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ABSTRACT

The rapid means of calculating normal modes in a waveguide
developed in seismology have been applied to ocean acoustics. Acomparison of mode theory with WKBJ and ray theory in the
mid-latitudes was made. Here, a comparison was also made with
precise measurements of the impulse response of the ocean sound
channel made during the 1983 Reciprocal Acoustic TransmissionExperiment at 300-km range, with source and receiver near the
sound channel. Both ray theory and WKBJ theory were found to be
adequate techniques for predicting the acoustic arrival pattern at
400 Hz in this geometry for the range-averaged ocean. Adiabatic
normal mode theory proved adequate to account for the effects of
the variation of the vertical sound speed profile with range.

Normal mode theory was shown to be better suited than WKBJ
theory for monitoring changes in the top 500 meters of the
Greenland Sea water column at 250 Hz and 300 km range. Normal
mode travel times (group velocities) were used to constrain sound
speed. The possibility of achieving high precision -- +0.05 m/s or
+0.01 degrees C -- for the range averaged ocean was demonstrated
(although a formal resolution analysis must still be done). A
technique for 1olating individual modes from the acoustic
waveforms observed at a varietyof receiver depths was developed.Computations carried out with this mode filtering technique suggest
that, for an upcoming Greenland Sea tomography experiment, a
relatively shallow source (150 m) and a vertical array of receivers
with a 30 to SO m Spacing and a shallow receiver near SO m seems
optimum. The effect of a smooth ice layer on Sond Fropagoiion inthe Greenland Sea was examined and found to be insignificant for
Ice layers under S meters thick.

Thesis Supervisor: Dr. Kosta 1sipis
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1. INTRODUCTION

Because the ocean is a naturally occurring waveguide, sound

propagation through it can be described as a sum of normal modes.

The normal mode calculation is more exact, though more

time-consuming, than approximations such as geometric ray optics

or WKBJ theory. This thesis will describe the theory,

Implementation, and applications of a rapid means of calculating

normal mode propagation.

In the mid-latitudes, there is a sound speed minimum near a

depth of 1000 meters, with sound speed increasing above this axis

because of increasing temperature, and below this axis because of

Increasing pressure. In the language of geometric ray optics, the

oceanic waveguide acts like a lens, constantly refracting sound

toward the sound channel axis. This lens has a focal length of

about 25 kilometers and, in the case of long-range sound

transmission, gives rise to quasisinusoidal acoustic ray paths

connecting source and receiver.

[n the Greenland Sea, the temperature is relatively constant

below 200 meters and so sound speed increases fairly uniformly

with depth. In this waveguide, sound is constantly bent toward
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the surface, and then reflected off the air-water interface. If the

sound speed increases linearly with depth, the rays are arcs of

circles connected at the surface.

Analysis of underwater acoustic signals as a sum over normal

modes has been used since Pekeris [7948 1. In horizontally

stratified media like the oceans, normal modes involve Hankel

functions in the range, and non-analytical functions with depth.

Although the modal approach to acoustic propagation is not as

easy to visualize as ray descriptions, it handles diffraction and

focal points where ray approximations break down. The chief

impediment to its use has been the relative difficulty in quickly

calculating the large number of normal modes that are required to

represent propagation over long ranges in the deep ocean. For this

reason, ray and WKBJ theory have been the primary means of

calculating long-range, synthetic acoustic arrival patterns in the

ocean.

Yet the theory of rapid means of calculating modes has existed

In the seismological literature since Haskell [7953 1. The

computational algorithms described by Woodhouse [7980 1, and

applied to a synthetic seismogram program by Masters, is here

applied to propagation of sound in the ocean.

The specific applications in this thesis are related to a

technique for mapping large-scale ocean features called ocean

acoustic tomography. Developed over the past 10 years [Munk and

Wunsch, 1979 1, ocean tomography makes use of the fact that as
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sound travels though the ocean, it picks up information about the

sound speed and current velocity of the water it passes through.

Since different acoustic ray paths sample different parts of the

ocean, the arrival time of these rays can be used to infer a depth-

and range-dependent picture of the ocean's structure, using

geophysical inverse techniques.

The present motivation for using tomography is the study of

mesoscale disturbances, “ocean weather” that accounts for perhaps

99% of the kinetic energy of the ocean circulation -- the other 1%

being the general circulation, or “climate,” of the ocean [Munk and

Wunsch, 1979 ]. Because tomography allows the study of water

masses extending over hundreds of kilometers for months at a

time, it is well suited for examining the ocean mesoscale.

The first application of normal modes to be considered in this

thesis is the comparison of mode theory with WKBJ and ray theory

in the mid-latitudes. Here, a comparison will also be made with

precise measurements of the impulse response of the ocean sound

channel made near Bermuda during the 1983 Reciprocal Acoustic

Transmission Experiment (RTE83) at 300-km range, with source

and receiver near the sound channel.

Tomographic inverse procedures allowed range-dependent

information to be deduced from the data [Howe, 1986 1; that is,

sound speed as a function of depth and range was determined. To

account for the effects of range-dependence in normal mode

theory, adiabatic mode theory was used. This theory has been



developed for use in long-range underwater propagation since

Pierce [1965 1.

The second application of normal mode theory examined in this

thesis is sound propagation in the Greenland Sea. The Greenland

Sea has been of particular interest since it was discovered that it

may be one of the driving forces behind deep-ocean circulation.

Here, mode theory will be compared with WKBJ theory for a

variety of measured range-independent profiles. To model sound

propagation in the winter, the effect of an ice layer on top of the

ocean Will be examined.

WKBJ theory is inadequate to describe the entire acoustic

arrival pattern in the Greenland Sea [Topuz and Felsen, 1985 ]; it

cannot be used in the tomographic inverse to provide an accurate

estimate of the vertical sound speed profile near the surface. For

this reason, the usefulness of normal modes for tomographic

inversion will be examined. | will examine inversions based on

group velocities, that is, on modal arrival times. | will also

describe how a vertical array of acoustic receivers can be used as

a mode “filter” to isolate individual modes from the observed

acoustic waveforms. [ will try to determine whether or not modal

inversions can Yield significant information about the vertical

sound-speed profile that ray inversions cannot.

The structure of this thesis is as follows. In Chapter Two, |

give the theory of normal mode propagation in the ocean and

discuss the technique for rapidly calculating the acoustic arrival



5

patterns. This chapter will also treat range-dependent adiabatic

normal mode theory, the theory of sound propagation in the

presence of an ice layer, the basics of tomographic inverse theory,

and the theory of the mode filter.

Readers interested primarily in the results of applying this

normal mode treatment to long-range underwater acoustics should

skip Chapter Two and go directly to Chapter Three, which

discusses the RTE83 experiment, and the application of

range-independent and adiabatic theory to it. Chapter Four deals

with the Greenland Sea, comparing the results of WKBJ theory and

normal mode theory. The effects of an ice layer on modal

propagation is examined. Finally, in Chapter Five, modal

inversions are studied. Chapter Six presents discussion and

conclusions. The Appendices detail some of the computational

methods involved in the calculations.
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2. THEORY

Normal modes in the ocean are a solution to the acoustic wave

equation for a laterally homogeneous, vertically heterogeneous

ocean.

The coordinate system used here is shown in Figure 2.1. The

air-water interface is at z=0 and the z-axis is taken as positive

downwards. The r-axis lies in the direction of the line connecting

the acoustic source and the receiver.

[t is the assumption of a laterally homogeneous ocean that

makes cylindrical coordinates most convenvient. This assumption

means that only sound propagating in the r-z plane need be

considered. For the kind of long-range propagation examined here,

Munk [7980 ] has shown that it is reasonable to neglect sound that

travels out of this plane and is then refracted back into the plane.

The acoustic equation is derived from linearizing the equations

motion.of

2.1 The Acoustic Forward Problem

Newton's Second Law for a perfectly elastic (non-viscous),

sotropic fluid element is



A [1-

XT

WATER

z

Figure 2.1. The air-water coordinate system used for acoustic
normal mode propagation.



8

p(du/ dt + U-VU) = Vp + pg _ Qu T3

where p is the density

u is the velocity field

D is the pressure

g is the gravity field

Q is the rate of creation of mass per unit volume in the

element. It is used to model the acoustic source

du/dt is the local rate of change of U at a fixed point.

u-Vu is how the fluid element's velocity changes owing to its

changing position in space.

The equation of continuity (conservation of mass) for a fluid is

30/9.9 + U'Vp + p-VU = Q T.:/

n the absence of an acoustic wave (Q=0), the fluid variables

have the time-independent values,

p= Po
D = Po

U=Ug=0 (the fluid is stationary).

with these values. the solution to 1.1 1S
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VPo = Pog

To examine the effect on the fluid of a small perturbation, such

as an acoustic wave, the following representation is used:

P=pg+p
Pp =Pg+P
U=Uy+U-=u

In linear theory, the disturbances -- p, p, u (and Q) -- are so

weak that in the equations of motion they are treated as small

quantities whose products are neglected; for example, in equation

T.1, the second term in the parenthesis is neglected, as is the Q-u

term. In the perturbation expansion of T.2, terms like u-Vp and

p-Vu are, similarly, the products of small quantities.

The effect of gravity will be neglected, which is equivalent to

assuming that 0py/dz = 0 -- the density is independent of depth.

This is a good assumption, except at very low frequencies, below

one Hertz, where the wavelength of sound is very large [Boyles,

1984 1. (This term can be neglected whenever the wavelength of

sound is much smaller than the vertical scale of variation in

density. At the frequencies considered here, the wavelength of

sound is under 10 meters, while the total change of water density

with depth in the ocean is limited to about 4%, found at 10 km.)
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This leaves the linearized equation of motion

Do Ju/ ort = -Vp 1.3

Linearizing equation T.2 means neglecting the second term (the

product of small quantities). Defining the Compressibility, x, for

a volume of fluid, V, held at constant entropy, S, as

&lt; =
— Li /7)QV/p)g = (1/pg)(d0/3p)s

allows the cont.nu. J adquat .on to be written as

ud 3 &gt;p/dt = -pg'VU + &amp;
3

[ ° 21

Taking the divergence of T.3 (neglecting dpy/dz again) and

substituting T.4 yields the acoustic wave equation:

V ©  wv = (1/2)(32p/dt2) = -¢Qse

where the speed of sound, «, is thereby defined as of = \/1/kpg

[For a plane wave p, both Vp and (1/)-(dp/dt) are of the order

of k=w/ot=2TC/A&gt;1/(2m) at the frequencies of interest. Terms

like (1/pg)-(3pg/92)=1/(200km) and (Vp,)/(pg-c2)=g/c2=1/(200km)

are very much smaller, which is why they have been neglected.]

Thus, the wave that propagates through the ocean is a balance



between the restoring force -- the elasticity, 1/x, that causes the

water to tend to return to its original uncompressed state -- and

the inertia -- which is proportional to the mass density, pg.

The speed of sound in the ocean varies with pressure,

temperature, and salinity. Sound speed increases with pressure,

and therefore with depth, about 6 m/s for every 100 m depth

increase. Sound speed increases about 5 m/s for each increase in

temperature of one Centigrade degree. Sound speed increases

about 1.3 m/s for each part per thousand increase in salinity.

Over most of the ocean, the vertical variation of salinity is not

large enough to have much effect on the speed of sound [Boyles,

1984 1.

In the mid-latitudes, a waveguide exists around the sound speed

minimum at about 1 km because above 1 Km, the increase in

temperature increases sound speed (more than the decrease in

pressure decreases it), whereas below 1 km, the increase in

pressure increases sound speed (while the decrease in temperature

becomes negligible).

In the Greenland Sea, the vertical temperature is far more

uniform, and the waveguide is created primarily by the effect of

pressure, which creates a nearly linear increase in sound speed

with depth.

The existence of a waveguide means that sound propagation can

be described as a sum of normal modes, and the symmetry

suggests that the wave equation be solved by means of separation
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of variables.

Now, consider an isotropic source whose sinusoidally varying

radius is much less than a wavelength, described by a source

radiating in three dimensions

5 @/3t = A-8(r-r)e-1wt

where &amp;(r-rg) is the Dirac delta function

I&lt; 1s the position vector of the source

w 1s the angular frequency of the source

A is an amplitude factor

A single frequency source suggests a single frequency solution.

Following Boyles [7984 1, to separate time from the spatial

variables. let

(r,t) = p(r)e-twt

where the sound pressure amplitude, p(r), is time independent.

Substituting into the acoustic equation, and assuming a unit

amplitude source for convenience

7 2p _ (1/(2)(32P/312) = - 8(r-re)e-iot

yields for p(r) the Helmholtz equation
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Vp «+p+ ¥% = -8(r-rg)

where the wavenumber, &amp;, has been defined as ¥=w/.

The assumption of cylindrical symmetry discussed at the

beginning of this section reduces the problem to two dimensions,

and yields a new form for the equation in cylindrical coordinates

(the Earth's sphericity is taken into account by means of the Earth

flattening transformation of Muller [7970 ] and Chapman [71973 ]):

32p/9d r2 + (1/ r)(ap/d r) + 02b/d2% 52 J - (1727Tu J 3ri62-2s) T.5

2.2 The Normal Mode Solution

Consider a horizontally stratified ocean, ot=ct(z), ¥=%(z), in the

form of a waveguide that locks the source's acoustic energy into

the ocean. The solution may be described as an outgoing wave

from the source in the form

4
_ z) = Hp'Vkrjzizx)

where Hy'V(kr) is the horizontal wavefunction

k will be identified with the horizontal wave number

Z(z,k) is the vertical wavefunction, satisfying the equation

a £/dz? + [5%(2) - k2]'Z2=0 I.6
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Hp'1(kr) is the zero-order Hankel function of the first kind,

whose asymptotic form for large r (kr &gt;&gt;1) shows the

characteristic r-172 decay:

-

.) kr) = (2/kr)172-ei(kr-10/4)

Boundary conditions on the top and bottom of the ocean are

required to solve equation T.6. A free-surface condition, in which

the pressure at the surface Z(z=0) vanishes, is used here. This

would be an exact condition if the surface of the water were at a

vacuum, but it is still a very good approximation for air: Even for

sound normally incident on the air-water interface from the water

side, only one part in a thousand of the acoustic energy is

transmitted into the air; the rest is reflected back into the water

[Brekhovskikh and Lysanov, 1982 ]. The bottom condition used here

Is that all the energy is locked in the ocean by forcing both Z and

dZ/dz to vanish as z = «. This approximation neglects the

so-called "leaky modes” that continuously radiate into the bottom

of the ocean. (A partially reflecting bottom, while more realistic,

was not used because it was considered an unnecessary

complication for the kind of acoustic propagation considered here.

At a frequency of a few hundred Hertz, sound is severely

attenuated each time it is reflected from the bottom, by as much

as a factor of 10 --10dBs -- or more. This leads to rapid
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attenuation of bottom-interacting acoustic waves for sound

propagating over hundreds of kilometers [Brekhovskikh and

Lysanov, 1982 1.)

These boundary conditions lead to a characteristic equation for

Z(z,k) with eigenvalues kp and eigenfunctions Z(z.kn.). Which

implies that the solution of the inhomogeneous equation can be

written as a sum of normal modes:

=  = Zz SAH (Kar) -Zn(2)
hl:
4

where Zn(z) = 2(z.k,). Ap is a constant to be determined.

To demonstrate that this is a solution of the Helmholtz

equation, and to find Ap, substitute it in T.5 and make use of T.6

and the relation [Brekhovskikh and Lysanov, 1982 ]

(d2/dr2 . r=1d/dr + ki)Hp(kyr)=(2i/7er)8(r)

which yields

2.An"Zn(2) = (i/4)8(z-24)

Multiplying by Zp(2), and integrating over z, gives
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| £Anznte) Zmc@r02 = |@/astz-2)zm(21cz

Where the integrals extend over the entire ocean.

Making use of the orthogonality of the eigenfunctions and

normalizing them such that

| 2.2n(2)2m(2)dz = nm

'} so 1
»Sl ELyy

2An"8nm = (i/4)2(zg)

Dir.z) = (i/4,

 Zz Er 3

2Ho MM (Knr)-2n(zs)-Zn(2) | ol

To solve for the acoustic pressure field using this equation

requires a rapid means of evaluating the eigenvalues, kn , and the

eigenvectors, Zn(z), of the equation

For

0 w 2/dz2 , [82(z) - k?2] = 0

the remainder of this section, P(z) = Z(z). Since
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¥(z) = w/z), where o«(z) is the vertical sound speed profile, the

equation to be solved can be written

1?P/dz2 + (W2/2 - k2)-P 0 T.8

The computational means chosen to solve this equation is the

propagator-matrix method first developed by Thomson [7950 ] and

Haskell [7953 ]. Following their treatment, the vertically

heterogeneous ocean is replaced by a stack of homogeneous layers

overlying a homogeneous half-space.

Rewriting equation T.8 as a pair of coupled Tir o order

ordinary differential equations gives:

dP/dz = X

dX/dz = w2P-(k2/w?2 - 1/2)

Defining bq = Pa

jb/dz =

and Do =

WAD

WP and the vector b = (b;, by), then

0 (1/c2 - 1/2)

Nith ™

| ]
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where c, the horizontal phase velocity, equals w/k and is the

eigenvalue, or the desired root, of the equation for b.

The ocean is modeled as a stack of homogenous layers with

h(ot) = 1/¢c2 - 1/02 constant in each layer. In this model, the

vector b satisfies

3(z, = explwAd]-b(zg) = P(z,25)b(z;)

wvhere d is the thickness of the layer, d = z-z;

P(z,zg) is the matrix “propagator”

The matrix coefficients of the propagator can be evaluated by

Sylvester's theorem to give

pom.

cla) h(et)s(o)
P(z,2) = explwAd] =

s(ot) cla)

where the coefficients of the propagator are

clot) = coslwdy/-h(a)1&amp; s(t) = -sinlwdy/-h(=) 1/[/-h(xt) |]
h(o)&lt;0 (that is, if P(z) is oscillatory in the layer) and

clot) = coshlwdy/h(e)1&amp; sed) = -sinhlwdy/h(«) 1/[v/h(e) ]

h(ot)&gt;0 (that is, if P(z) is exponential in the layer).

 | f

Given a starting solution at some depth, we can propagate the
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solution to the surface using this formula.

The primary approximation made in this realization of the

propagator-matrix method is that the vertical sound speed profile,

oz), can be adequately modeled as a stack of homogeneous layers.

This is an approximation that is made for many numerical

solutions to the problem of sound propagation through a waveguide.

To insure that discretizing the ocean is valid here, we choose a

layer thickness that is a fraction (typically 1/2) of the smallest

vertical wavelength in the oscillatory region. For the frequencies

and profiles used here, this layer spacing is typically about 10

meters. (Choosing spacing finer than this has no significant

affect on the result.) Although the ocean is approximated as a

stack of homogeneous layers for purely computational reasons, it

is worth noting that this approximation is not necessarily

unrealistic. There is evidence that in many regions of the ocean,

such as the Arctic, the density profile can exhibit regular

step-like characteristics [Brekhovskikh and Lysanov, 1982 1.

The basic algorithm for finding the eigenvalues at a given

frequency, , is to choose a value of cq, compute a starting

solution and propagate to the surface. Along the way, the number

of zero-crossings in pressure (in by, that is) is kept track of. If

the value of bs at the surface is 0, then a root, with the number of

zero-crossings determining the mode number. If by is not 0, a new

value for the phase velocity, say cq, is chosen and the process is

repeated, with b again propagated to the surface. If the value of
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bo has changed sign, the root lies in between cy and cy and can

readily be determined using an interpolation/bisection scheme for

choosing new starting values for c.

Using this method, all of the roots at this frequency can be

isolated quickly. If the layer spacing is less than or equal to half

a vertical wavelength, then there can be at most one zero-crossing

in a layer. In that case, the total number of zero-crossings (the

mode number) can be rapidly calculated by checking the value of b,

at the interface of each layer for a change in sign.

Since the vertical eigenfuctions are computed during the

course of these calculations, it is easy to find the modal

amplitude factor, which is proportional to Zn(zg)-Zn(2) -- the

product of the eigenfunction evaluated at the source, zg, and at the

receiver, z. In this thesis, this amplitude factor will be called

the “excitation” of the mode, for it determines the degree to which

one mode is excited relative to another for a given source-receiver

configuration. Vertical wavefunctions, P(z), for a near-linearly

increasing sound-speed profile (Figure 4.2) are exhibited in Figure

2.2. As can be seen, higher modes sample deeper in the ocean.

As described in Appendix One, the computed vertical

eigenfunctions can be used in a variational principle calculation to

yield an exact value of the group velocity, without resorting to

numerically differentiating phase velocities. This method also

yields the derivatives of phase and group velocity with respect to

sound speed in each layer, which can be used in the tomographic
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inverse procedure of determining sound speed from arrival times.

For broadband sources, the eigenvalues will have to be

determined at a number of frequencies. A root, c, at one

frequency, w, can be used to predict a new root, c+8c, at a nearby

frequency, w+8w, using the relationship

wrMy gow = (c/w)(1 - c/u)

This linear extrapolation makes use of the group velocity, u,

calculated at w. If the roots and group velocities at two previous

frequencies have been computed, then cubic extrapolation usually

gives the roots at the new frequency very accurately before the

root-isolation algorithm has even been used. With the modal phase

velocities, group velocities, and excitations calculated for a

variety of frequencies across the bandwidth, the synthetic

acoustic arrival pattern can now be constructed.

The phase and group velocities are used to calculate the phase

velocities at the Fast Fourier Transform (FFT) points using cubic

spline interpolation. The modal excitations are also interpolated

at the FFT points. The pressure field, p(r.z), at the FFT

frequencies is then calculated as a sum over modes using formula

T.7. A Fourier transform to the time domain yields the acoustic

impulse response time series. This is then convolved with the

source function and low-pass filtered. Finally, the carrier

‘requency is removed by complex demodulation to produce the
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envelope function of the final synthetic arrival pattern [Brown,

1981 1. Figure 3.4 shows the envelope of a synthetic normal mode

arrival pattern or sonogram calculated for a typical mid-latitude

profile.

The attenuation of sound intensity in water at the frequencies

of interest is approximately given by [Brekhovskikh and Lysanov,

1982] 0.112 [dB/km], where f is the sound frequency in kHz. At

the ranges considered here, the attenuation is only a few dBs and

will be neglected throughout this thesis.
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2.3 The Adiabatic Approximation

So far only vertically stratified range-independent sound-speed

fields -- in which sound speed varies with depth alone -- have

been considered. In the ocean, however, sound speed also varies

laterally. This range dependence can significantly affect the

acoustic arrival pattern.

The adiabatic approximation is used here as a first attempt at

estimating the effects of range dependence. This appears to be

adequate to account for the range-dependence in the RTE83

experiment. This approximation involves treating the ocean as

having a nearly-stratified sound-speed field -- one whose vertical

waveguide is slowly varying in the horizontal direction. A precise

quantitative description of the region of validity of the adiabatic

approximation is difficult to determine [Desaubies, 1984 1.

Qualitatively, however, the main idea is that for a given ray, or

for a mode that comprises that ray, the cycle range of the ray

(typically 30 to S50 kilometers) must be small compared with the

scale of the horizontal variation of the sound-speed field

(Brekhovskikh and Lysanov, 1982 1.

[f the horizontal changes in the vertical waveguide are

gradual enough, coupling between the normal modes may continue

to be neglected, but in the adiabatic approximation, the local

acoustic wavefunctions are retained. For this reason, this

approximation is sometimes called the "local mode” approximation.
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Recalling equation T.7, in the calculation of the arrival pattern

In the range-independent case, the pressure, P, at range, r, source

depth, z5, and receiver depth, z, can be written as a sum over

normal modes:

3(r.2) = (1/4) XH (Kr) -Zn(2)Zn(2)

In the range-independent case, the range-averaged sound speed

field is used to calculate the elements of the right-hand side of

this equation. The adiabatic approximation does not involve adding

new terms to the right hand side of the equation, but instead it

involves an improvement in the calculation of both the excitations

and the horizontal wave number. In this approximation, the

vertical wavefunctions are calculated and evaluated locally. That

is, Zn(zg) is calculated for the sound speed profile of the source

(if it is known), rather than for the range-averaged profile.

Similarly, Zn(z) is calculated for the sound speed profile of the

receiver (if it is known).

If vertical sound speed profiles are available for the entirety

of the range of the experiment, then the adiabatic horizontal wave

number is calculated by taking a weighted average of the

horizontal wave numbers calculated for each of the profiles. The

weights depend on the fraction of the range covered by the

particular local profile. The horizontal wave number is
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determined from the local phase velocities through the

relationship kp=w/cp.
The computer-time-consuming effort of calculating the

eigenvalues for several profiles can be avoided in the case when

the perturbations in phase velocity are sufficiently small to allow

the use of linear perturbation theory. In that case, as will be

shown, the adiabatic horizontal phase velocity is the same as that

calculated in the range-averaged case.

[n the linear regime, the perturbations $c in modal phase

velocity can be calculated from perturbations oj in sound speed

in layer i as follows:

NC , (8C/8oti)-8c;

Now, consider two sound speed profiles, of and oly, that differ

in only a single layer, i=n, having values in that layer of olin and

oon, respectively. Imagine that the two profiles extend over

arbitrary fractions of the total range, A and B, such that the

range-averaged sound speed in that layer is of = Aoi + Botgpy

where A:B-=1.

Then, in the linear adiabatic approximation:

ACH = (3¢c/ dot) (ot nN 4 Ny (dc/dotn)ctopy - ofp)
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Therefore, in this approximation, the total weighted

perturbation, Ac, is

AC = AAC + BACy

= (3c/dotp)[A(ctyfy - on) + Blotop - otn)]

(3c/dotn)[Actify + Botan - otn(A+B)]

(ac/dot)lotny - ot]

0

That is, for the case of two profiles that vary in a single

ayer, the phase velocity calculated in the linear adiabatic

approximation is the same as the phase velocity calculated in the

range-averaged case. This result generalizes easily to multiple

profiles (since multiple profiles can be considered as two-profile

groupings) and to perturbations in multiple layers (since the sum

over layers separates).



28

2.4 Ice Layer

During the winter, much of the Greenland Sea can be covered

with 10 centimeters of ice or more. Modeling the propagation of

sound through ice requires accounting for compressional waves and

shear waves. Figure 2.3 shows the coordinate system that will be

used in this section. This is the air-water coordinate system

shown in Figure 2.1 with an ice layer of constant thickness

d placed on top.

The density of ice is py, and of water, py. The ice has a

compressional wave speed, ot. Water supports only compressional

waves; it cannot support a shear stress. Yet perfectly elastic,

isotropic sound waves in a solid require another variable, the

rigidity J, to be adequately described. The rigidity is defined as

H=p1B2 where § is the bulk shear wave speed. All the quantities

describing the ice will be taken to be constants.

Sound originates in water at depth, zg, and, as before, only

sound propagating through water (and ice) along the r-z plane will

be considered. Sound traveling in the r-z plane in the water will

not excite horizontally-polarized Love waves in a homogeneous ice

layer of constant thickness. Moreover, Love waves excited in the

ice would not couple into the water because water does not

support a shear stress. So Love waves will be neglected here.

The remaining problem is to solve for the propagation of

Rayleigh waves, which are composed of compressional waves and

vertically-polarized waves whose independent motion are not
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Figure 2.3. The air-ice-water coordinate system. The density of
ice 1s pq, and ot andBare the compressional and shear wave
velocities of sound in ice. The density of water is p, and the
vertical sound speed profile in water is o(2).
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separable for horizontal propagation in a layered medium.

To treat the propagation of Rayleigh waves in ice, four

variables are needed, rather than the two used in water. The

discussion in this section follows Takeuchi and Saito [7972]and

Woodhouse [7980 ], although the variables of the latter are used

here. They are

Yy -- the vertical displacement, u(z)

Yo -- the tangential displacement, u(r)

Y3 -- the vertical stress, z,, (here, z,,/w is actually used)

Y4 -- the tangential stress, z,- (here, z,/w)

where zz, and T are components of the stress tensor, z.

When the vertical eigenfuction is propagated from the bottom

of the ocean through the water, the ice-water boundary conditions

are required to continue the solution into the ice. The interface

conditions are:

continuity of verticle particle displacement

u(z=0+) = u(z=0-) = uy,

2) Continuity of vertical stress

T22(2=0+) = T55(220-) = T,5

} ©»
 4

3) Vanishing of horizontal stress

C 5pZ2=0) =0
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Appendix Two will go into some of the computational details of

propagation in the ice, including an elaboration of how the

variables transform from the water vector b to the ice vector Y.

The above interface conditions give a starting solution for the

Rayleigh vector at the bottom of the ice of (ug, 0, zz» , 0).

A second, independent, starting solution for Rayleigh waves

exists. There can be a discontinuity in the horizontal, or

tangential, displacement, u(r,z=0). This “free slip” condition gives

a starting vector of (0, Q, 0, 0) where Q is the arbitrary slip.

These two solutions are propagated to the surface of the ice

dsing the equations of motion. The two surface solutions are then

summed, to give the total solution, and the value of Q is

determined by the condition at the ice-air interface that the

horizontal and vertical stresses vanish.

As in the water, the equations of motion to be solved can be

Written in the form

yr/9Z = WAY

Matrix A is of the form:
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0

1/¢c

p(1-2p/0)

| -
«

1/c

froF

0

/ |
’

r
Ld

+

1
J

| &amp; l/c

0 -p1+4pp2(1-p/o)  -p(1-2u/0) ©
a

pq is the density

o=X+2J, where A and J are Lame parameters (J is the rigidity)

p is the inverse phase velocity, p=1/c=k/®

This form of the equations reduces to the fluid equations if Y;=b,

and Yz=-pgbs (see Appendix Two).

The ice layer has a propagator-matrix derived from the

matricized equation of motion, just as the water does, although it

is numerically more complicated. If the two independent solutions

at the top of the ice are called (Yq7. Ya. Yy3. Y14) and

(Ya: . Yao, Yaz. Yq) then a mode is found whenever the

determinant Yi3Yo4 - Ys3Y4is zero. Since the compressional and

shear velocities in the ice are much greater than the speed of

sound in water, the wavefunctions are purely exponential in the

ice. This means that there cannot be more than one zero-crossing

of the determinant in the ice. (Numerical instability in this

method requires a slightly more complicated approach discussed in
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Appendix Two.)

Without the ice layer, the roots were isolated by propagating

the vector b to the surface at two different phase velocities, c;

and cy , and seeing if the value of the pressure, b, , has changed

sign. The procedure with the ice layer is the same, but now the

determinant given above is examined for a sign change. Once the

modal roots, group velocities, and excitations are calculated for a

variety of frequencies over the bandwidth of interest, the

calculation of the acoustic arrival pattern is carried out as before.

The effect on the acoustic arrival pattern of the modes locked into

the ice will be considered in Chapter Four.
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2.5 Group-velocity Inversions

So far, only the acoustic forward problem has been examined --

the determination of modal group velocities and of the entire

acoustic arrival pattern from a knowledge of vertical (and perhaps

horizontal) sound speed information. This is useful for

experiments in which the local ocean conditions have been studied,

perhaps to help track objects in the ocean from the sounds they

emit. In situ measurements of temperature and salinity can be

used to calculate such sound speed data.

In tomographic experiments, instruments are placed at the edge

of water masses, and sound is sent through in an effort to gain

information about the ocean conditions. In these cases, the group

velocities (arrival times) and the acoustic arrival pattern are

what is measured, and the sound speed profile -- and hence

density, temperature, and salinity information -- is what is

desired. For this, linear inverse theory is used.

The first inverse problem to be examined is the determination

of sound speed from modal group velocity data. Suppose the

arrival time, tj, of mode i can be determined at a given frequency.

If the range, r, is known, the group velocity, uj is simply r/t;. To

use this data to solve for the sound speed in a layer 1 of the ocean

requires knowledge of the derivatives of group velocity with

respect to sound speed in that layer -- duj/doy. These so-called

group velocity kernels, Gj;, are not difficult to calculate, as is
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discussed in Appendix One.

If a one-layer ocean of sound speed o has modal group

velocity uj, and a slightly different ocean has sound speed

og = o-8at and modal group velocity ug = U;-8uj, the Taylor series

expansion of the group velocity u; can be written as:

_ EY =

The solution of

(Quy ERE

the

CX

linear forward problem (Su; unknown) would
Ne

SU; = (Aupj/ dot)

and the solution of the linear inverse problem (8 unknown) would

NA

Sot = 8U;-(dugi/ dx)

The inverse problem, even in the single layer case, requires a

starting sound speed model to calculate the kernels. Moreover, for

the first derivatives to be useful, the starting solution, of, must

be close to the actual ocean, «, so that their difference, §«, is

sufficiently small. This is the so-called linear regime.

A starting model can be determined using in situ velocity data

taken at the beginning of an experiment or historical data or both.
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[n any case, assume for now that there is a reasonable starting

model. Ultimately, the inverse procedure will be able to provide

some means of evaluating the starting model. For instance, if the

inverse fails to provide a realistic solution, it may be because the

starting model was poor.

Given a starting sound speed model, o(z), divided into layers

oto], both the expected normal mode group velocities, Upj, and the

group velocity kernels, Gjj=0dugi/dclg; can be calculated. With

observed or measured group velocities, uj, the data takes the form:

- A in’

and the problem takes the form of a sum over all the layers, 1, of

the ocean

AU; - 2. Gi1:8 T.9

where the unknowns to be solved for, ot, are the difference

petween the actual ocean, «, and the starting or model ocean, oy;.

So otj=olg+8¢]. In the case of the group velocity inversions, there

are usually fewer data than unknowns (i&lt;1) so the problem is

udnderdetermined.

Of course, in any real world problem, there will be errors

associated with the modal group velocity measurements. Because
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the actual statistical variation of the measurements is not

generally well known, the data are assumed to be statistically

independent with associated individual errors that have a Gaussian

distribution of zero mean and standard error, i. This assumption

allows the analysis of the linear inverse problem to be carried

out exactly, following Parker [7977 1. The numerical solution

Parker describes, a so-called spectral expansion, follows Gilbert

[71971 1].

There is another potential source of error in the data. In the

model ocean, the group velocity of each mode is determined

explicity with great accuracy. So it is usually not difficult to

identify peaks in the synthetic arrival pattern with modes in the

starting ocean. The key to the group-velocity inversion procedure,

however, is to relate peaks in the observed acoustic arrival

pattern with modes in the actual ocean. If these modes are

misidentified, their arrival times will be miscalculated and the

left hand side of T.9 will be in error. The difficulty of identifying

distinct modes in the observed arrival pattern will be discussed in

Chapter Five. For now, errors associated with the

misidentification of modes will be lumped in with the zero-mean

Gaussian measurement errors.

if the data are reasonably accurate, at least one solution --

the actual ocean -- exists. The finiteness of the data and the

presence of error in the data implies that there will probably be

many solutions. One of the key tasks in “model construction” is
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determining criteria for choosing one solution from among all the

possibilities.

To solve T.9, divide both sides of the equation by the

associated errors -- weighting both the data and the group

velocity kernels:

SU; = 8Ui/ Tj

Gi) = Gi1/ oj

This weighting creates dimensionless data with unit variance and

allows the more accurate data to count more than the inaccurate

data.

Rewriting Equation T.9 with the new variables yields:

SU; i a 1)

The model construction problem is to solve for 8oq given group

velocity data, kernels, and errors.

In Parker [7977 ], the sum over | here and in the equations that

follow are written as integrals over z. The computational

approach used in this thesis divides the ocean into homogeneous

layers. and the integrals can be rewritten as sums that extend

over the same depths. This allows the integrals to be

approximated numerically. The matrix, G, for instance, consists
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of rows that correspond to group velocity kernels in different

layers for a particular mode.

The means of solving T.10 used here essentially involves

forming G16, a square version of the G matrix, and then finding

its inverse so that the 8o can be isolated. The matrix inversion

is accomplished by a standard eigenvector-eigenvalue

decomposition technique. The square matrix I" is called the Gram

matrix, and its elements are

L L
-

-— 3
“A
 OQ

J

Since T" is positive definite and symmetric, it has no negative

eigenvalues. It can be diagonalized with orthogonal matrix O:

od
a

J  Nn

where A is a diagonal matrix of the eigenvalues of I" in

descending order starting with the largest eignvalue, Aq, in the

Aq, position and ending with the smallest, Ap, in the Ap position.

Assuming that the rows of G are not linearly dependent, none of

the eigenvalues are zero. The eigenvalues Aq to Ap are referred to

as the spectrum of the problem.

To solve T.10, define functions V with elements
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Vii = A-1/25044-85

The rows of V are an

&gt; ViVi = 8;
|

orthonormal set:

Expanding Sot in terms of these orthogonal functions yields

 NM are

Sew Vi

&gt; Vide

1/2504;-T

1

T.1:

]

=

dl
-

These coefficients, aj, are statistically independent with

standard error A;-1 /2, since the eigenvalues decrease with

increasing i, the expansion T.11 is in functions whose coefficients

increase in uncertainty and magnitude. Trying to fit the original

data more precisely by adding in more eigenvalues in T.11 usually

makes the solution more oscillatory, and therefore, to some

extent, more unrealistic, at least in the case of relatively smooth

sound-speed profiles.
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In general, some criterion must be established for either

truncating the series in T.11, or giving diminished weight to the

higher terms (smaller eigenvalues). Either of these methods

means that the solution will not exactly fit the original data, but

this is reasonable, given the random errors associated with the

data. Truncation is used here, and one simple way of disregarding

the undesirable, oscillatory eigenvectors is to use the squared

two-norm misfit to the data, X2, defined as

A su; - SU. 12

where Su; is obtained by substituting the truncated series into the

right hand side of T.10.

Rewriting in terms of the eigenvalues and coe: :.clents yields

A ? -N.(a12 13

where the sum is over the truncated terms -- those not added into

T.11

As more and more terms are added into T.11, X2 gets smaller

and smaller, although at a diminishing rate. Since the weighted

data, 8Uj, has unit variance, X2 is reduced to its expected value --

the number of degrees of freedom in the truncated model, which

can be regarded as the number of independent data.
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The exact truncation scheme used is not crucial to this

solution, as long as the inversion yields a model that is closer to

the actual ocean than the starting model. If that is the case, new

group velocities can be computed in the new model, and a new

inversion done. This process may be iterated until the group

velocities are all within the error bars of the observed data. If

the starting model is based on temperature and salinity data taken

at the beginning of a tomography experiment, the difference

between the actual ocean and the starting model should never be

more than about 0.5 meter per second in any layer, which is close

to the linear regime.

In the linear regime, the X2 truncation scheme should yield an

acceptable solution after a single inversion. Close to the linear

regime, it may be best to truncate the model even sooner, while

the eigenvalues are large and coefficients, aj, are small, so that

short, incremental steps are taken toward the solution. This

scheme may require two or three iterations to achieve an

acceptable solution.

Achieving an acceptable solution is a necessary but not

sufficient condition to achieving the correct solution. There is no

way of being sure the answer obtained from the inversion is

correct. Nevertheless, experience with inversions and with

historical sound speed data can increase confidence in the

solution. Sometimes there is enough historical data to indicate

that the sound speed profiles in a localized region, like the
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Greenland Sea, exhibit consistent patterns during certain times of

the year. For instance, during the spring, the water temperature

in the Greenland Sea tends to be very uniform. This

near-adiabatic condition results in a sound speed profile that

increases nearly linearly with depth. Throughout the summer, the

surface is warmed slightly, creating a sound speed minimum at

about 100 meters. Tomographic inversions that do not agree with

these historical trends would be very suspect. If enough

historical data exists, it is possible to statistically quantify the

likely variations in sound speed. This information can be used in

the inversions to directly limit the solutions.

Suppose there are many historical profiles, oti (2), i=1ton.

[f the average of the n profiles is computed, then each profile

can be described as a perturbation 8«;(z) to that average. It may

very well be the case that most of the variation of these n

perturbations can be described by a very few orthogonal functions,

called empirical orthogonal functions (EOFs).

To find out if the historical sound speed data in a region can

be well described by a few EOFs involves decomposing the data

into eigenvectors using a method very similar to the inversion

technique described above. In this case, the derived orthonormal

functions are the EOFs. The EOF analysis is, in this sense, a form

of data compression. This analysis was carried out for historical

spring Greenland Sea Profiles, and the results are described in

Chapter 5S.
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The EOF analysis can do more than just quantify the historical

variation of the ocean in a region. The EOFs themselves can be

used in the inversion procedure. The group-velocity kernel in a

layer can be multiplied by the value of the EOF in the layer and

this product can be summed over all the layers. Now, using

essentially the same inversion technique described above, the

quantity being solved for are the amplitudes of a few EOFs --

rather than the sound-speed perturbation in many layers. The new

model is then the starting model (the average profile) plus the

EOFs weighted by their amplitudes. In general there will be fewer

EOFs than layers needed to describe a given sound speed profile

adequately. So, usually much fewer data are required in the “EOF”

inversion than in the “layer” inversion.

2.6 Multiple Receivers and Mode Filtering

Besides using EOFs, another way to aid the job of

constructing a model of the ocean is to use multiple acoustic

receivers. An actual experiment could make use of 6 or more

receivers spaced tens of meters apart along a mooring. Although

the phase and group velocity of a mode are not a function of depth

for a given range-independent sound speed field, the excitation of

that mode is depth dependent. Judicious placement of the

receivers will yield arrival patterns that emphasize different

vertical modes. In the case of the near-linearly increasing sound

speed profile of Figure 4.2, shallow receivers emphasize the lower
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order modes. Multiple receivers can therefore be used to aid the

process of identifying different modes and determining when they

arrive. This process, which is crucial to determining the data for

the inversion procedure, can be made particularly simple if the

starting model is very close to the actual ocean. The idea then is

to use the string of receivers at different depths as a vertical

array and isolate individual modes.

Consider the observed undemodulated acoustic arrival patterns

of a two receiver array. Let those arrival patterns be deconvolved

with the source function and written as P(t) and P,(t). Suppose

it is known that a certain portion of those arrival patterns, P4(t)

and P,(t), consists solely of the contribution from normal modes

zero and one. Then, if these two functions of time are

Fourier-transformed into complex functions of frequency, P1(w)

and Py(w), they can be written as a sum of these two normal

modes as follows:

RP. (Ww) = Aqq(w)expli-lkqi(w)r-¢l} + Aqa(w)expli-lko(w)r-ol}

Po(w) = Apxq(w)exp{i-lki(w)r-o1} + Agsl(w)exp{i-lko(w)r-o1}

vhere kn 1s the horizontal phase ve.oc.

r is the range

¢ = wig + TU/4

LA 01 inode nN

tp is the starting time for the arrival pattern

Amn 1S the excitation of mode n at receiver m.
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These equations may be rewritten in matrix format as

PD) = Alw)e(w)

vhere  cn(w) = expii-i 7 {w)r-¢]}

Fhis makes use of the asymptotic form of the Hankel function.

Recalling the discussion from Section 2.2, the excitation factor is

proportional to the vertical wavefunction evaluated at the

receiver. If the excitation factors of each mode at the two

receivers were known as a function of frequency, then all of the

elements Ayn Of the excitation matrix, A, would be known. In

that case, A(w) would be inverted and the value of the mode at

those frequencies -- the complex exponential ch(w) -- could be

Isolated. Once the value of the complex exponentials for a given

mode are known at a variety of frequencies across the bandwidth,

they may be Fourier transformed back into the time domain. The

"resulting time series is the arrival pattern of an individual mode.

Of course, the true excitations of modes zero and one in the

ocean cannot be known unless the actual vertical sound speed

profile is known. Yet, if the starting model is similar to the true

ocean, then the excitations of the mode in the starting model may

be sufficiently close to the true excitations to be used to make up

the A matrix. In that case, using the observed arrival patterns
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and the calculated excitations, individual modes in the actual

ocean can still be isolated.

This procedure may be generalized to an arbitrary number of

modes, n, as long as there are at least as many modes as

receivers, and as long as there is a limited interval of the

received arrival patterns that is made up exclusively by those n

modes and no more. If there are too few receivers, or if there is

energy in the interval from other modes, then the n modes cannot

be isolated unambiguosly using this procedure. Six receivers are

used in the synthetic experiment of Chapter Five to isolate modes

0 to 4 from the observed data. Figure 5.6 shows that this

technique can allow the unambiguous identification of the arrival

time of individual modes, in this case mode 4.

This technique will work whenever the shape of the vertical

sound speed profiles for the true ocean and the starting model are

very similar, since in that case the modal excitations will be

nearly the same for the two profiles (except for a constant

amplitude and phase factor that does not affect the result of the

matrix inversion). In general, however, the starting model will

not have the same shape as the true ocean. It is more likely that

one or more group velocity inversions of the kind described in the

previous section would first be required to get close enough to use

this mode isolation or mode filtering procedure. This is the case

for the synthetic experiment of Chapter Five.
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2.7 Signal Transmission and Processing

Crucial to the tomography experiments described in this thesis

are the characteristics of the source signal and the signal

processing at the receiver. The treatment of the acoustic signal

in this section will follow Howe [7986 ] closely. The RTE83

400-Hz experiment described in Chapter 3 will be used as an

example, although the discussion generalizes easily to the 250-Hz

experiment planned for the Greenland Sea.

The source level was 174 dB re 1 UPA at 1 m. As is typical of

acoustic sources, the amount of peak power that can be put in the

water is mechanically and electrically limited. Therefore, the

energy a single pulse of a given length can contain is also limited.

To overcome spreading and absorption loss, and achieve both an

adequate signal-to-noise ratio and high travel-time resolution,

pulse-compression techniques were used (in conjunction with the

use of a broad-band and relatively low frequency signal).

It is possible to achieve the same effect of sending a single

strong pulse by using a periodic pulse compression waveform.

Each period of that waveform consists of a set of L individual

phase-modulated pulses. The right modulation will allow the

energy contained in the L pulses to be collapsed into a much more

energetic equivalent single pulse [Metzger, 1983]. Here, the

transmitted signal is made up of periodic repititions of a

linear-maximal, pseudo-random sequence with the following

characteristics:
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carrier frequency fy = 400 Hz (exactly)

digit length = 4 cycles of 400 Hz = 0.01 s

sequence length = L = 511 digits = 5.11 s

transmission length = 24 sequence periods = 122.64 s

modulation phase angle 8, = 87.4089.

The transmitted signal may be considered to be composed of

single digits in the linear maximal sequence. Each digit is defined

as sin(21t-fo't £ 89), Where t=0 is the beginning of a digit and a

positive (negative) phase shift corresponds to a logical ‘1’ (‘0’) in

the linear maximal sequence. The particular phase angle given

above optimizes the signal-to-noise (SNR) ratio, and this code can

be processed to yield an output waveform without sidelobes.

The received signal is complex demodulated and sampled at 200

Hz or two samples per digit. A coherent average is formed of the

middle 22 sequence periods (to avoid end effects, the first and

last periods are not included in this average). The received SNR

increases directly with the number of sequence periods taken in

the coherent average [Metzger, 1983]. Two interleaving sequences

are constructed, each consisting of one sample per digit. These

two sequences are then individually correlated with a replica of

the transmitted sequence. Last, they are recombined to give the

processed arrival pattern.

The rms travel time precision ©, associated with the

correlation peak is greater than or equal to Speak(SNR)-1/2

where GOpeak 1s the rms width of the peak. Typical values of
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Speak and SNR in the RTE83 experiment were S ms and 20 dB,

respectively, which gives a lower bound of 0.5 ms for Cy.

What can be measured physically from a pulse with a travel

time of about 200 seconds (300 km range) whose arrival time can

be measured with a precision of perhaps 1 millisecond? If the

travel time can be measured to better than one part in 10°, then

the speed of sound can be measured to better than one part in 10°

-- or about 0.01 m/s. As discussed earlier, this in turn suggests

that range-averaged temperature changes of the order of a few

thousandths of a degree Celsius can be observed, in theory. In

fact, typical temperature disturbances -- so-called mesoscale

ocean features -- tend to be localized in range and depth.

Therefore, they only interact with part of the acoustic signal --

perhaps one ray out of an entire arrival sequence -- and then only

over a portion of the trajectory of that ray -- perhaps only near

the surface. In that case, it is more likely that temperature

changes of the order of a tenth of a degree would be measured.

Chapter Five will focus on what level of sensitivity and resolution

of temperature might be achievable using modal tomography in the

Greenland Sea.

The key point is that the signal-processing scheme described in

this section allows the acoustic signal emitted from the source to

be treated as a single energetic pulse. Therefore, this scheme

allows the recovery of the entire spread-out signal at the receiver

as depicted in Figure 3.3. For this reason, the group velocity of

individual acoustic wave packets -- rays -- (and, in some case,
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1:

individual modes) can be monitored separately. These wave

packets sample different portions of the ocean between the source

and receiver. As their individual arrival patterns are monitored

over time, the range- and depth-dependent variation of sound speed

and therefore temperature can be deduced. This is what makes

tomography possible.
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3. THE RTE83 EXPERIMENT

The first application of normal modes will be a comparison of

normal mode theory with WKBJ and ray theory and with measured

pulse arrival patterns at 300 kilometer range in the Atlantic. This

will serve simultaneously as a check on the accuracy of the normal

mode program and as a test of the usefulness of normal modes in

the mid-latitudes.

The 1983 Reciprocal Acoustic Transmission Experiment

[Worcester, et al, 1985]was carried out at 329 N, 700 W, near

Bermuda. The position of the two moorings is shown in Figure 3.1,

The moorings were placed near the depth of the sound channel,

1300 m, and at a separation of 300 km. The reference sound speed

profile over this region is shown in Figure 3.2. This reference

profile was derived from expendable bathythermograph (XBT) casts

taken at the time of the experiment combined with historical data

on deep-ocean salinity and temperature. All 13 resolved rays are

also shown in Figure 3.2, which has an exaggerated vertical scale

to allow the rays to be distinguishable.

The transmitted pulse was centered at 400 Hz and had

approximately 10-millisecond resolution. Figure 3.3 displays the
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measured arrival pattern -- plotted as amplitude, which is

proportional to the acoustic pressure measured by a hydrophone,

versus travel time. For the purposes of tomographic inversion, the

13 resolved ray arrival times had to be corrected for mooring

motion and clock drift. As can be seen in Figure 3.3 (and more

clearly in Figure 3.4), the rays tend to come in groups of four --

the four rays with the same number of lower turning points -- that

become more crowded toward the end of the arrivals.

The three data sets -- acoustic, XBT, and historical -- were

combined to give a range-dependent sound-speed field, C(x,z), and a

source-receiver distance such that the measured arrival times are

consistent with the prediction of range-dependent ray theory

[Howe, 1986 1. (This sound speed field differed in a small but

acceptable way from the field that would have been constructed

using only the oceanographic data.) Figure 3.3 also shows the ray

theory calculation of the arrival times through this C(x,z).

Figure 3.4 displays the results of the WKBJ theory prediction

of the arrival time pattern for the range-averaged C(z). The WKBJ

program [Brown, 1981 ] takes a few minutes to run on a PRIME 750

(a large minicomputer). It agrees well with the results of ray

theory, within a millisecond for most rays. WKBJ theory is not

reliable for axial rays because the final arrival is in general made

up of a great many interfering groups of axial rays. Yet only the

first few normal modes make up the final arrival. Therefore, it

was originally thought that a calculation making use of normal
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modes might yield some improvement in the prediction of the

amplitude and arrival time for the final acoustic arrivals.

The ocean in the region of interest is a smoothly varying

waveguide with depth, and so it is well suited to the normal mode

analysis described earlier. The result of running the modal

program with the range-averaged profile for 250 modes is also

shown in Figure 3.4. It took about 3 hours to do this calculation on

the same PRIME 750. As can be seen, the complete arrival time

pattern was not calculated. The highest modes sample the deep

(and shallow) ocean where the sound speed is greatest. Like the

deep (and shallow) turning rays, these high modes arrive first. In

the calculation done here, 250 modes are insufficient for the

earliest arrivals.

There are several different sets of arrival times to compare.

There are the arrival times predicted for the range-averaged or

range-independent (RI) profile using 1) RI-WKBJ theory, 2) Rl-ray

theory, and 3) -- RI normal mode theory. As already indicated,

RI-WKBJ and RI-ray theory are in good agreement. In addition,

there are the arrival times predicted for the range-dependent (RD)

profile using Case 4 -- RD-ray theory and Case 5S -- RD (adiabatic)

mode theory. Finally there are the measured arrival times, the

data, themselves. As has been noted, the range-dependent field

was chosen so that RD-ray theory was consistent with the data.
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3.1 Range-Independent Mode Predictions

As can be seen in Figure 3.4, the RI-mode calculation is in

excellent agreement with the RI-WKBJ approximation. Table 1

compares the arrival time for 21 peaks, including the final arrival.

The standard deviation of the difference between the two cases is

under 1 millisecond. The relative amplitude of the peaks in the

two cases is also in good agreement, even in the case of the final

arrival.

As expected, both RI-WKBJ and RI-mode predictions are in

good agreement with the data, but there are significant

discrepancies. Table 2 compares 12 resolved ray arrivals of the

data with the corresponding predictions from mode theory. For

several rays there are approximately 10-millisecond discrepancies

between the data and the RI-mode prediction. Another difference

is that the relative amplitude of the final arrival to the previous

arrivals is almost twice as large in the data as it is in either the

RI-mode or RI-WKBJ case.

These discrepancies are consistent with the range-dependent

field, shown in Figure 3.5 as a departure field §C(x,z) relative to

the reference range-averaged field of Figure 3.2. In the

range-dependent case, the RD-ray theory prediction, by design,

agrees well with the data, as shown in Figure 3.3. In the modal

case, We have used the linear adiabatic approximation as a first

attempt at estimating the effects of range dependence.
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3.2 Range Dependent Mode Predictions

Desaubies et al [7986 ]1 have examined the limits of the

adiabatic approximation and found that it can give adequate

predictions of the modal pressure field and arrival times for a

typical mesoscale eddy, a geometry similar to the one used in the

1983 experiment, and a frequency of hundreds of Hertz. Since the

range-dependence of this experiment, shown in Figure 3.5, is not

extreme, the adiabatic approximation seems likely to account for

at least some of the discrepancy between the range-averaged and

range-dependent travel times and amplitudes.

In the adiabatic approximation, coupling between the modes

is neglected, but the local acoustic wavefunctions are retained. In

the linear adiabatic approximation, the adiabatic horizontal wave

number is the same as that calculated in the range-averaged case,

but as described in the previous chapter, the excitations are

calculated locally. That is, the excitations are calculated in the

profiles of the source and receiver, rather than the range-averaged

profile.

The result of correcting the modal amplitudes by calculating

them locally is shown in Figure 3.6. The measured arrival pattern

and the RD ray theory arrival times are displayed in that figure to

show the improved agreement. Table 3 gives a comparison of

travel times between the data and RD-mode theory; the
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travel-time discrepancy caused by range dependence has largely

disappeared. A comparison of the RD-mode result and the data

indicates that the amplitude discrepancies have also largely

vanished
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4. THE GREENLAND SEA

The second application of normal mode theory is sound

propagation in the Greenland Sea. The Greenland Sea is of special

interest because it is the source of deep cold-water masses that

affect the circulation of the entire ocean.

The Greenland Sea, which lies between Greenland and Norway

around 75% N and 0° W, is the site of a proposed 1988 tomography

experiment. Because the Greenland Sea lies so far north, the

vertical temperature structure is nearly adiabatic, except near the

surface. For this reason, the density is relatively uniform with

depth, and the water column is near neutral stability, especially in

the winter. Although the exact mechanism for the formation of

deep cold water is not agreed upon, it is thought to be due to

relatively small temperature and salinity perturbations that cause

convective overturning. These perturbations can be difficult to

observe by standard spot measurements, but may be resolvable

dsing tomographic techniques.

In the purely adiabatic case, the density varies only with

pressure, and the sound speed increases nearly linearly with depth

-- the actual variation is proportional to exp[-az], but a is

about 0.01/km so the linear term dominates in the expansion of
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the exponential. (For the Greenland Sea discussion, “adiabatic”

will be used solely to refer to nearly linearly increasing

range-independent sound-speed profiles and not to the

range-dependent approximation discussed earlier.) The depth

dependence of typical modes for an adiabatic sound-speed profile

were given in Figure 2.2. These modes are very close to Airy

functions.

Figure 4.1 shows typical ray paths for an adiabatic profile.

The vertical scale is exaggerated; the ray paths are in fact nearly

arcs of circles. With increasing distance between source and

receiver, the number of rays that reach a receiving point at a

given depth increases steadily. Ray optics and WKBJ theory fail

as late, shallow arrivals become so crowded that the time interval

between arrivals is comparable to the acoustic wave period. In

the geometry considered here -- 300 kilometer range, source (250

Hz) and receiver at 200 meters -- ray theory begins to break down

for rays with turning points above about 500 meters.

Figure 4.2 shows a typical historical winter profile (March 18,

1982) derived from in situ tempertature and salinity data. It is

close to the adiabatic profile and the ray paths, especially for the

deep, early rays, are similar to those shown in Figure 4.1. The

acoustic arrival pattern for this profile calculated using WKBJ

theory is shown in Figure 4.3. The rays still come in groups of

four, but with the source and receiver at the same depth, 2 of the

rays arrive at the same time, creating the tripartite structure in
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the early arrivals of Figure 4.3. The crowding of the late, shallow

ray arrivals can be clearly seen. Figure 4.3 also displays the

normal mode calculation for the same winter profile. WKBJ and

normal mode theory are in very good agreement for the early

arrivals, but the shallow, late arrivals are inadequately described

by the WKBJ approximation. WKBJ theory distorts the shape,

amplitude, and arrival time of the final arrivals. This distortion

extends over the final half second and is far greater than was the

case for the mid-latitude profile examined in Chapter Three.

Moreover, the identification of distinct rays -- which is crucial

for tomographic ray inversions -- becomes increasingly difficult

in the final second of the arrival pattern.

In Figure 4.3, the large final arrival is comprised of a great

many interfering rays, which is why geometric optics breaks down,

but it is made up of only 2 or 3 modes. This is in contrast to the

early arrivals, which are well described by a few rays, but which

are comprised of hundreds of modes. Each well-defined early ray

arrival is made up of more than a dozen modes. This is a facet of

the idea that a ray is a locus at which modes are in phase and a

mode is a locus at which rays are in phase.

For these reasons, Felsen [7987 ] suggests optimizing

computational efficiency with a hybrid calculation that uses a few

rays to describe the early arrivals and a few modes to describe

the late arrivals. In this thesis, the computational speed of the

aigenvalue-isolation algorithm allows most of the analysis to be
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carried out exclusively with normal modes. For instance, the final

second of the modal arrival pattern in Figure 4.3, which is

composed of about 30 modes, can be calculated in a few minutes

on the Prime 750, which is comparable to the speed of the WKBJ

program. It is only in the tomographic inversions described in the

next chapter that ray theory will again become important.

4.1 The Ice Layer

Much of the Greenland Sea is covered with ice during the

winter. Although the low vertical stability of the water in the

region inhibits ice formation [Swift, 1986 ], this ice layer can be

10 centimeters thick or more. It was originally thought that this

ice layer could measurably effect long-range sound propagation.

For this reason, the ice model described in Section 2.4 was

developed.

In applying this model, values had to be chosen for the the

density of ice pq, the compressional velocity of sound in ice «, and

the shear velocity of sound in ice B. Unfortunately, in situ

measurements of the sound velocities in ice vary from experiment

to experiment and with theoretical estimates [Stein, 1986]. |

have chosen to use the values selected by Stein, who takes into

account both theory and data. He uses «=3500 m/s, 8-=1800 m/s,

and p1=910 kg/ms3.

To test the ice layer model, the mode locked onto the ice-water

interface was calculated for a wide range of frequency-thickness
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(f-d) products. This mode has a phase velocity below the speed of

sound in either water or ice, so the amplitude of the mode has a

maximum on the interface and decreases with distance on either

side of the interface. At low frequencies, this mode is a flexural

or bending mode, and at high frequencies, it asymptotically

approaches the Stonely wave along the interface. The phase and

group velocities of this mode were calculated for a wide range of

frequencies and ice thicknesses. These results are in excellent

agreement with theoretical predictions [Stein, 1986, and Ewing et

al, 1957 1. The asymptotic value of the velocity of the Stonely

mode calculated by the normal mode program, 1206.6795

meter/second is also in complete agreement with theoretical

predictions [Ewing et al, 1957 1.

Because this mode is purely exponential in water, it is not

significantly excited for acoustic sources deeper than 10 meters.

But even if the interface mode were excited, it would be rapidly

attenuated. The acoustic modes that are locked entirely into the

ce layer are also poorly excited by acoustic sources in water, and

they are also rapidly attenuated. At the frequencies and ice

thicknesses of interest, all of the ice modes and interface modes

are attenuated at a rate of more than 10 dB/km [Stein, 1986 1.

Because only long-range propagation over hundreds of kilometers

is considered here, these modes have been neglected in the

calculation of the acoustic arrival pattern. Therefore, only the

modes that are locked in the ocean -- and that are purely
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exponentially decaying in the ice -- need be included in the

calculation, and so the formalism developed in Chapter Two can be

used

To test the effect of ice on normal mode propagation, a

1-meter ice layer was placed on the winter profile used above.

Figure 4.4 compares the acoustic arrival pattern calculated with

and without the ice layer. The difference between the two is very

small. The amplitude and arrival time of a few peaks have been

changed slightly, but not significantly. The character of the

individual modes has not been greatly altered. This would not

occur until the thickness of the ice approached a vertical

wavelength. Mode 0, which has its maximum closest to the

surface and is usually the mode most affected by the ice layer, is

not significantly altered until the ice layer approaches a thickness

of S meters.

With or without the ice layer, all of the modes have zeroes in

pressure at the surface. Because the modes that are locked in the

ocean waveguide are exponential in the ice, the pressure decays

toward zero much more rapidly in the ice than in the water. For

this reason, the ice layer does little more than shift the

displacement fields of the modes up a distance that is nearly

equal to the ice thickness. Since the vertical sound speed profile

does not change much over the scale of one meter, shifting the

modes one meter has little effect on them. Since all of the modes

are shifted about the same amount, this shifting usually has even
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less effect on the acoustic arrival pattern, which is composed of

the interference of neighboring modes.

The decision to put the ice layer directly on top of the winter

profile has maximized the effect of the ice. If, for instance, the

ice had been placed 9/10 of the way into the water (which would

be modeled by neglecting the top 0.9 meters of the winter

sound-speed profile), the individual modes would have been shifted

up by only about 0.1 meters. In this case, the effect of the ice on

the arrival pattern would be significantly reduced. Since the

thickness of the ice in the Greenland Sea is probably much less

than 1 meter most of the time, the effect of ice on sound

propagation can be neglected.



78

o&gt;. TOMOGRAPHIC INVERSIONS

The key process to be studied in the Greenland Sea is the onset

of adiabaticity involved in deep cold water formation during the

winter. A central question is whether this process can be

observed acoustically. For this reason, the synthetic sound speed

profile to be considered in this chapter is an adiabatic profile.

The “data” in this synthetic experiment is the acoustic arrival

pattern calculated using the adiabatic profile.

In an actual tomographic experiment, in situ temperature and

salinity data taken at the beginning of the experiment would be

used to determine a starting sound speed model for the inverse

procedure. For the purposes of the synthetic experiments

discussed in this chapter, the starting sound speed model will be

generated by averaging 25 sound speed profiles calculated from

historical Greenland Sea temperature and salinity data taken from

mid-March to early May between the years 1958 and 1982. This

average profile, o(z), is displayed in Figure 5.1 as a difference

from the adiabatic profile, f(z). As can be seen, the difference,

Sot = ol(Z)-o¢g(Zz) is of the order of 0.5 meters per second. This is

comparable to the difference that would be found if the starting

model were based on temperature and salinity data taken at the
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beginning of the experiment, and so this average profile is a

reasonable starting model for the synthetic experiment.

The statistical variation between each of the 25 profiles and

the average profile was also examined. It turns out that 90% of

the variation in these 25 profiles can be accounted for by two

orthogonal functions, called empirical orthogonal functions (EOFs),

shown in Figure 5.2. In other words, if the first EOF is written as

E1(2), and the second EOF is written as E;(z), and the average of

the 25 profiles is written as o4(2), then it is a reasonable first

approximation to write each of the 25 profiles, «i(z) -- i = 1 to

25 -- as

iz) = op(2) + a1{E1(2) + ayiEx(2)

While this decomposition scheme does not account for some

10% of the variability of the profiles, it does allow the profiles to

be described by two numbers, a; and a,, the amplitudes of the two

EOFs. If the profile to be decomposed is the adiabatic profile

«(z), then a; is approximately -0.04 and a, is approximately -0.40.

This means that while the first EOF accounts for 75% of the

variation among the 25 historical profiles, it accounts for very

little of the difference between the adiabatic profile and the

average profile. On the other hand, the second of these two EOFs

Is very similar to this difference, as shown in Figure 5.1. This

suggests that a significant fraction of the 25 profiles have an
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adiabatic component. It also suggests that the amplitudes of the

EOFs are the appropriate quantities to solve for using the

inversion techniques described in Chapter Two. If the amplitudes

of the two EOFs can be tracked as a function of time, then the

onset of adiabicity can be identified with the normally large

amplitude of E{(z) becoming much smaller than the amplitude of

the Eo(2).

Although sound-speed data is available from the surface down

to below 3000 meters, the EOFs have been calculated down to only

500 meters, for several reasons. First, as seen in Chapter Four,

WKBJ and ray theory are adequate to describe sound propagation in

the Greenland Sea beneath S00 meters, and they are faster and

easier to use than mode theory. Moreover, the Greenland Sea deep

water, which extends on average from 420 meters down to the

bottom (at about 3000 km), has extremely little variation [Swift,

1986 1. Therefore, monitoring its change should not be difficult

for either WKBJ or ray theory. Above S00 meters, however,

neither of these theories is adequate to describe sound

propagation. Finally, for most of the proposed deep-water

formation mechanisms, much if not most of the formation action

takes place above 500 meters [Swift, 1986 ]. For these reasons,

normal modes are used exclusively to handle tomographic

inversions above 500 meters, while it is assumed that the rest of

the water column will be handled by WKBJ and ray theory.

The EOFs, by virtue of their orthogonality, are relatively easy
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to distinguish with only a small amount of data (in the form of

modal group velocities) if there is information about the ocean

where the two EOFs both have significant values and different

structures, which occurs above 200 meters. Putting the source

and receiver at 200 meters, as before, may not be adequate to the

task. The case discussed here considers a source and receiver at

140 meters, a depth chosen because it is near the maximum of the

vertical displacement field for the second normal mode in

near-adiabatic sound speed profiles. The point is to try to

identify the arrival times and therefore the group velocities of the

early modes. To help in this identification process, multiple

acoustic receivers are considered, and these receivers are placed

at depths convenient to observing the first few modes -- 50, 80,

140, 175, 225, and 270 meters. The receiver at 50 meters is at

the maximum of the vertical displacement field for mode 0, as can

be seen in Figure 2.2. Although it is difficult in practice to have

a receiver at 50 meters, it may, as will be shown, be worth the

effort. For example, such a string of receivers may make possible

the mode isolation or mode filtering scheme described in Chapter

Two.

Figure 5.3 shows the “observed” arrival patterns for the

adiabatic ocean at the six selected receiver depths. As can be

seen, the final arrivals can be observed only by the shallow

receivers, strongly suggesting that these arrivals represent the

iowest modes. Nevertheless, these arrivals cannot be identified
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as particular modes without comparison with the starting model.

Figure 5.4 shows part of the arrival pattern for the average

profile (starting model) for the receiver at 140 meters. Since the

group velocities of all the modes are explicitly calculated for the

starting model, it is known that the large final peak is made up

almost entirely of mode 2, and that the smeared out peak that

arrives just afterwards is mode 1. Figure 5.4 also shows the

arrival pattern for the adiabatic profile (data) for the receiver at

140 meters. The approximate shape of the final arrivals suggests

that the large final peak should be identified with mode 2 here

also, and that the smaller peak that arrives immediately

afterwards should be identified with mode 1. Further support for

this view is provided by comparison of the arrival patterns for the

other five receivers.

Rather than showing all those other arrival patterns, I will

show only the most striking -- the arrival pattern for the receiver

at 50 meters, shown in Figure 5.5. Here, the very final arrival in

both the average and the adiabatic profile comes in completely

separate from the other arrivals, as if it were one of the distinct

early ray arrivals. In the case of the average profile, however, it

is known that this peak is mode 0, and it certainly seems very

reasonable to identify the last peak for the adiabatic profile with

mode O.

For the first iteration of the inversion procedure, three pieces

of data are used -- the group velocity differences for modes 0, 1,
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and 2. The group velocity kernels are then calculated in the

starting model. The frequency at which the group velocity kernels

are calculated is found by determining the frequency at which the

corresponding peak in the arrival pattern occurs. Since the group

velocity of each mode as a function of frequency has already been

calculated for the starting model, this is easy to do. For mode 2,

the large final peak in Figure 5.4 occurs at about 270 Hz. To use

this mode as data in the inversion requires two assumptions --

first, that the large peak in the data is mode 2, and second, that it

occurs at the same frequency, 270 Hz. For sound speed structures

that are significantly dissimilar, as is the case here, evan when

the first assumption is correct, the second assumption is likely to

be incorrect. The errors assigned to the data must take this into

account. Being off by 25 Hz can result in 10 millisecond errors,

which was approximately the errors used in the first iteration of

the group velocity inversion discussed here. The errors assigned

to the data are somewhat arbitrary, but this is not a significant

problem because the ocean model constructed by the inverse

procedure is not particularly sensitive to the assigned errors at

this stage.

The inversion procedure can give confidence in the process of

associating peaks with modes at a given frequency if it yields an

arrival pattern that is closer to the data than the one the starting

model yielded. In this case, the inversion yielded a value for a;

of -0.04 + 0.05 and for a, of -0.38 + 0.05. These values may be
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used to construct a sound speed model of the ocean

ol1(2) = ofp(z) - 0.04E4(z) - 0.38E,(z). Figures 5.4 and S.5 also

show the arrival patterns calculated with this constructed model

of the ocean, referred to here as the inverse solution. It is quite

clear that these waveforms are much closer to the corresponding

waveforms of the data than the waveforms of the starting model.

This strongly suggests that the modal identifications were made

correctly and that the inverse solution is closer to the adiabatic

profile than the average profile.

The mode isolation or filtering scheme can provide further

support for this view. Although the starting model was too

different from the adiabatic ocean to use the mode filtering

process, the inverse solution is not. The observed waveforms are

composed almost exclusively of modes 0 to 4 in the interval from

207.63 seconds on. Using the modal amplitudes from the inverse

solution, and the observed arrival patterns in this interval, each of

the first five modes of the adiabatic profile was isolated. The

arrival times of modes 0, 1, and 2 determined by mode filtering

agreed with the arrival times originally assigned to them to

within a few milliseconds. In addition, the arrival times of modes

3 and 4, as isolated from the observed data using the mode

filtering process, agreed well with the arrival times of modes 3

and 4 calculated from the inverse solution, even though these

modes were not used in the inversion process. Figure S.6

compares mode 4 isolated from the data with mode 4 synthesized
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from the inverse solution. The agreement is good enough to

suggest that the inverse solution is close to the actual ocean,

while the disagreement in arrival time is enough to allow the

difference in group velocity to be used as data in the next

iteration of the inversion.

In spite of the good agreement between the various waveforms,

in an actual experiment it would not be possible to tell if the

inverse solution is actually close to the true ocean. In this

synthetic experiment, however, it is possible because the “actual”

ocean is known. The difference between the inverse solution and

the actual ocean (the adiabatic profile) is shown in Figure 5.7

with error bars at selected depths. These error bars represent the

error averaged over nearby depths; they are somewhat arbitrary

because they are derived from the errors assigned to the data. If

this curve, o{z)-ot1(z), were zero everywhere, the inversion

procedure would have been completely successful. Here this is not

possible, since no values of a; and a, could provide a perfect fit.

That is, the two EOFs do not have enough degrees of freedom to

account for all of the difference between the average profile and

the adiabatic profile; this difference, which was shown in Figure

5.1, is shown again in Figure 5.7 for comparison.

The fact that the agreement is best from about 30 meters to

300 meters is not surprising considering that the receiver array

extends from S50 meters to 270 meters and that only a few early

modes were used in the inversion. The top 20 or 30 meters will
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never be well resolved with this receiver array; mode 0 can only

give an average value of the sound speed for the top 60 meters or

so. The identification of higher modes in the next iteration of the

group velocity inversion should help the resolution of the ocean

structure from 300 to S00 meters. Moreover, in a more

sophisticated inversion, one combining modes and rays, the

shallow turning rays would provide information about the ocean

near 500 meters.

Without the receiver at 50 meters, mode 0 would not be

observable in the data, and could not be used in the inversion. In

that case the values of a; and a, determined by the inversion have

much larger error bars and, the resolution of the top 100 meters

{s much worse. In this particular example, the mode isolation

scheme is not very dependent on the receiver at 50 meters because

mode 0 comes in very distinctly from modes 1, 2, 3, and 4 and so

it is possible to isolate an interval of the observed waveforms

that consists solely of these four modes. In other cases, where

there is more interference among the modes, the absence of this

receiver could seriously degrade the mode filtering scheme.

Because the inverse solution o4(z) is so much closer to the

actual ocean oz) than the average profile o{(z), o¢4(z) makes a

much better starting model for a group velocity inversion. Using

mode filtering and the arrival patterns at the six receivers, it is

possible to identify far more than three modes for the second

inversion. Figures 5.4 and 5.5 indicate some of the peaks
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identified with modes and used as data in the inversion.

To handle the greater number of degrees of freedom needed to

describe the difference between the inverse solution and the

adiabatic ocean, the two EOFs were replaced by triangle funcitons

at seven selected depths -- 0, 30, 75, 125, 200, 300, 400 meters.

These triangle functions are unity at the selected depth, and go to

zero at the adjacent depths linearly. This is similar to using

layers of constant sound speed, which were described in Chapter

Two, but it avoids the discontinuities in sound speed that a

layered model creates because a weighted sum of the triangle

functions is equivalent to linear interpolation between the

selected depths [Worcester, 1985]. Since the inverse solution is

fairly close to the adiabatic ocean, the exact form of the functions

used at this stage of the iteration procedure is not crucial;

different sets of functions give similar inverse solutions.

A second inversion was done. This inversion had much more

data, and the errors assigned to the data were much smaller, on the

order of a few milleseconds. The mode filtering procedure in

particular made it possible to determine the group velocity of the

early modes with a precision comparable to that found in the

measured ray arrival times of the RTE83 experiment [Howe, 1986 ].

Figure 5.8 shows the similarity between the arrival pattern for

the adiabatic ocean and the arrival pattern for the second inverse

solution, for the receiver at 140 meters. Figure 5.9 compares the

difference between the second inverse solution and the adiabatic
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ocean With the difference between the first inverse solution and

the adiabatic ocean (which was also shown in Figure 5.7). As can

be seen, there is a slight improvement at almost every depth.

Error bars are given at selected depths. From near the surface to

about 350 meters, these depth-averaged errors are of the order of

0.02 meters per second, or well under 0.019C. A true assessment

of the errors would require a formal resolution analysis, which is

the subject of future work. For the late-arriving low modes, the

second inverse solution fits the arrival time data very well, to

within 2 or 3 milliseconds. Yet, there is stilla 5 to 10

millesecond discrepancy between the early arriving modes

identified in the observed arrival patterns and the same modes

identified in the arrival patterns of the second inverse solution.

And as can be seen in Figure 5.9, from about 350 meters to S00

meters, the ocean is still not modeled as well as it could be, but

further mode group velocity inversions would solve that problem.

The next logical step, however, is not further group velocity

inversions, but a combined mode-ray inversion, which is out of the

domain of this thesis.

The basic inversion scheme is to identify two or three of the

lowest modes and then do a group velocity inversion to solve for

the amplitudes of the first two EOFs. Using the inverse solution,

it should now be possible to use the mode filter and identify the

group velocities of several modes. Subsequent modal group

velocity inversions should converge rapidly on a high-precision
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model of the ocean. Rays may be included at any stage to extend

the inversion to greater depths and to accelerate the convergence

of the inversion procedure.
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6. DISCUSSION AND CONCLUSIONS

The rapid means of calculating normal modes in a waveguide

developed in seismology has been applied to ocean acoustics. This

technique has allowed calculations that are more exact than

traditional WKBJ and ray methods. Modal analysis can be used to

answer a variety of questions concerning broad-band

long-distance, deep-water sound propagation.

The most significant result concerns observing the onset of

adiabicity in the top S00 meters of the Greenland Sea water

column, in order to observe the formation of deep cold-water

masses that affect the entire ocean's circulation. While WKBJ and

ray theory are inadequate to monitor changes in this water

acoustically at 250 Hz and 300 km range, normal mode theory is

well suited to the task. Moreover, normal mode calulations of the

acoustic arrival patterns in the top S00 meters can be faster than

the WKBJ calculations.

For the first time, normal modes have been used to do

tomographic inversions for sound speed. Quantifying the historical

variation in the Greenland Sea with empirical orthogonal functions

(EOFs) makes inversions based on modal group velocities converge
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rapidly. Hybrid ray-mode inversions should achieve high precision,

perhaps better than +0.05 m/s or £0.019C for the range-averaged

ocean (although a true assessment of the achievable precision

requires a formal resolution analysis, which is the subject of

future work). Such extreme precision is particularly possible in

the Greenland Sea because one of the primary sources of error in

acoustic travel time measurements -- internal wave activity -- is

apparently much smaller in the arctic than in the rest of the ocean

[Worcester, 1985 1.

The mode filtering technique can enhance group velocity

inversions by isolating individual modes through the use of

acoustic waveforms observed at a variety of receiver depths. The

mode filter requires multiple acoustic receivers set up as a

vertical array. A 30 to SO meter spacing with a relatively

shallow (150 meter) source seems optimum. A shallow receiver

close to SO meters should allow the monitoring of Mode 0 during

the winter, which would significantly improve the resolution of

the top 100 meters of the ocean.

[t does not appear that a smooth ice layer will have a

significant effect on the propagation of sound in the Greenland

Sea. Calculations suggest that only in regions of the ocean where

the ice layer is of the order of S meters thick or more will sound

propagation be significantly affected.

while WKBJ and ray theory are inadequate to describe sound

sropagation in the Greenland Sea, they are adequate prediction
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techniques for typical range-independent mid-latitude profiles at

400 Hz with an axial source and receiver separated by a few

hundred kilometers, as was found in the RTE83 experiment. For

normal modes, the adiabatic approximation seems adequate to

account for the effect of the range-dependence found in that

experiment. This is the first experimental verification with

high-precision data of what may be a more general conclusion --

that adiabatic normal mode theory may be adequate to handle a

wide range of range-dependent sound speed fields [Lynch, 1986

and Desaubies, 1986 1.
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APPENDIX ONE

A.1 Computation of Group Velocity

The technique described in Section 2.2 allows rapid calculation

of the eigenvalues and eigenvectors of normal modes in a

horizontally stratified ocean. In this appendix, it will be shown

that this technique can easily be extended to rapidly calculate the

modal group velocity at each frequency point the phase velocity is

calculated. The entire treatment in this appendix follows Masters

{1986 1.

Recalling the notation by=dP/dz and b,=wP , the equations of

motion can be written dby/dz = w-b; and dby/3z = w-h(o)-by

where h(ot)=z[1/c2-1/o2] and c is the horizontal phase velocity and

is the eigenvalue or desired root of the vertical wave equation

‘equation T.8 in Chapter Two). Now

ID D9)/0Z = by-dbq/0Z + D1°0Dy/0Z = w+(by)? + w+(bs)2h(x)

when this is integrated from 0 to infinity (which will be the

limits of all the integrals in this appendix), the left side vanishes

because by is zero at z=0 and z= at a root, and the result is
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fw+(bqy)2:dz = - Jw(by)2-h(x)-dz at a root

Since the ocean is divided into homogeneous layers in this

scheme, the quantities bq, by, and h(a) are constants in the layer

and these integrals can be computed simply by summing over all

the layers (or all the layers in which the eigenfunctions are still

substantial). These two integrals provide a check that an

eigenfunction is correct, for their ratio should be very close to

one

Ra

J

NEL thy gid iitegyrass in

P2-qz = 02 P2-(1/2-1/cC

terms of

 LZ
fr ul

P=b+ and P=bqy/W J.ves

AL

which is Rayleigh’s principle [Munk and Wunsch, 1983 ].

Using Rayleigh’s principle, the calculation of the group velocity,

d=dw/dk, where w=w(k), may be reduced to a sum over layers.

Consider an eigenfrequency w(k) with eigenfunction P and P.

Perturbing k to k+8k gives

 Ww=&gt; 0+ dW

P=&gt; P+ &amp;8P

P=» P., SP

Substituting into equation A.1 gives
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[(P+8P)2-dz = (0+8w)2-[[(P+8P)2/o2]-dz - [(K+8k)2-(P+8P)2-dz

which becomes, to first oraer

{ _ |P2.dz = WW [(P2/?)-dz - [PSP-dz + w2[PSP(1/c2-k2/w2)-dz

According to Rayleigh's principle, equation A.1, the last two

ntegrals cancel (to first order in the perturbation), so

08W [(P2/o2)-dz = kK

WSWIq = kskls

2. 1.

or

where Iq = [(P2/o2)-dz = (1/2) [I(by)2/o2)-dz

[3 = [P2:dz = (1/2) [(by)2:dzm

This means that u = §w/8k = I3/(c 14).

This equation allows rapid computation of the group velocity as

each root is calculated, and it is at least as accurate as

calculating nearby phase velocity roots and numerically

differencing them. The method described in this appendix may be

extended with a numerical differencing scheme to calculate

quantities useful to tomographic inversions, such as the group

velocity kernels discussed in Section 2.5 [Rodi et al, 1975].
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APPENDIX TWO

A.2 Computation of Sound Propagation in Ice

The subject of this appendix is the numerical computation of

the propagation of Rayleigh waves in the ice. For this. four

variables are needed:

Y; -- the vertical displacement, here u(z)expli-(wt-kr)]

Yo -- the tangential displacement, here u(r)expli-(wt-kr)

Y3 -- the vertical stress, z,5, here (z,,/w)-expli-(wt-kr)

Y4 -- the tangential stress, Typ, here (z../w)-expli-(wt-kr)

where 5, and z, are components of the stress tensor, z.

As In Section 2.3, the entire discussion in this appendix

follows Takeuchi and Saito [7972]and Woodhouse [71980 ],

although the variables of the latter are used here. (In the former,

Yo and Y3 are transposed, and the stresses are not divided by w.)

The equations of motion are
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dY,/dz = wp-[1-2/61Y, + (W/O)Y;3

dY,/dz = -wp-Yy + (W/})-Yq

dYz/dz = -WP1'Yy + WD"Yy4

dY4/dz = w-[-py+4up2(1 -p/o)lY, - wp(1-2/0)-Y;

p; is the density

og=A+2}1, where A and yi are Lame parameters (jl is the rigidity)

p is the inverse phase velocity, p=1/c=k/w

This 34 stem of equations may

 av /9Z = WAY

be rewritten in the form

where Matrix A is:
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To reduce this system of equations in the solid to their

equivalent form in the water -- which has density pg and sound

speed of -- set the rigidity J, the tangential stress Y4, and its

depth derivative dY,4/dz, all to zero. For u=0, 6=A=zpgat®. The last

condition (dY,4/dz=0) gives Y,=-(p/pg)Y3 and that, coupled with

the other conditions, gives

dYq/dz = -(w/pg)(p2-1/02)-Y;

dY3/dz = -WPaY 4

"he equations used for water in Section 2.2 are

dbi/dz = w-(p2-1/?)by

dbo/dz = W-bq

[he solid equations reduces to the acoustic equations if

Dj

Dy=-'2/Pg

This change of variables is needed because the propagator in

the liquid was derived directly from the wave equation, and the

density of water was implicity taken as a constant, whereas the

propagator in the solid was taken from Woodhouse [7980]. The

derivation provided here is for the sake of those who might use
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and perhaps modify the normal mode program in the future.

It is now possible to derive the actual vectors used by the

program at the liquid-solid interface. The above change of

variables immediately gives the first interface conditions:

Y(z=0) = b,(z=0) = bio

Y3(z=0) = -Pobo(z=0) = -Po-bag

(This is the same as continuity of vert.cal stress and

displacement.)

The first starting vector for Y, Y = (Yq, Y12, Y13, Y14), at

the bottom of the ice is therefore (bq, 0, -pg bsg. 0). The second,

Yi = (Yq1, Yq, Y13, Yi4) may be taken as (0, Q, 0, 0) to

represent an arbitrary horizontal displacement, Q, of the ice over

the water. These two vectors are propagated to the top of the ice

using the equations of motion. A root or eigenvalue, ch=w/kp, for

the nth normal mode solution of the matrix equations of motion is

found (and the value of Q is determined) whenever the value of the

determinant Yq3Yo4 - Y23Y14 = A is zero at the ice-air interface.

When a root is located, the eigenvector is found by propagating the

solution at the top of the ice back through the ice and then through

the water. The propagator matrix for the ice, P(z,,z4), satisfying

Y(2,)=P(25,21)-Y(z1) and dP(z,,z4)/dz=A(z,5)-P(z,,24) can be

derived from the matricized equations of motion and is given in

woodhouse [71980 1.
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It turns out that the evaluation of A is numerically unstable,

but the ice-propagation process can be stabilized by using the

method of minors [Gilbert and Backus, 1966 ]. The remainder of

this appendix will be directed to a brief summary of this method,

following Woodhouse [7980 1.

If the two Rayleigh vectors in the ice are written as before,

the minor vector m may be defined as

mc [Y,, Y,l =

Y11Y22 - Yq2Y24

Y11Y13 - Y13 21

Y11Y24 - Yq3Y21

Y12Y23 - Y13Y22

Y12Y24 - Y14Y23

Y13Y24 - Y14Y23
L -

i
my

Mo

m3

Mg

Msg

-

Meg
-

The notation [Y,, Y,] stands for the minor of the two vectors, Y;

and Y,, formed by taking the six different, non-zero combinations

(minors) of each vector as given above.

It can be shown that my=-ms and that the minor vector

satisfies a set of S coupled first order ordinary differential

aquations similar to those given at the beginning of this appendix.
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The propagator for the minor vector is easily derived from these

equations [Woodhouse, 1980 1. The earlier condition on the values

Y, and Y, for an eigenvalue -- Y13Y24 - Yo3Y14 = A = 0 at the

ice-air interface -- is here mg = 0 at the ice-air interface. The

computational isolation of the eigenvalues is stabilized by

propagating the minor vector m through the ice, rather than

propagating Y; and Y, through the ice, since A is calculated

directly. The initial value of m at the ice-water interface --

given before as initial values for the vectors Y; and Y, .- is now

(by, 0, O, pgby, 0, 0). Further discussion of the minor vector

propagator and the specific form of the integrals needed for

determination of group velocity is given in Takeuchi and Saito

[1972 1].




