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RECONSTRUCTION OF MODULAR DATA
FROM SL,(Z) REPRESENTATIONS

SIU-HUNG NG, ERIC C ROWELL, ZHENGHAN WANG, AND XIAO-GANG WEN

ABSTRACT. Modular data is a significant invariant of a modular tensor category. We pursue an
approach to the classification of modular data of modular tensor categories by building the modular
S and T matrices directly from irreducible representations of SLa(Z/nZ). We discover and collect
many conditions on the SL3(Z/nZ) representations to identify those that correspond to some mod-
ular data. To arrive at concrete matrices from representations, we also develop methods that allow
us to select the proper basis of the SLy(Z/nZ) representations so that they have the form of modular
data. We apply this technique to the classification of rank-6 modular tensor categories, obtaining
a classification of modular data, up to Galois conjugation and changing spherical structure. Most
of the calculations can be automated using a computer algebraic system, which can be employed to
classify modular data of higher rank modular tensor categories. Our classification employs a hybrid
of automated computational methods and by-hand calculations.
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1. INTRODUCTION

Just as conventional symmetries are described by groups, gapped quantum liquid phases of
bosonic matter (i.e bosonic topological order) seem to be described by non-degenerate higher
braided fusion categories. It has been conjectured that topological orders are classified by the
collection of projective representations of mapping class groups for various topologies of closed
space manifolds [39]. In particular, we believe that a gapped phase of quantum matter in two
spacial dimensions is classified by a pair (B,c), where B is a unitary modular tensor category
(MTC) and c is a rational number equal to the central charge of B mod 8. Physically, B models
the topological excitations (i.e. the anyons) in the gapped phase [19], and ¢ measures the possible
stacking of Fg quantum Hall state, which has central charge ¢ = 8. Therefore, a classification of
unitary MTCs should give rise to a classification of all gapped quantum phases of bosons without
symmetry in two spacial dimensions.

MTCs are defined by very complicated data. The classification of MTCs naturally breaks into
two steps: the first step is to classify the modular data (MD), and the second is to classify modular
isotopes with a given MD if not unique. The MD (S,7T") of an MTC form a projective representation
of the mapping class group of the 2-dimensional torus. (In fact, the notion of topological order was
first introduced based on modular data (S,7) [39].) We will see that the classification of MDs is
much more manageable than the full classification of MTCs.

Modular data (S,T") corresponding to MTCs of rank r < 5 have been completely classified
[5, 33, 17]. More recently, such a classification for MTCs of rank 6 containing a pair of non-self-
dual simple objects and a partial classification of general MTCs of rank 6 has also been obtained
[9]. The strategy employed in those classifications begins with a stratification of the Galois group
of the extension of Q by the entries of the modular S matrix, followed by a case by case analysis
on the inferred polynomial constraints. As the Galois group is isomorphic to an abelian subgroup
of &,, this program is tractable, although somewhat tedious. As a last resort in a few cases, the
classification of low-dimensional representations of SLy(Z/nZ) for small n was required as well. The
typical outcome is that most Galois groups can be eliminated and one eventually finds a finite list
of modular data which can then be realized from known constructions.

In this article we complete the classification of rank 6 MDs using the reverse strategy: we build
upon the approach in [12, 5] by constructing the MDs directly from SLy(Z/nZ) representations
of low dimension. Since n is bounded in terms of the rank, expressing irreducible SLy(Z/nZ)
representations as tensor products of prime-power level representations (i.e. SLo(Z/ ka) for primes
p) allows us to stratify by representation type and level. Thus, up to basis choice, the SLy(Z)
representations can be presented as pairs (s,t), where s is symmetric and ¢ is diagonal. The
construction of symmetric representations of SLo(Z) is an interesting problem of its own [27, 28].
We note that the number of inequivalent SLo(Z/nZ) representations is finite at a given dimension,
since the dimension and n are bounded in terms of the rank. These facts make our classification
possible. We find that up to Galois conjugation and altering spherical structures there are 12 classes
(orbits) of modular data, all of which are realized via quantum groups, see Table 2. Only one of
these orbits has no pseudo-unitary representative, while two distinct orbits have the same fusion
rules.
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In the next step of our classification, for each representation (s, t), we conjugate s by an arbitrary
(real orthogonal) matrix that commutes with ¢ to reconstruct the potential MD (S, T") with S sym-
metric and T diagonal. We find several methods that allow us to select a finite number of possible
real orthogonal matrices from the uncountable set of real orthogonal matrices, so that the resulting
(S,T) include all the MDs. Up to reordering the objects in the category, i.e., the rows/columns
of the resulting (S, 7T), these must satisfy the algebraic and number-theoretic constraints of MDs.
Case by case analyses, following a similar pattern, then yield our classification. We remark that
this approach was used in a particular case in [14] to construct modular data for the center of the
fusion category associated with the extended Haagerup subfactor. At a BIRS workshop in 2014
with the first 3 authors present, Gannon suggested that the classification of SLy(Z/nZ) representa-
tions could provide an alternative proof to the rank-finiteness theorem [6] if one could show there
are at most finitely many modular data (S,T') associated to any given SLy(Z/nZ) representation.
In fact, we found this to be true for dimension < 6. The difficulty is to find the appropriate basis
changes, even if their existence is known. For small ranks, doing this by hand is a serious hurdle,
although feasible. For larger ranks, this can be overcome through computer implementation.

The approach to the classification of MDs by building the modular S and 7" matrices directly
from irreducible representations of SLo(Z/nZ) is applicable to much more general cases than the
rank 6 case in this paper. One version of our approaches that is presented in the Appendix can be
automated and almost all of the calculations in this approach can be implemented using the GAP
computer algebra system.

The content of the paper is as follows: In sections 2 and 3, we discover and collect many conditions
on the SLy(Z/nZ) representations to help us identifying those that are from some MDs. To arrive
at concrete matrices from representations, we also develop methods that allow us to select the
proper basis of the SLa(Z/nZ) representations so that they become the MDs. In sections 4 and
5, we apply this technique to the classification of rank-6 MTCs, obtaining a classification up to
MD. Most of the calculations can be automated using a computer algebraic system, which can be
employed to classify MDs of higher rank MTCs.

2. MODULAR TENSOR CATEGORIES AND MODULAR DATA

Given a modular tensor category (MTC)* B, the modular data (MD) of B consists of the un-
normalized S- and T- matrices of B, hence the MD of an MTC is independent of any normalizations.
Though the MD of an MTC does not determine the MTC uniquely [22], it is still the most useful
and important invariant of an MTC. Moreover, the MDs of MTCs have enchanting relations with
diverse areas from congruence subgroups to vector-valued modular forms to topological phases of
matter.

2.1. Necessary conditions for the modular data of an MTC. An obvious strategy to classify
MDs would be first to find all necessary and sufficient conditions for MDs, and then simply look
for solutions. But it seems very hard to find such a complete characterization of MD. Instead we
will list some necessary conditions and then appeal to other methods to finish a classification.

The following collection of results on modular data which will be useful in the sequel. Many are
well-known and found in, e.g. [2].

Theorem 2.1. The modular data (S,T) of an MTC satisfies:

(1) S, T are symmetric complex matrices, indexed by i,j =0,...,r — 1.t

*We use the terminology of MTC as in its original sense [23], which is equivalent to a semi-simple modular
category of [36], i.e. a semi-simple modular category.

TThe index also labels the simple objects in the MTC, with ¢ = 0 corresponding to the unit object, and r is the
rank of the modular data and the MTC.
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(2) T is unitary, diagonal, and Too = 1.

(3) Soo = 1. Let d; = Soi and D = /31—y did*. Then

Sst = D%id, (2.1)
and the d; € R.
(4) Si; are cyclotomic integers in Qord(T)i [26]. The ratios Si;/So; are cyclotomic integers for
all i,j [8]. Also there is a j such that S;j/So; € [1,400) for all i [13].
(5) Let 6; = Ty and ps = Y—) d2(6:)*". ,
Then p+/p— is a root of unity, and p; = De'27¢/8 for some rational number ¢.5 Moreover,
the modular data (S,T') is associated with a projective SLa(Z) representation, since:

2
(ST)3 = pyS?, % =C, C?=id, (2.2)

where C' is a permutation matriz satisfying
Tr(C) > 0. (2.3)

(6) Cauchy Theorem [6]: The set of distinct prime factors of ord(T") coincides with the distinct
prime factors of norm(D?).1
(7) Verlinde formula (cf. [37]) :

r—1 %
N7 = ;;%ﬁkem (2.4)
where i, 5,k =0,1,...,7 — 1 and N is the set of non-negative mtegers.H The Néj satisfy
Nel'= Cp, (2.5)
which defines a charge conjugation i — i via
N = 6;;. (2.6)
(8) Let ne N,. The n' Frobenius-Schur indicator of the i-th simple object
i) = 153 74,07 ) (27)
j

is a cyclotomic integer whose conductor divides n and ord(T') [25, 24]. The 1st Frobenius-
Schur indicator satisfies v1(i) = ;0 while the 2nd Frobenius-Schur indicator vo(i) satisfies
vo(i) =0 if i #1, and vo(i) = £1 if i =i (see [3, 25, 33]).

We denote by Gal(Q,,) the Galois group of the cyclotomic field Q,.

Remark 2.2. The above conditions are for modular data of unitary or non-unitary MTCs. In par-
ticular, the above conditions are invariant under Galois conjugations in Gal(Qurq(7) /Q). Therefore,
we can group modular data into Galois orbits.

The mathematical definition of Frobenius-Schur indicators of an object in pivotal fusion category
was introduced in [25] and the trichotomy of the 2nd Frobenius-Schur indicator of a simple object
was also proved therein. If the underlying pivotal structure is not spherical, the d; in the preceding

tHere Q» denotes the field Q(¢,) for a primitive nth root of unity ¢,
$The central charge c of the modular data and of the MTC is only defined modulo 8.
THere norm(z) is the product of the distinct Galois conjugates of the algebraic number x.
IThe N ,ij are called the fusion coefficients.
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TABLE 1. Rank

< 5 modular data

d07d17"'

Nc D2 dO;dlv"'

50,81, - 50,51, -
1 1|1 0
2 2 1,1 0,% 2.4 2 1,1 0,—1
2145 |3.6180|1, 155 0,2 2 145 |3.6180|1, 15 0,2
39 3 |1,1,1 0,%, % 3.9 3 11,1,1 0,—-1,—1%
31/2 4 1,42 0,3, % 31y 4 1,2 0,1, —1%
33/2 4 1,1,4/2 0,3, 1 332 4 1,1,{ 05—
352 4 1,42 0,3, = 352 4 [1,1,4/2 0,3, —5
3772 4 1,1,4/2 0,1, & 37/ 4 11,1,4/2 0,4, —%
3g/7 [9.2946| 1,82, &2 0,—1,2 3_g/7 |9.2946 |1,£2,¢3 0,1, -2
48 4 [1,1,1,1 0,0,0, % 4% 4 (1,1,1,1 0,0,%,—%
44 4 |1,1,1,1 0,5, %5 4_4 4 |1,1,1,1 0,—%,—% 3
4y 4 (1,1,1,1 0,4,4,1 4_ 4 (1,1,1,1 0,1 -11
45 4 (1,1,1,1 0,2,2,1 4_3 4 (1,1,1,1 0,-3,-%,1
4, 4 |1,1,1,1 0,4,1,1 dgjs |7.2360 1,1, 1435 1445 0,-1,2 2
4 g5 |7.2360|1,1, 145 1445 0,4, -2, -2 Aygss |7.2360(1, 1,155 1445 0,4, %, 2
4 1q)5[7.2360 1,1, 1+f 1+f 0,—%,55,—2 4¢ 113090 |1, 1+f 1+f LivE1445 19 2 2 0
45 |13.090] 1, 1*{,1*2\7,1*2“51*2“5 0,-2,-21 4 195 |13.090] 1, 1+f 1+f 1+f1+f 0,2,2 -1
diojs [19.234)1,63, 63,63 0,5:5,~3 iy 19234 1,3, 60 0,-3,-3.3%
50 5 1,1,1,1,1 0,%,4,-%,-% 54 5 1,1,1,1,1 0,2,2,-2 -2
g | 12 1,1,8,8,2 0,0,5. 3.3 55 | 12 |1,1,62,6,2 0,0,—%, 2,3
50, | 12 1,53,55,2 0,0,3,-3,—3% 5y | 12 |1,1,€3,€2.2 0,0,—%,3,—1%
Sig/n |34.645| 1,68, €5, 64,6 0,— &, &35 — 15 || B-16/11|34.645 | 1,62, 63, ¢y, €5, 0, 20> =10 — 11 11
S1s/7 |35.339|1,&3,62,63,, €74 0,— %, —7:7: 7 5_18/7 |35.339|1,62,63, 67,6 0,%,%,—%,— 3

theorem could be complex. We do not need this for the sequel, but it may lead to an interesting
generalization.

2.2. Classification of modular data up to rank=>5 and candidate list of rank=6.

2.2.1. Rank 1-5 MTCs. The rank< 5 unitary MTCs are classified [5, 33, 17]; Table 1 lists all 45
5 cases, only the quantum dimensions and twists are displayed. These are labeled by N,

rank <
where N is the rank and ¢ the (additive) central charge.

The entries of the table are ordered

by the total quantum dimension D?. Also d; is the quantum dimension and s; = arg(T};) is the

topological spin of the i*!
m,k
of &,

sin(k7/n)

y . sip(mw/n) and é-ryln _

simple object in the MTC. The quantum dimensions are given in terms
™1 The fusion coefficients N . and the S-matrices of MTCs can be

deduced from the given data in these low rank cases, and we do not list them for brevity’s sake.

2.2.2. Known rank-6 MD of MTCs and their Galois Groups. Among the known rank 6 modu-

lar tensor categories there are 11 distinct fusion rules.

We can determine their Galois groups

Gal(Q(S;5)/Q) and the representation type (i.e. dimensions of their irreducible subrepresentations)
of their SLy(Z) representation, displayed in Table 3. Six are realized as product categories, the
other 5 by prime categories. Note that there are two types that yield the fusion rules of SO(5)s:

(3,2,1) is realized by a zesting of SO(5)2, denoted SO(5)} in Table 2, see Theorem 4.15.




TABLE 2. Realizations of known rank 6 modular data, their Galois groups and
representation types.

C Gal(C) Type
PSU(2)3KSU(2)2 [{(01)(23),(02)(13)(45)) =Zy x Zy (6)
PSU((2)sXU(3); [{(01)(23)(45),(24)(35)) =~ Zy x Zy (4,2)
PSU(2)s K PSU(2)5| {(01)(23)(45),(024)(135)) =Zg (6)
U(2)1 B SU(2): (01)(23)) = Z, (6)
U(2)1 ®XU(3)1 ((12)(34)) ~2Z, (4,2)
U(2)y K PSU(2)5 ((012)(345)) =23 (6)
50(5)2,50(5), ODE3) =7 (3.3), 3,21)
PSU(2)11 {(012345)) = Zg (6)
G2)s (01,234 = 2 (4,2)
PSO(8); (012)) = 2Z; (4,1,1)
PSO(S)% ((012)(345))y =273 (6)

The example PSO(5)s is noteworthy—it is the smallest example of a MTC the fusion rules of
2

which are never realized as those of a unitary MTC. We also remark that the fusion rules of SO(5)2
are realized by categories with distinct representation types: namely the zested version of SO(5)2,
see Theorem 4.15. In particular, the fusion rules do not determine the representation type.

We also did a computer search for all rank-6 unitary modular data with N,’ < 3. (Ref. [40]

computed all rank-6 unitary modular data with N;? < 2.) The Tables 3 and 4 list all 50 of the
resulting modular data, we include only the quantum dimensions and twists. In the last column,
N, X N/, indicates that the rank-6 MTC is the product of two MTCs labeled by N, and N/,. The
prime MTCs are all non-Abelian roots of MTCs from Kac-Moody algebra. (The notion of non-
Abelian roots is introduced in Ref.  [21].) In this paper, we will show that the Tables 3 and 4
include all modular data of rank-6 unitary MTCs.

3. MODULAR DATA REPRESENTATIONS OF MODULAR TENSOR CATEGORIES

While the number theoretical properties of MD allow the classification of MTCs up to rank=4, the
deeper properties of the SLia(Z) representations of MD (cf. Definition 3.1) lead to a more streamlined
approach with the potential to achieve a classification up to rank=10. The classification of rank=5
MTCs is already a mixture of both Galois theory and representation techniques. Instead of working
on cases labeled by abelian subgroups of .S, for rank=r as in earlier classification, we introduce the
notion type of the MD of an MTC-the list of dimensions of irreducible subrepresentations, so that
the cases are indexed by Young diagrams with r boxes.

Every MTC B leads to a (24 1)-TQFT, hence there is a corresponding projective matrix repre-
sentation py of SLa(Z)—the mapping class group of the torus. We will refer to this representation
as the projective SLo(Z) representation of the MTC B, and is given by the S-, T- matrices of B.
The linearizations of this projective matrix SLa(Z) representation pg, called SLa(Z) representations
of B, will be elaborated upon in next section.

3.1. SL2(Z) representations of MTC or MD. Since our classification is based on SLa(Z) repre-

: . . 0 —1 11
sentations, let us first summarize some important facts about them. Let s = Lol t= 01
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TABLE 3. Table of rank 6 modular data with Néj < 3 and D? < 18.

N, D? do,dyi, - 50, 51, comment

61 6 1,1,1,1,1,1 0,5 5 333 2.1 X3,

6_1 6 1,1,1,1,1,1 = 1 — 3 — 3 |21 K3

63 6 1,1,1,1,1,1 0,5 5% -5 —15 2, X3,

6_3 6 1,1,1,1,1,1 —1 -4 -5, 5 [2.1W3,
61/2 8 1,1,1,1,4/2,4/2 0,5, -3 %3 2 X3 1
6_1/2 8 1,1,1,1,4/2,4/2 0,5~ 5315 i 21 X3_3)
632 8 1,1,1,1,4/2,4/2 0,1 -31 L & 21 X3y
6_3/2 8 1,1,1,1,4/2,4/2 0,1, -1 3% 1% (2183 5
652 8 1,1,1,1,4/2,4/2 0,1, %33, & 21 X33
6_5/2 8 1,1,1,1,4/2,4/2 0,4, -3 1 -3 T 12,K3 ;5
67/2 8 1,1,1,1,4/2,4/2 0,4 -1 12 -& 21 X 35
6_72 8 1,1,1,1,4/2,4/2 0,1,-33-%. & 21 X 37/

645 |10.854| 1,1,1,1%¥8 14¥5 14¥5 g 11 L 102 = lg, &3,
6_45 |10.854| 1,1,1, 1505 146 1446 g L1 L ol 2 1o K3,
Gre/s [10.854| 1,1,1,14¥5 1446 1446 1o 1174 L1002 15 | ®3,
6_16/5 |10.854| 1,1,1,14¥6 1446 1445 g L1442 g R3,
6310 |14.472[1,1,¢/2, 135 1435 pl4Yh g LB 12 10 1o K3 .
6_3/10 | 14.472(1,1,+/2, 1538 1446 514N g 10501 2 T |9 |0 ®35
6710 |14.472[1,1,v/2, 1455 1446 51446 1 L T L2 3 2 145 K375
6_7/10 | 14.472(1,1,+/2, 1635 1446\ aleNBilg 1 T 1 2.3 |9 K3 .,
6310 | 14.472|1,1,/2, 1508 185 QL5191 3 L 21T 19 R®3 4,
6_13/10 14472 (1,1,4/2, 145 16, 514461 L 3 L 2 1T 19 | 3,
61710 | 14.472|1,1,v/2, 1508 185 (/o145 19 1 T L 213 9 | K3 .,
6_17/10 [ 14472 [1,1,4/2, Y5 15 p1av5 1o L 1L 2 13 19 &3,
6osr0 | 14.472|1,1,/2, LB 105 (\ole5 g L L L 220 19 &3,
6 9310 | 14.472 | 1,1,8/2, 165 1485 p14v5 g 1 1 L 20 2T 1o | K3,
6710 | 14.472|1,1,/2, 1535 1446 \pleBig 1 5 L 228 g | K3 5,
6 9710 [14.472[1,1,4/2, 145 1445 1461 L 5 L 2 2 19 ®3;,
6as10 | 14.472|1,1,+/2, 1535 145 \Hle5 1 1 1 L 2 37 21475 M 31/
6_33/10 [ 14472 [1,1,1/2, 155 145 Hlav6 g L L L2 3T 19 | R3 ,,
64710 | 14:472|1,1,+/2, 155 105 \Qleig 1 3 1285 g | K3 4,
6iar/10|14.472(1,1,4/2, 145 1445 Hladb1g L 8 L 2 38 19 . ®3y,

be the standard generators of SLa(Z). This admits the presentation:
SLo(Z) = (s, t| s* = id, (st)% = %)

The 1-dimensional representations of SLy(Z), denoted SLg(Z), form a cyclic group of order 12

under tensor product. We will take x € SLa(Z) defined by x(t) = (12 to be the generator, where
¢k .= ¢?mk/n Under this convention, every 1-dimensional representation of SLa(Z) is equivalent to

o

x® for some integer a, unique modulo 12:

X*(s) = (4,

—

X (1) = (i




TABLE 4. Table of rank 6 modular data with sz < 3 and D? > 18.

N, D? do,dq,- - 80,51, " comment
617 | 18591 11,6,8.6.8 0. =3 =% ~i325:7 | 2183y
6_1/7 |18.591 1,1,6,6.6.¢ 0.5 7 o~ 7  |2183g
6157 |18.591 1,1,62,62,63, 68 0,555 —7 7 —35 |21 83g
6_15/7 |18.591 1,1,8,8.8.8 0.3 =357~ 58 |2-183 g
6¢ 20 1,1,2,2,4/5,4/5 0,0,%,-%,0,1 root of SO(10)y
65 20 1,1,2,2,4/5,4/5 0,0,%,-1 1 4 root of SO(10)s
6 20 1,1,2,2,4/5,4/5 0,0,%2,-2,0,1% root of SO(5)s
65 20 1,1,2,2,4/5,4/5 0,0,2,-2,1 -1 SO(5)z
Gssas |33.632) 1,155 &2 ¢ bz 1e5ed [0 21 -2 18 4 (93, K3y,
6_58/35 |33.632 L, 1+2\/5’§$7€§, 1+T\@§$’ HT\B&?} 0,—2,—%,2,88 —% 12 545K 357
6138/35 |33.632 L, 1+2\/5’ £3,62, 1+2\/5§$’ 1+T\/5§:73 0,2,-%,2, 35, — 3 21475 M 357
6_138/35 | 33.632 1, 1+2\/37§$’§§, HT\E)f?’ 1+2ﬁ§$’ 0,—2,1, -2 -2 & |2 145X3 g7
64613 | 56.746 1,62, 63, &b &5, ¢S, 0,1, 2, -3, 8 L |root of SU(2)1s
6_46/13 | 56.746 1,825,635 €15, 65, €5, 0, %, 1%, 1%, —1%, % root of SU(2)11
bg/3 | 74.617 laf?Sag%&f%&{?svfIg 0, %, éa év %v _% root of SO(8)3
6 g5 |74.617 1,63, 63, 63,65, €T, 0,— 3, =3, =L 1 1 lroot of SO(8)s
62 |100.61|1,3+ty2L 3+val 3+v3l 5+v2L T2l g 1, 2 3 o 1 root of G(2)3
6_ |100.61|1,3+y2L 3+v21 3+v21 54421 7442l 12 3 ¢ 1 root of G(2)3

Given a modular tensor category B with the modular data (S,7) and central charge ¢, the
assignment

pa(s) = C1S/D, palt) = (e *™2uT  (a € Ziy).

define a (linear) representation of SLa(Z), and we call these representations p, the SLs(Z) rep-
resentations of B or the SLg(Z) representations of the modular data (S,7). For any
a, O/ € 2127

(3.2)

Pa = XY @ par
as SLa(Z) representations. Therefore, the SLy(Z) representation pg of B is unique up to a tensor

factor of linear characters of SLy(Z).
Note that two modular data (S,T') and (S’,T") are regarded as the same if they differ only by a
permutation of indices:

s’ = PSP, T =PTPT, (3.3)

where P is a permutation matrix. Throughout this paper, we simply identify p, and its conjugations
by permutation matrices.

Definition 3.1. A unitary matrix representation p of SLo(Z) is called an MD representation if p
is an SLy(Z) representation of some modular tensor category. It is called a pseudo-MD (pMD)
representation if VpV is an MD representation for some signed diagonal matrix V.

3.2. Type and level of modular data.

Definition 3.2. Given an MTC B of rank r, an SLy(Z) representation pp decomposes into direct
sum of irreducible representations of dimensions Ay, . .., A, in non-increasing order. The type of the
8



corresponding MD of B of rank=r is the Young diagram of r boxes (A1, ..., Apy) with >0 Aj = 7.
The type of an MTC simply refers to the type of its MD.

The modular representations of the Fibonacci and Ising theories are both irreducible, so they are
of types (2), (3), respectively. The modular representation of the toric code has an image isomorphic
to SLa(Z/2Z) and is reducible of type (2,1,1).

We note that for any positive integer n, the reduction Z — Z/nZ defines a surjective group
homomorphism 7, : SLa(Z) — SL2(Z/nZ). Thus, a representation of SLa(Z/nZ) is also a repre-
sentation of SLg(Z), which will be called a congruence representation of SLa(Z) in this paper. It
is immediate to see that a representation of SLy(Z/nZ) is also a SLo(Z/mnZ) representation for
any positive integer m. The smallest positive integer n such that a congruence representation p of
SLs(Z) factors through m, : SLo(Z) — SLa(Z/nZ) is called the level of p. It is known that the level
n = ord(p(t)) (cf. [11, Lem. A.1]). Here ord(t) is the order of t, i.e., the smallest positive integer
such that

ord® — iq (3.4)

There are many more finite-dimensional noncongruence representations of SLo(Z) (cf. [20]) but
they are not associated with any modular tensor category by [11, Thm. TI]. Since we only deal with
congruence representations of SLo(Z), all the representations of SLy(Z) throughout this paper are
assumed to be congruence and finite-dimensional over C.

An SLs(Z) representation p of an MTC is also symmetric, which means p is a unitary matrix
representation with p(s) symmetric and p(t) diagonal. The following theorem proved in [28] provides
the theoretic background for the GAP package [27] and our reconstruction process:

Theorem 3.3. Every finite-dimensional congruence representation of SLa(Z) is equivalent to a
symmetric one.

Therefore, throughout this paper, we always assume our general representations of SLy(Z) to be
congruence and symmetric.

In Appendix A, we list all the irreducible SLo(Z) representations, generated by [27], of prime-
power levels and dimensions < 6. These SLo(Z) representations are congruence and symmetric.
From these representations, we can construct all the inequivalent SLy(Z) representations with
dimensions < 6. The MD representations of dimensions < 6 can be reconstructed from these
symmetric representations with the help of the following theorem.

Theorem 3.4. Let p,p’ : SLo(Z) — U,(C) be unitarily equivalent symmetric representations of
SLa(Z) such that p(t) = p'(t) = t, and define s = p(s) and s' = p/(s). Then there exists a (real)
orthogonal matriz U such that

s =UsU" and Ut=tU.
Proof. Let @ be a unitary matrix such that

s =QsQ" and Qt =tQ.
Since t is diagonal and unitary, ¢! = #. Taking the conjugate transpose of the second equality
implies o o

QT =1Q" or Qt=1tQ.
Let @ = X7 + iX5s for some real matrices X; and X5. Then we have

(X1 +iXo)t = t(Xy £iXy)
which implies [X;, ] = 0 for i = 1,2. Similarly, s'Q = Qs implies 5'Q = Q3 since both s and s’ are
symmetric. Therefore, we also have s'QQ = ()s, which implies

Xis=5X; fori=1,2.
9



Since there are only finitely many roots for the equation det(X; + zX5) = 0, one can take A € R
such that X = X7 + AX3 is invertible. Then

Xs=6X and Xt=tX.

Let X = UP be the polar decomposition of X where U is orthogonal and P is the unique positive
definite satisfying P? = X T X. In fact, P is a polynomial of P? (cf. [16, Chap.9. Thm 11.]). Since

1 - -1
s'=%5and s =4,

P2=X"X = (X35 (sX35) = sXxTs'Ts'XsT = sP25
and
XTt=tXxT".
Therefore,
P?s =sP? and P?*=tP*.
Since P is a polynomial of P2, we find

Ps=sP and Pt=1tP.

Therefore,
Us=UPsP ' =XsP ' =¢XP1=4U
and
Ut=UPtP' = XtP ' =tXP ' =tU. O

Remark 3.5. An SLy(Z) representation p is said to be even (resp. odd) if p(s2) = id (resp.
p(s?) = —id). If p is symmetric and irreducible, then p(s) or ip(s) is a real symmetric matrix,
depending on whether p is even or odd respectively. A direct sum of irreducible representations of
opposite parties is neither even nor odd. In particular, if p is an SLg(Z) representation of a modular
tensor category C, then p is even or odd if, and only if, C is self-dual.

3.3. Useful conditions on SLy(Z) representations. The set of all the roots of unity can be
totally ordered as follows: For any roots of unity x,y, we say that x < y if one the following
conditions hold:

(i) ord(x) < ord(y), or

(ii) ord(x) = ord(y) and arg(x) < arg(y),
where arg(¢) denotes the unique number s¢ € [0,1) N Q such that e?™¢ = (.

Definition 3.6. For any representation p of SLa(Z), p(t) has finite order. We denoted by spec(p(t))
the increasing ordered set of eigenvalues of p(t) with multiplicities. If spec(p(t)) is multiplicity free
p is called non-degenerate. If p’ is another representation of SLy(Z), spec(p(t)) = {z1, ...,z } and
spec(p'(t)) = {y1,...,yn} can be compared by the lexicographical order.

Two representations p, p' of SLy(Z) are called projectively equivalent if

p = x*® p for some a € Z/12Z.

A representations p of SLa(Z) is said to have a minimal t-spectrum if spec(p(t)) is minimal among
all the representations projectively equivalent to p, i.e.,

spec(p(t)) < spec((x* ® p)(t)) for all a € Z/12Z.

Let ¢t be any matrix over C. The smallest positive integer n such that t" = «/id for some a € C
is called the projective order of t, and denoted by pord(t) := n. If such integer does not exist, we
define pord(t) := 0.

10
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We can organize the irreducible representations of SLa(Z) by the level and the dimension of the
representations. Due to the Chinese remainder theorem, if the level of a irreducible representation
p factors as n = [], pfi where p; are distinct primes, then p = (X), p; where p; are level pf"
representations. Thus we can construct all irreducible SLg(Z) representations as tensor products
of irreducible SLs(Z) representations of prime-power levels, which in turn, yields a construction of
all SLa(Z) representations p via direct sums of the irreducible representations.

Define Q,, = Q(¢,) to be the cyclotomic field of order n. For any positive integer n, we can
construct a faithful representation D,, : Gal(Q,,) — SL2(Z/nZ), which identifies the Galois group
Gal(Q,) = Z with the diagonal subgroup of SLy(Z/nZ) [11, Remark 4.5]. More generally, for any
o € Gal(Q), 0(Q,) = Q, and so there exists an integer a (unique modulo n) such that o(¢,) = ¢*
and

Dy (0) := t%stbsts 1 = (g 2) € SLy(Z/nZ), (3.5)

where b satisfies ab =1 mod n. If p is a level n representation of SLa(Z), the composition

D,(0) := po Dy(0) (3.6)

defines a representation of Gal(Q). We may also write D, (o) as D, (a). Such a representation of
Galois group captures the Galois conjugation action on SLg(Z) representations pyp of modular
data, and plays a very important role in our classification. Many of the following collection of
results on pyp were proved in [26, 11].

Theorem 3.7. Every SLy(Z) representation p of an MTC B is a matrix representation with the
standard basis (eq,...,e,—1) identified with irr(B). Assuming eg = 1, p satisfies the following
conditions:
(1) Let n = ord(p(t)). For any g € SLa(Z), p(g) is a matriz over Q,. In particular, p(s);; are
cyclotomic numbers in Q,, for all i,j.
(2) The modular data (S,T) of B is given by

p(t)
(oo
T) = pord p(t)) and (cf. Theorem 2.1(4))

, T= (3.7)

&
~—
o
o
e

(3) In particular, p is symmetric, ord

(4) The representation p is congruence of leveln ord(T) | n | 12o0rd(T'). Thus, p is a symmetric
and congruence SLa(Z) representation.

(5) One has1/p(s)io € Z[(n], and the set of distinct prime factors of ord(T') coincides with that
of the integer norm(1/p(s)oo)-

(6) Let o€ Gal(Q,,) be a Galois automorphism. Then (cf. (3.5))

Dp(0)ij = €5(1)d5(),5- (3.8)
where €,(1) € {1, —1} and & is a permutation on {0,...,r — 1} determined by
o (P _ P8)ist)
(boe) ~ et 39
Moreover,
a(p(s)) = Dp(0)p(s) = p(s)D, (0) and  o*(p(t)) = Dp(0)p()D, (o) - (3.10)
11
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(7) The matriz p(s) satisfies the Verlinde formula (cf. [37]):

o=l ) ) ®
N =Y POPSP ST - oo 1. (3.11)
=0 p(8)i0

(8) Form e N, the m*™ Frobenius-Schur indicator of the i-th simple object can also be expressed
in terms of p(s) and p(t):

vm(i) = > N7*p(5) 00071 - (p(8)kop(B)ik)* - (3.12)
j.k

Remark 3.8. It is worth noting that a pMD representation ppvp shares arithmetic properties
with MD representations as p = VppupV is an MD representation for some signed diagonal matrix
V. Therefore, Theorem 3.7 (1) and (3-6) also hold for any pMD representation. In particular, for

o€ Gal(Q), Dy yp(0) = VD,(0)V, and so

o (ppmp(8)ij) = €5 (1) ppMp (8)s(i); = €5(7) PoMD(8)is(j)
but the sign function €, is different from €, in Theorem 3.7 (6) in general.

3.4. Modular data representations and our classification strategy. The MD representation
introduced in Definition 3.1 plays an important role in our approach. We now explain the strategy
of a systematic construction for low rank modular data, implementable on a computer. In Section
4 we provide a largely by-hand approach to the classification of rank 6 MD.

For a given rank, we first construct all the inequivalent SLo(Z) representations pigym of finite
levels, as direct sums of irreducible SLo(Z) representations obtained as tensor products of the prime-
power level representations listed in Appendix A. Each of these SLy(Z) irreducible representations
is symmetric, and so iS Pisum-

Although the number of the SLy(Z) representations pisum is finite, most of these representations
are not associated to any MTC. In next section, we introduce and collect conditions on MD rep-
resentations, to reject as much as possible the SLa(Z) representations that are not associated to
MTCs.

After we obtain a short list of candidate SLg(Z) representations pisum, we permute the indices
using a permutation matrix P

p = PpisumP " (3.13)

such that arg(p(t);) is ordered for computer implementation or mathematical deduction.

Suppose p is equivalent to an MD representation p. Without losing generality, we can further
assume p(t) = p(t). It follows from Theorem 3.4 there exists an orthogonal matrix U such that
p(s) = Up(s)UT and p(t) = Up(t)U . In this case, U is a block-diagonal orthogonal matrix. The
size of each block U; is equal to the multiplicity of the eigenvalue p(t);;. We first assume that each
of these blocks is of determinant 1. Then

ppvp = UpU T (3.14)

is a pseudo-MD representation. Using Theorem 3.7, Remark 3.8 and the conditions established
in the next section, the existence of such U could either imply contradiction or be determined
for all the rank 6 modular data. In the former case, representation pisum will be rejected. Once
the matrix U is determined, one can determine the correct signed diagonal matrix by using the
Frobenius-Perron dimensions or the Verlinde formula.

The eigenvectors of the diagonal matrix p(t) corresponding to the eigenvalues of multiplicity 1
are of particular importance in the determination of the orthogonal matrix U. We simply called the
block of j(s) corresponding to these eigenvectors the non-degenerate block, and denoted by p(s) 8.

12
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The following proposition provide a convenient sufficient condition for any SLg(Z) representation
equivalent to an MD representation.

Proposition 3.9. Let p be any (symmetric) SLa(Z) representation. If p is equivalent to an MD
representation, then the entries of p(s)"4°8 are cyclotomic numbers in Qord(p)-

Proof. The statement is an immediate consequence of Theorem 3.4 and Theorem 3.7(1). O

The proposition can be implemented for computer automation to eliminate many pisum. Theorem
3.7 (6) and the property of second Frobenius-Schur indicators are implemented to eliminate pisum
or solving the matrix U. When the matrix U is determined, the signed diagonal matrix Fse, can be
searched by using the nonnegative integral fusion coefficients (cf. Theorem 3.7 (7)). The potential
MD representation pyp is then given by

PMD = PsganMDPS—lg—n, (3.15)
Again, pisum will be rejected if no such Pygy is found. From the potential MD representations pnp
we can then obtain the potential modular data (S,T") via (3.7), and they will be verified if Theorems
2.1 and 3.7 are satisfied. This allows us to get a list of (S,7) pairs that include all the modular
data. The computer automation for the endeavor is robust particularly when pijsum = pi,iigl.
By comparing the list of (S,T") pairs to known rank-6 MTCs, we obtain a classification of all
modular data via matrix representations of SLa(Z).

3.5. More general properties of SLy(Z) representations. In this subsection, we introduce and
collect conditions on SLg(Z) representations necessary for them to be MD representations

The decomposition criteria on t-spectrum [5] of a linear representation of SLy(Z) associated with
a MTC is one of the major tools.

Theorem 3.10 (t-spectrum criteria). Let p be an MD representation. If

p=p1@p2
for some representations p1, pa of SLa(Z), then spec(p1(t)) N spec(pa(t)) # .

Let p be a prime. We denote by G}, the Galois group Gal(Qp,). The least dimension of an
irreducible representation of SLa(Z) of level p is %. Their t-spectrum is either G?) - (p or Gz% Gy
where 22 = ¢ mod p has no integer solution. Note that an integer a is called a nonresidue modulo
p if 22 = @ mod p has no integral solution. The second least dimension irreducible representation

p of SLa(Z) of level p is L;l whose t-spectrum is either G3 - e2™/P G {1} or G2 - e?me/P {1} where

a is any nonresidue modulo p. In this case, p(s)? = (%) id (see for example [18]).

Proposition 3.11. Let 3 < p < q be prime such that pg = 3 mod 4. For any modular tensor
category C such that ord(T) = pq, then rank(C) # 251 +1. Moreover, if p > 5, rank(C) > B34 +1.

Proof. Let C be a modular tensor category of rank r < % + 1 and ord(T") = pq. There exists
an SLy(Z) representation p of C with level pg [11]. Suppose p has an irreducible subrepresentation
p' of level pg. By the Chinese remainder theorem, the p’ =~ p; ® pa, where p1, po are irreducible
representations of SLy(Z) of levels p and g respectively. Then

—1 -1
]% +1 > dim p' = (dim p;)(dim ps) > <p2> (q2) )

The inequality implies p = 5 and ¢ = 7, and hence dim p’ = 6. Therefore, the t-spectrum of p’

consists of 6 distinct primitive 35-th roots of unity, and rank(C) = 6 or 7. There exists a modular

tensor category of rank 6 with ord(7T') = 35. However, if rank(C) = 7, then p =~ p' @ po where pg is a

1-dimensional representation. The level of pg is a divisor of 12 but this is not possible by Theorem
13
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3.10. In conclusion, if p has an irreducible subrepresentation of level pg, then p = 5, ¢ = 7 and
rank(C) = 6.
Now, we assume p has no irreducible subrepresentation of level pg. Then p must have irreducible

subrepresentations p, p2 of levels p and ¢ respectively. If dim p; < er or dim pg < q“ , then

p=p1Dp2®p3

where p3 is a subrepresentation of p of dimension < 2. If p3 has a 1-dimensional component p4, then
p4(t) must be a 12-th root of unity. Since 3 < p < ¢, the only 12-th root which could appear in the
t-spectrum of p is 1, or py is trivial. However, spec(p1(t)) and spec(ps(t)) do not contain 1 by the
remark preceding this proposition, and this contradicts Theorem 3.10. Note that irreducible SLa(Z)
representation of dimension 2 at prime levels only appear for the primes 2, 3 and 5. Therefore, if
ps is irreducible of dlmenswn 2, then p = 5 and p3 is of level 5, but this contradicts Theorem 3.10
again. Thus, dim p; > 2= L and dlm p2 = H . Since rank(C) < B2 +1, we find rank(C) = B5% +1,

-‘rl +1
_Pp 2_q

dim p; = &5~ and dim p . Now, we Would like to show that this also impossible.

Without loss of generality, we may assume (%) =1 and (—) = —1. Then p(s)? is a signed

diagonal matrix and the multiplicities 1, —1 are respectively 2= H and qH . Thus, | Tr(p(s)?)| = 52,
Since rankC — %52 = p 4+ 1, C has I%l 3 pairs of simple obJects Wthh are not self-dual. Since

p(t) has only one eigenvalue of multiplicity 2 and all other eigenvalues are of multiplicity 1, C has
at most 1 pair of simple objects which dual of each other, a contradiction! [J

Let p be an SLa(Z) representation of a modular tensor category C and let n be the level of p.
For any o € Gal(Q), D,(o) defined in (3.6) is a signed permutation matrix of & by [11, Theorem
I1] (or Theorem 3.7 (6)). The permutation ¢ on irr(C) is given by (3.9), and we set

Inve(o) := {i €irr(C) | 6(i) = i}.
If v is complex conjugation, by (3.10),

Dy(7) = p(s)p(s) " = p(s)? = £C,
where C' is the charge conjugation matrix of C. Since (i) = ¢* for i € irr(C),
| Te(Dp())] = | Tr(p(s®)| = Tx(C) = [{i € irx(C) | i* = i} = |Inve(v)].
This equality can be generalized to any o € Gal(Q) as an inequality in the following proposition.

Proposition 3.12. Let p be an SLa(Z) representation of a modular tensor category C. For any

o € Gal(Q),
| Tr(Dp(0))] < [Tnve(a)] -

Let s := p(s), and follow the notation of Theorem 5.7(6). If s;j # 0 for any i,j € Inve(o), then
€ (i) = 60-(]) If there exists i € Inve (o) such that s;; # 0 for all j € Inve(o), then

| Tr(Dy(0))] = [Tnve(a)] -

In particular,
Tr(s?) = |{i € irr(C) | i* =i}| > 0.

Proof. By Theorem 3.7(6), D)(0) = €5(i)0s(;),;- Therefore,

| Te(Dp(o))| = | Y, eoli)] <|lnve(o)].

i€lnve (o)
14
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If s;; # 0 for any ¢,j € Inve(o), then o(s;j) = ex(i)si; = €5(j)sij, and so €5(i) = €,(j). Thus, if
there exists i € Inve(o) such that s;; # 0 for all j € Inve(0), then €4,(i) = ,(j) for all j and hence
the equality

| Tr(Dp())| = [Inve(a)] -
The last statement was proved in the preceding remark and since 1* = 1 this completes the proof
of the proposition. [

According to [11], if p is an MD representation of an integral modular tensor category C, then
p(t)1,1 = ¢ for some 24-th root of unity ¢ under the identification of the standard basis for p and
irr(C). The following proposition provides a sufficient condition on the representation type of p for
C to be integral.

Proposition 3.13. Let p be any SLa(Z) representation. For any ¢ € spec(p(t)), denote by E¢(p)
the eigenspace of p(t) for the eigenvalue (. Suppose p is equivalent to an MD representation p of a
modular tensor category C. Then
(1) Dp(o)(Ec(p)) = Ec(p) for all o € Gal(Q) if and only if (** =
(2) If 1 € E¢(p) for some ¢ € spec(p(t)), and for each o € Gal(Q), there exists e, = +1 such
that
Dp(0)lEc(5) = €0 1dE ()
then C is integral. In particular, ¢** = 1.
(3) If 1 € @.ca Ey(p) for some subset A < spec(p(t)), and for any v € A, o € Gal(Q), there
exists €;(y) = £1 such that D;(0)|g, (5 = €(V)idg,(5), then A is a set of 24-th roots of
unity and C is integral. B
(4) If C is integral and d; > 0 for all i, then for any o € Gal(Q), d; = ds(;) for alli, Dy(o)(1) =
€; 1 for some €, = £1, and éDp(O') is the permutation matriz of 6.

Proof. Assuming the identification of the standard basis for p and irr(C), E¢(p) is spanned by
the objects X € irr(C) such that p(t)xx = ¢. Let o € Gal(Q). It follows from Theorem 3.7(6)
that D,(0) is a signed permutation matrix of a permutation & on irr(C), and that o%(p(t)) =
D,(a)p(t)D,(0) 7L, or equivalently p(t)D,(c) = D,(0)o=2(p(t)). If ¢** = 1, then 2(¢) = ¢ for all
o € Gal(Q). Thus, for any simple object X € E¢(p),

p()Dy(0)(X) = Dp(0)o*(p(t)(X) = 072(()Dp(0)(X) = (Dp(o)(X).

Therefore, D,(c)(Ec(p)) € E¢(p). Let ¢ : p — p be an isomorphism of SLy(Z) representations.
Then ¢(E¢(p)) = E¢(p), and ¢D;(c) = D,(0)¢ for any o € Gal(Q). This implies D;(c)(E¢(p)) <
E¢(p)-

Conversely, if Ds(0)(E¢(p)) < E¢(p), then D,(0)(E¢(p)) < E¢(p) by the same reason. Thus, for
any X € E¢(p), p(t)D,(0)(X) = (D,(0)(X). However, we also have

p()Dy(0)(X) = Dp(0)o*(p(t)(X) = 072(¢) Dp(0) (X).

Therefore, 0=2(¢) = ¢ for all 0 € Gal(Q). This implies ¢ is a 24-th root (cf. [11, Prop. 6.7 and
Lem. A.2]). This proves statement (1).

For statement (2), we assume 1 € E¢(p), and for each o € Gal(Q) there exists ¢, = +1 such that
Dy(0)|B (5) = €oidE (p)- 1t follows from (1) that ¢** = 1. Moreover, Dy(0)|E (p) = €oidE,(p) and
D,(0)(1) = €51 = £6(1). Therefore, 6(1) = 1, and hence o(dim(V')) = dim(V') for any V € irr(C)
by Theorem 3.7(6). Thus, dim(V') are integers for V € irr(C). It follows from [11, Rem. 6.3] that
FPdim(V') € Z, and hence C is integral.

Statement (3) follows directly from (2), and this completes the proof of the proposition.
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(4) Since C is integral, S;jo = d; € Z for all j. For any o € Gal(Q), o(S;0) = Sjo. Therefore,
5(0) = 0, and so o(p(s)i0) = €7(0)p(s);0 for all i, where €,(0) = +1. This is equivalent to that
D,(0)(1) = €, 1.

Slnce a(p(s)io) = €r(i)p(5)s@i),0 for some €;(i) = 1, we have e;(i)p(s)s(:)0 = €op(8)i0 Or
eo(i)da(i) = €,(0)d;. This implies ¢,(0) = €,(j) and d; = dy(iy as di, dg(y > 0.

For any i, 7 € irr(C),

a(p(9)ij) = €(i)p(8)s(),5 = €5(0)p(8)5(:),5
which implies D,(0)p(s) = €,(0)P(6)p(s), where P(6)ij = 0g(;),;- Thus, Dy(o) = €,(0)P(6). O

The following result in [7] is important for determining whether an SLg(Z) representation of
small level is an MD representation.

Theorem 3.14. Modular tensor categories with ord(T) = 2,3,4,6 are integral.

Then the case for ord(7") = 2 is completely classified in [38], and the types of these MTCs are
given in the following proposition.

Proposition 3.15. Let C be a modular tensor category with ord(T) = 2. Then rank(C) = 4™ for
some positive integer n, and every SLo(Z) representation p of C is projectively equivalent to

(P2 ® 2x0)®" = anp2 ® bup1 ® cnXo ;
where p1, p2 are respectively the level 2 irreducible representations of dimension 1 and 2, and

4n—1 2-4n71 41 _ 2-4771 41 _

g b= 2 ey s e 2
Proof. By [38], C is a Deligne product of the pointed modular tensor categories C(Z3, q) and C(Z3, ¢')
with the quadratic forms ¢, ¢’ : Z% — {£1} given by

a(e,y) = (D%, ¢(ay) = (-1)7 TV
Both modular tensor categories, up to a linear character, have a representation of SLy(Z) equivalent
to pa @ 2x0 - Note that SLy(Z/2Z) =~ S3, symmetric group of degree 3. Thus, p = (pas ® 2x0)®" =
anp2 @ bpp1 @ cnxo for some nonnegative integers a,, by, ¢,. The fusion matrix of ps @ 2x( relative
to the basis {xo, p1, p2} is given by

ap =

2 01 400 1
F=|021|=P|020|P' wheeP=|1 -1
113 00 1 95 0 -1
Thus,

" n—1 4”71+1 n—1 4" i1 4n—1

F* =P ; On ’ P_l — g n— 1+ 24” 141 Z 1 +2 qn— 1+1 47,,371

) 0 o | 4 1T ’ oy 2an i
n__ n_ vl
0 0 1 3 3 et =

The result follows from the first column of F™. O

The following proposition follows immediately from the classification of [4], where strictly weakly
integral means FPdim(C) € Z while FPdim(X) ¢ Z for some object X.
Proposition 3.16. Let C be a modular tensor category of rank 6.

(1) IfC is integral, then C is pointed and hence C is of type (4,2) and every SLa(Z) representation

of C has level 24.
16
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(2) If C is strictly weakly integral, then C is braided equivalent to a Galois conjugate of U(2)1 X
SU(2)3, SO(5)2 or its zesting. If p is an SLa(Z) representations of C with a minimal t-
spectrum, then one of the following holds: (i) C is of type (6) and p has level 16, (ii) C is of
type (3,3) and p has level 20, or (iii) C is of type (3,2,1) and p has level 10.

(3) In particular, if C is weakly integral, then dim(C) = 6,8, 20.

When a potential modular data is obtained from a representation of SLy(Z), one could obtain
the FPdim(X) of each simple object X. Those simple objects X with FPdim(X) = 1 generate
a pointed ribbon subcategory. The next proposition, which can be derived from [32] in different
notation, describes some relations between the rank of a pointed ribbon category and the orders of
the twists.

Proposition 3.17. Let C be a pointed ribbon category of rank n. Then ord(T) | n if n is odd, and
ord(T) | 2n if n is even. If, in addition, C is symmetric and dim(a) > 0 for all a € irr(C), then
either ord(T) =1 or 2. In the latter case, n must be even and there are exactly n/2 simple objects
with twist —1.

Proof. Since C pointed, the set G = irr(C) forms an abelian group under the tensor product and
the map ¢ : G — C*,¢(a) = 6, defines a quadratic form on G. Therefore, B,(a,b) = q(qcf)a;’()b)
a bicharacter on G. In particular, By(a,b) is an n-th root of unity for any a,b € G. Now, for any

positive integer m and a € G, we have
q(a™) = q(a)q(a™ ") By(a,a™ ") = q(a)g(a™ ") By(a,a)™ .
Therefore, by induction, we have
g(a™) = g(a)™ By(a, )12,

In particular, g(a)” = By(a,a) " Y/2, 1f n is odd, 11 € Z and so g(a)” = 1. If n is even, then
q(a)?" = 1. This completes the proof of the first statement.
If, in addition, C is symmetric and dim(a) = 1 for a € G, then

defines

b)

1=5 =B —1b:B b—1:q<a)q(

a,b Q(a’ ) ) q(av ) q(ab)

for any a,b € G. Therefore, ¢ is a character of G. Since q(a™!) = q(a), g(a)? =1 for all a € G. If q
is of order 1, then g(a) =1 for all a € G or T' = id. However, if ¢ is of order 2, then the image of ¢
is the group {+1} which is of order 2. Therefore, ker ¢ is of index 2 which means there are exactly
n/2 simple objects in G with twists are 1. Thus, the second statement follows. [

It is worth noting that last statement of the preceding proposition does not hold for super-
Tannakian fusion categories which are not pointed. For example, if we take @@ to be the quaternion
group of order 8 and z the unique central element of order 2, then the super-Tannakian fusion
categories Rep(@Q, z) has 4 simple objects a of dimension 1 with 6, = 1 and a unique simple object
b of dimension 2 with 6, = —1.

For any legitimate fusion rules NZ-];, one could obtain the possible ), = e?™* by solving a system
of linear equations with unknowns s;. The following proposition provides a condition for legitimate
sp of a potential modular data.

Proposition 3.18. Let C be a modular tensor category of rank n and central charge c. If the twists
of C are €*™51 . e*™5n for some rational numbers s1, S, . .., 5y, then

n
1225k—n6/262
k=1
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Proof. Note that e™¢/4 = % D1 di e?™sk where dj, denotes the dimension of the simple object k
with twist ™%k and D = /dim(C). Let (S,T) be the modular data of C. Then

p(s) = =8, p(t) =e 2T

defines an SLy(Z) representation of C. Thus, detop is a 1-dimensional representation of SLa(Z).
Since the group of linear characters of SLy(Z) is a cyclic group of order 12, det p(g)'? = 1 for all
g € SLy(Z). In particular,

1 = det p(£)12 = (2751 ... g2Tisn . o=2mine/24)12 _ 2w 1230 sk—nc/2
This implies 12>, s —nc/2e Z. O
The following proposition is proved in [31] will also be useful later.
Proposition 3.19. Let p an MD linear representation. Then
p E npo

for any integer n > 1 and any non-degenerate representation py of SLa(Z).

3.6. Modular tensor categories of type (d,1,...,1). For a representation pisym of SLa(Z) of
type (d,1,...,1) it is generally more difficult to determine whether it is equivalent to an MD
representation. However, this type of MTC does exist. It is desirable to deduce some conditions
for such MD representations.

Lemma 3.20. Let p be an MD representation. If p = po @ p1 @ --- D pe for some 1-dimensional
representations pi, ..., pe of SLa(Z), then spec(p;(t)) < spec(po(t)) for all i > 0. In particular, if
po(t) has exactly one eigenvalue which is a 12-th root of unity, then p1,...,p¢ are all equivalent,
and p = po @ Lp;.

Proof. By the t-spectrum criteria, spec(p;(t)) < spec(po(t)) for some j > 0. Suppose there exists
j > 0 such that spec(p;(t)) & spec(po(t)). Let J = {j € {0,...,¢} | spec(p;(t)) ¢ spec(po(t))}.

Then, the decomposition
p = (Z Pj) S (Z Pj)
jeJ J¢J

does not satisfies the t-spectrum criteria. Therefore, spec(p;(t)) < spec(po(t)) for all j.
If, in particular, spec(p(t)) contains exactly one 12-th root of unity ¢, then spec p;(t) = {¢} for
all ¢ > 0. Hence p; = p; for ¢ > 1, and the last assertion follows. [

Corollary 8.21. Let p be an SLa(Z) representation of a modular tensor category C. Suppose that
PP D1 DD pe for some 1-dimensional representations pi,...,pe and some non-degenerate
irreducible representation po of SLa(Z) such that spec(po(t)) has a unique 12-th root of unity. Then
C admits an MD representation p' = pj @ lxo, where xo is the trivial representation and py is
projectively equivalent to py with 1 € spec(p;(t)).

If ¢ ¢ {1,2dim py — 1}, then C is self-dual, and pjy is even. If £ € {1,2dim py — 1} and C is not
self-dual, then pj, is odd, and the set of non-self-dual objects is given by {i € irr(C) | p/'(t)i = 1}.

Proof. By Lemma 3.21, p = po@{p;. Since dim p; = 1, p’ = pf ®p is another SLy(Z) representation
of C. Moreover, p' = p{, ® £xo, where p|, = p} ® po which is also non-degenerate.
Suppose pj(s?) = —id. By Proposition 3.12, the number of self-dual objects in irr(C) is given by

| Te(p'(s%))] = ¢ — dim pg| > 0
18
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since 1 is self-dual simple object. If £ > dim pg, then | Tr(p/(s?))| = ¢ — dim pg and so number of
non-self-dual objects in irr(C) is 2dim pg. The non-degeneracy of p{, implies that p/(t);; = 1 for any
non-self-dual i € irr(C). Therefore, 2dimpy = ¢+ 1 or ¢ = 2dim pg — 1.

On the other hand, if ¢ < dim pg, then | Tr(p’(s2))| = dim p; — ¢ and so number of non-self-dual
objects in irr(C) is 2¢. Since p/(t);; = 1 for any non-self-dual simple object 7, 20 = £+ 1 or £ = 1.

Thus, if £ # 1 or 2dim p; — 1, then pj(s?) = id and so C is self-dual. On the other hand, if
¢ € {1,2dim py — 1} and C is not self-dual, then pj(s?) = —id and the above discussion shows that
the non-self-dual objects i € irr(C) are exactly those ¢ satisfying p'(t); = 1. O

Now, we can prove a sufficient condition for any MD representation of prime level p > 3 and of
1
type (5=, 1,...,1).
Proposition 3.22. Let C be an MTC of type (d,1,...,1) such that ord(T) is a prime p > 3, where
d = %. Then C is of type (d,1), and hence rankC = d + 1. Moreover, Inve(o) = & for any
generator o € Gal(Q,/Q). Furthermore, if p = 1 mod 4, then C is self-dual; otherwise C is not

self-dual.

Proof. By [11], there is an SLg(Z) representation p of C, which has level p. Then, every subrep-
resentation of p must have a level dividing p. Since C is of type (d;1,...,1), p has a irreducible
subsrepresentation pg of dimension d and level p. By the classification of irreducible representa-

tion SLo(Z/pZ), po(s?) = (%) id, po is non-degenerate and 1 is the unique 12-th root of unity in
spec(po(t)). By Corollary 3.21,

p = po @ Lxo-
Thus, if p =1 mod 4, then pg is even and hence C is self-dual. However, if p =3 mod 4, then pg

is odd and so C is not self-dual.
One can derive from [30] that

1| V2 o V2 a0
-8 w-|
pols) = . 4draijg ,  POo =
N : 2COS< » )
V2
where 1 < 4,j < d-—1, p* = (%l)p, and a an integer coprime to p. One may assume p(t) =

diag(1,...,1,¢p, - -, Cg(d_l)z). By Theorem 3.4, there exists W € Og44¢(R) such that p = W (fxo @
po)W . Note that W = VU for some signed diagonal matrix V and

¢’

U= [ fp 0 ], where f € SOy:1(R),
0] Ig—1

and ppMp = U (Lxo @ po)U T is a pseudo-MD representation, where I;_; denotes the identity matrix
of dimension d — 1.
By direct computation,

Iy 0 ] U7 _ [ Loy + fepr1fip (@ —1) ‘ V2 011md1

0 | po(s) x 27‘}711";”1 ‘ 2 cos <%>

where fuei1 = [freets s fernen] s ra1 = [1,---, 1] €R™! and 2 = (%)/VP*-

Let o be the generator of Gal(Q,/Q). For any j € {1,...,d — 1}, there exists j € {1,...,d — 1}
such that

PpMD (5) =U

] (3.16)

o (2cos(2mj/p)) = 2cos(27]/p) .
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Since v/p* € Q. o(v5F) = —v*, and so
o (2x cos(4maij/p)) = —2x cos(4maij/p) .

for any 4,5 € {1,...,d — 1}. If one identifies irr(C) with {1,...,d + £}, then we have 6(¢ + 1 + j) =
¢+ 1+ 7 for each je{1,...,d — 1}. In particular, 6 has no fixed point in {£ +2,..., ¢+ d}.
By (3.16) and Remark 3.8,

a(:l:\/ifmﬂ) = —x\@fuﬂ forallie{l,...,0+1}.

Since l’,x\/ifi’[+1 € Qy and o(z) = —ux, \/§fl-7g+1 € Qp and U(\/?fi’[+1) = ’\/§fi’g+1. Therefore,
V2fies1€Qforallie{l,...,0+ 1}, and hence f;s1fj041 € Q for all 4,5 € {1,...,£+ 1}.
We claim that 0 < fgeH <1forallie{l,...,0+1}. If f; 11 = 0 for some ¢, then each row of
ppMp(s) has a zero entry by (3.16). Therefore, f; o171 # 0 for all . Since f, 41 as unit length, if
5“1 =1, then fi 41 = 0 for all k # i < £+ 1, a contradiction. This proves the claim.
Now we can show that Inve(o) = . It suffices to show that ¢ has no fixed point in {1,...,¢+1}.
Suppose the i-th column of s := pyyrp(s) is fixed by & for some ¢ € {1,...,£+ 1}. Then o(s;;) =
€. (i) sii, where €, (i) = +1. Since s;; = 1 + fﬁg +1(z — 1), the preceding equality implies

@)1+ flra(z = 1)) =1+ f (-2 = 1).

Since fzﬂl < 1 is rational, the equation forces ff,zﬂ =1,€e (i)= —1or fz%gﬂ =0,¢, (i) = 1. Both

)’ o
are not possible as 0 < ffz +1 < 1. Therefore, 6 has no fixed point in irr(C).
Let 0(Cp) = ¢3. Then Tr(Dpy(0)) = Tr(po(t'stst’s 1)) = —1 (cf. [18]), where uv =1 mod p.
It follows from Proposition 3.12, |Inve(o)| = | Tr(D,(0))| = € — 1. Therefore, £ = 1. [

3.7. MDD representations with multiplicities. In this subsection, we investigate the MD rep-
resentations p = p; @ py such that pj, po are non-degenerate, symmetric, and their t-spectrums
have nonempty intersection.

Theorem 3.23. Let p1, p2 be non-degenerate symmetric representations of SLa(Z) such that the in-
tersection of their t-spectra is of sizel ='1. Let dim p; = [+k and dim py = l+m and suppose k,m =
1. Let p1(s) = [¢ij], pr(t) = dlag(ar,. ., anr1), p2(8) = [ni5] and pa(t) = diag(Br, -+, Bm+1) with
a; = B fori=1,...,1. Suppose p1 @ p2 is equivalent to an SLo(Z) representation p of a modular
tensor category C. Then

a;

—b:
(i) there exists a signed diagonal matriz V' and 2 x 2 orthogonal matrices U; = b Z] with
i G

a; =20 (i=1,...,1) such that

A|BT|CT
p(s) =V | B| ¢ | 0 |V andpt) =diaglarls,...,cqulo, qpity - s @k, Bisty - - -5 Biem),
cl o |7
where A, B and C are block matrices with
Aij =U; w(;j 779' U/, Bij=[$sir; OU]  and  Cyj = [0 my ;1U}
ij

1<i,7<, 1</ <kandl<i" <m, and ', ' are respectively the k x k and the m x m
bottom diagonal blocks of p1(s) and pa(s), i.e.,

N R R
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(i) Let (e1,...,ea+m+k) be the standard basis for p which is identified with irr(C). Then the
unit object 1 of C is egy—1 o1 egy for some u < 1. In this case,

() Yuy + Muu # 0, dim(C) = m and the modular data of C is given by
-1
=———p(s) and T =ay, pt). (3.17
wu,u + Tu,u “ )
In particular, the (2u — 1)-th, the 2u-th rows of the S-matrixz have the following form
up to signs:
1 Yuw=Tuu . V2%uwur1 . V2Puuak V20w V21w i4m
YuutNuu YuutNuu Yuu+Nuu Yuu+Nuu T Yuut+Nuu (3 18)
Yuuw—Nuu 1 o 2% V2%uaek V20041 V2nuaem ’
YuutNuu YuutNuu YuutNuu Yuut+Nuu T Vuu+Nun
(b) % € {x dim(egy—1), = dim(ea,)}, and the dimensions of egi1,. .+, €904 frm, Up to

some signs, are respectively given by

ﬁwu,l+1 \/iwu,lJrk \/inu,lJrl ﬁnu,l+m
Yuu + nuu, 7 Yuu + nuu’ Yuu + nuu, ’ Yuu + Muu
Hence, these numbers are real nonzero cyclotomic integers in Z[(n]| where N = ord(T).
Moreover, i:jzfm € Z[(N] is a unit.
(c) ‘f””f“’, ‘f”j»l“” eZ[(n] forl<i, 1<i' <k, 1<i"<m.
w,l+i! w143

(iii) If p1 and py are irreducible, then p1 and ps must have the same parity and C is self-dual.

Proof. We first obtain a representation p by conjugating p; @ p2 with a permutation matrix so that

ilBT|or
ﬁ(t) = diag(all%"'7alI27al+17"'7al+k718l+17"'76l+k) and ﬁ(ﬁ) = B ¢/ 0
clo| o

where I, is the 2 x 2 identity matrix, and fl, B , C are block matrices given by
_ vii 0 4 .
A =" , Bij=[t11i; 0] and Cirj = [0 mym ]
0 “ni
with 1 <4, <1,1 <4 <kand 1 <17 <m, Suppose there exists an MD representation p of a
modular tensor category C such that p =~ p; @ pa. Then p = p and we may assume p(t) = p(t) by

conjugating a permutation matrix to p. According to Theorem 3.4, there exists a block diagonal
orthogonal matrix U of the form

U =diag(Us,.... Ui, Y241, - s Y2u+m+k)
such that p(s) = Up(s)U " and p(t) = p(t), where ; = =1 and U; is a 2 x 2 orthogonal matrix for

i=1,...,land j =2[+1,...,2l+k+m. We can always write U; = V; [Zl Z] where a?—i—b? =1,
i G
a; = 0 and V; a signed diagonal matrix. Now, we set V' = diag(V1,..., Vi, Y2141, -+, Y214k+m). Then
statement (i) follows.
The standard basis (e1, ..., e91k+m) is now identified with irr(C). Since only the first 2/ rows

of p(s) may not contain any zero entries, the unit object 1 can only be e, with 1 < x < 2[. Let
u = |[x/2], the least integer > u/2. Then,

1 4.
T = a, dlag(al-[Qv cee 7a1127 Qpp1y ey Opq, /8l+17 cee 7ﬁl+m)

and the (2u — 1)-th and 2u-th rows of p(s) are given by
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buaj'(/)uj - aubjnuj bubjwuj + Aoy A Ty m m

Ay Ay u+bub uj aub‘ u'_bua’ uj a _b
Aw-:{ W Dbyl 0 ”} (B )it = s H <OT>u,in=nu,l+i~[ ]

Since e; = 1 and = € {2u — 1,2u}, ay,by, Yy 1+ and 1,4+ are non-zero for 1 < ¢/ < k and
1< <m.
Now, we assume = = 2u — 1. Then, by [26],

p(5)2u,2l+i' buwu,l-‘ri’ B bu nd p(5)2u,2l+k+i” TGy Nyl Ay c Z[CN]

p(5)2u—1,2l+i’ auwu,l-&-i’au B Gy p(5)2u—1,2l+k+i” bunu,l+i” bu
where N = ord(7'). Therefore, §* is a unit in Z[(n]. Accgrding to [29], both spec(pi(t)) and
spec(pz(t)) are closed under the action of o2 for any o € Gal(Q). Therefore, the subsets

{austs - aupr} < spec(pi(t)) and  {Bi1,. .., Biem} < spec(p2(t))
are closed under o2 for all o € Gal(Q). Thus, {20+1,...,2+k} and {21+ k+1,...,2l+k+m} are

both closed under the action of & for o € Gal(Q). In particular, for o € Gal(Q), (2] + 1) = 21 + ¢
for some positive integer i’ < k. Hence,

. <bu) _ U( P(8)2u,2041 ) _ P(8)2u,6(21+1) p(8)au2irir by
p p

Ay, (5)2u—1,2l+1

(8)ou-1,60211)  P(&)2u—12140  Gu

So, by/a, € Q and hence b,/a, = +1 = ¢,. Since a2 + b2 = 1, we have a, = % This implies that

2
1 Yy + TNuu €y (wuu - nuu):| T 1 1 T 1 —€y
— s ) = — -/ , C = 1 .
2 |:€u(¢uu — ) Vuw + T ( )%% ﬁwu,l-ﬂ €y ( )u,z \/inu,l—m 1

In particular, % = %“737’““ Therefore, Yy, + Nuu # 0 and so the S-matrix (3.17) of C is then

obtained. In particular, the (2u — 1)-th and 2u-th rows of S are displayed in (3.18). Thus, the
dimensions of egy, €9711, - . -, €214 k1m, UP tO some signs, are respectively given by

Yuu — Nuu \/iwu,lJrl \/iwu,lJrk \/inu,l+1 ﬂnu,ler
(O nuu’ Yy + 77uu’ ’ Yy + nuu’ Yy + nuu’ ’ Yy + nuu’

which are non-zero real numbers in Z[(y].
Now, the global dimension

Au,u =

dim(C) = W eR*  Z[Cn].

It follows from [26] that ;&yiz € Z[¢n] for any y,z = 1,...,2l + k +m. For y = z = 2u, we find

(8)2u—

wuu'i_nuu
— e Z[(N],
wuu_nuu [N]

and so Z}’ZZ—;ZZZ is a real unit in Z[(x]. For y,z > 2[, we find
2 . 2n; ™
\fwz,lJrl and \fnz,lJrz e Z[CN]'
Y4 M43

fori>1,1<4 <k, 1<i" <m. This completes the case for z = 2u — 1.
One can follow the same argument for the case when x = 2u. However, the conclusions are
identical to the case x = 2u — 1. Therefore, the proof of statement (ii) is completed.

(iii). Assume the contrary. Then p;, pe are irreducible representations with opposite parities.

Thus, | Tr(p(s)?)| = |k —m|, which is the number of self-dual objects in irr(C). Since p(t) has m + k
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eigenvalues of multiplicity 1, the number of self-dual objects in irr(C) is at least m + k which is
greater than |k — m|, a contradiction. The proof of statement (iii) is completed. O

As a consequence of the preceding theorem, two non-degenerate irreducible representations with
opposite parities will never satisfy the conditions of the theorem. However, we can solve the modular
data if the t-spectrum of py is subset of that of p;.

Theorem 3.24. Let p1, p2 be non-degenerate symmetric representations of SLo(Z)such that
spec(p2(t)) & spec(pr(t)).

Let | + k = dimpy and | = dimpa, pi(s) = [¥45], p1(t) = diag(aa,...,ax41), p2(s) = [mi],
p2(t) = diag(aa, ..., aq). Suppose p1 @ p2 is equivalent to an SLa(Z) representation p of a modular
tensor category C. Then

a;

—bs
(i) there exists a signed diagonal matriz V and 2 x 2 orthogonal matrices U; = b Z] with
i O

a?+b?=1anda; >0 (i=1,...,1) such that

A| BT
B v
where V' is the k x k lower right corner block of p1(s) and A, B are block matrices given by
Pi; 0
0 7y
for1<i,j<land1l<j <k.

(ii) Suppose p1 and py have opposite parities. We identify the standard basis (e1, ..., ey k) of

p with irr(C). Then
(a) egi—1 and eg; form a dual pair for i =1,... 1.
(b) The unit object 1 can only be eay,, with 1 < u <k such that Y4y 14y # 0 and

p(s) =V V. and pt) = diag(aqls, ... aql2, 0441, .., Qgy),

Aij =U; UJT7 Bi’j -8 [wl-i-i’,j O]UJT’

‘ _ . . 1 I+u . £y I+u
dim(C) = [Yrquirul 2 dim(egi—1) = dim(eg;) = ———, dim(e;) = ——=
( ) |wl+ I+ | ( 2 1) ( 2) \/iwl-i-u,l-&-u ( ]) Q,Z)H.u,l-&-u

fori=1,...;0and j=1+1,...,l+k. In particular, they are elements of Z[(n] N R*
where N s the order of T = al_l p(t), and the S-matriz of C is given by

+u
A/ B/T
] v’ (3.19)

-1
S = ¢l+u,l+u V/ B’ 77[),

for some signed diagonal matriz V' and block matrices A’, B' given by

Vi jT€i€iM,g Vi €€,
2

/ p—

Yitir 5
] and Bj ; = G [11]

2
Yij—€i€inij  Yijteicinig
2 2

where €; = £1, 1 <4,j <l and 1 <4 < k.

Proof. By conjugating a permutation matrix to p; @ p2, we can obtain an equivalent representation

p given by
o)~ |45
p - B ¢/

and p(t) = diag(aila, ..., oqpla, pit, ..oy Qgry),
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where ¢ is the k x k bottom diagonal block of pi(s), and A, B are block matrices with

i Vi 0 -
Aij = v Bij=[ti4i; 0
j 0y g = [Yiri; 0]

for 1 < 4,7 < land 1 < j/ < k. By Theorem 3.4, there exists an orthogonal matrix U =
diag(U1, ..., U, Y2141, - - -, Y2i41) such that p(s) = Up(s)U' and p(t) = p(t) where v; = +1 and
U; is a 2 x 2 orthogonal matrix for ¢ = 1,...,l and j = 2l + 1,...,2l + k. As before, we write

a; _b
Uu =V | *| where a? + b? =1, a; = 0 and V; a signed diagonal matrix. Now, we set
i Q4

V =diag(V1, ..., Vi, Y2141, - - - s Y214k), and statement (i) follows immediately.

(ii). Now we assume p; and py are of opposite parities. Then |Tr(p(s)?)] = k and so there
are exactly k self-dual simple objects in irr(C) and [ dual pairs. Since ey;—1 and ey; give rise to
the same eigenvalue of p(t) for i = 1,...,1, and p(t)2;2; # p(t);; for j ¢ {2i — 1,23}, they must
form a dual pair. Since the unit object 1 is self-dual, 1 = eg;y, for some positive integer u < k,
and so 1/4/dim(C), up to a 4-th root, is p(8)2+u2+u = Yitui+u- 10 particular, ¥y, 14, # 0,
dim(C) = |[Y11ui+u/ 2 and 1/1112%”” € Z[(n] n R*, where N is the order of T' = ozl;lup(t). By (i),

A|BT
-1
S = wl-ﬁ-u,l-ﬁ-u 4 [ B| v

where A, B are block matrices given by

|2

@1a;%;,j+bibinij  aibjtij—a;jbini,;
2 2 R S Tas b
AZ] ajbivij—aibini i bibjvi j+aiain; and Bl'ﬂ - d)l'ﬂ/ﬂ [CLJ b]]'
2 2

Thus, the dimensions of epj_1 and ey; are respectively given by

Qs _ b
wl-i-u,j g and ¢l+u,] '

wl-i-u,l-&-u ¢l+u,l+u
which implies +a; = b;. Since a]2~ + b? = 1 and a; = 0, we have a; = \% and b; = % for some
Yigtei€ini;  €V%ig—€iNij "
. 1+i,j
¢j = %1 (j =1,...,0). Therefore, Ajj = |y 2 ceusin, | and Bij = 521 €] Let
2 2
1 0
E; = for j =1,...,1. Then
0 Ej

Aij = EZA;]EJ and Bi’j = Bz{’jEj
and the expression (3.19) of the S-matrix follows immediately by setting V/ = VE where E =

diag(E1, ..., Ep,1,...,1). Moreover, dim(ezj—1) = dim(eg;) = % for j = 1,...,l, and
dim(egy i) = % for 1 <4’ < k. It follows from [24] that they are elements of Z[(x] N R*.

This completes the proof of statement (ii). O

4. CLASSIFICATION OF MODULAR DATA OF RANK=6: ADMISSIBLE TYPES

In this section, we prove that admissible types of MDs that can be realized by some rank=6
MTCs include (4,1,1),(4,2),(3,3), and (3,2,1).

Definition 4.1. Let (S,T) be a modular data. Denote by v the object (label) corresponding to the

column of the S-matrix that is a multiple of the column of FP-dimensions.
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4.1. Classification of modular data of type (4,1,1). Recall that SO(8)3 = PSO(8)3 X SO(8)1
as modular tensor categories, which defines the notation PSO(8)3. Alternatively, the modular data
of PSO(8)3 can be obtained from SU(3)¢ via boson condensation [34]. We will prove in this section
that the Galois conjugates of the modular data of PSO(8)3 are characterized by the MTCs of type
(4,1,1).

Theorem 4.2. Let C be a rank 6 modular tensor category of type (4,1,1). Then the modular data
of C is a Galois conjugate of PSO(8)3.

Let C be an MTC of type (4,1,1), and p an SLy(Z) representation of C. Then p admits an
irreducible decomposition po@®p1Pp2 in which dim pg, dim p1, dim po respectively 4,1,1. By tensoring
a suitable 1-dimensional representation of SLy(Z), we will assume pp has a minimal t-spectrum.

In particular, all the 4-dimensional irreducible representations of level 6 are even. Now, can
prove

Lemma 4.3. C is self-dual, pg must be even of level 9, and p = po @ 2x0-

Proof. From Appendix A, 4-dimensional irreducible representations of SLy(Z) with minimal t
spectrums appear at the levels 5, 6, 7, 8, 9, 10, 12, 15, 20, 24 and 40. The t-spectrums of those
4-dimensional irreducible representations of levels 5, 8, 10, 15, 20, 24 and 40 do not contain any
12-th root of unity. It follows from Lemma 3.20 that py cannot be of any of these levels.

It remains to show that the level of py cannot be 6, 7 or 12. Suppose pg has level 7. Then C is
of type (4,1,1), which contradicts Proposition 3.22. Therefore, the level of py cannot be 7.

Suppose pg has level 6 or 12. Since there is no 4-dimensional irreducible representation of levels
2, 3 or 4 in the tables of Appendix A, pg must be projectively equivalent to a tensor product of
two 2-dimensional representations, namely pQ;,o ® p2§*° or p2411’0 ® p2§,0. However, p2%,o and in,o are
projectively equivalent, hence so are P10 ® P10 and P10 ® P10 So pg is projectively equivalent
to P10 ® P10 which has a minimal t-spectrums {1, —1, {3, —(3}. Therefore, py =~ P10 ® P10

By Lemma 3.20, the levels of p; and ps are divisors of 6, and so is the level of p. Therefore,
ord(T")|6 and hence C is integral by Theorem 3.14. It follows from Proposition 3.16 that C is of
type (4,2), a contradiction. Therefore, the level of py cannot be 6 or 12.

As a consequence, pg must have level 9, and p =~ pg @ 2x¢ by Lemma 3.20 since 1 is the unique
eigenvalue of p(t) with order dividing 12. It follows from Corollary 3.21 that po(s?) = id and C is
self-dual. O

4.1.1. Solving modular data of type (4,1,1). By Appendix A, there is only one Galois orbit of

4-dimensional irreducible representations of level 9 which is even. This Galois orbit has two projec-

tively equivalent classes given by p,10 and p,so which are complex conjugate of each other. First,
9,1 9,1

we consider pg = p,1,0.
9,1
Let 21 = ¢3, 22 = c§ and 23 = ¢} where ¢ := (™ + (;™. Then
0 —V3 —v3 —3
1 —\/§ 21 29 23 .
pols) = 5 , po(t) = diag(1, o, G5, Gg) -
V3 oz 23 21
—\/§ z3 21 %)
Let p=2x0@® po and set s := p(s) and ¢ := p(t). By reordering irr(C), one can assume

p(t) = ﬁ(t) = dla’g(lv 17 1) §97 Cg’ Cg)
By Theorem 3.4, there exists U € Og(R) such that p = UpU". Then U = f @V for some signed

diagonal matrix V' = diag(e1,e2,€3) and f € O3(R) where f @V denotes the block direct sum of f
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and V. We may further assume €3 = 1, and we get

A+ fiifor + fizfoz  fiifs1 + fiafs2 % fl?’?) j133
Ji1fa1 + fiafee [+ f5 fo1f31 + faaf32 % % f233
—Uss\UT = Ji1fs1 + fiafaz  forfs1 + foaf32 I3+ 13 % % _fgsg
§= '0(5> - e1fi3 €1f23 €1f33 21 €1€222 €123
—4/3 —/3 —/3 3 3 3
e2f13 €2f23 €2f33 €1€222 23 €221
—4/3 —/3 —/3 3 3 3
fis fas f33 €123 €221 2
| 3 =3 —3 3 3 3 ]
1—f&  —fisfos —fisfss 78:% %2]0133 ;fmg

—fi3fas 1= f35  —fazfs3 76_111/253 sz; f3

—fisfss —fosfsa 1—f3 46_1{/333 6_2553 fz3

w

= -3
- e1fi3 €1fa3 €1f33 21 £1E222 €123
-3 —/3 —/3 3 3 3
ea2fis ea2f23 e2fas €1€222 23 £221
—/3 —/3 —/3 3 3 3
s _fas _fss_ €123 g221 22
| —/3 —4/3 —/3 3 3 3 N

We now apply the Galois symmetry [11, Theorem II] of p to determine f and £1,e5 (cf. Theorem
3.7 (6)). Since ord(t) = 9, then s is a matrix over Q9. The Galois group Gal(Qg/Q) is generated
by o defined by o : (g — (3, and & denotes the corresponding permutation on irr(C) = {1,...,6}.
The i-th diagonal entry of ¢ will be denoted by t;. Under the action of o2,

ty — t5, t5 = tﬁ, and t6 — 1y .

We find 6(4) = 5, 6(5) = 6 and 6(6) = 4. Recall that o(sij) = €,(i)ss(;); where €,(i) = £1.
Applying o to those s;; with 7,5 € {4,5,6}, we have

0(z1) = €,(4)e16222, o(€16222) = €,(D)e1z3 and o(e123) = €,(6)21 .
Since o(z1) = 22, 0(22) = 23 and o(z3) = 21, we find

€r(4) =c162, €,(5) =¢e2 and €,(6) =¢€7.

Now, we apply o to those s;; with i€ {1,2,3} and j € {4,5,6}. We have a(f}%) = f}i , and hence

% € Q for ¢ = 1,2,3. This implies that f;3f;3 € Q for any 4, j € {1,2,3}. Therefore, the first 3 rows
of s have rational entries, and hence ¢ fixes 1,2,3. Now, we can conclude that & = (4,5, 6).

Since C is not integral by Proposition 3.16, none of 1,2 or 3 cannot be the isomorphism class of
the unit object 1 or the simple object ¢ for the Frobenius-Perron dimensions. Therefore, dim(C)
and FPdim(C) are Galois conjugates, and FPdim(C) is the largest conjugate of dim(C). The global
dimension dim(C) can be 9z 2 924 2 or 92y 2 depending which of the classes 4,5,6 corresponds 1.
Since they are conjugates and —z9 > z3 > z; > 0, FPdim(C) = 921_2.

Let (S,T) be the modular data of C. Note that z, 29, z3 are units, and they are roots of the
irreducible polynomial 3 — 3z + 1. No matter which of 4,5,6 is the isomorphism class of 1, for

ie{1,2,3) and j € {4,5,6),
V3fis

2k
for some k € {1,2,3}. Since S;; is a cyclotomic integer, so is V3 fi3. Thus, v/3f;3 is an integer and
they satisfy

Sij =+

(V3f13)? + (V3f23)* + (V3f33)” = 3.
Therefore, /3 fi3 = +1 or equivalently fiz = i% fori =1,2,3. Now, we can compute the modular

data for the cases 1 = 4,5 or 6:
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(i) Suppose 4 is the isomorphism class of 1. Then D = 3/z; and

31_f123 gfisfes  gfisfas e1v3fis  e2v3fis  V3fiz |
21 —Z]2 —2z1 —21 —Z1 —Zz1
3f13f23 31* 23 3f23f33 €1V3f2s  e2V3f2s  V3fas
—21 z1 -z, —21 —21 —21
3f13f33 3f23f33 31_f33 €1V3f33  €2v3fss  V3fss
S = —2z1 —z1 z1 —z1 —21 —21
c1V3fis  e1V3fas  £1V3f33 1 €1€222 €123
—2z1 —2z1 —Zz1 Z1 Z1
e2v3f13  e2V3fas  £2v3f33 €1€222 23 e
—21 —21 —21 z1 21 2
V3fi3 V3 f23 V3 f33 €123 &9 22
—z1 —Zz1 —Zz1 21 zZ1
Note that
6 2
S; 9
D ( “4) = 5 = FPdim(C).
4 Sy 4 z
i=1 ’ 1

Therefore, 4 is also the isomorphism class of ¢ (recall Definition 4.1). In particular, C is pseudouni-
tary and the entries of 4th row of S must be positive. Since % < 0 and iil > 0, we have ¢1 = 1,

g9 = —1 and f;3 <0 for i = 1,2,3. This implies v/3f;3 = —1 for i = 1,2,3 and

-1

-1

-1

—1 7

-1
22, -2 -z z] -2 2
-1 -1 -1 -1 -1 -1
-2 22 —2] 2 -2 2
-1 -1 -1 -1 -1 -1
—z —z 2z z —z z
1 1 1 1 1 1 . 8 ~8 8 2
S = -1 -1 -1 —z 2 and T = diag((y,¢g,¢g,1,C3,¢3) -
2 23
z z z 1
1 1 1 = 21
_,—1 _ -1 _ -1 =z z3 _
Zy zy 2 = = 1
-1 —1 —1 23 22
B Zq Zy e —1 = ]

(ii) Suppose 5 is the isomorphism class of 1. Then D = 3/z3 and hence

31_f123 gfisf2s  gfisfas e1V3fis  e2V3fi3  V3fis
23 —z3 —23 —23 —23 —23
f13fas 1-13s f23fss  €1V3fas  £2v3fas  V3fas
3 = 3 3428 ~ + —
3 23 23 23 23 23
3f13f33 3f23f33 31_f33 €1V3f3s  e2v3fs3  V/3fss
S = —23 —2z3 23 —23 —2z3 —z3
c1V3fis  e1V3fas  £1V3f33 21 £1€222 c
—z3 —2z3 —z3 z3 23 1
£2V3f13  e2V3fas e2V3fss  e1eazo 1 221
—z3 —z3 —z3 23 z3
V3fi3 V3 f23 V3 £33 e €221 22
—23 —z3 —z3 1 z3 z3
Now, one can check directly that
6 6
= — and = —,
) g Ae) 3

which implies 6 is the isomorphism class of . Thus, all the entries of the 6th row of .S have the
same sign. Since z/z3 < 0 and z1/z3 > 0, we obtain that ey =9 = —1 and f;3 > 0 for i = 1,2, 3.
Therefore,

V3fi13=V3fa3 = V3fs3 =1
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and hence

_251 _Zgl
223_1 —z3_1
—23_1 223_1
z:,:l 23—1
23_1 23_1
_23—1 _23—1

-1 —1
Z3 —Z3
-1 -1
Z3 —Z3
1 1
Z3 T3
2
zZ3
1 ==
z3
2 o
23 23

(iii) Suppose 6 is the isomorphism class of 1. Then D = 3/z2 and

Now,

which implies 5 is the isomorphism class of «. Thus, all the entries

and T = dlag(CSa Cga Cgv C??a 17 C3) :

111 f13fe3 fisfss  e1V3fis  £2v3fis  V3fis
3 3 3
z9 —Z% —z9 —Zz2 —Zz2 —z2
ghisfas  gl=f3s  gfafss  e1V3fas  e2v3fas  V3fas
—22 22 72% —22 —Zz2 —z2
3f13f33 3f23f33 31_f33 €1V3f33  €2v3fss  V3fss
— —2z2 —22 22 —Zz2 —z2 —Z2
c1V3fis  e1V3fas  £1V3f33 2z cre €123
—2z2 —2z2 —2z2 22 1=2 22
e2V3f13  e2v3fos  £2v3f33 e1e 23 €221
—29 —29 —29 1€2 29 29
V3fi3 V/3fa3 V3 f33 €123 €221 1
—2z92 —2z2 —z2 z2 z2
6 6
SStp e (e S
- P64 z3 i=q 265 e

signs. Since z3/z9 < 0 and z1/22 <0, 1 = —1, 62 = 1 and f;3 > 0 for i = 1,2, 3. Therefore,

V3fi13=V3fa3 = V3fz3 =1

and hence

Now, we compute the modular data for pg

Since p,1.0(5)) = p,s.0(s), modular data are
9,1 9,1

They are:

(iv)

_251 _Zgl
222_1 —z2_1
—22_1 222_1
72271 7,22—1
z2_1 22_1
22_1 z2_1

_Z1—1 _21—1
22{1 —zfl
—21_1 221_1
zl_l zl_l
72;1 —zfl
zl_l 21_1

-1 -1
29 29
-1 -1
%9 Z9
-1 -1
29 29
-1 —Z3
z2
z3 oz
z9 22
a
z2

_21—1 zl—l
—Z;l Z;l
—22 23
21 21
2 -1

21
1 2
21
28

= p,s.0, which is the complex conjugate of p,1.0(s).
9,1 9.1

complex conjugations of those obtained for py = p 410-

and T = diag(@a €97 CQ? ]-7 C?%? C3) .

of the 4th row have the same

and T = dlag(C37 4927 C927 <37 <§7 1) :
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| 2z3_1 —23_1 —23_1 23_1 z3_1 —23_1 |
*2371 2z§1 72371 251 z;l *2371
-1 —1 -1 -1 -1 —1
s—| A A P A A TR g T diag(¢h GGG 16D
Z3 23 23 = = —1
23_1 23_1 z3_1 j—g 1 _Z—'Zl
e e -
(vi)
i 2251 —251 —z;l —z;l z;l z;l |
—22_1 222_1 —22_1 —z2_1 22_1 z2_1
-1 -1 -1 -1 -1 -1
s=| TR, TR PR TR RSB g 7= diag(( GG ).
—29  —Zy  —Zy > -1 ==
N 1 22_1 22_1 -1 j—; %
BN = 4 i

4.1.2. Proof of Theorem 4.2. Since modular data of Type (4,1,1) have been completely solved in
the last subsection. The modular data of PSO(8)3 coincides with (i) up to a permutation. Let
o € Gal(Qg) be the generator defined by o : (g — (3. Applying o to the modular data (i)-(vi), One
can check directly

(i) S (vi) S (i) S (iv) S (i) S (v) 2 (i)

up to permutations of the objects. This completes the proof of Theorem 4.2. [

4.2. Classification of modular data of type (4,2). In this section, we will complete the clas-
sification of modular data of type (4,2) in the following theorem.

Theorem 4.4. Let C be a rank 6 modular tensor category of type (4,2). Then the modular data of
C can only be a Galois conjugate of the modular data of the following modular tensor categories:
(1) C(Zs,q) with q(1).= Ci2;
(2) C(Zs,q) W PSU(2)3 with q(1) = C3;
(3) G(2)3.

We will use the following level 5 irreducible representations Pals Pai and Pat, when necessary.

1|1
pa1(s) = o [ . _f] ;o (t) = diag(Gs, G5) - (4.1)

Note that py is defined over Qs. Let o € Gal(Q) such that o(¢5) = ¢?. Then Pa2 1= 00 Pal. Pai;
i = 1,2, form a complete set of inequivalent 2-dimensional representations of level 5. The following

irreducible representations also form a complete set of inequivalent 4-dimensional representations
of level 5:

L e Ve VB
et @2 VB 3 -
p451),1 (5) = 35 jg@ \So/g 80_1 902 4 ’ p4é71 (t) = dlag(CEn <527 C533 Cé) : (42)
V3 =By ¢ —p!
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1 -1 ¢!
1 -1 1 ¢ ¢! o 2 3 .4
1 (5) = E 30_1 o -1 1 > /04%‘2 (t) = dlag(C5a C.Ba C57<5) . (43)

© 4,0’1 1 -1

We will need to establish a few lemmas to complete the proof of this theorem. Let C be a modular
tensor category of type (4,2) and p an SLg(Z) representation of C. Then

p=p1@p2

for some irreducﬂileiepresentations p1, p2 of dimensions 4 and 2 respectively. By tensoring with
a suitable x* € SLy(Z), we may assume that the t-spectrum of p; is minimal. Therefore, p; has
a prime power level or p; is a tensor product of two 2-dimensional irreducible representations of
distinct prime power levels.

According to Appendix A, p; can only have the prime power levels 5, 7, 8, 9 or the composite
levels 6, 10, 15, 24, 40. Note that a 4-dimensional irreducible representation of level 12 is projectively
equivalent to an irreducible representation of level 6 as shown in the proof of Lemma 4.3. We will
prove that only the levels 7, 15 and 24 are possible.

It follows from Appendix A that the eigenvalues of p;(t) and pa(t) are multiplicity free. By the
t-spectrum criteria, spec(p1(t)) N spec(pa(t)) = {fo} or spec(pz(t)) < spec(pi(t). These situations
have been studied in Theorems 3.23 and 3.24. Now, we can begin to prove the level of p; cannot
9, 8, or 9.

Lemma 4.5. The level of p1 cannot be 5.

Proof. Suppose p; is of level 5. Since there are exactly two inequivalent irreducible representations
of level 5 and dimension 4, which are given by Pal and P4l > p1 Must be equivalent one of them.
In particular, the spectrum of p;(t) consists of all the primitive 5-th root of unity. By the t-
spectrum criteria, po can only be equivalent to p,1 or py2, which are the inequivalent irreducible

representations of level 5 and dimension 2. Therefore, p is of level 5 and hence p(s) is a matrix over
Q5. Let o € Gal(Q) such that ¢((5) = (2. Then Paz = 00 pa1.

Note that 7 o Pay, = Pay, for all 7 € Gal(Q) and i = 1,2. Thus, if p; ® po1 s not equivalent to
any MD representation, then so is o o (p; @ pQ%) = p1 @ py2. Therefore, it suffices to show that
Pa | D pa1 and Pai, ©® py1 are not equivalent to any MD representation.

(i) Suppose p; = Pay, and pg = PaL- Using the representations Pai, and Pt presented in (4.2)

and (4.1), we have

[ o

I 2 3 —V3p 11 e

@)l = Fl B, 3 oot 2 |Pal,
V3 =By ? —p!

(Pl@m)(t) = diag((5a€é7<§v<g7c57<§)'

By Theorem 3.24 (1), There exists a block diagonal orthogonal matrix

U=
b a d c

“ _b]@lc _d]@fz witha? + 02 =1, 2 +d2 = 1,
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such that p(t) = diag((s, s, €2, (2, 2, ¢3) and p(s) is a conjugation of s’ by a signed diagonal matrix,
where s’ is given by

* ® ® * — \/gbgo —+/3b |
* * * * V3ayp V3a
, sg * * * * —/3d \/gdgo

# % % * \/gc —\/§Cg0
—V3Bbp VBap —v3d Bc o7t o?
| —VBb VBa VBde —V3Bep o —p!

It follows from the action of o on p(t), we find 6(5) = 6. Since

3 3% Sg 1
o(s5/5) = 5 5° and o(p)=—¢p

the action of o on sf; implies € (5) = 1. Hence, by the action of ¢ on the 5-th column, we have
o(V/3z) = 3z for z = a,b,¢,d.

Therefore, v/3a,+/3b,v/3c,v/3d € Q as o|g, generates Gal(Qs/Q).  If 5 (resp. 6) corresponds
to the unit object 1, then s'/si. (resp. §'/syg) is a matrix Z[(5]. Since ¢ is a unit in Z[(5],
V/3a,/3b,v/3c,\/3d € Z[(5] and hence v/3a, v/3b, /3¢, v/3d € Z\{0}. However, this contradicts that
(v/3a)? + (+/3b)? = 3. Therefore, 5 and 6 cannot be 1.

Suppose 1 is the isomorphism class of 1. Then s;;/s| 5 € Z[(5] for all i. In particular, ﬁ,
a/b € Z[(s5]. So, ﬁ,a/b € Z. Let m,n € Z such that a = mb and 1 = /3bn. The equality

a? +b? = 1 implies (m? + 1)3b? = 3 and so m? + 1 = 3n%. However, 3 { (m? + 1) for any integer m.
Therefore, 1 cannot the unit object. By the same reason, 2, 3, and 4 are not the isomorphism class
of 1. This ultimate contradiction implies that Par, D pa is not equivalent any MD representation.

(ii) Now we assume p; = pa, and py = py1 . It follows from (4.1) and (4.3) that
1 -1 ¢t

i
mome), - | S, 5 ey [ ! *0]

%) go_l 1 -1

(pr@pa)(t) = diag(Gs. G50 G365, 65, 65)
Note that p1, p2 have opposite parities. We reorder the simple objects as in Theorem 3.24 so
that p(t) = diag((sy G5y (55 (3,2, ¢3). The unit object can only be e5 or eg. In either case, we find
dim(C) = 5, and dim(e;) = dim(eg) = to1lehis _ £¢ ' ¢ g This contradicts Theorem 2.1 (4).

T V2pi(s)ss V2
Therefore, P4l (—szé . is not equivalent to any MD representation. This completes the proof of this

lemma. [
Lemma 4.6. The level p1 cannot be 8.
Proof. Suppose p; has level 8. Since there is only one projectively equivalent class of irreducible

representations of level 8 and dimension 4. One can assume p; = P4L0 (cf. Appendix A). In
particular, p; is odd, and spec(pi(t)) consists of all the primitive 8-th roots of unity.

By the t-spectrum criteria, spec(p2(t)) must be a set of primitive 8-th roots of unity, and hence
p2 has level 8. Therefore, po must be projectively equivalent P10, OL P2 ~ Pyl where £ =0, 3,6,9.
Note that p; is equivalent to its complex conjugation while { P10 p2é,6} and { Pass p2é,9} are complex
conjugation pairs. It suffices to show that ps is not equivalent to (i) paLo Or (ii) PoLs-

31

31



(i) Suppose p2 = pyi0. Then spec(pz(t)) < spec(pi(t)) and p1, p2 have opposite parities. Their
8
direct sum p = p,1,0 D p,1.0 is given by
8 8

1 V3 V3 1
o=l e ek[‘f 1]andﬁ(t)—diag<<8,<§’,<§,<§,<s,c§>.
1 —V3 V3 -1

However,

V8 V3 1

is not a matrix over Qs, a contradiction to Proposition 3.9. Therefore, p2 2 py1.0.
8

(ii) Now, we assume pg = P13 Then p1, p2 have the same party, and p = Pyl (—Dpzé,s is given by

1 V3 V3 1
. N VA I B BESVA! -1
PO=F s -1 -1 3 ®ﬁ[11
1 —V3 V3 -1

~ ne_i 1 \/g

is not a matrix over Qg, a contradiction to Proposition 3.9. Therefore, py % p,13. [
8

] and 5(t) = diag(¢s, ¢, 3. 1, 2. ¢2).

However,

Lemma 4.7. The level of p1 cannot be 9.
Proof. There are 4 projectively inequivalent 4-dimensional irreducible SLo(Z) representations of
level 9, which are given by P40s P40, (P40 and P30 (cf. Appendix A). P410s P80 are complex
conjugate of each other and so are 0 439 and P 459 Therefore it suffices to show that p1 cannot be
equivalent to (i) Pyt O (ii) PaLs-

(i) Suppose p1 = p,10, which is odd. By the t-spectrum criteria, po can only be projectively

9,1
equivalent to p,1,0 or p,i0, and this implies po = py10, py0 or pys. In any of these cases,
2 3 2 3 3
spec(p1(t)) n spec(p2(t)) = {1}. Therefore, by Theorem 3.23 (iii), p2 is also odd, which means
p2 Z pyro as it is even.
2
Now pa = p,10 or py1s. Note that
3 3

p2§,0(5) = % [:/%\/?} ’ pgévo(t) = dia‘g(la C3)7

i [1v2 o,

pas(s) = = [ ﬁl}, pyrs(t) = diag(1,3)

By Theorem 3.23 (ii), the unit object 1 of C is an eigenvector of p(t) of eigenvalue 1, and dim(C) =

4/1p1(8)11 + pa(s)11|* = 12. By the Cauchy Theorem of modular categories, 2 | ord(T) | ord(p(t)) =
9, a contradiction. Therefore, p1 % p,1.0.
9.1

(ii) Now, we assume p; = p,10, which is even. Using similar argument as in Case (i), p2 = py1.0

9,2 2

by the t-spectrum criteria and Theorem 3.23 (iii). In this case, spec(p1(t)) N spec(pz2(t)) = {1} and
p has level 18. Theorem 3.23 (ii), the unit object of C is an eigenvector of p(t) of eigenvalue 1, and
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dim(C) = 4/|p1(s)11 + p2(s)11]? = 16. By the Cauchy Theorem of modular categories, ord(T) is a
2-power, but this contradicts Theorem 3.7 (4). Therefore, p1 % pj10. 0O
9.2

Lemma 4.8. If p; projectively equivalent to an irreducible representation of prime power level,
then the modular data of C is a Galois conjugate of that of G(2)s.

Proof. By Lemmas 4.5, 4.6, 4.7 and Appendix A, p; can only be projective equivalent a level 7
irreducible representation. By the t-spectrum criteria, p; = P41 OF its complex conjugate P4s which
They are defined over Qsg.

If there exists some modular data (S, 7") whose associated SLg(Z) representation p =~ P41 @ p2 for
some irreducible 2-dimensional representation po, one can obtain the modular data derived from
the MD representation which admits the decomposition Pas D P2 by the complex conjugation of
(S,T).

(I) Assume p; = pax, which is odd. It follows the t-spectrum criteria that pp must be equivalent to
a level 2 or level 3 irreducible representation. In any of these cases, spec(pi(t)) nspec(pz(t)) = {1}.
There is only one 2-dimensional irreducible representation of level 2 which is even. By Theorem
3.23 (iii), po = Palo OF Pyls, which is odd. Since

p2:1)’,8 =~ p2§*0 = p2§,0 .
We will solve the modular data for (i) p ~ Par @ P10 and (i) p = P ® py2o0-
(i) Let 5= pyy ® pyro- Then j(t) = diag(1, Gr, 2,4, 1,Gs) and
[ -1v2vev2 _
(5):L V27 Y2 s @i —1+2
VT V272 m NEARZR!

V2391 Y2

where 71 = —c%, 72 = —c} and 43 = —c3. We reorder irr(C) so that p(t) = diag(1,1, (7, (2, (2, C3),
and identify irr(C) with the standard basis of C®. By Theorem 3.23,

[ —4/21—-3 V21-3)e 7
S ( e €2 €3 €4 —A/3E1E5
V21-3)e1 - —+/F0-3 7
( ! 1 & E1€2 E1€3 €184 365
1
pls) = — €2 €162 Y1 Y2€2€3 Y3E2€4 0
V7 €3 €1€3 726263 Y3 V1€3E4 0
€4 €1€4 73284 V1E3E4 V2 0
7 7 7
—\/;5155 \/;55 o 0 0 \/;
1

1

for some ¢; = £1, and so D = 2 (— + >_ or dim(C) = 2 (5 —+/21). Since 2 (5++/21) is a

w
Sl
3

Galois conjugate of dim(C) and
dim(C) < %1 (5 + \/ﬁ) < FPdim(C),

the objects 1 and ¢ are distinct. By Theorem 3.23 (ii), e, e2 are the only rows of the S-matrix
with no zero entry. Therefore, {1,:} = {e1, ez}, and the modular data of C is given by

1 —die1 —dsen —dses —doey dseqes l
—di&1 1 —dgg169  —doer1es  —doe1e4 —dses
g —daey —dse1ea  —doy1  —dpy2€2e3 —dayzeses O and T = p(t),
—daez —dae1€3 —dayae2e3  —days  —dayiezes O
—daey —daeieq —doyzeres  —dam —day2 0
| dse1es —dses 0 0 0 —ds |
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where dy = 3 (5—+/21), dy = 1 (V21— 3), d3 = § (7T — v/21).
If 1 = ey, then ¢« = e and so Sz, = [d1,1,d2,d2,da,d3]. This forces e = €5 = —1,69 = €3 =
eq = 1. Thus,
1 di —dy —dy —do ds
di 1 do do ds ds
—dy dy —doy1 —doy2 —dayz 0
—dy dy —dyys —day3 —dayr 0O
—dy do —doy3 —day1 —day2 O
| dy ds 0 0 0 —dg

and T = diag(1,1, ¢y, C?, C?, (3).

If T = eg, then ¢ = €1 and so Sy . = [1,d1,d2,d2,d2,d3]. This forces ¢, = —1fori =1,...,5,
and so resulting S-matrix is equivalent to the preceding one interchanges the indexes of e; and es.
(i) Let = pg1 @ py20. Then j(t) = diag(1, (z, ¢2,¢3,1,¢2) and
3

[ -1vevzv2 '
He) = = [ V2w @1{ 1 \/ﬁ}
VT V292 3 m V3|v2 -1
27 M 72
Note that p is defined over Qigs. Let o € Gal(Q6s/Q) such that o(¢ies) = ({as. Then oo, = id
and o(¢3) = (3. One can see easily that

70 (pay @ paro) = pay O pazo-

Thus the modular data (S’,T") for the MD representation equivalent to p is the Galois conjugate
by ¢ of the modular data (S,7") obtained in (i). Therefore,

[ 1 d —dy, —dy, —d, dy ]
& 1 & d  dy d
—dyy dy —dyy1 —diyye —dyyz 0
—dy dby —dyya —dyys —dym1 0
—dy dfy —dyyz —dyy1 —dyy2 0

4 dy 0 0 i—

where d} = o(dy) = § (5+V21), d) = o(dp) = —7(3+W) = o(ds) = 3 (7++/21). Since
SL]- >0, e; = 1 = and so C is pseudounitary and dim(C) = o( 27 (5 \/ﬁ) =2 (5 + \/7)
The modular data of G(2)3 is also (S',T").

(II) Now, we assume p1 = pyo and proceed to solve the modular data for (i) p = pys @ PaLo and

(ii) p = Pas D Py20- Note that both of them are defined over Qigs.
(i) Let p = P @ pyr0. Then P ® py20 = p. Thus the modular data (8", T") of the MD
3 3

S = and T’ = diag(1,1,(7, (3. (7, G).

representations equivalent to p is (?,T’), which is given by

[ 1 -y, —d, —d, d
d, 1 d, b dy dy

—dy dy —dbyv1 —dhye —df 0 = .

S e and T =T = diag(1,1,¢§,¢2. ¢, ).
—d2 d2 —dQ’}/Q —d2’73 —d2’yl 0
—dy dy —dyysy —dym —dyy2 0O

| dy dy 0 0 0 —ds |

In particular, the MTC C is also pseudounitary with dim(C) = % (5 + \/21).
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(ii) Finally, we consider p = Pas @ py2o which is the complex conjugate of Par @ pyro. Thus the
3 2 3
modular data (S”,T") of the MD representations equivalent to p is (S, T), which is given by

1 dy —dy —dy —do ds3
d 1 do do do ds
—22 32 —2271 —day2 —dayz 0 and T" =T = diag(1,1,¢5, ¢, (3, C2) .
—da dy —day2 —dayz —da2y1 O
—da dy —day3 —day1 —day2 O
| 43 ds 0 0 0 —ds |

S/// — S —

Therefore, the MTC C is not pseudounitary and dim(C) = 2 (5 —+/21). O
Lemma 4.9. The level of p1 cannot be 6, 10 or 40.

Proof. (i) Suppose p; is of level 6. Then p; =~ ¢ ® n for some 2-dimensional irreducible rep-
resentations ¥ and n of level 2 and 3 respectively. There is only one 2-dimensional irreducible
representation, up to projective equivalence, of levels 2 and 3. Since the t-spectrum of p; is min-
imal, p1 = py1.0 ® pyro . In particular, spec(p1(t)) = {1, —1,(3, —C3}. By the t-spectrum criteria,
2 3
p2 can only be equivalent to p2 = p,1:, i € {0,4,6,10}, or p,1, j even. Therefore, ord(pz(t)) | 6
2 3

and so ord(p(t)) = 6. This implies ord(T") | 6 and so C is integral by Theorem 3.14. However, this
contradicts Proposition 3.16. Therefore, the level of p; cannot be 6.

(ii) Suppose p; is of level 40. Then p; is projectively equivalent to p,10 ® Par OF Py1o @ Py

8 8

(cf. Appendix A). In particular, spec(p;(t)) is a set of primitive 40-th roots of unity. However,
there does not exist any 2-dimensional representation po which satisfies the t-spectrum criteria.
Therefore, the level p; cannot be 40.

(iii) Suppose py is of level 10. Then p; is projectively equivalent to py1.0 ® po1 OF Py10@pyz. Since

2 2
pyro is equivalent to any of it Galois conjugates, p,1.0 ®p2% O Py1,0 ®p2§ are Galois conjugate. So,
2 2
it suffices to show that p1 = py10 ® Pl is not possible.
2
Assume p; = p,i0 ® Pl - Then spec(p1(t)) = {G,C3, —C5, —C3}. By the t-spectrum criteria,
2
p2 = pg1 OF X6®p2é. Since X6®p21,o = pyro, p1®poy and p; @ x° ® poy are projectively equivalent.
2 2

Therefore, p is projectively equivalent to p = (p2§,0 ® pQé) D pa1 and we can simply assume p = p.
As in Lemma 4.5, we the use the following equivalent form of PaL:

111

ThUS, ﬁ(t) = di&g(C& Cé? _457 _Cg) C57 C'Sl) a'nd

-1 —¢ V3 =3y
oy 1 —p 1 —3p 3 L1 o
p(s)_fsé —V3 —V3p 1 ¢ ®S}){@1}'
V3o V3 -1
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By Theorem 3.24 (i), if we reorder irr(C) so that p(t) = diag((s Iz, ¢ Io, —C5, —C3), then p(s) = V'V
for some signed diagonal matrix V' and

* * * * —/3a —\/§a<p |
* * * * *\/gb *\/§b§0
, i ® * * * —\/gcap v/3c

5= 25% * % * % —\/gdgo \/Ed
—V3a  —V3b —V3Bep —V3dp 1 @

| —VBap —V3bp V3¢ V3d © -1

where a,b, ¢, d € R satisfying a® + b*> = 1 and ¢ + d? = 1.
Note that ¢ is a unit in Z[(5], and the automorphism o defined by o(Ci9) = (], generates
Gal(Q1p). By the action of 6 on p(t), we see 6(5) = 6. Since

1 e
25?) 25% 567

o(si5) = sjg for i = 1,...,6. This implies V/3a,v/3b,4/3¢,v/3c are fixed by ¢ and so they are
rational.
The unit object cannot be e5, for otherwise v/3a, v/3b € Z and they satisfy the equation (v/3a)? +
(v/3b)? = 3, which is not possible. Similarly, es # 1. So, the unit object 1 € {e1, ez, 3, e4}.
Assume 1 = e;. Then a # 0, b/a € Z and ﬁ € Z. However, this will imply 3 | (1 + (b/a)?)
which is not possible. Therefore, 1 # e;. Since ¢ is a unit in Z[(5], if 1 ¢ {e2, e3,e4} for similar
reason. Now, we find 1 ¢ {ej,...,eg}, a contradiction. Therefore, the level of p; cannot be 10. [

0(33,5) =

Lemma 4.10. If the level of p1 is 24, then C is equivalent to C(Zg,q) for some non-degenerate
quadratic form q : Zg — C*.
Proof. Since py is of level 24, p; is projectively equivalent to p,1.0 ® p,1,0 according to Appendix A.
3 8
Therefore, we can simply assume p; = py1.0® py10 as it has a minimal t-spectrum. Then, p; is odd
3 8

1 =1 2 V2
n =2l Th Ty ] e = st D
V2 ov2 o1

By the t-spectrum criteria, p2 = p,1.5, j € {0,1,3,4,7,9}, and
8

and

V2 1 1

For j =1,3,7,9, | spec(pi(t)) nspec(pz(t))| = 1 and so Theorem 3.23 can be applied.

For j = 1,9, spec(pi(t)) N spec(pa(t)) = {C§Z2j}, and for j = 3,7, spec(p1(t)) N spec(pa(t)) =
{CSZQj}. If p = p1 @ py1s is an MD representation of an MTC C, for j = 1,3,7,9, then by Theorem
3.23, ord(T) = 12 and

(=) | -1 1 L 342) .942j
pyra(s) = () = diag(Gy G ).

2
” Oz D)
Note that each row of p1(s) has an off diagonal entry of the form % and so % /+/2 is the dimension
of an object up to a sign. However,
D V3+1

NN 5 ¢ Q2.
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Therefore, p1 @ Pali is not equivalent to any MD representation for j = 1,3,7,9.

Now, we can conclude that p = p; @ p2 where py = Pyl for some j = 0,4. In particular, p; and
p2 have opposite parties and spec(pa(t)) < spec(pi(t)). By Theorem 3.24 (ii), the unit object 1 is
an eigenvector of p(t) with eigenvalue ¢ € spec(p;(t))\spec(pa(t)). Let E; be the subspace of C°
spanned by the eigenvectors of p; = p1(t) @p2é,j (t) with eigenvalues in spec(p; (t))\spec(pzé,j (t)) for

J = 0,4. One can compute that for o € Gal(Q24/Q), Dp,;(0)|g, = id or —id. By Proposition 3.13,
C is integral. It follows from [4] that C is a pointed modular tensor category, which is equivalent to
to C(Zg, q) for some non-degenerate quadratic form ¢ : Zg — C*. O

Lemma 4.11. If the level of p1 is 15, then the modular data of C is a Galois conjugate of that of
C(Z3,q) K PSU(2)3, where q : Z3 — C* is a quadratic form given by q(1) = (3.

Proof. Since p; has a minimal t-spectrum, it must be equivalent to a tensor product of two 2-
dimensional irreducible representations of levels 3 and 5. According to Appendix A, p1 = p,1.0®pgi,
3 5

i =1,2. By the t-spectrum criteria, ps =~ \J ® Pai with j = 0,4. Thus, p is equivalent to

Pig = (Pyr0 @ pog) ® (0 @ pyg), i=1,2,j =04

Note that p; ; is defined over Qqa0 for i,j. Let o, € Gal(Q120/Q) such that o4(Ci20) = ({o9- Then,
gg7 © ﬁl,j = ﬁQ’j fOI‘j = 0,4.

Since 0'410((p2é,0®p2é)@p2%) ~ (Wé,o@p%)@pzé >~ (p2é¢s®p2%)@p2% , we have X4®o'410/3170 = p14.
Therefore, p; ; is projectively equivalent to a Galois conjugate of p1 . Hence, it suffices to consider
p = p1,0, or equivalently p; = P10 ®P2§ and pg = Pal

Now, the MD representation p of C is equivalent to p; @ p2, where p; is even, py is odd and
spec(p1(t)) < spec(pa(t)). Moreover,

-1 —p V2 V2
N —p 1 V2o —v2 | 1[1 ¢
PO =7 va vae 1 g ®8},[90—1
V20 —V2 ol ~1

By Theorem 3.24, dim(C) = 12sin?(27/5) = 3(2 + ¢). Reorder irr(C) so that

plt) = diag(Gs. G5, G5, G5 Cls ).
Again, by Theorem 3.24 (ii), there exist ~;, 4, &; € {£1} such that

] L p(t) = diag(s, €8, ¢S5, ¢, G5, C2) -

1+iV3 (17i\/§)k&1 73@(1+i\/§6152mﬁ2) ’7390(%2*1\/55152/{1) 7]
L1413 Y 5 5 N Ry
(1*1\2/5)51 1+;\/§ 73@(51*2/55152%2) ’YBLP(fﬁNz;ri\/gElEz) N
—1 'yg<p(1+i\/§alagmn2) Wgcp(m—i\/gelsgmg) —(1+i\/§) (—1+i\/§)m2
p(s) = — 2 2 2 7 MY V23
D ’ygap(ﬁ,z—i\/gelsgnl) 'ygap(nlfcg-}—i\/gslag) (—1+i\/§)52 —(1+i\/§)
5 5 5 ———  TMY3K2p Y273k
-n —Mk1 —M173P —V1Y3K2$ -1 ey
| —72 —V2k1¢ Y273 Y2Y3k2 —M172¢ 1
We will use the equalities —1+T1\/§ = (3 and 1+§\/§ = —(5 to simplify S-matrix, but we need to
determine which of the standard basis elements is the unit object. According to Theorem 3.24 (ii),

1 € {es,e6}.
(i) Suppose eg = 1. Then T = diag(15, (3, C15, ¢35, ¢2, 1). Then dim(e5)* = ¢* > 1 and so eg = ¢.
Thus, all the entries of 6-th rows of p(s) has the same signed, we find 79 = v3 = —1,91 = K1 =
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k9 = 1. Thus,

[ —Cs —Cs3 ¢Cs 9Gs —1 ¢ ]
—(3 —C3 w3 wC3 —1
0Cy wG G5 G e 1
@G ¢C3 Gz C3 @ 1
-1 -1 ¢ ¢ —1lgp
| v @ 1 1 o 1_

By reordering irr(C), we find T' = diag(1, (2, (3, (15, (3, (15) = Tt @ Ty and

Lo 1 ¢ 1 o
p—=1 ¢ -1 ¢ -1
1 ¢ (3 o3 G5 @3
S = — — =S ®S )
v =1 5 —C5 vC3 —C3 ! ?
1 ¢ G 9@ (3 ¢l

¢ —1 @Cs —C3 ¢C3 —C3 |

2

1
where (S1,71) is the modular data of C(Z3,q) and (S2,7%) given by Sy = [ ] and Th =
2

diag(1,¢2) is the modular data of PSU(2)3. In particular, (S,T) is a Galois conjugate of the
modular data of C(Z/3Z,q1) K PSU(2)s.

(ii) Now, we assume e5 = 1. Then T = diag((3, (15, ¢3. (f5, 1, ¢2) and dim(eg)? = ¢® > 1, and so
e5 = t. Then v = v9 = v3 = K1 = ko = 1, and we obtain

G G Gy Gy 1oy
€ Eg Cap Z3<P Iy
G |GGy G Gy -l
C3p C3p —C3 —C3 ¢ —1
1 1 ¢ ¢ 1 ¢
| v @ -1 -1 ¢ 71_

By reordering irr(C), we find T = diag(1, (3,3, ({5, (2, (fs) = Th @ Ty and

1 o 1 ¢ 1 o
p—=1 ¢ -1 ¢ -1
1o ¢ w3 G ¥G
¢ =1 9wC5 —C5 wGs —C
Lo G @i (5 9C
| =1 w3 —C3 903 —C5 |

Since (Sa,T2) is the complex conjugate of modular data of PSU(2)3. Therefore, (S,T) is a Galois
conjugate of the modular data of C(Zs,q) X PSU(2)3. This completes the proof of statement.

As a consequence, for any i, j, p; j is equivalent to SLa(Z) representations of some modular tensor
categories Galois conjugate to C(Z3,q) X PSU(2)s. O

Proof of Theorem 4./4. The result of Theorem 4.4 is a consequence of Lemmas 4.5 to 4.11. [
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4.3. Classification of modular data of type (3,3).

Theorem 4.12. The modular data of any type (3,3) modular tensor category is a Galois conjugate

of that of SO(5)s.
Let C be a modular tensor category of type (3,3) and p an SLg(Z) representation of C. Then
p=p1@p2

for some 3-dimensional irreducible representations pi1,p2. If p1, po have opposite parities, then
Tr(p(s)) = 0 which contradicts to Proposition 3.12. Therefore, they have the same parity. We may
assume that p; has a minimal t-spectrum and show that for p; cannot be projectively equivalent
of any 3-dimensional irreducible representation of levels 3, 7, 8 or 16.

Lemma 4.13. Neither p1 nor p2 is projectively equivalent to a 3-dimensional irreducible represen-
tation of level 3, 7, 8 or 16.

Proof. Suppose p; is a 3-dimensional irreducible representation of level 3,7, 8 or 16 with a minimal
t-spectrum.

(i) p1 cannot be of level 7: Suppose p; is of level 7. Then, by the t-spectrum criteria and
Appendix A, ps =~ p; but this contradicts Proposition 3.19.

(ii) p1 cannot be of level 3: Suppose p; is the level 3. Then p; = pyLo- Since dim(p2) = 3 which

is a prime number, po must be projectively equivalent to a 3-dimensional irreducible representations
of prime power level (cf. Appendix A). If ps is projectively equivalent to P3L.0s then py =~ P10 by
the t-spectrum criteria, but this contradicts Proposition 3.19. Therefore, ps is not projectively
equivalent to P10

It follows from (i) that py cannot be projectively equivalent to a level 7 representation. Therefore,
by Appendix A, p2 can only be projectively equivalent to a representation of levels 4, 5, 8, 16.

By the t-spectrum criteria, po is not projectively equivalent to any level 16 irreducible repre-
sentations. If po is projectively equivalent a level 8 irreducible representation, then py =~ yJ/ ® v
for any level 8 representations in Appendix A. Since p; is even, 7 = 0 mod 4, and so 1 must be
even. This implies 9 = Pg3:3, L3183, P339, P3lo, but none of them satisfies the t-spectrum criteria.
Therefore, p2 can only be prOJectlvely equ1valent to some 9 of level 5 or 4 in Appendix A. Thus,
by the t-spectrum criteria, ps = ¥/ ® pg10 OF Y ® P3i for j = 0,4,8 and ¢ = 1,3. In any of these

cases, |spec(p1(t)) nspec(pa(t))] =1 and ord(p(t)) = 12 or 15. It follows from Theorem 3.23 (ii)
V2p1(5);

(c) that if spec(p1(t)) nspec(pz(t)) = {p1(t)uu}, then ) Y221 e Q9 or Qq5 for u # j. However,
% = \_/—% ¢ Q12 or Q5. Therefore, po cannot be projectively equivalent to any irreducible of

level 4 or 5. This completes the proof that p; cannot be of level 3.
(iii) p1 cannot be of level 8: Let

|0 V22
A= % V2 -1 1
V2 1 -1
Then, by Appendix A,
psé,o(s) — A and pgé,o(t) = diag(1, s, ¢2)
which is odd and has a minimal t-spectrum. Since all other 4-dimensional level 8 irreducible
representations are projectively equivalent to a Galois conjugate of P10, it suffices to show that

p1E pgévo :
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Assume to the contrary. Then p; = p,i0, and hence p2 must be odd. It follows from (i) and
8

(ii), p2 cannot be projectively equivalent to any irreducible representation of level 3 or 7. By the t-
spectrum criteria and the parity constraint, ps cannot be projectively equivalent to any irreducible
representations of level 5. Therefore, ps can only be projectively equivalent to an irreducible
representation of level 4, 8 or 16. By the t-spectrum criteria, po is of level 4, 8 or 16.

Suppose p has level 4 or 8. Since ps is odd, py = P31, Pgl9, Pglo; P30, 3L, Pade However,
Dy @p.(0) = £id for all o € Gal(Qg/Q). By Proposition 3.13, C is integral which contradicts
Proposition 3.16. Therefore, the level of po is neither 4 nor 8.

Suppose p2 is an odd irreducible representation of level 16. By the t-spectrum criteria, po =~
P310 5 P356 5 P36 5 P35, and they are respectively isomorphic to the following representations:

(1) s> A, t+> diag(Cs, Ci6, i) ;

(2) 5 — 7A7 t— diag((& ClBGa Cllg) )

(3) 5 — _A7 t— dlag((ga g16> C?G) 5

(4) s~ A, te diag((¢, (e, Cic) -
In any of these cases, spec(p1(t)) N spec(pa(t)) = {Cs} or {¢3}. It follows from Theorem 3.23 (ii)
(a) and (b) that D = 4 as 1y, = —i/2 and 1y, = 0. The two nonzero rows of the S-matrix up to
some signs are the same:

1,1,2,7/2,2,2
and one of these rows is ¢. Therefore, the Frobenius-Perron dimensions of the simple objects of
C are 1,1,2,4/2,2,2. In particular, C is weakly integral, which contradicts Proposition 3.16 (ii).
Thus, po is not of level 16 either. As a consequence, p; cannot be of level 8.
(iv) p1 cannot be of level 16: Assume contrary. Then p; =~ P310; P339, P3565 PaTis, which are

projectively inequivalent and have a minimal t-spectrum. Moreover,
P31 (s) = A and n(t) = diag(Cs, Ci6,CT5)

which is odd. Since all the 3-dimensional level 16 irreducible representations are projectively
equivalent to a Galois conjugates of P10, its suffices consider the case p; = PgL0-

By the t-spectrum criteria, po cannot be projectively equivalent to any irreducible representa-
tion of level 4 or 5. By (i), (ii) and (iii), p2 cannot be projectively equivalent to any irreducible
representation of level 3, 7, 8. Therefore, po can only be projectively equivalent to an irreducible
representation of level 16. The t-spectrum criteria forces ps to be an irreducible representation of
level 16. Since p2 is odd, by Proposition 3.19, py =~ P316 OF Pgsis, which are respectively isomorphic
to the following irreducible representations:

(1) s —» —A, t— diag(¢g, Ci6, (J5);
(2) s> —A, t— diag(s, (5, C1)-

For Case (1), spec(pi(t)) N spec(pa(t)) = {Ci6, (T} but
p1(8)ii + pa(s)ii = Aii — Ay = 0
for i = 2,3. Therefore, p =~ pyL0 @ P31 is impossible by Theorem 3.23.

For Case (2), spec(p1(t)) nspec(p2(t)) = {(s} and p1(8)11 + p2(s)11 = 0. It follows from Theorem
3.23 that p = p,1.0 @ pys.6 is also not possible. [
16 16

Lemma 4.14. If py is of level 5, then pa cannot be projectively equivalent to any level 5 irreducible
representation.

Proof. Suppose ps is projectively equivalent to some level 5 irreducible representation. Then, by the
t-spectrum criteria, po is a level 5 irreducible representation. Since there are only two inequivalent
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level 5 irreducible representation, p; 2 ps by Proposition 3.19. Then spec(p1(t)) nspec(pa(t)) = {1}.
It follows from Appendix A that
p1(s)11 + p2(s)11 = 0.

By Theorem 3.23(i), p1 @ p2 is not equivalent to any MD representation. Therefore, ps cannot be
projectively equivalent to any level 5 irreducible representation. [

It follows from Lemmas 4.3 and 4.14 that the MD representation p of C of type (3,3) must have
the irreducible decomposition p; @ p2 where p; and po are 3-dimensional and of levels 5 and 4.

4.3.1. Solving modular data of type (3,3) level (5,4). There are only two inequivalent level 5 irre-
ducible representations ps1 and ps3. Note that o opg1 = p33 where o € Gal(Q) such that o (¢5) = (3.
One may assume p; = p31 which is even, and has a minimal t-spectrum.

By the t-spectrum criteria and the parity constraint, py = P31.0; and so

spec(p1(t)) N spec(pa(t)) = {1}.

By Theorem 3.23, D = 2/ % = 2+/5 or dim(C) = 20. Moreover, if irr(€) is reordered so that
p(t) = diag(1, 1,5, (4, 1,1), then
[ 1 K —2m —27 “VBysk —v/Byk |
K 1 —271K —2y2K VBys VB
o(s) = 1 2m 2me -1V (A1 VBme O 0
2V5 | =272 =29k (-1+VB)mye  —1-+5 0 0
—V5y3k V53 0 0 —V5 By
| —V5yuk V5ys 0 0 V5374 —V56

for some k,7; € {+1}. One can conclude from S that C is pseudounitary, and so we can assume
1 =1t =ey. This implies k = 1, 7; = —1 for i = 1,...,4. Thus, the modular data of C is given by

[ 11 2 2 NGV
1 1 2 2 -5 —/5
2 2 —1=4/5 =1++5 0 0 . 4. .
S = d T=d 1717 5855 T ) .
9 9 4 \/5 _1_ \/5 0 0 an lag( C5 CE) 1 1)
V5 —/5 0 0 —V5 /5
| V5 =V 0 0 V5 V5

However, if 1 # ¢, then one may assume e; = 1 and es = ¢. Then the resulting modular data
is (PSP, T) where P is the permutation matrix of the transposition (1,2). In this sense, the two
modular data corresponding to different spherical structures are the same.

For pi = ps3, the corresponding modular data is (0(S),0(T)), where o € Gal(Q) such that

o(¢s) = ¢2 and o(i) = i. Precisely,

11 2 2 N
11 2 2 NIV
-] 27 —1+£ —iﬁ D and o) = diag(1,1,63, i)
V5 V60 0 NEEEVE]
[ V5 V50 0 =5 V5
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In this case, the e = ¢. One can use the other spherical structure of C so that 1 = + = e;. The
resulting modular data is (Po(S)P,o(T)), which is the same as the modular data (o(S),o(T)),
and is the modular data of SO(5). This completes the proof of Theorem 4.12.

4.4. Classification of Modular Data of type (3,2,1). We now classify modular tensor cate-
gories with SLa(Z) representations decomposing as a direct sum of irreducible representations of
dimension 3,2 and 1. The main theorem of this section is:

Theorem 4.15. The modular data of any type (3,2,1) modular tensor category is a Galois conju-
gate of a non-trivial braided zesting of SO(5)a.

The zesting procedure is found in [10]. An alternative approach is to consider the classification of
metaplectic modular tensor categories in [1]: this shows that the categories above can be obtained
by gauging the particle-hole symmetry (i.e. the Zs action g <> g~!) on a pointed modular tensor
category of the form C(Zs,q). In [15] it is shown that of the 4 modular tensor categories obtained
in this way, 2 are SO(5)2 and its (unitary) Galois conjugate and the other two are the non-trivial
zesting of SO(5)2 and its (unitary) Galois conjugate.

Let p = x1®(p2®x2) D (p3®x3) be the irreducible decomposition a modular representation with
p; irreducible of dimension ¢ of prime power level and y; a character. This description is possible by
the Chinese Remainder Theorem and the fact that 2 and 3 are prime. As before, we may assume
x3 = 1 and require p3 has a minimal t-spectrum.

We consider cases in turn, describing the level triples for (ps, p2, x1). The t-spectrum criteria
immediately implies that the level of p3 cannot be 7. Similarly the level of p3 cannot be 16:
looking at the eigenvalues of the level 16 irreducible 3-dimensional representation we see that
x1(t) ¢ spec(ps(t)), and hence spec((p2 ® x2)(t)) M spec(ps(t)) # . This implies p2 ® x2 has level
8 but then xi(t) ¢ spec(ps(t) ® (p2 ® x2)(t)), which contradicts the t-spectrum criteria.

Suppose the level of ps is 8. Then ps = Pyl O Py, and hence ps is odd. Note that
spec(pQé,o) = {1,(s,—(g} and spec(ng,o) = {1,¢3, —¢3}. The level of py cannot be 5, by inspection
of the corresponding eigenvalues. If the level of ps is 2 then the t-spectrum criteria implies that
(x2)? = (x1)? = 1. But now p(s?) has trace 0, contradicting Proposition 2.1. Thus the level of po
is either 8 or 3. Applying the t-spectrum criteria yields the following possible levels in this case:
(8,8,1),(8,3,3) or (8,3,1). In particular, if the level of py is 8 we cannot have levels (8,8,2) or
(8,8,4) as the t-spectrum criteria fails in these cases. In all three cases we see that ps ® x2 must
be odd for otherwise Tr(p(5%)) = 0. Hence, the corresponding category would be non-self-dual.

Now suppose that the level of p3 is 5. Then p3 is even. The t-spectrum criteria implies the level
of py cannot be 8. Inspecting the remaining possibilities we find the following possible level triples:
(5,5,1),(5,3,1),(5,3,3),(5,2,1) or (5,2,2). The parities imply that the corresponding category
would be non-self-dual in the first three cases and self-dual for the last two.

Next if the level of p3 is 4, then p3 =~ Pg13 which is odd, and has the minimal t-spectrum {1, —1, 1}

according Appendix A. The t-spectrum criteria show that the level of py cannot be 8 or 5. If po
had level 2 then the order of p(t) would be 4, yielding a pointed integral category (by Theorem
3.14) with T-matrix of order 4, which contradicts Proposition 3.16. Thus py has level 3 and we find
(4,3,1),(4,3,2),(4,3,3) and (4, 3,4) as possible level triples.

Finally, if the level of p3 were 3 then the t-spectrum criteria implies that the order of p(t) is a
divisor of 6 and hence pointed integral by Theorem 3.14. This contradicts Proposition 3.16.

Below we provide the details of the cases of levels (4, 3,2), (5,2,2) and (5,2, 1) explicitly. The
remaining cases {(8,8,1),(8,3,3),(8,3,1),(5,5,1),(5,3,1),(5,3,3),(4,3,1),(4,3,3), (4,3,4)} can be
similarly addressed (and indeed are easier). We can eliminate all of these cases computationally as
well, see Section B.2.
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4.4.1. Case (4,3,2). Suppose that the levels of p3, p2 and x1 are 4,3 and 2, respectively. Without
loss of generality we may assume that ps =~ pls3 and pg = P10 which are odd, and respectively
have the minimal t-spectrums {1, —1,i} and {1, (3} according to Appendix A. Let us determine what
X2 can be. Note that yp is even. Now if 2 is odd, then Tr(p(s%)) = 0, which is impossible. The
t-spectrum criteria implies that x2(t) # +(3, and a relabeling eliminates (5 LIf () € {1, —C5),
then p is projectively equivalent to the complex conjugate the (4,3,1) case. So we will assume that

x2(t) = 1,{3 or p2 ® X2 = py10 Or pyis. In either case, p is defined over Qz4. If 0 € Gal(Q) such
3 3
that o((3) = (3 and o((3) = (s, then we have

P3@®py1s @x1 =00 (p3® PaLo @ X1) -
It suffices to consider p = p := p3 @ py1.0 ® x1. By Appendix A, we have
3

-1 1 V2 .
ﬁ(s)=% 1 -1 V2 @Jg[:/; Vf]@[—l] and  p(t) = diag(1, —1,1,1, (3, —1)
V2 V20

Reordering irr(C) so that p(t) = diag(1,1, —1, —1,i,(3). By Theorem 3.23, the unit object 1 must
be an eigenvector p(t) with eigenvalue 1 and so D = 2/(5+ %) = 8v/3—120r dim(C) = 48(7—4+/3).

Moreover, T' = diag(1,1, -1, —1,i,(3) and p(s) = MS, where

12
1 _(2v3-3)s _ 334 335 61 4B
2v/3+3 2v/3+3 2v/3+3 2v3+3 2343
_ (2%573)& 1 . 3v2ak y 34/2bk _ _bnk _ 4\/572
24/343 24/3+3 24/3+3 24/3+3 2v/3+3
3V C 3vBaw _ 6(=1+(1+20)b7) (6+124)ab _ 6v2ay; 0
S = 24/3+3 24/3+3 24/3+3 2v/3+3 24/3+3
_3y3 _ 33k (6-+12i)ab 12i(—1+(1-5)b") _ 6v/2by, 0
2v/3+3 2v/3+3 2v3+3 2v343 2V3+3
__6m _ _bnik _6\/50/‘/1 _6\/§b'y1 0 0
2v/3+3 2v/3+3 2v/3+3 2v/3+3
4V3y2k 43y 0 0 0 _ 43
L 2v3+3 24/3+3 2v/3+3
for some k,v; € {+1} and a,b € R such that a® + b*> = 1. Since 1,1 € {e1,e2}, K = —1, and a,b # 0.
. . 2v/3-3 . .
Since dim(¢) = (2£+3) =7 -4/3 < 1, FPdim(C) = 48(7 + 4v/3) and + # 1. We may simply

assume e; = 1 and ey = o Then 7 = 1, 79 = —1 and a,b > 0. Since Tr(p(s?)) = —4, there is
exactly one dual pair of simple objects, and they can only be eg, es. Therefore, a = b = % and so

a="5b= \% Thus,

1 1—2d —d —d —2d 2—2d |
1-2d 1 d d 2d 2-—2d
—d d (1-2i)d (1+2)d —2d 0

S=1 _4 d (1+2i)d (1-2i)d —2d 0
—2d  2d —2d —2d 0 0
| 2-24 2-2d 0 0 0 2d-2 |

where d = 21/3 — 3. Remarkably, the Verlinde formula yields a consistent set of fusion rules. For
example the object with twist i has the fusion matrix:

[ 00001 0]
042234
022012
Ns=1092021 2
131144
042244

i o |
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2
However, the second FS-indicator for this object is va(e5) = dlm Z]k kd dk< ) =2 a

contradiction.

4.4.2. Case (5,2,1). Consider the case of levels (5,2,1). Then p = p31 ®p,10 ®xY or P33 @ pyro ®x°
5 2 2
according to Appendix A. Since the latter is a Galois conjugate of the former one, it suffices to
solve the first case. Let p = py10 @ x° @ ps3 in which p(t) = diag (1,—1,1,1,¢,¢3). By permuting
2

the first two basis elements, we may assume that ¢ = p(t) = diag(—1,1,1,1,¢5,¢3). Conjugating

fir figofi3
by a block diagonal matrix of the form (r1) @ F @ (r2) @ (r3) where F' = | fo1 foo fos | is
fau fa2 [33

real orthogonal matrix (cf. Prop. 3.4) and r; = 1. One may assume r; = 1, and we find that
+S5/D = s = p(s) has the form:

1 _fiav3 o a3 f3143 0 0 i
2 2 2 2
_ f1av3 f1,3V/10r3 f1,3V/10r3
2 5 5
_ f21V3 A f2,3v/10ry f2,3v10r3
2 5 5
_ f31V3 f5,33/10r2 f3,3v/10r3
2 5 5
0 f13VI0rs  f2.3v10rs  f3.3v10r2 /545 r2 V5(V5-1)rs
5 5 5 10 10
0 f1,3V10r3  fa34/10r3  f33v/10r3 T2 \/5(\/5_1)7’3 \/5(\/5"'1)
L 5 5 5 10 - 10 |
where
f Jr fl g2 4 {13 V5 f1,3°V5 3 *V5 % ¥
A= _ fiafen 1f2 Ly fl 2f2 o+ f1,3\ggf2,3 7f2,212 + f 2 f2,352\/§ «

) 2 /5 2
f172f372 + f1,3\5ff3,3 Y f1,12f3,1 f2 2fs0 + £, 3ff33 _ f2,12f3,1 f3,22 4 % o fg_Tl

First we observe that the FP-dimensions and categorical dimensions (which may coincide) must
appear as multiples of one of the columns 2,3 or 4. Moreover, since our category is non-integral by
Proposition 3.16, the Galois orbit of the dimension column has size 2. The FP-dimension column
of s must have all the same sign, which implies that ro = rj.

Let 0 € Gal(Q5/Q) be the automorphism defined by (5 — (2. By Galois symmetry we have:
(1) =1, 6(5) = 6. Therefore, 6 has order 2. Reordering the rows of F' if necessary (which
permutes the corresponding rows/columns of s) we may assume that 6(2) = 2 and 6(3) = 4, so
that the FP-dimensions and categorical dimensions correspond to either columns 3 or 4 (or one of
each).

We will make frequent use of the fact that o(si;) = €5(9)s5(:),; = €5(J)5i,5(;) Where €,(7) is a sign.

Now 1/2 = o(s1,1) = €5(1)/2 so that e;(1) = 1. By a similar computation o(s12) = €;(1)s12 =
€s(2)s1,2, s0 that €,(2) = 1. From o(s55) = Y252 = €,(5)s56 we find that €;(5) = —1. Now we
compute two ways: o(s25) = €5(2)s25 = S25 = €5(5)s2,6 = —S2,6 = —S2,5, which implies sy 5 = 0 so
that fi3 = 0. Now o(s35) = €,(3)s45 = €5(5)s36 = —s3,6 implies f33 = +fo3 s0 that (f23)* = 3.
Applying a similar calculation we see that o(s13) = s13 = €,(3)s1,4 implies fo1 = +f371. Setting

44

44



z = f1,1 and y = fa1 orthogonality yields the following:

z 51\/§y 0

—01%2 —020:;

F=| y ¢ =
—61022 03

29~ Vi

One important consequence is that there are only 2 rows of p(s) that have strictly non-zero entries:
the 3rd and the 4th.

Next we find that o(s;1) = s;1 since €;(1) = 1 and 6(1) = 1. Thus f;1v3 € Q. Note that

22 + 2y? = 1 where 2,y € %Q, and one of sp1/s31 = %82,1/54,1 is of the form Sxy/dx, ie., an

eigenvalue of a fusion matrix. In particular z/y = v is a (rational) algebraic integer, i.e., v € Z.
From this we find that 42 + 2 = 1/y? € Z so that 0 < 3?> < 1/3, and s0 1/3 < 22 < L.
Let us compute the values of the submatrix A above. We have:

—22/2 + 29? * *
A= —3yz/2 %( — 2+ \f> *
—803y2/2 B —y?— 52) 5(2 -+ )
Since the unit object can only correspond to either row 3 or 4 and s3» = £s49, S22/S32 is an
algebraic integer in Q(v/5). Note that

4 24
532 Y
7’-4 2 _ a2 _ 41 1
Therefore, 3, € Z and so v | 4. Thus, v 1,4 or 16. However, if 4orl6,y Tz ¢ \/gQ

Thus, v2 = 1 or z = +y.
This 1mphes that y = 7 from which we compute: foo = + 16, f32 iT fi1= i%, and

f1,2 = _%-
~1/v/3 221/v/6 0

Now we may assume F = 22/V3  x3/v/6 x4/V2 | where the z; = +1 after an overall

r5/v/3  w6/V6  x7/\/2
rescaling by +1. Orthogonality of F' implies several additional conditions on the x;, so that all are
determined by the values of xo, x4, x5 and x7.
Substituting into s above, rescaling by +D and permuting the rows/columns so that the two
non-zero rows appear first, we have:

1 xax7  AbBxs bBrs  2x7rs 2 2773
47 1 \/51‘2 \/51‘2 2 4T3 2 xr4Ts
Vs Bra 5 =5 0 0

S =
Vhrs VbBre —v/5 /5 0 0
2.%'7?”3 2.1‘47“3 0 0 —v/b—1 \/5—1
2x7ry 2x4m3 0 0 VE-1 —/5-1 |

Thus we see that the dimensions and FP-dimensions must be, up to sign choices, among 1,2, v/5.
In particular, any such category must be weakly integral, and there is an invertible object of order
2. Therefore, are two spherical structures on C which make 1 = ¢ or 1 # (. We may assume 1
corresponds to the first row. For the first case, we find x4x7 = x5 = x7r3 = 1 and x9 = —1.
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Thus we obtain the following S-matrix:

wmggr—nr—l
SN o

1 W5
1 =5
V5 /b
V5 =5
2 0
2 0

V5
V5
V5
V5

ol ot

0
0

2 2

2 2

0 0

0 0
—/5-1 +5-1
VE-1 —v6-1

For the second case, one can obtain the same S-matrix except the first two rows/columns are
interchanged, but the T-matrix is unchanged. Therefore, we have only one modular data for either
case.

Applying o to (S,T), we obtain the modular data for p =~ P33 @ pyro @ X" with the T-matrix

2
given by o(T) = diag(1,1,1,—1,¢3,¢2). Both of these modular data (S,T) and (¢(S),o(T)) are
modular data of non-trivial braided zesting of MTCs (see [10]) of type (3,3). Notice that the MTCs
of type (3,3) have T-matrix of order 20.

4.4.3. Case (5,2,2). It suffice to consider the case with p = p:= P31 @ pyro @ x%. Then
2

o el B —V3
o)== | V2 - vt |0y [_ﬁ 1 ] ©[-1] and A(t) = diag(L, G, ¢4, 1,~1,—1).
V2 o7t —p
Permute irr(C) so that p(t) = diag(—1,—1,1,1,¢5,¢2). By Theorem 3.23, the objects 1, € {e3, e4},
D=2/(%- %) = 20 + 8+/5, and
32 1 —1(3ab) 1./3b N 0 0 |
—2(3ab) % (1 - 3b?) ~1\/3a —2\/3ak 0 0
s:= p(s) = % % _% %a 2% (2\/5_ 5) _% (2\/5-1- 5) k _% _%
Wi Ayl H0Ge9s hvEos) 2 %
L % h(v5-n)
B & Ba (Ve
5+2v/5

for some r,71,72 € {£1} and a,b € R such that a® + > = 1. Since > 1, = 1. We may

5—2/5
simply assume e4 = 1. Then k = 1,71 = = —1and ¢ > 0 and b < 0.

By Proposition 3.16, C is not integral. Let o € Gal(Q5/Q) be a generator. Then 6(3) = 4
and €,(3) = 1 since o(s35) = s45. Therefore, o fixes s31,53,2, and so \/ga, \/gb € Q. Now,
s21 = S2,1 € Q since ab € Q. By Theorem 3.7, 235 222 are in Z[(5] n Q, v/6a,v/6b € Z and

(v/6a)? + (v/6b)? = 6. But the Diophantine equation X2 + Y2 = 6 has no integral solutions, so we
conclude that p has no realization.

S
and 2:2

4.5. Classification of modular data of type (6). In this subsection, we discuss the possible
rank-6 MDs of type (6) (i.e. MDs from dimension-6 irreducible SLo(Z) symmetric representations).
This part of the classification relies upon computer computations.
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Theorem 4.16. Let C be a rank 6 modular tensor category of type (6) with dim(C) = D? ¢ Z.
Then the modular data of C can be obtained, up to a choice of (spherical) pivotal structure, as a
Galois conjugate of the modular data of the following modular tensor categories:

(i) PSU(2)11 (entry 10 in Appendiz C.2);

i) PSU( )3 X PSU(2)5 (entry 20 in Appendiz C.2);
(iii) SU(2); W PSU(2)5 (entry 24 in Appendiz C.2);
(iv) PSU(2)s X SU(2)2 (entry 36 in Appendiz C.2).

(v) PSU(2)s X E(8)2 (entry 28 in Appendiz C.2).
(vi) PSO(5)3/2 (non-unitary, entry 9 in Appendiz C.2);

(i

It is worth noting that (i), (ii) and (vi) have a unique pivotal structure, up to equivalence (cf.
[6]). The categories (i) and (ii) are transitive [29], and they are completely determined by their
modular data. We note that by [35], any fusion category with the same fusion rules as those of
(vi) is non-pseudo-unitary.

Recall that a symmetric SLo(Z) representation p is defined to be an unitary representation
which has diagonal p(t) and symmetric p(s). Every finite-dimensional representation of SLy(Z/nZ)
is equivalent to a symmetric one. Two symmetric SLg(Z) representations are equivalent if and only
if they are related by a conjugation of a real orthogonal matrix (see Theorem 3.4). There are 70
inequivalent 6-dimensional symmetric irreducible SLo(Z) representations of prime-power levels (cf.
Appendix A). Up to tensoring one of the 12 1-dimensional representations, other 6-dimensional
irreducible representations are tensor products of one of the 11 2-dimensional and one of the 33
3-dimensional irreducible symmetric representations of distinct prime-power levels.

Since there are only a finite number of SLo(Z) representations, up to equivalence, for any given
dimension, we can examine representatives of each of those symmetric representations by com-
puter and reject those representations that do not satisfy the following necessary conditions (for a
symmetric SLy(Z) representation equivalent to an MD representation):

(1) If all the eigenvalues of p(t) are distinct (non-degenerate) then p(s) has a row that contains
no zero. Note that when p(t) has non-degenerate spectrum, the matrix p(s) differs from
that of an MD representation only by a conjugation by signed diagonal matrix. In this case,
p(s) must have a row that contains no zero (i.e. the row corresponding to the unit object).

(2) Let p(s)d8 (or M™d°8) be the non-degenerate block of p(s) (or M), (i.e., corresponding
to the multiplicity 1 eigenvalues of the diagonal matrix p(t), see section 3.4). Then the
conductor of p(s)& divides ord(p(t)) (cf. Proposition 3.9). If the p(t)-spectrum is non-
degenerate then we may drop the ndeg superscript.

(3) o(p(s)"%8) = (p"(1)p(s)p" (1) p(s)p" (1)) ""® for any o € Gal(Q), where 0(Cy) = (2 for an
unique integer a modulo n. Here n = ord(p(t)) and b satisfies ab=1 mod n (cf. Theorem
3.7). Again, this is because p(s)"°® can only differ from that of an MD representation by
a conjugation of signed diagonal matrix.

Since the weakly integral rank-6 MD of MTCs are classified, we can exclude symmetric SLg(Z)
representations that must produce such MDs. Thus we also reject the representations that satisfy
the following conditions, both of which imply weak integrality:

(1) pord(p(t)) € {2,3,4,6}. In fact, this implies the category is pointed, see Proposition 3.16(i).
(2) The squares of the matrix entries of p(s) in each row containing no zeros are all rational num-
bers, and p is non-degenerate. Indeed, in this case 1/D?, (d;/D)? and (d; FPdim(X;)/D)?
are rational, where column ¢ is the unique strictly positive (or negative) column. (This
condition only rejects one case. See entry 566 in the Supplementary material section of the
arXiv version of this paper.)
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We remark that there are 6-dimensional irreducible SLa(Z) representations where p(t) are degen-
erate, for example, the representation 6% in Appendix A. Such a representation is rejected since the
conductor of p(5)"48 is 40 which does not divides ord(p(t)) = 5 (see also entry 582 in Supplementary
material Section of the arXiv version of this paper).

All the passing symmetric SLo(Z) representations can be grouped into orbits generated by Galois
conjugations and tensoring 1-dimensional representations. There are 7 such orbits. A representative
for each orbit is listed in Section B.2, which have (dims;levels) = (6;9), (6;13), (6;15), (6;16),
(6:35), (6;56), (6;80).

Fortunately, we find that all these SLy(Z) representations have non-degenerate p(t), so they can
only possibly differ from an MD representation by a conjugation of signed diagonal matrix, if they
indeed are associated with MDs. We can then search through the finite number of signed diagonal
conjugations, and find the (S, T") matrices that satisfy the conditions listed in Theorems 2.1 and 3.7.
The results are given in Section C.2, where (S,T) matrices are found from SLo(Z) representations
that have (dims;levels) = (6;9), (6;13), (6;16), (6;35), (6;56), (6;80). Those computer assisted
calculations are described in detail in the Appendix.

5. CLASSIFICATION OF MODULAR DATA OF RANK=06: NON-ADMISSIBLE TYPES

In this section, we complete the classification of rank=6 MDs by eliminating the remaining types.

Theorem 5.1. There are no rank=6 MTCs of types (3,1,1,1),(2,2,2),(2,2,1,1),(2,1,1,1,1),(5,1),
or (1,1,1,1,1,1).

Obviously, type Vec is the only MTC of type (1). However, no MTCs of rank n > 1 is of type
(1,...,1), as the associated SLy(Z) representations p = ny" for some integer i by Corollary 3.21.
In particular, p(s) has zeros in each row if n > 1.

5.1. Nonexistence of type (3,1,1,1).
Proposition 5.2. There does not exist any modular tensor category of type (3,1,1,1).

Proof. Assume contrary. Let € be a modular tensor category of type (3,1,1,1) and p an SLy(Z)
representation of C. Then

P=EpPoDXx1Dx2DX3-

where pg is irreducible of dimension 3 and y;,¢ = 1,2,3, are 1-dimensional representations. By
Lemma 3.20, spec(y;(t)) < spec(po(t)) for i = 1,2,3. One may assume pp has a minimal t-
spectrum. Then pg must have a prime power level. By Appendix A, the level of pg can only be
3,4,5, 7 8or 16. The t-spectrum of any 3-dimensional irreducible representations of level 7 or
16 does not contain any 12-th root of unity. Therefore, the level of pg can only be 3,4,5, or 8. It
suffices to show that none of these levels is possible.

If po were of level 3 or 4, then ord(p(t)) = 3 or 4, by Lemma 3.20. This implies ord(T) = 2,3
or 4 and hence C is integral by Theorem 3.14. By Proposition 3.16, C must be of type (4,2), a
contradiction. Therefore, pg can only be of level 5 or 8.

If po were of level 5, then ord(p(t)) = 5 by Lemma 3.20. Hence, ord(T") = 5 which is not possible
by Proposition 3.22.

If the level of pg were 8, then py = P3l0 OT pgo as they are the 3-dimensional irreducible
representations of level 8 with a minimal t-spectrum. In either case, spec(po(t)) has exactly one
12-th root of unity, which is 1, and pg is odd. Therefore, p =~ pg @ 3x" by Corollary 3.21. This

implies Tr(p(s%)) = 0, which is impossible for any MD representation. [
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5.2. Nonexistence of types (2,2,2), (2,2,1,1) and (2,1,1,1,1). We will prove the following
theorem which leads to the nonexistence of modular tensor categories of these types.

Theorem 5.3. Let C a be modular tensor category with rank C > 2, and p an SLe(Z) representation
of C. If all the irreducible subrepresentations of p have dimensions < 2, then ord(T) = 1,2,3,4, or
6 and therefore C is integral.

Proof. If every irreducible subrepresentation of p is 1-dimensional, then C is of type (1,...,1)
which can only be trivial by the beginning remark of this section. In particular, ord(7") = 1 and C
is integral.

Now, we assume p admits a 2-dimensional irreducible subrepresentation pg. By tensoring a
1-dimensional representation to p, we may assume the level of py to be 2,3,5, or 8.

Suppose py is of level 5. Then each irreducible subrepresentations pf, of p which is not isomorphic
to po satisfies spec(pf(t)) N spec(pp(t)) = & by Appendix A. This implies p = ¢pg, but this is
impossible by Proposition 3.19. Therefore, pg cannot have level 5.

Assume pqg is of level 8. Note that the t-spectrum of any 2-dimensional level 8 irreducible
representation consists of primitive 8-th roots of unity. By the t-spectra criterion and Appendix A,
all the irreducible subrepresentations of p are of dimension 2 and level 8. In particular, ord(T) =
pord(p(t)) — 4.

If pg is of level 2 or 3, it follows from the preceding discussion that all the 2-dimensional irreducible
subrepresentations of p are of level 2 or 3. By Lemma 3.20, ord(p(t)) = 2,3 or 6 and so ord(T") = 2,3
or 6.

The last assertion follows from Theorem 3.14. [J

Corollary 5.4. There is no modular tensor category of types (2,2,2), (2,2,1,1) or (2,1,1,1,1).

Proof. Suppose there exists a modular tensor category C of any of these types. By Theorem 5.3, C
is integral, but this contradicts Proposition 3.16 which shows C is of type (4,2). O

5.3. Nonexistence of type (5,1). Suppose that C is a modular tensor category of type (5,1), and
p an SLo(Z) representation of C. Then C is not integral by Proposition 3.16, and p =~ pg@® p1 where
po, p1 are irreducible of dimension 5 and 1 respectively. By tensoring a 1-dimensional representation
of SLy(Z), one may assume pg is of prime power level. By Appendix A, the level of pg can only be
11 or 5.

In the former case the t-spectrum consists primitive 11-th roots of unity. Since p;(t) is a 12 root
of unity, the t-spectrum criteria shows this is impossible.

Now if py has level 5 and pa = ps1. This implies p; = X Let p=x"® psi- Then oY) =

dlag(17 17 C57 4527 Cg7 C§)7 and

1 0 0 0 0 0
0 —1 6 V6 V6 V6
5 5 5 5 5
0 Y6 3V _1_ 1 1 _1 345
_ 5 10 57 Vs 5 5 0
pls) = [1]® 0 Y6 _1_ 1 345 35 11
5 5775 0 0 755
o ¥6 1 1 3—v5 34v6 1 1
5 V5 5 0 0 575
0 Y6 35 1 _ 1 _1_ 1 3.5
5 10 /5 5 57 V5 10

There exists a real orthogonal matrix U = diag(f,e1,¢e2,€3,€4) such that p(s) = Up(s)UT and
p(t) = p(t) , where f € O2(R) and ¢; = £1.
The group Gal(Qs/Q) is generated by o defined by o(¢5) = (2, and

Dj(o) =L@ Js where Jy = [6;5—j]1<ij<a -
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So & fixes 1 and 2. Since C is non-integral, the row corresponding to 1 must be one of the last 4.

Since p(5)"4°8 and j(s)"9°¢ are the same up to some signs, D = 3 ii)/g which has norm 25.

Observe that each row of j(s)"° has the entries —1 + % Therefore, (—% + %)/gﬁ(‘)/‘?’ =145

are dimensions of some objects up to a sign. However, their norms are -4 which is not a divisor of
25, a contradiction. So, we conclude that such a category cannot exist.

6. SUMMARY AND FUTURE DIRECTIONS

We have developed tools for classifying modular data directly from representations of SLgy(Z),
and have applied them to provide a classification of rank 6 modular data. Sufficiently many of
these tools have been implemented as computer algorithms to yield a purely computational ap-
proach to the rank 6 classification. A purely “by hand” approach to higher ranks is too involved
for the currently theory, but the computational approach can be implemented in higher ranks. It
should be noted that in this work we used the classification of weakly integral modular data [4] of
rank up to 7 to simplify the computer calculations. For higher ranks this will require further work.
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A. LisT OF SLy(Z) IRREDUCIBLE REPRESENTATIONS OF PRIME-POWER LEVELS

In this section, we list all the SLy(Z) symmetric irreducible representations of dimension 1 — 6,
whose level (I = ord(p(t))) is a power of single prime number, which are generated by the GAP
program [27]. In the list, p(t) is presented in term of topological spins (81, S2, - -+ ) (8 = arg(pa(t):i))-

Note that p(s) is symmetric and p(s);;’s are either all real or all imaginary. When p(s);;’s
are all real, p(s) is presented as (p11, P12, P13, P14, 5 P22, P23, P24, -+ ). In this case, p(s)? = id

and the representation p is said to be even. When p(s);;’s are all imaginary, p(s) is presented as

. . . . . . . . . _1
i(—ip11, —ip12, —ip13, —ip1a,- -+ ; —ipaz, —ipas, —ip24,---), or as (s7') 7 (s p11, Sy P12, Spy P13 Sy P14,

-5 8™ pog, ST pag, ST pay, - - - ); where s := (™ — (™. In this case, p(5)? = —id and the represen-
tation p is said to be odd. In any case, the numbers inside the bracket (---) are all real. We can
tell a representation to be even or odd by the absence or the presence of i or (s™)~!in front of the
bracket (---).

We note that two symmetric representations are equivalent up to a permutation of indices, and
a conjugation of signed diagonal matrix. To choose the ordering in indices, we introduce arrays
O; = [DenominatorOf(5;), 8;, pii]. The order of two arrays is determined by first comparing the
lengths of the two arrays. If the lengths are equal, we then compare the first elements of the two
arrays. If the first elements are equal, we then compare the second elements of the two arrays, etc.
To compare two cyclotomic numbers, here we used the ordering of cyclotomic numbers provided by
GAP computer algebraic system. We order the indices to make O; < O3 < O3 ---. The conjugation
of signed diagonal matrix is chosen to make —p(s)1; < p(s)1; for j = 2,3,---. If p(s)1; = 0, we will
try to make —p(s)2; < p(s)2;, etc.

All the prime-power-level irreducible representations are labeled by index di};n, where d is the
dimension and [ is the level of the representation. The irreducible representations of a given d, [ can
be grouped into several orbits, generated by Galois conjugations and tensoring of 1-dimensional
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representations that do not change the level I: the k in d?,:n labels those different orbits. If there
is only 1 orbit for a given d, [, the index k will be dropped.
The irreducible representation labeled by d;7" is generated from the irreducible representation

labeled by dll’lg via the following Galois conjugations and tensoring of 1-dimensional representations

paz (8) = a(pgro (1)) €12
paz(s) = a(pgro(s))e ™% (A.1)

where the Galois conjugation o, is in Gal(Q,,) with n be the least common multiple of ord(pdl{,]g (1)
and the conductor of p qhp (s). The Galois conjugation o is labeled by an integer a, which is given
by

o (e2M/M) = emia/n, (A.2)
Also m € Z;9 is such that ord(pdll’}? ()e?miiz) = ord(pdll’,lg (t)). Due to this condition, when [ is not
divisible by 2 and 3, m can only be 0. In this case, we will drop m. Here we choose dll;k? to be the
representation in the orbit with minimal [51, §a,---].

The numbers of distinct irreducible representations with prime-power level (PPL) in each di-
mension are given by

dim: | 1| 2 3 41 5 6| 7 8 9| 10|11 12
# of irreps with PPL | 6 (11| 33| 18| 3| 70| 3| 10 4 7| 3] 176 (A.3)
# of irreps | 12 | 54 | 136 | 180 | 36 | 720 | 36 | 456 | 476 | 222 | 36 | 3214

In the above we also list the numbers of distinct irreducible representations, which are tensor
products of the irreducible representations with prime-power levels.

In the following tables, we list all irreducible representations with prime-power levels for rank
2,3,4,5. For rank 6, to save space, we only list all irreducible representations with prime-power
levels that have a form p 410 Other irreducible representations, with prime-power levels and the

same dimension, can be obtained from those listed ones via Galois conjugations and tensoring 1-
dimensional representations. In the Supplementary Material section of the arXiv version of the
article we list all distinct irreducible representations of prime-power levels. In the tables ¢’ :=
G+ G ™ and syt = Gt = (™

i | #|p(t), p(s)
|1

1,0
1y

1,0
13

2
3
15 |4
5

6

1,0

1
16

1

i | # | p(d), pls)
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47167 16’ 167 16
V2 M2 0¥2 M2 N2 N2 N2 2
40 4 4 4 4 4 40 4
1,0 11 3 9 11y 1 11 1.1 _11 1. 1 L.
61672 12 (071§7T67E7T?7E)a 1<07 07 29 29 29 2 07 29 T 925 92y T 07 o 07 29
07 2 07 07 _57 0)
1,0 11 7 9 15 1 11 1.1 11 1. 1 1.
61673 13 (07§7T67 16° 16° E)a (07 07 25 925 92y 2 07 25 7925 9y T 9 07 2 07 29 07
1 1.
2 Oa 07 o O)
1,0 151 5 9 13 111 1.1 1 1 _1. 1 o L.
616,4 14 (1§7§7T67 ?71767 E)a (07 07 29 925 925 99 07 2y T 92y 9y T 9y 07 9 07 2 07
2 Oa 07 _57 O)
1,0 1 3 11 19 27 11 1 1. 1 11 1. 1.1
Gz2,1 15 (0’1%37213?3721’?2)’11(?’ 017 222> ?,1@ T2, — 16
— 16 16> 116> 1%160 1%960 —1%65 — 16 — 1165 1C16)

1,0 1 7 15 23 31 111 1.1 11 _1..1.1 1.3
632,2 16 (lovlgv ﬁ’gﬁ’ @15 @)53(07 0’1 §1a 2 517 ?7 Oa %7 T 9y 9y T 9 —10167 _10167
116> 1€16> 116> 2€16> — 1160 ~ 1160 — 1€

B. A LIST OF ALL CANDIDATE SLy(Z) REPRESENTATIONS OF MTCs

We will follow the strategy outlined in Section 3.4. We first try to obtain a list that includes
all SLa(Z) representations associated with MTCs. Certainly, one such list is the list of all SLg(Z)
representations of finite levels. But such a list is very inefficient since most representations in the
list are not associated with MTCs. So in this section we collect the conditions that a representation
coming from a MTC must satisfy, to obtain a shorter list.

B.1. The conditions on SLy(Z) representations. Some of the conditions on SLg(Z) represen-
tations are obtained from the necessary conditions on modular data Propositions B.1 and 3.7, and
others are discussed in the main text of this paper. Let us first translate the conditions on the
(S,T) matrices to condition on an MD representations pq:

Proposition B.1. Given a modular data S,T of rank r, let po be any one of its 12 MD represen-
tations. Then ps has the following properties:

(1) po is an SLao(Z) representation of level ord(py(t)), and ord(T) | ord(pa(t)) | 120rd(T) .

(2) The conductor of the elements of pa(s) divides ord(pa(t)).

(3) If pa is a direct sum of two SLa(Z) representations

Pa = p®p, (B.1)
then the eigenvalues of p(t) and p'(t) must overlap. This implies that if po = p @ x1 @D
- @ xy¢ for some 1-dimensional representations xi,--.,Xe, then xi,---xe¢ are the same

1-dimensional representation.
(4) Suppose that po = p @ lx for an irreducible representation p with non-degenerate p(t), and
an 1-dimensional representation x. If £ # 2dim(p) — 1 or £ > 1, then (p(s)x(s)~!)? = id.
(5) pa satisfies

Pa ZE NP (B.2)

for any integer n > 1 and any representation p such that p(t) is non-degenerate.

(6) If po(s)? = +id (i.e. if the modular data or MTC is self dual), pord(pa(t)) is a prime
and satisfies pord(pa(t)) = 1 mod 4, then the representation p, cannot be a direct sum of
a d-dimensional irreducible SLa(Z) representation and two or more 1-dimensional SLo(Z)

representations with d = (p + 1)/2.
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(7) Let 3 < p < q be prime such that pg = 3 mod 4 and pord(p(t)) = pq, then the rank
r# p—;q + 1. Moreover, if p > 5, rank r > % + 1.
(8) The number of self dual objects is greater than 0. Thus

Tr(pa(s)?) # 0. (B.3)
Since Tr(pa(s)?) # 0, let us introduce
_ _Tr(pa(s)?)
EErRER]

The above C' is the charge conjugation operator of MTC, i.e. C' is a permutation matriz of
order 2. In particular, Tr(C) is the number of self dual objects. Also, for each eigenvalue 6

Of pa (t)}

pals)®. (B.4)

Try(C) = 0, (B.5)

where Trj is the trace in the degenerate subspace of pa(t) with eigenvalue 0.
(9) For any Galois conjugation o in Gal(Qura(pa(r))), there is a permutation of the indices,
i — 0(i), and €,(i) € {1,—1}, such that
U(pa(s)i,j) = Ea(i)pa(s)&(i),j = pa(s)i,&(j)fa(j) (B'G)
o (pa(V)ii) = pa(t)s(i)si): (B.7)
for alli,j.
(10) By [11, Theorem II], D, (o) defined in (3.6) must be a signed permutation

(Dpa(0))ij = €5(1)05(i) 5-

and satisfies

7(pa(s)) = Dpo(0)pals) = pa(s)D,, (o),
0*(pa(t) = Dy (9)pa(t) D, (0) (B.8)
(11) There exists a u such that pa(s)uy # 0 and
Pa(8)ij  Pal(8)ij Pa(8)ij
pa( )uz #0€e R o (S)UJu pa( )u]] € Oord(T) pa(5)i’j" € Qord(T)v
ij :004 )lzpa(5)lypa(5_ )lk
NY = Z PO eN.
Vz,j,k—O,l,...,r—l. (B.9)

(u corresponds the unit object of MTC).
(12) Let n € N,.. The n'* Frobenius-Schur indicator of the i-th simple object

r—1
Un Z Njkpa( 5)jull} [pa(8)kuti]* Z N] Pa(t"8)jupa(t™"s~ b
J,k=0 7,k=0
r—1 %
5)15Pa\8)ikPo\S )i _
_ ,Oa( >]pa((5§ pa( )lpa(tn )]upa(t n5 l)ku
j,k,l:() pOL lu
r—1

_ X Pal8t"8)iupa (st Diwpa(s™ (B.10)
= Pa(5)lu
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is a cyclotomic integer whose conductor divides n and ord(T"). The 1st Frobenius-Schur
indicator satisfies v1(i) = 0y, while the 2nd Frobenius-Schur indicator v2(i) satisfies vo(i) =
+pa(52)ii (see [3, 24, 33]).
(13) If we further assume the modular data or the MTC to be non-integral, then pord(p,(t)) =
ord(T) ¢ {2,3,4,6}. In particular, ord(ps(t)) ¢ {2,3,4,6}.

In Section 3.1 and Appendix A, we have explicitly constructed all irreducible unitary represen-
tations of SLy(Z) (up to unitary equivalence). However, this only gives the SLy(Z) representations
in some arbitrary basis, not in the basis yielding MD representations (i.e. satisfying (3.7)). We
can improve the situation by choosing a basis to make p(t) diagonal and p(s) symmetric. Since we
are going to use several types of bases, let us define these choices:

Definition B.2. An unitary SLa(Z) representations p is called a general SLao(Z) matriz repre-
sentations if p(t) is diagonal **. A general SLa(Z) matriz representation p is called symmetric
if p(s) is symmetric. An general SLo(Z) matriz representation p is called irrep-sum if p(s), p(t)
are matriz-direct sum of irreducible SLo(Z) representations. An SLa(Z) matriz representations p
is called an SLo(Z) representation of modular data S, T, if p is unitary equivalent to an MD
representation of the modular data, i.e.,

HEed 1 i —¢C «
ﬁ@):e”“ZB{u%ﬁ, p(t) = UTU 2™ (55 +45) (B.11)
for some unitary matriz U and o € Z1a, where ¢ is the central charge.'t

Through our explicit construction, we observe that all irreducible unitary representations of
SLy(Z) are unitarily equivalent to symmetric matrix representations of SLy(Z), at least for dimen-
sion equal or less than 12.

We note that different choices of orthogonal basis give rise to different matrix representations
of SLy(Z). The modular data S,T is obtained from some particular choices of the basis. Some
properties on the MD representations of a modular data do not depend on the choices of basis
in the eigenspaces of p(t) (induced by the block-diagonal unitary transformation U in (B.11) that
leaves p(t) invariant). Those properties remain valid for any general SLo(Z) representations p of the
modular data. In the following, we collect the basis-independent conditions on the SLg(Z) matrix
representations of modular data. Those conditions have been discussed in the main text.

Proposition B.3. Let p be a general SLo(Z) matriz representations of a modular data or a MTC.
Then p must satisfy the following conditions:

(1) If p is a direct sum of two SLa(Z) representations
p=p®p, (B.12)

then the diagonals entries of p(t) and p'(t) must overlap.

(2) Suppose that p =~ p@Lx for an irreducible representation p with p(t) non-degenerate, and a
character x. If £ # 1 and £ # 2dim(p) — 1, then (p(s)x(s)~1)? = id.

(3) If p(s)? = +id, and pord(p(t)) = 1 mod 4 is a prime, then the representation p cannot
be a direct sum of a d-dimensional irreducible SLa(Z) representation and two or more 1-
dimensional SLo(Z) representations with d = (pord(p(t)) + 1)/2.

(4) p satisfies

pEnp (B.13)
for any integer n > 1 and any representation p such that p(t) is non-degenerate.
**We will consider only SL2(Z) matrix representations with diagonal p(t) in this paper.

tNote that D? is always positive and D in (B.11) is the positive square root of D?, even for non-unitary cases.
58

58



(5) Let 3 < p < q be prime such that pg = 3 mod 4 and pord(p(t)) = pq, then the rank
r# p—;q + 1. Moreover, if p > 5, rank r > % + 1.

(6) If we further assume D? of the modular data or the MTC to be non-integral, then pord(p(t)) =
ord(T) ¢ {2,3,4,6}. This implies that ord(p(t)) ¢ {2, 3,4,6}.

Some properties of an MD representation depend on the choice of basis. To make use of those
properties, we can construct some combinations of 5(s)s that are invariant under the block-diagonal
unitary transformation U.

The eigenvalues of p(t) partition the indices of the basis vectors. To construct the invariant

combinations of j(s), for any eigenvalue 8 of j(t), let
Iy = {i| p(t)i = 6}. (B.14)

Let I = I, J = J;, K = K, for some eigenvalues 6, 6, 6" of p(t). We see that the following
uniform polynomials of p(s) are invariant

Pr(p(s)) = Tr p(s)rr = ), pls)ia,

iel
Pry(p(s) = Trj(s)rsp(s)ar = Y, p8)ip(s)i (B.15)
iel,jed
Pryk(p(s)) = Trp(s)rsp(s)sxp(&)xr = D, A9)ih(8)jxd(8),i-
iel,jeJ ke K

Certainly we can construction many other invariant uniform polynomials in the similar way. Using
those invariant uniform polynomials, we have the following results

Proposition B.4. Let p be a general SLa(Z) representations of a modular data or a MTC. Then
following statements hold:

(1) p(s) satisfies

Tr(5(s)?) € Z\{0}. (B.16)
Let
~ Te(p(s)*) < o
“ S e (P17
For all I,
Pr(C) = 0. (B.18)

(2) The conductor of Poaq(p(s)) divides ord(p(t)) for all the invariant uniform polynomials Poaq
with odd powers of p(s) (such as Pr and Prji in (B.15)). The conductor of Peven(p(s))
divides pord(p(t)) for all the invariant uniform polynomials Peyen with even powers of p(s)
(such as Pry in (B.15)).

(3) For any Galois conjugation o € Gal(Qura(p(t))), there is a permutation on the set {I}, I —
o(I), such that

o Pry(p(s)) = Prss)(p(s)) = Psr)s(p(s))

0'2(0]) = éa-([), (Blg)
forall I,J.
(4) For any invariant uniform polynomials P (such as those in (B.15))
P (3(s)) = P(o7ls)) = P(3(03()5("3(s) (1)) (B.20)
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where o € Gal(Qora(s1))), and a,b are given by o (ef2m/ord(p()) = gai2n/ord(p(V) gnd ab = 1
mod ord(p(t)).

Instead of constructing invariants, there is another way to make use of the properties of an MD
representation that depend on the choices of basis. We can choose a more special basis, so that
the basis is closer to the basis that leads to the MD representation. For example, we can choose a
basis to make p(s) symmetric (i.e. to make p a symmetric representation).

Now consider a symmetric SLa(Z) matrix representation p of a modular data or of a MTC. We
find that the restriction of the unitary U in (B.11) on the non-degenerate subspace (see Theorem
3.4) must be diagonal with diagonal elements U;; € {1,—1}. Therefore, on the non-degenerate
subspace, p(s) of a symmetric representation differs from p(s) of an MD representation only by a
diagonal unitary transformation U with diagonal elements +1, i.e., a signed diagonal matrix. In
this case some properties of MD representation apply to the blocks of the symmetric representation
within the non-degenerate subspace. This allows us to obtain

Proposition B.5. Let p be a symmetric SLa(Z) representations equivalent to an MD representa-
tion. Let

Lndeg := {1 | p(t)i; is a non-degenerate eigenvalue}, (B.21)
Then there exists an orthogonal U such that UpU" is a pMD representation, and the following
statements hold:
(1) The conductor of (Up(s)U"); ; divides ord(p(t)) for alli,j. This implies that the conductor
of (p(s)),; divides ord(p(t)) for all i,j € Indeg-
(2) For any Galois conjugation o in Gal(Qora(ss))), there is a permutation i — (i), such that
o((Up(s)UN)iy) = Ga(i>(Uﬁ(5)UT)&(i),j = (Uﬁ(ﬁ)UT)i,&(j)Ea(j)
o (p(V)i4) = P(Osi).50)> (B.22)
for all i, 3, where €,(i) € {1, —1}. This implies that
a(p(s)ij) = #S)s@; or o(p(s)is) = —p(8)s0),
a(p(8)ig) = p6)is) or a(p(s)ig) = —p(8)is() (B.23)
for all i,j € Ingeg. This also implies that D;(o) defined in (3.6) is a signed permutation
matriz in the Ingeg block, i.e. (Dj(0))i; fori,j € Indeg are matriz elements of a signed

permutation matriz.
(3) For alli,j,

a((Ups)UN)iy) = (U4 5(s)a(0)°5(s)p()°UT), (B.24)

where o € Gal(Qura(s(t))), and a,b are given by o(ef2m/ord(p(t)) = gai2n/ord(p(1) gnd ab = 1
mod ord(p(t)). This implies that

o ((A(s))i5) = (A()*5(s)a()°5(s) (1)), - (B.25)
for all i,7 € Igeg.
(4) Both'T and p(t) are diagonal, and without loss of generality, we may assume p(t) is a scalar
multiple of T'. In this case U in (B.11) is a block diagonal matriz preserving the eigenspaces
of p(1). Let Inonsero = {i} be a set of indices such that the i row of Up(s)UT contains no

zeros for some othorgonal U satisfying Up()UT = p(t). The index for the unit object of
MTC must be in Inonzero- Thus Inonzero must be nonempty:

Inonzero # . (B.26)
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(5) Let I; be a set of indices for an eigenspace Ej of p(t)

Iy={i | (V)i = B}, (B.27)
Then there exists a Ié such that
I; 0 Lvongero # & and TrEé C >0, (B.28)

where C' is given in (B.17).

(6) If we further assume the modular data to be non-integral, then there exists a I that has a
non-empty overlap with Inonzero, such that Dﬁ(o)lé # tid for some o € Gal(Qorast))/Q)-
Here Dj(0) is defined in (3.6):

Dj(0) = p(t)*5(s)A(t)"p(s)A(t) "5 (s) (B.29)

where a,b are given by (2™ rd(AV)) — ea2mi/ord(P(V) gnd ab = 1 mod ord(p(t)). Also
Dj(o)1; is the block of Dj(o) with indices in Ig, i.e. the matriz elements of Dj(o)r, are
given by (Ds(0))ij, 4,7 € 1.

Proposition B.5(6) is a consequence of Theorem 3.13(3). Using GAP System for Computational
Discrete Algebra, we obtain a list of symmetric irrep-sum SLo(Z) matrix representations that satisfy
the conditions in Propositions B.3, B.4, and B.5. The list is given below for rank r = 6 case (see
Appendix section B.2).

Some of those symmetric irrep-sum SLy(Z) matrix representations are representations of modular
data, while others are not. However, the list includes all the symmetric irrep-sum SLy(Z) matrix
representations of modular data or MTC’s which are not weakly integral (and some that are weakly
integral).

B.2. List of symmetric irrep-sum representations. The following is a list the all rank-6 sym-
metric irrep-sum representations that satisfy the conditions in Propositions B.3, B.4, and B.5. The
list contains all the rank-6 symmetric irrep-sum representations that are unitarily equivalent to
rank-6 MD representations, plus some extra ones.

For each symmetric irrep-sum representation, we may generate an orbit by orthogonal transfor-
mations

pisum (8) = Upisam(5)U ", pisum () = Upisum(HU T, (B.30)
tensoring 1-dimensional SLy(Z) representations xo, a = 1,...,12:
Pisum(5) = Xa(8)pisum(8),  Pisum(t) = Xa(t) pisum(), (B.31)
and applying Galois conjugations o in Gal(Qord(pie.m (1))
pisum(8) = 0 (Pisum (8)),  Pisum(t) = o (Pisum (t))- (B.32)

We will call such an orbit a GT orbit. The following list includes only one representative for each
GT orbit. The list can also be regarded as a list GT orbits.

In the list, a representation pigym is expressed as the direct sum of irreducible representations
Pisum = P1 D p2 @ - - -, where py(t) is presented as (§1, 82, --) with §; = arg(pa(t):), and p,(s) is
presented as (p11, P12, P13, P14, 5 P22, P23, P24, - ). The direct sum is also given via an index
form, for example, irreps = 2;0@2%’0 &) 2%’0. It means that the representation pisym is a direct
sum of two irreducible representations 2;’0®2é’0 and 2é’0. Here 2;0, 2é’0 are indices of SLy(Z)
irreducible representations with prime-power levels. Those prime-power-level SLy(Z) irreducible
representation are listed in Appendix A, where the meaning of the indices is explained further.
2§’O®2é’0 is the irreducible representation obtained by the tensor product of 25’0 and 2;,0'
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The dimensions of the representations pigum are given by dims = (r1,79,---), where r, is the
dimension of the irreducible representation p,, satisfying vy = ro = ---. The levels of the repre-
sentations p, are given by levels = (I1,l,- -+ ), where [, = ord(p,(t)). We will use (dims;levels) =
(ri,ra,- -+ ;l1,l2,--+) to label those representations. Now we can explain how the representative
of a GT orbit is chosen. The representative for a GT orbit is chosen to be the one with minimal
[[r1,72,- -], ord(pisum (t)), [l1,l2,- - - ]]. Here the order of two lists is determined by first compare
the first elements of the two lists. If the first elements are equal, we then compare the second
elements, etc. The order of cyclotomic numbers are given by GAP.

To describe the entries of p,(s), we also introduced the following notations:

CTT _ e27rim/n’ Cnm _ Cg% + C;m §M — Cgm _ C;m7
E = (G = G/ (G — G, e =&t (B.33)

We find that, for rank 6, there are only 25 GT orbits. The GT orbits can be divided into two
classes, resolved and unresolved, whose definition will to given in the next section. Below each GT
orbit, we indicate whether it is resolved or unresolved. Among 25 GT orbits, 17 are resolved and
8 are unresolved.

For the 17 resolved GT orbits, it is easy to compute all the corresponding pairs of (S, T') matrices
that satisfied the conditions in Proposition B.1, which will be done in next section. Below each
resolved GT orbit, we indicate the number valid (S,7') pairs obtain with such a computation.
Those valid (S, T') pairs will be listed in Appendix C.2. The 8 unresolved GT orbits are difficult to

handle by computer, which are discussed in the main text. (The main text also discussed most of
the resolved cases.)

1. (dims;levels) =(3,2,1;5,5, ) irreps = 3} @ 2! @ 11, pord(pisum(t)) = 5,
2

pioum(s) = <\@, —\/E, —\/% —%“5, B, 505) @ i(— ek, Lok decy) @ (1)

Resolved. Number of valid (S,T) pairs = 0.

2. (dims;levels) =(3,2,1;8,8, 1), irreps = 38 6—)2 ‘@ 1}, pord(pisum(t)) = 8,
pisum(t) = (07 %7 g) D (%7 %) S (0>7

prun®) =50 /b 85 b 5 D@ i-y/h kb6

Resolved. Number of valid (S, T) palrs = O

(

3. (dimS'levels) =(3,2,1:5,2,1), irreps = 3} @ 25" @ 11, pord(pisum(t)) = 10,

e \[ \@, \/; 5+wf,5w5; —345) @ (-3, /L He

Unresolved

Cﬂ\»—l

4. (dims;levels) =(3,2,1;5,2,2), irreps = 3L @ 25° @ 15°, pord(pisum(t)) = 10,
pisumo (0,5.5)@(0,3) @ (3),

pam(s) = (43, —/2, —f2 3505, 558, sy @ (-1 /L D @ (-1)

Unresolved

5. (dims;levels) =(3,2,1;4,3,2), irreps = 3;° @23’ ®15°, pord(pisum(t)) = 12,

pisum(t) = (0,1, 1)@ (0, 1) @ (3),
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pram(®) =i(=3, 4, \/% 1, i(—y/3 /2 he -

1
2
Resolved. Number of valid (S,T) pairs = 0.

. (dims;levels) =(3,2,1;4,3,4), irreps = 3}1’3 @2;’0 @® 1411’0, pord(pisum(t)) = 12,
pisum(t) ( % i) ( ) (1)

ol ShE 0 @iy VD ein

N[

Pisum (9 ( -
Unresolved

=(3,2,1;8,3,1), irreps = 35" ® 25 ® 11, pord(pisum(t)) = 24,
pisum< ) (0 % %)G_)(O 1)®(0)7

pram(s) = 10, /3, 1[5 —1 5 b @i/ 5 (hew

Resolved Number of valid ( T) pairs = 0.

. (dims;levels)

. (dims;levels) =(3,2,1;8,3,3), irreps = 30° @220 @ 120, pord (pisum (£)) = 24,
pisum(t) = (07 %’ %) @ (07 %) S (%)7

pisum(s):i(Ov \/; \/; %7 25 T3 \/;a \/;7 \/7

Resolved. Number of valid (S, T) palrs = O

=(3,3;5,3), irreps = 3} (—93:1,)’0, pord(pisum(t)) = 15,
pisum(t) = (07 %7 %) @D (0, éa g)
— 1 2 2. _5+v5 5-+5._ 545 12 2. 1 2. 1
pisum(8) = (4/ 5, —\/; —\/5 =TS S R @ (-3 5, 5 -5 55 —3)
Resolved. Number of valid (S,T) pairs = 0.

. (dims;levels)

10. (dims;levels) =(3,3;16,16), irreps = 315 @ 315, pord(pisum(t)) = 16,
pisum(t) - (é’ %’ 1%) ® (%7 %7 1%)7

Pisum(5) = 1(0, 4/, \/g; ~L LD ei(o, \/; Lolo1o
Unresolved.

11. (dims;levels) =(3, 3;5,4), irreps = 3t @ 3, pord(pisum(t)) = 20,
pisum(t) (0, é, é)@(()’ zlp%)

pisum<5) = (\/;7 _\/%7 —\@; —5%/57 5718/5; 5+\[ \/;’ \/37 % %; _
Resolved. Number of valid (S,T) pairs = 2.

N[ =
~—

12. (dims;levels) =(4,1,1;9,1,1),
pisum(t) = (07 g1) % g) S (0) S (O)u

prum(s) = (0, =\ /3, =\ /3, =[5 33, 3eh, bebs Aeb 3 S @ () @ (1)

Unresolved.
13. (dims;levels) =(4,2;5,5), irreps = 45 ; @ 2§, pord(pisum(t)) = 5,
pisum(t) = (%) %7 %a %) @ (%7 %)7
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, 11, 1.3 2.2 |1 1,21 1.3 1.1 1.3 1 13 1.1 1.3
Plsum(ﬁz = i(5e30 + 5C50, 15615+§6157 )5 + 5?15 5‘31157 5020 56207 C20+ 02107 502? 5C20>
3 1.1 3 2 3. 1 3 1. 3
5 15> 5C20 ~ 5200 515 T 5155 —5C20 ~ 020) @ i(— \[0207 5 G205 %020)

Unresolved.
14. (dims;levels) =(4,2;5,5; a), irreps = 45 5 ® 23, pord(pisum(t)) = 5,
Pisum (t) = (é’ §, %a é) @ (%7 %)
Pisum (5) = (\/17 —51%\/5’ 5+\f \/” \f’ L 5+\f \/;
ﬁcgo)
Resolved. Number of valid (S,7) pairs = 0.

. /1 (13 1.
; \/;) ® 1(‘%‘3207 /5200

15. (dims;levels) =(4,2;10,5), irreps = 2%@25’0 ® 2}, pord(pisum(t)) = 10,

Pisum (t) = (flw é? 107 10) (% 5)

. (5) ( C 1 3 —103—363 361‘ 103_101.
Pisum 25 20 \f €20, 4/ 207 4/ €203 24/5 20> 2415 200 9,./15 207 24/5 20> 24/5 20>
1 .3 1 1
2\/5020) @ i(- V56200 /56200 \/5020)

Unresolved.

16. (dims;levels) =(4,2;15,5), irreps = 2%@2;0 ® 2%, pord(pisum (t)) = 15,

pisum(t) = (%7 %7 1%57 %) @® (%7 %)a

Pisum(8) = (—%030, %0507 \/%0507 _\/%0305 \/%*50%0» \/%0307 \/%C%OQ —\/%0307 —\/%0503

\ﬁczo) ®i(— \[0307 xlfC%o; 75%0)
5 NG

Resolved. Number of valid (5,7) pairs = 1.

17. (dims;levels) =(4,2;7,3), irreps = 41 @ 25, pord(pisum () = 21,
2

plsum(t) = (0, 7T %)@(0 1)

praum (s) = i( ( BB G L, Lk sl — L —Leh) @i/},
2.
3 3

Resolved. Number of valid (S,7) pairs = 1.

18. (dims;levels) =(5,1;5,1), irreps = 5 @11, pord(pisum(t)) = 5,
pisum( ) (07 é7% % %)
Pisum (8) = (=%, A/, A/, / /6 1+f —14+v5 345, 3445 3—V6 —145. 3+45
isum 5:\/ 257\ 257 \/ 257 5’10> 5 » 10 10 10 ° 5 = 10 °
Lt \f «f

) 1
Unresolved
19. (dims;levels) =(6;9), irreps = Géjg, pord(pisum(t)) = 9,
7
Pisum(t) - (%7 % %a ga 9> %)7
1 1.2 1 1.1 1 1,.4.1 1 1 1.1 1.1 1.2 1 1.1.1 _1 1.1 1.2.1
pisum(s) = (37 3037 3> _§C£1)7 3 3637 3 gcéa 3 §C£1)7 3 3 §C§7 3> §c£1)7 3> _3037 T3 3 §C§7 §)
Resolved. Number of valid (S,T') pairs = 1.
20. (dims;levels) =(6; 13), irreps = 615, pord(pisum(t)) = 13,
. — (L 3 4 9 10 12
pisum(t) = (13> 13> 13> 13> 13> 13>
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, (.1 5 1 7 1 1 1.9 1 1., _ 1 11 1 1 __1 5
Pisum (8) = i( 136520 3652 ﬁc527 ﬁc52? 13552 32 T 3% 362 T a3t

13 L 9. _1 .1 109 1C 1011—107—10—103 1

V352 Y32 3t Y3 Tyt i3t T 3% Tyt T 32 13 th
1 7. 1 .5

/13 %520 \/ﬁc52)

Resolved. Number of valid (S,7) pairs = 1.

21. (dims;levels) =(6;15), irreps = 35°®2}, pord(pisum (t)) = 15,

pisum(t) = (%7 %7 1&57 %7 %7 %)7

_ _s( 1 3 1 1 2 1 2 1 _2 3 2 3 1 3 _ 2 3 _ 2 3 2 1

Pisum (5) —1(3\/50207 35 €200 375 €200 35200 356200 359200 T 356200 T35 €200 T35 €200 375 €200
2 . 1.3 2 3 1 .1 2 1. 1.3 2 1 1 1. 1 3 . 2 3.
3v5 200 357200 357200 357200 3,520 3,520 3./57200 3,5 200 3,/5200 " 3./520°
1.3
3\/5020)

Resolved. Number of valid (S,7) pairs = 0.

22. (dims;levels) =(6;16), irreps = 6%6(?1, pord(pisum(t)) = 16,

1 5 9 13
Pisum (t) = (0, 15 16° ?7T67T)

1 1 1 1. 1 1 1 1. 1 1 1 1. 1 1 1. 1
pisam(8) = 1(0, 0, 3, 5, 2, 35 0, 2, =95 2> =3 —\/;’ —\/;’ \/; \/;, \/;’ \/; —\/; —\/;’

—\ﬁ; \/5

Resolved. Number of valid (S,7) pairs = 4.

23. (dims;levels) =(6;35), irreps = 33®22, pord(pisum(t)) = 35,

1 4 9 11 16 29
pisum<t) (%aﬁ:%a%a%ag)
, s 1 3 3 1 17 1.9 4 13 15 3 17 , 9 .19 _ 4 21
Pisum (52 =i(— 55140 50140 - *01140 +35C140 1 35C140 T 85 0140 t35 35 0140 5 0140 +35C110 — 35 Cla0 —
23 11 1

6 _2 1
7C1105 —\ﬁ035 + \ﬁc35v 735635~ \/50357 \ﬁ035 + \ﬁ035 + fc35 + fCSS’ fl
117 21 _ 13 _15 _ 37 213 _ 115 _ 117 | 3 19 221
735 5140 35 €140 ~ 35C140 — 70140 7~ 50140 + *0140 35 €140 ~ 35C140 — 35 €140 T 35C140 35 0140
223 . &3 1 4 7 9 4 13
7C105 — ﬁl $140 — ﬁ15140a 35C1a0 + 350140 + 3040 — 350140 - 50140 350140 350140 +
317 _ 9 4 21 2,23 1 16 2 7
35C140 — 35 Cito + 350140 + 7C10, — 7 C35 + 735 C35) 350140 + 35 6140 + 6140 + 55 0140
1 117 3 19 2 21 . 223 _2
s+ mcldo T 35¢iio T35 0140 35C140 — 35C140 T 7CT40: ﬁ035 + ﬁ035 + ﬁ035 + ﬁ035a
2 11 i
ﬁ35c35+ ﬁc35+ ; ﬁ035+ ﬁC35a —35C1a0 T 350 7CT40+ 35140~ 5Ta0+ 35 C1d0 + 3510+
117 3619 2021 +2623 A L 13 1 A7 1 3 1 7
35140 — 35C140 — 35140 1100 73535 — 5 350 /35 5140 ﬁl 81405 7355140 T /535 51409

4 1 33 1 19 2 15 9 100 4 1V a3
—1£C4140—§50140—7C%40+501504;%@1410+ 350140+ 35C140 ) 350140+ 356140 L 350140 701407
11 3 10
73535 7 /350350 /35035 /35035 1/*635 ‘/* Ci5 — Je=Chs + ﬁC35v 35C1a0 T 55Cha0 T

15 7 19 4 13 2 15
7Cl40 — %0140 — 35C140 — 35C140 — 35C140 T 35 ctio — 35 C140

Resolved. Number of valid (S,7T) pairs = 1.

9 19 4 21 2 23
+ 35CT40 + FCT40)

24. (dims;levels) =(6;56), irreps = 3%@2(%’6, pord(pisum(t)) = 28,

1 9 11 25 43 51
Pisum(t) (%5%7%7%7%756)
, _ (1 1 3 1.5 _ 1.5 1.1 1 3, 1.5 _1 1 1 1 _1 3
Plsum(ﬁ)—( ﬁczsa /*0287 12628 — 1228 1128 a8 T 1228 1228 128 1a2s
_103 163 1 po L. 13 1 5 1.1 1 1 3.
lf C3s; v1a©280 1128 1128 T 1128 128 T 1228 280 T a8 T g 28
ﬂc28)

Resolved. Number of valid (S,7) pairs = 2.
25. (dims;levels) =(6;80), irreps = 3%3@2%, pord(pisum(t)) = 80,
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(Liiﬂ@ﬁi)

pisum () = (75 70> 80’ 807 80" 80

pisum<5)_1<0 0, ﬁczm /L 0207 ﬁllocgm /L 020’ ) ﬁCQOa —7}100307 7}100507 —%0030; —72\1/50507
_ 1 .3 L B 1.l 3 Ll —1 3. Ll
2\/5 200 2\/5 20> 2\/5 200 25920 2\/5 20> 2\/5 20’ T 2v6 200 25200 2/5720
Resolved. Number of valid (S,7) pairs = 2.

C. A LIST OF CANDIDATE MODULAR DATA FROM RESOLVED SLy(Z) REPRESENTATIONS

C.1. The notion of resolved SL2(Z) matrix representations. In the above, we have chosen a
special basis in the eigenspaces of an SLy(Z) matrix representation g to make p(s) symmetric. But
such a special basis is still not special enough to make p to be an MD representation p.

We can choose a more special basis to make j(s2) a signed permutation matrix, and p(s) sym-
metric. We know that, for an MD representation p, p(s?) is a signed permutation matrix. So the
new special basis makes p closer to the MD representation p.

We can choose an even more special basis in the eigenspaces of p(t) to make p even closer to the
MD representation p, by using the matrix D;(o) in (B.29). For an MD representation p, D,(0) is
suppose to be signed permutations. So we will try to choose a basis to transform each D;(o) into
signed permutations. We like to point out that, since both pand p are symmetric SLy(Z) matrix
representations that are related by an unitary transformation, according to Theorem 3.4, they can
be related by an orthogonal transformation.

Let us consider a simple case to demonstrate our approach. If p(t) is non-degenerate, then Dj(o)
will automatically be a signed permutation matrix. Using signed diagonal matrices Vyq, we can
transform p to many other symmetric representations, p’s:

p = ViapVad, (C.1)

where D,(0) remains a signed permutation. In fact the signed diagonal matrices Vyq are the most
general orthogonal matrices that fix p(t) and transform all D;(0)’s into (potentially different)
signed permutations. Thus the resulting symmetric representations, p’s, include all the symmetric
representations where D,(0)’s are signed permutations. From those p’s, we can then construct
many pairs of S,T matrices via (3.7), and check which one satisfies the conditions in Proposition
B.1. Those S, T matrices that satisfy those conditions may very likely correspond to modular data
(or MTC’s). If none of the S, T matrices satisfy the conditions, then the representation p will not
be an SLa(Z) representation of any modular data.

When some eigenspaces of p(t) are more than 1-dimensional, then the D;(0) may not be signed
permutations. There may be infinite many orthogonal matrices that can transform Dj(o) into
signed permutations, which make the subsequent selection difficult. In the following, we will general-
ize the above notion of non-degenerate representation, to include some cases where some eigenspaces
of p(t) are 2-dimensional or more. We will show that, for those special representations, there is
only a finite number of orthogonal matrices that can transform Dj(o) into signed permutations.

To carry through this program, let us concentrate on an eigenspace Ej of p(t) corresponding to

an eigenvalue 0, and let
25(0) = {o € Gal(Qura(pry) | °(0) = 6} (C.2)

Then Qﬁ(é) is a subgroup of Gal(Qqq(s(t)))- By definition, Dj(o) stabilizes the f-cigenspace Ej
for o € Qﬁ(é), and commute with each other. In particular, Dj|g; (restricted on Ej) defines a

representation of Q,;(é) on Ej.
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We can diagonalize {Dj(0)|k; | o € Q5(0)} simultaneously within Ej;. The degeneracy of the

f-eigenspace FEj is fully resolved by these Dj(0)’s, if the common eigenspace of these Dj(0)|g,’s are

all 1-dimensional. In terms of the characters of {;(6), the degeneracy of Ej can be fully resolved

if each irreducible character of ©;(#) has multiplicity at most 1 in the character decomposition of

Ej as a representation of (). Now we can introduce the notion of resolved representation:

Definition C.1. A general SLy(Z) matriz representation p is called resolved if the degeneracy of

each of eigenspace of p(t) is fully resolved by D(0), o € Q;(0), as described above.

Given a symmetric irrep-sum matrix representation (denoted as pisum), we can use unitary ma-
trices, U’s, to transform it into a symmetric representation p via

p(’t) = Upisum(t)UTv p(5) = Upisum(s)UT- (C'?’)

where D,(0)|g;, for all o € Qﬁ(é), are signed permutations within the f-eigenspace. If pigum is
resolved, then there is only a finite number of such representations. We then can check which of
those representations satisfy Proposition B.1. This is how we compute the potential modular data
S, T’s from resolved pisum’s.

To show a resolved pigum is unitarily equivalent to only a finite number representations whose
D,(o)] B, are signed permutations, we note that both p and pisum are symmetric, and according to
Theorem 3.4, p and pisum are in fact orthogonally equivalent, i.e. the above U can be chosen to
satisfy U = U* and UU " = id. If the number of most general orthogonal matrices U that transform
Pisum tO p is finite, then the number of representations p are finite.

Since the orthogonal U acts within the eigenspace of pisum(t), to show the number of possible
U’s are finite, we can concentrate on a single é—eigenspace Ej, and denote o € Qﬁ(é) as Oiyy. In the
following, we will consider the cases where Ej is 1-dimensional, 2-dimensional, etc.. For each case,
we will show the number of possible U’s are finite, and give the possible choices of U’s.

C.1.1. Within an 1-dimensional eigenspace of pisum(t). Dpisum<o-inv)|E§ = +1 are already signed
permutations. In this case the orthogonal matrix U (within the 1-dimensional eigenspace) has only
two choices

U= +1, (C.4)
which is finite.
C.1.2. Within a 2-dimensional eigenspace of pisum (). In this case, the matrix groups MG generated
by 2-by-2 matrices, Dy, ... (0inv)|E;, can have several different forms, for those passing representa-

tions. By examine the computer results, we find that, for unresolved cases, matrix groups MG can
be

10
MG = { }’ for dim(pisum) = 5;
01
10 10 .
MG — { ,— }, fOI‘ dlm(pisum) = 6 (65)
0 1 0 1

For resolved cases, we have

10\ (1 o
MG:{01’01}’

for dim(pisum) = 4;
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10 10 1 0 -1 0
MG = { - : , } for dim(pisum) = 6. (C.6)
01 0 1 0 —1 0 1
In those two cases,
1 1 1 1 -1 1 10
U=— or U=— or U= (C.7)

V2 \1 -1 V2 1 1 01

will transform all Dy, (diny)|E,’s into signed permutations. In general we have

Theorem C.2. Let

0 1 0
MG2 :{ ) }a
01 0 -1
10 10 1 0 -1 0
MGy :{ ) ) ) } (CS)
0 1 01 0 —1 0 1

The most general orthogonal matrices that transform all matrices in M Ga or MGy into signed
permutations must have one of the following forms

v (11 v (11 10
_ Vs sd , orU = PVy (C.9)
V2 1 V2 L1 g 01

where Viq are signed diagonal matrices, and P are permutation matrices. The number of the
orthogonal transformations U is finite.

U

Proof of Theorem C.2. We only needs to consider the first matrix group M Ga, where the matrix
group is isomorphic to the Zs group. There are only four matrix groups formed by 2-dimensional
signed permutations matrices, that are isomorphic Zy,. The four matrix groups are generated by
the following four generators respectively:

10 10 0 1 0 -1
: , , . (C.10)

0 -1 0 1 10 -1 0

An orthogonal transformation U that transforms MG to one of the above matrix groups must have
a from U = VUy, where V transforms M G» into itself, and Uy is a fixed orthogonal transformation
that transforms M G5 to one of the above matrix groups. We can choose Uy to have the following
form

vo- L (! i vo=p|' "’ (C.11)
0= —F= ,or Ug = — ,or Uy = . ,
V2 \1 1 V21 1 01

To keep MG unchanged V must satisfy
v = V. (C.12)

We find that V' must be diagonal. Thus V', as an orthogonal matrix, must be signed diagonal. This
gives us the result (C.9). O
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If dim(pisum) = 8, it is possible that the matrix group of D, . (Ciny)] B;'s is generated by the
following non-diagonal matrix

0 -1
+ (C.13)
1 0

This is because the direct sum decomposition of pigum contains a dimension-6 irreducible represen-
tation 6?’1 in Appendix A, whose p(t) has a 2-dimensional eigenspace. The representation 6?’1 can
give rise to such form of D, (0inv)|E,’s.

The eigenvalues of the matrices are (i, —i). The most general orthogonal matrices that transform
all Dy,_,...(0inv)|E;’s into signed permutations must have a form

10
U = PVy . (C.14)
0 1

If dim(pisum) = 8, it is also possible that D, (diny)| g,'s form the following matrix group:

_\ﬁ _1 3

4 2 4

C.15

N _\/E 1 (C-15)
2 4 2

This is because the direct sum decomposition of pigum contains a dimension-8 irreducible representa-
tion whose p(t) has a 2-dimensional eigenspace, which gives rise to the such form of D, (oinv)|E;s

10 -

N[ —

I

3
0 1 3

The eigenvalues of the later two matrices are +(e2™3,e7127/3). A permutation of two elements

can only have orders 1 or 2. The corresponding 2 x 2 signed permutation matrix can only have
eigenvalues 1, —1 or +i. Any other eigenvalue is not possible. Thus, there is no orthogonal
matrix that can transform the above two matrices into signed permutation. Such pigum is not a
representation of any modular data.

C.1.3. Within a 3-dimensional eigenspace of pisum(t) for rank < 6. There is only one such case for
rank < 6. The 3 x 3 matrix group MG generated by D, . (oinv)|g;’s is given by

100 “1 0 0 1 0 0 -100
MG:{ 010}, O -1 o0}|,]l0 =1 0,]0 10 } for dim(pisum) = 6.

0 0 1 0O 0 1 0O 0 1 0 0 1
(C.16)

which is resolved. To find the most general orthogonal matrices that transform the above 3 x 3
matrices in MG into signed permutation matrices, we first show

Theorem C.3. If P is a permutation matriz with P> = id, then P is a direct sum of 2 x 2 and
1 x 1 matrices. If Py is a signed permutation matriz with PS2gn = id, then Py, is a direct sum of
2 x 2 and 1 x 1 matrices.

Proof of Theorem C.3. If P is a permutation matrix with P? = id, then P must be a pair-wise
permutation, and thus P is a direct sum of 2 x 2 and 1 x 1 matrices. The reduction from signed
permutation matrix to permutation matrix by ignoring the signs is homomorphism of the matrix
product. If Py is a signed permutation matrix with PS2gn = id, then its reduction gives rise to a
permutation matrix P with P? = id. Since P is a direct sum of 2 x 2 and 1 x 1 matrices, Pygn is
also a direct sum of 2 x 2 and 1 x 1 matrices. [
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Using the above result, similarly, we can show that the most general orthogonal matrices that
transform all Dy, (0iny)|E;’s into signed permutations must have a form

1 1 0 -1 1 0
PV PV
U = — ,or U= ,
\/§ 1 1 0 \/5 1 1 0
0 0 1 0 01
1 0 1 -1 0 1
PV PV
or U= ,or U= )
\/5 01 O \@ 0O 1 0
1 0 -1 1 0 1
1 0 O 1 0 O
PV PV
or U= ,or U= — ,
\/5 01 1 \@ 0 11
01 -1 01 1
1 0 0
PV
or U= . C.17
5|01 o (C.17)
0 01

where Vyq are signed diagonal matrices, and P are permutation matrices. We note that the non-
trivial part of U is a 2 x 2 block for index (1,2), (1,3), and (2,3). The 2 x 2 block has three
possibilities given in (C.9). Such U’s transform the diagonal matrices in MG into a direct sum of
a2 x 2 and an 1 x 1 matrices. This is a general pattern that apply for all resolved diagonal matrix
group MG generated by Dy, (0inv)| ;-

The above are all the possibilities that can appear in resolved dimension-6 representations. In
the following, we will consider more possibilities, that appear only for resolved representations with
dimension larger than 6.

C.2. List of S,T matrices from resolved representations. We have constructed a list of irrep-
sum symmetric representations (see Appendix B.2) that include all the representations of modular
data. Among them, we can select a sublist of resolved symmetric representations, denoted as {pres}-
We then use the orthogonal matrix U constructed above (see (C.4), (C.9) and (C.17)) to transform
the resolved symmetric representations pyes to representations, p’s:

p(f) = Upres(t)UTv P(ﬁ) = Upres<5)UT' (0'18)

such that the corresponding D, (o) are either zero or signed permutation in each eigenspace of p(t).
Since the number of such representations is finite, we can examine all resulting representations one
by one.

For each U, the resulting representation p should satisfy Proposition B.1. In particular, we
examine all possible choices of index u that may correspond to the unit object, to see if p satisfy
the condition (B.9). If no choices of u can satisfy (B.9), then the representations p is rejected. If
some u’s satisfy (B.9), then for each u, we can construct S, T matrices via (3.7). We then check if
the resulting S, T matrices satisfy the conditions of modular data summarized in Proposition B.1

In the following, we list all the pairs of S,T matrices that satisfy the conditions in Proposition
B.1, and come from the dimension-6 resolved SLo(Z) representations listed in Appendix B.2. The
list includes all the modular data with D? ¢ Z from resolved SLa(Z) representations (and the list
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also includes some modular data with D? € Z). In the list, the S, T matrices are grouped into orbits
generated by Galois conjugations, which are called Galois orbits. To save space, we only list one
representative for each orbit. If possible, the representative is chosen to have all-positive quantum
dimensions.

Each pair of S,T matrices is indexed by (r1,72,-- ;l1,l2,- -+ )¢, such as (3,3;5,4)}. The first
part of index, (3,3;5,4) = (dims;levels), is the index of GT orbit listed in Appendix B.2, indicating
that the S, T matrices arise from a particular SLy(Z) representation in the GT orbit. The subscript
k labels the different Galois orbits. The a-index labels the Galois conjugation og : 27/ ord(T)
e@i2m/ord(T)  Thoge g-indexed S, T matrices form a Galois orbit.

Some Galois orbits contain no unitary S, T matrices, but some of those S, T matrices are pseudo-
unitary, i.e. those S, T matrices can be obtained from unitary S, T matrices via a change of spherical
structure. In this case those Galois orbits can be obtained from Galois orbits that contain Galois
orbits. To save space further, we also drop those Galois orbits that contain pseudo-unitary S, T
matrices. There is only one orbit which contains no unitary and no pseudo-unitary S, T matrices.
The numbering in the following list includes gaps as we maintain the numbering from the arXiv
version for consistency.

In the list, T is presented in terms of topological spin (si,s9,-:-) with s; = arg(T;;). S is
presented as (Soo, So1, So2, S03, - ; S1i1, 512,513, -+ ). di = Sp; are the quantum dimensions.

Our calculation actually produces 174 pairs of S,T" matrices, which are given in Supplementary
Material Section in the arXiv version. All those 174 pairs of S,T matrices can be obtained from
the pairs of S,T matrices in the following list, via Galois conjugations and change of the spherical
structures.

—

1. ind = (3,3;5,4)}: d; = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)
D2 = 20.0 = 20
(0 07 é) 55 47 i)

S = (17 ]-a 27 27 \/77 \/57 17 27 25 _\/5’ —\/57 —1-— \/5) -1 +\/5’ 07 Oa -1 _\/5’ 07 Oa —\/5,
V5; —+/5)

2. ind = (3,3;5,4)}: d; = (1.0,1.0, 2.0, 2.0, 2.236, 2.236)
D? = 20.0 = 20
2 313
T= (0 075751171))
S = (17 17 27 27 \/57 \/57 15 27 27 _\/57 _\/57 _1+\/57 _1_\/57 07 07 _1+\/57 07 Oa \/57
—/5; /)

3. ind = (4,2;15,5)): d; = (1.0, 1.0, 1.0, 1.618, 1.618, 1.618)

15435
D% = 10.854 = 15435

)\ 1 1 2 11 11
(07§7§7§7ﬁ715)

S =(1,1, 1 1+xf 1+xf 1+\[7 <1 1 1+\f 1+2\/5C§7_1+2\/5<é; 17 1+2f 1+2\/5€é7 1+2\/5C§;
_1 g37 <67 g3)

7.ind = (4,2;7,3)}: d; = (1.0, 3.791, 3.791, 3.791, 4.791, 5.791)
105+214/21
2 - 100,617 = 105+21v21

— 1 2 4 2
T_ (0777777a07§)7

71

71



_ 3+v21 3++21 3+v21 5421 T7++/21, 1 2 3 4 5 2 3 4 5
S — (1, 9 9 9 9 9 9 P} 3 2 9 2_621_2621 +3621 +2621_2621, _62 _2621_021 +621,
1 2 3 5 3++21 . 1 2 3 5

34421 (. 2 3 4 5 34421 (. T++/21 T4++/21
3 0 —ejy — 209 — ¢y + ey, T, 0 1 S )

3 4 )

9. ind = (6;9)}: d; = (1.0, 0.347, 1.0, 1.532, —1.0, —1.879)
D?=90=9
12417
T = (07573757575)
S=(1,¢c3,1, ¢, =1, ¢cg; 1,¢5, 1, —c5, 1; 1,¢d, =1, ¢3; 1, =2, 1; 1, —c; 1)

10. ind = (6;13)}: d; = (1.0, 1.941, 2.770, 3.438, 3.907, 4.148)

7T 6 12
T= (Ovﬁ’ﬁvﬁ’ﬁ’ﬁ)

= (417 5137?:513’ 513: 5137 5?33 _51137 5?3: _fir)gv §%37 §137 ) 5%37 _5?33 5%37 _5?37 5%33 -1,
SEHR ST
12. ind = (6; 16)%: d; = (1.07 1.0, 1.0, 1.0, 1.414, 1.414)
D?=8.0=38
T = (07%7%7%a% 56)
S=(1,1,1,1,v2, V2 V2, —v2; -1, -1, 42, —V2; —1, —v2,4/2; 0,0; 0)

16. ind = (6;16)3: d; = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)

D?=80=238
:(01 1 3 1 13)

7274747167 16

S = (17 17 17 17 \/77 f7 17 17 17 _\/77 _\/57 _17 _17 _\/57 \/57 _17 \/57 _\/57 07 07 0)

20. ind = (6;35)}: d; = (1.0,1.618, 1.801, 2.246, 2.915, 3.635)

D? = 33.632 = 15 + 3cis + 2¢85 + 6¢35 + 3¢S + 3cls + 2¢82 + 2¢i}
— (0 215 19 4 )

»5°717 35735

_ 1+v5 6 .1 6 1 4 6 11 2
S =1, 52, &, €, c35 + 55, 35 + 35 + S5+ c3g; —1, 35 + 35, c35 + ¢35 + S5 + by, —E2,

. 1 4 11 1 1 1 . )
—f?, _537 L, —cg5 — ¢35 — 035_0357 JMF 577 JMF, —035—035, §§, -1 &)

24. ind = (6:56)}: d; = (1.0, 1.0, 1.801, 1.801, 2.246, 2.246)

D? = 18.591 = 12 + 6¢l + 2¢2

= (0,34, 1 5 21y
A Y4077 287 77 28

S = (17 ]-7 577 573 577 57, _17 g;a _gga 6?7 _é';a _537 _5;7)” 17 1a 5?7 17 _]-7 _gga _g’?a 6?)

28. ind = (6;80)}: d; = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)
D? = 14.472 = 10 + 24/

1 2 9 37
T = (0’5’176’5’170’@)

_ 145 1445 3 5 7. 1+45 1+/56 3 5 7. 3 5 7
S=(1,1,v2, 52, 2 o+l —cip 1, —v2, B2, 0 —c — iy +clo; 0, co+cio—clos
3 5 7 0. . .
—cy — o+ cho, 05 =1, =1, —v/2; —1,4/2; 0)
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36. ind = (6;80)3: d; = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)
D? = 14.472 = 10 + 24/5

_ 1 3 2 9 47
T_(Ovﬁ)TG737TOa%)7

_ 145 1445 .3 . 5 _ 7. 145 1446 3 _ 5 . .7. 3 .5 7
S=(1,1,v2, 2\[7 gf’ clo+cho—cio 1, —V2, 2\[’ 2\[7 —Cjo—CioTCa05 0, Cio+Clo—Cyp;
3 5 7 Q. . .
_C40 - C40 + C4o, 0, —17 —1, —\/57 —17 \/5, 0)

The above list include all rank-6 modular data with non-integral D? and coming from resolved
SL2(Z) representations (as well as some with D? integral, as we filter using conditions that imply

D? € Z, but not conversely). The list misses two known modular data with non-integral D? =

74.617, whose topological spins are s; = (0, %, %, %, %, %) or s; = (0, %, %, %, %, %) From those s;’s,

we find that they must come from the unresolved GT orbit (4,1,1;9,1,1). In the main text of
this paper, we showed that the unresolved SLy(Z) representations can only produce such modular
data (and its conjugations by Galois action and signed diagonal matrices). The unresolved cases
are handled in the main text of the paper, which leads to a complete classification of all rank-6
modular data.
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