
MIT Open Access Articles

Semantics and Scheduling for Machine Knitting Compilers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lin, Jenny, Narayanan, Vidya, Ikarashi, Yuka, Ragan-Kelley, Jonathan, Bernstein,
Gilbert et al. 2023. "Semantics and Scheduling for Machine Knitting Compilers." ACM
Transactions on Graphics, 42 (4).

As Published: https://doi.org/10.1145/3592449

Publisher: ACM

Persistent URL: https://hdl.handle.net/1721.1/152170

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/152170

Semantics and Scheduling for Machine Knitting Compilers
JENNY LIN, Carnegie Mellon University, USA
VIDYA NARAYANAN, Carnegie Mellon University, USA and Amazon, USA
YUKA IKARASHI, Massachusetts Institute of Technology, USA
JONATHAN RAGAN-KELLEY, Massachusetts Institute of Technology, USA
GILBERT BERNSTEIN, University of Washington, USA
JAMES MCCANN, Carnegie Mellon University, USA

(a) Separated Sheets

�

(b) Stacked Sheets

�

(c) Linked Sheets

Fig. 1. A knitting machine may be programmed to make two opposite-bed sheets (a) at separate needle indices or (b) one in front of the other. However,
changing only the carriers used in (b) can produce (c) a program that makes sheets linked at the edge. We present the formal foundation required to reason
about such subtle equivalences (�) and distinctions (�) among knitting programs.

Machine knitting is a well-established fabrication technique for complex

soft objects, and both companies and researchers have developed tools for

generating machine knitting patterns. However, existing representations

for machine knitted objects are incomplete (do not cover the complete do-

main of machine knittable objects) or overly specific (do not account for

symmetries and equivalences among knitting instruction sequences). This

makes it difficult to define correctness in machine knitting, let alone verify

the correctness of a given program or program transformation. The ma-

jor contribution of this work is a formal semantics for knitout, a low-level

Domain Specific Language for knitting machines. We accomplish this by

using what we call the fenced tangle, which extends concepts from knot

theory to allow for a mathematical definition of knitting program equiv-

alence that matches the intuition behind knit objects. Finally, using this

formal representation, we prove the correctness of a sequence of rewrite

rules; and demonstrate how these rewrite rules can form the foundation

for higher-level tasks such as compiling a program for a specific machine

and optimizing for time/reliability, all while provably generating the same

knit object under our proposed semantics. By establishing formal definitions

of correctness, this work provides a strong foundation for compiling and

optimizing knit programs.

CCS Concepts: • Software and its engineering → Domain specific lan-
guages; • Applied computing → Computer-aided manufacturing.

Authors’ addresses: Jenny Lin, Carnegie Mellon University, Pittsburgh, Pennsylvania,

USA, jennylin@cs.cmu.edu; Vidya Narayanan, Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA and Amazon, Sunnyvale, California, USA, vidyan@alumni.cmu.edu;

Yuka Ikarashi, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,

yuka@csail.mit.edu; Jonathan Ragan-Kelley, Massachusetts Institute of Technology,

Cambridge, Massachusetts, USA, jrk@mit.edu; Gilbert Bernstein, University of Wash-

ington, Seattle, Washington, USA, gilbo@cs.washington.edu; James McCann, Carnegie

Mellon University, Pittsburgh, Pennsylvania, USA, jmccann@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

0730-0301/2023/8-ART143

https://doi.org/10.1145/3592449

Additional Key Words and Phrases: machine knitting, domain specific lan-

guages, fabrication, topology, knot theory, program semantics

ACM Reference Format:
Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert

Bernstein, and James McCann. 2023. Semantics and Scheduling for Machine

Knitting Compilers. ACM Trans. Graph. 42, 4, Article 143 (August 2023),

26 pages. https://doi.org/10.1145/3592449

1 INTRODUCTION
Machine knitting is an additive fabrication process for soft goods

that has experienced a recent surge in popularity due to increased

understanding of the scope and complexity of the objects that can

be made. V-bed weft knitting machines in particular, which use

two parallel rows of needles to create shaped tubes and sheets,

have shifted from making relatively simple garments like socks and

sweaters, to more complicated shapes such as athletic shoes and

architecture [Popescu et al. 2020], to even programmable materials

like actuators [Albaugh et al. 2019] and force sensors [Aigner et al.

2022; Ou et al. 2019]. To complement this development, several high-

level design and programming systems have been developed to aid in

creating increasingly complex objects. Ideally, such systems should

be both complete (support everything that a knitting machine can

make) and correct (make exactly what the user wants).

Unfortunately, there is no system that guarantees correctness on

the complete scope of machine knitting programs. The cause for

this is two-fold: a knit object is a continuous deformation of yarns

in space to form an interlocking structure, making it difficult to

reason about; and knitting machines have an exponential number

of needle configurations which can be used to create a given object.

Existing systems deal with this complexity by limiting the scope of

knit objects to ones where assigning machine needles, or scheduling
the object, is tractable. As it turns out, even when the knit object is

simple, scheduling it can be surprisingly difficult.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

https://doi.org/10.1145/3592449
https://doi.org/10.1145/3592449

143:2 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

For example, consider a knitting machine program that makes

two 50 × 50 rectangles by alternating between the two of them –

first some of sheet A, then some of sheet B – until both sheets are

finished at about the same time. This program is written such that

Sheet A is scheduled on one row of needles (the front bed) at needle

indices 1 to 50, while sheet B is scheduled on the other row (the

back bed) at needles 51 to 100 (Fig. 1(a)). If we only have access to a

machine that is 50 needles wide, we would not be able to run this

program: back bed needles 51 to 100 do not exist.

A novice programmer might observe that, while sheet A occupies

front bed needles 1 to 50, back bed needles 1 to 50 are unoccupied.

They might consider rewriting the knitout program so that sheet B

is shifted to use back bed needles 1 to 50. As it turns out, however,

depending on which machine part delivers the yarn, i.e., which yarn
carrier is used to knit the sheets, this rewritten program may instead

produce two sheets that are linked at their edges (Fig. 1(c)).

The problem at play here is one of program equivalence. For

most programs, we say that the “meaning” of the program is “the

function it computes.” That is, we say two different programs are

functionally equivalent if they compute the same output for the same

input. Theories of functional equivalence allow the definition of

semantics that form the basis for systematically testing, debugging,

and proving the correctness of program rewrites.

However, programs that control manufacturing machines (e.g.,

CNC routers, FDM printers, or knitting machines) don’t compute

functions – they produce physical objects. The “meaning” of a man-

ufacturing program is therefore “the object that it makes.” Two

different manufacturing programs are objectively equivalent if they

both denote (i.e., represent) the same object. This raises an impor-

tant issue: mathematically, what are the objects created by knitting

machines?

Computing

Math

“meaning”

“computeCSG

Tree

B-rep/

Trimesh

Regularized

Polyhedra

[Requicha et al.]

booleans”

Mathematically defining phys-

ical objects is a surprisingly sub-

tle task. For instance, the analo-

gous “meaning” of constructive

solid geometry (CSG) or solid

modeling programs was not ad-

equately resolved until Requicha’s definition in terms of regular,

closed sets [Requicha 1977], which drew on Kuratowski’s investiga-

tion of closure operators in point-set topology [Kuratowski 1922].

Both the CSG Tree representation (i.e., data structure) and boundary

representation (B-rep) – which may be a polygonal mesh or even

NURBS surface – “mean” a solid object in Requicha’s sense. This

definition clarifies the correct behavior of CSG in many edge cases,

such as two cubes which intersect in exactly a shared face. The

point-set intersection is the shared face (not a solid), but the CSG

intersection (regularized intersection) is empty.

Analogously, it has been observed that an adequate mathematical

description of knit objects ought to be rooted in knot theory [Gris-

hanov et al. 2009; Markande and Matsumoto 2020; Qu and James

2021]. But similar to the situation in solid modeling, existing for-

malisms are subtly insufficient for capturing the complete scope of

machine knit objects.

In this paper we present the fenced tangle, which is an exten-

sion of tangles from knot theory, carefully expanded to match the

Formal Knitout Programs (Definition 5.1)

Fenced Tangles (Definition 4.5)

Valid Programs (Fig. 11)

Knittable Fenced Tangles

“meaning” E[. . .] (Definition 5.6)
Computing

Math

Fig. 2. Formalization approach. The grammar of knitout (Def. 5.1) defines a
set of programs, which is narrowed by our validity relation (Fig. 11). Every
valid knit program denotes (i.e., “means”) a fenced tangle (Def. 4.5) via
formal knitout semantics (Def. 5.6, Fig. 12).

intuition behind machine knitting. Using fenced tangles, we for-

malize the semantics of the machine knitting language knitout

to allow for a mathematical definition of program equivalence.

“meaning” Computing

Math

Formal

Knitout

Fenced

Tangles

rewrites

This formalism is complete – it can

handle anything a v-bed knitting

machine can create – and allows us

to reason about correctness – pro-

grams are equivalent if they denote
(i.e., “mean”) the same fenced tan-

gle. We then demonstrate how this

formalism can be used to prove the

correctness of a set of program rewrite rules that can be combined

to perform high-level scheduling tasks. The formalization structural

overview of the paper is shown in Figure 2.

The contributions of our paper are as follows:

• We propose fenced tangles (Section 4.1) as a mathematical

basis for defining machine knit object equivalence. In addition,

we provide three operations for composing fenced tangles

from simpler primitives.

• We use fenced tangles to define a denotational semantics for

knitout (Section 5). This is the first formal semantics that cov-

ers the complete space of v-bed knitting machine programs.

We believe it may also be the first formal semantics whose

denotations are literally pictures/diagrams.

• We demonstrate how our formal semantics can be used to

prove the topological correctness of general knitout program

rewrite rules (Section 6); and give correctness proofs of sev-

eral useful low-level rewrite rules (Appendix D).

• We demonstrate how these low-level rewrites can be used

to schedule and optimize knitout patterns – including multi-

layer objects, which are impossible to create with previous

machine knitting design systems (Sections 7 & 8).

2 MACHINE KNITTING BACKGROUND
We begin by providing a brief overview of knit structures and ma-

chine knitting; for a detailed description of machine operations we

refer the readers to [McCann et al. 2016].

Knitting is the act of taking one or more yarns and manipulating

them into a series of interlocking loops that form a stable fabric. The

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:3

inset figure shows an example of a knit structure. The yarns used

to construct a knit fabric are pliable and can slide along other yarns.

This results in soft, deformable fabric structures. Technically, yarn in

a knit structure can be unravelled to undo the loops and transformed

into a completely different object. However this degree of freedom

is counter-productive when trying to characterize the geometric

and topological structure of the object.

Typically, once the end(s) of the yarn(s) in

a knit object have been secured, the loops

constituting the object can continue to

slide and the fabric can continue to de-

form in 3D space, but the relationships

between yarns that constitute the basic

building blocks of the fabric (e.g., the highlighted “knit” stitch) re-

main fixed. Indeed, this set of fixed loop relationships has been

used to accelerate knit simulation [Cirio et al. 2015]. This notion of

strands that can be deformed in 3D space but have fixed relation-

ships to their surrounding structures lends itself well to description

with the topological notion of ‘tangles’ – a portion of a knot bounded

by a circle with fixed points on its boundary. We will use tangles

and extend the idea to a notion of ‘fenced’ tangles in section 4.1 to

formalize the topological structure of knit objects.

view of front bed

during knitting

Carrier Tracks

Yarn Carriers Carriage Front Bed

Needle

Fig. 3. A v-bed knitting machine creates fabric by using a carriage to actuate
needles arranged into front and back beds. The beds are positioned in an
inverted “v” shape, with the back bed behind the front bed (and, thus, not
visible in this illustration). Yarn is supplied to the needles by yarn carriers
which run along carrier tracks. (Figure based on [Sanchez et al. 2023].)

V-bed weft knitting machines (Fig. 3) consist of two facing beds
(rows) of hook-shaped needles, each of which can hold a stack of

loops. Between the two beds runs a number of tracks, each of which

has a single yarn carrier that provides yarn. Most machine opera-

tions consist of one or more yarn carriers moving to a particular

location, the needle at which is then actuated to move forward and

pull yarn from the yarn carrier(s) to construct loops on its hook

(tuck). The needle and associated mechanisms can also pull the

new loop through previous loops held on its hook while releasing

these held loops (knit). While yarn carriers provide yarns for nee-

dles to operate with, they also trail yarns between needles. Yarns

produced by different carriers can entangle with each other when

used on needle beds closer or further away from each track, making

the underlying topology of the constructed object challenging to

track. In addition to creating and pulling loops through loops, two

aligned needles on opposite beds can move loops held on one to the

other (xfer). This can be done independently or combined with the

formation of a new loop (split). The back bed can slide left/right

(rack) to change which needles are aligned. By combining basic

loop-making operations with the ability to move loops between

needles, knitting machines can produce complex knit structures.

The act of actuating the needle itself is performed by a carriage
that rides along the length of the needle beds. The carriage encases

a configurable cam plate that engages with needles on the needle

bed, where each machine operation has a different cam plate setup.

This has two important implications. First, any number of stitches

may be performed in one carriage pass as long as the stitches appear

in order and use compatible cam plate setups and yarn carriers.

Knitting machine program efficiency is generally increased by de-

creasing the number of passes – which means that moving knitting

instructions without changing program meaning is an important

task for knit programmers. Second, any language that allows the

use of all cam plate setups and yarn carriers is a complete knitting

machine language.

3 RELATED WORK
Knitting (both by hand and machine) and other forms of fabric-

making craft have a very rich history [Postrel 2020], with recent

research focusing on high-level and 3D design and interaction tools

for hand and machine knitting as well as specialized knitted struc-

tures for application to various domains. In doing so, a variety of

knitting representations have been developed, though most of them

do not rigorously characterize the object being made. The work

done to mathematically characterize knit objects only apply in more

limited settings.

We begin by reviewing the current state-of-the-art knit program

generation pipelines and their limitations caused by incomplete

characterization of the machine knitting program space. We then

go over existing formalizations of knit objects before covering other

DSL and semantic approaches to fabrication.

3.1 Knitting Machine Program Generation
Traditionally, knit programming occurs directly in the construction

space of the machine – requiring users to figure out the construction

location (at which needle must a stitch be created) and construc-

tion order of stitches (at what time this stitch must be created) at

the same time as they determine stitch type and connectivity. Fur-

ther, it is the programmer’s responsibility to ensure that stitches

and transfer instructions are encoded appropriately and efficiently.

This is done using either the proprietary languages supported by

industrial knitting CAD systems such as KnitPaint [Shima Seiki

2011] and M1 Plus [Stoll 2011] or more recently the knitout lan-

guage [McCann 2017]. To provide high-level control and support

common designs at scale, these CAD systems also support paramet-

ric templates for garments such as sweaters and gloves. Libraries

of textures are also maintained that can be applied to patterns and

further edited [Shima Seiki 2019; Soft Byte Ltd. 1999]. Guidebooks of

advanced techniques do exist that can assist with this process [Un-

derwood 2009]. However, the traditional knitting design process

still requires the knowledge of an expert machine programmer.

In order to lower the barrier of entry to machine knitting, various

systems were developed to decouple knit object design from pro-

gramming by automatically generating machine knitting programs

from high-level representations. Popescu et al. [2018] described

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:4 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

a system that automatically generates a knit representation for

topologically-disc-shaped patches, which are later connected manu-

ally. However, many intermediate steps including patch segmenta-

tion and machine layout remain manual in their system. Narayanan

et al. [2018] introduced an automatic pipeline that generates all-knit

surfaces from 3D meshes. They later extended the pipeline to handle

color and simple textures [Narayanan et al. 2019]. Jones et al. [2021]

introduce a system to support patch-level pattern editing while

maintaining low-level knittability constraints. Kaspar et al. [2019b]

present a system that learns machine knitting instructions by curat-

ing a dataset of KnitPaint programs and images of the associated

fabricated results. Recently, Nader et al. [2021] presented a graph

rewriting based approach for supporting 3D knitting of meshes with

textures. Finally, Kaspar et al. [2019a; 2021] presented an interactive

design system in the construction space coupled with techniques

to compose textures for surface patterning and force-layout based

embedding. More recently, they presented an approach to turn cut-

and-sew patterns into seamless machine knitting patterns.

Crucially, all these systems assume either explicitly or implicitly

that the input representation is a surface where all yarn paths lie

within said surface. While it is true many knit objects are amenable

to such a representation, techniques such as thick spacer fabrics [Al-

baugh et al. 2021] and knit integrated tendons [Albaugh et al. 2019]

involve yarns that move between what could otherwise be char-

acterized as separate surfaces. In fact, our motivating example of

two interlocked sheets (Figure 1) also illustrates a situation where

this assumption does not hold. This limitation is primarily due to

the difficulty of correctly scheduling knit objects with more compli-

cated yarn routing. Of existing systems, KnitKit [Nader et al. 2021]

in theory could be adapted to handle more complicated schedul-

ing problems. However, it still requires an expert to author such a

scheduling algorithm, and – indeed – no foundation exists upon

which to judge the correctness of such an algorithm.

3.2 Formal Characterization of Knit Objects
How should we mathematically represent an object created by a

knitting machine? Unlike rigid machined objects (formalized as

regular, closed subsets of R3
[Requicha 1977]), knit objects are built

out of entangled, flexible yarn. While there has been investigation

into hand knitting as 2D surfaces, such as Belcastro’s [2009] proof

that 2D surfaces of any topology can be hand knit, understanding

the underlying yarn-level structure of knitting remains an interest-

ing and challenging problem. In addition, it is important to note

that human knitters are dexterous and able to form more complex

stitches than v-bed machines. Thus it is useful to narrow our focus

to specifically objects that can be knit by machines.

Most prior work focused on yarn-level knit topology look to knot
theory [Adams 1994] for inspiration. However, directly using math-

ematical “knots” to formalize knit objects runs into three significant

problems: (1) Knots are comprised of closed loops, while knit objects

have loose ends, and there is no canonical way to close these loops

for an arbitrary object. (2) Knot/link diagrams are not composable—

meaning that there are no simple operations for building complex

knot diagrams out of simpler knot diagrams. (3) The topological

equivalence of knot theory does not account for any metric proper-

ties of a real knit object, which arise from the looseness/tightness

of stitches, as well as non-stitch elements like “misses” (machine-

knitting) or “yarn overs” (hand-knitting) that simply let out more

yarn between stitches.

To address points (1) and (2), prior work is limited to a sub-

set of knit objects. For example, Grishanov [2009] studied textile

structures like knitting and weaving as knots and links on a torus,

while Markande and Matsumoto [2020] focused specifically on knit

swatches, viewing knit stitches as knots on a thickened torus with

an algebra to join them and make a fabric. The choice of the torus

as the embedding space addresses issue of loose ends, while the

algebra introduced by Markande and Matsumoto allows for a type of

composition that provides interesting insight on the periodic nature

of common knit structures. However, these particular abstractions

can only cover infinite periodic structures, making them ill-suited

for describing specific finite programs. Lin and McCann [2021; 2018]

have looked specifically at using the Artin braids to formally define

transfer plan correctness, which is a subset of knitting instructions.

Their choice of the Artin braids for their mathematical formalism

means points (1) and (2) are addressed. However, its definition also

includes a monotonicity condition that conflicts with the loop for-

mation process in knitting. Thus their approach cannot be extended

to all knitting instructions.

As for non-knot theoretic formalizations, TopoKnit is a data struc-

ture that uses graph edges and nodes to describe yarn routing and

intertwining respectively, thus enabling certain topology checks on

machine knit fabrics [Kapllani et al. 2022, 2021]. However, while it

covers a large subset of machine operations, it is still incomplete,

and not all relevant topological features are captured. Several ma-

chine knitting design systems involve graph-based intermediate data

structures that in theory could be extended to describe non-planar

knits [Kaspar et al. 2019a; Nader et al. 2021; Narayanan et al. 2018].

However, they either assume an input from a planar representation

or only consider the planar case.

Our topological formalism is carefully defined to capture the full

scope of machine knitting operations while still addressing points

(1) and (2). While our formalism does not directly address point (3),

we do discuss in Section 7.1.3 how a heuristic approach can be used

to develop basic reasoning on metric properties.

3.3 DSLs for Fabrication
Based on the insight that fabrication plans are programs, graphics

researchers are applying programming language techniques to solve

fabrication problems [Leake et al. 2021; Wu et al. 2019; Zhao et al.

2022]. The Carpentry Compiler uses a set of rewrite rules to perform

equality saturation on programs representing different ways of con-

structing a solid shape from wood [Wu et al. 2019]. This works well

because the construction of each sub-component can be constructed

free of the context of how other sub-components are constructed,

and of how that sub-component will be assembled into the whole.

By contrast, knitting machines have large amounts of state, and

knitting programs are therefore context-sensitive. Consequently,

we must state and apply our rewrites in the context of a particular

program trace, which exposes our state-dependence.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:5

arc

crossingfence

tangle

𝑇

𝐾

𝐾◦

Fig. 4. A fenced tangle, 𝑇 , and two projections, 𝐾 and 𝐾◦, to fenced tangle
diagrams which differ in their equator orientation.

The idea of user-scheduling, or decoupling the “algorithm” of

what needs to be computed and the “schedule” of how it should

be computed, has been popularized as a way of concisely writing

high-performance code for CPUs and accelerators [Chen et al. 2018;

Ragan-Kelley et al. 2012]. Some of these user-schedulable DSLs

have a “rewrite-based” approach, where their scheduling language

rewrites one IR to the same IR, which helps make the scheduling

language modular and composable [Ikarashi et al. 2022; Steuwer

et al. 2017]. In this paper, we also take a rewrite-based scheduling

approach, and define a set of scheduling rules that rewrite one

knitout representation to another equivalent knitout representation.

4 FENCED TANGLES
In this section, we present a formalism based on a presentation of

tangles, which, roughly speaking, represent a cut-out piece of a knot

diagram. By enriching these tangles with fences, we allow internal

loose ends and prevent local unravelling (Fig. 4). We then address

the issue of composition by defining a standard presentation and

three composition operations.

4.1 Fenced Tangles Definition
The following definition uses some technical terms such as tame,
homeomorphic, etc. We provide precise definitions of these terms in

Appendix A.1 and recommend a knot theory book [Adams 1994] for

a more detailed discussion. In addition, we provide the following

brief, intuitive glossary. Tame can be understood as meaning “not

pathological in strange fractal ways.” Homeomorphic (meaning there

exists a homeomorphism between the two shapes/spaces) can be

understood as “has a continuous mapping between them” whereas

saying there is an ambient isotopy between shapes means “can be

continuously deformed into each other without collision”. Thus, all

closed loops in R3
are homeomorphic (all equivalently circles in

and of themselves) but are not all ambient isotopic – since they can

be knotted in different ways.

Definition 4.1 (Tangle). Let 𝑈 ⊆ R3
be compact and simply con-

nected (i.e., homeomorphic to a closed ball), with equator 𝑄 ⊂
bd(𝑈), a tame loop homeomorphic to the circle. A tangle 𝑇 in 𝑈 is

a tame embedding of zero or more arcs and loops 𝛾𝑖 : [0, 1] → 𝑈

(continuous and tame), satisfying the following conditions: (i) The

interior of each arc is interior to 𝑈 (𝛾 ((0, 1)) ⊆ int(𝑈)). Either

(ii.arc) each endpoint lies interior to 𝑈 or on the equator (𝛾 ({0, 1}) ⊆

𝐾 𝐾◦

𝐾�

�

R1

R2
R3

�

or

𝐾 𝐾

�

R4

R5

� �

fence�

Fig. 5. Equivalent fenced tangle diagrams are connected by sequences of
smooth 2D deformations along with Reidemeister moves (R1-3) and fenced-
tangle Reidemeister moves (R4, R5), which work regardless of the number
of arcs connected to the fence.

𝑄 ∪ int(𝑈)); or (ii.loop) the endpoints are coincident in the interior

(𝛾 (0) = 𝛾 (1) ∈ int(𝑈)). (iii) no two arcs intersect. Two tangles 𝑇1, 𝑇2

are equivalent (𝑇1 � 𝑇2) if there is an ambient isotopy of R3
carrying

𝑇1 to 𝑇2.

Rather than reason about tangle equivalence directly, we will

instead work with diagrams.

Definition 4.2 (Tangle Diagram). Let 𝑉 ⊆ R2
be compact and

simply connected (i.e., homeomorphic to a closed disc). A tangle
diagram in 𝑉 is a tame immersion of zero or more arcs and loops

𝛾𝑖 : [0, 1] → 𝑉 , and crossing annotations satisfying the following

conditions: (i) The interior of each arc is interior to𝑉 (𝛾 ((0, 1)) ⊆ 𝑉).

Either (ii.arc) the endpoints may lie anywhere in 𝑉 ; or (ii.loop) the

endpoints are coincident in the interior (𝛾 (0) = 𝛾 (1) ∈ int(𝑉)). (iii)

There are a finite number of transversal intersections 𝑝𝑖 between

the arcs (including self-intersections) with each such “crossing” an-

notated with one of the two arc segments “passing over” the other.

Two tangle diagrams 𝐾1, 𝐾2 are equivalent (𝐾1 � 𝐾2) if 𝐾1 can

be transformed into 𝐾2 by some sequence of the following manip-

ulations: ambient isotopy of R2
, or Reidemeister moves 1, 2, or 3

(Fig. 5).

We say that a tangle diagram 𝐾 is a projection of a tangle 𝑇 ,

Figure 4, if there is a projection of R3
to R2

sending 𝑈 to 𝑉 , 𝑄 to

bd(𝑉), 𝛾𝑖 in 𝑈 to 𝛾𝑖 in 𝑉 , and such that the crossing annotations

agree with the ordering of arcs in R3
as they are projected.

Definition 4.3 (Flip of a Diagram). Note that if 𝐾 is a projection

of 𝑇 , then 𝐾◦
(the diagram obtained by flipping the order of each

crossing, and taking the mirror reflection in R2
) is also a projection

of 𝑇 , but not necessarily an equivalent projection.

Proposition 4.4. Let𝑇 ,𝑇 ′ be two tangles and 𝐾 , 𝐾 ′ their projections.
Then 𝑇 � 𝑇 ′ iff 𝐾 � 𝐾 ′ or 𝐾◦ � 𝐾 ′ (see Figure 4)

A fenced tangle is defined similarly to a regular tangle, but with

the extra data provided by “fences”, and one key relaxation of the

conditions.

Definition 4.5 (Fenced Tangle (Diagram)). Let 𝑇 be the data for

a tangle defined on 𝑈 . Additionally for reference, let 𝑆2

𝐿
be the 2-

sphere 𝑆2
along with a distinguished equator 𝑄𝐿 : 𝑆1 → 𝑆2

𝐿
. Then a

fenced tangle on 𝑈 is defined by the tangle data 𝑇 , along with a set

of tame embeddings of this reference “fenced sphere” 𝐿𝑖 : 𝑆2

𝐿
→ 𝑈 .

These fenced spheres must satisfy the following conditions (i) all

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:6 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

�

�

Fig. 6. Tangles without fences (top) can locally “unravel”. Fences (bottom)
prevent unravelling by restricting the motion of arcs at crossings. This is
key to capturing the as-fabricated topology of knit items.

spheres are disjoint in 𝑈 . (ii) all intersections between arcs and

labels are transverse and occur along the equator 𝐿𝑖 (𝑄𝐿) (fence).

Finally, we relax the tangle condition on where endpoints of arcs are

allowed to lie. In a fenced tangle, endpoints of arcs are also allowed

to lie on fences, as well as on the equator of 𝑈 or joining up into

a loop. Two fenced tangles are equivalent if there is an ambient

isotopy between them which also carries fences to fences (Fig. 6).

Given a fenced tangle diagram 𝐾 on 𝑉 , let fences be tame embed-

dings of the circle 𝐿𝑖 : 𝑆1 → 𝑉 satisfying the following conditions:

(i) all fences are disjoint in 𝑉 . (ii) all intersections between arcs and

labels are transverse. (Similarly, arc endpoints are now allowed to

lie on the fence circles instead of only forming loops or running to

the end of the diagram) A fenced tangle diagram is a tangle diagram

together with a set of fences. Two fenced tangle diagrams 𝐾1, 𝐾2 are

equivalent if 𝐾1 can be transformed into 𝐾2 by some sequence of

ambient isotopies of R2
, Reidemeister moves 1, 2, 3, or fenced-tangle

Reidemeister moves 4, 5 (Fig. 5).

Similar to plain tangles, a fenced tangle diagram 𝐾 can be a pro-

jection of a fenced tangle𝑇 , provided fenced spheres are projected to

fences, meaning that the sphere’s equator is projected to a diagram

fence and the volume enclosed by the fenced sphere is projected to

the area enclosed by the fence. A similar proposition holds for 𝐾◦
.

4.2 Fenced Tangle Composition
Having now defined fenced tangles, it is useful to be able to describe

them using a composition of simpler fenced tangle diagrams. This

enables the proof of several lemmas that can be used to facilitate

proofs of fenced tangle equivalence (see appendix B). To do this, we

first define a standard diagram presentation that will be used for

the rest of the paper:

Definition 4.6 (Slab Presentation). Let 𝐾 be a fenced tangle diagram

defined on 𝑅, a rectangle in the plane. Then we say 𝐾 is an (𝑛,𝑚)-
slab if there are 𝑛 arc endpoints lying on the bottom side of the

rectangle and 𝑚 arc endpoints lying the top side of the rectangle,

and no endpoints on the left or right.

Notation 4.7 (Slab Types). It will be useful to refer to the set of

(𝑛,𝑚)-slabs by S𝑚
𝑛 , so that we may simply write 𝐾 ∈ S𝑚

𝑛 .

We then define three types of tangle concatenation (see Fig. 7 for

pictorial intuition).

𝐾1 ⊗ 𝐾2 𝐾1 ◦ 𝐾2 𝐾1 |𝐾2

Fig. 7. Slab presentation and three types of fenced tangle concatenation.
From left to right, an (𝑛,𝑚)-slab, horizontal concatenation 𝐾1 ⊗ 𝐾2, vertical
concatenation 𝐾1 ◦ 𝐾2, and layer concatenation 𝐾1 |𝐾2

Definition 4.8 (Horizontal Concatenation). Let 𝐾1 ∈ S𝑚
𝑛 and

𝐾2 ∈ S𝑞
𝑝 . By ambient isotopy, we can scale the rectangles to have

equal height. Then if we glue the right side of 𝐾1 to the left side of

𝐾2 we get their horizontal concatenation (𝐾1 ⊗ 𝐾2) ∈ S𝑚+𝑞
𝑛+𝑝 .

Definition 4.9 (Vertical Concatenation). Let 𝐾1 ∈ S𝑝
𝑛 and 𝐾2 ∈ S𝑚

𝑝 .

Again, by ambient isotopy, we may assume that the two rectangles

have equal width, and that the 𝑝 top points of 𝐾1 align with the

𝑝 bottom points of 𝐾2. Then we can construct their vertical con-

catenation (𝐾1 ◦ 𝐾2) ∈ S𝑚
𝑛 by gluing the two rectangles along the

matching top/bottom.

Definition 4.10 (Interleavings). Let𝑚,𝑛 ∈ N. Then, an interleaving

𝜔 of 𝑚 and 𝑛 (𝜔 ∈ I𝑚,𝑛) can be specified as a partition of [𝑚 + 𝑛]
into two sets of size𝑚 and 𝑛 respectively. Let 𝜔 ⊆ [𝑚+𝑛] be the first

set, of size 𝑚. Let 𝜔 ∈ I𝑛,𝑚 be the opposite interleaving, specified

by the second set of 𝜔 .

Definition 4.11 (Layer Concatenation). Let 𝐾1 ∈ S𝑚
𝑛 and 𝐾2 ∈ S𝑞

𝑝 ,

with both defined on the same rectangular region 𝑅 (also achievable

by ambient isotopy). Furthermore let 𝜄 ∈ I𝑛,𝑝 , and 𝜔 ∈ I𝑚,𝑞 be

interleavings of endpoints of 𝐾1 and 𝐾2 on the bottom (input) and

top (output) of this common rectangle 𝑅. Then, (𝐾1 |𝜔𝜄 𝐾2) ∈ S𝑚+𝑞
𝑛+𝑝 is

the layering of 𝐾1 over 𝐾2 according to this interleaving. Let 𝐾1 |𝜔𝜄 𝐾2

contain all arcs and labels from both diagrams. Any new crossings

are annotated such that arcs from 𝐾1 pass over arcs from 𝐾2. Fur-

thermore, 𝐾1 |𝜔𝜄 𝐾2 is only considered well defined if (i) crossings

between arcs and labels from 𝐾1 and 𝐾2 are transverse, (ii) all arcs

and labels in 𝐾1 lie outside of all labels in 𝐾2, and (iii) all arcs and

labels in 𝐾2 lie outside of all labels in 𝐾1.

Rather than draw out every tangle diagram in full, we will find it

useful to define the structure of some common fenced tangle slabs

and use those to compose more complex fenced tangles.

Definition 4.12 (Identity Slabs). Let 𝑖𝑑𝑛 ∈ S𝑛
𝑛 consist of 𝑛 arcs

running straight up from the bottom to the top of the slab, called

an/the identity slab. When 𝑛 can be inferred from the context, we

simply write 𝑖𝑑 . 𝑖𝑑0 is also called the empty tangle.

Definition 4.13 (Permutation Slab). Let 𝑜 be a permutation of 𝑛

things specified (equivalently) as a one-to-one function 𝑜 : [𝑛] →
[𝑛], which may be notated as a non-repeating list of the numbers

in [𝑛] in any order. Then define the slab 𝜋𝑜 ∈ S𝑛
𝑛 as 𝑛 strands, each

running from the 𝑖th input point to the 𝑜 (𝑖)th
output point without

crossing itself, and such that whenever the strand starting at input

𝑖 and the strand starting at input 𝑗 cross (with 𝑖 < 𝑗) 𝑖 crosses over

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:7

𝑗 . All such slabs are equivalent. 𝜋 −1

𝑜 is defined as the unique slab

s.t. 𝜋𝑜 ◦ 𝜋 −1

𝑜 = 𝑖𝑑𝑛 . However, note that in general 𝜋 −1

𝑜 ≠ 𝜋𝑜−1 . So

for a given permutation 𝑜 , the four slabs 𝜋𝑜 , 𝜋 −1

𝑜 , 𝜋𝑜−1 and 𝜋 −1

𝑜−1
are

distinct. In particular, 𝜋 −1

𝑜−1
looks identical to 𝜋𝑜 , except the crossings

are all right-over-left, rather than left-over-right. (and similarly for

the other two cases)

Lastly, we want some way to pick and separate out some number

of yarns; and in reverse, a way to merge them back into a group.

Definition 4.14 (Separate and Merge). Let 𝜄 ∈ I𝑛,𝑝 be an interleav-

ing. Observe that 𝜄 defines a permutation function as follows: Let 𝑜𝜄

be the permutation function that sends the subset 𝜄 to [0, 𝑛) and the

subset 𝜄 to [𝑛, 𝑛+𝑝) with the mapping monotonic within each side of

the partition. We define separate to the left as

←−
𝑉 𝜄 = 𝜋𝑜𝜄

, and separate
to the right as

−→
𝑉 𝜄 = 𝜋𝑜𝜄

. We define merge from the left as

−→
Λ 𝜄 = 𝜋 −1

𝑜𝜄
,

and merge from the right as

←−
Λ 𝜄 = 𝜋 −1

𝑜𝜄
. Thus, the following inverse

identities hold:

−→
Λ 𝜄 ◦ ←−

𝑉 𝜄 =
←−
Λ 𝜄 ◦ −→

𝑉 𝜄 = 𝑖𝑑𝑛+𝑝 . Examples of the four

slabs are given in Fig. 8.

Note that another four similar slabs could have been defined using

𝑜−1

𝜄 instead of 𝑜𝜄 . However, we will have no use for them: because

of the physical constraints of a knitting machine, lower-numbered

yarn carriers must always cross over higher-numbered carriers.

Fig. 8. Given the particular interleaving 𝜄 = (1 2) we can define two separate
and two merge slabs, varying by the direction in which the yarns identified
by 𝜄 are merged from or separated to. The arrows act as a mnemonic to
tell us which direction the 𝜄 yarns are being pulled (reading the slab from
bottom to top), and the character acts as mnemonic for whether the yarns
are being merged (Λ) or separated (𝑉).

5 FORMAL KNITOUT
Formal definitions of computer programming languages typically

consist of at least three major parts: a grammar specifying the

syntax of the language, a type system that further specifies which

programs are “valid,” and a semantics specifying the “meaning” of

any valid program (for a more in-depth review of these concepts,

we refer you to Appendix A.2). While knitout is a control language

for knitting machines, not computers,
1

we can still use the same

process to formalize it. We specify the grammar of formal knitout

in Definition 5.1 using Backus-Naur form (BNF). In Definition 5.4,

we define our type-checking relation 𝑆
𝑘𝑠−−→ 𝑆 ′

on abstract machine

states 𝑆 and 𝑆 ′
. Not only does this allow us to restrict our attention

1
Indeed, knitout does not contain, e.g., variables, function calls, or control flow.

xfer b.2 f.2;

knit − f.2 3.0 (2, 1.0);
xfer f.1 b.1;

miss − f.1 2;

xfer b.1 f.1;

2

3

4

5

1

(a) Formal knitout program (Definition 5.1)

𝑆0 = (0, [f.1 ↦→ 1] [b.2 ↦→ 1], [2 ↦→ 3], [2 ↦→ f.3])

𝑆1 = (0, [f.1 ↦→ 1] [f.2 ↦→ 1], [2 ↦→ 3], [2 ↦→ f.3])

𝑆2 = (0, [f.1 ↦→ 1] [f.2 ↦→ 1], [2 ↦→ 2], [2 ↦→ f.2])

𝑆3 = (0, [b.1 ↦→ 1] [f.2 ↦→ 1], [2 ↦→ 2], [2 ↦→ f.2])

𝑆4 = (0, [b.1 ↦→ 1] [f.2 ↦→ 1], [2 ↦→ 1], [2 ↦→ f.2])

𝑆5 = (0, [f.1 ↦→ 1] [f.2 ↦→ 1], [2 ↦→ 1], [2 ↦→ f.2])

↓ xfer b.2 f.2

↓ knit − f.2 3.0 (2, 1.0)

↓ xfer f.1 b.1

↓ miss − f.1 2

↓ xfer b.1 f.1

(b) Program trace defined by validity relations (Fig. 11)

E[𝑆4

𝑘𝑠4−−−→ 𝑆5]

E[𝑆3

𝑘𝑠4−−−→ 𝑆4]

E[𝑆2

𝑘𝑠3−−−→ 𝑆3]

E[𝑆1

𝑘𝑠2−−−→ 𝑆2]

E[𝑆0

𝑘𝑠1−−−→ 𝑆1]

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

c.1 c.2

c.2c.1

c.3

c.3

E[𝑆1]

E[𝑆2]

E[𝑆3]

E[𝑆4]

E[𝑆5]

E[𝑆0]

(c) Denoted fenced tangle (Fig. 12)

Fig. 9. An excerpt of formal knitout code for knitting linen stitch (a) describes
the mechanical actions performed by the machine, but is insufficient for
describing the resulting knit topology. Executing the program on initial

state 𝑆0 produces a unique trace 𝑆0

𝑘𝑃−−→ 𝑆5, which proves our program is
well-formed (b). Each machine state denotes points on a slab’s boundary,
while the trace denotes the fenced tangle that connect said points (c).

to only valid formal knitout programs, the information contained

in machine states 𝑆 and 𝑆 ′
is useful for defining the meaning of

knitout programs (i.e., their semantics). We define the meaning of

individual machine states E[𝑆] in Definition 5.5 as an intermediary

step to defining the fenced tangle denoted by a valid knitout program

E[𝑆 𝑘𝑠−−→ 𝑆 ′] (Definition 5.6). For clarity, we do not include some

knitout features in the formalization; these differences are explained

in Appendix C. An example of our formal definitions applied to a

specific program instance is found in Fig. 9.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:8 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

Definition 5.1 (Knitout). A knitout program𝑘𝑠 is defined according

to the following context free grammar:

𝑘𝑠 ::= 𝑘𝑠1;𝑘𝑠2

| tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠)
| knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

| split 𝑑𝑖𝑟 𝑛.𝑥 𝑛′ .𝑥 ′ 𝑙 𝑦𝑎𝑟𝑛𝑠

| miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦

| in 𝑑𝑖𝑟 𝑛.𝑥 𝑦

| out 𝑑𝑖𝑟 𝑛.𝑥 𝑦

| drop 𝑛.𝑥

| xfer 𝑛.𝑥 𝑛′ .𝑥 ′

| rack 𝑟

| nop
𝑑𝑖𝑟 ∈ {−, +}

𝑛, 𝑛′
::= f | b

𝑟, 𝑥, 𝑥 ′ ∈ Z
𝑠, 𝑙 ∈ R

𝑦𝑎𝑟𝑛𝑠 ::= (𝑦, 𝑠)+
(without repetition)

𝑦 ∈ N

Note that 𝑙 is the size of a loop produced by a stitching operation

and 𝑠 is the length of yarn running between this stitch and the last

stitch using said yarn. 𝑑𝑖𝑟 is the direction in which the carrier is

moving when executing the operation.

Knitout programs refer to needle locations (on which loops are

stored) and yarn carrier locations (at which loose ends of yarn are

held). We make a distinction between logical and physical locations

(Fig. 10). Knitout programs are written in terms of logical locations,

but their validity and semantics are defined in terms of the physical

locations. To organize these concepts and avoid confusion, we make

the following definitions.

Definition 5.2 (Locations).

• A logical needle location is a pair 𝑛.𝑥 ∈ nLoc where nLoc =

{f, b} × Z is the set of all logical needle locations. Logical

needle locations identify a “front bed” or “back bed” needle

location.

• A logical yarn carrier location is a pair of a logical needle

location and direction (𝑛.𝑥, 𝑑𝑖𝑟) ∈ ycLoc, where ycLoc =

nLoc × {+, −}. Intuitively, the direction identifies which side

of a needle a yarn carrier is “parked at.”

• A physical needle location is an integer 𝑧 ∈ Z. The physical

location corresponding to a logical needle location 𝑛.𝑥 at

racking offset 𝑟 is ⌊f.𝑥⌋𝑟 = 𝑥 and ⌊b.𝑥⌋𝑟 = 𝑥 + 𝑟 .

• A physical yarn carrier location is an integer 𝑧 ∈ Z. The phys-

ical location corresponding to a logical yarn carrier location

(𝑛.𝑥, 𝑑𝑖𝑟) at racking offset 𝑟 is defined as ⌊𝑛.𝑥, +⌋𝑟 = ⌊𝑛.𝑥⌋𝑟 +1

and ⌊𝑛.𝑥, −⌋𝑟 = ⌊𝑛.𝑥⌋𝑟 . Intuitively, yarn carriers immediately

to the left of physical needle location 𝑧 are assigned physical

location 𝑧, while yarn carriers immediately to the right of

physical needle location 𝑧 are assigned physical location 𝑧 + 1.

You can think of these as actually sitting at 𝑧 − 0.5 and 𝑧 + 0.5.

We use whole numbers for simplicity, and we will sometimes

use the notation 𝑐.𝑧 in diagrams for visual clarity.

c.x c.x+1.x b.x-rf

Fig. 10. The knitting machine consists of two beds of needles where at
racking 𝑟 , front bed needle f.𝑥 is aligned with back bed needle b.𝑥 − 𝑟 . In
between the needles are yarn carrier tracks. These logical machine locations
are projected from 2D to 1D physical locations using a left-to-right, front-
to-back order, where each carrier projects to a single point and each loop
projects to two points. These ordered points on a line are what is denoted
by a given machine state E[𝑆].

Each knitout operation creates yarn geometry and manipulates

the machine state:

Definition 5.3 (Knitout Machine State). A knitout machine state

𝑆 = (𝑟, 𝐿, 𝑌 , 𝐴) consists of:

• 𝑟 ∈ Z, the racking offset, or the offset of the needles on the

back bed relative to the front bed. At offset 𝑟 , back needle

b.𝑥 − 𝑟 is across from front needle f.𝑥 .

• 𝐿 ∈ nLoc → N, a partial function with default value 0 that

reports the number of loops on each needle.

• 𝑌 ∈ N → Z, a partial function that gives the current physical

position of the yarn carriers. If the value is ⊥ (the default

value), then we say that the carrier is inactive.

• 𝐴 ∈ N → ycLoc a partial function that gives the logical

carrier location of where each yarn carrier is attached to a

loop. An inactive carrier (with value ⊥) is not attached.

We define the empty state as 𝑆∅ = (0, [], [], []). For a review of

partial function notation, see Definition A.1.

Definition 5.4 ((Valid) Knitout Trace). Given a knitout program

𝑘𝑠 and knitout machine states 𝑆, 𝑆 ′
, we say that executing 𝑘𝑠 on 𝑆

produces 𝑆 ′
if the relation 𝑆

𝑘𝑠−−→ 𝑆 ′
holds (as defined in Figure 11).

As a shorthand, we may write 𝑆0

𝑘𝑠1−−−→ 𝑆1

𝑘𝑠2−−−→ 𝑆2 for 𝑆0

𝑘𝑠1;𝑘𝑠2−−−−−−→ 𝑆2,

with the additional information that rule V-seq has been instantiated

with intermediate state 𝑆1. We also refer to such composite relations

as traces of knitout programs. We say that a knitout program is

valid or well-formed if it has a trace. We say that a valid knitout

program 𝑘𝑠 is complete if it both begins and ends with the empty

state 𝑆∅
𝑘𝑠−−→ 𝑆∅ . Note that for a given initial state 𝑆 and knitout

statement 𝑘𝑠 , the resulting state 𝑆 ′
is uniquely determined.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:9

⌊f.𝑥⌋𝑟 := 𝑥 ⌊𝑛.𝑥, +⌋𝑟 := ⌊𝑛.𝑥⌋𝑟 + 1 (𝑌,𝑦𝑎𝑟𝑛𝑠) =𝑟 (𝑛.𝑥, 𝑑𝑖𝑟) := ∀𝑦 ∈ 𝑦𝑎𝑟𝑛𝑠 : 𝑌 (𝑦) = ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟

⌊b.𝑥⌋𝑟 := 𝑥 + 𝑟 ⌊𝑛.𝑥, −⌋𝑟 := ⌊𝑛.𝑥⌋𝑟 𝑛.𝑥 ∥𝑟 𝑛′ .𝑥 ′
:= ⌊𝑛.𝑥⌋𝑟 = ⌊𝑛′ .𝑥 ′⌋𝑟 ∧ 𝑛 ≠ 𝑛′

𝑆
𝑘𝑠1−−−→ 𝑆 ′ 𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′

V-seq
𝑆

𝑘𝑠1;𝑘𝑠2−−−−−−→ 𝑆 ′′

V-nop
𝑆

nop−−−→ 𝑆

(𝑌,𝑦𝑎𝑟𝑛𝑠) =𝑟 (𝑛.𝑥, ¬𝑑𝑖𝑟) 𝑌 ′ = 𝑌 [𝑦𝑎𝑟𝑛𝑠 ↦→ ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟]
V-miss

(𝑟, 𝐿, 𝑌 , 𝐴) miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦𝑎𝑟𝑛𝑠
−−−−−−−−−−−−−−−−→ (𝑟, 𝐿, 𝑌 ′, 𝐴)

(𝑌,𝑦𝑎𝑟𝑛𝑠) =𝑟 (𝑛.𝑥, ¬𝑑𝑖𝑟) 𝑌 ′ = 𝑌 [𝑦𝑎𝑟𝑛𝑠 ↦→ ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟]
V-tuck

(𝑟, 𝐿, 𝑌 , 𝐴) tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠
−−−−−−−−−−−−−−−−−→ (𝑟, 𝐿[𝑛.𝑥 ↦→ 𝐿(𝑛.𝑥) + #𝑦𝑎𝑟𝑛𝑠], 𝑌 ′, 𝐴[𝑦𝑎𝑟𝑛𝑠 ↦→ 𝑛.𝑥])

(𝑌,𝑦𝑎𝑟𝑛𝑠) =𝑟 (𝑛.𝑥, ¬𝑑𝑖𝑟) 𝐿(𝑛.𝑥) > 0

𝑌 ′ = 𝑌 [𝑦𝑎𝑟𝑛𝑠 ↦→ ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟]
𝐴′ = 𝐴[𝑦𝑎𝑟𝑛𝑠 ↦→ 𝑛.𝑥]

V-knit
(𝑟, 𝐿, 𝑌 , 𝐴) knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

−−−−−−−−−−−−−−−−−→ (𝑟, 𝐿[𝑛.𝑥 ↦→ #𝑦𝑎𝑟𝑛𝑠], 𝑌 ′, 𝐴′)

|𝑟 − 𝑟 ′ | = 1

V-rack
(𝑟, 𝐿, 𝑌 , 𝐴) (rack 𝑟 ′)

−−−−−−−−→ (𝑟 ′, 𝐿, 𝑌 , 𝐴)

𝑛.𝑥 ∥𝑟 𝑛′ .𝑥 ′ 𝐿′ = 𝐿[𝑛.𝑥 ↦→ 0] [𝑛′ .𝑥 ′ ↦→ 𝐿(𝑛.𝑥) + 𝐿(𝑛′ .𝑥 ′)]
V-xfer

(𝑟, 𝐿, 𝑌 , 𝐴) xfer 𝑛.𝑥 𝑛′ .𝑥 ′
−−−−−−−−−−−−→ (𝑟, 𝐿′, 𝑌 , 𝐴[{𝑦 : 𝐴(𝑦) = 𝑛.𝑥} ↦→ 𝑛′ .𝑥 ′])

𝑌 (𝑛.𝑥) > 0

V-drop
(𝑟, 𝐿, 𝑌 , 𝐴) drop 𝑛.𝑥−−−−−−−→ (𝑟, 𝐿[𝑛.𝑥 ↦→ 0], 𝑌 , 𝐴)

(𝑌,𝑦𝑎𝑟𝑛𝑠) =𝑟 (𝑛.𝑥, ¬𝑑𝑖𝑟) 𝑛.𝑥 ∥𝑟 𝑛′ .𝑥 ′ 𝑌 ′ = 𝑌 [𝑦𝑎𝑟𝑛𝑠 ↦→ ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟]
𝐴′ = 𝐴[{𝑦 : 𝐴(𝑦) = 𝑛.𝑥} ↦→ 𝑛′ .𝑥 ′] [𝑦𝑎𝑟𝑛𝑠 ↦→ 𝑛.𝑥]

V-split
(𝑟, 𝐿, 𝑌 , 𝐴) split 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑛′ .𝑥 ′ 𝑦𝑎𝑟𝑛𝑠

−−−−−−−−−−−−−−−−−−−−−−−→ (𝑟, 𝐿[𝑛.𝑥 ↦→ #𝑦𝑎𝑟𝑛𝑠] [𝑛′ .𝑥 ′ ↦→ 𝐿(𝑛.𝑥) + 𝐿(𝑛′ .𝑥 ′)], 𝑌 ′, 𝐴′)

𝑌 (𝑦) = ⊥ 𝑌 ′ = 𝑌 [𝑦 ↦→ ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟]
𝐴′ = 𝐴[𝑦 ↦→ 𝑛.𝑥] 𝐴(𝑦) = ⊥

V-in
(𝑟, 𝐿, 𝑌 , 𝐴) in 𝑑𝑖𝑟 𝑛.𝑥 𝑦

−−−−−−−−−−→ (𝑟, 𝐿, 𝑌 ′, 𝐴′)

𝑌 (𝑦) = ⌊𝑛.𝑥, 𝑑𝑖𝑟⌋𝑟
𝑌 ′ = 𝑌 [𝑦 ↦→ ⊥]
𝐴′ = 𝐴[𝑦 ↦→ ⊥] 𝐴(𝑦) ≠ ⊥

V-out
(𝑟, 𝐿, 𝑌 , 𝐴) out 𝑑𝑖𝑟 𝑛.𝑥 𝑦

−−−−−−−−−−−→ (𝑟, 𝐿, 𝑌 ′, 𝐴′)

Fig. 11. Validity relation for knitout programs (see Definition 5.4), where #𝑦𝑎𝑟𝑛𝑠 is the size of the yarn carrier sequence. Only valid knitout programs denote a
fenced tangle. Note that for a fixed 𝑆 and 𝑘𝑠 , 𝑆 ′ is uniquely determined.

Definition 5.5 (Machine State Denotation). Let 𝑆 = (𝑟, 𝐿, 𝑌 , 𝐴) be

a machine state. Then E[𝑆], the denotation of 𝑆 , is a set of points

on a line, which is divided into annotated segments as follows (also

see Figure 10, bottom):

• for each 𝑖 ∈ Z there is a yarn carrier segment for physical

yarn carrier location 𝑖 , followed by a front needle segment

for physical needle location 𝑖 , followed by a back needle loca-

tion segment for physical needle location 𝑖 (corresponding to

logical location 𝑖 − 𝑟).

• for each 𝑘 ∈ N with 𝑌 (𝑘) ≠ ⊥, there is a point in yarn carrier

segment ⌊𝑌 (𝑘)⌋𝑟 = 𝑖 . This point is the 𝑗𝑡ℎ point if there are

(𝑗 − 1) yarns with 𝑙 < 𝑘 and ⌊𝑌 (𝑙)⌋𝑟 = 𝑖 .

• for each 𝑛𝑙 = (𝑛.𝑥) ∈ nLoc with 𝐿(𝑛𝑙) = 𝑘 , there are 2𝑘 points

in the segment corresponding to needle location ⌊𝑛𝑙⌋𝑟 on the

𝑛 bed. (These are the 𝑘 loops on needle 𝑛𝑙)

Definition 5.6 (Semantics of Knitout). Let 𝑘𝑇 = 𝑆0

𝑘𝑠1−−−→ 𝑆1 −→
· · · −→ 𝑆𝑛 be a valid knitout program/trace. Then E[𝑘𝑇] is the

fenced tangle which 𝑘𝑇 denotes, defined inductively. Throughout

the definition, we will work with the slab presentation of fenced

tangle diagrams. As an invariant, the input (bottom) boundary of

E[𝑆 𝑘𝑠−−→ 𝑆 ′] will match E[𝑆] and the output (top) boundary will

match E[𝑆 ′].
First, we will address the inductive case. E[𝑆 𝑘𝑠1−−−→ 𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′] is

defined to be the vertical concatenation of the two slabs E[𝑆 𝑘𝑠1−−−→
𝑆 ′] ◦E[𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′]. This composed diagram is well-defined because

its constituent diagrams are well-defined (by induction) and because

their shared boundary must identically be E[𝑆 ′] (by invariant).

The nop instruction does nothing, so E[𝑆 nop−−−→ 𝑆] = 𝑖𝑑 . Next,

we handle the rack instruction. Let 𝑘𝑇 = 𝑆
rack 𝑟−−−−−→ 𝑆 ′

. We define

I<∞ [𝑆] to be the partition of E[𝑆] into (on the one hand) all yarn

carrier points and loop points corresponding to front (f) needle

locations, and (on the other hand) all loop points corresponding to

back (b) needle locations. We then let 𝜄 = I<∞ [𝑆] ∈ I𝑚,𝑛 be the

initial interleaving of front-bed loops and yarn carriers on the one

hand, with the back-bed loops on the other, and let 𝜔 = I<∞ [𝑆 ′] ∈
I𝑚,𝑛 be the similar final interleaving after the racking operation.

Note that by the validity of traces, these partition sizes must match.

Then, we define the racking denotation as E[𝑘𝑇] = 𝑖𝑑𝑚 |𝜔𝜄 𝑖𝑑𝑛 . (see

Fig. 12b for an example illustration)

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:10 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

(a) Diagrams for individual knitout instructions are com-
pleted by being wrapped in this “frame”

(b) Illustration of rack 1. See text for precise definition

(c) tuck + f.𝑥 𝑙 (𝑦, 𝑠) (d) in + f.𝑥 𝑦 (e) out − f.𝑥 𝑦

(f) split + f.𝑥 b.(𝑥 − 𝑟) 𝑙 𝑦𝑎𝑟𝑛𝑠 (g) xfer f.𝑥 b.(𝑥 − 𝑟) (h) drop f.𝑥

(i) knit + f.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠 (j) miss + f.𝑥 𝑦

Fig. 12. Fenced tangles produced by knitout. Part of the definition of knitout semantics (Definition 5.6). Other than rack, all diagrams are wrapped by the
“frame” diagram, which defines how the yarn carriers being used in an instruction (𝑦𝑎𝑟𝑛𝑠) are merged (Λ) separated (𝑉) and how they are plated (𝜋). State
variables (𝑟,𝑌 , 𝐿) are all given with respect to the initial state before an instruction, except for 𝑌 ′ in the frame diagram, which refers to the state after the
instruction is done. Note that a group of arcs in parallel annotated as 0-many will disappear from the diagram. Also note that all diagrams here are given for
the positive/right-ward knitting direction (+) and in the front-facing variant. The left-ward, back-facing diagrams are flips of these diagrams; and the other
two cases are derived via a careful mirroring of the diagrams. All other instruction variation is parametric.

For the remaining operations with trace 𝑘𝑇 = 𝑆
𝑘𝑠−−→ 𝑆 ′

, all non-

trivial (i.e., not 𝑖𝑑) effects will be restricted to a particular phys-

ical needle location 𝑥 , and its interactions with the yarns imme-

diately to the left and right of the needle (yarn locations 𝑥 and

𝑥 + 1). Given the set of points E[𝑆], we define {E[𝑆] < 𝑝𝑙} to

be the subset of all points that correspond to a physical location

less than 𝑝𝑙 , while {E[𝑆] > 𝑝𝑙} is all points greater than 𝑝𝑙 . An

examination of the validity relation definition (Fig. 11) makes it

clear that {E[𝑆] < ⌊𝑛.𝑥, −⌋𝑟 } = {E[𝑆 ′] < ⌊𝑛.𝑥, −⌋𝑟 } and {E[𝑆] >

⌊𝑛.𝑥, +⌋𝑟 } = {E[𝑆 ′] > ⌊𝑛.𝑥, +⌋𝑟 }. Thus the denotation of 𝑘𝑇 can

be expressed as E[𝑘𝑇] = 𝑖𝑑𝑚 ⊗ 𝑇𝑠 ⊗ 𝑖𝑑𝑛 , where 𝑚 = #{E[𝑆] <

⌊𝑛.𝑥, −⌋𝑟 }, 𝑛 = #{E[𝑆] > ⌊𝑛.𝑥, +⌋𝑟 }, and 𝑇𝑠 is defined for each

operation according to figure 12.

6 TOPOLOGICALLY CORRECT KNITOUT REWRITES
Having defined a formal semantics on knitout using fenced tangles,

we can now define what it means for two knitout programs to be

topologically equivalent, and use this equivalence to prove correct-

ness of program rewrites. In this section, we focus specifically on

swapping the execution order of two knitout operations so we can

understand the tools available to us as we both compare specific

program instances and prove general rewrite rules; motivation for

performing this program transformation is deferred to Section 7.

We start by defining what we mean for two knitout programs to be

topologically equivalent.

Definition 6.1 (Topological Equivalence of Valid Knitout Programs).
Let 𝑘𝑠1 and 𝑘𝑠2 be (partial) knitout programs. If both programs are

valid on starting state 𝑆 and take it to state 𝑆 ′
(i.e., 𝑆

𝑘𝑠1−−−→ 𝑆 ′
and

𝑆
𝑘𝑠2−−−→ 𝑆 ′

) and these traces denote the same tangle, E[𝑆 𝑘𝑠1−−−→ 𝑆 ′] �

E[𝑆 𝑘𝑠2−−−→ 𝑆 ′], we say that 𝑘𝑠1 and 𝑘𝑠2 are equivalent in the context

of 𝑆 and write:

𝑆 ⊢ 𝑘𝑠1 � 𝑘𝑠2

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:11

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

𝑖𝑑3

𝑖𝑑2 𝐾2

𝐾1

c.2

c.2

c.3c.1

c.1 c.3

(a) 𝑘𝑠4;𝑘𝑠3;𝑘𝑠5 �

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

𝑖𝑑3

𝑖𝑑2 𝐾2

𝐾1

c.2

c.2

c.3c.1

c.1 c.3

(b) 𝑘𝑠3;𝑘𝑠4;𝑘𝑠5 �

f.1

f.1

b.1

b.1

f.2

f.2

b.2

b.2

c.2

c.2

c.3c.1

c.1 c.3

(c) 𝑘𝑠3;𝑘𝑠5;𝑘𝑠4

Fig. 13. The fenced tangle diagrams denoted by programs (a) and (b) are topologically equivalent. The diagram transformation is a simple application of
ambient isotopy, and their equivalence can also be proven using Lemma 6.5. In contrast, fenced tangles (b) and (c) are not equivalent due to the change in
crossing annotations in the circled region.

Corollary 6.2 (Local Rewrites). Let 𝑘𝑠1;𝑘𝑠2;𝑘𝑠3 and 𝑘𝑠1;𝑘𝑠′
2
;𝑘𝑠3 be

two valid knitout programs, where 𝑆
𝑘𝑠1−−−→ 𝑆 ′. If 𝑆 ′ ⊢ 𝑘𝑠2 � 𝑘𝑠′

2
, then

𝑆 ⊢ 𝑘𝑠1;𝑘𝑠2;𝑘𝑠3 � 𝑘𝑠1;𝑘𝑠′
2
;𝑘𝑠3 .

6.1 Proving Fenced Tangle Equivalence
Let us consider the example program shown in Fig. 9, specifically

the subprogram 𝑘𝑠2;𝑘𝑠3;𝑘𝑠4:

2 knit − f . 2 3 . 0 (2 , 1 . 0) ;

3 xfer f . 1 b . 1 ;

4 miss − f . 1 2 ;

In figure 13 we see the tangle denoted by reordered sub-programs

𝑆1

𝑘𝑠3;𝑘𝑠2;𝑘𝑠4−−−−−−−−−→ 𝑆4 and 𝑆1

𝑘𝑠2;𝑘𝑠4;𝑘𝑠3−−−−−−−−−→ 𝑆4 (note that in this specific

example, the knitout trace for both rewrites is valid, but that is not

necessarily true for all knitout programs). We see that Fig. 13a can

be transformed into Fig. 13b by an ambient isotopy. By contrast,

Fig. 13c and Fig. 13b have different crossings between the loop at

b.1 and carrier 2 (circled). These diagrams can’t be transitioned

between using any combination of Reidemeister moves and ambient

isotopies. Thus the first pair of fenced tangle diagrams prove that

𝑆1 ⊢ 𝑘𝑠2;𝑘𝑠3 � 𝑘𝑠3;𝑘𝑠2 and the second pair seem to strongly suggest

that 𝑆2 ⊢ 𝑘𝑠3;𝑘𝑠4 � 𝑘𝑠4;𝑘𝑠3.

Note, however, that these three tangle diagrams are the deno-

tations of these specific three program fragments executed on a

specific machine state. Proving that two slightly different program

fragments are equivalent would require a new sequence of fenced

tangle diagrams, and the correct sequence of Reidemeister moves

may be less trivial. While we can (and do) use templated tangle

diagrams akin to the ones used in Fig. 12, a purely diagrammatic

approach quickly becomes intractable as fenced tangle complexity

increases. Fortunately, fenced tangle composition is not only useful

for defining fenced tangles, but also for proving topological equiva-

lence. For example, let us consider the following two lemmas (proof

left as an exercise for the reader):

Lemma 6.3. For any fenced tangle slab 𝐾 ∈ S𝑚
𝑛 , vertical concatena-

tion of the identity results in an equivalent fenced tangle:

𝑖𝑑𝑛 ◦ 𝐾 � 𝐾 � 𝐾 ◦ 𝑖𝑑𝑚

Lemma 6.4 (◦-⊗ Distributivity). Let 𝐾𝑎 ∈ S𝑚1

𝑛1
and 𝐾𝑏 ∈ S𝑝1

𝑚1

be one pair of vertically composable fenced tangles, and 𝐾𝑐 ∈ S𝑚2

𝑛2

and 𝐾𝑑 ∈ S𝑝2

𝑚2
be a second pair. Then the following compositions are

equivalent:

(𝐾𝑎 ◦ 𝐾𝑏) ⊗ (𝐾𝑐 ◦ 𝐾𝑑) � (𝐾𝑎 ⊗ 𝐾𝑐) ◦ (𝐾𝑏 ⊗ 𝐾𝑑)

These lemmas can then be used to prove a general statement

about commutativity of horizontally separated sub-tangles:

Lemma 6.5 (Commutativity by Horizontal Separation). For any
𝐾1 ∈ S𝑚

𝑛 and 𝐾2 ∈ S𝑞
𝑝 the following equation holds:

(𝐾1 ⊗ 𝑖𝑑𝑝) ◦ (𝑖𝑑𝑚 ⊗ 𝐾2) � (𝑖𝑑𝑛 ⊗ 𝐾2) ◦ (𝐾1 ⊗ 𝑖𝑑𝑞)

Proof. We begin by using Lemma 6.4 to rewrite (𝐾1 ⊗ 𝑖𝑑𝑝) ◦
(𝑖𝑑𝑚 ⊗ 𝐾2) into (𝐾1 ◦ 𝑖𝑑𝑚) ⊗ (𝑖𝑑𝑝 ◦ 𝐾2). Lemma 6.3 can then be

used to slide 𝐾1 up and 𝐾2 down to produce fenced tangle ((𝑖𝑑𝑛 ◦
𝐾1) ⊗ (𝐾2 ◦ 𝑖𝑑𝑞)), which is congruent to (𝑖𝑑𝑛 ⊗ 𝐾2) ◦ (𝐾1 ⊗ 𝑖𝑑𝑞) by

another application of Lemma 6.4.

𝐾2

�

𝑖𝑑𝑚

𝑖𝑑𝑝 𝑖𝑑𝑛

𝑖𝑑𝑞

𝐾2𝐾1

𝐾1

□

Many knitout operations denote (Definition 5.6) a tangle of the

form 𝑖𝑑 ⊗ 𝐾 ⊗ 𝑖𝑑 ; and knitout program composition maps to vertical

composition (◦) of fenced tangles. Thus, intuitively, we should be

able to use Lemma 6.5 to prove the correctness of swapping some,

but not all, pairs of operations. In fact, we can go one step further and

define an extent function ex(𝑘𝑠) (Definition D.3) that maps any valid

knitout program to a rectangle [𝑅𝑥𝑚𝑖𝑛, 𝑅𝑥𝑚𝑎𝑥] × [𝑅𝑦𝑚𝑖𝑛, 𝑅𝑦𝑚𝑎𝑥]
that contains the non-𝑖𝑑 part of its fenced tangle. This rectangle

can not only be used to generate the horizontal decomposition of

E[𝑆 𝑘𝑠−−→ 𝑆 ′], but its depth-wise decomposition as well, for which

we prove a similar commutativity property using Lemma B.9. Using

this extent function, we can state the following generalized Rewrite

Rule for swapping knitout subprograms:

Rewrite Rule 1 (Swap). Two operations can be swapped if their

extents are disjoint: 𝑆 ⊢ 𝑘𝑠1;𝑘𝑠2 � 𝑘𝑠2;𝑘𝑠1 whenever ex(𝑘𝑠1) ∩
ex(𝑘𝑠2) = ∅

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:12 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

If we return to our example program rewrite 𝑆1 ⊢ 𝑘𝑠2;𝑘𝑠3 �
𝑘𝑠3;𝑘𝑠2, we find that ex(𝑘𝑠2) = [1.5, 2.5] × [2, ∞] and ex(𝑘𝑠3) =

{1} × [−∞, ∞], making it an example covered by Rewrite Rule Swap.

Meanwhile, ex(𝑘𝑠4) = [1.5, 2.5] × {2} intersects with ex(𝑘𝑠3) in

both dimensions. Thus Rewrite Rule Swap cannot be applied. By

proving small, general statements on program equivalence that

can be applied within a larger context, we develop a powerful tool

for reasoning about the correctness of more complicated program

transformations.

7 IMPLEMENTING A REWRITE-EDITOR
Now that we’ve demonstrated the importance of a suite of low-level

rewrite rules as well as how we can prove their correctness, it is

natural to ask what rewrite rules we should prove. A reasonable

starting point would be rewrite rules useful to practical high-level

compilation tasks. In the following section we examine some com-

mon motivations for rewriting programs and provide an overview

of the rewrite rules we validated. A high-level summary of our

rewrites and their corresponding proofs in the appendix are located

in Table 1.

7.1 Rewrite Motivations
7.1.1 Fabrication Time. Recall that the knitting machine has two

rows of needles known as beds and a larger piece called the carriage
that moves along the needle bed and actuates individual operations

via a cam system. Each movement of the carriage along the bed is

known as a carriage pass, and depending on the machine’s particular

cam sets, different operations can be grouped into a single pass. The

amount of time required for a carriage pass is roughly independent

of the number of needle operations it contains. This is because

much of the pass consists of a constant acceleration/deceleration

phase, and the carriage can actuate any needles it passes over at no

additional cost. Thus when optimizing a knitting program to reduce

fabrication time, the goal is not necessarily to minimize operation

count, but to change when operations are executed such that pass

count is minimized. Rewrite Rule 1 (Swap) is used for changing

operation order. In addition to the extent analysis we performed on

Table 1. Rewriting equivalences (rules) proven in this paper. Rules with
asterisks have preconditions not present in this figure (see associated proof).

Name Rule Proof

Swap*

𝑘𝑠1

𝑘𝑠2

�
𝑘𝑠2

𝑘𝑠1

§D.1

Merge*

𝑘𝑠1

𝑘𝑠2

� nop §D.2

Squish
xfer 𝑛.𝑥 𝑛′ ..𝑥 ′

xfer 𝑛′ .𝑥 𝑛.𝑥
� xfer 𝑛′ .𝑥 ′ 𝑛.𝑥 §D.2

Slide
tuck 𝑑𝑖𝑟 𝑛.𝑥 (𝑦, 𝑠)
xfer n.x n’.x’

�
tuck 𝑑𝑖𝑟 𝑛′ .𝑥 ′ (𝑦, 𝑠)
xfer n.x n’.x’

§D.3

Conjugate* 𝑘𝑠 (+, f.𝑥) �

miss − f.𝑥 − 1 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥, 𝑟, −1)
𝑘𝑠 (+, f.𝑥 − 1)
miss + f.𝑥 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥 − 1, 𝑟 − 1, 1)

§D.3

general subprograms in Definition D.2, we perform a special case

analysis of the SHIFT macro used in Rewrite Rule 5 (Lemma D.8).

7.1.2 Program Reliability. While knitting machines are generally

quite robust, any operation has some chance of failure. For example,

repeated rack operations may introduce excess strain on yarn, while

xfer operations may not cleanly send all loops from source needle

𝑛.𝑥 to destination needle 𝑛′ .𝑥 ′
. Thus one aspect of improving knit

program reliability is to remove unnecessary operations. Rewrite

Rule Merge does this by considering pairs of operations that are

clear inverses:

Rewrite Rule 2 (Merge). Racking in one direction and then back

in the other direction is the same as doing nothing.

𝑆 ⊢ (rack (𝑟 ± 1); rack 𝑟) � nop

where 𝑟 is the initial racking value in 𝑆 .

Missing at 𝑛.𝑥 in one direction and then back in the other is the

same as doing nothing.

𝑆 ⊢ (miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦; miss ¬𝑑𝑖𝑟 𝑛.𝑥 𝑦) � nop

Similarly, Rewrite Rule Squish considers how pairs of aligned

xfer operations cancel:

Rewrite Rule 3 (Squish).

𝑆 ⊢ xfer 𝑛.𝑥 𝑛′ .𝑥 ′
; xfer 𝑛′ .𝑥 ′ 𝑛.𝑥 � xfer 𝑛′ .𝑥 ′ 𝑛.𝑥

Furthermore, when 𝐿(𝑛′ .𝑥) = 0 in initial state 𝑆 ,

𝑆 ⊢ xfer 𝑛′ .𝑥 ′ 𝑛.𝑥 � nop

7.1.3 Machine Specific Compatibility. So far, our formalism has

assumed an abstract knitting machine with infinitely wide needle

beds that can be racked to any value, as well as infinitely many

carriers. As a result, there will always be enough space to execute

a valid knitting program. In practice, the number of needles and

carriers is finite (typically on the order of 10
3

and 10 respectively),

and the beds cannot be racked infinitely. These machine constraints

can be formalized as follows:

Needle and carrier sets A machine has a finite set of avail-

able needles and carriers. Thus, only needles in the range

[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] exist. The loop count state function 𝐿 : nLoc →
N must be zero for any 𝑛.𝑥 with 𝑥 outside of [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥].
There are also a finite number of yarn carriers 𝑦𝑐𝑜𝑢𝑛𝑡 . So, the

yarn carrier state must be a partial function 𝑌 : [𝑦𝑐𝑜𝑢𝑛𝑡] →
[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥].

Racking Valid racking is constrained to range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥].
In addition, our semantics is geared towards defining topological

correctness; thus it makes no use of loop size parameter 𝑙 and yarn

length parameters 𝑠 , which control the amount of yarn used for op-

erations. However, specific machines are not only limited to certain 𝑙

and 𝑠 values; they have validity conditions that are quite complicated

and often state dependent. For example, while yarn may stretch and

slide a small amount, it will eventually break when stretched too

far. This means that the validity of yarn length parameter 𝑠 depends

on which loops it is attached to. While fully capturing this logic is

beyond the scope of this paper, we can define the following basic

metric constraints to ensure physical plausibility:

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:13

(a) A screenshot of our rewrite-editor. Knitout instruc-
tions are shown as nodes in a graph, while loops and
yarns are shown as edges.

f.0

f.0

b.0

b.0 − 𝑟

f.1

f.1

b.1

b.1 − 𝑟

tuck − f.1 8 (1, 1)

tuck − f.0 8 (1, 1)

miss + f.0 1

xfer f.0 b.0

xfer b.0 f.1

rack 1

knit + f.1 8 (1, 1)

(b) The fenced tangle and knitout code corresponding to the screen-
shot. Note that knitout code is read from bottom up to match the
fenced tangle presentation. The yarn carrier id is 1 and the yarn
lengths are all 1 needle spacing unit.

Fig. 14. Knitout code shown in our rewrite-editor and the corresponding fenced tangle.

Needle width All needles have some width 𝑙𝑚𝑖𝑛 that serves as

a lower bound for the set of valid loop sizes.

Needle spacing Yarn length 𝑦 must be greater than the physi-

cal distance between the operation and its attach point. Put

formally, for each knitout trace 𝑆
𝑘𝑠−−→ 𝑆 ′

where 𝑘𝑠 is a sin-

gle operation with needle argument 𝑛.𝑥 and yarn carrier

sequence 𝑦𝑎𝑟𝑛𝑠 , ∀(𝑦, 𝑠) ∈ 𝑦𝑎𝑟𝑛𝑠 : 𝜆 |𝑌 (𝑦) − 𝐴(𝑦) | < 𝑠 , where

𝜆 is the spacing between needles.

Critically, it is necessary to rewrite a program in a way that pre-

serves the denoted fenced tangle, but changes the elements of the

machine state upon which feasible length construction depends. I.e.,

the needle locations of loops (𝐿), attach points (𝐴) of yarn carriers,

and racking (𝑟) when each operation is executed. Changing machine

racking can be trivially accomplished with a sequence of rack op-

erations, and loops can be moved to the opposite bed with a single

xfer. This is useful for changing the needle location where tuck
operations are performed:

Rewrite Rule 4 (Slide). Let 𝑛.𝑥 and 𝑛′ .𝑥 ′
be defined such that they

are the pair f.𝑧 and b.𝑧 − 𝑟 , or the pair b.𝑧 − 𝑟 and f.𝑧. Then let

𝑘𝑠 (𝑛.𝑥) = tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠).

𝑆 ⊢ 𝑘𝑠 (𝑛.𝑥); xfer 𝑛.𝑥 𝑛′ .𝑥 ′ � 𝑘𝑠 (𝑛′ .𝑥 ′); xfer 𝑛.𝑥 𝑛′ .𝑥 ′

Note that this rule does not apply to the knit operation. This is

because changing which bed a knit operation occurs on changes

its structure. Moving a loop to a needle on the same bed requires a

more involved series of operations:

Definition 7.1 (Rack and Shift Macros). Let

RACK(𝑟, 𝑗) := rack 𝑟 + 1; rack 𝑟 + 2; . . . ; rack 𝑟 + 𝑗

be a knitout program that racks 𝑗 times to the right starting at

racking position 𝑟 ; if 𝑗 < 0, then similarly let RACK expand to a

sequence of decrementing rack instructions. Furthermore, let

𝑆 ⊢ SHIFT(f.𝑥, 𝑟, 𝑗) � xfer f.𝑥 b.(𝑥 − 𝑟); RACK(𝑟, 𝑗);
xfer b.(𝑥 − 𝑟) f.(𝑥 + 𝑗)

𝑆 ⊢ SHIFT(b.𝑥, 𝑟, b.(𝑥 + 𝑗)) � xfer b.𝑥 f.(𝑥 + 𝑟); RACK(𝑟, − 𝑗);
xfer f.(𝑥 + 𝑟) b.(𝑥 + 𝑗)

be a knitout program that transfers loops from any one needle to

any one other needle on the same bed by using an intermediate

needle on the opposite bed.

The SHIFT macro and miss instructions can be combined to route

loops and yarn carriers to a new physical location, where an opera-

tion can be performed before re-routing everything back to produce

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:14 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

“meaning” “meaning”

f.0

f.0

b.0

b.0b. − 1

b. − 1

f. − 1

f. − 1

f.0

f.0

b.0

b.0b. − 1

b. − 1

Squish

�

Fig. 15. Screenshots of the rewrite-editor for Squish rewrite rule and the
corresponding fenced tangles.

the same ending state. The correct sequence of routing operations

is non-trivial to describe and dependent on the operation’s initial

bed {f, b}, its 𝑑𝑖𝑟 parameter {+, −}, and whether the physical nee-

dle location is incremented or decremented {Right, Left}. Thus for

clarity, we present only one of six cases here:

Rewrite Rule 5 (Conjugate [f, +, Left]). Let 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) be either

a knit or tuck instruction 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠

or 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠) (we will simply refer to

(𝑦, 𝑠) as 𝑦𝑎𝑟𝑛𝑠 in the tuck case). Let 𝑆 be the state prior to 𝑘𝑠 . If

the following needles are empty 𝐿(b.𝑥 − 𝑟) = 0, 𝐿(f.𝑥 − 1) = 0,

and if there are no yarn carriers in the way that we are not using

𝑌 −1 (⌊f.𝑥, −⌋𝑟) = 𝑦𝑎𝑟𝑛𝑠 , then

𝑆 ⊢ 𝑘𝑠 (+, f.𝑥) � miss − f.𝑥 − 1 𝑦𝑎𝑟𝑛𝑠; SHIFT(f.𝑥, 𝑟, −1);
𝑘𝑠 (+, f.𝑥 − 1);
miss + f.𝑥 𝑦𝑎𝑟𝑛𝑠; SHIFT(f.x-1, r-1, 1)

(where miss on multiple 𝑦𝑎𝑟𝑛𝑠 is simply a sequence of miss opera-

tions, one for each yarn)

7.2 Knitout Editor Implementation
We implemented an editor for applying our rewrite rules to formal

knitout programs. The editor is written in JavaScript and runs on a

browser. The interface implements common useful interactions such

as multi-select, zoom, drag, etc. The interface of the rewrite-editor

is shown in Fig. 14a, and the corresponding fenced tangles and the

formal knitout code is shown in Fig. 14b.

Because knitout is time monotonic by definition, it can be visual-

ized as an upward time-dependent graph. Each knitout instruction

is visualized as a block that spans needle locations which the in-

struction uses. For example, 13:tuck shows an instruction that is a

tuck operation, and is the 13th operation in the program. Note that

numbers such as 13 are timestamps, not unique instruction IDs.

Therefore they can change after the rewrites. The rewrite-editor

visualizes all the knitout instructions except for the rack instruction.

Instead, the machine’s racking value is tracked for each instruction

internally.

Instruction nodes are augmented with orange circles such as

1 , which annotate each loop with an id and the location of the

incoming and outgoing loop, and green circles such as 3 , which

visualize the yarn carrier id and the location of the incoming and

outgoing yarn. Empty loops and yarns are visualized as gray circles

. When one loop or yarn connects two instructions, we draw a

vertical dependency line with the corresponding color.

For each needle location, the front bed is visualized as a white

column and the back bed is visualized as a grey column. The yarn

carrier location exists on both sides of the needle locations, and is

visualized as a green column. Program rewrites are performed by

selecting instructions followed by the appropriate rule (Fig. 15). The

rewrite is applied only if it is correct given the program context.

8 RESULTS
To demonstrate the expressivity of the rewrite rules, we programmed

four examples using the rewrite-editor and knit them on a Shima

Seiki SWG091N2 (15 gauge) two-bed knitting machine. All the in-

puts to the rewrite-editor were either handwritten or produced by

simple JavaScript code, and all the rewrites were performed on the

rewrite-editor to produce the output. Since the rewrite rules apply

on individual instructions, scheduling large knitout programs can be

challenging. Thus, we did rewrites on small versions of each knitout

program and then expanded them using a Python script that dupli-

cates and enlarges the program. Length annotation parameter units

are based on the spacing between needles (approximately 1.7mm on

our machine). Thus a length annotation of 1 can be respected if the

yarn connects adjacent needle location, but is invalid if the loops

are two needles apart. Loop length parameters are kept constant

throughout the examples at 8 (which we decided would correspond

to our machine’s default loop length setting).

8.1 Pass Optimization
When teaching, we have noticed that machine knitting novices

tend to write knitout that is correct but inefficient. For example,

when writing knitout instructions to back bed knit (a ‘purl’ in

hand-knitting) several loops held on the front bed, a novice will

write a transfer-knit-transfer sequence for each loop. This sequence

is visualized on the rewrite editor in Fig. 16 (left). Such per-stich

interleavings are inefficient because knit and xfer operations re-

quire separate carriage passes. Re-ordering the code to group knits

and xfers into separate blocks results in fewer passes and a shorter

knitting time.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:15

Swap ∗5

5 carriage pass 3 carriage pass

xfer f.3 b.3

xfer f.3 b.3knit − b.3 8 (3, 1)

knit − b.3 8 (3, 1)xfer b.3 f.3

xfer b.3 f.3

xfer f.2 b.2

xfer f.2 b.2

knit − b.2 8 (3, 1)

knit − b.2 8 (3, 1)

xfer b.2 f.2

xfer b.2 f.2

Fig. 16. Rewrite-editor screenshot and the corresponding knitout code of
the pass optimization example. See Definition 5.1 for the formal knitout
syntax. Left is typical knitout that novices tend to write, which is correct
but inefficient due to unnecessary carriage passes. After applying the Swap
rewrite rule five times, we can consolidate knit and xfer instructions so
that the number of carriage passes becomes three. This is a small example,
but the impact of the optimization increases as the size of the program gets
larger.

We optimized the carriage passes by applying a sequence of Swap
operations on the original knitout code. Fig. 16 shows a small exam-

ple of how such optimization can be done in the rewrite-editor using

the following sequence of Swap operations. Note that numbers in

nodes are not unique IDs but are timestamps.

(1) Swap (8:xfer, 9:xfer)

(2) Swap (9:xfer, 10:knit)

(3) Swap (10:xfer, 11:xfer)

(4) Swap (7:knit, 8:xfer)

(5) Swap (6:xfer, 7:xfer)

The input knit structure had 60 rows and 30 columns. Before

scheduling, there were two knit-xfer switches per row and column.

Therefore, the initial number of passes was 2 ∗ 60 ∗ 30 = 3600. After

applying the rewrite Swap, there are only four knit-xfer switches

per row, because xfers and knits are consolidated across columns.

Therefore, the number of passes is 60 ∗ 4 = 240.

The manufacturer’s design software for our knitting machine [Shima

Seiki 2011] estimates the original code’s runtime at 50 minutes 30 sec-

onds while the optimized version needs only 3 minutes 26 seconds.

The rewrite optimized version is 14.7x faster, which roughly corre-

sponds to the ratio of the number of passes, which is 3600/240 = 15.

8.2 Full to Half Gauge
Consider a tightly knit sheet of knit fabric, constructed on a con-

tiguous sequence of machine needles. The same sheet can also be

produced by using needles that are further spaced out, for example

using every other needle (i.e., on ‘half-gauge’). While this change

in gauge affects the ability of a machine to respect yarn length pa-

rameters, the topology of the underlying structure remains intact.

Adjusting the gauge and moving instructions to desired locations

while preserving topological equivalence is a ubiquitous task in

machine knitting. Given this, we demonstrate how our rewrite rules

can be used to transform a full-gauge fabric to half-gauge.

(a) Full-gauge sheet (b) Sheet transformed to half-gauge

(c) Full-gauge tube (d) Tube transformed to half-gauge

Fig. 17. Examples of sheets and tubes converted from full gauge to half
gauge using rewrite rules to guarantee topological equivalence.

In the following example, we use a rewrite sequence pattern for

moving the instructions to a neighboring needle, which is illustrated

in Fig. 18. We first apply the rule Conjugate Right to two knit
instructions 3:knit and 0:knit. Conjugate Right will insert misses

and xfers as described in section Section 7. Then, we Swap the

xfers until they are next to each other and apply Squish to cancel

redundant xfers.

We scheduled a full gauge sheet (Fig. 17a) to a half gauge sheet

(Fig. 17b), and a full gauge tube (Fig. 17c) to a half gauge tube

(Fig. 17d) by moving each knit and tuck instruction to the right.

Note that the half-gauge examples are wider than their full-gauge

despite having the same topology. This is because the increased

spacing in the half gauge example prevents the annotated yarn

length from being respected.

8.3 Sheet Stacking
Recall the example discussed in the introduction, where a novice

attempted to reschedule two sheets with interleaved construction

passes so that instead of lying adjacent on the machine, one sheet

was directly in front of the other. We scheduled two separate, ad-

jacent sheets (Fig. 1a) so that they were correctly stacked (Fig. 1b)

using the rewrite-editor. We performed this scheduling task by first

moving all the knit instructions in the back bed sheet to use the

same physical needle locations as the front bed sheet, using the same

sequence of rewrite rules as Fig. 18. Then, we used the Swap rule to

swap knit instructions until the sheets were correctly interleaved.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:16 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

Conjugate Right
3:knit

0:knit

Swap ∗12 Squish

knit − f.2 8 (3, 2)

knit + f.2 8 (3, 2)

knit − f.1 8 (3, 2)
miss + f.1 3

knit − f.3 8 (3, 2)

knit + f.3 8 (3, 2)

knit − f.1 8 (3, 2)
miss + f.1 3

miss + f.2 3

miss − f.2 3

Fig. 18. Rewrite-editor screenshot and the corresponding knitout of the rewrite sequence for moving the knit/tuck instruction one to the left or right. The
sequence of rewrites in this example moves two knits (3:knit and 0:knit) from needle f.2 to f.3.

(a) 1/4th gauge, before rewrites (b) 2/3rd gauge, after rewrites

Fig. 19. Photos of the fabricated pleated tube examples

Note that the proof for the Swap rule relies on the swapped instruc-

tions having disjoint extents. This scenario requires repeated swap-

ping of instruction knit 𝑑𝑖𝑟 f.𝑥 8 (𝑦𝑓 , 1) with knit 𝑑𝑖𝑟 b.𝑥 8 (𝑦𝑏 , 1).
In our original program, 𝑦𝑓 = 3 and 𝑦𝑏 = 4. This means the extents

of the operations are disjoint, and the Swap rule is safe to perform.

If instead 𝑦𝑓 = 5, the instructions would no longer be disjoint, mak-

ing the rewrite unsafe. Executing the program with this change in

carriers results in the error seen in Fig 1c.

8.4 Pleated Tube
Existing knit design systems that automatically schedule knitout

programs all have the limitation that they cannot schedule structures

that require overlapping more than two sheets at the same physical

needle location. This excludes structures like pleats, where a fold in

the fabric is secured at one end. However, using a technique known

as fractional gauging, it is possible to machine knit such structures.

At a high level, 𝑛 separate sheets can be scheduled to the machine

by abstracting the needle bed as bins of width 𝑛 needles. The 𝑖-th

sheet in the stack is then assigned to the 𝑖-th needle in a bin. This

technique requires careful usage of transfers to keep the sheets from

intertangling. Therefore, it normally involves much trial and error

by an experienced knitting machine programmer.

We got an experienced knitting machine programmer to make a

tube with pleats. The tube has locations where there are 4 layers at

the same time. Therefore, the program was written in 1/4th gauge

(each layer uses one out of every four needle indices). However, knit-

ting at 1/4th gauge means the machine is forced to put more yarn

between each loop. Put another way, 𝑠 ≥ 4 for all 𝑠 parameters in

the program. We can see this extra yarn in the fabricated result (Fig.

19a). In addition, the program had many extraneous transfers, which

reduces fabrication reliability. These ideally should be removed.

To address these issues, we rewrote the program from 1/4th gauge

to 2/3rd gauge (each layer uses one out of every three needle indices,

where two layers share the same index). This gauge adjustment used

high-level rewrite strategies similar to the full to half gauge and

sheet intersection examples (see Fig.18). Extraneous transfers were

removed using Squish and Slide. In the resulting pleated tube, we

can see that it is narrower and that the bottom of the tube, where

most of the extra transfers occurred, looks neater (Fig. 19b).

9 DISCUSSION
Design Decisions. While the topology of the arcs used to define

the knitout semantics does match the yarn topology produced by the

machine, the choice of fence location was just that: a choice. Knitted

objects do not have little boxes around each loop that constrain

their range of motion, and arguments can be made for a different

choice of fence location and granularity. That said, in order to have

a mathematical object with a useful definition of equivalence, some
choice of constraints must be made to prevent unravelling. We be-

lieve that our particular semantics manages to strike the balance

between preserving local patterns important in machine knitting

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:17

while not excessively constraining transformations that physical

knit objects would undergo. However, different applications might

be better served by different decisions. Hand knitting, for example,

is both more flexible and more prone to variation than machines.

Thus, an attempt to formalize hand knit objects using fenced tangles

might decide on a different set of topological features as important to

preserve and define labels appropriately. We have demonstrated the

strength of fenced tangles as a mathematical tool for machine knit-

ting semantics and believe that it would be productive future work

to use them to define equivalence on other yarn-based structures.

Metric Correctness. As alluded to in Section 7.1.3, our semantics

focuses on formalizing topological correctness, but has no direct

consideration for metric correctness, which is crucial for compilation

tasks such as respecting machine compatibility. While one could

apply metric annotations to arc segments within a fenced tangle

and then use said annotations to define heuristics for valid loop and

stitch size parameters, fully capturing the complexity of a given

machine’s metric constraints will inevitably require confronting the

continuous nature of yarn. Again, there is no physical box around

each loop that prevents yarn from sliding in and out of it. Yet in

practice, arbitrary lengths of yarn do not slide around the object; if

it did, all the length could slide out one end and essentially unravel

the knit. There are many potential avenues for addressing metric

correctness, and it will be interesting to see how our work with

fenced tangles influences any future approaches.

Rewrite Expressivity. Our presented set of rewrites is not complete;

given two knitout programs that denote the same fenced tangle, it is

not always possible to move between them using just these rewrites.

For example, knit + f.𝑥 and knit − b.𝑥 produce topologically

equivalent fenced tangles, but we did not introduce a rewrite to

transform between them. Furthermore, because our rewrite rules

are all fairly low-level, manually performing high-level program

rewriting tasks with our editor is tedious and time-intensive (10’s to

100’s of minutes for the examples shown). We consider our rewrite

editor to be a proof-of-concept demonstration of edits that should

be used as the foundation of higher-level user-facing tools.

Unscheduled Machine Knitting. This paper formally defines the

semantics of knitout, which is a low-level, scheduled representa-

tion of machine knitting. However, many machine knitting design

tools work with unscheduled representations, where machine in-

structions have not yet been assigned to specific needles. Extending

this work to unscheduled representations would not only enable

reasoning about transformations within those representations, it is

critical for developing provably correct compilers from unscheduled

representations to scheduled machine instructions.

In addition, while prior works make claims about machine knitta-

bility constraints [Narayanan et al. 2018], what they actually define

are constraints on the types of knit representations for which they

can schedule a “correct” program. Our pleated tube is an example of

an object that violates said constraints but in reality can be machine

knit. It would be interesting if insights from knitout semantics could

be used to prove a tighter bound on the machine knittability of

unscheduled knitting representations.

ACKNOWLEDGMENTS
The authors would like to thank Himalini Gururaj and Lea Albaugh

for their help generating figures, with extra thanks to Lea for knit-

ting samples when the authors were sick. In addition, we would like

to thank the reviewers, particularly reviewer 3 for their insightful

guidance on improving paper readability. This material is based

upon work supported by the National Science Foundation under

Grant No. 1955444. Yuka Ikarashi acknowledges the generous sup-

port of the Funai Overseas Scholarship and the Masason Foundation

Fellowship.

REFERENCES
C.C. Adams. 1994. The Knot Book. W.H. Freeman, New York, NY.

Roland Aigner, Mira Alida Haberfellner, and Michael Haller. 2022. SpaceR: Knit-

ting Ready-Made, Tactile, and Highly Responsive Spacer-Fabric Force Sensors

for Continuous Input. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology (Bend, OR, USA) (UIST ’22). Association

for Computing Machinery, New York, NY, USA, Article 68, 15 pages. https:

//doi.org/10.1145/3526113.3545694

Lea Albaugh, Scott Hudson, and Lining Yao. 2019. Digital Fabrication of Soft Actuated

Objects by Machine Knitting. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association for Computing Machinery, New

York, NY, USA, 1–13.

Lea Albaugh, James McCann, Scott E. Hudson, and Lining Yao. 2021. Engineering

Multifunctional Spacer Fabrics Through Machine Knitting. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)

(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 498,

12 pages. https://doi.org/10.1145/3411764.3445564

Sarah-Marie Belcastro. 2009. Every Topological Surface Can Be Knit: A Proof. Journal
of Mathematics and the Arts 3, 2 (2009), 67–83.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan,

Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind

Krishnamurthy. 2018. TVM: An Automated End-to-end Optimizing Compiler for

Deep Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,

Berkeley, CA, USA, 579–594. http://dl.acm.org/citation.cfm?id=3291168.3291211

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient Simulation of

Knitted Cloth Using Persistent Contacts. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA
’15). Association for Computing Machinery, New York, NY, USA, 55–61. https:

//doi.org/10.1145/2786784.2786801

Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton

Ni, Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate

Foster. 2021. Petr4: Formal Foundations for P4 Data Planes. Proc. ACM Program.
Lang. 5, POPL, Article 41 (jan 2021), 32 pages. https://doi.org/10.1145/3434322

Sergei Grishanov, Vadim Meshkov, and Alexander Omelchenko. 2009. A topological

study of textile structures. Part I: An introduction to topological methods. Textile
Research Journal 79, 8 (2009), 702–713.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A

Minimal Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may

2001), 396–450. https://doi.org/10.1145/503502.503505

Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan

Ragan-Kelley. 2022. Exocompilation for Productive Programming of Hardware

Accelerators. In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation (San Diego, CA, USA) (PLDI
2022). Association for Computing Machinery, New York, NY, USA, 703–718. https:

//doi.org/10.1145/3519939.3523446

Benjamin Jones, Yuxuan Mei, Haisen Zhao, Taylor Gotfrid, Jennifer Mankoff, and

Adriana Schulz. 2021. Computational Design of Knit Templates. ACM Trans. Graph.
41, 2, Article 16 (dec 2021), 16 pages. https://doi.org/10.1145/3488006

Levi Kapllani, Chelsea Amanatides, Genevieve Dion, and David E. Breen. 2022. Loop

Order Analysis of Weft-Knitted Textiles. Textiles 2, 2 (2022), 275–295. https:

//doi.org/10.3390/textiles2020015

Levi Kapllani, Chelsea Amanatides, Geneviève Dion, Vadim Shapiro, and David E.

Breen. 2021. TopoKnit : A Process-Oriented Representation for Modeling the

Topology of Yarns in Weft-Knitted Textiles. CoRR abs/2101.04560 (2021), 22 pages.

arXiv:2101.04560 https://arxiv.org/abs/2101.04560

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019a. Knitting Skeletons:

A Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments. In

Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Tech-
nology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery,

New York, NY, USA, 53–65. https://doi.org/10.1145/3332165.3347879

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3411764.3445564
http://dl.acm.org/citation.cfm?id=3291168.3291211
https://doi.org/10.1145/2786784.2786801
https://doi.org/10.1145/2786784.2786801
https://doi.org/10.1145/3434322
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3488006
https://doi.org/10.3390/textiles2020015
https://doi.org/10.3390/textiles2020015
https://arxiv.org/abs/2101.04560
https://arxiv.org/abs/2101.04560
https://doi.org/10.1145/3332165.3347879

143:18 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

Alexandre Kaspar, Tae-Hyun Oh, Liane Makatura, Petr Kellnhofer, and Wojciech Ma-

tusik. 2019b. Neural Inverse Knitting: From Images to Manufacturing Instructions. In

Proceedings of the 36th International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov

(Eds.). PMLR, Long Beach, California, USA, 3272–3281.

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.

Knit Sketching: From Cut & Sew Patterns to Machine-Knit Garments. ACM Trans.
Graph. 40, 4, Article 63 (jul 2021), 15 pages. https://doi.org/10.1145/3450626.3459752

Casimir Kuratowski. 1922. Sur l’opération Ā de l’Analysis Situs. Fundamenta Mathe-
maticae 3, 1 (1922), 182–199. http://eudml.org/doc/213290

Mackenzie Leake, Gilbert Bernstein, Abe Davis, and Maneesh Agrawala. 2021. A

Mathematical Foundation for Foundation Paper Pieceable Quilts. ACM Trans. Graph.
40, 4, Article 65 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459853

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and

Christian Ferdinand. 2016. CompCert – A Formally Verified Optimizing Compiler.

In ERTS 2016: Embedded Real Time Software and Systems. SEE, Toulouse, France.

http://xavierleroy.org/publi/erts2016_compcert.pdf

Jenny Lin and James McCann. 2021. An Artin Braid Group Representation of Knitting

Machine State with Applications to Validation and Optimization of Fabrication

Plans. In 2021 IEEE International Conference on Robotics and Automation (ICRA).
Institute of Electrical and Electronics Engineers, New York, NY, USA, 1147–1153.

https://doi.org/10.1109/ICRA48506.2021.9562113

Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer Planning

for Flat Knitting. In Proceedings of the 2Nd ACM Symposium on Computational
Fabrication (SCF ’18). ACM, New York, NY, USA, 1:1–1:7.

Shashank G Markande and Elisabetta Matsumoto. 2020. Knotty Knits are Tangles in

Tori. In Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education,
Culture, Carolyn Yackel, Robert Bosch, Eve Torrence, and Kristóf Fenyvesi (Eds.).

Tessellations Publishing, Phoenix, Arizona, 103–112. http://archive.bridgesmathart.

org/2020/bridges2020-103.html

James McCann. 2017. The “Knitout” (.k) File Format. [Online]. Available from: https:

//textiles-lab.github.io/knitout/knitout.html.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow, Wojciech Matusik, Jennifer

Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting. ACM
Trans. Graph. 35, 4 (July 2016), 49:1–49:11.

J.R. Munkres. 2000. Topology. Prentice Hall, Incorporated. https://books.google.com/

books?id=XjoZAQAAIAAJ

Georges Nader, Yu Han Quek, Pei Zhi Chia, Oliver Weeger, and Sai-Kit Yeung. 2021.

KnitKit: A Flexible System for Machine Knitting of Customizable Textiles. ACM
Trans. Graph. 40, 4, Article 64 (jul 2021), 16 pages. https://doi.org/10.1145/3450626.

3459790

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann.

2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3 (Aug.

2018), 35:1–35:15.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting

machine programming. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.

Jifei Ou, Daniel Oran, Don Derek Haddad, Joseph Paradiso, and Hiroshi Ishii. 2019.

SensorKnit: Architecting textile sensors with machine knitting. 3D Printing and
Additive Manufacturing 6, 1 (2019), 1–11.

Mariana Popescu, Matthias Rippmann, Andrew Liew, Lex Reiter, Robert Johann Flatt,

Tom Van Mele, and Philippe Block. 2020. Structural design, digital fabrication and

construction of the cable-net and knitted formwork of the KnitCandela concrete

shell. Structures 31 (2020), 1287–1299.

Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Auto-

mated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing
Digital Reality, De Rycke K. et al. (Ed.). Springer, Singapore.

Virginia Postrel. 2020. The fabric of civilization : how textiles made the world. Basic

Books, Hachette Book Group, New York.

Ante Qu and Doug L. James. 2021. Fast Linking Numbers for Topology Verification

of Loopy Structures. ACM Trans. Graph. 40, 4, Article 106 (jul 2021), 19 pages.

https://doi.org/10.1145/3450626.3459778

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-

inghe, and Frédo Durand. 2012. Decoupling Algorithms from Schedules for Easy

Optimization of Image Processing Pipelines. ACM Trans. Graph. 31, 4, Article 32

(jul 2012), 12 pages. https://doi.org/10.1145/2185520.2185528

Aristides A.G. Requicha. 1977. Mathematical Models of Rigid Solid Objects. Production
Automation Project, University of Rochester, Rochester, New York 14627 28 (1977),

74 pages.

Vanessa Sanchez, Kausalya Mahadevan, Gabrielle Ohlson, Moritz A. Graule, Michelle C.

Yuen, Clark B. Teeple, James C. Weaver, James McCann, Katia Bertoldi, and

Robert J. Wood. 2023. 3D Knitting for Pneumatic Soft Robotics. Advanced Func-
tional Materials n/a, n/a (2023), 2212541. https://doi.org/10.1002/adfm.202212541

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202212541

Shima Seiki. 2011. SDS-ONE Apex3. [Online]. Available from: http://www.shimaseiki.

com/product/design/sdsone_apex/flat/.

Shima Seiki. 2019. SDS-ONE Apex4. [Online]. Available from: https://www.shimaseiki.

com/product/design/.

Soft Byte Ltd. 1999. Designaknit. [Online]. Available from: https://www.softbyte.co.uk/

designaknit.htm.

Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017. Lift: A Functional

Data-Parallel IR for High-Performance GPU Code Generation. In Proceedings of the
2017 International Symposium on Code Generation and Optimization (Austin, USA)

(CGO ’17). IEEE Press, New York, NY, USA, 74–85.

Stoll. 2011. M1Plus pattern software. [Online]. Available from: http://www.stoll.com/

stoll_software_solutions_en_4/pattern_software_m1plus/3_1.

Jenny Underwood. 2009. The design of 3D shape knitted preforms. Ph. D. Dissertation.

Fashion and Textiles, RMIT University.

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,

and Adriana Schulz. 2019. Carpentry Compiler. ACM Transactions on Graphics 38, 6

(2019), Article No. 195. presented at SIGGRAPH Asia 2019.

Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock, Justin

Solomon, and Adriana Schulz. 2022. Co-Optimization of Design and Fabrication

Plans for Carpentry. ACM Trans. Graph. 41, 3, Article 32 (mar 2022), 13 pages.

https://doi.org/10.1145/3508499

A PRELIMINARY DEFINITIONS
The following section provides a more in-depth review of concepts

used by this paper.

A.1 Topology Terminology
For the basic definitions of, e.g., a topological space and continu-
ous functions between such spaces, please see a standard refer-

ence [Munkres 2000]. A homeomorphism between topological spaces

is a bijective function that is continuous in both directions. Despite

the similar sounding name, a homotopy does not necessarily express

the equivalence of two things. A homotopy between two continuous

functions 𝑓 , 𝑔 : 𝑋 → 𝑌 (𝑋 and 𝑌 topological spaces) is a continuous

function 𝐻 : 𝑋 × [0, 1] → 𝑌 s.t. 𝐻 (𝑥, 0) = 𝑓 (𝑥) and 𝐻 (𝑥, 1) = 𝑔(𝑥).
Intuitively, the second parameter of 𝐻 can be understood as “time”

s.t. the whole homotopy can be understood as a continuous motion

or interpolation between 𝑓 and 𝑔. If 𝑓 and 𝑔 are also embeddings

(meaning they are both continuous and injective) then we say 𝐻 is

an isotopy between 𝑓 and 𝑔 if 𝐻 (·, 𝑡) is an embedding for every 𝑡 .

An ambient isotopy between two embeddings 𝑓 , 𝑔 : 𝑋 → 𝑌 is an

isotopy 𝐻 from the identity 𝑖𝑑 : 𝑌 → 𝑌 to some other homeomor-

phism ℎ : 𝑌 → 𝑌 s.t. 𝐻 (𝑓 (𝑥), 1) = 𝑔(𝑥). That is, intuitively 𝐻 is a

warp of the entire ambient space 𝐻 that warps 𝑓 into 𝑔.

A tame arc in 𝑌 (for 𝑌 = R2
or 𝑌 = R3

) is any embedding

𝛾 : [0, 1] → 𝑌 s.t. 𝛾 is ambiently isotopic to a straight line segment.

A tame loop in 𝑌 (same as before) is any embedding of the circle

𝛾 : 𝑆1 → 𝑌 s.t. the restriction of 𝛾 to any closed subinterval of the

circle is a tame arc. There are a number of simpler and more intuitive

properties which are sufficient to ensure that a knot/arc is tame. For

instance, if we require all of our embeddings to be smooth, then

they are necessarily tame. If we require all of our embeddings to

be composed of a finite number of piecewise linear segments, then

they are necessarily tame. The usual examples of non-tame (aka.

wild) knots/arcs use constructions similar to the Topologist’s sine

curve (sin(1

𝑥)), in which knotted bits of the path occur infinitely

frequently as one limits towards some particular point.

A.2 Formalizing Programming Languages
The formal study of programming languages developed in order to

unambiguously specify programming languages and prove proper-

ties about them. At one extreme, such theories have allowed us to

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

https://doi.org/10.1145/3450626.3459752
http://eudml.org/doc/213290
https://doi.org/10.1145/3450626.3459853
http://xavierleroy.org/publi/erts2016_compcert.pdf
https://doi.org/10.1109/ICRA48506.2021.9562113
http://archive.bridgesmathart.org/2020/bridges2020-103.html
http://archive.bridgesmathart.org/2020/bridges2020-103.html
https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
https://books.google.com/books?id=XjoZAQAAIAAJ
https://books.google.com/books?id=XjoZAQAAIAAJ
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459790
https://doi.org/10.1145/3450626.3459778
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1002/adfm.202212541
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202212541
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.shimaseiki.com/product/design/
https://www.shimaseiki.com/product/design/
https://www.softbyte.co.uk/designaknit.htm
https://www.softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
https://doi.org/10.1145/3508499

Semantics and Scheduling for Machine Knitting Compilers • 143:19

construct mechanically verified C compilers [Leroy et al. 2016]. Even

without such mechanized proofs, formalization has influenced the

design of major programming languages such as Java [Igarashi et al.

2001] and newer domain-specific-languages, such as the network

configuration language P4 [Doenges et al. 2021].

To illustrate the concepts of used by this paper as well as our nota-

tional conventions, we will describe a simple language. For instance,

consider the following program in an assembly-like language. It

compares two numbers held in variables R.1 and R.2, and subtracts

the smaller variable from the larger.

LT R.3 R.1 R.2 ;
IF R.3 {

SWAP R.1 R.2
} ;
SUB R.4 R.1 R.2

To specify a language including such a program, we must first

specify the grammar. We do this using the well-known Backus-Naur

form (BNF) for a context-free grammar. In the following grammar,

we specify that a program or statement (𝑠) is defined to be either

a sequence of two other statements or one of four instructions. (A

non-toy example would include more primitive instructions.)

𝑠 ::= 𝑖1; 𝑠1 | 𝑖1
𝑖 ::= LT 𝑟1 𝑟2 𝑟3

| SUB 𝑟1 𝑟2 𝑟3

| SWAP 𝑟1 𝑟2

| IF 𝑟 { 𝑠 }
𝑟 ::= R.𝑛

𝑛 ∈ N

Grammars are one example of a structurally inductive definition.

Formally, the grammar is defining a set of strings (or equivalently,

ASTs) via induction. To be explicit, let 𝑆0 = ∅ be the set of all height-

0 ASTs. Then, 𝑆1 is the set of all 1-instruction programs. In general 𝑆𝑖

is the set of all programs that can be constructed from the grammar

rules, assuming 𝑠1 ∈ 𝑆𝑖−1. The set of all grammatical statements is

then the union (or “least fixed point”) of all 𝑆𝑖 , namely 𝑆 =
—∞

𝑖=0
𝑆𝑖 .

Analogously, the syntax for our formalization of knitout can be

found in Definition 5.1.

In general, not every grammatical program may be error-free.

In fact, we may not even be able to say what every grammatical

program means. For example, the LT instruction computes and stores

a Boolean value into 𝑟1, and the IF instruction branches based on a

Boolean value. We could define every non-0 value to be “truthy” as

in languages like C or Javascript, but for the sake of our example,

let’s instead say that using an integer where we expect a Boolean is

an error.

We now have a decision to make. How do we formalize errors in

our language? One approach (which we do not use in this paper) is

to specify the meaning of errors via some kind of error state. If we

were to go down this route, then we might expect to prove that a

type-system for our language prevents such errors.

In this paper, we follow a second approach to typing. For us,

the type-system serves to restrict our attention to a subset 𝑊 ⊆ 𝑆

of “valid” programs. Then we will only worry about specifying

the meaning (i.e., semantics) of these valid programs. Additionally,

the typing will annotate our AST with additional information that

makes it easier to specify the meaning of our programs.

Let Γ : {𝑟 } → {Int, Bool} be a partial function mapping register

names to types, where our partial function notation is as follows:

Definition A.1 (Partial function notation). Let 𝐴 and 𝐵 be sets

with a distinguished default element ⊥ of 𝐵. Then a partial function

𝜎 ∈ 𝐴 → 𝐵 is a function from 𝐴 to 𝐵 with the following notational

conventions and operations defined.

• [] is the empty partial function defined as [] (𝑎) = ⊥.

• [𝑎 ↦→ 𝑏] is a singleton partial function, defined as [𝑎 ↦→
𝑏] (𝑎) = 𝑏 and [𝑎 ↦→ 𝑏] (𝑎′) = ⊥ when 𝑎 ≠ 𝑎′

.

• Given 𝜎 ∈ 𝐴 → 𝐵, 𝜎 [𝑎 ↦→ 𝑏] is an extension of a partial

function defined as 𝜎 [𝑎 ↦→ 𝑏] (𝑎) = 𝑏 and 𝜎 [𝑎 ↦→ 𝑏] (𝑎′) =

𝜎 (𝑎′) when 𝑎 ≠ 𝑎′
.

• Given two partial functions 𝜎, 𝜎′ ∈ 𝐴 → 𝐵, 𝜎𝜎′
is their

concatenation (not function composition) defined as 𝜎𝜎′ (𝑎) =

𝜎′ (𝑎) if 𝜎′ (𝑎) ≠ ⊥, and 𝜎𝜎′ (𝑎) = 𝜎 (𝑎) otherwise. (i.e., first

lookup in 𝜎′
and then lookup in 𝜎 if that fails)

• For a partial function 𝜎 ∈ 𝐴 → 𝐵, we say that 𝑎 ∈ 𝜎 if

𝜎 (𝑎) ≠ ⊥
We call this the typing environment. Then we can define a type-

checking relation Γ1 ⊢ 𝑠 ⊣ Γ2, which says that if the registers hold

values with types specified by Γ1, and program 𝑠 is run, then it

will run successfully and leave the registers holding values with

types specified by Γ2. Like the grammar itself, we define this typing

relation via structural induction. For historical and conventional

reasons, we do this using a horizontal line, known as sequent nota-
tion: A rule of the form

𝐴 𝐵
𝐶

is equivalent to the logical statement

“If 𝐴 and 𝐵, then 𝐶 .”

Γ1 ⊢ 𝑖 ⊣ Γ2 Γ2 ⊢ 𝑠 ⊣ Γ3 T-Seq
Γ2 ⊢ 𝑖; 𝑠 ⊣ Γ3

Γ(𝑟1) = Γ(𝑟2)
T-SWAP

Γ ⊢ (SWAP 𝑟1 𝑟2) ⊣ Γ

Γ(𝑟2) = Int Γ(𝑟3) = Int
T-LT

Γ ⊢ (LT 𝑟1 𝑟2 𝑟3) ⊣ Γ [𝑟1 ↦→ Bool]

Γ(𝑟2) = Int Γ(𝑟3) = Int
T-SUB

Γ ⊢ (SUB 𝑟1 𝑟2 𝑟3) ⊣ Γ [𝑟1 ↦→ Int]

Γ(𝑟) = Bool Γ ⊢ 𝑠 ⊣ Γ
T-IF

Γ ⊢ (IF 𝑟 { 𝑠 }) ⊣ Γ

Using these rules, our original example program is well-typed

with initial typing environment Γ0 = [R.1 ↦→ Int, R.2 ↦→ Int] and

final typing environment Γ′ = Γ0 [R.3 ↦→ Bool, R.4 ↦→ Int]. (We

omit the derivation to save space.)

For knitout, our analogue of this type-checking rule can be found

in Definition 5.4 and Fig. 11. Rather than writing Γ1 ⊢ 𝑠 ⊣ Γ2, we

write 𝑆0

𝑘𝑠−−→ 𝑆1, where 𝑆0 and 𝑆1 are abstract states of our knitting

machine. We use this notation because type-checking of knitting

programs is equivalent to performing a kind of abstract execution

or simulation of the knitting machine – sufficient to determine

whether all resources are always present in the correct places for an

execution of the machine to make sense. Despite our use of arrows

(→) this is not a specification of knitting program semantics.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:20 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

To complete the definition of our toy language, we must specify

what the programs actually mean. The meaning of most compu-

tational programs is the function which that program computes.

In particular, let 𝜎 : {𝑟 } → (Z ∪ B) be a partial function mapping

register names to integers or Booleans. We call 𝜎 the store, and use

ΣΓ to mean the set of all possible stores whose values are consistent

with the typing environment Γ. Then given a well-typed program

Γ0 ⊢ 𝑠 ⊣ Γ1, the denotation (aka. meaning or semantics) of the pro-

gram is a function between stores E[Γ0 ⊢ 𝑠 ⊣ Γ1] : ΣΓ0
→ ΣΓ1

. In

total, the function E specifies the semantics of our entire language,

rather than a single program. We write E to suggest “evaluation.”

Like every other part of the language, we again use structural

induction to define the function E.

E[Γ0 ⊢ 𝑖; 𝑠 ⊣ Γ2] (𝜎) =

�
E[Γ1 ⊢ 𝑠 ⊣ Γ2]◦
E[Γ0 ⊢ 𝑖 ⊣ Γ1]

�
(𝜎)

E[Γ0 ⊢ LT 𝑟1 𝑟2 𝑟3 ⊣ Γ1] (𝜎) = 𝜎 [𝑟1 ↦→ (𝜎 (𝑟2) < 𝜎 (𝑟3))]
E[Γ0 ⊢ SUB 𝑟1 𝑟2 𝑟3 ⊣ Γ1] (𝜎) = 𝜎 [𝑟1 ↦→ (𝜎 (𝑟2) − 𝜎 (𝑟3))]
E[Γ0 ⊢ SWAP 𝑟1 𝑟2 ⊣ Γ1] (𝜎) = 𝜎 [𝑟1 ↦→ 𝜎 (𝑟2), 𝑟2 ↦→ 𝜎 (𝑟1)]

E[Γ ⊢ IF 𝑟 { 𝑠 } ⊣ Γ] (𝜎) =

�
E[Γ ⊢ 𝑠 ⊣ Γ], 𝜎 (𝑟) = true
𝜎, otherwise

There are other (non-denotational) approaches to programming

language semantics. However, for our formalization of knitout, the

denotational approach made the most sense. Unlike usual denota-

tional semantics, where programs denote functions (e.g., the toy

language of this section), knitout programs denote mathematical

representations of the objects they manufacture. One of the main

concerns of this paper is to find a suitable mathematical object for

knitout programs to denote.

Finally, observe that if we wanted to optimize programs in our

toy language, we would be able to prove that certain rewritings of

programs are correct – by appeal to the semantics we have just de-

fined. For example, it should be the case that swapping the contents

of two registers, and then immediately swapping those contents

back is equivalent to the identity function (or empty program). A

real programming language may allow us to deduce many such

equivalences, or rewrite rules. Such rules form an important part

of compilers, but are tricky to get right in general. Among other

uses, formal language semantics allow us to precisely determine the

validity of such rules, and thus develop more reliable and powerful

compilers for a language.

B FENCED TANGLE LEMMAS
We begin with some basic properties of fenced tangles elided in

the main text for clarity before progressing to more complicated

lemmas important to our proofs of rewrite rule correctness.

Lemma B.1 (Concatenations are Equivalence-Invariant). Let 𝐾1 �

𝐾 ′
1

∈ S𝑚
𝑛 , 𝐾2 � 𝐾 ′

2
∈ S𝑞

𝑝 , and 𝐾3 � 𝐾 ′
3

∈ S𝑝
𝑚 . Then 𝐾1◦𝐾3 � 𝐾 ′

1
◦𝐾 ′

3
;

𝐾1 ⊗ 𝐾2 � 𝐾 ′
1

⊗ 𝐾 ′
2
; and for any choice of 𝜄 and 𝜔 , 𝐾1 |𝜔𝜄 𝐾2 � 𝐾 ′

1
|𝜔𝜄 𝐾 ′

2
.

Proof. For 𝐾1 ◦ 𝐾3 and 𝐾1 ⊗ 𝐾2, this follows trivially from dis-

jointness of the two composite diagrams in the plane. For 𝐾1 |𝜔𝜄 𝐾2

the argument is less trivial. 𝐾1 and 𝐾2 can be unprojected into fenced

tangles 𝑇1 and 𝑇2 on regions 𝑈1 and 𝑈2, sharing a common equator

and a boundary disk in common. The interiors of 𝑈1 and 𝑈2 are

disjoint, and so can be arbitrarily modified with ambient isotopies

before being reprojected into a layered diagram. □

Lemma B.2. The three concatenation operators are associative, and
each has a unit slab: 𝑖𝑑0 ⊗ 𝐾 � 𝐾 � 𝐾 ⊗ 𝑖𝑑0; 𝑖𝑑0 |𝑖𝑑

𝑖𝑑
𝐾 � 𝐾 � 𝐾 |𝑖𝑑

𝑖𝑑
𝑖𝑑0;

and for 𝐾 an (𝑛,𝑚)-slab, 𝑖𝑑𝑛 ◦ 𝐾 � 𝐾 � 𝐾 ◦ 𝑖𝑑𝑚 . Therefore it is
justified to omit parentheses when repeatedly concatenating in the
same way. Furthermore, 𝑖𝑑𝑛 ⊗ 𝑖𝑑𝑚 � 𝑖𝑑𝑛 |𝑖𝑑𝑚 � 𝑖𝑑𝑛+𝑚

Proof. Immediate from drawing diagrams for the relevant equa-

tions. □

Notation B.3 (Concatenation of Interleavings). Let 𝜄1 ∈ I𝑛,𝑝 and

𝜄2 ∈ I𝑚,𝑞 be interleavings. Then 𝜄1 ⊔𝜄2 ∈ I𝑛+𝑚,𝑝+𝑞 is an interleaving

defined (using set representations) as 𝜄1 ⊔ 𝜄2 = 𝜄1 ∪ {𝑖 + 𝑛 + 𝑝 |𝑖 ∈ 𝜄2}.

Lemma B.4 (|-⊗ Distributivity). Let 𝐾𝑎 ∈ S𝑚1

𝑛1
, 𝐾𝑏 ∈ S𝑚2

𝑛2
, 𝐾𝑐 ∈

S𝑞1

𝑝1

, and 𝐾𝑑 ∈ S𝑞2

𝑝2

. Furthermore, let 𝜄1 ∈ I𝑛1,𝑝1
, 𝜔1 ∈ I𝑚1,𝑞1

, 𝜄2 ∈
I𝑛2,𝑝2

, and 𝜔2 ∈ I𝑚2,𝑞2
be interleavings. Then,

(𝐾𝑎 |𝜔1

𝜄1 𝐾𝑐) ⊗ (𝐾𝑏 |𝜔2

𝜄2 𝐾𝑑) � (𝐾𝑎 ⊗ 𝐾𝑏) |𝜔1⊔𝜔2

𝜄1⊔𝜄2
(𝐾𝑐 ⊗ 𝐾𝑑)

Proof. immediate from picture □

Lemma B.5 (◦-| Distributivity). Let 𝐾𝑎 ∈ S𝑚1

𝑛1
, 𝐾𝑏 ∈ S𝑚2

𝑛2
, 𝐾𝑐 ∈

S𝑝1

𝑚1
, and 𝐾𝑑 ∈ S𝑝2

𝑚2
. Furthermore, let 𝜄 ∈ I𝑛1,𝑛2

, 𝜇 ∈ I𝑚1,𝑚2
, and

𝜔 ∈ I𝑝1,𝑝2
be interleaving functions. Then,

(𝐾𝑎 ◦ 𝐾𝑐) |𝜔𝜄 (𝐾𝑏 ◦ 𝐾𝑑) � (𝐾𝑎 |𝜇𝜄 𝐾𝑏) ◦ (𝐾𝑐 |𝜔𝜇 𝐾𝑑)

Proof. immediate from picture □

Since our semantics will assign a fenced tangle to each knitout

program, we will want to know under what circumstances differ-

ent sub-programs can be re-ordered (i.e., commute). The following

lemmas will help us develop such commutativity principles by allow-

ing cleaner reasoning about various kinds of sub-diagrams. Recall

Lemma 6.5. We begin by noting that the lemma can be trivially

extended as follows:

Corollary B.6 (Commutativity by Horizontal Separation). The
preceding two lemmas imply that for any 𝑔 ∈ N, 𝐾1 ∈ S𝑚

𝑛 , and 𝐾2 ∈
S𝑞

𝑝 the following equation holds, permitting the vertical commuting
of horizontally non-overlapping sub-tangles.

(𝐾1 ⊗ 𝑖𝑑𝑔+𝑝) ◦ (𝑖𝑑𝑚+𝑔 ⊗ 𝐾2) � (𝑖𝑑𝑛+𝑔 ⊗ 𝐾2) ◦ (𝐾1 ⊗ 𝑖𝑑𝑔+𝑞)

In principle we also ought to be able to commute operations oc-

curring in wholly different layers. However, we can develop even

stronger machinery. In many cases, we can explicitly convert com-

position by layer into horizontal composition.

Lemma B.7 (No-Overlap Layering). Let 𝐾1 ∈ S𝑚
𝑛 and 𝐾2 ∈ S𝑞

𝑝 .
Then,

𝐾1 |𝑖𝑑
𝑖𝑑

𝐾2 � 𝐾1 ⊗ 𝐾2

Proof. By Lemma B.1, we may assume that the entirety of 𝐾1 and

𝐾2 are disjoint, with no overlaps, since there are no interleavings of

their loose ends. Consequently the sub-diagrams of 𝐾1 |𝑖𝑑
𝑖𝑑

𝐾2 are hor-

izontally separated—and can therefore equally well be interpreted

as 𝐾1 ⊗ 𝐾2. □

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:21

Lemma B.8 (Layer Decomposition of Separate and Merge). Let
𝜄 ∈ I𝑛,𝑝 be an interleaving. Then,

←−
𝑉 𝜄 = 𝑖𝑑𝑝 |𝑖𝑑

𝜄
𝑖𝑑𝑛

−→
𝑉 𝜄 = 𝑖𝑑𝑛 |𝑖𝑑𝜄 𝑖𝑑𝑝

−→
Λ 𝜄 = 𝑖𝑑𝑝 |𝜄

𝑖𝑑
𝑖𝑑𝑛

←−
Λ 𝜄 = 𝑖𝑑𝑛 |𝜄

𝑖𝑑
𝑖𝑑𝑝

Proof. By the definition of a permutation slab, all crossings must

be oriented consistently in merge and separation slabs. Furthermore,

because the permutation 𝑜𝜄 derived from the interleaving is required

to be monotonic within each half of the partition, we know that the

diagram viewed on each such subset of the yarns must be the identity

slab. Therefore, all of these slabs must decompose into a layering of

two identity slabs. Inspection of the four cases confirms the above

formulas as correctly specifying the various interleavings. □

The following lemma allows us to convert layering composition

into horizontal composition in general by “sliding apart” the differ-

ent layers composing a diagram. This makes it easy to modify layers

independently and separately from the concerns of interleaving

patterns.

Lemma B.9 (Sliding Door Lemma). Let 𝐾1 ∈ S𝑚
𝑛 , 𝐾2 ∈ S𝑞

𝑝 and let
𝜄 ∈ I𝑛,𝑝 , 𝜔 ∈ I𝑚,𝑞 be interleavings. Then,

𝐾1 |𝜔𝜄 𝐾2 �
←−
𝑉 𝜄 ◦ (𝐾1 ⊗ 𝐾2) ◦ −→

Λ𝜔

(note:
←−
Λ may be used instead of

−→
Λ)

Proof.

𝐾1 |𝜔𝜄 𝐾2 � (𝑖𝑑𝑛 ◦ 𝐾1 ◦ 𝑖𝑑𝑚) |𝜔𝜄 (𝑖𝑑𝑝 ◦ 𝐾2 ◦ 𝑖𝑑𝑞) (by Lemma B.2)

� (𝑖𝑑𝑛 |𝑖𝑑𝜄 𝑖𝑑𝑝) ◦ (𝐾1 |𝑖𝑑
𝑖𝑑

𝐾2) ◦ (𝑖𝑑𝑚 |𝜔
𝑖𝑑

𝑖𝑑𝑞) (by Lem B.5)

�
←−
𝑉 𝜄 ◦ (𝐾1 |𝑖𝑑

𝑖𝑑
𝐾2) ◦ −→

Λ𝜔
(by Lemma B.8)

�
←−
𝑉 𝜄 ◦ (𝐾1 ⊗ 𝐾2) ◦ −→

Λ𝜔
(by Lemma B.7)

□

C TRANSLATION BETWEEN FORMAL KNITOUT AND
ACTUAL KNITOUT

Formal knitout differs from knitout [McCann 2017] (hereafter “ac-

tual knitout”) in a few specifics discussed below. These details do not

change the expressively of the language, but do make formal knitout

slightly easier to reason about. We include our implementation of a

translator from actual knitout to formal knitout in our supplemental

material, and we characterize the differences between the two in

this section.

Actual knitout is a UTF-8-encoded text file where operations are

new-line separated, and comments are annotated with the charac-

ter ;. Optional headers may be used to assign carriers string-based

aliases as well as provide optional definitions such as target machine

model and yarn type. The operation syntax is also less verbose: in
and out only have a carrier ID parameter, and location is inferred

from the first operation that uses that carrier. Needle locations do

not have a period dividing the bed and index (f1 vs f.1). Stitch

length 𝑙 is a global state parameter that is set with the command

stitch or extension x-stitch-length, while yarn length 𝑠 is im-

plicit (though 𝑠 can be somewhat controlled via a combination of

tuck and drop operations). Formal knitout doesn’t support frac-

tional racking (rack 0.5) or transferring to sliders, but as the former

does not affect object topology, and the latter can be simulated using

existing transfers, we chose to omit them for simplicity.

In actual knitout, the miss, in, and out operations can also accept

a carrier sequence instead of just a single carrier. In addition, a single

miss is allowed to move past multiple needles, and a single rack
can change the racking to any value. These can all be represented

in formal knitout with a sequence of formal operations.

Finally, while formal knitout treats each operation as updating

a carrier’s physical location, actual knitout operations set a logical

location and update the physical location to match as needed. This

affects the rack operation, where in actual knitout, back-bed ref-

erenced carriers will move to maintain the same relative location

to their back-bed needles. Furthermore, in actual knitout xfer and

split operations update a carrier’s logical location: for all carriers

not in the yarn carrier sequence, if their logical location is relative

to source needle 𝑛.𝑥 , it is updated to be relative to target needle

𝑛′ .𝑥 ′
. This can be simulated in formal knitout by tracking logical

carrier locations and inserting miss operations as is appropriate.

D KNITOUT PROGRAM REWRITES
We will use the heading Rewrite Rule to designate particular lem-

mas (i.e., propositions) which are stated so that they are immediately

applicable to the rewriting/scheduling of knitout programs.

D.1 Subprogram Commutativity
Intuitively, if two instructions have “disjoint” effects, then they

should commute (𝑎𝑏 = 𝑏𝑎). In order to capture this intuition, we

will define instruction extents, which allow us to narrowly confine

their non-trivial (i.e., non-𝑖𝑑) behavior to a rectangle. Intuitively,

the two dimensions of the extent rectangle correspond to horizontal

and depth-wise decomposition respectively
2
. To be able to define

the extent of any valid program, we can conservatively take the join

of the extents of the underlying subprograms.

Definition D.1 (Join of Rectangles). Let

𝑅𝐴 = [𝐴𝑥𝑚𝑖𝑛, 𝐴𝑥𝑚𝑎𝑥] × [𝐴𝑦𝑚𝑖𝑛, 𝐴𝑦𝑚𝑎𝑥]
𝑅𝐵 = [𝐵𝑥𝑚𝑖𝑛, 𝐵𝑥𝑚𝑎𝑥] × [𝐵𝑦𝑚𝑖𝑛, 𝐵𝑦𝑚𝑎𝑥]

be two rectangles 𝑅𝐴 ⊆ Q2

∞, 𝑅𝐵 ⊆ Q2

∞. (where Q∞ = Q ∪ {−∞, ∞})

Their join is defined as the smallest rectangle enclosing both 𝑅𝐴 and

𝑅𝐵 :

𝑅𝐴 ⊔ 𝑅𝐵 = [min(𝐴𝑥𝑚𝑖𝑛, 𝐵𝑥𝑚𝑖𝑛), max(𝐴𝑥𝑚𝑎𝑥 , 𝐵𝑥𝑚𝑎𝑥)]×
[min(𝐴𝑦𝑚𝑖𝑛, 𝐵𝑦𝑚𝑖𝑛), max(𝐴𝑦𝑚𝑎𝑥 , 𝐵𝑦𝑚𝑎𝑥)]

Definition D.2 (Extent). We define the extent of a valid knitout

program ex(𝑆 𝑘𝑠−−→ 𝑆 ′) ⊆ Q2

∞ as a 2D interval (rectangle). Where 𝑆

and 𝑆 ′
can be inferred from context, we will notate the extent as

2
Inspection of Lemma B.2 makes it clear why a third dimension for vertical decomposi-

tion is unnecessary.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:22 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

ex(𝑘𝑠). We will use [𝑧 ± 1

2
] as shorthand for [𝑧 − 1

2
, 𝑧 + 1

2
].

ex(𝑆 𝑘𝑠1−−−→ 𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′) = ex(𝑆 𝑘𝑠1−−−→ 𝑆 ′) ⊔ ex(𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′)

ex(tuck 𝑑𝑖𝑟 f.𝑥 𝑙 (𝑦, 𝑠)) = [⌊f.𝑥⌋𝑟 ± 1

2

] × [−∞, 𝑦]

ex(tuck 𝑑𝑖𝑟 b.𝑥 𝑙 (𝑦, 𝑠)) = [⌊b.𝑥⌋𝑟 ± 1

2

] × [𝑦, ∞]

ex(knit 𝑑𝑖𝑟 f.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠) = [⌊f.𝑥⌋𝑟 ± 1

2

] × [−∞, 𝑦𝑚𝑎𝑥]

ex(knit 𝑑𝑖𝑟 b.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠) = [⌊b.𝑥⌋𝑟 ± 1

2

] × [𝑦𝑚𝑖𝑛, ∞]

ex(split 𝑑𝑖𝑟 𝑛.𝑥 𝑛′ .𝑥 ′ 𝑙 𝑦𝑎𝑟𝑛𝑠)

= [⌊𝑛.𝑥⌋𝑟 ± 1

2

] × [−∞, ∞]

ex(miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦) = [⌊𝑛.𝑥⌋𝑟 ± 1

2

] × {𝑦}

ex(in + 𝑛.𝑥 𝑦) = {⌊𝑛.𝑥⌋𝑟 + 1

2

} × {𝑦}

ex(in − 𝑛.𝑥 𝑦) = {⌊𝑛.𝑥⌋𝑟 − 1

2

} × {𝑦}

ex(out + 𝑛.𝑥 𝑦) = {⌊𝑛.𝑥⌋𝑟 + 1

2

} × {𝑦}

ex(out − 𝑛.𝑥 𝑦) = {⌊𝑛.𝑥⌋𝑟 − 1

2

} × {𝑦}

ex(drop f.𝑥) = {⌊f.𝑥⌋𝑟 } × {−∞}
ex(drop b.𝑥) = {⌊b.𝑥⌋𝑟 } × {∞}

ex(xfer 𝑛.𝑥 𝑛′ .𝑥 ′) = {⌊𝑛.𝑥⌋𝑟 } × [−∞, ∞]
ex(rack 𝑟) = [−∞, ∞] × {∞}

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 are the minimum and maximum across 𝑦𝑎𝑟𝑛𝑠 .

To use these operation extents to decompose the denoted fenced

tangles, we begin by defining 2D coordinates for every point in

E[𝑆].

Definition D.3 (Coordinates of State Denotations). Let

𝑅 = [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] ⊆ Q2

∞

be an extent rectangle, 𝑆 be a machine state, and E[𝑆] the denota-

tion of that machine state (where the extent rectangle for specific

programs is defined in Definition D.2).

Points in E[𝑆] either arise from loops at physical needle locations

or active yarn carriers at physical carrier locations. For each of

these points, define “coordinates” 𝑝 ∈ Q2

∞ as follows: a point arising

from 𝐿(f.𝑥) > 0 has coordinates (𝑥, −∞); a point arising from

𝐿(b.(𝑥 − 𝑟)) > 0 has coordinates (𝑥, ∞); finally, the point for an

active yarn 𝑌 (𝑦) ≠ ⊥ has coordinates

�
𝑌 (𝑦) − 1

2
, 𝑦

�
.

Put in words, loops are depth-located in front of or behind every-

thing else, at the specified whole number needle. Meanwhile, yarns

are located in depth according to their yarn id, and at
1

2
between

needles.

Lemma D.4 (Extent Decomposition). Let 𝑆
𝑘𝑠−−→ 𝑆 ′ be a valid knitout

program with extent 𝑅 = ex(𝑘𝑠). First, we can define various partitions
of the set of points E[𝑆]. Let 𝑅−𝑥 consist of all points with 𝑥-coordinate

less than 𝑅 and 𝑅+𝑥 similarly points with 𝑥-coordinate greater than 𝑅;
meanwhile, let 𝑅 |𝑥 be the remaining set of points whose 𝑥-coordinate
overlaps 𝑅. The tri-partition 𝑅−𝑦 , 𝑅+𝑦 and 𝑅 |𝑦 may similarly and
independently be defined using 𝑦-coordinates.

Then there exist both horizontal and depth-wise decompositions:

E[𝑆 𝑘𝑠−−→ 𝑆 ′] = 𝑖𝑑𝑛−𝑥 ⊗ 𝐾 ⊗ 𝑖𝑑𝑛+𝑥

= 𝑖𝑑𝑛−𝑦 |𝜔
−

𝜄−

�
𝐾 ′ |𝜔

+
𝜄+ 𝑖𝑑𝑛+𝑦

�

where 𝑛−𝑥 = #𝑅−𝑥 , and similarly for other 𝑛•; the points in each
𝑖𝑑 slab corresponding to the appropriate partition of the state by the
extent.

Proof. The proof proceeds inductively.

First, consider the case of 𝑘𝑠1;𝑘𝑠2. Let 𝑅1 = ex(𝑘𝑠1) and 𝑅2 =

ex(𝑘𝑠2) be the extents of each sub-program. We will prove the

case of the horizontal decomposition; the depth-wise case proceeds

similarly. Let 𝑛−𝑥 = min(𝑛−𝑥
1

, 𝑛−𝑥
2

), and 𝑛+𝑥 = max(𝑛+𝑥
1

, 𝑛+𝑥
2

).
Then, both decompositions can be rectified with each other to

share this common trivial slab on the outside, since (e.g.) 𝑖𝑑𝑛−𝑥
1

=

𝑖𝑑𝑛−𝑥 ⊗ 𝑖𝑑𝑛−𝑥
1

−𝑛−𝑥 (and similarly for 𝑛+𝑥
1

, 𝑛−𝑥
2

, and 𝑛+𝑥
2

).

E[𝑆 𝑘𝑠1−−−→ 𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′]

= E[𝑆 𝑘𝑠1−−−→ 𝑆 ′] ◦ E[𝑆 ′ 𝑘𝑠2−−−→ 𝑆 ′′]

=

�
𝑖𝑑𝑛−𝑥 ⊗ 𝑖𝑑𝑛−𝑥

1
−𝑛−𝑥 ⊗ 𝐾1 ⊗ 𝑖𝑑𝑛+𝑥

1
−𝑛+𝑥 ⊗ 𝑖𝑑𝑛+𝑥

�
◦

�
𝑖𝑑𝑛−𝑥 ⊗ 𝑖𝑑𝑛−𝑥

2
−𝑛−𝑥 ⊗ 𝐾2 ⊗ 𝑖𝑑𝑛+𝑥

2
−𝑛+𝑥 ⊗ 𝑖𝑑𝑛+𝑥

�

= 𝑖𝑑𝑛−𝑥 ⊗

𝑖𝑑𝑛−𝑥
1

−𝑛−𝑥 ⊗ 𝐾1 ⊗ 𝑖𝑑𝑛+𝑥
1

−𝑛+𝑥 ◦
𝑖𝑑𝑛−𝑥

2
−𝑛−𝑥 ⊗ 𝐾2 ⊗ 𝑖𝑑𝑛+𝑥

2
−𝑛+𝑥

!

⊗ 𝑖𝑑𝑛+𝑥

= 𝑖𝑑𝑛−𝑥 ⊗ 𝐾 ⊗ 𝑖𝑑𝑛+𝑥

All other cases concern individual instructions. We justify these

by examining the preceding definition of the extent function, the

preceding definition of coordinates, and the denotations in Fig. 12.

The cases of tuck, knit, split, and miss are all justified because

both the denotation diagram and the extent encompass the needles

at a location and yarns before and after that needle location. The

cases of in, out, drop, and xfer require closer inspection to ob-

serve that all non-trivial behavior in the diagram is confined more

narrowly to a single yarn, or single needle location (front and back).

Finally the rack instruction acts non-trivially on the entire back

bed but leaves the front-bed fixed. □

Having laid the groundwork with the extent function, we can

now prove our first rewrite rule in earnest.

Rewrite Rule 1 (Swap).

𝑆 ⊢ 𝑘𝑠1;𝑘𝑠2 � 𝑘𝑠2;𝑘𝑠1

whenever ex(𝑘𝑠1) ∩ ex(𝑘𝑠2) = ∅

Proof. If ex(𝑘𝑠1) ∩ ex(𝑘𝑠2) = 𝑅1 ∩ 𝑅2 = ∅, the 𝑅1 and 𝑅2 must

be horizontally disjoint or depth-wise disjoint. Without loss of gen-

erality, assume they are horizontally disjoint. Furthermore without

loss of generality assume that 𝐾2 occurs to the right of 𝐾1. Let

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:23

𝑆0 = 𝑆 , so that we begin with the trace 𝑆0

𝑘𝑠1−−−→ 𝑆1

𝑘𝑠2−−−→ 𝑆2. By

Lemma D.4, we can make the initial decompositions E[𝑆0

𝑘𝑠1−−−→
𝑆1] = 𝑖𝑑𝑛−𝑥

1

⊗ 𝐾1 ⊗ 𝑖𝑑𝑛+𝑥
1

and E[𝑆1

𝑘𝑠2−−−→ 𝑆2] = 𝑖𝑑𝑛−𝑥
2

⊗ 𝐾2 ⊗ 𝑖𝑑𝑛+𝑥
2

where 𝐾1 ∈ S𝑞1

𝑝1

and 𝐾2 ∈ S𝑞2

𝑝2

. In addition, since the operations

are horizontally disjoint, there must exist some number of yarns,

𝑔 ∈ N in-between the output of 𝐾1 and the input of 𝐾2 such that

𝑛+𝑥
1

= 𝑔 + 𝑝2 + 𝑛+𝑥
2

and 𝑛−𝑥
2

= 𝑛−𝑥
1

+ 𝑞1 +𝑔. The middle step follows

from Corollary B.6.

E[𝑆0

𝑘𝑠1−−−→ 𝑆1

𝑘𝑠2−−−→ 𝑆2]
= ((𝑖𝑑𝑛−𝑥

1

⊗ 𝐾1) ⊗ 𝑖𝑑𝑔+𝑝2+𝑛+𝑥
2

) ◦ (𝑖𝑑𝑛−𝑥
1

+𝑞1+𝑔 ⊗ (𝐾2 ⊗ 𝑖𝑑𝑛+𝑥
2

))
= (𝑖𝑑𝑛−𝑥

1
+𝑝1+𝑔 ⊗ (𝐾2 ⊗ 𝑖𝑑𝑛+𝑥

2

)) ◦ ((𝑖𝑑𝑛−𝑥
1

⊗ 𝐾1) ⊗ 𝑖𝑑𝑔+𝑞2+𝑛+𝑥
2

)

= E[𝑆0

𝑘𝑠2−−−→ 𝑆 ′
1
] ◦ E[𝑆 ′

1

𝑘𝑠1−−−→ 𝑆2]
In the case of depth-wise decomposition, one uses the Sliding Door

Lemma (B.9) to convert depth-wise composition to horizontal com-

position, thus reducing to the already handled case. □

While this swap rewrite handles most permissible exchange be-

tween non-interacting instructions, the extent-based analysis is far

too conservative when encountering rack instructions, which have

an extent of [−∞, ∞] × {∞} due to how racking affects the whole

back bed. However, racking can be combined with xfer operations

in the SHIFT macro to locally rearrange loops between needles (Def-

inition 7.1). Unless we have some way to localize the effect of this

pattern, rack will form an insurmountable barrier to our attempts to

reschedule knitting programs. To streamline the proof of this special

case extent function, we define the following modified macro:

Definition D.5 (Move Macro). The MOVE macro is the SHIFT macro

with an additional RACK to reset the machine’s racking to 𝑟 :

MOVE(f.𝑥, 𝑟, f.(𝑥 + 𝑗)) := SHIFT(f.𝑥, 𝑟, f.(𝑥 + 𝑗));
RACK(𝑟 + 𝑗, − 𝑗)

MOVE(b.𝑥, 𝑟, b.(𝑥 + 𝑗)) := SHIFT(b.𝑥, 𝑟, b.𝑥 + 𝑗)
RACK(𝑟 − 𝑗, 𝑗)

Definition D.6 (Move Extent). Let𝑘𝑠 be exactly a MOVE sub-program

as just defined. Then the move-extent of 𝑘𝑠 is a rectangle, like for

a basic extent. However, unlike basic extents, move-extents are

context-sensitive: their definition depends on the state 𝑆 of the

knitting machine immediately prior to the MOVE sub-program.

ex𝑚 (𝑆, MOVE(f.𝑥, 𝑟, f.(𝑥 + 𝑗))) = [𝑥, 𝑥 + 𝑗] × [−∞, 𝑦𝑚𝑎𝑥]
ex𝑚 (𝑆, MOVE(b.𝑥, 𝑟, b.(𝑥 + 𝑗))) = [𝑥 − 𝑟, 𝑥 − 𝑟 + 𝑗] × [𝑦𝑚𝑖𝑛, ∞]

where 𝑦𝑚𝑎𝑥 is ∞ if 𝐿(b.𝑥 − 𝑟) > 0, otherwise it is max{𝑦 | 𝑦 ∈
𝑌 −1 (𝑥 ′) and 𝑥 < 𝑥 ′ ≤ 𝑥 + 𝑗} or −∞ if there are no yarn-carriers

parked between 𝑥 and 𝑥 + 𝑗 in the state 𝑆 . Similarly, 𝑦𝑚𝑖𝑛 is −∞ if

𝐿(b.𝑥 + 𝑟) > 0 and ∞ otherwise.

Much like the previously defined extents on individual operations,

ex𝑚 is used to horizontally and layer decompose E[𝑆 MOVE−−−−→ 𝑆 ′] as

an intermediate step in proving when a MOVE subprogram can be

swapped with another program. A more detailed proof of this is as

follows.

Lemma D.7 (Move Decomposition). Let𝑘𝑠f = MOVE(f.𝑥, 𝑟, f.(𝑥 + 𝑗))
and let 𝑘𝑠b = MOVE(b.𝑥, 𝑟, b.(𝑥 + 𝑗)). Let 𝑆 be an initial state s.t. in the
case of 𝑘𝑠f, 𝐿(𝑏.(𝑥 − 𝑟)) = 0; and in the case of 𝑘𝑠b, 𝐿(𝑓 .(𝑥 + 𝑟)) = 0.
𝑘𝑠f admits horizontal and layer decompositions, of the forms

E[𝑆 𝑘𝑠f−−−→ 𝑆 ′] = 𝑖𝑑𝑛− × 𝐾 × 𝑖𝑑𝑛+

= 𝐾 ′ |𝜔𝜄 𝑖𝑑𝑚

where for 𝑅 = 𝑒𝑥𝑚 (𝑆, 𝑘𝑠f), 𝑛− = #𝑅−𝑥 , 𝑛+ = #𝑅+𝑥 , and 𝑚 = #𝑅+𝑦 .
𝑘𝑠b admits horizontal and layer decompositions, of the forms

E[𝑆 𝑘𝑠b−−−→ 𝑆 ′] = 𝑖𝑑𝑛− × 𝐾 × 𝑖𝑑𝑛+

= 𝑖𝑑𝑚 |𝜔𝜄 𝐾 ′

where for 𝑅 = 𝑒𝑥𝑚 (𝑆, 𝑘𝑠b), 𝑛− = #𝑅−𝑥 , 𝑛+ = #𝑅+𝑥 , and 𝑚 = #𝑅−𝑦 .

Proof. Consider the case of 𝑘𝑠b first. Since 𝐿(f.𝑥 + 𝑟) = 0, no

loops transferred to the temporary front-bed needle will get stacked

together with any other loops. Any loops that are temporarily trans-

ferred to the front bed, all loops on the front bed, and all yarn carriers

remain horizontally stationary over all of the MOVE operation prior

to the final rack operation. Consequently, after the second xfer
operation, the entire back-bed can be layer-separated from the rest

of the denoted tangle, and the final racking respects this decompo-

sition. Thus, the second decomposition is justified. In the case of

the first decomposition, observe that in this final diagram all paths

except those starting at ⌊b.𝑥⌋𝑟 and ending at ⌊b.𝑥 + 𝑗⌋𝑟 are perfectly

vertical. Therefore, horizontally we can separate out an identity slab

of everything to the left of ⌊b.𝑥⌋𝑟 and an identity of everything to

the right of ⌊b.𝑥 + 𝑗⌋𝑟 .

Now consider the case of 𝑘𝑠f, which would ideally be symmetric

with 𝑘𝑠b. Unfortunately, the transferred loops no longer remain

stationary during the racking in-between the transfers. Rather, they

and the entire back bed move in between the two transfers. Once the

transferred loops are back on the front-bed and the racking undone,

the same basic argument as above justifies the horizontal decompo-

sition. However, the layer decomposition is less obvious. Since the

transferred loops move in tandem with all of the back-bed loops, no

crossings between them are introduced prior to the final racking se-

quence. At this point we can introduce a layer decomposition of the

back bed. This would justify consistency with a rectangular interval

of [−∞, ∞) in the 𝑦-coordinate. However, observe that by definition

there are no yarns between 𝑦𝑚𝑎𝑥 and ∞ inside the horizontal extent

of 𝑘𝑠f. Therefore, we can layer decompose everything strictly after

𝑦𝑚𝑎𝑥 from everything at or before 𝑦𝑚𝑎𝑥 . □

Lemma D.8 (Move Swap). Let 𝑘𝑠1 be a MOVE subprogram and 𝑘𝑠2

some other knitout program. Let 𝑆 be an initial state, s.t. 𝑆 𝑘𝑠1−−−→ 𝑆 ′ 𝑘𝑠2−−−→
𝑆 ′′ is valid. We consider the two MOVE cases separately.

If 𝑘𝑠1 = MOVE(f.𝑥, 𝑟, f.𝑥 + 𝑗); 𝐿(b.(𝑥 − 𝑟)) = 0 in 𝑆 and 𝑆 ′; and
ex𝑚 (𝑆, 𝑘𝑠1) ∩ ex(𝑘𝑠2) = ∅; then

𝑆 ⊢ 𝑘𝑠1;𝑘𝑠2 � 𝑘𝑠2;𝑘𝑠1

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:24 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

If 𝑘𝑠1 = MOVE(b.𝑥, 𝑟, b.𝑥 + 𝑗); 𝐿(f.(𝑥 + 𝑟)) = 0 in 𝑆 and 𝑆 ′; and
ex𝑚 (𝑆, 𝑘𝑠1) ∩ ex(𝑘𝑠2) = ∅; then

𝑆 ⊢ 𝑘𝑠1;𝑘𝑠2 � 𝑘𝑠2;𝑘𝑠1

Proof. The proof is structurally the same as for Rewrite Rule 1,

with the additional use of Lemma D.7. Because of the additional

preconditions and context-sensitivity of the move decomposition

lemma, we must ensure that the preconditions are satisfied in both

𝑆 and 𝑆 ′
; but these are already explicit preconditions of this rewrite.

□

D.2 Canceling Subprograms
Next we consider programs which in some way cancel each other,

akin to the algebraic law 𝑎−1𝑎 = 𝑖𝑑 in group theory. As one might

expect, these rules all involve operations which do not produce

fences since it can be trivially proven that equivalent fenced tangles

must have an equal number of fences.

Rewrite Rule 2 (Merge). Racking in one direction and then back in
the other direction is the same as doing nothing.

𝑆 ⊢ (rack (𝑟 ± 1); rack 𝑟) � nop

where 𝑟 is the initial racking value in 𝑆 .
Missing at 𝑛.𝑥 in one direction and then back in the other is the

same as doing nothing.

𝑆 ⊢ (miss 𝑑𝑖𝑟 𝑛.𝑥 𝑦; miss ¬𝑑𝑖𝑟 𝑛.𝑥 𝑦) � nop

Proof. First we consider merging the two rack operations𝑘𝑠1;𝑘𝑠2.

Recall that E[𝑆 rack r−−−−−→ 𝑆 ′] = 𝑖𝑑𝑛 |𝜄′
𝜄 𝑖𝑑𝑚 where 𝜄 = I<∞ [𝑆] and

𝜄′ = I<∞ [𝑆 ′]. Then, again by distributivity

E[𝑆 rack (𝑟±1) ;rack 𝑟
−−−−−−−−−−−−−−−→ 𝑆] =

�
𝑖𝑑𝑛 |𝜄

′
𝜄 𝑖𝑑𝑚

�
◦

�
𝑖𝑑𝑛 |𝜄𝜄′𝑖𝑑𝑚

�

= (𝑖𝑑𝑛 ◦ 𝑖𝑑𝑛) |𝜄𝜄 (𝑖𝑑𝑚 ◦ 𝑖𝑑𝑚)
= 𝑖𝑑𝑛+𝑚

= E[𝑆 nop−−−→ 𝑆]

Similarly, the proof for merging the two miss operations 𝑚1;𝑚2

for yarn 𝑦 proceeds by observing that both miss operations have a

compatible layer decomposition, and that the composition within

each layer is simply 𝑖𝑑 .

Let 𝑆 ′
be the state between the two miss operations. Let 𝜄< =

I<𝑦 [𝑆] ∈ I𝑛,𝑚+1 be the interleaving of all yarns and loops in front of

yarn𝑦 and 𝜄> = I>𝑦 [𝑆] ∈ I1,𝑚 be the interleaving of the yarn𝑦 with

all of the yarns and loops behind yarn 𝑦. Similarly, let 𝜄′< = I<𝑦 [𝑆 ′]
and 𝜄′> = I>𝑦 [𝑆 ′]. Then E[𝑆 𝑚1−−→ 𝑆 ′] = 𝑖𝑑𝑛 |𝜄

′
�

𝜄� (𝑖𝑑1 |𝜄
′
¡

𝜄¡ 𝑖𝑑𝑚) and

E[𝑆 ′ 𝑚2−−→ 𝑆] = 𝑖𝑑𝑛 |𝜄�
𝜄′
�

(𝑖𝑑1 |𝜄¡
𝜄′
¡
𝑖𝑑𝑚). Therefore, by distributivity

E[𝑆 𝑚1;𝑚2−−−−−→ 𝑆] =

�
𝑖𝑑𝑛 |𝜄

′
�

𝜄� (𝑖𝑑1 |𝜄
′
¡

𝜄¡ 𝑖𝑑𝑚)
�

◦
�
𝑖𝑑𝑛 |𝜄�

𝜄′
�

(𝑖𝑑1 |𝜄¡
𝜄′
¡
𝑖𝑑𝑚)

�

= (𝑖𝑑𝑛 ◦ 𝑖𝑑𝑛) |𝜄�
𝜄�

�
(𝑖𝑑1 ◦ 𝑖𝑑1) |𝜄¡

𝜄¡ (𝑖𝑑𝑚 ◦ 𝑖𝑑𝑚)
�

= 𝑖𝑑𝑛+1+𝑚

= E[𝑆 nop−−−→ 𝑆]

□

Rewrite Rule 3 (Squish).

𝑆 ⊢ xfer 𝑛.𝑥 𝑛′ .𝑥 ′
; xfer 𝑛′ .𝑥 ′ 𝑛.𝑥 � xfer 𝑛′ .𝑥 ′ 𝑛.𝑥

Furthermore, when 𝐿(𝑛.𝑥) = 0 in initial state 𝑆 ,

𝑆 ⊢ xfer 𝑛.𝑥 𝑛′ .𝑥 ′ � nop

Proof. Either 𝑛.𝑥 = f.𝑧, in which case 𝑛′ .𝑥 ′ = b.(𝑧 − 𝑟); or

𝑛.𝑥 = b.(𝑧 − 𝑟) and 𝑛′ .𝑥 ′ = f.𝑧. Without loss of generality, assume

the latter case (the former is symmetric via flipping the diagrams

180
◦
). The non-trivial part of the diagram denoted by this com-

posite program is shown above. Once composed, this is the same

diagram that xfer f.𝑧 b.(𝑧 − 𝑟) denotes. If 𝐿(f.𝑧) = 0 in 𝑆 , then

this sub-diagram is simply 𝑖𝑑2𝑛 , which is denoted by nop as well—

demonstrating the second claim. □

D.3 Subprogram Machine Location
We have now explained how to cancel and commute various knitout

instructions relative to each other. This allows us to change the

order in which we perform operations and remove redundant oper-

ations. However, it doesn’t yet allow us to “reschedule” programs

in the sense of adjusting gauge or changing which needle we use to

perform a substantive operation (e.g., knit, tuck).

In the case of the tuck operation, which produces the same yarn

topology independent of the bed it occurs in, a single xfer operation

can be used to change the needle argument to the same physical

location on the opposite bed.

Rewrite Rule 4 (Slide). Let 𝑛.𝑥 and 𝑛′ .𝑥 ′ be defined such that they
are the pair 𝑓 .𝑧 and 𝑏.𝑧 − 𝑟 , or the pair 𝑏.𝑧 − 𝑟 and 𝑓 .𝑧. Then let
𝑘𝑠 (𝑛.𝑥) = tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠).

𝑆 ⊢ 𝑘𝑠 (𝑛.𝑥); xfer 𝑛.𝑥 𝑛′ .𝑥 ′ � 𝑘𝑠 (𝑛′ .𝑥 ′); xfer 𝑛.𝑥 𝑛′ .𝑥 ′

Proof. Without loss of generality, assume 𝑛.𝑥 = f.𝑧, 𝑛′ .𝑥 ′ =

b.𝑧 − 𝑟 , and 𝑑𝑖𝑟 = + (the other cases involve symmetric diagrams

of equivalent complexity). We can see that a simple application

of Reidemeister moves R3 and R4 can be used to slide the fence

produced by tuck under front bed loops and over the back bed

loops to transform from the diagram on the left to the diagram on

the right. Further, observe that in the case where 𝐿(𝑛.𝑥) = 0, the

diagram can be further simplified and a xfer instruction removed

via Rewrite Rule 3.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

Semantics and Scheduling for Machine Knitting Compilers • 143:25

Table 2. When performing operation 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠 or 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠) , conjugate either moves 𝑘𝑠 one needle
to the left (n.x-1) or one needle to the right (n.x+1). In the back bed case 𝑘𝑠 (𝑑𝑖𝑟, b.𝑛) , conjugate only uses the SHIFT macro. In contrast, the front bed case
𝑘𝑠 (𝑑𝑖𝑟, f.𝑛) requires additional miss instructions to route yarns to the correct physical carrier location. The correct ordering of miss and SHIFT operations
that prevents intertwining of loops and carriers depends on the 𝑑𝑖𝑟 parameter, producing two extra cases each. Note that all six cases require preconditions
similar to those described in the proof of Rewrite Rule 5.

Front Back

+ - any

Left

miss − f.𝑥 − 1 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥, 𝑟, −1)
𝑘𝑠 (+, f.𝑥 − 1)
miss + f.𝑥 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥 − 1, 𝑟 − 1, 1)

SHIFT(f.𝑥, 𝑟, −1)
miss − f.𝑥 𝑦𝑎𝑟𝑛𝑠

𝑘𝑠 (−, f.𝑥 − 1)
SHIFT(f.𝑥 − 1, 𝑟 − 1, 1)
miss + f.𝑥 − 1 𝑦𝑎𝑟𝑛𝑠

SHIFT(b.𝑥, 𝑟, −1)
𝑘𝑠 (𝑑𝑖𝑟, b.𝑥 − 1)
SHIFT(b.𝑥 − 1, 𝑟 − 1, 1)

Right

SHIFT(f.𝑥, 𝑟, 1)
miss + f.𝑥 𝑦𝑎𝑟𝑛𝑠

𝑘𝑠 (+, f.𝑥 + 1)
SHIFT(f.𝑥 + 1, 𝑟 + 1, −1)
miss − f.𝑥 + 1 𝑦𝑎𝑟𝑛𝑠

miss + f.𝑥 + 1 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥, 𝑟, +1)
𝑘𝑠 (−, f.𝑥 + 1)
miss − f.𝑥 𝑦𝑎𝑟𝑛𝑠

SHIFT(f.𝑥 + 1, 𝑟 + 1, −1)

SHIFT(b.𝑥, 𝑟, 1)
𝑘𝑠 (𝑑𝑖𝑟, b.𝑥 + 1)
SHIFT(b.𝑥 + 1, 𝑟 + 1, −1)

�

L(f.x) L(b.z-r)

f.𝑧

f.𝑧

b.𝑧 − 𝑟

b.𝑧 − 𝑟

L(f.z) L(b.z-r)

f.𝑧

f.𝑧

b.𝑧 − 𝑟

b.𝑧 − 𝑟

□

In order to move an operation to a different needle on the same

bed, we must use a sequence of operations. All resulting loops and

yarn carriers produced by the operation would then need to be

moved back to match the appropriate end state 𝑆 ′
. This is partic-

ularly important for the knit instruction, which has a mirrored

structure depending on which bed it’s performed on (the difference

between a knit and a purl in hand-knitting). Continuing the alge-

braic analogy to group theory, we might expect a structure similar

to 𝑔ℎ𝑔−1
(the conjugation of ℎ by 𝑔) and ℎ to be similar or equivalent

given a suitably trivial 𝑔. In fact, this is the right way to think about

moving operations around, though the exact knitout operations in 𝑔

and 𝑔−1
vary depending on the operation being conjugated. Due to

the asymmetry in machine operations rack, knit, and tuck, gener-

ating the correct sequence of routing operations requires breaking

conjugate into six different cases seen in Table 2. All six cases use

similar logic for transforming between the fenced tangle diagrams.

Thus we walk through the proof of only one case below.

Rewrite Rule 5 (Conjugate [f, +, Left]). Let 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) be either
a knit or tuck instruction 𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = knit 𝑑𝑖𝑟 𝑛.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠 or
𝑘𝑠 (𝑑𝑖𝑟, 𝑛.𝑥) = tuck 𝑑𝑖𝑟 𝑛.𝑥 𝑙 (𝑦, 𝑠). (we will simply refer to (𝑦, 𝑠) as
𝑦𝑎𝑟𝑛𝑠 in the tuck case). Let 𝑆 be the state prior to 𝑘𝑠 . If the following
needles are empty 𝐿(b.𝑥 − 𝑟) = 0, 𝐿(f.𝑥 − 1) = 0, and if there are no
yarn carriers in the way that we are not using𝑌 −1 (⌊f.𝑥, −⌋𝑟) = 𝑦𝑎𝑟𝑛𝑠 ,
then

𝑆 ⊢ 𝑘𝑠 (+, f.𝑥) � miss − f.𝑥 − 1 𝑦𝑎𝑟𝑛𝑠; SHIFT(f.𝑥, 𝑟, −1);
𝑘𝑠 (+, f.𝑥 − 1);
miss + f.𝑥 𝑦𝑎𝑟𝑛𝑠; SHIFT(f.x-1, r-1, 1)

(where miss on multiple𝑦𝑎𝑟𝑛𝑠 is simply a sequence of miss operations,
one for each yarn)

Proof. The proof is given in figure 20. We briefly expound on

details here.

Because only and exactly 𝑦𝑎𝑟𝑛𝑠 are present at ⌊f.𝑥, −⌋𝑟 , the un-

conjugated diagram has no initial

−→
𝑉 𝑦𝑎𝑟𝑛𝑠 ; only the final

←−
Λ 𝑦𝑎𝑟𝑛𝑠 .

In the conjugation diagram, this final merge cancels against the

initial separation of the knit instruction, allowing 𝑦𝑎𝑟𝑛𝑠 to become

separated from the other yarns initially parked at ⌊f.𝑥 − 1, −⌋𝑟 . The

rest of the diagram fairly trivially deforms back to the unconjugated

diagram, using standard Reidemeister moves. □

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

143:26 • Jenny Lin, Vidya Narayanan, Yuka Ikarashi, Jonathan Ragan-Kelley, Gilbert Bernstein, and James McCann

Fig. 20. The fenced tangle denoted by the conjugate left program. Note it is equivalent to the fenced tangle for knit + f.𝑥 𝑙 𝑦𝑎𝑟𝑛𝑠 as seen in figure 12i.

ACM Trans. Graph., Vol. 42, No. 4, Article 143. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Machine Knitting Background
	3 Related Work

