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Abstract
We propose a method for constructing generative models of 3D objects from a single 3D mesh and improving them through
unsupervised low-shot learning from 2D images. Our method produces a 3D morphable model that represents shape and albedo
in terms of Gaussian processes. Whereas previous approaches have typically built 3D morphable models from multiple high-
quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. As
we demonstrate in the face domain, these models can be used to infer 3D reconstructions from 2D data (inverse graphics) or
3D data (registration). SpeciÞcally, we show that our approach can be used to perform face recognition using only a single 3D
template (one scan total, not one per person). We extend our model to a preliminary unsupervised learning framework that
enables the learning of the distribution of 3D faces using one 3D template and a small number of 2D images. Our approach
is motivated as a potential model for the origins of face perception in human infants, who appear to start with an innate face
template and subsequently develop a ßexible system for perceiving the 3D structure of any novel face from experience with
only 2D images of a relatively small number of familiar faces.

KeywordsGenerative models· 3D morphable models· Face recognition· Inverse graphics· Unsupervised learning·
Low-shot learning

1 Introduction

3D generative models of objects are used in many com-
puter vision and graphics applications. Present methods for
constructing such models typically require either signiÞcant
amounts of 3D data processed through specialized pipelines,
substantial manual annotation, or extremely large amounts
of 2D data (Chaudhuri et al.,2020; Egger et al.,2020).
We explore a novel approach that could provide a means
to build generative models from very limited data: a sin-
gle 3D object template (such as a single 3D scan of a face,
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or the average face in some population, or simply a hand-
built coarse face mesh). Our initial model is built using
simple preprogrammed heuristics. We then show that it can
be improved using an unsupervised wake-sleep-like algo-
rithm which learns statistical distributions of objects based
on 2D observations, without relying on pretrained networks
for feature point detection or face recognition. The mod-
els we build are 3D morphable models (3DMMs) ((Blanz
& Vetter, 1999; Egger et al.,2020)), a type of generative
model which creates samples by applying randomized shape
and albedo deformations to a reference mesh. Traditionally,
3DMMs (e.g. (Paysan et al.,2009; Gerig et al.,2018; Li
et al., 2017; Booth et al.,2018)) are built through princi-
pal component analysis (PCA) applied to datasets of 50 to
10,000 3D meshes produced by specialized (and expensive)
3D scanners (Egger et al.,2020). Furthermore, a registration
step is required to align the scans to a common topology. In
contrast, we use only a single scan or template, and so can
eschew registration, an intrinsically ill-posed problem.

Our approach uses the provided scan as our generative
modelÕs mean and smoothly deforms the scan as a surface in
physical (3D) space and color (RGB) space using Gaussian
processes. Our shape deformation model follows that of LŸthi
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et al. (2017). We deÞne the albedo deformations by com-
bining analogous smooth albedo deformations on the mesh
with smooth deformations on the surface deÞned by consid-
ering the mesh as a shape in RGB-space, with each vertexÕs
location determined by its albedo rather than its position.
We initially deÞne very generic Gaussian processes and add
domain-speciÞcity through correlation between color chan-
nels and bilateral symmetry. Our models are fully compatible
with PCA-based 3DMMs; the only difference is that our mod-
elsÕ covariances are constructed through Gaussian processes
rather than PCA. As our 3DMMs use the same format and
support the same operations as PCA-based 3DMMs, they
can be used in existing pipelines to perform downstream
tasks. They can additionally be used to augment PCA-based
3DMMs (LŸthi et al.,2017).

This is, to the best of our knowledge, the most data-
efÞcient procedure currently extant for constructing 3D
generative models, and the sole procedure that only uses
a single datapoint. While the performance of our models
is signiÞcantly poorer than that of PCA-based 3DMMs,
they nevertheless perform surprisingly well given their data-
efÞciency. While 3DMMs are a common prior in computer
vision systems, their scalability is limited because their syn-
thesis involves careful capture and modeling with category-
speciÞc domain knowledge. Our methodÕs data-efÞciency
obviates the need for large amounts of data capture, while
our methodÕs generality enables its use for any object class.
Finally, our approach minimizes the amount of sensitive per-
sonal data required to construct face 3DMMs.

We also prototype an extension of our single-scan approach
to a multi-scan setting by constructing mixture models
of separate single-scan 3DMMs. This can be seen as a
generalization of kernel density estimation (KDE). While
performing inference with such a mixture model is more
computationally expensive than with a PCA-based 3DMM,
we demonstrate that the reconstruction quality obtained is
much higher if the number of scans used in the models
is low. Furthermore, constructing this type of KDE-based
model does not require correspondence between scans.

In addition to extending our approach to multi-scan set-
tings, we prototype a method for extending our single-scan
3DMMs on the basis of unsupervised low-shot learning from
2D images. We do this by using our single-scan 3DMMs to
perform analysis-by-synthesis (Yuille & Kersten,2006) on
the 2D images, yielding a dataset of 3D reconstructions. A
new 3DMM can then be produced from this dataset through
PCA. Analysis-by-synthesis is performed using a four-stage
pipeline: Þrst, a CNN trained on synthetic data generated
by the 3DMM is used to regress pose and lighting; sec-
ond, a Markov chain Monte Carlo (MCMC) method is used
to reconstruct the object within the single-scan 3DMMÕs
eigenspaces; and third, a shape-from-shading strategy using
the 3DMM as a source of regularization is used to recon-

struct Þne details, Þnally a new model is learned from the
inference results. We demonstrate in the face domain that
this approach can greatly improve the 3DMMsÕ visual qual-
ity using only a few hundred images. Furthermore, we do
not implicitly rely on supervision in the form of pre-trained
feature-point detectors or face recognition networks trained
on labeled data; rather, we also bootstrap face alignment dur-
ing learning. Our approach is therefore unsupervised besides
the single template and the heuristics that generate the initial
model.

We believe this approach to enhancing our 3DMM through
the incorporation of unlabeled 2D data has applications not
just for computer vision but also as a potential computa-
tional model of the development of face perception in infants.
The visual perception of infants is an area of key interest
in cognitive science (Kellman & Arterberry,2007) which
is typically studied through psychophysical experiments,
and rarely through computational models. Building such a
computational model was the initial motivation behind this
project and we show that learning a statistical model is feasi-
ble in this way but we do not provide any further evidence that
human visual development works in such a way. There are
several theories explaining the development of face-selective
areas in the visual system and the preference very young
infants have for faces (Slater et al.,1998). One theory posits
an innate subcortical face template, with the average face a
likely candidate for such a template (Powell et al.,2018).
Studies of imitation in infants suggest some sort of basic
face model might be present at birth (Meltzoff & Moore,
1989). Psychophysical experiments with aftereffects in face
perception also indicate the presence in the brain of a linear
model of the space of faces that 3DMMÕs can quantitatively
model (Leopold et al.,2001; Egger et al.,2020). Further-
more, the adult brainÕs representation of face space seems
to be reÞned over the course of development (Valentine et
al., 2016). Recent neurological analysis of the face system
in macaque monkeys supports analysis-by-synthesis using a
3DMM as a plausible underlying mechanism of face percep-
tion (Yildirim et al.,2020). There is also strong evidence that
human face perception improves drastically over the course
of long-term development; despite the strong improvements
in early vision, our face perception capabilities grow sub-
stantially in adulthood and peak in the 30s (Germine et al.,
2011).

In the context of human cognitive development, our
research also seeks to identify the minimal inductive biases
that learning systems require to derive a 3DMM-based face
perception framework from 2D images through unsupervised
learning. Our proposed unsupervised approach to learn a
3DMM is based on an inverse rendering framework along
with a minimal 3D seed (which we demonstrate can be
simpler than a full face scan) which we use to produce a
weak generative model. We argue that these mechanisms are
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plausibly innate in the human brain, with the average face
representing a minimal innate template whose existence is
indicated by infant experiments (Powell et al.,2018). We
then demonstrate that our framework can learn a rich 3DMM
from 2D data. This is the Þrst fully unsupervised method for
learning a 3DMM from 2D data, and the resulting model
reaches broadly similar quality to existing 3DMMs learned
from 2D data in a highly supervised manner.

Although we demonstrate the applicability of our approach
to other object categories, we focus our experiments on faces.
This is mainly because 3DMMs have historically been built
for face modeling, so we can better compare our models
to prior work in a face setting, and do so through well-
established pipelines. Our results with other object categories
are harder to interpret, since our method is unique not only in
its ability to generalize from a single datapoint, but also in its
ßexibility of object category. However, our paperÕs methods
may have their greatest relevance in domains outside of face
perception since in the face domain high-quality 3DMMs
built from 3D data are already widely extant.

The main contributions of this work are the following:

1. We offer a novel albedo deformation model by combining
surface-based and color-space-based kernels.

2. We introduce a framework for 3DMM construction from
a single 3D scan by extending an existing framework to
build statistical shape models (LŸthi et al.,2017) with our
albedo deformation model.

3. We evaluate our model on three downstream tasks, namely
inverse rendering (2D to 3D registration), face recogni-
tion, and 3D to 3D registration, as well as the direct quality
measures of speciÞcity, generalization against compact-
ness (Styner et al.,2003). We compare its performance
with that of the 2019 (or, where relevant, 2017) Basel
Face Model (Gerig et al.,2018), a state-of-the-art 3DMM
produced from 200 3D scans.

4. We build a prototype KDE-based face model from 10 face
scans, and demonstrate that on a face recognition task it
outperforms a PCA-based 3DMM built from the same 10
scans.

5. We extend our framework on the basis of unsupervised
low-shot learning from 2D images to enrich our simple
model with image observations, demonstrating the feasi-
bility of fully unsupervised learning of statistical 3DMMs.

This paper is organized as follows: We Þrst review the related
literature in Sect.2, followed by the methods part. In the
methods part in Sect.3 we introduce the basic ideas of our
generative model including the design of our shape and
albedo covariance kernels in Sects.3.1and3.2. We then pro-
pose the idea how such kernels could potentially be used
in a kernel density-based generative model in Sect.3.3. In
Sect.3.4 we then dive into the details how we learn and

improve on our simple shape and albedo models based on few
2D observations. We provide an overview over all involved
hyperparameters in Sect.3.5. In the experiments Sect.4 we
show inverse rendering results and present the quality of the
learned model using qualitative and quantitative measures.

2 Related Work

Our methods combines ideas from diverse prior work. In
the following we summarize the state-of-the-art in the areas
most close and relevant. We start with different ideas for sta-
tistical shape modeling, focusing on Gaussian Process based
models, then summarize how 3D models have previously
been learned from 2D data and how they are then applied
to retrieve a 3D reconstruction from a 2D image. Finally we
show similarities of ideas in our work to shape-from-template
based approaches.

2.1 Gaussian Processes for Shape Modelling

The idea of building an axiomatic shape deformation model
using Gaussian processes was previously explored in LŸthi
et al. (2017), which used such a deformation model as a
prior for 3D registration tasks. We extend this approach
to include albedo along with shape by building Gaussian
processes in RGB-space as well as physical space. This
enables its use as prior in an inverse graphics setting,
and allows us to take albedo into account during registra-
tion. Kemelmacher-Shlizerman and Basri (2010) presented
a method for the 3D reconstruction of faces from 2D images
through axiomatic deformation of a single 3D scan. How-
ever, unlike our approach, this paper did not produce a
generative model, and performed 3D reconstruction through
shape-from-shading rather than probabilistic inference, using
the 3D scan as purely as regularizer. Tegang et al. (2020)
applied a Gaussian process intensity model in medical imag-
ing for co-registration of CT and MRI images and for data
augmentation. Other shape representation strategies (e.g.
(Kilian et al.,2007)) incorporate geodesic distances instead
of Euclidean distances; while geodesic distances are beneÞ-
cial in modeling motion and expression, since they are not
easily transferable to color spaces we here focus on Euclidean
distance. Ovsjanikov et al. (2011) proposes a method for
modeling variability in 3D datasets without correspondence
by deforming a single template mesh. However, unlike our
work, Ovsjanikov et al. (2011) learns a nonlinear deforma-
tion model from a signiÞcant number of (unregistered) 3D
scans through dimensionality reduction techniques, and so
is inapplicable given only a single scan. Furthermore, they
only study 3D-to-3D reconstruction and it is unclear how
their approach could be applied in a computer vision setting.
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2.2 Learning 3DMMs from 2D Data

While classically 3DMMs have been built from a collection
of 3D scans, there are also several approaches that start from
2D data or combine 2D and 3D data. Building a 3DMM
solely from 2D data was Þrst explored by Cashman and
Fitzgibbon (2012). Although they, like us, also start from
a 3D mean shape as an initial template, their work neglects
albedo. Recently, methods to improve 3DMMs through 2D
observations were proposed (Tewari et al.,2018; Tran & Liu,
2019). While they seek to build 3DMMs from 2D data, their
approaches start with a full 3DMM built from 3D scans, and
primarily reÞne the appearance model to increase ßexibil-
ity. Neither method offers a way to derive this initial model
other than capturing 3D data and establishing correspon-
dence between scans. Tran et al. (2019) further extended
these ideas to incorporate nonlinear models so as to overcome
the limitations inherent in the linearity of classical 3DMMs.
In contrast to these works aiming to build a 3DMM from a
large collection of 2D data and an initial 3DMM, our work
focuses on building a 3DMM from just a single 3D scan.
Such a model could be used as an initial model for the 2D
learning strategies discussed above.

Additionally, some recent work has focused on the prob-
lem of the unsupervised learning of 3D generative models
from a large 2D training corpus (Szab— et al.,2019; Wu et
al.,2020) or from depth data (Abrevaya et al.,2018). The 3D
generative models learned by these approaches do not dis-
entangle illumination and albedo (or neglect albedo entirely,
as in Abrevaya et al. (2018)), and do not preserve correspon-
dence, making them difÞcult to interpret. Furthermore, this
means that they are incompatible with existing 3DMM-based
pipelines; in contrast, generative models produced through
our approach can be used interchangeably with PCA-based
3DMMs.

Tewari et al. (2020) was the Þrst to propose a complete
3DMM learned from 2D images and video data through
self-supervised learning, using an average 3D face for initial-
ization. This paper is more directly comparable to our work.
However, we show that the average face is already sufÞcient
to produce a usable 3DMM, without any 2D data. While we
do prototype extensions of our 3DMMs on the basis of 2D
data, we do so using far less data than Tewari et al. (2020):
we use only static images, use many orders of magnitude
fewer images, and do not rely on pre-trained face detectors,
feature point detectors or face recognition networks. Their
model however also incorporates facial expressions through
video supervision which are omitted in our proof of concept.

Other works have focused on extending 3D morphable
models beyond a linear latent space (Ranjan et al.,2018;
Bouritsas et al.,2019; Tran et al.,2019). In contrast, we use
a traditional linear latent space and rather focus on how such
latent spaces can be learned. For additional work on applica-

tions of 3DMMs and shape and albedo representations used
with 3DMMs, we refer to Egger et al. (2020).

2.3 3D from 2D Through 3DMMs

Our analysis-by-synthesis method presented in Sect.3.4 is
closely related to a number of prior works. The Þrst stage
of our method, a CNN trained on 3DMM-generated syn-
thetic data for pose and lighting regression, is similar to the
EfÞcient Inverse Graphics network of Yildirim et al. (2020)
and previous work on regressing 3DMM parameters directly
from images (Tuan Tran et al.,2017). The second stage,
an MCMC method for shape and albedo regression within
a 3DMMÕs shape and albedo subspaces, is similar to the
MCMC method presented in Schšnborn et al. (2017) (and we
use Schšnborn et al. (2017)Õs method directly in other parts
of the paper). The third stage, a 3DMM-regularized shape-
from-shading strategy, is loosely similar to the approaches
of Kemelmacher-Shlizerman and Basri (2010) and Patel and
Smith (2012); however, the speciÞc combination of these
approaches, and their use case, is original to our paper.

2.4 Shape-from-Template Approaches

In addition to 3D morphable models, our work can also
be connected withshape-from-templateapproaches to 3D
vision. These approaches typically address the following
problem: given a reference mesh, an input image, and a set of
dense (pixel-level) correspondences between the input image
and a rendering of the mesh (Bartoli et al.,2012; …stlund
et al.,2012; Brunet et al.,2011; Malti et al.,2011; Moreno-
Noguer et al.,2010; Salzmann, & Fua,2011) or with the mesh
directly (Moreno-Noguer et al.,2009; Salzmann et al.,2008),
deform the mesh to match the input image. Restrictions on the
allowed deformations (e.g. isometry or conformality) make
this problem well-posed and sometimes solvable analytically.
This framing means that shape-from-template approaches are
rarely applicable without dense 2D correspondence anno-
tations and generally ignore albedo. Shape-from-template
approaches that do not require dense 2D correspondence have
typically previously relied on additional 3D or video data and
still do not fully model albedo (Yu et al.,2015; Salzmann et
al., 2008; Shaji et al.,2010). In contrast, our approach can
infer 3D reconstructions from single images reliably using
only a small set of landmarks (sparse 2D correspondence)
for localization, and our unsupervised learning approach is
capable of fully unsupervised (albeit much less reliable) 3D
face reconstruction. We furthermore separate albedo and illu-
mination and fully incorporate albedo in our deformations.
Furthermore, shape-from-template approaches have no way
to incorporate statistical information about the distribution
of 3D objects likely to be observed, whereas we demonstrate
our approach can incorporate statistical learning.
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This work extends our previous conference paper to incor-
porate unsupervised learning (Sutherland et al.,2021).

3 Methods

A 3DMM consists of a shape model and an albedo model;
samples from a 3DMM are meshes with a common topology,
with the position and albedo of each vertex generated by
the 3DMMÕs shape and albedo models, respectively (Egger
et al., 2020). Our framework represents samples from the
shape and albedo models as deformations of a vertex-colored
mesh that deÞnes both the topology of all samples and the
mean of the shape and albedo distributions. Our approach
uses the 3D scan as the mean of the resulting 3DMM. We
deÞne the shape and albedo models in terms of Gaussian
processes, each consisting of a mean and a covariance kernel
(LŸthi et al.,2017; Rasmussen,2003). While this methodÕs
performance depends on the choice of mean mesh, PCA-
based 3DMMs face the same issue since registration likewise
requires a choice of common topology.

We deÞne a Gaussian processg as a pair(µ, �) , whereµ
is the mean of the Gaussian process and� is the covariance
kernel of the Gaussian process;µ is a function fromA to Rn

for some setA and constantn, and� is a positive-deÞnite
function fromA2 toRn× n, whereRn× n is the space ofn-by-n
matrices. In our case, for both the shape and albedo models,
A is the set of mesh vertices, andn = 3. A sample from the
shape model mapsA to positions inR3, whereas a sample
from the albedo model mapsA to RGB values, represented
as vectors inR3. We represent our shape and albedo kernels
using Mercer decomposition computed through the Nystršm
method for computational efÞciency to make the calculation
of tractable, for details we refer to Rasmussen (2003); LŸthi
et al. (2017).

3.1 Shape Covariance Kernels

We follow the approach of LŸthi et al. (2017): deÞning covari-
ance kernels which give a high correlation between nearby
points and a low correlation between distant points. The most
straightforward way to do this is with physical distance. Our
shape kernels are based on radial basis function kernels (Ras-
mussen,2003; LŸthi et al.,2017).

A function f : A2 � R is positive-deÞnite if the matrix
M deÞned byMi , j = f (xi , x j ) is positive-semideÞnite for
any x1, . . . , xn � R Mercer (1909). This deÞnition can be
extended to matrix-valued kernels by lettingMi , j represent
a block submatrix ofM instead of an entry ofM Rasmussen
(2003); LŸthi et al. (2017). Since the set of positive-
semideÞnite matrices is closed under addition and positive
scalar multiplication (Horn,2012), so are matrix-valued ker-
nels. In order to create a kernel with a coarse-to-Þne structure,

possessing strong short-range correlations and weaker long-
range correlations, we deÞne our shape kernel as a linear
combination of radial basis function kernels. Letting� s,�

represent the radial basis function kernel (subscripts for
shape) deÞned using physical distance as its metric and scale
� (in millimeters), we deÞne the family of scalar kernels
� std (a, b, c, A, B, C) = a� s, A + b� s,B + c� s,C. We here
let � 0 = � std (as, bs, cs, As, Bs, Cs), whereas, bs, cs, As,
Bs, andCs are hyperparameters (listed in Sect.3.5). For an
intuition regarding our shape covariance kernels and their
combination we refer to Fig.1 as well as for the mathemati-
cal details to LŸthi et al. (2017).

In order to represent 3D deformations, we must multi-
ply scalar kernels by 3-by-3 matrices. Since we wish for
deformations inx, y, andz to be uncorrelated, we simply
multiply by I3, the 3-by-3 identity matrix. Thus, our stan-
dard shape kernel isKs = I3� 0. One limitation of this
kernel is that it does not encode bilateral symmetry. Many
object categories, including faces, are bilaterally symmetric.
In order to add symmetry to this kernel, we wish to make
the deformations applied to points on opposite sides of the
object closely correlated in the up-down and forward-back
axes and strongly anticorrelated in the left-right axis (Morel-
Forster,2016). To deÞne such kernels, let� m � R3× 3

be the matrix which, considered as a linear transformation
applied to points in physical space, negates a pointÕs left-
right component (where left and right are deÞned relative
to the scan). Then our symmetric shape kernel is deÞned as
K sym

s = I3� 0(x, y) + �� m� 0(x, � m(y)), where� m(y)
denotes applying� m as a linear transformation toyÕs posi-
tion in R3, and � is a hyperparameter (listed in Sect.3.5)
Morel-Forster (2016).

3.2 Albedo Covariance Kernels

What we principally desire in an albedo kernel is that defor-
mations applied to different areas should be highly correlated
if and only if the areas are related. Unlike shape deforma-
tions, albedo deformations in general need not be spatially
continuous, and so a global notion of similarity is needed in
addition to physical proximity. We measure the similarity of
mesh vertices by combining their distance in physical space
with their distance in albedo space.

Physical distance is a straightforward way of assessing
similarity. We deÞne a physical distance-based albedo kernel
similarly to Ks. SpeciÞcally, we deÞneKa,xyz = I3� xyz ,
where� xyz = � std (aa, ba, ca, Aa, Ba, Ca), with hyper-
parametersaa, ba, ca, Aa, Ba, and Ca listed in Sect.3.5
(subscripta for albedo).Aa, Ba, andCa are interpretable
since they are again in millimeters. Samples fromKa,xyz rep-
resent deformations in RGB-space, not position. However,
this kernel neglects some kinds of similarity. For instance, in a
human face, a point on a lip is more similar to another point on
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Fig. 1 Three random samples
from each of the shape and
albedo kernels applied to the
mean of the 2019 Basel Face
Model (Gerig et al.,2018) and
rendered under ambient
illumination. The Þrst two
columns are the two shape
kernels, while the remaining
eight columns are the albedo
kernels

a lip than it is to an equidistant point on a cheek; more gener-
ally, many objects exhibit part-based similarity in addition to
distance-based similarity. Color-space distance provides us
with an estimate of part-based similarity that does not depend
on explicit part annotations. Just as the distances between
mesh points in physical space (in the mean) constitute a met-
ric on the set of mesh points, so do the Euclidean distances
between mesh pointsÕ albedos, represented as RGB values
and considered as points inR3. Using this alternate metric,
we may deÞne another family of radial basis function kernels,
which we term� a,� for � � R. We then deÞne the alternate
albedo kernelKa,rgb = I3� rgb , where� rgb = d� a,D,
with hyperparametersd andD (listed in Sect.3.5), whereD
correspond to RGB intensity values between[0, 1]..

To use both local and global information, we average these
kernels. A core contribution here is the combined kernel
Ka = 0.5(Ka,xyz + Ka,rgb ). This kernel takes into account
both the differences in position and differences in albedos
between points on the mesh, and can thus relatively robustly
assess whether different parts of the object are parts of the
same component.

As stated, all three of our albedo kernels are products of
a scalar-valued kernel withI3. Multiplying by a different
matrix enables us to incorporate domain knowledge about
an object categoryÕs common albedos by correlating the dif-
ferent color channels (red, green, and blue). In particular, as a
very rough approximation to human skin tones, we introduce
additional kernelsK cor

a,xyz and K sym
a,rgb , depending, respec-

tively, on physical and RGB-space distance. Letting

Mx =

�

�
1 x x
x 1 x
x x 1

�

� (1)

we deÞneK cor
a,xyz = M� � xyz and K sym

a,rgb = M� � rgb ,
where� and� are hyperparameters (listed in Sect.3.5).

To add further domain knowledge we create additional
albedo kernels that incorporate bilateral symmetry. The idea
behind this is that color of mouth, eyes or the cheeks will

likely change following bilateral symmetry, the effect of the
proposed symmetry kernels is depicted in Fig.1. Since the
albedo of a member of a bilaterally symmetric object class is
essentially bilaterally symmetric,K sym

a,rgb is already symmet-
ric in practice. However, the physical-distance-based albedo
kernels can be symmetrized via a process analogous to that
used for the shape kernels in Sect.3.1, with the difference
that we do not wish to negate left-right deformations located
on opposite sides of the object. We choose to consider color
channel correlations and symmetry simultaneously, and so
deÞneK sym

a,xyz (x, y) = K cor
a,xyz (x, y) + � K cor

a,xyz (x, � my),
and deÞneK sym

a = 0.5(K sym
a,rgb + K sym

a,xyz ).
To attempt to separate the roles played by symmetry and

color-channel correlation, in the Appendix we also present
results with albedo kernels that have correlated color chan-
nels but lack symmetry.

In Fig.1, we show samples from our various shape and
albedo kernels, applied to the mean of the 2019 Basel Face
Model (Gerig et al.,2018). While these samples are clearly
non-naturalistic, this does not invalidate the results of Sec-
tion 3 of our main paper. We make no claim that our initial
3DMMs based on those kernels accurately model the dis-
tribution of human faces; rather, we claim that they are of
sufÞcient quality to be useful in a machine vision context
and that we can improve their quality based on a few 2D
observations.

3.3 Kernel Density Estimation

One limitation of our approach is that it provides no way
to leverage the information present in multiple scans. How-
ever, an extension of our approach can be used in a setting
where multiple scans are available. To construct a model from
multiple scans, we create single-scan 3DMMs for each scan
separately, and those individual models together then repre-
sent a mixture model. This joint model over different 3DMMs
built from each individual scan results in a non-parametric
3DMM-based model. This essentially amounts to an exten-
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Fig. 2 Visualization of our KDE-based model. It consists of multiple
independent 3DMM-based models which jointly build the KDE model.
We draw the mean for each model in the center and resulting model
samples around each individual single-scan 3DMM. The samples for

the indidivual models are samples from the joint model. To perform
inference we have to perform inference for each individual 3DMM to
then pick the one where the reconstruction would be most likely

sion of kernel density estimation (KDE), where Gaussian
processes replace uniform Gaussian distributions in the deÞ-
nitions of each mixture component, providing a non-uniform
noise model. The idea is visualized in Fig.2.

An advantage of this kernel density estimation approach is
that, unlike PCA, it does not require dense correspondence
between scans. This could enable the creation of 3DMM-
based generative models of object categories where many 3D
scans exist but where establishing dense correspondence is
impossible (e.g. chairs). However, the non-parametric nature
of a KDE-based model means that, unlike a PCA-based
3DMM, the amount of computation required to perform
inference grows with the number of scans as in practice we
need to Þt every single model to the target image. In case of
10 scans the computational complexity increases by a factor
of 10 which makes large models unfeasible without novel
inference techniques that could handle such a model in a
smarter way. We demonstrate the potential of this idea on a
face recognition task in Sect.4.1.

3.4 Learning from 2D Data

The single-scan 3DMMs constructed above, while usable in
some downstream tasks, remain very far from object cat-
egoriesÕ true distributions. In the face domain, we further
demonstrate how our 3DMMs can be augmented through
unsupervised low-shot learning from 2D data. This is done by
Þrst producing 3D reconstructions of faces from 2D images
through inverse graphics using the initial single-scan 3DMM,
and then applying PCA to the resulting dataset. This cannot
be done using the analysis-by-synthesis method of Schšn-
born et al. (2017) (which we use in Sect.4) for two reasons.
Firstly, Schšnborn et al.Õs method relies on manual landmark
annotations. Secondly, it can only produce reconstructions
which lie within the support of the single-scan 3DMM, and
applying PCA to a dataset of such reconstructions will yield
a 3DMM whose support is equal to or a subset of that of
the single-scan 3DMM. For these reasons we produce recon-
structions using a new unsupervised analysis-by-synthesis
method, which is outlined below.

We produce 3D face reconstructions from 2D images
based on an algorithm in a wake-sleep style (Hinton et al.,

1995). The algorithm is originally motivated by human learn-
ing: during the day or when awake we collect observations,
we however not only collect but also process them. During the
night or when sleeping we further process what we have seen
and might update some models based on experience during
the wake phase. Our particular implementation is as follows:
in the wake phase we process new observations with a Þxed
feed-forward network and with a Þxed model, in the sleep
phase we update the model and retrain the feed-forward net-
work with samples from this model. We split our wake and
sleep phases into a four-stage inference process. The Þrst
and last stage are part of the sleep cycle of the algorithm, the
second and third stage are part of the wake cycle. Steps that
are performed when observing new data are part of the wake
cycle (inference), steps that do training, updating or Þnetun-
ing based on previous observations are part of the sleep cycle.
In our particular implementation the inference network and
the model is Þxed during the wake phase and does not update,
during the sleep phase we are not processing new input and
are only processing the results from the observations we had
during the day to update our underlying model and inference
(CNN, but also MCMC through new model). In the follow-
ing, we explain the individual components in more detail and
mention why they are part of the wake or sleep cycle.

First, as illustrated in Fig.3, a convolutional neural net-
work (CNN) trained on synthetic data regresses the face
position and orientation and scene lighting, similarly to
Yildirim et al. (2020) but with non-face scene parameters
regressed rather than a 3DMMÕs principal components. We
use a ResNet50-v2 network (He et al.,2016) which was pre-
trained on ImageNet (Deng et al.,2009). The network is
trained with synthetic data that incorporates variation in both
shape and albedo as well as camera and illumination param-
eters. For shape and albedo we sample according to the prior
from the respective Gaussian Process Model, for the pose we
sampled the full range fromŠ90 to 90� of yaw,Š30 to 30�

for pitch andŠ60 to 60� for roll and illumination parame-
ters we sampled point light sources with random color and
position. We sampled 400k images spanning a wide range
of poses and illumination conditions. Examples of the train-
ing data can be seen in Fig.3. The aim of this Þrst step is to
roughly align the face by estimating the rotation matrix for
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Fig. 3 The Þrst stage of our inference pipeline. A convolutional neural network is trained on synthetic data rendered from our single scan model
to regress the location and pose of faces in the input images

pose, x and y position, scale and estimate the illumination.
The network is trained in a fully supervised fashion applying
an L2 loss on parameters scaled to have uniform variance.

This stage of the algorithm is part of the sleep stage, as we
pretrain or reÞne our network based on a Þxed model. There
are no new observations or data fed at this sleep stage of the
algorithm. In the following two stages two and three there
are new observations fed into the network but the inference
pipeline and model remains ÞxedÑthose are part of the wake
cycle.

Next, as illustrated in Fig.4, these initial estimates of
the camera and illumination parameters parameters are used
to initialize a MCMC process broadly similar to that of
Schšnborn et al. (2017) (without landmarks and with a
somewhat different proposal distribution) that produces a
3D reconstruction of the faceÕs shape and albedo within the
3DMMÕs subspaces while also inferring lighting and reÞn-
ing the estimated pose. The precise hyperparameters used in
the proposal generation distribution are slightly altered due
to the use of a different underlying computational frame-
work, and unlike in the case of Schšnborn et al. (2017),
we incorporate a canonical prior on pose (beta distribu-
tions betweenŠ90 to 90� of yaw, Š30 to 30� for pitch
and Š60 to 60� which prefer frontal poses) and lighting
parameters (uniform distribution for light direction in front
of the face and normal distributions for color components
centered around ambient, which are also used to generate
synthetic training data). Such additional priors are incorpo-
rated using likelihood functions in the same fashion as the
existing priors for shape and albedo proposed by Schšnborn
et al. (2017). However, the basic structure of Schšnborn et
al. (2017)Õs proposal distributionÑa coarse-to-Þne mixture
model of Gaussian drift hypothesesÑis preserved. We use
initial n1 initial MCMC steps to estimate the lighting param-
eters only, followed byn2 MCMC steps to estimate the other
parameters (along with reÞned lighting parameters). We per-
form a rough estimation of the lighting parameters as lighting
is dominating appearance and this helps to guide inference
in the right direction.n1 andn2 are hyperparameters listed
in Sect.3.5.

Third, as illustrated in Fig.5, a shape-from-shading strat-
egy is used to reconstruct the faceÕs Þne details outside
of the 3DMMÕs shape and albedo subspaces. Since shape-

from-shading is an ill-posed problem, shape-from-shading
approaches inherently require some source of regularization
(Zhang et al.,1999). We use our 3DMM as a source of reg-
ularization, penalizing reconstructions both based on their
distance from the 3DMMÕs shape and albedo subspaces, and
the probability the 3DMM assigns the reconstructionsÕ pro-
jections into those subspaces. The probability of the shape
in the 3DMM model is derived from the probabilistic inter-
pretation of PCA which enables to use the model as a prior.
We assume the illumination estimation of the MCMC infer-
ence to be correct and optimize for the normals and albedo
of the surface. The 3DMM prior is applied to both, normals
(shape) and albedo. Optimization is performed using gradi-
ent descent, usingn3 sequential gradient descent steps, where
n3 is a hyperparameter listed in Sect.3.5. This makes the
shape-from-shading process similar to maximuma posteri-
ori optimization using differentiable rendering, and is based
on to the approaches of Kemelmacher-Shlizerman and Basri
(2010) and Patel and Smith (2012).

Finally in the fourth step, once a dataset of detailed 3D
reconstructions has been produced, a new 3DMM is con-
structed by applying PCA to this dataset. This part is again
part of the sleep cycle of the algorithm as the model is
updated. After this step the learning process repeats in the
next iteration where in the Þrst stage the inference pipeline
is updated to reßect the new model. Before PCA is applied, a
denoising step is applied to the shape of each mesh to remove
any spikes introduced by the shape-from-shading process,
and an alignment step using the algorithm of Umeyama
(1991) is applied. Once a new 3DMM has been produced,
the CNN used to initialize pose and lighting estimation is
Þnetuned through retraining on new synthetic data. The new
synthetic dataset used to train the CNN does not consist solely
of samples from the newly constructed 3DMM, but rather is
a mixture of samples from all the 3DMMs produced through-
out the learning process. Improvements in the 3DMM also
improve the accuracy of the MCMC and shape-from-shading
steps, since these are both model-in-the-loop processes.

Quality control at each of the steps in our framework is
essential for the learning of a 3DMM. A single bad recon-
struction can introduce signiÞcant errors and severe artifacts
into the learned model. We therefore implemented simple
quality control heuristics that ensure that only the very best
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Fig. 4 The second stage of our inference pipeline. A Markov chain
Monte Carlo (MCMC) process is used to infer the shape and albedo
of the face along with environmental illumination, as well as reÞne

the regressed pose. If the MCMC process does not approximately pre-
serve the 2D silhouette of the rendered face the face reconstruction is
discarded

Fig. 5 The third stage of our
inference pipeline. A
shape-from-shading strategy is
used to infer the Þne details of
the shape and albedo of the face
along with reÞned
environmental illumination.
Once the shape-from-shading
process is complete, denoising
and alignment steps are applied
as post-processing. If the
shape-from-shading process
does not approximately preserve
albedo, the reconstruction is
discarded

reconstructions end up in the resulting model. Misalignments
of the face in the image by the CNN can yield highly inac-
curate MCMC reconstructions, and similar misalignments
during the MCMC process can yield gross errors in the
shape-from-shading reconstruction. For this reason, we dis-
card poor Þts during the process using simple heuristics.
SpeciÞcally, if the MCMC process does not approximately
preserve the 2D silhouette of the face reconstruction, or
if the shape-from-shading strategy does not approximately
preserve the albedo of the face reconstruction, the recon-
struction is discarded as a probable failure. We would now
like to describe those two heuristics in more detail: The qual-
ity control heuristic for the second stage aims at the end of
the MCMC process, the 2D silhouettes of the rendered Þts
are compared and if the ratio of pixels in both silhouettes
to pixels in either silhouette is not at leastr1 (a hyperpa-
rameter), the Þt is discarded. The basic intuition behind this
quality metric is that the CNN and MCMC have to agree on
the rough pose, otherwise the result is rejected. Similarly as
quality control heuristic after the third stage of the algorithm,
at the end of the shape-from-shading process, we compute

the average distance between the albedo of each vertex in the
mesh before and after the shape-from-shading process, and if
this exceeds a thresholdr2Š nr3 the Þt is discarded, wherer2

andr3 are hyperparameters andn is the number of previously
performed wake-sleep iterations. The intuition behind this
step is that the shape-from-shading estimate has to be some-
what similar to the MCMC estimateÑotherwise something
went wrong and we reject the result. While the precise num-
ber of reconstructions that pass these quality control steps
varies, it is generally very low, and the quality control steps
can be viewed as selecting only very best reconstructions to
ensure that the model is only built from good reconstructions.
We chose conservative threshold values as a few bad Þtting
results can lead to a bad new model and the whole model
learning can diverge.

3.5 Choices of Hyperparameters

We present an overview over our hyperparameters in Table1.
Importantly, these parameters have generally not been

extensively tuned, which is reßected in the fact that we use
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Table 1 Hyperparameters used for our method

Parameter Value Unit Description

as 7 Ð Amplitude of coarse shape kernel

bs 5 Ð Amplitude of medium shape kernel

cs 3 Ð Amplitude of Þne shape kernel

As 100 Millimeters Bandwidth of the coarse shape kernel

Bs 50 millimeters Bandwidth of the medium shape kernel

Cs 10 millimeters Bandwidth of the Þne shape kernel

aa 0.02 Ð Amplitude of coarse albedo kernel in shape space

ba 0.01 Ð Amplitude of medium albedo kernel in shape space

ca 0.01 Ð Amplitude of Þne albedo kernel in shape space

Aa 500 millimeters Bandwidth of the coarse albedo kernel in shape space

Ba 20 millimeters Bandwidth of the medium albedo kernel in shape space

Ca 2 millimeters Bandwidth of the Þne albedo kernel in shape space

d 0.015 Ð Amplitude of the albedo in color space

D 0.15 color [0,1] Amplitude of the albedo in color space

� 0.7 Ð Strength of symmetry constraint

� 0.9375 Ð Strength of color channel correlation heuristic for albedo kernel in shape space

� 0.95 Ð Strength of color channel correlation heuristic for albedo kernel in color space

n1 1000 Ð Number of MCMC samples to initially estimate lighting

n2 10000 Ð Number of MCMC samples for all parameters

n3 5000 Ð Number of gradient steps for shape-from-shading

r1 0.625 Ð Ratio of silhouette that has to overlap for quality control

r2 8 Ð Initial quality control value for shape-from-shading

r3 0.5 Ð Decay of quality control value for shape-from-shading

the same kernels for faces, birds and Þsh. Our core idea is
simply to combine radial basis function kernels at three dif-
ferent scales and magnitudes so as to incorporate global as
well as local ßexibility. We are aware that a different set
of hyperparameters would very likely lead to better perfor-
mance, however tuning those parameters would be performed
on data and since we would like to build a model based on
minimal data we did not tune the parameters beyond having
selected different scales. Some of our hyperparameters are
interpretable and therefore easy to set by intuition since they
are representing physical distances (namelyAs, Bs, Cs, Aa,
Ba, andCa) have units of millimeters. We represent RGB val-
ues as points in[0, 1]3, andD, r2 andr3 represent distances
or magnitudes in color space using this unit system.

4 Experiments

We produce a set of 3DMMs from our kernels using the aver-
age face of the 2019 Basel Face Model (Gerig et al.,2018) as
our reference mesh. These are listed with their corresponding
kernels in Table2. These 3DMMs have the same mean as the
2019 Basel Face Model, and so comparing their performance
with that of the 2019 Basel Face Model constitutes a direct

Table 2 Our Gaussian processes for modeling faces

Name Shape kernel Albedo kernel

standard-full Ks Ka

standard-RGB Ks Ka,rgb

standard-XYZ Ks Ka,xyz

symmetric-full K sym
s K sym

a

symmetric-RGB K sym
s K sym

a,rgb

symmetric-XYZ K sym
s K sym

a,xyz

comparison of our axiomatic Gaussian process-based covari-
ance kernels with the learned covariance model of the 2019
Basel Face Model. We also produce 3DMMs by combining
our kernels with face scans provided with the 2009 Basel
Face Model (Paysan et al.,2009). We assess these modelsÕ
performance on downstream tasks where 3DMMs are often
used, namely inverse graphics (in Sect.4.1) and registration
(in Sect.4.4), and directly compare these 3DMMÕs speciÞcity
and generalization on real faces with that of the 2017 Basel
Face Model (Gerig et al.,2018) in Sect.4.3. In Sect.4.2 we
show samples and face reconstructions from 3DMMs learned
from 2D data using our wake-sleep approach and compare
them with the LeMoMo model of Tewari et al. (2020). In
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Fig. 6 Reconstructions
produced from natural images
using various 3DMMs. The Þrst
row shows the natural images
used as input, while the
remaining rows show the
reconstructions inferred using
different 3DMMs. The
standard-full and symmetric-full
models were produced using the
mean of the 2019 Basel Face
Model (Gerig et al.,2018) as
template

Sect.4.5 we experiment with simple 3DMMs of birds and
Þsh.

4.1 Inverse Rendering

One of the most direct ways to assess the value of our model is
to apply it in an analysis-by-synthesis setting (Yuille & Ker-
sten,2006). Using our 3DMMs as priors on 3D meshes, we
can perform inverse rendering to reconstruct 3D meshes from
2D images through approximate posterior inference (Schšn-
born et al.,2017). We use a spherical harmonics lighting
model, as in Zivanov et al. (2013), and a pinhole camera
model, as in Blanz and Vetter (1999). Since no synthetic
image will ever exactly match a natural image, we treat fore-
ground pixels as subject to Gaussian noise and background
pixels as sampled from the input image, following the method
of Schšnborn et al. (2015).

To perform inference, we use the MCMC method pre-
sented in Schšnborn et al. (2017). SpeciÞcally, we use
Gaussian drift proposals to update pose, perform closed-form
estimation of illumination, and use Gaussian drift propos-
als applied in the 3DMMÕs low-dimensional eigenspaces
to update the mesh itself. In order to locate the face in
the image we constrain pose using landmark annotations
provided with each image. Although we generated these
landmark annotations manually, they could also have been
obtained automatically using existing tools (e.g. OpenPose
(Cao et al.,2019)).

One analysis-by-synthesis task is to reconstruct 3D face
meshes from natural images, render the results and com-
pare them with said natural images. We here perform this
task on images from the Labeled Faces in the Wild dataset
(Huang et al.,2008) and show in Fig.6 the reconstructions
produced using the standard-full and symmetric-full 3DMMs
(as deÞned in Table2), as well as the reconstructions that
our inverse graphics pipeline produces using the 2019 Basel
Face Model (Gerig et al.,2018). As Fig.6 demonstrates, all
of these 3DMMs produce plausible reconstructions with the
BFM reconstructions being slightly superiorÑfull results are
shown in Fig.20.

In addition to the models we deÞne using the mean of the
2019 Basel Face Model, we construct additional 3DMMs
using the symmetric kernel and ten scans provided with the
2009 Basel Face Model (Paysan et al.,2009) as different
means. We name these models symmetric-x, wherex is the
ID number of the scan (001 , 002 , 006 , 014 , 017 , 022 ,
052 ,053 ,293 , or323 ). Reconstructions produced by these
3DMMs can be found in the Appendix, along with side views
of our reconstructions. To assess our 3DMMsÕ performance
in an inverse graphics setting where the choice of prior gains
importance, the Appendix also includes reconstructions of
partially occluded faces produced with the occlusion-aware
MCMC method described in Egger et al. (2018). All models
again yield similar reconstruction quality.

In our second experiment, we use the inverse rendering
used above to perform face recognition, as outlined in Schšn-
born et al. (2017); Gerig et al. (2018); Blanz and Vetter
(2003). By reconstructing the shape and albedo latents from a
gallery of reference images{ f1, . . . , fn} (with one image per
identity), we can obtain latents(cs,i , ca,i ) for each reference
image fi . Faces in a novel imagef0 are then identiÞed by
reconstructing shape and albedo latents(cs,0, ca,0) from said
image and determining the reference image with the max-
imum cosine angle in the joint shape-albedo latent space,
as in Blanz and Vetter (2003). We conduct face recognition
on images from the CMU Multi-PIE database (Gross et al.,
2010). The results are presented in Table3.

Table 3 illustrates that the 3DMMs with albedo ker-
nels that combine RGB-space and physical-space distance
information perform face recognition signiÞcantly more
accurately on all image types than do 3DMMs with albedo
kernels that only make use of one type of distance metric.
Furthermore, we may observe that the performance of the
symmetric model is better on all image types than that of the
BU3D-FE model (Gerig et al.,2018), a 3DMM built from
100 3D scans. Table3 also illustrates that 3DMMs deÞned
using the mean of the 2019 Basel Face Model have better
performance than those deÞned using individual face scans.
This is particularly true on images with a yaw angle over 15� ,
since as the yaw angle increases, the prior (in this case the
3DMM) plays a larger role in generating the reconstruction.
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Table 3 Face recognition results for images from the Multi-PIE
database (Gross et al.,2010)

angle 15� 30� 45�

probe id 140_16 130_16 080_16

standard-full 84.7 69.9 54.2

standard-RGB 76.3 57.8 28.9

standard-XYZ 77.1 62.7 35.7

symmetric-full 93.2 85.9 72.3

symmetric-RGB 73.5 61.4 40.2

symmetric-XYZ 73.1 58.6 44.2

symmetric-001 78.7 62.2 49.8

symmetric-002 78.7 70.7 48.6

symmetric-006 77.5 63.9 38.2

symmetric-014 71.9 59.0 47.8

symmetric-017 88.0 72.3 50.6

symmetric-022 85.9 73.5 59.4

symmetric-052 85.9 71.5 55.0

symmetric-053 84.3 76.7 55.4

symmetric-293 85.5 74.3 59.8

symmetric-323 87.6 76.3 55.4

10-scan PCA 86.0 65.9 42.2

10-scan KDE 94.0 85.9 71.5

BU3D-FE Gerig et al. (2018) 90.4 82.7 68.7

BFM Õ17 Gerig et al. (2018) 98.8 98.0 90.0

Each column represents the accuracy for a set of probe images with a
common yaw angle given in the Þrst row. The second row gives the
common ending of the IDs in the Multi-PIE dataset of the probe images
with a given yaw angle. The gallery is constructed from the images of all
249 identities with a yaw angle of 0� (dataset IDs ending in051_16 ).
Chance rate is 0.4. The 3DMMs in the second box (standard-full to
symmetric-XYZ) were produced using the mean of the 2019 Basel
Face Model (Gerig et al.,2018), while the 3DMMs in the third box
(symmetric-001 to symmetric-323 ) were produced using the 3D scans
provided with the 2009 Basel Face Model (Paysan et al.,2009). BFM
Õ17 refers to the 2017 Basel Face Model (Gerig et al.,2018)

The previously presented face recognition results relied
on the mean of the 2019 Basel Face Model (Gerig et al.,
2018). The performances of the 3DMMs built using indi-
vidual face scans (symmetric-001 to symmetric-323 ) are
also listed in Table3. The performances of these 3DMMs
are clearly signiÞcantly lower than that of the symmetric-
full 3DMM. However, by combining the information present
in the 10 scans through our KDE approach (examples of
those models can be found in Fig.2, we can produce a new
model that achieves performance comparable to that of the
symmetric-full 3DMM. To perform face recognition with this
non-parametric model, we perform inference for each mix-
ture component separately on both the probe image and each
gallery image. We then compute the cosine-angle in latent
space between the probe reconstruction and all gallery recon-
structions for each mixture component, and classify the probe

image based on which 3DMM and gallery image yields the
smallest cosine-angle.

The performance of this mixture model on our face recog-
nition task is listed in Table3 as Ò10-scan KDEÓ. As Table3
shows, this approach offers face recognition performance
comparable to that achieved by the symmetric-full 3DMM,
and outperforms the BU3D-FE model on all yaw levels,
despite using only 10 scans. To provide a more direct com-
parison between our novel KDE approach and PCA-based
3DMMs, we also produced a 3DMM by performing PCA
with the 10 scans. The face recognition performance of
this 3DMM is listed in Table3 as Ò10-scan PCAÓ. Table3
demonstrates that this PCA-based 3DMM has far poorer face
recognition performance than our KDE-based model. In fact,
the performance of the 10-scan PCA-based 3DMM is compa-
rable to that of the 3DMMs produced from a single individual
face scan (symmetric-001 to symmetric-323 ).

4.2 Learned Models

Despite performing well on face recognition tasks, samples
from our single-scan 3DMMs are nevertheless highly non-
naturalistic, as shown in Fig.1. Using the learning approach
outlined in Sect.3.4, we augmented our standard-full and
symmetric-full 3DMMs using 200 images from the Multi-
PIE dataset (Gross et al.,2010). We used images of 50 distinct
individuals shown in a frontal perspective, from a 15� angle,
from a 30� angle, and from 45� angle. However, no identity
or pose annotations were used; our learning algorithm treated
each image as if it was an image of a novel individual in an
unknown pose. We augmented these 200 images by adding
alternate versions of each image that were ßipped left-to-
right, so our learning algorithm used 400 images total.

We ran Þve iterations of our wake-sleep-like procedure,
creating ten new 3DMMs total; here we show only four
of them, namely the 3DMMs produced after one iteration,
and the 3DMMs produced after all Þve iterations. We name
these 3DMMs Òstandard-1Ó, Òstandard-5Ó, Òsymmetric-1Ó,
and Òsymmetric-5Ó. Random samples from these 3DMMs
shown in frontal and side views are shown in Fig.8.

We additionally wanted to see if our learning procedure
could reconstruct the mean face even when initialized with
a simpliÞed face scan. To do so, we applied a blur Þl-
ter to (separately) the shape and albedo of the mean of
the 2019 Basel Face Model (Gerig et al.,2018), resulting
in the simpliÞed meshes shown in Fig.7, and constructed
analogues of the symmetric-full models using these sim-
pliÞed meshes, yielding two new 3DMMs. We then reran
our learning algorithm using these new 3DMMs as initial-
izations, yielding 10 new learned 3DMMs; we again show
only four of them, namely those produced after one iter-
ation and after all Þve iterations. We name the 3DMMs
produced using a simpliÞed albedo Òsmooth-albedo-1Ó and
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Fig. 7 SimpliÞed 3D face
templates used to initialize the
learning process used to
construct the smooth-albedo-1,
smooth-albedo-5,
smooth-shape-1, and
smooth-shape-5 models shown
in Figs.8 and 9. These 3D
templates were constructed by
applying blur transformations to
the mean of the 2019 Basel Face
Model (Gerig et al.,2018)

smooth albedo smooth shape

standard-1

standard-5

symmetric-1

symmetric-5

smooth-albedo-1

smooth-albedo-5

smooth-shape-1

smooth-shape-5

LeMoMo

Fig. 8 Samples from the models learned through the learning process
outlined in Sect.3.4, using as initial 3DMMs the standard-full (standard-
1 and standard-5) and symmetric-full (symmetric-1 and symmetric-
5) 3DMMs, as well as analogues of the symmetric-full 3DMMs built
using initial scans with simpliÞed albedo (smooth-albedo-1 and smooth-
albedo-5) and simpliÞed shape (smooth-shape-1 and smooth-shape-5),
and the LeMoMo model developed by Tewari et al. (2020). Learning was
performed for one iteration (standard-1, symmetric-1, smooth-albedo-
1, and smooth-shape-1) or for Þve iterations (standard-5, symmetric-5,
smooth-albedo-5, smooth-shape-5)

Òsmooth-albedo-5Ó, and those produced using a simpliÞed
shape Òsmooth-shape-1Ó and Òsmooth-shape-5Ó. In Fig.8, we
also show random samples (in frontal and side views) from
the analogues of standard-1, standard-5, symmetric-1, and
symmetric-5 3DMMs produced using the simpliÞed initial
meshes. In addition to showing samples from these distribu-

mean + albedo � albedo + shape � shape

standard-1

standard-5

symmetric-1

symmetric-5

smooth-albedo-1

smooth-albedo-5

smooth-shape-1

smooth-shape-5

LeMoMo

Fig. 9 The mean, as well as the mean offset by± 1 times the
Þrst principal component of the albedo (Ò+ albedoÓ, ÒŠalbedoÓ) or
shape (Ò+ shapeÓ, ÒŠshapeÓ) models of the standard-1, standard-
5, symmetric-1, symmetric-5, smooth-albedo-1, smooth-albedo-5,
smooth-shape-1, and smooth-shape-5 models, and the LeMoMo model
developed by Tewari et al. (2020)

tions, we can also examine their means (that is, the means of
the learned distributions, not the initial scan used to build the
models) and their Þrst principal components. In Fig.9, we
show the means of the standard-1, standard-5, symmetric-1,
symmetric-5, smooth-albedo-1, smooth-albedo-5, smooth-
shape-1, and smooth-shape-5 3DMMs, in front and side
views. Additionally, Fig.9 also shows these mean altered by
adding their respective 3DMMsÕ Þrst shape or albedo prin-
cipal components.
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Fig. 10 Reconstructions produced from natural images using several of our learned 3DMMs. As in Fig.6, the Þrst row shows the images used as
input, and the subsequent rows show 3D reconstructions produced using our 3DMMs

Finally, Fig.10shows qualitative 3D face reconstructions
produced from images from the Labeled Faces in the Wild
dataset (Huang et al.,2008) using the standard-1, standard-
5, symmetric-1, and symmetric-5 models, and the inference
method of Schšnborn et al. (2017). This directly mirrors
Fig.6, with the only difference being that the reconstructions
are produced using different 3DMMs. While the reconstruc-
tions in Fig.10 are not visually much better than those in
Fig.6Ñlikely because the increased realism of the learned
models comes with a reduction in ßexibilityÑthey never-
theless demonstrate that our learned models can likewise be
used in basic inverse graphics settings.

While the resulting face 3DMMs are still non-naturalistic
in some ways they seem a clear improvement over our initial
3DMMs, as can be seen by comparing Fig.8 with Fig.1.
For instance, the standard-1 and standard-5 models have
clearly learned naturalistic face tones as well as approxi-
mate facial symmetry, which were lacking from the initial
standard-full 3DMM. Figure9 demonstrates that although
the smooth-shape-1 and smooth-shape-5 models do not
appear to be able to learn a realistic face shape given a
highly unrealistic template mesh, the smooth-albedo-1 and
smooth-albedo-5 do appear to be able to learn a realistic
mean face albedo even when the initial template mesh pos-
sesses a non-naturalistic albedo. While our learned 3DMMs
show a signiÞcant visual improvement over the standard-full
and symmetric-full 3DMMs, quantitatively demonstrating an
improvement has proven difÞcult. Face recognition perfor-
mance as measured in Table3 is signiÞcantly lower with
the learned models than with our initial standard-full and
symmetric-full 3DMMs, and shape speciÞcity and general-
ization (as shown in Fig.11) are also far lower, while albedo
speciÞcity and generalization are comparable or somewhat
poorer. This may be at least partially due to artifacts of

the learning process; in particular, for the face recognition
results, the number of principal components is much lower
in the learned models because it is limited by the number of
reconstructions which pass the quality control process, while
the vastly lower shape speciÞcity might be a byproduct of the
alignment process applied during learning.

4.3 Specificity, Generalization, Against Compactness

Figure 11 shows plots of the speciÞcity, generalization,
against compactness (Styner et al.,2003) of our 3DMMs and
the 2017 Basel Face Model (Gerig et al.,2018); speciÞcally,
it shows the speciÞcity and generalization of the shape and
albedo models of each 3DMM as a function of the number of
principal components included. We compare the 2017 Basel
Face Model (ÒBFM 2017Ó) and versions of the standard-full
(ÒstandardÓ), symmetric-full (ÒsymmetricÓ), and correlated-
full (ÒcorrelatedÓ) models built using the mean of the 2017
Basel Face Model as template. The correlated-full model,
presented in the Appendix, is analogous to the symmetric-full
model but lacks bilateral symmetry. We use as our dataset the
ten scans provided with the 2009 Basel Face Model (Paysan
et al.,2009). We also include the symmetric-x models, where
x is a scan ID number (001 , 002 , 006 , 014 , 017 , 022 ,
052 , 053 , 293 , or 323 ); for these models we exclude the
scan used to build the model. We report results averaged
across the symmetric-x models as Òsingle-scanÓ. We mea-
sure speciÞcity and generalization using 1, 2, 5, 10, 20, 50,
100, and all (199) principal components. We indicate the
speciÞcity and generalization of the mean of the 2017 Basel
Face Model, considered as a 3DMM with zero principal com-
ponents, with a black line.

We may observe that, for all numbers of principal com-
ponents, the generalization of our 3DMMsÕ shape models is
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Fig. 11 A plot of the speciÞcity and generalization in relation to the
number of principal components (compactness) (Styner et al.,2003)
of our 3DMMsÕ relative to the 2017 Basel Face Model (Gerig et al.,
2018). ÒstandardÓ, ÒcorrelatedÓ, and ÒsymmetricÓ refer to versions of
the standard-full, correlated-full, and symmetric-full models built using

the mean of the 2017 Basel Face Model, while the Òsingle-scanÓ results
are an average of the performance of the various symmetric-x models.
The scans included with the 2009 Basel Face Model (Paysan et al.,2009)
were used as a dataset; for the symmetric-x 3DMMs, the scan used to
construct the 3DMM was excluded. See Sect.4.3for more details

comparable to that of the 2017 Basel Face Model, while the
generalization of our 3DMMsÕ albedo models is in fact supe-
rior to that of the 2017 Basel Face Model. The speciÞcity of
our 3DMMsÕ shape and albedo models, is, of course, inferior
to that of the 2017 Basel Face Model. This is unavoidable as
our modelsÕ were constructed using far less data than the
2017 Basel Face Model. We may additionally observe that
our single-scan models perform comparably to the standard-
full model across all conditions.

4.4 Registration Tasks

Registration is another task for which 3DMMs may be used.
In this task we wish to transform an arbitrary face mesh
into a mesh with a given topology while preserving the face
as closely as possible. Prior work has nearly exclusively
relied on shape information to compute such a transformation
(Egger et al.,2020). However, albedo information also pro-
vides important constraints on face registration. For instance,

the eyebrows and the pupils of the eyes are almost entirely
deÞned by albedo.

To perform registration tasks with our 3DMMs, we
adapted the inverse rendering approach of Schšnborn et al.
(2017) to minimize the Chamfer distance between the model
mesh and the target mesh while simultaneously minimiz-
ing the pixel error between the rendered model instance and
the rendered target mesh. We achieve this by combining an
image-based reconstruction likelihood, which constrains 2D
appearance, with a shape-based likelihood, which enforces
3D shape consistency as measured by Chamfer distance. This
minimizes shape distance and induces albedo consistency
while establishing correspondence with the topology of our
3DMMÕs template. While both those ideas are often applied
in isolation, they are rarely combined in registration tasks
(or only combined as post-processing). We roughly align the
meshes to initialize the pose, but, unlike typical approaches,
do not use landmarks during registration. Instead, the loca-
tion of facial features is constrained by the albedo component
of the evaluation. As post-processing we eliminate any net
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shape only shape and albedo BFM’09

Fig. 12 The average of the registration results produced by the MCMC
methods using both shape and albedo information (Òshape and albedoÓ)
or shape information only (Òshape onlyÓ) on all ten scans, along with
the average of the corresponding registered meshes produced in the
construction (strongly reliant on manual landmark annotations) of the
2009 Basel Face Model (Paysan et al.,2009) (ÒBFMÕ09Ó). Close-ups
of the left eye and eyebrow are provided, illustrating that the eyebrows
and the pupils of the eyes are far less clearly deÞned in the shape-only
condition

translation using the transformation parameters estimation
method based on least-squares of Umeyama (1991) and set
each vertexÕs albedo by projecting vertex normals onto the
scan as performed in the Basel Face Pipeline to extract texture
information from 3D scans (Gerig et al.,2018).

This process enables us to make use of both shape and
albedo information in registration. We compare the result
of doing so with the analogous registration result produced
using only shape information in our MCMC process. We
apply both registration methods to the unprocessed meshes
for face scans001 , 002 , 006 , 014 , 017 , 022 , 052 , 053 ,
293 , and323 . To do so we use the standard-full 3DMM with
the mean of the highest point-count version of the 2019 Basel
Face Model (Gerig et al.,2018) as reference. To evaluate our
registration we build a 3DMM from the registration results
using PCA.

We compare these results with the registration used by
the 2009 Basel Face Model (Paysan et al.,2009), which used
shape information along with manual landmark annotations.
Figure12demonstrates that by using shape and albedo infor-
mation our registration process produces a sharp and stable
albedo reconstruction whose quality is comparable to that of
the 2009 Basel Face ModelÕs registration, and far superior
to that produced using shape information alone. This per-
formance is impressive, since the 2009 Basel Face Model
heavily relied on human-provided landmark annotations in
its registration pipeline, whereas our approach requires no
annotations.

The Appendix contains a quantitative assessment of our
shape registration performance, and shows that including
albedo information in registration slightly increases the shape

error. This is unsurprising, as the shape-only reconstruction
is optimized to produce the lowest shape error possible, and
the shape and albedo reconstruction by deÞnition cannot
have less than the minimum shape error. However, as Fig.12
demonstrates, the shape and albedo reconstruction has far
higher quality overall.

4.5 Constructing 3DMMs for Other Objects

We have thus far focused on 3DMM for faces; we now
demonstrate that analogous methods can be used to build
3DMMs for other object categories. SpeciÞcally, we con-
struct single-scan 3DMMs for Þsh and birds using as refer-
ences synthetic meshes with simple manual coloring.1 These
meshes are simple artistic models and were constructed with-
out 3D scanning. We can build 3DMMs from each of these
references using the same kernels as used in standard-full and
symmetric-full, i.e.Ks and Ka in the Þrst case, andK sym

s
and K sym

a in the second. This produces two new 3DMMs
for each mesh, which we term the standard and symmetric
models for each object category. As our reference meshes
lack many details that 3D scans possess, the performance of
these 3DMMs is likely much lower than that of single-scan
3DMMs built from 3D scans. Results with additional Þsh and
bird 3DMMs produced with theKa,xyz andK sym

a,xyz albedo
kernels are presented in the Appendix.

We seek to model a wide range of birds, but restrict
ourselves to simple standing poses. We restrict ourselves
to the Acanthurusgenus of Þsh, which possesses a wide
range of color variability but lack the Þne details (such as
scales) that many other Þsh possess. In Fig.13, we show
qualitative reconstruction results along with samples from
our bird and Þsh models and the reference meshes used to
construct them. While these reconstructions are not as accu-
rate as those in Fig.6, they do capture some rough features.
We suggest that three main factors make birds a more dif-
Þcult object category than faces: birds have a much more
complex albedo, including high-frequency components that
our models capture poorly; birds have a well-deÞned sil-
houette, whereas faces have somewhat arbitrary boundaries;
and color-correlation, while beneÞcial in modeling faces,
impedes the symmetric bird modelÕs ability to model birds.
Our standard modelÕs performance on Þsh seems somewhat
better, likely due to the lack of high-frequency components.
The symmetric model does much more poorly on Þsh, likely
because the correlation of its color channels impedes its abil-
ity to model the regional color variation of Þsh. It is important
to keep in mind, however, that our methodÕs performance is

1 Our bird and Þsh reference meshes are obtained from, respec-
tively, https://www.blendswap.com/blend/11752and https://www.
turbosquid.com/3d-models/free-tail-animation-3d-model/368484.
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Fig. 13 On the upper left and middle: the reconstructions produced
by the standard and symmetric bird models on six images taken from
the Caltech-UCSD Birds 200 dataset (Wah et al.,2011). On the upper
right: the reconstructions produced by the standard and symmetric Þsh

models on three public-domain images taken from Wikipedia. On the
bottom: samples from the standard and symmetric bird and Þsh models,
shown in side views, as well as the reference meshes used to build these
3DMMs

not directly comparable to that of other, less data-efÞcient
approaches.

5 Conclusion

Our research demonstrates that we can build a simple 3DMM
from a single template through the application of Gaus-
sian process-based deformations. Although the result is of
lower-quality than 3DMMs produced from high-quality 3D
scans, our simple models can still be used in many con-
texts where hand-produced 3DMMs have previously been
required, and can be constructed using far less data and far
simpler pipelines. We demonstrate a preliminary unsuper-
vised learning method for a 3DMM of faces from 2D images
based solely on a single template without any supervision.
For object categories where the number of available scans is
extremely limited or where dense correspondence between
scans cannot be easily obtained, this procedure thus offers
a promising method for building 3DMMs. Additionally, our
results demonstrate the high value of fully integrating albedo
into the 3DMM pipeline, and show that this can be done
by combining covariance kernels which produce spatially
continuous deformations with kernels that produce color-
space-continuous deformations. In addition to the results
demonstrated in this paper, we believe our method can be
highly beneÞcial in addressing dataset bias, a limitation of
all currently available 3DMMs.

In addition to its relevance in a computer vision context,
our paper further demonstrates that a statistical model of
faces can be learned from a initial simple template and lim-
ited unsupervised 2D data similar to what a human infant has

access to. This was motivated by interest in computationally
modeling the cognitive development of human face percep-
tion in infants, and we hope that in the future our approach
may inspire novel computational models of the development
of human face perception.
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Appendix A Color-Correlated Asymmetric
3DMMs

In our main paper we build 3DMMs using Gaussian pro-
cesses that include symmetry and color-channel correlation
heuristics. To assess the effects of these heuristics individu-
ally, we can also build 3DMMs that include only one of these
heuristics. SpeciÞcally, we experimented with constructing
3DMMs whose albedo models have correlated color chan-
nels but which lack symmetry. This enables us to compare the
relative importance in an analysis-by-synthesis setting of the
symmetry and color-correlation heuristics of our symmetric
3DMMs.

Our main paper deÞned albedo kernelsK cor
a,xyz and

K sym
a,rgb . These kernels possess a color-channel correlation

heuristic but lack an explicit symmetry heuristic (K sym
a,rgb is

symmetric, but this is only because we assume that the ref-
erence face is symmetric). We may average these kernels to
produce an albedo kernelK cor

a = 0.5(K sym
a,rgb + K cor

a,xyz )
which combines physical-space and RGB-space distance
information. By combining these albedo kernels with our
shape kernelKa, we can construct 3DMMs which possess a
color-channel correlation heuristic but which lack an explicit
symmetry heuristic. We list these 3DMMs in Table4.

We repeat the face recognition experiment presented in
Section 3.1.2 of our main paper with these 3DMMs (once
again using the mean of the 2019 Basel Face Model (Gerig
et al., 2018) as our reference mesh). The results of this
experiment are shown in Table5, along with a copy of the
results with the standard and symmetric 3DMMs that were
shown in the main paper. Table5demonstrates that the color-
correlated asymmetric 3DMMs perform comparably to the
symmetric (and color-correlated) 3DMMs on faces with 15�

and 30� yaw angles. On faces with 45� yaw angles, they
are signiÞcantly worse, indicating that (unsurprisingly) a
symmetry prior becomes more important as the yaw angle
increases. Nevertheless, in general the color-correlated asym-
metric 3DMMs perform quite well. This indicates that in an
inverse graphics context the color-channel correlation heuris-
tic is more important to our symmetric 3DMMs than the
symmetry heuristic is, at least for input images with a low
yaw angle.

Table 4 Our Gaussian processes for modeling faces with color-
correlated but asymmetric kernels

Name Shape kernel Albedo kernel

Correlated-full Ks K cor
a

Correlated-RGB Ks K cor
a,rgb

Correlated-XYZ Ks K cor
a,xyz

Table 5 Face recognition results on images from the Multi-PIE
database (Gross et al.,2010)

angle 15� 30� 45�

probe id 140_16 130_16 080_16

standard-full 84.7 69.9 54.2

standard-RGB 76.3 57.8 28.9

standard-XYZ 77.1 62.7 35.7

correlated-full 92.4 87.1 66.7

correlated-RGB 71.5 58.6 37.8

correlated-XYZ 76.7 61.4 45.8

symmetric-full 93.2 85.9 72.3

symmetric-RGB 73.5 61.4 40.2

symmetric-XYZ 73.1 58.6 44.2

Each column represents the accuracy for a set of probe images with a
common yaw angle given in the Þrst row. The second row gives the
common ending of the IDs in the Multi-PIE dataset of the probe images
with a given yaw angle. The gallery is constructed from images with a
yaw angle of 0� (dataset IDs ending in051_16 )

Appendix B Additional Bird and Fish Models

In our paper we presented bird and Þsh 3DMMs created anal-
ogously to the standard-full and symmetric-full 3DMMs, i.e.
with Ks andKa, and withK sym

s andK sym
a , respectively. We

can also deÞne similar bird and Þsh 3DMMs using albedo
kernels that only rely on physical distance; i.e., usingKa,xyz

andK sym
a,xyz instead ofKa andK sym

a . This produces two new
3DMMs for each reference mesh, which for space reasons
are listed as listed as ÒXYZ standardÓ and ÒXYZ symmet-
ricÓ. Figure14shows samples from these two bird 3DMMs,
as well as reconstructions produced with these models of
the bird images that were used in the main paper. Figure15
shows analogous samples and reconstructions for the two
new physical-distance-based Þsh 3DMMs. The results are
close to those produced in the main paper; this is unsurprising
given that the 3D mesh used to build these 3DMMs does not
include complex coloration, and instead has near-piecewise-
constant albedo.

In both Fig.15and in the main paper, we obtain our input
natural Þsh images from Wikipedia.2

2 The links are: https://en.wikipedia.org/wiki/File:Acanthurus_
achilles1.jpg, https://en.wikipedia.org/wiki/File:Acanthurus_
dussumieri.jpg, andhttps://en.wikipedia.org/wiki/File:Paracanthurus_
hepatus_(Regal_Tang).jpg.
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Fig. 14 On the left: the reconstructions produced by the two bird models
built using only physical distance information on six images taken from
the Caltech-UCSD Birds 200 dataset (Wah et al.,2011). On the right:
samples from these models, shown in frontal and side views

Fig. 15 On the top: the reconstructions produced by the two Þsh models
built using only physical distance information on three natural images
of Þsh. On the bottom: samples from these models, shown in side views

Appendix C Additional Registration Results

Figures 17, 16, 19, and 18 offer a variety of quantitative
metrics of the shape error of the registered meshes produced
in our paperÕs registration tasks. As in the main paper, in all
Þgures the Òshape and albedoÓ option refers to meshes regis-
tered using both shape and albedo information in the MCMC
method, while the Òshape onlyÓ option refers to meshes reg-
istered using only shape information in the MCMC method.
These Þgures do not take into account the stability of the
reconstruction or the albedo error.

We estimate shape error through Hausdorff distance (Figs.
17and 19) and Chamfer distance (Figs.16and 18) between
either the vertices of the registered meshes and the corre-
sponding scans (Figs.17and16) or a sparse set of landmarks
on the registered meshes and corresponding scans (Figs.19
and 18). We obtained landmark information by using the
landmark annotations given in Paysan et al. (2009) for each
of the 10 input meshes and the landmark annotations pro-
vided with the 2019 Basel Face Model (Gerig et al.,2018)
for the registered meshes (since these have the same topology
as the 2019 Basel Face Model).

Figures 17 and 16 demonstrate that including albedo
information along with shape information slightly increases
the shape reconstruction error. As noted in the main text,
this is to be expected; the shape-only reconstruction is opti-
mized to produce the lowest shape error possible, whereas
the reconstruction produced using both shape and albedo is
also optimized to produce a low albedo error, and by deÞni-
tion cannot have a lower shape error than the reconstruction
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Fig. 16 The average distance between each vertex in each of the regis-
tered meshes and the closest point in the corresponding face scan, with
error bars (± 1.96 standard error)
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Fig. 17 The Hausdorff distance between the vertices of each of the
registered meshes and the vertices of the corresponding face scan

Fig. 18 The average distance between each landmark in each of the
registered meshes and the closest landmark in the corresponding face
scan, with error bars (± 1.96 standard error)

Fig. 19 The Hausdorff distance between the landmarks of each of the
registered meshes and the landmarks of the corresponding face scan

with the minimum shape error. However, the increase in
shape error is not very large. Furthermore, Figs.19 and
18demonstrate that including albedo in registration does not
signiÞcantly affect the shape error of landmarks. This sug-
gests that the incorporation of albedo information does not
reduce the registration quality of theimportant aspectsof
face shape.

Appendix D Qualitative Reconstructions

Figures 20, 21, 22, and 23 provide additional qualitative
reconstruction results. Figures20and 21present qualitative
reconstructions (in frontal and side views, respectively) of
images from the Labeled Faces in the Wild dataset (Huang
et al., 2008) produced using all the 3DMMs constructed
using the mean of the 2019 Basel Face Model (Gerig et al.,
2018). Figure22 presents qualitative reconstructions of the
same images produced using 3DMMs built from the scans
included with the 2009 Basel Face Model (Paysan et al.,
2009). These reconstructions are signiÞcantly lower-quality,
because a signiÞcant portion of the shape of the template
mesh is preserved during the MCMC process. Figure23
presents qualitative reconstructions of different images from
the Labeled Faces in the Wild dataset that contain signiÞ-
cant occlusion. Figure23includes both 3D reconstructions as
well inferred occlusion masks. Figure23Õs results were pro-
duced using the occlusion-aware MCMC method described
in Egger et al. (2018).
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Fig. 20 The face reconstructions produced from all the 3DMMs built using the mean of the 2019 Basel Face Model (Gerig et al.,2018) on natural
images from the Labeled Faces in the Wild dataset (Huang et al.,2008), as well as the reconstructions produced using the 2019 Basel Face Model
itself (ÒBFMÓ)
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Fig. 21 Side views of the reconstructions presented in Fig.20
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Fig. 22 The face reconstructions produced from all 3DMMs built using the symmetric-full kernel and scans included with the 2009 Basel Face
Model (Paysan et al.,2009) on natural images from the Labeled Faces in the Wild dataset (Huang et al.,2008)
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Fig. 23 The face reconstructions produced by our standard-full,
correlated-full, and symmetric-full models, as well as the 2019 Basel
Face Model (Gerig et al.,2018) (ÒBFMÓ), on images from the Labeled
Faces in the Wild dataset (Huang et al.,2008), produced using the

occlusion-aware MCMC method described in Egger et al. (2018). Both
the segmentation masks and face reconstructions were inferred purely
with top-down inference
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