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Abstract 
Blood is an essential compartment for tumor cell trafficking. In solid epithelial-derived 

tumors, blood serves as the major vehicle for metastasis, whose principal cell is the circulating 
tumor cell (CTC). These cells originate from the primary tumor and are shed at low concentrations 
into the blood, where they travel to distant sites to initiate metastatic lesions. In liquid, blood-borne 
cancers, the blood is a major reservoir of disease, and allows cells to move between the bone 
marrow, where disease typically initiates, to other sites throughout the body. 

While the general steps of these processes is known, there is a lack of evidence in the field 
regarding the physical properties defining tumor cell trafficking through the blood. Several studies 
have estimated vastly conflicting half-life time of CTCs, ranging from seconds to hours. However, 
these studies are limited in that they typically involve monitoring the decay in concentration of 
injected in vitro cultured cells, rather than that of native, unprocessed tumor cells. Measuring the 
blood concentration of these injected in vitro cultured cells over time is insufficient to extrapolate 
the two defining variables which underlie the concentration of CTCs: half-life time and generation 
rate. Studying these parameters is crucial to understanding the nature of the metastasis of cancer 
throughout the body, which remains the leading cause of cancer deaths. 

Our lab has developed a technology capable of detecting genetically fluorescent CTCs 
longitudinally directly from the bloodstream of mice in real-time. The system combines a surgical 
cannulation technique of the jugular vein and carotid artery with a lab-built optofluidic platform, 
which uses laser-based detection on a microfluidic chip, to enumerate and capture CTCs from un-
anesthetized mice. By setting two of these in sequence, we aim to develop a method for transferring 
unprocessed CTC-containing blood between animals and monitoring the resulting blood 
concentrations to elucidate the circulatory kinetics of tumor cells in the blood.  

In this thesis, we begin by developing a system to determine circulation properties of CTCs. 
Using a series of real-time CTC detection platforms, we create a model to describe how the 
exchange of blood between healthy and tumor-bearing mice allows us to extrapolate circulation 
properties of the cells. Next, we apply this platform to study the circulation kinetics of CTCs from 
several models of solid-tumor disease. Finally, we use these techniques to study the kinetics of 
leukemia cells. By varying the tumor and treatment status of donor and recipient animals, we assess 
how the tumor cells themselves and the microenvironment of the bone marrow impacts tumor cell 
clearance. We discover that E-selectin, a vascular adhesion molecule, prevents cell turnover 
between tumor compartments and enables relapse cells to escape circulation more quickly. 
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Altogether, this work provides a novel method to assess circulation kinetics of tumor cells and 
identify features that regulate the clearance of tumor cells from the blood. 
 
Thesis supervisor: Scott R. Manalis 
 
Title: David H Koch Professor, Biological Engineering and Mechanical Engineering 

 

  



5 
 

Acknowledgments 

A PhD is not something you can do alone. I am incredibly grateful to the people who have made 
this work possible, from those who encouraged my initial interests in scientific research, to the 
scientists who laid the groundwork for the project, to the support network I have had along the 
way. 

To start, I would like to thank my adviser, Dr. Scott Manalis, for creating a lab where students can 
thrive. He has taught me to think critically and to thoughtfully design experiments. He has given 
me room to grow and learn new skills, and has trusted me to take initiative throughout my research 
experience.  

I would also like to thank my committee members, Dr. Sangeeta Bhatia, Dr. Michael Hemann, and 
Dr. David Weinstock, for their guidance and support throughout this project. They provided 
excellent feedback and pushed me to always think about the greater context for my research. 

I would also like to thank several other professors for their helpful feedback and advice, including 
Dr. Andy Lane for his expertise on the leukemia projects and Dr. Alex Shalek for guidance on 
sequencing analysis. 

Within the Manalis Lab, I was lucky to be welcomed into an amazing team. The CTC project was 
spearheaded by an incredible graduate student, Dr. Bashar Hamza, who I had the absolute pleasure 
of working with. His design of the CTC detection platform made my project possible, and I learned 
so much from his expertise. I am so glad to have had the opportunity to work on the development 
of the blood exchange platform with him. Shortly after I joined, we welcomed a visiting graduate 
student, Dr. Lara Meier, whose enthusiasm and intelligence pushed our team forward. I am also 
thankful for the mouse surgeon, Emily King, who enabled the blood exchange experiments to be 
possible, and a dedicated undergraduate researcher, Kelsey DeGouveia. 

I am so glad to have had the chance to grow our CTC team and bring on new members. Our 
research is being continued through the work of two brilliant and hardworking graduate students, 
Felicia Rodriguez and Adam Langenbucher, who are pushing the projects in exciting new 
directions. Additionally, I have had the distinguished honor to welcome an incredible mouse 
surgeon, Dr. Lin Lin, who innovated our surgeries to extend survival and sampling periods. Our 
team also was joined by a hardworking technician, Christina Bray, and several undergraduate 
researchers, Emily Ryeom and Rebekah Costello.  

Within the broader Manalis lab, I have met some of the kindest and smartest researchers, who have 
guided my research and served as incredible friends. I specifically thank Dr. Ye Zhang, Dr. Jason 
Yu, Dr. Max Stockslager, Richard Wu, Sarah Duquette, Nolawit Mulugeta, Dr. Teemu Miettinen, 
Dr. Yorgos Katsikis, Dr. Mary Mu, Dr. Peter Winter, and Dr. Scott Knudsen for all of their work 
on the project and in my development as a scientist. 

I would also like to thank the collaborators who made this work possible. Dr. Sheng Rong Ng, Dr. 
William Freed-Pastor, Dr. Grissel Cervantes Jaramillo, and Dr. Megan Burger, along with their 
advisor Dr. Tyler Jacks, for help with many of the animal models used for these studies. I would 



6 
 

also like to thank Dr. David Goulet from the Hemann Lab, as well as Dr. Gonwei Wu from the 
Weinstock Lab, for their expertise with the leukemia models. 

Within the Koch Institute, I have had the opportunity to work with many supportive staff members 
in the Core Facilities. In the Flow Cytometry Core, I thank Glenn Paradis and Michele Griffin. 
From the Histology Core, I thank Kathleen Cormier, and from the Microscopy Core, I thank Jeffrey 
Kuhn. 

This work could not have been done without the incredible staff of the Koch Animal Facility, 
particularly Brian Lagace, Veronica Vargas, and Hilda “Scooter” Holcombe, who taught me how 
to effectively and humanely perform animal research. 

I would also like to thank my friends and mentors from my time working in the Bhatia lab, who 
taught me how to be a better scientist and prepared me for my graduate studies. Dr. Sangeeta 
Bhatia was instrumental in fostering my scientific mind and teaching me how to thoughtfully 
approach research. Specifically, I would like to thank the Malaria Team that I was a part of: Dr. 
Sandra March, Dr. Nil Gural, Dr. Liliana Mancio, Dr. Jiang He, Meghan Marquette, and Dr. 
Allison Demas. I would also like to thank others in the Bhatia Lab who made my time there so 
special, including Dr. Heather Fleming, Dr. Tiffany Vo, Dr. Amanda Chen, Dr. Lian-Ee Ch’ng, 
Dr. Quinton Smith, Keval Vyas, Trevor Nash, Kelsey Hern, Maria Ibrahim, Emilia Pulver, Henry 
Ko, and Dr. Leslie Chen.  

While I was in undergrad, I first learned how to approach scientific research from Dr. David 
Mooney and Dr. Yevgeny Brudno. Their guidance encouraged me to eventually pursue a graduate 
degree, and I am grateful to have worked with them. 

Outside of the lab, I have had an incredible network of friends and family, who have pushed me 
to be my best and supported me along the way. My parents, Lori and Wayne, always encouraged 
me to pursue my passions and have been there for me every step of the way. My brothers, Bruce 
and Gary, have been my role models since childhood, and the entirety of my extended family have 
cheered me on and been there for me. I also thank my friends from near and far for their unending 
support. 

Finally, to my husband, Alexander Raun. Words cannot describe how important you are to me. 
You have been by my side for 10 years, and I truly would not be where I am without your love 
and support.  

 

 

  



7 
 

Table of Contents 
1. Introduction to tumor cells and the blood 26 

1.1 Solid tumors and the blood 26 

1.1.1 Circulating tumor cells (CTCs) 27 

1.1.2 Solid tumor models 28 

1.2 Liquid tumors and the blood 33 

1.2.2 Property changes in leukemia 35 

1.2.3 Treatment of leukemias 36 

1.2.4 Minimal residual disease (MRD) and relapse 38 

1.2.5 Mouse models of leukemia 40 

1.2.6 Vascular adhesion molecules in leukemia 41 

1.3 Determining the kinetics of circulating cells 43 

1.3.1 Techniques to identify CTCs in the blood of mice 43 

1.3.2 Half-life estimations of CTC and CLCs 44 

2. Development of blood exchange platform 47 

2.1 Background 47 

2.2 Real-Time CTC-Counter Platform 49 

2.3 Blood Exchange System 52 

2.4 Modeling to Extrapolate Circulatory Kinetics 54 

2.5 Sorting and purification of CTCs 57 



8 
 

2.5.1 Chip fabrication 57 

2.5.2 Improvements to purification of sorted CTCs 59 

3. Blood exchange for solid tumor CTCs 65 

3.1 Background 65 

3.2 Estimation of CTC circulation kinetics 65 

3.3 Comparison of CTC and cell line kinetics 70 

3.4 Blood exchange to seed metastases in naïve mice 79 

4. Blood Exchange for Liquid Tumor CLCs 85 

4.1 Background 85 

4.2 Leukemia models 88 

4.3 New blood exchange method for leukemia 91 

4.4 Impact of non-circulatory factors on kinetics of clearance 100 

4.5 Impact of circulating factors on clearance kinetics 112 

5. Concurrent projects and conclusion 127 

5.1 On-chip single-cell purification 127 

5.2 Size estimation from real-time measurements 141 

5.3 High concentration estimation 149 

5.4 Checkpoint blockade in mouse models 155 

5.4 Conclusions 161 

References 164 



9 
 

 

List of Figures 

Figure 1.1 Overview of the metastatic pathway7. Cells that undergo certain genetic 

mutations (transformed cells) expand in a primary tumor. After the acquisition of further genetic 

mutations, subclones can migrate through the basement membrane and into the bloodstream, a 

process known as intravasation. The circulating cells can interact with immune cells and platelets 

before exiting the blood at a distant site, a process call extravasation, where they can begin to 

develop a metastatic tumor. .......................................................................................................... 27 

Figure 1.2 Healthy and leukemic bone marrow and blood samples. In healthy individuals 

(left), a diverse population of immature cells in the bone marrow gives rise to mature cells in the 

blood, with many red blood cells and a smaller relative fraction of white blood cells and platelets. 

In patients with acute leukemia (right), both the bone marrow and blood are overwhelmed with 

abnormal immature white blood cells, which crowds out the red blood cells and platelets56. ..... 34 

Figure 1.3 Tumor burden of leukemia over the course of disease and treatment81. Disease 

begins with a low number of cells that experience an exponential growth to at least 20% of total 

bone marrow cells, as the tumor undergoes genetic mutation. Upon effective therapeutic treatment, 

the number of tumor cells dramatically decreases. In a remission phase, tumors may experience a 

slow growth over time, and additional genetic or transcriptional changes may allow for the cells 

to rebound into another rapid growth relapse state. Complete remission (CR) and minimal residual 

disease (MRD) define clinical levels of detection to classify the degree of tumor burden. ......... 39 

Figure 2.1 Schematic of CTC-sorter platform for scanning the blood of mice in real-time 

to identify fluorescent tumor cells, with the capacity to sort out CTCs in a small blood volume130. 



10 
 

A mouse with arteriovenous shunt is connected via peristaltic pump to a microfluidic chip. A series 

of laser lines are projected onto the chip, and a detection photomultiplier tube (PMT) records the 

fluorescent data, which can be interpreted externally through LabVIEW software to identify 

fluorescent cells via their double-peak. This data can additionally be used to estimate the velocity 

of fluorescent CTCs, and a set of valves can be used in CTC collection experiments redirect small 

volumes of blood to collect CTCs in-line from the bloodstream of mice. ................................... 50 

Figure 2.2 Blood exchange system. (a) Two mice (in this setup a tumor-bearing mouse 

and a healthy mouse) in individual containers are connected via tubing (highlighted in red) to a 

CTC Counter and each other. (b) Cells circulated five times through the sequentially connected 

systems demonstrate minimal cell loss and equivalent levels of detection across systems. ......... 53 

Figure 2.3 Model for blood exchange. The concentration of CTCs in the tumor-bearing 

and healthy mice in a blood exchange setup can be modeled as the mixing of CTCs (red) between 

two well-mixed containers. CTCs are shed at a rate rgen from the tumor-bearing mouse into 

circulation. CTCs can be cleared by either animal as a first-order decay ..................................... 54 

Figure 2.4 Blood exchange setup for CTC detection. (a) Schematic showing the connection 

of circulation between two animals, a tumor-bearing mouse (TBM) and a healthy mouse (HM) via 

CTC-Counter systems. For each device, a laser excited fluorescent tumor cells as they flow 

through the chip, and the emitted light passes through a dichroic filter, where it is measured by a 

photomultiplier tube (PMT). (b) Readout of the PMTs show a high number of peaks (CTC 

detections) in the TBM and fewer detections in the HM. LPF- low pass filtering (of raw data for 

analysis). Inset shows the expected double-peak signal of a single CTC passing through the laser 

lines. .............................................................................................................................................. 56 



11 
 

Figure 2.5 Representative detection profiles throughout a blood exchange experiment. 

Blue lines represent the cells detected in the blood of the TBM that will be infused into the HM, 

while the orange line indicates the cells detected in the HM that will be returned back to the TBM.

....................................................................................................................................................... 57 

Figure 2.6 Cross section of 2-layer microfluidic chip showing valve operation. The device 

is made from thin valve layer with a thick channel layer on top bonded to glass. In the open channel 

position (left), low pressure in the valve layer allows for blood to flow in the semicircular shaped 

channel. To actuate the valve, a high pressure is applied, which deflects the thin valve layer up 

into the channel, forming a seal and preventing flow. .................................................................. 58 

Figure 2.7 Recovery efficiency using sequential sorting purification. (a) Recovery fraction 

(cells/beads sorted divided by total at the start of each dilution step) of fluorescent beads spiked 

into blood and sorted via sequential sorting. (b) Unsorted and (c) third sort of beads purified 

through the sequential sorting method show effective depletion of all blood cell types. (d) 

Recovery fraction at each dilution step of sequential sort for CTCs sorted from a blood of a late-

stage SCLC tumor bearing mouse. (e) Unsorted and (f) third sort of CTCs shows massive depletion 

of all cell types. The sorted samples would have one final purification sort before sequencing. . 61 

Figure 2.8 Improved purification of CTCs through sequential sorting. (a) Images of the 

final sort form the MACS purification method shows several red blood cells (larger white circles) 

and tons of smaller platelets. (b) Sequential sorting effectively removes plates and white blood 

cells and leaves very few red blood cells. Each image contains the total area of just under 2 final 

purified sorts for sequencing. (c) Single cell RNA sequencing in a PDAC model shows that CTCs 

purified via the MACS purification process have very elevated platelet signature compared to 

either primary tumor or liver metastasis cells. (d) Single cell RNA sequencing shows that 



12 
 

sequential sorting of an SCLC cell line spiked into blood (Sequential Sort) results in a similar 

platelet signature to cells directly from culture that were never exposed to blood (Uninjected). (e) 

Sequential sort results in nearly full recovery of SCLC CTCs spiked into blood, while the excess 

processing and harsh reagents of the MACS methods results in only a 30-40% recovery rate. .. 62 

Figure 3.1 Blood exchange tracings for SCLC mice. (a) IVIS imaging showing tumor 

burden of TBMs shortly before blood exchange experiments showing severe lung disease. (b) 

Cumulative counts of CTCs exiting TBMs (TBM to HM, blue, left y-axis) and HMs (HM to TBM, 

orange, right y-axis) over the course of blood exchange. Steady state exchange rates (r1 and r2, 

dashed) were used to later estimate circulation kinetics. .............................................................. 67 

Figure 3.2 Circulation kinetics of solid tumor CTCs calculated from blood exchange 

experiments. Blood exchange was performed on mouse pairs to estimate generation rates and the 

half-life times of three different models: small-cell lung cancer (SCLC), pancreatic ductal 

adenocarcinoma (PDAC), and non-small cell lung cancer (NSCLC). (*p < 0.05 (p = 0.0136), 

Kruskal−Wallis nonparametric test with Dunn’s sample pairs analysis). For SCLC, n =5 

biologically independent experiments. For PDAC, n = 8, 5, and 1 biologically independent 

experiments, respectively, for Org, Org. Neo., and Auto. For NSCLC, n = 5 biologically 

independent experiments. Auto- autochthonous (GEMM). Org- organoid. Neo- neoantigen. ns- 

not significant................................................................................................................................ 69 

Figure 3.3 Decay profile of bolus injection of SCLC cell line. (a) Schematic showing the 

intravenous infusion of TdTomato+ cells and subsequent monitoring of fluorescent cells via CTC 

counter. (b) Real-time measurements show an extremely rapid clearance of >90% of cells within 

the first minute, followed by a slower decay profile. This rapid initial clearance with slower 

remaining decay was seen regardless of whether cells were incubated in blood or saline, or whether 



13 
 

the cells infused were from a cell line, or dissociated primary or metastatic cells. (c) Normalized 

cell concentration to the first 10 minutes show that the injected cells that survived the first 10 

minutes can remain in circulation for several hours ..................................................................... 72 

Figure 3.4 Slow injection of cell line. (a) Schematic showing the setup of slow injection 

experiment. Cells are slowly pumped through a peristaltic pump and infused through a T-junction 

into the venous catheter while monitoring blood concentration through the CTC detection system. 

(b) Cumulative detections of the injected fluorescent cell line shows less than 5% detection of cells 

during the 3 hour experiment. (c) Comparison of detection fraction of naturally derived CTCs from 

blood exchange to slow injection experiment shows that a higher percentage of CTCs are capable 

of surviving in circulation compared to a similar concentration of slowly injected in vitro cultured 

cells. (p=0.016 with two-tailed t-test) ........................................................................................... 73 

Figure 3.5 Measuring buoyant mass of CTC. (a) Design of the fluorescent suspended 

microchannel resonator (fSMR) for mass measurement of fluorescent cells. (b) SCLC cell line and 

naturally shed CTCs shows no difference in buoyant mass (p = 0.3, two-sided Mann-Whitney-

Wilcoxon non-parametric test) ..................................................................................................... 74 

Figure 3.6 RNA-seq of SCLC CTCs vs cell line. (a) Overview of cell line collection. 

“Initial” cells were harvested directly from culture, while “sorted” cells were injected into healthy 

mice and sorted from the blood. (b) The three populations group separately on t-distributed 

Stochastic Neighbor Embedding (tSNE) plot, though “sorted” and “true CTCs” were defined by 

the same cluster. (c) The top genes defining the two clusters (“initial” and “sorted” + “true”) 

demonstrate that the cell line surviving in circulation is more similar to CTCs than the initial 

population. .................................................................................................................................... 76 



14 
 

Figure 3.7 Single cell RNA-sequencing of SCLC CTCs and sorted cell line. (a) Principal 

component analysis reveals a striking separation of CTC and cell line, with PC1 being upregulated 

in the CTCs and PC2 begin upregulated in the cell line. (b) Heatmap showing the correlation 

coefficients between principal components and the expression of select Gene Ontology genesets 

show differences in gene expression profiles associated with each principal component. Color 

represents Pearson coefficient, R. * p<.01; ** p<.0001 ............................................................... 77 

Figure 3.8 Blood exchange generates metastases in naïve mice136: (A) Schematic of blood 

exchange. The circulation of a tumor bearing mouse (TBM) is connected to healthy naïve mice 

(HM) through the CTC detection system. CTCs are enumerated and injected into the naïve mouse. 

(B) Intravital imaging (IVIS) showing generation of tumors in the liver of naïve mice 2 months 

post blood exchange. (C) scRNA-seq dimensional reduction plot showing clustering of transcripts 

of tumors from the TBM and HMs by mouse. .............................................................................. 79 

Figure 3.9 Metastatic tumors induced through blood exchange136. (a) Additional examples 

of IVIS imaging demonstrating the utility of blood exchange as a method to generate metastatic 

lesions in a naïve recipient from as few as 4000 CTCs. (b) Microscopy of purified CTCs isolated 

from HM recipient mice which developed SCLC metastases. Tumor cells are identified by the 

tdTomato that is constitutively expressed in the tumor model, and because they lack the white 

blood cell marker CD45 as well as the dead-cell marker DAPI (scale bar = 20um). These findings 

were replicated in four separate biological replicates. .................................................................. 81 

Figure 3.10 Single cell RNA Sequencing (sc-RNA seq) of SCLC tumor compartments 

from blood-exchanged animals. (a) UMAP plot showing differences in transcriptional signature of 

cells from five tumor compartments: the primary lung tumor, metastatic liver, and CTCs from the 

donor tumor-bearing mouse (TBM lung, TBM liver, and TBM CTCs, respectively) and metastatic 



15 
 

liver lesions from the two healthy recipients (HM1 liver and HM2 liver). Transcriptional signatures 

reveal clustering by animal. (b) Differential expression analysis shows the top 10 genes from each 

cluster that are differentially expressed between the three mice. (c) Venn diagram shows overlap 

in genes that are significantly differentially expressed (log-fold change >0.6, adjusted p-value 

<0.01) in the three liver metastases relative to the primary lung tumor of the donor mouse. More 

than 20% of genes are in common between at least two of the tumors, and more than 5% are shared 

between all three metastatic tumors. ............................................................................................. 84 

Figure 4.1 Overview of vascular and extravascular changes that occur over the course of 

disease in leukemia. Circulation kinetics of CLCs could be governed by circulating, cell-intrinsic 

factors, such including biophysical or immunological properties. Alternatively, non-circulating 

factors, including changes to the vasculature or extravascular space, could influence the clearance 

rates of CLCs in the blood. ........................................................................................................... 87 

Figure 4.2 Blood burden of leukemia models in mice over the course of disease. Both 

models increase at a roughly exponential rate, though the ALL model has approximately an order 

of magnitude higher concentration. .............................................................................................. 90 

Figure 4.3 Real Time concentrations of circulating tumor cells in donor (blue) and 

recipient (red) mice. (a) In the B-ALL model, the concentration of CLCs in the blood of the donor 

mouse does not reach steady state at 2.5 hours. (b) in the SCLC model, both mice quickly reach a 

steady state concentration, allowing for estimation of circulation kinetics using steady-state 

exchange rates. .............................................................................................................................. 91 

Figure 4.4 Overview of method for estimating circulation kinetics in leukemia models. 

Following a blood exchange period, where the circulation from a mouse with a fluorescent tumor 

is connected to that of a non-fluorescent recipient mouse, the recipient is disconnected. The CTC 



16 
 

counter is used to monitor the decay profile over a 3-hour post-blood exchange scan. Two key 

features will be extracted from this scan. The fraction remaining defines the concentration drop of 

CLCs in the blood of the recipient animal from the beginning of the post-BE scan to the end of the 

3-hour scan. The equilibration time defines the exponential decay constant that best fits the 3-hour 

decay curve, and describes how long it takes for the concentration in the recipient animal to reach 

a steady state. ................................................................................................................................ 93 

Figure 4.5 Detection percentages of the ALL cell line using the same chip as for the solid 

tumor models. Even at high laser power, the percent detection does not rise above 20% detection.

....................................................................................................................................................... 94 

Figure 4.6 Increasing the magnification from 10x to 20x using the same chip design as in 

the solid tumor models prevents the laser lines from fully covering the 300um channel width. . 95 

Figure 4.7 New chip for leukemia blood exchange studies. (a) Design of the 100um device. 

(b) Bottom view of the fabricated PDMS chip ............................................................................. 96 

Figure 4.8 Detection of FACS calibration beads at increased magnification. (a) Fluorescent 

intensity of FACS calibration beads. (b) Percent of beads detected on CTC counter system with 

10x magnification. (c) Percent of beads detected on CTC counter system using 20x magnification.

....................................................................................................................................................... 97 

Figure 4.9 Increased magnification in thin channel system. (a) Various optical 

magnifications were used to identify the maximum magnification that allows for full coverage of 

the laser lines on the channels. The channel width of 100um is noted with the green bar on the 

right side of each image, and the extent of the laser lines are shown with yellow lines. (b) Percent 

detection of the RFP+ ALL cell line increases dramatically with increased magnification. At 40x 

with high laser power, nearly 100% of cells were detected. ......................................................... 98 



17 
 

Figure 4.10 Cell survival and proliferation following laser scanning. (a) Cell counts five 

hours after scanning were not affected by various laser powers and objective magnification (all 

conditions had >95% viability). (b) Two days following scanning, cells had similar proliferation 

regardless of the laser power or flow rate they experienced. ........................................................ 99 

Figure 4.11 comparison of half-life times in liquid tumors (AML and B-ALL) compared 

to solid tumor models (SCLC, PDAC and NSCLC) in blood exchanges with naïve recipients. 100 

Figure 4.12 Cyclophosphamide (CTX) treatment of ALL model. (a) Survival curve shows 

2-3 weeks life extension in mice treated with one dose of 50mg/kg CTX 8 days post tumor 

initiation. (log-rank test p value = 0.0019).  (b) Histology sections of bone marrow and spleen of 

healthy mice, diseased ALL mice at 14 days post initiation, and mice 6 days post treatment show 

major alterations to tissue in the context of disease, which are at least partially reverted upon 

treatment. .................................................................................................................................... 102 

Figure 4.13 Clearance of ALL CLCs in recipient mice with varied tumor status. (a) 

Normalized CLC concentration after being disconnected from blood exchange shows a profound 

difference in clearance kinetics with a diseased state (RFP-) compared with a healthy (HM) or 

CTX treated (RFP- treated). (b) Fraction remaining at the end of the post-blood exchange scan 

shows significantly increase with a diseased recipient compared to healthy or treated. (**p<0.005; 

Tukey’s multiple comparison test) .............................................................................................. 104 

Figure 4.14 Hypocellularity does not induce significant reduction in fraction remaining 

after post-blood exchange scan. (a) Histology shows significant decrease in cellularity of bone 

marrow upon either chemotherapy treatment (CTX) or irradiation (1x 5Gy). (b) Cell counts shows 

half to two-thirds reduction in total cell count of the bone marrow (BM) after chemotherapy or 

irradiation. (c) Decay profiles show modest change in clearance rate in the depleted mice compared 



18 
 

to healthy mice. (d) A slight, but non-significant, decrease in fraction remaining at the end of post-

blood exchange scan was observed in hypocellular mice. p = 0.09 and 0.22 comparing HM to HM-

CTX and HM-irr respectively; Tukey’s multiple comparison test. ............................................ 106 

Figure 4.15 Flow cytometry analysis of adhesion expression on bone marrow endothelial 

cells. (a) Gating strategy for measuring expression on endothelial cells (DAPI-, CD31+, CD45-). 

Example shows increase with AML disease that is reverted after treatment of cytarabine and 

doxorubicin (araC/dox). (b) E-selectin expression increases and decreases over the course of 

disease (B-ALL) and acute treatment (B-ALL + CTX), and increases again at relapse. 

(****p<0.0001; Tukey’s comparison test) (c) VCAM1 expression does not increase with disease 

but is increased and remains elevated after treatment through relapse. (**p=0.0093, ns: p>0.85; 

Tukey’s comparison test) ............................................................................................................ 108 

Figure 4.16 Expression of E-selectin and VCAM1 on BMECs of healthy mice (HM), 

healthy mice 2 days post CTX (HM-CTX), and healthy mice 1 day post irradiation (HM-irr). 

Tukey’s multiple comparison test showed p values >0.57 for all pairs ...................................... 109 

Figure 4.17 Blood exchange in diseased mice with α-E-selectin. (a) Overview of 

experiment. RFP- recipient mouse was injected with 100µg of E-selectin antibody 20 minutes prior 

to blood exchange. (b) Decay profiles of post-blood exchange scans show a shift from the RFP- 

mice. (c) E-selectin treated mice (RFP- aEsel) had decreased fraction remaining compared to the 

non-dosed RFP- mice. (* p=0.025 with unpaired two-tailed t-test) ........................................... 110 

Figure 4.18 Circulation kinetics with varied donor disease burden. (a) No correlation is 

seen in either leukemia model between days post tumor initiation and fraction remaining at the end 

of post-blood exchange scan. R2 values of 0.02 and 0.21 for ALL and AML respectively, with non-

significant p-values 0.75 and 0.21 respectively.  (b) No correlation is seen in either leukemia model 



19 
 

between days post tumor initiation and equilibration time. R2 values of 0.21 and 0.32 for ALL and 

AML respectively, with non-significant p-values 0.30 and 0.11 respectively. .......................... 113 

Figure 4.19 Drug treatment in AML model. (a) A 5+3 dosing regimen of cytarbine (araC) 

and doxorubin (dox) (5 days of 20mg/mL araC, with first 3 days receiving concurrent 2mg/mL 

dox) results in approximately 6 day extension in life (log-rank test p value = 0.0008). (b) Histology 

showing bone marrow from diseased (AML D14), acutely treated (AML + araC/dox D3), and 

relapsing (AML Relapse D22) mice. (c) Blood burden of CLCs with drug treatment shows 

relapsing disease attains similar levels of CLCs at a delay of about 1 week. ............................. 115 

Figure 4.20 Blood exchange with relapsed donors. (a-b) Decay profile and quantification 

of clearance rates in healthy recipients with either untreated or relapse ALL donor mice shows no 

significant difference in equilibration time (two tailed t-test p value = 0.33). (c-d) Decay profile 

and quantification of clearance rates in healthy recipients shows AML donors with relapse disease 

have significantly faster equilibration time compared to untreated donors (two tailed t-test p value 

= 0.023) ....................................................................................................................................... 116 

Figure 4.21 Biophysical properties of untreated and relapse AML tumor cells. (a) 

Schematic of SMR with volume exclusion. (b) Examples showing how change in resonant 

frequency gives a mass readout (blue) and change in fluorescence gives a volume measurement 

(green). (c) No change in mass or volume of bone marrow cells was observed between untreated 

and relapse AML mice. (p=0.61 and 0.80 respectively for mass and volume from 2-tailed t-test)

..................................................................................................................................................... 118 

Figure 4.22 Expression of adhesion molecules in untreated and relapse leukemias. (a-c) 

Mean fluorescent intensity in AML model from flow cytometry of recombinant E-selectin (E-

selectin Binding), recombinant VCAM1 (VCAM Binding), and integrin β1 antibody, show 



20 
 

increases between untreated and relapse in both blood and bone marrow. (d-f) Mean intensity of 

ALL model with the same binding assays. Limitations in reagents prevented measurements of 

VCAM binding in relapse ALL. *p<0.05, **p<0.01, ***p<0.01. All p values are two-tailed t-tests.

..................................................................................................................................................... 120 

Figure 4.23 Adhesion molecules increase acutely and remain elevated after treatment in 

both AML (a-c) and ALL (d-f) models. AML untreated = D14 post initiation, AML + araC/dox = 

D2 post final treatment (D14 post initiation), AML relapse = D13 post final treatment, ALL = D10 

post initiation, ALL + CTX = D2 post treatment, ALL relapse = D19 post treatment. ............. 121 

Figure 4.24 Comparison of binding expression between ALL and AML models. (a) E-

selectin binding potential assayed through flow cytometry shows strikingly higher expression in 

AML compared to ALL in both blood and bone marrow. (b) Integrin β1 expression assayed 

through flow cytometry shows strikingly higher expression in AML compared to ALL in both 

blood and bone marrow .............................................................................................................. 122 

Figure 4.25 Blood exchange with recombinant E-selectin (a) Overview of experiment. 

AML relapse donor mice were injected with 20µg of recombinant E-selectin antibody 20 minutes 

prior to blood exchange. (b) Decay profiles of post-blood exchange scans show a shift from the 

relapse mice. (c) E-selectin treated mice (Relapse+rEsel) had increased equilibration time 

compared to the non-dosed relapse mice. (*p=0.017 with unpaired two-tailed t-test). .............. 123 

Figure 4.26 No correlation seen between Fraction Remaining and Equilibration time. R2 

<0.30 and p>0.2 for each linear regression ................................................................................. 124 

Figure 5.1 Schematic of single chip sequential sorter. In this design, blood from a mouse 

is drawn through peristaltic pump into the main inlet of the chip. Laser lines identify the fluorescent 

CTCs, allowing valves to actuate appropriately to divert the CTC in a small blood volume, while 



21 
 

the remainder of blood is returned to the mouse through the venous catheter. The diverted blood 

is diluted using a flushing buffer, until it passes through the next set of laser lines, where the CTC 

is resorted and re-diluted. Additional sorting steps are performed until the CTC is at a single-cell 

resolution, where a sorting volume (~100nL) contains only a single cell. The final sorting of the 

CTC allows for the flushing buffer to push the CTC off-chip and into the well of a collection plate, 

where it can be sequenced. .......................................................................................................... 128 

Figure 5.2 Chip design for sequential sorting chip. (a) Schematic of new chip. Color within 

the channels represents the dilution of blood as it passes through the chip, with dark red as whole 

blood directly from the mouse and white as the pure CTCs in flushing buffer. Valves are shown in 

gray. Laser lines are shows as green lines across the center of all 5 channels. (b) Fabricated PDMS 

device. ......................................................................................................................................... 129 

Figure 5.3 System for single-chip sequential sorter. (a) Optical train demonstrating the 

path of the laser lines as they are projected onto the chip (green), the emitted fluorescent light 

detected by PMT and camera (red), and the LED light used for brightfield imaging (blue). PDMS 

chip is identified with a white arrow. (b) Front view of the sorter system with inset showing an up-

close view of the laser lines being projected across the 5 channels of the chip. ........................ 131 

Figure 5.4 LabView display for single cell sequential sorting chip shows the three sections- 

a live readout of the fluorescent PMT signal and detected peaks; controls for the system including 

pump speed, laser, PMT gain, filtering specification, etc.; and a valve/flush controller showing the 

state of each valve and flush channel. ......................................................................................... 133 

Figure 5.5 Detection of fluorescent events in the single-cell sequential sorting chip. (a) 

The laser lines pass through all 5 channels, as seen by the bright spots of fluorescent dye. However, 

a clear difference in laser line width/intensity is seen, as outlined in white. (b) Detection of bright 



22 
 

Peak 5 flow cytometry calibration beads shows high percent detection in all by the final channel. 

(c) Detection of fluorescent cell line shows strong detection in the center channels, with lower 

percent detection in the first and final channels. ......................................................................... 135 

Figure 5.6 Impact of pressure ratios of downstream to upstream flushing channels on the 

dilution factors achieved. For conditions with very high dilution factors, backflow was 

occasionally seen, where the high downstream pressure prevented the lower upstream pressure 

from moving forward. ................................................................................................................. 137 

Figure 5.7 Dilution of fluorescent beads spiked into blood. (a) Brightfield image shows 

the dilution of blood through the single cell sequential sorting chip in the 5 channels. (b) Dilution 

factors at each step across two pilot tests show minimal difference in dilution between the blood 

inlet and outlet, but clear dilutions at each of the four dilution steps, with Dilution 1 having the 

least dilution factor of the four, and Dilution 2 having the highest dilution factor. (c) Cumulative 

dilution factors in two replicates shows strong levels of dilution throughout the chip, with nearly 

30,000-fold dilution in one experiment and nearly 200,000-fold dilution in the other. ............. 139 

Figure 5.8 Schematic showing the parameters that are used to extract cell diameter from 

the fluorescent data. (a) Physical measurements on the chip are diameter of the CTC (d - µm), the 

thickness of the laser lines (δ - µm), and the distance between the laser lines (D - µm). (b) 

Measurements extracted from the fluorescent dataset include the width of the fluorescent peak (W 

– number of datapoints), and the spacing between the two peaks (S – number of datapoints) .. 143 

Figure 5.9 Detecting beads of defined sizes at different flow rates. Average peak width 

and spacing of peaks for 10, 15, 19µm fluorescent beads were measured from samples run at 15 

(a), 30 (b), 45 (c), 60 (d), and 75 (e) µL/min. ............................................................................. 145 



23 
 

Figure 5.10 Comparison of bead sizing estimation to the predicted model shows strong 

correlation at 30µL/min .............................................................................................................. 146 

Figure 5.11 Size detection with barasertib treated cells. (a) Coulter counter measurement 

shows ground truth of cell size measurements in control cells (CTL) or those treated with 5µM 

barasertib (Bara). (b) Size estimation using the slope of peak spacing and width correctly shows a 

rightward shift in barasertib treated cells. ................................................................................... 147 

Figure 5.12 Real time size estimations in Labview. 10 and 19µm beads were run through 

the system, and a linear cutoff was able to distinguish 10µm beads at 90.4% accuracy and 19µm 

beads at 96.0% accuracy. ............................................................................................................ 148 

Figure 5.13 Fluorescent signal of RFP+ ALL cell line at various concentrations 

demonstrates the overlapping signature that appears at high concentrations. ............................ 151 

Figure 5.14 RMS of signal from RFP+ ALL cell line at various concentrations in the CTC 

sorter system. Clear correlation is seen between the RMS and the concentration of the cells. .. 152 

Figure 5.15 RMS as a metric to estimate high concentrations of cells. (a) RMS of 

fluorescent signal shows strong linear correlation to the number of cells per µL. R2=0.998, 

p<0.0001 (b) At low concentrations, especially below 3000 cells/µL, there is much higher error of 

signal, such that it would be difficult to effectively distinguish between similar concentrations of 

cells. ............................................................................................................................................ 153 

Figure 5.16 Growth kinetics of E0771 tumors with and without treatment. Untreated mice 

(black) show strong growth over the course of 3 weeks post treatment. Mice treated with three 

doses of αPD1 showed two phenotypes: responders that showed very little growth (blue) and non-

responders which had similar growth kinetics to the untreated mice (red) ................................ 156 



24 
 

Figure 5.17 Biophysical measurements of E0771 tumor cells in untreated and responding 

mice. (a) Coulter Counter measurements show no change in volume of between the untreated and 

responding tumors. (b) Buoyant mass of tumor cells in untreated tumors shows a large fraction of 

cells with mass below 40 pg. (c) Node deviation, a measure of stiffness, shows relatively low 

stiffness for the untreated tumors. (d) Buoyant mass of tumor cells in responding tumors show 

marked increase in mass, with a majority of cells over 50 pg. (e) Node deviation show increased 

stiffness in tumor cells from tumors that respond strongly to αPD1 treatment. ......................... 158 

Figure 5.18 Single cell RNA-seq on immunotherapy treated E0771 tumor mice of varied 

response. (a) t-distributed Stochastic Neighbor Embedding (tSNE) plot showing clustering of 

transcriptomes of all sequenced cells. Three main clusters were identified. (b) tSNE plot colored 

by group shows no clear separation between cells from different groups, though non-responders 

seem to be most present in cluster 0, and responders in clusters 1 and 2. R – responding tumors, 

NR – nonresponding tumors, RL – relapse tumors..................................................................... 159 

Figure 5.19 Top genes that define the tSNE clusters and functional pathways associated 

with the upregulated genes. ......................................................................................................... 160 

 

  



25 
 

List of Tables  

Table 2-1 Comparison of CTC detection levels between a real-time scan and terminal 

blood from the same animal shows consistency of detection rates .............................................. 51 

Table 3-1 Overview of circulation kinetics and fraction of tumor shed per day ............. 70 

Table 3-2 Raw data from blood exchange experiments summarizing the extracted and 

calculated parameters from each experiment. Q- flow rate between mice, V- estimated blood 

volume of recipient mouse, r1/r2- average steady state transfer rates of last 30, 45, and 60 minutes 

of blood exchange, SD- standard deviation of transfer rates, rgen- generation rate of CTCs, t1/2- half-

life time, Err- propagated error due to uncertainty of steady state transfer rates. ......................... 71 

Table 5-1 Estimated number of blood cells sorted (red blood cells, white blood cells, and 

platelets) if each of the four sequential dilutions have a given dilution fold. For example, to achieve 

only 1 RBC and no platelets or WBCs in the final sort, each dilution step would need to dilute the 

sample 30-fold. ........................................................................................................................... 130 

 

 



26 
 

1. Introduction to tumor cells and the blood 

Cancer and the blood are inextricably linked. Early on in cancer development, blood 

supplies the tumor with nutrients for development. As the tumor develops, it can alter circulation 

to increase blood flow and vascularization, allowing for even more rapid growth. And in late-stage 

disease, blood serves as the major avenue for the spreading of disease throughout the body1,2. 

Cancer can be classified broadly by whether the mutated cells develop in tight clumps of 

cells. If they do, these diseases are classified as solid tumors. Solid tumors make up nearly 90% of 

adult cancer, from breast cancer to melanoma to pancreatic cancer3. The other tumor type, liquid 

tumors, describe cancers of the blood cells. Liquid tumors, including leukemias and lymphomas, 

involve the hematological organs, such as bone marrow, spleen, blood, and lymph nodes, though 

some can also form nodules in other tissues4. 

For both solid and liquid tumors, the blood plays an important role in transporting cells 

throughout the body. And the spreading of cancer through the blood is the leading cause of cancer 

deaths. By studying the ways that tumor cells interact with and are trafficked through the 

vasculature, we can better understand how cancer spreads and identify potential targets for new 

therapeutic agents. 

1.1 Solid tumors and the blood 

Metastasis, or the spreading of cancer from its initial site to locations throughout the body, 

is the leading cause of cancer deaths, accounting for up to 90% of mortality5,6. By far the most 

common path of spreading to distant organs is the involvement of tumor cells in the blood. While 

the general steps of metastasis are relatively understood, little is known about the physical 
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properties that define the spread of tumors through the blood and the specific factors that contribute 

to trafficking of tumor cells in circulation. 

1.1.1 Circulating tumor cells (CTCs) 

For cancers originating in the epithelium, in order to spread from their initial location in 

the body, the tumor cells must perform a series of tasks, most of which develop due to genetic 

mutations and changes in transcriptional regulation 

(Figure 1.1)7. First, the tumor must invade the 

surrounding tissue by breaking through the basement 

membrane, which is the thin layer that separates the 

epithelial layer from underlying stroma. Next, the cells 

undergo a transition known as epithelial-to-

mesenchymal transition (EMT) whereby the cells lose 

much of their epithelial phenotype and behave more like 

mesenchymal cells8–10. They thus lose their polarity and 

become migratory, an important feature for developing 

eventual metastases. They also take on a stem cell-like 

gene expression, as they increase their ability to self-

renew11,12. After EMT and migration toward blood 

vessels, the cells must break through the endothelial 

layer and enter the bloodstream, a process known as 

intravasation.  

Once a cancerous cell enters the bloodstream, it 

is referred to as a circulating tumor cell (CTC)13. A 

 

Figure 1.1 Overview of the metastatic 
pathway7. Cells that undergo certain genetic 
mutations (transformed cells) expand in a 
primary tumor. After the acquisition of 
further genetic mutations, subclones can 
migrate through the basement membrane and 
into the bloodstream, a process known as 
intravasation. The circulating cells can 
interact with immune cells and platelets 
before exiting the blood at a distant site, a 
process call extravasation, where they can 
begin to develop a metastatic tumor.  
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subset of CTCs will go on to initiate metastases in a distant location. Tumor cells traveling in the 

bloodstream must avoid immune attack and find their way to a distant site where they can begin 

to grow. Once a cell has found a distant site, it must extravasate, or exit the bloodstream, by first 

binding to the vascular wall and then traversing the endothelial layer, before beginning to grow as 

a metastatic tumor14–16. Two hypotheses have been suggested as to how CTCs find the best place 

to grow. One proposes that tumor cells get trapped in the first capillary bed that they come across14. 

This would suggest that cancer cells which enter the portal venous system would metastasize to 

the liver, systemic tumors would spread to the lungs, and lung tumors could metastasize to any 

systemic organ. However, many clinical observations contradict this, since breast and prostate 

cancers, whose next capillary bed in the circulatory system is the lung, have a propensity to 

metastasize to bone, while patients with melanoma, which would also be expected to have lung 

metastases, are commonly found to have brain metastases16–22. The alternative hypothesis is 

termed “seed-and-soil”, which posits that circulating cells find a distant site that has the most 

optimal microenvironment and molecular cues for their growth23–25. Regardless of the method of 

locating a desirable site, CTCs are a crucial player in the metastatic pathway, and are responsible 

for spreading a tumor from its primary site to distant locations throughout the body. 

1.1.2 Solid tumor models 

In order to study cancer in a controlled setting, the use of preclinical models in needed. 

While the most simplistic models involve in vitro culture of human or animal cell lines, these 

systems are unable to capture the various stages of the metastatic cascade, and as such, are unable 

to be used to effectively study the kinetics of tumor cells in the blood. To that end, more complex 

systems are needed, primarily through the use of mouse models. 
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Mouse models are an important aspect of the study of cancer for many reasons. Mice and 

humans share many of the same genetic and transcriptomic features, allowing for the extrapolation 

of function and importance of key proteins26,27. Mice also share a majority of the organ systems as 

humans, which allows us to examine the complex interactions between organ systems28–30. And 

importantly for the purposes of this project, mice can be used to effectively model the various 

stages of cancer. 

Several types of mouse model are available to study cancer, with various benefits and 

drawbacks. Patient derived xenograft (PDX) models use cancerous cells derived from patients in 

order to initiate a mouse tumor. These models typically start from a biopsy of a patient tumor, 

which is either directly implanted into a mouse or implanted following ex vivo cell culture31. PDX 

systems are often thought to behave most similarly to that of human patients, since the tumors 

themselves contain actual human cells, and are commonly used for patient-specific drug screening 

in a precision medicine model, as a way to identify potential therapeutics that a patient’s specific 

tumor will be most likely to respond to32–34. However, if human cells were injected into a standard, 

wild type mouse, the mouse immune system would quickly recognize the human tumor cells as 

foreign, and begin attacking them, preventing the development of a tumor. This would render the 

model useless, as there would be no actual tumor present to study. As such, immunodeficient mice 

are used for PDX implantations. These mice contain specific genetic mutations that prevent the 

development of a normal immune system, thereby preventing the killing of cross-species cells. 

The most commonly used mouse is the NSG (NOD scid gamma) which prevents the development 

of mature T cells, B cells, and natural killer (NK) cells35. While PDX models can be an effective 

way to test tumor-drug interactions, they do have some key drawbacks. The time to creating a PDX 

model can be incredibly long, taking up to a year or more for the tumor to develop in the mouse36. 
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In the context of precision medicine this can be problematic, as patients diagnosed with late stage 

or aggressive tumors may only survive a few months without treatment. If it takes a year to 

discover which drug a patient’s tumor most effectively responds to, then those patients with fast-

growing tumors will not be able to reap the benefit that these models provide. Additionally, the 

lack of an immune system in the mouse prevents the study of any immune-mediated tumor impacts. 

And since interaction with the immune cell-rich blood is such a crucial element of CTC trafficking, 

using an immunodeficient mouse model could alter the phenotypic kinetics of CTCs in the 

bloodstream. As such, an immunocompetent mouse model with intact immune system is important 

to exploring the circulation kinetics of CTCs. 

Another type of mouse model of cancer is the use of genetically engineered mouse models 

(GEMMs). These systems consist of a mouse whose DNA has been altered to predispose it to 

develop tumors, either from birth or upon external induction37. One of the more common methods 

of gene modification uses the lox-Cre recombination system38. This system involves the expression 

of a particular enzyme, Cre recombinase, that is able to cut and recombine DNA at specific 

sequence signature, called loxP sites. When Cre recombinase is turned on in a cell, it actively 

removes the DNA sequence been two loxP sites, allowing for cell specific genetic manipulation. 

Typically, a transcription factor specific to the tumor-origin cell of interest is used as a promoter 

to turn on Cre recombinase production, and loxP sites are inserted into the genome at specific 

oncogenes or tumor suppressor genes that are important for the particular tumor model of interest. 

For example, pancreatic ductal adenocarcinoma (PDAC) in humans is characterized in over 75% 

of patients by the deletion of the cell-cycle transcription factor p53, and the mutated expression of 

the GTPase K-Ras 39. One of the most commonly used GEMMs of pancreatic cancer is called the 

KP (Kras and p53 mutant) model40, in which loxP sites flank a crucial exon of the p53 gene, and 
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loxP sites flank a stop codon in front of a mutated K-Ras gene, often a G12D mutation, in which 

the twelfth amino acid is changed from a wild-type glycine to a mutated arginine. Thus, when Cre-

recombinase is turned on in a cell, two things happen. The removal of a crucial exon of p53 renders 

the protein unfunctional, turning off the expression of the tumor-suppressor gene. And the removal 

of a stop codon in front of a mutated K-Ras turns on the expression of the constitutively active 

mutated oncogene. Since the KP signature is common for a number of cancer types, including non-

small cell lung cancer (NSCLC) and colorectal cancer, it is crucial that the tumor is initiated in the 

appropriate site and cell type to study the particular tumor of interest41,42. One way to control this 

is through an additional genetic alteration, that only turns on expression of Cre recombinase in the 

specific cell type of interest. In the PDAC model, a pancreas specific transcription factor, 

pancreatic and duodenal homeobox 1 (PDX-1), is often used for this purpose43. By breeding mice 

that express a PDX-1 driven expression of Cre recombinase with the added KP genetic alterations, 

only the pancreatic cells turn on expression of Cre, and thus only cells of the pancreas experience 

the genetic manipulation that drives the p53 deletion and K-Ras mutation, so only pancreatic 

tumors develop. Similar transcription factors can be used to initiate Cre-recombinase production 

in other cell types. One of the drawbacks of using GEMMs born with a Cre driver is that the timing 

and dosage of Cre is not controllable. All cells that express the driver protein experience the 

mutational changes, and this process begins as soon as the cell-type specific transcription factor is 

expressed, often starting at birth or in utero. In the pancreatic cancer model, the entire pancreas 

quickly becomes one huge tumor, leading to rapid death of the animal, and often not allowing 

sufficient time for the full metastatic cascade, to develop. To have more control over the timescale 

of tumor development, external Cre can be administered at a desired time, often through viral 

infection44. The delivery of Cre recombinase to the site of interest, such as lung, colon, or pancreas, 
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is thus highly controlled, and cell type specific viruses can be used to further control the specificity 

of tumor origin cell of interest45. Additionally, by titrating the dosage, a controllable subset of the 

cells will be activated, allowing for smaller initial tumors to grow, which can then develop over 

time to undergo the full metastatic cycle, including the production of CTCs and distant metastases. 

GEMMs are very useful for studying specific genetic perturbations in the context of a normal 

immune system. However, these models tend to be relatively slow growing, taking anywhere from 

a few months up to a year or more, depending on the dosage of viral Cre, to recapitulate the full 

course of disease46. Additionally, it can be difficult with GEMMs to quickly iterate with novel 

genetic manipulations, since the development of new GEMM breeds can be time intensive, and 

there must be known specific mutational changes, such as the KP model, that lead directly to the 

development of the tumor type of interest. 

A third category of mouse model of cancer is syngeneic models. These involve the 

transplantation of murine cancer cell lines into immunocompetent mice. By using mice that share 

identical genetic background to the mouse that derived the cell line, immune rejection is prevented, 

allowing the tumor to grow in the mouse47,48. These models tend to be very tractable and give the 

user much more flexibility over the specific features of the tumor type as well as the location of 

tumor growth. Solid tumors of many types can be implanted either orthotopically at the tissue site, 

for example a breast cancer line injected into the mammary fat pat, or ectopically at a different 

site, often subcutaneously on the flank of the mouse which allows for easy monitoring of tumor 

growth. And cells can be injected either in a suspension or as organoid clusters, allowing for further 

control over the specifications of the tumor49,50. However, many of the cell lines used for these 

models have been passaged repeatedly and grow extremely readily both in vitro and in vivo. As 

such, syngeneic models often develop rapidly, with mice succumbing to the disease over the course 
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of several weeks. While this can be very useful for increased throughput, many of these models 

develop as an aggressive primary tumor nodule that does not undergo metastasis51. As such, the 

study of CTCs and their kinetics would require the verification that such a model produces 

sufficient metastatic development to shed CTCs into circulation. 

For this project, three models of solid cancer were explored. The first was a GEMM of 

small cell lung cancer (SCLC), driven by the deletion of tumor-suppressing genes p53, 

retinoblastoma protein (Rb1), and phosphatase and tensin homolog (Pten). This model is highly 

metastatic and can have large numbers of CTCs in the blood, making it ideal for the study of CTC 

kinetics52. The second model was a KP GEMM of non-small cell lung cancer (NSCLC), driven by 

the deletion of p53 and the turning on of an oncogenic KRAS mutant (G12D)44,53,54. Finally, we 

used several models of pancreatic ductal adenocarcinoma (PDAC), including a KP GEMM as well 

as several KP syngeneic organoid models50. The NSCLC and PDAC models have lower rates of 

metastasis, allowing us to study the kinetics of tumor cells in the blood across a wide array of 

tumor types with differing burdens of disease in the blood. 

1.2 Liquid tumors and the blood 

Hematologic cancers, comprised predominately of leukemias and lymphomas, are also 

often called liquid tumors due to their occurrence in the blood, lymphatic system, and bone 

marrow4. Leukemias, for which there are over 500,000 new diagnoses every year worldwide, arise 

due to proliferative mutations in white blood cells of the bone marrow, enabling them to crowd 

out healthy bone marrow cells, leading to high numbers of circulating leukemia cells (CLCs) in 

the blood55. Lymphomas, on the other hand, arise mainly in lymph nodes and have little blood 

involvement. 
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Leukemias can be classified as acute, defined by poorly-differentiated cells and disease 

that progresses very quickly, or chronic, defined by more fully-differentiated cells and disease that 

progresses more slowly. They can also be categorized broadly by the two main lineages of blood 

cells, myeloid or lymphoid. These classifications define the four main sub-types of leukemia – 

acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), chronic lymphocytic 

leukemia (CLL), and chronic myelogenous leukemia (CML), although less common forms of 

leukemia also exist57. Leukemias can be further identified based on the specific cell type impacted, 

 

Figure 1.2 Healthy and leukemic bone marrow and blood samples. In healthy individuals (left), a diverse population 
of immature cells in the bone marrow gives rise to mature cells in the blood, with many red blood cells and a smaller 
relative fraction of white blood cells and platelets. In patients with acute leukemia (right), both the bone marrow and 
blood are overwhelmed with abnormal immature white blood cells, which crowds out the red blood cells and 
platelets56. 



35 
 

such as pre-cursor B lymphocytes, mature B lymphocytes, or T lymphocytes, in the case of ALL, 

and by the specific genetic mutations present in the leukemic cells4.  

One property that characterizes nearly all leukemias is the transport of cells through the 

blood. Leukemia typically begins with a mutated cell in the marrow of one bone, but very rapidly 

spreads through the blood via CLCs to involve marrow throughout the body. At the time of 

presentation, nearly all patients present with uniform levels of disease throughout the bone 

marrow4. Leukemias continue to spread to other hematological organs (spleen, lymph nodes) and 

can involve non-lymphatic organs, such as the liver and the brain, all by trafficking through the 

blood58,59. 

1.2.2 Property changes in leukemia 

Bone marrow hypercellularity has been observed in in vitro and in vivo models of all the 

major subtypes of leukemia60,61. Leukemic cells can crowd out osteoblasts and other healthy cells 

within the bone marrow, and overtake bone marrow niches to promote leukemogenesis, at the 

expense of healthy hematopoiesis and osteogenesis (Figure 1.2). They continue to rapidly divide 

and block the production of normal blood cells, leading to symptomatic presentation in patients of 

anemia (by blocking normal red blood cell production), clotting issues (by blocking normal platelet 

production), or susceptibility to infection (by preventing healthy white blood cell production). 

Leukemia can also lead to changes in remodeling of the bone marrow. Changes in extracellular 

matrix (ECM), as well as decreased calcium deposition, are commonly found in leukemia. This 

presence of bone marrow remodeling has been shown to clinically correlate with worse 

prognoses62. In addition to remodeling of the architecture of the bone marrow, the vasculature, 

particularly in the bone marrow, has been shown to have increased permeability in leukemias, a 
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phenomenon often described as “vascular leakiness”4. Vascular leakiness has also been shown to 

be implicated in disease progression, as it is correlated with worse prognoses, and inhibition of 

increasing vascular permeability has been shown to improve efficacy of chemotherapy and 

outcomes63,64. 

1.2.3 Treatment of leukemias 

While surgery is often the most favorable first-line therapy for solid tumors, where a 

primary tumor can be physically excised, such treatments are not applicable for leukemias, as there 

is no true mass to be removed. As such, chemotherapy is often the first treatment explored, though 

newer immunological treatments have recently been developed to target the disease more 

effectively. 

In AML, the most common induction (first-line) chemotherapy is a 7+3 regimen of 

cytarabine and an anthracycline such as daunorubicin65,66. This treatment involves seven days of 

continuous cytarabine dosing, with single doses of daunorubicin on each of the first three days. 

These chemotherapy treatments are often effective at reducing the burden of disease in patients, 

typically through non-specific killing of rapidly dividing cells. Cytarabine is a nucleotide analog, 

which has a similar structure to the nucleoside deoxycytidine, which allows it to be incorporated 

into the DNA as cells replicate their genome. However, it is sufficiently different from the normal 

nucleoside as to prevent normal transcription, leading to cell death. Anthracyclines are 

intercalating agents, which have a flat ringed chemical structure that allows them to slide between 

nucleotides in the DNA of a cell, which prevents DNA replication, also resulting in cell death. In 

ALL, a commonly used chemo agent is cyclophosphamide. This drug is metabolized in the liver 

to produce phosphoramide mustard, an alkylating agent that crosslinks DNA. Because these 
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chemotherapies are non-specific, they kill off many rapidly dividing cells, including cells of the 

hair follicles, the gut, and normal hematopoietic stem cells. Thus, these treatments lead to a number 

of intense side effects, ranging from hair loss and vomiting to anemia and susceptibility to 

infection, and often requires constant monitoring of the patient67. 

To overcome these unwanted side effects, targeted treatment options can also be available 

for patients whose tumors have certain genetic mutations. For instance, one of the common 

mutations in ALL, the BCR-ABL translocation also called the Philadelphia chromosome (Ph+), 

results in a constitutively activated tyrosine kinase. As such, tyrosine kinase inhibitors have been 

developed that specifically target the mutated protein. These drugs, including imatinib and 

desatinib, have dramatically increased survival in Ph+ patients68. Similarly, for AML, targeted 

therapies have been developed for several common mutations. Gemtuzumab is a monoclonal 

antibody therapy that binds CD33 and is a treatment option for patients that express that surface 

protein69. Another targeted therapy, midostaurin, is a tyrosine kinase inhibitor that specifically 

binds to a FLT3 mutation common for AML patients70,71. 

Immunotherapy is a newly developing field that has made progress in treating both solid 

tumor cancers and leukemias. This category of treatment harnesses the natural killing ability of the 

immune system to more effectively target the tumor. One of the most commonly used 

immunotherapies involves a process known as checkpoint blockade72. Cytotoxic T-cells, which 

use specific antigen recognition to destroy damaged or pathogen-infected cells, express certain 

surface proteins, including PD1 and CTLA4 that serve to mitigate their killing potential of normal 

cells. Many tumor types evolve to use this property to their advantage, by presenting specific 

proteins, such as PDL1 and B7, which bind to PD1 and CTLA4, respectively73. Activating this 

“immune checkpoint” inhibits the killing function of the T cells and allows the tumor to continue 
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growing unrestricted. Recently, antibodies have been developed that interfere with this process, 

and prevent the tumor cells from binding to PD1 or CTLA4. This process, known as immune 

checkpoint blockade (ICB) in turn allows the T cells to perform their natural function and kill the 

tumor cells74. While ICB therapies have had strong successes in treating a number of solid tumors, 

they have not had nearly as dramatic effects in leukemia, though additional studies are ongoing75–

77. However, a different type of immunotherapy, called CAR-T therapy, was recently approved by 

the FDA for relapsed/refractory ALL78. Chimeric antigen receptor T cell (CAR-T) therapy 

involves the ex vivo engineering and expansion of donor T cells (either autologous from the same 

patient or allogenic from a separate individual) to recognize and kill tumor cells with a specific 

antigen. In the case of relapse/refractory B-ALL, the CD19 B cell surface marker is used as the 

antigen to generate the CAR-Ts 79. 

While a variety of therapies are available to patients with acute leukemia, there is still a 

significant need for more effective drugs. For adult ALL and AML, the 5-year survival rates 

remain below 50%3,80. While non-specific chemotherapies have historically been the first line of 

treatment for these diseases, future development of novel targeted therapies and immunotherapies 

are likely to improve outcomes in patients with leukemia with a reduction of the severe side effects 

associated with toxic chemotherapies. 

1.2.4 Minimal residual disease (MRD) and relapse 

Tumor burden in patients with leukemia are typically described by the number of cells in 

a blood or bone marrow biopsy (Figure 1.3)81. This allows for close monitoring of tumor burden 

and response to therapy. Acute leukemia is diagnosed when at least 20% of the nucleated bone 

marrow cells are immature cells, also called blasts82,83. Shortly following treatment, patients 
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typically exhibit a drastic drop in tumor burden. This is often followed by a period of remission, 

with low or undetectable levels of disease.  

There are several classifications that are used to describe the degree of remission. Complete 

remission (CR) is typically defined as less than 5% blast presence in a bone marrow biopsy and 

can be measured with a standard smear, making it a quick and relatively inexpensive test, but this 

does not mean that no tumor cells are present. A second, more stringent classification is the term 

minimal residual disease (MRD). Measuring MRD requires using more sophisticated techniques, 

such as flow cytometry and polymerase chain reaction (PCR) amplification to identify extremely 

rare cell populations. MRD is often defined as less than 0.1% detection of tumor cells in the bone 

marrow, though newer techniques continue to push that limit84. For this reason, the term “minimal 

residual disease” is being replaced by “measurable residual disease” to clarify that patients with 

disease seen only with advanced technologies (MRD+) do still have detectable disease burden, 

though it is very low85. 

 

Figure 1.3 Tumor burden of leukemia over the course of disease and treatment81. Disease begins with a low number 
of cells that experience an exponential growth to at least 20% of total bone marrow cells, as the tumor undergoes 
genetic mutation. Upon effective therapeutic treatment, the number of tumor cells dramatically decreases. In a 
remission phase, tumors may experience a slow growth over time, and additional genetic or transcriptional changes 
may allow for the cells to rebound into another rapid growth relapse state. Complete remission (CR) and minimal 
residual disease (MRD) define clinical levels of detection to classify the degree of tumor burden. 
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The degree of MRD has been shown to correlate with patient survival time, with a lower 

MRD (fewer detected cells) being associated with better survival times86–89. However, in many 

types of leukemia, most patients who have MRD do eventually relapse, with disease that can be 

even more aggressive and harder to treat than the initial disease90. 

1.2.5 Mouse models of leukemia 

Many mouse models exist for studying leukemias, with various benefits and drawbacks. 

One of the most common is adaptive transfer of syngeneic models. Similar to solid tumor 

syngeneic models, these cell line-based methods are derived from a donor mouse with identical 

genetic background. Cells removed from a donor are genetically engineered in vitro to express 

certain oncogenic mutations. These cells are then injected through the tail vein into the recipient 

mouse, where cells can home to the bone marrow and begin growing as a tumor91,92. Depending 

on the model, a pretreatment of the recipient mouse with irradiation or drug may be necessary to 

clear out sufficient space in the marrow for the cancer to efficiently seed. Syngeneic models are 

widely used because they are easily tractable and have relatively short timescales, taking only a 

few weeks to develop severe disease. Also, because they are based on cell lines, additional genetic 

manipulations, such as adding fluorophores to readily identify tumor cells or additional mutations 

to assess function of specific genes, is relatively straightforward to perform93,94. 

Another commonly used model category is PDX. Like in solid tumors, this involves the 

injection of human patient-derived tumor cells into an immunodeficient mouse to better study how 

the tumor of a specific patient behaves. While these models are often regarded as more clinically 

relevant, the lack of immune system in the mouse prevents the full understanding of how the cells 

of the normal immune system interact with the tumor cells95. Additionally, these models tend to 

seed relatively poorly, with only a fraction of patient tumors able to form PDX models. It can also 
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take many months for disease to develop in the recipient mouse, making it challenging to rapidly 

iterate experiments with these models96. 

A final method of modeling leukemia in mice is through exposure to either radiation 

(gamma or X-ray) or viral infection. Low dose radiation can induce AML in mice and has also 

been associated with leukemia development in humans, so these models have been used to 

understand the clinical aspects of radiation-induced leukemias95. Several murine leukemia viruses 

(MuLVs) have also been discovered that can spontaneously induce AML leukemia in mice. While 

the use of these models has been important historically in understanding the development of 

leukemias, their use is limited. This is because many of the external stimulus methods often have 

low levels of incidence in tumorigenesis, with fewer than 50% of mice developing disease97. 

For the purposes of this project, we worked with two syngeneic models of leukemia. Our 

ALL model used the common Ph+ BCR-ABL transgene, either with or without the addition of a 

fluorophore98,99. We also used an AML model driven by the MLL-AF9 transmutation with an 

added fluorophore, which is one of the most commonly used AML models in the field95,100. 

1.2.6 Vascular adhesion molecules in leukemia 

Leukemia cells rely on adhesion molecules for many reasons. Adhesion binding can allow 

circulating cells to affix to the vascular wall and exit from circulation. These molecules can 

similarly prevent cells in a bone marrow niche from escaping the marrow and entering circulation. 

It has been shown that leukemia cells can use their binding to adhesion molecules to alter their 

sensitivity to chemotherapies100–102.  

In order to more effectively home to their ideal bone marrow niches, leukemia cells evolved 

to coopt the adhesion molecules that normal white blood cells use to recognize binding proteins 
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on endothelial cells and within the bone marrow. These molecules can be integrins, which bind to 

ECM proteins (such as collagen and fibronectin) and certain endothelial surface proteins; 

junctional adhesion molecules (JAMs), which bind to corresponding JAMs on endothelial cells; 

and certain glycans, which bind to the family of selectin proteins on endothelial cells4,103. 

Studies have shown that interfering with adhesion of leukemia cells can influence the 

efficacy of chemotherapy. One drug, uproleselan or GMI-1271, functions as an antagonist for E-

selectin, one of the key proteins on endothelium which allows for white blood cell adhesion. 

Researchers showed that binding to E-selectin upregulated survival pathways in leukemia cells 

and decreased the efficacy of chemotherapy both in vitro and in vivo100. The same study 

demonstrated that inhibiting E-selectin increased the efficacy of chemotherapy in a mouse model 

of AML. An ongoing clinical trial in patients with AML has shown promising results using 

uproleselan to inhibit E-selectin binding in combination with chemotherapy104. Similar studies 

have explored integrin binding in ALL as a pathway for chemo-resistance 105,106. By inhibiting the 

ability of ALL cells to bind to the ECM via their integrins, cells become significantly more 

susceptible to chemotherapies. They showed that this is due to a decrease in uptake of the drug 

because of changes the signaling pathways mediated by integrin binding.  

It has also been demonstrated that interfering with adhesion expression can lead to an 

increased population of actively circulating leukemia cells. By blocking the binding to E-selectin, 

a significant number of cells shift from the bone marrow niche into the blood100. This further 

increases the efficacy of chemotherapy, as the leukemic cells cannot hide in their protective niches, 

and may be exposed to higher levels of drug in circulation than when they are trapped in the bone 

marrow. 
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1.3 Determining the kinetics of circulating cells 

1.3.1 Techniques to identify CTCs in the blood of mice 

The simplest method to estimate the blood concentration of CTCs in mouse models relies 

on ex vivo processing of blood samples. Because solid tumor CTCs exist at such low levels in the 

blood (ranging from 1-1000/mL)107, at least 0.5-1mL is required to sample to get an accurate 

estimate of the blood concentration. Due to the small blood volume of mice (around 1.5mL), this 

often is done by euthanizing mice at various times post-dosing with tumor cells to collect sufficient 

volumes. There are a number of methods to identify CTCs ex vivo, often through the use of 

microfluidics to sort or capture the cells based on presumed properties108. These are typically 

separated into platforms that isolate based on physical properties, and those that isolate based on 

surface markers.  

Physically, the most commonly used approach is to separate based on size, though 

alternative methods based on density or electrical properties have also been employed109–111. 

Because most CTCs are expected to be larger than a typical white blood cell (since they typically 

arise from large epithelial cells) many fluidic based approaches have been developed that separate 

based on cell volume. By taking advantage of inertial focusing, a process by which larger, more 

massive particles are pushed towards the edges of channels when flown along an arc, large CTCs 

can be quickly separated from smaller white blood cells, platelets, and red blood cells112. 

Another common method of separating CTCs from whole blood utilizes the expression of 

known biomarkers on the CTC surface. Researchers have designed numerous devices that are 

coated with antibodies for EpCAM (an epithelial marker expressed on many types of CTCs) or for 

proteins specific for the tumor type of interest113–115. The antibodies may be fixed just to the sides 



44 
 

of the device, or complex arrays of pillars and walls may be present to maximize the likelihood of 

binding116,117. 

A final approach involves the use of pre-labeled tumor cells, either through radioisotope or 

fluorescence, to identify CTCs118–120. In these studies, fluorescent or radioluminescent microscopy 

of the blood sample can be employed to count the CTCs from a sample of whole blood. While all 

of these methods can be effective at detecting CTCs from the blood, they all rely on ex-vivo 

analysis of blood samples. This not compatible with real-time monitoring of tumor cells in the 

blood, as the concentration can only be determined at discrete timepoints, rather than through 

continuous monitoring. 

In vivo flow-cytometry is one of the most effective methods to monitor CTC counts in real 

time121,122. In this setup, a mouse is anesthetized and an ear capillary is observed on a microscope 

to identify and enumerate fluorescent CTCs. While this method is able to be performed 

longitudinally (at different timepoints in the same animal), the mouse must remain anesthetized 

for the duration of monitoring, and only a small percentage of the blood is visualized. For the 

average mouse ear capillary, it would take tens of hours to scan through a full blood volume of a 

mouse123. As such, it this method is prone to high error, as only a small volume of blood is used 

to estimate the total concentration of CTCs in circulation. 

1.3.2 Half-life estimations of CTC and CLCs 

Observed clearance of CTCs and CLCs can occur from several avenues. Cells can be killed 

in circulation by immune cells, they can get stuck in capillaries due to their size, they can adhere 

to endothelial cells lining the walls through adhesion molecules, or they can fully extravasate and 

exit blood vessels. While it is difficult to distinguish between these possibilities, identifying the 

rate that tumor cells clear active circulation is vital to studying tumor cell trafficking. 
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Half-life time in the context of CTCs refers to the duration it takes for the concentration of 

CTCs in the blood to drop by 50%. Early studies aimed at defining CTC half-life time relied on 

using radioisotope-labeled cells injected into the blood of mice with euthanasia of mice at defined 

times post-injection120,124. These studies tended to estimate half-lives on the order of seconds, with 

nearly instantaneous clearance of the injected cells. Later studies using in vivo flow cytometry or 

serial patient samples reported half-lives on the order of minutes to hours, though an initial rapid 

clearance of a subset of CTCs followed by a slower clearance was often seen125,126. 

In vivo circulatory kinetics of normal myeloid- and lymphoid-lineage cells have been 

studied much more intensively than tumorigenic leukemic cells, often in the context of immune 

response to disease, such as HIV. Studies of the in vivo circulatory kinetics of autologous in vitro- 

or in vivo-radiolabeled granulocytes date back as far as 1959. These studies reported an in vivo 

half-life of granulocytes in humans to be in the range of 6-8 hours127,128. Fewer studies have 

examined the kinetics of leukemic myeloblasts, but those that have found that they have half-lives 

longer than those of granulocytes in healthy subjects, in both acute and chronic myelogenous 

leukemias129.  

Our lab has developed a CTC Counter platform that allows for the detection of fluorescent 

cells in the blood130. By combining an arterial-venous cannulation with a microfluidic chip and 

optical system, we can flow blood from the carotid artery of a mouse through our system and return 

it through the jugular vein, while detecting fluorescent events in the blood. Our system can process 

orders of magnitude more blood than a traditional in vivo flow cytometry system, and can scan 

through a full mouse blood volume in only 30 minutes, allowing for much more accurate measures 

of concentration than other real-time detection platforms. 
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In this project, we will use the CTC Counter system to extrapolate circulation kinetics of 

tumor cells in the blood. We will begin by developing a blood exchange method with two CTC 

Counters in series, and demonstrate through mathematical model the ability to estimate half-life 

time and generation rate of CTCs based on the steady-state transfer rates of cells between tumor 

bearing and healthy mice. Next, we will apply this method to several solid tumor CTC models and 

show that while generation rates can vary dramatically between disease models, the half-life time 

of solid tumor CTCs remains much more consistent. Finally, we will use the blood exchange 

system to determine factors that influence the clearance of leukemia CLCs. We will demonstrate 

that both disease status of the tissue and relapse status of the leukemia cells impact the clearance 

rates of CLCs, and that these changes are driven by increases in the expression of adhesion proteins 

on the endothelium and tumor cells. 
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2. Development of blood exchange platform 

2.1 Background 

Understanding the trafficking of tumor cells through the body requires an accurate measure 

of their kinetics. Several key features can define the kinetics, including generation rate (the number 

of cells being shed into circulation per unit time) and the clearance rate (the rate at which cells are 

removed from circulation, either through extravasation or immune killing). By studying these 

features, we can begin to see the factors, both intrinsic and extrinsic, that can modulate the 

circulation properties of these cells, potentially leading to the identification of new therapeutic 

targets. 

Measuring the concentration of circulating tumor cells in the blood is incredibly important 

for understanding the ways that CTCs move throughout the body. But, while knowing the 

concentration of cells in the blood is important for understanding how the cells circulate, it is 

unable to decouple the various contributing factors, namely generation rate and clearance rate. A 

low circulating concentration could be defined either by a low generation rate (very few cells get 

into the bloodstream) or a very fast clearance rate (cells remain in the bloodstream for a very short 

time). In order to decouple these parameters, additional measurements are required, one for each 

variable, since it is not possible to calculate two independent variables from just a single 

measurement.  

The simplest means to extrapolate clearance rate using only a concentration would be to 

remove the second variable, generation rate. By injecting fluorescent cells into an otherwise 

healthy mouse and monitoring the decay profile, the half-life time (time for the circulating 
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concentration to drop by half) could be calculated solely by measuring the change in concentration 

over time. However, this method has a few key limitations. In vitro cultured cells have been shown 

to have dramatic differences to in vivo counterparts, ranging from cell cycle time to surface 

markers131,132. Additionally, the processing required to prepare cells for injection, including 

pipetting and centrifuging, can impart additional shear forces that could impact the behavior of the 

cells. Finally, particularly with CTCs, which exist in the blood at notoriously low concentrations 

(as low as 1-100 cells per mL), the injection of a relatively high concentration of cells for a 

clearance study could artificially impact the measured results. And injecting CTCs at a 

physiological concentration at the maximum allowed volume (~150µL for a mouse) could have as 

few as 10 cells, which would be insufficient to follow a decay profile. Because there are no mouse 

models with CTC generation but no clearance, there isn’t a way to effectively measure the 

generation rate alone. One study from 1975 attempted to measure generation rate alone by 

collecting blood from a vessel exiting a subcutaneous tumor over the course of 15-30 minutes 

while replenishing the lost blood volume with blood from a healthy animal and quantifying CTCs 

in the collected blood133. However, several caveats exist for this method, including the choice of 

model (subcutaneous cell line models are typically less metastatic than GEMM or organoid derived 

models) and uncertainty in whether all cells were collected (many vessels often exit a tumor). 

A different approach to extrapolate the two primary circulation kinetic variables 

(generation rate and half-life time) would be to add an additional measurement. This could be 

accomplished by connecting the circulation of a tumor bearing mouse (with both a CTC generation 

rate and clearance rate) to a healthy mouse (that can clear CTCs but not generate CTCs) and 

monitoring the changing concentrations between the mice. The primary way historically to 

exchange blood in real-time between animals is through parabiosis. In parabiosis, skin flaps from 
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the backs of two animals are sutured together, and after one to two weeks of healing, blood vessels 

form between the animals, creating a shared circulation. It is estimated that up to 1% of the blood 

can be exchanged per minute, but the rate is highly variable depending on the degree of 

revascularization and inflammation. Additionally, it is difficult to confirm the volume of blood 

transfer between the animals, which complicates the ability to effectively calculate circulation 

parameters134,135. And using in vivo flow cytometry to estimate real-time concentrations on the two 

animals would be nearly impossible, since the mice are conjoined and thereby would require two 

confocal microscopes with viewing windows only inches apart. 

In this chapter, we develop a blood exchange system capable of extrapolating circulation 

kinetics of CTCs, by connecting the circulation of active, non-anaesthetized mice in a highly 

controlled manner using arterial and venous catheterization. Each mouse is housed separately, and 

pumps are used to flow blood between the mice at defined rates. Home-built fluorescent detection 

systems monitor the transferred blood for the fluorescent CTCs, and by connecting a tumor-

bearing donor animal to a healthy naïve recipient mouse, the circulation kinetics of CTCs can be 

effectively extrapolated. We show a mathematical model for extrapolating generation rates and 

clearance rates from the paired circulation of tumor bearing and naïve mice, and demonstrate 

improvements to the system of sorted cell purification that will allow for more reliable sequencing 

results. Many of the results from this chapter were published in 2021136. 

2.2 Real-Time CTC-Counter Platform 

Our lab has developed a system that can identify fluorescent cancer cells in the blood 

stream of live, unanesthetized mice in real time130. Using a genetically fluorescent tumor model, 

we perform a surgical cannulation of the carotid artery and jugular vein of the mouse, allowing 
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temporary access to the circulatory system. The mouse is then connected to an optofluidic platform 

(CTC-Counter), which combines a microfluidic chip with a laser detection setup, to enable real-

time identification of fluorescent cells from whole blood. A series of beam splitters and mirrors 

are used to split the 532 nm laser beam into two, and a cylindrical lens focuses the beam spots into 

lines, which are projected past a dichroic mirror (long pass 550nm) across the flow channel 

approximately 400µm apart. The emitted light (581 nm) passes through the dichroic, and is focused 

through a spherical lens onto a PMT. In this way, fluorescent cells can be detected by a signature 

double peak (as the cell passes through the two consecutive laser lines) on the LabVIEW control 

instrument (Figure 2.1). 

This system of real-time detection has several main benefits over other methods of CTC 

enumeration. First, mice remain awake and alert throughout the duration of the experiment, 

allowing for longer scanning times. Additionally, by sampling through the carotid artery, rather 

 

Figure 2.1 Schematic of CTC-sorter platform for scanning the blood of mice in real-time to identify fluorescent tumor cells, with 
the capacity to sort out CTCs in a small blood volume130. A mouse with arteriovenous shunt is connected via peristaltic pump to a 
microfluidic chip. A series of laser lines are projected onto the chip, and a detection photomultiplier tube (PMT) records the 
fluorescent data, which can be interpreted externally through LabVIEW software to identify fluorescent cells via their double-peak. 
This data can additionally be used to estimate the velocity of fluorescent CTCs, and a set of valves can be used in CTC collection 
experiments redirect small volumes of blood to collect CTCs in-line from the bloodstream of mice. 
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than an ear capillary, a larger volume of blood can be sampled, allowing for greater confidence of 

concentration estimation. Finally, since the system involves a pump and ex vivo optofluidic system, 

additional processes, such as direct sorting of CTCs from blood, or in-line injection of reagents, is 

made possible. 

The CTC detection platform was tested in a small-cell lung cancer (SCLC) mouse model 

to validate the detection capabilities. Table 2-1 shows that the real-time scan of mouse blood using 

this system correlates with the concentration of CTCs detected in a terminal blood sample, 

demonstrating that the system can accurately determine the blood concentration of fluorescent 

cells. 

The first use of the CTC detection platform was to sort out the fluorescent CTCs in real 

time in order to assess the transcriptional evolution of the cells over the course of treatment. Mice 

exposed to JQ1 (a bromodomain and extra-terminal motif protein inhibitor) showed a pronounced 

change in transcriptional expression of sorted CTCs over the course of 5 days130. This system 

provided a unique ability to sequence CTCs from the same animal over time, a feat that had 

historically been limited by the small blood volume of mice and the inability to collect sufficient 

CTC numbers without a terminal bleed. And by looking at transcriptional changes within the same 

animal, transcriptional changes were unmasked that would have been obscured using traditional 

methods of longitudinal takedowns130. 

 

Table 2-1 Comparison of CTC detection levels between a real-time scan and terminal blood from the same animal 
shows consistency of detection rates 



52 
 

2.3 Blood Exchange System 

By connecting two of the CTC detectors in sequence, we were able to develop a method to 

circulate blood between animals without the need for parabiosis. Two cannulated mice, each 

connected to a separate peristaltic pump and fluorescent detection system, can have blood 

exchanged between them with accuracies of 0.1µL/min, ensuring an even exchange of blood. Mice 

connected in this way can be fully awake and active and perform normal eating, nesting, and 

grooming activities while connected to the system. By minimizing the distance between detection 

platforms, and by minimizing the interior diameter of the connective tubing (Figure 2.2A), we 

were able to reduce the ex vivo blood in the system to around 100-150uL, less that one tenth of the 

mouse’s total blood volume, to prevent negative impacts of blood loss on the mice. Exchanges 

were well tolerated, and mice kept on the system for several hours still had normal behavior. 

Healthy mice exchanged on the system had normal survival and have been followed for many 

months without incident. 

We also demonstrated that cells are not lost in the tubing and that the systems are equally 

good at detecting the fluorescent cells. Approximately 400 fluorescent SCLC cells were added to 

two connected CTC detection systems. The cells flowed sequentially through the pair of systems 

5 times, and the resulting detections were monitored, showing no difference in detection and 

minimal losses (Figure 2.2B). 



53 
 

 

 

Figure 2.2 Blood exchange system. (a) Two mice (in this setup a tumor-bearing mouse and a healthy mouse) in 
individual containers are connected via tubing (highlighted in red) to a CTC Counter and each other. (b) Cells 
circulated five times through the sequentially connected systems demonstrate minimal cell loss and equivalent levels 
of detection across systems. 
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2.4 Modeling to Extrapolate Circulatory Kinetics 

In order to understand the varying circulation concentrations and metastatic propensities 

of solid tumor CTCs, it is important to characterize the kinetic properties of CTCs in the blood. 

The two predominate parameters that define the circulation kinetics are the generation rate (rate at 

which CTCs enter circulation through intravasation from the primary tumor) and half-life time (the 

time it takes for the circulating concentration of CTCs to decrease by 50%). In order to quantify 

these properties, we developed a mathematical model to describe them in the context of blood 

exchange at steady state.  

As shown in Figure 2.3, blood exchange can be conceptualized as the flow between two 

well-mixed containers representing the circulatory volume of the two mice. In this model, the fluid 

(blood) is pumped between the two containers, transferring red spheres (CTCs) between the 

containers at rates r1 and r2. CTCs are released into the container representing the tumor bearing 

mouse (TBM) at rate rgen and are removed from each container (representing extravasation) at a 

 

Figure 2.3 Model for blood exchange. The concentration of CTCs in the tumor-bearing and healthy mice in a blood 
exchange setup can be modeled as the mixing of CTCs (red) between two well-mixed containers. CTCs are shed at 
a rate rgen from the tumor-bearing mouse into circulation. CTCs can be cleared by either animal as a first-order 
decay 
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rate equal to Kclearn, where Kclear is a first-order rate coefficient and n1 and n2 are the total number 

of CTCs in each container.  

Using the assumption of first order decay kinetics, CTCs stay in circulation for a half-life 

time of t1/2, where t1/2= ln(2)/Kclear. The differential equations to describe the changes with respect 

to time of the total number of CTCs in each mouse can be defined as: 

𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑇𝐶𝑠 𝑖𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐶𝑇𝐶𝑠 𝑜𝑢𝑡                          (2-1) 

Tumor-bearing mouse: 𝐶 𝑡 𝑄  𝐶 𝑡 𝑄  𝐾 𝑛 𝑡 𝑟           (2-2) 

Healthy mouse: 𝐶1 𝑡 𝑄  𝐶2 𝑡 𝑄  𝐾𝑐𝑙𝑒𝑎𝑟𝑛2 𝑡                         (2-3) 

In these equations, Q is the volumetric flow rate of the pump (set at 60 µL/min), C1 and C2 

are the concentrations of CTCs in the TBM and healthy mouse (HM) respectively, and n1 and n2 

are the total number of cells in the TBM and HM respectively, so n=C x V, where V is the total 

blood volume of the mouse. 

By using the above equations, we can extrapolate both the generation rate (rgen) and half 

life time (t1/2) of CTCs based only on the steady-state transfer rates r1 and r2, where r = C x Q. By 

setting dn/dt=0, we get the following equations: 

𝑟 𝑟 𝑟 1                                       (2-4) 

𝑡 /
/

/
      𝑚𝑖𝑛                                        (2-5) 

 An overview of the experiment is shown in Figure 2.4. The CTC-Counters connect the 

blood of the TBM and HM and allow for fluorescent detection of the blood of each animal using 

a laser and a photomultiplier tubes (PMT).  
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In post-processing of a blood exchange experiment, the raw PMT data was fed through a 

MATLAB program to identify the signature double-peak shape of the CTCs (due to cells passing 

through the two sequential laser lines) (Figure 2.4b and inset). The cumulative count was then 

plotted in order to follow the changing concentration of the CTCs in the blood of the mice. The 

plots of the cumulative CTC counts in the TBM and HM of a representative blood exchange are 

 

Figure 2.4 Blood exchange setup for CTC detection. (a) Schematic showing the connection of circulation between 
two animals, a tumor-bearing mouse (TBM) and a healthy mouse (HM) via CTC-Counter systems. For each device, 
a laser excited fluorescent tumor cells as they flow through the chip, and the emitted light passes through a dichroic 
filter, where it is measured by a photomultiplier tube (PMT). (b) Readout of the PMTs show a high number of peaks 
(CTC detections) in the TBM and fewer detections in the HM. LPF- low pass filtering (of raw data for analysis). 
Inset shows the expected double-peak signal of a single CTC passing through the laser lines. 
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shown in Figure 2.5. The final segment of the exchange is estimated to be a steady-state exchange, 

confirmed by the constant slope of the cumulative count curves, and can be used to estimate the 

circulation kinetics. 

2.5 Sorting and purification of CTCs 

2.5.1 Chip fabrication 

One of the key features of the CTC detection system in its development was the capacity 

to sort out CTCs directly from the bloodstream. The design of the microfluidic chip is a two-layer 

PDMS device, in which the valve layer can be pressurized to seal off outlets of the channel layer 

(Figure 2.6).  

The top layer is the channel layer, which has a “Y” shaped path with one inlet and two 

outlets (as shown in Figure 2.4a). This layer is fabricated on a silicon wafer using a positive resist 

photolithography method. AZ4620 a positive photoresist, is spun to approximately 45-50µm in 

 

Figure 2.5 Representative detection profiles throughout a blood exchange experiment. Blue lines represent the cells 
detected in the blood of the TBM that will be infused into the HM, while the orange line indicates the cells detected 
in the HM that will be returned back to the TBM. 
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height and baked onto silicon wafers, and a mask is used to protect the desired “Y” channel shape 

from UV exposure, which makes the resist soluble in developer. After development, which leaves 

just a “Y” shaped section of AZ4620. A brief reflow heating allows for the smoothing of the 

photoresist channels, leaving a parabolic cross section in the channel, which will allow for more 

ideal valve sealing in future steps. 

The bottom layer is the valve layer, which has two paths, each of which can intersect with 

the outlets of the channel layer when aligned properly. This layer is fabricated using negative 

photoresist on silicon. SU8 is spun on the wafer to approximately 50µm, and a negative mask is 

applied in order to cross-link the SU8 photoresist into the desired valve design. 

To create the microfluidic chips, PDMS is thoroughly mixed at a 1:10 base elastomer to 

curing agent ratio and degassed to remove air. The channel layer is prepared by pouring a thick 

~1cm layer of PDMS on the channel silicon mold, whereas the valve layer is prepared by spinning 

approximately a thin 30-50um layer of PDMS onto the valve silicon mold. After baking to cure 

the PDMS, the pieces are exposed to oxygen plasma and carefully aligned to covalently bind the 

layers. After punching 50um diameter holes for the channel inlets, channel outlets, and valve inlets, 

the chip and a glass slide are exposed to oxygen plasma and affixed together. At this point, 

 

Figure 2.6 Cross section of 2-layer microfluidic chip showing valve operation. The device is made from thin valve 
layer with a thick channel layer on top bonded to glass. In the open channel position (left), low pressure in the valve 
layer allows for blood to flow in the semicircular shaped channel. To actuate the valve, a high pressure is applied, 
which deflects the thin valve layer up into the channel, forming a seal and preventing flow. 
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pressurization of either valve will deform the thin valve layer up into the channel layer, thereby 

sealing off the outlet that it is covering. The semicircle cross section of the channel layer is 

important to ensure a proper seal to effectively control which outlet is being used. During standard 

operation, one outlet of the “Y” shaped channel is closed by the valve, such that all of the blood 

passing through the device returns to the mouse. When a cell passes through the laser lines and 

generates the double peak fluorescent signature, the velocity can be estimated based off the known 

physical distance between the laser lines. Then the valves can acuate to shunt blood into the second 

outlet of the “Y” shaped channel and remain open based on the estimated velocity and the known 

distance to the valves. This system allows for the real-time sorting of small blood volumes 

containing single CTCs in approximately 50nL of blood. 

2.5.2 Improvements to purification of sorted CTCs 

After sorting CTCs in small blood volumes, further purification is necessary to perform 

downstream analysis of either microscopy (where significant, but non-perfect purification is 

needed) or RNA sequencing (where single cell purity is required). This is due to the incredibly 

concentrated nature of cells in the blood. A single microliter of blood can contain 10 million red 

blood cells, 100 thousand platelets, and 10 thousand white blood cells, in addition to the single 

sorted CTC. White blood cells have by far the most RNA of the blood cells, so are the most crucial 

to remove from a sample containing CTCs, as they will add the most noise to sequencing results. 

Even after the removal of white blood cells, the sheer number of red blood cells and platelets can 

result in a significant amount of noise to either microscopy or sequencing. Therefore, massive 

purification is necessary to reduce the background noise and allow for identification of CTCs in 

downstream processing. 
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The historical method of purification used in our lab involved chemical processing and 

antigen-based cell depletion. The first step was red blood cell lysis using ACK buffer, which 

selectively interferes with red blood cell specific water transporters, resulting in water 

accumulation and subsequent cell bursting137. This process is around 99% efficient, which still 

leaves up to several hundred red blood cells per CTC. Magnetic activated cell sorting (MACS) 

was then used to deplete out white blood cells. This method also has up to 99% efficiency, which 

leaves up to 10 white blood cells per sorted CTC138. The final step was a dilution, followed by 

resorting on the optofluidic CTC detection system as described earlier. By diluting the cells 1:50 

and resorting based on fluorescence, each final sort contained on average 200 red blood cells and 

0.2 white blood cells. 

While this has been an effective method to purify CTCs from whole blood, one major issue 

is that this purification process does not remove platelets. Over 1000 platelets can be sorted per 

single CTC, which led to difficulties in analyzing RNA sequencing due to the overwhelming 

platelet signature. We therefore aimed to develop a more efficient sorting technique that could 

overcome the limitations of the previous methods. 
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A new sequential sorting method of fluorescent CTCs was pursued as an improved way to 

isolate single CTCs from whole blood. Since our CTC sorters are capable of robustly sorting out 

fluorescent cells in very small volumes, repeated dilution and sorting of CTCs in the same CTC 

sorter addressed many of the limitations of the MACS-based purification. Not only was this new 

method capable of reducing contamination of all blood components including platelets, but it also 

reduced the need for harsh chemicals and minimized the various processing steps of centrifugation, 

column purification, and heavy pipetting, which can decrease cell viability. This method also 

slightly reduced the duration of purification, taking about 30-45 minutes instead of 1 hour to go 

from whole blood to purified CTCs. 

 

Figure 2.7 Recovery efficiency using sequential sorting purification. (a) Recovery fraction (cells/beads sorted 
divided by total at the start of each dilution step) of fluorescent beads spiked into blood and sorted via sequential 
sorting. (b) Unsorted and (c) third sort of beads purified through the sequential sorting method show effective 
depletion of all blood cell types. (d) Recovery fraction at each dilution step of sequential sort for CTCs sorted from 
a blood of a late-stage SCLC tumor bearing mouse. (e) Unsorted and (f) third sort of CTCs shows massive depletion 
of all cell types. The sorted samples would have one final purification sort before sequencing. 
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In sequential sorting, the CTCs, which have been sorted in 0.1uL each, are diluted off-chip 

1:25 in either media or PBS. The subsequent dilution is passed through the CTC sorter again, 

effectively depleting all of the non-fluorescent cells (red blood cells, white blood cells, and 

platelets) 25-fold with each pass. After three rounds of purification, the cells are diluted a final 

time at 1:50, and sorted out for sequencing. With this method the effective dilution of each blood 

 

Figure 2.8 Improved purification of CTCs through sequential sorting. (a) Images of the final sort form the MACS 
purification method shows several red blood cells (larger white circles) and tons of smaller platelets. (b) Sequential 
sorting effectively removes plates and white blood cells and leaves very few red blood cells. Each image contains 
the total area of just under 2 final purified sorts for sequencing. (c) Single cell RNA sequencing in a PDAC model 
shows that CTCs purified via the MACS purification process have very elevated platelet signature compared to 
either primary tumor or liver metastasis cells. (d) Single cell RNA sequencing shows that sequential sorting of an 
SCLC cell line spiked into blood (Sequential Sort) results in a similar platelet signature to cells directly from culture 
that were never exposed to blood (Uninjected). (e) Sequential sort results in nearly full recovery of SCLC CTCs 
spiked into blood, while the excess processing and harsh reagents of the MACS methods results in only a 30-40% 
recovery rate. 
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cell type is 25x25x25x50, or nearly 800,000. This means that the final number of blood cells per 

CTC at the last sort should be on average 1.3 red blood cells, 0.0013 white blood cells, and 0.09 

platelets, showing the sequential sorting has the potential to fully remove white blood cells and 

platelets and leave very few red blood cells, resulting in a very pure CTC for downstream 

sequencing. This efficiency can be seen in Figure 2.7, where both beads spiked into blood (a-c) 

and CTCs isolated from diseased SCLC mice (d-f) showed high recovery and purification 

efficiency. 

In comparison to the MACS method of red blood cell chemical lysis and white blood cell 

magnetic depletion, sequential sorting outperformed in several aspects. By microscopy, it was 

clear that the MACS method left a large number of platelets (Figure 2.8a), whereas sequential 

sorting removed nearly all platelets and other contaminating blood cells (Figure 2.8b). RNA 

sequencing clearly demonstrated this difference in purification efficiency. Using the 

AddModuleScore function in Seurat 2.0 with an input set of known platelet genes, we assigned a 

gene signature score to sequenced cells indicating the overall expression of platelet-related 

markers, and indicating the degree of platelet contamination. Single cell sequencing of CTCs 

isolated from late-stage PDAC GEMM mice and sorted via the MACS method had a high platelet 

gene signature, indicating that this purification method left residual platelets in the sorted volumes 

(Figure 2.8c). However, single cells from a SCLC cell line that were spiked into blood and then 

purified via the sequential sorting method showed a similar platelet score to that of cells that were 

not spiked into blood, and therefore had no exposure to platelets (Figure 2.8d). Finally, the 

recovery rate using the sequential sorting method was significantly higher than with the MACS 

method (Figure 2.8e). Using MACS, only 30-40% of cells were recovered in the final sort, likely 

due to the off-chip processing of centrifugation, column filtering, and pipetting combined with the 
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various chemical reagents. However, the sequential sorting method vastly improved this recovery 

rate, and nearly 100% of the starting cells could be recovered. 

In this chapter, we developed a method for extracting the generation rate and half-life time 

of CTCs in mouse models of cancer. By connecting two CTC detection platforms in series, blood 

could be flowed between a tumor bearing and healthy mouse. We created a mathematical model 

to describe the system and extract circulation kinetics based on steady-state transfer rates between 

the mice. Finally, we improved our purification method through the use of sequential dilution of 

cells to generate sorted CTCs with higher purity for RNA sequencing analysis. 
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3. Blood exchange for solid tumor CTCs 

3.1 Background 

Estimates of clearance rates of CTCs in solid tumors have varied wildly, from near 

instantaneous clearance to hours-long clearance125–128. These measurements typically are 

performed from the injection of cultured cell lines into mice, rather than naturally arising CTCs. 

The development of the blood exchange method in Chapter 2 provides an opportunity to develop 

more accurate measure of circulation kinetics. By using the blood exchange method, we aim to 

better describe the clearance kinetics of CTCs, and explore how these rates vary between models 

of cancer. 

In this chapter, we apply the blood exchange technique to a series of solid tumor models, 

and find that while generation rate of CTCs varies dramatically over several orders of magnitude 

across tumor types, the half-life remains fairly constant, with only a 2-fold difference. We then 

show that in vitro cultured cell lines clear at a significantly faster rate when injected into mice 

compared with naturally arising CTCs. Finally, we demonstrate the utility of the blood exchange 

system to seed metastatic tumors in healthy naïve mice, opening the possibility of studying 

metastasis in models that are limited by rapid growth of aggressive primary disease. Many of the 

results from this chapter were published in 2021136. 

3.2 Estimation of CTC circulation kinetics 

To validate the mathematical model of blood exchange, experiments were performed 

utilizing murine models of three solid tumors. Five blood exchanges were carried out utilizing a 
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genetically engineered mouse model (GEMM) of small cell lung cancer (SCLC) in Trp53fl/fl; 

Rb1fl/fl; Ptenfl/fl; Rosa26LSL-tdTomato/LSL-Luciferase mice that utilizes Cre recombinase-expressing 

adenovirus delivered intratracheally to initiate tumors12. Upon late-stage disease, as measured by 

bioluminescence via intravital imaging system (IVIS) (Figure 3.1a), Tumor bearing mice (TBMs) 

and healthy mice (HMs) were catheterized, and blood exchanges were performed. The traces of 

CTC detection for each of these experiments can be seen in (Figure 3.2b). In these graphs, the 

cumulative counts were plotted for both CTCs detected exiting the tumor-bearing donor mouse 

(TBM to HM, blue, left y-axis) and CTCs detected exiting the healthy mouse (HM to TBM, orange, 

right y-axis). The last 30-60 minutes of the exchange was used to estimate steady-state transfer 

rates of the cells (dashed lines r1 and r2). The slopes of these lines were then incorporated into the 

equations developed in Chapter 2 to calculate circulation kinetics.  

Fourteen blood exchanges were carried out utilizing three models of PDAC, all in KrasLSL-

G12D/+; Trp53fl/fl; Rosa26LSL-tdTomato/LSL-tdTomato mice (KPT). Thirteen blood exchanges were carried 

out utilizing an organoid model initiated by orthotopic transplantation of murine PDAC organoids 

(eight utilizing syngeneic organoids and five utilizing a syngeneic organoid harboring a defined 

neoantigen, SIINFEKL). One blood exchange was carried out utilizing an GEMM PDAC model 

initiated by a Cre recombinase-expressing adenovirus delivered via retrograde pancreatic duct 

injection to initiate tumors. Finally, five blood exchanges were carried out utilizing a GEMM non-

small cell lung cancer (NSCLC) model in KPT mice that utilizes Cre recombinase-expressing 

adenovirus delivered intratracheally to initiate tumors.24, Figure 3.2 shows calculated generation 

rates (a) and half-life times (b) from these blood exchange experiments. Generation rate varied 

drastically between and within models over three orders of magnitude, while half-life time was 
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relatively consistent between these three solid tumor models and only varied by a factor of around 

two.  

The SCLC model utilized in these studies had a significantly higher CTC generation rate 

when compared to the PDAC and NSCLC models. This finding is consistent with the observations 

that the murine SCLC model utilized has higher CTC concentrations when compared to the other 

solid tumor models and is more prone to forming metastases139. It suggests that these phenomena 

 

Figure 3.1 Blood exchange tracings for SCLC mice. (a) IVIS imaging showing tumor burden of TBMs shortly before 
blood exchange experiments showing severe lung disease. (b) Cumulative counts of CTCs exiting TBMs (TBM to 
HM, blue, left y-axis) and HMs (HM to TBM, orange, right y-axis) over the course of blood exchange. Steady state 
exchange rates (r1 and r2, dashed) were used to later estimate circulation kinetics. 
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are due to a higher CTC generation rate compared to other oncological models, rather than a longer 

CTC half-life time. Because the models develop over different time courses a direct comparison 

of generation rate is difficult to directly compare between models, as the stage of disease is difficult 

to universally quantify. After intratracheal injection of Ad5-CGRP-Cre virus (2E6 pfu/mouse) into 

mixed background C57BL/6;129/Sv mice, SCLC typically develops over the course of 6-7 

months, with CTCs first becoming detectable around 4-5 months post inoculation. Blood exchange 

experiments in this model were performed between 5 and 6.5 months after tumor initiation. The 

PDAC models, which are all initiated by syngeneic orthotopic transplantation of organoids into 

C57BL/6 mice, develops on a much faster timeline, with mice succumbing to disease at around 8-

10 weeks post initiation, and CTCs first being detected at around the 6-week timepoint. For these 

models, blood exchange experiments were performed between 7 and 10 weeks post implantation. 

The NSCLC model was initiated via intratracheal injection of AD5-mSPC-Cre virus (1E6 

pfu/mouse) into C57BL/6 mice, and tumors develop over the course of 3-4 months. Blood 

exchanges in this model were performed around 3-4 months post tumor initiation. 
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In order to compare the generation rates, we normalized the generation rates to the 

estimated tumor masses to determine the number of CTCs shed per day per gram of tumor, as well 

as the percent of tumor shed per day (Table 3-1). Lung tumor mass was estimated by subtracting 

the weight of healthy lungs of age-matched mice from the diseased lung at late-stage disease. We 

found the tumor mass to be approximately 450-605 mg for SCLC at late-stage disease, and 150-

500 mg for NSCLC tumors. PDAC tumor volume was measured from ultrasound imaging using 

Vevo LAB software (FUJIFILM Visualsonics, Inc). The corresponding tumor mass was estimated 

using a linear regression of previously recorded tumor mass and volumes. For all tumor types, total 

number of cells was calculated from the assumption that 1g tumor has roughly 109  cells140. Our 

calculations demonstrate shedding rates ranging from 20k-700k/day/g tumor, significantly lower 

than previous estimates of 3-4M CTCs/day/g tumor133. 

A detailed breakdown of the calculated variables for the full set of blood exchange 

experiments can be found in Table 3-2. This includes the volumetric flow rate (Q), volume of the 

 

Figure 3.2 Circulation kinetics of solid tumor CTCs calculated from blood exchange experiments. Blood exchange 
was performed on mouse pairs to estimate generation rates and the half-life times of three different models: small-cell 
lung cancer (SCLC), pancreatic ductal adenocarcinoma (PDAC), and non-small cell lung cancer (NSCLC). (*p < 0.05 
(p = 0.0136), Kruskal−Wallis nonparametric test with Dunn’s sample pairs analysis). For SCLC, n =5 biologically 
independent experiments. For PDAC, n = 8, 5, and 1 biologically independent experiments, respectively, for Org, Org. 
Neo., and Auto. For NSCLC, n = 5 biologically independent experiments. Auto- autochthonous (GEMM). Org- 
organoid. Neo- neoantigen. ns- not significant. 



70 
 

recipient mice (V), mean and standard deviations of steady state transfer rates (r1 and r2) over the 

last 30, 45, and 60 minutes of blood exchange, as well as the calculated generation rate (rgen) and 

half-life (t1/2) and their corresponding errors due to propagated uncertainty of steady state transfer 

rates. 

3.3 Comparison of CTC and cell line kinetics 

Since previous studies primarily utilize in vitro cultured cell lines to estimate circulation 

kinetics of CTCs, we sought to compare the estimations of naturally derived CTCs from our blood 

exchange technique to that of historically used methods of measuring cell line kinetics. Using an 

established cell line of the same SCLC tumor model (isolated from a lymph node metastasis), we 

dosed mice with a 1-time bolus of tumor cells in line with our CTC detection system to monitor 

the clearance rate in a healthy mouse. 25,000 cells in saline were infused intravenously through 

the jugular vein catheter, and fluorescent detections were monitored for 3 hours (Figure 3.3). We 

found that there was an extremely rapid clearance of >98% of the cells in less than a minute, 

followed by a slower decay rate over the next three hours (Figure 3.3b-c). This was in stark contrast 

to natural CTCs infused during a blood exchange experiment, where no sudden initial clearance 

was observed and nearly 10% of infused cells were detected by the end of a three-hour exchange. 

 

Table 3-1 Overview of circulation kinetics and fraction of tumor shed per day 
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To explore whether this phenomenon was due to the infusion liquid, we incubated the cell 

line in blood prior for 20 minutes prior to injection, to determine whether the rapid initial clearance 

was due to the lack of exposure to blood, since platelets are known to sometimes coat CTCs in 

circulation13,141. In fact, the cells exposed to blood before injection were cleared even faster than 

those in saline. We similarly wanted to test whether non-CTC tumor cells, those cells either from 

a primary or metastatic tumor nodule, behaved more similarly to CTCs or cell line. We dissociated 

primary and metastatic tumors and similarly injected 25,000 cells into healthy mice. We found that 

while both groups had a large initial clearance, both groups of dissociated tumors had more cells 

in circulation for the duration of the 3-hour experiment, with cells from metastatic tumors having 

the highest circulatory rates. This suggests that metastatic cells, which have undergone the 

 

Table 3-2 Raw data from blood exchange experiments summarizing the extracted and calculated parameters from 
each experiment. Q- flow rate between mice, V- estimated blood volume of recipient mouse, r1/r2- average steady state 
transfer rates of last 30, 45, and 60 minutes of blood exchange, SD- standard deviation of transfer rates, rgen- generation 
rate of CTCs, t1/2- half-life time, Err- propagated error due to uncertainty of steady state transfer rates. 
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mobilizing epithelial-to-mesenchymal transition (EMT) have properties that increase their ability 

to circulate, making them behave in circulation more like CTCs than the primary tumor cells. 

We next aimed to design a similar experiment that more closely replicated the speed of 

injection that is seen in the blood exchange experiments. Though similar numbers of CTCs (around 

25,000) can be infused during the course of a blood exchange experiment, that infusion is the 

accumulation of a lower concentration of cells over the full 3-hour exchange. To determine 

whether a prolonged injection of low numbers of cells would impact the clearance rates, we 

designed a slow-injection experiment. In this setup, a second peristaltic pump was added to inject 

cells slowly at 1uL/min through a T-junction into the venous catheter of the mice (Figure 3.4b). 

Cells were kept in separate tubes at 37C, and tubes were swapped out every 15 minutes, to ensure 

that the viability of infused cells was consistent throughout the experiment. For the duration of the 

3-hour experiment, the connected CTC counter was used to monitor the fluorescent cells in the 

blood (Figure 3.4b). 

 

Figure 3.3 Decay profile of bolus injection of SCLC cell line. (a) Schematic showing the intravenous infusion of 
TdTomato+ cells and subsequent monitoring of fluorescent cells via CTC counter. (b) Real-time measurements 
show an extremely rapid clearance of >90% of cells within the first minute, followed by a slower decay profile. 
This rapid initial clearance with slower remaining decay was seen regardless of whether cells were incubated in 
blood or saline, or whether the cells infused were from a cell line, or dissociated primary or metastatic cells. (c) 
Normalized cell concentration to the first 10 minutes show that the injected cells that survived the first 10 minutes 
can remain in circulation for several hours 
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Using the slow injection method, we were able to more closely compare the finding of our 

blood exchange method with the injection of naturally shed CTCs with an SCLC cell line infused 

at a very similar rate. We found that even when injected slowly over many hours, the cell line did 

not stay in circulation for as long at CTCs, and was more rapidly cleared, with approximately 6-

fold fewer cells being detected over the course of the scan compared with a blood exchange 

experiment (Figure 3.4c). This data further suggests that the SCLC cell line differs from naturally 

shed CTCs in their circulatory kinetics, indicating that the current standard method of calculating 

kinetics, through the monitoring of decay of injected cell lines, does not fully capture the nature of 

CTC dynamics, and may lead to incorrect assumptions about the trafficking of CTCs. 

Our next goal was to characterize the differences between the cell line and endogenous 

CTCs in the SCLC model in order to better understand why they have differences in their 

circulatory properties. We first looked at whether there were differences in biophysical properties, 

since larger, more massive cells could get trapped in capillaries more easily and gravitate toward 

the walls of channels in small fluidic systems due to inertial focusing112. Our lab has developed a 

 

Figure 3.4 Slow injection of cell line. (a) Schematic showing the setup of slow injection experiment. Cells are slowly 
pumped through a peristaltic pump and infused through a T-junction into the venous catheter while monitoring blood 
concentration through the CTC detection system. (b) Cumulative detections of the injected fluorescent cell line shows 
less than 5% detection of cells during the 3 hour experiment. (c) Comparison of detection fraction of naturally derived 
CTCs from blood exchange to slow injection experiment shows that a higher percentage of CTCs are capable of 
surviving in circulation compared to a similar concentration of slowly injected in vitro cultured cells. (p=0.016 with 
two-tailed t-test) 
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system known as the suspended microchannel resonator (SMR) which is capable of very accurately 

measuring the buoyant mass of single cells142–144. The device consists of a microfluidic chip with 

a cantilever. The cantilever is vibrated at its resonant frequency, and a piezoelectric detector 

monitors the frequency of vibration. Within the cantilever is a fluid filled channel that flows to the 

tip and back out the base of the cantilever. As single cells flow through, their added mass changes 

the mass of the cantilever, causing it to resonate at a lower frequency proportional to the added 

mass. Therefore, by measuring the change in resonant frequency as cells pass through the channel, 

their buoyant mass can be determined a with fraction of a pg accuracy.  

We added a feature to the SMR system that incorporates fluorescent detection (Figure 

3.5a). By shining a laser on the bypass channel of the SMR, we could identify cells that were 

fluorescent, to ensure that the measured cells were indeed our fluorescent tumor cells. We ran both 

the fluorescent SCLC cell line and CTCs sorted and purified from SCLC tumor bearing mice in 

order to determine whether there were changes in the biophysical properties of the two that would 

 

Figure 3.5 Measuring buoyant mass of CTC. (a) Design of the fluorescent suspended microchannel resonator (fSMR) 
for mass measurement of fluorescent cells. (b) SCLC cell line and naturally shed CTCs shows no difference in buoyant 
mass (p = 0.3, two-sided Mann-Whitney-Wilcoxon non-parametric test) 
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explain their different kinetics. We found that both samples had equivalent buoyant masses (Figure 

3.5b). Previously, our lab has found that buoyant mass is correlated with passage time through a 

narrow constriction and cell volume145, suggesting that biophysical properties of the cells are 

insufficient to explain their differences in circulation behavior. 

This led us to explore whether there were any transcriptomic differences between the cell 

line and the endogenous CTCs. We collected SCLC CTCs naturally shed from tumor-bearing 

mice, as well as the fluorescent SCLC in vitro cell line, and we sorted out cells from the fluorescent 

SCLC cell line that had been injected into healthy mice, to directly compare the CTCs 

transcriptionally to the cell line and those cell line cells that survive past the initial rapid clearance 

following injection (Figure 3.6a). We used Smart-Seq 2 to perform single cell RNA sequencing 

on the three populations. After cells were lysed, reverse transcription was performed, followed by 

PCR amplification. After quality control, tagmentation was performed using a Nextera XT kit with 

unique 8 bp barcodes for single-cell identification. cDNA libraries were then pooled and 

sequenced on Illumina NextSeq500 with an average depth of 1.2 x 106 reads/cell. The subsequent 

FASTQs were mapped to mm10 mouse transcriptome with Bowtie 2, and gene expression levels 

were log-transformed. Cells were excluded with fewer than 500 detected genes or fewer than 

375,000 total reads. 

We performed t-distributed Stochastic Neighbor Embedding (tSNE) dimensionality 

reduction on the samples, and found that while each population grouped separately, the sorted cell 

line and true CTCs clustered together transcriptionally (Figure 3.6b). The top genes defining each 

cluster were plotted on a heatmap, demonstrating that the CTCs were more similar 

transcriptionally to the injected and sorted cell line cells than the “initial” noninjected cells (Figure 

3.6c). The genes defining the “initial” population were predominately related to cell division, while 



76 
 

those upregulated in the CTCs and sorted cell line were related to stress, inflammation, and cell 

signaling. 

Next, to analyze the differences between gene expression of CTCs and the sorted cell line, 

we performed principal component analysis (PCA). PCA revealed that the first two components 

 

Figure 3.6 RNA-seq of SCLC CTCs vs cell line. (a) Overview of cell line collection. “Initial” cells were harvested 
directly from culture, while “sorted” cells were injected into healthy mice and sorted from the blood. (b) The three 
populations group separately on t-distributed Stochastic Neighbor Embedding (tSNE) plot, though “sorted” and “true 
CTCs” were defined by the same cluster. (c) The top genes defining the two clusters (“initial” and “sorted” + “true”) 
demonstrate that the cell line surviving in circulation is more similar to CTCs than the initial population. 
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(PC1 and PC2) nicely separated out the two populations (Figure 3.7a). PC1 high cells were 

associated strongly with CTCs, while PC2 high cells classified cells from the cell line. To better 

understand the genes that associated with the PCs, we identified Gene Ontology (GO) genesets 

that may be expected to associate with metastasis or survival in the bloodstream. We used the 

AddModuleScore function in Seurat 2.0 to give each cell a score based on how highly that cell 

expressed the genes found within each GO set. Next, we performed correlation analysis between 

the module score and the principal components to identify whether the genes that define each 

principal component associate with the GO module scores for each cell. We found a number of 

genesets that were significantly correlated with each of the PCs, indicating genetic pathways 

associated with the CTCs and the cell line (Figure 3.7b).  

 

Figure 3.7 Single cell RNA-sequencing of SCLC CTCs and sorted cell line. (a) Principal component analysis 
reveals a striking separation of CTC and cell line, with PC1 being upregulated in the CTCs and PC2 begin 
upregulated in the cell line. (b) Heatmap showing the correlation coefficients between principal components and 
the expression of select Gene Ontology genesets show differences in gene expression profiles associated with each 
principal component. Color represents Pearson coefficient, R. * p<.01; ** p<.0001 
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We found that PC1, which is associated with the endogenous CTCs, had an increase in the 

expression of genes related to epithelial to mesenchymal transition (EMT), a key process in the 

development of cells capable of intravasating into the bloodstream. Additionally, cytoskeletal 

organization genes were positively associated with CTCs in PC1, which could explain difference 

in the circulation capacity of CTCs. Cells modulate their cytoskeleton to change their cell stiffness 

and flexibility, which could allow cells to squeeze through capillaries in a way that would alter 

their circulation kinetics. We also found that the CTCs were negatively correlated with a number 

of genesets associated with cellular proliferation, including translation and cell cycle genes. 

The sorted cell line, on the other hand, showed many opposite associations in terms of gene 

expression. PC2 was negatively associated with cytoskeletal organization, and several genesets 

associated with cell stress. And while they also showed a decrease in cell cycle genes, they did not 

see the same decrease in translation related genesets, suggesting that the cell line continues at least 

some of its normal cellular processes in the blood. Further studies will be needed to explore how 

these transcriptional differences translate into measurable differences in circulation kinetics. 
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3.4 Blood exchange to seed metastases in naïve mice 

Using the fluorescent GEMM model of SCLC, we performed blood exchanges, whereby 

the circulation of a tumor-bearing mouse (TBM) was sequentially connected via the CTC-Counter 

to two naïve healthy mice (HM) of the same background (Figure 3.8a). Each HM was connected 

to the TBM (late stage with primary lung and metastatic liver tumors) for 2 hours, and 

 

Figure 3.8 Blood exchange generates metastases in naïve mice136: (A) Schematic of blood exchange. The circulation of a tumor 
bearing mouse (TBM) is connected to healthy naïve mice (HM) through the CTC detection system. CTCs are enumerated and 
injected into the naïve mouse. (B) Intravital imaging (IVIS) showing generation of tumors in the liver of naïve mice 2 months post 
blood exchange. (C) scRNA-seq dimensional reduction plot showing clustering of transcripts of tumors from the TBM and HMs 
by mouse. 
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approximately 8000 CTCs were transferred from the TBM into each HM. In this way, metastasis 

generation in multiple separate HMs could be studied from CTCs of the same TBM (Figure 3.8B). 

The primary lung tumor and liver metastasis were harvested from the TBM on the day of blood 

exchange.  

Approximately 2 months after blood exchange, IVIS imaging showed bioluminescent 

nodules in the livers of both HMs (Figure 3.8b). These tumors were harvested, and histological 

analysis confirmed that these tumors had similar morphology to the metastases of the donor animal 

(Figure 3.8c). This data suggests that even low number of CTCs (a few thousand) are capable of 

seeding a macroscopic metastasis. And the fact that tumors grew in the healthy recipient mice 

shows that the cells we measured in our blood exchange experiments are indeed fully functional 

CTCs. Additional replicates of the metastatic seeding of SCLC tumors through blood exchange 

are shown in Figure 3.9a. We also found that recipient mice who had developed large liver 

metastases shed CTCs back into the blood, indicating that the disease seeded through blood 

exchange could recapitulate many aspects of the disease progression (Figure 3.9b). 

When infused into the jugular vein, CTCs first encounter the capillary bed of the lungs. 

However, none of the HM recipient mice developed lung disease. This is contradictory to the 

hypothesis that CTCs form metastases in the first capillary bed that they encounter, and suggests 

that they instead seed in the organ with the most favorable conditions to their specific growth. This 

is further supported by the fact that the location of tumor development in all of the healthy recipient 

mice was the liver, which is the same place that metastatic tumors developed in the donor mice, 

suggesting that the SCLC CTCs prefer to grow metastases in the liver, regardless of whether the 

animal has disease and where those CTCs are introduced into circulation. 
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Figure 3.9 Metastatic tumors induced through blood exchange136. (a) Additional examples of IVIS imaging 
demonstrating the utility of blood exchange as a method to generate metastatic lesions in a naïve recipient from 
as few as 4000 CTCs. (b) Microscopy of purified CTCs isolated from HM recipient mice which developed SCLC 
metastases. Tumor cells are identified by the tdTomato that is constitutively expressed in the tumor model, and 
because they lack the white blood cell marker CD45 as well as the dead-cell marker DAPI (scale bar = 20um). 
These findings were replicated in four separate biological replicates. 
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Aside from histological analysis, we used sequencing to analyze how the transcriptional 

signature of the tumor evolves through the various compartments. From the donor animal, three 

tissues were collected for analysis: the primary lung tumor, the metastatic liver nodules, and CTCs 

from the blood. From the two recipient animals, the metastatic liver nodules were processed. The 

transcriptome of each tumor compartment (primary, metastasis, CTCs) was analyzed using Smart-

Seq2 (Figure 3.10). The data show clustering of tumor compartments by mouse, whereby the three 

compartments from the TBM (primary lung, CTC, and liver metastasis) separated from the livers 

of the two recipient HMs (Figure 3.10a). Next, differential expression analysis was performed to 

determine which genes drove the changes in gene signature. Clustering the cells by animal and 

performing differential expression analysis revealed the top 10 genes from each group that defined 

the signature from that cluster (Figure 3.10b). Further studies will be needed to understand how 

the transcriptional changes influences the different tumors. Additionally, we compared the 

signatures of the primary lung tumor to each of the metastatic nodules (TBM liver, HM1 liver, and 

HM2 liver). Differential expression analysis between the primary lung tumor and each liver 

metastasis revealed a total of 215 genes that significantly differed (log-fold change >0.6, adjusted 

p-value <0.01) between the primary tumor and the metastatic tumors (Figure 3.10c). Of these, 

greater than 20% were found in at least two of the tumors, and over 5% were shared between all 

three metastatic tumors. Further analysis will be required to determine if this variance is due to 

differences in tumor size (the TBM had very severe disease, whereas the HMs had much smaller, 

localized tumors) or inter-mouse heterogeneity. Nevertheless, this experiment shows the potential 

of the blood-exchange platform as a way of developing metastatic models of cancer directly from 

CTCs without any ex vivo processing. This technique could be especially useful for studying 

metastasis in mouse models with highly aggressive primary tumors, where there is not enough 
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time for metastases to sufficiently grow before the mice succumb to disease. This platform would 

allow for the generation of metastatic only models, allowing for the study of metastatic outgrowth 

without the constraint of an aggressive primary tumor. 

In this chapter, we applied the blood exchange method to mouse models of SCLC, NSCLC, 

and PDAC. By measuring the steady-state transfer rates between tumor bearing and healthy mice, 

we extracted the half-life times and generation rates for these models. We found that generation 

rates in these models varied drastically over several orders of magnitude, while the half-life times 

varied by only 2- to 3-fold, even in models with different metastatic burdens. We additionally 

demonstrated that in vitro cultured cell lines behaved dramatically different than naturally shed 

CTCs, with a much faster initial clearance rate, even when added slowly to the blood. We used 

RNA sequencing to show that cell line cells that stayed in circulation had more similar 

transcriptional signatures to CTCs than to the in vitro cultured cells, but still had striking 

differences from the CTCs. Finally, we showed the utility of the blood-exchange system to 

generate metastatic models of cancer in healthy mice by infusing only a few thousand CTCs, 

opening the door for studying metastatic disease in mouse models that traditionally only have 

primary tumors. 
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Figure 3.10 Single cell RNA Sequencing (sc-RNA seq) of SCLC tumor compartments from blood-exchanged 
animals. (a) UMAP plot showing differences in transcriptional signature of cells from five tumor compartments: the 
primary lung tumor, metastatic liver, and CTCs from the donor tumor-bearing mouse (TBM lung, TBM liver, and 
TBM CTCs, respectively) and metastatic liver lesions from the two healthy recipients (HM1 liver and HM2 liver). 
Transcriptional signatures reveal clustering by animal. (b) Differential expression analysis shows the top 10 genes 
from each cluster that are differentially expressed between the three mice. (c) Venn diagram shows overlap in genes 
that are significantly differentially expressed (log-fold change >0.6, adjusted p-value <0.01) in the three liver 
metastases relative to the primary lung tumor of the donor mouse. More than 20% of genes are in common between 
at least two of the tumors, and more than 5% are shared between all three metastatic tumors. 



85 
 

4. Blood Exchange for Liquid Tumor CLCs 

4.1 Background 

Leukemias are a diverse set of hematological diseases characterized by heavy involvement 

of tumors in the blood4. As discussed in section 1.2, They can be classified broadly either through 

lineage status of myeloid or lymphocytic, as well as by differentiation status, with more well 

differentiated diseases being considered as chronic, and the more blast-like diseases being 

considered acute. Acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL) are the 

more aggressive subtypes in adults, with 20% and 40% 5-year survival rates, respectively3,80. 

Leukemias are commonly thought of as a systemic disease characterized by transport 

through the blood. They commonly arise from a mutation in a cell in the marrow of one bone, but 

quickly spread to bones throughout the body and have heavy involvement of not just hematological 

organs such as lymph nodes and spleen, but also liver and even brain58,59. Because of this, a 

thorough study of the circulation kinetics and the factors that affect circulation in leukemia is 

crucial to understanding the disease. Additionally, exploring the variation in circulation kinetics 

between solid tumor CTCs and liquid tumor CLCs will allow for the understanding of how the 

fundamental differences between liquid and solid tumors translates to trafficking properties in the 

blood.  

While much is known regarding the mutational genetic landscape that can lead to the 

development of leukemias, little is known regarding the circulation profile of leukemia or the 

factors that regulate circulation. Recent studies have suggested that a particular vascular adhesion 

protein, E-selectin, plays an important role for AML4,104. The increased expression of E-selectin 
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provides a chemoprotective effect for leukemia cells, and the inhibition of E-selectin allows the 

bone marrow to release AML cells, leading to an increase in the circulating concentration of 

AML100. While this finding suggests that vascular adhesion molecules may play a key role in 

modulating the levels of leukemia in tumor compartments (blood, bone marrow, etc), a thorough 

study of how these proteins can alter circulation kinetics of CTCs has not been done. 

Because there is limited knowledge of the kinetics of circulation of leukemia cells in the 

blood, it is unknown what factors regulate the clearance dynamics of circulating leukemia cells 

(CLCs). There are two broad categories that could influence the circulation kinetics of CLCs: non-

circulating factors and circulating factors (Figure 4.1). The non-circulating category would include 

both vascular and extravascular features. This could include changes to the endothelial layer of 

blood vessels, such as increased permeability or changes in adhesion proteins, or tissue specific 

features of the bone marrow and spleen, such as hypercellularity associated with late-stage disease 

or changes in extracellular matrix (ECM) deposition. 

Alternatively, circulating factors could govern the circulating kinetics of CLCs. While non-

tumor components of the blood, such as platelet aggregation or protein changes in the plasma, 

could theoretically impact the circulatory properties, such changes would be unlikely to directly 

impact circulating kinetics, and more likely to cause secondary changes to the vascular or 

extravascular compartments, rather than directly acting on the CLCs. The most likely factors 

within the blood would be properties of the tumor cells themselves. These properties could include 

physical properties, such as volume, mass, or stiffness, or could be due to surface proteins that 

interact with the vascular and extravascular spaces. 
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The blood exchange platform provides a unique opportunity to probe how circulating and 

non-circulating factors influence the behavior of CLCs in the blood. Because our system has donor 

animals with fluorescent CLCs and non-fluorescent recipient animals, we can alter them 

independently to decouple the influences of circulating and non-circulating factors. To study 

circulating factors, we can vary the condition of the donor animal in order to query how changes 

in the tumor cells themselves associated with disease burden and treatment status impact the 

circulation kinetics. Likewise, by modulating the disease and treatment state of the recipient 

animal, we can explore whether non-circulating factors can alter the clearance rates of CLCs. 

 

Figure 4.1 Overview of vascular and extravascular changes that occur over the course of disease in leukemia. 
Circulation kinetics of CLCs could be governed by circulating, cell-intrinsic factors, such including biophysical or 
immunological properties. Alternatively, non-circulating factors, including changes to the vasculature or 
extravascular space, could influence the clearance rates of CLCs in the blood. 
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In this chapter, we demonstrate that the blood exchange system can be used to extract 

circulation kinetics in both an ALL and AML model. We then vary the donor-recipient pairs to 

identify factors that govern the circulation and find that increased expression of vascular adhesion 

factors in a diseased state of ALL causes a decrease in clearance of cells from the blood. Finally, 

we show that increased levels of adhesion markers associated with relapse AML disease, but not 

relapse ALL, allow for faster equilibration of circulating leukemia cells. 

4.2 Leukemia models 

While the blood exchange technique was originally designed to detect and transfer rare 

circulating tumor cells within the blood of mice bearing solid tumors, it also shows promise for 

studying models of liquid tumors. And for liquid tumors in particular, which are often thought of 

as systemic diseases with very high levels of CLCs in the blood, the blood exchange method allows 

for novel ways of understanding how various factors contribute to the circulation kinetics. 

Two different leukemia models were utilized to study circulation kinetics of liquid tumors. 

The first was an B cell ALL model defined by a BCR-ABL translocation into B cell precursors, 

which is a very common genetic mutation associated with both ALL and CLL leukemias. This 

translocation, also known as the Philadelphia chromosome, results in a hyperactive tyrosine kinase, 

which results in the activation of a number of pathways, including cell growth and metabolism146. 

Historically, this was one of the more deadly mutations associated with leukemias, but in the last 

several decades, effective tyrosine kinase inhibitors, such as imatinib and desatinib, have been 

introduced, which have drastically increased the survival of patients with this mutation68. This 

syngeneic model was derived from a male C57BL6 mouse. We also have a version of this model 

that has been transfected with a puromycin-selective plasmid that expresses the red fluorescent 
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protein (RFP), providing us with both a fluorescent and non-fluorescent version of the same ALL 

model. 

The ALL cell line cultures well in vitro prior to initiation of tumor in mice in a media 

consisting of RPMI-1640, 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% 

5mM beta-mercaptoethanol (BME). To initiate disease, 500k cells are injected intravenously via 

tail vein into 12-week-old, male C57BL6 mice. Detectable levels of circulating leukemia cells 

(CLCs) in the blood can be found by day 6-8. The model is highly aggressive, with mice 

succumbing to disease by around 18-24 days post initiation. Severely diseased mice present with 

hunched posture, weight loss, and loss of movement in posterior limbs. 

The second model of leukemia we used to study circulation kinetics is an AML model with 

an MLL-AF9 translocation and RFP expression. The MLL-AF9 transgene upregulates cellular 

transcriptional processes and is associated with high rates of relapse in patients147,148. The AML 

model was also derived from a male C56BL6 mouse. However, unlike the ALL model, the AML 

model does not culture well in vitro. While the cells can be maintained for about a week in culture 

in a rich media of RPMI, 10% FBS, 1% penicillin/streptomycin, 10µg/mL IL (interleukin)-3, 

10µg/mL IL-6, and 20µg/mL SCF (stem cell factor), they begin to crash in culture for any longer. 

Additionally, after having been culture in vitro, they quickly lose their ability to effectively engraft 

into mice. Thus, this line must be expanded in vivo, with spleen from severely diseased animals 

being frozen down at euthanasia. The frozen spleen samples must then be thawed 24 hours prior 

to initiation in a new cohort of mice. Similar to the ALL model, this model is initiated via a cell 

line injection of 500k cells intravenously via tail vein injection into male C57BL6 mice. However, 

for this model, non-lethal irradiation with 1x 5Gy, to clear out space in the bone marrow, is 

necessary 24 hours prior to tail vein injection in order for tumors to seed effectively in the bone 
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marrow. This is another highly aggressive model, with mice succumbing to their disease within 

approximately 17-22 days after tumor initiation. Though severely diseased animals may show 

weight loss and some hunched posture, some mice in this model do not show these features even 

at late-stage disease. However, they typically present with pale or cold toes 1-2 days before 

succumbing to disease. 

Both of these models have tumor burden that starts in the bone marrow and has heavy 

involvement of the blood and spleen. At late-stage disease, the bone marrows of these mice 

typically have >90% disease burden, and 10-25M cells can be harvested from each cleaned femur 

through crushing with mortar and pestle. Both of these models also have very high levels of spleen 

involvement. The spleens of diseased mice expand dramatically and can be 5-10 times larger than 

that of a healthy mouse. Slicing and mashing a diseased spleen through a 100µm strainer can result 

with recovery of 200-400M+ tumor cells. Blood burden in these two models varies somewhat, 

with the ALL model having significantly increased circulating levels relative to the AML model. 

As seen in Figure 4.2, the concentrations of CLCs in the blood in the two leukemia models increase 

exponentially, though with different absolute values. Throughout the course of the 3-week disease, 

 

Figure 4.2 Blood burden of leukemia models in mice over the course of disease. Both models increase at a roughly 
exponential rate, though the ALL model has approximately an order of magnitude higher concentration. 
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the ALL model has approximately an order of magnitude higher level of blood burden compared 

to the AML model, though both models have similarly high levels of burden in both the bone 

marrow and the spleen. 

4.3 New blood exchange method for leukemia 

There are several key differences between hematological and solid tumors as it pertains to 

blood exchange. The concentration of CLCs in leukemic mice can be two to five orders of 

magnitude higher than that of CTCs in solid tumor-bearing mice, which leads to technical 

difficulties in distinguishing individual cells during blood exchange. In addition, we found that it 

takes much longer for the CLC concentration in the blood to reach steady state in leukemic models 

of blood exchange than for solid tumor models (Figure 4.3). Since the method for solid tumors 

 

Figure 4.3 Real Time concentrations of circulating tumor cells in donor (blue) and recipient (red) mice. (a) In the 
B-ALL model, the concentration of CLCs in the blood of the donor mouse does not reach steady state at 2.5 hours. 
(b) in the SCLC model, both mice quickly reach a steady state concentration, allowing for estimation of circulation 
kinetics using steady-state exchange rates. 
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relied on steady-state concentrations, a new method for estimating CLC kinetics was needed. 

Additionally, the estimation of circulation kinetics using the model from Chapter 2 assumes that 

the clearance rates in the donor and recipient animals are equivalent. The question arises as to 

whether this is a fair assumption to make. In the solid tumor models, the tumor presents in discrete 

nodules, with localized tumors in the lungs or pancreas and distal nodules in the liver. While it is 

likely that there could be changes in circulation at the tumor sites due to hypervascularization or 

increased endothelial permeability, it is unlikely that there would be systemic changes to the 

vasculature in the diseased animals that would drastically change their clearance rates. However, 

the same cannot be said for leukemia models. Since leukemia is a systemic disease, involving the 

blood, the spleen, and bone marrow throughout the body, it is likely that a highly diseased animal 

would have different clearance kinetics from that of a naïve recipient. And in fact, one major goal 

of this project is to describe how changes in disease state can impact the circulation kinetics. If we 

were to use the same equations and model as in the solid tumor models, it would be difficult to 

answer these questions, since the assumption of equivalent clearance rates is crucial to interpreting 

the results given a steady-state exchange system. 

By adding a 3-hour post-blood exchange scan of the recipient mouse following a blood 

exchange experiment, an exponential decay profile can be fit to the plot of CLC concentration over 

time to estimate the half-life time of circulating leukemia cells in circulation (Figure 4.4). Two key 

features are extracted from the decay profiles. First, the fraction remaining describes the relative 

change in concentration over the course of the 3-hour scan and estimates what fraction of the cells 

exit circulation over that time period. It can be calculated from the following: 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔           

          
             (4-1) 
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Figure 4.4 Overview of method for estimating circulation kinetics in leukemia models. Following a blood exchange 
period, where the circulation from a mouse with a fluorescent tumor is connected to that of a non-fluorescent recipient 
mouse, the recipient is disconnected. The CTC counter is used to monitor the decay profile over a 3-hour post-blood 
exchange scan. Two key features will be extracted from this scan. The fraction remaining defines the concentration 
drop of CLCs in the blood of the recipient animal from the beginning of the post-BE scan to the end of the 3-hour scan. 
The equilibration time defines the exponential decay constant that best fits the 3-hour decay curve, and describes how 
long it takes for the concentration in the recipient animal to reach a steady state. 
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The second parameter used to characterize the decay profile is the equilibration time. This 

parameter is similar to a half-life time and describes how long it takes for the concentration in the 

blood to reach a steady state. Since not all of the decay curves decay to zero, it is important to add 

a constant to the equation, such that there is a decay to constant, rather than a decay to zero (a 

decay to zero would be a half-life measurement). A best fit curve is applied to the decay data, with 

inputs of concentration and time in minutes, using the following equation: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎 ∗ 𝑒 / 𝑐                                                (4-2) 

Where k is the equilibration rate in minutes. The parameters a, k, and c are swept over 

positive values to find the best fit. While the value of “k” is the variable of interest in the equation, 

the variables “a” and “c” are scaling factors used solely to find the best fit for “k”. The variable 

“c” describes the steady state level of circulation in the mice, but is much less robust of a 

measurement than the fraction remaining value. Especially when there is a high concentration in 

the blood at the end of blood exchange, very small changes in measurements in the last few minutes 

can drastically impact the best-fit “c” value, with relatively little impact on the “k” equilibration 

 

Figure 4.5 Detection percentages of the ALL cell line using the same chip as for the solid tumor models. Even at 
high laser power, the percent detection does not rise above 20% detection. 
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rate. Similarly, the variable “a” describes the amplitude from the estimated “c” to the starting 

concentration, and thus can also fluctuate highly with small changes in measurements. 

Aside from the new method of extrapolating circulation kinetic parameters required for the 

liquid tumor models, differences in the fluorescent intensity of the leukemia models compared to 

the solid tumor models necessitated a redesign of the microfluidic chip used for detection of CLCs. 

While the solid tumor models all expressed the very bright TdTomato (red) fluorophore, the two 

leukemia models are identified through the expression of the dimmer Red Fluorescent Protein 

(RFP). When run through the same microfluidic chip with the same 20mW laser power, fewer than 

5% of cells were detected for the ALL cell line (Figure 4.5). At higher laser powers, up to 100mW, 

there was still minimal detection, with fewer than 20% of the cells being identified by the system. 

This necessitated an improvement to the chip design to increase the detection of the leukemia cell 

lines. 

As a first step, we looked to increase the magnification of our objective, thereby narrowing 

the region of focus, which decreases the background fluorescent noise picked up by the PMT. 

However, increasing the magnification from 10x to 20x prevented the laser lines from fully 

 

Figure 4.6 Increasing the magnification from 10x to 20x using the same chip design as in the solid tumor models 
prevents the laser lines from fully covering the 300um channel width. 
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covering the flow channel (Figure 4.6), which would allow blood and leukemia cells to pass 

undetected at the channel edge, thereby impairing our ability to accurately determine the real time 

concentrations and circulation kinetics.   

Since higher magnification results in lower background noise, designing a chip that can 

function using a more powerful objective was crucial to the study of circulation kinetics in 

leukemia. The chip was thus redesigned such that a narrower channel could pass through the laser 

lines. Since the purposes of this project do not involve the sorting of cells from blood in real-time, 

a single inlet and outlet were used, and no valves were required. While the original version of the 

CTC sorting chip had a channel thickness of 300um, the newly designed chips were fabricated 

from with channel widths of 100, 150, 200, or 250um (Figure 4.7a). The height was kept the same 

at 50um. Because no valve layer is required for these devices, fabrication of the mold was 

performed through negative SU8 resist photolithography, and 1-layer PDMS devices were created 

by curing a thick ~1cm layer of PDMS on the SU8-on-silicon mold and bonding to glass slides 

through oxygen plasma treatment (Figure 4.7b). 

 

Figure 4.7 New chip for leukemia blood exchange studies. (a) Design of the 100um device. (b) Bottom view of the 
fabricated PDMS chip 
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The decreased channel width raised a concern of increased clotting potential, and so the 

chips were tested by running non-heparinized terminal blood continuously for 15 minutes. None 

of the channel dimensions resulted in any clotting, and so the smallest width of 100um was chosen 

to maximize the possible magnification. Because the flow through the system is governed by a 

constant volumetric flow rate via a peristaltic pump, even thinner channel widths were not 

explored, as they would increase the linear flow rate through the channel such that the maximum 

sampling rate of the PMT would not capture a sufficient number of datapoints to confidently 

identify the fluorescent cells passing through the laser lines. Additionally, the increased flow rate 

and decreased channel width would apply additional shear stresses onto the passing blood, which 

could result in cell lysis. 

To first test the increased sensitivity of the thin channel chips to detect dimmer fluorescent 

objects, FACS calibration beads were used. These beads came in 5 brightness levels, with Peak 1 

having no fluorescence and Peak 5 being the brightest (Figure 4.8a). The various beads were run 

through the chip either with the 10x objective that had previously been used, or with a more 

 

Figure 4.8 Detection of FACS calibration beads at increased magnification. (a) Fluorescent intensity of FACS 
calibration beads. (b) Percent of beads detected on CTC counter system with 10x magnification. (c) Percent of 
beads detected on CTC counter system using 20x magnification. 
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powerful 20x objective (Figure 4.8b-c). While the system using the 10x objective was only able to 

reliably detect the Peak 4 and 5 intensities, with less than 30% detection of peak 3 and nearly no 

detection of Peak 2 beads, using a higher magnification allowed for an improved detection rate. 

Detection of Peak 2 beads increased from under 5% to nearly 40% and Peak 3 from 30% to nearly 

80%. 

After demonstrating the effectiveness of increased magnification on detection of beads in 

the thin channel chip, we aimed to explore the maximum magnification possible to use with the 

system. We applied objectives with 20x, 40x, 50x, and 100x power and observed how the laser 

lines aligned with the channel. We found that with the 100µm chip, any magnification above 40x 

resulted in laser lines that were unable to fully cross the channel path (Figure 4.9a). We therefore 

 

Figure 4.9 Increased magnification in thin channel system. (a) Various optical magnifications were used to 
identify the maximum magnification that allows for full coverage of the laser lines on the channels. The channel 
width of 100um is noted with the green bar on the right side of each image, and the extent of the laser lines are 
shown with yellow lines. (b) Percent detection of the RFP+ ALL cell line increases dramatically with increased 
magnification. At 40x with high laser power, nearly 100% of cells were detected. 
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selected the 40x objective to continue with further testing. We retested the ALL cell line at various 

magnifications and laser powers and saw that the increase in magnification significantly improved 

the detection capabilities of the system. With the 40x objective, nearly 100% were detected when 

laser powers about 40mW were used (Figure 4.9b). 

Next, it was important to determine whether the higher magnification and laser power 

negatively impacted the viability of the passing cells. While high laser powers could cause cellular 

damage, these cells were only exposed to the laser for a fraction of a second, so understanding 

whether cellular damage occurred was critical to finalizing the settings for the system. We ran the 

cells through the system either with the laser off or with varying degrees of laser power and 

objective magnification. Five hours after the scan, we counted the cells and found no difference in 

the short-term following laser exposure (Figure 4.10a). Next, we used the 40x objective at four 

laser powers: 0mW, 20mW, 60mW, or 100mW. We flowed equal volumes of the RFP+ leukemia 

cells through the system at either 60uL/min (or standard flow rate) or 30uL/min (a slower speed 

 

Figure 4.10 Cell survival and proliferation following laser scanning. (a) Cell counts five hours after scanning were 
not affected by various laser powers and objective magnification (all conditions had >95% viability). (b) Two days 
following scanning, cells had similar proliferation regardless of the laser power or flow rate they experienced. 
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that should increase laser exposure and test for higher cell damage) and let the cells grow in the 

incubator at 37C for 2 days. No difference in proliferation was observed, indicating that even at 

the highest laser power, no significant damage to the cells occurred (Figure 4.10b). We therefore 

chose to use 100mW as our standard laser power for the new chip system to maximize our chances 

of detecting dimmer cells. With the new chip design and optics validated, and with the system 

assessed for viability of the leukemia cells, we were able to move forward with using the system 

to study the circulation kinetics of leukemia cells. 

4.4 Impact of non-circulatory factors on kinetics of 

clearance 

We started by testing both fluorescent syngeneic models of leukemia to study circulation 

kinetics, the BCR-ABL driven B-ALL model and the MLL-AF9 driven AML model. By 

 

Figure 4.11 comparison of half-life times in liquid tumors (AML and B-ALL) compared to solid tumor models 
(SCLC, PDAC and NSCLC) in blood exchanges with naïve recipients. 
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performing blood exchange experiments with healthy mouse recipients, as was done in the solid 

tumor models, and disconnecting, we could compare the half-life times in circulation of the tumor 

cells in the leukemia models. We found the half-life times of CLCs in both leukemia models to be 

several orders of magnitude longer than those of solid tumor CTCs (Figure 4.11), with an average 

half-life time in the liquid tumor models to be approximately 200 minutes, compared to between 

1 and 5 minutes for the solid models.  

There are several factors that could influence the circulation kinetics of CLCs. Several 

studies have suggested that factors relating to the tumor cells themselves, including surface 

proteins, including integrins and selectins, or physical properties, such as cell stiffness, can 

contribute to chemotherapeutic resistance70,100,149. The physical properties can alter the way that 

objects flow through channels, pushing them toward the edges, where they could more easily bind 

to the vascular wall, thereby exiting active circulation112,150. Additionally, changes to the 

vasculature and tumor microenvironment, including endothelial binding proteins, vascular 

permeability, and ECM deposition, have been shown in leukemia, and could influence how quickly 

cells can exit from the blood61,64,151,152. Finally, increased cell numbers in the bone marrow and 

spleen, leading to fully packed organs, could contribute to the available space for cell to extravasate 

into, leading to changes in the circulation kinetic4,153. 

By varying the tumor status of donor and recipient animals, we hoped to distinguish the 

impact of tumor/blood components from the microenvironment/extravascular state on circulation 

kinetics, and thereby understand what factors may increase the circulatory compartment of 

leukemia, leading to more effective responses to therapy. We were also interested in discovering 

whether any tumor-induced changes to kinetics were due to permanent remodeling of the tissue 

space, or temporarily induced by the presence of disease. 
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To begin, we needed a model of disease and treatment for recipient animals as a baseline. 

We used the ALL model for this purpose, since we had both an RFP+ and RFP- version of the 

same BCR-ABL driven model. The treatment option explored was a one-dose treatment of the 

chemotherapy cyclophosphamide (CTX), an alkylating agent that is activated in the liver to 

produce phosphoramide mustard, which crosslinks DNA to kill actively dividing cells. A single 

50mg/kg dose was given intraperitoneally (IP) 8 days after tumor initiation of 500k cells via tail 

vein injection. 

We found that the CTX treated mice had a 2-3 week life extension compared to the 

untreated animals (Figure 4.12a). Additionally, histology sections show dramatic changes in the 

 

Figure 4.12 Cyclophosphamide (CTX) treatment of ALL model. (a) Survival curve shows 2-3 weeks life extension 
in mice treated with one dose of 50mg/kg CTX 8 days post tumor initiation. (log-rank test p value = 0.0019).  (b) 
Histology sections of bone marrow and spleen of healthy mice, diseased ALL mice at 14 days post initiation, and mice 
6 days post treatment show major alterations to tissue in the context of disease, which are at least partially reverted 
upon treatment.  
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spleen and bone marrow were at least partially reversed through treatment (Figure 4.12b). In the 

healthy bone marrow, diverse populations of cell types, including many large megakaryocytes, 

were present, and open spaces of adipocytes were present. As disease developed in the mice (ALL 

D14), there was much more homogeneity of cell types, as the leukemia cells crowded out the 

normal blood cells and created a much denser tissue. After treatment (ALL (D14) + CTX D6), the 

marrow contained a higher diversity of cell types and less densely packed cells, suggesting a return 

to a more normal histology. Similar trends were seen in the spleen. In the healthy spleen, a normal 

architecture, regions of blue “white pulp” surrounded by the red “red pulp”, was seen. But in the 

context of disease, the structure was highly disrupted, and leukemia cells crowded out the space. 

The spleen was also highly enlarged and could be up to 10 times more massive than a healthy 

spleen. In the treated mice, the spleen shrank back toward a normal size and began to show the 

reemergence of normal architecture, as the white pulp was clearly discernible. 

Next, we looked at whether changes to the tissue associated with disease had an impact on 

the circulation kinetics of the CLCs. We started by comparing clearance rates when an RFP+ ALL 

mouse was connected to a naïve healthy mouse (HM) as opposed to a mouse with a non-fluorescent 

ALL disease (RFP-). We found a striking difference in the clearance profiles (Figure 4.13a). While 

clearance of RFP+ ALL CLCs followed a steady decrease over the 3-hour post-blood exchange 

scan in a naïve healthy mouse, in a diseased mouse there was a relatively small drop followed by 

a period of very stable circulation levels. And in a CTX-treated mouse (RFP- treated), the clearance 

kinetics returned to that of the healthy mice. 

We quantified these changes by calculating the fraction of cells remaining in circulation 

from the beginning to the end of the 3-hour post-blood exchange scan. The data showed 

approximately 2-fold increase in fraction remaining in the diseased (RFP-) recipients compared 
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with healthy mouse (HM) recipients, about 0.6 compared to 0.3 (Figure 4.13b). This phenotype 

was fully reversed with CTX treatment (RFP- treated), where recipient mice returned to a fraction 

remaining of approximately 0.3. These findings suggest that changes in non-circulating factors in 

a diseased state impart a transient decrease in the extravasation potential of CLCs that is reversible 

through treatment. 

Because the changes are reversed within several days after CTX treatment, it is unlikely 

that such changes are due to vascular remodeling, since these processes can take up to three weeks 

to be observed154. This suggests that temporary changes in the extravascular tissue or changes in 

endothelial cells lead to the differences in decay kinetics, rather than more permanent remodeling.  

As a next step, we wanted to see whether the hypercellularity associated with a diseased 

state could be contributing to the changes in circulation kinetics. Based on the findings, one could 

infer that the increased hypercellularity of the bone marrow in the diseased state prevents CLCs 

 

Figure 4.13 Clearance of ALL CLCs in recipient mice with varied tumor status. (a) Normalized CLC concentration 
after being disconnected from blood exchange shows a profound difference in clearance kinetics with a diseased 
state (RFP-) compared with a healthy (HM) or CTX treated (RFP- treated). (b) Fraction remaining at the end of the 
post-blood exchange scan shows significantly increase with a diseased recipient compared to healthy or treated. 
(**p<0.005; Tukey’s multiple comparison test) 
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from exiting circulation simply because there is no physical space for them to exit into. And when 

the mice are treated with chemotherapy, the freeing up of space associated with cell death allows 

for more cells to extravasate, returning the clearance rates back to the baseline seen in the healthy 

mice. Because there are few ways to increase cellularity without inducing a cancerous state, we 

decided to ask the alternate question of whether increasing empty space in the bone marrow in a 

healthy mouse could induce the opposite observation. To that end, we compared the clearance 

rates of ALL CLCs in healthy recipients that had been treated either with chemotherapy (1 dose of 

50mg/kg CTX) or irradiation (1x 5Gy), which kills all rapidly dividing cells, including normal 

blood cells in the bone marrow. First, we confirmed that both chemotherapy treatment and 

irradiation induced hypocellularity in the bone marrow of healthy mice. Histological findings 

showed a dramatic reduction of cells in the bone marrow (Figure 4.14a), and half to two-thirds 

reduction of total cells in the bone marrow (Figure 4.14b). Then, we performed blood exchange 

experiments using ALL RFP+ donor mice and monitored the decay in the post-blood exchange 

scan (Figure 4.14c). While there was a small change in the clearance, there was no significant 

decrease in the fraction remaining at the end of the post-blood exchange scan in either the irradiated 

or chemo-treated healthy mice (Figure 4.14d). This could either suggest that cellularity of the 

tissue does not significantly influence the clearance kinetics, or that there may be a lower limit, 

such that inducing hypocellularity does not allow for additional cells to exit circulation into the 

marrow.  

Both of these interpretations suggest that cellularity alone does not sufficiently change the 

kinetics of CLCs, and might suggest that something with the endothelium plays a role. However, 

the increased vascular permeability associated with endothelium in the context of leukemia does 

not seem to agree with our observations. That is, increased vascular permeability in a diseased 
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state would likely decrease the fraction of CLCs remaining, rather than increase it as we saw in 

our results. Therefore, we decided to look into changes in the endothelial binding proteins to see 

if they were the primary culprit in keeping the CLC fraction high in diseased mice. 

 

Figure 4.14 Hypocellularity does not induce significant reduction in fraction remaining after post-blood exchange 
scan. (a) Histology shows significant decrease in cellularity of bone marrow upon either chemotherapy treatment 
(CTX) or irradiation (1x 5Gy). (b) Cell counts shows half to two-thirds reduction in total cell count of the bone 
marrow (BM) after chemotherapy or irradiation. (c) Decay profiles show modest change in clearance rate in the 
depleted mice compared to healthy mice. (d) A slight, but non-significant, decrease in fraction remaining at the end 
of post-blood exchange scan was observed in hypocellular mice. p = 0.09 and 0.22 comparing HM to HM-CTX and 
HM-irr respectively; Tukey’s multiple comparison test. 
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We performed flow cytometry analysis on bone marrow endothelial cells throughout the 

course of disease and treatment. The two endothelial surface proteins associated with adhesion that 

we looked at were E-selectin and VCAM1. E-selectin binds several glycans and glycoproteins by 

binding to sialylated carbohydrates100. E-selectin is important in leukocyte recruiting, and is 

upregulated in response to inflammatory cytokines, including TNF-α (tumor necrosis factor α), 

and IL-2 (interleukin 2)4. VCAM1 binds to the integrin VLA4 (very late antigen 4: α4β1) and has 

been implicated in regulating ALL chemotherapy resistance105,106. 

Bone marrow cells were isolated through manual grinding with mortar and pestle, and red 

blood cells removed through ACK lysis buffer before staining. Flow cytometry was then used to 

identify the fraction of endothelial cells expressing the adhesion proteins. The gating strategy used 

for identifying bone marrow endothelial cells (BMECs) is shown in Figure 4.15a. After selecting 

for single cells through forward and side scatter, endothelial cells were selected as DAPI- (live), 

CD31+ (endothelial marker), and CD45- (white blood cell marker). A cutoff on the endothelial 

cells in the channel of the adhesion molecule antibody (PE for E-selectin and FITC for VCAM1) 

was used to identify high expressing cells within the BMECs. Treated mice were given 1 dose of 

CTX 8 days after tumor initiation. Diseased mice (B-ALL) and acutely treated mice (B-ALL + 

CTX) were analyzed on day 10 post initiation (2 days post CTX for the treated mice), and relapse 

mice were analyzed on day 25-27 post initiation (15-17 days post CTX). 

For E-selectin, we found an increase in the percent positive expression of BMECs from 

about 5% for healthy and acutely treated mice, to around 15% in diseased and relapse mice (Figure 

4.15b). This finding correlates with the findings from the blood exchange experiments with 

diseased and treated mice, where a shift in the phenotype with a diseased recipient was reversed 

through treatment. These findings match previously reported findings of acutely treated AML, as 
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well as data that suggest AML cells create inflammatory signaling that upregulates E-selectin 

expression on BMECs100. 

 

Figure 4.15 Flow cytometry analysis of adhesion expression on bone marrow endothelial cells. (a) Gating strategy 
for measuring expression on endothelial cells (DAPI-, CD31+, CD45-). Example shows increase with AML disease 
that is reverted after treatment of cytarabine and doxorubicin (araC/dox). (b) E-selectin expression increases and 
decreases over the course of disease (B-ALL) and acute treatment (B-ALL + CTX), and increases again at relapse. 
(****p<0.0001; Tukey’s comparison test) (c) VCAM1 expression does not increase with disease but is increased and 
remains elevated after treatment through relapse. (**p=0.0093, ns: p>0.85; Tukey’s comparison test) 
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For VCAM1, a different phenotype was observed (Figure 4.15c). Both the healthy mouse 

and diseased mouse had similarly low levels of VCAM1 expression, around 5-10%. However, 

after CTX treatment, the levels of VCAM1 increased and remained elevated until relapse at around 

20%. Interestingly, CTX treatment in healthy mice did not induce a similar increase in VCAM1, 

suggesting that the presence of tumor in combination with treatment is required to induce and 

increase in VCAM1 expression (Figure 4.16). These findings indicate that VCAM1 is unlikely to 

influence the clearance rates, as it is not upregulated between the healthy and diseased conditions 

and is increased in the treated state. 

Since the E-selectin expression modulated over the course of disease and treatment, we 

decided to test whether inhibiting the E-selectin expression on BMECs using blocking antibodies 

would reverse the shift in clearance kinetics observed from blood exchange experiments. We used 

RFP- ALL mice as the recipients of blood exchange with RFP+ ALL mice, but dosed the recipient 

with 100µg of α-E-selectin antibody intravenously 20 minutes before the start of blood exchange 

(Figure 4.17a). 

 

Figure 4.16 Expression of E-selectin and VCAM1 on BMECs of healthy mice (HM), healthy mice 2 days post CTX 
(HM-CTX), and healthy mice 1 day post irradiation (HM-irr). Tukey’s multiple comparison test showed p values 
>0.57 for all pairs 
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Figure 4.17 Blood exchange in diseased mice with α-E-selectin. (a) Overview of experiment. RFP- recipient mouse 
was injected with 100µg of E-selectin antibody 20 minutes prior to blood exchange. (b) Decay profiles of post-blood 
exchange scans show a shift from the RFP- mice. (c) E-selectin treated mice (RFP- aEsel) had decreased fraction 
remaining compared to the non-dosed RFP- mice. (* p=0.025 with unpaired two-tailed t-test) 
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The decay profile of RFP- mice dosed with E-selectin antibody showed a distinct shift from 

the non-dosed RFP- mice (Figure 4.17b), and the fraction remaining at the end of post-blood 

exchange scan was found to be significantly lower in diseased mice treated with E-selectin 

antibody (Figure 4.17c). These results show that modulating E-selectin expression alters the 

circulation kinetics of CLCs. This likely occurs because of the retention capabilities of E-selectin. 

A previous study showed that the inhibition of E-selectin led to an increase in the circulating 

number of CLCs in a model of AML100. By blocking E-selectin, several factors are likely in play. 

In the non-fluorescent diseased recipient mouse, high levels of E-selectin on BMECs likely bind 

up leukemia cells both along the vascular walls and in the marrow, creating a fairly static 

environment with minimal mixing between the blood and bone marrow compartments, preventing 

the fluorescent donor cells from exiting circulation. By blocking E-selectin in this recipient 

environment, non-fluorescent leukemia cells of the recipient could be released and more free to 

interchange between blood and marrow, allowing for the infused fluorescent donor cells to clear 

more readily. Another contributing factor is that blocking E-selectin decreases the available 

adhesion proteins, which could prevent some circulating cells from binding to the vascular walls, 

where they can exit circulation, which would result in less clearance of fluorescent donor cells 

from the blood. The results from our experiments, where we see more clearing when E-selectin in 

blocked, suggests that the former explanation is more critical to defining the circulation of CLCs. 

By blocking E-selectin in the diseased recipient, non-fluorescent leukemia cells from the marrow 

can enter into the blood more easily, allowing for higher turnover of cells between the 

compartments. This then allows for the fluorescent cells from the donor mouse to flow more freely 

into the marrow, leading to the observed decrease in fraction remaining at the end of the post-

blood exchange scan. 
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4.5 Impact of circulating factors on clearance kinetics 

To address whether changes in the tumor cells themselves can alter their circulation 

kinetics, we varied the mice used as donors in our blood exchange pairs. This allowed for the 

introduction of fluorescent cells of different conditions clearing in the same healthy mice, and 

served as a method of decoupling changes imparted from the tissue with those imparted from the 

tumor cells themselves. 

Our first experiment was to vary the disease burden of the donor to test whether the 

leukemia models evolve over the course of disease to alter the rate of clearance in healthy mice. 

The burden of CLCs in the blood of our AML and ALL models increases several orders of 

magnitude over the 2 to 3-week course of disease, and the number of days post tumor initiation 

(days post injection) correlates well with the burden in the blood (described earlier in Figure 4.2). 

We performed blood exchange between RFP+ diseased mice and healthy counterparts at various 

timepoints of detectable disease burden in the blood and monitored the decay kinetics in the 

recipient mice for a 3-hour scan after disconnecting from blood exchange. We looked at the two 

main parameters for the decay profile, fraction remaining and equilibration rate, and plotted the 

values against the days post tumor initiation (Figure 4.18). We found that neither of these decay 

parameters had a significant correlation with the disease burden in either model of leukemia. 
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Figure 4.18 Circulation kinetics with varied donor disease burden. (a) No correlation is seen in either leukemia model 
between days post tumor initiation and fraction remaining at the end of post-blood exchange scan. R2 values of 0.02 
and 0.21 for ALL and AML respectively, with non-significant p-values 0.75 and 0.21 respectively.  (b) No correlation 
is seen in either leukemia model between days post tumor initiation and equilibration time. R2 values of 0.21 and 
0.32 for ALL and AML respectively, with non-significant p-values 0.30 and 0.11 respectively. 
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These findings are not necessarily surprising. The models we are using are both based on 

injected cell lines and are relatively short models (less than 3 weeks to morbidity), which may not 

have sufficient time to evolve dramatic physical and transcriptional changes that would impact the 

clearance rates. Nonetheless, these findings suggest that there are no significant changes to the 

CLCs between low and high tumor burden in the blood that is enough to impact the clearance of 

these cells in healthy recipients. 

Since we saw no significant impact of disease burden on circulation kinetics, we decided 

to test whether treatment, and relapse in particular, led to a change in the tumor cells that could 

affect the clearance rates. For the ALL model, we used the same dosing regimen as before (1 dose 

of 50mg/kg CTX 8 days post tumor initiation). For the AML model, we used a 5+3 treatment of 

cytarabine (araC) and doxorubicin (dox). For 5 days, beginning 8 days post tumor initiation of 

500k AML cells, the mice were dosed IP with 20mg/kg araC. And on the first three of those days 

(days 8-10 post tumor initiation), mice were given a concurrent dose of 2mg/kg dox. The 5+3 

araC/dox treatment provided roughly one week life extension (Figure 4.19a). Histologically, 

treatment freed up space in the bone marrow that was refilled by late relapse (Figure 4.19b). And 

relapsing mice attained similar levels of CLCs in the blood as were reached in the untreated mice, 

and increased at a similar rate, shifted approximately one week (Figure 4.19c). 
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We next used these treatments to explore whether relapse CLCs had a different clearance 

profile than untreated mice. In our ALL model, we saw similar clearance kinetics in the recipient 

healthy mice, with no change in the equilibration time (Figure 4.20a-b). However, in the AML 

model, a striking difference was observed. While the clearance profiles showed that the fraction 

remaining at the end of the post-blood exchange scan were similar in both cases, the relapse AML 

CLCs had a very rapid initial clearance (Figure 4.20c). Quantitatively, this was reflected in the 

 

Figure 4.19 Drug treatment in AML model. (a) A 5+3 dosing regimen of cytarbine (araC) and doxorubin (dox) (5 
days of 20mg/mL araC, with first 3 days receiving concurrent 2mg/mL dox) results in approximately 6 day 
extension in life (log-rank test p value = 0.0008). (b) Histology showing bone marrow from diseased (AML D14), 
acutely treated (AML + araC/dox D3), and relapsing (AML Relapse D22) mice. (c) Blood burden of CLCs with 
drug treatment shows relapsing disease attains similar levels of CLCs at a delay of about 1 week.  
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equilibration times, where relapse CLCs had a significantly faster equilibration than the untreated 

CLCs, over 100 minutes in the untreated mice compared to around 20 minutes in the relapse mice 

(Figure 4.20d). 

 

Figure 4.20 Blood exchange with relapsed donors. (a-b) Decay profile and quantification of clearance rates in healthy 
recipients with either untreated or relapse ALL donor mice shows no significant difference in equilibration time (two 
tailed t-test p value = 0.33). (c-d) Decay profile and quantification of clearance rates in healthy recipients shows AML 
donors with relapse disease have significantly faster equilibration time compared to untreated donors (two tailed t-
test p value = 0.023) 
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These findings suggest two things. First, something in the AML relapse CLCs is 

sufficiently different than in the untreated cells to impart an altered clearance rate. This could be 

due to a change in biophysical properties of the cells, such as cell volume or mass, that would 

change the fluid dynamic properties of the cells in the vasculature that could allow them to more 

rapidly exit circulation. If the relapse CTCs are larger, heavier, or stiffer, they would be more likely 

in a fluidic system to be pushed toward the edges, leading to faster clearance rates112,150. 

Alternatively, a change in the surface proteins of the cells could alter the adhesion capacity to the 

endothelium. Stickier cells could more readily bind to the vessel walls, resulting in a faster 

clearance. 

Second, these findings indicate that the changes that occur between untreated and relapse 

CLCs in the AML model do not occur in the ALL model. If both models experienced the same 

changes, either in biophysical properties or surface molecule expression, then we would expect to 

see a similar decrease in the equilibration rate in the ALL relapse scenario, which was not 

observed. 

To begin exploring what features of AML relapse impart the changes to circulation 

kinetics, we analyzed the biophysical properties of the leukemia cells both of untreated and relapse 

tumors. The tool we used to characterize the cells is device our lab developed called a suspended 

microchannel resonator (SMR) (Figure 4.21a). The device consists of a hollow microfluidic 

cantilever that vibrates in the z direction (like a springboard) at its resonant frequency. As cells 

flow through the vibrating cantilever, the added mass from the cell changes the resonant frequency 

of the cantilever in proportion to the buoyant mass of the cell. Using this system, incredibly 

accurate measurements of buoyant mass can be made for single cells142–144. Additionally, a 

fluorescent exclusion method can be used to assess the volume of single cells. By flowing the cells 
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past a detection region in a media with fluorescent dextran, which is cell impermeable, a drop in 

fluorescence will be observed proportionally to the excluded dye, which equals the volume of the 

cell. In this way, we can measure both the buoyant mass and volume of single leukemia cells 

(Figure 4.21b). We found that there were no significant differences in the measured biophysical 

properties of untreated and relapse AML, suggesting that physical changes in the CLCs do not 

explain the observed differences in clearance kinetics. 

 

Figure 4.21 Biophysical properties of untreated and relapse AML tumor cells. (a) Schematic of SMR with volume 
exclusion. (b) Examples showing how change in resonant frequency gives a mass readout (blue) and change in 
fluorescence gives a volume measurement (green). (c) No change in mass or volume of bone marrow cells was 
observed between untreated and relapse AML mice. (p=0.61 and 0.80 respectively for mass and volume from 2-tailed 
t-test) 
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We then focused to explore whether there were changes in the expression of surface 

adhesion molecules that could explain the increased clearance rate in relapsing cells. If the cells 

indeed are more likely to adhere to the vascular walls, that would readily explain the observed 

changes in kinetics that is seen in our blood exchange experiments. We assessed the presence of 

three binding molecules using flow cytometry, on leukemia cells in both the blood and bone 

marrow compartments. Because E-selectin, found on endothelial cells, binds to silyl groups of 

glycans and glycoproteins, there is no single antibody to effectively assess the ability of leukemia 

cells to bind E-selectin. As such, we incubated the leukemia cells with a fluorescently conjugated 

E-selectin protein (using a chimera of recombinant mouse E-selectin and human IgG with a 

fluorescent α-human IgG antibody). To assess the capacity to bind VCAM1, another endothelial 

adhesion molecule, we incubated leukemia cells with an antibody for integrin β1, part of the 

integrin dimer VLA4 that binds to VCAM1. However, because integrins have several opened and 

closed configurations with various capacity to bind VCAM1, similar levels of the integrin on the 

surface could have varied capacity to bind due to slight changes in their configurations155. 

Therefore, we also used a binding assay with fluorescent recombinant VCAM1 to directly assess 

the capacity of the leukemia cells to bind VCAM. 
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For the AML model, we found significant differences in the expression of the various 

binding molecules between untreated and relapse cells in both the blood and bone marrow 

compartments, with relapse cells having universally higher expression (Figure 4.22a-c). Similar 

trends between untreated and relapse disease were seen in the ALL model as well, with relapse 

 

Figure 4.22 Expression of adhesion molecules in untreated and relapse leukemias. (a-c) Mean fluorescent intensity in 
AML model from flow cytometry of recombinant E-selectin (E-selectin Binding), recombinant VCAM1 (VCAM 
Binding), and integrin β1 antibody, show increases between untreated and relapse in both blood and bone marrow. (d-
f) Mean intensity of ALL model with the same binding assays. Limitations in reagents prevented measurements of 
VCAM binding in relapse ALL. *p<0.05, **p<0.01, ***p<0.01. All p values are two-tailed t-tests. 
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leukemia cells in both blood and bone marrow showing significantly elevated levels of adhesion 

molecules.  

Comparing these findings to that of mice shortly after treatment demonstrated that the 

binding capacity of both the AML and ALL cells increased acutely post treatment in the bone 

marrow and remained elevated throughout relapse (Figure 4.23). While other studies have 

 

Figure 4.23 Adhesion molecules increase acutely and remain elevated after treatment in both AML (a-c) and ALL 
(d-f) models. AML untreated = D14 post initiation, AML + araC/dox = D2 post final treatment (D14 post initiation), 
AML relapse = D13 post final treatment, ALL = D10 post initiation, ALL + CTX = D2 post treatment, ALL relapse 
= D19 post treatment. 
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similarly shown increases in adhesion expression directly following chemotherapy, there has been 

little evidence of whether that expression remains increased during relapse100. 

While we see that expression of adhesion molecules in both the AML and ALL models 

increased from an untreated to relapse state, our blood exchange findings showed that only in AML 

was there a phenotypic change in clearance kinetics. However, when directly comparing the 

expression of adhesion molecules between the two models, an interesting observation emerges. 

For both E-selectin binding potential and integrin expression, the levels in the AML models are 

 

Figure 4.24 Comparison of binding expression between ALL and AML models. (a) E-selectin binding potential 
assayed through flow cytometry shows strikingly higher expression in AML compared to ALL in both blood and 
bone marrow. (b) Integrin β1 expression assayed through flow cytometry shows strikingly higher expression in 
AML compared to ALL in both blood and bone marrow 
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strikingly higher than in the ALL model (Figure 4.24). This difference in expression levels was 

also seen with untreated VCAM binding, though limitations in reagents prevented measuring the 

capacity of relapse ALL cells to bind VCAM. This could suggest that the slight increase in binding 

capacity observed in ALL is not sufficient to alter the clearance rates.  

 Because E-selectin inhibition on endothelial cells was sufficient to alter clearance 

kinetics in a diseased ALL mouse, we wanted to explore whether interfering with E-selectin 

binding of the AML leukemia cells could explain the observed changes associated with relapse 

 

Figure 4.25 Blood exchange with recombinant E-selectin (a) Overview of experiment. AML relapse donor mice were 
injected with 20µg of recombinant E-selectin antibody 20 minutes prior to blood exchange. (b) Decay profiles of post-
blood exchange scans show a shift from the relapse mice. (c) E-selectin treated mice (Relapse+rEsel) had increased 
equilibration time compared to the non-dosed relapse mice. (*p=0.017 with unpaired two-tailed t-test). 
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disease. To that end, we dosed relapse AML mice with 20µg of recombinant mouse E-selectin 20 

minutes prior to blood exchange with a healthy recipient, as a way to bind up the glycoproteins on 

the leukemia cell surface (Figure 4.25a). We found that indeed, a difference in the decay kinetics 

was observed. Relapse mice dosed with recombinant E-selectin showed a significantly longer half-

life than non-dosed relapse mice (Figure 4.25b-c). These results indicate that the increase in E-

selectin binding molecules on AML relapse cells increases the ability of the relapse cells to exit 

circulation faster. Inhibiting E-selectin binding on the AML relapse cells prevents them from 

rapidly leaving circulation. 

As a final check, we wanted to verify the metrics being measured, fraction remaining and 

equilibration time, are not directly correlated, but in fact independent variables. We compared the 

equilibration times and fractions remaining for ALL mice with varied recipient animals and found 

no correlation between the variables, indicating that these two metrics are independent (Figure 

4.26). 

 

Figure 4.26 No correlation seen between Fraction Remaining and Equilibration time. R2 <0.30 and p>0.2 for each 
linear regression 
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In this chapter, we applied the blood exchange method to two models of leukemia, a BCR-

ABL driven ALL model and an MLL-AF9 driven AML model. We found that both of these models 

had longer circulation times compared to our previous measurements of solid tumor CTCs. Then, 

by varying the donor and recipient animals in blood exchange, we assessed the factors that 

contribute to changes in circulation kinetics.  

In our ALL model, we found that presence of disease in the recipient animal transiently 

decreased the ability of circulating cells to extravasate, as seen by a higher fraction of donor cells 

remaining in circulation, and we showed that treating the mice to decrease tumor burden reversed 

the finding. We then sought to address what factors of disease presence contributed to the altered 

circulation kinetics. We demonstrated that hypocellularity alone, induced either through sublethal 

irradiation or chemotherapy, was insufficient to increase the extravasation of donor ALL cells. 

This suggested that a factor other than cellularity was responsible for governing clearance rates. 

We saw that expression of an endothelial adhesion protein, E-selectin, was upregulated in the 

presence of disease and downregulated after treatment, in correlation to the observations of blood 

exchange. And by blocking E-selectin through antibodies, we were able to increase extravasation 

in diseased recipient mice, demonstrating that E-selectin can modulate the clearance capacity of 

circulating leukemia cells. We suspect that high levels of E-selectin in a diseased mouse traps cells 

in the bone marrow and along the endothelial walls. By blocking E-selectin, leukemia cells are 

released from the bone marrow and vascular walls, allowing for leukemia cells to more freely mix 

between the compartments, leading to a higher turnover between the blood and marrow, which 

allows for more of the fluorescent cells from the donor mouse to exit circulation. 

Next, we looked to assess the impact of changes in the tumor cells on clearance kinetics. 

We showed that disease burden did not impact clearance rates in either the ALL or AML model. 
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Then, we explored the differences in clearance rates between untreated and relapse disease. While 

we found no changes in the ALL model, our AML relapse disease cleared at a significantly faster 

rate. We assessed the biophysical properties in the AML untreated and relapse cells and found no 

significant difference, but we found that the expression of adhesion molecules increased after 

treatment and remained elevated throughout relapse, with AML expressing much higher levels of 

adhesion molecules than the ALL model. Finally, by blocking the capacity of AML cells to bind 

E-selectin, via dosing with recombinant E-selectin, we were able to slow the clearance rate of 

relapse AML disease. 

These findings indicate the importance of adhesion molecules, and E-selectin in particular, 

at modulating the clearance rates of circulating leukemia cells. E-selectin has been explored as a 

potential therapeutic target for concurrent chemotherapy in AML104, and the data we have shown 

here supports this and suggests that other types of leukemia, such as ALL, may also benefit from 

E-selectin based therapies. Our findings also show that adhesion proteins are important to consider 

in the relapse context, especially because the cells themselves can have a prolonged alteration in 

the expression of adhesion molecules, providing additional potential targeting factors for therapy. 
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5. Concurrent projects and conclusion 

While the CTC counter platform has been used in the blood exchange method to study the 

circulation kinetics of tumor cells in the blood, there have been a number of other concurrent 

projects utilizing this system. These preliminary studies vary from new chip development to 

analysis tools to increase the capabilities of the system. First, we designed and tested a new chip 

to sort and purify single CTCs in real time directly from the bloodstream of mice within a single 

chip without off-chip manipulation or user input. Next, we developed a method to estimate the size 

of fluorescent objects as they pass through the laser lines, as well as a method to estimate the 

concentration of cells when they are so concentrated that multiple cells pass through the laser lines 

at once. Finally, we worked on a project aiming to understand how immune checkpoint blockade 

impacts tumor cells of responding and non-responding tumors, and what physical and 

transcriptional changes may be associated with each phenotype. 

5.1 On-chip single-cell purification 

One of the initial goals with the development of the CTC sorting system was to allow for 

the longitudinal sequencing of single CTCs sorted from the bloodstream of mice. While 

improvements in the sorting methods (described in Chapter 2) provided for a more efficient 

purification protocol, we wanted to determine whether further enhancements could be made to the 

system to allow for a more streamlined process to collect and purify CTCs. 

To that end, we developed a new chip design based on the concept of multiple rounds of 

dilution-based purification (Figure 5.1). In this chip, blood from a tumor bearing animal enters the 
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chip through the same peristaltic pump as in previous designs, and the same laser system is used 

to identify the fluorescent CTCs.  

Once a CTC is detected, it is sorted in ~100nL using actuatable valves and flushed 

downstream on the chip with a flush buffer. The flush buffer acts in this case as a diluting agent, 

diluting out the other RNA-rich cells of the blood: red blood cells, platelets, and importantly, white 

 

Figure 5.1 Schematic of single chip sequential sorter. In this design, blood from a mouse is drawn through peristaltic 
pump into the main inlet of the chip. Laser lines identify the fluorescent CTCs, allowing valves to actuate 
appropriately to divert the CTC in a small blood volume, while the remainder of blood is returned to the mouse 
through the venous catheter. The diverted blood is diluted using a flushing buffer, until it passes through the next 
set of laser lines, where the CTC is resorted and re-diluted. Additional sorting steps are performed until the CTC is 
at a single-cell resolution, where a sorting volume (~100nL) contains only a single cell. The final sorting of the CTC 
allows for the flushing buffer to push the CTC off-chip and into the well of a collection plate, where it can be 
sequenced. 
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blood cells. The diluted blood containing a CTC is then re-run through laser lines, and the CTC is 

sorted out in ~100nL of the diluted blood. This blood is then even further diluted in subsequent 

sorts, until the blood is so diluted that only 1 cell (the CTC) is present in a 100nL volume. At this 

point, the detected CTC is sorted and flushed off-chip into the well of a collection plate, where it 

can be lysed and processed for downstream single-cell RNA sequencing.  

 

Figure 5.2 Chip design for sequential sorting chip. (a) Schematic of new chip. Color within the channels represents 
the dilution of blood as it passes through the chip, with dark red as whole blood directly from the mouse and white as 
the pure CTCs in flushing buffer. Valves are shown in gray. Laser lines are shows as green lines across the center of 
all 5 channels. (b) Fabricated PDMS device. 
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In the actual design of the chip, we decided to utilize a single extended set of laser lines to 

excite the fluorescent CTCs instead of splitting a laser line into multiple separate laser lines that 

would need to be independently aligned throughout the chip (Figure 5.2). We decided on a design 

that utilized 4 sequential sorting steps, for a total of 5 detection channels, as the final flush off-chip 

does not provide additional purification. In addition to the inlets, outlets, flush channels, and 

valves, zigzag shaped sections of channels were implemented after each flush port to induce 

mixing of the sorted blood at each step, allowing for more reliable purification through the dilution 

and sorting based chip. 

To maximize the purity of the final product, we needed to maximize the dilution at each 

step of detection/sorting. However, the higher the dilution factor, the longer it would take to flow 

through the system, as additional flush buffer would need to be mixed in with the sorted blood. 

For example, doubling the dilution-fold at a single step from would take twice as long, so doubling 

each of the 4 steps would take 16 times longer. Running the system with around 20-fold dilution 

at each step can take around 1 minute, so running it with a 40-fold dilution could take more than 

15 minutes per cell. To determine the optimal dilutions for our purposes, we calculated the 

estimated number of blood cells that would be present in the final sort of the chip depending on 

 

Table 5-1 Estimated number of blood cells sorted (red blood cells, white blood cells, and platelets) if each of the 
four sequential dilutions have a given dilution fold. For example, to achieve only 1 RBC and no platelets or WBCs 
in the final sort, each dilution step would need to dilute the sample 30-fold. 
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the dilution at each step (Table 5-1). We determined that a dilution factor around 20 or higher at 

each of the 4 sorts would result in a product that contained on average, no WBCs and less than 1 

platelet. To minimize red blood cell contamination, further diluting would be required, and 

purification above 30-fold at each step would result in a final product with less than 1 RBC per 

sort. Because WBCs contain the most contaminating RNA, even a 10-fold dilution at each step 

would sufficiently mitigate a significant source of non-CTC RNA, but we decided to aim for 

between 20- and 30-fold dilution at each step to minimize the contamination from RBCs and 

platelets as well, which can obscure the gene signatures of the CTCs. 

 

Figure 5.3 System for single-chip sequential sorter. (a) Optical train demonstrating the path of the laser lines as 
they are projected onto the chip (green), the emitted fluorescent light detected by PMT and camera (red), and the 
LED light used for brightfield imaging (blue). PDMS chip is identified with a white arrow. (b) Front view of the 
sorter system with inset showing an up-close view of the laser lines being projected across the 5 channels of the 
chip. 
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The design of the optical system followed a similar path as in the traditional CTC counter 

(Figure 5.3). The laser beam was split in two using a polarizing beam splitter, and the beam spots 

were projected onto the PDMS chip into lines using a cylindrical lens. The subsequent emitted 

fluorescent light was then directed to a PMT for fluorescent detection, as well as a camera to 

visualize the laser lines. A bottom optical train allowed for LED based illumination of the chip for 

brightfield imaging to monitor the blood flow throughout the chip. 

In order to use the system, a modified version of the software control system was needed 

(Figure 5.4). The LabView project was built upon the system that was used for the CTC detection 

system, but with added logic controls to actuate the valves and flush channels appropriately. As 

there is only one PMT detector for the system, only one cell can be tracked through the system at 

any one time. Therefore, when a CTC is sorted into the downstream channels for the dilution-

based purification, the upstream channels must stop scanning through the blood to detect new 

CTCs until the sorted CTC has fully made its way off-chip. Only then can the system state be reset, 

and the pump continue scanning through the blood of the mouse. 
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To do so, the channels and valves operate by the following logic: when the PMT first 

detects a cell, the valve to the outlet (return of blood back to mouse) is closed and the valve to sort 

(downstream for purification) is opened. The flushing buffer is turned on to begin dilution of the 

blood. In order for the CTC to be pushed through into the downstream system, the peristaltic pump 

must remain on but at a very low rate, in order to maintain a high dilution ratio with the flushing 

buffer. In this way, the downstream flushing buffer operates at a high pressure (high flow rate), 

while the upstream pump operates at a low flow rate. This allows for the CTC to be slowly pushed 

through the mixing region, increasing the degree of dilution of the blood. The system remains in 

this state until the CTC passes through the laser line in the second channel. At this point, the 

peristaltic pump is turned off and the valves are actuated such that the flush channel that was 

 

Figure 5.4 LabView display for single cell sequential sorting chip shows the three sections- a live readout of the 
fluorescent PMT signal and detected peaks; controls for the system including pump speed, laser, PMT gain, 
filtering specification, etc.; and a valve/flush controller showing the state of each valve and flush channel. 
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previously diluting the CTC now acts as the force pushing the cell through the system with a low 

pressure and low flow rate, while the next downstream flushing channel is activated at a high 

pressure to allow for increased dilution through the chip. Similar logic continues as the CTC 

progresses through the chip, with the PMT keeping track of which channel the fluorescent cell was 

last detected in and activating valves and flush channels appropriately. This continues until the 

CTC is detected in the final channel, where the last flush buffer fully pushes the cell off-chip by 

remaining on at a high level for several seconds to rapidly push the cell through tubing into the 

well of a collection plate. At this point, the system state returns back to the starting condition, with 

the peristaltic pump on and valves actuated to allow for blood to be returned to the mouse as it is 

scanned through the first channel of the chip, searching for the next CTC. A final condition of the 

code creates a scenario to fully flush the chip in case of a cell that is lost through the system. The 

user can set a maximum time to scan for the cell in a dilution step, and if this limit is reached, all 

flush channels will be activated and all waste channels will be opened, to fully flush the system 

and reset to the starting condition, where search for a new CTC begins. 
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The next step was to determine the ability of the new chip to detect fluorescent events. 

Because a cylindrical lens was used to project the laser beam spots into lines, it results in a gaussian 

projection, with a bulge in the center and less intensity at the edges. Because of this, when the lines 

are projected across the five channels of the chip, the top and bottom channels get less illumination, 

while the center channels have brighter intensity of the laser lines (Figure 5.5a). We looked to see 

the impact this had on the detection capabilities of the system. Additionally, since the area to cover 

 

Figure 5.5 Detection of fluorescent events in the single-cell sequential sorting chip. (a) The laser lines pass through 
all 5 channels, as seen by the bright spots of fluorescent dye. However, a clear difference in laser line width/intensity 
is seen, as outlined in white. (b) Detection of bright Peak 5 flow cytometry calibration beads shows high percent 
detection in all by the final channel. (c) Detection of fluorescent cell line shows strong detection in the center channels, 
with lower percent detection in the first and final channels.  
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the 5 channels is significantly larger than the needs of a 1-channel system, a lower power objective 

was required. Rather than a 10x objective, we needed to use a 4x objective in order to fully 

visualize all 5 channels in the same field of view. As described in Chapter 4, decreasing the 

magnification power of the objective increases the amount of background signal, thereby 

decreasing the signal-to-noise ratio, which makes it more difficult to distinguish true fluorescent 

peaks from the background signal. 

First, we used a set of fluorescent beads used for flow cytometry calibration. The brightest 

of these beads, Peak 5, was used to explore the detection capabilities of the new system. As 

expected, the final channel, Channel E, had significantly lower detection compared to the more 

central channels, detecting around 20% of the beads compared to over 70% in the other 4 channels 

(Figure 5.5b). And when running the fluorescent small cell lung cancer (SCLC) cell line, even 

more variation was seen within the channels. The central channels detected nearly 100% of the 

cells, while the first channel, Channel A, and the final two channels, Channels D and E, detected 

60% or fewer (Figure 5.5c). 
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Next, we tested how changing the pressure ratios of neighboring flush channels resulted in 

a change in the dilution factor of the product (Figure 5.6). In the upstream channel, we flowed 

through the chip a concentrated fluorescent dye as a proxy for whole blood. In the downstream 

channel, we flushed water as a proxy for the flushing buffer. We collected 50uL of output for each 

condition and compared to the fluorescence of a dilution curve of the starting dye using a plate 

reader. We found two scenarios that increased the resulting dilution factor. First, by increasing the 

ratio of the pressures between the downstream and upstream channels, higher dilutions were 

achieved. This follows from the logic that adding additional diluent to a sample increases the 

dilution factor. We also saw that decreasing the average driving pressure while maintaining a given 

pressure ratio also increased the dilution factor. However, if the absolute pressures were too low 

 

Figure 5.6 Impact of pressure ratios of downstream to upstream flushing channels on the dilution factors achieved. 
For conditions with very high dilution factors, backflow was occasionally seen, where the high downstream pressure 
prevented the lower upstream pressure from moving forward. 
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and the ratio of downstream to upstream was too high, we occasionally saw backflow in the 

channel, where instead of flowing down chip, dye would reverse directions and flow back towards 

the inlet of the dye. This is undesired, as backflow would confuse the PMT detection system as to 

which channel the cell is in or result in the CTC being flushed back into the tubing of the upstream 

flushing buffer. It was therefore important to select pressure ratios in our optimal dilution factor 

region, which allows for sufficient dilution without creating backflow in the system. 

Finally, we performed an experiment testing the dilution efficacy of flow cytometry 

calibration beads spiked into blood. Peak 5 calibration beads were added to terminal mouse blood 

and flown through the chip. As the product flowed through the 5 channels, clear visual dilution 

was seen via brightfield imaging, with the highly concentrated dark blood getting diluted by the 

clear flush buffer (Figure 5.7a). Product was collected at the outlet of each channel, as well as from 

the whole blood inlet, and run through a Coulter Counter to determine the cell concentration. 

Dilution factors were estimated for each step by comparing the blood cell concentration of that 

channel outlet to the concentration of the previous channel outlet (Figure 5.7b). We found that, as 

expected, no strong change in cell concentration was seen between input blood and outlet of the 

blood before the first dilution. However, each of the dilution steps produced a marked increase in 

the dilution factor of the sample. The smallest dilution was seen in Dilution 1, with a <5-fold 

dilution factor. It is important to point out that this first dilution is the only one driven not by the 

pressure difference between two flush channels, but rather by the difference between a peristaltic 

pump and a pressure-driven flush channel, which gives less control over the dilution factor. 

However, the final 3 dilution steps all had greater than 15-fold dilution of the blood, with up to 

250-fold dilution in one replicate of Dilution 2.  
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The cumulative dilution factor was also calculated for each experiment, with promising 

results. In one experiment, the final dilution factor was ~30,000 and in the other nearly 200,000. 

These cumulative dilutions correspond to an average of 13.1 and 21.1-fold dilutions at each step, 

respectively. These are right on the cusp of our desired dilution of 20 to 30- fold per step. 

As of now, the biggest limitation of the system is with detection and recovery rate. With 

beads, our cumulative recover rate is below 25%, primarily due to the poor laser coverage of the 

 

Figure 5.7 Dilution of fluorescent beads spiked into blood. (a) Brightfield image shows the dilution of blood through 
the single cell sequential sorting chip in the 5 channels. (b) Dilution factors at each step across two pilot tests show 
minimal difference in dilution between the blood inlet and outlet, but clear dilutions at each of the four dilution steps, 
with Dilution 1 having the least dilution factor of the four, and Dilution 2 having the highest dilution factor. (c) 
Cumulative dilution factors in two replicates shows strong levels of dilution throughout the chip, with nearly 30,000-
fold dilution in one experiment and nearly 200,000-fold dilution in the other. 
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final channel. And with cells, our cumulative recovery rate is less than 10%, again due to the issues 

with laser coverage. Ideally, we would want the system to have a cumulative recovery rate >50%. 

Several improvements will need to be made for the system to be fully functional. First, 

fully addressing the issue with laser line coverage of the channels could vastly improve the 

detection in the outside channels and the reliability of the system. This could be achieved using a 

fast-steering mirror, which could shift the laser lines to center around the subsequent channel once 

a cell is detected. Additionally, follow up experiments to quantify the dilution efficiency with cell 

lines spiked into blood and CTCs from tumor bearing animals is critical to assess the limitations 

of the platform. Also, a thorough testing of the recovery fraction of the various beads and cells 

will be necessary to understand where losses occur in the system. 

Modifying the flush control could drastically improve the control of the dilution rates. 

Rather than using the current pressure-driven flow, volume-controlled flow could provide better 

control of the mixing and reduce the likelihood of backflow. Either syringe pump or peristaltic 

pumps could be used toward this goal. 

The single-chip sequential sorting platform shows promise as a tool for sorting and 

purifying single fluorescent cells directly from the bloodstream of mice. This system could serve 

as an excellent method to capture CTCs longitudinally over the course of disease and treatment to 

understand how CTCs evolve at a transcriptional level. The system would allow for the sampling 

of blood of the same mouse at different timepoints, providing a drastic improvement to previous 

methods of euthanizing mice of the same cohort at different timepoints, leading to mouse-to-mouse 

heterogeneity. And by purifying cells immediately upon sorting, cells would not sit around in 

buffer for the duration of a CTC scan, as was historically done in our lab, preventing any ex vivo 

changes in transcriptional signature that can occur over the several hours between the first and 
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final sort of CTCs. Instead, each cell would be immediately purified and lysed to maximally 

preserve the RNA signature of each CTC. 

5.2 Size estimation from real-time measurements 

One thing we have been interested in is utilizing the raw data from our CTC sorter system 

to extract additional information. Currently, the fluorescent data detected from the PMT is only 

used to determine either the presence or absence of a CTC to determine when a sort should occur, 

or to determine CTC concentration. However, the PMT data is a rich set of information that 

monitors the fluorescent intensity of the CTCs as they traverse the laser lines. Similar to how flow 

cytometry analyzes the peak and height information as cells pass by, we aimed to determine what 

additional features could be assessed using only the PMT data that we currently collect. 

Biophysical properties of cells are crucial to their function. Because CTCs are non-blood 

cells that traverse through the vasculature, it would be interesting to get a better sense of their 

physical properties. Single CTCs can be 10-20µm in diameter, but are also known to form clusters 

or microemboli that can be 15-30µm in diameter or more, which can alter how they circulate in 

the bloodstream125,156–158. If our system could extract cell size from real-time scans of tumor 

bearing mice, we would be able to study how their properties change over time and how they 

respond to drug treatment. Therefore, we decided to explore whether we could extract CTC size 

as a parameter from the PMT data that we already collect. 

To begin, we developed a mathematical model that would describe how the physical 

dimension of a single CTC would translate into our measured fluorescent data. As a fluorescent 

cell passes through the laser lines, it emits light beginning from the time it first enters the laser line 

until the moment it exits. TdTomato has a fluorescence lifetime of ~3 nanoseconds, much shorter 
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than the PMT sample rate of ~33 microseconds159. Therefore, by measuring the width of the width 

of the fluorescent peak as a cell passes a laser line, we should be able to get a sense of the time a 

cell spends under the laser lines. However, the dwell time under a laser line is dependent on two 

parameters: the diameter of the particle and the speed at which it is traveling. A small particle 

moving very slowly can have the same dwell time as a larger particle moving very quickly. In a 

microfluidic channel with laminar flow, the velocity of a cell depends on the position within the 

channel, with cells near the walls passing slower and cells in the center moving faster, as is 

determined through Poiseuille flow160. Luckily, this can be easily addressed in our system, since 

we have two laser lines that each cell passes through. This allows us to accurately measure the 

velocity of each cell, and should thus enable us to calculate the diameter of the fluorescent cells. 

The equations that describe this model are as follows: 

𝑑𝑤𝑒𝑙𝑙 𝑡𝑖𝑚𝑒 𝑢𝑛𝑑𝑒𝑟 𝑙𝑎𝑠𝑒𝑟 𝑙𝑖𝑛𝑒   
 

                       (5-1) 
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The dwell time can be described physically by the diameter of the CTC (d - µm), the width 

of the laser line (δ - µm), and the velocity of the cell (v - µm/sec). The same dwell time can also 

be calculated in terms of the PMT data by the width of the fluorescent peak (W- number of 

datapoints) and the sampling rate (datapoints/second) (Figure 5.8). 

𝑣   
                                                (5-2) 

The velocity of the cell can be described by the distance between the laser lines (D - µm) 

and the time it between the detection of the two fluorescent peaks, which can be described in the 

data space as a ratio of the sampling rate (datapoints/second) and the separation between 

fluorescent peaks (S - number of datapoints). Substituting velocity from Equation 5-1 with 

Equation 5-2 yields the equation: 

 

Figure 5.8 Schematic showing the parameters that are used to extract cell diameter from the fluorescent data. (a) 
Physical measurements on the chip are diameter of the CTC (d - µm), the thickness of the laser lines (δ - µm), and 
the distance between the laser lines (D - µm). (b) Measurements extracted from the fluorescent dataset include the 
width of the fluorescent peak (W – number of datapoints), and the spacing between the two peaks (S – number of 
datapoints) 
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                                             (5-3) 

And solving for d, the diameter of the CTC, gives us our final equation: 

𝑑   –  𝛿                                                          (5-4) 

This final equation relies solely on physically measurable variables that remain constant 

throughout the experiment, laser line separation (D – 300µm) and laser line width (δ – 20µm), as 

well as data from the PMT fluorescent signature that defines each fluorescent cell, average width 

of laser peaks (W) and peak spacing (S). 

To begin testing the accuracy of the model, we used a set of fluorescent beads that come 

in defined sizes of 10, 15, and 19µm. We flowed these beads through the CTC detection system at 

a variety of flow rates and plotted their average peak width vs peak spacing (Figure 5.9). As seen 

in Equation (5-4), these variables should be linearly correlated for beads of a given diameter and 

should have an increasing slope as the diameter of the beads increases. 

When the beads of varied width were run on the system at low flow rates, we indeed saw 

a clear separation between diameters as expected (Figure 5.9a-b). However, at high flow rates, the 

data began to overlap for the different bead sizes (Figure 5.9c-e). This is explained by a limit of 

sampling rate for the system. At high flow rate, an insufficient number of datapoints were above 

the detection threshold. With only 1 or 2 datapoints above threshold per peak, the average peak 

width variable (W) was unable to accurately distinguish between beads of different sizes. 
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Because the studies flowing the beads at low flow rates showed significant separation, we 

compared the recorded fluorescent data to the predicted values from the model. Since the beads 

can travel through the channel at a variety of linear velocities (based on Poiseuille flow), the model 

 

Figure 5.9 Detecting beads of defined sizes at different flow rates. Average peak width and spacing of peaks for 10, 
15, 19µm fluorescent beads were measured from samples run at 15 (a), 30 (b), 45 (c), 60 (d), and 75 (e) µL/min. 
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describes the line of values that that beads of a certain size are expected to fall on. There was a 

strong correlation between the detected beads run at 30µL/min and the lines that the model 

predicted, indicating the promise of the system to identify cells of specific sizes (Figure 5.10). 

To test the capability of detecting cells of different size, rather than fluorescent beads, the 

TdTomato+ SCLC cell line was use. Since the cells grow with variable diameters, a ground truth 

was needed to compare the sizes of the cells. To that end, we utilized a drug called barasertib, with 

is an Aurora B kinase inhibitor. The addition of barasertib to cell culture media allows cells to 

continue growing, but prevents the cytokinesis step of mitosis, such that cells cannot divide their 

membranes. By culturing in barasertib, cells will continue to double in volume and mass without 

creating daughter cells, providing an excellent tool for us to study the accuracy of our size detection 

method.  

 

Figure 5.10 Comparison of bead sizing estimation to the predicted model shows strong correlation at 30µL/min 
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Barasertib treated cells showed a significant increase in size after 24 hours of treatment at 

a concentration of 5µM, as measured by Coulter Counter (Figure 5.11a). The cells with low 

diameter (<8µm) represent dead and dying cells, which quickly lose their fluorescence and would 

not be detected on the CTC Counter system. The same populations were run through the CTC 

Counter, and estimates of the cell size (determined by the slope of the peak spacing and average 

peak width), showed a distinct right-shift in the treated cells, as was seen in the Coulter Counter 

measurements (Figure 5.11b). There is certainly room for improvement in the estimation of the 

measurements, but these results clearly show the potential of utilizing the fluorescent peak 

signature to identify changes in volume of cell populations. 

The previous experiments were performed using post-processing of fluorescent data in 

Matlab to identify the peaks and measure the corresponding peak widths and spacing distances. 

However, we next wanted to test whether or not the system would be able to separate out cells of 

different sizes in real time. As discussed previously, CTCs are known to exist either as single cells 

or as clusters in the blood, with clusters being implicated as more aggressive and more likely to 

 

Figure 5.11 Size detection with barasertib treated cells. (a) Coulter counter measurement shows ground truth of cell 
size measurements in control cells (CTL) or those treated with 5µM barasertib (Bara). (b) Size estimation using the 
slope of peak spacing and width correctly shows a rightward shift in barasertib treated cells. 
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seed a distant metastasis. As such, developing a technique to distinguish clusters from single CTCs 

in real time could be used with the blood exchange method to send only CTCs of certain sizes, and 

sorting out other sizes, to directly test their metastatic propensities. Such techniques would need 

to rely on real-time analysis of peak information. To test this, we ran beads of two sizes through 

the system, and used Labview to plot the measured spacing and peak width in real time (Figure 

5.12). The data from the measured fluorescent peak signatures were able to identify the 10µm 

beads with 90.4% accuracy, and the 19µm beads with 96.0% accuracy, validating the use of this 

method to distinguish between large and small fluorescent objects in real time. 

In the future, further improvements can be made to this size detection method. Increasing 

the sampling rate of the PMT by optimizing the computer processing within the LabView code 

would allow for more datapoints to be collected per peak, giving more accurate estimations of the 

peak width and heights, as well as the duration of time between the peaks. Similarly, as described 

 

Figure 5.12 Real time size estimations in Labview. 10 and 19µm beads were run through the system, and a linear 
cutoff was able to distinguish 10µm beads at 90.4% accuracy and 19µm beads at 96.0% accuracy. 
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above, flowing the cells at a slower speed should increase the ability of the system to distinguish 

between sizes, by generating more datapoints per peak. Additionally, increasing the magnification 

of the microscope objective could lower the background signal, decreasing the threshold required 

to identify a peak and resulting in a more accurate peak width estimation.  

Having the capacity to determine the size of fluorescent CTCs in the blood using the 

already recorded fluorescent data would be a strong advancement in the capabilities of the CTC 

sorter system. Such a technique would allow us to study whether CTCs change in their biophysical 

properties over the course of disease and treatment without taking the cells from the blood. Since 

there are so few CTCs in solid tumor models, it is infeasible to collect cells and measure ex vivo 

from the same animal longitudinally, so a system that can measure whole blood in line without 

diluting would be the only way to monitor changes in CTC size over time. Additionally, the sorting 

capacity of our CTC sorter coupled with the CTC size detection system would allow for the study 

of the impact of CTC size on the propensity to form metastatic nodules. CTCs of certain sizes 

could be sorted out of the blood in real time, and only the cells of a desired size range would be 

infused into a recipient naïve animal. Then, tumor outgrowth could be monitored in the recipient 

to see whether certain size ranges of CTC are particularly effective at seeding metastases. 

5.3 High concentration estimation 

One limitation in using the CTC sorter system to track the real-time concentration of 

fluorescent cells in the blood is that the nature of the detection method limits the maximum 

concentration that can be measured. Our current method identifies a two-peak signature in the 

fluorescence data that occur as a cell passes through the laser lines. Each cell produces the distinct 

fluorescent profile, and by counting the total number of cells traversing the lasers, we can 
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determine the concentration. However, this method relies on the assumption that only a single cell 

passes through the laser lines at any given time. In the solid tumor models, CTCs are present at 

concentrations around 1000/mL (1/µL) or lower. However, in the leukemia models, CLCs can be 

found at concentrations up to 10,000,000/mL (10k/µL). As such, it is important to understand what 

the maximum detection rate of the system is and pursue new techniques to expand the limits of 

detection. 

The maximum concentration that can be calculated through matched peaks requires each 

cell to pass through both laser lines before another cell enters the first line. This method was used 

for cell sorting and for the size detection application described above. In our solid tumor setup, the 

laser lines are 300µm apart, and with a channel width of 300µm and height of 50µm, the total 

volume per cell can be no more than 300 x 300 x 50 = 4.5M µm3, or 0.0045µL. This comes out to 

222 CTCs/µL, though assuming a Poisson distribution of cell spacing, any higher than ~100 

CTCs/µL would likely result in overlapping signals, and thus, a misrepresentation of the 

concentration. 

However, if size estimation and sorting is not needed, matched peaks is not essential, so 

one laser line could be used instead of two. Therefore, the minimum volume per cell required to 

estimate concentration using a single-cell approach would be the total volume covered by one laser 

line, which is the sum of the width of a cell and the width of the laser line. Since the width of a 

laser line is ~20µm and the width of a cell is ~10µm, the volume per cell could be no higher than 

(20+10) x 300 x 50 = 450k µm3, or .00045 µL. This would mean that cells could be at a 

concentration of 2.2k CTCs/µL, though again, at any concentration about ~1k/µL, overlap would 

likely occur given a Poisson distribution. 
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However, since the high concentrations of fluorescent cells in the blood is typically seen 

more frequently in the leukemia models, it is important to estimate these values for the chip design 

used for the leukemia studies, with a thinner channel. In this system, the channel width is 100µm, 

so the minimum volume per cell to have one cell under the laser line is (20+10) x 100 x 50 = 150k 

µm3, or .00015 µL, which comes out to 6.6k CLC/µL, so any concentration about ~3k/µL will 

likely create overlap. 

To understand how different cell concentrations impact the ability to detect high 

concentrations of fluorescent cells, the RFP+ ALL leukemia cell line was run through the detection 

system at concentrations ranging from 200 to 50k/µL. A small segment (0.05 seconds) is shown 

in Figure 5.13, demonstrating that especially at high concentrations, significant overlap in 

fluorescent peaks is observed.  

 

Figure 5.13 Fluorescent signal of RFP+ ALL cell line at various concentrations demonstrates the overlapping 
signature that appears at high concentrations. 
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The overlapping signatures result in significant added noise in the fluorescent signal. 

Therefore, we looked to see how to quantify the added noise as a way to estimate the cell 

concentration. The higher the concentration, the more overlapping peaks, and the more noise that 

should be seen in the signal.  

We decided to look at the root-mean-squared (RMS) of our signature. RMS is calculated 

by squaring the full dataset centered around zero (to make all value positive), taking the mean, and 

then taking the square root. This value is similar to standard deviation and describes the variance 

of the signal. We calculated the rolling RMS in 1000 datapoint chunks for each of the concentration 

tested (Figure 5.14).  We found that the RMS increased with increasing concentrations of cells, as 

expected. While some variation across time in RMS was seen, particularly at the highest 

 

Figure 5.14 RMS of signal from RFP+ ALL cell line at various concentrations in the CTC sorter system. Clear 
correlation is seen between the RMS and the concentration of the cells. 
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concentration of 50k/µL, most of the other concentrations showed little variation in the RMS over 

the course of the study. 

Next, we looked to see the correlation between RMS and the concentration of cells. We 

plotted the average and standard deviation of the RMS as calculated from taking 1000 datapoint 

chunks and fit to a linear regression (Figure 5.15a). We found an incredibly strong correlation 

between the two, indicating the power of using RMS to estimate the concentration of high numbers 

of cells in the blood. 

However, upon closer look, we found that the correlation between RMS and concentration 

broke down at lower concentrations. At concentrations below 3000 cells/µL, there was a much 

poorer correlation between RMS and cell concentration. This matches up nicely to the estimated 

limit of single-cell detection. When no overlap in fluorescent peaks is present, as calculated for 

this system setup for concentrations <3000/µL, there should be only single peak events followed 

 

Figure 5.15 RMS as a metric to estimate high concentrations of cells. (a) RMS of fluorescent signal shows strong 
linear correlation to the number of cells per µL. R2=0.998, p<0.0001 (b) At low concentrations, especially below 
3000 cells/µL, there is much higher error of signal, such that it would be difficult to effectively distinguish between 
similar concentrations of cells. 
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by the background noise signal. This would correspond to very little added variance to the signal, 

and thus, the RMS does not significantly change. 

The method of using RMS to estimate cell concentration showed major promise at high 

concentrations of cells, where fluorescent peaks of neighboring cells overlap into a noisy signal. 

However, at lower concentrations, the method of single-peak detection remained the most effective 

method for determining concentration, especially since it measured the true instantaneous 

concentration, rather than an approximation. 

Additional experiments are needed to verify the potential of the RMS high concentration 

estimation. Testing on multiple chips will determine the chip-to-chip variation in background 

signal. This will determine whether calibration will be required for every new chip, or if a 

standardized linear regression will suffice. Additionally, the above experiments were performed 

with saline as a medium. It will be important to determine the impact of blood on the RMS, as well 

as the variation in background signal of blood in different animals. The experiments will also need 

to be performed on both of the leukemia models, to understand how the RMS varies with different 

cell lines. The more generalizable the linear regression, the more utility the method will have to 

estimate the concentrations. 

Finally, a thorough characterization of the regime of single-cell detection versus the 

population-based RMS detection will be essential to determine whether there is a range of 

concentrations at which neither method is particularly effective at estimating the concentration, or 

whether the two methods have an overlapping region of concentrations, such that any 

physiological concentration of CLCs in the blood could be estimated by one of the methods. 
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5.4 Checkpoint blockade in mouse models 

A side project looked to study the effects of immunotherapy on tumor growth, and 

specifically, why there is heterogeneity in response to immune checkpoint blockade (ICB). In order 

to avoid attack from the immune system, many tumors develop mechanisms to avoid immune 

detection. One of the most well studied method is the use of modulating immune checkpoint 

expression. T-cells express a number of proteins, including PD1 and CTLA4, that, when bound, 

act to mitigate a killing effect of the immune system. This helps prevent T-cells from killing normal 

cells. However, many cancers evolve to express proteins that bind strongly to these checkpoints, 

allowing the tumor cells to evade the immune system and grow without regulation. The expression 

of PDL1 on tumor cells binds to PD1, and the protein B7 can be expressed to bind CTLA4. 

New cancer therapies have been developed that interfere with this signaling pathway, 

allowing the T-cells to do their job and efficiently kill tumor cells. These are ICB therapies, and 

are often antibodies for either PD1 or CTLA4. ICB treatments can be incredibly effective, curing 

even metastatic disease in many patients72,75–77. However, these therapies are not universally 

successful. While they can be curative in a subset of patients, usually only a fraction of patients 

effectively respond to these immunotherapies. As such, it is crucial to understand why there is a 

heterogeneity in response, and whether there are means of predicting response or determining why 

certain patients have better outcomes than others. 
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To study this question, we chose a syngeneic mouse model of breast cancer using an 

orthotopic injection of a cell line, E0771, into the mammary fat pad. The line is from a C57BL/6 

background, and is EGFR+, Erα+, and importantly for the study of immunotherapy, PDL1+161. 

We began by initiating disease in C57BL/6 mice with injections of 500k cells. We followed the 

tumors over the course of several weeks and treated a subset with 12mg/kg of αPD1 

immunotherapy at three timepoints, on days 11, 14, and 17 (Figure 5.16). Interestingly, we saw 

that the treated mice fell into two categories: those that had similar growth kinetics to untreated 

mice (non-responders) and those that showed minimal tumor growth upon treatment (responders).  

 

Figure 5.16 Growth kinetics of E0771 tumors with and without treatment. Untreated mice (black) show strong 
growth over the course of 3 weeks post treatment. Mice treated with three doses of αPD1 showed two phenotypes: 
responders that showed very little growth (blue) and non-responders which had similar growth kinetics to the 
untreated mice (red) 
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Because this model showed both responding and non-responding tumors in a genetically 

identical set of mice, it provided an excellent tool to begin to understand the differences that allow 

for varied responses to immunotherapy across patients. We began by performing biophysical 

analysis to compare the tumor cells of mice that had very strong responses (responders) to the 

untreated isotype control mice. A comparison of the cell diameter as measured by Coulter Counter 

shows minimal differences in the volumes of the tumor cells, with both untreated and responding 

tumor cells having a diameter of 12-16 µm (Figure 5.17a). 

For subsequent biophysical measurements, we used the SMR tool described previously to 

measure buoyant mass. Additionally, a “node deviation” can be measured by observing the change 

in resonant frequency in the SMR at the node of vibration versus the background. This deviation 

from baseline can be used as a proxy for cell stiffness162. We found that in the untreated tumors, 

buoyant mass had two possible peaks in a bimodal distribution, either centered around 25pg or 

around 50pg. In these mice, the majority of cells existed as lighter cells near 25pg (Figure 5.17b). 

In terms of stiffness, these cells had very low node deviations, with a majority of cells having less 

than 4 Hz of node deviation (Figure 5.17c). However, drastically different phenotypes were 

observed in the tumors of responding mice. For those mice that had little tumor growth upon 

immunotherapy treatment, the buoyant mass of cells was significantly increased, though with a 

similar bimodal population as seen in the untreated tumors. Instead of the 25pg peak having the 

most cells, a vast majority of the cells in the responding tumors were 50-75pg in buoyant mass 

(Figure 5.17d). A similar observation was seen in the node deviation measurements, with cells 

from the responding mice having much higher node deviation. 
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Figure 5.17 Biophysical measurements of E0771 tumor cells in untreated and responding mice. (a) Coulter Counter 
measurements show no change in volume of between the untreated and responding tumors. (b) Buoyant mass of tumor 
cells in untreated tumors shows a large fraction of cells with mass below 40 pg. (c) Node deviation, a measure of 
stiffness, shows relatively low stiffness for the untreated tumors. (d) Buoyant mass of tumor cells in responding tumors 
show marked increase in mass, with a majority of cells over 50 pg. (e) Node deviation show increased stiffness in 
tumor cells from tumors that respond strongly to αPD1 treatment. 
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This dramatic change in biophysical properties could allow for better understanding of 

whether a tumor is or is not responding well to immunotherapy treatment, or even predict whether 

a patient will respond to the therapy. Further studies will be required to repeat these results to 

determine the cohort-to-cohort heterogeneity, as well as understand the differences in physical 

properties of responding tumors to non-responding (but treated) tumors. 

We continued our studies of heterogeneous response to immunotherapy by performing 

RNA sequencing. Using the Smart Seq 2 protocol, we performed single cell analysis on the 

transcriptomes of cells from three conditions: non-responders who received treatment but whose 

tumors continued to grow, responders who received treatment and showed minimal tumor 

outgrowth, and relapse mice who initially showed response to immunotherapy by later had tumor 

outgrowth. We used t-distributed Stochastic Neighbor Embedding (tSNE) for dimensionality 

reduction to observe clustering of cells based on their gene expression (Figure 5.18a). Three main 

clusters were observed, though no clear correlation was seen between cluster and tumor status 

(responding, non-responding, or relapse) (Figure 5.18b). 

 

Figure 5.18 Single cell RNA-seq on immunotherapy treated E0771 tumor mice of varied response. (a) t-distributed 
Stochastic Neighbor Embedding (tSNE) plot showing clustering of transcriptomes of all sequenced cells. Three main 
clusters were identified. (b) tSNE plot colored by group shows no clear separation between cells from different groups, 
though non-responders seem to be most present in cluster 0, and responders in clusters 1 and 2. R – responding tumors, 
NR – nonresponding tumors, RL – relapse tumors. 
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We finally analyzed the top genes that define each cluster in the tSNE analysis. We found 

that cluster 0 had a high number of genes associated with metal homeostasis and response to 

hypoxia, while cluster 1 showed a number of genes associated with response to interferon and 

cytokines. Cluster 2 showed high levels of cell cycle genes. Further analysis will be needed to 

understand whether these functional traits influence the response of tumors to immunotherapy, and 

whether changes in these pathways can encourage more tumors to respond more dramatically to 

the immunotherapy treatment. 

In summary, a key issue with current immunotherapies is the high degree of heterogeneity 

in response, with some patients experiencing prolonged cures and others having little to no benefit. 

 

Figure 5.19 Top genes that define the tSNE clusters and functional pathways associated with the upregulated genes. 
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By studying the physical and transcriptional changes that determine whether a tumor will respond 

to immunotherapy or not, we hope to develop a signature that could either describe if a tumor is 

responding to therapy, or better yet, predict whether a patient will respond to a particular therapy. 

5.4 Conclusions 

Tumor cells and the blood are integrally connected. CTCs traveling in circulation provide 

the primary avenue for metastasis, the leading cause of death in cancer. And CLCs in leukemia 

not only provide metastatic potential, but also serve as a major compartment of disease. Studying 

the factors that define circulatory kinetics of CTCs and CLCs is instrumental in understanding how 

these cells traffic through the blood, which is crucial to developing new therapies. Our blood 

exchange technology is uniquely capable of addressing these questions through our ability to 

decouple circulating and extravascular contributions. 

In this project, we began by developing a blood exchange tool to infuse native circulating 

tumor cells from a donor animal into a recipient. We then applied the technology to solid tumor 

models of small cell lung cancer, non-small cell lung cancer, and pancreatic cancer and showed 

the ability to estimate both generation rate and half-life time of the CTCs in circulation. We found 

that while generation rates in these models varied by several orders of magnitude, the half-life time 

varied only by approximately 2- to 3-fold. We also showed that the system can be used to generate 

metastatic models of disease through the infusion of as few as several thousand CTCs. Next, we 

used two leukemia models: acute lymphocytic leukemia (ALL) and acute myeloid leukemia 

(AML). With the leukemia models, which had significantly higher cells of CLCs in circulation 

compared to solid tumor CTCs, we were able to perform studies to assess the influence of non-

circulatory and circulatory factors on the clearance rate of CLCs. In the ALL model, we showed 
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that a diseased recipient animal has a drastically reduced fraction of cells cleared, a phenotype 

which was reversed after chemotherapy treatment. We found that while irradiation or 

chemotherapy alone were insufficient to significantly reduce the fraction cleared in healthy mice, 

the inhibition of E-selectin, an endothelial adhesion protein, reduced the fraction of CLCs 

remaining in circulation of diseased recipients. We suspect that inhibiting E-selectin, which is 

known to release cells from the bone marrow, allows for cells to more freely mix between the 

blood and marrow, which subsequently allows for more of the infused cells to exit circulation. 

Finally, we showed that in the AML model, but not the ALL model, relapse cells clear at a faster 

rate than untreated. We demonstrated that the relapse AML cells have significantly higher levels 

of adhesion molecules compared to untreated, and that AML has significantly higher expression 

of these adhesion molecules compared to the ALL model. Finally, we showed that blocking of the 

E-selectin binding molecules on the relapsed AML cells decreases the rate at which relapse AML 

cells escape circulation. 

The blood exchange system provides a novel method to measure circulation kinetics of 

fluorescent cells in the blood. This platform can be used to continue exploring factors that influence 

the clearance of circulating tumor cells, but could also be used to study the clearance rates of other 

cells in the blood, such as immune-engineered CAR-T cells. The process of exchanging blood in 

animals to decouple circulating and non-circulating factors can also be applied even without using 

the fluorescence detection and circulation kinetics features. We are currently exploring the impact 

of the gut microbiome on tumor growth using the blood exchange system. By connecting 

circulation of tumor bearing mice to healthy mice with defined gut microbes, we hope to 

understand how specific intestinal bacteria can influence tumor outgrowth at distal sites, whether 
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by local activation of immune cells or secretion of small molecules in the blood that impair tumor 

growth. 

The data shown here demonstrates the essential role that adhesion molecules play in 

regulating clearance rates in leukemia. Several studies have begun to examine how interfering with 

cellular adhesion can induce drug efficacy, and our results suggest that there is much promise in 

this area. The development of novel drugs targeting an array of vascular adhesion molecules could 

improve patient outcomes in leukemia. Future directions for this project could explore the role that 

adhesion molecules play in circulation kinetics of additional models of leukemia, or of solid tumor 

CTCs, where interfering with the clearance of CTCs could reduce rates of metastasis. 

This research also shows the sustained changes that tumor cells can undergo following 

treatment. Understanding that relapse and untreated disease have key biological differences 

requires the adaptation of therapeutics based on treatment status. Future studies will further 

examine the physical changes that cells undergo in response to chemotherapy and the underlying 

mechanisms driving those changes. Ultimately, these findings provide further insight into the 

features that control how tumor cells traffic through the body. By understanding these features, 

and learning how to influence them, new therapeutics can be developed to increase patient survival. 
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