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ABSTRACT

The single phase unidirectional transducer (SPUDT) has recently been invented by
C. S. Hartmann 44, It is a low loss surface acoustic wave (SAW) filter and is based
on a distributed reflector being placed in the same region as a distributed source with
proper phasing so as to achieve constructive interference in the forward direction and
destructive interference in the reverse. Its key advantage is that low insertion loss can
be obtained without the triple transit distortion which plagues bidirectional interdigital
transducers (BIDT'S).

Coupled mode equations are extended to include resistive finger loss and propagation
loss. Experimental unweighted SPUDT responses are compared with theoretical calcula-
tions based on the above model. Parameters can be chosen to obtain good agreement
confirming the applicability of the coupled mode equations to the analysis of these struc-
tures. The SPUDT was matched to achieve 10.1 dB of insertion loss with 44.6 dB of triple
transit suppression. This is 16.1 dB better than could be achieved with a lossless BIDT
matched for the same insertion loss.

An analytical/numerical technique is developed to solve the coupled mode equations
with an arbitrary distribution of transduction and reflection sources. These solutions are
used to evaluate the range of applicability of a simple design algorithm (similar to the
one used by P. V. Wright 1'% ) for SPUDT's in which multiple reflections are ignored,
A paper design is presented for a 2.3 shape factor filter with 4.9 dB insertion loss, 60
dB rejection, and 40 dB triple transit suppression, assuming that continuously adjustable
transduction elements and reflectors are available. :

In Part I of this thesis, the focus is on the design of high performance frequency
responses with constant strength and zero strength sources. The weighting is achieved
solely by varying the spacing between these sources. Another goal is constraining the
impulse response length to minimize the substrate area required. Although this has
direct application to the design of SPUDT's, both the analysis and examples are geared
toward BIDT’s. Designs of this type with constant aperture transducers are also useful for
suppression of both diffraction and transverse electrostatic end effects.



A quasi-Newton optimization procedure is used to design a low dynamic range
amplitude and phase modulated waveform. A parameterization of the filter's response
is used, instead of directly optimizing with respect.to the source locations. This enables
long filters to be designed with many more sources than parameters. An improved
withdrawal weighting algorithm is then used with multiple envelopes to eliminate all
amplitude modulation.

New structures for withdrawal weighting are presented that significantly increase the
bandwidth over which the rejection band performance is good, and which also enable the
passband ripple to be reduced. A paper design is presented for a very sharp 115 shape
factor filter with -31 dB sidelobes and .37 dB peak-to-peak passband rippie. This represents
more than an order of magnitude improvement over the best previously reported result
with phase-only weighting. The sidelobes remain well controlled over a 55% fractional
bandwidth and the device is 6.7% shorter than a Parks-McClellan amplitude modulated
design of similar performance with two identical transducers. The Parks-McClellan design
has good rejection over the full 300% fractional bandwidth, but would suffer from far
more severe diffraction problems due to the 239:1 dynamic range of its source weights if
implemented by apodization.

Thesis Supervisor: Hermann A. Haus ‘
Title; Elihu Thomson Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

The interdigital surface acoustic wave (SAW) transducer (IDT) was first demonstrated
by White and Voltmer (119, In the ensuing 20 years, filters based on this device have
been successfully used in many RF (10 MHz - 1 GHz) applications which can make good
use of their selectivity, stability and flexibility in creating almost arbitrary magnitude and
phase responses. In addition to their superior filtering performance compared to lumped
element LC filters, SAW devices, which are fabricated using the planar technology of the

integrated circuit industry, offer a cost advantage in mass production applications.

A fundamental disadvantage of standard SAW filters is their high insertion loss. [n
addition, although very good filters have been produced, there is a need to increase
attenuation in the rejection band and to cut the ripple in the passband, while simultaneously
reducing substrate area to minimize cost. The single-phase unidirectional transducer
(SPUDT), which was invented by Hartmann [/l addresses the first issue, while phase
weighting addresses the second. The SPUDT is the focus of the first part of the thesis,

and phase weighting is discussed in the second.

SAW filters consist of two transducers, an input transducer which converts the electrical
signal into an acoustic one, and an output transducer which converts it back again. The
filtering is done in the clectro-acoustic conversion process. The standard transducer consists

of two interdigitated metal combs deposited on a piezoelectric substrate (Fig. 1.1). The



Figure 1.1 A Split Finger Interdigital SAW Filter

(After [32])

acoustic sources can be approximately localized to the gaps between fingers attached to
opposite bus-bars. The space between sources can be simply treated as a time delay due to
the dispersionless nature of SAW propagation. The impulse response of each transducer
roughly consists of pulses at these gaps. Then the response of the entire filter is the
convolution of these two responses in the time domain, or the product of their Fourier
transforms in the frequency domain !,

In order to obtain a large response in the vicinity of the center frequency, f,, the
period of the structure should be roughly the wavelength at center frequency, X, , so that
the responses of each of these elemental sources will add in phase.

Due to thce symmetry of the IDT's structure, it radiates equally well in the forward
and backward directions. This immediately causes a 3 dB loss in the sending transducer
if it is perfectly matched. Using reciprocity and power conservation, it can be shown that
the receiving transducer will only pick up half the incident power, transmit 1/4 and reflect

174, if it is also perfectly matched to its electrical load (see Sec. 4.1).
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This reflected signal is morc properly called the regenerated signal, since it arises from
reradiation by the voltage induced across the receiving transducer by the incident SAW
wave. There is in addition a mechanical-electric (MEL) reflected signal caused by the
acoustic impedance discontinuities introduced by the metal strips on the surface. This effect
is not present in split finger structure of Fig. (1.1), since there are 4 electrodes/wavelength,
and thus at the synchronous frequency for transduction, it is grossly detuned from the
Bragg reflection condition. It is important to note that the energy reflected from the
output transducer propagates back to the input transducer, reflects once again and travels
to the output to be picked up. This signal, called the triple transit signal (TTS) due to
its three transits of the region between the two transducers, is only 12 dB down from
the main signal if both transducers are perfectly matched (see Sec. 4.1). The TTS is
an undesirable distortion which would appear as ghosts on tcievision broadcasis, cause
intersymbol interference in digital data transmission over an analog medium, and would
always distort the frequency response of filters by a ripple which would appear in the
magnitude and phase responses.

The TTS signal of a standard bi-directional IDT can be greatly reduced by shorting
out the regenerated field to a certain degree with a resistance which is less than the
value required for a perfect match. It is generally accepted [C. S. Hartmann, personal
communication] that at least 40 dB triple transit suppression is required in order for a
filter to be useful. Attainment of this specification with a bi-directional IDT (BIDT) by
mismatching, would require a 15 dB insertion loss. This is the magnitude of the insertion

loss problem of BIDT'’s, not the 6 dB bi-directionality loss.
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The obvious solution to the insertion loss and triple transit problems of the BIDT is
the development of a unidirectional transducer (UDT). If a UDT were perfectly matched,
all the energy would couple from the electrical port to the front acoustic port of the
transmitting transducer, and by reciprocity would all be converted back to electrical energy
at the receiving transducer. Thus there would be no loss and no triple transit. This was
recognized almost immediately after the first demonstration of the BIDT in 1965 [*10],
Between 1967 and the present, many papers were presented which proposed various types

of UDTs.

1.1 Overview of Part |

There are two basic procedures for obtaining unidirectionality using structures similar
to that of the interdigital transducer (IDT). Tﬁe first is to use three or more electrical
phases to drive the sources with phasing corresponding to that of a traveling wave. The
result is constructive interference in the forward direction and destructive interference in
the reverse direction. The second technique involves reflecting the backwards traveling
wave into a forward directed one. Hartmann's (*l SPUDT is based on this second
approach and benefits from not needing the complicated phase shift networks of the first
type of unidirectional transducer, nor is a complicated fabrication procedure required.
The SPUDT integrates the reflection and transduction functions in the same space for
maximum bandwidth. In addition, these two functions can be weighted independently for
flexibility as to spectral response. The SPUDT and other unidirectional transducers are

reviewed in more detail in chapter 2.
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The focus of Chapter 3 is on modeling IDT's, both the standard bidirectional variety
(BIDT), and the new SPUDT. Hartmann'’s impulse transduction model (411 is extended to
include both transduction and reflection. The coupling-of-modes (COM) l#+!1l continuum
approximation to IDT’s, which includes both transduction and reflection is presented. It is
shown that the COM model closely approximates the impulse transduction and reflection
model in the limit of low reflection. The COM model is extended to include both
propagation loss and resistive finger loss. Chapter 4 discusses a simple design algorithm (115]
based on the low reflectivity limit of the COM equations. Several designs are performed,
and the designed responses based on the low reflectivity approximation are compared with
those predicted by the full COM equations. These examples show that if the reflectors
and the transducers are continuously adjustable, quite good filters of moderate loss can be
designed. Chapter 5 concludes Part I of the thesis with an experimental verification of the
SPUDT. The triple transit signal is found to fall as the transducers are matched, unlike a
standard BIDT. The experimental results are compared with theoretical calculations based

on the COM equations.

1.2 Motivation for Phase-Weighting and Summary of Previous Work

In the second part of this thesis we investigate how these transduction and reflection
functions can be implemented using easily fabricated constant strength clements. The
focus of Part II is on the transduction function, but in the low reflectivity limit of the

coupling-of-modes equations, it equally well applies to the synthesis nf reflection responses.
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INPUT TRANSDUCER APODIZED SURFACE WAVE TRANSDUCER

“DUMMY*
ELECTRODE

INCIDENT &
BEAMWIDTH

TAP Ilnll

Figure 1.2 A Filter Employing One Apodized and One Uniform Transucer
Note: The "dummy” electrodes help to muiatain a uniform velocity across the aperture, (Afier 132))

In order to achieve a desired transductio. or reflection frequency response, the
corresponding spatial responses must be weighted. e standard weiglting technique
for transduction is apodization (Fig. 1.2). The r_ceiving gaps <o not extend cver the full
a'perture of the transducer. They just contribute an increment of current o the bus bar
proportional to the fraction of the full aperture intercepted by the gap.

Filters desigred with this weighting technique, using standard design procedures such
as the Parks-M:Clellan 8580 qalaorithm, require large variation in weights in order
obtain high performance frequency responses (low passband ripple, high rejection outside
the passhand, sharp cut-off). Thus apodized filters with a reasonable maximum aperture
have many small gaps, and their frequency responses are degraded by diffraction #¥ and

transverse electrostatic fringing ficlds (197,

[deally we would like to be able to coatrol both the amplitude and position of sources

while mainwaining a uniform aperture. Width weighting 77/ is one such methoa. The
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weighting is done by continuously varying the metalization ratio. The major problem
with this technique is that the dynamic range is quite limited; for split finger transducers,
only a 1.8:1 weighting range is available for metalization ratios ranging from .1 to .9 (see
Eq. (3.69)). An additional problem with this procedure is that on strongly piezoelectric
substrates, the velocity becomes a function of the weighting, since the larger the local
metalization ratio the slower the wave. Since the piezoelectric slowing of a wave is an
effect which extends over many wavelengths (see Sec. 3.9), it is not valid to simply assign
one velocity to the metalized region and one to the gaps. Therefore, compensation is

difficult.

Another technique for continuous control of transduction is capacitive tap weighting (90:65,5]
In this technique, a capacitive voltage divider is used to continuously adjust the voltage
driving the fingers exciting the acoustic wave (see Fig. 1.3). These techniques suffer
ifom some of the same practical difficulties as apodization since it is the variable over-

lap of fingers which control the variable capacitors in the practical implementation

Typical Capacitively ‘Neighted Finger Pair

Figure 1.3 A Capucitively Weighted Electrode Pair

AB: Metalization deposited directly on the substrate covered hy a diclectric layer. The voltage difference
between these electrodes is what drives the acoustic waves. J,2: FElectrodes connected to the bus hars
which are capacitivciy coupled to the lower level of metalized electrodes A,B. {After [65])



of the technique. Thus, there is difficulty in con.. lling the small tap weights necessary for
low sidelobe sharp cutoff filters due to fringing electrostatic fields. Another major problem
is the increase of the input capacitance of these filters with a lot of low tap weights relative
to the input conductance. This reduces the bandwidth over which a match can be achieved
with a simple cne element matching network !/ . Nevertheless, this device merits further
study, especially the implementation due to Malocha and Hunsinger 18 which does not
require any more substrate area than a standard 1DT, but which does require a three-level

fabrication process.

There are also problems with building structures with a continuously variable reflection
coefficient as would be desirable for a SPUDT. The obvious technique would be to depth
weight grooves (1901 as has been done for reflective array compressors (RAC's), or to
continuously control the thickness of a deposited overlay. The main problem with this is
that the fabrication process is not amenable to mass production *. Each device on a wafer
would have to be moved under an ion beam in the case of grooves or maybe a laser beam
in the case of dielectric overlays at varying velocities to control the amount of material

which is removed. Thus all devices on a wafer could not be fabricated simultancously.

It is also possible to continuously adjust the width of reflectors to control the reflection
weights. This would unfortunately cause the velocity of the wave to depend on the
reflection function, necessitating detailed compensations to be done. Also, as with width
weighted transduction, the dynamic range available is rather low. Furthermore, sccond

order effects, O((h/)?), which depend on the shape ("2 of the reflecting perturbation,

*Recall that one of the goals of this rescarch is to develop a filtering block which can replace L-C lumped clement filters in most
applications. Thus the SPULYT must be casy to fabricate.
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would necessitate the maintenance of very tight process ccntrols in fabricating these devices

if the compensations are to work well *.

Based on the above discussion. it is evident that there is a need for a weighting
technique which leads to a uniform transverse beam profile, but which does not suffer
from the dynamic range restrictions or fabrication complexities of the previous methods.
A technique of this kind is one which uses elemental transducers or reflectors of uniform

strength, and which obtains weighting only by varying the spacing between these elements.

One possible procedure for doing this is based on the stationary phase approximation
for Fourier integrals and was studied by Fowle 1! | In this approximation, an acoustic wave
is radiated oniy at frequencies which are synchronous with some part of the transduction
array. Thus a sharp brick wall bandpass filter would he constructed by linearly chirping
the array's instantaneous frequency across the plassband. This approximation is best in
the limit of large time-bandwidth product waveforms, which corresponds to a slow chirp
rate. Unfortunately, high performance filters designed via this procedure are very long,
orders of magnitude longer than those which are apodized via the Parks-McClellan [85,80)
algorithm (See Table 6.8 of Sec. 6.6.4). Since one of our goals is to conserve substrate

area in order to minimize cost, these designs are not suitable.

Another approach to this problem is to approximate an amplitude weighted design
by varying the density of constant amplitude samples. This idea was first applied to the
synthesis of radio telescope gain patterns 193, Hartmann 2! independently developed a
similar procedure for SAW devices which he calls withdrawal weighting. The fundamental
difference is related to the fact that the antennas were broadside arrays, meahing that all the
mxﬂy very precisely is critical to the successful construction of low sidelobe filters. Slobodnik 1**) presents an

cxample in which velocity perturbations as low as .5% , for which no compensation was performed, increased the sidclobe level from
-35 dB 10 -20 dB, in addition to distorting the passband shape.
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elements will add coherently to the gain peak if they have the same sign. Stronger sources
can simply be produced by placing them close to one another®*. A SAW device more
closely approximates an endfire array in which sources separated by half a wavelength
must be flipped in sign in order to add coherently. The added complication is that
if the elements are more closely spaced, to obtain a stronger equivalent source, it will
be synchronous at a higher frequency. In withdrawal weighting, a prototype sequence
of amplitude modulated samples is approximated by a sequence of constant amplitude
samples and some zero weight ones. The technique is based on the fact that in a narrow
band sense, source weights can be moved by half a wavelength and flipped in sign, without
affecting the frequency respcnse very much.

Yamaguchi et. al. [118:117:118] investigated withdrawal weighting using integer optimiza-
tion and dynamic programming. In all three of their approaches, they required the spatial
distribution of the elements to be symmetric so that the array factor would be real. They
also required that all possible points for the sources lie on a grid with half-wavelength
spacing. Their Starting point was a uniform array. This fixed the bandwidth and also
the shape factor. They then symmetrically withdrew pairs of sources from this uniform
section, and added them outside this region in such a way so as to minimize the sidelobes.
Therefore they are not able to design sharp cut-off filters, or filters with arbitrary passband
shape. Furthermore, the computation time for their optimal and suboptimal techniques,
which are both based on integer programming, grows exponentially with the number of
source samples, N . Thus they are limited to rather simple low-performance filters. Their
simplest algorithm, which is based on dynamic programming, is much more efficient, the

computation time required is only O(N3).

*This really can net be done since the element size restricts how closely they can be spaced
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In the antenna field, the work of Hodjat and Hovanessian ¥ and Redlich 871 is
representative of what has been done. In both cases, optimized broadside arrays were
designed by continuously varying the spacing between the elements and dynamically
linearizing the equations about their most recent solution. Thus, quite good initial guesses
are required to insure that the perturba'ion in source location on any one iteration is
small. Their technique is best applieC when the sin(z)/z shape of a uniform array is
just about correct, and all that is desired is to reduce the large inner sidelobes while
maintaining roughly the same main lobe shape. In order o obtain linear equations, they
were restricted to using conjugate symmetric source distributions, making the array factor
real, and thereby avoiding having to take the magnitude of a complex function (see Sec.
6.1*). Since the parameters were the locations of the sources, and since linear equations
had tc be solvcd on each iteration of the algorithm, computation time is also O(~?), and

only small arrays can be handled.

1.3 Overview of Part |l

Recently, a technique involving quasi-Newton optimization, an improved withdrawal
weighting algorithm with multiple envelopes, and a broader bandwidth structure when
withdrawal weighted, was reported by Garber and Haus 3!/, This algorithm is described
in detail in Chapter 6. It allows the design of high performance filters with hundreds of
sources. This is done by breaking the relationship between the number of parameters,
M, and the number of sources, N, and reducing computation time to only O(M?).

‘Furthermore, the source distribution is no longer restricted to be conjugate symmetric, and

*If the S; of Eq. (6.5) are conjugate symmetric, the magnitude square is not necessary since the array factor is real except for a linear
phase temm.
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frequency responses of arbitrary shape can be synthesized. Most of the design is based on
a simple impulse model !) , but extensions to handle second erder effects are discussed.

This extension is demonstrated by compensating for the element factor.
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CHAPTER 2

SURVEY OF UNIDIRECTIONAL TRANSDUCERS

2.1 The Previous State of Art

There are two basic techniques which can be used to convert a bidirectional IDT into

a unidirectional one:

1) The transduction elements can be spaced and phased relative to one another such
that the waves emitted constructively interfere in the forward direction and destructively
interfere in the reverse direction.

2) A reflector can be placed behind the transduction element so that the reflected wave
adds coherently to the wave coming out the front port.

Engan 123 and Collins et. al. 3! both proposed designs based on the first method. In
such a design an offset of %o/4 is placed hetween two N wavelength transducers, so that
there is (N + 1/4)\, between the centers of the transducers. The transducers are driven
90° out of phase with respect to one another to obtain unidirectionality (Fig. 2.1).

Thus if E(B) is the frequency response of each half of the structure of Fig. 2.1, the
response in the forward and backward directions respectively, Hy and H, , referenced to

the midpoint of the transducer are:

Hip) = 2eilp=+il cosW(%(N " III) - %)E(ﬂ) (2.1a)

)z (2.18)

o |

. —  geilbr=T ogn BN+ 1
H.(p) = 2 cosw(po(N+ 4)+

Directionality Factor = cos w(%(l\/ + %) - %) (2.1c)
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90°Phase
YT 5 Shifter
0 X,=0 | -90°
C> Reverse Forward
Direction Direction
_ A

Figure 2.1 Engan’s Proposed Design for a Unidirectional Transducer
The 90° phase shifter causes constructive interference to occur in the forward direction while destructive

interference occurs in the backward direction. (Modificd from [119])
where
A 27
ﬂo - ko

We note that the 3 dB fractional bandwidth of the directionality factor is 1/(2V +1/2) .

The large spacing between the quadrature driven transducers restricts the bandwidth over

which the unidirectionality and triple transit suppression are effective. Recognizing that

the 3 dB fractional bandwidth of an unweighted IDT ~ wavelengths long is 1/N, we

note that the unidirectionality and triple transit suppression don't even cover the 3 dB

points of the main lobe. Performance is even worse than it first seems, since triple transit

suppression is necessary throughout both the full passband and the transition region of the

frequency response. Furthermore, in a weighted IDT with sharp cutoff in the transition

region, the total filter length is significantly greater than 1/Af34p , thus exacerbating an
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already difficult problem. It is clear that the centers of transduction of the quadrature
phased elements must be brought significantly closer to one another than the length of a
full transducer.

Smith 1011 proposed a unidi;ectional transducer based on placing a reflector an
appropriate distance behind a transducer. “Smith’s reflector was another IDT tuned for
maximum reflection. For a transducer of frequency response, E(g), with a perfect reflector
of reflection coefficient —1 placed (N + 1/4) wavelengths behind it, the wave emitted

from the front port is:

HyB) = 2je~ P=+(N+3Pe)gin (m%(N + %))E(ﬂ) (2.2)

where

Bo = 27"/)‘0

The 3 dB bandwidth of the directionality factor, 1/(4N + 1), is about half what was
obtained in the previous case. This is due to the longer path length of the backward
traveling wave which is reflected. Thus, it is even more important in this case to ensure
that the reflector is located very close to the transducer. Presently there is no known
way of producing a strong lumped reflector, thus periodic reflective gratings are used in
which the reflection per wavelength is very small. If « is the reflection coefficient per
unit length of such a grating , then 1/« is roughly the center of reflection for a strongly
reflecting grating. Thus, the center of reflection is of necessity many wavelengths behind
the transducer, and the bandwidth over which such a transducer will be unidirectional and

‘therefore suppress triple transit is limited.
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Figure 2.2 The Meandering Ground Unidirectiomal Transducer
(After [108])

Waldron (198 improved on Engan’s 123 and Collins’ (3! designs by interlacing the
two quadrature phase shifted IDT's so that the distance between the two transducers is
only X,/4 (see Fig. 2.2). This tremendously increases the bandwidth over which the
unidirectionality and triple transit suppression are effective. The main problem with
Waldron’s structure is the high resistance of the long meandering ground line which
threads through the quadrature phase shifted taps. This is a source of added insertion
loss.

Yamanouchi's [!'% group-type unidirectional transducer (see Fig. 2.3) solves this prob-
lem by increasing the number of fingers between each crisscross of the meandering ground,
thereby reducing its length and thus its series resistance. This has the effect of reducing
the bandwidth over which the unidirectionality is effective, since the distance between
the centers of the quadrature phase shifted clemental transducers (called groups) has in-

creased. A continuous tradcoff is available between insertion loss and the unidircctionality
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Figure 2.3 The Group-Type Unidirectional Transducer

Note that the interdigitated fingers are X\o/4 wide, while the narrow vertical grounded lines are Xo/2,
and the widest ones are X, . (After [119))

bandwidth by controlling the number of fingers in each group. Another advantage of this
design is that the minimum line width required is only X,/4, making it suitable for high
frequency designs. A disadvantage of this type of transducer is the need to synthesize,
build and adjust a broadband 90° phase shift network. Ideally, a SAW filter should be
able to be plugged into a system just like an integrated circuit.

Hartmann ®8) proposed a unidirectional structure with three sources per wavelength
phased as in a traveling wave at 0>, 120° and 240° (Fig. 2.4). This structure has
the wide bandwidth of Waldron's 1198 design but climinates the insertion loss caused by
the meandering ground of Waldron's and Yamanouchi's ['*?) designs. In order that this
device work well, the three phases must not be capacitively coupled; thus air insulated

crossovers are required for one of the phases. These have proven to be very difficult to
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Figure 2.4 The Three Phase Unidirectional Transducer
(After [90])

fabricate economically. In addition, a complicated broadband phase shift network must
be constructed and adjusted for proper operation of the transducer.

Additional representative work on this topic is a thin film ZnO (Fig. 2.5) implementation
of Waldron’s (1981 design in which the lossy meandering ground is replaced by a solid
ground plane either above or below the zinc oxide layer 192961 | These thin film designs
suffer from the necessity of building and adjusting broadband 90° phase shift networks
as does the group-type design.

Marshall et. al. (68 invented a unidirectional transducer which is based on multistrip
couplers (MSC) of half the length required for full transfer, Lr/2. Ifone track of a MSC
of length Lp/2 is excited, signals of equal amplitude arc present at the output, but are
90° out of phase. Using time reversal, it is clear that a MSC can also combine two signals

in phase quadrature to produce an output 1n only one track. A unidircctional transducer
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Figure 2.5 Thin-Film ZnO Unidirectional Trans;ducer

Note ! = Xo/4 and 0 = 9(° for unidirectionality. (After [96])

is constructed by curving a MSC around a bidirectional transducer and displacing the
transducer by X,/8 from the center of the curved MSC (Fig. 2.6).

This enables a single transducer to excite both tracks of a MSC with equal amplitude
signals in phase quadrature. This UDT is the only one which can not be easily categorized
as a type [ or type II design. It contains elements of both. The main problem with this
approach is the large substrate area (area costs money) required by the MSC, even on
strongly piezoelectric materials such as lithium niobate. On weak piezoelectrics, such as
quartz, this design would be totally impractical. The key advantage of Marshal’s design is

its wide unidirectional bandwidth.
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Figure 2.6 Multistrip Coupler based UDT

A diagrammatic representation of the evolution of a mirror and a unidirectional transducer from a multistrip
coupler (MSC) of haif the length required for full transfer. a) A MSC b) Tracks A and B .
are switched around to form a mirror if excited from the left, or a unidirectional transducer if excited from
the right in phase quadrature. ¢) Physical implementation of the track switching to form a mirror.
d) Physical implementation of the quadrature drive to form a unidirectional transducer. Note that the
transducer is displaced by X\o/8 toward the left to achieve the quadrature drive. (After [68])
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2.2 The Single-Phase Unidirectional Transducer (SPUDT)

Hanma and Hunsinger 37! and Hartmann 4! proposed type II designs in which the
reflector is constructed in the same region of space as the transducer. This will have
the effect of increasing the bandwidm over which the unidirectionality and triple transit
suppression are effective. In the Hartmann implementation (Fig. 2.7), extra metal or
dielectric is deposited on every other finger of a split finger IDT, while in the Hanma

approach every other finger is made wider (Fig. 2.8).

" The unidirectionality is a distributed effect which can be understood only by looking
at a large section of the device at once; any small segment is unidirectional only to a
small degree. In order to understand this effect it is easiest to apply superposition to the

transduction function and therefore to focus on only one source in an array of reflectors.

/ ADDITIONAL METALIZATICN
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Figure 2.7 Hartmann Implementation of the SPUDT
Af = No is the wavelength at center frequency. Note that every other finger is thicker for additional
reflection. (After [44])
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Figure 2.8 Hanma’s Unidirectional Transducer
Note that every other finger is wider for additional reflection. (Side view) (After [37])

In the Hartmann implementation, called the SPUDT, the grating consists of ordinary
fingers of thickness ~ and fingers with additional metalization deposited of total thickness
H . Fingers can be decomposed into the superposition of a grating of periodicity X,/4
of fingers of thickness h, which also short the clectric field, and a grating of periodicity
%\,/2 of fingers of thickness # — h. To first order in the height of the perturbation, the
mechanical reflection coefficient at a multiple of the Bragg frequency is proportional to
the corresponding Fourier expansion coefficient of the grating '**!, The compcnent of
periodicity X,/4 caused both by mechanical effects and piezoelectric shorting is <o grossly
detuned that it can be ignored near the center frequency.

The reflection coefficient from an arbitrary symmetrical lossless perturbation is shown
to be pure imaginary in Sec. 3.4. The sign of the reflection from a strip depends on the
relative mechanical properties of the overlay and the substrate (3.1 | For gold strips on
ST-X quartz it was found experimentally (see chapter 5) to be +jt where t is positive, if
referenced to the electric potential. The electric potential is anti-symmetric at a gap center
between fingers attached to bus bars of opposite polarity. This implies that the forward
traveling wave referenced to its potential will be opposite in sign to the backward traveling
wave, Using this information, we can find the forward and backward propagating waves

of the structure of Fig. 2.7 arising from only one source. Taking into account only first
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order reflections and ignoring the non-unity transmission of the reflectors, we obtain:

forward

traveling o e“""’[l - jt(e“zﬂ’%*o P TE 3 0

wave (2.3a)
+ =28l | )]

backward

traveling «a e"”’[—l + jt(e"""/9x12 e~ BR ] 4L

wave (2.3b)

L+ e-2islniee] )]

If N reflectors are assumed to be involved, then at synchronism Egs. (2.3a, 2.3b) reduce
to

forward .
traveling o e 7P7[+1+ N¢| (2.4a)

wave

backward 5
traveling o etP*[—1+ N (2.4b)

wave
This makes sense, of course, only if Nt << 1.

Thus at synchronism, all the reflections in the forward direction add coherently to
the directly excited forward going wave, while the backward scattered waves destructively
interfere with the direct backward going wave. In the above equations, it has been
assumed that making every other electrode thicker, does not modify the electrical boundary
conditions affecting transduction. The extra metal is assumed to only affect reflection.
This should be an excellent assumption, since even the thick metal fingers are very thin
compared to the electrode spacing.

The unidirectionality in the Hanma-Hunsinger 7} technique (Fig. 2.8) works in much
the same way. The key difference is that the electrical boundary condition is affected by

altering the width of the split fingers. If we ignore this effect, and assume that the center
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of transduction still lies at the center of the gap between fingers of opposite polarity, then

for one excited gap

[ e—I2P%Ne 4 o=128(3ENot+2R)
_.jt

forward Foon e i2BCGBARR) L
traveling a e77%* (2.5a)

wave e—I28%ENe 4 e=12B(5 Mot 2P)
—jat
T8 o b 283N atndp) o ...
e-J'Zp]i‘g'xo + e—jzp(‘lf‘aixo‘*'lzg) W
-1 jat .
backward B RS C WL S B

traveling « ¢** . (2.50)
wave [ e"jzﬂ!ﬁq)‘ﬂ + e—j2p(!1'és'xo+'§g)
+7t

done e I280GENANTR) L,

b e

where jt is the reflection coefficient of a wide finger, and jat is the reflection coefficient

of a narrow one. At synchronism, accounting for N wide and N~ narrow reflectors,

forward .
traveling a e 7P%[1 — Nt(1 —a)e™ /8] (2.6a)

wave

backward . ‘
traveling @ €#*[=1— Nt(1 - a)e’™/®] (2.6b)

wave
Thus we see that the finger placement is not quite correct for best unidirectionality, the
phase is off by /8 from full constructive interference. Nevertheless, there is substantial
constructive interference in the forward direction and destructive interference in the reverse.
In order to obtain the correct finger positions and widths, the full electrostatic problem

should be solved (See Sec. 3.9.1).
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If the asymmetry of the electrical drive is properly accounted for, the Hanma-Hunsinger
technique should work extremely well. It has the advantage over the Hartmann (44]
technique of requiring only one level of metalization. However, the design of a weighted
filter to meet a tight frequency specification using their structure would be much more

difficult, since the transduction and reflection functions are not independently controllable.

2.3 Summary

In summarizing the present status of low-loss unidirectional SAW filters, it should
be remembered that the techniques are based on two* different ways of modifying the
bidirectional interdigital transducer. Method I involves spacing either transduction elements
or whole transducers by an appropriate distance, and phasing them in such a way that
the waves constructively interfere in the forward direction, and cancel in the backward
one. In Method II, reflectors are placed behind these elemental sources, at such a distance
so that construcﬁve interference occurs in the forward direction. In both cases, in order
that broadband unidirectionality and triple-transit suppression be exhibited, tne spacial
separation between the phased sources, or the sources and reflectors must be small. The
techniques based on Method I suffer from the need to build and adjust a broadband phase
shift network which is incompatible with the goal of building a simple RF filtering block
which can simply be plugged into systems like integrated circuits,

The best candidates for such a low-loss RF filter, are the single-phase unidirectional
transducer (SPUDT) invented by Hartmann (! and the Hanma-Hunsinger 37} device.
Neither requires a sophisticated fabrication technique, as does thc 3-phase UDT (38}

and neither requires any external elements other than a parallel inductor to resonate the

*[xcept for the multistrip coupler design 18] which is somewhat different.



3

capacitance, which is also requircd of standard bi-directional IDT's to reduce the mismatch
loss. The SPUDT is easier to design since the transduction and reflection functions are
performed by different parts of the structure. Therefore, the SPUDT will be the focus for

our design and analysis techniques in this research.
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CHAPTER 3

MODELING TRANSDUCERS WITH INTERNAL REFLECTION

3.1 Introduction

Before a single-phase unidirectional transducer (SPUDT) can be designed, it must be
modeled. The accuracy to which it must be modeled is determined by error tolerances
acceptable to people who use SAW devices. Typical specifications for standard high
loss SAW devices would include peak-to-peak .6 dB passband ripple and peak-to-peak 3°
phase deviation from linear, with -40 dB sidelobes !l . This shows that the analysis of SAW
devices must be quite good, especially since we are trying to improve upon the passband
amplitude and phase ripple by eliminating the triple transit signal. Unfortunately, accurate
models are ordinarily complicated, and therefore make design difficult. It is reasonable
to use simple models in first cut designs, and then to use a more complicated analysis
algorithm to check to see whether the response meets the specifications sufficiently well.
If it doesn’t, the more accurate analysis can be used to adjust parameters of the simplified

analysis procedure, or the more exact analysis technique can be used in a more sophisticated

design algorithm,



3.2 Impulse Model—Transduction

The simplest models [195:41] | associate the source of the surface acoustic waves with
the gaps between electrodes of opposite polarity and ignore internal reflection, diffraction,
bulk wave excitation and loss. Ignoring diffraction is reasonable if the square of the
acoustic aperture is large enough compared to the product of the wavelength and the
propagation path length, to be in the Fresnel zone. The aperture size needed also depends
on the degree of self focusing or defocusing of the anisotropic substrate 58:82:104] | Bulk
wave excitation mainly degrades the sidelobe rejection level, and is not important to the
basic operation of a SAW filter. Typically metal fingers would be made thick enough and
path lengths short enough so that loss would not have a significant effect on the filter’s
characteristics. Reflection is the main effect being ignored in the impulse model. There
are two soufces of reflection. The first arises from the acoustic impedance discontinuities
introduced by the metal fingers. It can be eliminated by using split finger transducers
(Fig. 1.1); since at the fundamental frequency of the transducer response, the period
of the grating produced by these split fingers is only half that required for constructive
interference (the Bragg condition). Alternatively, the metal thickness and metalization ratio
can be selected to cancel the reflection of mechanical origin with the one of piezoelectric
origin 181, The second source of reflection is acoustic regeneration. The acoustic wave
is received by the -gaps under which it propagates and induces a voltage across the bus
bars. This voltage re-excites acoustic waves in both the forward and backward directions.
This effect is minimized by matching the transducer with a conductance much higher than

the input conductance, which tends to short out the induced voltage.

Under these conditions, it is reasonable to assign bi-directional acoustic plane wave

sources to the gaps between fingers attached to opposite bus bars, and to assume that the
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Figure 3.1 Relationship Between the Physical Structure and the Impulse Response
Note that the amplitude grows toward the high frequency end of the impulse response for a constant overlap,

nonuniformly spaced transducer. (After [41])

waves propagate to the ends of the transducer, unaffected by the fingers under which they
propagate. These source functions can be regarded to be impulses located at the electrode
edges, impulses located at the gap centers, or half cycles of sine waves (Fig. 3.1). The
size of the impulses is proportional to the electromechanical coupling constant, the square
root of the aperture (since power is proportional to the aperture), and f!/%, where f,
is the local synchronous frequency of the transducer (see Sec. 3.9.1 and Eq. 3.69). In
the case of the sine-wave source function, the amplitude must be weighted by s3/%, the
extra factor of f, being necessary to keep the area under a half cycle of a sine-wave
equal to the area under an impulse. As long as the area under each representation of the
source function is the same, the calculated response for a narrow band filter around its
fundamental harmonic will be quite similar. Differences between the models are obvious

only in very broad band devices, or at higher harmonics*

*If the correct field distribution is uscd instead of one of these simplifying approximations, broad band modcling of the devices is
possible. This is discussed in Sec. 3.9.1
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If both transducers are uniform in the direction transverse to that of wave propagation,
the impulse response of each transducer is simply this source function, with the impulse
response of the entire filter being the ¢ .voiution of the impulse responses of the
transmitting and receiving transducers. The frequency response is simply the Fourier
transform of this ccmbined impulse response, or equivalently the product of the Fourier
transforms of the individual transducers’ impulse responses. If the locations of the gaps
and their amplitudes for the transmitting transducer are a, and z,, with the similarly
defined quantities for the receiving transducer being ¢, and y, , this transfer function is

proportional* to:

N M
Z Z a,.cmejﬁ(’““vm)

n=1m=1

= Hi(f)Ha(/) (3.1)

N M M
= {Z ane’Pen Zcme“"p""‘]

n=1l m==1

H(f)

where

I |
ﬂ - 27!';

The response from the reverse ports of these transducers is simply the Fourier transform
of the time-reversed version of these individual transducers’ impulse responses.

In order to calculate the response of a transducer with non-zero source and load
impedances, the input admittance, Y, of the IDT must be computed. Hartmann (41]

applied power conservation to each transducer individually obtaining

Re[Y] = G = |Sarul® +|Sa1o/? (3.2)

*Sce Scc. (3.9.1) and Eqgs. (3.76-3.85) for a complete discussion and the proportionality constant.
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where S,,, and Ss;, are the voltage to acoustic wave amplitude transfer functions in the
forward and backward directions respectively. The imaginary part of Y consists of two
parts, the static capacitance, jwC , and the radiation susceptance, jB. The capacitance
is found by solving Laplace’s equation for electrodes on a dielectric substrate, and jB is

determined from causality considerations via the Hilbert transform (3841 :

G + jwC + jB (3.3a)
had !
= _1. g(i)_ dw' (3.3b)

M) —o —w

3.3 Weighting and SPUDT’s

Until now, it has been assumed that the transducers are uniform in the transverse
direction. A very popular form of weighting used to control the frequency response
involves adjusting the overlap of adjacent electrodes (Fig. 3.2). In order to analyze
transducers of this type, they must be broken up into horizontal strips which are narrow
enough so that the overlaps are uniform in each strip. If diffraction and the electrical
coupling between the strips caused by the metal fingers connecting them can be ignored,
the power radiated within a strip will not leave it. Since the strips are connected electrically
i1, parallel, the input admittances can be computed by summing the radiated power from
each strip. Similarly, the transfer function for the full device can be found by summing
the transfer functions of the individual strips. B(w) and the capacitance are calculated as
h

before. An alternative expression can be based on the fractional overlap between the »*

and mt* gaps of the input and output transducers respectively, dnm . The signal picked
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Figure 3.2 Two Apodized Transducers
The transducers shown are divided into horizontal strips in which the overlap is approximately constant. The

transfer function is computed by summing the transfer functions for all the strips. Similarly the admittance
is calculated by summing the admittance from each strip. (After [105])

up by the receiving gap due to a transmitting gap will be proportional to the product of

this overlap and the strengths of the individual gaps:

received-signal-strength a damancm (3.4)

since the acoustic field can only be integrated over the spatial overlap of the two gaps.

Thus the transfer function is proportional to

N M
Hf) = Y Y dumancmed?Eemim) (3.5)

n=1m=1

It is important to nowe that in this case, when both transducers are overlap weighted,

the frequency response can not be factored due to the dependence of dnm on both indices.
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Therefore an impulse response can not be assigned to each transducer. This tremendously
complicates the design of filters. If however only one transducer is apodized, d,.. equals
the fractional overlap of the weighted transducer, and H(f) once again is factorable. In
this case, an effective impulse response can be defined for the overlap weighted transducer
which yields the correct voltage to acoustic wave transfer function. The input admittance

must still be calculated by splitting the transducer into strips.

The simple model presented above only describes the transduction process; it ignores
all reflection effects which are crucial to the operation of a single phase unidirectional
transducer (SPUDT). Before we include transversely nonuniform reflection in the model,

it is worthwhile investigating the appropriateness of overlap weighting for a SPUDT.

The situation in which both transducers are overlap weighted would appear to be
desirable since it gives greatest flexibility in the design. The more independent parameters
that are available to control a response, the more accurately that response can approximate
some desired response. Unfortunately, even in the absence of reflection, no good design
algorithm has been found for this case due to the fact that the transfer function doesn’t
factor into responses of the individual transducers. Typically, only one transducer is overlap
weighted, or a multistrip coupler 88:67:53] is used to convert a spatially nonuniform beam
into a uniform beam at the average transverse wave amplitude. This makes the transfer
function factorable. Both methods cause added insertion loss since the power radiated into
the zero-average amplitude mode is not picked up by the receiving transducer. Since a
major goal of this research is the development of low-loss filters, overlap weighting is not

suitable.

If achieving the minimum insertion loss were not a problem, diffraction effects would

make overlap weighting unattractive. In order to obtain sharp filter responses, the required
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tap weightg would include many lobes of a tapered sin(z/z). The combination of low
overlaps and a long filter would result in a severe diffraction problem. This problem
would be exacerbated in a SPUDT since the effective propagation path lengths would be
increased by the internal reflections. For all these reasons, we will attempt to design a
SPUDT without using overlap weighting. Thus in the remaining analysis procedures we
will assume the transducers to be uniform in the transverse direction. An appropriate
weighting technique satisfying this restriction, and an associated design algorithm is the

focus of Chapter 6.

3.4 Scattering Parameter Analysis

In order to aid us in developing a consistent simple model which describes a SAW
filter, let us first study 3-ports in general. Each IDT of a SAW filter has 3 ports, an
electrical port, a front acoustic port and a rear acoustic port. A complete SAW filter
can then be analvzed by connecting the front acoustic ports of each transducer with a

transmission line.

In Fig. 3.3 two representations of a SAW [DT are presented. In both cases the acoustic
waves are represented by complex .amplitudes normalized so that their magnitudes’ squared
is power. In Fig. 3.3a the electrical port variables are complex wave amplitudes, while
in Fig. 3.3b they are voltage and current. A voltage and current parameterization of the
electrical port is more convenient for analysis and synthesis, since electromagnetically a

SAW filter can be treated quasistaticaily.
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Figure 3.3 Three Port Representations of One SAW Transducer.
(a) Scattering matrix representation S (b) Mixed V-I Scattering matrix representation Sy
V = (a1+bh)VZ (3.8a)
ay — b1
I == 3.6b
VZ, (3.80
where .
Z, = real source or load resistance

Reciprocity forces the scattering matrix, § representing Fig. 3.3a to be symmetric.

by Sy Sa  Saj[@
l ba = So1 Soa  Sa3 ag (3.7)
Lbs S31  Se3  S3zllas

Using Eq. (3.6a, 3.6b) and reciprocity, the mixed scattering parameter matrix, S, ,

representation of the three port is

I Y -2821, 2831, [V

bp | = | St S220 So3v ag (3.8)

bs S31v Sa3v Sa3v as




Relations between these two matrices are useful in synthesis, therefore they are

tabulated below:

1 1-8y

Y = —Z'; 1+ Sll (3.90)

U | S (3.95)
VZo(1 + Su)

A | - (3.9¢)
VZo(1 + Su1)
[Sas]?

L= _ 9d

S22 S22 1750, (3.94)
_ 521831

S0 = Su—73 o (3.9¢)
_ gy - Sl

S0 = S;-—7 o (3.9f)

Power conservation imposes six additional equations for each matrix. Using power

conservation and reciprocity we obtain:

ISul? +18u* +1Sul> = 1 (3.10a)
1S211* + |S22|® +|Sus|* = 1 (3.100)
Sa1|? + |Sea® + |Sss)* = 1 (3.10¢)
531511 + 822821+ 83381 = 0 (3.10d)
S3,S11 + 823821 + 83351 = 0 (3.10€)
S31Sa1 + 833822+ 533823 = 0 (3.10/)




|S210|? +|S316> = Re[Y]
IS220|2 + |S23v|2 =

|S23u|? + [S330)2 =

32305220 + S33, 5230

Il

S210 + 82155220 + S31,5230

3310 + S;lus230 + S;lus33v =

(3.11a)
(3.11)
(3.11c)
(3.11d)

(3.11¢)

(3.11f)

Based on this scattering parameter analysis, we can now make two important conclu-

sions about the phases of reflection and transduction in the small coupling and reflection

limits. Let us apply the scattering formulation to a single reflector. We shall denote scat-

tering parameters referencing a single reflector with a superscript 1. If the perturbation

is a shallow etched groove, the transmission coefficient, S33, , is purely real since there is

no velocity shift. This is the case for the mismatched transmission line model of a surface

perturbation to first order in the impedance discontinuity. It is confirmed by the solutions

obtained by Wright (!*4], Chen and Haus '/, and Hunsinger ] , Requiring S5}, to be

real simplifies Eq. (3.11d).

3.+ 8%, = 0

Then using symmetry in addition, we obtain

Sy = Siy = T

where T' is real. Using Eq. (3.11b) we find

Sgiliu = V1- re

(3.12)

(3.13a)

(3.13b)




If the perturbation is sufficiently thick, then energy storage in the evanescent fields
around the perturbation causes a velocity shift which is second order in &, the depth of
the groove (62:112,114,18]  Alternatively, a first order velocity shift, O(h/), generally occurs
if the material forming the grating, such as dgposited films, has different mass deﬁsity
and/or elastic stiffness constants from those of the substrate ['*51, Velocity shifts also
occur in piezoelectric materials due to the shorting by metal films, of the tangential electric
field at the surface. In these cases a similar procedure shows that if the transmission phase

shift referenced to the midpoint of the perturbation is 4,
St = Si, = jre’ (3.14)

In a 50% metalization ratio grating it is not obvious what to use for the unperturbed
velocity in referencing phase shifts to particular planes. If the average velocity through
the structure at some frequency* is used, then S33, becomes real at that frequency, and
once again the reflection coefficients are pure imaginary.

Let us now model a single gap using the matrix formulation. These scattering
parameters will be denoted with superscript g1 . To the extent to which the electric fields
exciting a wave can be localized to the gap between fingers of opposite polarity, we can
treat the gap in one matrix, while the perturbation caused by the fingers exciting the gap
can be handled in scattering matrices describing the adjacent sections (see Fig. 3.4). This
is also reasonable if the perturbations caused by a finger are so small that a wave must
pass under a lot of fingers for it to be significantly affected. Thus for a gap, S%3, is
exactly unity, while s%3, and S33, are both zero. This makes perfect sense, since in the
absence of mechanical perturbations the only source of a reflected signal will be a wave

* Deposited films give rise to wave guidance and thus dispersion. Another source of dispersion is the coupling of forward o backward
waves by a grating near its Bragg frequency.
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Figure 3.4 Modeling a Single Gap
The fingers exciting the gap are handled in separate scattering matrices. Only Sgqp contains transduction

terms. Only S,7; contains reflection terms.

regenerated in the gap. Since S§;, and S%;, are defined with the gap voltage pinned at
zero, there can be no reflected wave due to the gap. Thus Eqgs. (3.11e, 3.11f) both simplify '

to

i, +5%, = 0 (3.15)

The electric potential is anti-symmetric about a gap center. This implies that Sz, and
Sa1, have opposite signs when referenced to the electric potential. Using this information

together with Eq. (3.15) we find

Sg}v = -Sg:v = (316)

where a is real.




3.5 Impulse Model—Transduction and Reflection

Let us assume that a transducer can be split into reflectionless transduction elements,
and pure reflectors as in Fig. 3.4. Let the N plane wave radiating elements be localized at
positions z; , with elemental voltage to acoustic wave transfer functions in the forward and
reverse directions ay; and «,; . Assume that the M reflectors are located at positions ,
(Fig. 3.5) with elemental forward and backward reflection coefficients r;; and r,;, and
with transmission coefficients ¢; . Note that we have allowed for an arbifrary relationship
between the forward and backward excitation and reflection coefficients, although Egs.
(3.13a, 3.16) should be sufficient for low reflectivity perturbations, and to the extent
that the electric field of the gap is unaffected by asymmetries in adjacent regions of the

transducer. For notational convenience, we define

u(z;) = index &, to the first reflector y; ,
777" to the night of the source at z;

Lz,) = index &, to the first reflector yx,
777" to the left of the source at z,

R(x)

S(x)

: I

1 Yo Y3 X Yy Yv ¥y Xof

<
[
i

Figure 3.5 Generalized Transducer with Interrial Reflections
Refiectionless transduction clements are located at positions z; ( 7' ), and transductionless reflectors (')

are located at positions y; . The obscrvation points for the forward and hackward ports are =, g and Zor .

™4




Taking into account only single reflections, and ignoring the non-unity transmission

coefficient through a reflector®, S,;, referenced to the origin is

Satv = ejﬂzolR(zol)
SUIIUSE S 3.17
= Z aﬁeJﬂz.- + Z P Lad Z r;ke’”" (3.17a)
i=1 1=1 k=1
Similarly under the same set of approximations
Salg = e_jpzor S(zor)
N N M
= Z T L E ayiel P Z PP LT (3.170)
=1 s==1 k=u(z;)

By following the path of all possible reflected rays through the structure with up to 3

reflections we obtain the following formulas:

M
; R(z.5) M -
= Iz \Tef)) ( 2 ) 2hyi
Sazv e’ S(z,,)l""o .'==E 11';; H“___‘.Htu ¢’
M ) M . k-1 '
+ E r;;e’”"" E r,ke"’””" E rﬂe’”‘" (3.170)
==l k==i+1 l==1
M
28z R(Zor) i-1 2 Bys
— —320z0r 2\ 70T) — z : . 2 )\, —12By:
3331! = e S(z‘") |o=0 ~ rfl( l'l=lt‘1)e ‘

M i—1 M
+ Z r.-.'e"'”"‘ Z rfke"”"“ Z r,;e""”V' (3.174)
=1 k=1 l=k+1
Double reflections do not appear in these sums since they contribute to the transmitted
wave. Note that in the case of reflection, we must take into account the nonunity

transmission through a reflector since terms O(r?) are contributed to the fir't sums in

* [t is legitimate to ignore the nonunity transnission through a reflector, since it is /1 —r® ~ 1 — %r2 for srall reflectors, The
r? term is of higher order than any term in Egs. (3.17a, 3.17b).




Egs. (3.17¢c, 3.17d). This effect is droppcd for the second sums in these equations since
the effect is O(r%).

It is important to note that if we keep only the first terms of Eqgs. (3.17a-3.17d), there
is a Fourier transform relationship between the source excitations and the mixed scattering
parameters. This will be used to advantage in the synthesis technique to be presented in

Sec. (4.2).
Power conservation and causality can be used to advantage in finding the other elements

of the mixed scattering matrix representation of the transducer. Equations (3.11b, 3.11c)

require
Sasu? = 1—[S2f* = 1-|Saal? (3.18)
while Eq. (3.11d) specifies the phase of Sp3, within a multiple of = .

arg(Sap) = (2n + )7 + arg(:'gz.,) + arg(S33v) (3.19)

As with the impulse model, Eq. (3.11a) specifies the input conductance in terms of the

forward and reverse voltage to acoustic wave transfer functions

G = R[] = |[Sa|®+[Sa10]? (3.20)

Causality implies that the non-capacitive portion of the input susceptance is the Hilbert

transform of G [36:41]

Bw). = = / TG g (3.21)

—.mw’ - W




Finally the input capacitance can bc evaluated by solving Laplace’s equation for -the

particular geometry of the transducer ignoring the acoustic wave generation [3%:25:811

It is important to note that although power conservation was used to find S,
and G from the other mixed scattering parameters, not all 6 equations (3.11a-3.11f)
defining power conservation are satisfied by the scattering parameters computed above.
For example, |S22.| # |Sis.| although they are required to be equal by Egs. (3.11b, 3.11c).
If it is desired that power conservation be satisfied exactly, then the magnitude of the
reflection coefficients can be adjusted to equal the geometric mean of the values computed
via Egs. (3.17¢c, 3.17d). The phases of the forward and backward reflection coefficients
can then be obtained by solving Egs. (3.11e, 3.11f) in terms of S21,, Sstv, S23v, and

|S220| = |Sa3e| . With these modifications, power conservation is satisfied exactly.

In obtaining Egs. (3.17a-3.17d) only the first two terms of an infinite series have been
used. Multiple bounces to any order and non-unify reflector transmission coefficients can
be handled by this technique, although the expressions become quite complicated very
quickly. As examples, Sa, considering reflections up to third order, and Sz, including
up to five reflections and the effect of non-unity reflector transmission coefficients ¢, are

presented below:

Sue = iaﬁ(]---[:"‘nlmu(zi)ti')eﬁmi.

1=

. L(=:) -1

A o _
Grs Lz 2 ) -528(z0-wa) (-1 2 \,~2i8(s1=ym)
' * ;; Z rfk( k‘=k+ltkl)e 1 + E Z rrlr!m(Hm|=m+ltm')e ‘
k=1 l==k+]1 m=1 '
M k-1 » . ,
D IEDBLY ‘(Hh=1+1t'2')c-2,pm-w)
L ,‘=“(30) l=1

(3.22a)
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3.6 Transmission Matrix Method

2 )e—:'zﬂ(u...-y..)]

my=n++l1 ™1
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(3.22b)

It is clear from the complexity of the iterated sums of Egs. (3.22a, 3.22b) that this is not

the way to handle transducers with large internal reflection. A better approach would be

to write mixed scattering matrices for each individual gap and reflector. These scattering

matrices could then be used to match boundary conditions at the interface between the

sections. An efficient way of doing this would be to convert the mixed scattering matrices

into transmission matrices which can be cascaded simply by multiplication (see Fig. 3.6).
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(3.23)

The zeros in the last column of the T matrix are due to the fact that only 3 complex

amplitudes can be specified for a three port; here we have chosen R,, S,, and V,.

The physical current flowing into the n** section, J, = I, - I+, is computed in terms

of these 3 quantities. The reason for defining the c¢lement in terms of I, and I, was

only for computational and notational convenience in cascading sections.
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Figure 3.6 An IDT as a Cascade of Sections
The sections are connected acoustically in series, and electrically in parallel. Note that the current feeding

section n is I — In4y .

3.7 Coupling-of-Modes Model (COM)

The coupling-of-modes (COM) formalism was first introduced by Pierce (832} and since
then has been widely used in microwaves and optics [7:631201 | [n the SAW field, COM
has been successfully applied to the analysis and sy‘nthesis of grating devices like resonators
and reflective array compressors (RAC’s) (45:46,113] |

Recently, the COM equations have been extended to include transduction 44,
The equations basically represent a continuum approximation to the impulse transduction-
reflection model previously discussed. Their advantage lies in the applicability of powerful
approximate techniques for the solution of differential equations.

We begin the derivation of the coupled mode equations with a discretized version,
then we will go to the continuum limit. We start by writing a difference equation for the

forward traveling wave amplitude with reference to Fig. 3.7.

R(n) = R(n — l)e—ijn-l + fc,,_lA,._IS(n)e"zjﬁ(A““—°"“)

+ aﬂ—lA“_lVe—jp(Aﬂ—l—bﬂ_l) (3.24)

Equation (3.24) states that there are two possible ways for the forward traveling wave

amplitude to be affected in going from position n~1 to n. The wave amplitude can
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Figure 3.7 An IDT as a Cascade of Incremental Transducers and Reflectors
Transduction and reflection in each section are lumped in an and kn respectively.
be increased by transduction in the interval (an—1An-1V ), and in addition some of the
backward traveling wave can be scattered into a forward traveling wave by a reflector
(Kn—1An—1 ).

In order to go to a continuum, we must use quantities which change very little between
positions z,_; and z, . Thus we define slowly varying amplitudes R(n) and 5(n) , from

which the propagation factors e=7#* have been removed.

R(n) = R(n)e?P (3.25a)

S(n) = 8(n)etiP= (3.25b)

The resulting equation is then

2 ; Rin—1) o §(n)eti®Pones2B(nmi=0nms) gV 3BT g=3Bhnm1=bnt) (3,26)
n—1
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We now have a quantity which is similar to a derivative on the left hand side of
Eq. (3.26), but the quantities e??4* and e’?*~ on the right hand side are not smoothly
varying quantities. When we distribute a source or a reflector across an interval An-;,
we must insure thay it remains synchronous with the traveling wave across the full length
of the region. Otherwise, when we go to the continuum limit, transduction and reflection
will both approximately cancel in each section. The following is the required modification

to maintain synchronism:

K - |n|e"'2f "da foa(s) (3.27a)

a — |a|e—jf.d‘ﬁ°‘(') (3.27b)

where .. and B.. are the local synchronous wave vectors of the reflection and
transduction functions respectively*. In the case of periodic distributions, these reduce to

the more familiar form:

Kk — |Kk|e?tnemI2Poz (3.28a)

a — |a|eftagiPoz (3.28b)
where

Bo =21/, (3.28¢)

Let us now go straight to the continuum limit. We define v, 7, R and S asin
Fig. 3.6, but we make them functions of the continuous variable, z. We normalize the
complex wave amplitudes R and S so that their magnitude squared is power. As in the
difference equation case, we define slowly varying envelope quantities, 2 and §:

*This formulation is general enough 1o handle the situation in which there is no relationship between the locations of the Lransductior,
and reflection elements.
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R(z) = R(z)e 7" (3.29a)

S(z) = 8(z)&* (3.29b)

Then the one dimensional coupled mode equations in the absence of loss are:

%g = Ky(z)e’®P25(z) + oy (z)eP*V (3.30a)
dS’ —-528z 1 Ya—1P%

T = ra(@) T R() + aofale ipzy (3.300)
% = —jwC(z)V + &i(z)e 7= R(z) + Ea(z)e’**5(z) (3.30¢)

In the above equations, x, and «, represent the continuous distributed reflection
per unit length, a;, az, & and &, are related to the transduction per unit length, and
C(z) is the electrostatic capacitance per unit length. « and « both contain the phase
terms of = (3.27) or (3.28).

Power conservation and reciprocity impose conditions on the parameters of the COM
equations which reduce the number of parameters which must be determined. Applying

power conservation:

d o] d 20 dag
Re[d—z-v I]+ = Al dz|$‘| = 0 (3.31)
we obtain
K = K  (332)
6 = =2 (3.320)
£2 = 2a (3.32¢)



We assume that R+ S is analogous to the voltage on an electromagnetic transmission
line and that R — S corresponds to the current. Then if (£*, §°, v, I¢), and ( 2,
3, ve, ) are two different solutions to the problem, reciprocity imposes the following

differential equation:

d[.bara d{a.asbd adlb de“
Applying reciprocity we obtain:
§i = -2ag (3.34a)
Eg = 201 (3.341)]

Using reciprocity and power conservation simultaneously requires

k2 (3.35)
oy (3.35)..

Ky

a)

yielding the final form for the lossless reciprocal COM equations:

dR

R aee3(6) + oy (3.360)
dS' » -52Bz I * -jBz

- = & (z)e7?*P*R(z) + a (z)e?P*V (3.36b)
dI . . —38z L 18z & ’

— = —jwC(z)V -2a (z)e”?P*R(z) + 2a(1)c?*5(z) (3.36¢)

dz-




3.8 Comparison of COM with Other Models

It is important to point out some of the similarities and differences between COM
and the other methods. It should be noted that Eq. (3.35b) resulting from the COM
technique is identical to Eq. (3.15) of the scattering matrix characterization method*. This
is reasonable since in both cases power conservation and reciprocity have been applied
to general 3 ports assuming the transduction elements to be reflectionless when short
circuited.

Similarly, Egs. (3.35a) and (3.12) are identical. This though, represents a difference
between the two methods. In order to derive Eq. (3.12), we had to assume that the
perturbation produced by the reflector yields no velocity shift, making the elemental
transmission scattering parameter S33, is purely real, or at worst that it causes a frequency
independent velocity shift. On the other hand, Eq. (3.35a) must be satisfied exactly in the
COM formulation if power conservation is to be satisfied.

Let us compute the voltage to acoustic wave transfer function, S, , using both the
impulse model, and coupling of medes in the absence of reflection effects. If a transducer
is N wavelengths long with gaps located every half wavelength (see Fig. 3.8), then using

Eq. (3.17a) with Tk =10

N-1

Swe = ey (e e
A - :.N”" Boxe/2\" 5

_ a’_zﬂ (8% n az—N (e-,p,x./z) B N/2 (3.37b)

Xo sin [N (B — fo)Xo/2] Impulse Model (3.37¢)

%73 5in[(B = Bo)ho/A]

where B, is the synchronous wave vector, 2x/\,, and a,),/2 is the transduction

coefficient of one gap.

* There at first appears to be a sign difference between these two equations. The sign difference is casily resolved by recognizing that
for the COM equations —x2 and —a2 are the reflection and transduction coefficients in the backward direction,
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Figure 3.8 The Uniform Transducer to be Characterized by the Impulse and COM Models
In the COM approximation, the transducer is assumed to extend to the midpoint of the split fingers beyond

the first and last gaps.
Using the COM model without reflections as the starting point

dR

= = jageH BRIy (3.38)

Note that the COM transduction coefficient is ja,e~7P-% , so that at the first positive gap

location (see Fig. 3.8) = =\,/4, we obtain the gap transduction coefficient
jagemIPre/t = o (3.39)
Regarding the transducer to extend from -4\, to &), , which includes the midpoints

of the split fingers beyond the first and last gaps, Eq. (3.38) can be integrated directly to

obtain

Soe = ja,izzzvsinc[fv(ﬁ- ﬁ,)1>‘2—°] COM Model (3.40)

2




We note that the impulse mode! solution, Eq. (3.37c) and the COM solution, Eq.

(3.40) are quite similar indeed. The ratio of the two is a slowly varying function, which is

unity at synchronism,

S21\n COM
S21., Impulse

= sinc[(ﬁ - ﬁ,)?ii] , (3.41)
The transduction coefficient in the COM model could be divided by this factor so that
exactly the same answer would result from the two models. However over a 50% fractional
bandwidth, this factor varies by only .2dB, so that correction would only be necessary if a
filter’s passband were extremely broad.

An important similarity between COM and the impulse methods including reflections,
is evident from an approximate solution of Egs. (3.36a, 3.36b). In order to obtain Sy,
for the entire transducer, we must find R(z) at a point to the right of the transducer. This
can be done approximately by setting « to zero in Eq. (3.36b) and solving for So(z) . This
solution can then be plugged into Eq. (3.36a), integrated to find Ry(z) 143!. Performing
this calculation and z similar one for 5,(z) yields approximate solutions for Ss;, and
S31v

% %
Sate = /_*da a(s)e’Pe - /—%ds a‘(a)e""p'/‘_l‘du K(u)e? 2P (3.42a)

% % &
S310 = -/ éds a‘(s)e”jp’—/ l,de a(s)e"ﬂ‘/ du &’ (u)e 2P (3.42b)

A similar procedure can be used to find Sz2., and Si3. . In order to find

R(%)
Soay = T Tlo= 3.43
S(é‘-)l 0 (3.43)

we would first assume the incident wave to be undepleted, i.e. 5,(z) = 5,(L/2). Equation

(3.36a) is then integrated to obtain R,(z). This solution is plugged back into Eq. (3.36b)
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and integrated to obtain 5;(z). Finally, 3,(z) is plugged into equation (3.36a) and

integrated to obtain R,(z) and thereby Si,, . Using this procedure we obtain

4 ) u
Segv = /-*d'u lc(v)ej”"ll —/ ds /c‘(s)e"‘zp'/_*du .‘c(u)q"z""} (3.44a)

S33, = '--/‘4l dv i’ (v)e~72PY 1—/0 du n(u)e’lzp“/*ds K’ (s)e~72Pe (3.44b)
- -4 “

It should e noted that Egs. (3.17a, 3.17b) for Sz, and Ss;,, Obtained from the
impulse transduction and reflection model are exactly the same as Eqgs. (3.42a, 3.42b)

obtained by an approximate solution to the COM equations if two conditions are met:

1. The integrals must be approximated by a trapezoidal rule in which the sample points
are chosen so that the phase samples are those of Egs. (3.17a, 3.17b).

2. The transmission coefficient through an elemental reflector, Sg3,, must be assumed to

be pure real so that r,; = —r;;* (see Sec. 3.4). Similarly the transduction elements must
be assumed to be reflectionless, so that a,; = —ay, .

In addition Egs. (3.17c, 3.17d) for S, and Sij, using the impulse transduction and
reflection model are the same as the approximate COM solutions of Egs. (3.44a, 3.44b)
if the nonunity transmission coefficient through a reflector is ignored. Thus the iterated
integral solution based on the COM equations does not keep all terms O(x%) .

One further connection between these two models is evident from the expression for

Sy9, at Bragg for a constant period grating. In this case

k(z) = D(z)effePo= (3.45)

- where T(z) is real, and 57

%
Sagy, = el tanh( / _gdzl‘(z)) (3.46)
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If I'(z)A., is constant at T,, then it can be shown that Eq. (3.22b) for S;;, reduces
to the Taylor series expansion of tanh(I',M) plus terms of the form T*Mm*-7, where
j is positive, whether or not unity transmission is assumed for Si,. Terms of the
form rkm*-J are negligible compared to (I,M)* only in the limit of a large number
of reflectors. This is a demonstration of the fact that COM and the iterated integral
approximate solutions are best applied to problems with a large number of reflectors. In
order to design devices based on these kinds of approximations, it will be necessary to
investigate their range of applicability. An experimental confirmation of the coupled mode

approach in one particular case is the subject of Chapter 5.

3.9 Detailed Analysis and Determination of Model Parameters

In order to use any of these models, the trénsduction, reflection and transmission
coefficients must be determined. Our approach will be to analyze transduction and
reflection separately, and then to use the impulse model, matrix multiplication method
or COM to phenomenologically piece these two analyses together. The reason for doing
this, is that a cmplete analysis of SAW transducers on anisctropic substrates, taking both
piezoelectric and mechanical effects into account simultaneously, is so difficult that it has
not been done”. Also, since the reflection coefficient per perturbation is so small, there

really is no need to analyze transduction and reflection at the same time.

* Recently Chen and Haus (11} pave developed a comprehensive model of transducers accounting for bath piezoelectric and mechanical
rellection effects. It achicves impressive agreement with experiment cven though an isotropic model is used.
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3.9.1 Transduction

The most complete analysis of transduction, ignoring the mechanically perturbative
effects of the electrodes, and ignoring diffraction was performed by Milsom (6%, It is a
Green's function approach based on the response of the surface potential ¢(z,w), to a
line source surface charge. Using linearity, the response due to an arbitrary surface charge

distribution can be found using a convolution.

p(z,w) = /_ooG’(a: - z',w)o(z’, w) dz’ (3.47)

If o(z,w) were known, the problem would be solved, but s(z,w) must be determined
in such a way that ¢(z,w) matches the potential of alternating polarity impressed on
the fingers of the IDT. Milsom solves this boundary value problem taking full account
of anisotropy, bulk waves and regeneration. His results are impressive; theory and
experiment agree almost exactly over a very broad frequency range (see Fig. 3.9). The
main discrepancy is an underestimate of the insertion loss, probably arising from Milsom’s
ignoring of propagation loss and resistive finger loss.

Milsom’s analysis is complicated by the fact that the Green’s function must be solved
numerically for every material, and that it depends on frequency. This restricts Milsom'’s
method to the analysis of relatively short transducers consisting of 30 electrode pairs or
fewer 170, Morgan [ recognized that many of these complications would vanish if the
bulk wave contribution to the Green's function could be ignored. This is a reasonable
assumption since the bulk waves do not contribute much to the radiated power unless
the transducers are very short. Milsom computes that for transducers on Y-Z lithium
niobate with as few as 5 finger pairs, 88% of radiated power _is radiated into thc surface

acoustic wave mode at the center frequency. For transducers with 10 or more finger pairs
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Figure 3.9 Milsom’s Green’s Function Theory
Insertion loss of two 4 electrode pair 50% metalization ratio transducers on Y-Z lithium niobate terminated

in 50 ohm resistances. solid line =theory dotted line =experiment (After [69))
this percentage rises to 97%. Thus there is no problem with this approximation in the
passband. The problem lies in the stopband, where surface skimming bulk mode radiation
and reflection or mode conversion from the back surface contributes to the received signal,
and can severely degrade the ultimate rejection level achieved. Shibayama [°5! made a
major contribution to the solution of this problem with the discovery of a cut of lithium
niobate for which the coupling to the surface skimming bulk mode is very low, at-least
60 dB weaker than the coupling to the surface wave mode. Roughening the back surface
reduces the signal received by reflection from this surface.

Following Morgan ¥, we ignore the bulk wave terms and find that the Green's

function becomes independent of frequency and can be dctermined analytically

G(z) = Ge(z)+ Gsawl(z) (3.48)

where
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_ —=In|z|
Gle) = S (3.49)
is an electrostatic term and
Gsaw(z) = —jG,e 7Pl (3.50)
is a surface wave term* where
1 v —1v,
G, = — (3.51a)
eaoo vm
] = wl, (3.51b)
€aco ~ €+ (efzef, - ef,z)* =€, + eg' (3.51¢)

with v, the free surface velocity and v, the metalized surface velocity. The z axis is
assumed to be normal to the surface and the superscript T indicates that the dielectric
constants are to be evaluated at constant stress.

For a point outside the transducer region, the electrostatic fields can typically be
ignored compared to the SAW term since the SAW term oscillates sinusoidally at constant
amplitude if there is no loss, while the electrostatic term decays. In this case, the forward
and backward propagating surface potentials are related to the charge distribution as

follows:

¢i(z,w) = —jC.e7P* / o(z',w)e’?? dz' (3.52a)
o e . 1]
p-(z,w) = —jG,e’p’/ o(z',w)e 7P do’ (3.52b)
~oo

Morgan now makes the further assumption that the electrostatic component of the
Green's function, G.(z,w), is dominant within the transducer, which is reasonable on low-

soupling substrates, and in general when split fingers are used to eliminate reflections. With

* This same resull can be cbtained by contour intcgration using the approximate dielectric response function for a piezoelectric, which
was derived by Greebe (3}
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this further assumption, ¢(z,w) becomes the purely real frequency independent solution
to an electroquasistatic problem consisting of metal fingers on a dielectric half-space.
Let us define o.(z) to be the charge distribution resulting when a potential difference

of one volt is applied across the fingers of an IDT, with 7.(8) being its Fourier transform.

7.(8) = /‘°° 0.(z)e’P* dz (3.53)

-—00

then Egs. (3.52a, 3.52b) reduce to

di(z,w) = —jG,Ve7P7z,(B) (3.54a)

¢_(z,w) = —jG,VeP=z,(B) (3.54b)

where z is assumed to be to the right and left respectively of the IDT in Eqs. (3.54a,
3.54b). It should be noteddthat Egs. (3.54a, 3.54b) imply that a wave generated in one part
of the transducer propagates out the front or back ports of the IDT unaffected by all the
fingers under which it has passed. Thus under these assumptions, not only are mechanical
reflections being ignored, but so are piezoelectrically generated ones®*.

Recognizing that Eqs. (3.54a, 3.54b) are linear, we split the charge distribution into a

sum of elemental distributions

o.(z) = Z’,a,-(x—z,-) (3.55)

centered at z, , the source locations. Then

® Our final model includes both mechanical and piezoclectric reflection effects via & of the COM equations,
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p+(z,w) = -jG,VZ‘,e""p(’"")f dz' o,(z')e??* (3.56a)
-—00
00

é_(z,w) = —jG,VZ‘_e""("“) / dz’ o,()e7P* (3.56b)
- 00

Since the time average power in a beam of width W with surface potential ¢, is (6%

power = -%V.-lcﬁ.lz (3.57)
Rz) = -’_:-’.\/Wm 3 7)== (3.580)
S(z) = -%-,-\/leG.I Y. Fi(Berfl===1 (3.586)

We note that Eqs. (3.58a, 3.58b) are the same as Egs. (3.17a, 3.17b) of the impulse-

transduction-reflection model if reflection is ignored, and the following identifications are

made:
aplw) = —%\/wW|G,|b\-(ﬂ) (3.59a)
ailw) = -?zl\/w‘w'“]c; 72(8) (3.596)

where
= e

It should be pointed out that

apg = =y (3.61)
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as was determined in Eq. (3.15) bascd on powcr conservation arguments if the single gap
transmission scattering parameter, S33, is exactly unity. Equations (3.59a, 3.59b) also
determine o(z) of the COM equations.

Both the analysis and synthesis of SAW devices would be greatly simplified if 7;(g)
were not a function of j; i.e. if each source weight did not have its own distinctive
frequency response. This can easily be done in a periodic array (6118 of fingers of arbitrary
polarity sequence and phasing if o,(z) is identified with the charge distribution induced
in a grounded array by one excited finger, or the charge distribution of one excited gap
(see Fig. 3.10). In both cases the frequency response separates into an element factor
and an array factor. The array factor is simply the frequency response calculated by the
impulse model, with source locations either at the finger centers or gap centers depending
on which element factor is being used.

We will denote the unit tap charge distribution o.(z) and its Fourier transform
7.(8) . Similarly o,(z) and 7,(8) will be used for the unit gap element frctor. These
distributions are related in a simple manner (721, The linear superposition of the potential
distributions of two gaps displaced by one period, p, yields the potential distribution of

a tap (see Fig. 3.11). Thus by linearity the same must be true for the charge distributions.

o (z + g) —o,(z - g) = oyz) (3.62)
On Fourier transforming this equation
7, (B)e PP — 7, (B)ePP? = a(p) (3.63)
we obtain the desired relationship

) | |
74(8) = Z2j5in(6p)2) (3.84)
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Figure 3.10 Fundamental Charge Density Functions for an Infinite Periodic Array
metalization ratio= a/p =5 (a) Excitation of one electrode (b) Excitation of one gap

(After [72))
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Tap Distribution 0 0 0 1 0 0 0 oc(x)

Gap Distribution 0 0 0, 1 1 1 1 cg(x + p/2)
'
(]
]

Gap Distribution 0 0 0 i 0 , -1 -1 -1 -cg(x - p/2)
i — X
1% p
2 2

Figure 3.11 Superposition of Two Gaps to Form a Tap
The number above each electrode is its potential.

Using the unit tap charge distribution of Datta ') | and the fact that P,_, = P_,(z),

. n Pn(cos A
) = et g (3.65)
where A is proportional to the metalization ration, 7,
n = afp (3.66a)
A = mq (3.66b)

The parameter s, is the normalized wave number component wrapped back into the first

Brillouin zone

s = fp/2r = s +n (3.87)

0 < s < 1 (3.68)



Thus for standard transducers with X\, = 2p, s = .5f/f, for operation near the
fundamental center frequency f,. In the case of split finger transducers for which -
N\, =4p, 8=.25f/f, for first harmonic operation. Using Egs. (3.65, 3.59a, 3.51a, 3.51c),
the full frequency dependent transduction coefficient, «,, to be used in the covpling of

modes equations* if the center of transduction is regarded to be a gap is

P,(cos A)
P_,,(—cosd)

Ao 1

gy = 75 WW((vm — vo)/vm) (€0 + €7) (—1)" (3.69)

In this expression we assume that there is one excited gap every half wavelength at
the center frequency. Note that the transduction coefficient is proportional to the
electromechanical coupling constant, \/2Av/v, the square root of the aperture (since
the power in the beam is proportional to its width), and w!/%. Closed form expressions
for the capacitance are also available for infinite periodic arrays. The capacitance per
longitudinal wavelength for regular and split finger transducers, C, and C, are (2
P_5(cosé)

P_ 5(—cosé)

P.,gs(cos 5)
P_ 25(— cosé)

Choe =Ci2p= W(e,+¢.) (3.70)

Coho = Cudp = V2W(e, +€7) (3.71)
Normalized plots of these capacitances are presented in Fig. 3.12.

Presented in Fig. (3.13) are the Fourier transforms of the basic charge distributions for
electrode and gap excitations for different metalization ratios. It is important to note that
the element factor for gap weighting is much flatter than for clectrode weighting, especially
near kp/m=.5, the center frequency of split finger transducers. It is perfectly flat in the

limit of an infinitesimal gap, but is reasonably flat for metalization ratios as low as .75.

* For exact agreement with the frequency responses based on the electrostatic field distributions in the low « limit (73] . ag should
be divided by Eq. 3.41 when used in the COM cquations.
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Figure 3.12 Normalized Capacitance
The Curve labeled 2 applics to standard transducers with 2 fingers/wavelength, while the curve labeled 4

applies to split finger transducers with 4 fingers/wavelength. (After [25])

This makes sense since the gap electric field is more localized, and thus more impulse like,
thereby making its frequency response flatter. It seems that a high metalization ratio could
be helpful in reducing the sensitivity of a SAW filter’s source weights to variations local
metalization ratio and periodicity. The only penalty incurred in doing this is an increase

of the capacitance (see Fig. 3.12) of the IDT relative to its conductance, which reduces the

bandwidth over which a match can be achieved.
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Figure 3.13 Element Factors for One Source in an Infinite Periodic Array
a) Gaps b, Electrodes p=period of the metalization a=width of the metal strips
(After [72])
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electrode #
n= 1 2 3 4 5 6 7
0 0 + 0 + 0 0 Qpp,
gap 1 0 0 + S . SR Q,
gap 2 0 0 0 S . S Q,
gap 3 0 0 0 0 + + + Q3n
gap 4 0 0 0 L 9 - . = Un

Figure 3.14 Decomposition of a Transducer into Gaps
Qrn =total charge on the nth electrode under 1-volt excitation Qjn =charge on nth electrode

with only the 7P gap under 1-volt excitation

Based on this discussion, it seems reasonable to decompose the electrostatic charge
distribution of an aperiodic transducer into a superposition of excited gaps (see Fig. 3.14).
It is important to note though, that if this décomposition is being done in order to split
an IDT into a cascade of sections to be analyzed by the matrix multiplication method or
by COM, the capacitance of each section cannot be the capacitance of each gap. This is

demonstrated below with reference to Fig. 3.14.



Cr
Defining

Cyi
we find

Cot

Cy2

Cy3

Cya
and note that

Cq1 +Cg2 + Cy3 + Cyq

>

5

total capacitance = Qr3+ Qrs
Q13 + Q15 + Q23 + Q2p + Q33 + Q35 + Qua + Qus (3.72)

capacitance of the it* gap

Qi3+ Qua+ Qs + Qs + Q17 (3.73a)
—Q24 — Q25 — Qag — Q27 (3.736)
Q3s + Q36 + Qa7 (3.73¢)
—Qus — Qa7 (3.73d)
Qr3 + Qs (3.74)

Thus the sum of the gap capacitances is not the capacitance of the transducer. A reasonable

and simple way of assigning capacitances based on the gap charges would be:

gl
g2

> O O

93
Cy4

» O

= Qi3+ s (3.75a)
= Q3+ Q25 (3.75b)
= Q33+ Qs (3.75¢)
= Qu+ Qs (3.75d)

Now let us acoustically couple two transducers to form a filter. We will reference

both 2-port and 3-port scattering matrices (Fig. 3.15). We use the superscript F as in

SF and ST to represent the mixed and standard scattering matrices of a lossy 2-port,

which is regarded to be connected to the outside world only through its electrical ports.

The corresponding scattering matrix for the two transducers comprising the filter will be

denoted with superscript P as in §'” and $2%7. Using Eqgs. (3.7, 3.8, 3.9) we can find

the transfer ratios for the full filter in terms of the single transducer scattering parameters:

S5 =

Ql@-
b | o DD

ST Sit
L= S S5 (3.76)

= (L+ ST+ S17) c1p qop
Jol‘o? l_l‘ls‘sé.)sgap“ bélusglu
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Figure 3.15 A SAW Filter Composed of Two Transducers

S!P and S°P are the 3-port scattering matrices of the two transducers, while ST is the lossy 2-port
scattering matrix of the electrical ports of the full filter

Since a bi-directional IDT must be matched such that the load approximates a short
circuit in order to avoid triple transit problems, the acoustic port reflection coefficients,
SiP and S$3F will be quite small. In the case of a SPUDT these reflection coeflicients
are small even if the device is matched. Thus for both a standard BIDT and a SPUDT

under their usual operating conditions,

SHi = VZaZe(l+Si7)(1+5%7)81. 531 (377)

The elcctrical return losses, S and $3§ can be computed once the transducer’s
input admittance is found. The conductance is found from Eq. (3.11a) and its Hilbert
transform (Eq. (3.21)) determines the radiation susceptance, ;3. The capacitance must

be determined separately.

Y = C+jB+jwC (3.780)
Y. = YZ, (3.78b)
sf = i (3.78¢)

1+Yn



n

It should be noted that 1+ Sy; is a relatively slowly varying function of frequency. The
dominant factors of Eq. (3.77) controlling the frequency response are Sif, and S%f, . If

the sources of the input transducer are at z; , while those of the output transducer are at

y; , then using Eqs. (3.58a, 3.58b)

_wWG

4 3 Zag(ﬁ)ejﬁz‘][z [ﬁ(ﬂ)l'e—jﬂw«} (3_79)
) k

S2lus3lu

If the transducers are exactly periodic, and a few zero weight sources are added to the
ends of each IDT so that the environment of each source is the same, then as we saw
earlier in the section, 7;(8)is no longer a function of :. The expression then simplifies

to

(3.80)

Z Sze—jﬂn

wWG
SitSite = B [Zs e

where S} and S} are the strengths of the sources in the two transducers. The frequency
response has factored into the product of 2 array factors with the element factor

wWG

Ew) = *[7q(B)|* (3.81)

If the two transducers are only slightly aperiodic, then it is unreasonable to expect
that the full complexity of Eq. (3.79) will be required. More likely, the basic charge

distribution, ¢,(z), which is valid if the finger period is p, , will simply scale to
Po Po
() = P, 3.82
7 (I) P 7 (Pi :17) ( )

in a region where the local periodicity is p; . The scale factor out front, p,/p;, serves to

keep the total charge on each electrode constant. This is necessary for consistency with
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the known solution to Laplace’s equation in which the capacitance between strips in a
periodic metal grating is independent of the period ?42/ . The Fourier transforn: of this
element factor is then

7z) = a,(ﬂ%) | i (3.83)l

whgre B; is the local synchronous propagation, 2/, .

The Fourier transform of the gap charge distribution (see Fig. 3.10), #,(8), is plotted in
Fig. 3.16 using the formula derived by Datta and Hunsinger ['? . Note that for split finger
transducers, over a very broad 300% fractional bandwidth about the center frequency, the

plot is very nearly linear. Since log-log cooruinates were used, this implies that

7.(8) = cb° (3.84)

In the particular example shown which is for gaps with a 50% metalization ratio, ¢ is

-.081.

Therefore Eq. (3.79) can also be simplified if the spacing is almost periodic:

4
G

(3.85)
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3.9.2 Survey of Reflector Analyses

Since all SAW devices consist of ccmbinations of metallic, dielectric and groove
gratings, a tremendous amount of work has been done on their scattering properties. The
reflection and transmission coefficients have two components, 1) a piezoelectric one, due
to radiation by the charges induced by the incident wave on the metallic grating; and 2)
a mechanical one due to radiation by the induced stresses. The former is proportional to
the piezoelectric coupling constant, 2Av/v, and the later is proportional to the height of
the surface perturbation. Most of this radiation is into forward and backward SAW waves

but some is also radiated into the bulk at frequencies above Bragg (54

Joshi and White 18/, Aoki and Ingebrigtsen ! and Datta and Hunsinger '} all
studied the electrical component of the reflection, ignoring the mechanical contribution
due to the physical electrodes. The first two papers based their analyses on determining the
dispersion diagrams for wave propagation along a grating, with the reflection coefficients
near Bragg and its multiples being related to the size of the gap. Datta and Hunsinger used
a perturbational approach to directly calculate the reflection and transmission coefficients.
All the papers focused on periodic gratings. If information about aperiodic gratings is
desired, it could be done by combining the electric field computational technique of

Hartmann ¥ with Morgan's ®! Green’s function approach in a self-consistent manner.

None of these authors present any experimental results, but Panasik and Hunsinger [77]
use the results of Datta and Hunsinger 'l to compute the acoustic reflection coefficients
from 20 finger-pair aluminum IDT's on Y-Z lithium niobate. Their calculation actually
‘includes mechanical effects, but due to the very high piezoelectric coupling constant of
lithium niobate, the overwhelming reflection effect should be electrical in origin. Their

phase calculations agree very well with experiment, but the magnitude of the calculated
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short circuit reflection coefficient is 35% higher than the experimental one. In the open

circuited case, theory exceeds experiment by 75%.

Skeie [97) takes into account both piezoelectric effects and mechanical loading effects
to lowest order. He relates velocity shifts and reflection coefficients to changes in energy
caused by the surface wave perturbations. Skeie checks his theoretical calculations by
focusing on the input conductance and susceptance which are affected both by transduction
and a transducer’s internal reflections. One IDT consists of twenty 1500 X aluminum
electrodes on Y-Z lithium niobate (which is very thick since r/x =2.5% at f, =575
MHz). The calculated and measured conductances agree perfectly, while the calculated
susceptance is smaller than the measured values by about 5-15%. The author attributes the
discrepancy in the susceptance to parasitic capacitance caused by the interdigital fingers

and bonding pads in the measuring circuit.

Skeie then introduced additional mass loading with a 750 X (h/x =1.2%) gold layer
deposited on top of the aluminum electrodes. This slowed the wave by about 4.0%
relative to the IDT with aluminum fingers alone. The theoretically predicted slowing
was only 2.7-3.0%, depending on whether the metal films are assumed to retain their
bulk mechanical properties or act like fluids with no shear moduli. The conductance was

overestimated by about 40% while the susceptance was underestimated by 30%.

Datta and Hunsinger (1517181 analyze periodic gratings in three papers, the first
covering scattering caused by mechanical effects of order (h/\), the second covering
electrical effects, and finally the third studies second order mechanical effects O((h/\)?) .
All the analyses apply to gratings made from arbitrary anisotropic media deposited on
arbitrary anisotropic crystals. The first order mechanical analysis is done for all frequencies

via Auld's coupled mode equations 1!, with an added impulse source term at the grating
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edges. The second order analysis is donc by a normal mode perturbation theory 1 and
applies only at integer multiples of the Bragg frequency. There is a contradiction between
this analysis and Wright's [1*4 analysis of second order effects in grooved gratings on
isotropic substrates. Wright shows that the second order reflection and velocity shift
coefficients are logarithmically divergent if the grating sidewalls are perfectly vertical,
whereas Datta claims to find the same coefficients for this grating with no problem.
The piezoelectrically generated reflection and transmission coefficients are computed in the
standard way by first finding the charge induced in the array by the incident acoustic wave,
and then computing the forward and backward wave radiated by this charge distribution.

Panasik and Hunsinger 7! combined the results of all three of the above papers
with Datta’s papers on transduction [16:19] (similar to Morgan 73:72') to obtain a complete
model of arbitrarily connected metal strips of uniform overlap on a piezoelectric substrate.
They use their theory to compute the input conductance of the same 20-electrode IDT on
lithium niobate that Skeie #7) analyzed. In the first case, the fingers consisted of 1500 R of
aluminum ( h/» = 2.5%). Their calculated conductance exceeded the experiment by 35%
whereas Skeie's analysis was in perfect agreement with theory. On the same transducer,
with an additional 750 R of gold to increase the mechanical component of the transducer’s
internal reflections, Panasik overestimated the conductance by about 80% while Skeie was
high by only 35%.

The final transducer that Panasik analyzed was a 20 wavelength transducer on Y-Z
lithium niobate with 4 fingers per wavelength, of which every other one was floating.
The computed short-circuit reflection coefficient overestimated the reflection by about 55%

while the open-circuited reflection was overestimated by about 115%.
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Recently Chen and Haus ('t} devecloped a model of an IDT that includes transduction
in addition to reflection due to both piezoelectric and purely mechanical effects. It is
based on a single variational expression from which the coupled mode equations are
derived along with the reflection and transduction parameters. Elastically everything is
treated isotropically, but the full piezoelectric tensor is used. Its agreement with previously
published experimental results i, truly impressive for aluminum films on both ST-X quartz

and Y-Z lithium niobate.

In the case of gold films on ST-X quartz, the calculation is higher than the experimental
result by about 55%. Unfortunately, we would like to use gold overlays for SPUDT's due

to the high reflection coefficients which can be obtained with relatively thin films.

3.9.3 Summary—Transduction and Reflection

In summarizing the theoretical state of the analysis of SAW devices, we note that
piezoelectric transduction effects are very well modeled 679 | and that good simplified

analysis techniques exist [11:73,81,16,19.25]

In the case of reflectors the situation is different. If the reflection is 1nainly piezoelectric
in origin, then models exist which agree well with experiment. In the case of deposited
films however, discrepancies between theory and experiment still exist. Thus it is probably

best to experimentally measure reflection coefficients.

It is possible that part of the discrepancy is due to an inaccurate characterization of
the mechanical properties of thin films. The mechanical properties of thin films may be

different from those of the bulk material and may depend on the way in which the films

are deposited.



3.9.4 Loss

Until now loss has been ignored for simplicity. If the loss is very small then it can be
introduced rather simply. Resistive loss can be added by placing resistors in series with
the leads to each element of a lossless model and in series with the bus bars connecting
the elements (see Fig. 3.17). The bus bar resistors would simply be twice the resistance of
the portion of a bus bar connecting two sections to one another in order to account for

the upper and lower bus bars.

If the dominant component of the input admittance of a finger is capacitive, the
current flowing along a finger will be linear with position along a finger. Even in the case
of strongly piezoelectric materials siich as lithium niobr.ce, the capacitive admittance of
one finger pair dominates its acoustic radiation conductance. A more general analysis of
a distributed RC transmission line by Lakin 18! confirms that th current distribution is

linear unless the loss is extremely large. Thus using the definitions of Fig. 3.18, the total

I
n-1 I I I
= —— oty —ntg
“bn-1 v %bn v Ron+l v B2
n-1 n n+l
R.~=.n—l Rs. Rsn+l
] 1 [}
n-1 Rn Vn Rn-i-l Vn—i-l
Lossless - Lossless - Lossless
Section n~1 «— Sertion n & Section n+l
sn Sn-l-l

Figure 3.17 Addition of Resistive Loss to a Lossless Model
Ran =cquivalent serics finger resistance Ryn =bus bar resistance
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Figure 3..8 Loss Analysis of a Transducer
a) One finger pair for which less is being calculaced b) One finger of th- transducer c)

Equivalent circuit of one section for the loss analysis

electrode c'rrents transverse to the direction of SAW propagation are:

I(z) = I,(.5 = z/W) (3.86a)
Ip(2) = (.5 + z/W) (3.86b)

We assume that the current is uniformly distributed along the width of a finger and
equate the power wi-spaied in the equivalent series resistance, R, of Fig, 3.18c, with the

power dissipated in the distributed resistance.
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w/2

I’R,=R f I(2) + 13(2)) d 3.87
! _w/2[ 1(2) + I3(2)) dz (3.87)
and we obtain
2 .
R, = zWR, (3.88)

where R, is the resistance per unit length along a finger

R = p/(at) = ps/a (3.89a)
p = bulk resistivity (3.89b)
p. = p/t = sheet resistance (3.89¢)

The final result is the same as Lakin's 158! in the low sheet resistivity limit.
When finite sheet resistance fingers are used, the gap voltage depends on the transverse
position, z. Using Egs. (3.86a, 3.86b) and the iﬁput admittance of the equivalent circuit

of Fig. 3.18¢, this gap voltage

AV(E) = — Y1+ juRCl—L + 32 (3.90)
1+ jwR,C ° 8 2w?

The total short circuit signal current received by an ideal gap is proportional to

w/2 VW
-/:-W/z AV (z)dz = TFoR.C (3.91)
Note that V' of Fig. 3.18¢
vV
~ 1+ jwR,C (3.02)

If v’ is assumed to be the uniform voltage acress the transmiiting gap, the received signal

will be identical to that of Eq. (3.91). Thus if we choose the equivalent series resistance
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of the circuit model to equalize the received signal, we obtain exactly the same answer as
by equalizing the power dissipated.

Propagation loss can be handled by changing the propagation constant ¥j8 to Fj8F~.
It should be noted that if both bus bar and finger resistive losses are included in addition to
propagation loss, all 16 elements of the transmission matrix (Eq. (3.23)) become non-zero,
whereas if bus bar loss is ignored, the same 5 terms which are zero in the absence of loss
remain zero. Thus significant computation time can be saved if bus bar loss is ignored.
There really is no reason to include bus bar loss in a synthesis algorithm since the bus
bars can simply be made both wide and thick enough for this form of loss to be totally
negligible.

We now illustrate this procedure for the COM equations (3.36a-3.36c). We also make
use of Egs. (3.35a, 3.35b) which were derived based on power conservation, since we shall
assume the transducers and perturbations themselves to be lossless. All the loss is being
lumped in the propagation path between the elements and in resistors in series with the
fingers. W. include propagation loss via the 4 term and finger loss by redefining the
voltage exciting the waves to be V', the voltage across the lossless equivalent fingers of

Figs. (3.17, 3.18). The result is:

A

dR

= = —R + £(2)e’*P=3(z) + a(z)eP*V’ (3.93a)

dS‘ A d —328z T . - 'ﬁﬂ / ‘

- = 1S + & (z)e *P*R(z) + a (z)e 7PV (3.93b)

dl . ’ . —-3Bz T 1Pz &

- = —jwC(z)V' - 2 (2)e™?F* R + 20(z)e?"*S (3.93¢)
Vig) = v+id (3.93d)

G dz
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Equation (3.93d) is simply Kirchoff’s voltage law expressed in differential form. The
conductance is defined so that
Ry = = (3.94)
* T GG/2) '

where 2, is the equivalent series resistance of a finger pair (Eq. 3.88). It should be
noted that with this definition G is a function of =z, just like «, « and C. V/(z)
can be eliminated from Eqs. (3.93a-3.93d), to obtain the final form for the coupled mode

equations in the presence of both propagation loss and finger resistance loss:

& _ 2o ' )iz o\ pzg + — 2 _eifry (3.95a)
dz o JwC T Gt uC + JwC 1+ 242 '

ds SR Gl R PP S A

= - ( te +, wC ( ch) R et v B9
gl = ch sV - e~PR 4 2a e"p’S (3.95¢)

Note that these equations are of the same form as the lossless COM Egs. (3.36a-3.36c). A

major difference is that the effective forward and reverse reflection coefficients, x.;s1 and

'caffﬂ
202
Keffi = K+ G100 700 (3.96a)
- 2 a' 2
Keff2 = K - ———-—G_({_j‘)dc (3.960)

are no longer complex conjugates of one another as required by power conservation (see
Eq. 3.35a). This, of course, is to be expected since we have introduced loss into the model.

Similarly the effective forward and reverse transduction coefficients, a.ss; and a.;so are
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not complex conjugates when loss is added (see Eq. 3.35b).

o

Oeff1 = m— (3.97a)
a‘
Qeff2 = m—/a (3.97b)

Waves now attenuate as they propagate due to both acoustic loss and electrical resistive

loss. The effective attenuation constant is

2|af?

Yesf = 7+ m (3.98)
Finally, the admittance term of Eq. (3.95¢) is no longer purely capacitive*:
jwC
Yers 1+ jwC/G (3.99)

* Clearly the input admitiance of a lossless transducer is not purely capacitive, however any real component of Yes; can be shown to
be a source of loss in the COM approximation. The full input admittance of an IDT can only be obtaincd by solving Egs. (3.95a-3.95¢)
for I(0)/V ,and is not only Yezy .
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CHAPTER 4

SYNTHESIS OF SINGLE-PHASE UNIDIRECTIONAL TRANSDUCERS

4.1 Introduction

It may be possible to design a single-phase unidirectional transducer (SPUDT) directly
from a matrix multiplication model, or based on the full coupling-of-modes (COM)
equations. It would certainly be much easier if the synthesis could be based on the impulse
wansduction and reflection model, or equivalently on the iterated integral approximate
solution to the COM equations. This is possible only if the reflectivity of the grating is
low.

Therefore, in this chapter we first investigate the reflectivity required to build a SPUDT.
We find that reasonably low reflectivity can yield interesting SPUDT’s. Then we use the
zeroth order Fourier transform relations between o« and the transduction response, and
between « and the reflection response to synthesize a few SPUDT's as does Wright (113,
Finally we cbmpare the responses based on this simple approximation with the exact
solution based on the COM equations.

Ideally we would like our SPUDT to be matched at the electrical port in addition to
the front acoustic port. Unfortunately, as pointed out by Wright i8] | this generally is not

possible for a lossless reciprocal 3-port. The scattering matrix would be restricted to be of
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the following form:

0 ¢&* o
SP = &% 0 0 (4.1)
0 0 1

where superscript P is used to denote the scattering matrix one transducer of a filter.
This is exactly what is desired in the passband. In the transition and rejection bands,

however, we must either give up perfect triple transit suppression or the electrical match.

If we choose to give up only the electrical match, then reciprocity and power conservation

(Egs. 3.10a-3.10f) impose the following conditions:

S5 = \/1-188 (1.2a)
S5 = VISRl - ISh (4.20)

Using Eq. (3.9d) the required value for the short circuit front acoustic port reflection
coefficient, S£,, , in order to obtain infinite triple transit suppression is
2
(s8]

P —

This is the condition under which the shorted grating reﬂectlon s5, » exactly cancels the
regenerated signal. At synchronism, the coupled-mode equations can be solved in closed

form for the reflection coefficient if there is no chirping 157!

15E,| = tanh( /_ :lfc(x)l da:) (4.4)

We can now show how the performance of an unchirped SPUDT depends on the

grating reflection coefficient. For comparison purposes, we also present the triple transit
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suppression of a standard bi-directional IDT with the same insertion loss as a SPUDT

which we obtain below.

First we assume that |S| = |S£,|, as is the case for any transducer with no short
circuit reflection coefficient, such as a split finger transducer. This can clearly be seen
from Eqgs. (3.36a, 3.36b, 3.42a, 3.42b). As long as « is zero, the R and § waves can be
obtained in closed form as the integral of functions which are complex conjugates of one

another. Now that |85| = |S§,|, Eq. (3.10a) implies that

ISﬁIQ = 1‘2|32P1|2 (4-5)

Using the fact that « is zero, Eq. (3.9d) implies that

st
sk = [. 2l 4.8
Using Eqgs. (4.5, 4.6) we obtain
. 1—|S% )2
SE UL 4.7

which is clearly minimized when S§f, is real and positive as occurs when the transducer

is matched on the short circuit side. Thus

1-|SH1F IS5

Shlmin = il =
min = HRISA) T 1+ vi-95GF

This is a general derivation of a formula which was first obtained by Smith et. al. ['9 for

(4.8)

symmetric transducers using a particular equivalent circuit model.



93

The above results are summarized in graphical and tabular form in Fig. 4.1. We note
that in the limit of perfect unidirectionality, the required short circuit reflection coefficient
goes to unity, and thus integrated « approached infinity. If we allow for a moderate
insertion loss of 6 dB, we only need a reflection coefficient .33, and the required integrated
x is .35. These two numbers are approximately the same in this case, indicating that we

are in the regime in which Eq. (4.4) can be approximated as

S5l ~ [ it (49)

This corresponds to the situation in which multiple reflections can be ignored and only
the first terms of Egs. (3.44a. 3.44b) are necessary. Although we are getting as much as 6
dB inserticn loss in this situation, which is alsc obtainable with a standard bi-directional
IDT, it should be noted that the BIDT would only have 12 dB of triple transit. The

SPUDT ideally would have infinite triple transit suppression.

4.2 A Simple Design Algorithm

A simple synthesis technique can be based on the lowest order of Fourier transform
relations between S£, and «(z), and between S%,, and «(z) ('8, Keeping only the

lowest order terms, Eqs. (3.42a, 3.44a) reduce to
¥ .
S8, = /#dua(u)e’ﬂ“ (4.10a)

% , '
Sh, = /;hdu K(u)e? 2P (4.100)
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Under this approximation, which would be valid only in the limit of small «, the voltagc
to acoustic transfer function, S, , is solely determined by «(z), and similarly only «(z)
enters into the calculation of the Aort-circuit reflection coefficients. We really are only
interested in the transfer function and acoustic reflection coefficients when the effects of the
matching circuit are included. However, since Egs. (4.10a, 4.10b) provide simple ;olutions
only when there is no matching circuit, we use Egs. (3.9b, 3.9d), which are repeated below

to make the connection.

SP
sE, — 4.1la
B = JZiie st e
P — P [S2Pl]2
S22, = Sn- 1+ 8% (4.116)

The synthesis task involves choosing «(z) and «(z) such that a specified frequency
response S%, is realized with S5, always less than a certain value. It is desirable to make
this selection with «(z) as small as possible since Eqgs. (4.10a, 4.10b) are only reasonable
for small «. From Eq. (4.11b) and the Fourier transform relation between S%,, and «,
it is clear that the (DT should be matched so that Sf, is purely real and positive near
the center frequency.

If we further specify that S, be exactly zero, so that infinite triple Lransit suppression

is desired, then using reciprocity and power conservation (Egs. 3.10) it can be shown that

|Sﬁ = 1"|3£’1|2 (4.12)

Thus, if we want a filter response which is flat in the passband, $f; will be very nearly

constant in the passband where triple transit suppression is important. Therefore 1+ Sf,
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in the denominator of Eq. (4.11a) will not affect the frequency response much. If S, is

zero, then using Eqgs. (4.11b, 3.9b) we obtain:

G ]2

SP

—Z,(1+ 57)[S51.)? (4.13)

Assuming 1+ Sf, to be constant, which is always reasonable at least in comparison
with §%, and S%,,, Eqgs. (4.10a, 4.10b, 4.13) imply that «(z/2) is proportional to the
convolution of «(z) with itself. This is clear since S$%,, is proportional to the square
of &85, which implies a convolution in the space domain. The scaling of the z -axis is
due to the factor of two difference in the multiples of g in the Fourier transform of Egs.
(4.10a, 4.10b).

The prescription for this synthesis algorithm is now clear:

(1) Specify the desired single transducer minimum insertion loss and use Eq. (4.12) to find
the corresponding value for |Sf,|. Assume Sf, =|Sf(8.)| for all frequencies.

(2) Use Eq. (4.11a) to specify 8§ ,(8) in terms of the desired single transducer frequency
response SE,(8) . .

(3) Solve Eq. (4.10a) to obtain the a«(z) which best approximates the desired S8.(8)
obtained in (2). It is important to note that it would be unwise to simply inverse Fourier
transform Eq. (4.10a) to solve for «(z) via Eq. (4.14) below:

ole) = o[ dosf(pe (4.14)

If designed in this manner, a typical filter, with its sharp transition from the passband to
the stopband, would yield large ripples in the passband, and sidelobes down only about
13 dB. This is a result of the Gibbs phenomenon of Fourier transform theory (78781 | It is
necessary to use either a windowing technique or the Parks-McClellan algouthm 176,86 85]

(4) Use the assumption that S¥(4) remains constant at its value at the center frequency
in conjunction with Egs. (4.10a, 4.10b, 4.13, 4.14) to obtain

min(%,2z+%)
K(z) = ""‘(l + 81 )/ du o(u)a(2z _. u) -
0

S| o~
83| o~

max(—4,2z— &)

IN
~ 8
IN

:c<—El or z > -

(4.15)
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(5) Calculate the input admittance at cenier frcquency and select a parallel matching
inductor to make Sf, pure real.

A convenient result of this method is that «(z) never has to be truncated. It is non-zero

over exactly the same range as «(z) .
This procedure was applied to the design of several single phase unidirectional
transducers. In all cases, a cos? + pedestal window function, with a 3:1 taper ratio,

was used to window a sinc function. Only the first sidelobe on each side of the main lobe

was kept.
Wz = %+§cos(?l[:f) (4.186)
ofz) = cW(m)sinc(%E) (4.17)

Each transducer was 200 half-wavelengths long. This window function has — 26 dB
frequency sidelobes which is 13 dB better than a rectangular window at a cost of 23%
broadening of the main lobe. The Fourier transformed single transducer weighting function
has — 43.7 dB sidelobes, a 2.9% 1.5 dB bandwidth and a shape factor of 2.3 (ratio of
bandwidth at peak sidelobe level to bandwidth at 1.5 dB level). The envelopes of the
transduction and reflection functions, o(z) and «(z) are displayed in Figs. (4.2a) and
(4.2b), respectively.

The coupled mode equations (3.36) were solved with these spatially varying transduc-
tion and reflection functions to obtain the transducer responses. The solutions were
obtained by splitting the transducer into many sections, each of which being small enough
to regard o and « as being constant. The COM cquations can be easily solved in
cloced form with constant o« and « (see Chap. 8 of Ref. [47] or Sec. 1.5 of Ref. [48]).

These solutions were used to obtain transmission matrices of the sections which were then
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multiplied together to obtain one transmission matrix for the entire transducer as in Sec.
3.6. Any desired scattering parameter can be computed from this composite transmission
matrix. -

In this set of calculations, loss was ignored and matching was done with a parallel
inductor selected to make the input admittance purely real at the center frequency.
The impedance level was set with an ideal transformer to make the acoustic retiection
coefficient exactly zero at the center frequency. The piezoelectric coupling constant of
ST-X quartz, 2Av/v =.00134 (Ref. [93] and Eq. (3.69)), was usqd along with an effective
relative dielectric constant, €I/, , of 4.55 (Ref. [98] and Eq. (3.51c)). Since the device
is being matched to zero the acoustic reflection coefficient at f, , essentially the same
results would be obtained with any material, albeit at a different impedance level. The
main differcnce between materials in this context is the bandwidth over which a match
can be achieved. In strongly piezoelectric materials, the conductance is larger relative to
the capacitive admittance which reduces the Q of the parallel tuned circuit representing a
matched transducer.

In Figs. (4.3-4.5), we present plots of the single transducer insertion loss, S§; , the
matched front port acoustic reflection coefficient, S%, , the voltage to acoustic wave transfer
function S£, and its approximation by the Fourier transform of o(z), Fa. Plots of
the short circuit acoustic reflection coefficient S£,, and its approximation by the Fourier
transform of «(z), Fx, are also presented. The insertion loss ranges from 10 dB to 1 dB,
and the corresponding integrated « ’s range from .05 to .8.

In Fig. 4.3b we see that the agreement between Sf, and Fa is excellent as we
would expect since integrated « is only .05. Due to the low value for integrated « , the

insertion loss must be reasonably large in order for the regenerated signal to be as small
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as the grating reflection so as to be able to cancel it (Eq. (4.13)). Thus by Eq. (4.12) 7}
will be close to 1*. From Eq. (4.11a) we note that $§,, will have the same shape as S,
as long as 1+ S%, is roughly constant. In this case 1+ Sf; is almost constant at 2, and
Fig. 4.3b confirms that . S£,, agrees well with S§, t. S, and Fx also agree very well
since integrated « is small and multiple reflections can be ignored. Sf, and $%,, do
not agree of course in the passband; they differ by the regenerated signal which cancels
the grating reflection to reduce triple transit as expected from Eq. (4.11b). Outside the
passband S£, and S%,, agree, since the regenerated signal, which goes as the square of
the electroacoustic transfer function, is so small. |

As integrated « increases to .2 the insertion loss falls substantially from 10 dB to
4.6 dB for each transducer, but the maximum acoustic reflection coefficient increases from
— 54 dB to — 31 dB. We note from Figs. (4.4b, 4.4c) that the Fourier transform relation
between o and S§, and <« and S§, both start to break down, especially in the
sidelobes. This is somewhat surprising since one would expect the effect of the reflections
to first appear near the Bragg frequency where all the reflections are coherent. It isn't
really all that surprising though on second thought, since when signals are down by 40
to 100 dB, as they are in the sidelobes, small absolute errors are much more significant.
When integrated « is increased to .8, the approximations involving transduction breaks
" down in the transition -egion while it is still accurate in the passband. In the case of the
reflection responses, there is a discrepancy, even in the passband.

The above results are summarized in Fig. 4.6. Although the sidelobe level and triple

transit level both degrade as integrated « increases in order to reduce insertion loss,

* Recall that the matching was done to make the input admittance real at f, which makes § fl real at fo, and approximately
real over a reasonable bandwidth about the center frequency.

' Note: Sf 1 is scaled to agree with S; 1» al fo in Figs. (4.3b, 44b, 4.5b). A direct comparison is not reasonable siace the
units are different.
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Figure 4.6 Summary of Results—Low- « Design Algorithm
Note: In this plot the rejection band definition remains constant, so that the shape factor of all these filters

is 2.3.

reasonable filters can be designed. For example, among the designs represented in Fig.
4.6 is one with 4.9 dB insertion loss, a shape factor of 2.3, 60 dB rejection, and 40 dB
triple transit suppression. At an integrated « level of .2 or less, which corresponds to at
least 9.2 dB of insertion loss, acceptable agreement is obtained between the desired and
achieved frequency responses. If better performance is desired, then more terms of the

iterated integrals of Eqs. (3.42a, 3.44a) can be used in the design.
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We should not forget that these results were obtained assuming that there is continuous
control over « and a. As explained in the introduction, continuous control over these
parameters is not compatible with our desire to come up with an easily manufacturable
design. One possible solution to this problem is presented in Chapter 6, where the focus
is on the synthesis of high performance frequency responses with nonuniformly spaced

sources of constant magnitude.
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CHAPTER 5

EXPERIMENTAL AND THEORETICAL VERIFICATION
OF THE SINGLE-PHASE UNIDIRECTIONAL TRANSDUCER

5.1 Introduction

We recall that one of the main goals of the single-phase unidirectional transducer
(SPUDT) was to reduce insertion loss without incurring the penalty of increased triple
transit. As discussed in the introduction, this triple transit signal results from a portion of
the main acoustic signal being reflected from the output transducer, and then once again
from the transmitting transducer, thereby making three transits of the region between the
two transducers before being received. In a standard bi-directional split-finger transducer,
the only source of reflection is reaiiy regeneration. The acoustic wave incident on a
transducer induces a voltage between the fingers, which then reradiates yielding a reflected
signal. As discussed in Sec. 4.1, when a standard transducer is matched on the short circuit
side, this regenerated signal is weakened thereby reducing the triple transit signal. This
unfortunately also increases insertion loss.

In Hartmann's ! implementation of the SPUDT (Fig. 5.1), a second level metalization
is deposited forming a reflective grating in such a position relative to the acoustic sources
that the refiection from this grating tends to cancel the regencrated signal (see Sec. 4.1).

The regenerated signal depends strongly on the load attached to a transducer. Near a
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Figure 5.1 Hartmann’s Implementation of the SPUDT

The above is one portion of a transducer. A; = X\o is the wavelength at the center (requency.

short circuit condition, there is little regeneration and the triple transit signal will be large
due to the grating reflection. Moving closer to a match (how close depends on the size of
the grating reflection coefficient), the regenerated signal becomes larger until it equals the
grating reflection in magnitude, at which point the triple transit signal falls to zero.

These intuitive notions are examined experimentally and theoretically using an un-

weighted SPUDT. The coupling-of-modes equations (3.95a-3.95¢) are solved exactly, and
these theoretical results are compared to what was experimentally observed, both in the

frequency and time domains.
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5.2 Experimental Results—COM

An unweighted single phase unidirectional filter 44! of the type discussed in Sec. 2.2
and sketched in Fig. 5.1 was constructed on ST-X quartz. Both transducers were 50.5
wavelengthé long and of the split finger type. The apérture was 150 wavelengths and
the separation between the end of the first transducer and the start of the next was only
25.25 wavelengths in an attempt to eliminate diffraction effects. The periodicity of the
transducer was 42.09 . yielding a center frequency of 74.61 MHz. All the fingers had
a first level metalization consisting of 20002 aluminum, while the thicker fingers had an
additional SOOR of 90%-titanium-10%-tungsten, with a 10002 layer of gold on top. The

titanium-tungsten layer’s purpose was to help the gold adhere to the aluminum.

The devices were fabricated by first depositing all three metal layers and then chemically
etching through all three using patterned AZ photoresist as a mask to form the transducer
patterns. A second level mask was used to leave AZ resist on top of those fingers which
were to retain the gold. Then ion beam milling 1'% was used to remove both the gold
and the titanium-tungsten from the exposed fingers. This process slighcly narrowed the
fingers from which the top two metal layers were removed. The end result was that the
metalization ratio (fraction of the period which is metalized) for the gold covered strips

was .38, while that of the aluminum strips was only .33.

In order to compare the experimental results with the theoretical results, we need
the parameters which characterize a SPUDT which then fully specify the coupled mode
equations. As discussed in Sec. 3.9.2, theoretically calculated reflection coefficients are
not all that accufate. Therefore, a test structure was also built to measure the acoustic
reflection coefficient. The structure was identical to,a shorted SPUDT and consisted of

101 reflective strips with an aperture of 150 wavelengths. The peak reflection from the
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full grating was — 4.26 dB, with a standard deviation of .06 dB based on 4 measurements.

The reflection coefficient from a grating of N reflectors with an amplitude reflectivity of

I /reflector is

Magnitude Grating Reflection = tanh(NT) (5.1)

This is the exact solution to the coupled mode equations at Bragg and was obtained
by specializing Eq. (3.46) to the case of constant reflectivity reflectors. Inverting this
expression, we obtain a reflection coefficient of 7.06z10=3 for each thick gold strip. The
phase was chosen to be pure imaginary when referenced to the midpoint of a reflective
strip, as discussed in Sec. 3.4. The sign was selected to be positive, which causes the
transducer to be unidirectional in the experimentally observed direction which is indicated
in Fig. 5.1. This sign also agrees with the theoretical calculation of Chen and Haus (11] ‘and
disagrees withvthe result in Datta and Hunsinger 15! . The center of transduction, the point
at which the transduction coefficient «(z) is real, was assumed* to be the midpoint of the
gap between fingers of opposite polarity, as discussed in Sec. 3.4. The slight asymmetry
caused by the difference in metalization ratio between the aluminum and gold fingers was
ignored. The bulk resistivity of aluminum was reduced 15% for the 2000R film to account
for the finiteness of the mean free path of the electrons 0, The acoustic propagation
loss includes both intrinsic material loss and radiation into compressional waves in the air
above the device 198! . All the parameters used and their sources are summarized in Table
5.1

The coupled mode equations (3.95a-3.95c) were solved exactly to obtain the scattering
parameters of a filter consisting of two SPUDT's. Equation (3.69) was used to determine

the transduction coefficient and Eq. (3.71) was used for the capacitance. In both cases

* ‘This is exactly true only if the metal strips are perfectly periodic. In this case, the periodicity is broken by difference in metalization
ratio between the aluminum and gold fingers. (Sce Sec. 5.1).
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Electromechanical 24V (93
Coupling Constant Eq. 3.69 v -001.34 ]
T
Effective Relative T € 98
Dielectric Constant Eq. 3.3lc ®pr EB 4'55[ ]
o]
Reflection Coefficient -3[Me]
per Gold Strip r 37.06x10
Acoustic Attenuation [98]
Coefficient Y -158 db/cm
Sheet Resistivi (401
sistivity Eq. 3.89c Py .16Q/square
Average Velocity‘ \Y 3.1413105 cm/sec
Metalization Ratio n .355[Me]
Transducer Period A 42.09uM[Ma]
0
Acoustic Aperture %) 150 X [Ma]
0

Transducer Length 50.5 A [Ma]

[o]
Gap between Transducers 25.25 X [Ma]

o

Table 5.1 Parameters used in the Theoretical Plots of Fig. 5.2
The above parameters which are ncither measured nor specified by the mask are the generally uaccepted

physical parameters of either ST-X quartz or aluminum. Beside many of the parameters is an equiation
number in which the parameter is defined and the reference from which the value was obtained. (Me]
indicates that the parameter was measured and [Ma) indicates that the parameter value was determined by

the mask.

all the strips were assumed to be identical in width, and the average of the metalization
ratios of the aluminum and gold strips were used. The expression for « includes the
full frequency dependence of the transduction element factor. On the other hand, any
frequency dependence of « was ignored.

Now that we are dealing with a full filter, consisting of two acoustically coupled
transducers, we must distinguish between two different scattering matrices. The scattering

matrix for a full 2-transducer filter will be denoted by S, while the scattering matrix

Me]
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for a partial filter consisting of only one transducer will be denoted by Sf. The
experimentally and theoretically determined insertion loss curves, Sf, , for the device with
no electrical matching in a 50 0 system are presented Fig. (5.2a). The electrical port
reflection coefficient, ST, , is presented in Fig. (5.2b).

Qualitatively, the experimental and theoretical curves in Figs. (5.24, 5.2b) agree, but
there are problems with the absolute levels. Outside the passband, it is very easy to
apply power conservation to an individual three port since the transducers lose their
unidirectionality, and acoustic reflections from the transducers are reduced. Therefore
to a very high degree of approximation, the forward port single transducer scattering
parameter, S%, , equals the corresponding scattering parameter for the reverse port, sé,
and SF, = sF, . Furthermore, since we are greatly detuned from Bragg, the reflected
signals can be ignored and the full filter insertion loss S%, , is simply equal to (S§;)* (See

Eq. (3.76)). At the first sidelobe peak on the high frequency side, the

loss = 1-|SEIP ISRl -ISTP =~ 1-2S5|- IS0/ (5.2)

in the experimental data is .089 while it is .023 in the theoretical calculation.

A second discrepancy between theory and experiment is the difference in heights of
_ the passoand ripples. The theoretical ripples are much higher than the ripples in the
evperimental curve. This is probably due to using too high a value for the strip reflectivity.
Another difference is the asymmetry in the height of the passband ripples. The passband
ripple is caused by interference between the direct acoustic response and the triple transit
- signal. The precise detail of the ripples depends on the phasing between these two signals.
Only if there are an integral number of half wavelengths betwcen the transducers are the

‘ripples symmetrical. Although there are exactly 76 wavelengths between the center gold
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Reflection Coefficient 45T -3

per Gold Strip © 33.20 % 10

Sheet Resistivity 4.1 Peo .66Q/square
Velocity in the Spacer 1.004 v, 3.153 x loscm/sec.

Tablé 5.2 Adjustments to the Nominal Parameters of Table 3.1 Used in the Theoretical
Plots of Figs. (5.3, 54, 5.5, 5.6)

strips of the two transducers, the velocity is slightly higher in the spacer region since there
are no reflectors. This velocity difference affects the relative phasing of the triple transit
signal, and thereby the ripple asymmetry.

In order to check these ideas, new curves were generated (Figs. 5.3a-5.3d) with values
for somc of the parameters modified to better fit the experimental data. Sheet resistivity
was increased by a factor of 4.1 from the nominal value recorded in Table 5.1. This was
the amount necessary to make the theoretical return loss equal the observed return loss in
the rejection band. It should be noted that increased propagation loss could not account
for the higher loss in the rejection band since very little acoustic energy is generated, and
thus even less can be dissipated. The reflection coefficient for each gold strip was scaled by
a factor of .45 to make the height of the passband ripples more closely approximate what
was observed. Finally the velocity in the spacer region was increased by .4% to match the
asymmetry in the passband ripples*. These modifications to the nominal parameter values
are summarized in Table 5.2.

As can be seen from Figs. (5.3a-3.3d), the agreement between theory and experiment

for SF. is now excellent over the entire frequency range. In the casc of 8§, , the
11 21

* A change in the relative phase between s and a can also cause asymmetry in the passband ripples. In our case, the difference
in metalization ratio between the gold strips ( 7 =.38) and the aluminum strips ( 7 =.32) can cause such a phase shifl. If the center
of transduction, i.e. the puint at which a is real. is assumed to be at the midpoint of the gap between fingers of opposite polarity,
then this difference in metalization rutio causes the phase of < 1o shift by 2,25 at this point. This results in an asymmetry of less

than .1 dB in Su'_»'l , and thus is clearly insignificant compared to the eficet of the spacer velocity shift,
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agreement is quite good in the passband* and the highest sidelobes. The lower level
sidelobes (below — 60 dB) on the high frequency side are corrupted by bulk modes
which were not included in the model. Low level sidelobes were also affected by direct
electromagnetic coupling between the transducers.

The corresponding theoretical and experimental impulse responses obtained by a digital
Fourier transform of the frequency data of Fig. 5.3 after down shifting to DC ié displayed
in Fig. 5.4. The high triple transit signal at 3 usec delay caused by the reflections from
the gold fingers is responsible for the passband ripple of Fig. 5.3b. The electromagnetic
roupling is present in the experimental impulse response in the spike near 0 time. The
discrepancy between theory and experiment for large time is probably due to bulk modes.

It is disturbing that the mechanical reflection coefficient, «, had to be reduced to
obtain good agreement between theory and experiment, especially since « was deteimined
experimentally. Since the test structure was fabricated on a different slice, it is conceivable
that the processing wasn’t done exactly the same way on the two slices. Before it can be
concluded that something is wrong with the theory, the experiments should be repeated
with both the test structure and the device on the same wafer.

The sheet resistivity, p,, was obtained by measuring the DC resistance of a section of
the bus bar. Since the measurement was taken a long time after the device was fabricated,
care had to be taken to scratch through the oxide layer with the probes to obtain good
electrical contact to the aluminum. The sheet resistivity was measured to be .2 Q /square.
It thus seems that resistive loss is not being modeled properly since p, had to be increased
to .66 0 /square** to obtain good agreement. One possible explanation is that in the loss
calculation the current was assumed to be distributed uniformly throughout the cross

* Agreement in the passband could have been made even better by slightly increasing the propagation loss ~ . but the author thought
it would be best to adjust the minimum number of paramcters necessary o ubtain good agreement.

**]| is conccivable that the resistivity at 74.6 MHz is higher than at DC. At extremely high frequencies skin depth can be a problem,
but here it is not, since the skin depth is 9.8 g while the aluminum film is unly .2 p thick.
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section of a finger. Actually, the current is higher at the gap edges where the E-field is
largest, as is the charge distribution plotted in Fig. 3.10. This will increase the equivalent
resistance of a finger. For the SPUDT, this effect will be enhanced since the ion beam
etching of the gold (discussed in Sec. 5.1) will thin the aluminum at the edges along with
reducing the metalization ratio.

Further experimental and theoretical work is required to accurately determine why
the reflection coefficient and sheet resistivity values had to be adjusted. Nevertheless, it is
clear from the agreement between the experimental and theoretical results with modified
parameters, that coupling of modes is capable of modeling transducers with internal
reflection, and that resistive loss is responsible for the higher insertion loss and return loss.

Experiments were also conducted under conditions of a partial electrical match in
order to cheek the concept behind the SPUDT. Air core inductors were placed in parallel
with both transducers to cancel the capacitive admittance at the center frequency, and
3:1 trifilar (11981 transformers were used to raise the impedance level to 450 Q. This
resulted in a minimum insertion loss of 11.3 dB (Fig. 5.5)*. The two trifilar transformers
operated back-to-back accounted for 1.2 dB of loss, meaning that the filter itself exhibited a
minimum insertion loss of 10.1 dB, which is 15 dB better than in the unmatched case. The
discrepancy between the experimental and theoretical frequency responses is somewhat
larger in the matched case probably due to increased spurious electromagnetic coupling
arising from the matching circuit coils. This is exhibited in the impulse responses of Fig.
5.6 by the increased response at 0 time. Nevertheless, agreement is still quite good close

to the center frequency, except for the slight increase in inscrtion loss.

* A perfect clectrical match could be obtained and would result in lower insertion loss. It would be urdesirable since then the reflection
coclficicnt of the gold grating would not be large cnough to cancel the reflection dus Lo piezoclectric regeneration, and the tnple transit
signal would increase.
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Unmatched Matched
Insertion Loss - 24.8 dB 10.1 dB
Triple Tramsit Level -28.2 dB -44.6 dB

Table 5.3 Performance of the SPUDT

The most obvious change from the unmatched case is the elimination of the passband
ripple caused by the triple transit signal. The tremendous reduction in the triple transit
signal, to — 44.6 dB below the main acoustic response, can be seen in the impulse responses
presented in Fig. 5.6*. The fact that triple transit fell along with a reduction in insertion
loss, which is precisely the opposite of what would happen with a standard bidirectional
transducer, confirms the concept behind the SPUDT. Using Eq. (4.8). we compute that a
lossless bidirectional [DT with the same 10.1 dB insertion loss as the SPUDT would have
only 28.5 dB of triple transit suppression. Thus the SPUDT's triple transit suppression is

16.1 dB better. The results for the unmatched and partially matched cases are summarized

in Table 5.3.

5.3 Conclusion

The experimental uniform single phase unidirectional transducer (SPUDT) did indeed
work as expected. As the device was better matched, insertion loss fell along with a
reduction in the triple transit level, unlike a standard bi-directional (BIDT) [DT. Indeed,
the triple transit level of the SPUDT, which achieved 10.1 dB insertion loss, was 16.1 dB
better than a BIDT matched for the same insertion loss. The coupled mode equations

* “This reduction in the theoretical responsc is also responsible for an apparent increase in the butk mode response in the matched case.
Actually the bulk mode level is about 60 dB below that of the main acoustic signal in both cases,
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were successful at modeling the SPUDT which critically depends on the interplay between
distributed reflection and transduction.

There were two problems. One was that the reflection coefficient measured on a test
structure had to be reduced by about a factor of two in order to obtain good agreement
between theory and experiment. Since the test structure was fabricated on a different
slice, it is possible that a difference in reflector thickness can account for this. The
second problem was that the nominal aluminum sheet resistance had to be multiplied
by about a factor of 4 in order to obtain good agreement. This may be due in part
to inadequate modeling of the cross sectional current distribution of a finger, and te

fabrication difficulties.
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CHAPTER 6

PHASE-ONLY WEIGHTING

In this chapter, the design of SAW filters of uniform acoustic aperture is discussed.
The design is based on the simplest analysis technique, Hartmann's impulse model (a1,
although a modification to the technique is discussed which can correct for higher order
effects. The time or space domain weighting necessary to achieve good frequency responses
is ultimately done solely by varying the spacing between sources of uniform strength. This
result is obtained in three steps. First a low dynamic range amplitude and phase modulated
(AM-PM) waveform is designed using a quasi-Newton optimization procedure. Then
the design is nonuniformly sampled, and finally an improved version of Hartmann's (42)
withdrawal weighting technique is used to reduce the dynamic range to unity. In addition,
new structures are discussed which increase the accuracy of the withdrawal weighted
approximation to the AM-PM prototype. This increases the bandwidth over which the

filters’ rejection band performance is good, and also reduces passband ripple.

6.1 Introduction

Much work has been done on periodically sampled finite impulse response filter
synthesis in the digital signal processing field. The key result of this work is the Parks-
McClellan [#5.80 application of the Remez exchange algorithm ['* -to this problem which

yields linear phase filters that are optimal in the minimax sense. This technique is not
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Apodized Unapodized
Transmitter Receiver
S
1 Sy 53 Ry R, Ry

Diffracted Beam

Figure 6.1 Fundamental Problem of Diffraction Compensation
Receiving aperture R1 could be in the Fresnel zone of source S3 while R3 could be in the Fraunhofer :one.

Sources S1, S2 and receiving apertures R1, R3 can not be adjusted so that all 4 transfer ratios are correct
simultaneously.

directly applicable to the design of moderate bandwidth, low shape factor SAW filters with
low sidelobes and small passband ripple. The problem is that for high performance filters,
the Remez algorithm yields weights with a large dynamic range. The response of a SAW
filter of reasonable maximum }aperture apodized with these weights will be degraded by
diffraction (56,104,82) and transverse electrostatic end effects (197}, preventing these weights
from being achieved in practice.

For small overlaps, the fringing fields at the finger ends are significant and must
be included to obtain the proper weighting. In principle, once the effect is computed,
compensation should be relatively easy. In practice, however, fabrication inaccuracies
may make this difficult. Diffraction compensation is much more difficult although some
progress has been made 641021 | The problem is illustrated in Fig. 6.1. Assume the first
interdigital transducer (IDT), IDT1 is apodized and IDT2 is not, so that the full filter
transfer function is approximately proportional to the product of the transfer functions

of the individual transducers. In a sharp cut-off filter, S1 and S3 will be small aperture



134

sources since roughly speaking, they will be in the sidelobes of a sin(z)/z pattern. If
the receiving transducer were very short, then the source strengths S1, S2 and S3 could
simply be adjusted so they would be received in proper proportion at the location of the
receiving transducer. However, when both the transmitting and receiving transducers are
long, compensation is very difficult.

For example, receiving aperture R1 will be in the near Fresnel region of the diffraction
pattern of source S3, thus the beam will spread very little, and there is no need to adjust
the source aperture. On the other hand, receiving aperture R3 could very easily be in
the Fraunhofer region of the diffraction pattern of source S3, and thus due to a large
spreading of the beam, would pick up a reduced source strength. R3 could be increased
to properly compensate for reception from S3 but then it would be much too small for
reception from source S1 which would be even further into the Fraunhofer region.

In order to permit the ultimate in diffraction suppression, our goal is to design a filter
in which the source weighting is achieved solely by adjusting the locations of sources, and
not their strengths. Apodization could then be reserved for diffraction suppression. If
arbitrary spacing of the sources is permitted, then linear phase will not result for each
of the electroacoustic transfer functions. The total transfer function, T(g), (copying Eq

3.85), ignoring circuit factors, diffraction and reflections is

where the sources are located at z; and the receivers at y, , S} and S} are the strengths

of the transmitting and receiving sources, g; is the synchronous wavenumber, and ¢ is

a small* parameter which adjusts for source strength variations due to slight aperiodic
.

spacing.
* g is 081 for 50% metalized gaps (Sce. Sec. 3.9.1 and Fig. 3.16)
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Figure 6.2 Nondispersive Filter Constructed from Two Nonuniformly Spaced Transducers
The receiving and transmitting transducers (>rm a matched pair. Note that ym = L+ Zm (After
[105])

We note that if the locations of the sources of the second IDT, yx , are simply shifted
by a constant distance, L, (See Fig. 6.2) from those of the input transducer, z;, and

if §! =52 forall 7, then the transfer function will possess linear phase for arbitrarily

spaced sources.

' 2
_wWG,

T() = -t leA)f e (62

In this case the receiving transducer is matched to the transmitting one so that any
dispersion is canceled. To make the formula more familiar to the signal processing
community, in the remainder of this chapter Bz, will be replaced by 2nfz;/v=2nft;,

the linear phase term will be dropped and the element factor, (f), will be identified with

2

e(f) = -2”;4/0’ T (?:—f) (6.3)
T()) = ) |};S.~(%)qeﬂ"f‘-2 (6.4)
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For simplicity we will now ignore the element factor and we will assume that g is
zero, in addition to neglecting diffraction, and all circuit loading and internal reflection
effects. We will also ignore insertion loss and allow for an arbitrary gain factor, ¢ . Later
we will examine how these higher order effects can be handled. With these assumptions,

the achievable frequency response is

2
(8.5)

Ma(f) = QIZS;'C"Q"’"

The desired frequency response to be approximated, Mp(f), would typically be a
sharp cut-off band pass filter (see Fig. 6.3). The desired response is unity in the passband
and zero in the rejection band, with the response unspecified in the transition regions.
The transition regions must be of finite width in order to obtain a finite length impulse
response. Any achievable frequency response permitted by Eq. (6.5) will of course have
some finite maximum error 6, , in the passband and 6, in the rejection band. The
problem at hand is then to select the times for the impulses ¢; , and their sign S; , to best
approximate Mp(f) with M,(f). Typically, a weighted minimax approximation would

be desired, and then the error to be minimized is

By = max W(f) | Mp(f) — Ma(f)| (8.8)

rejection band
fe
or passband

where W(f) is a positive weighting function to permit the error to be of varying size in |
different frequency ranges.

The solution of the problem is very difficult for three reasons:

1) High performance filters, i.e. filters with low shape factors, low passband ripple and

low sidelobes, can easily require hundreds of source samples (see Sec. 6.5.3). This is a
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largé scale time consuming problem to solve directly with an optimization algorithm, since
the number of function evaluations required with a quasi-Newton optimization procedure
using numerical differentiation is O(N?) (see Sec. 6.3.2), where N is the number of
variables.

2) The S; are discrete variables, with permissible values -1, 0, 1, and thus no
derivatives can be defined which are necessary for continuous optimization procedures.
Integer optimization techniques must be invoked which are very time consuming due to
their combinatorial nature. Also these procedures are not as highly developed as their
continuous counterparts 29]

3) The times at which the sources occur enter into the desired function nonlinearly.
Thus the Remez exchange algorithm 2 can not b= used directly. Furthermore, even if
Eq. (6.5) were linearized about ¢;, , the resulting expression would not be in the form of
a linear superposition of functions needed for the Remez algorithm due to presence of the

magnitude squared.
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Figure 6.3 Sharp Cut-Off Bandpass Filter

Shape Factor = (f5 — f2)/(f1 = f3)
Achicevable Frequency Response= M4(f)
Desired Frequency Response= Mp(f)
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The Remez algorithm is very efficient and can be used to find the solution to minimax
approximation problems with hundreds of parameters. In our case, it seems that only
general optimization procedures can be used which can not accommodate such a large
number of parameters. Thus it is not really practical to directly minimize the error of Eq.

6.6)

Our approach, based on the necessity to tremendously reduce the number of
parameters, is to split the problem into three parts. The basic outline is similar to
that used by Hartmann (2! . First we design an amplitude and phase modulated (AM-
PM) waveform, whose magnitude squared Fourier transform approximates the desired
frequency response. In designing this waveform we try to keep the time envelope as flat
as possible to facilitate the final step. Hartmann uses an iterative time-frequency approach
to accomplish this, while others 130751 have based their waveform design on the stationary
phase approximation. In this thesis, a quasi-Newton [#%1 optimization procedure is used
with multiple criteria. We shall see that this enables us to achieve substantially better

frequency responses with the same size structure.

The second step is to sample this continuous AM-PM waveform. The standard
technique of sampling at phase increments of = radians is used. Finally we use an
improved version of Hartmann's (4! withdrawal weighting procedure to approximate the
amplitude and phase modulated (AM-PM) signal with a uniform amplitude PM signal. The
flatter the initial envelope produced by step-I, the better this approximation will be. Our
withdrawal weighting technique is an extension of the standard one. Multiple envelopes
are used, in addition to optimization over the quantization step, to broaden the bandwidth
over which the withdrawal weighted frequency response closely approximates that of the

AM-PM prototype. An improved structure which allows successive source weights to be of
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the same sign also contributes to the broadening of the bandwidth over which withdrawal

weighting is useful. Furthermore, it allows passband ripple to be reduced.

6.2 Optimal Design of Low Dynamic Range Amplitude and Phase
Modulated Waveforms

At first we will ignore element factors, circuit loading effects, diffraction and all other
second order effects. Then since the two transducers form a matched pair, the filter's
frequency response is the squared magnitude of the Fourier transform of the impulse
response of each transducer. The phase of the frequency response of each transducer
cancels in the full filter transfer function.

We expect that the phase in the frequency domain will affect the impulse response.
Certain phases may yield a lower dynamic range time response than others. For example,
zero phase when associated with an ideal brick wall bandpass function yields a sin(z)/z
time response which has a very large dynamic range. A quadratic phase which linearly
chirps across the passband frequency range has a constant time envelope, but yet yields
a brick wall frequency response in the limit of a very slow chirp rate, i.c. large time-
bandwidth product 3% and long impulse response. Here we strive to achieve a design
which lies between these two extremes.

Another degree of freedom is the shape of the transition band between the rejection
band and passband. This algorithm selects the phase response and transition band shape
in such a way so as to minimize the deviation between the desired and achieved frequency
responses in the passband and rejection band. It simultaneously tries to obtain a relatively
‘low dynamic range time envelope.

The parameterization for the optimization procedure is displayed in Fig. 6.4. First the

frequency ranges for the reject, transition and pass bands are defined. Unity is typically
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Figure 6.4 Parameterization and Signal Definition
1) The desired single transducer magnitude response is associated with the phase and transition band

2,3) This desired frequency response, HL(f),
is inverse Fourier transformed to the time domain and windowed. The dynamic range of the time envelope
4) Finally the achieved frequency response is determined by Fourier transforming this

responses determined hy the specified parameters.

is evaluated.
truncated time response and computing the magnitude squared.

achieved two-trunsducer frequency responses is examined to determine the frequency error.
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The difference hetween the desired and



141

selected for the desired passband frequency response although any shape is realizable. The
desired rejection band response is zero, and the transition band shape is left unspecified.
We parameterize the single transducer group delay by a few sample values. Linear
interpolation is used to evaluate the group delay between sample points. Since the phase
function is proportional to the integral of the group delay, the phase consists of segments of
quadratic phase with both continuous function value and first derivative at the break points.
The single transducer transition band response is parameterized in a similar manner, by
samples of the magnitude response along with linear interpolatio'n.

Once the desired full filter magnitude response, Mp(f), is specified, and parameter
values are determined, the entire initial single transducer frequency response is known.
In the passband and rejection band, the square root of the desired full filter magnitude
response is the desired magnitude response of each transducer, M}h(f). In the transition
band the parameterization directly specifies the desired single transducer magnitude
response. The phase determined by the group delay parameterization is then associated
with ML(s) to determine the full complex desired frequency response of each transducer,
HL(f). As shown in Fig. 6.4, Hb(f) is inverse Fourier transformed to the time domain,
and then windowed to obtain the time envelope magnitude M{,(t). A time response
error, E,, is defined which measures the deviation of the envelope magnitude from its

average value:

) N, 1/Q
: =|— 2ps .
E [Nc ; € ] (8.7)

where e; = M}, (t)—aV;, and aV, is average time envelope magnitude.
The error of Eq. (6.7) is called an L, error definition. In the limit as p, approaches
infinity, E, is dominated more and more by its largest term, and the error definition

approaches the minimax one. @, does not affect the location of the minimum, but aids
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in normalizing the error and affects the efficiency of the procedure. This procedure of
optimizing in the minimax sense with a sequence of continuously differentiable Ly, errors
was first proposed by Polya [8488.28] ]t has only been proven rigorously in the case of a
linear superposition of functions, but its connection with the minimax error definition is
so intuitive that it seems reasonz:ble to try it in this nonlinear optimization problem.
Next we Fourier transform the windowed time resbonse back to the frequency domain
and find the magnitude squared to obtain the achieved frequency response, Ma(f) =

(M },(f))2 . The weighted deviation between the achieved response Ma(f) , and the desired

response, Mp(f), outside of the transition band is the frequency response error:

1 Ny , I/Q!
—_ | —— YA L
Ey = [N; .-;(w'e“) '} (6.8)
where
Ma(fi) = Mp(fs) Passband
o Maif) Reject-band

Average-passband-value

Note that the rejection band error is defined relative to the average passband level. This
prevents the optimization procedure from attempting to improve the rejection level by
reducing the overall gain. Again a minimax approximation is obtained in the limit as p;
approaches infinity. The error weights, w; , allow reduced passband ripple to be traded
for increased sidelobe rejection.

Another way of obtaining a minimax approximation for a continuously differentiable
-error definition is via a sequence of weighted L, optimizations. A procedure of this type
is the Lawson 15989 algorithm and is based on the intuitive idea of increasing the weight

where the error is too large, and conversely reducing the weight where the error is smaller
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than it needs to be. This is an alternative function of the weights w; in the frequency
error definition.

The total error to be minimized is

where W, is a parameter used to trade reduced frequency response error for increased
time response dynamic range. As W,; becomes smaller, the frequency response of the
amplitude and phase modulated (AM-PM) waveform will improve, but the withdrawal

weighted uniform aperture approximation will not be as accurate.

6.2.1 Baseband Fourier Analysis

In order to reduce the amount of computation required, all the Fourwr transforms
indicated in Fig. 6.4 are done baseband. This enables us to select a sampling interval for
the transforms that is appropriate for the slowly varying time envelope rather than for the
rapidly varying carrier frequency. We define the baseband desired frequency response,

Ha(f) , as the upper half of the frequency response down shifted to DC (see Fig. 6.5).

Ha(f) = Haf + fo)U=i(f + fo) (6.10)

U-i(f) = Unit step function '
The final frequency response is clearly

Haf) = Half - fo)+ Hulf + fo) (6.11)

since the initial impulse response is real. Using some symmetry properties of the Fourier
transform 178, we express the full impulse response in terms of the desired baseband

impulse response, hgs(t)
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M) = ha(t)eI 4+ by (eI ot
= 2Re[has(t)e’*™ ] (6.12)
= 2|ha(t)| cos[2 fot + arg(has(t))]
The time'windowing is actually done on hg(t) yielding h.s(t) whose Fourier
transform is H,,(f). The time envelope used to measure the deviation from flatness,
E, , is precisely hys(t) . The final achieved bandpass frequency response with the current

parameter set is then
Ho(f) = Hulf = fo)+ Hoslf + fo) (8.13)
It should be noted that this baseband procedure is mathematically equivalent to
working with the full modulated time signal and frequency response. It therefore works

equally well for low and high fractional bandwidth signals and for signals with little or

much phase modulation.

A IHd(f)l

LU T
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+

-fo 0

Figure 6.5 Baseband Representation of Bandpass Signals
a) The real modulated waveform and its Fourier transform.
b) The buaseband complex impulse response and its Fourier transform.
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A full description of optimization procedures is quite lengthy and can be found in

references (29633741 Here we summarize some key results and provide some information

as to how these techniques apply in this particular case.

6.3.1 The Newton Procedure

It is generally accepted that for smooth functions, when analytical formulas are available

for the gradients and second derivatives, that the Newton method is best. It is an iterative

technique which sequentially improves the estimate of the optimum, z;. In a Newton

method, at the current point z., a Taylor series expansion to second order in all N

variables is computed. Thus the function value, f(zi), gradient vector g(z:), and the

hessian matrix of second derivatives G(z) must be evaluated at this point. Letting 3 be

a small vector deviation from the current point, the Taylor series expansion is

f@e+3) = [(Z)+77(Z)3+ 37 C(Zk)E
where
gi(Zk) = a%f"
and
Gis(2e) ai;fz,-

(6.14)

The stationary point of this second order approximation to the surface is the point at
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which the total gradient is zero. It is selected as the next estimate of the optimum,

Th+r = Tkt 3k

o = -G lg (6.15)

This procedure is repeated until convergence is achieved.
Since most smooth functions are approximately quadratic near their minima, this
procedure converges very rapidly. In fact, near the answer z*, the deviation between the

exact minimum and the current best point falls quadratically.

|Ze41 —2H| = alz -z (6.186)

Frequently a line search is done in the direction 3, instead of selecting 3, as the
step to the next estimate of the optimal point. This is especially important far from the
optimum where the quadratic approximation to the surface is poor, and where stepping

by 3, can even cause the function to increase. In this case

Tht1 = ZTh+ard = Tk + Ok (6.17)

where a, should approach unity near the solution. Modifications must also be made
;0 handle the special case in which G is indefinite, in order to prevent termination at
a saddle point. A reasonable modification in this case is to search in the direction of

maximum negative curvature.
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6.3.2 The Quasi-Newton Algorithm

In our case, the Newton algorithm is not really applicable since the function to be
minimized, E of Eq. (6.9), depends on its parameters in a particularly complicated
hlanner, involving two Fourier transforms as illustrated in Fig. 6.4. Thus, analytically
obtaining the gradient vector and hessian matrix would be very difficult. Furthermore,
it would also be quite time consuming to evaluate the resulting expressions since they
would involve Fourier transforms. The gradient and hessian could both be evaluated by
numerical differentiation, but this would also be quite costly since the hessian which must
be evaluated on each iteration requires (N?+ N)/2 functional evaluations in addition to
the N required to find the gradient.

A more appropriate technique is the quasi-Newton algorithm. It is similar to the
Newton procedure except that the hessian matrix is not recomputed on each iteration.
Instead, an estimate of the hessian, By , is iteratively improved based only on first derivative
information. The hessian update is done so that the curvature of the function along the
current search direction is incorporated in the new hessian estimate. Mathematically, we
require the updated hessian to account for the exact difference in gradients between the

current and next points when the gradient is expanded in a Taylor series to first order.

9 +8) = 9(z)+ Bi+15k (6.18)

or

1= = T = Bt 15k (6.19)

‘Matrices obeying Eq. (6.18) are said to satisfy the quasi-Newton condition.
Since a hessian matrix is symmetric, we would also like the estimated hessian to be

symmetric. Since the only new information obtained on each iteration is the function value
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and the gradient, totaling N +1 scalar values, it is unreasonable to try to independently
modify all N(N +1)/2 elements of the hessian matrix. A particularly simple update for
a matrix would be one in which its columns were comprised of a linear superposition of

just a few vectors. A symmetric rank 2* update of the form

Bky1 = Br+amal +bvo7 (6.20)

satisfies this requirement. Vectors 7, 5 and scalars a, b are chosen such that the updated

matrix, B, , satisfies the quasi-Newton condition.

Fe = §k+13k = ﬁkgk + a% ﬂTzk + bvv"& (6.21)

A simple solution is » = v, to yield 4, on the left side, and » = B3 , to enable
us to cancel the B,3, term which is already present. On plugging this assumed form in

Eq. (6.21) we evaluate o« and b5 to obtain

- =
B, + 13k _ Bilidi B

— 6.22
58k 31 Bibs (6.22)

toll
.
p

This is called the BFGS update after its inventors Broyden '° , Fletcher [*’! , Goldfarb (34!
ané Shano # , who independently derived this formula. This solution is not unique.
There is a single parameter set of symmetric rank-2 updating formulas, the Broyden
family, but many authors [29:8:331 state that based on numerical experiments on a wide
vaﬁeﬁ of problems that the BFGS formula is generally accepted to be the best.

*An even simpler rank one update is not used since the positive definiteness of the updated hessians can not be guaranteed **) . ‘This
is nccessary for convergence of a quasi-Newton prozcedure as will be discussed in Sec. 6.3.2.1.
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6.3.2.1 General Properties

It is worthwhile summarizing some key theoretical features which indicate why the
quasi-Newton procedure works so well. In order to make consistent progress toward the
minimum, it is necessary that the search direction always be one in which the function
decreases. Thus the projection of the search direction, 3, on the gradient, g, must always

be negative. Using B in place of C. in Eq. (6.15) we obtain

TBs > 0 | (6.23)

This is the definition of positive definiteness for a matrix. It has been shown %7
for general functions, that if the initial hessian estimate is positive definite, so will all
subsequent By's, provided that all the line searches are sufficiently accurate. All that is
required is that the directional derivative in the old search direction at the new point be

greater than the derivative in this direction at the previous point,

Tkt > 310k (6.24)

This should never be a problem since s¥g, is always negative, and sf g+ is zero for an
exact line search. The line search can simply be continued until s7gi., is close enough
to zero to satisfy Eq. (6.24).

Another important property is the rapid convergence of the algorithm near the optimal

point z*+ . Convergence is superlinear, meaning

li |§k+l —§+|

0 6.25
k—+co Ifk - I’*‘l ( )
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If the function is a convex quadratic function of N variables, the algorithm converges
to the exact answer in at most N iterations, provided that exact line searches are used.
Furthermore, the final hessian after updating is the exact hessian.

It should be noted that these convergence properties are not as good as those of the
Newton algorithm which achieves quadratic convergence in general, and finite termination
in one step on a quadratic surface. Nevertheless, these convergence properties are quite
good, and make the algorithm suitable for our application in which analytical formulas for

the hessian matrix are not available.

6.3.2.2 The Line Search and Convergence

The line search algorithm used within the quasi-Newton procedure is based on a

quadratic approximation to the function along the search direction.
h(e) = f(Zx + aBk) (6.26)

Both the function value and its slope are available at a = 0 since that was the best
previous estimate of the minimum. Usually the function value is evaluated nextat a =1,
which is the minimum of the quadratic approximation to the surface in N -space. Based
on these two function values and one slope, a parabola is fitted to g(a). The function is
typically evaluated next at the minimum of this parabola.

One could discard the point at which g(a) is largest, and use the remaining three
points to define a new parabola whose minimum would yield the next point. This
procedure could be repeated until convergence was achieved. Instead a similar but more

reliable procedure was used in which a triplet, a1 < a2 < ag, is selected such that



151

f(az) < min(f(a1), f(es)) . In this way a local minimum is sure to exist for a; < a < a3,
and on subsequent iterations this interval, which must contain the minimum, shrinks. Also,
-interpolation is used in preference to extrapolation.

Special cases in which the parabola is concave down and thus has a minimum at
+o0o are handled by biasing the search toward a = 0, where the slope is negative, and
by limiting the maximum step which can be taken. Safeguards of this type are used
throughout the algorithm to prevent wild steps from being taken, which would otherwise
occur whenever the quadratic approximation to the surface was inaccurate. Safeguards are
also used to prevent iterates and function values from becoming too close to one another.
This is important since the computation of the minimum of the parabolic approximation,

ot , involves differences between function values or a's .

1 (o~ b + (o = Do + (= b
2 (ag - a3)h1 + (03 - al)hg + (al - ag)ha

(6.27)

1(hg = ho)ad + (hy = hg)ad + (hs = hi)a} (6.25)
2 (h3 = hg)ay + (hy — h3)ag + (hg = hy)as
Due to the finite precision of any computer, many of the digits in these subtractions can
cancel, resulting in a very inaccurate parabolic approximation. The end result of ignoring
this issue is a large step away from the answer after almost achieving convergence.

In general, a one dimensional optimization procedure is terminated when the slope
approaches zero and when successive iterates and function values both change very little.
Here, since the line search is part of a multi-dimensional optimization procedure, more

specific criteria for termination exist. We define the following three conditions:

hi — heyr 2> —phia 0<p<1 (6.29)
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lhksr] S ol 0 <0 <1 (6.30)
(s
0, < 3~ p>0 (6.31)
where
' —97 3k
cos(0;) = 6.32
O = 5l (6:32)

Condition (6.29) requires that the function value be reduced by a certain fraction
of that which would be produced by a linear approximation to the function at a = 0.
Condition (6.30) requires that the directional derivative along the line search direction
be reduced to a fraction of what it was at the start of the line'search. If ¢ =0, then
an exact line search is being required. The angle between the search direction and the
direction of steepest descent is 6, . Condition (6.31) requires that these directions never
approach orthogonality. Fletcher 2! proves that if conditions (6.29, 6.30, 6.31) all hold,
and if the function is uniformly continuous, that either the function has no minimum and
fi = —00, OF g = 0 for some finite k, or that g, approaches 0 in the limit as &
approa - infinity. Thus if a finite minimum exists, the algorithm can not converge to a
nonstationary point. Therefore if conditions (6.29, 6.30) are used to define the termination
of the line search, a quasi-Newton optimization procedure will be convergent as long as
condition (6.31) holds. This condition is not naturally obeyed by the BFGS updates or
any other rank-2 update, but it can be inzposed.

Condition (6.30) was used as the main line search termination criterion, with the
derivatives h, being computed via finite differences, using the function values already
determined in the current triplet. The o value used ranged from .01 to .001 meaning,
that the line search was required to be quite accurate. This was done for good reliability.
The parameter p was fixed at 10~ so that if Eq. (6.30) was satisfied so would Eq. (6.29)

almost all the time.
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The function being minimized, Eq. (6.9) was rather rapidly varying, especially with
the large p. and p, needed to obtain reasonable minimax type approximations. In
addition, the conditioning number of the hessian, the ratio of the maximum to minimum
eigenvalue, varied quite dramatically. This meant that as the algorithm progressed, the
function became more sensitive to certain combinations of variables and quite insensitive
to others. This made accurate estimation of the lccation of the minimum increasingly
difficult. Furthermore, numerical errors became much more significant in solving for the

Newton search direction.

This problem was solved by rescaling the independent variable whenever the condition
number of the approximate hessian became large. The rescaling was based only on the
diagonal hessian values computed with finite differences. The variables z; were rescaled

to #; = Az; so that all diagonal elements of the new hessian were 1.

ﬁ,' = —-]-—Z" (6.33)

v(em

A full eigensystem analysis could have been done to transform the hessian to the identity
matrix, but the above much less computationally intensive procedure, was sufficient to

control the condition number.

In the actual implementation used, condition (6.31) was not explicitly imposed. Note
however, that search directions almost orthogonal to the gradient can only occur if the
-ellipsoids of constant function value are highly elongated, which corresponds to an ill-
conditioned hessian. Thus, since the condition number of the hessian is being controlled

by dynamic rescaling, this potential problem is eliminated.
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6.3.2.3 Numerical Differentiation

In this application, obtaining analytical formulas for the derivatives of the objective
function, Eq. (6.9), is quite difficult. Therefore, finite-difference approximations to the
gradient were used. The simplest approximation is the forward difference formula which
is presented below for a function of one variable.

h{a + A) — h(a)

D;(8) = ) = Hla)+ SH(@)+ (6.34)

The Taylor series truncation error is made arbitrarily small by shrinking the interval
over which the differencing is being done. This yields very bad results in practice on a
physical finite precision computer, since h(a + A) will be very ciose to h(a) . Thus most
of the significant digits in the difference will be lost due to cancellation error.

Let us assume that at the current location, tﬁe absolute numerical error in functional
evaluation is bounded by e, . Then the cancellation error in the forward finite difference

approximation is bounded by

E; = == (6.35)
since in the worst case the errors will add. An estimate of the total error is then

A 2¢
Ey(a) = -2-h"(a)+—5‘1 (6.36)

and is minimized by choosing

= _fA_
& = 2\ i (6.37)
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This differencing procedure was used in the optimization algorithm with the second
derivative estimates generally obtained from the diagonal entries of the updated hessian
matrix. If fewer than N iterations are completed so that the hessian estimate is not
complete, then the curvature along the line search direction closest to the current searci
direction is used. This is reasonable as long as the condition number of the hessian is not
large.

If the estimated gradient is small or if the estimated relative error in the gradient,
E.s , is large, then the central difference formula is used, whose truncation error is 0(A?),
but which requires twice the number of function evaluations.

h(c + A) — h(a — A)

D.(A) = = = W(a)+ f—:h"'(a)+.-- (6.38)

Using the same procedure as above, the optimal differencing interval, A., is now

substantially larger.

364
A, = ¢ W (6.39)

Instead of estimating the third derivative which would have required four additional
function evaluations, the function was assumed to be sufficiently smoothly varying for ~"(a)
to be roughly the same order of magnitude as the third derivative. If a transformation
of the independent variable of the form & = aa is performed, then 4”(a) scales by 1/a?

while A"(a) scales by 1/a®. The correct scaling relationship is preserved in the following

formula

A = \3/%@7 max(1, a3) (6.40)
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Note that if « is small, A, is not multiplied by «%. This prevents the differencing

interval from becoming arbitrarily small, yielding a large cancellation error.

Much of what is stated above about the difficulties of numerical differentiation is quite
obvious, but nevertheless it is crucial to the successful implementation of the waveform
synthesis procedure. Accuracy in the gradients is important since they not only affect
the search direction on the current iteration, but on all future iterations via Eq. (6.22) in

updating the hessian matrix.

6.3.2.4 Typical Performance

Termination of the routine is based on simultaneously achieving a low gradient, and
having |zi+1 — x| and |fiss — fi| both become small. The condition number of the
quasi-Newton hessian was examined at termination to check for numerical difficulties. In
order to check whethei a local minimum was achieved, a random search was done to check
for lower function values, and for directions of negative curvature. In addition, a finite
difference approximation to the entire hessian was computed at termination and checked

for negative eigenvalues to ascertain whether termination occurred at a saddle point.

This quasi-Newton procedure was used for filter design by minimizing the errcr of
Eq. (6.9) using from 4 to 3. parameters. With N parameters, convergence was typically
achieved in 2N to 3N iterations of the optimization procedure if a L, error definition
was used, and if the starting point was reasonably close to the answer. If a bad initial

starting point was used, 5N iterations were sometimes necessary.

Minimax type designs were attempted with reasonably large values for p; and p;

such as 300 and 100 respectively. In this case, convergence was often difficult to achieve
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even after 23N iterations and many diagonal renormalizations, with all computations
done in double precision to 17 decimal digit accuracy. Nevertheless, the error was almost
always substantially reduced and good answers were obtained. The source of the problem
was the hessian matrices condition numbers being driven to values as high as one million
without diagonal sca'ing. Using diagonal renormalization, they fell to around 30000. It
is possible that a il eigensystem analysis and diagonalization would solve this problem
if the eigenvalues and eigenvectors could be computed accurately enough. Instead, most
computations were done with p, and p; at least 10 times smaller. Then this problem

did not occur and convergence once again occurred in 2.5N to 5N iterations.

6.4 Nonuniform Sampling

The second basic step in our algorithm for constant time-amplitude filter synthesis is

sampling the waveforms. If H.(f) is the frequency response of the continuous waveform,

then

[ i Hc(f"“fa) (6'41)

k=—o00

H,(f)

is the frequency response 8 resulting from sampling the continuous impulse response
with unit area impulses spaced in time by 1/f,. If the continuous waveform was of
bandwidth As centered at f, , then according to Eq. (6.41), the waveform would have
to be sampled at least at f, = 2(f, + Af/2) to avoid aliasing of the upper replica of
the response into the fundamental. Depicted in Fig. 6.6 is the case of sampling exactly
at the above minimum sampling frequency, the Nyquist frequency. Note that there is

another passband just above the desired one caused by aliasing. This destroys the rejection
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Figure 6.6 Uniform Sampling at the Nyquist Frequency
Note the aliased passband just above the desired passband.

performance on the high frequency side. In order to push this aliased passband up to 2fo
or 3f,, the sampling frequency would have to be increased to 3/, or 4f, respectively.
These high sampling rates are only necessary if the frequency responses have no
particular syrametry. If the desired frequency response is conjugate symmetric about f, ,
then the sampling frequency can be reduced to 2f, and the next highest passband is at
3f,. Fig. 6.7 shows how we take advantage of aliasing to achieve this result with half
the sampling rate. In this case, the samples are taken at the peaks and valleys of the real
modulated time signal. |
~ In our case, the frequency responses can not be conjugate symmetric about the center
frequency since that would imply that the baseband impulse response is real, which by Eq.

(6.12) precludes any phase modulation. This means that four samples per period would
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Continuous Signal

Vv

| | Sampled Signal

-3f £ . £ 3f

Figure 6.7 Uniform Sampling for Conjugate Symmetric Bandpass Signals
The frequency response is assumed to be conjugate symmetric about the center frequency. Real symmetric

responses are sketched for simplicity. Note how the aliased responses add exactly on top of the unaliased
responses.

be required to obtain a reasonable rejection region on the high frequency side. Some of
the samples would be near the peaks and valleys, yet others would be near zero crossings
where the signal is changing rapidly. This is undesirable since a large dynamic range
would be required in the sample weights which is precisely what we wanted to avcid
by obtaining a low dynamic range complex time envelope. Furthermore, placement of
samples where the waveform is rapidly varying would seem to increase the sensitivity of

the final device to errors in the positioning of these samples.
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For the above reasons, it was decided to use an alternative procedure in which samples
are placed near the extrema of the signal. In the case of a phase modulated waveform, the -
sampling interval will no longer be uniform. Atzeni and Masotti ¥ developed a theory
for nonuniform sampling of this type. They place the samples at points where the phase

is an integral multiple of = .

Let us express the AM-PM waveform to be sampled in the baseband form of Ea.

(6.12).

J(t) = a(t)cos(g(t)) = a(t)cos(2nfot + 0(¢)) (6.42)

where a(t) is twice the magnitude of the complex baseband envelope, and 0(t) is its phase.

The baseband response, fs(t), is then

ity = a—(;le""" (6.43)

Let us first work with

o) = cos(g(t) (6.44)

which is just the phase modulation. We 1egard 3(¢(t)) = g(¢) to be a function of ¢ and

then sample it with impulses separated by ~ radians in ¢ space.

[~ -] [ <]

G8) = O cos(nm)b(p—nm) = > (~1)"6(¢—nn) (6.45)

n=-—00 n=-—00

Since §,(¢) is a periodic function in ¢ with period 2, it can be represented as a Fourier

series

o) = ;Y cosmd (.46)
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Now we re-express g,(¢) as a function of ¢

aet) = 3 - = Y Criesl e
where
B(ta) = 2nfotn+0(ta) = nn (6.48)

Note that here it is assumed that ¢(t,) = nr has a maximum of one solution. If there
are more solutions, then one impulse must be added for each additional solution. The fact
that §(¢(t) - n) has area 1/¢/(t,) when expressed explicitly as a function of ¢ is easily

demonstrated by direct integration with a change of variables.

/_ 6[p(t) — nx]dt = / 5(z)d¢_ (z + nn)dz 649
* 4

where

T = ¢(t)—nnr

and

z =0 at #(tn)

nw

Combining Egs. (6.46, 6.47) we obtain

0:(t) = G.(8(t) = Z d );,6(tt)—t") = % Y. cos(mg(t) (6.50)
n m=1,3 .

n=—0oo
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Upon multiplication by Za(t) we obtain the final result

% :Z (=1)" 2,,','364(:0,“")) = a(t)m;mw cos (m2r fot + mé(t)) (8.51)

We note that the first term on the right side of Eq. (6.51) is precisely f(¢), while the
others are concentrated near the odd harmonics just as in the uniformly sampled case with
f, = 4f, in general, or with f, =2/, in the conjugate symmetric case.

In our case, the complex time envelope, fy(t), is not really a continuous function. It
is computed with fast Fourier transforms (FFT’s) and is thus known on a coarse uniformly
spaced grid. The points at which the phase is an integral multiple of =, t,, generally do
not lie on this grid. Thus interpolation is necessary to evaluate the complex envelope at
arbitrary time. Bandlimited interpolaticn is used which corresponds to passing the sampled

version of f,(t) through a lowpass filter. The intérpolated result, fu(t), is then (78

fw(t) = Z f,,(nTs)smc(—(t—nT )) (6.52)

n=-—-00

where T, is the spacing between time samples.

The nonlinear equation for the sampling times, ¢, , is then

arglfu(ta)) = nm (6.53)

This equation was solved numerically using the line search minimization routine of the

.quasi-Newton optimization procedure. The function to be minimized is

et) = [arg(fuiltn)) - nn)? (6.54)
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The only values of » needed are 0 and 1, since a branch cut for the angle determination
is placed at —=/2. Initial guesses are obtained using linear interpolation on the phase
between sampling times.

The most important practical difference between uniform and nonuniform sampling
is that the sample values in the nonuniformly sampled case are not the sample values of
the envelope; they must be divided by the local instantaneous frequency. This is intuitive,
since otherwise the weight would be higher in regions of higher instantaneous frequency

due to the higher concentration of samples.

6.5 Low Dynamic Range Design Examples

The basic algorithm described in the previous four sections was used to fully design
four amplitude and phase modulated (AM-PM) wéveforms with low dynamic range. These
will be referenced as prototypes I through IV. In all cases, each transducer’s impulse
response was 251.5 wavelengths long with a 7.1% fractional bandwidth. They were brick
wall filters whose shape factors* ranged from 1.15 to 1.18. The Fourier transforms were
done with 1024 point FFT's and a time sampling corresponding to one sample eveﬁ
2} wavelengths at the center frequency. This means that the unaliased frequency range
extends from .786f, to 1.214f, which was certainly sufficient, since all the frequency
responses were well into the rejection band outside this region. The design of the first
AM-PM prototype will be used to illustrate every step of the algorithm, and then the new

results obtained with the three other waveforms will be summarized.

*[icre shape factor is defined as the ratio of the bandwidth at the rejection level to that at the level of the passband minimum. (see
Fig. 6.3)



164

In order to halve the number of parameters required, the first filter was designed
assuming a symmetrical phase response. An antisymmetrical phase response would also
halve the number of parameters but would not be suitable. The problem is that when
combined with the desired symmetrical ideal bandpass magnitude response, Has(f) would
be conjugate symmetric, yielding a real baseband impulse respbnse, and would not possess
any phase modulation according to Eq. (6.12). In addition, the same parameters were
associated with both transition bands. Twenty parameters were used in total, of which
17 were allocated to the phase function and 3 to the transition bands. This is indeed a
substantial reduction, since if we had parameterized by the time samples and their signs
as in the initial problem statement, we would need 503 continuous variables in addition to
503 discrete ones. Since computation time is O(N?), even if we ignore the combinatorial
problem in 503 discrete variables, this represents a savings of almost 3 orders of magnitude.

The desired response at the first step of the algoritam is zero in the rejection band and
unity in the passband as depicted in Fig. 6.4. The initial paranicterization of the transition
band was such that the desired single transducer response varied linearly from 0 to 1. The
breakpoints for the group delay response were selected to lie on a line, and correspond
in the time domain to a quadratic phase, i.e. to a linear chirp over the passband of the
filter response. In Fig. 6.8a is displayed the final desired magnitude squared frequency
response selected by the optimization procedure. The parameters only affect the transition
band response which is seen to oscillate wildly. If the achieved transition band magnitude
response actually behaved in this manner, it would be undesirable. We will soon see
that truncation in the time domain smooths out the achieved transition band response.
‘The only purpose of the rapidly varying transition band response is to prevent the time

envelope from falling off too rapidly near the end of the desired time window, thereby

reducing the dynamic range.
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The desired group delay response is displayed in Fig. 6.8b. Its general trend is linear
as would be expected for a linzar chirp, but it too oscillates quite a bit. Note that many
frequencies have the same group delay. Using the stationary phase approximation to
compute the inverse Fourier transform, only frequencies with group delay ¢,, contribute
to the time response at time t, . Thus there no longer is a one to one relationship
between time and frequency as there is in the invertible group delay functions typically
used in SAW devices for radar applications.

The time response after windowing to 251.5 periods at the fundamental, is displayed in
Fig. 6.9a. We note that the time envelope is not as flat as we desired nor is it equiripple*.
This is a result of having used p, = 30 to obtain a Lgo error definition for the time error
in Eq. (6.7). A larger value for p, could have been used to obtain a flat time envelope in
the minimax scnse, but this would have made the numerical optimizatiun more difficuit as
discussed in Sec. 6.3.2.4. Nevertheless, the ratio of the maximum to minimum envelope
value is only 5.8 (See Table 6.1 in Sec. 6.5.2.). This is orders of magnitude better than that
which would be achieved via a straightforward inverse Fourier transform of the desired
frequency response with zero phase, or via the Parks-McClellan 1851 algorithm (See Table
6.2 in Sec. 6.5.3.). The associated instantaneous frequency response is displayed in Fig.
6.9b. As with the desired group delay, it is not monotonic. At relative frequencies ranging
from .95 to 1.05, there are several times that are synchronous simultaneously.

Finally this windowed time response is Fourier transformed to obtain the achieved
frequency response and is displayed in Figs. (6.10-6.12). The desired sharp cutoff
characteristic was obtained with — 51.8 dB sidelobes and .2 dB peak to peak passband

ripple (See Table 6.1 in Sec. 6.5.2.). As with the time response, a minimax frequency

*IL is nou clear whether the optimal minimax sclution is equiripple. The minimax solution has only been proven to be equiripple
for a linear supcrposition of basis functions satisfying the llaar condition (12:88) e flaar condition requires linear independence
for any set of N vectors, (i(z1), di(z2), ..., di(zn),i = 1, N for N distinct points, z; , in the interval over which the
approximation is being done, where (@1, @2,..., #n ] is the set of basis functions for the approximation.
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response was probably not obtained, since p; (Eq. (6.8)) was only 10, meaning that a
Lo error definition was used. Fig. 6.12 demonstrates that the initially specified group
delay response at step-I of the error definition in Fig. 6.4 was not achieved, but that a
smoothed approximation resulted. This smoothing was causcd by windowing in the time
domain. The phase responses displayed in Fig. 6.11 agree much more closely since the
integration required to go from a group delay response to a phase response is also a

smoothing operation.

The waveform was then nonuniformly sampleci using the procedure outlined in Egs.
(6.42-6.54) over the region in which the uniformly sampled envelope was non-zero. The
right-most third of this waveform is displayed in Fig. 6.13. The spacing is chirped so
slowly that it is difficult to observe the non-periodicity. This indicates that our assumption
embodied in Eq. (3.85) of a single element factor whose amplitude is slightly scaled to
account for the slight aperiodicity was a reasonable one. The frequency response of the
nonuniformly spaced samples is plotted along with the response of the uniformly spaced
samples in Figs. (6.14a, 6.14b). These responses agree reasonably well in the rejection
region, but there is a huge degradation in the passband. The nonuniform sampling

increased the passband ripple by about a factor of three.

In order to improve the approximation of the uniformly spaced samples by the
nonuniformiy spaced ones, Eq. (6.52) was used to extrapolate the nonuniformly spaced
samples beyond the end of the uniformly sampled prototype. Ex;rapolation was done
until the sample values stopped decreasing in magnitude. The total number of samples
increased from frdm 503 to 514 with 6 points added to the left and 5 added to the right.
As shown in Fig. 6.15, the sample values decrease smoothly to zero iﬁstead of being

truncated abruptly. This of course increases the dvnamic range of the impulse response,
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but since there are only a few small samples, we anticipate that withdrawal weighting
to be discussed in Sec 6.6 will be able to handle the situation. The frequency response
of this waveform is displayed in Figs. (6.16a-6.16c). The agreement in the frequency
responses between the nonuniformly and uniformly sampled waveforms is now very good
in the passband, only differing by a few hundredths of a dB. In the rejection band, the
nonuniformly sampled waveform has lower sidelobes. This is due to the smooth fall-off

of the extrapolated samples.

6.5.1 Compensation for Second Order Effects

In the design of the first prototype waveform, we used the impulse model. This is the
simplest model for the calculation of a SAW filter's frequency response. In theory, the
same design algorithm could be used with a more accurate model to properly handle second
order effects such as circuit factors, element factors, acoustic reflections and diffraction. In
practice though, this can not be done unless extremely fast algorithms are developed for
the evaluation of these effects. In order to not slow down the procedure significantly, the

second order effects would have to be compucable as rapidly as FFT's.

An alternative is to place the compensation for second order effects outside the
optimized design loop. One possibility would be to compute the distortion caused by the
second order effects to an optimized design which ignored these effects. The distortion can
be modeled either as a multiplicative or as an additive effect, whichever is more accurate
for the effect under study. If the distortion is small, then it is reasonable to assume that
‘the perturbation in sample locations and amplitudes necessary to correct for this effect will
also be small. Thus the distortion caused by the corrected function can be regarded as

being the same as for the initial function. Using this technique, the second order effects
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need only be computed once, and this same correction can be applied to all subsequent
computed frequency responses within the optimization loop. Once an answer is obtained
the exact response can be recomputed. If the second order effects have not been corrected

to sufficient accuracy, this procedure can be repeated.

A different procedure was used which is based on the same premise of small second
order effects requiring only small corrections. As an example, we correct for the element
factor, e(f), which according to Eq. (6.4) is a multiplicative distortion. We start with a
prototype response which is optimized ignoring the' element factor. The optimized desired
magnitude response for each transducer is then divided by the square root of this element
factor. This predistorted magnitude response is associated with the optimized single
transducer phase response, inverse Fourier transformed to the time domain, windowed,
and retransformed to the frequency domain. Finally this frequency response is multiplied
by the element factor to obtain the achieved frequency response. It should be noted that
this correction procedure is not iterative. It basically consists of one pass around the loop
of Fig. 6.4 which defines the error to be minimized by the optimization procedure. Any
desired magnitude response cﬁn be designed by this procedure. The key questions are
how much does the dynamic range of the time function increase, and how much does
the achieved frequency response degrade from the optimized uncompensated prototype.
If the effect for which we want to compensate is small, we expect that or.ly small changes

to the optimal group delay and transition band shapes will be necessary.

An advantage of this procedure over the first, is that corrections to the phase response
can also be achieved. We initially assumed that both transducers were to have opposite
dispersion so that using the approximations implicit in Eq. (6.4), the final filter response

would possess linear phase. Including circuit loading effects, acoustic reflections and
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diffraction, this is not the case. If the computed full filter frequency response has an
uncanceled phase, e/°/) and we would like our filter to be nondispersive, then we simply
use the above procedure twice. The first time the prototype response would be divided by
¢19()/2 and the second time by e~#)/2 . Thus the lowest order phase response would
be e—7%(f), which to first order would cancel the undesired perturbation.

The magnitude only element factor correction procedure was applied to prototype-I.
The final achieved frequency response before multiplication by the element factor is
displayed in Fig. 6.17. This indicates that we are trying to compensate for a passband
tilt of about .7 dB caused by the deviation of the elemental sources from pure impulses.
The achieved frequency response after multiplication by the element factor is presented
in Fig. 6.18 along with the response of prototype-I. We note that the two responses are
nearly identical in the passband; they differ by about .01 dB. Plots which compare the
rejection band performance of prototypes I and 11 over a wider frequency band are not
presented since they are indistinguishable. Fig. 6.19 confirms that only slight changes in
the amplitude of the time function was required to compensate for the element factor. The
difference in the instantaneous frequency responses was so small as not to be discernible on
a plot. Thus, the viability of this optimization procedure to the design of filters corrupted

by second order effects has been demonstrated.
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6.5.2 Minimax Approximation with a Sequence of Weighted L, Minimizations

Both prototypes I and II were designed assuming the group delay to be antisymmetrical.
In these cases, minimax type designs were attempted with moderately large values for
b, and -p; in the Ly, and L, error definitions for the time and frequency errors
respectively. In the design of prototype-IV we remove the symmetry condition on the
group delay. In addition we use the L, error deﬁvnitions for both time and {requency and
attempt to obtain a minimax frequency response using a Lawson (#%5% type design,

The basic idea of the Lawson procedure is to perform a sequence of weighted L,
error minimizations to obtain an L, approximation. The weighting function is increased
wherever the error is too large and decreased where it is too small. The end result is that
the weighting function is non-zero only at the points of maximum error in the minimax
approximation. The rationale behind this is that L, error approximations are much easier
to compute than L., ones. Lawson proved convergence if the approximation consists of a
linear superposition of functions satisfying the Haar* condition, and if the approximation
is being done on a discrete set instead of a continuum. This convergence proof depended
on a particular sequence of weighting functions. Lawson could initialize his procedure
with any positive weighting function. Then if e and w} are the error and weighting
function respectively on the k** iteration at the :** point of the finite set over which the

approximation is being done,

,f+l — wf‘efl (6-55)
' 2 wklef|

* The Haar condition requires linear independence for any set of N vectors, [pi(z1), di(z2), ..., di(zN),i =1, N for N
distinct points, z; , in the inte-val over which the approximation is being done, where [#1,62,...,¢nN] is the set of basis functions
for the approximation.
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If at an early stage in the algorithm w; is accidentally zero because the error e
happens to be zero, then the weighting function must be perturbed away from zero at
that point and tien the algorithm can proceed. The denominator in Eq. (6.55) serves to
maintain the area under the weighting function at one. According to Eq. (6.55) the ratio

of the weight at two points is modified by the ratio of the errors at these points

k+1 kY [k
wT [l
T ( )—' (8.56)

k k
! o} I

Thus as we expected, the weight is increased where the error is large and decreased where
it is small.

In our case, the Lawson algorithm does not really apply since our approximation is
not being done with a linear 'superposition of functions satisfying the Haar condition.
Furthermore Lawson’s algorithm was found to converge extremely slowly. For example, a
test case with N =4 parameters and M = 50 p‘oints at which the error is to be measured,
required about 250 L, optimizations. Rice and Usow (8! present an acceleration scheme
which reduces this dramatically to about 14. When N was increased to 10 and M was
increased to 100, 40 L, optimizations were required using the acceleration scheme. Our
problem is substantially larger with N =35 and M = 1024, and would require even
more optimizations, making this approach impractical. Thus, it was decided to use the
basic idea behind the Lawson algorithm, but not the same procedure.

In contrast with the Lawson procedure, smooth weighting functions were used which
were characterized by a few sample values, Linear interpolation was used between these
break points, Uéing an L, error criterion, the main problem is a broadening of the
trahsition region, both into the rejection band and the passband. Thus at first, most of the

effort was focussed on adjusting the break point values at the rejection band and passband
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edges. At first these break points were adjusted inversely proportional to the desired error
reduction. For example, if the error of the passband edge were e, , while if the peak

error near the center frequency were e, , then the weights at positions 1 and 2 would be

adjusted so that

(6.57)

After the L, optimization was performed using this new weighting function, the new
errors e¥t! and ei+! are typically found to be closer, but not equal. It is assumed that
therefore a larger correction in the weighting function should have been made. Assuming
linearity, the weights should have been corrected by an additional factor of ef** ekt

yielding the formula

k
w
_ . (6.58)
2

Unfortunately ef+! is not known until »**! is found after the optimization is done.
1

Thus, this correction factor is used to find the next value of the weighting function

W etk ) 059
ST Tk e

This version of the update was also suggested by Lawson as a possible acceleration
procedure but without the above intuitive explanation. Unfortunately, Eq. (6.59) often
leads to an overcorrection and would thus lead to divergence if used all the time. A

continuum of updates ranging from that of Eq. (6.57) to Eq. (6.59) can be defined with a
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parameter p ranging from 1 to 2

k+2 k+1 k+1\P
1 = 1 8_1 (6 60)
S .
w'-j " w'z‘ ! eg !

Depending on whether the previous result was overcorrected or undercorrected, a value
of p was selected for the next modification to the weighting function breakpoint v..ues.

In the rejection band, the weighting function was constant on the first iteration. This
served to set the tradeoff between the passband ripple level and the sidelobe level. On
subsequent iterations, the weighting function was non-zero only near the band edge in
order to sharpen the transition region. It was a triangular fuﬂction, running from the
first null to the rejection band edge. The band edge rejection level was controlled in a
manner similar to that used for the passband, except that weights w, and wp in Egs.
(6.57-6.60) were the total area under the weighting function in the rejection band and
passband respectively.

This procedure was used to design a prototype AM-PM waveform with no symmetry
imposed on the phase function. In this case, the element factor compensating function
was inside the optimization loop. The starting point was a linear group delay similar
to that of prototype-I, but with a randomized sign sequence applied to the group delay
break point values in order to break the symmetry. The optimization was done over
N = 35 parameters, all of which were used to characterize the phase. The desired
transition band shape was not adjusted; it was assumed to be linear. In order to conserve
computer time, the L, optimizations were sometimes terminated before convergence to
“high accuracy. The initial weighting function was increased in the rejection band in order
to trade degraded passband performance for improved rejection band performance. After 5
L, optimizations, each consisting of 1.5 to 2.7N quasi-Newtcn iterations, prototype-1V

resulted which is displayed in Figs. (6.20a~6.21). Note that the weighting function had
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. Peak-"
# of # of group- Compensation . Peak peak
group- transition delay for the P P reject pass~ 1 Fractisnal®
delay band anti-~ element t £ lJyrmu\i.t:)r band band Shape-* band-
Prototype prms. prms. symmetry factor Bqs. 6.7, 6.8 range level ripple factor  width
-51.8 .20 1.156 L0712
1 17 3 .
yes no 30 10 578 515 .19 L154 L0712
-51.6 .21 1,155 .0712
I 1
! 7 3 yes yes 0 10 587 515 .20 1156 L0702
111 33 ~66.8 .40 1.176 ,0712
0 yes yes ! Lo 127 6’8 40 1176 L0712
-65.2 .51 1.177 L0714
v 35 0
no yes ! ! 6.60 57 .50 1.176 .07l

Table 6.1 Summary of Results: Low Dynamic Range AM-PM Waveforms
Each Amplitude and Phase Modulated (AM-PM) waveform is 252 wavelengths long. while the nonuniformly

sampled wavetorms after bandlimitcd extrapolation are 256.5 wavelengths long. * The upper value
applies to the uniformly sampled result of the optimization procedure, while the lower value applics to the
result after nonuniform sampiing. t The dynamic range is the ratio of the maximum to the minimum
baseband time envelope magnitude. 1 Sce Fig. 6.3 for the defi ition of shape factor.

to be very large at both the rejection band and passband edges in order to achieve the
desired sharp cut-off. The remaining plots characterizing this design are presented in Figs.

(6.22a~6.23).

From the results presented in Table 6.1, we note that in going from prototype Ito
IV, we have successfully traded passband performance for sidelobe rejection. Sidelobe
rejection increased by about 15 dB at a cost of a .3 dB increase in peak to peak passband
ripple. Unfortunately, the shape factor degraded from 1.156 to 1.177. This is not an
indication that something is wrong with using a sequence of L; optimizations. The
problem occurred because the discrete uniformly spaced points of the FFT at which the
frequency response was computed, did not coincide with the reject band and passband

edges. he solution would be to add additional points to the frequency error definition
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which are exactly at these band edge frequencies. These values could be obtained by
interpolation from the closest FFT sample values.

The final waveform, prototype-III, was designed in much the same way as prototype-
IV, using a sequence of weighted L, optimizations with varying weights. This time an
antisymmetric group delay was used. The starting point was prototype-1V, except that
the group delay for negative time was flipped in sign and used for positive time. This
cut the number of parameters by a factor of two. In order to keep roughly the same
number of parameters, new group delay break points were introduced at the midpoint
between existing break points. Linear interpolation was used to obtain the initial group
delay values at these extra points.

Plots detailing the performance of prototype-IIl are presented in Figs. (6.24a-6.26).
From Table 6.1 we see that the final frequency response resulting from prototypes III and
[V are roughly equivalent as to passband ripple and rejection level. Prototype-IV however
achieves this level of performance with half the dynamic range required by prototype-IIL
This seems to indicate that it is advantageous to allow the group delay shape to be
completely general, i.e. not to force antisymmetry on the group delay. This demonstration
is not a conclusive proof, however, since it is also possible that there exists a deeper local
minimum of the error for prototype-1II which would make the performance of prototypes

III and IV comparable.
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6.5.3 Summary of Results: Low Dynamic Range Synthesis

Although the prototype filters were designed using an optimization procedure, no
claim can be made as to the global optimality of the resultant filters. All that can be
guaranteed is convergenée to a local minimum of the error function. There probably are
many local minima, only one of which is the global optimum. Another problem is that the
parameterization used is not general enough to include all possible nonuniformly spaced
low dynamic range waveforms. It should be noted‘ however, that arbitrary spacing should
not really be allowed. If the spacing is highly irregular, the assumption of a relatively
constant element factor breaks down, and the the achieved frequency response would be
quite different from that described by Eq. (6.4).

Nevertheless, it is important to gain some feel as to how good these pseudo-optimal
designs are. In Table (6.2) we compare the results obtained with the prototype-I
amplitude and phase modulated design, with some optimal amplitude modulated uniformly
sampled designs produced by the Parks-McClellan (85! Remez l‘?l (PMR) algorithm. The
- comparison is made between filters with the same passband ripple, rejection level, fractional
bandwidth, and shape factor. We note that if two identical transducers are used in both
cases, that the PMR design must be 16% longer to achieve the same performance. If the
full response is placed in a single transducer, however, the PMR design is 19% shorter than
prototype-1. Note that the dynamic range required by the AM-PM waveform is only 6.03,
while it is 283 and 654 for the optimal PMR designs. The PMR designs would therefore be
much more affected by diffraction and electrostatic end effects if they were implemented
with apodization, than would the AM-PM designs. We have thus demonstrated that this
procedure can yield waveforms similar in performance to those produced by the optimal

Parks-a]gbrithm, but with much lower dynamic range.
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Peak-

Peak Peak Dynamic*
Length of Sidelobe Passband Range of
Full Device Level Ripple ShapeT Time Weighting
"~ (dB) (dB) Factor Required

Nonuniformly Sampled
Prototype-1 : 513 -51.5 .19 1.154 6.03

(2 identical IDTs)

Parks-McClellan
Algorithm 595 -51.6 .18 1.154 283

(2 identical IDTs)

Parks-McClellan
Algorithm 417.5 -51.5 .18 1.154 654

(all filtering in
1-Transducer)

Table 6.2 Comparison of Prototype-I Low Dynamic Range Design with the Optimal
Parks-McClellan Amplitude Modulated Designs

* Here dynamic range is defined as the ratio of the maximum sample value to the average of the minimum
10%. This prevents the measure of the dynamic range from being unduly affected by a few very smail samples.
t See Fig. 6.3 for the dcfinition of shape factor.

6.6 Withdrawal Weighting

Withdrawal weighting 142! is the final step in our algorithm for high performance filter
synthesis without apodization. We take the nonuniformly sampled prototype amplitude and
phase modulated (AM-PM) waveform with a relatively flat time envelope, and approximate
it with a sequence of constant amplitude samples and zero weight ones. The technique
is based on the fact that in a narrow band sense, source weights can be moved by half a
wavelength at the center frequency, and flipped in sign, without affecting the response very
much. Thus we would approximate the sequence of source strengths 4, -4, §, -4,
with the withdrawal weighted sequence 1, 0, 1, 0. The end result is that in regions in which
the envelope amplitude is large, most of the samples are retained, while in regions with

much smaller envelope amplitude, most of the samples are set to zero. This is depicted in

* Fig. 6.27.
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Figure 6.27 Intuitive Concept of Withdrawal Weighting
gp(t) is a sampled prototype amplitude and phase modulated waveform. guww(t) is the withdrawal weighted

approximation. Note that where the envelope of gp(t) is large, most of the samples are retained in guww(t) o
while the converse is true where the envelope is small.
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6.6.1 Physical Structures

Before the withdrawal weighting can be done, a structure must be selected so we
know what constraints must be satisfied. In Figs. 6.28, 6.29 two possible structures are
displayed. Both are split finger designs making it reasonable to have ignored reflections
in the synthesis procedure. Structure-I is the standard one in which every finger is
connected to one of two bus bars of opposite polarity. It is a topological necessity with
this structure that nonzero gap weights alternate in sign. This is a rather strong restriction.
With structure-I, we would not be able to use the sequence 1, 0, 1, 0 to represent in a

withdrawal weighted sense the frequently needed sequence of half strength samples

, —4 . Following the restrictions of structure-1, this would have to be implemented

DO
Noje=

as —1,1,0,0, =1, 1, 0, 0 which is clearly a worse approximation. Here the averaging
must be done over four samples, instead of only over two, to see that half weight samples
are being approximated.

One of the newly invented structures (Ila) is sketched in Fig. 6.29. Here two grounded
fingers are introduced between successive gaps of the same polarity. This yields half weight
gaps of the same sign separated by half a wavelength at the points labeled a and b in

Fig. 6.29. Thus, transduction at these points will cancel over a broad bandwidth about

Figure 6.28 Structure-1: The Standard Structure for Withdrawal Weighting
Note that although 3 weights are allowed (. — 1, 0, 1), the non-zero gap weights must alternate in sign.
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Figure 6.29 Structure-Ila: A New Structure for Withdrawal Weighting
Note: Two levels of metalization are required as well as crossovers. Three weights are allowed ( — 1,

0, 1) in any sequence. The only restriction being that gaps of the same polarity must be separated by at least
one wavelength.

the center frequency, allowing sequences with successive gaps of the same sign (such as
1, 0, 1, 0) to be implemented. The only remaining restriction is that there must be at
least one full wavelength between gaps of the same sign. This is not really a significant
problem, since if the spacing between gaps of the same sign were only half a wavelength,
transduction would cancel over a broad frequency range.

The major problem with structure-Ila lies in the added processing required to fabri-
cate the necessary crossovers. It is important to recognize though, that far fewer cross-
overs are required than in a three-phase unidirectional transducer 38 . The additional
capacitance from the crossovers may very well be insignificant compared to the inter-
electrode capacitance, especially on high permittivity substrates like LiNbOj . [f this were
the case, ordinary high capacitance crossovers would be sufficient; there would be no need

for the complicated air-gap crossovers (* .
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Figure 6.30 Structure-IIb: A New Structure for Withdrawal Weighting
Note: Only a single level of Metalization is required. Three weights are allowed ( — 1, 0, 1) in

any sequence. The only restriction being that gaps of the same polarity must be scparated by at least one
wavelength.

On weakly piezoelectric substrates, such as quartz and Gallium Arsenide, no Crossovers
may be needed. Then the structure reduces to that of Fig. 6.30 and can be fabricated
with only one level of metalization just like the standard SAW devices. If the crossovers
are open circuited, the shorted spacers will float to ground potential, and therefore on
transduction, the structure behaves very much like structure-Ila. The floating spacer will
in general reflect at the center frequency, and it will in addition cause a velocity shift .
If the velocity shift is accurately known, the positions of the fingers can be adjusted to
compensate for this effect. In addition, it may be possibie to eliminate the reflection
problem by a proper choice of the metalization thickness and ratio to cancel the reflection

of mechanical origin with the piezoelectrically generated one (11,81}
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6.6.2 Multiple Envelopes, Look-Ahead and Quantization Step Optimization

The standard withdrawal weighting 2! technique of spreading source weights over
a number of wavelengths is implemented in two steps. First we integrate the envelope
of the prototype waveform to obtain its cumulative distribution. Then the samples of
the withdrawal weighted waveform are quantized at three discrete levels, —-WW@QNT ,
0, WWQNT, iq such a way so as to minimize the difference between the cumulative
distributions of the withdrawal weighted and prototype envelopes (see Fig. 6.31). Here
WWQNT is used to denote the withdrawal weighting quantization step size.

It is clear from the above discussion that withdrawal weighting is a narrow band
approximation. It is best at the center frequency and deteriorates as one deviates from
fo. Using a procedure similar to that used by Doyle **¢} in his work on antenna
arrays, we can show how this comes about. Let us define go(t), Go(f) to be a Fourier
transform pair for the nonuniformly sampled prototype phase and amplitude modulated
waveform, and let g,.(t) and G..(f) be the corresponding quantities for the withdrawal
weighted waveform. The definition of an envelope must be modified to properly handle
the withdrawal weighting of phase modulated signals. The appropriate definition is the
waveform demodulated by ezp(—j2rfit), where f; will typically be some frequency in
the filter's passband, although this need not be the case. We also define cumulative

distributions for these baseband time functions:*

t
yip(t)= / dr gy(r)e™ 72T (6.61)

i) = [ draeclelemites (562

* Note that these definitions reduce to thc standard ones in the case of a uniformly sampled non-chirped waveform with two
samples/period since the envelopes are real, and the complex exponentials are (=1)" at the sampling times
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Figure 6.31 The Standard Withdrawal Weighting Procedure

A) Integral of the desired source envelope function.

by withdrawal weighting. (After [42])

B.C) Approximation of this integrated cnvelope

Let us also define d.(t) and D,(f) as the error between the cumulative distributions

of the time envelopes and the error between the prototype and withdrawal weighted

frequency responses respectively:

de(t) =

Dy(f)

gcp(t) - gcww(t) ' (6.63)

Gp(f) = Guul/f) (6.64)
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For simplicity, let all the time functions be zero for positive time. Upon integrating by

parts and applying Parseval’s theorem, we obtain

0

/ :odf 12 ({),'_?f)(f Sl (2m)? / __dtldee)’ (8.65)

The withdrawal weights can always be scaled by an appropriate constant to make D(f)

zero at any one frequency:

co _ 2 0
-4yt Celll — oup [ atatty-genetl  000)

Withdrawal weighting corresponds to minimizing the right hand side of Eq. (6.66).
Thus, via withdrawal weighting, we obtain a weighted minimum square error approximation
to the desired frequency response, using a weighting function which is sharply peaked
near the demodulation frequency, f;, used to define the envelope.

Since the prototype source weights are small near the ends of the waveform, all
withdrawal weighting was done from the midpoint of the signal, first to the right and then

to the left. Thus 2 new prototype cumulative distributions (CDF) are defined:

t
— ) Tourl
gepr(t) = /t e dr gg(r)e™FHT > tmia = =50 (6.87)
‘mid+:£{""z . T .
gept(t) = / dr gp(r)e™ Tt < tmiat =T (6.68)

where ., , the overlap between the right and left prototype envelopes, is used to reduce
the chance of discontinuities appearing where these two envelopes are joined. Right
and left withdrawal envelopes gewwr(t) and geww(t) are defined in a similar manner.
The sample locations of the withdrawal weights are the same as those in the prototype

waveform,
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The simplest procedure for choosing the withdrawal weights would be to find the error
Ewwr(ta) between the cumulative distribution of the withdrawal weights and that of the

continuous weights for the current sample,

Ewwr(tn) = gcp'(tn) - gcwwr(tn) (669)

for each of the possible withdrawal weights, and then to choose the one which minimizes
this error. The possible quantized withdrawal weights are —~-WW@QNT , 0, WWQNT *
subject to the constraints imposed by physical stru;:tures [ and II. The weight assigned to
each source, WWQNT , is related to the fraction of non-zero withdrawal weights. This
fraction is roughly equal, or at least proportional to the ratio of the average prototype
weight to WWQNT . In order-to achieve the best results, the frequency response error
should be minimized with respect to WWQNT .

Further improvement can be achieved by using look-ahead, ( lkhd ), in the withdrawal
weighting procedure. If look-ahead is used over nu,q points, then at each time step
all realizable withdrawal sequences of length ny,g from the current point are examined.
The total error over these nixas POINts, Ewuweo , is computed for each of these possible
sequences where

n+nixnd—1
Ewwtot(ny Mikha) = Y. Euwr(t) (6.70)
: k=n
Finally, the withdrawal weight corresponding to the minimuim total error Over nukaq points
is selected.
In order to bfoaden the bandwidth over which a good approximation to Gp(f) can

be obtained, and to more evenly spread out the approximation error in frequency, we

*[n the actual implementation, these weights were multiplied by (fo/ fi)? when computing the cumulative distribution at at fi ,
thereby accounting for the efiect of the instantancous frequency on the source strength (Sce Eq. (6.4).
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can compute cumulative envelope distributions at many frequencies both in the passband
and in the rejection band, and do the withdrawal weighting so as to control the errors
in all these cumulative distributions simultaneously. It is important to note that when we
do this, Eq. (6.65) applies, since it is impossible in general to select one gain factor to
zero Dy(f;) at several frequencies at once. Thus by this procedure, in the vicinity of each

demodulation frequency f; , we strive to keep the frequency error as small as it is exactly

at f;.

The relationship between frequency response errors and cumulative distribution (CDF)
errors is theoretically represented by Egs. (6.65, 6.66) in terms of weighted mean-square
errors. Practically however, we would prefer an error definition based on the maximum
deviation of an achieved frequency response from a desired frequency response. In Fig.
6.32, we present a plot of the peak frequency response €rror, Epeaks , and the maximum of
17 mean-square CDF errors, E.asmz , Versus the quantization step used in the withdrawal
weighting. If the E.ifm: curve is smoothed, we see that the broad major minimum
of the two curves occur in roughly the same place, for WWQNT between 1.7 and 1.9.
There is poor agreement, however, in the fine structure, local maxima of E.4m. do not
generally occur at minima Of Epeks . Thus although Eipm. is easier to compute than
Epeak; , it seems that for optimum performance, Epe.xs should be minimized with respect

to WWQNT, and not E.dfmz -

6.6.3 Design Examples

In Figs. (6.33a-6.33f), we present cumulative distributions (CDF's) of the prototype and
withdrawal weighted waveforms done at several passband and rejection band frequencies.

No look-ahead was uséd, niena =1, but the withdrawal weighting was done at 17 passband
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(Withdrawal Weighting Quantization Step)

Figure 6.32 Peak Frequency Response Error ( E,..cs ) and the Maximum Mean Square
CDF Error ( Fcdfpm. ) Versus the Withdrawal Weighting Quantization Step (WWQNT)
Epeary =max(passhand error, 4.9 X rejection hand error over a 25% fractional bandwidth)
Eedmz = maximum deviation hetween the cumulative distributions of the prototype and withdrawal weighted
cnvelopes over all the demodulation frequencics Note: This data is for waveform LILS of Table 6.5
in Sec. 6.6.3.

3.0



217

$'9 QB JO ST uuepaeAy “{Pinaadsas s f([) paydoun
[enespyim pue adKjozoad a3 ase saamd pagdel pue yroows Iy | (Souanbayy 1w e st 1)

01="
:SUOIIUN] UOHINQLISI(] ANE[nIM)) P3| [eMeIpyiiy\ pue 3dA10101] YL BEE'9 NGL]

3

apnitudel




218

ad£jo301d ay) a1e saamd padel pue yroows Ay

S’ JARL JO CIIT MI0JAALAY “LPAIAdSAI S ([ PMIYTOM [EMRIPYIN pue
(-91ddus puegssed jsounyap 3yt jo yead ap e st )

0596'= /

:SUOIIIUN,] UONINQIISI(] AAne[nWN) pAYSIa A [BMEIPYIA\ pue 3dLj0105d Y qEc 9 amSiy

apnituden

1 1)

0zT 08 0% 0 0%- 08- 0z1-
— — . P AN

o |

9- 1

g +

0°T +

-




219

$'9 AQRY. Jo ST wiopney {RANMAdSAT S ([ PAIBIN [LURIPYIN

pue ad<y0301d apy dsu saand poddel pue yroows Iy (-3gojopis Jsowsouut iy jo yead o e st i)
8rc6 ="/
1SUOIIIUN,| UoNNQLSI(T dsnenun) pAYSA [eMeIpYIA pue 3dA10104] L IEE'9 nBL|
%3
0crt 08 0% 0

apnjtuleyn



220

9 IqEY, JO SIIT MoAATAL “{[3A132dsH1 S{(1D PIYSIIM [EREIPYIY put ad{joj01d
(331 Sununod aqopps ;01 A Jo yrad ayy e St )

vole'= "/
A\ lEATIpIA pue adKie101d AL PEEY 2nSLy

ay) e sound paddel pue yloows 3y

*SUOIIIUN,] UONNGIISI] denwn) pajusn

3 )

0ct 08 0% 0 0%- 08- 0cI-
y T T T

apnatudeyn




21

€9 QT JO SII'T WIOINR “{[2ANAdSAI S §(]) pNyTion [eaeipyiiy pue »i10101d

apnituley

Yy e saund padiel pue yoows ayf (‘391 Sununoly dqoppis ps€G W Jo yrad ayy e §1 )
96¥8° =/
suorIuUN, HONNALISIQ AANTMWR) PNYIRA [eMeIpiny pue 3d£j0101 ] 99 I¢E 9 NS
GFIE)
0ct 08 0% 0 0%- 08- 0ct-
T0°¢+
__ k
zo°| ,a cﬁ. E Q,
150
¢ T L0°
i : ‘ + 80°




222

"9 ALY JO CI'T WHopAARA\ “K[2412dSIT S (1D paydion [raespyin puz adiooxd

3y e soamd pasdul pue froows A, (ya] Sununod dOPPIS 8¢ AP Jo yead ap e st )
pisL= Y
1SuUofjouUN, HONRQLISI(] ANTNEUN) pSIa A\ feMEIpy A\ put adojold AL L9 a3y,
3
071 08 oY 0 0%- 08— 0C1-
. . . : —

=
o)
\
Som—
s

r nor

-G0”

apnjTudel



223

frequencies. The frequency responses of the corresponding prototype and withdrawal
weighted waveforms are displayed Figs. 6.34 and 6.35 respectively. We note from Fig.
6.33a that at the center frequency, the withdrawal weighted cumulative distribution function
(CDF) is an excellent staircase approximation to the prototype CDF, with each step being
very small compared to the features of interest. Near the transition band, both within the
passband (Fig. 6.33b) and in the rejection band (Fig. 6.33c), the agreement is also very
good. Even at the tenth sidelobe peak, agreement is quite reasonable (Fig. 6.33d), although
the peak CDF value has dropped substantially since we are far from synchronism. At
the peak of the twenty-third sidelobe, there is little resemblance between the two CDF's
although the peaks and valleys agree, and by the time the thirty-eighth sidelobe peak
is reached (Fig. 6.33f), there is no resemblance in the CDF’s at all. Nevertheless, the
frequency rcsponse is still quite good, better than 44.5 dB rejection over a 55% fractional
bandwidth.

In the frequency regimes in which the prototype and withdrawal CDF's agree
reasonably well, this agreement is a sufficient explanation for the good frequency response.
Outside this region, it must be the lack of synchronism which accounts for the low
excitation. Thus, it is pointless to define CDF's for frequencies in this second regiori.
For completeness, we present in Fig. 6.36 a plot of the frequency response error over
a broad 200% fractional bandwidth. We note that beyond the above mentioned 55%
fractional bandwidth, the sidelobe level increases substantially. In this region, absence
of synchronism is not sufficient to yield a good rejection level; the abruptness of the

withdrawal weighted approximation must be responsible for these high sidelobe levels far

from the center frequency.
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Peak-
Peak
Peak Passband
Length in Shape* Sidelobe Ripple Dynamic*
Waveform Wavelengths Factor (dB) (dB) Range
I 256.5 1.1544 -51.5 .185 6.027
II 256.5 1.1761 -66.8 .385 8.373

Table 6.3 Parameters of Amplitude and Phase Modulated Nonuniformly-Sampled Prototype

Waveforms, I and Il
Note: Prototype waveform-III is not symmetric. It was predistorted by the [requency response of the

clemental gap source with a 50% metalization ratio. * Ratio of bandwidth at the rejection level to
the bandwidth at the passhand ripple level. An ideal brick wall bandpass filter has a shape factor of 1. (See
Fig. 6.3) t (maximum sample value)/(average of the smallest 10%)

If it is desired to further increase the bandwidth over which the sidelobes are controlled,
then either more levels are required in the withdrawal weighting necessitating a different
structure, or 4 flatter prototype waveform is needed. Since the prototype waveform is
nearly optimal, this can only be done at the expehse of a reduced rejection level, increased
passband ripple, or more dispersion can be used which will increase the length of the
device.

Withdrawal weighting was done both on prototype waveforms 1 and III. Prototype
waveform-1[l was predistorted to compensate for the element factor, while prototype
waveform-I was not. The characteristics of these amplitude and phase modulated
waveforms (AM-PM) after nonuniform sampling are summarized in Table 6.3.

The withdrawal weighting was done many times with varying amounts of look-ahead
and cumulative distribution function (CDF) demodulation frequencies. In all cases, the
results were optimized with respect to WWQNT , the quantized constant weight assigned

to each source. The results are presented in Tables 6.4-6.7. Additional sample Frequency

Responses are presented in Figs. 6.37-6.39.
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Peak-to- Peak Sidelobe
Amount of Peak over a 25%

. # of CDF look-ahead Passband Fractional
Waveform Demodulation (a ) Ripple Bandwidth
Identifier Frequencies lkhd (dB) (dB)

I.I1.1 1 2 .67 -43.2
I.1.2 1 8 .62 =44 .0
I.1.3 17 2 .58 -45.8
10104 17 4 -72 —45-2
I.I.5 21% 2 .86 -47.5

Table 6.4 Withdrawal Weighting Data of Prototype-I using Structure-I
All the CDF demodulation frequencies are in the passband except for the last waveform. * 4 of the
21 demodulation frequencies are in the rejection band. They are at the peak of the 2 innermost sidelobes at

the right and left of the center frequency.

Waveform # of CDF Amount of Peak-Peak Peak Sidelobe
Identifier Demodulation Look-ahead Passboard over a 25%
Frequencies (nlkhd) Ripple fractional
(dB) bandwidth
' (db)
I.1I.1 1 1 .33 -48.2
I.1I1.2 3 1 .67 -50.6
I.II.3 3. 2 43 -48.7
I.11.4 3 4 .35 -50.1
I.I1I.5 17 1 .37 -51.0
I.1II.6 17 2 .46 -48.5
I.I1.7 17 2 .52 ~-49.8
I.1II.8 17 4 .33 -50.7

Table 6.5 Withdrawal Weighting Data of Prototype-1 Using Structure-II
Note: All the CDF demodulation frequencies are in the passband

These data demonstrate that in general more demodulation frequencies and more
look-ahead improve performance, although this is not always the case. By comparing the
results presented in Tables 6.6 and 6.7 for one demodulation frequency, and no look-ahead
(nuna =1), we note that with Structure-1, the performance is especially poor if there is
'no look-ahead. When nuag Was increased to 2, the passband ripple was cut from 5.7 dB

to 1.3 dB, and simultaneously the peak sidelobe level improved from - 39.6 dB to - 50.2

dB.
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Waveform # of CDF Amount of Peak-peak Peak Sidelobe
Identifier Demodulation Look-ahead Passboard over a 257%
Frequencies (n ) (dB) fractional
lkhd bandwidth
IIT.I.1 1 1 5.7 -39.6
III.I1.2° 1 2 1.3 ~50.2
III.I.3 1 2 .91 -38.4
ITII.I1.4 1 6 84 -49.3 |
III.I.5 1 8 1.06 -47.8
III.I.6 1 8 .75 -42.7
I11.I1.7 3 6 1.56 -45.2
III.I.8 3 6 1.07 -34.5
III.I.9 17 2 1.01 -48.4
ITITI.I.10 17 2 76 -37.1
IT1I1.I.11 17 6 82 -46.9

Table 6.6 Withdrawal Weighting Data for Prototype-III Using Structure-I
Note: All the demodulation frequencies are in the passband.

Amount of Peak-Peak  Peak Sidelobe

# of CDF look-ahead Passboard over a 25%
Waveform Demodulation (nlkhd) Ripple Fractional
Identifier Frequencies (dB)_ (dB) Bandwidth
IITI.II.1 1 1 .60 -53.1
III.1I.2 17 1 .55 -54.2
III.I1.3 1 6 .56 -53.4
III.11.4 3 6 .52 -54.4
III.II.5 9 4 .56 -55.3
III.II.6 9 4 -68 -60gl
III.II:? 9 4 062 -57‘0

Table 6.7 Withdrawal Weighting Data for Prototype-1I Using Structure-1I

Note: All the demodulation frequencies are in the passhand.
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Let us study waveforms LII.1 and LIL8 in more detail. From Table 6.5, we note a
gain of only an additional 2.5 dB in sidelobe rejection at a cost of 16 additional CDF
frequencies and an increase of 3 in the look-ahead interval. In Fig. 6.40 is a plot of the
peak error against the quantization step used in withdrawal weighting (WWQNT), for
these two waveforms. The curve corresponding to waveform-LII.8, the one with more
look-ahead and CDF frequencies is almost always significantly below that of LIL8; only
at isolated points are they comparable. Thus with a lot of look-ahead and many CDF
frequencies, good results are always achieved, while with little look-ahead and few CDF
frequencies, optimization with respect to WWQNT is crucial.

The final withdrawal weighted waveforms for prototype-I are presented in Figs. (6.41-
6.42). Fach vertical bar represents an excited gap of the interdigitated electrode structure
of a SAW dcvice. Up and down pointing bars represent gaps of opposite polarity. All
the non-zero weights are the same amplitude as we set out to do. In Fig. 6.41 structure-I
is assumed, so the weights alternate in sign. In the case of Fig. 6.42 this restriction is
relaxed, and structure-II would be used in the physical implementation. Comparing both
these withdrawal weighted sequences with the prototype waveform of Fig. 6.9a, we see
that in regions where the envelope is large, for example in the middle, there is a high
concentration of weights. Similarly, at the ends where the prototype envelope rolls off,

the density of samples is much lower as we expect.
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6.6.4 Summary of Results: Withdrawal Weighting

All the withdrawal weighted results are presented in graphical form in Fig. 6.43. It
is clear that structure-II permits substantially better results than structure-l, as it should,
due to the added freedom of not requiring strict sign alternation of the source weights. In
general, sidelobe levels and passband ripple are substantially lower in the case of structure-
II. An added bonus of structure-II is that the bandwidth over which the withdrawal
weighting is accurate, is substantially broader. For example, in the case of prototype-I, we
see from Figs. 6.35 and 6.37 that the bandwidth over which the sidelobes remain below

— 40 dB is 60% broader for structure-II.

Although prototype-1II is substantially better than prototype-I, once the withdrawal
weighting is done, a substantial portion of this advantage is lost. The difficulty of
withdrawal weighting prototype-IIl and the higher performance, both result from the
higher dynamic range of prototype-III, 12.2 versus 5.8 for prototype-I (See Table 6.1
of Sec. 6.5.2.). Another fact apparent from Fig. 6.43 is that the spread of values for
prototype-III, structure-I is much broader than the others. This indicates that the high
dynamic range of prototype-IIl is really too large for the forced sign alternation of the

sources imposed by structure-I.

In Table 6.8, we summarize some of the key results obtained with waveform-I and
compare our results with what has been previously achieved. Standardizing on 252
wavelengths for each transducer, we see that a uniform amplitude phase weighted design
based on the stationary phase approximation (3751 has a rather large 5.3 dB peak to
‘peak paséband ripple. If a shape factor of 1.15 is required, it is only able to achieve
9.4 dB of rejection,at the band edge since the response falls off very slowly outside the

synchronous region. In order to achieve a reasonable rejection level of 51 dB, with a
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Figure 6.43 Performance Comparison of the Withdrawal Weigated Designs
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shape factor of 1.15, the linearly chirped waveform must be 100 times longer than any of
the other waveforms in the table. Hartmann'’s technique 142! represents a very significant
improvement. Using the same length restriction of 252 wavelengths, the rejection level
was improved by about 20 dB and the passband ripple was cut by a factor of three. The
withd-awal weighted version of prototype-I using structure-II improved the rejection level
by ancther 20 dB and cut the passband ripple by more than a factor of 4.5.

It is important to note that chirped designs need not be excessively long. In fact, the
nonlinearly chirped design with a noninvertible instantaneous frgquency discussed here, is
shorter than the Parks-McClellan 185! design of similar performance. The main penalty we
pay is a reduction in the bandwidth over which the sidelobes remain controlled. This seems
to be a reasonable tradeoff since we gain from a reduction of two orders of magnitude in
the required weighting dynamic range at a cost of increased far out sidelobes which can
be reduced by the matching circuit. Due to the reduction in diffraction and transverse
electrostatic end effects arising from the uniform aperture, high performance filters of

much narrower maximum aperture should be realizable.
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