
CBMM Memo No. 143 September 18, 2023

A Homogeneous Transformer Architecture

Yulu Gan
and

Tomaso Poggio
Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA

Abstract

While the Transformer architecture has made a substantial impact in the field of machine learning, it
is unclear what purpose each component serves in the overall architecture. Heterogeneous nonlinear
circuits such as multi-layer RELU networks are interleaved with layers of soft-max units. We introduce
here a homogeneous architecture based on Hyper Radial Basis Function (HyperBF) units. Evalua-
tions on CIFAR10, CIFAR100, and Tiny ImageNet demonstrate a performance comparable to standard
vision transformers.

This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

1 Introduction

Why are different types of operations such as soft-max and RELU necessary in the Transformer [1]
architecture? While conventional explanations highlight the self-attention’s role in weighting sequence
positions and the feedforward network’s role in information transformation [1], an alternative interpre-
tation suggests that self-attention discerns the sparse graph structure of the compositional regression
function [2]. Viewed this way, the subsequent MLP learns the constituent function linking two nodes
in the graph. The theoretical results on compositional sparsity suggest that learning of a sparse com-
positional function could be replicated using nonlinearities that are not RELUs since they can be used
to approximate non-linear functions. A classical example consists of Radial Basis Functions (RBF)
and its variant, HyperBF. Intriguingly, under a normalization assumption HyperBF networks are ex-
actly equivalent to self-attention based on the soft-max. This insight suggests a unified architecture
composed of HyperBFs units only.

2 Method

Our proposed unified architecture can be written as:

y = x + HyperBF(LayerNorm (x + HyperBF(LayerNorm(x))) (1)

A succinct overview of HyperBF is presented in Sec. 2.1. Following this, the role of HyperBF
in each layer is detailed in Sec. 2.2.1 and Sec. 2.2.2. Specifically, in Sec. 2.2.1, we delve into the
relationship between HyperBF and the self-attention mechanism, drawing parallels with associative
memory where both the query and key originate from the data itself. Afterwards, in Sec. 2.2.2, we
offer insights into how HyperBF functions in the second layer, acting as associative memory with keys
derived from learnable centers.

2.1 Preliminary

2.1.1 Normalized RBF

The Normalized Radial Basis Function, abbreviated as Normalized RBF, is characterized by the fol-
lowing equation:

f(x) =

∑N
i=1 yiK (∥x − xi∥)∑N
i=1 K (∥x − xi) ∥

(2)

Distinct from the traditional Radial Basis Functions, the Normalized RBF incorporates a normal-
ization factor in its denominator. This factor serves as an approximation of the data’s probability
distribution. The relationship between this approximation method and regularization theory is well-
established (see [3]).

f(x) =

N∑
i=1

yiK (∥x − xi∥) . (3)

Often referred to as kernel regression or the Nadaraya-Watson estimator, this approximation tech-
nique has garnered significant attention within the statistical realm. The equation embodies the
quintessential structure of normalized radial basis functions. Here, the centers align with the exam-
ples, and the coefficients ci equate to the function values yi at the respective data points xi. It’s worth
noting that this estimator bears similarities to Parzen windows.

2.1.2 HyperBF

HyperBF [4, 5] is a generalization of RBF networks, where the Mahalanobis-like distance is used
instead of the Euclidean distance.

ϕ(x) =

N∑
α=1

cαK
(
∥x− tα∥2W

)
(4)

2

Figure 1: Our architecture vs. Transformer. The components of our model integrate seamlessly
with HyperBF, forming an architecture reminiscent of a unified associative memory.

Note that tα and cα are the center and weight of neuron α. The activation function K
(
∥x− tα∥2W

)
represents a Radial Basis Function such as the Gaussian1 defined as K(·) = exp

(
−∥x−z∥2

W

L

)
. In this

context, the Mahalanobis-like distance is given by the expression ∥x−z∥2W = (x− zi)
T
WTW (x− zi).

2.2 The Architecture of HyperBF

We have introduced a multilayer architecture consisting of HyperBF units. Our structure can be better
comprehended when viewed through the lens of similarity.

2.2.1 Evaluating Sample-to-Sample Similarity in the First Layer

The attention mechanism has been widely used in many sequence modeling tasks. Its dot-product
variant is the key building block for the state-of-the-art transformer architectures [1]. Let qt denote a
query vector, that attends to sequences of L pairs ki,vi of key and value vectors (see Figure 2). At
each timestep, the attention linearly combines the values weighted by the outputs of a Softmax:

attn (qt, {ki} , {vi}) =
∑
i

exp
(
qt · ki/σ

2
)∑

j exp (qt · kj/σ2)
v⊤
i (5)

As observed in[2], a normalized HyperBF unit is equivalent to soft-max based self attention. A

normalized HyperBF requires the assumption that ∥qt∥ = 1 and ∥ki∥ = 1. Then 1− ∥qt−ki∥2

2 = qt ·ki.

1There are several other choices including the Laplacian.

3

In practice, the assumptions that ∥qt∥ = 1 and ∥ki∥ = 1 in the self-attention layer are not always met
in transformers in common use. However, we can remove this assumption (see details in Appendix
6.1) so the equivalence between self-attention and HyperBF can be more general.

attn (qt, {ki} , {vi}) =
∑
i

exp
(
−∥qt−ki∥2

2σ2

)
∑

j exp
(
−∥qt−kj∥2

2σ2

)v⊤
i (6)

2.2.2 Assessing Similarity Between Centers and Samples in the Second Layer

We can rewrite the Eq. 4 of HyperBF as follows:

ϕ(x) =

N∑
i=1

K
(
∥qi − ki∥2W

)
v⊤
i (7)

where qi is the output of the first layer and ki is learnable centers. The second layer of the network
also has an associate memory structure. Here, the distance between the output of the first layer and
the centers is used as the weight.

Typically, the feedforward network in a transformer layer has the following form:

ϕ(x) = W2σ (W1x + b1) + b2 (8)

where W1 is the weight of the first fully connected layer, b1 is its bias, σ represents an activation
function like ReLU, W2 is the weight of the second fully connected layer, and b2 is its bias.

3 Experiments

3.1 Experimental Setup

Dataset. As shown in Tab. 1, CIFAR10 [6] consists of 60,000 32x32 color images, divided into 10
classes, with 6,000 images per class. The 10 classes are airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. The dataset is split into 50,000 training images and 10,000 test images.

CIFAR100 [6] is Similar in structure to CIFAR10, the CIFAR100 dataset contains 60,000 32x32
color images. However, it is divided into 100 classes, with each class containing 600 images. These 100
classes are further grouped into 20 superclasses, providing a hierarchical structure to the dataset.

Tiny ImageNet [7] is a scaled-down version of the renowned ImageNet [8], featuring 100,000 images
of 64x64 resolution across 200 classes. Designed for educational use and quick experimentation, it
offers a balance between computational feasibility and real-world vision challenges.

Table 1: Vision task statistics and descriptions.

Dataset Train Test Classes Metric Domain

CIFAR10 50K 10K 10 Acc. 32 × 32

CIFAR100 50K 10K 100 Acc. 32 × 32

Tiny ImageNet 100K 10K 200 Acc. 64 × 64

3.1.1 Implementation Details.

We implement our code based on Pytorch 2. We train our multilayer HyperBF and all baselines for
100 epochs on 1 NVIDIA A100 GPUs. The training involves images with a resolution of 32 × 32 and
incorporates data augmentation including filp with a batch size of 256. The proposed model is trained
with a learning rate 10−4 without any warm-up stage. Both the Vision Transformer and our Multi-
layer HyperBF utilize 4 heads and 4 blocks. For a fair comparison, we maintain consistent parameters
across both models.

2Our code will be availabled at https://github.com/sunrainyg/Unified architecture

4

https://github.com/sunrainyg/Unified_architecture

Table 2: Experimental results on several benchmark datasets. For all of them, we train the model on
the training dataset and then test on the test dataset using accuracy as the meric. Results show that
the multilayer HyperBF network achieves almost the same performance as transformers.

Dataset Epoch Method Acc (%)

CIFAR10

100

ViT 75.61

HyperBF 75.12

CIFAR100
ViT 49.90

HyperBF 48.30

Tiny ImageNet
ViT 32.03

HyperBF 31.14

3.1.2 Experimental Results

We tested the performance of our model on CIFAR10, CIFAR100, and Tiny Imagenet. On these three
datasets, our model underperformed the Vision Transformer by 0.49%, 1.6%, and 0.89% respectively.
We believe this is within an acceptable range, and our model’s performance is comparable to that
of the Vision Transformer but more homogeneous. Additionally, there are methods to enhance our
model’s performance (as detailed in Appendix 6.3). However, these are beyond the scope of this paper’s
objectives.

4 Conclusions

The experiments in this paper suggest an alternative Transformer architecture based on Hyperbf units.
The architecture is homogeneous since the same machinery is used in the self-attention layers and in
the ”MLP” layers. Among our preliminary observations we mention:

• for vision transformers HyperBF units can be assumed to have M ≈ I
σ2 ;

• the self-attention units learn automatically a smaller σ than the units replacing the MLP layers.

We will discuss in later publications how to leverage the new homogeneous architecture for

• efficient and different optimization techniques;

• a better understanding of the principles underlying transformer’s properties, including connec-
tions to ideas about how the brain might work, see [9];

• studying its characteristics on language datasets;

• the connection between these networks and associative memories.

5 Acknowledgement

We are deeply grateful to Brian Cheung and Mengjia Xu for the discussions and proofreading.

5

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[2] Tomaso A. Poggio. How deep sparse networks avoid the curse of dimensionality: Efficiently com-
putable functions are compositionally sparse. CBMM Memo, 10/2022 2022.

[3] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization Theory and Neural Networks
Architectures. Neural Computation, 7(2):219–269, 03 1995.

[4] T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of the IEEE,
78(9):1481–1497, 1990.

[5] Roberto Brunelli and Tomaso Poggio. Hyberbf networks for gender classification. DARPA Image
Understanding Workshop, 02 1995.

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[7] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[9] T Poggio. A theory of how the brain might work. Cold Spring Harb Symp Quant Biol, 1990.

6

6 Appendix

6.1 General Case of Equivalence between Self-Attention and HyperBF.

Let’s start from revisit the definitions: Softmax (xi) = exp(xi)∑
j exp(xj)

. Where xi is the i-th element of

the input vector. Considering the characteristics of Softmax, it normalizes the input vector such that
the sum of all elements in the output vector equals 1. Therefore, for any constant offset in the input
vector, the output of the Softmax will not change. To demonstrate this, we can consider adding a
constant c to the input vector. We can have:

Softmax (xi + c) =
exp(c) · exp (xi)

exp(c) ·
∑

j exp (xj)
(9)

As can be seen, exp(c) will be canceled out in both the numerator and the denominator, so adding
the constant c will not change the output of the Softmax.

If we set ∥qt∥ = c1 ∥ki∥ = c2, we can have c21 + c22 − ∥qt−ki∥2

2 = qt · ki. When calculating the
Softmax weights for attention, the constant term of c21 +c22 in this expression won’t affect the outcome,
as the Softmax will automatically normalize all the weights. Therefore, we can safely remove this
constant term without affecting the results of the attention computation.

6.2 Additional information on the two layers.

We observed that WTW ≈ I. Therefore, special case of Hyperbf with the WTW in Eq. 4 as a identity
that is RBF is acceptable for vision transformer HyperBF; σ are found to be different in the different
layers depending on their function in the architecture

Figure 2: We visualized the Gaussian kernel functions in the first and second layers of HyperBF. Since
we only want to focus on the size of σ, we assume µ = 0 in this visualization.

6.3 Improvements of our model

There are several straightforward methods to enhance our model.
Firstly, we employ the same scale factor found in the self-attention layer. The scale factor

√
d

in this layer ensures that the inner product of q and k doesn’t become excessively large. This is
crucial because if the dimensions of q and k are too expansive, their inner product will consequently
be substantial.

Secondly, a larger inner product indicates greater similarity, while a larger Euclidean or Mahalanobis
distance suggests less similarity. Consequently, we introduced a negative sign before the Euclidean
or Mahalanobis distance. However, the softmax function tends to be less responsive to negative
numbers, leading to less pronounced differences in its output values. This aspect could potentially
affect performance, suggesting an avenue for further refinement.

7

Figure 3: The key synaptic motif in the ascending and the descending streams, possibly repeating in
the vertical and horizontal directions. Note symmetry.

7 New PseudoAppendix on work by Brian Cheung, Qianli
Liao, Liu Ziyin, Yulu Gan and Tomaso Poggio

This section is a way to put a time stamp on new and ongoing work. We wish to report about a neural
circuit which is a biologically plausible implementation of SGD.

7.1 Summary of proposed NeuroSGD circuit

Over the last four decades the amazing success of deep learning has been driven by a simple but powerful
optimization technique, called Stochastic Gradient Descent (SGD). The default implementation of SGD
is backpropagation, which is used to this day in essentially all computer implementations. From the
perspective of neuroscience, however, it seems very unlikely that backpropagation could be used by the
brain. Though several alternatives have been analyzed, none is supported by both computational and
experimental evidence. Here we propose a SGD algorithm that is biologically plausible, works well and
lead to experimentally verifiable predictions about a specific synaptic motif of connections between the
ascending and the descending streams in cortex (see Figure 3). Perhaps the most interesting aspect
of our proposal is a surprising self-assembly property of the basic circuit, using only heterosynaptic
Hebb-type plasticity rules. We plan to communicate soon the details of our model that works as well
as backpropagation on datasets such as CIFAR10.

8

	Introduction
	Method
	Preliminary
	Normalized RBF
	HyperBF

	The Architecture of HyperBF
	Evaluating Sample-to-Sample Similarity in the First Layer
	Assessing Similarity Between Centers and Samples in the Second Layer

	Experiments
	Experimental Setup
	Implementation Details.
	Experimental Results

	Conclusions
	Acknowledgement
	Appendix
	General Case of Equivalence between Self-Attention and HyperBF.
	Additional information on the two layers.
	Improvements of our model

	New PseudoAppendix on work by Brian Cheung, Qianli Liao, Liu Ziyin, Yulu Gan and Tomaso Poggio
	Summary of proposed NeuroSGD circuit

