a

2¢e2¢3.2 Group Weight

Define W, the total group welght, as:

N

where X is the gross weight of an individual truck and N

is the (random) number of trucks in a group.

It has been assumed above that X, the individual truck

cross weight, is gamma distributed. Recall that the gamma

distribution is regenerative under fixedA,i.e., if two ran-

dom variables are gamma distributed with identical parameter

Ay and one is G(ky 92) or gamma distributed with parameters

ky and ), and the other is G(ky9 2), then the distribution of

the sum of the two gamma distributed variables is G(k tks,

or gamma distributed with parameters (ky +k) and Aj thus the

distribution of W, total group weight, for a given N=n may be



oxpressed ast

] Ow ) HEL MW
“win=n(W)= (nk) N &gt; 0

114
_ nk

Mw iN=n x

a nk
J =

WIN=n 3

Recognizing that N is a random variable, the distribu-

tion of W for random N may be written as:

 yy (W)= EZ [fy yan (Ww) py(n)] Wo

2 a= - Ow) PE (1-p)"
1-0 w n=1 (nk)

1

and

m, = mm

Wy N"X

Jf —ar W, = myOY + oxyX

2.3 Special Applications

With the basic definitions for the model given above,

the model may be put to use answering certain questions con=-

cerning the design live loading of a given bridge of span

length (clear distance between supports) s.



2.3.1 Simultaneous Occurrence of Groups on Bridge

The number of groups simultaneously occurring on a

bridge is defined here to be the set of full groups (i.e.,

pairs, triplets, etc.) which fits on a bridge of span s (i.e.

whose total length is less than or equal to s). This section

examines the following question: Given a bridge of span length

3 and assuming a certain probability level, what set of groups

would fit on the bridge such that the fraction of those sets

(pairs, triplets, etc.) is equal to or exceeds the preset

probability level?

Define M to be the number of groups (members of a set,

oresent simultaneously on a bridge.

For one group to be present fully on a bridge of span s

its group length must be less than or just equal to the span

length. The probability of one group's length being less than

or equal to span length s may be expressed as:

P[Ln&lt;s]= Prt
7 -

+ (1-p)(1-e P wLs al, S
3

o

For two entire groups to be present simultaneously on a

bridge of span s, the sum of their individual headways plus

the headway between groups must be less than s-a, This may be

seen upon examination of Figure [2.4].
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Algebraically this can be expressed ass
2
x L, + &lt; -i=1 1 Hy, = s

where Hg, is defined as the intergroup headway or gap, which

is measured as the distance from the front axle of the last

truck in the preceding group to the front axle of the first

truck in the following group.

in general, for two or more groups to be present on a

bridge simultaneously, the following must hold:

m m=1

x L + Z Ha &lt; s=-a
i=1 i=1

N— Zao ost pee Lym

Defines

m

Lg= 1210

m=-1
[n= IH

G 321 Gy

T= Lg + Lj

The probability of the simultaneous presence of M=m

groups on a bridge of span s may be expressed as the proba-

bility that T \y=p S S—a ors

PLT | peps © -a = Fo n=fs-2)

Nhat remains is to determine Ff.



yr

Recalling that L, the sum of a random number (N&gt;2) of

intragroup headways is exponentially distributed with para-

meter ply, then the distribution of Ls M=m? the sum of m in-

dependent, identically distributed exponential L's is given

oy the gamma distribution, with PDF:
m=1 =-pi,1

f (14)= MI (PAy)1g] eo WF
Lg |M=m g/= i 1s&gt; 0

m=1,2,2,..

The cumulative distribution function (CDF) of this

camma distribution for integer m may be expressed as:

-phyl i
F = (1q)= 1 = IT e=—— W=S
Lol M=mt=g 120 it

for example, for n=

-pA,, 1 =p. 1
= ' ma w S - w S

"Lol m=3 (Ls) 4 e Piylg

PS (p10)
”

The distribution of Hys the intergroup headways, is

assumed to be exponential (as explained in more detail in

Chapter 3, Section 3.2) with probability density function

(PDF) 3

_ =Aghg

fy, (hg)= Ane 1
3

-

Ss
A

where A~ may be thought of as the average rate of arrival of



groups following the departure of preceding groups, and where
1
” is the average gap between groups.
G

For a specific number (m=-1) of intergroup headways, the

distribution of Laos the sum of independent, identically dis-

tributed exponential intergroup headways, is given by the

gamma distribution, with PDFs

re(ale)™ 26 ela
Prglien (Ig) = yr

m 2,34,

and with CDF:

- al i
_ m=2¢ “GG(3n10)

FL wen (Lg)= 1 - To lJele)
G =m i=0 1!

Recalling that for two independent random variables X

and Yi

[If /,

) dx-X(z(x) fyI Fy)= JFo (2

then for T , = Ls | M=m *t Lo vem

fr Mem (t)=_J FL lm=nls) £1, | w=nF-1s) dls
m= 29 79%90s

Since Fy (15)=0 for 14&lt;0, the lower limit of the inte-
S

gral may be changed from =» to 0; also, since f1,a(1a)=0 for



1,0, the upper limit may be changed to t. Rewriting and

substitutings

- 1 A

T n~l, Phy S(prylg)
t)=J (1- £ ————=“1 | dem 0 i=0 it

Agni)"ZeTelPlsot ~~) dlg

M= 2¢3¢000

With the above, the probability of M (m= 1, 2, 3,60)

croups simultaneously occupying the bridge can be evaluated

for each value of m, This probability can then be matched to

a preset probability level and a conclusion reached as to how

many simultaneous group occurrences need be designed for.

Typically, one would expect that the longer the span under

consideration, the more groups it need be designed to carry

simultaneously. For a single set of traffic parameters,

bridges of different span lengths may then be classified as

or 2 or 3 « « + group bridges, the number of groups in their

classification signifying the number of design groups that

must be considered. This type of classification would super-

sede the rather arbitrary present day classification of

bridges into long and short span categories, and would point

the way to a more orderly consideration of bridge design re-

quirements based on the traffic the bridges are to serve and

based upon the proposed bridge spans.



2e3e2 Fully Loaded Bridges

A bridge will be termed "fully loaded" if it is occupied

by one group of trucks whose group length, L,, is equal to or

greater than the bridge span length s. The probability that

any one group will have length equal to or greater than s may

De expressed as:

; byw

Pl Ly 2 3 = - - Fp (sy

-L
(1 "EnD o&gt;lsri a] "

Ss -a] )

S

It is quite clear that for bridges whose span length is

greater than or equal to the length of one truck, as the span

length s increases, there is a decrease in the probability

that the bridge will be fully loaded by heavy vehicles. All

bridge specifications have recognized this fact, and have

provided live load reductions for bridges in the so-called

long-span category. The specifications have never provided

evidence or any sound justification for these reductions and

have appealed to the designer's intuitive feeling that reduc-

tions can be made. The above probability function points

clearly to the origins of this reduction, and on at least a

relative basis can quantify the amount of reduction for given

traffic parameters and a range of span lengths.



2.3.3 Maximum Moment: Simply Supported Bridge

Another application of the model may be to derive a

distribution for the maximum moment on a long, simply=-sup-

ported bridge due to the loading of the bridge by one group

of heavy vehicles. It is assumed that the group acts as a

uniform load over its length L, and that to produce the maxi

mum moment effect the uniform load of the group is centered

at the midpoint of the span length. (Any such group crossing

the bridge would have to be so positioned at one point in

its crossing.)

It should be emphasized that to assume that the total

weight of the group is uniform over its length and that this

uniform load acting on the bridge produces a moment equiva-

lent to the moment produced by the single units of the group

acting through their axle loads is also to assume that the

group length is small in comparison to the span length of the

bridge under consideration. It can be seen from the mixed

distribution of group length presented above that the shorter

croup lengths are more common. It is only in the range of

shorter group lengths and long bridge spans that the follow=-

ing analysis provides near accurate results. As the group

length (and consequently N, the number of trucks in a group)

increases or as the span length decreases, the results become

progressively more inaccurate, as the assumptions made above

fail to hold true.



5
\

The maximum moment produced by a uniform load of length

Lp and total weight W centered over the midpoint of a simply

supported bridge of span s is exnressed as:

3. 1Mya x= W(g Lin ~
5

Defining a new variable, I, (which is basically a moment

influence variable) as:

s_Ir
L 8

5

 8
L |. rr

the expression for Myax may be rewritten as:

Myp y= WeT

where W and I are random variables and Myax is the random

variable product of W and I.

It should be noted here that in the case of Ln &gt; 8,

or length of group greater than span length of the bridge,

only a portion of the total group weight W is effective in

producing the maximum moment, i.e., only that portion of W

which is on the bridge. However, as the analysis presented

here assumes that the moment producing effect of the group

can be approximated by a uniform load over its length, this

approximation will only be valid when the group length is

shorter than the bridge span. Certainly, this is not the



case when Ln -- 8, and therefore it should be clearly under-

stood that the analysis presented here is only valid when

P[ Lop &gt; gs], or the probability that the total group length is

greater than the bridge span, is very small. To account ac-

curately for the Ln &gt; s case would also require modifying the

assumption below of conditional independence of the load on

the bridge and I,

Recalling that the distribution of the product of two

independent random variables, as for example, Z= XY, is de=-

fined for X and Y continuous as:

—_ o 1 z

£,(2)= JIE (PEy(y) ey

then the distribution of Muax™ Wel, provided that W and I

are independent, is given by:

F ( = lL. MmMara v Max) 4 To, (22E)s (1) di

Since this integral is valid only for W and I inde-

pendent, it must be recognized in formulating the derivation

of this distribution that W and Ln (and hence I) are both re=-

lated to n, the number of trucks in a group, and are indepen-

dent only for a given value of N, Proceeding as in other cases

of random variables independent conditional on n, the distri-

bution of Mya x for a specific n may be expressed as:

~ Mo TN= (m___)= oJ3|e Maxvax| N=n'Tmax’ _ C1 WiN=n{"FITN=n(l)ai



However, for n=1 this distribution is not strictly

valid, as it 1s the distribution of the product of two random

variables, and when n=1, I is no longer a random variable but

rather a deterministic variable with value (3 - 5. (This

will be seen to be true by recalling that for n=1, ln=a, the

length of one truck.)

S a

In the special case of n=1, Myay = Wg - 5) and the

distribution of Max is a linearly transformed distribution

rf W. where

m

: sp (mo)= T=finer(eg)
Myax|N=1° "max E _ 2) W|N=1 s.2

m
m Kel = A(X

No (s—=m)] Ey
8

(z - 2) [M(k)

"max zt
Returning to the general distribution of Mya x for n # 1

the distribution of I for N=n may be expressed as a linearly

transformed distribution of L,, (assuming L, &lt; s)1

. s

CF
“FB

The distribution of Ln for a given value of n may be ex-

pressed as a linearly transformed distribution of L, the sum

of intragroup headways, since L. = L + a. Thus:



2 =A [1m-
: MOLLg-a]) Ze HT
"1p Nen{lp)= frinen(lp=8)= —(gy

N=2:3 4900 a

The distribution of I for a given n (n=¢ y »eJ May then

be written as:

“IIN=n(1)= Bf |y=p(2s-8i-a)=

Moy (28-81-a)]"ZeW270)
(n=2)!

The distribution of W given N=n may be recalled to bes

“w | Nep (W)= Aw) mW
["(nk)

N 7

Recalling that fp, Nene) is non-zero only for 1l, &gt; a,

for fi; yz=pn(i) to be non-zero:

(2s 81) &gt; a

L&lt;p-&amp;

It may also be recalled that for this analysis to be

valid it is assumed that PLL, &gt; sg] is very small, and values

of I greater than are the only ones to be considered.



Therefore, in the expression for fu | N=n{Max (which must
MAX

now be restricted to values of N &gt; 2), the lower limit of the

integral may be changed from -« to = while the upper limit

may be changed from «= to (z - ge

Substituting and replacing the integral limits leads

to the following expressions
m

rg Max -nk=1 “MN —2X)
(mpgg)= J [ARETH eo  -

My y | ND "max ] 1 (nk)
gq

2 =). (25=-8i-

8h My(2s-81i-a)] %e Ay(2s-81-a)
(n=2)!

 7] di

N= 233345000

The expression for the distribution of Mynx for random

on]

©0

§ (m )=
Max, MEX’ ps1 Mya | ap max) PRR) &gt;Max = 0

Myra oc | N=1 Pax) “Py (1)
oQ

A a (m )epy(n)=&gt; Mya | N n' max

Mimayyk | {fu
ty (m= 1 [PDGF] e ¥

Max, max $2 Ss



ut

2 (FF, any ed iE Dul2s-gi-3) &amp;™E5 :5 opel Pn nr dy
Cp [DEER

Ma, Po CE

“%
 dw (253) = Bb EEL wk (Mena) + Bl wd(5) Fn 7 (pet [7 put

The probability that Mya x takes on a value of m ox

amg. may be expressed as:

[ cu &lt; Jomax’ “maxPLM ax "2M maxS "MAX SMmax™Mmax TY Mx (m ox) Gay
Max AM max N

For example, the probability that the maximum positive

noment on a simply-supported bridge due to the passage of

an arbitrary group takes on a value of 5000 ft-kips £ 0,5 ft-

kips may be evaluated as:

5000.5
J Ly (m ) dm

4999.5 MUAX, max max

As an approximations

'k 'k 'k
PLU999.5 © &lt; My,y S 5000.5 7] = fy (5000 7)

MAX



.

”

The term corresponding to n=1 in the distribution of

Myax may be interpreted as the probability of the attainment

of a certain range of values of My, (where Max =o S

Mya x S Mpaxtam .) due to the presence of only one heavy ve-

hicle (truck) on the bridge, while each of the succeeding

terms gives the additional probability of attaining that

range of values of Mya x for each additional truck present on

the bridge. Thus, for existing bridges of span length s for

which the critical loading is due to the presence of only one

group on the bridge, examination of each of the terms of this

distribution could point to the need for regulating the num-

ber of trucks allowed on the bridge at one time to maintain a

tolerable level of maximum positive moment.

For any specific value A the uniform load covering

the entire bridge span under investigation that would produce

the same value of Mnax will be termed Ugq (equivalent uniform

load). Thus,

BMox
lea™ T.2

Uegq will be useful for comparison purposes between

different loadings and between the loads specified in differ-

ent specifications, such as the AASHO specifications for

highway bridge loadings.



203.4 Maximum Lifetime Moments Simply Supported Bridge

The results of the previous section are for the maximum

moment caused by one group during the passage of an arbitrary

or randomly selected group from the many which pass over the

bridge during its useful lifetime, r. The distribution of the

peak lifetime moment is:

“u, (Mp) PLM, &gt; m J=
oQ

£ P[ Maximum moment of i groups &gt; mJ
i=1

P[i groups occur in lifetime of bridge]

For independent group effects:

0

(m_)=ZT
TPT ig

00

= 2

i=1

50

z
$=1

[1-(P[ Moment of any one group &lt; m, 1)"

P[igroups occur|

[1-(1-P Moment of any one group &gt; m,1)*]

P[i groups occur]

(1-1+iP[ Moment of any one group &gt; m_]

ha 12+...) P[i groups occur],

For small risks of interest k

oQ

(m )=  (iP[Moment of any one group &gt; my J)
i=1

Pi groups occur]



thy (m_)= P| Moment of any one group &gt; m_ |"

0

£iP[i groups occur]
i=1

- Fy (m_)) E[number of groups in
Max P

life of bridge]

The expected number of groups is the expected number of

trucks divided by the expected number of trucks per group

(=my), i.e., it is p times the expected number of trucks in

the bridge lifetime,

Therefore, to find the 0,90 fractile of ¥ one must

find the value which is the (1 = 0,10/E[ number of groups in

life of bridge]) fractile of Mysy+ For example, if the ex-

pected number of trucks is 10° and p= 0,7, then the 0.9

(or 1-0.1) fractile of M, corresponds to the 1 = 0.10/0.7x10°

or 1 = 0,14 x 107° fractile of Myaxe The difficulty in devel-

oping a highly reliable distribution of M_ is readily appar-

ent, as the distribution of Myay depends both on limited

statistical data and on a hypothetical model of truck group

behavior.



2.35 Further Applications

In the future, areas of development for the model pre-

sented herein include the derivation of distributions for

other load effects, such as shear, the generalization of the

moment distribution for any influence surface to handle

individual members rather than gross bridge moment, and the

handling of cases of loading by two or more groups present

simultaneously on the bridge.

The model presented is valid for a range of spans,

including short, However, the moment analysis outlined here

for one group is only valid for longer spans, The same model

should be used with an extension of the analysis presented

to consider the case of shorter spans, excluding those spans

of single truck length (or less) where the model is too

oroSS.

Additionally, consideration has been given here only to

one direction of traffic flow. While a good portion of high-

way bridges have separate superstructures for each direction

of travel, the majority of bridges carry two-way traffic,

and to be general enough the model should be extended to

consider such cases.



Chapter 3s Estimation of Model Parameters

3 - introduction

Presented in this chapter are explanations for the vari-

ous assumptions made in Chapter 2, where the details of a

live load model for highway bridges were presented. These ex-

planations involve a review of currently available data in

the areas pertinant to the model presented, the rationale be-

hind the assumptions made based on the data, and the tech-

niques for estimating model parameter values from the raw

data,

22 Group Behavior of Trucks

In the model advanced in this thesis, the concept of

groups, or bunches of trucks acting within the traffic stream

has been introduced as the live loading unit to be considered

for a range of bridge span lengths, in place of the conven-

tional approach of considering the load effect of individual

truck units or axle groupings of individual trucks. While

this hypothesis of group behavior is purely a conceptual one,

and not easily verifiable by the casual observation of bridge

traffic, some evidence supporting this type of behavior may

be advanced.

Imagining a traffic stream with groups of trucks bunched

together within the stream, as depicted in Figure [3.1], some
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observations may be made about the characteristics of the

traffic stream over a long period of time.

Defines

N.=

~~
J

od
-

number of heavy vehicles in the traffic stream

in a specified amount of time t

number of groups of heavy vehicles within time

N= number of trucks per group

where Nis G,, and N are all random variables.

'n 27)4d

Gy
i=1

or in words: the number of trucks in time t is equal to the

sum of the trucks in each group which appears within time t,

Over a large number of observations of duration t it

would be found that:

E[N,1= E[N]E[G,J=mE[G,]
or that the expected number of trucks in time t is equal to

the average number of trucks per group times the expected

number of groups in time %.

Now defines

Neross average number of truck arrivals per unit

time

A oroun. average number of group arrivals per unit

F1ME
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Ay= average number of truck arrivals within groups

per unit time

Over a large number of obscrvations the following rela-

tion would holds

Mgross™ Mnreroup
or that the average number of truck arrivals per unit time is

equal to the average number of trucks per group times the

average number of group arrivals per unit time,

Furthermore,

Mi bXross
or the average number of truck arrivals within groups per

unit time is some multiple b of the average number of truck

arrivals per unit time. By definition, b is the ratio of

within group arrival rates to the arrival rate of trucks in

the traffic stream as a whole. For grouping to occur, the

value of this ratio would typically be greater than unity.

Turning attention now to the headways (times or dis-

tances between arrivals) of trucks and groups, and defining:

Horoup™ headway between groups measured as the

distance between front axle of lead truck in

preceding group to front axle of lead truck

in following group

Hy= headway between trucks travelling in groups

measured as the distance between front axles



of preceding and following trucks within

groups

H ~
| 7

intergroup gap or headway, measured as the dis-

tance between the front axle of the last truck

in a group to the front axle of the first

truck in the following group

Figure [3.2] is a graphical representation of

headways.

these defined

The following

definitions:

average values would follow from the above

BE cup Tl 1 = average time between arrival of
Agroup

groups

E[ Hy, = 1 = average time
MM

within groups

between arrivals of trucks

E[H,]= 1 =~ (my-1) = average time between arri-
Agroup Mo

val of lead truck of group and departure of

last truck of preceding group

where my=-1 is equal to the average of the sum of the inter-
Ay

croup headways of a group 3

For the headways above to represent average distances,

the average time between arrivals may be multiplied by the

average speed of travel,
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From the above definitions, it is also possible to de=

fine _1 ass
Ar

1=E[H]= _ 1 - (my-1)
re Agroup AW

my - (my=1 )= bmy=my+1
Ngross PAaross PAsross

where Xl, may be interpreted as being the average arrival rate

of trucks after the departure of a preceding group.

Summarizing these results:

Mgroup™ -= Xgross
My

‘© OP Ngross

MgrossTowr= (5-1)

A digression may be in order at this point to character-

ize the truck arrival process. A variety of feasible models

of arrival processes which imply grouping, i.e., which are

not independent Poisson processes, are available, These in-

clude, for example, Poisson clustering or triggering models,

Markov models, and renewal processes, A model of the renewal

type has been adopted here for further study. A renewal model

implies that headways between vehicles are independent,

identically distributed random variables. Here it has in ef-

fect been assumed that any particular headway is with proba-
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bility p an intergroup headway (Hy) and with probability (1 =p

an intragroup headway (Hy) Intergroup headways are assumed

to be exponentially distributed with parameter rat i.es, its

cumulative distribution function (CDF) may be written as:

= 1-e~7GhG

Intragroup headways (Hy) are also assumed to be exponen-

tially distributed but with parameter My and the CDF of Hy

may be expressed as:

-AwhyFy, (hy )= 1 -g A
-

ron
ul

Presumably, for grouping to occur the mean intergroup

headway must be greater than the mean intragroup headway or

my 2 My? where:

m, = 1

As 3a

m= 1
H o—

Ww My

thuss A. » As Or (from the expressions above for My and Pals

at - b

(which can be seen by algebraic manipulation to yield the

result that for grouping to occur, b&gt; 1).

The implication of the above assumptions is that the

distribution of headways in general is a mixture of two expo-



nential distributions:

Fy(h)= (1-p) Fy, (1) + (p) Fy, (0)

For any traffic stream, headways between trucks are as-

sumed to be independent random variables, with a constant

portion p of headways of the intergroup type, and the comple-

mentary portion of the intragroup type. Thus, the headways

represent a sequence of Bernoulli trials. Therefore, the

probability that the first (n-1) trials yield an intragroup

headway and the nth trial yields an intergroup headway may

be expressed ass

(1-p)""1p

n-1 intragroup headways would result from the arrival of

a group of n trucks, and thus the above probability, which

may be recalled to be of the form of the geometric distribu-

tion, may be viewed as the probability that a group consists

of exactly n member trucks, This, then, explains the assump=-

tion of the geometric distribution for N, the group size, in

the model presented in Chapter 2, which is a natural conse=

quence of the assumptions made regarding headways.

It is useful to look at the limiting case, If there were

no grouping, there would be no headways of the intragroup

type, or (1=-p) = 0, This would mean that p, the proportion

of intergroup headways, would be equal to one, or that all

headways would be of the intergroup type. Since N, the number
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of trucks in a group, is seen to be geometrically distributed,

E[N], the expected (average) value of N is expressed as:

E[N] = my =1
P

and if p=1, My OT the average number of trucks in a group,

is equal to one, In fact, the distribution on N reduces to a

single probability mass of one on the value n =1, i.e,, all

"groups" are of size one. Also, in the case of no grouping,

the distribution of headways may be expressed as:

Py) = (1) Fy (h) + (1-1) Fy (h)

.~Agh 1-7
Ai

J

- 2 2
MN “gross

2 Arrossh

This may be recognized as the exponential distribution

of headways which also results from an independent Poisson

arrival process, with truck arrival rate equal to Xeross®

Thus, the headway model assumed here may be viewed as being

a "collapsible" model, one that in general considers the

grouping of trucks but which in the extreme case collapses

to a simple Poisson arrival model with no grouping.

Headway data is commonly plotted as complementary CDF

(1-Fy(h)), or percentage of headways exceeding a given value

of headway versus headway, on a semilogarithmic scale, Head=-

way data plotted on semilog paper would appear as a straight



line for headways resulting from independent Poisson arrivals,

as illustrated in Figure [3.3]. The slope of this straight

line is proportional to Xoross’ or the average number of ar-

rival events per unit time. Given the number of trucks count-

ed in a specified length of time, the average number of truck

arrivals per unit time may easily be calculated, and a theo-

retical line plotted for the complementary cumulative distri-

bution function of truck headways. For any set of observa-

tions, comparison of plotted data to such a line would give

an indication of the validity of the Poisson assumption,

For the assumed group behavior, the expression for the

complementary CDF of headways may be written as:

PLH &gt; Broun = P[H&gt;h within a group|+*P[headwayis

within a group] + P[H&gt;h group to group |*P[head-

way is group to group gap]

Recalling that p = P[ headway is within a group], that my = L

(where my is equal to the mean number of trucks in a croup).

and that both the intragroup and intergroup headways are as-

sumed to be exponentially distributed, the former with para-

meter ),, and the latter with parameter J, P[H &gt; hyroup
may be expressed as:

-) -A~h
PH &gt; h], up = (my-1) e who, 1 ee

My, My;
vl

b
P| H&gt;h = (Oy-1. -bAgrossh 1 {gr JA grogsh! Jeroup (=e + (7) MN 2
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my=-1. (1-b h (1- = I n!
PLH&gt;h], 000" [=F ) dross +(e my(D=-1)+1 '/&amp;ross

3 A

'zross’

The last expression above may be contrasted to the ex-

pression for the complementary cumulative distribution func-

tion of headways resulting from independent Poisson arrivals

of trucks (no grouping) which is a specific case of the above

(with my=1 and b=1)1

P(H &gt; hlross = ¢ ’gross

Returning to the semilog plot of complementary CDF of

headways for independent Poisson arrivals (Figure [3.3]), it

will be useful to compare that plot to the one for comple-

mentary CDF of headways for assumed group behavior. Since

P[H &gt; Bh] roup is the weighted sum of two complementary expo=-

nential CDF's, each of the complementary CDF's may be plotted

on semilog paper and compared to the complementary exponen-

tial CDF resulting from the independent Poisson arrivals of

trucks. Such a comparison is shown in Figure [3.4] for typi-

cal values of my and b (my&gt;1 and b&gt;1, the conditions for

srouping to occur).

P[H &gt; hl roup? the weighted sum of the complementary

CDF's of intra- and intergroup headways, would appear typi-

cally on a semilog plot as shown in Figure [3.5] for a range

0f values of parameter p.
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Typically, such a plot would be composed of two portions:

The initial portion, in the range of short headways, would be

approximately a straight line, with slope steeper than the

slope of the independent Poisson arrival (hereafter termed

gross behavior) line. This portion would reflect the mix of

the intragroup headways with relatively short intergroup head

ways. As longer headways are considered, a second portion of

the plot would be evident, this being a straight line with

slope shallower than the slope of the gross behavior line.

Examining the expression for P[H &gt; hgroup? it is evident

that this results from the quick decay of the intragroup head-

way term as headways become longer, leaving the intergroup

headway term to predominate. Thus, by extending this second

straight line portion of the plot back to the vertical axis,

as shown for a series of plots in Figure [3.5], a measure of

Pp, the proportion of intergroup headways, may be obtained.

This value of p may then serve as an estimate of the para-

meter for the geometric distribution of N, the number of

trucks in a group, which in turn may be used to estimate My

My = L
5

Thus, with the estimate of p as given from the headway plot,

it is also possible to estimate my, the average number of

trucks per group.

The other important headway parameter, b, the ratio of

Nithin group arrival rate to gross arrival rate may be esti-
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mated by the knowledge of the value of my and consideration

of the straight line portion of the P[H &gt; h] group plot in the

range of short headways. This may be demonstrated as follows:

It will be useful at this point to

Series expansion for eX, which is

consider the Taylor

+ x? + x° +

2r JT

and the expansion for e *, which is

xe - x3 +

27 IT

and

For small values of x, 2" may be approximated as

»
» ho

&gt;"* may be approximated as

ry
s

If small values of headway h are considered, then the

expression for complementary CDF of group behavior headways

may be approximated as:

my =1
P[ H&gt;h ] = (—_ - :eroup™L (Tig) (HLTA go gh + (5) (1+ 1 mpfrD0 of)

(1-3 rossht)

_ [my (=b2+b)+b(b-2[14 3gpageh (LEED AD 2Po2)] 3 (1-2 rogsh)



p[H&gt;h]=1-2 p41 +L (=D +b) +b(b-2)|grossh tl my (5-1) Virose?

= 3 -

-, Lm (-b2+b)+b(b 2) J; 3 »
my (b=1)+1 gross

Since only small values of h are being considered, the

last term in the latter expression (involving h®) may be neg-

lected, and PLE&gt;R ] oup may be expressed approximately as:

} my =b2+b ]+b[ b-2]
Ln on t= Lm) Agross”

For pure Poisson behavior and small h, PLE&gt;h] poss may

be approximated as:

PLE&gt;h 0g g™1 = MNross

Comparison of the two approximations above for group

and for pure Poisson behavior show that they differ only in

that the Aerossh term for the group case is modified by a

multiplier term whose value is:

So
A nL -b® +b J+b[ b-2]m (b=1 +1 )

Figure [3.6] shows plotted contour lines of the value

of this multiplier term for various combinations of b and

Aw
Agross

my of interest. (The reader is reminded that b = oY
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the ratio of the within group arrival rate to the gross arri-

val rate while my is equal to the average number of trucks

per group. It should also be recalled that for group behavior

both b and my must be greater than one.)

Entering Figure [3.6] with a value of my, as determined

from an estimate of p by consideration of the long headway

portion of the complementary CDF plot of headways, and a

value of the multiplier, measured as the ratio of the group

behavior headway plot slope at small h to the gross behavior

plot slope, it is possible to determine an estimate of b,

¥ith the value of b determined by the procedure out-

lined above, it is then possible to estimate the parameter

of the distribution of the intragroup headways, Ay? and the

parameter of the distribution of intergroup headways, )\,, as?

brAoross
NA -—

“=

N
r

b A
My(D=1J+1Zross

where Aoross is simply the average gross arrival rate (or the

number of trucks arriving during the observation period dur-

ing which a set of headway data is collected divided by the

total observation time). Figure [3.7] shows plotted contour

lines of b » the ratio of Pg
my (0=17+1 Aoross

Appendix A contains a set of plots of P| H&gt;h] for unpub-
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lished (bridge crossing) truck headway data gathered at Case

Western Reserve University under the supervision of Dr. Fred

Moses, This data has been collected just recently, and has

not been fully developed as yet. Ten headway plots presented

are only for a range of headway times of three seconds or

less, which represents approximately ten percent of the data

sets in each case, On each plot, the following information

appears

l- actual data point plots

2- a straight line fitted to the data by the

"least squares” method (linear regression)

3=- the gross behavior line, whose slope is deter-

mined by dividing the number of truck arrivals

counted by the amount of observation time

b= a "multiplier" figure, which is the ratio of

the data plot slope to the gross behavior

slope.

Examination of these headway data plots vields the fole

lowing observations:

Although far from sufficient data has been collected and

reported on bridge crossing truck headways, the data present=-

ed in Appendix A shows a trend for the headway data to result

from some type of grouping or bunching phenomenon, rather

than from an independent Poisson arriving process. The as-

sumptions that have been set forth in this thesis lead to one
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possible explanation of the data plots as presented in Appen-

dix A in terms of a renewal process, with independent, ident-

ically exponentially distributed headways between vehicles,

It should be emphasized that although there is a correspon-

dence between the data and the predicted behavior as given by

the model, this correspondence may not be construed as

"proof" of the validity of the hypotheses. Rather, what is

intended here is to show that the hypotheses advanced are

consistent with available data, and intuitively such hypo-

theses seem rational and plausible models of real-life behav-

jor. What is necessary at this point is more data on truck

headways and new mechanisms to verify the assumed group be-

havior.

~

JeJ Truck Gross Weight

Appendix B contains gross weight histograms for trucks

based on weight data gathering studies (loadometer studies)

conducted in the State of Massachusetts in 1967 and 196gL3-1)

(which are the last two years that individual states publish-

ed the results of their studies. Since 1968 the Federal Gov=-

ernment has taken charge of data collection from all of the

states and distributes this data to state and federal agen-

cies for use in planning and design purposes). These histo=

gram shapes are in agreement with the histograms presented

and discussed by Garson, Goble, and MosesL 3-2], They have
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found that a composite normal distribution (the weighted sum

of two normal distributions) represents well the gross weight

data for trucks of the single unit type and for trucks of the

tractor-trailer type (combination vehicles) for a variety of

states. Although they state that the composite normal distri-

bution needs further verification with the examination of

more weight data from more states, a casual examination of

the weight histograms presented for single unit and combina-

torial vehicles reveals the suitability of this composite

normal distribution for each vehicle type group. (A composite

normal distribution is characterized generally by two humps,

Garson, Goble, and Moses explain that each of the normal

distributions combined in the composite normal distribution

characterize the loaded and unloaded vehicles in each group

type, respectively.) Garson, Goble, and Moses do not, however,

advance a distribution for all truck gross weight, single

and combinatorial vehicles combined. It is this distribution

that is required to characterize X, the gross weight of an

individual truck, in the model presented in Chapter 2.

Presumably, on the basis of the observations made by Garson,

Goble, and Moses, the distribution of truck gross weights

for all truck types would be the result of the weighting of

two composite normal distributions. (The resulting composite

composite normal distribution would be characterized by four

individual humps. Examination of the truck weight histograms

for all vehicles reveals the presence of four distinct humps
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over the range of gross weights.) This procedure, however,

would be too unwieldy for use in conjunction with the model.

and was therefore rejected. For the purposes of the model

presented here, a simple gamma distribution has been assumed

to characterize truck gross weights for all truck body types.

While not verified for a variety of truck weight histograms

from different sources, it is assumed that due to its nature,

the gamma distribution should provide a good fit for a vari-

ety of different histograms from different locations. Figures

[3.8] and [3.9] show a gamma distribution superimposed upon

truck gross weight data for all Massachusetts loadometer loca-

tions in 1967 and 1968, respectively. It should be pointed

out that these histograms represent data from a particular

mix of several stations, not all of which permit certain

types of trucks. Each application may therefore warrant the

development of different distributions. Should another dis=-

tribution prove better than the gamma, the model presented

here has to be modified, i.e., wherever the distribution of

X, individual truck gross weights, or W, group gross weights

appears, new distributions would have to be substituted in

their place,

The parameters for the distributions shown in Figures

3.8] and [3.9], A and k, were estimated from:

no &gt; _ K



1967 Massachusetts Truck Weight Study
All Trucks Counted

k= 1,674

A= 0,0736

- “0

! Se =
) Lo 50 60 70 80 90 100

Gross Weight (kips)

~~

BL

Figure [3.8]



| 968 Massachusetts Truck Weight Study

A\11 Trucks Counted

k= 1.357

= 0.0634

20
 EE

“) 40 50 650 70 80 20 100

ross Weight (kips)

rigure [3.9]
oe

 }



No KC2 =s==&lt;

where X, the mean value of the truck weights, and s®, the

sample variance, were calculated based on the average weight

of each of the weight intervals reported in the loadometer

study rather than the individual weights of the trucks sur-

veyed since individual weight data is not reported. This is

not expected to affect the fineness of the fit of the gamma

distribution.

 BF or the 1957 data, the following values were calculated:

k = 1,674

A= 0.0736

while for 1968:

£ = 1.357

A = 0.0634

Jou Traffic Speed

It is assumed in the model that traffic on a bridge

moves at a constant uniform speed. This speed is used to con=-

vert time headways to distance headways. It has been suggest-

ed by Moses and Garsont 3-3] that speed variation in bridge

crossings is small, and that a fixed speed may be used. They

suggest the use of the mean speed when available, or five

miles per hour less than the posted speed when mean speed is

not available,



1.5 Lane of Travel in Multi-lane Situations

It has been stated in the introduction to the model that

truck traffic bears to the right in multi-lane flow. Evidence

to this effect has been reportedt 34], Investigators found

that in the case of a three lane bridge on Route I-95 in

Virginia more than three-fourths of the trucks crossed the

structure in the right lane, while less than one percent used

the left-most lane in a 98 hour period, and in the case of a

two lane bridge on Route I-81 in Virginia, 98 percent of the

trucks crossed the bridge in the right lane over approximate-

ly 70 hours.

While implicit to the assumptions about headways made

in the model is the ability of trucks to pass each other or

run alongside each other, the evidence presented above and

common experience suggests that trucks do not usually avail

themselves of the passing lanes on multi-lane highway bridges.

This then suggests that the model may be applicable to single

lane situations, even though such situations would contradict

some of the model assumptions (e.g., the model permits two

arrivals in a distance less than one truck length).

In general, when gathering data for use in estimation

cf the model parameters, an effort should be made to take

measurements in areas and situations similar to those which

the model is to be applied to, e.g., if the model is to be

ised in conjunction to the design of a three lane bridge
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(in one direction), then headway data and truck weight data

should be sought from existing three lane bridges or highways

either in the vicinity or in an area with traffic character-

istics similar to those expected.



Chapter 4s Numerical Examples

3 Statement of Problem

The examples included in this chapter are intended to

illustrate the usage of the model developed in Chapters 2

and 3 and to point to the shortcomings of the model in its

present state of development and the areas in which the

model need be expanded.

For the purposes of illustration, it is assumed that

the governing body in charge of bridge design in a certain

geographical area is contemplating the construction of

bridges of span length varying from 100 to 4000 feet in

length. The bridges are to carry two lanes of traffic in one

direction only, and the characteristics of the bridge traffic

are assumed to be similar in all cases.

A policy must be adopted for the live load intensity to

be used in conjunction with the design of each bridge. Thus,

in the framework of the model developed in the previous

chapters, the following activities must be performed for the

model to be useful in the development of live load criterias

First, the input parameters for the model must be esti-

mated from data from conditions similar to those expected on

the bridges. With these estimates of parametric values the

probabilities of occurrence of certain conditions on the



various bridges may be evaluateds the simultaneous occurrence

of groups, fully-loaded bridges, and the maximum moment on

simply supported bridges due to the presence of one group.

4. 3
- Estimates of Parametric Values

It is assumed for purposes of illustration that the

traffic expected on the various proposed bridges will be

similar in composition, characteristics, and volume to the

traffic measured for the headway data plots that appear in

Figures [A.11] and [A.12]. Both figures were developed from

the same set of headway data, with Figure [A.11] a plot of

the very short headways (less than 4 seconds) while Figure

(A.12] is a full plot of headway values up to 200 seconds.

As per the discussion in Chapter 3, Section 3.2, the follow=-

ing values may be estimated from these figures: First, from

Figure [A.11] the value of the multiplier, or ratio of the

slope of the straight line fit to the data points to the

slope of the gross behavior line, is 1.538 (where the gross

behavior slope is proportional to the gross arrival rate of

trucks and is equal to 0,0255 trucks/sec.). From Figure [A.12]

the value of p, or the proportion of intergroup headways

may be estimated as 0.60 by extending back a straight line

through the long headway data points to the "percent exceed-

ing H" axis. It may be recalled that mys the mean number of

trucks per group, is the reciprocal of p, or 1/0.60 or 1.667.



Entering Figure [3.6] with a value for my of 1.667 and a

value of the multiplier of 1.538, b, the ratio of within

croup arrival rate to gross arrival rate, may be estimated as

2.77. Recalling the assumptions made in Chapter 3, Section

3.4, it may further be assumed that the bridges are to be

designed for a posted speed of 45 miles per hour, and thus

40 mph will be used here as the average speed on the bridges.

With the above estimates, the following parameters may be

evaluated as:

gE 0.07 trucks 1 hour 1 mile 3600 sec. _
Aoross » 0255 sec. ~~ LO miles 5280 ft. * "1 hour

5. 0004346 trucks/ft.

A BArrone” 2.77 x 0.,0004346 trucks/ft.= 0,0012 trucks,

he = Bn 2 000436
G* my(b-1)+1 “gross (1.67)(1.77)+1 °°

0.0003 trucks/ft.

It may further be assumed that the traffic conditions

expected are similar to those measured in the 1968 Massachu-

setts Truck Weight Study. Thus, from Figure [3.9], the follow-

ing values may be taken as estimates of the gamma distribu-

tion of individual truck weights:

k= 1,357

A= 00,0634



’

Additionally, it will be assumed that an individual

truck length a will be equal to 30 feet,

Summarizing the estimates or the parameters needed for

input to the model:

p= 0.60

N= 0.0012

Ag= 0.0003
k= 1.357

A= 00,0634

A= 30,0

4, Simultaneous Occurrence of Groups

The expression for the probability of m groups simulta-

neously loading the bridge was developed in Chapter 2, Sec-

tion 2.3.1 as:

m= Le PlIgs= p + (1-p)(1 - e PWES2Ly

s=-a —DPAyl&gt; 1 m-1 Ww ibP ep(s-a)= J (1 - e WS (paylg)t
0 1=0 i!

Jp Oglamatg]™ eel 87a ls
(m=2)!

’

dlg

where s is the span length of the bridge in feet.

For the parametric values of this example, plots of
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the above probabilities are shown in Figures [4.1] and [4.2]

Figure [4.2] is an exaggerated plot of the lower portion of

Figure [4.1] with probabilities ranging from 0.0 to 0,01,

With such a plot it is possible to set a probability level,

i.e., a probability of simultaneous occurrence of arbitrary

groups over a range of bridge span lengths. Suppose for

illustrative purposes that the probability level is set at

p'= 0,001. Examination of Figure [4.2] yields the following

interpretations For a probability level of 0.001, bridges

designed on the basis of the data considered need be designed

for only one group up to a span length of 400 feet; 400 to

1500 foot spans need be designed for the simultaneous occur-

rence of two groupss 1500 to 3150 foot spans for threee groups

simultaneously, and 3150 to 4000 foot spans for four groups.

Different sets of design data and different probability

levels would result in different ranges for the 1,2,35¢0e0

group categories of bridges. It is clear, however, that this

method provides for a consideration of the probabilities of

simultaneous occurrence of live loading units on bridges of

varying spans, and for a preset probability level this method

points to a new classification scheme for live load consider-

ations,

il 2 &amp; Fully-loaded Bridge

The probability that a bridge will be fully-loaded has
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been defined in Chapter 2, Section 2.3.2 as the probability

that a bridge will be occupied by one group whose length is

equal to or greater than the span length of the bridge. Fig-

ure [4.3] shows plotted the expression for this probability

as developed in Chapter 2

P[L, &gt; s]= (1-p)e P WLS]

On a relative basis, such a plot may be useful to de=-

fine live load reductions for longer spans; Following this

interpretation the live load intensity for a 1000 foot span

would be .200/.285 or 70% of the live loading of a 500 foot

span. This reduction may be valid only for bridges whose de-

sign criterion is the loading by one group only, as discussed

in the previous section, and thus may be applicable in this

case only for spans up to 400 feet in length.

Ye Maximum Moment Due tu One Group: Simply=-Supported Bridge

Figure [4.4] shows plotted the cumulative distribution

function (CDF) of maximum moment due to one group on a simply-

supported bridge for spans of 1000, 2000, 3000, and 4000 feet.

As explained in Chapter 2, Section 2.3.3, the development of

the expression for the probability density function (PDF) of

maximum moment as presented here is valid only in the case

where P[Ln, &gt; s] is very small, i.e., only in those cases when

the total length of one group exceeds the span length with
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only a small probability. As can be seen by reference to

Figure [4.3], in the case of this example, the probability

that Ly &gt; s is still greater than 2% even at a span length of

L000 feet. Examination of Figure [4.4] reveals that the maxi-

mum value of the CDF for any span length is precisely the

complement of PLL, &gt; s]. Thus, the CDF is not properly defined

in this case except for very long spans greater than 4000

feet in length. Unfortunately, such spans are neither of prac-

tical interest nor are they the span lengths to which a mo-

ment analysis for the presence of only one group applies.

The median values may not be seriously affected by this in-

adequacy in the present approximate analysis of the model.

Note that for the median values (in the region of P= 50%,

for example) there is only a near linear increase in moment

with increase in span, rather than an increase as the square

of the span length as given by the formula for the maximum

moment on a simply-supported span. Thus, there is a decay in

the equivalent uniform load with increase in span length,

pointing to live load reductions. It should also be recalled

that the maximum moments discussed here are due to an arbi=-

trarily chosen group and are not the lifetime maximum moments.

For design purposes the lifetime maximum moments should be

~onsidered.

The difficulties outlined above point to the need for

extending the model in two areas: First, in the area of short
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spans to consider cases of loading by one group where the

group length is greater than the span length and hence the

total group weight is not on the bridge all at the same time.

This also entails a different approach to the loading by one

croup, i.e., the load may no longer be considered uniformly

distributed over the group length. The second area is the

development of procedures for the handling of multiple

croup occurrences for longer spans.
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Appendix At: Headway Data

Included in this section are plots of complementary CDF

of truck headways (P[H &gt; h]) on a semilogarithmic scale. The

plots were developed from data furnished by Dr. Fred Moses,

Professor of Civil Engineering, Case Western Reserve Universi

ty, Cleveland, Ohio, The data was collected under a contract

from the Ohio Department of Highways and is not to be pub-

lished without their consent. Each of the plots is labeled

with the original tape designation for reference purposes.

The first ten plots, Figures [A.1-A.10] are for very

short headways only, and cover only an average of ten percent

of the data of any of the sets. Each of the data sets is for

a bridge with two lanes of travel in one direction, with the

exception of A37,39, which is for three lanes in one direc-

tion, and is so noted. Unfortunately, this data is just being

collected and processed at the time of this writing, and the

rest of the data has not been developed for the full range

of headways, This data is useful, however, for getting an in-

dication of the trend of short headways. On each of the plots

the following information is recorded:

l= the total number of trucks counted

2- the total observation time

3= the "least squares" straight line fitted to the

data points
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v= the gross behavior line, il.e., a straight line

wlth slope rross’ the total number of trucks

counted divided by the total observation time

Examination of these plots leads to the observation that

the straight line fitted to the data does not run through the

origin (H=0, P=100%). Rather, the straight line intercepts

the line P=100% at H &gt; 0, For a distribution that would truly

be the sum of two exponential distributions as hypothesized

in the model herein, this straight line would pass through

the origin. However, since the data lines cross the P=100%

line very close to H=0, i.e., at very small values of head-

way, this shift from the assumed weighted sum of exponentials

model 1s not considered significant, and may be explained sim-

ply as an indication that the trucks on the bridges mea-

sured did not take advantage of the opportunity present on

the bridges with respect to passing other trucks.

In each of the plots the gross behavior line is offset

parallel to itself to cross the P=100% line at the same point

as the "least squares" data line for purposes of comparison

of their slopes. Table [A.1] contains a summary of this data,

with the slopes of the gross behavior line and of the least

squares data line and the multiplier values listed. It should

be noted that in 8 out of 10 cases the multiplier is greater

than unity, while in two cases it is less than one, As dig-
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cussed in Chapter 3, for group behavior the multiplier value

should be greater than one, and the data seems to bear this

out. In the two cases where the multiplier is less than one,

it may be noted that it is not much less than one, and it is

guite possible that with a larger sample of data, i.e.,

headways up to 10 seconds, the value of the multiplier might

be found to be closer to unity.

It is entirely possible that the slopes presented here

for the data lines as fitted by the least squares method

would change with a larger data set. This points to the prob-

lem of how much data in the short headway range is needed

to establish the value of the multiplier, or in other words,

how much data should be considered in a least squares analy-

sis. In the case of the first ten data sets, this was an

elementary question, in that only a very limited amount of

data was avallable and least squares analysis was applied to

all available data points. Figures [A.11] and [A.12], how=-

ever, were developed from a full set of headway values up to

400 seconds. In the case of Figure [A.11], the first four

seconds of data were used to establish the multiplier value,

More work should be done in this area with the availability

of more complete data sets to establish the sensitivity of

the slope of the least squares lines in the short headway

range to the differing number of data points considered,
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Figure [A.12] shows a plot of P[H &gt; h] for headways

up to 200 seconds. Extension of the long headway range data

line to the P axis leads to an estimate of p, the fraction

of intergroup headways,asdiscussedin Chapter 3, Again,

the problem which presents itself is how to select the data

points in the long headway range for fitting a straight line

to estimate p. In this case too some sensitivity studies would

have to be made to determine how sensitive the estimate of p

is to the number of data points considered in the long head-

way range.

Key to Figures [A.1-A.11]3

Data Line fitted by Least Squares Method

Gross Behavior Line

Offset Gross Behavior Line
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Summary of Headway Data

iistogram

H24

Wl,3

W6,8

Ash5,7

Ashl,3

A374+39

Akl 43

D29,31

D34, 36

H6,8,10

Slope

Data (least squares)

=0 . 0542

-0,0169

-0,01 54

~0.031

-0. 0414

-0,0197

-0, 0440

-0,0272

-0,0231

-0 0566

Gross

-0.0399

-0,015

-0,0189

-0,02

~-0,0169

-0,023

-0,0248

-0., 01 99

-0,0155

-0,0407

Multiplier

1.358

1.127

0.815

1.550

2.450

0.857

1.774

1,367

1.490

1,391

Table [A.1]
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Appendix B: Truck Weight Data

The data in this section is taken from the 1968 Massa-

chusetts Truck Weight Study, Table W-5, Two sets of data are

presented, one for 1967 and one for 1968. In each case the

data is a summary of loadometer survey data gathered at all

stations statewide,

For each of the two years, a table of counted trucks

and their gross weights is presented, along with three histo-

grams produced from the data, one for all types of trucks,

one for single unit trucks only, and one for combination

trucks only.

The data is presented as typical of truck weight survey

data but is not to be taken as representative of such data in

all geographic locations and at all times.
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distogram of Truck Gross Weights for All Trucks

1968 Massachusetts Truck Weight Study
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| Histogram of Truck Gross Weights for Single Unit Trucks
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{Histogram of Truck Gross Weights for Semitrailer Combinations

1968 Massachusetts Truck Weight Study
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968 Data From 1968 Massachusetts Truck Weight Study(Table W-5, Sheet 7, Number Counted
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distogram of Truck Gross Weights for All Trucks
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Histogram of Truck Gross Weights for Single Unit Trucks

1968 Massachusetts Truck Weight Study
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{igstogram of Truck Gross Weights for Semitrailer Combinations

1968 Massachusetts Truck Weight Study
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