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Motor Function Assessment of Children with
Cerebral Palsy using Monocular Video

Peijun Zhao†, Moises Alencastre-Miranda†, Zhan Shen‡, Ciaran O’Neill†,
David Whiteman⋆, Javier Gervas-Arruga⋆, and Hermano Igo Krebs†

Abstract—The assessment of movement abilities in individuals
with neurological disorders is a critical task in clinical practice.
Currently, clinical assessments are time-consuming and rely
on qualitative scales typically conducted by trained clinicians.
Moreover, these assessments offer only coarse snapshots of a
person’s abilities, failing to track the minutiae of recovery over
time. To overcome these limitations, we propose a machine
learning approach based on spatial-temporal graph convolutional
network (STGCN) to extract movement features from pose data
obtained from monocular videos collected with mobile devices
(e.g., smartphones, tablets). Our proposed method achieves an
accuracy of around 76.6% in evaluating children with Cerebral
Palsy (CP) using the Gross Motor Function Classification System
(GMFCS), a 5% improvement in accuracy compared to current
state-of-the-art methods, and shows substantial agreement with
professional assessments based on the weighted Cohen’s Kappa
(κlw = 0.733). Furthermore, the proposed method can be
efficiently implemented on a wide range of mobile devices in
real-time or near real-time.

Index Terms—Cerebral Palsy, Gross Motor Function, Machine
Learning, Graph Neural Networks, Mobile Phone

I. INTRODUCTION

Various neurological disorders, including Cerebral Palsy
(CP), Metachromatic Leukodystrophy, Stroke, and Parkin-
son’s, may impede an individual’s motor control and coordina-
tion capabilities. Clinicians employ qualitative assessments to
gauge patients’ conditions and devise intervention strategies.
The Gross Motor Function Classification System (GMFCS)
is an assessment used to assess children with CP, which
encompasses five levels, from those who can independently
walk or run on all surfaces (level I) to those with severely
restricted mobility requiring assistive devices (level V) [1].
The GMFCS is a qualitative and rudimentary nominal scale
that non-professionals struggle to use accurately [2] [3]. As
a result, typically the GMFCS assessment requires visits to a
clinic, where the clinical evaluator asks the child to perform
a variety of physical exercises so that they can observe and
classify the child’s movement abilities. A typical assessment
session lasts around an hour, and must be conducted regularly
to assess any intervention, which can place a large time burden
on the family or caregiver over the course of a treatment.
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Fig. 1. The proposed AI-based GMFCS Assessment is much more convenient,
faster, and cheaper than conventional evaluation.

Recent progress in the field of machine learning and com-
puter vision has opened up a plethora of opportunities to assess
a person’s movement abilities in general and a CP youngster’s
in particular. Researchers have used videos showing the child
performing different tasks to determine their GMFCS lev-
els [4]. AI-enabled GMFCS evaluation would be much more
convenient, particularly when employing a single camera.
It can also be administered at home, affording long-term,
almost continuous tracking of the children’s motor function.
Our approach might be particularly suited to monitor the
child developmental status, to evaluate the clinical efficacy of
therapeutic interventions and adjust treatment plans. The need
to use a standardized method to classify gross motor function
in CP led to the development of the GMFCS scale [5], which
is subject to a high degree of subjectivity with significant inter-
rater variability (sometimes κlw as low as 0.64 [6]). Computer
vision approaches minimize such variability, making them
ideally suited for clinical trials, registries, and for telemedicine.

In previous computer vision based motion assessment
works, the skeleton/pose information was extracted from the
video using mature off-the-shelf tools, e.g., OpenPose [7].
To further extract insights from these skeleton data, prior art
typically rely on hand-picked/crafted features. As a result, the
accuracy is upper-bounded by the qualities of the features.

In this work, we adopted an agnostic end-to-end data-driven
approach. Considering that the motion can be seen as the
variation of human skeleton graph across time, we employed
a Spatial-Temporal Graph Neural Network (STGCN) to get
the overall movement features used for GMFCS classification.
We conducted a comprehensive evaluations of our proposed
method and provide an ablation study to gain a deeper un-
derstanding of the proposed approach. Results show that our
method has close agreement with ground truth professional la-



Fig. 2. The workflow of our proposed method.

belling. Finally, we evaluate the running time of our proposed
method on different of mobile platforms. We release the code1.

II. RELATED WORKS

With the recent advancements in computer vision, there has
been a growing interest in utilizing it for movement analysis
in CP. Previous studies have mainly focused on predicting
CP from infant movements using machine learning techniques
with hand-crafted features [8]–[11]. The current state-of-the-
art employing computer vision was proposed by Kidzinski et
al. [4], which uses a skeleton-based approach and applies a 1-D
convolutional neural network on the time-series data of a few
expert-selected keypoints and several hand-crafted features,
with experiments conducted on a large dataset with thousands
of videos. In this paper, we propose a novel method for this
task using the same dataset, and compare both methods.

III. PROPOSED METHOD

Our proposed, two-step workflow is shown in Fig. 2. For
each input video, we first run human detection and tracking
algorithms, and then apply pose estimation algorithms on
the segments of each detected human. The first step can be
done with different off-the-shelf methods, including bottom-up
approaches like OpenPose [7] as in previous work.

The core contribution in this paper lies in step 2, where we
utilize Spatial-Temporal Graph Convolutional Networks [12]
to extract the movement features, and a classification module
to make the final assessment based on the latent movement
features. The STGCN consists of multiple blocks, and in each
block, the information of each keypoint and its neighbors in
spatial and temporal dimensions are aggregated with convo-
lutions, which are used as the feature for the next block.
After the final block, the information is gathered with a
pooling operation to get an overall feature vector, which is
further classified. STGCN and its variants have shown very
good performance on human action recognition. Human action
recognition are quite similar to GMFCS assessment tasks,
as both attempt to extract and classify movement features
from a sequence of human poses, from both spatial and
temporal perspectives. Due to the scarcity of medical data,

1https://github.com/zhaoymn/gmfcs stgcn
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Fig. 3. Number of patients and videos in the dataset.

we adopt transfer learning, with the STGCN pre-trained on an
action recognition dataset named ”NTU RGB+D 120” [13].
The original classification layer from the pre-trained model
is removed and replaced by our own classification module,
which contains 2 linear layers with 4 final output neurons for
GMFCS levels I to IV.

IV. EVALUATION

A. Dataset

We used a publicly available dataset from Kidzinski et. al.
[4]. This dataset contains videos from CP youngsters collected
in a clinical setting with their GMFCS level assessed by
a health care professional (ground truth). Average age of
the youngsters is 11y.o. (s.d. = 5.9), average height of
133cm (s.d. = 22), and weight of 34kg (s.d. = 17). The
original paper lacks some details on how to reproduce the
exact training, validation and testing split, and we cannot get
the same dataset split running their provided code, therefore
we used our own protocol for pre-processing.

We use data with GMFCS levels I to IV, because children at
level V cannot move by themselves. We checked all the skele-
ton videos and manually removed 85 videos that contained
more than one person, after which we have 1,450 videos from
861 patients. We split the dataset into training, validation and
testing. We used stratified sampling and sample each GMFCS
level separately. For each GMFCS score, we split the dataset
using the patient’s ID with ratio of 7:1:2, as we did not want
any patient to appear in any two of the training, validation,
and testing datasets. The detailed ground truth GMFCS level
distribution of the dataset is shown in Fig. 3.

We further sampled the videos using a sliding window with
length of 124 frames per sample as in [4] with an overlap of
90% between samples. We kept samples with an average over
80% keypoint availability.

B. Implementation

We implemented our method using PyTorch. Pieces of our
code and pre-trained STGCN model were borrowed from
Pyskl [14]. We used trainable adjacent matrix in graph ag-
gregation and used MSTCN for temporal convolution. For our
training policy, we first froze the pre-trained backbone STGCN
for 3 epochs to train the classification layers, and then the
last 2 STGCN blocks were unfrozen for further task specific
training. We used Adam optimizer with initial learning rate of
1e-4, which gradually decreases, and weight decay of 5e-5.
The model was trained for 10 epochs with batch size of 128
and the best weights were selected according to validation
accuracy.

https://github.com/zhaoymn/gmfcs_stgcn


C. Performance Comparison

We evaluated our proposed approach on the testing set,
where each sample was classified and the final result of
the video was determined via a majority voting approach.
Our method performance was then compared against the
prior state-of-the-art approach [4]. Previous method put the
displacement of 8 joints and another 8 hand-crafted fea-
tures into separate channels of time-series data, and use 1D
Convolutional Neural Network for further temporal feature
extraction. The key difference between our method and prior
art is that we do not hand-pick or select features, and we
put spatial constraints (graph topology) during training to fuse
information from different joints.

To have a fair comparison, we directly run their official
code on our dataset split, with their provided pre-processing,
training and testing pipelines. We were able to produce better
results than the numbers reported in their original paper
(accuracy 66%). Since network training involves randomness,
we run each method 5 times. The prior state of the art method
is able to achieve an accuracy of 71.61% (s.d. 0.76%), and
our method can get 76.60% (s.d. 0.35%). To provide further
analysis, we pick one model from each method and compare
them in Fig. 4.

Fig. 4. Our proposed method outperformed the previous method in terms of
accuracy and linear weighted Cohen’s Kappa, which is used to measure the
agreement of two voters, i.e., clinician and AI algorithm in our case.

As can be seen in the results, our proposed approach has
an accuracy of around 5% higher than the previous approach.
According to the confusion matrix, the error mostly happens
between Level I and Level II. This is because GMFCS Level
I and Level II are inherently similar, and it’s very challenging
for machine learning methods to learn the subtle difference.
Furthermore, the ground truth labels provided by healthcare
professionals could be sub-optimal, as these two levels could
be confusing to human raters as well. As for the two methods
compared here, our proposed approach correctly classified
75.3% of the Level I and Level II samples, while the baseline
approach has an accuracy of 69.1%. We believe that this is
due to the much stronger representation ability of our proposed
model, which captured more subtle features in these two levels.
As a result, our method could possibly perform even better if
the quality and quantity of the training dataset further improve.

Also, we can see that both models struggle to correctly
classify Level IV samples, which is because we do not have
sufficient Level IV training data.

Our method has a linear weighted Kappa of 0.734, much
higher than the previous method 0.651, which represents a
substantial agreement with ground truth. Since the linear
weighted Kappa of two professionals can sometimes be as
low as 0.64 [6], thus our proposed method can be considered
to work quite well compared to clinicians.

D. Ablation Study

To get a better understanding of the proposed method,
we performed an ablation study. We compared the following
3 variations of our model: (1) Fixed: The weights of the
backbone STGCN were kept fixed after loading the pre-trained
model; (2) All: All the blocks of the backbone STGCN were
fully unfreezed to be fine-tuned; (3) No-Pre: The weights
of the backbone STGCN were trained from scratch with the
dataset. The results are summarized in Fig. 5. When we fixed
the STGCN weights to the pre-trained weights, the accuracy is
significantly worse. This may be due to the domain difference
between action recognition and the GMFCS scoring. On the
other hand, when we allow all the STGCN blocks to be train-
able, the accuracy is just a bit worse than our proposed training
method, showing that our approach is generally robust to how
many STGCN blocks are involved in fine-tuning. However,
if we don’t load the pre-trained weights, the performance is
much worse, because the model significantly overfits to the
training data due to limited dataset size.

Fig. 5. Ablation Study.

E. Running Speed on Mobile Devices

As the videos of the patients are considered sensitive data,
ideally, we would want to do all the computing on end
user devices, so that no visual data is transferred online. We
evaluate the runtime of the proposed method on mobile devices
across a variety of platforms using a web APP, which allows
cross-platform adoption of our system. Note that although it’s
a web APP, the computation happens on client end, and no
visual data is transferred to the server. We use PoseNet [15]
from Tensorflow.js as pose extractor, which runs with WebGL
backend on GPU. The STGCN PyTorch model is converted
to ONNX model and runs with ONNX Runtime Web. Due
to some unsupported operators with ONNX Runtime Web’s
WebGL backend, we run it with WASM backend instead,
which uses CPU. The experiment is carried out within a React
application running with Chrome browser, and the results are
summarized in Table. I.

As shown in the results, the pose extraction can reach
around 30 FPS on the latest mobile phones (e.g., Samsung
S23U) by utilizing the onboard GPU. Though the STGCN runs
slower due to it running on the CPU, it is only called once in
a while when there are enough frames (124) to process, and



TABLE I
RUNNING TIME ON MOBILE DEVICES

Device Platform CPU GPU PoseNet (ms) STGCN (ms)
Samsung S23U Android Snapdragon 8.2 Adreno 740 35.1 116.3

Samsung Tablet S8+ Android Snapdragon 8.1 Adreno 730 47.7 121.4
Google Pixel 4a Android Snapdragon 730G Adreno 618 66.7 475.2

Apple iPhone 7 plus iOS A10 Fusion PowerVR 7XT+ 87.6 873.2
ASUS ROG Strix Windows Core i9-12900H RTX 3080Ti 8.2 76.7

Alienware x14 Linux Core i7-12700H RTX 3060m 12.4 77.5

by using the CPU it can actually run in parallel to the pose
extraction. As a result, the proposed method can be considered
to run close to real time at mobile devices.

V. DISCUSSION

It is still an ongoing discussion on whether to partially
use expert knowledge or completely rely on neural networks
for feature extraction from the original data. While expert
knowledge can be useful in tasks with clear physical laws
or mathematical operations, it may be difficult to derive
concise mathematical formulations for other problems. Using
neural networks for feature extraction enables the building of
complex models in a data-driven manner, which may be a
better representation than expert-driven manual models.

Fig. 6. The change of saliency map during one step.

In the case of GMFCS assessment, we believe that a data-
driven approach to extract features could possibly outperform
expert-defined features, as evidenced by Section IV. Further-
more, it is worth stating that with the advent of deep learning,
neural networks are to a lesser degree a “black box”: there
are interpretability opportunities of deep neural networks. For
example, we can calculate saliency maps [16] which helps us
to identify the most important input features. Fig. 6 shows an
example of the change in saliency map of the input human
pose graph during one step. As we can see, the focus of the
neural network is mostly on the upper body when the step
begins, and the attention shifts to the lower body as the human
subject moves. As a result, features from the upper body might
also be useful for GMFCS assessment, which were otherwise
neglected in the previous method [4]. Designing better features
could also be possible, which can be especially useful when
the training set is small. We leave this to future work.

VI. CONCLUSION

In this study, we utilized computer vision AI techniques for
GMFCS estimation and compared it to therapist assessments.
We used STGCN based networks to learn spatial and temporal
features of human pose information from single-view videos.
The results show the proposed method to be around 5% more
accurate than the prior art (76.60%, up from 71.61%), and is
in fundamental agreement with the ground truth professional
labeling (average κlw = 0.733). Additionally, the proposed
approach runs in near real-time on various mobile platforms.

Our study suggests AI-based GMFCS assessment has great
potential for smart and personalized healthcare. Future work
will focus on further improving the accuracy, decreasing
runtime, and estimating the uncertainty.
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