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Abstract
Given an n-dimensional Riemannian sphere conformal to the round one and δ-pinched,
we show that it does not contain any closed stable minimal submanifold of dimension
2 ≤ k ≤ n − δ−1.
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1 Introduction

Given a compact Riemannian manifold Mn with dimension n ≥ 3, a closed k-
dimensional minimal submanifold �k in M is defined as a critical point of the
k-volume. Hence, it is natural to look at what happens to the second derivative of
the k-volume at �. Of particular interest is the case when this second derivative is
nonnegative, if so we say that � is stable. Note that, if a submanifold is a minimizer
of the k-volume, then it is a stable minimal submanifold.

Lawson and Simons in [9, p. 438] conjectured that there are no stable minimal
submanifolds in any compact, simply connected, Riemannian manifold M that is 1

4 -
pinched. Here, by δ-pinched for some δ > 0,we mean that at each point of M , the
sectional curvatures are positive and the ratio between the smallest and the largest
sectional curvatures of M , at that point, is strictly bigger than δ. Observe that, thanks
to the sphere theorem [4, Theorem 1], a 1

4 -pinched Riemannian manifold M is diffeo-
morphic to the round unit sphere. We remark that this pinching condition is sharp both
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for the Lawson–Simons conjecture and for the sphere theorem. We will come back to
this later in the introduction (see Sect. 1.2)

The purpose of the present paper is to investigate this problem in the case where
the ambient manifold is conformal to the round unit sphere. In particular, we obtain
the following result.

Theorem 1.1 Let (Sn, g̃) be a n-dimensional Riemannian manifold that is conformal
to the round unit sphere and that is δ-pinched for some δ > 0. Then (Sn, g̃) does not
contain any closed stable minimal k-submanifold for all 2 ≤ k ≤ n − δ−1.

Remark 1.2 Observe that Theorem 1.1 confirms Lawson–Simons conjecture in con-
formal spheres Sn for all k-submanifolds with dimension 2 ≤ k ≤ n − 4.

1.1 Previous Results

The original motivation behind Lawson–Simons conjecture arises from the fact that
there are no closed stable minimal submanifolds in the round n-dimensional sphere.
This was proven by Simons in [17, Theorem 5.1.1] and generalized to the nonexistence
of stable stationary varifolds in Corollary 1 of the aforementioned paper [9]. The idea
of the proof is to show that, given a minimal k-submanifold�k , the trace of the second
derivative of the k-volume on the space of variations generated by constant vector fields
is negative. Hence, there is at least one constant vector field that generates a variation
along which the k-volume of � decreases, which implies that � is not stable.

The Lawson–Simons conjecture in its full generality is still open, but there have
been several partial results in its support.

• Minimal two-spheres Let us assume that �2 is a minimal surface homeomorphic
to a two-sphere in a compact, simply connected, 14 -pinched Riemannian manifold
Mn .
In [2, Theorem 1]Aminov proved that, under these assumptions,� is unstable. The
proof consists in constructing two orthogonal variations, determined by a system
of differential equations [2, (10)], with negative average of the second derivative
of the area.
Aminov argument was then refined by Micallef and Moore [10, Theorem 1], who
obtained a positive lower bound on the number of negative directions of the second
derivative of the area (theMorse index) at� as above. More precisely, they proved
that the Morse index of � in M is strictly bigger than (n − 3)/2, thus the lower
bound only depends on the dimension of the ambient manifold.

• Perturbations of the roundmetric If Sn is endowedwith ametric which isC2-close
to the round one, then, Howard and Wei in [8, Theorem 1] proved that there are
no stable minimal submanifolds in it. Note that [8] circulated as a preprint since
1983.
Quantitative versions of this result were proven by Okayasu and Howard. More
precisely, given g ≥ 1, Okayasu in [12, Theorem A] showed that there exists
ε′ = ε′(n, g) > 0 such that, if Sn is (1 − ε′)-pinched, then it does not contain
any closed stable minimal surface of genus g. Moreover, given k ≥ 1, Howard
in [6, Theorem 1] proved the existence of ε′′ = ε′′(n, k) > 0 such that, if Sn
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is (1 − ε′′)-pinched, then there are no closed stable minimal submanifolds of
dimension k. Unfortunately, it holds that limg→∞ ε′(n, g) = 0 for all n ≥ 3, and
that limn→∞ max1≤k<n ε′′(n, k) = 0.

• Ambient manifold immersed in R
n+1 The last case that was considered is when

the ambient n-dimensional topological sphere can be isometrically immersed in
R
n+1. Under this additional condition, the Lawson–Simons conjecture was proven

by Shen and Xu in [19, Theorem 2]. Further results with better pinching conditions
were also proven (see [7, 16]).

Remark 1.3 In [19, Theorem 1], Shen and Xu claimed that there are no stable minimal
submanifolds in a complete simply connected 0.77-pinched Riemannian manifold.
However, we are actually unable to check the validity of the second equality in (3.6).

What we do in Theorem 1.1 is to consider a setting transversal to all the previous
ones, namely the case where the ambient manifold is conformal to the round unit
sphere and satisfies some pinching condition. Note that such an ambient manifold of
dimension n can be isometrically immersed in R

n+1 if and only if it satisfies some
local rigidity properties by [11, Theorem 4] (see also Remark 2 after the theorem
therein). Hence, our result is not a consequence of [19, Theorem 2].

1.2 Heuristics and Further Developments

Apart from the aforementioned works concerning the Lawson–Simons conjecture,
there are other results on the stability of minimal submanifolds that are worth noticing.
First of all, it is immediate to see that, in a space of positive sectional curvature, a
minimal submanifold with a nontrivial ∇⊥-parallel section of the normal bundle is
unstable. In particular, this section always exists on hypersurfaces with trivial normal
bundle (see the stability inequality). As a consequence, theLawson–Simons conjecture
trivially holds for n = 2, and more generally for two-sided hypersurfaces.

Remark 1.4 The case of minimal hypersurfaces is actually much more studied and
understood than the higher codimensional one. In particular, there are many results
relating the Morse index and the topology of a minimal hypersurface (see,e.g. [1, 14,
15, 18]). Note that [18] deals with the conformal case as in the present work.

Another important special case is the geodesics one. Indeed, the celebrated theorem
of Synge (see [13, Theorems 21 and 26]) says that geodesics in even dimensional
compact simply connected Riemannian manifolds of positive sectional curvature are
unstable. However, this cannot be true in odd dimensions. Indeed, Ziller [22, Example
1] showed that there is a stable closedgeodesic in eachBerger 3-sphere that is δ-pinched
with δ ∈ (0, 1

5 ).
As mentioned above, the pinching condition of the Lawson–Simons conjecture is

sharp. Indeed, the complex projective space is a compact simply connected Rieman-
nian manifold with sectional curvature between 1/4 and 1, included, that admits a
large class of minimizers for the volume functional: the complex submanifolds. Being
homologically volume minimizers, complex submanifolds are intimately related to
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the homology of the ambient manifold. In light of this discussion, Howard and Wei
[8, Conjecture B] conjectured that homological spheres with positive sectional cur-
vature admit no stable minimal submanifolds. However, this conjecture cannot hold
in this great generality, as showed by Ziller’s example described above. More in gen-
eral, Torralbo–Urbano in [20] proved that any odd-dimensional Berger sphere that is
δ-pinched with δ ∈ (0, 1

4k+1 ) contains k-dimensional stable minimal submanifolds.
Observe that this is compatible with the pinching obtained by Ziller for k = 1.

1.3 Idea of the Proof and Structure of the Paper

The idea behind Theorem 1.1 is inspired by Simons’ proof, adequately adapted to
the conformal case. Indeed, we consider the constant vector fields used by Simons,
and we rescale them so that they are orthonormal under the conformal change of
metric. Given a k-submanifold that is minimal with respect to the conformal metric,
we take the trace of the second derivative of the conformal k-volume over the space
of variations generated by these vector fields, and we express such a trace in terms of
objects relative to the round metric.

Now, we discuss the novel key ideas of this paper. First, we observe that Simons’
estimate for the operator associated to the second variation over the spaceV of constant
vector fields holds for nonminimal submanifolds when we trace over V (see Theorem
5.1). This way, we are able to obtain an expression for the aforementioned trace
depending only on the curvature of the conformal sphere and the norm of the mean
curvature of the submanifold with respect to the round metric (see Theorem 5.2).
We conclude estimating the aforesaid norm with terms involving the curvature of
the conformal sphere. This final step consists in applying the divergence theorem to a
carefully chosen vector field to recover terms involving the curvature.As pointed out by
the anonymous referee, who we would like to thank, this also follows from integrating
the Gauss equation for the scalar curvature of�, combined with the standard formulas
for the scalar curvature and the traceless second fundamental form under a conformal
change of metric.

The paper is structured as follows. In Sect. 3, we review standard results from
conformal geometry. In particular, we recall how some usual Riemannian geometric
quantities transform under a conformal change of metric. We use these results in
Sect. 4 to compute the operator associated to the second variation of the conformal
k-volume in terms of the same operator with respect to the round metric. Finally,
Sect. 5 is devoted to the proof of Theorem 1.1. Specifically, we trace over the space
of rescaled constant vector fields, and we estimate the norm of the mean curvature of
the submanifold with respect to the round metric.

2 Setting and Notation

Let (Mn, g) be an n-dimensional compact Riemannian manifold, and assume that
g̃:=e2 f g is a Riemannian metric on M conformal to g with conformal factor e2 f ,
for some function f ∈ C∞(M). Moreover, let �k ⊂ M be a closed k-dimensional
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submanifold of M . Note that we can view �k as a Riemannian submanifold both of
(M, g) and of (M, g̃). Obviously, the metric induced by g̃ is conformal to the one
induced by g with conformal factor e2 f .

In this setting, we adopt the following notation.

• X(M) is the set of vector fields on M .
• X⊥ ∈ �(N�) is the normal component to � of a vector field X ∈ X(M), where

�(N�) denotes the sections of the normal bundle of �. Observe that the normal
component with respect to g is the same as the normal component with respect to
the conformal metric g̃.

• X� = X − X⊥ is the tangent component to � of a vector field X ∈ X(M). Again
this does not depend on the choice of metric in a conformal class.

• {Eα}nα=1 will often denote a local orthonormal basis of M with respect to g. When
this basis is defined around a point p ∈ �, then at p,it will be chosen such that
{Ei }ki=1 is an orthonormal basis of � and {Er }nr=k+1 is an orthonormal basis of
the normal to �.

• ∇, ∇̃ are the Levi-Civita connections on M with respect to g and g̃, respectively.
• ∇⊥ is the Levi-Civita connection on the normal bundle of�. In particular,∇⊥

X V =
(∇XV )⊥ for all X ∈ X(�) and V ∈ �(N�).

• RM , R̃M are the Riemann curvature tensors on M with respect to g and g̃,
respectively. Here, we use the convention

RM (X ,Y )Z = ∇Y∇X Z − ∇X∇Y Z + ∇[X ,Y ]Z

for all X ,Y , Z ∈ X(M).
• Ifπ ⊂ TpM is a two-plane ofM , then, KM (π), K̃M (π) are the sectional curvatures
of π on M with respect to g and g̃, respectively. If π is spanned by X ,Y ∈ TpM ,
then, KM (π) = KM (X ,Y ) and K̃M (π) = K̃M (X ,Y ).

• We say that (M, g̃) is δ-pinched for some δ > 0 if at each point p ∈ M and for
every pair of two-planes π1, π2 ⊂ TpM , we have 0 < δ K̃M (π1) < K̃M (π2). In
particular, for all p ∈ M , it holds

0 < δ max
π⊂TpM

K̃M (π) < min
π⊂TpM

K̃M (π).

• A, Ã are the second fundamental forms of� onM with respect to g, g̃, respectively.
Moreover, taking the traces of A and Ã over �, we obtain the mean curvature
vectors H , H̃ of � on M with respect to the two metrics g, g̃.

Observe that, in Sect. 5, we specialize to the case where (Mn, g) is the unit sphere
Sn with the round metric and� is a minimal submanifold with respect to g̃. Note that,
under these assumptions, we have that H̃ = 0, but the mean curvature H with respect
to g does not need to vanish.

123



  335 Page 6 of 16 G. Franz and F. Trinca

3 Preliminaries in Conformal Geometry

Let us assume to be in the setting described in the previous section, namely an
n-dimensional Riemannian manifold Mn with conformal metrics g̃ = e2 f g. The
following well-known results relate the geometry of the conformal metric g̃ to the
original one g.

Lemma 3.1 In the setting above, let {Eα}nα=1 be an orthonormal frame of (M, g)
defined on an open subset U ⊂ M. Then, {Ẽα}nα=1 is an orthonormal frame of (M, g̃)
defined on U ⊂ M, where Ẽα:=e− f Eα for all α ∈ {1, . . . , n}.

Proposition 3.2 (cf. [3, Theorem 1.159]) In the setting above, we have that

(i) the Levi-Civita connection of (M, g) is related to the Levi-Civita connection of
(M, g̃) by

∇̃XY = ∇XY + X( f )Y + Y ( f )X − g(X ,Y )∇ f

for all vector fields X ,Y ∈ X(M);
(ii) the Riemann curvature tensor of (M, g) is related to the Riemann curvature

tensor of (M, g̃) by

R̃M (X ,Y )Z = RM (X ,Y )Z + X( f )Z( f )Y − Y ( f )Z( f )X +
− X( f )g(Y , Z)∇ f + Y ( f )g(X , Z)∇ f − g(X , Z)∇Y∇ f

+ g(Y , Z)∇X∇ f +
− g(X , Z)|∇ f |2gY + g(Y , Z)|∇ f |2g X
− Hess f (X , Z)Y + Hess f (Y , Z)X

for all X ,Y , Z ∈ X(M);
(iii) the sectional curvature of (M, g) is related to the sectional curvature of (M, g̃)

by

e2 f K̃M (X ,Y ) = KM (X ,Y ) + X( f )2 + Y ( f )2 − |∇ f |2g
−Hess f (X , X) − Hess f (Y ,Y )

for all X ,Y ∈ X(M) that are orthonormal with respect to g;
(iv) the volume element dg of (M, g) is related to the volume element dg̃ of (M, g̃)

by

dg̃ = en f dg.

The following lemma shows how the mean curvatures with respect to g and g̃ of a
k-dimensional submanifold of M are related.
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Lemma 3.3 Let �k be a submanifold of M. Then, the mean curvature H of � with
respect to g is related to the mean curvature H̃ of � with respect to g̃, by

H = e2 f H̃ + k∇⊥ f .

Proof Given a local orthonormal frame {Eα}nα=1 of (M, g) such that {Ei }ki=1 are
tangent to �, we can use Lemma 3.1 to obtain a local g̃-orthonormal frame {Ẽα}nα=1,
which will also have the first k vectors tangent to �. We deduce

H =
k∑

i=1

(∇Ei Ei
)⊥ =

k∑

i=1

e f
(
∇Ẽi

(e f Ẽi )
)⊥

=
k∑

i=1

e f Ẽi (e
f )

(
Ẽi

)⊥ +
k∑

i=1

e2 f
(
∇Ẽi

Ẽi

)⊥

= e2 f
k∑

i=1

(∇̃Ẽi
Ẽi )

⊥ + e2 f
k∑

i=1

g(Ẽi , Ẽi )(∇ f )⊥ = e2 f H̃ + k∇⊥ f ,

where we used Proposition 3.2(i), the properties of the connection and the fact that ⊥
does not depend on conformal changes.

4 Second Variation of the k-Volume After a Conformal Change of
Metric

Let �k be a k-dimensional submanifold of M . Consider the quadratic operator on the
normal bundle of � defined, for all V ∈ �(N�), as follows

Q̃�(V , V ):=
∫

�

q̃�(V , V ) dg̃,

where q̃� is, at each given point, the quadratic operator given by

q̃�(V , V ):=|∇̃⊥
�V |2g̃ − t̃r�(R̃M (V , ·)V ) − |g̃( Ã(·, ·), V )|2.

here t̃r� denotes the trace on � with respect to the metric g̃, namely

t̃r�(R̃M (V , ·)V ) =
k∑

i=1

g̃(R̃M (V , Ẽi )V , Ẽi ),

where {Ẽi }ki=1 is an orthonormal basis of � with respect to g̃. Observe that, if � is
minimal with respect to g̃, Q̃� is the associated stability (or Jacobi) operator (see,e.g.
[5, Chapter 1, §8]). Therefore, � is unstable if and only if there exists V ∈ �(N�)

such that Q̃�(V , V ) < 0.
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Now assume, as above, that g̃ = e2 f g is conformal to a reference metric g on M .
The goal of this section is to express Q̃�(V , V ) for every V ∈ �(N�) in terms of the
corresponding operator Q�(V , V ) with respect to the metric g, namely

Q�(V , V ) =
∫

�

q�(V , V ) dg

=
∫

�

|∇⊥
�V |2g − tr�(RM (V , ·)V ) − |g(A(·, ·), V )|2 dg.

For the rest of the section, we assume that {Eα}nα=1 is a local orthonormal frame
with respect to g such that the first k terms {Ei }ki=1 form an orthonormal basis of �.

Lemma 4.1 For every V ∈ �(N�), it holds

|∇̃⊥
�V |2g̃ = |∇⊥

�V |2g + (∇� f )(|V |2g) + |∇� f |2g|V |2g.

Proof. Observe that Proposition 3.2(i) implies

∇̃⊥
Ẽi
V =

(
∇Ẽi

V + Ẽi ( f )V
)⊥ = ∇⊥

Ẽi
V + Ẽi ( f )V ,

for all i ∈ {1, . . . , k}. Taking the inner product, we compute

g̃(∇̃⊥
Ẽi
V , ∇̃⊥

Ẽi
V ) = g̃(∇⊥

Ẽi
V ,∇⊥

Ẽi
V ) + Ẽi ( f )

2 g̃(V , V ) + 2Ẽi ( f )g̃(V ,∇⊥
Ẽi
V )

= g(∇⊥
Ei
V ,∇⊥

Ei
V ) + Ei ( f )

2g(V , V ) + 2Ei ( f )g(V ,∇⊥
Ei
V ),

which gives the lemma after summing over i ∈ {1, . . . , k} and using that

2
k∑

i=1

Ei ( f )g(∇⊥
Ei
V , V ) = 2g(∇⊥

∇� f V , V ) = 2g(∇∇� f V , V ) = (∇� f )(|V |2g).

Lemma 4.2 For every V ∈ �(N�), it holds

t̃r�(R̃M (V , ·)V ) = tr�(RM (V , ·)V ) + kV ( f )2 − k Hess f (V , V ) − k|∇ f |2g|V |2g +
− div�(∇ f )|V |2g + |∇� f |2g|V |2g.

Proof Using Proposition 3.2(ii) and the fact that Hess f (X ,Y ) = g(∇Y∇ f , X), we
have

g̃(R̃M (V , Ẽi )V , Ẽi ) = g̃(RM (V , Ẽi )V , Ẽi ) + V ( f )2 g̃(Ẽi , Ẽi )

+ Ẽi ( f )g(V , V )g̃(∇ f , Ẽi ) +
− g(V , V )g̃(∇Ẽi

∇ f , Ẽi ) − |∇ f |2gg(V , V )g̃(Ẽi , Ẽi )

− Hess f (V , V )g̃(Ẽi , Ẽi )
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= g(RM (V , Ei )V , Ei ) + V ( f )2 + Ei ( f )
2g(V , V ) +

−g(V , V )Hess f (Ei , Ei )−|∇ f |2gg(V , V )−Hess f (V , V ).

Summing over i ∈ {1, . . . , k}, we conclude.
Lemma 4.3 For every V ∈ �(N�), it holds

|g̃( Ã(·, ·), V )|2 = |g(A(·, ·), V )|2 + kV ( f )2 − 2V ( f )g(H , V ).

Proof. By Proposition 3.2(i), note that

Ã(Ẽi , Ẽ j ) = (∇̃Ẽi
Ẽ j )

⊥ = A(Ẽi , Ẽ j ) − e−2 f δi j (∇ f )⊥,

which implies

g̃( Ã(Ẽi , Ẽ j ), V ) = g̃(A(Ẽi , Ẽ j ) − e−2 f δi j (∇ f )⊥, V ) = g(A(Ei , E j ), V ) − δi j V ( f ).

Taking the absolute value squared, we have

|g̃( Ã(Ẽi , Ẽ j ), V )|2 = |g(A(Ei , E j ), V )|2 + δi j V ( f )2 − 2δi j V ( f )g(A(Ei , E j ), V ).

We can conclude by summing over i, j ∈ {1, . . . , k} and observing that

−2
k∑

i, j=1

δi j V ( f )g(A(Ei , E j ), V ) = −2V ( f )g

(
k∑

i=1

A(Ei , Ei ), V

)

= −2V ( f )g(H , V ).

Proposition 4.4 Assume that � is minimal with respect to g̃, then for every V ∈
�(N�) we have

q̃�(V , V ) = q�(V , V ) + (∇� f )(|V |2g) + k Hess f (V , V )

+ k|∇ f |2g|V |2g + div�(∇ f )|V |2g.

Proof The statement follows directly from the previous lemmas and

g(H , V ) = g̃(H̃ , V ) + kg(∇ f , V ) = kV ( f ),

which is a consequence of Lemma 3.3 and H̃ = 0.

Corollary 4.5 Assume that � is minimal with respect to g̃, then for every V ∈ �(N�)

it holds

q̃�(Ṽ , Ṽ ) = q�(V , V )e−2 f − |∇� f |2g|V |2ge−2 f + k Hess f (V , V )e−2 f +
+ k|∇ f |2g|V |2ge−2 f + div�(∇ f )|V |2ge−2 f ,

123
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where Ṽ = e− f V .

Proof The first observation is that all the terms of q� are tensorial apart from |∇⊥
Ei
Ṽ |2g ,

for which we have

∇⊥
Ei
Ṽ = Ei (e

− f )V + e− f ∇⊥
Ei
V = −e− f Ei ( f )V + e− f ∇⊥

Ei
V ,

and, hence

|∇⊥
Ei
Ṽ |2g = e−2 f Ei ( f )

2g(V , V ) − 2e−2 f Ei ( f )g(∇⊥
Ei
V , V ) + e−2 f g(∇⊥

Ei
V , ∇⊥

Ei
V ).

Summing over i ∈ {1, . . . , k}, we get

|∇⊥
� Ṽ |2g = |∇⊥

�V |2ge−2 f + |∇� f |2g|V |2ge−2 f − (∇� f )(|V |2g)e−2 f .

The only other term in the equation of Proposition 4.4 that is not tensorial is
(∇� f )(|Ṽ |2g), for which we have

(∇� f )(e−2 f |V |2g) = −2|∇� f |2g|V |2ge−2 f + (∇� f )(|V |2g)e−2 f .

Combining these calculations with Proposition 4.4, we conclude.

5 Proof of theMain Result

In this section, we prove our main theorem. We take as base manifold (Mn, g) the
round unit sphere (Sn, g) and we consider a function f ∈ C∞(M), which induces a
fixed conformal metric g̃ = e2 f g on Sn .

Let F := {
h
∣∣
Sn : h ∈ hom(Rn+1,R)

}
be the family of linear maps from R

n+1 to
R restricted to Sn , and let V:= {∇h : h ∈ F} ⊂ X(Sn) be the projection to Sn of the
constant vector fields of Rn+1. The natural isomorphism R

n+1 ∼= V , which associates
to any vector v of Rn+1 the gradient of the function x → 〈v, x〉 on Sn , induces a
natural inner product on V .

Simons in [17, Lemma 5.1.4] observes that each element ofV is a negative direction
of the k-volume for every k-dimensional closed minimal submanifold�k of the round
unit sphere. In particular, the author proves that

Q�(V⊥, V⊥) = −k
∫

�

|V⊥|2g dg,

for all V ∈ V .
Inwhat follows, we consider any closed submanifold�k of Sn , without the assump-

tion of minimality. The previous equation for Q�(V⊥, V⊥) does not hold for all
V ∈ V . However, we surprisingly recover the same result when we trace over V .
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Theorem 5.1 Let �k be a k-dimensional closed submanifold of (Sn, g). Then, if we
take the trace of q� over V , we get

trV q� :=
n+1∑

α=1

q�(V⊥
α , V⊥

α ) = −k(n − k),

where {Vα}n+1
α=1 is any orthonormal basis of V . In particular, if we integrate over �,

we get

trV Q� :=
n+1∑

α=1

Q�(V⊥
α , V⊥

α ) =
∫

�

trV q� dg = −k(n − k) volg(�).

Proof First observe that, given V ∈ V induced by the constant vector v ∈ R
n+1,

namely V (x) = v − 〈v, x〉x for all x ∈ Sn , we have

∇XV = (DXV )T Sn = −(DX (〈v, x〉x))T Sn = −〈v, x〉(DX x)
T Sn = −〈v, x〉X ,

for all vector fields X ∈ X(Sn), where D is the covariant derivative ofRn+1. Therefore,
if we assume that X is tangent to �, we get that

∇⊥
X V

⊥ = (∇XV − ∇XV
�)⊥ = −A(X , V�).

Fixed p ∈ � and given a local orthonormal frame {Ei }ki=1 of � around p, we can
thus deduce that

q�(V⊥, V⊥) = |∇⊥
�V⊥|2g − tr�(RSn (V

⊥, ·)V⊥) − |g(A(·, ·), V⊥)|2

=
k∑

i=1

|A(Ei , V
�)|2g − k|V⊥|2g −

k∑

i, j=1

|g(A(Ei , E j ), V
⊥)|2.

Now, let {Vα}n+1
α=1 be an orthonormal basis of V , induced by orthonormal vectors

{vα}n+1
α=1 in R

n+1 such that

• v1 = E1(p), . . . , vk = Ek(p) are tangent to � at p;
• vk+1, . . . , vn are normal to � and tangent to Sn in p;
• vn+1 = p.

With this choice, observe that V�
i (p) = Ei (p) and V⊥

i (p) = 0 for i ∈ {1, . . . , k},
V�
r (p) = 0 and V⊥

r (p) = vr for r ∈ {k + 1, . . . , n}, and Vn+1(p) = 0. Therefore, at
the point p, we get that

trV q� =
n+1∑

α=1

q�(V⊥
α , V⊥

α ) =
n+1∑

α=1

k∑

i=1

|A(Ei , V
�
α )|2g − k

n+1∑

α=1

|V⊥
α |2g
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−
n+1∑

α=1

k∑

i, j=1

|g(A(Ei , E j ), V
⊥
α )|2

=
k∑

i, j=1

|A(Ei , E j )|2g − k(n − k) −
k∑

i, j=1

|A(Ei , E j )|2g = −k(n − k).

By the independence of the trace from the choice of the orthonormal basis and the
arbitrariness we chose p, we conclude.

Given the previous result, it is natural to consider the space Ṽ = {Ṽ = e− f V :
V ∈ V}, endowed with the inner product induced by V , as competitors for stability of
minimal submanifolds in (Sn, g̃).

Theorem 5.2 Let �k be a k-dimensional closed minimal submanifold of (Sn, g̃), then

trṼ q̃� :=
n+1∑

α=1

q̃�(Ṽ⊥
α , Ṽ⊥

α ) = −K̃Sn (�, N�) + k|∇⊥ f |2ge−2 f

= −K̃Sn (�, N�) + 1

k
|H |2ge−2 f ,

where {Ṽα}n+1
α=1 is any orthonormal basis of Ṽ . Here, by K̃Sn (�, N�), we mean

K̃Sn (�, N�):=
k∑

i=1

n∑

r=k+1

K̃Sn (Ẽi , Ẽr ),

where {Ẽα}nα=1 is an orthonormal basis of Sn with respect to g̃ such that the first k
terms form an orthonormal basis for �.

Remark 5.3 Observe that

K̃Sn (�, N�) =
k∑

i=1

n∑

r=k+1

K̃Sn (Ẽi , Ẽr ) =
k∑

i=1

n∑

r=k+1

g̃(R̃Sn (Ẽi , Ẽr )Ẽi , Ẽr ).

Since R̃Sn is a tensor, this proves that K̃Sn (�, N�) does not depend on the choice of
basis {Ẽα}nα=1.

Proof Fix p ∈ � and let {Ṽα}n+1
α=1 be an orthonormal basis of Ṽ such that Vα:=e f Ṽα ∈

V is induced by the vector vα in Rn+1 for all α ∈ {1, . . . , n + 1}, where {vα}n+1
α=1 is an

orthonormal basis of Rn+1. Moreover, assume that

• E1:=v1, . . . , Ek :=vk are tangent to � at p;
• Ek+1:=vk+1, . . . , En :=vn are normal to � and tangent to Sn in p;
• vn+1 = p.
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Observe that, in this way, {Eα}nα=1 is an orthonormal basis of TpSn with respect to
g such that the first k terms form an orthonormal basis for �. Moreover, we have
V�
i (p) = Ei and V⊥

i (p) = 0 for i ∈ {1, . . . , k}, V�
r (p) = 0 and V⊥

r (p) = Er for
r ∈ {k + 1, . . . , n}, and Vn+1(p) = 0.

It follows that, at the point p, it holds

n+1∑

α=1

q̃�(Ṽ⊥
α , Ṽ⊥

α )e2 f =
n+1∑

α=1

q�(V⊥
α , V⊥

α ) − (n − k)|∇� f |2g + k(n − k)|∇ f |2g +

+ (n − k)div�(∇ f ) + k
n∑

r=k+1

Hess f (Er , Er )

= −k(n − k) − (n − k)|∇� f |2g + k(n − k)|∇ f |2g +

+ (n − k)div�(∇ f ) + k
n∑

r=k+1

Hess f (Er , Er ),

where we used Corollary 4.5 and Theorem 5.1.
However, observe that, by Proposition 3.2(iii), we have

k∑

i=1

n∑

r=k+1

K̃Sn (Ẽi , Ẽr )e
2 f =

k∑

i=1

n∑

r=k+1

K̃Sn (Ei , Er )e
2 f

=
k∑

i=1

n∑

r=k+1

KSn (Ei , Er ) + (n − k)|∇� f |2g

+ k|∇⊥ f |2g − k(n − k)|∇ f |2g +

− (n − k)div�(∇ f ) − k
n∑

r=k+1

Hess f (Er , Er )

= k(n − k) + (n − k)|∇� f |2g + k|∇⊥ f |2g − k(n − k)|∇ f |2g +

− (n − k)div�(∇ f ) − k
n∑

r=k+1

Hess f (Er , Er ).

Therefore, we get that

trṼ q̃� =
n+1∑

α=1

q̃�(Ṽ⊥
α , Ṽ⊥

α ) = −
k∑

i=1

n∑

r=k+1

K̃Sn (Ẽi , Ẽr ) + k|∇⊥ f |2ge−2 f .

Finally, the last equality in the statement follows from the fact that k∇⊥ f = H by
Lemma 3.3, since � is minimal with respect to g̃ and therefore H̃ = 0.

123



  335 Page 14 of 16 G. Franz and F. Trinca

We are now ready to prove our main result Theorem 1.1. Note that we will crucially
use the assumption that k ≥ 2. Indeed, we will apply Proposition 3.2(iii) to (orthonor-
mal) vectors tangent to the submanifold, and hence, we need the dimension of � to
be at least two.

Proof of Theorem 1.1 Let �k be a closed k-dimensional minimal submanifold of
(Sn, g̃) and let {Ei }ki=1 be a local orthonormal frame of � with respect to g. For
all i �= j ∈ {1, . . . , k}, using Proposition 3.2(iii), we have

e2 f K̃Sn (Ei , E j ) = KSn (Ei , E j ) + Ei ( f )
2 + E j ( f )

2 − |∇ f |2g
− Hess f (Ei , Ei ) − Hess f (E j , E j ).

Summing over all i �= j ∈ {1, . . . , k}, we get

e2 f
k∑

i �= j=1

K̃Sn (Ei , E j ) = k(k − 1) + 2(k − 1)|∇� f |2g − k(k − 1)|∇ f |2g

−2(k − 1)div�(∇ f ).

Multiplying by e(k−2) f and integrating over � with respect to the metric g, we
obtain

∫

�

k∑

i �= j=1

K̃Sn (Ei , E j ) dg̃ =
∫

�

k∑

i �= j=1

K̃Sn (Ei , E j )e
k f dg

= k(k − 1)
∫

�

e(k−2) f dg

+
∫

�

[
2(k − 1)|∇� f |2g − k(k − 1)|∇ f |2g

]
e(k−2) f dg +

− 2(k − 1)
∫

�

div�(∇ f )e(k−2) f dg.

Now observe that, using the “generalized divergence theorem” (see, e.g. [21, Theorem
1]) and Lemma 3.3, we can write the last term as

∫

�
div�(∇ f )e(k−2) f dg =

∫

�
div�(e(k−2) f ∇ f ) dg − (k − 2)

∫

�
|∇� f |2ge(k−2) f dg

= −
∫

�
g(Hg,∇ f )e(k−2) f dg − (k − 2)

∫

�
|∇� f |2ge(k−2) f dg

= −k
∫

�
|∇⊥ f |2ge(k−2) f dg − (k − 2)

∫

�
|∇� f |2ge(k−2) f dg.
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Hence, we get

∫

�

k∑

i �= j=1

K̃Sn (Ei , E j ) dg̃ = k(k − 1)
∫

�

e(k−2) f dg

+ (k − 1)(k − 2)
∫

�

|∇� f |2ge(k−2) f dg +

+ k(k − 1)
∫

�

|∇⊥ f |2ge(k−2) f dg

> k(k − 1)
∫

�

|∇⊥ f |2ge(k−2) f dg.

Combining with Theorem 5.2, we obtain

trṼ Q̃� =
∫

�

trṼ q̃� dg̃ =
∫

�

−
k∑

i=1

n∑

r=k+1

K̃Sn (Ei , Er ) + k|∇⊥ f |2ge−2 f d g̃

<

∫

�

−
k∑

i=1

n∑

r=k+1

K̃Sn (Ei , Er )

+ 1

(k − 1)

k∑

i �= j=1

K̃Sn (Ei , E j ) dg̃

≤
∫

�

−k(n − k) min
π⊂TpM

K̃Sn (π) + k max
π⊂TpM

K̃Sn (π) dg̃(p)

≤ −k
∫

�

min
π⊂TpM

K̃Sn (π)(n − k − δ−1) dg̃(p) < 0,

where we used that k ≤ n − δ−1 and that (M, g̃) is δ-pinched.
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