MIT Open Access Articles

Accelerating Sparse Data Orchestration via Dynamic Reflexive Tiling (Extended Abstract)

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Odemuyiwa, Toluwanimi, Asghari-Moghaddam, Hadi, Pellauer, Michael, Hegde, Kartik, Tsai, Po-An et al. 2023. "Accelerating Sparse Data Orchestration via Dynamic Reflexive Tiling (Extended Abstract)."

As Published: https://doi.org/10.1145/3597635.3598031

Publisher: ACM|Proceedings of the 2023 ACM Workshop on Highlights of Parallel Computing

Persistent URL: https://hdl.handle.net/1721.1/152175

Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Accelerating Sparse Data Orchestration via Dynamic Reflexive Tiling (Extended Abstract)

Toluwanimi O. Odemuyiwa
University of California, Davis
California, USA

Hadi Asghari-Moghaddam
University of Illinois Urbana-Champaign
Illinois, USA

Michael Pellauer
NVIDIA
Massachusetts, USA

Kartik Hegde
University of Illinois Urbana-Champaign
Illinois, USA

Po-An Tsai
NVIDIA
Massachusetts, USA

Neil C. Crago
NVIDIA
Massachusetts, USA

Aamer Jaleel
NVIDIA
Massachusetts, USA

John D. Owens
University of California, Davis
California, USA

Edgar Solomonik
University of Illinois Urbana-Champaign
Illinois, USA

Joel S. Emer
MIT/NVIDIA
Massachusetts, USA

Christopher W. Fletcher
University of Illinois Urbana-Champaign
Illinois, USA

CCS CONCEPTS
• Computer systems organization → Special purpose systems;
• Hardware → Hardware accelerators.

KEYWORDS
Tensor Algebra, Sparse Computation, Hardware Acceleration

ACM Reference Format:

1 MOTIVATION
Tensor algebra is a ubiquitous primitive in numerical computations. In particular, sparse tensor algebra involves sparse tensors, where most elements are set to zero. The simplest multi-sparse kernel is the multiplication of two sparse matrices, or sparse-sparse matrix multiplication (SpMSpM). SpMSpM arises in solvers for linear systems of equations, eigenvalue computations, and graph algorithms such as computation of shortest paths and centrality measures. The higher-order analogues to SpMSpM involve tensor contraction—the higher-order equivalent of a dot product. Contractions of sparse tensors are important primitives in many of the core areas of tensor computations, including computational chemistry methods and sparse tensor decomposition. Despite their importance, however, the performance of these sparse tensor kernels on modern architectures is memory-bound.

2 LIMITATIONS OF THE STATE OF THE ART
The maximum achievable performance for a memory-bound kernel is a function of its arithmetic intensity: the ratio of FLOPS (or computation) to the data traffic (bytes transferred) from DRAM. Thus, a key opportunity for accelerating sparse tensor algebra is in minimizing the DRAM traffic through on-chip data reuse. Prior work improves arithmetic intensity by exploring dataflows that improve data reuse. For example, Figure 1 shows the DRAM traffic of three main SpMSpM accelerators that explore using the three main SpMSpM dataflows (outer-product [3, 7], row-wise Gustavson’s [4, 6] and inner-product [1]) in an attempt to significantly reduce memory traffic. Yet, as the figure shows, dataflow alone is not sufficient to bring DRAM traffic close to the lower bound.

For dense problems, significantly improving reuse beyond dataflow decisions can be achieved through tiling. Unfortunately, due to irregular data sparsity, traditional tiling applied to sparse problems does not enable us to mine this data reuse opportunity. Consider the state-of-the-art accelerator in sparse tiling, ExTensor [1]. It statically tiles the input and output matrices offline into

Figure 1: DRAM traffic for each input operand (A, B) and output (Z) in SpMSpM (A · B = Z), aggregated over the matrices used in our evaluation, setting B = A. Each bar indicates actual traffic and each red square indicates the lower bound on traffic (read each of A and B once, write Z once for each matrix). Outerspace [3], MatRaptor [4] and ExTensor [1] are representative accelerators that apply the outer-product, Gustavson’s and inner-product dataflows, respectively. ExTensor-OP-DRT (this paper) using dynamic reflexive tiling achieves significantly closer to the lower bound for all operands/outputs. Different accelerators use similar but not identical compressed representations, and hence have slightly different traffic lower bounds.
uniformly sized, coordinate-space regions, where coordinates corre-
spond to the locations in Cartesian space, such as row and column
ids, for elements in each matrix. Such a tiling is oblivious to data
sparsity. Therefore, the amount of non-zero data in each tile—the
tile’s occupancy—can vary widely. This can lead to decreased arith-
metic intensity because low occupancy tiles typically result in low
reuse per buffer fill. Indeed, Figure 1 shows how ExTensor’s tiling
suffers from high output traffic due to being oblivious to data spar-
sity [1].

3 KEY INSIGHTS

To address the above challenges, we propose dynamic reflexive
tiling (DRT), a novel tiling algorithm and hardware mechanism that
dramatically improves reuse in the presence of irregular sparsity.
To demonstrate the effectiveness of DRT, we architect an innovative
accelerator called TACTile, built around DRT [2], and also show
how DRT can improve reuse when applied to prior accelerators [1,
3, 4] that utilize other dataflows, as described above.

The key idea in DRT is to dynamically co-tile input and output
tensors into non-uniform coordinate-space regions: tiles whose
volumes differ when measured in coordinates. Through dynamic
non-uniform-coordinate-space tiling, DRT takes into account data
sparsity across all participating tensors, depending on the current
active region of each tensor in the computation. Tile occupancy is
maximized, subject to the buffer capacity, and variation in occupa-
cency across spatially-distributed tiles is minimized. To maximize
utilization across the entire duration of the kernel, DRT not only
changes tile shape across different regions of each tensor but also
over time for the same region, based on how the data is later reused.

A challenge that arises when tiling into non-uniform size regions
is how to enable co-iteration. That is, when performing operations
such as inner or outer products on tiles, participating tiles must have
corresponding coordinate ranges. For example, a inner product-
style matrix multiplication requires that the column coordinates in
a tile of matrix A match the row coordinates in a tile of matrix B.

To address the co-iteration problem, DRT co-tiles in the coordi-
nate space. A co-tiling is one where co-iterated dimensions, shared
between tiles mapped to each buffer, correspond to the same coordi-
nate range in the original untiled tensors. This facilitates operations
such as coordinate intersections by ensuring that the set of coordi-
nates from each tile in the intersection covers the same coordinate
range. Depending on the dataflow, co-tiling may require coordinat-
ing tile shape across many tiles. For example, if a tile of matrix A
is broadcast to all PEs, all tiles of B later mapped to the PEs must be
co-tiled with respect to that of tile of A.

Finally, we propose algorithms and a hardware architecture to
perform all of the above efficiently, including hiding the latency of
dynamic tile construction. This is challenging, as finding optimal
tile shapes implies performing a search that must be solved online
and continuously for each set of tiles distributed to each accelerator
buffer. We design and implement DRT in a hardware unit called
the tile extractor, and design an accelerator, ExTensor-OP-DRT (or
TACTile), that implements multiple levels of tile extraction to
hierarchically break down data into sparsity-aware tile shapes. As
shown in Figure 1, ExTensor-OP-DRT significantly reduces data
traffic, achieving close to the lower bound. Finally, we show that
DRT is not tied to TACTile but can be integrated into dataflow-
specific accelerators to improve their data traffic. Please see the full
paper for details [2].

4 KEY RESULTS AND CONTRIBUTIONS

- We propose a novel mechanism, dynamic reflexive tiling (DRT), that dynamically co-tiles input and output tensors to
maximize buffer utilization. We also propose a hardware
unit, the tile extractor, which implements DRT with a small
area overhead.

- Running SpMSpM across a range of matrix shapes and spar-
sity patterns, a graph algorithm, and a higher-order tensor
kernel, we compare TACTile and its static tiling variant
to the prior state of the art in sparse tiling, ExTensor [1],
as well as a baseline CPU MKL kernel [5]. It achieves a ge-
omean speedup ranging from $2.4 \times -3.66 \times$ and $3.6 \times -5.5 \times$
over ExTensor and the CPU, respectively. Beyond SpMSpM,
we show that DRT can reduce traffic for higher-order tensor
kernels. For the evaluated higher-order kernel, it achieves
an improvement of $16.6 \times$ and $3.9 \times$ in DRAM traffic over its
SUC variant and CPU MKL, respectively.

- We demonstrate that DRT is portable to other sparse accele-
ramtors and integrate it into outer-product and row-wise
accelerators. DRT tiling provides performance and arith-
metic intensity improvements over static uniform tiling for
both classes of accelerators.

- Overall, when implemented in hardware, DRT successfully
improves load balance and data reuse across all operators
without adding significant latency overhead.

- Finally, we evaluate the potential benefits of a software DRT
implementation over untiled and statically tiled software
implementations, showing a $7.29 \times$ and $2.94 \times$ memory traffic
improvement, respectively.

REFERENCES

[1] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago,
Amir Jaleel, Edgar Solomonik, JoelEmer, and ChristopherW. Fletcher. 2019. ExTen-
sor: An Accelerator For Sparse Tensor Algebra. In International Symposium on

[2] Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer,
Kartik Hegde, Po-An Tsai, Neal Crago, Amir Jaleel, John D. Owens, Edgar Solomonik,
JoelEmer, and ChristopherFletcher. 2021. Accelerating Sparse Data Orchestration
via Dynamic Reflexive Tiling. In 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS ’23, Vol. 3).
https://doi.org/10.1145/3582016.3582064

Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaaw, Trevor Mudge, and
Ronald Dreislinki. 2018. OuterSPACE: An Outer Product Based Sparse Matrix Mul-
tiplication Accelerator. In International Symposium on High Performance Computer

MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-
https://doi.org/10.1109/MICRO56666.2020.00068

[5] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
International Conference on Architectural Support for Programming Languages and

Efficient Architecture for Sparse Matrix Multiplication. In International Symposium
org/10.1109/HPCA47549.2020.00050