Instructor: Una-May O’Reilly

- Leader: AnyScale Learning For All Group, MIT CSAIL
- Experience solving real world, complex problems requiring machine learning where evolutionary computation is a core capability
- Applications include
 - Cybersecurity
 - Waveform data mining – medical applications
 - Behavioral data mining – MOOC
 - Circuits, network coding
 - Sparse matrix data mapping on parallel architectures
 - Finance
 - Flavor design
 - Wind energy
 - Turbine layout
 - Resource assessment
- Focus on innovation in genetic programming
 - Coevolution
 - Improving its competence
 - Program synthesis

Instructor: Erik Hemberg

- Research Scientist: AnyScale Learning For All Group, MIT CSAIL
- Experience solving complex problems requiring AI and machine learning with evolutionary computation as a core capability, Bronze HUMIE 2018
- Applications include
 - Cybersecurity
 - Behavioral data mining – MOOC
 - Pylon design
 - Network controllers
 - Tax avoidance
- Focus on innovation and implementation in genetic programming
 - Grammatical representation
 - Coevolution
 - Estimation of Distribution

About You

- EA experience?
- CS experience?
- Programming? algorithms?
- Teacher?
- Native English speakers?
Tutorial Goals

- Introduction to GP algorithm, given some knowledge of genetic algorithms or evolutionary strategies
 - provide Black box demonstration of GP symbolic regression
- Become familiar with GP design properties and recognize them
 - ponygp in python
- You could teach it in an undergrad lecture
- Use it “out of the box”
- Set groundwork for advanced topics
 - Theory, other tutorials
 - Specialized workshops (Genetic improvement etc)
 - GP Track talks at GECCO, Proceedings of EuroGP, Genetic Programming and Evolvable Machines

Agenda

1. Context: Evolutionary Computation and Evolutionary Algorithms
2. GP is the genetic evolution of executable expressions
 - Black box example of GP symbolic regression
3. Nuts and Bolts Description of Algorithm Components
4. pony_gp.py demonstration from project PonyGP
5. Resources and reference material

Neo-Darwinian Evolution

- Survival and thriving in the environment
- Offspring quantity - based on survival of the fittest
- Offspring variation: genetic crossover and mutation
- Population-based adaptation over generations
- Genotype-phenotype duality
- Complex and non-deterministic

EA Generation Loop

Each generation

- select
- breed
- replace

```python
population = random_pop_init()
generation = 0
while needToStop == false
    generation++
    solution = bestOff(population)
    phenotypes = decoder(genotypes)
    calculateFitness(phenotypes)
    parents = select (phenotypes)
    offspring = breed(parents.genotypes)
    population = replace(parents, offspring)
    recheck(needToStop)
```
Problem Domains where EAs are Used

- Where there is need for complex solutions
 - Evolution is a process that gives rise to complexity
 - A continually evolving, adapting process, potentially with changing environment from which emerges modularity, hierarchy, complex behavior and complex system relationships

- Combinatorial optimization
 - NP-complete and/or poorly scaling solutions via LP or convex optimization
 - Unyielding to approximations (SQP, GEO-P)
 - Eg. TSP, graph coloring, bin-packing, flows
 - For: logistics, planning, scheduling, networks, bio gene knockouts
 - Typified by discrete variables
 - Solved by Genetic Algorithm (GA)

- Continuous Optimization
 - Non-differentiable, discontinuous, multi-modal, large scale objective functions ‘black box’
 - Applications: engineering, mechanical, material, physics
 - Typified by continuous variables
 - Solved by Evolutionary Strategy (ES)

- Program Search
 - Program as s/w system component, design, strategy, model
 - Common: system identification aka symbolic regression, modeling
 - Symbolic regression is a form of supervised machine learning
 - Gp offers some unsupervised ML techniques as well

EA Individual Examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Gene</th>
<th>Genome</th>
<th>Phenotype</th>
<th>Fitness Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP</td>
<td>110</td>
<td>sequence of cities</td>
<td>tour</td>
<td>tour length</td>
</tr>
<tr>
<td>Function optimization</td>
<td>3.21</td>
<td>variables x of function</td>
<td>f(x)</td>
<td>min-f(x)</td>
</tr>
<tr>
<td>Graph coloring</td>
<td>permutation element</td>
<td>sequence for greedy coloring</td>
<td>coloring</td>
<td># of colors</td>
</tr>
<tr>
<td>Investment strategy</td>
<td>rule</td>
<td>agent rule set</td>
<td>trading strategy</td>
<td>portfolio change</td>
</tr>
<tr>
<td>Regress data</td>
<td>Executable sub-expression</td>
<td>Executable expression</td>
<td>model</td>
<td>Model error on training set (L1, L2)</td>
</tr>
</tbody>
</table>

Blackbox Example of GP Symbolic Regression

- Will show a blackbox GP example soon
 - http://flexgp.github.io/gp-learners/blog.html

S/W by ALFA Group’s FlexGP team

Special recognition to Ignacio Arnaldo, PhD who prepared SR Learner tutorial and blog post
Regression

- Regress a relationship between a set of explanatory variables and a response variable
- Linear regression:
 - Assume linear model: \(y = ax + b \)
 - Optimize parameters \((a, b)\) so data best fits model
- Logistic regression for classification
 - Maps linear model into sigmoid family
 \[F(x) = \frac{1}{1 + e^{-(a_0 + a_x)}} \]
 - Symbolic regression does NOT assume a model
 - Not parameter search
 - Model is intrinsic in GP solutions

FlexGP’s SR Learner

- Targeted partly to be black-box for non-researchers
- `sr.jar` is available for download
 - Only supported for Debian Linux
 - Source is on
 - http://flexgp.github.io
- Functionality both for performing Symbolic regression on numerical datasets and for testing the retrieved models
- Referred to as our baseline in time-aligned ALFA group publications
 - https://github.com/flexgp/flexgp
- Option to accelerate runs with C++ optimized execution
 - Requires gcc and g++ compilers, configuring Linux kernel parameter governing the maximum size of shared memory segments
- Option to accelerate runs with CUDA (GPU)
 - Added requirement of nvcc compiler
 - Append the -cuda flag, make some extra directories...
- Easy parameter changing through a central file

DEMONSTRATION

- http://flexgp.csail.mit.edu -> LEARNERS
- http://flexgp.github.io/gp-learners/blog.html -> EXAMPLE
Agenda

HOW DOES IT WORK UNDER THE HOOD?
WHAT IS THIS EXECUTABLE EXPRESSION?

Koza’s Executable Expressions

Pioneered circa 1988

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8

(*(- (+ 4 c) b) (div d a)) -> 12

; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

GP Evolves Executable Expressions

A Lisp GP system

A Lisp GP system is a large set of functions which are interpreted by evaluating the entry function.

- Some are definitions of primitives you write:
 » (defun protectedDivide ...)
- Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-defined (by compilation or interpretation) for use as primitives, also has software logic that handles
- Population initialization, iteration, selection, breeding, replacement, fitness evaluation

GP expressions are first class objects in LISP so the GP software logic can manipulate them as data/variables, as well as have the interpreter read and evaluate them

How to Evaluation an Expression

- interpreter beneath your code
 - Lisp example
- interpreter within your code
 - typical,
 - examples: SR.jar or ponygp.py
- compile then execute on your OS
 - older system in existence
How to Manipulate Expressions as Data

- for Crossover and Mutation we want
 - offspring can be different size and structure than parents
 - syntactic correctness
 - randomness in replication and variation
- GP solution
 - reference the parse tree
 - XO - swap subtrees between trees of parents
 - Mutation: insert, subst or delete from a parse tree (PT)
- A picture tells a 1000 words...

Parse Trees

Inorder: 2+3
preorder: + 2 3
Post-order: 2 3 +

Inorder: (2-3) + (a max best)
preorder: (+ (-2 3) (max a best))
Post-order: (2 3 -) (a best max) +)

GP Evolves Executable Expressions

GP Tree Crossover

Nuts and Bolts GP Design

HVL-Mutation: substitution, deletion, insertion

Nuts and Bolts GP Design
GP Preparatory Steps

Assume we have a GP system with internal expression evaluator.

1. Decide upon functions and terminals
 - Terminals bind to decision variables in problem
 - Combinatorial expression space defines the search space
2. Set up the fitness function
 - Translation of problem goal to GP goal
 - Minimization of error between desired and evolved expression when executed
 - Maximization of a problem based score
 - Construct test cases for program (input examples, desired output)
3. Decide upon run parameters
 - Population size is most important
 - GP is robust to many other parameter choices
4. Determine a halt criteria and result to be returned
 - Maximum number of fitness evaluations
 - Time
 - Minimum acceptable error
 - Good enough solution (satisficing)

Top Level GP Algorithm

Begin

pop = random programs from a set of operators and operands
repeat
 execute each program in pop with each set of inputs
 measure each program’s fitness
 repeat
 select 2 parents
 copy 2 offspring from parents
 crossover
 mutate
 add to new-pop
 until pop-size
 pop = new-pop
until max-generation or adequate program found

Population Initialization

- Fill population with random expressions
 - Create a function set Φ and a corresponding argument-count set
 - Create an terminal set (arg-count = 0), T
 - draw from Φ with replacement and recursively enumerate its argument list by additional draws from $\Phi \cup T$.
 - Recursion ends at draw of a terminal
 - requires closure and/or typing
- maximum tree height parameter
 - At max-height-1, draw from T only
- "ramped half-half" method ensures diversity
 - equal quantities of trees of each height
 - half of height's trees are full
 - For full tree, only draw from terminals at max-height-1

Selection in GP

- Proceeds in same manner as evolutionary algorithm
 - Same set of methods
 - Conventionally use tournament selection
 - Also see fitness proportional selection
 - Cartesian genetic programming:
 - One parent: generate 5 children by mutation
 - Keep best of parents and children and repeat
 - If parent fitness = child fitness, keep child
Determining a Expression’s Fitness

• One test case:
 – Execute the expression with the problem decision variables (i.e., terminals) bound to some test value and with side effect values initialized
 – Designate the “result” of the expression
• Measure the error between the correct output values for the inputs and the result of the expression
 – Final output may be side effect variables, or return value of expression
 – Eg. Examine expression result and expected result for regression
 – Eg. the heuristic in a compilation, run the binary with different inputs and measure how fast they ran.
 – EG, Configure a circuit from the genome, test the circuit with an input signal and measure response vs desired response
• Usually have more than one test case but cannot enumerate them all
 – Use rational design to create incrementally more difficult test cases
 – Use class balanced data for classification

Details When Using Executable Expressions

• Closure
 – Design functions with wrappers that accept any type of argument
 – Often types will semantically clash...need to have a way of dealing with this

Practicality/Solution Feasibility

• Sufficiency
 – Make sure a correct solution can be plausibly expressed when choosing your primitive set
 » Functions must be wisely chosen but not too complex
 » General primitives: arithmetic, boolean, condition, iteration, assignment
 » Problem specific primitives
 – Can you handcode a naïve solution?
 – Balance flexibility with search space size

Tree Crossover Details

• Crossover point in each parent is picked at random
• Conventional practices
 – All nodes with equal probability
 – Leaf nodes chosen with 0.1 probability and non-leaf with 0.9 probability
• Probability of crossover
 – Typically 0.9
• Maximum depth of child is a run parameter
 – Typically ~ 15
 – Can be size instead

Crossover Properties

• Two identical parents rarely produce offspring that are identical to them
• Tree-crossover produces great variations in offspring with respect to parents
• Crossover, in addition to preserving syntax, allows expressions to vary in length and structure (sub-expression nesting)

GP Tree Mutation

• Often only crossover is used
• But crossover behaves often like macro-mutation
• Mutation can be better tuned to control the size of the change
• A few different versions
Other Sorts of Tree Mutation

- Koza:
 - Randomly remove a sub-tree and replace it
 - Permute: mix up order of args to operator
 - Edit: + 1 3 -> 4, and(t t) -> t
 - Encapsulate: name a sub-tree, make it one node and allow re-use by others (protection from crossover)
 » Developed into advanced GP concept known as
 - Automatic module definition
 - Automatically defined functions (ADFs)

- Make your own
 - Could even be problem dependent (what does a subtree do? Change according to its behavior)

Top Level GP Algorithm

Begin
pop = random programs from a set of operators and operands
repeat
execute each program in pop with each set of inputs
measure each program’s fitness
repeat
select 2 parents
copy 2 offspring from parents
mutate
add to new-pop
pop = new-pop
until pop-size
pop = new-pop
until max-generation
or adequate program found
End
Grow or Full
Ramped-half-half
Max-init-tree-height

Tournament selection
Fitness proportional selection
Your favorite selection

Ramped-half-half
Prepare input data
Designate solution
Define error between actual and expected

Sub-tree crossover
Prob to crossover
Max-tree-height
Leaf:node bias

Max-init-tree-height
Prob to crossover
Max-tree-height
Leaf:node bias

GP Parameters

- Population size
- Number of generations
- Max-height of trees on random initialization
 - Typically 6
- Probability of crossover
 - Higher than mutation
 - 0.9
- Rest of offspring are copied
- Probability of mutation
 - Probabilities of addition, deletion and insertion
- Population initialization method
 - Ramped-half-half
 - All full
 - All non-full
- Selection method
 - Elitism?
- Termination criteria
- Fitness function
- what is used as “solution” of expression

GP Software Deep Dive

- flexgp.csail.mit.edu
- http://flexgp.github.io/gp-learners/
 Basic:
 - https://flexgp.github.io/pony_gp/
 - https://github.com/flexgp/pony_gp
PonyGP: Simple Symbolic Regression

- Given a set of independent decision variables and corresponding values for a dependent variable
- Want: a model that predicts the dependent variable
 - Eg: linear model with numerical coefficients
 - \(Y = aX_1 + bX_2 + c(X_1X_2) \)
 - Eg: non-linear model
 - \(y = ax^2 + bx^3 \)
- Prediction accuracy: minimum error between model prediction and actual samples
- Usually: designer provides a model and a regression (ordinary least squares, Fourier series) determines coefficients
- With genetic programming, the model (structure) and the coefficients can be learned

GP Examples

Reference Material

Online Material
- http://geneticprogramming.com/
- Where to search for conference and journal publications
- Genetic Programming Bibliography
 - https://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

Digital Libraries
- ACM digital library: http://portal.acm.org/
- GECCO conferences: http://gecco.org
- IEEE digital library: http://www.computer.org/portal/web/csdl/home
- Congress on Evolutionary Computation (CEC)

JOURNALS
- Evolutionary Computation Journal (MIT Press)
- Genetic Programming and Evolvable Machines Journal (Springer)
- ACM Transactions on Evolutionary Learning and Optimization (ACM)
- IEEE Transactions on Evolutionary Computation

Software
- https://github.com/search?q=genetic+programming

Genetic Programming Benchmarks

Genetic programming needs better benchmarks

Related benchmarks wiki
- http://GPBenchmarks.org

GP Program Synthesis Benchmarks
- https://cs.hamilton.edu/~thelmuth/PSB2/PSB2.html

Agenda

Context: Evolutionary Computation and Evolutionary Algorithms
1. GP is the genetic evolution of executable expressions
2. Nuts and Bolts Descriptions of Algorithm Components
3. Resources and reference material
Software Packages for Symbolic Regression

No Source code available
- Datamodeler - mathematica, Evolved Analytics
- Eureqa II/ Formulize - a software tool for detecting equations and hidden mathematical relationships in data
 - http://creativemachines.cornell.edu/eureqa
 - Plugins to Matlab, mathematica, Python
 - Convenient format for data presentation
 - Standalone or grid resource usage
 - Windows, Linux or Mac
 - http://www.nutonian.com/ for cloud version
- Discipulus™ 5 Genetic Programming Predictive Modelling
- New https://github.com/EC-KitY/EC-KitY

Reference Material - Books

- Genetic Programming, James McDermott and Una-May O’Reilly, In the Handbook of Computational Intelligence, Topic Editors: Dr. F. Neumann and Dr. K.Witt, Editors in Chief Prof. Janusz Kacprzyk and Prof. Witold Pedrycz.
- Genetic Programming: From Theory to Practice
 - 10 years of workshop proceedings, on SpringerLink, edited
- A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu and online digitally
- Advances in Genetic Programming
 - 3 years, each in different volume, edited
- John R. Koza
 - Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
 - Genetic Programming III: Darwinius Invention and Problem Solving, 1999 with Forrest H. Bennett III, David Andre, and Martin A. Keane, (Morgan Kaufmann)
 - Genetic Programming IV: Roderic Human-Competitive Machine Intelligence, 2003 with Martin A. Keane, Matthew J. Streeter, William Byington, Jacek Po, and Guido Lanza
- Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone, 1997 (Morgan Kaufmann)