
MIT Open Access Articles

Tensor completion with noisy side information

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Bertsimas, Dimitris and Pawlowski, Colin. 2023. "Tensor completion with noisy side
information."

As Published: https://doi.org/10.1007/s10994-023-06338-5

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/152104

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of use: Creative Commons Attribution

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/152104
http://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-023-06338-5

1 3

Tensor completion with noisy side information

Dimitris Bertsimas1  · Colin Pawlowski1

Received: 3 February 2020 / Revised: 12 December 2022 / Accepted: 6 April 2023
© The Author(s) 2023

Abstract
We develop a new model for tensor completion which incorporates noisy side information
available on the rows and columns of a 3-dimensional tensor. This method learns a low
rank representation of the data along with regression coefficients for the observed noisy
features. Given this model, we propose an efficient alternating minimization algorithm to
find high-quality solutions that scales to large data sets. Through extensive computational
experiments, we demonstrate that this method leads to significant gains in out-of-sample
accuracy filling in missing values in both simulated and real-world data. We consider the
problem of imputing drug response in three large-scale anti-cancer drug screening data
sets: the Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclo-
pedia (CCLE), and the Genentech Cell Line Screening Initiative (GCSI). On imputation
tasks with 20% to 80% missing data, we show that the proposed method TensorGenomic
matches or outperforms state-of-the-art methods including the original tensor model and a
multilevel mixed effects model. With 80% missing data, TensorGenomic improves the
R
2 from 0.404 to 0.552 in the GDSC data set, 0.407 to 0.524 in the CCLE data set, and

0.331 to 0.453 in the GCSI data set compared to the tensor model which does not take into
account genomic side information.

Keywords  Tensor completion · Low-rank · 3-Dimensional data · Anti-cancer drug
screens · Genomic data

1  Introduction

Mathematically, a tensor is a multidimensional array of numbers, typically with 3 or
more dimensions (Kolda & Bader, 2009). A vector is a 1-dimensional tensor, a matrix
is a 2-dimensional tensor, and in general there are N-dimensional tensors. For example,

Editor: Pradeep Ravikumar.

 *	 Dimitris Bertsimas
	 dbertim@mit.edu

	 Colin Pawlowski
	 cpawlows@mit.edu

1	 Operations Research Center, E40‑111, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

http://orcid.org/0000-0002-1985-1003
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06338-5&domain=pdf

	 Machine Learning

1 3

suppose that we are given an e-commerce data set of n customers interacting with m prod-
ucts through � interactions. These interactions may include things such as: “searched for
the product”, “purchased the product”, and “clicked on advertisement for the product”. We
can represent this data as a 3-dimensional tensor Z ∈ ℝ

n×m×� , where zk
ij
= 1 if interaction k

occurred for the pair (customer i, item j) and zk
ij
= 0 otherwise. This tensor may contain a

large number of missing values, for instance because we have not shown advertisements to
each (customer i, item j) pair. However, we assume that all of the entries in the tensor have
some true underlying values which we would like to predict. This representation is useful
because the data naturally varies along each dimension according to a different mechanism,
which is the principal structure that is leveraged by mathematical models based on tensor
data.

Given this tensor representation, we consider the problem of filling in the missing val-
ues of this tensor. This is known as the problem of tensor completion. In the e-commerce
example, we would like to predict the purchase probability for each pair (customer i, item j)
so that we can display personalized advertisements and search recommendations. However,
in order to develop the most accurate predictive model, in many cases it is insufficient to
consider the tensor data in isolation because we have additional data available. Suppose that
we are given additional data on the customers X ∈ ℝ

n×p and additional data on the products
Y ∈ ℝ

m×q which are completely known. We refer to this additional data as side information.
In practice, this side information may be noisy, which means that it contains only limited
predictive power for the learning task at hand. Therefore, we will avoid making any strong
assumptions about the relationships between X , Y , and Z . In this work, we propose a model
which leverages all of this data simultaneously to fill in the missing values of Z.

As a real world application explored in this paper, we consider the problem of personal-
ized chemotherapy treatment for patients with cancer. Since data from human clinical tri-
als is sparse in this area, we use data from large-scale anti-cancer drug screens, including
the Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclopedia
(CCLE), and the Genentech Cell Line Screening Initiative (GCSI) data sets. These data
sets were generated from in vitro experiments on cell lines, which are samples of cells that
have been taken from the tumors of patients with cancer and grown in the lab (Shoemaker,
2006). Suppose that we are given a data set with n patients, m anti-cancer drugs, and �
doses. We can represent this data set as a tensor Z ∈ ℝ

n×m×� , where zk
ij
 is the percentage

reduction in tumor size after the cell line from patient i receives anti-cancer drug j at dose
k. In addition, we may also be given noisy side information in the form of genomic features
X ∈ ℝ

n×p for the patients and drug target pathway features Y ∈ ℝ
m×q for the anti-cancer

drugs. Our goal is to fill in the missing values in the tensor Z so that we can prescribe the
best anti-cancer treatment for each individual. While a lot of research has been done on this
subject, accurately predicting the response of an individual to anti-cancer drugs remains a
crucial challenge (Azuaje, 2016). Furthermore, to our knowledge very little work has been
done trying to predict the response at particular doses. In computational experiments in
Sect. 4, we test tensor completion methods on the GDSC, CCLE, and GCSI data sets, and
we compare our approach to existing methods for this application.

1.1 � Related work

Our work belongs to the class of statistical methods known as collaborative filtering algo-
rithms (Koren et al., 2009; Koren & Bell, 2015). The objective of collaborative filtering
is to learn the preferences of an individual by collecting taste information from many

Machine Learning	

1 3

individuals (Candès & Tao, 2009). For instance, in the previous two examples we were
interested in learning the product preferences of consumers and the drug preferences of
cancer patients, respectively. Further, in this work we focus on the problem setting with
explicit feedback, where we have direct input from users regarding their preferences, in
contrast with the implicit feedback setting where direct user input is not available (Hu
et al., 2008). Collaborative filtering methods designed for the explicit feedback setting
include algorithms for matrix completion and tensor completion, and typically use matrix
factorization methods (Koren et al., 2009).

There is extensive literature on the problem of matrix completion, with a surge in inter-
est starting in 2006 with the Netflix Prize competition (Bennett et al., 2007). In this compe-
tition, the internet movie-streaming company Netflix asked participants to come up with a
recommendation system that accurately predicts movie ratings of users, with a $1 million
dollar first prize. The winning entry used a matrix factorization approach with modifica-
tions (Bell & Koren, 2007). Over the past decade, matrix completion methods have been
used in many ratings-based recommendation systems in e-commerce (Yang et al., 2016;
Kluver et al., 2018).

Matrix factorization methods for matrix completion use the assumption that the underly-
ing data is low rank. Intuitively, this means that the data matrix has a simpler structure than
an arbitrary matrix with the same dimensions. Formally, the rank of a matrix M ∈ ℝ

n×m
is the smallest integer r such that it can be expressed as the product of two matrices UVT ,
where U ∈ ℝ

n×r and V ∈ ℝ
m×r . Computationally efficient methods are available for learn-

ing low rank matrix approximations, including nuclear-norm minimization, singular-value
decomposition, and alternating minimization. These approaches are widely used for solv-
ing the problem of matrix completion (Candès & Recht, 2009; Candes & Plan, 2010; Cai
et al., 2010; Mazumder et al., 2010; Jain et al., 2013).

In addition, matrix completion methods that incorporate side information have been
studied. For example, Inductive Matrix Completion (IMC) is a method for matrix comple-
tion with exact side information (Jain & Dhillon, 2013). In this model, we assume that
the data matrix M ∈ ℝ

n×m can be expressed as the product of XSYT , where X ∈ ℝ
n×p ,

Y ∈ ℝ
m×q are the matrices of side information and S ∈ ℝ

p×q is learned from the data.
Alternatively, Chiang et al. (2015) proposed a method given noisy side information which
uses weaker assumptions on the data structure. In their model, they assume that the data
matrix can be expressed as XSYT + R , where X , S , Y are defined as before and R ∈ ℝ

n×m
is a low rank component learned from the data. In our approach, we use a similar additive
model to incorporate noisy side information, but extended to the tensor setting. Finally, we
note that there are several other methods, including Kernelized Bayesian Matrix Factori-
zation which integrates side information using Bayesian priors (Gönen et al., 2013), and
extensions of IMC which impose sparsity constraints upon the S matrix (Lu et al., 2016;
Bertsimas & Li, 2018).

In order to extend the ideas from matrix completion to tensor completion, the first
thing required is a generalization of the concept of matrix rank to higher dimensions.
There are multiple definitions for the rank of a tensor with 3 or more dimensions,
including the CP rank, Tucker rank, and Slice rank (Kolda & Bader, 2009; Tucker,
1966; Farias & Li, 2019). Some of these objects such as the Tucker rank have multiple
components based upon the number of dimensions in the tensor. Similar to the matrix
rank, if a tensor Z ∈ ℝ

n×m×� has low rank according to one of these criteria, then it has
a simpler structure than an arbitrary tensor with the same dimensions. We discuss the
mathematical properties of tensors in more detail in Sect. 2.1, and we provide the for-
mal definitions of these concepts of tensor rank in Appendix 1.

	 Machine Learning

1 3

Previous work has been done to find the best low rank approximation to a tensor for
different definitions of the tensor rank. The CP and Tucker decompositions are well-
known (Kolda & Bader, 2009). However, these methods are computationally inten-
sive and impractical for large-scale data sets. Several promising results in recent years
have focused on finding the best convex tensor approximation by minimizing the sum
or a convex combination of the components of the Tucker rank (Gandy et al., 2011;
Liu et al., 2013). These algorithms have recovery guarantees and generalize better than
exact Tucker decomposition when the number of observed entries is greater than a cer-
tain threshold (Tomioka et al., 2011).

Newer approaches which use non-convex approaches have been shown to outper-
form convex methods for tensor completion. Chen et al. (2019) propose a non-convex
projected gradient descent method which bounds the Tucker rank and imposes sparsity
on the tensor approximation. In addition, Farias and Li (2019) propose a non-convex
method for 3-dimensional tensor completion which provides stronger statistical guar-
antees compared to general methods for n-dimensional tensors. Their proposed algo-
rithm learns a low Slice rank representation of the data via a hard-thresholding SVD
approach which can scale to large data sets. In this paper, we also restrict our focus to
the 3-dimensional tensor completion problem, and we extend the method proposed by
Farias and Li (2019) to accommodate noisy side information on the rows and the col-
umns of the tensor.

There has also been some previous work adapting tensor completion methods to accom-
modate side information (Acar et al., 2011; Narita et al., 2012; Rai et al., 2015; Lamba
et al., 2016; Zhou et al., 2017; Wimalawarne et al., 2018). For example, Narita et al. (2012)
propose a method that finds the best CP or Tucker approximation with an additional regu-
larization term based on graph Laplacians to incorporate the side information. This method
is slightly less computationally efficient compared to the original CP and Tucker decom-
position algorithms. Rai et al. (2015) propose a completely Bayesian model that enriches
the original CP decomposition with a second-layer tensor decomposition that incorporates
side information. However, this method requires many tuning parameters, and in practice
we may not have the distributional information which is required for the Bayesian priors.
In general, current methods for tensor completion which account for side information are
computationally intensive and difficult to implement for problems encountered in practice.
In particular, there is a practical need to impute missing values in 3-dimensional data sets
used for medical applications, which may include genomic side information on the patients
which are noisy and high-dimensional.

Finally, we outline the literature which is related to the real-world application that we
consider. Many collaborative filtering methods have been applied to predict gene-disease
associations and drug response. For example, IMC and probability-based collaborative
filtering have been used to discover gene-disease associations in the Online Mendelian
Inheritance in Man (OMIM) database (Hamosh et al., 2005; Natarajan & Dhillon, 2014;
Zeng et al., 2017). In addition, several methods have been developed specifically to pre-
dict anti-cancer drug response in the GDSC and CCLE data sets. For example, Tan (2016)
extend Kernelized Bayesian Matrix Factorization to predict anti-cancer drug response in
the GDSC data set leveraging drug pathway data as side information. Liu et al. (2018) pro-
pose a nearest-neighbors based method which incorporates genomic and drug side infor-
mation into a low rank model. Other methods which do not rely upon low rank models
have also been developed to predict anti-cancer drug response, including random forest,
deep learning, and network-based methods (Rahman & Pal, 2019; Su et al., 2019; Franco
et al., 2019).

Machine Learning	

1 3

Our approach for predicting anti-cancer drug response differs from the above methods
because we train on the raw experimental data from the drug screens, which is the drug
response of cell lines from patients with solid tumor cancers to anti-cancer treatments at
particular doses. As a result, the training data is a 3-dimensional tensor with dimensions
(patient, drug, dose). In contrast, the previous methods rely upon a pre-processing step to
determine the sensitivity of each (patient, drug) pair first. These sensitivity values are taken
as ground truth, and then matrix completion methods are fit on top. In this work, we avoid
the dependence upon intermediate models by casting this as a tensor completion problem
instead of a matrix completion problem.

1.2 � Contributions

The contributions of this paper are as follows:

1.	 We propose an extension to the low rank model for tensor completion proposed by Farias
and Li (2019) that leverages noisy side information. In particular, we propose a model
for tensor completion with one-sided information that incorporates noisy features of the
rows, and a model for tensor completion with two-sided information that incorporates
noisy features of both the rows and columns. Each model is composed of a low rank
component which leverages the structure of the observed values in the tensor and a
regression component which leverages the noisy side information.

2.	 For each model, we derive fast algorithms based upon alternating minimization which
find high quality solutions. In particular, we present the algorithms TensorOneSided
and TensorTwoSided for tensor completion given noisy one-sided and two-sided
information, respectively.

3.	 In experiments on simulated data, we demonstrate that the proposed method TensorT-
woSided significantly outperforms benchmark methods for tensor completion given
two-sided information with varying levels of noise. The benchmark methods considered
include the original tensor completion method Tensor which does not incorporate side
information and a regression method TwoSided which uses side information only.

4.	 In experiments on real-world data, we demonstrate that the proposed method Ten-
sorGenomic matches or outperforms state-of-the-art methods for predicting anti-
cancer drug response in the GDSC, CCLE, and GCSI data sets with 20% to 80% missing
values given genomic side information. In particular, with 80% missing data, Ten-
sorGenomic improves the R2 from 0.404 to 0.552 in the GDSC data set, 0.407 to
0.524 in the CCLE data set, and 0.331 to 0.453 in the GCSI data set compared to the
low rank tensor model which does not take into account genomic side information.

The structure of this paper is as follows. In Sect. 2, we describe our proposed methods for
tensor completion for problems with noisy one-sided and two-sided information. In Sect. 3,
we compare the performance of our methods against benchmark tensor completion meth-
ods on simulated data experiments. In Sect. 4, we test the performance of the method for
tensor completion on two real-world examples predicting anti-cancer drug response with
genomic side information. In Sect. 5, we discuss the results from the simulated and real-
world computational experiments. We conclude in Sect. 6.

	 Machine Learning

1 3

2 � Methods

In Sect. 2.1, we provide some background material on tensors which is prerequisite mate-
rial for this work. In Sect. 2.2, we state the problem of tensor completion with noisy side
information. In Sects. 2.3 and 2.4, we introduce two basic regression models for tensor
completion using one-sided and two-sided information, and we present two fast methods
based upon accelerated gradient descent. In Sect. 2.5, we introduce a low rank model for
tensor completion without side information, and we review the Slice Learning method. In
Sect. 2.6, we introduce a low rank model for tensor completion with one-sided information
that uses features on the rows, and we present the method TensorOneSided. In Sect. 2.7,
we introduce a low rank model for tensor completion with two-sided information that uses
features on both rows and columns, and we present the method TensorTwoSided.

2.1 � Background on tensors

In this section, we cover a few preliminaries on tensors and the notation that we use to
describe them. A tensor is a multidimensional array or N-way array (Kolda & Bader,
2009). In this work, we consider only 3-way tensors in the Euclidean space ℝn×m×� . We
refer to n, m, and � as the number of rows, columns, and slices of the tensor, respec-
tively. For a given tensor Z ∈ ℝ

n×m×� , let zk
ij
 be the element in the ith row, jth column,

and kth slice of the tensor. In addition, we refer to the matrix formed by the kth slice
of the tensor as Zk ∈ ℝ

n×m . If Z has missing values, we denote the known and missing
entries in the kth slice of the tensor as

and across all slices of the tensor as

We also describe some basic notation that we use to refer to matrices. For a matrix
X ∈ ℝ

n×p , let xid be the element in the ith row and dth column. We denote the transpose of
X as XT ∈ ℝ

p×n and the column rank as rank(X ). We also will use the Frobenius norm of a
matrix, which is defined as

2.1.1 � Tensor unfoldings

Next, we define the unfoldings of a tensor Z ∈ ℝ
n×m×� . We define the mode-1 unfolding

of a tensor to be the horizontal concatenation of the slices of the tensor into a single

�k =

{
(i, j) ∶ zk

ij
is known

}
,

�c
k
=

{
(i, j) ∶ zk

ij
is missing

}
.

� =

{
(i, j, k) ∶ zk

ij
is known

}
,

�c =

{
(i, j, k) ∶ zk

ij
is missing

}
.

‖X‖F ∶=

��

i,d

x2
id
.

Machine Learning	

1 3

matrix. We denote this matrix as Z(1) ∈ ℝ
n×m� . In Z(1) , the columns are equivalent to

the columns of all of the slices in the original tensor. Likewise, we define the mode-2
unfolding of a tensor to be the horizontal concatenation of the transposed slices into a
single matrix. We denote the mode-2 unfolding as Z(2) ∈ ℝ

m×n� . In Z(2) , the columns
are equivalent to the rows of all of the slices in the original tensor. Following this pat-
tern, we can also define the mode-3 unfolding of a tensor, although forming this object
requires breaking up the tensor slices. We consider the vector zij formed by fixing the
ith row and jth column, and then varying the third dimension. The mode-3 unfolding
Z(3) ∈ ℝ

�×nm is the matrix formed by horizontally concatenating all of these vectors
zij . In Fig. 1, we provide visualizations of a 3-dimensional tensor and its mode-1 and
mode-2 unfoldings. For more discussion on tensor unfoldings, we refer the reader to
Kolda and Bader (2009). In Appendix 1, we provide definitions for the rank of a tensor
which use these concepts of tensor unfoldings.

2.2 � Tensor completion problem

In this section, we state the problem of tensor completion with noisy side information.
Suppose that we are given a 3-dimensional data set Z ∈ ℝ

n×m×� with known and miss-
ing values �k,�

c
k
 for each slice k, respectively. In addition, suppose that we are also given

noisy features X ∈ ℝ
n×p and Y ∈ ℝ

m×q of the rows and columns of this data, respectively.
For example, consider an e-commerce data set with n customers, m products, and �

interactions. In this tensor Z , zk
ij
= 1 if customer i interacted with product j via interac-

tion k, and zk
ij
= 0 otherwise. Many of the entries of Z are missing because each customer

typically has only a few interactions with a subset of the products. In addition, we have p
features of the customers, such as the age, gender, location, and electronic device of each
customer, which are captured in the row side information X . We also have q features of the
products, such as the brand, supplier, and average review score of each product, which are
captured in the column side information Y.

As another example, consider a drug screening data set with n patients, m drugs, and �
doses. In this tensor, zk

ij
 is the outcome when patient i is treated with drug j at dose k. Many

of the entries of Z are missing because each patient has only received a few (drug, dose)
treatment combinations in the past. In the row side information X , we have p features of the
patients, which may include demographic or genomic data. In the column side information Y ,
we have q features of the drugs, which may include drug target pathway data.

Fig. 1   Visualizations of a 3-dimensional tensor and its mode-1 and mode-2 unfoldings

	 Machine Learning

1 3

Given the observed values of Z and the noisy features X , Y , our goal is to find the approxi-
mation Ẑ ∈ ℝ

n×m×� which is as close as possible to the original Z . In particular, we would like
to find Ẑ which minimizes the sum-of-squared errors across all of the slices:

In order to find Ẑ which minimizes (1), we consider the following problem:

where Ẑ ∈ Z denotes a set of structural assumptions on Ẑ . In the next few sections, we
consider models based on a few different structural assumptions which are summarized in
Table 1.

2.3 � One‑sided regression model

In this section, we introduce the one-sided regression model which uses row side informa-
tion only, and we present the OneSided method. This is a simple model based upon linear
regression which does not leverage information across multiple slices of the tensor.

Suppose that xi ∈ ℝ
p is the vector of features for the ith row in the tensor. Consider the

linear model:

where wk
∶j
∈ ℝ

p are weights for a particular (column, slice) pair. We can interpret the

weight wk
dj

 as the amount of change in the prediction given one unit increase in xid . In ten-
sor notation, we have

where Wk ∈ ℝ
p×m is the matrix of weights for the kth slice. We can learn W by running m�

independent linear regressions, one for each (column, slice) pair. We can fit all of these lin-
ear regression models simultaneously by considering the following optimization problem:

(1)
��

k=1

‖Zk − Ẑ
k‖2

F
.

(2)
min
Ẑ

�∑

k=1

∑

(i,j)∈𝛺k

(zk
ij
− ẑk

ij
)2

s.t. Ẑ ∈ Z,

ẑk
ij
= xT

i
wk

∶j
,

(3)Ẑ
k
= XWk,

Table 1   Structural assumptions
on the slices of the tensor
approximation. In these models,
W

k , Sk are weights which are
different for each slice of the
tensor. On the other hand, U,V
are latent features which are
constant across all slices. More
details are provided in Sects. 2.3-
2.7

Model Structural Assumption Section

One-Sided Regression
Ẑ
k

= XW
k 2.3

Two-Sided Regression
Ẑ
k

= XW
k
Y

T 2.4

Tensor
Ẑ
k

= US
k
V

T 2.5

Tensor One-Sided
Ẑ
k

= US
k
V

T
+ XW

k 2.6

Tensor Two-Sided
Ẑ
k

= US
k
V

T
+ XW

k
Y

T 2.7

Machine Learning	

1 3

where � is a regularization parameter. Problem (4) is a quadratic optimization problem
which is efficiently solvable. In particular, we solve this subproblem using Nesterov’s
accelerated gradient descent method (Nesterov, 1983). Let f (W;X,�) be the objective
function of problem (4). The partial derivative of f with respect to wk

dj
 is

Let ∇f (W;X,�) be the full gradient of f with respect to W . In Algorithm 1, we present an
accelerated gradient descent method for solving problem (4) using this gradient. We can
further speed up this method by selecting the step size � dynamically at each step via back-
tracking line search (Nocedal & Wright, 2006).

2.4 � Two‑sided regression model

In this section, we introduce the two-sided regression model which uses both row and col-
umn side information, and we present the TwoSided method. Similar to the one-sided
model, this model does not leverage information across multiple slices of the tensor.

Suppose that xi ∈ ℝ
p is the vector of features for the ith row, and yj ∈ ℝ

q is the vector of
features for the jth column. Consider the bilinear model:

where Wk ∈ ℝ
p×q are weights for the kth slice of the tensor. We can interpret the weight

wk
de

 as the amount of change in the prediction given one unit increase in the interaction
term xidyje . In tensor notation we have

(4)min
W

��

k=1

�

(i,j)∈�k

�
zk
ij
− (XWk)ij

�2

+
1

�
‖Wk‖2

F
,

�f (W;X,�)

�wk
dj

=
2

�
wk
dj
+

∑

i∶(i,j)∈�k

2xid(x
T
i
wk

∶j
− zk

ij
).

ẑk
ij
= xT

i
Wkyj,

	 Machine Learning

1 3

for each slice k = 1,… ,� . In order to find the weights W , we consider the following opti-
mization problem:

where � is a regularization parameter. This is a quadratic optimization problem nearly iden-
tical to the one-sided regression formulation. If Y is the m × m identity matrix, then these
two formulations are equivalent. Let g(W;X,Y,�) be the objective function of problem
(5), and let ∇g(W;X,Y,�) be the gradient of g with respect to W . In Algorithm 2, we
present an accelerated gradient descent method for solving problem (5) using this gradient.

2.5 � Basic tensor model

In this section, we introduce a low rank model for tensor completion without side informa-
tion, and we present the Tensor method. This low rank model is equivalent to the one
originally proposed by Farias and Li (2019).

There are two shortcomings of the one-sided and two-sided regression models that we
have presented so far. First of all, these models do not leverage information across multiple
slices of the tensor to impute the missing values. Second, because the observed row and
column features are noisy, they are typically poor predictors for the tensor on their own.
For example, in a drug screening data set, genomic features are typically poor predictors
of drug response on their own. The Tensor model that we present next addresses these
issues.

Instead of trying to improve the noisy row and column features, we will try to learn new
features from scratch using only the observed values in the tensor. In the Tensor model,
we suppose that there are a few true underlying latent features of the rows and columns

Ẑ
k
= XWkY

(5)min
W

��

k=1

�

(i,j)∈�k

�
zk
ij
− (XWkY)ij

�2

+
1

�
‖Wk‖2

F
,

Machine Learning	

1 3

which are constant across all slices of the tensor. We assume that there are at most r latent
features for the rows and at most r latent features for the columns, and all of these latent
features are unknown a priori. This is known as a low rank assumption, which is com-
monly used for collaborative filtering methods (Koren et al., 2009; Koren & Bell, 2015).

Let ui ∈ ℝ
r be the latent features of row i and let vj ∈ ℝ

r be the latent features of obser-
vation j. Given these latent features, the generative model for zk

ij
 is

where Sk ∈ ℝ
r×r is a matrix of fitted coefficients. Let U ∈ ℝ

n×r be the matrix of row latent
features and let V ∈ ℝ

m×r be the matrix of column latent features. It follows that the model
for the kth slice of the tensor is

For different slices, the latent features U and V remain the same, but the fitted coefficients
Sk are different. This structural assumption is equivalent to requiring that the Slice rank of
Ẑ is at most r. In Fig. 2, we show a diagram of this tensor model for the drug screening
data set.

To find U , S , V , we consider the following optimization problem:

Note that this formulation requires a single parameter, the tensor rank r, which we will
learn via cross-validation.

Unlike the previous one-sided and two-sided regression formulations, problem (8) is non-
convex, so we cannot compute the global optimal solution. However, we can find high-quality
solutions via nonconvex methods. In particular, we can use an iterative procedure based upon
the Slice Learning algorithm proposed by Farias and Li (2019) to find high-quality solutions.
In this procedure, we begin with a warm start solution Ẑ . Each iteration, we run the Slice
Learning algorithm and update Ẑ in the missing entries �c of the original tensor. We repeat
until the tensor approximation Ẑ converges to a stationary point, or the maximum iteration
limit is reached.

(6)ẑk
ij
= uT

i
Skvj,

(7)Ẑ
k
= USkVT .

(8)min
U,S,V

�∑

k=1

∑

(i,j)∈�k

(
zk
ij
− (USkVT)ij

)2

.

Fig. 2   Tensor model of a drug screening data set. n is the number of patients, m is the number of drugs, � is
the number of doses tested, and r is the number of latent features

	 Machine Learning

1 3

In a single iteration, we run the Slice Learning algorithm to obtain updated estimates for
U , V , and S1,… , S� . First, we estimate the latent features of the rows U by taking the singular
value decomposition (SVD) of the mode-1 unfolding of Ẑ . Let U1�1V

T
1
 be the SVD of Ẑ(1) ,

where U1 , V1 are orthonormal and �1 is diagonal. We set U to be the r columns of U1 which
correspond to the top r singular values. We denote this operation as:

Similarly, we estimate the latent features of the columns V by taking the SVD of the
mode-2 unfolding of Ẑ . The update for V is

Finally, we update the estimates for S1,… , S� . Since U , V are orthonormal, we have
U−1 = UT and V−1 = VT . Therefore the update for Sk which minimizes the squared error
for slice k is

In Algorithm 3, we summarize this method for tensor completion without side informa-
tion. In the next two sections, we see how this method can be modified to incorporated side
information on the rows and/or columns.

2.6 � Tensor model with noisy one‑sided information

In this section, we introduce a low rank model for tensor completion given noisy one-
sided information, and we present the method TensorOneSided. This model com-
bines components from the Tensor and OneSided models.

U ← svds(Ẑ(1), r).

V ← svds(Ẑ(2), r).

Sk ← UT Ẑ
k
V.

Machine Learning	

1 3

In this approach, we model the tensor as the sum of two components, with one com-
ponent that we learn from the Slice learning decomposition and one component that we
learn from the row side information. Let xi be the observed features of row i. The result-
ing generative model for zk

ij
 is

where ui are latent features of row i, vj are latent features of row j, Sk are weights of the
latent features for slice k, and wk

∶j
 are (column, slice)-specific weights. It follows that the

model for the kth slice of the tensor is

where U ∈ ℝ
n×r , V ∈ ℝ

m×r , S1,… , S� ∈ ℝ
r×r , and W1,… ,W� ∈ ℝ

p×m are learned from
the data. We can interpret model (10) as the basic tensor model (7) with an additional term
to predict the residuals that is linear with respect to the observed row features. Note that
if W = 0 , then this model reduces to the the basic tensor model exactly. This is impor-
tant because in some cases the side information may not provide any additional predictive
power. Similarly, if any of U , S , V are equal to zero, then this reduces to the regression
model (4) using row side information only. In Fig. 3, we show a diagram of this tensor
model with one-sided information for a drug screening data set.

To find W , U , S , V , we consider the following optimization problem:

where � is a regularization parameter. This formulation uses two parameters � and r which
we can learn via cross-validation. Taking the limit as � → 0 , this model reduces to the
original tensor formulation (8).

We propose the following alternating optimization procedure to solve problem (11),
which we refer to as TensorOneSided. In this approach, we alternate between running
the Slice Learning algorithm and solving a quadratic optimization problem.

1.	 Begin with a warm start solution Ẑ . Initialize all of the variables W,U, S,V to zero.
2.	 Update U, S,V by considering the following problem:

(9)ẑk
ij
= uT

i
Skvj + xT

i
wk

∶j

(10)Ẑ
k
= USkVT + XWk,

(11)min
W,U,S,V

��

k=1

�

(i,j)∈�k

�
zk
ij
− (USkVT + XWk)ij

�2

+
1

�
‖Wk‖2

F
,

Fig. 3   Tensor model of a drug screening data set with noisy side information for the patients only. n is the
number of patients, m is the number of drugs, � is the number of doses tested, r is the number of latent fea-
tures, and p is the number of observed patient features

	 Machine Learning

1 3

 We can find high-quality solutions to this problem using the Slice Learning algorithm
(Farias & Li, 2019). Let R be the tensor of residuals, where Rk = Ẑ

k
− XWk . In this

step, we find a low rank tensor approximation to R by taking SVDs of the mode-1 and
mode-2 unfoldings.

3.	 Update the W by considering the following problem:

 This is a quadratic optimization problem, so it is efficiently solvable via gradient
descent. Let R be the tensor of residuals, where Rk = Ẑ

k
− USkV . Given a warm start

solution W0 , maximum number of gradient steps G, and step size 𝜈 > 0 , we denote this
update compactly as

 which is detailed in Algorithm 1.
4.	 Iterate until the variables W,U, S,V converge, or the maximum iteration limit is reached.

We express the steps of the complete algorithm TensorOneSided in Algorithm 4.

(12)min
U,S,V

�∑

k=1

∑

(i,j)∈𝛺k

(
(Ẑ

k
− XWk)ij − (USkVT)ij

)2

.

(13)min
W

��

k=1

�

(i,j)∈𝛺k

�
(Ẑ

k
− USkVT)ij − (XWk)ij

�2

+
1

𝛾
‖Wk‖2

F
.

W ← ��������(R,�,X,W0, � ,G, �),

Machine Learning	

1 3

2.7 � Tensor model with noisy two‑sided information

In this section, we introduce a low rank model for tensor completion given noisy two-sided
information, and we present the method TensorTwoSided. This model combines compo-
nents from the Tensor and TwoSided models.

Let xi be the features of row i, and let yj be the features of column j. The generative model
for zk

ij
 is

where ui are latent features of row i, vj are latent features of row j, Sk are weights of the
latent features for slice k, and Wk are weights of the observed features for slice k. It follows
that the model for the kth slice of the tensor is

where U ∈ ℝ
n×r , V ∈ ℝ

m×r , S1,… , S� ∈ ℝ
r×r , and W1,… ,W� ∈ ℝ

p×q are learned from
the data. In Fig. 4, we show a diagram of this tensor model with two-sided information for
a drug screening data set.

To find W , U , S , V , we consider the following optimization problem:

where � is a regularization parameter. This formulation uses two parameters � and r which
we can learn via cross-validation. Instead of the Frobenius norm, it is also reasonable to
consider a nuclear norm penalty on each matrix of coefficients Wk , or add the constraint
that Wk is low rank. We consider the Frobenius norm here because this formulation is very
close to formulation (11) so we can use a similar solution method.

In Appendix 2, we provide details for an alternating optimization procedure to solve
problem (16), which we refer to as the TensorTwoSided algorithm. This algorithm is
identical to the TensorOneSided algorithm except for the update of W in Step 3.

(14)ẑk
ij
= uT

i
Skvj + xT

i
Wkyj,

(15)Ẑ
k
= USkVT + XWkYT ,

(16)min
W,U,S,V

��

k=1

�

(i,j)∈�k

�
zk
ij
− (USkVT + XWkYT)ij

�2

+
1

�
‖Wk‖2

F
,

Fig. 4   Tensor model of a drug screening data set with noisy side information for both the patients and
drugs. n is the number of patients, m is the number of drugs, � is the number of doses tested, r is the num-
ber of latent features, p is the number of observed patient features, and q is the number of observed drug
features

	 Machine Learning

1 3

3 � Simulated data experiments

In this section, we present computational experiments testing the proposed methods for
tensor completion on simulated data. In Sect. 3.1, we describe the generation process for
the simulated data sets. In Sect. 3.2, we present the experimental setup and the methods
which are compared. In Sect. 3.3, we present the results from all of the simulated data
experiments.

3.1 � Simulated data sets

For this set of experiments, we generate complete tensors Z ∈ ℝ
200×200×10 with low Slice

rank. In particular, we suppose that:

where:

–	 U ∈ ℝ
200×20 : ground truth latent features of the rows,

–	 Sk ∈ ℝ
20×20 : ground truth weights for the kth slice,

–	 V ∈ ℝ
200×20 : ground truth latent features of the columns.

We suppose that all of the entries of U, S1,… , Sk,V are independently identically distrib-
uted N(0, 1) . In addition, we suppose that the matrices of row and column side information
are given by:

where:

–	 �
1 ∈ ℝ

200×20 : random noise for the row features,
–	 �

2 ∈ ℝ
200×20 : random noise for the column features.

We suppose that all of the entries of �1, �2 are independently identically distributed N(0, �) ,
where � ≥ 0 is the standard deviation of the feature noise which we will vary.

3.2 � Experimental setup

In these experiments, we impute missing values in tensors of the form Z ∈ ℝ
200×200×10

described in the previous section. For this task, we suppose that we are given the observed
values of Z and side information X ∈ ℝ

200×20,Y ∈ ℝ
200×20 for some level of noise � ≥ 0 .

In each experiment, we randomly select 80% of the values in the tensor to be missing com-
pletely at random (MCAR). We then compare a variety of methods for predicting these
missing values in the tensor, including:

1.	 Tensor: Implements the Tensor method given in Algorithm 3 to impute the missing
values via the Slice Learning method (Farias & Li, 2019). This method learns a low
rank representation of the 3-dimensional data, including latent features for the rows and

Zk = USkVT , ∀k = 1,… , 10,

X = U + �
1,

Y = V + �
2,

Machine Learning	

1 3

columns which are constant across all of the slices. Uses cross-validation to select the
tensor rank r.

2.	 Two-Sided: Implements the TwoSided method given in Algorithm 2 to impute the
missing values for each slice independently via an �2-regularized bilinear regression
model. Uses interaction terms between observed features of the rows and columns as
features in the model. Uses cross-validation to select the regularization parameter �.

3.	 Tensor Two-Sided: Implements the TensorTwoSided method given in Algorithm 4
which incorporates both observed and latent features of the rows and columns. Uses
cross-validation to select the tensor rank r with the weights of the side information
W = 0 fixed. Then, with the optimal value of r fixed, uses cross-validation to select the
regularization parameter �.

For each of the above methods, we tune the tensor rank r over the range {1, 2,… , 20} , and
we tune the regularization parameter � over the range {0.1, 0.01,… , 10−10} . We evaluate
the out-of-sample accuracy of each method and compare against a baseline which predicts
the mean value of each tensor slice. For each method and missing data scenario, we com-
pute the out-of-sample R2 value on each slice, and then take the average of the out-of-
sample R2 values across all of the slices. We repeat all of the experiments 5 times varying
the random seed which generates the ground truth tensor Z ∈ ℝ

200×200×10 and the missing
data scenarios.

3.3 � Results

In this section, we present the results from the experiments on simulated data.
In Fig. 5, we plot the imputation accuracy of the tensor completion methods as we vary

the standard deviation of the noise added to the side information. Across all levels of noise

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
Standard Deviation of Feature Noise (σ)

O
ut

−o
f−

S
am

pl
e

R
^2

Method
TwoSided

TensorTwoSided

Tensor

Simulated Data Experiments

Fig. 5   Imputation accuracy for the simulated data experiments with 80% missing data, varying the standard
deviation of the normally distributed feature noise

	 Machine Learning

1 3

considered, the TensorTwoSided method significantly improves upon the next best
method. As the level of noise increases, the performance of both TensorTwoSided and
TwoSided decreases, while the performance of Tensor remains constant. At the highest
noise level � = 1 , the average out-of-sample R2 values were 0.957, 0.933, and 0.298 for the
TensorTwoSided, Tensor, and TwoSided methods, respectively. This demonstrates
that the proposed method TensorTwoSided can improve upon the baseline Tensor
method even when the side information is only weakly predictive.

On the other hand, with no noise added ( � = 0), the average out-of-sample R2 values
were 0.997, 0.933, and 0.988 for the TensorTwoSided, Tensor, and TwoSided
methods, respectively. This demonstrates that the proposed method TensorTwoSided
can improve upon the baseline TwoSided regression method even when the row and
column features are known exactly. Overall, these results show that the proposed method
TensorTwoSided outperforms the best of the Tensor and TwoSided methods across
all noise levels considered.

4 � Real‑world data experiments

In this section, we present computational experiments testing the proposed methods for
tensor completion on two large-scale anti-cancer drug screens. In Sects. 4.1 and 4.2, we
describe the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line
Encyclopedia (CCLE) data sets. In Sect. 4.4, we present the experimental setup and the
methods which are compared. In Sect. 4.5, we present the results from all of the real-world
data experiments.

4.1 � Genomics of drug sensitivity in cancer

The first anti-cancer drug screening data set that we consider is the Genomics of Drug
Sensitivity in Cancer (GDSC) data set (Yang et al., 2012). We are given data Z ∈ ℝ

n×m×�
from experiments applying anti-cancer drugs to patients, where n = 955 , m = 265 , and
� = 12 are the numbers of patients, drugs, and doses, respectively. For each drug j, the
� th dose corresponds the maximum concentration at which drug j was administered, and
the kth dose is 1/2 times the concentration of the (k + 1) th dose for k = 1,… , (� − 1) . In
addition, we have genomic data X ∈ ℝ

n×p where p = 2, 004 is the number of genomic
features. These features include mutation, gain-loss, and whole exome sequence infor-
mation for the oncogenes identified in the Catalogue of Somatic Mutations in Cancer
(COSMIC) data set (Forbes et al., 2016), as well as tissue type and cancer classification
according to The Cancer Genome Atlas (TGCA) groupings (Weinstein et al., 2013).

4.2 � Cancer Cell Line Encyclopedia data set

We also consider the Cancer Cell Line Encyclopedia (CCLE) anti-cancer drug screen-
ing data set (Barretina et al., 2012). In this data set, we are given data Z ∈ ℝ

n×m×� from
experiments applying anti-cancer drugs to patients, where n = 461 , m = 24 , and � = 8
are the numbers of patients, drugs, and doses, respectively. For all drugs, the � th dose
corresponds the maximum concentration of 8 � M, and the kth dose is approximately

Machine Learning	

1 3

1/3.2 times the concentration of the (k + 1) th dose for k = 1,… , (� − 1) . In addition,
we have genomic data X ∈ ℝ

n×p where p = 2, 036 is the number of genomic features.
These features include copy number variation, mutation, and RNA expression data for
the oncogenes identified in the COSMIC data set (Forbes et al., 2016).

4.3 � Genentech Cell Line Screening Initiative data set

The third anti-cancer drug screening data set that we consider is the Genentech Cell
Line Screening Initiative (GCSI) data set (Haverty et al., 2016). This includes data
Z ∈ ℝ

n×m×� from experiments applying anti-cancer drugs to patients, where n = 126 ,
m = 16 , and � = 9 are the numbers of patients, drugs, and doses, respectively. For
each drug j, the � th dose corresponds the maximum concentration at which drug j
was administered, and the kth dose is 1/3 times the concentration of the (k + 1) th dose
for k = 1,… , (� − 1) . In this data set, the cell lines are a subset of the cell lines in the
CCLE data set, and the genomic features available for these cell lines is the same. In
particular, we have genomic data X ∈ ℝ

n×p derived from the COSMIC data set (Forbes
et al., 2016), where p = 2, 036 is the number of genomic features. This data set was
accessed via the PharmacoDB online database (version 1.1.1) of anticancer drug screens
(Smirnov et al., 2017).

4.4 � Experimental setup

In these experiments, we impute missing values in tensors of drug sensitivity values
from the GDSC (Yang et al., 2012) and CCLE (Barretina et al., 2012) data sets. For
each dose, we ignore the already missing values and hide an additional 20%, 40%, 60%,
or 80% of the observed values to be the test set. We then compare a variety of methods
for predicting these missing values in the tensor, including:

1.	 Piecewise Linear: Uses linear interpolation to fill in each missing (patient, drug, dose)
response using the (patient, drug) responses that are available at the higher and lower
doses. For (patient, drug) pairs with zero observations, this method imputes the mean
of the drug response at that dose. This is a fast method that we use as a warm start for
the other methods which require one.

2.	 Non-Linear Mixed Effects (NLME): Uses a multilevel mixed effects model to simul-
taneously fit two-parameter sigmoidal dose response curves for all (patient, drug) pairs
(Vis et al., 2016). For each sigmoidal curve, the two free parameters are assumed to be
normally distributed about the mean values for the entire data set. Uses the Piecewise
Linear imputation as a warm start.

3.	 Matrix: Fills in the missing values for each dose independently with matrix completion
via SoftImpute (Mazumder et al., 2010). Uses the Piecewise Linear imputation as a
warm start and cross-validation to select the optimal matrix rank, which may be different
for each slice of the tensor.

4.	 Tensor: Implements the Tensor method given in Algorithm 3 to impute the missing
values via the Slice Learning method (Farias & Li, 2019). This method learns a low rank
representation of the 3-dimensional data, including latent features for the patients and
drugs which are constant across all of the doses. Uses the Piecewise Linear imputation
as a warm start and cross-validation to select the tensor rank r.

	 Machine Learning

1 3

5.	 Genomic: Implements the OneSided method given in Algorithm 1 to impute the miss-
ing values for each dose independently via an �2-regularized regression model. Uses
genomic features of the patients as the row side information. Uses cross-validation to
select the regularization parameter �.

6.	 Tensor Genomic: Implements the TensorOneSided method given in Algorithm 4
which incorporates both genomic features of the patients and latent features of the
patients and drugs. Uses cross-validation to select the tensor rank r with the weights of
the side information W = 0 fixed. Then, with the optimal value of r fixed, uses cross-
validation to select the regularization parameter � . Uses the Piecewise Linear imputation
as a warm start.

7.	 XGBoost: Uses the gradient boosting algorithm (Chen & Guestrin, 2016), implemented
with the software package xgboost in R. Random grid search with 10 iterations is
used to select the optimal parameters from the following parameter ranges: (1) booster:
‘gblinear’, ‘gbtree’, (2) max_depth: [lower bound = 3, upper bound = 10], (3) min_
child_weight: [lower bound = 1, upper bound = 10], (4) subsample: [lower bound = 0.5,
upper bound = 1.0], (5) colsample_bytree: [lower bound = 0.5, upper bound = 1.0], (6)
eta: [0.01, 0.05, 0.1, 0.2, 0.3]. Once the above parameters are set, 5-fold cross-validation
is used to select the optimal “nrounds" parameter value from 1 to 200 using the built-in
function xgb.cv. Independent predictive models are fit for each of the drugs in the
data set, and the features used are: dose, patient identifier, and genomic features for
the patients. Dose is treated as a numeric variable, and patient identifier is treated as a
categorical variable.

In the Matrix method, we tune the matrix ranks over the range {1, 2,… , 20} for the
CCLE and GDSC data sets, and over the range {1, 2,… , 10} for the GCSI data set. For
the Tensor and TensorOneSided methods, we tune the tensor rank r over the
ranges {10, 20,… , 120} for the GDSC data set, {1, 2,… , 20} for the CCLE data set, and
{1, 2,… , 16} for the GCSI data set. For the TensorOneSided method, we tune the
regularization parameter � over the range {0.1, 0.01,… , 10−10}.

We evaluate the out-of-sample accuracy of each method and compare against a base-
line which predicts the mean value of each tensor slice. For each method and miss-
ing data scenario, we compute the out-of-sample R2 value on each slice, and then
take the average of the out-of-sample R2 values across all of the slices. We repeat all
of the experiments 5 times varying the random seed which generates the missing data
scenarios.

In addition, we perform computational speed experiments recording the time and mem-
ory usage of each algorithm on the CCLE data set with 20%, 40%, 60%, and 80% missing
data. We perform these experiments on a single core of a MacBook Pro (OS X El Capi-
tan, Version 10.11.6) with a 3.1GHz Intel Core i7 processor and 16 GB 1867 MHz DDR3
memory drive. We repeat the computational speed experiments 5 times varying the random
seed which generates the missing data scenarios.

4.5 � Results

In this section, we present the results from the real-world experiments on the anti-cancer
drug screening data sets.

Machine Learning	

1 3

In Figs. 6, 7, and 8 we show the average out-of-sample R2 for each method on the
GDSC, CCLE, and GCSI data sets under different missing scenarios. For both sets of
experiments, we see that the TensorGenomic method performs best in all missing per-
centages. As the percentage of missing data increases, the relative improvement over the
Tensor method increases, while the relative improvement over the Genomic method
decreases. This makes sense because the fully known side information becomes more
important as the percentage of missing data in the tensor increases.

On the GDSC data set, we see that Tensor and TensorGenomic are equally the
best methods when there is 20–60% missing data, and TensorGenomic outperforms

−0.4

0.0

0.4

0.8

20 40 60 80
Percent of Missing Data

O
ut

−o
f−

S
am

pl
e

R
^2

Method
Genomic

PiecewiseLinear

TensorGenomic

NLME

Tensor

XGBoost

Matrix

Predicting Anti−cancer Drug Response in the GDSC data set

Fig. 6   Imputation accuracy on the GDSC data set varying the percentage of missing data from 20 to 80%

−0.25

0.00

0.25

0.50

20 40 60 80
Percent of Missing Data

O
ut

−o
f−

S
am

pl
e

R
^2

Method
Genomic

PiecewiseLinear

TensorGenomic

NLME

Tensor

XGBoost

Matrix

Predicting Anti−cancer Drug Response in the CCLE data set

Fig. 7   Imputation accuracy on the CCLE data set varying the percentage of missing data from 20 to 80%

	 Machine Learning

1 3

both Tensor and Genomic when there is 80% missing data. At low missing percent-
ages, the third best method is NLME, which is the mixed-effects model to fit sigmoidal
dose response curves that has been used in recent publications on the GDSC data set (Vis
et al., 2016; Iorio et al., 2016). However, at high missing percentages, the performance
of the NLME method tails off considerably and its R2 even turns negative. In contrast, the
TensorGenomic, Tensor, Genomic, and Matrix methods all maintain R2 values of
0.25 or greater. This indicates that matrix factorization-based and regression-based models
can add value over current parametric models for fitting dose response curves, especially in
scenarios with lots of missing data. Finally, we observe that the XGBoost method, which
does not take into account the tensor information, underperforms the other methods.

On the CCLE data set, we observe that XGBoost is the best overall method, followed
closely by TensorGenomic. In particular, the out-of-sample R2 are closely overlapping
for the missing percentages 20–60%, and XGBoost has a slight edge at 80% missing data.
We also observe that Genomic has a strong performance across the board, matching the
accuracy of the TensorGenomic method at the 80% missing data level. This suggests
that the genomic features that we selected in the CCLE data set are more predictive than
the genomic features that we selected in the GDSC data set. As in the previous data set, the
NLME method declines in performance rapidly as the percent of missing data increases, and
is significantly outperformed by matrix factorization-based and regression-based models
with 80% missing data.

On the GCSI data set, we observe similar trends as in the CCLE data set. XGBoost is
the best overall method, followed closely by TensorGenomic and then Tensor. The
accuracy of the Genomic method remains relatively constant across all missing percent-
ages, and matches the accuracy of the TensorGenomic method with 80% missing data.
The Matrix and PiecewiseLinear methods perform reasonably well with 20% miss-
ing data, but their performance rapidly declines as the percentage of missing data increases.
The NLME performs poorly across the board for all missing percentages on this data set.

We also present the tensor ranks which were selected during cross-validation for the
tensor-based methods in Figs. 9, 10, and 11 in Appendix 3. Since we select r first during

−0.4

0.0

0.4

0.8

20 40 60 80
Percent of Missing Data

O
ut

−o
f−

S
am

pl
e

R
^2

Method
Genomic

PiecewiseLinear

TensorGenomic

NLME

Tensor

XGBoost

Matrix

Predicting Anti−cancer Drug Response in the GCSI data set

Fig. 8   Imputation accuracy on the GCSI data set varying the percentage of missing data from 20 to 80%

Machine Learning	

1 3

the cross-validation procedure for TensorGenomic, the rank parameters selected by
both Tensor and TensorGenomic are the same in each experiment. In both data sets,
the average tensor rank selected decreases as the percentage of missing data increases. In
addition, the average tensor rank selected is much higher in the GDSC experiments than
in the CCLE or GCSI experiments, because the GDSC data set is much larger. This shows
that we can fit more complicated tensor models (e.g. models with higher tensor ranks)
when more data is available.

In Table 2, we show the results from the computational speed experiments. For each
method, we include the time and memory costs for hyperparameter tuning required for
the method as well. We observe that the methods Matrix, PiecewiseLinear, Sig-
moid, and Tensor were the fastest algorithms with average runtimes under 1 min for all
missing percentages. The next fastest algorithms were Genomic and TensorGenomic
which had average runtimes under 20 min for all missing percentages. The slowest
method was XGBoost, which had an average runtime ranging from 1.3 h to 4.1 h across

Table 2   Time and memory usage
for each algorithm on the CCLE
data set

Method Missing % Time (seconds) Total
memory
usage (GB)

Genomic 20 177.7 (6.4) 371.0 (9.7)
Genomic 40 136.2 (3.7) 237.2 (6.1)
Genomic 60 130.9 (2.9) 184.8 (1.9)
Genomic 80 107.4 (1.4) 102.8 (1.6)
Matrix 20 7.8 (0.2) 0.4 (0.0)
Matrix 40 10.5 (1.3) 0.5 (0.0)
Matrix 60 9.7 (0.7) 0.5 (0.0)
Matrix 80 7.3 (0.4) 0.4 (0.0)
PiecewiseLinear 20 0.2 (0.1) 0.3 (0.0)
PiecewiseLinear 40 0.3 (0.1) 0.4 (0.0)
PiecewiseLinear 60 0.3 (0.1) 0.4 (0.0)
PiecewiseLinear 80 0.2 (0.1) 0.3 (0.0)
NLME 20 42.8 (3.1) 1.7 (0.0)
NLME 40 43.1 (1.6) 1.7 (0.0)
NLME 60 43.0 (1.0) 1.7 (0.0)
NLME 80 43.9 (1.5) 1.7 (0.0)
Tensor 20 10.5 (1.6) 3.5 (0.0)
Tensor 40 9.9 (1.3) 3.9 (0.0)
Tensor 60 9.8 (1.2) 4.2 (0.0)
Tensor 80 10.7 (2.7) 4.3 (0.0)
TensorGenomic 20 992.0 (5.9) 2024.1 (9.7)
TensorGenomic 40 554.7 (9.1) 1009.3 (9.7)
TensorGenomic 60 748.5 (15.1) 1229.6 (9.7)
TensorGenomic 80 604.2 (7.4) 831.9 (9.7)
XGBoost 20 14652.3 (505.7) 67.6 (0.0)
XGBoost 40 11542.9 (1090.0) 58.0 (0.0)
XGBoost 60 8283.9 (415.3) 48.3 (0.0)
XGBoost 80 4814.7 (287.0) 38.5 (0.0)

	 Machine Learning

1 3

the different missing percentages. In particular, we note that the average runtimes for
XGBoost increased as the missing percentage decreased. At lower missing percentages,
the sizes of the training and validation sets for the gradient boosting models were larger, so
this algorithm was more computationally intensive and slower.

While the Genomic, TensorGenomic, and XGBoost methods had relatively high
total memory usage compared to the other methods (up to 2TB for the TensorGenomic
algorithm with 20% missing data), peak memory usage was much lower. In particular, all
computational experiments were performed on a machine with 16GB RAM, so high mem-
ory machines are not required to run any of the methods.

5 � Discussion

In this section, we discuss the results from the experiments on simulated and real-world
data in Sects. 3 and 4. In addition, we discuss potential applications of this algorithm to
other drug response data sets and other areas for future research.

Overall, both sets of experiments demonstrate that the proposed methods for tensor
completion which combine a low rank and a regression component generally match or out-
perform methods which have only one of these components. In the simulated data experi-
ments, we see that the proposed method TensorTwoSided outperforms the low rank
and regression methods across all levels of feature noise considered. In the real-world data
experiments, we see that the proposed method TensorGenomic matches the low rank
and regression methods across all percentages of missing data considered, and strictly out-
performs the other methods for the GDSC data set with 80% missing data. On the CCLE
and GCSI data sets, XGBoost has a slight edge over TensorGenomic, however we
note that the XGBoost runtime is significantly slower. For example, on the CCLE data set
with 20% missing data, the R2 values of both the XGBoost and TensorGenomic meth-
ods are approximately 0.66, but the XGBoost method with hyperparameter tuning takes
approximately 4 h while the TensorGenomic method with hyperparameter tuning takes
approximately 16 min. Therefore, the TensorGenomic method may be preferable to the
XGBoost method in certain applications where computational speed is a high priority.

In addition, the computational experiments on real-world data show that the proposed
methods can outperform state-of-the-art methods for the task of predicting anti-cancer
drug response. First, we observe that the tensor model on its own significantly outperforms
the multilevel mixed effects model which is used in practice. We suspect that the multilevel
mixed effects model generalizes poorly because the dose response curves of some patients
are significantly different from a “typical” sigmoidal dose response curve. Some patients
may have mutations which make them completely resistant to certain anti-cancer drugs,
while other patients may be extra sensitive to certain drugs. As a result, the dose response
curves of these patients may be significantly different from the population average, which
goes against the probabilistic assumptions of the multilevel mixed effects model.

Furthermore, the real-world experiments demonstrate that we can improve the out-of-
sample performance of the tensor model using the genomic features which are available
on the patients. We see that adding genomic data side information is more useful when
the percentage of missing data is high. When the missing percentage is lower, most of the
predictive power comes from the original tensor model. As a result, the final method Ten-
sorGenomic performs better than either the Tensor or Genomic methods individu-
ally. At low levels of missing data, predictive models with more tunable parameters such as

Machine Learning	

1 3

XGBoost outperform the basic Genomic method which is based upon an �2-regularized
regression model.

These results suggest that the tensor data is quite valuable when it is available. One of
the best predictors of an individual’s response to chemotherapy may be how this individual
responded to previous rounds of chemotherapy, even at different drugs and doses. In a clinical
setting, if a patient is receiving their 4th round of chemotherapy, we may be able to optimize
the drug and dose depending on the results from their first 3 rounds of treatment along with
their individual characteristics. However, if a patient is starting their first round of chemother-
apy, then we must rely solely upon the individual characteristics to make a treatment decision.

In this paper, we performed our computational experiments on the CCLE, GDSC, and
GCSI data sets due to their large size and public availability. At the time of its release, the
GDSC data set was the largest publicly available resource for cancer drug response infor-
mation (Yang et al., 2012). The CCLE data set is a similarly sized publicly available cancer
drug response data set (Barretina et al., 2012). Both of these data sets have enabled signifi-
cant research studies since their release (Ghandi et al., 2019; Suphavilai et al., 2018; Tan,
2016; Liu et al., 2018; Wang et al., 2017). The GCSI data set was developed independently
on a subset of cell lines and drugs included in the GDSC and CCLE data sets to address
inconsistencies in the previous two data sets (Haverty et al., 2016).

We note that the tensor-based algorithms developed in this work may be applied to other
anticancer drug screens as well. For example, the NCI-60 anticancer drug screen developed by
the National Cancer Institute in the 1980’s includes 60 cell lines (Shoemaker, 2006). The Can-
cer Therapeutics Response Portal (CTRP) data set developed by the Broad Institute includes
481 small molecules and drugs applied to 860 cancer cell lines (Rees et al., 2016). These data
sets also include genomic side information for the cell lines and features of the drugs, so the
TensorOneSided and TensorTwoSided algorithms could be applied here. Further-
more, because they are scalable, these algorithms may be applied to larger anticancer drug
screening data sets which become available in future years. Since this paper only considers
two data sets for the real-world computational experiments, follow-up experimental studies are
required to demonstrate that the Tensor-based methods perform consistently well across a
wide range of problems. In particular, while we show the potential performance gain from the
TensorTwoSided algorithm in the synthetic data experiments, it remains to show that this
method leads to a significant performance gain on a real-world prediction task.

In addition to applications on more data sets, there is opportunity for more theoretical
work to understand the convergence properties of these algorithms. For example, it would
be informative to characterize the stationary points that the TensorOneSided and
TensorTwoSided algorithms may achieve. Moreover, it would be interesting to deter-
mine the statistical error bounds of these methods as well. Prior work has been done to
characterize the convergence properties and statistical error bounds for similar non-convex
algorithms for robust PCA and low-rank matrix completion tasks (Yi et al., 2016; Chen &
Wainwright, 2015). Convergence and statistical analysis of tensor-based alternating mini-
mization algorithms is a promising area for future work.

6 � Conclusions

In this paper, we propose a new approach for tensor completion with noisy side informa-
tion, and we introduce two methods which take into account noisy features of the rows and/
or columns of the tensor, respectively. In computational experiments on real-world data

	 Machine Learning

1 3

sets, we show that the proposed method TensorGenomic works well in practice imput-
ing missing values in the GDSC, CCLE, and GCSI data sets leveraging genomic side infor-
mation. For this particular application, our work demonstrates that tensor-based models are
effective tools representing data from large-scale anti-cancer drug screens. More broadly,
our work demonstrates that tensor-based models are powerful tools representing real-world
data from complex systems, and these models can be easily augmented and improved with
noisy side information.

Appendix

This appendix contains supplementary material for this paper. In Appendix 1, we provide
formal definitions of tensor rank. In Appendix 2, we present the details of the TensorT-
woSided algorithm to solve the tensor completion problem given noisy two-sided infor-
mation which is presented in Sect. 2.7. In Appendix 3, we provide plots of the tensor rank
which is selected for the Tensor and TensorOneSided methods for the computational
experiments in Sect. 4.

Appendix 1: Definitions of Tensor Rank

In this section, we provide several definitions for the rank of a 3-dimensional tensor,
including the CP rank, Tucker rank, and Slice rank. The definitions of CP rank and Tucker
rank are well-known, and these are also described by Kolda and Bader (2009). The defini-
tion of Slice rank was introduced in recent work by Farias and Li (2019).

1.	 CP rank: A tensor Z ∈ ℝ
n×m×� is CP rank-1 if and only if it can be directly expressed

as the outer product of vectors. In other words, there exists vectors u ∈ ℝ
n , v ∈ ℝ

m ,
w ∈ ℝ

� such that zk
ij
= uivjwk for all i, j, k. In general, the CP rank of a tensor Z is the

minimum number r such that Z can be expressed as the sum of r CP rank-1 tensors.
2.	 Tucker rank: The Tucker rank is the tuple (r1, r2, r3) of column ranks of the mode-1,

mode-2, and mode-3 unfoldings of the tensor, or equivalently:

3.	 Slice rank: The slice rank is the maximum of the column ranks of the mode-1 and
mode-2 unfoldings of the tensor, or equivalently:

 Further, if Z has Slice rank equal to r, then we can find a decomposition such
that Zk = USkVT , k = 1,… ,� for some matrices U ∈ ℝ

n×r , V ∈ ℝ
m×r , and

S1,… , S� ∈ ℝ
r×r.

Tucker(Z) ∶= (rank(Z(1)), rank(Z(2)), rank(Z(3))).

Slice(Z) ∶= max{rank(Z(1)), rank(Z(2))}.

Machine Learning	

1 3

Appendix 2: TensorTwoSided Algorithm

In this section, we present the alternating minimization algorithm TensorTwoSided to
solve the tensor completion problem given noisy two-sided information. This algorithm
finds high-quality solutions to problem (16) which was introduced in Sect. 2.7. It is identi-
cal to the TensorOneSided algorithm except for the update of W in Step 3.

5

10

20 40 60 80
Missing %

R
an

k

Cross−Validated Tensor Rank in the CCLE data set

Fig. 10   Average Slice rank for the Tensor model on the CCLE data set at varying missing percentages. In
each experiment, the rank is selected via cross-validation from the range {1, 2,… , 20}

40

60

80

20 40 60 80

Missing %

R
an

k

Cross−Validated Tensor Rank in the GDSC data set

Fig. 9   Average Slice rank for the Tensor model on the GDSC data set at varying missing percentages. In
each experiment, the rank is selected via cross-validation from the range {10, 20,… , 120}

	 Machine Learning

1 3

1.	 Begin with a warm start solution Ẑ . Initialize all of the variables W,U, S,V to zero.
2.	 Update U, S,V by considering the following problem:

 We can find high-quality solutions to this problem using the Slice Learning algorithm
(Farias & Li, 2019). Let R be the tensor of residuals, where Rk = Ẑ

k
− XWkYT . In this

step, we find a low rank tensor approximation to R by taking SVDs of the mode-1 and
mode-2 unfoldings.

3.	 Update the W by considering the following problem:

 This is a quadratic optimization problem, so it is efficiently solvable via gradient
descent. Let R be the tensor of residuals, where Rk = Ẑ

k
− USkVT . Given a warm start

solution W0 , maximum number of gradient steps G, and step size 𝜈 > 0 , we denote this
update compactly as

 which is detailed in Algorithm 2.
4.	 Iterate until the variables W,U, S,V converge, or the maximum iteration limit is reached.

We express the steps of the complete algorithm TensorTwoSided in Algorithm 5.

(17)min
U,S,V

�∑

k=1

∑

(i,j)∈𝛺k

(
(Ẑ

k
− XWkYT)ij − (USkVT)ij

)2

.

(18)min
W

��

k=1

�

(i,j)∈𝛺k

�
(Ẑ

k
− USkVT)ij − (XWkYT)ij

�2

+
1

𝛾
‖Wk‖2

F
.

W ← ��������(R,�,X,Y,W0, � ,G, �),

5

10

20 40 60 80

Percent of Missing Data

R
an

k

Cross−Validated Tensor Rank in the GCSI data set

Fig. 11   Average Slice rank for the Tensor model on the GCSI data set at varying missing percentages. In
each experiment, the rank is selected via cross-validation from the range {1, 2,… , 16}

Machine Learning	

1 3

Appendix 3: Plots of Cross‑validated Tensor Rank

In this section, we provide plots of the average cross-validated tensor rank selected by the
Tensor and TensorOneSided methods in the computational experiments in Sect. 4.

Author Contributions  DB contributed to the Conceptualization, Methodology, Validation, Writing, Edit-
ing, and Supervision for this manuscript. CP contributed to the Conceptualization, Methodology, Valida-
tion, Writing, Editing, Formal Analysis, Investigation, Software, Data Curation, and Visualization for this
manuscript.

Funding  ’Open Access funding provided by the MIT Libraries’. Not applicable.

Data availability  The GDSC, CCLE, and GCSI anticancer drug screening data sets are available for down-
load at: https://​pharm​acodb.​ca/. The COSMIC data sets of genomic features for cell lines are available for
download at: https://​cancer.​sanger.​ac.​uk/​cell_​lines/​downl​oad.

Code availability  The code for this study may be made available upon request to the authors.

Declarations 

Conflict of interest  The authors declare that they have no conflicts of interest.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

https://pharmacodb.ca/
https://cancer.sanger.ac.uk/cell_lines/download

	 Machine Learning

1 3

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Acar, E., Kolda, T.G., & Dunlavy, D.M. (2011). All-at-once optimization for coupled matrix and tensor fac-
torizations. arXiv preprint arXiv:​1105.​3422

Azuaje, F. (2016). Computational models for predicting drug responses in cancer research. Briefings in Bio-
informatics, 18(5), 820–829.

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár,
J., Kryukov, G. V., Sonkin, D., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature, 483(7391), 603.

Bell, R. M., & Koren, Y. (2007). Lessons from the Netflix prize challenge. SiGKDD Explorations, 9(2),
75–79.

Bennett, J., & Lanning, S., et al. (2007). The Netflix prize. In: Proceedings of KDD Cup and Workshop,
New York, NY, USA, vol 2007, p 35

Bertsimas, D., & Li, M.L. (2018). Interpretable matrix completion: A discrete optimization approach. arXiv
preprint arXiv:​1812.​06647.

Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20(4), 1956–1982.

Candes, E. J., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6), 925–936.
Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Com-

putational Mathematics, 9(6), 717.
Candès, E.J., & Tao, T. (2009). The power of convex relaxation: Near-optimal matrix completion. arXiv

preprint arXiv:​0903.​1476.
Chen, H., Raskutti, G., & Yuan, M. (2019). Non-convex projected gradient descent for generalized low-rank

tensor regression. Journal of Machine Learning Research, 20(5), 1–37.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and data mining, pp 785–794.
Chen, Y., & Wainwright, M.J. (2015). Fast low-rank estimation by projected gradient descent: General sta-

tistical and algorithmic guarantees. arXiv preprint arXiv:​1509.​03025.
Chiang, K. Y., Hsieh, C. J., & Dhillon, I. S. (2015). Matrix completion with noisy side information.

In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in neural
information processing systems. Berlin: Curran Associates Inc.

Farias, V. F., & Li, A. A. (2019). Learning preferences with side information. Management Science,
65(7), 3131–3149.

Forbes, S. A., Beare, D., Boutselakis, H., Bamford, S., Bindal, N., Tate, J., Cole, C. G., Ward, S., Daw-
son, E., Ponting, L., et al. (2016). Cosmic: Somatic cancer genetics at high-resolution. Nucleic
Acids Research, 45(D1), D777–D783.

Franco, M., Jeggari, A., Peuget, S., Böttger, F., Selivanova, G., & Alexeyenko, A. (2019). Prediction of
response to anti-cancer drugs becomes robust via network integration of molecular data. Scientific
Reports, 9(1), 2379.

Gandy, S., Recht, B., & Yamada, I. (2011). Tensor completion and low-n-rank tensor recovery via con-
vex optimization. Inverse Problems, 27(2), 025010.

Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E. R., Barretina, J.,
Gelfand, E. T., Bielski, C. M., Li, H., et al. (2019). Next-generation characterization of the cancer
cell line encyclopedia. Nature, 569(7757), 503–508.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1105.3422
http://arxiv.org/abs/1812.06647
http://arxiv.org/abs/0903.1476
http://arxiv.org/abs/1509.03025

Machine Learning	

1 3

Gönen, M., Khan, S., & Kaski, S. (2013). Kernelized Bayesian matrix factorization. In International
Conference on Machine Learning, pp 864–872.

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. A., & McKusick, V. A. (2005). Online Mende-
lian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic
Acids Research, 33(1), D514–D517.

Haverty, P. M., Lin, E., Tan, J., Yu, Y., Lam, B., Lianoglou, S., Neve, R. M., Martin, S., Settleman, J.,
Yauch, R. L., et al. (2016). Reproducible pharmacogenomic profiling of cancer cell line panels.
Nature, 533(7603), 333–337.

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In 2008
Eighth IEEE International Conference on Data Mining, IEEE, pp 263–272.

Iorio, F., Knijnenburg, T. A., Vis, D. J., Bignell, G. R., Menden, M. P., Schubert, M., Aben, N., Gon-
çalves, E., Barthorpe, S., Lightfoot, H., et al. (2016). A landscape of pharmacogenomic interactions
in cancer. Cell, 166(3), 740–754.

Jain, P., & Dhillon, I.S. (2013). Provable inductive matrix completion. arXiv preprint arXiv:​1306.​0626.
Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimiza-

tion. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, ACM, pp
665–674.

Kluver, D., Ekstrand, M.D., & Konstan, J.A. (2018). Rating-based collaborative filtering: algorithms and
evaluation. In Social Information Access, Springer, pp 344–390.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM Review, 51(3),
455–500.

Koren, Y., & Bell, R. (2015). Advances in collaborative filtering. Recommender Systems Handbook.
https://​doi.​org/​10.​1007/​978-1-​0716-​2197-4_3

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems.
Computer, 8, 30–37.

Lamba, H., Nagarajan, V., Shin, K., & Shajarisales, N. (2016). Incorporating side information in tensor
completion. In Proceedings of the 25th International Conference Companion on World Wide Web,
pp 65–66.

Liu, H., Zhao, Y., Zhang, L., & Chen, X. (2018). Anti-cancer drug response prediction using neigh-
bor-based collaborative filtering with global effect removal. Molecular Therapy-Nucleic Acids, 13,
303–311.

Liu, J., Musialski, P., Wonka, P., & Ye, J. (2013). Tensor completion for estimating missing values in
visual data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 208–220.

Lu, J., Liang, G., Sun, J., & Bi, J. (2016). A sparse interactive model for matrix completion with side
information. Advances in Neural Information Processing Systems, 29, 4071–4079

Mazumder, R., Hastie, T., & Tibshirani, R. (2010). Spectral regularization algorithms for learning large
incomplete matrices. Journal of Machine Learning Research, 11, 2287–2322.

Narita, A., Hayashi, K., Tomioka, R., & Kashima, H. (2012). Tensor factorization using auxiliary infor-
mation. Data Mining and Knowledge Discovery, 25(2), 298–324.

Natarajan, N., & Dhillon, I. S. (2014). Inductive matrix completion for predicting gene-disease associa-
tions. Bioinformatics, 30(12), i60–i68.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence rate
O(1/k̂2). Doklady Akademii Nauk SSSR, 269, 543–547.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Berlin: Springer.
Rahman, R., & Pal, R. (2019). Predictive modeling of anti-cancer drug sensitivity from genetic characteriza-

tions. Bioinformatics. https://​doi.​org/​10.​1007/​978-1-​4939-​8868-6_​14
Rai, P., Wang, Y., & Carin, L. (2015). Leveraging features and networks for probabilistic tensor decomposi-

tion. In Twenty-Ninth AAAI Conference on Artificial Intelligence.
Rees, M. G., Seashore-Ludlow, B., Cheah, J. H., Adams, D. J., Price, E. V., Gill, S., Javaid, S., Coletti,

M. E., Jones, V. L., Bodycombe, N. E., et al. (2016). Correlating chemical sensitivity and basal gene
expression reveals mechanism of action. Nature Chemical Biology, 12(2), 109–116.

Shoemaker, R. H. (2006). The NCI60 human tumour cell line anticancer drug screen. Nature Reviews Can-
cer, 6(10), 813.

Smirnov, P., Kofia, V., Maru, A., Freeman, M., Ho, C., El-Hachem, N., Adam, G. A., Ba-alawi, W.,
Safikhani, Z., & Haibe-Kains, B. (2017). PharmacoDB: An integrative database for mining in vitro
anticancer drug screening studies. Nucleic Acids Research, 46(D1), D994–D1002. https://​doi.​org/​10.​
1093/​nar/​gkx911

Su, R., Liu, X., Wei, L., & Zou, Q. (2019). Deep-Resp-Forest: A deep forest model to predict anti-cancer
drug response. Methods, 166, 91–102.

http://arxiv.org/abs/1306.0626
https://doi.org/10.1007/978-1-0716-2197-4_3
https://doi.org/10.1007/978-1-4939-8868-6_14
https://doi.org/10.1093/nar/gkx911
https://doi.org/10.1093/nar/gkx911

	 Machine Learning

1 3

Suphavilai, C., Bertrand, D., & Nagarajan, N. (2018). Predicting cancer drug response using a recommender
system. Bioinformatics, 34(22), 3907–3914.

Tan, M. (2016). Prediction of anti-cancer drug response by kernelized multi-task learning. Artificial Intel-
ligence in Medicine, 73, 70–77.

Tomioka, R., Suzuki, T., Hayashi, K., & Kashima, H. (2011). Statistical performance of convex tensor
decomposition. Advances in Neural Information Processing Systems, 24, 972–980.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3),
279–311.

Vis, D. J., Bombardelli, L., Lightfoot, H., Iorio, F., Garnett, M. J., & Wessels, L. F. (2016). Multilevel mod-
els improve precision and speed of IC50 estimates. Pharmacogenomics, 17(7), 691–700.

Wang, L., Li, X., Zhang, L., & Gao, Q. (2017). Improved anticancer drug response prediction in cell lines
using matrix factorization with similarity regularization. BMC Cancer, 17(1), 1–12.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., Shmulevich,
I., Sander, C., Stuart, J. M., Network, C. G. A. R., et al. (2013). The cancer genome atlas pan-cancer
analysis project. Nature Genetics, 45(10), 1113.

Wimalawarne, K., Yamada, M., & Mamitsuka, H. (2018). Convex coupled matrix and tensor completion.
Neural Computation, 30(11), 3095–3127.

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal, N., Beare, D., Smith,
J. A., Thompson, I. R., et al. (2012). Genomics of Drug Sensitivity in Cancer (GDSC): A resource for
therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 41(D1), D955–D961.

Yang, Z., Wu, B., Zheng, K., Wang, X., & Lei, L. (2016). A survey of collaborative filtering-based recom-
mender systems for mobile internet applications. IEEE Access, 4, 3273–3287.

Yi, X., Park, D., Chen, Y., & Caramanis, C. (2016). Fast algorithms for robust pca via gradient descent.
arXiv preprint arXiv:​1605.​07784.

Zeng, X., Ding, N., Rodríguez-Patón, A., & Zou, Q. (2017). Probability-based collaborative filtering model
for predicting gene-disease associations. BMC Medical Genomics, 10(5), 76.

Zhou, T., Qian, H., Shen, Z., Zhang, C., & Xu, C. (2017). Tensor completion with side information: A rie-
mannian manifold approach. In IJCAI, pp 3539–3545.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1605.07784

	Tensor completion with noisy side information
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Methods
	2.1 Background on tensors
	2.1.1 Tensor unfoldings

	2.2 Tensor completion problem
	2.3 One-sided regression model
	2.4 Two-sided regression model
	2.5 Basic tensor model
	2.6 Tensor model with noisy one-sided information
	2.7 Tensor model with noisy two-sided information

	3 Simulated data experiments
	3.1 Simulated data sets
	3.2 Experimental setup
	3.3 Results

	4 Real-world data experiments
	4.1 Genomics of drug sensitivity in cancer
	4.2 Cancer Cell Line Encyclopedia data set
	4.3 Genentech Cell Line Screening Initiative data set
	4.4 Experimental setup
	4.5 Results

	5 Discussion
	6 Conclusions
	Appendix
	Appendix 1: Definitions of Tensor Rank
	Appendix 2: TensorTwoSided Algorithm
	Appendix 3: Plots of Cross-validated Tensor Rank
	References

