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A scanning Fabry-Perot interferometer with a free
spectral range scan time of less than three milliseconds
has been developed for use In the far infrared, 2= 2004
to A= 1000x. Mirrors were fabricated from metallic mesh.
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INTRODUCTION

The purpose of this S.M. thesis is to build a fast-scanning Fabry-

Perot interferometer for use in the far-infrared--- microwave region of the

spectrum. In this region, electron synchrotron radiation occurs in plasma

devices with high magnetic fields. Of particular interest here at MIT,

is the synchrotron radiation from the pulsed device, Alcator, upon which the

interferometer will be used.

The frequency range that the interferometer must work at is that of the

synchrotron radiation fundamental and its first few harmonics, the frequen-

cies being determined by the magnetic field strength. The fundamental is

given by qB/m_ which for Alcator, with B = 10 Tesla, gives qB/m_ = 1.76 x

ot? corresponding to a wavelength of 1.07 mm. The synchrotron emission

is not a line spectra, however, but rather it is peaked about the fundamen-

tal and its harmonics. The interferometer must be capable of operation

with wavelengths from 2 mm down to 250u in order to provide the necessary

coverage.

It would be extremely desirable to scan the synchrotron radiation spec-

trum many times during one pulse of Alcator to obtain a time history of the

radiation. Since Alcator is pulsed on for 30 msec. at a time, an interfer-

ometer with a scanning repetition rate of 300 cycles/sec. would provide ten

complete scans during one pulse.

This then is the thesis: the construction of a scanning Fabry-Perot in-

ter ferometer capable of operation in the range of .2 mm to 2 mm, a scanning

rate of 300 cycles/sec., and as high a finesse as possible.



CHAPTER 1

THEORY OF THE FABRY-PEROT INTERFEROMETER

SEC. 1.1. Introduction to the Fabry-Perot

The Fabry-Perot interferometer makes use of the multiple reflections

betweemiitwo plane parallel surfaces. Consider the arrangement of Fig. 1.1.1

where the two surfaces are very thin compared to the wavelength or incident

radiation. Let each surface be described by its complex coefficients of

reflection and transmission for amplitudes which are denoted by r and t for

radiation inciaent from outside the separating medium and R and T for radi-

ation incident from inside the medium. The difference in phase between suc-

cessive beams leaving on the right is:

-» 3(1.1.1) a = 2N k

-» =»
where k is the wave number vector and d is the spacing vector. Then the

amplitude of each transmitted wave is as indicated in Fig. 1.1.1.

The total transmitted amplitude for m beams is:

(1.1.2) t
m

I iaf2 i3a/2 2 2 is5a/2 mT e ho tI RR, e + £5 R, R, e oh

p opm-l pmol _1(2m-1)a/2

Summing the geometric series gives:

(1.1 3) t
m

J1a/2 (1 - &amp;® pT 10% / (1 - R. R. e10s
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for m4

(1.1.4) t =

io/2
L .17 e _ c 16

ia ie
1 - R, R,6 e 1 -pe

wherao

(1.1.5) € = |¢7T,| 0

C = af2 + arg t + arg t,

RR, |
vo

Td 2p

arg R, + arg R,
i»)

The transmitted intensity is the Airy formula

(1.1.6) r(€) ~ t E%®
2

2a COS€ 4+ po

3

For a Fabry-Perot with air as the separating medium, and two identical re-

flecting surfaces (such that ty = T, = T,and R. = R, = R), Eq.

1.1.6 can be cast into the form

(1.1.7) (yg) Tra
1 5

‘ Ph
1+ H sin ¢

whet 2

(1.1.8) A = 1-R-T H = 4R/(1-R)°

a

maw
(1
\1 + A/T

3

[2  Nn
td

af2 = op +Nkdcos 9, cosg = FT-t
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Fig. 1.1.2 is a plot of the Airy formula (yg) VS. for different

values of R and for A = 0. The function peaks every time § is equal to

an integral multiple of nn. The value of the integer is the order of the

interference. The distance between successive maxima is called the free

spectral range since for a fixed value of d, N, and §, this represents the

change in k between adjacent orders. Notice that the maximum transmission

at the center of a fringe is dependent only on the ratio A/T while the

sharpness of the fringe depends only upon R.

When H is large, a single fringe is essentially Lerentzian.

be close to mn, with m an integer. Then:

(1.1.9) ein’ QG) = gin’ (4-m7) ~ (y-mr)°

Let 1

and 1.1.7 gives:

2
T(y) Tr /4

(1.1.10) —_— = 2 3
Tmax (f-m}" + 1T°/4

tH Ara

(1.1.11) r = 2/./)H

the full width at half maximum.

A very useful parameter is the finesse, F, defined as the ratio of

the separation of successive maxima to the width T". Thus:

(1.1.12)  FT = &amp; - nN HC xv R
2 ~ 1 -R

1lso dependent only on R.
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SEC. 1.2 Use of the Fabry-Perot as a Spectrometer

Any Fabry-Perot interferometer is characterized by the Airy formula

of Eq. 1.1.7, Fig. 1.1.2. Applications of the Fabry-Perot as a measuring

instrument are based on the appearance of the several parameters in the

definition, Eq. 1.1.8, of ¥. The dependence on k, d, and N is the basis

of its use as a spectrometer.

The interferometer can be set to transmit a given value of k in one of

three ways: By changing the spacing, d, of the surfaces, by changing the

refractive index, N, of the separating medium, or by tilting the interfer-

ometer to change g. If d is varied, care must be taken to ensure that the

surfaces remain parallel, or a loss of finesse will result. Changing the

index of refraction of the separating medium avoids the problems of main-

taining parallelism. If the separating medium is a gas, this can be easily

done by varying the gas pressure. Scanning by varying § is almost never

used since it causes a large loss of étendue, a measure of the light-gather-

ing power of the instrument.

The resolving power, p, of the Fabry-Perot as a spectrometer is de-

termined as follows: Suppose we illuminate the interferometer with radi-

ation of two closely spaced, sharp spectral lines. We now scan the instru-

ment by varying one of the above mentioned parameters, say d. Then a de-

tector behind the interferometer would see the sum of two Airy functions

shown in the sketch below, Fig. 1.2.1. The solid line is the Airy function

for wave number ky and the dotted line for k tak. As a criterion of ability
. . 2

to resolve the two lines, one can take the so-called Taylor criterion
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that when the two curves intersect at the half-maximum points, one can just

detect that two lines are present. We assume that cosg = 1. In addition,

o 1s set = 0 since we can always change d to compensate for (. Then the

maximum of order m for LN falls at a spacing d such that

(1.2.1) Nk.d mit

The maximum at order m + 1 occurs for

(1.2.2) Nk,(d + pd) (m+1) 7

which gives

(1.2.3) Ad  nes
Nk,

 rT

(1.2.4) k= =
0 N Ad

we can get §d by differentiating Eq. 1.2.1

’1.2.5) 8d =
mr _1_

| N kn sky |

nt

(1.2.6) sk, =nN ™

2
dN koN

mir

=

d

but Ad/§d is just the finesse of the instrument, so the resolving power,
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p&gt;, is given by

(1.2.8) 5 m jo

As a brief illustration of its use as a spectrometer, suppose the spec-

trum to be studied consists of two sharp spectral lines of wave numbers

ky and kos and we want to determine the difference between them. Assume

the scanning method will be to vary d. We would like to operate at large

order to obtain high resolution; but at the same time, we must have a free

spectral range greater than gk = k, - ks,

The free spectral range pk is given by

(1.2.9 Ak =
£1

%
—-—

As long as gk&lt;Ak, there will be no overlap.

We select, then, a suitable order, m, and vary d. The detector will

observe peaks similar to Fig. 1.2.1, but with enough separation such that

the peaks do not overlap. FromEq. 1.2.6 we have

(1.2.10) sk = sd N ki”
m

Also we know that the first peak occurs for order m when

(1.2 ED! k = m_ Jt
N 4

And from Eq. 1.2.4 we have

(1.2.12) Kk, = —I-
1 N pd

Substituting the last two values of ky for 2 in Eq. 1.2.11 we obtain
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_ x 4d
(1.2.13) gk = kyok, = I:

[t is not necessary to know d to a fraction of a wavelength or to know

oP at all.

With this brief description of the Fabry-perot interferometer, we will

now proceed to a description of the particular interferometer built for this

thesis.
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CHAPTER 2

DESIGN OF THE SCANNING FABRY-PEROT INTERFEROMETER

SEC. 2.1 Reflecting Elements

Construction of a practical far-infrared Fabry-Perot interferometer is

contingent upon finding proper reflecting elements for this region of the

spectrum. The necessary properties follow from the Airy formula, Eq. 1.1.7,

for high maximum transmission and high finesse, A&lt;&lt;T and (1-R) &lt;&lt;1 re-

spectively. In the far infrared, these requirements cannot be simultan-

eously satisfied by the usual thin homogeneous metal layers commonly used
. . . 3 r ,

in the visible spectral region. However metal grids or meshes do satisfy

these requirements simultaneously, and they have previously been used with

. 4-12 , , ,

varying degrees of success. Two dimensional mesh with square symmetry

has an advantage over one dimensional grids in that the former is insensi-

tive to the polarization of normal radiation. (This is not true, however,

at other angles of incidence.) In the past decade, some types of this mesh

have become commercially available; and a moderate amount of information

. . y 4-15

about these meshes exists in the literature. For these reasons, the

reflecting elements of the interferometer were fabricated from metal mesh

of gquare symmetry.

When thin two dimensional meshes first became available about ten years

; . . . 4-11

ago, their properties were largely unknown; and original experimenters

were forced to measure the transmission, absorption, and reflectivity of

their mesh for the wavelengths of interest. Since then, some fairly good

quantitative theory has been developed. Properties of the meshes have
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been experimentally measured over a range of wavelengths, A, and mesh spac-

4-11
ings, g. N/g of course is the parameter responsible for the gross prop-

erties of the meshes, although the parameters a, the strip width, and t,

the mesh thickness, must be included when calculating the actual values of

the properties.

. 10,13 ya g

Ulrich has developed a theory explaining the behavior of meshes

by relating them to an electrical transmission line equivalent circuit.

14
Building upon this and the work of others, Saksena, et. al. have developed

the theory we shall use here.

Saksena has determined that the intensity coefficients of reflection

and transmission for the meshes should be given by:

“2  1 1)

(2.1.7)

2.1.3)

2 -1
2 2

= 5, 8 £ ]R 1 + = COS § (Fg + In Zva_ )

4g IN) cos” 6[Fy + In(g/27a,) 1°
1 + 4(e? N2) a [F, + In(g/27a,) 1°

T = 1-R

1x _
Fa = 3) {[p-+sin) B| 4 [as @- sing) £77

n=] ’

t

 AL

In + (1+ sing) £17
1

[n - (1 - sing) 2 2 - 3

- £ a(2.1.4) a, = 2 1 += InGne?) |

where A, g, a, and t are as defined above, and § is the angle of incidence.

[t should be pointed out that Saksena has neglected any absorptivity in

deriving these formulae, but he demonstrated that this assumption was con-
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sistent with his theory. We shall come back to these formulae when we

calculate the theoretical finesse of the interferometer.
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SEC. 2.2 Method of Scanning

As mentioned in Chpater 1, the interferometer can be scanned three

different ways: by changing d, N, or §. Because of the loss of étendue,

p-scanning was immediately rejected; leaving the other two methods, both

of which have their individual disadvantages.

Since the synchrotron frequency, Ww, » in Alcator is proportional to

the magnetic field strength, B, and B is inversely proportional to the

major radius, R, of the machine Ww, is also inversely proportional to R.

As R changes by approximately + 229, from the on-axis value, so 2, will

change by the same amount; and the interferometer must be capable of scan-

ning this large range of k. To facilitate data analysis, it is desirable

that this scanning range be entirely within the free spectral range of the

instrument, i.e. .

gk Ak _ 1(2.2.1) — &lt; T —

NY

(2.2.2) 22 &lt; L, or m&lt; 4.5

that is, m = 4 is the largest order that can be used; and for m = 4, the

scanning range needed is almost one free spectral range.

Additionally, a complete scan should only require a few milliseconds.

Either one of these two requirements is sufficient to eliminate pressure

scanning (changing N of the gas medium separating the meshes) as a pos-

sible method. Since N of most gases exceeds unity by only 3 x 1074 at one

atmosphere of pressure, an interferometer would have to operate with m &gt;
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3000 to be able to scan through one free spectral range with a one atmos-

phere change of pressure. Of course, with larger pressure changes or with

gases of higher index of refraction, a lower order of interference could

be used; but not as low as m = 4. In any event rapid, precise changes

of pressure are difficult to make. Thus only scanning in d seemed practical.

Initial experiments involved the use of piezoelectric translators which

are commonly used with visible radiation interferometers to achieve scan-

ning times of several Hz to hundreds of kHz. However, operation in the

far infrared requires three orders of magnitude more throw than operation

in the visible. A piezoelectric translator with the necessary throw but

designed for low frequency operation was tested. Performance was mediocre

above 20 Hz; the translator could not be pushed past its design specifi-

cations.

Various mechanical schemes involving electric motors and cams were

considered next, but 300 Hz is 18,000 RPM which seemed impractical to

achieve without excessive vibration.

We then tried magnetic translation using a loud-speaker. Quality low

frequency speakers reproduce well complex waveforms at the frequencies of

interest to us, and it was thought that one might prove satisfactory for

our requirements.

Accordingly we used a James B. Lansing LE-14A low frequency woofer,

this particular speaker being chosen because it has a 1-1/2" diameter

tole through the center of the magnet to promote better air circulation for

cooling the voice coil. Only minor modifications of the original factory

product were needed, namely removal of some screening at each end of the
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cooling passage and the cutting of a hole in the speaker dome.

A very low-mass mesh holder was fabricated and then glued over the

hole in the speaker dome. The resulting arrangement is illustrated in

Fig. 2.2.1. The stationary mesh was mounted in an angular orientation

mount and stacked on X-Y micrometer screw translators for final position-

ing and alignment. Meshes of 250 lines/inch were selected as being the most

suitable of those immediately available for operation with a 337u hydrogen

cyanide laser, the radiation source used.

Let us now consider what performance is to be theoretically expected

from this interferometer.
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SEC. 2.3 Theoretical Predictions

As mentioned previously, the expected finesse is calculated from the

theoretical reflectivity of the meshes given by Saksena's formulae Eqs.

2.1.1 -- 2.1.4 using the actual mesh dimensions. The 250 lines/inch mesh

had g = 102p, a = 16u, and t = 5u; these parameters along with A = 337u

and g = 0 give

(2.3.1) a, = 6.15

7 = Fi = .053

1nd

fo -)’
i

The theoretical finesse then is given by Eq. 1.1.10:

INR = 9s
(2.3.2) F = ~1=R

We then addressed ourselves to the problem of what the interferometer

transmission as a function of time should be when the movable mesh was

translated sinusoidally in time, a sinusoid being assumed to be the driv-

ing function the speaker could follow most accurately. Fig. 2.3.1 through

Fig. 2.3.8 are plots of the function g(x) =1/ (1 +H sin’ (B sin x)) vs. x

for various values of B with H derived from the theoretical finesse. They

therefore predict what the interferometer transmission should look like when

the speaker is driven with a voltage given by V =V_ sin wt as V, is in-

creased.

Figs. 2.3.7 and 2.3.8 are especially interesting since the sharp peaks

in the center occur when the velocity of the moving mesh is essentially
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constant. As such they are a direct indication of the finesse. This will

be the experimental basis to determine the finesse when the mesh is moving

to verify that the finesse does not change from its statiomary ("D.C.")

value.
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CHAPTER 3

EXPERIMENTAL RESULTS

SEC. 3.1 Experimental Set-Up

Testing of the interferometer was done at NA = 337 with the radiation

from a HCN laser. The radiation transmitted through the interferometer

was condensed with a hollow copper cone onto a 2 mm X 2 mm monocrystalline

triglycine sulfate (TGS) pyroelectric detector, described elsewhere. ©

As these detectors are somewhat noisy, a lock-in amplifier and mechanical

chopper were used to improve the signal-to-noise ratio.

The frequency response of the detector was measured and found to be

flat from 40 Hz to above 1 kHz. Below 40 Hz, the detector was limited by the

coupling capacitors in the following preamp; and above 1 kHz, the detector

response falls off as 1/f due to the internal capacitance of the TGS crystal.

Unfortunately we do not accurately know where the 1/f region began. These

frequency response measurements were made with a mechanical chopper that

could not be driven any faster than 750 cycles/sec. We only know that the

1/f break-point was somewhere between 1 kHz and 5 kHz. Fortunately, this

did not have any serious effect on the experiment.
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SEC. 3.2 D.C. Response

The D.C. (no magnetic translation) response of the interferometer was

measured by scanning in d with the micrometer screw on the X translator.

Figs. 3.2.1 -- 3.2.5 show the response at various mesh spacings, d. The

X-axis positions are merely the relative position indicated by the micro-

meter. The Y-axis scale is completely arbitrary, but in each case the peak

transmission was 0.66 absolute.

The observed points, indicated by circles in the figures, were fitted

with a least-squares fit by the function

(3.2.1) v(x)
1+H sine + Bx)

7

\¥)

where C, H, ¢ and B are constants, whose values are determined by the solu-

tion of the least-squares' normal equations by way of the Leveberg-Marquardt

17-20
algorithm. The solid line is the fitted function, and the indicated

finesse was derived from the least-squares value of H.

The five values give a measured finesse of F = 9.3 £.2 which corres-

ponds to a mesh reflectivity of 0.71, good agreement with the result pre-

dicted from Saksena's formulae. Since the peak transmission was 0.66,

I = .24 and A = .05, a value for the absorption considerably larger than

that predicted by Saksena. This value of absorptivity does, however, agree

well with that measured by Vogel and Genzel’ and Mitsuishi, et. al.’ We

conclude that the D.C. response is essentially that predicted by theory.
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SEC. 3.3 A.C. Response

During the A.C. response measurements, the speaker was driven sinu-

soidally, V = A sin(2xvt), at different frequencies, y, and voltages, Vy:

Tne output from the detector was put on the vertical axis of an oscillo-

scope and the time-base adjusted so that the sweep took one period of the

sinusoid. Figs. 3.3.1 -- 3.3.4 are pictures of the trace for yy = 50 Hz

as the voltage Yo was increased for a mesh separation of d = 1 mm. It was

readily apparent that the transmission was as expected. Driving frequencies

of y = 30, 50, and 80 Hz were applied; and in every case, the results were

exactly as those of Figs. 3.3.1 -- 3.3.4.

The analysis of these results is facilitated by reference to Fig.

2.3.8; the same comments apply to the bottom picture of Fig. 3.3.4. The

peak at X = 0 corresponds to the mesh in its center position, Z = 0, when

V = 0. The peak at X = .17 occured when the mesh had moved to Z = A/2 in

the positive direction, the peak at X = .46 when the mesh had been dis-

placed to Z = A, and the dip at X = .5 marked the maximum excursion of the

mesh in positive direction when V = Vy At this point the mesh retracted,

moving back through the two transmission peaks to Z = 0 at X = 1 in Fig.

2.3.8. As the sinusoid then went negative, the whole process repeated, but

in the negative direction. Every A/2 of displacement was a scan of one free

spectral range. Thus in one period of the applied sinusoid, we had eight

complete scans of the interferometer, for an effective scanning frequency

of 400 Hz.

The analysis of other values of Yo is similar.

The 1/f falloff in detector response can be seen in the bottom photo-
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graph of Fig. 3.3.4. Note that the sharp fringes, corresponding to the

highest mesh velocity, were clearly reduced in amplitude from the peaks

occuring when the mesh was moving slowly. A single sharp fringe had a

characteristic time of less than one millisecond putting it into the 1/f

region of the detector. Since the A.C. finesse was to be determined from

these sharp fringes, as mentioned in Sec. 2.3, we had to determine what,

if any, effect this 1/f falloff would have on the measured finesse.

After some momentary reflection, we realized that the falloff could

only reduce the measured finesse from its actual value. This can be easily

seen by treating a fringe as a single input pulse falling on the detector.

Then the output pulse from the detector is the convolution of the input

pulse with the response function of the detector. We recall from the theory

of Fourier transforms that the convolution is the inverse Fourier transform

of the product of the two Fourier transforms of the input pulse and the de-

tector CeEPIRE. The transform of the detector response we know: It is

equal to one out to some cutoff frequency y, ~ 1.5 kHz and then falls off

as 1/v. We do not know the transform of the input pulse. We do know, how-

ever, as a general property of Fourier transforms, that the sharper the in-
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put pulse is in time, the broader its transform is in V. Due to the shape

of the transform of the detector response, the product of the two transforms

can never be broader than the transform of the input pulse; it can only be

narrower.

Since the product can only be narrower than the input pulse transform,

it follows immediately that the convolution, the inverse Fourier transform,

can only be broader than the input pulse. Hence the measured finesse can
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only be lower than the true value.

The finesse was measured at each frequency by increasing Yo to give a

display of the type of the bottom photograph of Fig. 3.3.4. The trace was

then magnified five times, and the central three fringes photographed. Fig.

3.3.5 is an example for Vv = 50 Hz with the magnified image below. Fig.

3.3.6 are the traces for v = 30 Hz and 80 Hz. In the 80 Hz case notice the

slow falloff of the peaks due to the pyroelectric crystal thermal junction

TTT... This effect is also noticable in the 50 Hz case, but to a

lesser extent.

The finesse was determined from measurements off the film of the ratio

of the inter-order spacing to the fringe width. In the case of 50 Hz and

80 Hz, a perpendicular was dropped from the top of the fringe, and the half

width to the leading edge measured. The finesses and their uncertainties

due to difficulties of measuring off the films were 9.0 £ .3, 9.5 % .8, and

9 £1 for 30 Hz, 50 Hz, and 80 Hz, respectively. Any degradation of the

measured finesse due to 1/f falloff was apparently masked by the uncertain-

ties of measurement. In any event, we conclude that the A.C. finesse is

at least 90% of the D.C. value.
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Fig. 3.3.1
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Fig. 3.3.3
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CONCLUSION

There can be no doubt that the concept of magnetic translation works,

and works well. This fast-scanning Fabry-Perot is easy to construct and

virtually fool-proof. To obtain a given finesse at a specified wavelength,

it is only necessary to select the proper mesh. Since meshes with 1000

lines/inch are available, this interferometer should be usable with a fi-

nesse of 10 at wavelengths down to at least 100u. Conversely meshes are

available with as few as 30 lines/inch so the interferometer should be

usable at 5 mm or longer wavelengths. There are, however, several factors

limiting how far the usable spectral range can be extended.

At short wavelengths, the alignment and uniformity of the mesh spacing

becomes increasingly critical. For a given finesse and wavelength, the

6
mesh spacing must be uniform within d = \/(2F). For a finesse of 10 at

 AN = 100u, this means d = 5u. For the same reason parallelism must be main-

tained within several seconds of arc. As the mesh is translated through

greater and greater distances, some wobble in the speaker cone is inevitable,

and this will certainly limit the maximum scanning frequency.

Conversly at longer wavelengths, alignment becomes less critical. How-

ever the size of the hole in the magnet structure will be a limiting factor

due to diffraction effects. Increasing the hole diameter, of course, re-

moves this restriction. For microwave applications, the magnet structure

would have to be specially fabricated as a separate unit with as large a

bore as necessary.

[n any event, the interferometer we have constructed is usable over an
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order of magnitude range of wavelengths with a scanning time of three

milliseconds or less.
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