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RECONSTRUCTION OF MODULAR DATA

FROM SL2pZq REPRESENTATIONS

SIU-HUNG NG, ERIC C ROWELL, ZHENGHAN WANG, AND XIAO-GANG WEN

Abstract. Modular data is a significant invariant of a modular tensor category. We pursue an
approach to the classification of modular data of modular tensor categories by building the modular
S and T matrices directly from irreducible representations of SL2pZ{nZq. We discover and collect
many conditions on the SL2pZ{nZq representations to identify those that correspond to some mod-
ular data. To arrive at concrete matrices from representations, we also develop methods that allow
us to select the proper basis of the SL2pZ{nZq representations so that they have the form of modular
data. We apply this technique to the classification of rank-6 modular tensor categories, obtaining
a classification of modular data, up to Galois conjugation and changing spherical structure. Most
of the calculations can be automated using a computer algebraic system, which can be employed to
classify modular data of higher rank modular tensor categories. Our classification employs a hybrid
of automated computational methods and by-hand calculations.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Modular tensor categories and modular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. Necessary conditions for the modular data of an MTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Classification of modular data up to rank=5 and candidate list of rank=6 . . . . . . . . . 5

3. Modular data representations of modular tensor categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1. SL2pZq representations of MTC or MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Type and level of modular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. Useful conditions on SL2pZq representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4. Modular data representations and our classification strategy . . . . . . . . . . . . . . . . . . . . . . . 12
3.5. More general properties of SL2pZq representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6. Modular tensor categories of type pd, 1, . . . , 1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7. MD representations with multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. Classification of modular data of rank=6: admissible types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. Classification of modular data of type (4,1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Classification of modular data of type (4,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. Classification of modular data of type (3,3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4. Classification of Modular Data of type p3, 2, 1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5. Classification of modular data of type (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5. Classification of modular data of rank=6: non-admissible types . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1. Nonexistence of type p3, 1, 1, 1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2. Nonexistence of types (2,2,2), (2,2,1,1) and (2,1,1,1,1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3. Nonexistence of type p5, 1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6. Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
A. List of SL2pZq irreducible representations of prime-power levels . . . . . . . . . . . . . . . . . . . . . . . 50
B. A list of all candidate SL2pZq representations of MTCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

B.1. The conditions on SL2pZq representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.2. List of symmetric irrep-sum representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1

1            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

C. A list of candidate modular data from resolved SL2pZq representations . . . . . . . . . . . . . . . 66
C.1. The notion of resolved SL2pZq matrix representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
C.2. List of S, T matrices from resolved representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1. Introduction

Just as conventional symmetries are described by groups, gapped quantum liquid phases of
bosonic matter (i.e bosonic topological order) seem to be described by non-degenerate higher
braided fusion categories. It has been conjectured that topological orders are classified by the
collection of projective representations of mapping class groups for various topologies of closed
space manifolds [39]. In particular, we believe that a gapped phase of quantum matter in two
spacial dimensions is classified by a pair pB, cq, where B is a unitary modular tensor category
(MTC) and c is a rational number equal to the central charge of B mod 8. Physically, B models
the topological excitations (i.e. the anyons) in the gapped phase [19], and c measures the possible
stacking of E8 quantum Hall state, which has central charge c “ 8. Therefore, a classification of
unitary MTCs should give rise to a classification of all gapped quantum phases of bosons without
symmetry in two spacial dimensions.

MTCs are defined by very complicated data. The classification of MTCs naturally breaks into
two steps: the first step is to classify the modular data (MD), and the second is to classify modular
isotopes with a given MD if not unique. The MD pS, T q of an MTC form a projective representation
of the mapping class group of the 2-dimensional torus. (In fact, the notion of topological order was
first introduced based on modular data pS, T q [39].) We will see that the classification of MDs is
much more manageable than the full classification of MTCs.

Modular data pS, T q corresponding to MTCs of rank r ď 5 have been completely classified
[5, 33, 17]. More recently, such a classification for MTCs of rank 6 containing a pair of non-self-
dual simple objects and a partial classification of general MTCs of rank 6 has also been obtained
[9]. The strategy employed in those classifications begins with a stratification of the Galois group
of the extension of Q by the entries of the modular S matrix, followed by a case by case analysis
on the inferred polynomial constraints. As the Galois group is isomorphic to an abelian subgroup
of Sr, this program is tractable, although somewhat tedious. As a last resort in a few cases, the
classification of low-dimensional representations of SL2pZ{nZq for small n was required as well. The
typical outcome is that most Galois groups can be eliminated and one eventually finds a finite list
of modular data which can then be realized from known constructions.

In this article we complete the classification of rank 6 MDs using the reverse strategy: we build
upon the approach in [12, 5] by constructing the MDs directly from SL2pZ{nZq representations
of low dimension. Since n is bounded in terms of the rank, expressing irreducible SL2pZ{nZq

representations as tensor products of prime-power level representations (i.e. SL2pZ{pkZq for primes
p) allows us to stratify by representation type and level. Thus, up to basis choice, the SL2pZq

representations can be presented as pairs ps, tq, where s is symmetric and t is diagonal. The
construction of symmetric representations of SL2pZq is an interesting problem of its own [27, 28].
We note that the number of inequivalent SL2pZ{nZq representations is finite at a given dimension,
since the dimension and n are bounded in terms of the rank. These facts make our classification
possible. We find that up to Galois conjugation and altering spherical structures there are 12 classes
(orbits) of modular data, all of which are realized via quantum groups, see Table 2. Only one of
these orbits has no pseudo-unitary representative, while two distinct orbits have the same fusion
rules.
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In the next step of our classification, for each representation ps, tq, we conjugate s by an arbitrary
(real orthogonal) matrix that commutes with t to reconstruct the potential MD pS, T q with S sym-
metric and T diagonal. We find several methods that allow us to select a finite number of possible
real orthogonal matrices from the uncountable set of real orthogonal matrices, so that the resulting
pS, T q include all the MDs. Up to reordering the objects in the category, i.e., the rows/columns
of the resulting pS, T q, these must satisfy the algebraic and number-theoretic constraints of MDs.
Case by case analyses, following a similar pattern, then yield our classification. We remark that
this approach was used in a particular case in [14] to construct modular data for the center of the
fusion category associated with the extended Haagerup subfactor. At a BIRS workshop in 2014
with the first 3 authors present, Gannon suggested that the classification of SL2pZ{nZq representa-
tions could provide an alternative proof to the rank-finiteness theorem [6] if one could show there
are at most finitely many modular data pS, T q associated to any given SL2pZ{nZq representation.
In fact, we found this to be true for dimension ď 6. The difficulty is to find the appropriate basis
changes, even if their existence is known. For small ranks, doing this by hand is a serious hurdle,
although feasible. For larger ranks, this can be overcome through computer implementation.

The approach to the classification of MDs by building the modular S and T matrices directly
from irreducible representations of SL2pZ{nZq is applicable to much more general cases than the
rank 6 case in this paper. One version of our approaches that is presented in the Appendix can be
automated and almost all of the calculations in this approach can be implemented using the GAP
computer algebra system.

The content of the paper is as follows: In sections 2 and 3, we discover and collect many conditions
on the SL2pZ{nZq representations to help us identifying those that are from some MDs. To arrive
at concrete matrices from representations, we also develop methods that allow us to select the
proper basis of the SL2pZ{nZq representations so that they become the MDs. In sections 4 and
5, we apply this technique to the classification of rank-6 MTCs, obtaining a classification up to
MD. Most of the calculations can be automated using a computer algebraic system, which can be
employed to classify MDs of higher rank MTCs.

2. Modular tensor categories and modular data

Given a modular tensor category (MTC)∗ B, the modular data (MD) of B consists of the un-
normalized S- and T - matrices of B, hence the MD of an MTC is independent of any normalizations.
Though the MD of an MTC does not determine the MTC uniquely [22], it is still the most useful
and important invariant of an MTC. Moreover, the MDs of MTCs have enchanting relations with
diverse areas from congruence subgroups to vector-valued modular forms to topological phases of
matter.

2.1. Necessary conditions for the modular data of an MTC. An obvious strategy to classify
MDs would be first to find all necessary and sufficient conditions for MDs, and then simply look
for solutions. But it seems very hard to find such a complete characterization of MD. Instead we
will list some necessary conditions and then appeal to other methods to finish a classification.

The following collection of results on modular data which will be useful in the sequel. Many are
well-known and found in, e.g. [2].

Theorem 2.1. The modular data pS, T q of an MTC satisfies:

(1) S, T are symmetric complex matrices, indexed by i, j “ 0, . . . , r ´ 1.†

∗We use the terminology of MTC as in its original sense [23], which is equivalent to a semi-simple modular
category of [36], i.e. a semi-simple modular category.

†The index also labels the simple objects in the MTC, with i “ 0 corresponding to the unit object, and r is the
rank of the modular data and the MTC.

3
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(2) T is unitary, diagonal, and T00 “ 1.

(3) S00 “ 1. Let di “ S0i and D “

b

řr´1
i“0 did

˚
i . Then

SS: “ D2 id, (2.1)

and the di P R.
(4) Sij are cyclotomic integers in QordpT q

‡ [26]. The ratios Sij{S0j are cyclotomic integers for
all i, j [8]. Also there is a j such that Sij{S0j P r1,`8q for all i [13].

(5) Let θi “ Tii and p˘ “
řr´1
i“0 d

2
i pθiq

˘1.

Then p`{p´ is a root of unity, and p` “ Dei2πc{8 for some rational number c.§ Moreover,
the modular data pS, T q is associated with a projective SL2pZq representation, since:

pST q3 “ p`S
2,

S2

D2
“ C, C2 “ id, (2.2)

where C is a permutation matrix satisfying

TrpCq ą 0. (2.3)

(6) Cauchy Theorem [6]: The set of distinct prime factors of ordpT q coincides with the distinct
prime factors of normpD2q.¶

(7) Verlinde formula pcf. [37]q :

N ij
k “

1

D2

r´1
ÿ

l“0

SliSljS
˚
lk

dl
P N, (2.4)

where i, j, k “ 0, 1, . . . , r ´ 1 and N is the set of non-negative integers.‖ The N ij
0 satisfy

N ij
0 “ Cij , (2.5)

which defines a charge conjugation i Ñ ī via

N īj
0 “ δij . (2.6)

(8) Let n P N`. The nth Frobenius-Schur indicator of the i-th simple object

νnpiq “
1

D2

ÿ

j,k

N jk
i pdjθ

n
j qpdkθ

n
k q˚ (2.7)

is a cyclotomic integer whose conductor divides n and ordpT q [25, 24]. The 1st Frobenius-
Schur indicator satisfies ν1piq “ δi,0 while the 2nd Frobenius-Schur indicator ν2piq satisfies
ν2piq “ 0 if i ‰ ī, and ν2piq “ ˘1 if i “ ī (see [3, 25, 33]).

We denote by GalpQnq the Galois group of the cyclotomic field Qn.

Remark 2.2. The above conditions are for modular data of unitary or non-unitary MTCs. In par-
ticular, the above conditions are invariant under Galois conjugations in GalpQordpT q{Qq. Therefore,
we can group modular data into Galois orbits.

The mathematical definition of Frobenius-Schur indicators of an object in pivotal fusion category
was introduced in [25] and the trichotomy of the 2nd Frobenius-Schur indicator of a simple object
was also proved therein. If the underlying pivotal structure is not spherical, the di in the preceding

‡Here Qn denotes the field Qpζnq for a primitive nth root of unity ζn
§The central charge c of the modular data and of the MTC is only defined modulo 8.
¶Here normpxq is the product of the distinct Galois conjugates of the algebraic number x.
‖The N ij

k are called the fusion coefficients.

4
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Table 1. Rank ď 5 modular data

Nc D2 d0, d1, ¨ ¨ ¨ s0, s1, ¨ ¨ ¨ Nc D2 d0, d1, ¨ ¨ ¨ s0, s1, ¨ ¨ ¨

11 1 1 0

21 2 1, 1 0, 14 2´1 2 1, 1 0,´ 1
4

214{5 3.6180 1, 1`
?
5

2 0, 25 2´14{5 3.6180 1, 1`
?
5

2 0,´ 2
5

32 3 1, 1, 1 0, 13 ,
1
3 3´2 3 1, 1, 1 0,´ 1

3 ,´
1
3

31{2 4 1, 1,
?
2 0, 12 ,

1
16 3´1{2 4 1, 1,

?
2 0, 12 ,´

1
16

33{2 4 1, 1,
?
2 0, 12 ,

3
16 3´3{2 4 1, 1,

?
2 0, 12 ,´

3
16

35{2 4 1, 1,
?
2 0, 12 ,

5
16 3´5{2 4 1, 1,

?
2 0, 12 ,´

5
16

37{2 4 1, 1,
?
2 0, 12 ,

7
16 3´7{2 4 1, 1,

?
2 0, 12 ,´

7
16

38{7 9.2946 1, ξ27 , ξ
3
7 0,´ 1

7 ,
2
7 3´8{7 9.2946 1, ξ27 , ξ

3
7 0, 17 ,´

2
7

4a0 4 1, 1, 1, 1 0, 0, 0, 12 4b0 4 1, 1, 1, 1 0, 0, 14 ,´
1
4

41 4 1, 1, 1, 1 0, 18 ,
1
8 ,

1
2 4´1 4 1, 1, 1, 1 0,´ 1

8 ,´
1
8 ,

1
2

42 4 1, 1, 1, 1 0, 14 ,
1
4 ,

1
2 4´2 4 1, 1, 1, 1 0,´ 1

4 ,´
1
4 ,

1
2

43 4 1, 1, 1, 1 0, 38 ,
3
8 ,

1
2 4´3 4 1, 1, 1, 1 0,´ 3

8 ,´
3
8 ,

1
2

44 4 1, 1, 1, 1 0, 12 ,
1
2 ,

1
2 49{5 7.2360 1, 1, 1`

?
5

2 , 1`
?
5

2 0,´ 1
4 ,

3
20 ,

2
5

4´9{5 7.2360 1, 1, 1`
?
5

2 , 1`
?
5

2 0, 14 ,´
3
20 ,´

2
5 419{5 7.2360 1, 1, 1`

?
5

2 , 1`
?
5

2 0, 14 ,´
7
20 ,

2
5

4´19{5 7.2360 1, 1, 1`
?
5

2 , 1`
?
5

2 0,´ 1
4 ,

7
20 ,´

2
5 4c0 13.090 1, 1`

?
5

2 , 1`
?
5

2 , 1`
?
5

2
1`

?
5

2 0, 25 ,´
2
5 , 0

412{5 13.090 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2
1`

?
5

2 0,´ 2
5 ,´

2
5 ,

1
5 4´12{5 13.090 1, 1`

?
5

2 , 1`
?
5

2 , 1`
?
5

2
1`

?
5

2 0, 25 ,
2
5 ,´

1
5

410{3 19.234 1, ξ29 , ξ
3
9 , ξ

4
9 0, 13 ,

2
9 ,´

1
3 4´10{3 19.234 1, ξ29 , ξ

3
9 , ξ

4
9 0,´ 1

3 ,´
2
9 ,

1
3

50 5 1, 1, 1, 1, 1 0, 15 ,
1
5 ,´

1
5 ,´

1
5 54 5 1, 1, 1, 1, 1 0, 25 ,

2
5 ,´

2
5 ,´

2
5

5a2 12 1, 1, ξ26 , ξ
2
6 , 2 0, 0, 18 ,´

3
8 ,

1
3 5b2 12 1, 1, ξ26 , ξ

2
6 , 2 0, 0,´ 1

8 ,
3
8 ,

1
3

5b´2 12 1, 1, ξ26 , ξ
2
6 , 2 0, 0, 18 ,´

3
8 ,´

1
3 5a´2 12 1, 1, ξ26 , ξ

2
6 , 2 0, 0,´ 1

8 ,
3
8 ,´

1
3

516{11 34.645 1, ξ211, ξ
3
11, ξ

4
11, ξ

5
11 0,´ 2

11 ,
2
11 ,

1
11 ,´

5
11 5´16{11 34.645 1, ξ211, ξ

3
11, ξ

4
11, ξ

5
11 0, 2

11 ,´
2
11 ,´

1
11 ,

5
11

518{7 35.339 1, ξ37 , ξ
3
7 , ξ

3
14, ξ

5
14 0,´ 1

7 ,´
1
7 ,

1
7 ,

3
7 5´18{7 35.339 1, ξ37 , ξ

3
7 , ξ

3
14, ξ

5
14 0, 17 ,

1
7 ,´

1
7 ,´

3
7

theorem could be complex. We do not need this for the sequel, but it may lead to an interesting
generalization.

2.2. Classification of modular data up to rank=5 and candidate list of rank=6.

2.2.1. Rank 1-5 MTCs. The rankď 5 unitary MTCs are classified [5, 33, 17]; Table 1 lists all 45
rank ď 5 cases, only the quantum dimensions and twists are displayed. These are labeled by Nc,
where N is the rank and c the (additive) central charge. The entries of the table are ordered
by the total quantum dimension D2. Also di is the quantum dimension and si “ argpTiiq is the
topological spin of the ith simple object in the MTC. The quantum dimensions are given in terms

of ξm,kn “
sinpmπ{nq

sinpkπ{nq
and ξmn “ ξm,1n . The fusion coefficients N ij

k and the S-matrices of MTCs can be

deduced from the given data in these low rank cases, and we do not list them for brevity’s sake.

2.2.2. Known rank-6 MD of MTCs and their Galois Groups. Among the known rank 6 modu-
lar tensor categories there are 11 distinct fusion rules. We can determine their Galois groups
GalpQpSijq{Qq and the representation type (i.e. dimensions of their irreducible subrepresentations)
of their SL2pZq representation, displayed in Table 3. Six are realized as product categories, the
other 5 by prime categories. Note that there are two types that yield the fusion rules of SOp5q2:
p3, 2, 1q is realized by a zesting of SOp5q2, denoted SOp5q1

2 in Table 2, see Theorem 4.15.
5
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Table 2. Realizations of known rank 6 modular data, their Galois groups and
representation types.

C GalpCq Type

PSUp2q3 ⊠ SUp2q2 xp0 1qp2 3q, p0 2qp1 3qp4 5qy – Z2 ˆ Z2 p6q

PSUp2q3 ⊠ Up3q1 xp0 1qp2 3qp4 5q, p2 4qp3 5qy – Z2 ˆ Z2 p4, 2q

PSUp2q3 ⊠ PSUp2q5 xp0 1qp2 3qp4 5q, p0 2 4qp1 3 5qy – Z6 p6q

Up2q1 ⊠ SUp2q2 xp0 1qp2 3qy – Z2 p6q

Up2q1 ⊠ Up3q1 xp1 2qp3 4qy – Z2 p4, 2q

Up2q1 ⊠ PSUp2q5 xp0 1 2qp3 4 5qy – Z3 p6q

SOp5q2,SOp5q1
2 xp0 1qp2 3qy – Z2 p3, 3q, p3, 2, 1q

PSUp2q11 xp0 1 2 3 4 5qy – Z6 p6q

Gp2q3 xp0 1q, p2 3 4qy – Z6 p4, 2q

PSOp8q3 xp0 1 2qy – Z3 p4, 1, 1q

PSOp5q 3
2

xp0 1 2qp3 4 5qy – Z3 p6q

The example PSOp5q 3
2
is noteworthy–it is the smallest example of a MTC the fusion rules of

which are never realized as those of a unitary MTC. We also remark that the fusion rules of SOp5q2
are realized by categories with distinct representation types: namely the zested version of SOp5q2,
see Theorem 4.15. In particular, the fusion rules do not determine the representation type.

We also did a computer search for all rank-6 unitary modular data with N ij
k ď 3. (Ref. [40]

computed all rank-6 unitary modular data with N ij
k ď 2.) The Tables 3 and 4 list all 50 of the

resulting modular data, we include only the quantum dimensions and twists. In the last column,
Nc ⊠N 1

c1 indicates that the rank-6 MTC is the product of two MTCs labeled by Nc and N
1
c1 . The

prime MTCs are all non-Abelian roots of MTCs from Kac-Moody algebra. (The notion of non-
Abelian roots is introduced in Ref. [21].) In this paper, we will show that the Tables 3 and 4
include all modular data of rank-6 unitary MTCs.

3. Modular data representations of modular tensor categories

While the number theoretical properties of MD allow the classification of MTCs up to rank=4, the
deeper properties of the SL2pZq representations of MD (cf. Definition 3.1) lead to a more streamlined
approach with the potential to achieve a classification up to rank=10. The classification of rank=5
MTCs is already a mixture of both Galois theory and representation techniques. Instead of working
on cases labeled by abelian subgroups of Sr for rank=r as in earlier classification, we introduce the
notion type of the MD of an MTC–the list of dimensions of irreducible subrepresentations, so that
the cases are indexed by Young diagrams with r boxes.

Every MTC B leads to a p2 ` 1q-TQFT, hence there is a corresponding projective matrix repre-
sentation ρB of SL2pZq—the mapping class group of the torus. We will refer to this representation
as the projective SL2pZq representation of the MTC B, and is given by the S-, T - matrices of B.
The linearizations of this projective matrix SL2pZq representation ρB, called SL2pZq representations
of B, will be elaborated upon in next section.

3.1. SL2pZq representations of MTC or MD. Since our classification is based on SL2pZq repre-

sentations, let us first summarize some important facts about them. Let s “

«

0 ´1

1 0

ff

, t “

«

1 1

0 1

ff

6
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Table 3. Table of rank 6 modular data with N ij
k ď 3 and D2 ď 18.

Nc D2 d0, d1, ¨ ¨ ¨ s0, s1, ¨ ¨ ¨ comment

61 6 1, 1, 1, 1, 1, 1 0, 1
12 ,

1
12 ,´

1
4 ,

1
3 ,

1
3 2´1 ⊠ 32

6´1 6 1, 1, 1, 1, 1, 1 0,´ 1
12 ,´

1
12 ,

1
4 ,´

1
3 ,´

1
3 21 ⊠ 3´2

63 6 1, 1, 1, 1, 1, 1 0, 14 ,
1
3 ,

1
3 ,´

5
12 ,´

5
12 21 ⊠ 32

6´3 6 1, 1, 1, 1, 1, 1 0,´ 1
4 ,´

1
3 ,´

1
3 ,

5
12 ,

5
12 2´1 ⊠ 3´2

61{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,´

1
16 ,

3
16 21 ⊠ 3´1{2

6´1{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,

1
16 ,´

3
16 21 ⊠ 3´3{2

63{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,

1
16 ,

5
16 21 ⊠ 31{2

6´3{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,´

1
16 ,´

5
16 21 ⊠ 3´5{2

65{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,

3
16 ,

7
16 21 ⊠ 33{2

6´5{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,´

3
16 ,´

7
16 21 ⊠ 3´7{2

67{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,

5
16 ,´

7
16 21 ⊠ 35{2

6´7{2 8 1, 1, 1, 1,
?
2,

?
2 0, 14 ,´

1
4 ,

1
2 ,´

5
16 ,

7
16 21 ⊠ 37{2

64{5 10.854 1, 1, 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2 0,´ 1
3 ,´

1
3 ,

1
15 ,

1
15 ,

2
5 214{5 ⊠ 3´2

6´4{5 10.854 1, 1, 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2 0, 13 ,
1
3 ,´

1
15 ,´

1
15 ,´

2
5 2´14{5 ⊠ 32

616{5 10.854 1, 1, 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2 0,´ 1
3 ,´

1
3 ,

4
15 ,

4
15 ,´

2
5 2´14{5 ⊠ 3´2

6´16{5 10.854 1, 1, 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2 0, 13 ,
1
3 ,´

4
15 ,´

4
15 ,

2
5 214{5 ⊠ 32

63{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
5
16 ,´

1
10 ,

2
5 ,

7
80 214{5 ⊠ 3´5{2

6´3{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
5
16 ,

1
10 ,´

2
5 ,´

7
80 2´14{5 ⊠ 35{2

67{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
7
16 ,

1
10 ,´

2
5 ,

3
80 2´14{5 ⊠ 37{2

6´7{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
7
16 ,´

1
10 ,

2
5 ,´

3
80 214{5 ⊠ 3´7{2

613{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
3
16 ,´

1
10 ,

2
5 ,

17
80 214{5 ⊠ 3´3{2

6´13{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
3
16 ,

1
10 ,´

2
5 ,´

17
80 2´14{5 ⊠ 33{2

617{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
7
16 ,

1
10 ,´

2
5 ,

13
80 2´14{5 ⊠ 3´7{2

6´17{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
7
16 ,´

1
10 ,

2
5 ,´

13
80 214{5 ⊠ 37{2

623{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
1
16 ,´

1
10 ,

2
5 ,

27
80 214{5 ⊠ 3´1{2

6´23{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
1
16 ,

1
10 ,´

2
5 ,´

27
80 2´14{5 ⊠ 31{2

627{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
5
16 ,

1
10 ,´

2
5 ,

23
80 2´14{5 ⊠ 3´5{2

6´27{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
5
16 ,´

1
10 ,

2
5 ,´

23
80 214{5 ⊠ 35{2

633{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
1
16 ,´

1
10 ,

2
5 ,

37
80 214{5 ⊠ 31{2

6´33{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
1
16 ,

1
10 ,´

2
5 ,´

37
80 2´14{5 ⊠ 3´1{2

637{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,´
3
16 ,

1
10 ,´

2
5 ,

33
80 2´14{5 ⊠ 3´3{2

6´37{10 14.472 1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 ,
?
2 1`

?
5

2 0, 12 ,
3
16 ,´

1
10 ,

2
5 ,´

33
80 214{5 ⊠ 33{2

be the standard generators of SL2pZq. This admits the presentation:

SL2pZq “ xs, t | s4 “ id, pstq3 “ s
2y .

The 1-dimensional representations of SL2pZq, denoted {SL2pZq, form a cyclic group of order 12

under tensor product. We will take χ P {SL2pZq defined by χptq “ ζ12 to be the generator, where

ζkn :“ e2πik{n. Under this convention, every 1-dimensional representation of SL2pZq is equivalent to
χα for some integer α, unique modulo 12:

χαpsq “ ζ
α
4 , χαptq “ ζα12. (3.1)

7
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Table 4. Table of rank 6 modular data with N ij
k ď 3 and D2 ą 18.

Nc D2 d0, d1, ¨ ¨ ¨ s0, s1, ¨ ¨ ¨ comment

61{7 18.591 1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 0,´ 1

4 ,´
1
7 ,´

11
28 ,

1
28 ,

2
7 2´1 ⊠ 38{7

6´1{7 18.591 1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 0, 14 ,

1
7 ,

11
28 ,´

1
28 ,´

2
7 21 ⊠ 3´8{7

615{7 18.591 1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 0, 14 ,

3
28 ,´

1
7 ,

2
7 ,´

13
28 21 ⊠ 38{7

6´15{7 18.591 1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 0,´ 1

4 ,´
3
28 ,

1
7 ,´

2
7 ,

13
28 2´1 ⊠ 3´8{7

6a0 20 1, 1, 2, 2,
?
5,

?
5 0, 0, 15 ,´

1
5 , 0,

1
2 root of SOp10q2

6b0 20 1, 1, 2, 2,
?
5,

?
5 0, 0, 15 ,´

1
5 ,

1
4 ,´

1
4 root of SOp10q2

6a4 20 1, 1, 2, 2,
?
5,

?
5 0, 0, 25 ,´

2
5 , 0,

1
2 root of SOp5q2

6b4 20 1, 1, 2, 2,
?
5,

?
5 0, 0, 25 ,´

2
5 ,

1
4 ,´

1
4 SOp5q2

658{35 33.632 1, 1`
?
5

2 , ξ27 , ξ
3
7 ,

1`
?
5

2 ξ27 ,
1`

?
5

2 ξ37 0, 25 ,
1
7 ,´

2
7 ,´

16
35 ,

4
35 214{5 ⊠ 3´8{7

6´58{35 33.632 1, 1`
?
5

2 , ξ27 , ξ
3
7 ,

1`
?
5

2 ξ27 ,
1`

?
5

2 ξ37 0,´ 2
5 ,´

1
7 ,

2
7 ,

16
35 ,´

4
35 2´14{5 ⊠ 38{7

6138{35 33.632 1, 1`
?
5

2 , ξ27 , ξ
3
7 ,

1`
?
5

2 ξ27 ,
1`

?
5

2 ξ37 0, 25 ,´
1
7 ,

2
7 ,

9
35 ,´

11
35 214{5 ⊠ 38{7

6´138{35 33.632 1, 1`
?
5

2 , ξ27 , ξ
3
7 ,

1`
?
5

2 ξ27 ,
1`

?
5

2 ξ37 0,´ 2
5 ,

1
7 ,´

2
7 ,´

9
35 ,

11
35 2´14{5 ⊠ 3´8{7

646{13 56.746 1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13 0, 4

13 ,
2
13 ,´

6
13 ,

6
13 ,´

1
13 root of SUp2q11

6´46{13 56.746 1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13 0,´ 4

13 ,´
2
13 ,

6
13 ,´

6
13 ,

1
13 root of SUp2q

Ď11

68{3 74.617 1, ξ318, ξ
3
18, ξ

3
18, ξ

5
18, ξ

7
18 0, 19 ,

1
9 ,

1
9 ,

1
3 ,´

1
3 root of SOp8q3̄

6´8{3 74.617 1, ξ318, ξ
3
18, ξ

3
18, ξ

5
18, ξ

7
18 0,´ 1

9 ,´
1
9 ,´

1
9 ,´

1
3 ,

1
3 root of SOp8q3

62 100.61 1, 3`
?
21

2 , 3`
?
21

2 , 3`
?
21

2 , 5`
?
21

2 , 7`
?
21

2 0,´ 1
7 ,´

2
7 ,

3
7 , 0,

1
3 root of Gp2q3̄

6´2 100.61 1, 3`
?
21

2 , 3`
?
21

2 , 3`
?
21

2 , 5`
?
21

2 , 7`
?
21

2 0, 17 ,
2
7 ,´

3
7 , 0,´

1
3 root of Gp2q3

Given a modular tensor category B with the modular data pS, T q and central charge c, the
assignment

ραpsq “ ζ
α
4S{D, ραptq “ ζα12e

´2πi c
24T pα P Z12q. (3.2)

define a (linear) representation of SL2pZq, and we call these representations ρα the SL2pZq rep-
resentations of B or the SL2pZq representations of the modular data pS, T q. For any
α, α1 P Z12,

ρα – χα´α1

b ρα1

as SL2pZq representations. Therefore, the SL2pZq representation ρB of B is unique up to a tensor

factor of linear characters of {SL2pZq.
Note that two modular data pS, T q and pS1, T 1q are regarded as the same if they differ only by a

permutation of indices:

S1 “ PSPJ, T 1 “ PTPJ, (3.3)

where P is a permutation matrix. Throughout this paper, we simply identify ρα and its conjugations
by permutation matrices.

Definition 3.1. A unitary matrix representation ρ of SL2pZq is called an MD representation if ρ
is an SL2pZq representation of some modular tensor category. It is called a pseudo-MD (pMD)
representation if V ρV is an MD representation for some signed diagonal matrix V .

3.2. Type and level of modular data.

Definition 3.2. Given an MTC B of rank r, an SL2pZq representation ρB decomposes into direct
sum of irreducible representations of dimensions λ1, . . . , λm in non-increasing order. The type of the

8
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corresponding MD of B of rank=r is the Young diagram of r boxes pλ1, . . . , λmq with
řm
i“1 λi “ r.

The type of an MTC simply refers to the type of its MD.

The modular representations of the Fibonacci and Ising theories are both irreducible, so they are
of types p2q, p3q, respectively. The modular representation of the toric code has an image isomorphic
to SL2pZ{2Zq and is reducible of type p2, 1, 1q.

We note that for any positive integer n, the reduction Z Ñ Z{nZ defines a surjective group
homomorphism πn : SL2pZq Ñ SL2pZ{nZq. Thus, a representation of SL2pZ{nZq is also a repre-
sentation of SL2pZq, which will be called a congruence representation of SL2pZq in this paper. It
is immediate to see that a representation of SL2pZ{nZq is also a SL2pZ{mnZq representation for
any positive integer m. The smallest positive integer n such that a congruence representation ρ of
SL2pZq factors through πn : SL2pZq Ñ SL2pZ{nZq is called the level of ρ. It is known that the level
n “ ordpρptqq (cf. [11, Lem. A.1]). Here ordptq is the order of t, i.e., the smallest positive integer
such that

tordptq “ id . (3.4)

There are many more finite-dimensional noncongruence representations of SL2pZq (cf. [20]) but
they are not associated with any modular tensor category by [11, Thm. II]. Since we only deal with
congruence representations of SL2pZq, all the representations of SL2pZq throughout this paper are
assumed to be congruence and finite-dimensional over C.

An SL2pZq representation ρ of an MTC is also symmetric, which means ρ is a unitary matrix
representation with ρpsq symmetric and ρptq diagonal. The following theorem proved in [28] provides
the theoretic background for the GAP package [27] and our reconstruction process:

Theorem 3.3. Every finite-dimensional congruence representation of SL2pZq is equivalent to a
symmetric one.

Therefore, throughout this paper, we always assume our general representations of SL2pZq to be
congruence and symmetric.

In Appendix A, we list all the irreducible SL2pZq representations, generated by [27], of prime-
power levels and dimensions ď 6. These SL2pZq representations are congruence and symmetric.
From these representations, we can construct all the inequivalent SL2pZq representations with
dimensions ď 6. The MD representations of dimensions ď 6 can be reconstructed from these
symmetric representations with the help of the following theorem.

Theorem 3.4. Let ρ, ρ1 : SL2pZq Ñ UnpCq be unitarily equivalent symmetric representations of
SL2pZq such that ρptq “ ρ1ptq “ t, and define s “ ρpsq and s1 “ ρ1psq. Then there exists a (real)
orthogonal matrix U such that

s1 “ UsUJ and Ut “ tU.

Proof. Let Q be a unitary matrix such that

s1 “ QsQ: and Qt “ tQ.

Since t is diagonal and unitary, t: “ t. Taking the conjugate transpose of the second equality
implies

Q:t “ tQ: or Qt “ tQ .

Let Q “ X1 ` iX2 for some real matrices X1 and X2. Then we have

pX1 ˘ iX2qt “ tpX1 ˘ iX2q

which implies rXi, ts “ 0 for i “ 1, 2. Similarly, s1Q “ Qs implies s1Q “ Qs since both s and s1 are
symmetric. Therefore, we also have s1Q “ Qs, which implies

Xis “ s1Xi for i “ 1, 2.
9
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Since there are only finitely many roots for the equation detpX1 ` xX2q “ 0, one can take λ P R
such that X “ X1 ` λX2 is invertible. Then

Xs “ s1X and Xt “ tX .

Let X “ UP be the polar decomposition of X where U is orthogonal and P is the unique positive
definite satisfying P 2 “ XJX. In fact, P is a polynomial of P 2 (cf. [16, Chap.9. Thm 11.]). Since

s´1 “ s and s1´1
“ s1,

P 2 “ XJX “ ps1Xsq:ps1Xsq “ sXJs1:s1XsJ “ sP 2s

and

XJt “ tXJ .

Therefore,

P 2s “ sP 2 and P 2t “ tP 2 .

Since P is a polynomial of P 2, we find

Ps “ sP and Pt “ tP .

Therefore,

Us “ UPsP´1 “ XsP´1 “ s1XP´1 “ s1U

and

Ut “ UPtP´1 “ XtP´1 “ tXP´1 “ tU . □

Remark 3.5. An SL2pZq representation ρ is said to be even (resp. odd) if ρps2q “ id (resp.
ρps2q “ ´ id). If ρ is symmetric and irreducible, then ρpsq or iρpsq is a real symmetric matrix,
depending on whether ρ is even or odd respectively. A direct sum of irreducible representations of
opposite parties is neither even nor odd. In particular, if ρ is an SL2pZq representation of a modular
tensor category C, then ρ is even or odd if, and only if, C is self-dual.

3.3. Useful conditions on SL2pZq representations. The set of all the roots of unity can be
totally ordered as follows: For any roots of unity x, y, we say that x ă y if one the following
conditions hold:

(i) ordpxq ă ordpyq, or
(ii) ordpxq “ ordpyq and argpxq ă argpyq,

where argpζq denotes the unique number sζ P r0, 1q X Q such that e2iπsζ “ ζ.

Definition 3.6. For any representation ρ of SL2pZq, ρptq has finite order. We denoted by specpρptqq

the increasing ordered set of eigenvalues of ρptq with multiplicities. If specpρptqq is multiplicity free
ρ is called non-degenerate. If ρ1 is another representation of SL2pZq, specpρptqq “ tx1, . . . , xmu and
specpρ1ptqq “ ty1, . . . , ynu can be compared by the lexicographical order.

Two representations ρ, ρ1 of SL2pZq are called projectively equivalent if

ρ1 – χα b ρ for some α P Z{12Z .

A representations ρ of SL2pZq is said to have a minimal t-spectrum if specpρptqq is minimal among
all the representations projectively equivalent to ρ, i.e.,

specpρptqq ď specppχα b ρqptqq for all α P Z{12Z .

Let t be any matrix over C. The smallest positive integer n such that tn “ α id for some α P C
is called the projective order of t, and denoted by pordptq :“ n. If such integer does not exist, we
define pordptq :“ 8.

10
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We can organize the irreducible representations of SL2pZq by the level and the dimension of the
representations. Due to the Chinese remainder theorem, if the level of a irreducible representation
ρ factors as n “

ś

i p
ki
i where pi are distinct primes, then ρ –

Â

i ρi where ρi are level pkii
representations. Thus we can construct all irreducible SL2pZq representations as tensor products
of irreducible SL2pZq representations of prime-power levels, which in turn, yields a construction of
all SL2pZq representations ρ via direct sums of the irreducible representations.

Define Qn “ Qpζnq to be the cyclotomic field of order n. For any positive integer n, we can
construct a faithful representation Dn : GalpQnq Ñ SL2pZ{nZq, which identifies the Galois group
GalpQnq – Zˆ

n with the diagonal subgroup of SL2pZ{nZq [11, Remark 4.5]. More generally, for any
σ P GalpQ̄q, σpQnq “ Qn and so there exists an integer a (unique modulo n) such that σpζnq “ ζan
and

Dnpσq :“ t
a
st
b
st
a
s

´1 “

˜

a 0

0 b

¸

P SL2pZ{nZq , (3.5)

where b satisfies ab ” 1 mod n. If ρ is a level n representation of SL2pZq, the composition

Dρpσq :“ ρ ˝Dnpσq (3.6)

defines a representation of GalpQ̄q. We may also write Dnpσq as Dnpaq. Such a representation of
Galois group captures the Galois conjugation action on SL2pZq representations ρMD of modular
data, and plays a very important role in our classification. Many of the following collection of
results on ρMD were proved in [26, 11].

Theorem 3.7. Every SL2pZq representation ρ of an MTC B is a matrix representation with the
standard basis pe0, . . . , er´1q identified with irrpBq. Assuming e0 “ 1, ρ satisfies the following
conditions:

(1) Let n “ ordpρptqq. For any g P SL2pZq, ρpgq is a matrix over Qn. In particular, ρpsqij are
cyclotomic numbers in Qn for all i, j.

(2) The modular data pS, T q of B is given by

S “
ρpsq

ρpsq00
, T “

ρptq

ρptq00
. (3.7)

(3) In particular, ρ is symmetric, ordpT q “ pord ρptqq and (cf. Theorem 2.1(4))

ρpsqij

ρpsq0j
P ZrζordpT qs .

(4) The representation ρ is congruence of level n ordpT q | n | 12 ordpT q. Thus, ρ is a symmetric
and congruence SL2pZq representation.

(5) One has 1{ρpsqi0 P Zrζns, and the set of distinct prime factors of ordpT q coincides with that
of the integer normp1{ρpsq00q.

(6) Let σ P GalpQnq be a Galois automorphism. Then (cf. (3.5))

Dρpσqij “ ϵσpiqδσ̂piq,j , (3.8)

where ϵσpiq P t1,´1u and σ̂ is a permutation on t0, . . . , r ´ 1u determined by

σ

ˆ

ρpsqij

ρpsq0j

˙

“
ρpsqiσ̂pjq

ρpsq0σ̂pjq

. (3.9)

Moreover,

σpρpsqq “ Dρpσqρpsq “ ρpsqDJ
ρ pσq and σ2pρptqq “ DρpσqρptqDJ

ρ pσq . (3.10)
11
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(7) The matrix ρpsq satisfies the Verlinde formula (cf. [37]):

N ij
k “

r´1
ÿ

l“0

ρpsqliρpsqljρpsq˚
lk

ρpsql0
, i, j “ 0, 1, . . . , r ´ 1 . (3.11)

(8) For m P N`, the m
th Frobenius-Schur indicator of the i-th simple object can also be expressed

in terms of ρpsq and ρptq:

νmpiq “
ÿ

j,k

N jk
i ρpsqj0ρptqmjj ¨ pρpsqk0ρptqmkkq˚ . (3.12)

Remark 3.8. It is worth noting that a pMD representation ρpMD shares arithmetic properties
with MD representations as ρ “ V ρpMDV is an MD representation for some signed diagonal matrix
V . Therefore, Theorem 3.7 (1) and (3-6) also hold for any pMD representation. In particular, for
σ P GalpQ̄q, DρpMDpσq “ V DρpσqV , and so

σpρpMDpsqijq “ ϵ1
σpiqρpMDpsqσ̂piqj “ ϵ1

σpjqρpMDpsqiσ̂pjq

but the sign function ϵ1
σ is different from ϵσ in Theorem 3.7 (6) in general.

3.4. Modular data representations and our classification strategy. The MD representation
introduced in Definition 3.1 plays an important role in our approach. We now explain the strategy
of a systematic construction for low rank modular data, implementable on a computer. In Section
4 we provide a largely by-hand approach to the classification of rank 6 MD.

For a given rank, we first construct all the inequivalent SL2pZq representations ρisum of finite
levels, as direct sums of irreducible SL2pZq representations obtained as tensor products of the prime-
power level representations listed in Appendix A. Each of these SL2pZq irreducible representations
is symmetric, and so is ρisum.

Although the number of the SL2pZq representations ρisum is finite, most of these representations
are not associated to any MTC. In next section, we introduce and collect conditions on MD rep-
resentations, to reject as much as possible the SL2pZq representations that are not associated to
MTCs.

After we obtain a short list of candidate SL2pZq representations ρisum, we permute the indices
using a permutation matrix P

ρ̃ “ PρisumP
J (3.13)

such that argpρ̃ptqiiq is ordered for computer implementation or mathematical deduction.
Suppose ρ̃ is equivalent to an MD representation ρ. Without losing generality, we can further

assume ρptq “ ρ̃ptq. It follows from Theorem 3.4 there exists an orthogonal matrix U such that
ρpsq “ Uρ̃psqUJ and ρptq “ Uρ̃ptqUJ. In this case, U is a block-diagonal orthogonal matrix. The
size of each block Ui is equal to the multiplicity of the eigenvalue ρ̃ptqii. We first assume that each
of these blocks is of determinant 1. Then

ρpMD “ Uρ̃UJ (3.14)

is a pseudo-MD representation. Using Theorem 3.7, Remark 3.8 and the conditions established
in the next section, the existence of such U could either imply contradiction or be determined
for all the rank 6 modular data. In the former case, representation ρisum will be rejected. Once
the matrix U is determined, one can determine the correct signed diagonal matrix by using the
Frobenius-Perron dimensions or the Verlinde formula.

The eigenvectors of the diagonal matrix ρ̃ptq corresponding to the eigenvalues of multiplicity 1
are of particular importance in the determination of the orthogonal matrix U . We simply called the
block of ρ̃psq corresponding to these eigenvectors the non-degenerate block, and denoted by ρ̃psqndeg.

12
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The following proposition provide a convenient sufficient condition for any SL2pZq representation
equivalent to an MD representation.

Proposition 3.9. Let ρ̃ be any (symmetric) SL2pZq representation. If ρ̃ is equivalent to an MD
representation, then the entries of ρ̃psqndeg are cyclotomic numbers in Qordpρ̃q.

Proof. The statement is an immediate consequence of Theorem 3.4 and Theorem 3.7(1). □

The proposition can be implemented for computer automation to eliminate many ρisum. Theorem
3.7 (6) and the property of second Frobenius-Schur indicators are implemented to eliminate ρisum
or solving the matrix U . When the matrix U is determined, the signed diagonal matrix Psgn can be
searched by using the nonnegative integral fusion coefficients (cf. Theorem 3.7 (7)). The potential
MD representation ρMD is then given by

ρMD “ PsgnρpMDP
J
sgn, (3.15)

Again, ρisum will be rejected if no such Psgn is found. From the potential MD representations ρMD

we can then obtain the potential modular data pS, T q via (3.7), and they will be verified if Theorems
2.1 and 3.7 are satisfied. This allows us to get a list of pS, T q pairs that include all the modular

data. The computer automation for the endeavor is robust particularly when ρisum “ ρndegisum.
By comparing the list of pS, T q pairs to known rank-6 MTCs, we obtain a classification of all

modular data via matrix representations of SL2pZq.

3.5. More general properties of SL2pZq representations. In this subsection, we introduce and
collect conditions on SL2pZq representations necessary for them to be MD representations

The decomposition criteria on t-spectrum [5] of a linear representation of SL2pZq associated with
a MTC is one of the major tools.

Theorem 3.10 (t-spectrum criteria). Let ρ be an MD representation. If

ρ – ρ1 ‘ ρ2

for some representations ρ1, ρ2 of SL2pZq, then specpρ1ptqq X specpρ2ptqq ‰ H.

Let p be a prime. We denote by Gp the Galois group GalpQpq. The least dimension of an

irreducible representation of SL2pZq of level p is p´1
2 . Their t-spectrum is either G2

p ¨ ζp or G2
p ¨ ζap

where x2 ” a mod p has no integer solution. Note that an integer a is called a nonresidue modulo
p if x2 ” a mod p has no integral solution. The second least dimension irreducible representation
ρ of SL2pZq of level p is p`1

2 whose t-spectrum is either G2
p ¨ e2πi{p Y t1u or G2

p ¨ e2πia{p Y t1u where

a is any nonresidue modulo p. In this case, ρpsq2 “

´

´1
p

¯

id (see for example [18]).

Proposition 3.11. Let 3 ă p ă q be prime such that pq ” 3 mod 4. For any modular tensor
category C such that ordpT q “ pq, then rankpCq ‰

p`q
2 ` 1. Moreover, if p ą 5, rankpCq ą

p`q
2 ` 1.

Proof. Let C be a modular tensor category of rank r ď
p`q
2 ` 1 and ordpT q “ pq. There exists

an SL2pZq representation ρ of C with level pq [11]. Suppose ρ has an irreducible subrepresentation
ρ1 of level pq. By the Chinese remainder theorem, the ρ1 – ρ1 b ρ2, where ρ1, ρ2 are irreducible
representations of SL2pZq of levels p and q respectively. Then

p` q

2
` 1 ě dim ρ1 “ pdim ρ1qpdim ρ2q ě

ˆ

p´ 1

2

˙ ˆ

q ´ 1

2

˙

.

The inequality implies p “ 5 and q “ 7, and hence dim ρ1 “ 6. Therefore, the t-spectrum of ρ1

consists of 6 distinct primitive 35-th roots of unity, and rankpCq “ 6 or 7. There exists a modular
tensor category of rank 6 with ordpT q “ 35. However, if rankpCq “ 7, then ρ – ρ1 ‘ρ0 where ρ0 is a
1-dimensional representation. The level of ρ0 is a divisor of 12 but this is not possible by Theorem

13
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3.10. In conclusion, if ρ has an irreducible subrepresentation of level pq, then p “ 5, q “ 7 and
rankpCq “ 6.

Now, we assume ρ has no irreducible subrepresentation of level pq. Then ρ must have irreducible
subrepresentations ρ1, ρ2 of levels p and q respectively. If dim ρ1 ă

p`1
2 or dim ρ2 ă

q`1
2 , then

ρ – ρ1 ‘ ρ2 ‘ ρ3

where ρ3 is a subrepresentation of ρ of dimension ď 2. If ρ3 has a 1-dimensional component ρ4, then
ρ4ptq must be a 12-th root of unity. Since 3 ă p ă q, the only 12-th root which could appear in the
t-spectrum of ρ is 1, or ρ4 is trivial. However, specpρ1ptqq and specpρ2ptqq do not contain 1 by the
remark preceding this proposition, and this contradicts Theorem 3.10. Note that irreducible SL2pZq

representation of dimension 2 at prime levels only appear for the primes 2, 3 and 5. Therefore, if
ρ3 is irreducible of dimension 2, then p “ 5 and ρ3 is of level 5, but this contradicts Theorem 3.10
again. Thus, dim ρ1 ě

p`1
2 and dim ρ2 ě

q`1
2 . Since rankpCq ď

p`q
2 `1, we find rankpCq “

p`q
2 `1,

dim ρ1 “
p`1
2 and dim ρ2 “

q`1
2 . Now, we would like to show that this also impossible.

Without loss of generality, we may assume
´

´1
p

¯

“ 1 and
´

´1
q

¯

“ ´1. Then ρpsq2 is a signed

diagonal matrix and the multiplicities 1,´1 are respectively p`1
2 and q`1

2 . Thus, |Trpρpsq2q| “
q´p
2 .

Since rank C ´
q´p
2 “ p ` 1, C has p`1

2 ě 3 pairs of simple objects which are not self-dual. Since
ρptq has only one eigenvalue of multiplicity 2 and all other eigenvalues are of multiplicity 1, C has
at most 1 pair of simple objects which dual of each other, a contradiction! □

Let ρ be an SL2pZq representation of a modular tensor category C and let n be the level of ρ.
For any σ P GalpQ̄q, Dρpσq defined in (3.6) is a signed permutation matrix of σ̂ by [11, Theorem
II] (or Theorem 3.7 (6)). The permutation σ̂ on irrpCq is given by (3.9), and we set

InvCpσq :“ ti P irrpCq | σ̂piq “ iu .

If γ is complex conjugation, by (3.10),

Dρpγq “ ρpsqρpsq´1 “ ρpsq2 “ ˘C,

where C is the charge conjugation matrix of C. Since γ̂piq “ i˚ for i P irrpCq,

|TrpDρpγqq| “ |Trpρps2qq| “ TrpCq “ |ti P irrpCq | i˚ “ iu “ | InvCpγq| .

This equality can be generalized to any σ P GalpQ̄q as an inequality in the following proposition.

Proposition 3.12. Let ρ be an SL2pZq representation of a modular tensor category C. For any
σ P GalpQ̄q,

|TrpDρpσqq| ď | InvCpσq| .

Let s :“ ρpsq, and follow the notation of Theorem 3.7(6). If sij ‰ 0 for any i, j P InvCpσq, then
ϵσpiq “ ϵσpjq. If there exists i P InvCpσq such that sij ‰ 0 for all j P InvCpσq, then

|TrpDρpσqq| “ | InvCpσq| .

In particular,

Trps2q “ |ti P irrpCq | i˚ “ iu| ą 0 .

Proof. By Theorem 3.7(6), Dρpσq “ εσpiqδσ̂piq,j . Therefore,

|TrpDρpσqq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPInvCpσq

εσpiq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď | InvCpσq| .

14
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If sij ‰ 0 for any i, j P InvCpσq, then σpsijq “ εσpiqsij “ εσpjqsij , and so εσpiq “ εσpjq. Thus, if
there exists i P InvCpσq such that sij ‰ 0 for all j P InvCpσq, then εσpiq “ εσpjq for all j and hence
the equality

|TrpDρpσqq| “ | InvCpσq| .

The last statement was proved in the preceding remark and since 1˚ “ 1 this completes the proof
of the proposition. □

According to [11], if ρ is an MD representation of an integral modular tensor category C, then
ρptq1,1 “ ζ for some 24-th root of unity ζ under the identification of the standard basis for ρ and
irrpCq. The following proposition provides a sufficient condition on the representation type of ρ for
C to be integral.

Proposition 3.13. Let ρ̃ be any SL2pZq representation. For any ζ P specpρ̃ptqq, denote by Eζpρ̃q

the eigenspace of ρ̃ptq for the eigenvalue ζ. Suppose ρ̃ is equivalent to an MD representation ρ of a
modular tensor category C. Then

(1) Dρ̃pσqpEζpρ̃qq Ď Eζpρ̃q for all σ P GalpQ̄q if and only if ζ24 “ 1.
(2) If 1 P Eζpρq for some ζ P specpρptqq, and for each σ P GalpQ̄q, there exists ϵσ “ ˘1 such

that

Dρ̃pσq|Eζpρ̃q “ ϵσ idEζpρ̃q ,

then C is integral. In particular, ζ24 “ 1.
(3) If 1 P

À

γPAEγpρq for some subset A Ď specpρptqq, and for any γ P A, σ P GalpQ̄q, there

exists ϵσpγq “ ˘1 such that Dρ̃pσq|Eγpρ̃q “ ϵσpγq idEγpρ̃q, then A is a set of 24-th roots of
unity and C is integral.

(4) If C is integral and di ą 0 for all i, then for any σ P GalpQ̄q, di “ dσ̂piq for all i, Dρpσqp1q “

ϵσ1 for some ϵσ “ ˘1, and 1
ϵσ
Dρpσq is the permutation matrix of σ̂.

Proof. Assuming the identification of the standard basis for ρ and irrpCq, Eζpρq is spanned by
the objects X P irrpCq such that ρptqX,X “ ζ. Let σ P GalpQ̄q. It follows from Theorem 3.7(6)
that Dρpσq is a signed permutation matrix of a permutation σ̂ on irrpCq, and that σ2pρptqq “

DρpσqρptqDρpσq´1, or equivalently ρptqDρpσq “ Dρpσqσ´2pρptqq. If ζ24 “ 1, then σ2pζq “ ζ for all
σ P GalpQ̄q. Thus, for any simple object X P Eζpρq,

ρptqDρpσqpXq “ Dρpσqσ´2pρptqqpXq “ σ´2pζqDρpσqpXq “ ζDρpσqpXq .

Therefore, DρpσqpEζpρqq Ď Eζpρq. Let ϕ : ρ̃ Ñ ρ be an isomorphism of SL2pZq representations.
Then ϕpEζpρ̃qq “ Eζpρq, and ϕDρ̃pσq “ Dρpσqϕ for any σ P GalpQ̄q. This implies Dρ̃pσqpEζpρ̃qq Ď

Eζpρ̃q.
Conversely, if Dρ̃pσqpEζpρ̃qq Ď Eζpρ̃q, then DρpσqpEζpρqq Ď Eζpρq by the same reason. Thus, for

any X P Eζpρq, ρptqDρpσqpXq “ ζDρpσqpXq. However, we also have

ρptqDρpσqpXq “ Dρpσqσ´2pρptqqpXq “ σ´2pζqDρpσqpXq.

Therefore, σ´2pζq “ ζ for all σ P GalpQ̄q. This implies ζ is a 24-th root (cf. [11, Prop. 6.7 and
Lem. A.2]). This proves statement (1).

For statement (2), we assume 1 P Eζpρq, and for each σ P GalpQ̄q there exists ϵσ “ ˘1 such that
Dρ̃pσq|Eζpρ̃q “ ϵσ idEζpρ̃q. It follows from (1) that ζ24 “ 1. Moreover, Dρpσq|Eζpρq “ ϵσ idEζpρq and

Dρpσqp1q “ ϵσ1 “ ˘σ̂p1q. Therefore, σ̂p1q “ 1, and hence σpdimpV qq “ dimpV q for any V P irrpCq

by Theorem 3.7(6). Thus, dimpV q are integers for V P irrpCq. It follows from [11, Rem. 6.3] that
FPdimpV q P Z, and hence C is integral.

Statement (3) follows directly from (2), and this completes the proof of the proposition.
15
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(4) Since C is integral, Sj,0 “ dj P Z for all j. For any σ P GalpQ̄q, σpSj,0q “ Sj,0. Therefore,
σ̂p0q “ 0, and so σpρpsqi,0q “ ϵσp0qρpsqi,0 for all i, where ϵσp0q “ ˘1. This is equivalent to that
Dρpσqp1q “ ϵσ1.

Since σpρpsqi,0q “ ϵσpiqρpsqσ̂piq,0 for some ϵσpiq “ ˘1, we have ϵσpiqρpsqσ̂piq,0 “ ϵσρpsqi,0 or
ϵσpiqdσpiq “ ϵσp0qdi. This implies ϵσp0q “ ϵσpjq and di “ dσpiq as di, dσ̂piq ą 0.

For any i, j P irrpCq,

σpρpsqi,jq “ ϵσpiqρpsqσ̂piq,j “ ϵσp0qρpsqσ̂piq,j

which implies Dρpσqρpsq “ ϵσp0qP pσ̂qρpsq, where P pσ̂qij “ δσpiq,j . Thus, Dρpσq “ ϵσp0qP pσ̂q. □

The following result in [7] is important for determining whether an SL2pZq representation of
small level is an MD representation.

Theorem 3.14. Modular tensor categories with ordpT q “ 2, 3, 4, 6 are integral.

Then the case for ordpT q “ 2 is completely classified in [38], and the types of these MTCs are
given in the following proposition.

Proposition 3.15. Let C be a modular tensor category with ordpT q “ 2. Then rankpCq “ 4n for
some positive integer n, and every SL2pZq representation ρ of C is projectively equivalent to

pρ2 ‘ 2χ0qbn – anρ2 ‘ bnρ1 ‘ cnχ0 ,

where ρ1, ρ2 are respectively the level 2 irreducible representations of dimension 1 and 2, and

an “
4n ´ 1

3
, bn “

2 ¨ 4n´1 ` 1

3
´ 2n´1, cn “

2 ¨ 4n´1 ` 1

3
` 2n´1 .

Proof. By [38], C is a Deligne product of the pointed modular tensor categories CpZ2
2, qq and CpZ2

2, q
1q

with the quadratic forms q, q1 : Z2
2 Ñ t˘1u given by

qpx, yq “ p´1qxy, q1px, yq “ p´1qx
2`xy`y2 .

Both modular tensor categories, up to a linear character, have a representation of SL2pZq equivalent
to ρ2 ‘ 2χ0 . Note that SL2pZ{2Zq – S3, symmetric group of degree 3. Thus, ρ – pρ2 ‘ 2χ0qbn “

anρ2 ‘ bnρ1 ‘ cnχ0 for some nonnegative integers an, bn, cn. The fusion matrix of ρ2 ‘ 2χ0 relative
to the basis tχ0, ρ1, ρ2u is given by

F “

»

—

–

2 0 1

0 2 1

1 1 3

fi

ffi

fl

“ P

»

—

–

4 0 0

0 2 0

0 0 1

fi

ffi

fl

P´1 where P “

»

—

–

1 1 1

1 ´1 1

2 0 ´1

fi

ffi

fl

.

Thus,

Fn “ P

»

—

–

4n 0 0

0 2n 0

0 0 1

fi

ffi

fl

P´1 “

»

—

–

2n´1 ` 2¨4n´1`1
3 ´2n´1 ` 2¨4n´1`1

3
4n´1
3

´2n´1 ` 2¨4n´1`1
3 2n´1 ` 2¨4n´1`1

3
4n´1
3

4n´1
3

4n´1
3

2¨4n`1
3 “

fi

ffi

fl

.

The result follows from the first column of Fn. □

The following proposition follows immediately from the classification of [4], where strictly weakly
integral means FPdimpCq P Z while FPdimpXq R Z for some object X.

Proposition 3.16. Let C be a modular tensor category of rank 6.

(1) If C is integral, then C is pointed and hence C is of type p4, 2q and every SL2pZq representation
of C has level 24.

16
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(2) If C is strictly weakly integral, then C is braided equivalent to a Galois conjugate of Up2q1⊠
SUp2q3, SOp5q2 or its zesting. If ρ is an SL2pZq representations of C with a minimal t-
spectrum, then one of the following holds: (i) C is of type p6q and ρ has level 16, (ii) C is of
type p3, 3q and ρ has level 20, or (iii) C is of type p3, 2, 1q and ρ has level 10 .

(3) In particular, if C is weakly integral, then dimpCq “ 6, 8, 20.

When a potential modular data is obtained from a representation of SL2pZq, one could obtain
the FPdimpXq of each simple object X. Those simple objects X with FPdimpXq “ 1 generate
a pointed ribbon subcategory. The next proposition, which can be derived from [32] in different
notation, describes some relations between the rank of a pointed ribbon category and the orders of
the twists.

Proposition 3.17. Let C be a pointed ribbon category of rank n. Then ordpT q | n if n is odd, and
ordpT q | 2n if n is even. If, in addition, C is symmetric and dimpaq ą 0 for all a P irrpCq, then
either ordpT q “ 1 or 2. In the latter case, n must be even and there are exactly n{2 simple objects
with twist ´1.

Proof. Since C pointed, the set G “ irrpCq forms an abelian group under the tensor product and

the map q : G Ñ Cˆ, qpaq “ θa defines a quadratic form on G. Therefore, Bqpa, bq “
qpabq
qpaqqpbq defines

a bicharacter on G. In particular, Bqpa, bq is an n-th root of unity for any a, b P G. Now, for any
positive integer m and a P G, we have

qpamq “ qpaqqpam´1qBqpa, a
m´1q “ qpaqqpam´1qBqpa, aqm´1 .

Therefore, by induction, we have

qpamq “ qpaqmBqpa, aqmpm´1q{2 .

In particular, qpaqn “ Bqpa, aq´npn´1q{2. If n is odd, n´1
2 P Z and so qpaqn “ 1. If n is even, then

qpaq2n “ 1. This completes the proof of the first statement.
If, in addition, C is symmetric and dimpaq “ 1 for a P G, then

1 “ Sa,b “ Bqpa
´1, bq “ Bqpa, bq

´1 “
qpaqqpbq

qpabq

for any a, b P G. Therefore, q is a character of G. Since qpa´1q “ qpaq, qpaq2 “ 1 for all a P G. If q
is of order 1, then qpaq “ 1 for all a P G or T “ id. However, if q is of order 2, then the image of q
is the group t˘1u which is of order 2. Therefore, ker q is of index 2 which means there are exactly
n{2 simple objects in G with twists are 1. Thus, the second statement follows. □

It is worth noting that last statement of the preceding proposition does not hold for super-
Tannakian fusion categories which are not pointed. For example, if we take Q to be the quaternion
group of order 8 and z the unique central element of order 2, then the super-Tannakian fusion
categories ReppQ, zq has 4 simple objects a of dimension 1 with θa “ 1 and a unique simple object
b of dimension 2 with θb “ ´1.

For any legitimate fusion rules Nk
ij , one could obtain the possible θk “ e2πisk by solving a system

of linear equations with unknowns sk. The following proposition provides a condition for legitimate
sk of a potential modular data.

Proposition 3.18. Let C be a modular tensor category of rank n and central charge c. If the twists
of C are e2πis1 , . . . , e2πisn for some rational numbers s1, s2, . . . , sn, then

12
n

ÿ

k“1

sk ´ nc{2 P Z

17
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Proof. Note that eπic{4 “ 1
D

řn
k“1 d

2
k e

2πisk where dk denotes the dimension of the simple object k

with twist e2πisk and D “
a

dimpCq. Let pS, T q be the modular data of C. Then

ρpsq “
1

D
S, ρptq “ e´2πic{24 T

defines an SL2pZq representation of C. Thus, det ˝ρ is a 1-dimensional representation of SL2pZq.
Since the group of linear characters of SL2pZq is a cyclic group of order 12, det ρpgq12 “ 1 for all
g P SL2pZq. In particular,

1 “ det ρptq12 “ pe2πis1 ¨ ¨ ¨ e2πisn ¨ e´2πinc{24q12 “ e2πi¨12
řn

k“1 sk´nc{2 .

This implies 12
řn
k“1 sk ´ nc{2 P Z. □

The following proposition is proved in [31] will also be useful later.

Proposition 3.19. Let ρ an MD linear representation. Then

ρ ≇ nρ0

for any integer n ą 1 and any non-degenerate representation ρ0 of SL2pZq.

3.6. Modular tensor categories of type pd, 1, . . . , 1q. For a representation ρisum of SL2pZq of
type pd, 1, . . . , 1q it is generally more difficult to determine whether it is equivalent to an MD
representation. However, this type of MTC does exist. It is desirable to deduce some conditions
for such MD representations.

Lemma 3.20. Let ρ be an MD representation. If ρ – ρ0 ‘ ρ1 ‘ ¨ ¨ ¨ ‘ ρℓ for some 1-dimensional
representations ρ1, . . . , ρℓ of SL2pZq, then specpρiptqq Ă specpρ0ptqq for all i ą 0. In particular, if
ρ0ptq has exactly one eigenvalue which is a 12-th root of unity, then ρ1, . . . , ρℓ are all equivalent,
and ρ – ρ0 ‘ ℓρ1.

Proof. By the t-spectrum criteria, specpρjptqq Ă specpρ0ptqq for some j ą 0. Suppose there exists
j ą 0 such that specpρjptqq Ć specpρ0ptqq. Let J “ tj P t0, . . . , ℓu | specpρjptqq Ć specpρ0ptqqu.
Then, the decomposition

ρ –

˜

ÿ

jPJ

ρj

¸

‘

˜

ÿ

jRJ

ρj

¸

does not satisfies the t-spectrum criteria. Therefore, specpρjptqq Ă specpρ0ptqq for all j.
If, in particular, specpρptqq contains exactly one 12-th root of unity ζ, then spec ρiptq “ tζu for

all i ą 0. Hence ρ1 – ρi for i ą 1, and the last assertion follows. □

Corollary 3.21. Let ρ be an SL2pZq representation of a modular tensor category C. Suppose that
ρ – ρ0 ‘ ρ1 ‘ ¨ ¨ ¨ ‘ ρℓ for some 1-dimensional representations ρ1, . . . , ρℓ and some non-degenerate
irreducible representation ρ0 of SL2pZq such that specpρ0ptqq has a unique 12-th root of unity. Then
C admits an MD representation ρ1 – ρ1

0 ‘ ℓχ0, where χ0 is the trivial representation and ρ1
0 is

projectively equivalent to ρ0 with 1 P specpρ1
0ptqq.

If ℓ R t1, 2 dim ρ0 ´ 1u, then C is self-dual, and ρ1
0 is even. If ℓ P t1, 2 dim ρ0 ´ 1u and C is not

self-dual, then ρ1
0 is odd, and the set of non-self-dual objects is given by ti P irrpCq | ρ1ptqii “ 1u.

Proof. By Lemma 3.21, ρ – ρ0‘ℓρ1. Since dim ρ1 “ 1, ρ1 “ ρ˚
1 bρ is another SL2pZq representation

of C. Moreover, ρ1 – ρ1
0 ‘ ℓχ0, where ρ

1
0 “ ρ˚

1 b ρ0 which is also non-degenerate.
Suppose ρ1

0ps2q “ ´ id. By Proposition 3.12, the number of self-dual objects in irrpCq is given by

|Trpρ1ps2qq| “ |ℓ´ dim ρ1
0| ą 0

18
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since 1 is self-dual simple object. If ℓ ą dim ρ0, then |Trpρ1ps2qq| “ ℓ ´ dim ρ0 and so number of
non-self-dual objects in irrpCq is 2 dim ρ0. The non-degeneracy of ρ1

0 implies that ρ1ptqii “ 1 for any
non-self-dual i P irrpCq. Therefore, 2 dim ρ0 “ ℓ` 1 or ℓ “ 2 dim ρ0 ´ 1.

On the other hand, if ℓ ă dim ρ0, then |Trpρ1ps2qq| “ dim ρ1 ´ ℓ and so number of non-self-dual
objects in irrpCq is 2ℓ. Since ρ1ptqii “ 1 for any non-self-dual simple object i, 2ℓ “ ℓ` 1 or ℓ “ 1.

Thus, if ℓ ‰ 1 or 2 dim ρ1 ´ 1, then ρ1
0ps2q “ id and so C is self-dual. On the other hand, if

ℓ P t1, 2 dim ρ0 ´ 1u and C is not self-dual, then ρ1
0ps2q “ ´ id and the above discussion shows that

the non-self-dual objects i P irrpCq are exactly those i satisfying ρ1ptqii “ 1. □

Now, we can prove a sufficient condition for any MD representation of prime level p ą 3 and of
type p

p`1
2 , 1, . . . , 1q.

Proposition 3.22. Let C be an MTC of type pd, 1, . . . , 1q such that ordpT q is a prime p ą 3, where

d “
p`1
2 . Then C is of type pd, 1q, and hence rank C “ d ` 1. Moreover, InvCpσq “ H for any

generator σ P GalpQp{Qq. Furthermore, if p ” 1 mod 4, then C is self-dual; otherwise C is not
self-dual.

Proof. By [11], there is an SL2pZq representation ρ of C, which has level p. Then, every subrep-
resentation of ρ must have a level dividing p. Since C is of type pd, 1, . . . , 1q, ρ has a irreducible
subsrepresentation ρ0 of dimension d and level p. By the classification of irreducible representa-

tion SL2pZ{pZq, ρ0ps2q “

´

´1
p

¯

id, ρ0 is non-degenerate and 1 is the unique 12-th root of unity in

specpρ0ptqq. By Corollary 3.21,
ρ – ρ0 ‘ ℓχ0.

Thus, if p ” 1 mod 4, then ρ0 is even and hence C is self-dual. However, if p ” 3 mod 4, then ρ0
is odd and so C is not self-dual.

One can derive from [30] that

ρ0psq “

´

a
p

¯

?
p˚

»

—

—

—

—

–

1
?
2 ¨ ¨ ¨

?
2

?
2

2 cos
´

4πaij
p

¯

...
?
2

fi

ffi

ffi

ffi

ffi

fl

, ρ0ptq “

»

—

—

–

ζa¨0
p

. . .

ζ
apd´1q2

p

fi

ffi

ffi

fl

where 1 ď i, j ď d ´ 1, p˚ “

´

´1
p

¯

p, and a an integer coprime to p. One may assume ρptq “

diagp1, . . . , 1, ζap , . . . , ζ
apd´1q2

p q. By Theorem 3.4, there exists W P Od`ℓpRq such that ρ “ W pℓχ0 ‘

ρ0qWJ. Note that W “ V U for some signed diagonal matrix V and

U “

«

f 0

0 Id´1

ff

, where f P SOℓ`1pRq ,

and ρpMD “ Upℓχ0 ‘ρ0qUJ is a pseudo-MD representation, where Id´1 denotes the identity matrix
of dimension d´ 1.

By direct computation,

ρpMDpsq “ U

«

Iℓ 0

0 ρ0psq

ff

UJ “

«

Iℓ`1 ` f˚,ℓ`1f
J
˚,ℓ`1px´ 1q x

?
2f˚,ℓ`1rd´1

x
?
2 rJ

d´1f
J
˚,ℓ`1 2x cos

´

4πaij
p

¯

ff

(3.16)

where f˚,ℓ`1 “ rf1,ℓ`1, ¨ ¨ ¨ , fℓ`1,ℓ`1sJ, rd´1 “ r1, ¨ ¨ ¨ , 1s P Rd´1, and x “

´

a
p

¯

{
?
p˚.

Let σ be the generator of GalpQp{Qq. For any j P t1, . . . , d ´ 1u, there exists j̃ P t1, . . . , d ´ 1u

such that
σ p2 cosp2πj{pqq “ 2 cosp2πj̃{pq .

19
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Since
?
p˚ P Qp, σp

?
p˚q “ ´

?
p˚, and so

σ p2x cosp4πaij{pqq “ ´2x cosp4πaij̃{pq .

for any i, j P t1, . . . , d´ 1u. If one identifies irrpCq with t1, . . . , d` ℓu, then we have σ̂pℓ` 1 ` jq “

ℓ` 1 ` j̃ for each j P t1, . . . , d´ 1u. In particular, σ̂ has no fixed point in tℓ` 2, . . . , ℓ` du.
By (3.16) and Remark 3.8,

σpx
?
2fi,ℓ`1q “ ´x

?
2fi,ℓ`1 for all i P t1, . . . , ℓ` 1u .

Since x, x
?
2fi,ℓ`1 P Qp and σpxq “ ´x,

?
2fi,ℓ`1 P Qp and σp

?
2fi,ℓ`1q “

?
2fi,ℓ`1. Therefore,

?
2fi,ℓ`1 P Q for all i P t1, . . . , ℓ` 1u, and hence fi,ℓ`1fj,ℓ`1 P Q for all i, j P t1, . . . , ℓ` 1u.
We claim that 0 ă f2i,ℓ`1 ă 1 for all i P t1, . . . , ℓ ` 1u. If fi,ℓ`1 “ 0 for some i, then each row of

ρpMDpsq has a zero entry by (3.16). Therefore, fi,ℓ`1 ‰ 0 for all i. Since f˚,ℓ`1 as unit length, if
f2i,ℓ`1 “ 1, then fk,ℓ`1 “ 0 for all k ‰ i ď ℓ` 1, a contradiction. This proves the claim.

Now we can show that InvCpσq “ H. It suffices to show that σ̂ has no fixed point in t1, . . . , ℓ`1u.
Suppose the i-th column of s :“ ρpMDpsq is fixed by σ̂ for some i P t1, . . . , ℓ ` 1u. Then σpsiiq “

ϵ1
σpiqsii, where ϵ

1
σpiq “ ˘1. Since sii “ 1 ` f2i,ℓ`1px´ 1q, the preceding equality implies

ϵ1
σpiqp1 ` f2i,ℓ`1px´ 1qq “ 1 ` f2i,ℓ`1p´x´ 1q .

Since f2i,ℓ`1 ď 1 is rational, the equation forces f2i,ℓ`1 “ 1, ϵ1
σpiq “ ´1 or f2i,ℓ`1 “ 0, ϵ1

σpiq “ 1. Both

are not possible as 0 ă f2i,ℓ`1 ă 1. Therefore, σ̂ has no fixed point in irrpCq.

Let σpζpq “ ζvp . Then TrpDρ0pσqq “ Trpρ0ptvstustvs´1qq “ ´1 (cf. [18]), where uv ” 1 mod p.
It follows from Proposition 3.12, | InvCpσq| ě |TrpDρpσqq| “ ℓ´ 1. Therefore, ℓ “ 1. □

3.7. MD representations with multiplicities. In this subsection, we investigate the MD rep-
resentations ρ – ρ1 ‘ ρ2 such that ρ1, ρ2 are non-degenerate, symmetric, and their t-spectrums
have nonempty intersection.

Theorem 3.23. Let ρ1, ρ2 be non-degenerate symmetric representations of SL2pZq such that the in-
tersection of their t-spectra is of size l ě 1. Let dim ρ1 “ l`k and dim ρ2 “ l`m and suppose k,m ě

1. Let ρ1psq “ rψijs, ρ1ptq “ diagpα1, . . . , αk`lq, ρ2psq “ rηijs and ρ2ptq “ diagpβ1, ¨ ¨ ¨ , βm`lq with
αi “ βi for i “ 1, . . . , l. Suppose ρ1 ‘ ρ2 is equivalent to an SL2pZq representation ρ of a modular
tensor category C. Then

(i) there exists a signed diagonal matrix V and 2ˆ 2 orthogonal matrices Ui “

«

ai ´bi

bi ai

ff

with

ai ě 0 (i “ 1, . . . , l) such that

ρpsq “ V

»

—

–

A BJ CJ

B ψ1 0

C 0 η1

fi

ffi

fl

V and ρptq “ diagpα1I2, . . . , αlI2, αl`1, . . . , αl`k, βl`1, . . . , βl`mq,

where A,B and C are block matrices with

Aij “ Ui

«

ψij 0

0 ηij

ff

UJ
j , Bi1j “ rψl`i1,j 0sUJ

j and Ci2j “ r0 ηl`i2,jsU
J
j ,

1 ď i, j ď l, 1 ď i1 ď k and 1 ď i2 ď m, and ψ1, η1 are respectively the kˆ k and the mˆm
bottom diagonal blocks of ρ1psq and ρ2psq, i.e.,

ρ1psq “

«

˚ ˚

˚ ψ1

ff

and ρ2psq “

«

˚ ˚

˚ η1

ff

.
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(ii) Let pe1, . . . , e2l`m`kq be the standard basis for ρ which is identified with irrpCq. Then the
unit object 1 of C is e2u´1 or e2u for some u ď l. In this case,
(a) ψuu ` ηuu ‰ 0, dimpCq “ 4

|ψuu`ηuu|2
and the modular data of C is given by

S “
2

ψu,u ` ηu,u
ρpsq and T “ α´1

u ρptq . (3.17)

In particular, the p2u ´ 1q-th, the 2u-th rows of the S-matrix have the following form
up to signs:

¨ ¨ ¨ 1 ψuu´ηuu

ψuu`ηuu
¨ ¨ ¨

?
2ψu,l`1

ψuu`ηuu
¨ ¨ ¨

?
2ψu,l`k

ψuu`ηuu

?
2ηu,l`1

ψuu`ηuu
. . .

?
2ηu,l`m

ψuu`ηuu

¨ ¨ ¨
ψuu´ηuu

ψuu`ηuu
1 ¨ ¨ ¨

?
2ψu,l`1

ψuu`ηuu
¨ ¨ ¨

?
2ψu,l`k

ψuu`ηuu

?
2ηu,l`1

ψuu`ηuu
. . .

?
2ηu,l`m

ψuu`ηuu

. (3.18)

(b) ψuu´ηuu
ψuu`ηuu

P t˘dimpe2u´1q,˘dimpe2uqu, and the dimensions of e2l`1, . . . , e2l`k`m, up to

some signs, are respectively given by
?
2ψu,l`1

ψuu ` ηuu
, . . . ,

?
2ψu,l`k

ψuu ` ηuu
,

?
2ηu,l`1

ψuu ` ηuu
, . . . ,

?
2ηu,l`m

ψuu ` ηuu
.

Hence, these numbers are real nonzero cyclotomic integers in ZrζN s where N “ ordpT q.

Moreover, ψuu´ηuu
ψuu`ηuu

P ZrζN s is a unit.

(c)
?
2ψi,l`i1

ψu,l`i1
,

?
2ηi,l`i2

ηu,l`i2
P ZrζN s for l ă i, 1 ď i1 ď k, 1 ď i2 ď m .

(iii) If ρ1 and ρ2 are irreducible, then ρ1 and ρ2 must have the same parity and C is self-dual.

Proof. We first obtain a representation ρ̃ by conjugating ρ1 ‘ρ2 with a permutation matrix so that

ρ̃ptq “ diagpα1I2, . . . , αlI2, αl`1, . . . , αl`k, βl`1, . . . , βl`kq and ρ̃psq “

»

—

–

Ã B̃J C̃J

B̃ ψ1 0

C̃ 0 η1

fi

ffi

fl

where I2 is the 2 ˆ 2 identity matrix, and Ã, B̃, C̃ are block matrices given by

Ãij “

«

ψij 0

0 ηij

ff

, B̃i1j “ rψl`i1,j 0s and C̃i2j “ r0 ηl`i2,js

with 1 ď i, j ď l, 1 ď i1 ď k and 1 ď i2 ď m, Suppose there exists an MD representation ρ of a
modular tensor category C such that ρ – ρ1 ‘ ρ2. Then ρ – ρ̃ and we may assume ρptq “ ρ̃ptq by
conjugating a permutation matrix to ρ. According to Theorem 3.4, there exists a block diagonal
orthogonal matrix U of the form

U “ diagpU1, . . . , Ul, γ2l`1, . . . , γ2l`m`kq

such that ρpsq “ Uρ̃psqUJ and ρptq “ ρ̃ptq, where γj “ ˘1 and Ui is a 2 ˆ 2 orthogonal matrix for

i “ 1, . . . , l and j “ 2l`1, . . . , 2l`k`m. We can always write Ui “ Vi

«

ai ´bi

bi ai

ff

where a2i `b2i “ 1,

ai ě 0 and Vi a signed diagonal matrix. Now, we set V “ diagpV1, . . . , Vl, γ2l`1, . . . , γ2l`k`mq. Then
statement (i) follows.

The standard basis pe1, . . . , e2l`k`mq is now identified with irrpCq. Since only the first 2l rows
of ρpsq may not contain any zero entries, the unit object 1 can only be ex with 1 ď x ď 2l. Let
u “ rx{2s, the least integer ě u{2. Then,

T “ α´1
u diagpα1I2, . . . , αlI2, αl`1, . . . , αk`l, βl`1, . . . , βl`mq

and the p2u´ 1q-th and 2u-th rows of ρpsq are given by
21
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Au,i “

„

auajψuj ` bubjηuj aubjψuj ´ buajηuj

buajψuj ´ aubjηuj bubjψuj ` auajηuj

ȷ

, pBJqu,i1 “ ψu,l`i1

«

au

bu

ff

, pCJqu,i2 “ ηu,l`i2

«

´bu

au

ff

.

Since ex “ 1 and x P t2u ´ 1, 2uu, au, bu, ψu,l`i1 and ηu,l`i2 are non-zero for 1 ď i1 ď k and
1 ď i2 ď m.

Now, we assume x “ 2u´ 1. Then, by [26],

ρpsq2u,2l`i1

ρpsq2u´1,2l`i1
“

buψu,l`i1

auψu,l`i1au
“
bu
au

and
ρpsq2u,2l`k`i2

ρpsq2u´1,2l`k`i2
“

´auηu,l`i2

buηu,l`i2
“

´au
bu

P ZrζN s

where N “ ordpT q. Therefore, au
bu

is a unit in ZrζN s. According to [29], both specpρ1ptqq and

specpρ2ptqq are closed under the action of σ2 for any σ P GalpQ̄q. Therefore, the subsets

tαl`1, . . . , αl`ku Ă specpρ1ptqq and tβl`1, . . . , βl`mu Ă specpρ2ptqq

are closed under σ2 for all σ P GalpQ̄q. Thus, t2l`1, . . . , 2l`ku and t2l`k`1, . . . , 2l`k`mu are
both closed under the action of σ̂ for σ P GalpQ̄q. In particular, for σ P GalpQ̄q, σ̂p2l ` 1q “ 2l ` i1

for some positive integer i1 ď k. Hence,

σ

ˆ

bu
au

˙

“ σ

ˆ

ρpsq2u,2l`1

ρpsq2u´1,2l`1

˙

“
ρpsq2u,σ̂p2l`1q

ρpsq2u´1,σ̂p2l`1q

“
ρpsq2u,2l`i1

ρpsq2u´1,2l`i1
“
bu
au
.

So, bu{au P Q and hence bu{au “ ˘1 “ ϵu. Since a
2
u ` b2u “ 1, we have au “ 1?

2
. This implies that

Au,u “
1

2

„

ψuu ` ηuu ϵupψuu ´ ηuuq

ϵupψuu ´ ηuuq ψuu ` ηuu

ȷ

, pBJqu,i1 “
1

?
2
ψu,l`i1

«

1

ϵu

ff

, pCJqu,i2 “
1

?
2
ηu,l`i2

«

´ϵu

1

ff

.

In particular,
ζi4
D “

ψuu`ηuu
2 . Therefore, ψuu ` ηuu ‰ 0 and so the S-matrix (3.17) of C is then

obtained. In particular, the p2u ´ 1q-th and 2u-th rows of S are displayed in (3.18). Thus, the
dimensions of e2u, e2l`1, . . . , e2l`k`m, up to some signs, are respectively given by

ψuu ´ ηuu
ψuu ` ηuu

,

?
2ψu,l`1

ψuu ` ηuu
, . . . ,

?
2ψu,l`k

ψuu ` ηuu
,

?
2ηu,l`1

ψuu ` ηuu
, . . . ,

?
2ηu,l`m

ψuu ` ηuu
,

which are non-zero real numbers in ZrζN s.
Now, the global dimension

dimpCq “
˘4

pψuu ` ηuuq2
P Rˆ X ZrζN s .

It follows from [26] that
ρpsqy,z

ρpsq2u´1,z
P ZrζN s for any y, z “ 1, . . . , 2l` k `m. For y “ z “ 2u, we find

ψuu ` ηuu
ψuu ´ ηuu

P ZrζN s,

and so ψuu´ηuu
ψuu`ηuu

is a real unit in ZrζN s. For y, z ą 2l, we find
?
2ψi,l`i1

ψu,l`i1
and

?
2ηi,l`i2

ηu,l`i2
P ZrζN s.

for i ą l, 1 ď i1 ď k, 1 ď i2 ď m. This completes the case for x “ 2u´ 1.
One can follow the same argument for the case when x “ 2u. However, the conclusions are

identical to the case x “ 2u´ 1. Therefore, the proof of statement (ii) is completed.

(iii). Assume the contrary. Then ρ1, ρ2 are irreducible representations with opposite parities.
Thus, |Trpρpsq2q| “ |k´m|, which is the number of self-dual objects in irrpCq. Since ρptq has m`k
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eigenvalues of multiplicity 1, the number of self-dual objects in irrpCq is at least m ` k which is
greater than |k ´m|, a contradiction. The proof of statement (iii) is completed. □

As a consequence of the preceding theorem, two non-degenerate irreducible representations with
opposite parities will never satisfy the conditions of the theorem. However, we can solve the modular
data if the t-spectrum of ρ2 is subset of that of ρ1.

Theorem 3.24. Let ρ1, ρ2 be non-degenerate symmetric representations of SL2pZqsuch that

specpρ2ptqq ⊊ specpρ1ptqq.

Let l ` k “ dim ρ1 and l “ dim ρ2, ρ1psq “ rψijs, ρ1ptq “ diagpα1, . . . , αk`lq, ρ2psq “ rηijs,
ρ2ptq “ diagpα1, . . . , αlq. Suppose ρ1 ‘ ρ2 is equivalent to an SL2pZq representation ρ of a modular
tensor category C. Then

(i) there exists a signed diagonal matrix V and 2ˆ 2 orthogonal matrices Ui “

«

ai ´bi

bi ai

ff

with

a2i ` b2i “ 1 and ai ě 0 (i “ 1, . . . , l) such that

ρpsq “ V

«

A BJ

B ψ1

ff

V and ρptq “ diagpα1I2, . . . , αlI2, αl`1, . . . , αk`lq,

where ψ1 is the kˆ k lower right corner block of ρ1psq and A,B are block matrices given by

Aij “ Ui

«

ψij 0

0 ηij

ff

UJ
j , Bi1j “ rψl`i1,j 0sUJ

j ,

for 1 ď i, j ď l and 1 ď j1 ď k.
(ii) Suppose ρ1 and ρ2 have opposite parities. We identify the standard basis pe1, . . . , e2l`kq of

ρ with irrpCq. Then
(a) e2i´1 and e2i form a dual pair for i “ 1, . . . , l.
(b) The unit object 1 can only be e2l`u with 1 ď u ď k such that ψl`u,l`u ‰ 0 and

dimpCq “ |ψl`u,l`u|´2, dimpe2i´1q “ dimpe2iq “
˘ψi,l`u

?
2ψl`u,l`u

, dimpejq “
˘ψj,l`u
ψl`u,l`u

for i “ 1, . . . , l and j “ l` 1, . . . , l` k . In particular, they are elements of ZrζN s X Rˆ

where N is the order of T “ α´1
l`uρptq, and the S-matrix of C is given by

S “ ψ´1
l`u,l`u V

1

«

A1 B1J

B1 ψ1

ff

V 1 (3.19)

for some signed diagonal matrix V 1 and block matrices A1, B1 given by

A1
ij “

«

ψi,j`ϵiϵjηi,j
2

ψi,j´ϵiϵjηi,j
2

ψi,j´ϵiϵjηi,j
2

ψi,j`ϵiϵjηi,j
2

ff

and B1
i1,j “

ψl`i1,j
?
2

r1 1s

where ϵj “ ˘1, 1 ď i, j ď l and 1 ď i1 ď k.

Proof. By conjugating a permutation matrix to ρ1 ‘ρ2, we can obtain an equivalent representation
ρ̃ given by

ρ̃psq “

«

Ã B̃J

B̃ ψ1

ff

and ρ̃ptq “ diagpα1I2, . . . , αlI2, αl`1, . . . , αk`lq,
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where ψ1 is the k ˆ k bottom diagonal block of ρ1psq, and Ã, B̃ are block matrices with

Ãij “

«

ψij 0

0 ηij

ff

, B̃i1,j “ rψl`i1,j 0s

for 1 ď i, j ď l and 1 ď j1 ď k. By Theorem 3.4, there exists an orthogonal matrix U “

diagpU1, . . . , Ul, γ2l`1, . . . , γ2l`1q such that ρpsq “ Uρ̃psqUJ and ρptq “ ρ̃ptq where γj “ ˘1 and
Ui is a 2 ˆ 2 orthogonal matrix for i “ 1, . . . , l and j “ 2l ` 1, . . . , 2l ` k. As before, we write

Ui “ Vi

«

ai ´bi

bi ai

ff

where a2i ` b2i “ 1, ai ě 0 and Vi a signed diagonal matrix. Now, we set

V “ diagpV1, . . . , Vl, γ2l`1, . . . , γ2l`kq, and statement (i) follows immediately.
(ii). Now we assume ρ1 and ρ2 are of opposite parities. Then |Trpρpsq2q| “ k and so there

are exactly k self-dual simple objects in irrpCq and l dual pairs. Since e2i´1 and e2i give rise to
the same eigenvalue of ρptq for i “ 1, . . . , l, and ρptq2i,2i ‰ ρptqj,j for j R t2i ´ 1, 2iu, they must
form a dual pair. Since the unit object 1 is self-dual, 1 “ e2l`u for some positive integer u ď k,
and so 1{

a

dimpCq, up to a 4-th root, is ρpsq2l`u,2l`u “ ψl`u,l`u. In particular, ψl`u,l`u ‰ 0,

dimpCq “ |ψl`u,l`u|´2 and ψ´2
l`u,l`u P ZrζN s X Rˆ, where N is the order of T “ α´1

l`uρptq. By (i),

S “ ψ´1
l`u,l`u V

«

A BJ

B ψ1

ff

V,

where A,B are block matrices given by

Aij “

«

aiajψi,j`bibjηi,j
2

aibjψi,j´ajbiηi,j
2

ajbiψi,j´aibjηi,j
2

bibjψi,j`aiajηi,j
2

ff

and Bi1,j “ ψl`i1,jraj bjs .

Thus, the dimensions of e2j´1 and e2j are respectively given by

ψl`u,jaj
ψl`u,l`u

and
´ψl`u,jbj
ψl`u,l`u

which implies ˘aj “ bj . Since a2j ` b2j “ 1 and aj ě 0, we have aj “ 1?
2
and bj “

ϵj?
2
for some

ϵj “ ˘1 (j “ 1, . . . , l). Therefore, Aij “

«

ψi,j`ϵiϵjηi,j
2

ϵjψi,j´ϵiηi,j
2

ϵiψi,j´ϵjηi,j
2

ϵiϵjψi,j`ηi,j
2

ff

and Bi1,j “
ψl`i1,j?

2
r1 ϵjs. Let

Ej “

«

1 0

0 ϵj

ff

for j “ 1, . . . , l. Then

Aij “ EiA
1
ijEj and Bi1j “ B1

i1jEj

and the expression (3.19) of the S-matrix follows immediately by setting V 1 “ V E where E “

diagpE1, . . . , El, 1, . . . , 1q. Moreover, dimpe2j´1q “ dimpe2jq “
˘ψl`u,j?
2ψl`u,l`u

for j “ 1, . . . , l, and

dimpe2l`i1q “
˘ψl`i1,l`u

ψl`u,l`u
for 1 ď i1 ď k. It follows from [24] that they are elements of ZrζN s X Rˆ.

This completes the proof of statement (ii). □

4. Classification of modular data of rank=6: admissible types

In this section, we prove that admissible types of MDs that can be realized by some rank=6
MTCs include p4, 1, 1q, p4, 2q, p3, 3q, and p3, 2, 1q.

Definition 4.1. Let pS, T q be a modular data. Denote by ι the object (label) corresponding to the
column of the S-matrix that is a multiple of the column of FP-dimensions.
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4.1. Classification of modular data of type (4,1,1). Recall that SOp8q3 – PSOp8q3⊠SOp8q1
as modular tensor categories, which defines the notation PSOp8q3. Alternatively, the modular data
of PSOp8q3 can be obtained from SUp3q6 via boson condensation [34]. We will prove in this section
that the Galois conjugates of the modular data of PSOp8q3 are characterized by the MTCs of type
(4,1,1).

Theorem 4.2. Let C be a rank 6 modular tensor category of type p4, 1, 1q. Then the modular data
of C is a Galois conjugate of PSOp8q3.

Let C be an MTC of type p4, 1, 1q, and ρ an SL2pZq representation of C. Then ρ admits an
irreducible decomposition ρ0‘ρ1‘ρ2 in which dim ρ0, dim ρ1, dim ρ2 respectively 4,1,1. By tensoring
a suitable 1-dimensional representation of SL2pZq, we will assume ρ0 has a minimal t-spectrum.

In particular, all the 4-dimensional irreducible representations of level 6 are even. Now, can
prove

Lemma 4.3. C is self-dual, ρ0 must be even of level 9, and ρ – ρ0 ‘ 2χ0.

Proof. From Appendix A, 4-dimensional irreducible representations of SL2pZq with minimal t-
spectrums appear at the levels 5, 6, 7, 8, 9, 10, 12, 15, 20, 24 and 40. The t-spectrums of those
4-dimensional irreducible representations of levels 5, 8, 10, 15, 20, 24 and 40 do not contain any
12-th root of unity. It follows from Lemma 3.20 that ρ0 cannot be of any of these levels.

It remains to show that the level of ρ0 cannot be 6, 7 or 12. Suppose ρ0 has level 7. Then C is
of type (4,1,1), which contradicts Proposition 3.22. Therefore, the level of ρ0 cannot be 7.

Suppose ρ0 has level 6 or 12. Since there is no 4-dimensional irreducible representation of levels
2, 3 or 4 in the tables of Appendix A, ρ0 must be projectively equivalent to a tensor product of
two 2-dimensional representations, namely ρ

21,02
b ρ

21,03
or ρ

21,04
b ρ

21,03
. However, ρ

21,02
and ρ

21,04
are

projectively equivalent, hence so are ρ
21,02

b ρ
21,03

and ρ
21,04

b ρ
21,03

. So ρ0 is projectively equivalent

to ρ
21,02

b ρ
21,03

, which has a minimal t-spectrums t1,´1, ζ3,´ζ3u. Therefore, ρ0 – ρ
21,02

b ρ
21,03

.

By Lemma 3.20, the levels of ρ1 and ρ2 are divisors of 6, and so is the level of ρ. Therefore,
ordpT q|6 and hence C is integral by Theorem 3.14. It follows from Proposition 3.16 that C is of
type (4,2), a contradiction. Therefore, the level of ρ0 cannot be 6 or 12.

As a consequence, ρ0 must have level 9, and ρ – ρ0 ‘ 2χ0 by Lemma 3.20 since 1 is the unique
eigenvalue of ρptq with order dividing 12. It follows from Corollary 3.21 that ρ0ps2q “ id and C is
self-dual. □

4.1.1. Solving modular data of type (4,1,1). By Appendix A, there is only one Galois orbit of
4-dimensional irreducible representations of level 9 which is even. This Galois orbit has two projec-
tively equivalent classes given by ρ

41,09,1
and ρ

48,09,1
which are complex conjugate of each other. First,

we consider ρ0 “ ρ
41,09,1

.

Let z1 “ c29, z2 “ c49 and z3 “ c19 where cmn :“ ζmn ` ζ´m
n . Then

ρ0psq “
1

3

»

—

—

—

–

0 ´
?
3 ´

?
3 ´

?
3

´
?
3 z1 z2 z3

´
?
3 z2 z3 z1

´
?
3 z3 z1 z2

fi

ffi

ffi

ffi

fl

, ρ0ptq “ diagp1, ζ9, ζ
4
9 , ζ

7
9 q .

Let ρ̃ “ 2χ0 ‘ ρ0 and set s :“ ρpsq and t :“ ρptq. By reordering irrpCq, one can assume

ρptq “ ρ̃ptq “ diagp1, 1, 1, ζ9, ζ
4
9 , ζ

7
9 q.

By Theorem 3.4, there exists U P O6pRq such that ρ “ Uρ̃UJ. Then U “ f ‘ V for some signed
diagonal matrix V “ diagpε1, ε2, ε3q and f P O3pRq where f ‘ V denotes the block direct sum of f
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and V . We may further assume ε3 “ 1, and we get

s “ Uρ̃psqUJ “

»

—

—

—

—

—

—

—

—

–

f211 ` f212 f11f21 ` f12f22 f11f31 ` f12f32
ε1f13
´

?
3

f13
´

?
3

f13
´

?
3

f11f21 ` f12f22 f221 ` f222 f21f31 ` f22f32
ε1f23
´

?
3

ε2f23
´

?
3

f23
´

?
3

f11f31 ` f12f32 f21f31 ` f22f32 f231 ` f232
ε1f33
´

?
3

ε2f33
´

?
3

f33
´

?
3

ε1f13
´

?
3

ε1f23
´

?
3

ε1f33
´

?
3

z1
3

ε1ε2z2
3

ε1z3
3

ε2f13
´

?
3

ε2f23
´

?
3

ε2f33
´

?
3

ε1ε2z2
3

z3
3

ε2z1
3

f13
´

?
3

f23
´

?
3

f33
´

?
3

ε1z3
3

ε2z1
3

z2
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

1 ´ f213 ´f13f23 ´f13f33
ε1f13
´

?
3

ε2f13
´

?
3

f13
´

?
3

´f13f23 1 ´ f223 ´f23f33
ε1f23
´

?
3

ε2f23
´

?
3

f23
´

?
3

´f13f33 ´f23f34 1 ´ f233
ε1f33
´

?
3

ε2f33
´

?
3

f33
´

?
3

ε1f13
´

?
3

ε1f23
´

?
3

ε1f33
´

?
3

z1
3

ε1ε2z2
3

ε1z3
3

ε2f13
´

?
3

ε2f23
´

?
3

ε2f33
´

?
3

ε1ε2z2
3

z3
3

ε2z1
3

f13
´

?
3

f23
´

?
3

f33
´

?
3

ε1z3
3

ε2z1
3

z2
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We now apply the Galois symmetry [11, Theorem II] of ρ to determine f and ε1, ε2 (cf. Theorem
3.7 (6)). Since ordptq “ 9, then s is a matrix over Q9. The Galois group GalpQ9{Qq is generated
by σ defined by σ : ζ9 ÞÑ ζ29 , and σ̂ denotes the corresponding permutation on irrpCq “ t1, . . . , 6u.
The i-th diagonal entry of t will be denoted by ti. Under the action of σ2,

t4 ÞÑ t5, t5 ÞÑ t6, and t6 ÞÑ t4 .

We find σ̂p4q “ 5, σ̂p5q “ 6 and σ̂p6q “ 4. Recall that σpsijq “ ϵσpiqsσ̂piqj where ϵσpiq “ ˘1.
Applying σ to those sij with i, j P t4, 5, 6u, we have

σpz1q “ ϵσp4qε1ε2z2, σpε1ε2z2q “ ϵσp5qε1z3 and σpε1z3q “ ϵσp6qz1 .

Since σpz1q “ z2, σpz2q “ z3 and σpz3q “ z1, we find

ϵσp4q “ ε1ε2, ϵσp5q “ ε2 and ϵσp6q “ ε1 .

Now, we apply σ to those sij with i P t1, 2, 3u and j P t4, 5, 6u. We have σp
fi3?
3
q “

fi3?
3
, and hence

fi3?
3

P Q for i “ 1, 2, 3. This implies that fi3fj3 P Q for any i, j P t1, 2, 3u. Therefore, the first 3 rows

of s have rational entries, and hence σ̂ fixes 1,2,3. Now, we can conclude that σ̂ “ p4, 5, 6q.
Since C is not integral by Proposition 3.16, none of 1, 2 or 3 cannot be the isomorphism class of

the unit object 1 or the simple object ι for the Frobenius-Perron dimensions. Therefore, dimpCq

and FPdimpCq are Galois conjugates, and FPdimpCq is the largest conjugate of dimpCq. The global
dimension dimpCq can be 9z´2

1 , 9z´2
3 or 9z´2

2 depending which of the classes 4,5,6 corresponds 1.

Since they are conjugates and ´z2 ą z3 ą z1 ą 0, FPdimpCq “ 9z´2
1 .

Let pS, T q be the modular data of C. Note that z1, z2, z3 are units, and they are roots of the
irreducible polynomial x3 ´ 3x ` 1. No matter which of 4,5,6 is the isomorphism class of 1, for
i P t1, 2, 3u and j P t4, 5, 6u,

Sij “ ˘

?
3fi3
zk

for some k P t1, 2, 3u. Since Sij is a cyclotomic integer, so is
?
3fi3. Thus,

?
3fi3 is an integer and

they satisfy

p
?
3f13q2 ` p

?
3f23q2 ` p

?
3f33q2 “ 3 .

Therefore,
?
3fi3 “ ˘1 or equivalently fi3 “ ˘ 1?

3
for i “ 1, 2, 3. Now, we can compute the modular

data for the cases 1 “ 4, 5 or 6:
26
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(i) Suppose 4 is the isomorphism class of 1. Then D “ 3{z1 and

S “

»

—

—

—

—

—

—

—

—

—

—

–

3
1´f213
z1

3f13f23
´z1

3f13f33
´z1

ε1
?
3f13

´z1
ε2

?
3f13

´z1

?
3f13

´z1

3f13f23
´z1

3
1´f223
z1

3f23f33
´z1

ε1
?
3f23

´z1
ε2

?
3f23

´z1

?
3f23

´z1

3f13f33
´z1

3f23f33
´z1

3
1´f233
z1

ε1
?
3f33

´z1
ε2

?
3f33

´z1

?
3f33

´z1
ε1

?
3f13

´z1
ε1

?
3f23

´z1
ε1

?
3f33

´z1
1 ε1ε2z2

z1
ε1z3
z1

ε2
?
3f13

´z1
ε2

?
3f23

´z1
ε2

?
3f33

´z1
ε1ε2z2
z1

z3
z1

ε2
?
3f13

´z1

?
3f23

´z1

?
3f33

´z1
ε1z3
z1

ε2
z2
z1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that

6
ÿ

i“1

ˆ

Si,4
S4,4

˙2

“
9

z21
“ FPdimpCq .

Therefore, 4 is also the isomorphism class of ι (recall Definition 4.1). In particular, C is pseudouni-
tary and the entries of 4th row of S must be positive. Since z2

z1
ă 0 and z3

z1
ą 0, we have ε1 “ 1,

ε2 “ ´1 and fi3 ă 0 for i “ 1, 2, 3. This implies
?
3fi3 “ ´1 for i “ 1, 2, 3 and

S “

»

—

—

—

—

—

—

—

—

–

2z´1
1 ´z´1

1 ´z´1
1 z´1

1 ´z´1
1 z´1

1

´z´1
1 2z´1

1 ´z´1
1 z´1

1 ´z´1
1 z´1

1

´z´1
1 ´z´1

1 2z´1
1 z´1

1 ´z´1
1 z´1

1

z´1
1 z´1

1 z´1
1 1 ´z2

z1
z3
z1

´z´1
1 ´z´1

1 ´z´1
1

´z2
z1

z3
z1

´1

z´1
1 z´1

1 z´1
1

z3
z1

´1 z2
z1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ89 , ζ
8
9 , ζ

8
9 , 1, ζ3, ζ

2
3 q .

(ii) Suppose 5 is the isomorphism class of 1. Then D “ 3{z3 and hence

S “

»

—

—

—

—

—

—

—

—

—

—

–

3
1´f213
z3

3f13f23
´z3

3f13f33
´z3

ε1
?
3f13

´z3
ε2

?
3f13

´z3

?
3f13

´z3

3f13f23
´z3

3
1´f223
z3

3f23f33
´z3

ε1
?
3f23

´z3
ε2

?
3f23

´z3

?
3f23

´z3

3f13f33
´z3

3f23f33
´z3

3
1´f233
z3

ε1
?
3f33

´z3
ε2

?
3f33

´z3

?
3f33

´z3
ε1

?
3f13

´z3
ε1

?
3f23

´z3
ε1

?
3f33

´z3
z1
z3

ε1ε2z2
z3

ε1
ε2

?
3f13

´z3
ε2

?
3f23

´z3
ε2

?
3f33

´z3
ε1ε2z2
z3

1 ε2z1
z3?

3f13
´z3

?
3f23

´z3

?
3f33

´z3
ε1

ε2z1
z3

z2
z3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Now, one can check directly that

6
ÿ

i“1

p
Si4
S54

q2 “
9

z22
and

6
ÿ

i“1

p
Si6
S56

q2 “
9

z21
,

which implies 6 is the isomorphism class of ι. Thus, all the entries of the 6th row of S have the
same sign. Since z2{z3 ă 0 and z1{z3 ą 0, we obtain that ε1 “ ε2 “ ´1 and fi3 ą 0 for i “ 1, 2, 3.
Therefore,

?
3f13 “

?
3f23 “

?
3f33 “ 1
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and hence

S “

»

—

—

—

—

—

—

—

—

–

2z´1
3 ´z´1

3 ´z´1
3 z´1

3 z´1
3 ´z´1

3

´z´1
3 2z´1

3 ´z´1
3 z´1

3 z´1
3 ´z´1

3

´z´1
3 ´z´1

3 2z´1
3 z´1

3 z´1
3 ´z´1

3

z´1
3 z´1

3 z´1
3

z1
z3

z2
z3

´1

z´1
3 z´1

3 z´1
3

z2
z3

1 ´z1
z3

´z´1
3 ´z´1

3 ´z´1
3 ´1 ´z1

z3
z2
z3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ59 , ζ
5
9 , ζ

5
9 , ζ

2
3 , 1, ζ3q .

(iii) Suppose 6 is the isomorphism class of 1. Then D “ 3{z2 and

S “

»

—

—

—

—

—

—

—

—

—

—

–

3
1´f213
z2

3f13f23
´z2

3f13f33
´z2

ε1
?
3f13

´z2
ε2

?
3f13

´z2

?
3f13

´z2

3f13f23
´z2

3
1´f223
z2

3f23f33
´z2

ε1
?
3f23

´z2
ε2

?
3f23

´z2

?
3f23

´z2

3f13f33
´z2

3f23f33
´z2

3
1´f233
z2

ε1
?
3f33

´z2
ε2

?
3f33

´z2

?
3f33

´z2
ε1

?
3f13

´z2
ε1

?
3f23

´z2
ε1

?
3f33

´z2
z1
z2

ε1ε2
ε1z3
z2

ε2
?
3f13

´z2
ε2

?
3f23

´z2
ε2

?
3f33

´z2
ε1ε2

z3
z2

ε2z1
z2?

3f13
´z2

?
3f23

´z2

?
3f33

´z2
ε1z3
z2

ε2z1
z2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Now,
6

ÿ

i“1

p
Si4
S64

q2 “
9

z23
and

6
ÿ

i“1

p
Si5
S65

q2 “
9

z21
,

which implies 5 is the isomorphism class of ι. Thus, all the entries of the 4th row have the same
signs. Since z3{z2 ă 0 and z1{z2 ă 0, ε1 “ ´1, ε2 “ 1 and fi3 ą 0 for i “ 1, 2, 3. Therefore,

?
3f13 “

?
3f23 “

?
3f33 “ 1

and hence

S “

»

—

—

—

—

—

—

—

—

–

2z´1
2 ´z´1

2 ´z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 2z´1

2 ´z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 ´z´1

2 2z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 ´z´1

2 ´z´1
2

z1
z2

´1 ´z3
z2

z´1
2 z´1

2 z´1
2 ´1 z3

z2
z1
z2

z´1
2 z´1

2 z´1
2

´z3
z2

z1
z2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ29 , ζ
2
9 , ζ

2
9 , ζ3, ζ

2
3 , 1q .

Now, we compute the modular data for ρ0 “ ρ
48,09,1

, which is the complex conjugate of ρ
41,09,1

psq.

Since ρ
41,09,1

psqq “ ρ
48,09,1

psq, modular data are complex conjugations of those obtained for ρ0 “ ρ
41,09,1

.

They are:
(iv)

S “

»

—

—

—

—

—

—

—

—

–

2z´1
1 ´z´1

1 ´z´1
1 z´1

1 ´z´1
1 z´1

1

´z´1
1 2z´1

1 ´z´1
1 z´1

1 ´z´1
1 z´1

1

´z´1
1 ´z´1

1 2z´1
1 z´1

1 ´z´1
1 z´1

1

z´1
1 z´1

1 z´1
1 1 ´z2

z1
z3
z1

´z´1
1 ´z´1

1 ´z´1
1

´z2
z1

z3
z1

´1

z´1
1 z´1

1 z´1
1

z3
z1

´1 z2
z1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ9, ζ9, ζ9, 1, ζ
2
3 , ζ3q .
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(v)

S “

»

—

—

—

—

—

—

—

—

–

2z´1
3 ´z´1

3 ´z´1
3 z´1

3 z´1
3 ´z´1

3

´z´1
3 2z´1

3 ´z´1
3 z´1

3 z´1
3 ´z´1

3

´z´1
3 ´z´1

3 2z´1
3 z´1

3 z´1
3 ´z´1

3

z´1
3 z´1

3 z´1
3

z1
z3

z2
z3

´1

z´1
3 z´1

3 z´1
3

z2
z3

1 ´z1
z3

´z´1
3 ´z´1

3 ´z´1
3 ´1 ´z1

z3
z2
z3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ49 , ζ
4
9 , ζ

4
9 , ζ3, 1, ζ

2
3 q .

(vi)

S “

»

—

—

—

—

—

—

—

—

–

2z´1
2 ´z´1

2 ´z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 2z´1

2 ´z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 ´z´1

2 2z´1
2 ´z´1

2 z´1
2 z´1

2

´z´1
2 ´z´1

2 ´z´1
2

z1
z2

´1 ´z3
z2

z´1
2 z´1

2 z´1
2 ´1 z3

z2
z1
z2

z´1
2 z´1

2 z´1
2

´z3
z2

z1
z2

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagpζ79 , ζ
7
9 , ζ

7
9 , ζ

2
3 , ζ3, 1q .

4.1.2. Proof of Theorem 4.2. Since modular data of Type (4,1,1) have been completely solved in
the last subsection. The modular data of PSOp8q3 coincides with (i) up to a permutation. Let
σ P GalpQ9q be the generator defined by σ : ζ9 ÞÑ ζ29 . Applying σ to the modular data (i)-(vi), One
can check directly

(i)
σ
ÝÑ (vi)

σ
ÝÑ (ii)

σ
ÝÑ (iv)

σ
ÝÑ (iii)

σ
ÝÑ (v)

σ
ÝÑ (i)

up to permutations of the objects. This completes the proof of Theorem 4.2. □

4.2. Classification of modular data of type (4,2). In this section, we will complete the clas-
sification of modular data of type (4,2) in the following theorem.

Theorem 4.4. Let C be a rank 6 modular tensor category of type p4, 2q. Then the modular data of
C can only be a Galois conjugate of the modular data of the following modular tensor categories:

(1) CpZ6, qq with qp1q “ ζ12;
(2) CpZ3, qq ⊠ PSUp2q3 with qp1q “ ζ3;
(3) Gp2q3 .

We will use the following level 5 irreducible representations ρ215 , ρ415,1 and ρ415,2 when necessary.

ρ215psq “
1

s15

«

1 φ

φ ´1

ff

, ρ215ptq “ diagpζ5, ζ
4
5 q . (4.1)

Note that ρ215 is defined over Q5. Let σ P GalpQ̄q such that σpζ5q “ ζ25 . Then ρ225 :“ σ ˝ ρ215 . ρ2i5
,

i “ 1, 2, form a complete set of inequivalent 2-dimensional representations of level 5. The following
irreducible representations also form a complete set of inequivalent 4-dimensional representations
of level 5:

ρ415,1psq “
s35
5

»

—

—

–

´φ2 φ´1
?
3φ

?
3

φ´1 φ2
?
3 ´

?
3φ?

3φ
?
3 φ´1 φ2

?
3 ´

?
3φ φ2 ´φ´1

fi

ffi

ffi

fl

, ρ415,1ptq “ diagpζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 q . (4.2)
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ρ415,2psq “
1

?
5

»

—

–

1 ´1 φ´1 φ
´1 1 φ φ´1

φ´1 φ ´1 1
φ φ´1 1 ´1

fi

ffi

fl

, ρ415,2ptq “ diagpζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 q . (4.3)

We will need to establish a few lemmas to complete the proof of this theorem. Let C be a modular
tensor category of type (4,2) and ρ an SL2pZq representation of C. Then

ρ – ρ1 ‘ ρ2

for some irreducible representations ρ1, ρ2 of dimensions 4 and 2 respectively. By tensoring with

a suitable χi P {SL2pZq, we may assume that the t-spectrum of ρ1 is minimal. Therefore, ρ1 has
a prime power level or ρ1 is a tensor product of two 2-dimensional irreducible representations of
distinct prime power levels.

According to Appendix A, ρ1 can only have the prime power levels 5, 7, 8, 9 or the composite
levels 6, 10, 15, 24, 40. Note that a 4-dimensional irreducible representation of level 12 is projectively
equivalent to an irreducible representation of level 6 as shown in the proof of Lemma 4.3. We will
prove that only the levels 7, 15 and 24 are possible.

It follows from Appendix A that the eigenvalues of ρ1ptq and ρ2ptq are multiplicity free. By the

t-spectrum criteria, specpρ1ptqq X specpρ2ptqq “ tθ̃0u or specpρ2ptqq Ă specpρ1ptq. These situations
have been studied in Theorems 3.23 and 3.24. Now, we can begin to prove the level of ρ1 cannot
5, 8, or 9.

Lemma 4.5. The level of ρ1 cannot be 5.

Proof. Suppose ρ1 is of level 5. Since there are exactly two inequivalent irreducible representations
of level 5 and dimension 4, which are given by ρ415,1 and ρ415,2 , ρ1 must be equivalent one of them.

In particular, the spectrum of ρ1ptq consists of all the primitive 5-th root of unity. By the t-
spectrum criteria, ρ2 can only be equivalent to ρ215 or ρ225 , which are the inequivalent irreducible

representations of level 5 and dimension 2. Therefore, ρ is of level 5 and hence ρpsq is a matrix over
Q5. Let σ P GalpQ̄q such that σpζ5q “ ζ25 . Then ρ225 “ σ ˝ ρ215 .

Note that τ ˝ ρ415,i
– ρ415,i

for all τ P GalpQ̄q and i “ 1, 2. Thus, if ρ1 ‘ ρ215 is not equivalent to

any MD representation, then so is σ ˝ pρ1 ‘ ρ215q – ρ1 ‘ ρ225 . Therefore, it suffices to show that

ρ415,1 ‘ ρ215 and ρ415,2 ‘ ρ215 are not equivalent to any MD representation.

(i) Suppose ρ1 “ ρ415,1 and ρ2 “ ρ215 . Using the representations ρ415,1 and ρ215 presented in (4.2)

and (4.1), we have

pρ1 ‘ ρ2qpsq “
s35
5

»

—

—

–

´φ2 φ´1
?
3φ

?
3

φ´1 φ2
?
3 ´

?
3φ?

3φ
?
3 φ´1 φ2

?
3 ´

?
3φ φ2 ´φ´1

fi

ffi

ffi

fl

‘
1

s15

«

1 φ

φ ´1

ff

pρ1 ‘ ρ2qptq “ diagpζ5, ζ
4
5 , ζ

2
5 , ζ

3
5 , ζ5, ζ

4
5 q .

By Theorem 3.24 (1), There exists a block diagonal orthogonal matrix

U “

«

a ´b

b a

ff

‘

«

c ´d

d c

ff

‘ I2 with a2 ` b2 “ 1, c2 ` d2 “ 1,
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such that ρptq “ diagpζ5, ζ5, ζ
4
5 , ζ

4
5 , ζ

2
5 , ζ

3
5 q and ρpsq is a conjugation of s1 by a signed diagonal matrix,

where s1 is given by

s1 “
s35
5

»

—

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ´
?
3bφ ´

?
3b

˚ ˚ ˚ ˚
?
3aφ

?
3a

˚ ˚ ˚ ˚ ´
?
3d

?
3dφ

˚ ˚ ˚ ˚
?
3c ´

?
3cφ

´
?
3bφ

?
3aφ ´

?
3d

?
3c φ´1 φ2

´
?
3b

?
3a

?
3dφ ´

?
3cφ φ2 ´φ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It follows from the action of σ2 on ρptq, we find σ̂p5q “ 6. Since

σps35{5q “
s15
5

“ ´
s35
5
φ and σpφq “ ´φ´1 ,

the action of σ on s1
55 implies ϵ1

σp5q “ 1. Hence, by the action of σ on the 5-th column, we have

σp
?
3xq “

?
3x for x “ a, b, c, d .

Therefore,
?
3a,

?
3b,

?
3c,

?
3d P Q as σ|Q5 generates GalpQ5{Qq. If 5 (resp. 6) corresponds

to the unit object 1, then s1{s1
55 (resp. s1{s1

66) is a matrix Zrζ5s. Since φ is a unit in Zrζ5s,
?
3a,

?
3b,

?
3c,

?
3d P Zrζ5s and hence

?
3a,

?
3b,

?
3c,

?
3d P Zzt0u. However, this contradicts that

p
?
3aq2 ` p

?
3bq2 “ 3. Therefore, 5 and 6 cannot be 1.

Suppose 1 is the isomorphism class of 1. Then s1
i,5{s1

1,5 P Zrζ5s for all i. In particular, 1?
3b
,

a{b P Zrζ5s. So, 1?
3b
, a{b P Z. Let m,n P Z such that a “ mb and 1 “

?
3bn. The equality

a2 ` b2 “ 1 implies pm2 ` 1q3b2 “ 3 and so m2 ` 1 “ 3n2. However, 3 ∤ pm2 ` 1q for any integer m.
Therefore, 1 cannot the unit object. By the same reason, 2, 3, and 4 are not the isomorphism class
of 1. This ultimate contradiction implies that ρ415,1 ‘ ρ215 is not equivalent any MD representation.

(ii) Now we assume ρ1 “ ρ415,2 and ρ2 “ ρ215,1 . It follows from (4.1) and (4.3) that

pρ1 ‘ ρ2qpsq “
1

?
5

»

—

–

1 ´1 φ´1 φ
´1 1 φ φ´1

φ´1 φ ´1 1
φ φ´1 1 ´1

fi

ffi

fl

‘
1

s15

«

1 φ

φ ´1

ff

pρ1 ‘ ρ2qptq “ diagpζ5, ζ
4
5 , ζ

2
5 , ζ

3
5 , ζ5, ζ

4
5 q .

Note that ρ1, ρ2 have opposite parities. We reorder the simple objects as in Theorem 3.24 so
that ρptq “ diagpζ5, ζ5, ζ

4
5 , ζ

4
5 , ζ

2
5 , ζ

3
5 q. The unit object can only be e5 or e6. In either case, we find

dimpCq “ 5, and dimpe1q “ dimpe2q “
˘ρ1psq13?
2ρ1psq33

“
˘φ´1

?
2

R Q5. This contradicts Theorem 2.1 (4).

Therefore, ρ415,2 ‘ρ215,1 is not equivalent to any MD representation. This completes the proof of this

lemma. □

Lemma 4.6. The level ρ1 cannot be 8.

Proof. Suppose ρ1 has level 8. Since there is only one projectively equivalent class of irreducible
representations of level 8 and dimension 4. One can assume ρ1 “ ρ

41,08
(cf. Appendix A). In

particular, ρ1 is odd, and specpρ1ptqq consists of all the primitive 8-th roots of unity.
By the t-spectrum criteria, specpρ2ptqq must be a set of primitive 8-th roots of unity, and hence

ρ2 has level 8. Therefore, ρ2 must be projectively equivalent ρ
21,08

, or ρ2 – ρ
21,ℓ8

, where ℓ “ 0, 3, 6, 9.

Note that ρ1 is equivalent to its complex conjugation while tρ
21,08

, ρ
21,68

u and tρ
21,38

, ρ
21,98

u are complex

conjugation pairs. It suffices to show that ρ2 is not equivalent to (i) ρ
21,08

or (ii) ρ
21,38

.
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(i) Suppose ρ2 – ρ
21,08

. Then specpρ2ptqq Ă specpρ1ptqq and ρ1, ρ2 have opposite parities. Their

direct sum ρ̃ “ ρ
41,08

‘ ρ
21,08

is given by

ρ̃psq “ i?
8

»

—

—

—

–

1
?
3

?
3 1

?
3 1 ´1 ´

?
3

?
3 ´1 ´1

?
3

1 ´
?
3

?
3 ´1

fi

ffi

ffi

ffi

fl

‘ 1?
2

„

´1 1

1 1

ȷ

and ρ̃ptq “ diagpζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 , ζ8, ζ

3
8 q .

However,

ρ̃psqndeg “
i

?
8

«

´1
?
3

?
3 1

ff

is not a matrix over Q8, a contradiction to Proposition 3.9. Therefore, ρ2 ≇ ρ
21,08

.

(ii) Now, we assume ρ2 – ρ
21,38

. Then ρ1, ρ2 have the same party, and ρ̃ “ ρ
41,08

‘ρ
21,38

is given by

ρ̃psq “ i?
8

»

—

—

—

–

1
?
3

?
3 1

?
3 1 ´1 ´

?
3

?
3 ´1 ´1

?
3

1 ´
?
3

?
3 ´1

fi

ffi

ffi

ffi

fl

‘ i?
2

„

´1 1

1 1

ȷ

and ρ̃ptq “ diagpζ8, ζ
3
8 , ζ

5
8 , ζ

7
8 , ζ

3
8 , ζ

5
8 q .

However,

ρ̃psqndeg “
i

?
8

«

1
?
3

?
3 ´1

ff

is not a matrix over Q8, a contradiction to Proposition 3.9. Therefore, ρ2 ≇ ρ
21,38

. □

Lemma 4.7. The level of ρ1 cannot be 9.

Proof. There are 4 projectively inequivalent 4-dimensional irreducible SL2pZq representations of
level 9, which are given by ρ

41,09,1
, ρ

48,09,1
, ρ

41,09,2
, and ρ

48,09,2
(cf. Appendix A). ρ

41,09,1
, ρ

48,09,1
are complex

conjugate of each other and so are ρ
41,09,2

, and ρ
48,09,2

. Therefore, it suffices to show that ρ1 cannot be

equivalent to (i) ρ
41,09,1

or (ii) ρ
41,09,2

.

(i) Suppose ρ1 – ρ
41,09,1

, which is odd. By the t-spectrum criteria, ρ2 can only be projectively

equivalent to ρ
21,02

or ρ
21,03

, and this implies ρ2 – ρ
21,02

, ρ
21,03

or ρ
21,83

. In any of these cases,

specpρ1ptqq X specpρ2ptqq “ t1u. Therefore, by Theorem 3.23 (iii), ρ2 is also odd, which means
ρ2 ≇ ρ

21,02
as it is even.

Now ρ2 – ρ
21,03

or ρ
21,83

. Note that

ρ
21,03

psq “
i

?
3

„

´1
?
2

?
2 1

ȷ

, ρ
21,03

ptq “ diagp1, ζ3q,

ρ
21,83

psq “
i

?
3

„

1
?
2

?
2 ´1

ȷ

, ρ
21,83

ptq “ diagp1, ζ23 q .

By Theorem 3.23 (ii), the unit object 1 of C is an eigenvector of ρptq of eigenvalue 1, and dimpCq “

4{|ρ1psq11 `ρ2psq11|2 “ 12. By the Cauchy Theorem of modular categories, 2 | ordpT q | ordpρptqq “

9, a contradiction. Therefore, ρ1 ≇ ρ
41,09,1

.

(ii) Now, we assume ρ1 – ρ
41,09,2

, which is even. Using similar argument as in Case (i), ρ2 – ρ
21,02

by the t-spectrum criteria and Theorem 3.23 (iii). In this case, specpρ1ptqq X specpρ2ptqq “ t1u and
ρ has level 18. Theorem 3.23 (ii), the unit object of C is an eigenvector of ρptq of eigenvalue 1, and
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dimpCq “ 4{|ρ1psq11 ` ρ2psq11|2 “ 16. By the Cauchy Theorem of modular categories, ordpT q is a
2-power, but this contradicts Theorem 3.7 (4). Therefore, ρ1 ≇ ρ

41,09,2
. □

Lemma 4.8. If ρ1 projectively equivalent to an irreducible representation of prime power level,
then the modular data of C is a Galois conjugate of that of Gp2q3.

Proof. By Lemmas 4.5, 4.6, 4.7 and Appendix A, ρ1 can only be projective equivalent a level 7
irreducible representation. By the t-spectrum criteria, ρ1 – ρ417 or its complex conjugate ρ467 , which

They are defined over Q56.
If there exists some modular data pS, T q whose associated SL2pZq representation ρ – ρ417 ‘ρ2 for

some irreducible 2-dimensional representation ρ2, one can obtain the modular data derived from
the MD representation which admits the decomposition ρ467 ‘ ρ2 by the complex conjugation of

pS, T q.
(I) Assume ρ1 – ρ417 , which is odd. It follows the t-spectrum criteria that ρ2 must be equivalent to

a level 2 or level 3 irreducible representation. In any of these cases, specpρ1ptqq X specpρ2ptqq “ t1u.
There is only one 2-dimensional irreducible representation of level 2 which is even. By Theorem
3.23 (iii), ρ2 – ρ

21,03
or ρ

21,83
, which is odd. Since

ρ
21,83

– ρ
21,03

“ ρ
22,03

.

We will solve the modular data for (i) ρ – ρ417 ‘ ρ
21,03

and (ii) ρ – ρ417 ‘ ρ
22,03

.

(i) Let ρ̃ “ ρ417 ‘ ρ
21,03

. Then ρ̃ptq “ diagp1, ζ7, ζ
2
7 , ζ

4
7 , 1, ζ3q and

ρ̃psq “
i

?
7

»

—

–

´1
?
2

?
2

?
2?

2 γ1 γ2 γ3?
2 γ2 γ3 γ1?
2 γ3 γ1 γ2

fi

ffi

fl

‘
i

?
3

„

´1
?
2?

2 1

ȷ

where γ1 “ ´c27, γ2 “ ´c17 and γ3 “ ´c37. We reorder irrpCq so that ρptq “ diagp1, 1, ζ7, ζ
2
7 , ζ

4
7 , ζ3q,

and identify irrpCq with the standard basis of C6. By Theorem 3.23,

ρpsq “
i

?
7

»

—

—

—

—

—

—

—

—

–

´
?
21´3
6

p
?
21´3qε1

6 ε2 ε3 ε4 ´

b

7
3ε1ε5

p
?
21´3qε1

6
´

?
21´3
6 ε1ε2 ε1ε3 ε1ε4

b

7
3ε5

ε2 ε1ε2 γ1 γ2ε2ε3 γ3ε2ε4 0
ε3 ε1ε3 γ2ε2ε3 γ3 γ1ε3ε4 0
ε4 ε1ε4 γ3ε2ε4 γ1ε3ε4 γ2 0

´

b

7
3ε1ε5

b

7
3ε5 0 0 0

b

7
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

for some εi “ ˘1, and so D “ 2
´

1?
3

` 1?
7

¯´1
or dimpCq “ 21

2

`

5 ´
?
21

˘

. Since 21
2

`

5 `
?
21

˘

is a

Galois conjugate of dimpCq and

dimpCq ă
21

2

´

5 `
?
21

¯

ď FPdimpCq,

the objects 1 and ι are distinct. By Theorem 3.23 (ii), e1, e2 are the only rows of the S-matrix
with no zero entry. Therefore, t1, ιu “ te1, e2u, and the modular data of C is given by

S “

»

—

—

—

—

—

—

—

–

1 ´d1ε1 ´d2ε2 ´d2ε3 ´d2ε4 d3ε1ε5

´d1ε1 1 ´d2ε1ε2 ´d2ε1ε3 ´d2ε1ε4 ´d3ε5

´d2ε2 ´d2ε1ε2 ´d2γ1 ´d2γ2ε2ε3 ´d2γ3ε2ε4 0

´d2ε3 ´d2ε1ε3 ´d2γ2ε2ε3 ´d2γ3 ´d2γ1ε3ε4 0

´d2ε4 ´d2ε1ε4 ´d2γ3ε2ε4 ´d2γ1 ´d2γ2 0

d3ε1ε5 ´d3ε5 0 0 0 ´d3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ ρptq ,
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where d1 “ 1
2

`

5 ´
?
21

˘

, d2 “ 1
2

`?
21 ´ 3

˘

, d3 “ 1
2

`

7 ´
?
21

˘

.
If 1 “ e1, then ι “ e2 and so S2,˚ “ rd1, 1, d2, d2, d2, d3s. This forces ε1 “ ε5 “ ´1, ε2 “ ε3 “

ε4 “ 1. Thus,

S “

»

—

—

—

—

—

—

—

–

1 d1 ´d2 ´d2 ´d2 d3

d1 1 d2 d2 d2 d3

´d2 d2 ´d2γ1 ´d2γ2 ´d2γ3 0

´d2 d2 ´d2γ2 ´d2γ3 ´d2γ1 0

´d2 d2 ´d2γ3 ´d2γ1 ´d2γ2 0

d3 d3 0 0 0 ´d3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagp1, 1, ζ7, ζ
2
7 , ζ

4
7 , ζ3q .

If 1 “ e2, then ι “ e1 and so S1,˚ “ r1, d1, d2, d2, d2, d3s. This forces εi “ ´1 for i “ 1, . . . , 5,
and so resulting S-matrix is equivalent to the preceding one interchanges the indexes of e1 and e2.

(ii) Let ρ̃ “ ρ417 ‘ ρ
22,03

. Then ρ̃ptq “ diagp1, ζ7, ζ
2
7 , ζ

4
7 , 1, ζ

2
3 q and

ρ̃psq “
i

?
7

»

—

–

´1
?
2

?
2

?
2?

2 γ1 γ2 γ3?
2 γ2 γ3 γ1?
2 γ3 γ1 γ2

fi

ffi

fl

‘
i

?
3

„

1
?
2?

2 ´1

ȷ

.

Note that ρ̃ is defined over Q168. Let σ P GalpQ168{Qq such that σpζ168q “ ζ113168 . Then σ|Q56 “ id
and σpζ3q “ ζ23 . One can see easily that

σ ˝ pρ417 ‘ ρ
21,03

q “ ρ417 ‘ ρ
22,03

.

Thus the modular data pS1, T 1q for the MD representation equivalent to ρ̃ is the Galois conjugate
by σ of the modular data pS, T q obtained in (i). Therefore,

S1 “

»

—

—

—

—

—

—

—

–

1 d1
1 ´d1

2 ´d1
2 ´d1

2 d1
3

d1
1 1 d1

2 d1
2 d1

2 d1
3

´d1
2 d

1
2 ´d1

2γ1 ´d1
2γ2 ´d1

2γ3 0

´d1
2 d

1
2 ´d1

2γ2 ´d1
2γ3 ´d1

2γ1 0

´d1
2 d

1
2 ´d1

2γ3 ´d1
2γ1 ´d1

2γ2 0

d1
3 d1

3 0 0 0 ´d1
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T 1 “ diagp1, 1, ζ7, ζ
2
7 , ζ

4
7 , ζ

2
3 q ,

where d1
1 “ σpd1q “ 1

2

`

5 `
?
21

˘

, d1
2 “ σpd2q “ ´1

2

`

3 `
?
21

˘

, d1
3 “ σpd3q “ 1

2

`

7 `
?
21

˘

. Since

S1
1,j ą 0, e1 “ 1 “ ι, and so C is pseudounitary and dimpCq “ σp212

`

5 ´
?
21

˘

q “ 21
2

`

5 `
?
21

˘

.

The modular data of Gp2q3 is also pS1, T 1q.
(II) Now, we assume ρ1 “ ρ467 and proceed to solve the modular data for (i) ρ – ρ467 ‘ ρ

21,03
and

(ii) ρ – ρ467 ‘ ρ
22,03

. Note that both of them are defined over Q168.

(i) Let ρ̃ “ ρ467 ‘ ρ
21,03

. Then ρ417 ‘ ρ
22,03

“ ρ̃. Thus the modular data pS2, T 2q of the MD

representations equivalent to ρ̃ is pS
1
, T

1
q, which is given by

S2 “ S1 “

»

—

—

—

—

—

—

—

–

1 d1
1 ´d1

2 ´d1
2 ´d1

2 d1
3

d1
1 1 d1

2 d1
2 d1

2 d1
3

´d1
2 d

1
2 ´d1

2γ1 ´d1
2γ2 ´d1

2γ3 0

´d1
2 d

1
2 ´d1

2γ2 ´d1
2γ3 ´d1

2γ1 0

´d1
2 d

1
2 ´d1

2γ3 ´d1
2γ1 ´d1

2γ2 0

d1
3 d1

3 0 0 0 ´d1
3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T 2 “ T
1

“ diagp1, 1, ζ67 , ζ
5
7 , ζ

3
7 , ζ3q ,

In particular, the MTC C is also pseudounitary with dimpCq “ 21
2

`

5 `
?
21

˘

.
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(ii) Finally, we consider ρ̃ “ ρ467 ‘ ρ
22,03

which is the complex conjugate of ρ417 ‘ ρ
21,03

. Thus the

modular data pS3, T3q of the MD representations equivalent to ρ̃ is pS, T q, which is given by

S3 “ S “

»

—

—

—

—

—

—

—

–

1 d1 ´d2 ´d2 ´d2 d3

d1 1 d2 d2 d2 d3

´d2 d2 ´d2γ1 ´d2γ2 ´d2γ3 0

´d2 d2 ´d2γ2 ´d2γ3 ´d2γ1 0

´d2 d2 ´d2γ3 ´d2γ1 ´d2γ2 0

d3 d3 0 0 0 ´d3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T3 “ T “ diagp1, 1, ζ67 , ζ
5
7 , ζ

3
7 , ζ

2
3 q .

Therefore, the MTC C is not pseudounitary and dimpCq “ 21
2

`

5 ´
?
21

˘

. □

Lemma 4.9. The level of ρ1 cannot be 6, 10 or 40.

Proof. (i) Suppose ρ1 is of level 6. Then ρ1 – ψ b η for some 2-dimensional irreducible rep-
resentations ψ and η of level 2 and 3 respectively. There is only one 2-dimensional irreducible
representation, up to projective equivalence, of levels 2 and 3. Since the t-spectrum of ρ1 is min-
imal, ρ1 – ρ

21,02
b ρ

21,03
. In particular, specpρ1ptqq “ t1,´1, ζ3,´ζ3u. By the t-spectrum criteria,

ρ2 can only be equivalent to ρ2 – ρ
21,i2

, i P t0, 4, 6, 10u, or ρ
21,j3

, j even. Therefore, ordpρ2ptqq | 6

and so ordpρptqq “ 6. This implies ordpT q | 6 and so C is integral by Theorem 3.14. However, this
contradicts Proposition 3.16. Therefore, the level of ρ1 cannot be 6.

(ii) Suppose ρ1 is of level 40. Then ρ1 is projectively equivalent to ρ
21,08

b ρ215 or ρ
21,08

b ρ225
(cf. Appendix A). In particular, specpρ1ptqq is a set of primitive 40-th roots of unity. However,
there does not exist any 2-dimensional representation ρ2 which satisfies the t-spectrum criteria.
Therefore, the level ρ1 cannot be 40.

(iii) Suppose ρ1 is of level 10. Then ρ1 is projectively equivalent to ρ
21,02

bρ215 or ρ
21,02

bρ225 . Since

ρ
21,02

is equivalent to any of it Galois conjugates, ρ
21,02

b ρ215 or ρ
21,02

b ρ225 are Galois conjugate. So,

it suffices to show that ρ1 – ρ
21,02

b ρ215 is not possible.

Assume ρ1 – ρ
21,02

b ρ215 . Then specpρ1ptqq “ tζ5, ζ
4
5 ,´ζ5,´ζ

4
5u. By the t-spectrum criteria,

ρ2 – ρ215 or χ6 b ρ215 . Since χ
6 b ρ

21,02
– ρ

21,02
, ρ1 ‘ ρ215 and ρ1 ‘χ6 b ρ215 are projectively equivalent.

Therefore, ρ is projectively equivalent to ρ̃ “ pρ
21,02

b ρ215q ‘ ρ215 and we can simply assume ρ – ρ̃.

As in Lemma 4.5, we the use the following equivalent form of ρ215 :

ρ215psq “
1

s15

«

1 φ

φ ´1

ff

, ρ215ptq “ diagpζ5, ζ
4
5 q .

Thus, ρ̃ptq “ diagpζ5, ζ
4
5 ,´ζ5,´ζ

4
5 , ζ5, ζ

4
5 q and

ρ̃psq “
1

2s15

»

—

—

—

–

´1 ´φ ´
?
3 ´

?
3φ

´φ 1 ´
?
3φ

?
3

´
?
3 ´

?
3φ 1 φ

´
?
3φ

?
3 φ ´1

fi

ffi

ffi

ffi

fl

‘
1

s15

„

1 φ

φ ´1

ȷ

.
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By Theorem 3.24 (i), if we reorder irrpCq so that ρptq “ diagpζ5 I2, ζ
4
5 I2,´ζ5,´ζ

4
5 q, then ρpsq “ V s1V

for some signed diagonal matrix V and

s1 “
1

2s15

»

—

—

—

—

—

—

—

–

˚ ˚ ˚ ˚ ´
?
3a ´

?
3aφ

˚ ˚ ˚ ˚ ´
?
3b ´

?
3bφ

˚ ˚ ˚ ˚ ´
?
3cφ

?
3c

˚ ˚ ˚ ˚ ´
?
3dφ

?
3d

´
?
3a ´

?
3b ´

?
3cφ ´

?
3dφ 1 φ

´
?
3aφ ´

?
3bφ

?
3c

?
3d φ ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

where a, b, c, d P R satisfying a2 ` b2 “ 1 and c2 ` d2 “ 1.
Note that φ is a unit in Zrζ5s, and the automorphism σ defined by σpζ10q “ ζ710 generates

GalpQ10q. By the action of σ2 on ρptq, we see σ̂p5q “ 6. Since

σps1
5,5q “

1

2s25
“

φ

2s15
“ s1

56 ,

σps1
i,5q “ s1

i,6 for i “ 1, . . . , 6. This implies
?
3a,

?
3b,

?
3c,

?
3c are fixed by σ and so they are

rational.
The unit object cannot be e5, for otherwise

?
3a,

?
3b P Z and they satisfy the equation p

?
3aq2 `

p
?
3bq2 “ 3, which is not possible. Similarly, e6 ‰ 1. So, the unit object 1 P te1, e2, e3, e4u.
Assume 1 “ e1. Then a ‰ 0, b{a P Z and 1?

3a
P Z. However, this will imply 3 | p1 ` pb{aq2q

which is not possible. Therefore, 1 ‰ e1. Since φ is a unit in Zrζ5s, if 1 R te2, e3, e4u for similar
reason. Now, we find 1 R te1, . . . , e6u, a contradiction. Therefore, the level of ρ1 cannot be 10. □

Lemma 4.10. If the level of ρ1 is 24, then C is equivalent to CpZ6, qq for some non-degenerate
quadratic form q : Z6 Ñ Cˆ.

Proof. Since ρ1 is of level 24, ρ1 is projectively equivalent to ρ
21,03

b ρ
21,08

according to Appendix A.

Therefore, we can simply assume ρ1 – ρ
21,03

b ρ
21,08

as it has a minimal t-spectrum. Then, ρ1 is odd

and

ρ1psq “
i

?
6

»

—

—

—

–

1 ´1 ´
?
2

?
2

´1 ´1
?
2

?
2

´
?
2

?
2 ´1 1

?
2

?
2 1 1

fi

ffi

ffi

ffi

fl

, ρ1ptq “ diagpζ8, ζ
3
8 , ζ

11
24 , ζ

17
24 q .

By the t-spectrum criteria, ρ2 – ρ
21,j8

, j P t0, 1, 3, 4, 7, 9u, and

ρ
21,j8

psq “
p´iqj
?
2

«

´1 1

1 1

ff

, ρ
21,j8

ptq “ diagpζ3`2j
24 , ζ9`2j

24 q .

For j “ 1, 3, 7, 9, | specpρ1ptqq X specpρ2ptqq| “ 1 and so Theorem 3.23 can be applied.

For j “ 1, 9, specpρ1ptqq X specpρ2ptqq “ tζ9`2j
24 u, and for j “ 3, 7, specpρ1ptqq X specpρ2ptqq “

tζ3`2j
24 u. If ρ – ρ1 ‘ ρ

21,j8
is an MD representation of an MTC C, for j “ 1, 3, 7, 9, then by Theorem

3.23, ordpT q “ 12 and

D “
a

dimpCq “
2

1?
2
p1 ˘ 1?

3
q

“
?
6p

?
3 ¯ 1q.

Note that each row of ρ1psq has an off diagonal entry of the form ˘i?
6
and so D?

6
{
?
2 is the dimension

of an object up to a sign. However,

D
?
6
?
2

“

?
3 ˘ 1
?
2

R Q12 .
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Therefore, ρ1 ‘ ρ
21,j8

is not equivalent to any MD representation for j “ 1, 3, 7, 9.

Now, we can conclude that ρ – ρ1 ‘ ρ2 where ρ2 – ρ
21,j8

for some j “ 0, 4. In particular, ρ1 and

ρ2 have opposite parties and specpρ2ptqq Ă specpρ1ptqq. By Theorem 3.24 (ii), the unit object 1 is
an eigenvector of ρptq with eigenvalue ζ P specpρ1ptqqz specpρ2ptqq. Let Ej be the subspace of C6

spanned by the eigenvectors of ρ̃j “ ρ1ptq‘ρ
21,j8

ptq with eigenvalues in specpρ1ptqqz specpρ
21,j8

ptqq for

j “ 0, 4. One can compute that for σ P GalpQ24{Qq, Dρ̃j pσq|Ej “ id or ´ id. By Proposition 3.13,
C is integral. It follows from [4] that C is a pointed modular tensor category, which is equivalent to
to CpZ6, qq for some non-degenerate quadratic form q : Z6 Ñ Cˆ. □

Lemma 4.11. If the level of ρ1 is 15, then the modular data of C is a Galois conjugate of that of
CpZ3, qq ⊠ PSUp2q3, where q : Z3 Ñ Cˆ is a quadratic form given by qp1q “ ζ3.

Proof. Since ρ1 has a minimal t-spectrum, it must be equivalent to a tensor product of two 2-
dimensional irreducible representations of levels 3 and 5. According to Appendix A, ρ1 – ρ

21,03
bρ2i5

,

i “ 1, 2. By the t-spectrum criteria, ρ2 – χj b ρ2i5
with j “ 0, 4. Thus, ρ is equivalent to

ρ̃i,j “ pρ
21,03

b ρ2i5
q ‘ pχj b ρ2i5

q, i “ 1, 2, j “ 0, 4 .

Note that ρ̃i,j is defined over Q120 for i, j. Let σa P GalpQ120{Qq such that σapζ120q “ ζa120. Then,
σ97 ˝ ρ̃1,j “ ρ̃2,j for j “ 0, 4.

Since σ41˝ppρ
21,03

bρ215q‘ρ215q – pρ
21,03

bρ215q‘ρ215 – pρ
21,83

bρ215q‘ρ215 , we have χ
4bσ41˝ρ̃1,0 – ρ̃1,4.

Therefore, ρ̃i,j is projectively equivalent to a Galois conjugate of ρ̃1,0. Hence, it suffices to consider
ρ̃ “ ρ̃1,0, or equivalently ρ1 – ρ

21,03
b ρ215 and ρ2 – ρ215

Now, the MD representation ρ of C is equivalent to ρ1 ‘ ρ2, where ρ1 is even, ρ2 is odd and
specpρ1ptqq Ă specpρ2ptqq. Moreover,

ρ̃psq “
i

?
3s15

»

—

—

—

–

´1 ´φ
?
2

?
2φ

´φ 1
?
2φ ´

?
2

?
2

?
2φ 1 φ

?
2φ ´

?
2 φ ´1

fi

ffi

ffi

ffi

fl

‘
1

s15

„

1 φ

φ ´1

ȷ

, ρ̃ptq “ diagpζ5, ζ
4
5 , ζ

8
15, ζ

2
15, ζ5, ζ

4
5 q .

By Theorem 3.24, dimpCq “ 12 sin2p2π{5q “ 3p2 ` φq. Reorder irrpCq so that

ρptq “ diagpζ5, ζ
4
5 , ζ5, ζ

4
5 , ζ

8
15, ζ

2
15q.

Again, by Theorem 3.24 (ii), there exist γi, κi, εi P t˘1u such that

ρpsq “
´1

D

»

—

—

—

—

—

—

—

—

–

1`i
?
3

2

p1´i
?
3qκ1

2

γ3φp1`i
?
3ε1ε2κ1κ2q
2

γ3φpκ2´i
?
3ε1ε2κ1q

2 ´γ1 ´γ2φ
p1´i

?
3qκ1

2
1`i

?
3

2

γ3φpκ1´i
?
3ε1ε2κ2q

2

γ3φpκ1κ2`i
?
3ε1ε2q

2 ´γ1κ1 ´γ2κ1φ
γ3φp1`i

?
3ε1ε2κ1κ2q
2

γ3φpκ1´i
?
3ε1ε2κ2q

2

´p1`i
?
3q

2

p´1`i
?
3qκ2

2 ´γ1γ3φ γ2γ3
γ3φpκ2´i

?
3ε1ε2κ1q

2

γ3φpκ1κ2`i
?
3ε1ε2q

2

p´1`i
?
3qκ2

2

´p1`i
?
3q

2 ´γ1γ3κ2φ γ2γ3κ2
´γ1 ´γ1κ1 ´γ1γ3φ ´γ1γ3κ2φ ´1 ´γ1γ2φ

´γ2φ ´γ2κ1φ γ2γ3 γ2γ3κ2 ´γ1γ2φ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We will use the equalities ´1`i
?
3

2 “ ζ3 and 1`i
?
3

2 “ ´ζ3 to simplify S-matrix, but we need to
determine which of the standard basis elements is the unit object. According to Theorem 3.24 (ii),
1 P te5, e6u.

(i) Suppose e6 “ 1. Then T “ diagpζ15, ζ
2
3 , ζ15, ζ

2
3 , ζ

2
5 , 1q. Then dimpe5q2 “ φ2 ą 1 and so e6 “ ι.

Thus, all the entries of 6-th rows of ρpsq has the same signed, we find γ2 “ γ3 “ ´1, γ1 “ κ1 “
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κ2 “ 1. Thus,

S “

»

—

—

—

—

—

—

—

—

–

´ζ3 ´ζ3 φζ3 φζ3 ´1 φ

´ζ3 ´ζ3 φζ3 φζ3 ´1 φ

φζ3 φζ3 ζ3 ζ3 φ 1

φζ3 φζ3 ζ3 ζ3 φ 1

´1 ´1 φ φ ´1 φ

φ φ 1 1 φ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By reordering irrpCq, we find T “ diagp1, ζ25 , ζ
2
3 , ζ15, ζ

2
3 , ζ15q “ T1 b T2 and

S “

»

—

—

—

—

—

—

—

—

–

1 φ 1 φ 1 φ

φ ´1 φ ´1 φ ´1

1 φ ζ3 φζ3 ζ3 φζ3

φ ´1 φζ3 ´ζ3 φζ3 ´ζ3

1 φ ζ3 φζ3 ζ3 φζ3

φ ´1 φζ3 ´ζ3 φζ3 ´ζ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ S1 b S2,

where pS1, T1q is the modular data of CpZ3, qq and pS2, T2q given by S2 “

«

1 φ

φ ´1

ff

and T2 “

diagp1, ζ25 q is the modular data of PSUp2q3. In particular, pS, T q is a Galois conjugate of the
modular data of CpZ{3Z, q1q ⊠ PSUp2q3.

(ii) Now, we assume e5 “ 1. Then T “ diagpζ23 , ζ
4
15, ζ

2
3 , ζ

4
15, 1, ζ

3
5 q and dimpe6q2 “ φ2 ą 1, and so

e5 “ ι. Then γ1 “ γ2 “ γ3 “ κ1 “ κ2 “ 1, and we obtain

S “

»

—

—

—

—

—

—

—

—

–

ζ3 ζ3 ζ3φ ζ3φ 1 φ

ζ3 ζ3 ζ3φ ζ3φ 1 φ

ζ3φ ζ3φ ´ζ3 ´ζ3 φ ´1

ζ3φ ζ3φ ´ζ3 ´ζ3 φ ´1

1 1 φ φ 1 φ

φ φ ´1 ´1 φ ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By reordering irrpCq, we find T “ diagp1, ζ35 , ζ
2
3 , ζ

4
15, ζ

2
3 , ζ

4
15q “ T1 b T 2 and

S “

»

—

—

—

—

—

—

—

—

–

1 φ 1 φ 1 φ

φ ´1 φ ´1 φ ´1

1 φ ζ3 φζ3 ζ3 φζ3

φ ´1 φζ3 ´ζ3 φζ3 ´ζ3

1 φ ζ3 φζ3 ζ3 φζ3

φ ´1 φζ3 ´ζ3 φζ3 ´ζ3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ S1 b S2,

Since pS2, T 2q is the complex conjugate of modular data of PSUp2q3. Therefore, pS, T q is a Galois
conjugate of the modular data of CpZ3, qq ⊠ PSUp2q3. This completes the proof of statement.

As a consequence, for any i, j, ρ̃i,j is equivalent to SL2pZq representations of some modular tensor
categories Galois conjugate to CpZ3, qq ⊠ PSUp2q3. □

Proof of Theorem 4.4. The result of Theorem 4.4 is a consequence of Lemmas 4.5 to 4.11. □
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4.3. Classification of modular data of type (3,3).

Theorem 4.12. The modular data of any type p3, 3q modular tensor category is a Galois conjugate
of that of SOp5q2.

Let C be a modular tensor category of type (3,3) and ρ an SL2pZq representation of C. Then

ρ – ρ1 ‘ ρ2

for some 3-dimensional irreducible representations ρ1, ρ2. If ρ1, ρ2 have opposite parities, then
Trpρpsqq “ 0 which contradicts to Proposition 3.12. Therefore, they have the same parity. We may
assume that ρ1 has a minimal t-spectrum and show that for ρ1 cannot be projectively equivalent
of any 3-dimensional irreducible representation of levels 3, 7, 8 or 16.

Lemma 4.13. Neither ρ1 nor ρ2 is projectively equivalent to a 3-dimensional irreducible represen-
tation of level 3, 7, 8 or 16.

Proof. Suppose ρ1 is a 3-dimensional irreducible representation of level 3, 7, 8 or 16 with a minimal
t-spectrum.

(i) ρ1 cannot be of level 7: Suppose ρ1 is of level 7. Then, by the t-spectrum criteria and
Appendix A, ρ2 – ρ1 but this contradicts Proposition 3.19.

(ii) ρ1 cannot be of level 3: Suppose ρ1 is the level 3. Then ρ1 – ρ
31,03

. Since dimpρ2q “ 3 which

is a prime number, ρ2 must be projectively equivalent to a 3-dimensional irreducible representations
of prime power level (cf. Appendix A). If ρ2 is projectively equivalent to ρ

31,03
, then ρ2 – ρ

31,03
by

the t-spectrum criteria, but this contradicts Proposition 3.19. Therefore, ρ2 is not projectively
equivalent to ρ

31,03
.

It follows from (i) that ρ2 cannot be projectively equivalent to a level 7 representation. Therefore,
by Appendix A, ρ2 can only be projectively equivalent to a representation of levels 4, 5, 8, 16.

By the t-spectrum criteria, ρ2 is not projectively equivalent to any level 16 irreducible repre-
sentations. If ρ2 is projectively equivalent a level 8 irreducible representation, then ρ2 – χj b ψ
for any level 8 representations in Appendix A. Since ρ1 is even, j ” 0 mod 4, and so ψ must be
even. This implies ψ “ ρ

33,38
, ρ

31,38
, ρ

33,98
, ρ

31,98
, but none of them satisfies the t-spectrum criteria.

Therefore, ρ2 can only be projectively equivalent to some ψ of level 5 or 4 in Appendix A. Thus,
by the t-spectrum criteria, ρ2 – χj b ρ

31,04
or χj b ρ3i5

for j “ 0, 4, 8 and i “ 1, 3. In any of these

cases, | specpρ1ptqq X specpρ2ptqq| “ 1 and ordpρptqq “ 12 or 15. It follows from Theorem 3.23 (ii)

(c) that if specpρ1ptqq X specpρ2ptqq “ tρ1ptqu,uu, then
?
2ρ1psqjj
ρ1psquj

P Q12 or Q15 for u ‰ j. However,
?
2ρ1psqjj
ρ1psquj

“ ´1?
2

R Q12 or Q15. Therefore, ρ2 cannot be projectively equivalent to any irreducible of

level 4 or 5. This completes the proof that ρ1 cannot be of level 3.
(iii) ρ1 cannot be of level 8: Let

A “
i

2

»

—

–

0
?
2

?
2

?
2 ´1 1

?
2 1 ´1

fi

ffi

fl

.

Then, by Appendix A,

ρ
31,08

psq “ A and ρ
31,08

ptq “ diagp1, ζ8, ζ
5
8 q

which is odd and has a minimal t-spectrum. Since all other 4-dimensional level 8 irreducible
representations are projectively equivalent to a Galois conjugate of ρ

31,08
, it suffices to show that

ρ1 ≇ ρ
31,08

.
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Assume to the contrary. Then ρ1 – ρ
31,08

, and hence ρ2 must be odd. It follows from (i) and

(ii), ρ2 cannot be projectively equivalent to any irreducible representation of level 3 or 7. By the t-
spectrum criteria and the parity constraint, ρ2 cannot be projectively equivalent to any irreducible
representations of level 5. Therefore, ρ2 can only be projectively equivalent to an irreducible
representation of level 4, 8 or 16. By the t-spectrum criteria, ρ2 is of level 4, 8 or 16.

Suppose ρ2 has level 4 or 8. Since ρ2 is odd, ρ2 – ρ
31,34

, ρ
31,94

, ρ
31,08

, ρ
33,08

, ρ
31,68

, ρ
33,68

. However,

Dρ1‘ρ2pσq “ ˘ id for all σ P GalpQ8{Qq. By Proposition 3.13, C is integral which contradicts
Proposition 3.16. Therefore, the level of ρ2 is neither 4 nor 8.

Suppose ρ2 is an odd irreducible representation of level 16. By the t-spectrum criteria, ρ2 –

ρ
31,016

, ρ
35,616

, ρ
31,616

, ρ
35,016

, and they are respectively isomorphic to the following representations:

(1) s ÞÑ A, t ÞÑ diagpζ8, ζ16, ζ
9
16q ;

(2) s ÞÑ ´A, t ÞÑ diagpζ8, ζ
5
16, ζ

13
16 q ;

(3) s ÞÑ ´A, t ÞÑ diagpζ58 , ζ16, ζ
9
16q ;

(4) s ÞÑ A, t ÞÑ diagppζ58 , ζ
5
16, ζ

13
16 q .

In any of these cases, specpρ1ptqq X specpρ2ptqq “ tζ8u or tζ58u. It follows from Theorem 3.23 (ii)
(a) and (b) that D “ 4 as ψuu “ ´i{2 and ηuu “ 0. The two nonzero rows of the S-matrix up to
some signs are the same:

1, 1, 2,
?
2, 2, 2

and one of these rows is ι. Therefore, the Frobenius-Perron dimensions of the simple objects of
C are 1, 1, 2,

?
2, 2, 2 . In particular, C is weakly integral, which contradicts Proposition 3.16 (ii).

Thus, ρ2 is not of level 16 either. As a consequence, ρ1 cannot be of level 8.
(iv) ρ1 cannot be of level 16: Assume contrary. Then ρ1 – ρ

31,016
, ρ

33,916
, ρ

35,616
, ρ

37,316
, which are

projectively inequivalent and have a minimal t-spectrum. Moreover,

ρ
31,016

psq “ A and ηptq “ diagpζ8, ζ16, ζ
9
16q

which is odd. Since all the 3-dimensional level 16 irreducible representations are projectively
equivalent to a Galois conjugates of ρ

31,016
, its suffices consider the case ρ1 – ρ

31,016
.

By the t-spectrum criteria, ρ2 cannot be projectively equivalent to any irreducible representa-
tion of level 4 or 5. By (i), (ii) and (iii), ρ2 cannot be projectively equivalent to any irreducible
representation of level 3, 7, 8. Therefore, ρ2 can only be projectively equivalent to an irreducible
representation of level 16. The t-spectrum criteria forces ρ2 to be an irreducible representation of
level 16. Since ρ2 is odd, by Proposition 3.19, ρ2 – ρ

31,616
or ρ

35,616
, which are respectively isomorphic

to the following irreducible representations:

(1) s ÞÑ ´A, t ÞÑ diagpζ58 , ζ16, ζ
9
16q;

(2) s ÞÑ ´A, t ÞÑ diagpζ8, ζ
5
16, ζ

13
16 q.

For Case (1), specpρ1ptqq X specpρ2ptqq “ tζ16, ζ
9
16u but

ρ1psqii ` ρ2psqii “ Aii ´Aii “ 0

for i “ 2, 3. Therefore, ρ – ρ
31,016

‘ ρ
31,616

is impossible by Theorem 3.23.

For Case (2), specpρ1ptqq X specpρ2ptqq “ tζ8u and ρ1psq11 `ρ2psq11 “ 0. It follows from Theorem
3.23 that ρ – ρ

31,016
‘ ρ

35,616
is also not possible. □

Lemma 4.14. If ρ1 is of level 5, then ρ2 cannot be projectively equivalent to any level 5 irreducible
representation.

Proof. Suppose ρ2 is projectively equivalent to some level 5 irreducible representation. Then, by the
t-spectrum criteria, ρ2 is a level 5 irreducible representation. Since there are only two inequivalent
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level 5 irreducible representation, ρ1 ≇ ρ2 by Proposition 3.19. Then specpρ1ptqqXspecpρ2ptqq “ t1u.
It follows from Appendix A that

ρ1psq11 ` ρ2psq11 “ 0 .

By Theorem 3.23(i), ρ1 ‘ ρ2 is not equivalent to any MD representation. Therefore, ρ2 cannot be
projectively equivalent to any level 5 irreducible representation. □

It follows from Lemmas 4.3 and 4.14 that the MD representation ρ of C of type (3,3) must have
the irreducible decomposition ρ1 ‘ ρ2 where ρ1 and ρ2 are 3-dimensional and of levels 5 and 4.

4.3.1. Solving modular data of type (3,3) level (5,4). There are only two inequivalent level 5 irre-
ducible representations ρ315 and ρ335 . Note that σ ˝ρ315 “ ρ335 where σ P GalpQ̄q such that σpζ5q “ ζ35 .

One may assume ρ1 – ρ315 which is even, and has a minimal t-spectrum.

By the t-spectrum criteria and the parity constraint, ρ2 – ρ
31,04

, and so

specpρ1ptqq X specpρ2ptqq “ t1u.

By Theorem 3.23, D “ 2{ 1?
5

“ 2
?
5 or dimpCq “ 20. Moreover, if irrpCq is reordered so that

ρptq “ diagp1, 1, ζ5, ζ
4
5 , i, iq, then

ρpsq “
1

2
?
5

»

—

—

—

—

—

—

—

—

–

1 κ ´2γ1 ´2γ2 ´
?
5γ3κ ´

?
5γ4κ

κ 1 ´2γ1κ ´2γ2κ
?
5γ3

?
5γ4

´2γ1 ´2γ1κ ´1 ´
?
5 p´1 `

?
5qγ1γ2 0 0

´2γ2 ´2γ2κ p´1 `
?
5qγ1γ2 ´1 ´

?
5 0 0

´
?
5γ3κ

?
5γ3 0 0 ´

?
5

?
5γ3γ4

´
?
5γ4κ

?
5γ4 0 0

?
5γ3γ4 ´

?
5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

for some κ, γi P t˘1u. One can conclude from S that C is pseudounitary, and so we can assume
1 “ ι “ e1. This implies κ “ 1, γi “ ´1 for i “ 1, . . . , 4. Thus, the modular data of C is given by

S “

»

—

—

—

—

—

—

—

—

–

1 1 2 2
?
5

?
5

1 1 2 2 ´
?
5 ´

?
5

2 2 ´1 ´
?
5 ´1 `

?
5 0 0

2 2 ´1 `
?
5 ´1 ´

?
5 0 0

?
5 ´

?
5 0 0 ´

?
5

?
5

?
5 ´

?
5 0 0

?
5 ´

?
5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and T “ diagp1, 1, ζ5, ζ
4
5 , i,´iq .

However, if 1 ‰ ι, then one may assume e1 “ 1 and e2 “ ι. Then the resulting modular data
is pPSP, T q where P is the permutation matrix of the transposition p1, 2q. In this sense, the two
modular data corresponding to different spherical structures are the same.

For ρ1 “ ρ335 , the corresponding modular data is pσpSq, σpT qq, where σ P GalpQ̄q such that

σpζ5q “ ζ35 and σpiq “ i. Precisely,

σpSq “

»

—

—

—

—

—

—

—

—

–

1 1 2 2 ´
?
5 ´

?
5

1 1 2 2
?
5

?
5

2 2 ´1 `
?
5 ´1 ´

?
5 0 0

2 2 ´1 ´
?
5 ´1 `

?
5 0 0

´
?
5

?
5 0 0

?
5 ´

?
5

´
?
5

?
5 0 0 ´

?
5

?
5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and σpT q “ diagp1, 1, ζ35 , ζ
2
5 , i,´iq .
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In this case, the e2 “ ι. One can use the other spherical structure of C so that 1 “ ι “ e1. The
resulting modular data is pPσpSqP, σpT qq, which is the same as the modular data pσpSq, σpT qq,
and is the modular data of SOp5q2. This completes the proof of Theorem 4.12.

4.4. Classification of Modular Data of type p3, 2, 1q. We now classify modular tensor cate-
gories with SL2pZq representations decomposing as a direct sum of irreducible representations of
dimension 3, 2 and 1. The main theorem of this section is:

Theorem 4.15. The modular data of any type p3, 2, 1q modular tensor category is a Galois conju-
gate of a non-trivial braided zesting of SOp5q2.

The zesting procedure is found in [10]. An alternative approach is to consider the classification of
metaplectic modular tensor categories in [1]: this shows that the categories above can be obtained
by gauging the particle-hole symmetry (i.e. the Z2 action g Ø g´1) on a pointed modular tensor
category of the form CpZ5, qq. In [15] it is shown that of the 4 modular tensor categories obtained
in this way, 2 are SOp5q2 and its (unitary) Galois conjugate and the other two are the non-trivial
zesting of SOp5q2 and its (unitary) Galois conjugate.

Let ρ “ χ1‘pρ2bχ2q‘pρ3bχ3q be the irreducible decomposition a modular representation with
ρi irreducible of dimension i of prime power level and χi a character. This description is possible by
the Chinese Remainder Theorem and the fact that 2 and 3 are prime. As before, we may assume
χ3 “ 1 and require ρ3 has a minimal t-spectrum.

We consider cases in turn, describing the level triples for pρ3, ρ2, χ1q. The t-spectrum criteria
immediately implies that the level of ρ3 cannot be 7. Similarly the level of ρ3 cannot be 16:
looking at the eigenvalues of the level 16 irreducible 3-dimensional representation we see that
χ1ptq R specpρ3ptqq, and hence specppρ2 b χ2qptqq X specpρ3ptqq ‰ H. This implies ρ2 b χ2 has level
8 but then χ1ptq R specpρ3ptq ‘ pρ2 b χ2qptqq, which contradicts the t-spectrum criteria.

Suppose the level of ρ3 is 8. Then ρ3 – ρ
21,08

or ρ
23,08

, and hence ρ3 is odd. Note that

specpρ
21,08

q “ t1, ζ8,´ζ8u and specpρ
23,08

q “ t1, ζ38 ,´ζ
3
8u. The level of ρ2 cannot be 5, by inspection

of the corresponding eigenvalues. If the level of ρ2 is 2 then the t-spectrum criteria implies that
pχ2q2 “ pχ1q2 “ 1. But now ρps2q has trace 0, contradicting Proposition 2.1. Thus the level of ρ2
is either 8 or 3. Applying the t-spectrum criteria yields the following possible levels in this case:
p8, 8, 1q, p8, 3, 3q or p8, 3, 1q. In particular, if the level of ρ2 is 8 we cannot have levels p8, 8, 2q or
p8, 8, 4q as the t-spectrum criteria fails in these cases. In all three cases we see that ρ2 b χ2 must
be odd for otherwise Trpρps2qq “ 0. Hence, the corresponding category would be non-self-dual.

Now suppose that the level of ρ3 is 5. Then ρ3 is even. The t-spectrum criteria implies the level
of ρ2 cannot be 8. Inspecting the remaining possibilities we find the following possible level triples:
p5, 5, 1q, p5, 3, 1q, p5, 3, 3q, p5, 2, 1q or p5, 2, 2q. The parities imply that the corresponding category
would be non-self-dual in the first three cases and self-dual for the last two.

Next if the level of ρ3 is 4, then ρ3 – ρ
31,34

which is odd, and has the minimal t-spectrum t1,´1, iu

according Appendix A. The t-spectrum criteria show that the level of ρ2 cannot be 8 or 5. If ρ2
had level 2 then the order of ρptq would be 4, yielding a pointed integral category (by Theorem
3.14) with T -matrix of order 4, which contradicts Proposition 3.16. Thus ρ2 has level 3 and we find
p4, 3, 1q, p4, 3, 2q, p4, 3, 3q and p4, 3, 4q as possible level triples.

Finally, if the level of ρ3 were 3 then the t-spectrum criteria implies that the order of ρptq is a
divisor of 6 and hence pointed integral by Theorem 3.14. This contradicts Proposition 3.16.

Below we provide the details of the cases of levels p4, 3, 2q, p5, 2, 2q and p5, 2, 1q explicitly. The
remaining cases tp8, 8, 1q, p8, 3, 3q, p8, 3, 1q, p5, 5, 1q, p5, 3, 1q, p5, 3, 3q, p4, 3, 1q, p4, 3, 3q, p4, 3, 4qu can be
similarly addressed (and indeed are easier). We can eliminate all of these cases computationally as
well, see Section B.2.
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4.4.1. Case p4, 3, 2q. Suppose that the levels of ρ3, ρ2 and χ1 are 4, 3 and 2, respectively. Without
loss of generality we may assume that ρ3 – ρ

31,34
and ρ2 – ρ

21,03
, which are odd, and respectively

have the minimal t-spectrums t1,´1, iu and t1, ζ3u according to Appendix A. Let us determine what
χ2 can be. Note that χ1 is even. Now if χ2 is odd, then Trpρps2qq “ 0, which is impossible. The
t-spectrum criteria implies that χ2ptq ‰ ˘ζ3, and a relabeling eliminates ζ´1

3 . If χ2ptq P t´1,´ζ3u,
then ρ is projectively equivalent to the complex conjugate the p4, 3, 1q case. So we will assume that
χ2ptq “ 1, ζ3 or ρ2 b χ2 – ρ

21,03
or ρ

21,83
. In either case, ρ is defined over Q24. If σ P GalpQ̄q such

that σpζ3q “ ζ23 and σpζ8q “ ζ8, then we have

ρ3 ‘ ρ
31,82

‘ χ1 – σ ˝ pρ3 ‘ ρ
31,02

‘ χ1q .

It suffices to consider ρ – ρ̃ :“ ρ3 ‘ ρ
21,03

‘ χ1. By Appendix A, we have

ρ̃psq “
i

2

»

—

–

´1 1
?
2

1 ´1
?
2

?
2

?
2 0

fi

ffi

fl

‘
i

?
3

«

´1
?
2

?
2 1

ff

‘ r´1s and ρ̃ptq “ diagp1,´1, i, 1, ζ3,´1q

Reordering irrpCq so that ρptq “ diagp1, 1,´1,´1, i, ζ3q. By Theorem 3.23, the unit object 1 must
be an eigenvector ρptq with eigenvalue 1 and soD “ 2{p12 ` 1?

3
q “ 8

?
3´12 or dimpCq “ 48p7´4

?
3q.

Moreover, T “ diagp1, 1,´1,´1, i, ζ3q and ρpsq “
´ip3`2

?
3q

12 S, where

S “

»

—

—

—

—

—

—

—

—

—

—

–

1 ´
p2

?
3´3qκ

2
?
3`3

´ 3
?
2a

2
?
3`3

´ 3
?
2b

2
?
3`3

´
6γ1

2
?
3`3

4
?
3γ2κ

2
?
3`3

´
p2

?
3´3qκ

2
?
3`3

1 ´ 3
?
2aκ

2
?
3`3

´ 3
?
2bκ

2
?
3`3

´
6γ1κ

2
?
3`3

´
4

?
3γ2

2
?
3`3

´ 3
?
2a

2
?
3`3

´ 3
?
2aκ

2
?
3`3

´
6p´1`p1`2iqb2q

2
?
3`3

p6`12iqab

2
?
3`3

´
6

?
2aγ1

2
?
3`3

0

´ 3
?
2b

2
?
3`3

´ 3
?
2bκ

2
?
3`3

p6`12iqab

2
?
3`3

12ip´1`p1´ i
2 qb2q

2
?
3`3

´
6

?
2bγ1

2
?
3`3

0

´
6γ1

2
?
3`3

´
6γ1κ

2
?
3`3

´
6

?
2aγ1

2
?
3`3

´
6

?
2bγ1

2
?
3`3

0 0
4

?
3γ2κ

2
?
3`3

´
4

?
3γ2

2
?
3`3

0 0 0 ´ 4
?
3

2
?
3`3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

for some κ, γi P t˘1u and a, b P R such that a2 ` b2 “ 1. Since 1, ι P te1, e2u, κ “ ´1, and a, b ‰ 0.

Since dimpιq “
p2

?
3´3q

2
?
3`3

“ 7 ´ 4
?
3 ă 1, FPdimpCq “ 48p7 ` 4

?
3q and ι ‰ 1. We may simply

assume e1 “ 1 and e2 “ ι. Then γ1 “ 1, γ2 “ ´1 and a, b ą 0. Since Trpρps2qq “ ´4, there is
exactly one dual pair of simple objects, and they can only be e3, e4. Therefore, a “ b “ ˘1?

2
and so

a “ b “ 1?
2
. Thus,

S “

»

—

—

—

—

—

–

1 1 ´ 2d ´d ´d ´2d 2 ´ 2d
1 ´ 2d 1 d d 2d 2 ´ 2d

´d d p1 ´ 2iqd p1 ` 2iqd ´2d 0
´d d p1 ` 2iqd p1 ´ 2iqd ´2d 0

´2d 2d ´2d ´2d 0 0
2 ´ 2d 2 ´ 2d 0 0 0 2d´ 2

fi

ffi

ffi

ffi

ffi

ffi

fl

where d “ 2
?
3 ´ 3. Remarkably, the Verlinde formula yields a consistent set of fusion rules. For

example the object with twist i has the fusion matrix:

N5 “

»

—

—

—

—

—

–

0 0 0 0 1 0
0 4 2 2 3 4
0 2 2 0 1 2
0 2 0 2 1 2
1 3 1 1 4 4
0 4 2 2 4 4

fi

ffi

ffi

ffi

ffi

ffi

fl

.
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However, the second FS-indicator for this object is ν2pe5q “ 1
dimpCq

ř

j,kN
5
j,kdjdk

´

θj
θk

¯2
“ 2, a

contradiction.

4.4.2. Case p5, 2, 1q. Consider the case of levels p5, 2, 1q. Then ρ – ρ315 ‘ρ
21,02

‘χ0 or ρ335 ‘ρ
21,02

‘χ0

according to Appendix A. Since the latter is a Galois conjugate of the former one, it suffices to
solve the first case. Let ρ̃ “ ρ

21,02
‘ χ0 ‘ ρ335 in which ρ̃ptq “ diag

`

1,´1, 1, 1, ζ5, ζ
4
5

˘

. By permuting

the first two basis elements, we may assume that t “ ρptq “ diagp´1, 1, 1, 1, ζ5, ζ
4
5 q. Conjugating

by a block diagonal matrix of the form pr1q ‘ F ‘ pr2q ‘ pr3q where F “

»

—

–

f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3

fi

ffi

fl

is

real orthogonal matrix (cf. Prop. 3.4) and ri “ ˘1. One may assume r1 “ 1, and we find that
˘S{D “ s “ ρpsq has the form:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1
2 ´

f1,1
?
3

2 ´
f2,1

?
3

2 ´
f3,1

?
3

2 0 0

´
f1,1

?
3

2
f1,3

?
10r2

5
f1,3

?
10r3

5

´
f2,1

?
3

2 A
f2,3

?
10r2

5
f2,3

?
10r3

5

´
f3,1

?
3

2
f3,3

?
10r2

5
f3,3

?
10r3

5

0
f1,3

?
10r2

5
f2,3

?
10r2

5
f3,3

?
10r2

5 ´
?
5`5
10

r2
?
5p

?
5´1qr3

10

0
f1,3

?
10r3

5
f2,3

?
10r3

5
f3,3

?
10r3

5

r2
?
5p

?
5´1qr3

10 ´

?
5p

?
5`1q

10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where

A “

»

—

—

–

´
f1,1

2

2 ` f1,2
2

`
f1,3

2
?
5

5 ˚ ˚

´
f1,1f2,1

2 ` f1,2f2,2 `
f1,3

?
5f2,3
5 ´

f2,1
2

2 ` f2,2
2

`
f2,3

2
?
5

5 ˚

f1,2f3,2 `
f1,3

?
5f3,3
5 ´

f1,1f3,1
2 f2,2f3,2 `

f2,3
?
5f3,3
5 ´

f2,1f3,1
2 f3,2

2
`

f3,3
2

?
5

5 ´
f3,1

2

2

fi

ffi

ffi

fl

.

First we observe that the FP-dimensions and categorical dimensions (which may coincide) must
appear as multiples of one of the columns 2, 3 or 4. Moreover, since our category is non-integral by
Proposition 3.16, the Galois orbit of the dimension column has size 2. The FP-dimension column
of s must have all the same sign, which implies that r2 “ r3.

Let σ P GalpQ5{Qq be the automorphism defined by ζ5 Ñ ζ35 . By Galois symmetry we have:
σ̂p1q “ 1, σ̂p5q “ 6. Therefore, σ̂ has order 2. Reordering the rows of F if necessary (which
permutes the corresponding rows/columns of s) we may assume that σ̂p2q “ 2 and σ̂p3q “ 4, so
that the FP-dimensions and categorical dimensions correspond to either columns 3 or 4 (or one of
each).

We will make frequent use of the fact that σpsijq “ ϵσpiqsσ̂piq,j “ ϵσpjqsi,σ̂pjq where ϵσpiq is a sign.
Now 1{2 “ σps1,1q “ ϵσp1q{2 so that ϵσp1q “ 1. By a similar computation σps1,2q “ ϵσp1qs1,2 “

ϵσp2qs1,2, so that ϵσp2q “ 1. From σps5,5q “
?
5´5
10 “ ϵσp5qs5,6 we find that ϵσp5q “ ´1. Now we

compute two ways: σps2,5q “ ϵσp2qs2,5 “ s2,5 “ ϵσp5qs2,6 “ ´s2,6 “ ´s2,5, which implies s2,5 “ 0 so
that f1,3 “ 0. Now σps3,5q “ ϵσp3qs4,5 “ ϵσp5qs3,6 “ ´s3,6 implies f3,3 “ ˘f2,3 so that pf2,3q2 “ 1

2 .
Applying a similar calculation we see that σps1,3q “ s1,3 “ ϵσp3qs1,4 implies f2,1 “ ˘f3,1. Setting
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z “ f1,1 and y “ f2,1 orthogonality yields the following:

F “

»

—

–

z δ1
?
2y 0

y ´δ1z?
2

´δ2δ3?
2

δ2y
´δ1δ2z?

2
δ3?
2

fi

ffi

fl

.

One important consequence is that there are only 2 rows of ρpsq that have strictly non-zero entries:
the 3rd and the 4th.

Next we find that σpsi,1q “ si,1 since ϵσp1q “ 1 and σ̂p1q “ 1. Thus fi,1
?
3 P Q. Note that

z2 ` 2y2 “ 1 where z, y P 1?
3
Q, and one of s2,1{s3,1 “ ˘s2,1{s4,1 is of the form SX,Y {dX , i.e., an

eigenvalue of a fusion matrix. In particular z{y “ γ is a (rational) algebraic integer, i.e., γ P Z.
From this we find that γ2 ` 2 “ 1{y2 P Z so that 0 ă y2 ď 1{3, and so 1{3 ď z2 ď 1.

Let us compute the values of the submatrix A above. We have:

A “

»

—

–

´z2{2 ` 2y2 ˚ ˚

´3yz{2 1
2pz2 ´ y2 ` 1?

5
q ˚

´δ23yz{2 δ2
2 pz2 ´ y2 ´ 1?

5
q 1

2pz2 ´ y2 ` 1?
5
q

fi

ffi

fl

.

Since the unit object can only correspond to either row 3 or 4 and s32 “ ˘s42, s22{s32 is an
algebraic integer in Qp

?
5q. Note that

s22
s32

“
γ

3
´

4

3γ
“
γ2 ´ 4

3γ
P Q .

Therefore, γ
2´4
3γ P Z and so γ | 4. Thus, γ2 “ 1, 4 or 16. However, if γ2 “ 4 or 16, y “ ˘1?

γ2`2
R 1?

3
Q.

Thus, γ2 “ 1 or z “ ˘y.
This implies that y “ ˘ 1?

3
, from which we compute: f2,2 “ ˘ 1?

6
, f3,2 “ ˘ 1?

6
, f1,1 “ ˘ 1?

3
, and

f1,2 “ ˘ 2?
6
.

Now we may assume F “

»

—

–

´1{
?
3 2x1{

?
6 0

x2{
?
3 x3{

?
6 x4{

?
2

x5{
?
3 x6{

?
6 x7{

?
2

fi

ffi

fl

where the xi “ ˘1 after an overall

rescaling by ˘1. Orthogonality of F implies several additional conditions on the xi, so that all are
determined by the values of x2, x4, x5 and x7.

Substituting into s above, rescaling by ˘D and permuting the rows/columns so that the two
non-zero rows appear first, we have:

S “

»

—

—

—

—

—

—

—

—

—

—

—

–

1 x4x7
?
5x5

?
5x5 2x7r3 2x7r3

x4x7 1
?
5x2

?
5x2 2x4r3 2x4r3

?
5x5

?
5x2

?
5 ´

?
5 0 0

?
5x5

?
5x2 ´

?
5

?
5 0 0

2x7r3 2x4r3 0 0 ´
?
5 ´ 1

?
5 ´ 1

2x7r3 2x4r3 0 0
?
5 ´ 1 ´

?
5 ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Thus we see that the dimensions and FP-dimensions must be, up to sign choices, among 1, 2,
?
5.

In particular, any such category must be weakly integral, and there is an invertible object of order
2. Therefore, are two spherical structures on C which make 1 “ ι or 1 ‰ ι. We may assume 1
corresponds to the first row. For the first case, we find x4x7 “ x5 “ x7r3 “ 1 and x2 “ ´1.
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Thus we obtain the following S-matrix:

S “

»

—

—

—

—

—

—

—

—

–

1 1
?
5

?
5 2 2

1 1 ´
?
5 ´

?
5 2 2

?
5

?
5

?
5 ´

?
5 0 0

?
5

?
5 ´

?
5

?
5 0 0

2 2 0 0 ´
?
5 ´ 1

?
5 ´ 1

2 2 0 0
?
5 ´ 1 ´

?
5 ´ 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

For the second case, one can obtain the same S-matrix except the first two rows/columns are
interchanged, but the T -matrix is unchanged. Therefore, we have only one modular data for either
case.

Applying σ to pS, T q, we obtain the modular data for ρ – ρ335 ‘ ρ
21,02

‘ χ0 with the T -matrix

given by σpT q “ diagp1, 1, 1,´1, ζ35 , ζ
2
5 q. Both of these modular data pS, T q and pσpSq, σpT qq are

modular data of non-trivial braided zesting of MTCs (see [10]) of type (3,3). Notice that the MTCs
of type (3,3) have T -matrix of order 20.

4.4.3. Case p5, 2, 2q. It suffice to consider the case with ρ – ρ̃ :“ ρ315 ‘ ρ
21,02

‘ χ6. Then

ρ̃psq “
1

?
5

»

—

–

1 ´
?
2 ´

?
2

´
?
2 ´φ φ´1

´
?
2 φ´1 ´φ

fi

ffi

fl

‘
1

2

«

´1 ´
?
3

´
?
3 1

ff

‘ r´1s and ρ̃ptq “ diagp1, ζ5, ζ
4
5 , 1,´1,´1q .

Permute irrpCq so that ρptq “ diagp´1,´1, 1, 1, ζ5, ζ
4
5 q. By Theorem 3.23, the objects 1, ι P te3, e4u,

D “ 2{p12 ´ 1?
5
q “ 20 ` 8

?
5, and

s :“ ρpsq “

»

—

—

—

—

—

—

—

—

—

—

—

–

3b2

2 ´ 1 ´1
2p3abq 1

2

b

3
2b

1
2

b

3
2bκ 0 0

´1
2p3abq 1

2

`

1 ´ 3b2
˘

´1
2

b

3
2a ´1

2

b

3
2aκ 0 0

1
2

b

3
2b ´1

2

b

3
2a

1
20

`

2
?
5 ´ 5

˘

´ 1
20

`

2
?
5 ` 5

˘

κ ´
γ1κ?

5
´
γ2κ?

5

1
2

b

3
2bκ ´1

2

b

3
2aκ ´ 1

20

`

2
?
5 ` 5

˘

κ 1
20

`

2
?
5 ´ 5

˘

γ1?
5

γ2?
5

0 0 ´
γ1κ?

5

γ1?
5

1
10

`

´
?
5 ´ 5

˘

2γ1γ2?
5`5

0 0 ´
γ2κ?

5

γ2?
5

2γ1γ2?
5`5

1
10

`

´
?
5 ´ 5

˘

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

for some κ, γ1, γ2 P t˘1u and a, b P R such that a2 ` b2 “ 1. Since 5`2
?
5

5´2
?
5

ą 1, ι “ 1. We may

simply assume e4 “ 1. Then κ “ 1, γ1 “ γ2 “ ´1 and a ą 0 and b ă 0.
By Proposition 3.16, C is not integral. Let σ P GalpQ5{Qq be a generator. Then σ̂p3q “ 4

and ϵσp3q “ 1 since σps3,5q “ s4,5. Therefore, σ fixes s3,1, s3, 2, and so
b

3
2a,

b

3
2b P Q. Now,

s2,1 “ s2,1 P Q since ab P Q. By Theorem 3.7,
s2,1
s4,1 and

s1,2
s4,2 are in Zrζ5s X Q,

?
6a,

?
6b P Z and

p
?
6aq2 ` p

?
6bq2 “ 6. But the Diophantine equation X2 ` Y 2 “ 6 has no integral solutions, so we

conclude that ρ̃ has no realization.

4.5. Classification of modular data of type (6). In this subsection, we discuss the possible
rank-6 MDs of type p6q (i.e. MDs from dimension-6 irreducible SL2pZq symmetric representations).
This part of the classification relies upon computer computations.

46

46            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Theorem 4.16. Let C be a rank 6 modular tensor category of type p6q with dimpCq “ D2 R Z.
Then the modular data of C can be obtained, up to a choice of (spherical) pivotal structure, as a
Galois conjugate of the modular data of the following modular tensor categories:

(i) PSUp2q11 (entry 10 in Appendix C.2);
(ii) PSUp2q3 ⊠ PSUp2q5 (entry 20 in Appendix C.2);
(iii) SUp2q1 ⊠ PSUp2q5 (entry 24 in Appendix C.2);
(iv) PSUp2q3 ⊠ SUp2q2 (entry 36 in Appendix C.2).
(v) PSUp2q3 ⊠ Ep8q2 (entry 28 in Appendix C.2).
(vi) PSOp5q3{2 (non-unitary, entry 9 in Appendix C.2);

It is worth noting that (i), (ii) and (vi) have a unique pivotal structure, up to equivalence (cf.
[6]). The categories (i) and (ii) are transitive [29], and they are completely determined by their
modular data. We note that by [35], any fusion category with the same fusion rules as those of
(vi) is non-pseudo-unitary.

Recall that a symmetric SL2pZq representation ρ is defined to be an unitary representation
which has diagonal ρptq and symmetric ρpsq. Every finite-dimensional representation of SL2pZ{nZq

is equivalent to a symmetric one. Two symmetric SL2pZq representations are equivalent if and only
if they are related by a conjugation of a real orthogonal matrix (see Theorem 3.4). There are 70
inequivalent 6-dimensional symmetric irreducible SL2pZq representations of prime-power levels (cf.
Appendix A). Up to tensoring one of the 12 1-dimensional representations, other 6-dimensional
irreducible representations are tensor products of one of the 11 2-dimensional and one of the 33
3-dimensional irreducible symmetric representations of distinct prime-power levels.

Since there are only a finite number of SL2pZq representations, up to equivalence, for any given
dimension, we can examine representatives of each of those symmetric representations by com-
puter and reject those representations that do not satisfy the following necessary conditions (for a
symmetric SL2pZq representation equivalent to an MD representation):

(1) If all the eigenvalues of ρptq are distinct (non-degenerate) then ρpsq has a row that contains
no zero. Note that when ρptq has non-degenerate spectrum, the matrix ρpsq differs from
that of an MD representation only by a conjugation by signed diagonal matrix. In this case,
ρpsq must have a row that contains no zero (i.e. the row corresponding to the unit object).

(2) Let ρpsqndeg (or Mndeg) be the non-degenerate block of ρpsq (or M), (i.e., corresponding
to the multiplicity 1 eigenvalues of the diagonal matrix ρptq, see section 3.4). Then the
conductor of ρpsqndeg divides ordpρptqq (cf. Proposition 3.9). If the ρptq-spectrum is non-
degenerate then we may drop the ndeg superscript.

(3) σpρpsqndegq “
`

ρaptqρpsqρbptqρpsqρaptq
˘ndeg

for any σ P GalpQ̄q, where σpζnq “ ζan for an
unique integer a modulo n. Here n “ ordpρptqq and b satisfies ab ” 1 mod n (cf. Theorem
3.7). Again, this is because ρpsqndeg can only differ from that of an MD representation by
a conjugation of signed diagonal matrix.

Since the weakly integral rank-6 MD of MTCs are classified, we can exclude symmetric SL2pZq

representations that must produce such MDs. Thus we also reject the representations that satisfy
the following conditions, both of which imply weak integrality:

(1) pordpρptqq P t2, 3, 4, 6u. In fact, this implies the category is pointed, see Proposition 3.16(i).
(2) The squares of the matrix entries of ρpsq in each row containing no zeros are all rational num-

bers, and ρ is non-degenerate. Indeed, in this case 1{D2, pdi{Dq2 and pdi FPdimpXiq{Dq2

are rational, where column i is the unique strictly positive (or negative) column. (This
condition only rejects one case. See entry 566 in the Supplementary material section of the
arXiv version of this paper.)

47

47            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

We remark that there are 6-dimensional irreducible SL2pZq representations where ρptq are degen-
erate, for example, the representation 615 in Appendix A. Such a representation is rejected since the
conductor of ρpsqndeg is 40 which does not divides ordpρptqq “ 5 (see also entry 582 in Supplementary
material Section of the arXiv version of this paper).

All the passing symmetric SL2pZq representations can be grouped into orbits generated by Galois
conjugations and tensoring 1-dimensional representations. There are 7 such orbits. A representative
for each orbit is listed in Section B.2, which have pdims; levelsq “ p6; 9q, p6; 13q, p6; 15q, p6; 16q,
p6; 35q, p6; 56q, p6; 80q.

Fortunately, we find that all these SL2pZq representations have non-degenerate ρptq, so they can
only possibly differ from an MD representation by a conjugation of signed diagonal matrix, if they
indeed are associated with MDs. We can then search through the finite number of signed diagonal
conjugations, and find the pS, T q matrices that satisfy the conditions listed in Theorems 2.1 and 3.7.
The results are given in Section C.2, where pS, T q matrices are found from SL2pZq representations
that have pdims; levelsq “ p6; 9q, p6; 13q, p6; 16q, p6; 35q, p6; 56q, p6; 80q. Those computer assisted
calculations are described in detail in the Appendix.

5. Classification of modular data of rank=6: non-admissible types

In this section, we complete the classification of rank=6 MDs by eliminating the remaining types.

Theorem 5.1. There are no rank=6 MTCs of types p3, 1, 1, 1q, p2, 2, 2q, p2, 2, 1, 1q, p2, 1, 1, 1, 1q, p5, 1q,
or p1, 1, 1, 1, 1, 1q.

Obviously, type V ec is the only MTC of type (1). However, no MTCs of rank n ą 1 is of type
p1, . . . , 1q, as the associated SL2pZq representations ρ – nχi for some integer i by Corollary 3.21.
In particular, ρpsq has zeros in each row if n ą 1.

5.1. Nonexistence of type p3, 1, 1, 1q.

Proposition 5.2. There does not exist any modular tensor category of type (3,1,1,1) .

Proof. Assume contrary. Let C be a modular tensor category of type p3, 1, 1, 1q and ρ an SL2pZq

representation of C. Then
ρ – ρ0 ‘ χ1 ‘ χ2 ‘ χ3 .

where ρ0 is irreducible of dimension 3 and χi, i “ 1, 2, 3, are 1-dimensional representations. By
Lemma 3.20, specpχiptqq Ă specpρ0ptqq for i “ 1, 2, 3. One may assume ρ0 has a minimal t-
spectrum. Then ρ0 must have a prime power level. By Appendix A, the level of ρ0 can only be
3, 4, 5, 7, 8 or 16. The t-spectrum of any 3-dimensional irreducible representations of level 7 or
16 does not contain any 12-th root of unity. Therefore, the level of ρ0 can only be 3, 4, 5, or 8. It
suffices to show that none of these levels is possible.

If ρ0 were of level 3 or 4, then ordpρptqq “ 3 or 4, by Lemma 3.20. This implies ordpT q “ 2, 3
or 4 and hence C is integral by Theorem 3.14. By Proposition 3.16, C must be of type (4,2), a
contradiction. Therefore, ρ0 can only be of level 5 or 8.

If ρ0 were of level 5, then ordpρptqq “ 5 by Lemma 3.20. Hence, ordpT q “ 5 which is not possible
by Proposition 3.22.

If the level of ρ0 were 8, then ρ0 – ρ
31,08

or ρ
33,08

as they are the 3-dimensional irreducible

representations of level 8 with a minimal t-spectrum. In either case, specpρ0ptqq has exactly one
12-th root of unity, which is 1, and ρ0 is odd. Therefore, ρ – ρ0 ‘ 3χ0 by Corollary 3.21. This
implies Trpρps2qq “ 0, which is impossible for any MD representation. □
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5.2. Nonexistence of types (2,2,2), (2,2,1,1) and (2,1,1,1,1). We will prove the following
theorem which leads to the nonexistence of modular tensor categories of these types.

Theorem 5.3. Let C a be modular tensor category with rank C ą 2, and ρ an SL2pZq representation
of C. If all the irreducible subrepresentations of ρ have dimensions ď 2, then ordpT q “ 1, 2, 3, 4, or
6 and therefore C is integral.

Proof. If every irreducible subrepresentation of ρ is 1-dimensional, then C is of type p1, . . . , 1q

which can only be trivial by the beginning remark of this section. In particular, ordpT q “ 1 and C
is integral.

Now, we assume ρ admits a 2-dimensional irreducible subrepresentation ρ0. By tensoring a
1-dimensional representation to ρ, we may assume the level of ρ0 to be 2, 3, 5, or 8.

Suppose ρ0 is of level 5. Then each irreducible subrepresentations ρ1
0 of ρ which is not isomorphic

to ρ0 satisfies specpρ1
0ptqq X specpρ0ptqq “ H by Appendix A. This implies ρ – ℓρ0, but this is

impossible by Proposition 3.19. Therefore, ρ0 cannot have level 5.
Assume ρ0 is of level 8. Note that the t-spectrum of any 2-dimensional level 8 irreducible

representation consists of primitive 8-th roots of unity. By the t-spectra criterion and Appendix A,
all the irreducible subrepresentations of ρ are of dimension 2 and level 8. In particular, ordpT q “

pordpρptqq “ 4.
If ρ0 is of level 2 or 3, it follows from the preceding discussion that all the 2-dimensional irreducible

subrepresentations of ρ are of level 2 or 3. By Lemma 3.20, ordpρptqq “ 2, 3 or 6 and so ordpT q “ 2, 3
or 6.

The last assertion follows from Theorem 3.14. □

Corollary 5.4. There is no modular tensor category of types p2, 2, 2q, p2, 2, 1, 1q or p2, 1, 1, 1, 1q.

Proof. Suppose there exists a modular tensor category C of any of these types. By Theorem 5.3, C
is integral, but this contradicts Proposition 3.16 which shows C is of type p4, 2q. □

5.3. Nonexistence of type p5, 1q. Suppose that C is a modular tensor category of type p5, 1q, and
ρ an SL2pZq representation of C. Then C is not integral by Proposition 3.16, and ρ – ρ0 ‘ ρ1 where
ρ0, ρ1 are irreducible of dimension 5 and 1 respectively. By tensoring a 1-dimensional representation
of SL2pZq, one may assume ρ0 is of prime power level. By Appendix A, the level of ρ0 can only be
11 or 5.

In the former case the t-spectrum consists primitive 11-th roots of unity. Since ρ1ptq is a 12 root
of unity, the t-spectrum criteria shows this is impossible.

Now if ρ2 has level 5 and ρ2 – ρ515 . This implies ρ1 – χ0. Let ρ̃ “ χ0 ‘ ρ515 . Then ρ̃ptq “

diagp1, 1, ζ5, ζ
2
5 , ζ

3
5 , ζ

4
5 q, and

ρ̃psq “ r1s ‘

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 ´1
5

?
6
5

?
6
5

?
6
5

?
6
5

0
?
6
5

3´
?
5

10 ´1
5 ´ 1?

5
1?
5

´ 1
5

3`
?
5

10

0
?
6
5 ´1

5 ´ 1?
5

3`
?
5

10
3´

?
5

10
1?
5

´ 1
5

0
?
6
5

1?
5

´ 1
5

3´
?
5

10
3`

?
5

10 ´1
5 ´ 1?

5

0
?
6
5

3`
?
5

10
1?
5

´ 1
5 ´1

5 ´ 1?
5

3´
?
5

10

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

There exists a real orthogonal matrix U “ diagpf, ε1, ε2, ε3, ε4q such that ρpsq “ Uρ̃psqUJ and
ρptq “ ρ̃ptq , where f P O2pRq and εi “ ˘1.

The group GalpQ5{Qq is generated by σ defined by σpζ5q “ ζ25 , and

Dρ̃pσq “ I2 ‘ J4 where J4 “ rδi,5´js1ďi,jď4 .
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So σ̂ fixes 1 and 2. Since C is non-integral, the row corresponding to 1 must be one of the last 4.
Since ρpsqndeg and ρ̃psqndeg are the same up to some signs, D “ 10

3˘
?
5
which has norm 25.

Observe that each row of ρ̃psqndeg has the entries ´1
5 ˘ 1?

5
. Therefore, p´1

5 ˘ 1?
5
q{3¯

?
5

10 “ 1˘
?
5

are dimensions of some objects up to a sign. However, their norms are -4 which is not a divisor of
25, a contradiction. So, we conclude that such a category cannot exist.

6. Summary and Future Directions

We have developed tools for classifying modular data directly from representations of SL2pZq,
and have applied them to provide a classification of rank 6 modular data. Sufficiently many of
these tools have been implemented as computer algorithms to yield a purely computational ap-
proach to the rank 6 classification. A purely “by hand” approach to higher ranks is too involved
for the currently theory, but the computational approach can be implemented in higher ranks. It
should be noted that in this work we used the classification of weakly integral modular data [4] of
rank up to 7 to simplify the computer calculations. For higher ranks this will require further work.
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A. List of SL2pZq irreducible representations of prime-power levels

In this section, we list all the SL2pZq symmetric irreducible representations of dimension 1 – 6,
whose level (l “ ordpρptqq) is a power of single prime number, which are generated by the GAP
program [27]. In the list, ρptq is presented in term of topological spins ps̃1, s̃2, ¨ ¨ ¨ q (s̃i “ argpρaptqiiq).

Note that ρpsq is symmetric and ρpsqij ’s are either all real or all imaginary. When ρpsqij ’s
are all real, ρpsq is presented as pρ11, ρ12, ρ13, ρ14, ¨ ¨ ¨ ; ρ22, ρ23, ρ24, ¨ ¨ ¨ q. In this case, ρpsq2 “ id
and the representation ρ is said to be even. When ρpsqij ’s are all imaginary, ρpsq is presented as
ip´iρ11,´iρ12,´iρ13,´iρ14, ¨ ¨ ¨ ; ´iρ22,´iρ23,´iρ24, ¨ ¨ ¨ q, or as psmn q´1psmn ρ11, s

m
n ρ12, s

m
n ρ13, s

m
n ρ14,

¨ ¨ ¨ ; smn ρ22, s
m
n ρ23, s

m
n ρ24, ¨ ¨ ¨ q, where smn :“ ζmn ´ ζ´m

n . In this case, ρpsq2 “ ´ id and the represen-
tation ρ is said to be odd. In any case, the numbers inside the bracket p¨ ¨ ¨ q are all real. We can
tell a representation to be even or odd by the absence or the presence of i or psmn q´1in front of the
bracket p¨ ¨ ¨ q.

We note that two symmetric representations are equivalent up to a permutation of indices, and
a conjugation of signed diagonal matrix. To choose the ordering in indices, we introduce arrays
Oi “ rDenominatorOfps̃iq, s̃i, ρiis. The order of two arrays is determined by first comparing the
lengths of the two arrays. If the lengths are equal, we then compare the first elements of the two
arrays. If the first elements are equal, we then compare the second elements of the two arrays, etc.
To compare two cyclotomic numbers, here we used the ordering of cyclotomic numbers provided by
GAP computer algebraic system. We order the indices to make O1 ď O2 ď O3 ¨ ¨ ¨ . The conjugation
of signed diagonal matrix is chosen to make ´ρpsq1j ă ρpsq1j for j “ 2, 3, ¨ ¨ ¨ . If ρpsq1j “ 0, we will
try to make ´ρpsq2j ă ρpsq2j , etc.

All the prime-power-level irreducible representations are labeled by index da,ml,k , where d is the

dimension and l is the level of the representation. The irreducible representations of a given d, l can
be grouped into several orbits, generated by Galois conjugations and tensoring of 1-dimensional
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representations that do not change the level l: the k in da,ml,k labels those different orbits. If there

is only 1 orbit for a given d, l, the index k will be dropped.
The irreducible representation labeled by da,ml,k is generated from the irreducible representation

labeled by d1,0l,k via the following Galois conjugations and tensoring of 1-dimensional representations

ρda,ml,k
ptq “ σa

`

ρ
d1,0l,k

ptq
˘

e2πi
m
12

ρda,ml,k
psq “ σa

`

ρ
d1,0l,k

psq
˘

e´2πim
4 (A.1)

where the Galois conjugation σa is in GalpQnq with n be the least common multiple of ordpρ
d1,0l,k

ptqq

and the conductor of ρ
d1,0l,k

psq. The Galois conjugation σa is labeled by an integer a, which is given

by

σa
`

e2πi{n
˘

“ e2πia{n. (A.2)

Also m P Z12 is such that ordpρ
d1,0l,k

ptqe2πi
m
12 q “ ordpρ

d1,0l,k
ptqq. Due to this condition, when l is not

divisible by 2 and 3, m can only be 0. In this case, we will drop m. Here we choose d1,0l,k to be the

representation in the orbit with minimal rs̃1, s̃2, ¨ ¨ ¨ s.
The numbers of distinct irreducible representations with prime-power level (PPL) in each di-

mension are given by

dim: 1 2 3 4 5 6 7 8 9 10 11 12

# of irreps with PPL 6 11 33 18 3 70 3 10 4 7 3 176

# of irreps 12 54 136 180 36 720 36 456 476 222 36 3214

(A.3)

In the above we also list the numbers of distinct irreducible representations, which are tensor
products of the irreducible representations with prime-power levels.

In the following tables, we list all irreducible representations with prime-power levels for rank
2, 3, 4, 5. For rank 6, to save space, we only list all irreducible representations with prime-power
levels that have a form ρ

d1,0l,k
. Other irreducible representations, with prime-power levels and the

same dimension, can be obtained from those listed ones via Galois conjugations and tensoring 1-
dimensional representations. In the Supplementary Material section of the arXiv version of the
article we list all distinct irreducible representations of prime-power levels. In the tables cmn :“
ζmn ` ζ´m

n and smn :“ ζmn ´ ζ´m
n .

da,ml,k # ρptq, ρpsq

111 1 p0q, (1)

11,02 2 p12q, (´1)

11,03 3 p13q, (1)

11,43 4 p23q, (1)

11,04 5 p14q, i(1)

11,64 6 p34q, i(´1)

da,ml,k # ρptq, ρpsq

51

51            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

21,02 1 p0, 12q, (´1
2 , ´

?
3
2 ; 1

2)

21,03 2 p0, 13q, ps13q´1(1, ´
?
2; ´1)

21,83 3 p0, 23q, ps13q´1(´1, ´
?
2; 1)

21,43 4 p13 ,
2
3q, ps13q´1(1, ´

?
2; ´1)

21,04 5 p14 ,
3
4q, i(´1

2 ,
?
3
2 ; 1

2)

215 6 p15 ,
4
5q, ps15q´1(1, ´1`

?
5

2 ; ´1)

225 7 p25 ,
3
5q, ps25q´1(1, 1´

?
5

2 ; ´1)

21,08 8 p18 ,
3
8q, (´

?
2
2 ,

?
2
2 ;

?
2
2 )

21,98 9 p18 ,
7
8q, i(´

?
2
2 ,

?
2
2 ;

?
2
2 )

21,38 10 p38 ,
5
8q, i(´

?
2
2 ,

?
2
2 ;

?
2
2 )

21,68 11 p58 ,
7
8q, (

?
2
2 ,

?
2
2 ; ´

?
2
2 )

da,ml,k # ρptq, ρpsq

31,03 1 p0, 13 ,
2
3q, (´1

3 ,
2
3 ,

2
3 ; ´1

3 ,
2
3 ; ´1

3)

31,04 2 p0, 14 ,
3
4q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

31,34 3 p0, 12 ,
1
4q, i(´1

2 ,
1
2 ,

?
2
2 ; ´1

2 ,
?
2
2 ; 0)

31,94 4 p0, 12 ,
3
4q, i(12 ,

1
2 ,

?
2
2 ; 1

2 , ´
?
2
2 ; 0)

31,64 5 p12 ,
1
4 ,

3
4q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

315 6 p0, 15 ,
4
5q, (

?
5
5 , ´

?
10
5 , ´

?
10
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 )

335 7 p0, 25 ,
3
5q, (´

?
5
5 , ´

?
10
5 , ´

?
10
5 ; ´5´

?
5

10 , 5`
?
5

10 ; ´5´
?
5

10 )

317 8 p17 ,
2
7 ,

4
7q, (´

c128?
7
, ´

c328?
7
,
c528?
7
;
c528?
7
, ´

c128?
7
; ´

c328?
7
)

337 9 p37 ,
5
7 ,

6
7q, (´

c328?
7
, ´

c128?
7
,
c528?
7
;
c528?
7
, ´

c328?
7
; ´

c128?
7
)

31,08 10 p0, 18 ,
5
8q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

33,08 11 p0, 38 ,
7
8q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

33,38 12 p14 ,
1
8 ,

5
8q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

31,38 13 p14 ,
3
8 ,

7
8q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

31,68 14 p12 ,
1
8 ,

5
8q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

33,68 15 p12 ,
3
8 ,

7
8q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

33,98 16 p34 ,
1
8 ,

5
8q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)
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31,98 17 p34 ,
3
8 ,

7
8q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

31,016 18 p18 ,
1
16 ,

9
16q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

37,316 19 p18 ,
3
16 ,

11
16q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

35,616 20 p18 ,
5
16 ,

13
16q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

33,916 21 p18 ,
7
16 ,

15
16q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

35,916 22 p38 ,
1
16 ,

9
16q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

33,016 23 p38 ,
3
16 ,

11
16q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

31,316 24 p38 ,
5
16 ,

13
16q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

37,616 25 p38 ,
7
16 ,

15
16q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

31,616 26 p58 ,
1
16 ,

9
16q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

37,916 27 p58 ,
3
16 ,

11
16q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

35,016 28 p58 ,
5
16 ,

13
16q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

33,316 29 p58 ,
7
16 ,

15
16q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

35,316 30 p78 ,
1
16 ,

9
16q, (0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

33,616 31 p78 ,
3
16 ,

11
16q, i(0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

31,916 32 p78 ,
5
16 ,

13
16q, (0,

?
2
2 ,

?
2
2 ; ´1

2 ,
1
2 ; ´1

2)

37,016 33 p78 ,
7
16 ,

15
16q, i(0,

?
2
2 ,

?
2
2 ; 1

2 , ´1
2 ;

1
2)

da,ml,k # ρptq, ρpsq

415,1 1 p15 ,
2
5 ,

3
5 ,

4
5q, ps25q´1(´5`

?
5

10 , ´
?
15
5 , 3´3

?
5

2
?
15

, 5´3
?
5

10 ; ´5´3
?
5

10 , 5`
?
5

10 ,

´3´3
?
5

2
?
15

; 5´3
?
5

10 , ´
?
15
5 ; 5`

?
5

10 )

415,2 2 p15 ,
2
5 ,

3
5 ,

4
5q, (

?
5
5 , ´5´

?
5

10 , ´5`
?
5

10 ,
?
5
5 ; ´

?
5
5 ,

?
5
5 , 5`

?
5

10 ; ´
?
5
5 , 5´

?
5

10 ;
?
5
5 )

417 3 p0, 17 ,
2
7 ,

4
7q, i(´

?
7
7 ,

?
14
7 ,

?
14
7 ,

?
14
7 ; ´

c27?
7
, ´

c17?
7
, ´

c37?
7
; ´

c37?
7
, ´

c27?
7
;

´
c17?
7
)

437 4 p0, 37 ,
5
7 ,

6
7q, i(

?
7
7 ,

?
14
7 ,

?
14
7 ,

?
14
7 ;

c17?
7
,
c27?
7
,
c37?
7
;

c37?
7
,
c17?
7
;

c27?
7
)

41,08 5 p18 ,
3
8 ,

5
8 ,

7
8q, i(

?
2
4 ,

?
6
4 ,

?
6
4 ,

?
2
4 ;

?
2
4 , ´

?
2
4 , ´

?
6
4 ; ´

?
2
4 ,

?
6
4 ; ´

?
2
4 )

41,38 6 p18 ,
3
8 ,

5
8 ,

7
8q, (

?
2
4 ,

?
2
4 ,

?
6
4 ,

?
6
4 ; ´

?
2
4 ,

?
6
4 , ´

?
6
4 ; ´

?
2
4 , ´

?
2
4 ;

?
2
4 )

41,09,1 7 p0, 19 ,
4
9 ,

7
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; ´1

3c
1
36,

1
3c

7
36,

1
3c

5
36;

1
3c

5
36, ´1

3c
1
36;

1
3c

7
36)

53

53            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

42,09,1 8 p0, 29 ,
5
9 ,

8
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; ´1

3c
7
36,

1
3c

1
36, ´1

3c
5
36; ´1

3c
5
36, ´1

3c
7
36;

1
3c

1
36)

41,49,1 9 p13 ,
1
9 ,

4
9 ,

7
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; 1

3c
7
36,

1
3c

5
36, ´1

3c
1
36; ´1

3c
1
36,

1
3c

7
36;

1
3c

5
36)

42,49,1 10 p13 ,
2
9 ,

5
9 ,

8
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; 1

3c
1
36, ´1

3c
5
36, ´1

3c
7
36; ´1

3c
7
36,

1
3c

1
36;

´1
3c

5
36)

41,89,1 11 p23 ,
1
9 ,

4
9 ,

7
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; 1

3c
5
36, ´1

3c
1
36,

1
3c

7
36;

1
3c

7
36,

1
3c

5
36; ´1

3c
1
36)

42,89,1 12 p23 ,
2
9 ,

5
9 ,

8
9q, i(0,

?
3
3 ,

?
3
3 ,

?
3
3 ; ´1

3c
5
36, ´1

3c
7
36,

1
3c

1
36;

1
3c

1
36, ´1

3c
5
36;

´1
3c

7
36)

41,09,2 13 p0, 19 ,
4
9 ,

7
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
2
9,

1
3c

4
9,

1
3c

1
9;

1
3c

1
9,

1
3c

2
9;

1
3c

4
9)

45,09,2 14 p0, 29 ,
5
9 ,

8
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
4
9,

1
3c

2
9,

1
3c

1
9;

1
3c

1
9,

1
3c

4
9;

1
3c

2
9)

41,49,2 15 p13 ,
1
9 ,

4
9 ,

7
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
4
9,

1
3c

1
9,

1
3c

2
9;

1
3c

2
9,

1
3c

4
9;

1
3c

1
9)

45,49,2 16 p13 ,
2
9 ,

5
9 ,

8
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
2
9,

1
3c

1
9,

1
3c

4
9;

1
3c

4
9,

1
3c

2
9;

1
3c

1
9)

41,89,2 17 p23 ,
1
9 ,

4
9 ,

7
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
1
9,

1
3c

2
9,

1
3c

4
9;

1
3c

4
9,

1
3c

1
9;

1
3c

2
9)

45,89,2 18 p23 ,
2
9 ,

5
9 ,

8
9q, (0, ´

?
3
3 , ´

?
3
3 , ´

?
3
3 ; 1

3c
1
9,

1
3c

4
9,

1
3c

2
9;

1
3c

2
9,

1
3c

1
9;

1
3c

4
9)

da,ml,k # ρptq, ρpsq

515 1 p0, 15 ,
2
5 ,

3
5 ,

4
5q, (´1

5 ,
?
6
5 ,

?
6
5 ,

?
6
5 ,

?
6
5 ; 3´

?
5

10 , ´1`
?
5

5 , ´1´
?
5

5 , 3`
?
5

10 ;
3`

?
5

10 , 3´
?
5

10 , ´1´
?
5

5 ; 3`
?
5

10 , ´1`
?
5

5 ; 3´
?
5

10 )

5111 2 p 1
11 ,

3
11 ,

4
11 ,

5
11 ,

9
11q, (´

c344?
11
, ´

c744?
11
, ´

c544?
11
, ´

c144?
11
, ´

c944?
11
;

c944?
11
, ´

c344?
11
,

c544?
11
,
c144?
11
;
c144?
11
,
c944?
11
,
c744?
11
;
c744?
11
, ´

c344?
11
;
c544?
11
)

5211 3 p 2
11 ,

6
11 ,

7
11 ,

8
11 ,

10
11q, (

c544?
11
,

c344?
11
, ´

c744?
11
, ´

c144?
11
, ´

c944?
11
;

c744?
11
,

c944?
11
,

c544?
11
,

c144?
11
;
c144?
11
, ´

c344?
11
,
c544?
11
;
c944?
11
,
c744?
11
; ´

c344?
11
)

da,ml,k # ρptq, ρpsq

615 1 p0, 0, 15 ,
2
5 ,

3
5 ,

4
5q, ps25q´1(

?
5
5 , ´5´

?
5

10 , ´
?
10
5 , ´5`

?
5

10 , 5´3
?
5

10 , 1´
?
5?

10
;

´
?
5
5 , ´1`

?
5?

10
, 5´3

?
5

10 , 5`
?
5

10 , ´
?
10
5 ; 5´

?
5

10 , 1´
?
5?

10
, ´

?
10
5 , ´

?
5
5 ; ´

?
5
5 ,

5´
?
5

10 ,
?
10
5 ;

?
5
5 , 1´

?
5?

10
; ´5´

?
5

10 )
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617,1 2 p17 ,
2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7q, i(17c

2
56 ´ 1

7c
3
56 ` 1

7c
11
56,

1
7c

5
56 ` 1

7c
6
56 ` 1

7c
9
56,

1
7c

3
112 ´

1
7c

9
112 ` 1

7c
11
112 ` 1

7c
23
112,

2
7c

1
56 ´ 1

7c
3
56 ´ 1

7c
5
56 ` 1

7c
7
56 ` 1

7c
9
56 ´ 1

7c
10
56 ´ 1

7c
11
56,

1
7c

1
112 ` 1

7c
3
112 ´ 1

7c
5
112 ´ 1

7c
7
112 ´ 1

7c
9
112 ´ 1

7c
11
112 ` 2

7c
13
112 ` 1

7c
15
112 ` 2

7c
17
112 `

1
7c

19
112 ´ 1

7c
21
112 ´ 1

7c
23
112,

1
7c

1
112 ` 1

7c
5
112 ´ 1

7c
15
112 ` 1

7c
19
112;

2
7c

1
56 ´ 1

7c
3
56 ´
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B. A list of all candidate SL2pZq representations of MTCs

We will follow the strategy outlined in Section 3.4. We first try to obtain a list that includes
all SL2pZq representations associated with MTCs. Certainly, one such list is the list of all SL2pZq

representations of finite levels. But such a list is very inefficient since most representations in the
list are not associated with MTCs. So in this section we collect the conditions that a representation
coming from a MTC must satisfy, to obtain a shorter list.

B.1. The conditions on SL2pZq representations. Some of the conditions on SL2pZq represen-
tations are obtained from the necessary conditions on modular data Propositions B.1 and 3.7, and
others are discussed in the main text of this paper. Let us first translate the conditions on the
pS, T q matrices to condition on an MD representations ρα:

Proposition B.1. Given a modular data S, T of rank r, let ρα be any one of its 12 MD represen-
tations. Then ρα has the following properties:

(1) ρα is an SL2pZq representation of level ordpραptqq, and ordpT q | ordpραptqq | 12 ordpT q .
(2) The conductor of the elements of ραpsq divides ordpραptqq.
(3) If ρα is a direct sum of two SL2pZq representations

ρα – ρ‘ ρ1, (B.1)

then the eigenvalues of ρptq and ρ1ptq must overlap. This implies that if ρα “ ρ ‘ χ1 ‘

¨ ¨ ¨ ‘ χℓ for some 1-dimensional representations χ1, . . . , χℓ, then χ1, ¨ ¨ ¨χℓ are the same
1-dimensional representation.

(4) Suppose that ρα – ρ‘ ℓχ for an irreducible representation ρ with non-degenerate ρptq, and
an 1-dimensional representation χ. If ℓ ‰ 2 dimpρq ´ 1 or ℓ ą 1, then pρpsqχpsq´1q2 “ id.

(5) ρα satisfies

ρα ≇ nρ (B.2)

for any integer n ą 1 and any representation ρ such that ρptq is non-degenerate.
(6) If ραpsq2 “ ˘ id (i.e. if the modular data or MTC is self dual), pordpραptqq is a prime

and satisfies pordpραptqq “ 1 mod 4, then the representation ρα cannot be a direct sum of
a d-dimensional irreducible SL2pZq representation and two or more 1-dimensional SL2pZq

representations with d “ pp` 1q{2.
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(7) Let 3 ă p ă q be prime such that pq ” 3 mod 4 and pordpραptqq “ pq, then the rank
r ‰

p`q
2 ` 1. Moreover, if p ą 5, rank r ą

p`q
2 ` 1.

(8) The number of self dual objects is greater than 0. Thus

Trpραpsq2q ‰ 0. (B.3)

Since Trpραpsq2q ‰ 0, let us introduce

C “
Trpραpsq2q

|Trpραpsq2q|
ραpsq2. (B.4)

The above C is the charge conjugation operator of MTC, i.e. C is a permutation matrix of
order 2. In particular, TrpCq is the number of self dual objects. Also, for each eigenvalue θ̃
of ραptq,

Trθ̃pCq ě 0, (B.5)

where Trθ̃ is the trace in the degenerate subspace of ραptq with eigenvalue θ̃.
(9) For any Galois conjugation σ in GalpQordpραptqqq, there is a permutation of the indices,

i Ñ σ̂piq, and ϵσpiq P t1,´1u, such that

σ
`

ραpsqi,j
˘

“ ϵσpiqραpsqσ̂piq,j “ ραpsqi,σ̂pjqϵσpjq (B.6)

σ2
`

ραptqi,i
˘

“ ραptqσ̂piq,σ̂piq, (B.7)

for all i, j.
(10) By [11, Theorem II], Dραpσq defined in (3.6) must be a signed permutation

pDραpσqqi,j “ ϵσpiqδσ̂piq,j .

and satisfies

σpραpsqq “ Dραpσqραpsq “ ραpsqDJ
ραpσq,

σ2pραptqq “ DραpσqραptqDJ
ραpσq (B.8)

(11) There exists a u such that ραpsquu ‰ 0 and

ραpsqui ‰ 0 P R,
ραpsqij

ραpsquu
,
ραpsqij

ραpsquj
P OordpT q,

ραpsqij

ραpsqi1j1

P QordpT q,

N ij
k “

r´1
ÿ

l“0

ραpsqliραpsqljραps´1qlk

ραpsqlu
P N.

@ i, j, k “ 0, 1, . . . , r ´ 1. (B.9)

(u corresponds the unit object of MTC).
(12) Let n P N`. The nth Frobenius-Schur indicator of the i-th simple object

νnpiq “

r´1
ÿ

j,k“0

N jk
i ραpsqjuθ

n
j rραpsqkuθ

n
k s˚ “

r´1
ÿ

j,k“0

N jk
i ραptnsqjuραpt´ns´1qku

“

r´1
ÿ

j,k,l“0

ραpsqljραpsqlkρ
˚
αpsqli

ραpsqlu
ραptnsqjuραpt´ns´1qku

“

r´1
ÿ

l“0

ραpstnsqluραpst´ns´1qluραps´1qli

ραpsqlu
(B.10)
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is a cyclotomic integer whose conductor divides n and ordpT q. The 1st Frobenius-Schur
indicator satisfies ν1piq “ δiu while the 2nd Frobenius-Schur indicator ν2piq satisfies ν2piq “

˘ραps2qii (see [3, 24, 33]).
(13) If we further assume the modular data or the MTC to be non-integral, then pordpρ̃αptqq “

ordpT q R t2, 3, 4, 6u. In particular, ordpραptqq R t2, 3, 4, 6u.

In Section 3.1 and Appendix A, we have explicitly constructed all irreducible unitary represen-
tations of SL2pZq (up to unitary equivalence). However, this only gives the SL2pZq representations
in some arbitrary basis, not in the basis yielding MD representations (i.e. satisfying (3.7)). We
can improve the situation by choosing a basis to make ρptq diagonal and ρpsq symmetric. Since we
are going to use several types of bases, let us define these choices:

Definition B.2. An unitary SL2pZq representations ρ̃ is called a general SL2pZq matrix repre-
sentations if ρ̃ptq is diagonal ∗∗. A general SL2pZq matrix representation ρ̃ is called symmetric
if ρ̃psq is symmetric. An general SL2pZq matrix representation ρ̃ is called irrep-sum if ρ̃psq, ρ̃ptq

are matrix-direct sum of irreducible SL2pZq representations. An SL2pZq matrix representations ρ̃
is called an SL2pZq representation of modular data S, T , if ρ̃ is unitary equivalent to an MD
representation of the modular data, i.e.,

ρ̃psq “ e´2πiα
4
1

D
USU :, ρ̃ptq “ UTU :e2πip

´c
24

` α
12

q, (B.11)

for some unitary matrix U and α P Z12, where c is the central charge.††

Through our explicit construction, we observe that all irreducible unitary representations of
SL2pZq are unitarily equivalent to symmetric matrix representations of SL2pZq, at least for dimen-
sion equal or less than 12.

We note that different choices of orthogonal basis give rise to different matrix representations
of SL2pZq. The modular data S, T is obtained from some particular choices of the basis. Some
properties on the MD representations of a modular data do not depend on the choices of basis
in the eigenspaces of ρ̃ptq (induced by the block-diagonal unitary transformation U in (B.11) that
leaves ρ̃ptq invariant). Those properties remain valid for any general SL2pZq representations ρ̃ of the
modular data. In the following, we collect the basis-independent conditions on the SL2pZq matrix
representations of modular data. Those conditions have been discussed in the main text.

Proposition B.3. Let ρ̃ be a general SL2pZq matrix representations of a modular data or a MTC.
Then ρ̃ must satisfy the following conditions:

(1) If ρ̃ is a direct sum of two SL2pZq representations

ρ̃ – ρ‘ ρ1, (B.12)

then the diagonals entries of ρptq and ρ1ptq must overlap.
(2) Suppose that ρ̃ – ρ‘ ℓχ for an irreducible representation ρ with ρptq non-degenerate, and a

character χ. If ℓ ‰ 1 and ℓ ‰ 2 dimpρq ´ 1, then pρpsqχpsq´1q2 “ id.
(3) If ρ̃psq2 “ ˘ id, and pordpρ̃ptqq “ 1 mod 4 is a prime, then the representation ρ̃ cannot

be a direct sum of a d-dimensional irreducible SL2pZq representation and two or more 1-
dimensional SL2pZq representations with d “ ppordpρ̃ptqq ` 1q{2.

(4) ρ̃ satisfies

ρ̃ ≇ nρ (B.13)

for any integer n ą 1 and any representation ρ such that ρptq is non-degenerate.

∗∗We will consider only SL2pZq matrix representations with diagonal ρ̃ptq in this paper.
††Note that D2 is always positive and D in (B.11) is the positive square root of D2, even for non-unitary cases.
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(5) Let 3 ă p ă q be prime such that pq ” 3 mod 4 and pordpρptqq “ pq, then the rank
r ‰

p`q
2 ` 1. Moreover, if p ą 5, rank r ą

p`q
2 ` 1.

(6) If we further assume D2 of the modular data or the MTC to be non-integral, then pordpρ̃ptqq “

ordpT q R t2, 3, 4, 6u. This implies that ordpρ̃ptqq R t2, 3, 4, 6u.

Some properties of an MD representation depend on the choice of basis. To make use of those
properties, we can construct some combinations of ρ̃psqs that are invariant under the block-diagonal
unitary transformation U .

The eigenvalues of ρ̃ptq partition the indices of the basis vectors. To construct the invariant

combinations of ρ̃psq, for any eigenvalue θ̃ of ρ̃ptq, let

Iθ̃ “ ti
ˇ

ˇ ρ̃ptqii “ θ̃u. (B.14)

Let I “ Iθ̃, J “ Jθ̃1 , K “ Kθ̃2 for some eigenvalues θ̃, θ̃1, θ̃2 of ρ̃ptq. We see that the following
uniform polynomials of ρ̃psq are invariant

PIpρpsqq “ Tr ρ̃psqII ”
ÿ

iPI

ρ̃psqii,

PIJpρpsqq “ Tr ρ̃psqIJ ρ̃psqJI ”
ÿ

iPI,jPJ

ρ̃psqi,j ρ̃psqji, (B.15)

PIJKpρpsqq “ Tr ρ̃psqIJ ρ̃psqJK ρ̃psqKI ”
ÿ

iPI,jPJ,kPK

ρ̃psqi,j ρ̃psqj,kρ̃psqk,i.

Certainly we can construction many other invariant uniform polynomials in the similar way. Using
those invariant uniform polynomials, we have the following results

Proposition B.4. Let ρ̃ be a general SL2pZq representations of a modular data or a MTC. Then
following statements hold:

(1) ρ̃psq satisfies

Trpρ̃psq2q P Zzt0u. (B.16)

Let

C “
Trpρ̃psq2q

|Trpρ̃psq2q|
ρ̃psq2. (B.17)

For all I,

PIpCq ě 0. (B.18)

(2) The conductor of Poddpρ̃psqq divides ordpρ̃ptqq for all the invariant uniform polynomials Podd

with odd powers of ρ̃psq (such as PI and PIJK in (B.15)). The conductor of Pevenpρ̃psqq

divides pordpρ̃ptqq for all the invariant uniform polynomials Peven with even powers of ρ̃psq

(such as PIJ in (B.15)).
(3) For any Galois conjugation σ P GalpQordpρptqqq, there is a permutation on the set tIu, I Ñ

σ̂pIq, such that

σPIJpρ̃psqq “ PIσ̂pJqpρ̃psqq “ Pσ̂pIqJpρ̃psqq

σ2
`

θ̃I
˘

“ θ̃σ̂pIq, (B.19)

for all I, J .
(4) For any invariant uniform polynomials P (such as those in (B.15))

σP
`

ρ̃psq
˘

“ P
`

σρ̃psq
˘

“ P
`

ρ̃ptqaρ̃psqρ̃ptqbρ̃psqρ̃ptqa
˘

(B.20)
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where σ P GalpQordpρ̃ptqqq, and a, b are given by σpei2π{ ordpρ̃ptqqq “ eai2π{ ordpρ̃ptqq and ab ” 1
mod ordpρ̃ptqq.

Instead of constructing invariants, there is another way to make use of the properties of an MD
representation that depend on the choices of basis. We can choose a more special basis, so that
the basis is closer to the basis that leads to the MD representation. For example, we can choose a
basis to make ρ̃psq symmetric (i.e. to make ρ̃ a symmetric representation).

Now consider a symmetric SL2pZq matrix representation ρ̃ of a modular data or of a MTC. We
find that the restriction of the unitary U in (B.11) on the non-degenerate subspace (see Theorem
3.4) must be diagonal with diagonal elements Uii P t1,´1u. Therefore, on the non-degenerate
subspace, ρ̃psq of a symmetric representation differs from ρpsq of an MD representation only by a
diagonal unitary transformation U with diagonal elements ˘1, i.e., a signed diagonal matrix. In
this case some properties of MD representation apply to the blocks of the symmetric representation
within the non-degenerate subspace. This allows us to obtain

Proposition B.5. Let ρ̃ be a symmetric SL2pZq representations equivalent to an MD representa-
tion. Let

Indeg :“ ti | ρ̃ptqi,i is a non-degenerate eigenvalueu, (B.21)

Then there exists an orthogonal U such that Uρ̃UJ is a pMD representation, and the following
statements hold:

(1) The conductor of pUρ̃psqUJqi,j divides ordpρ̃ptqq for all i, j. This implies that the conductor
of pρ̃psqqi,j divides ordpρ̃ptqq for all i, j P Indeg.

(2) For any Galois conjugation σ in GalpQordpρ̃ptqqq, there is a permutation i Ñ σ̂piq, such that

σ
`

pUρ̃psqUJqi,j
˘

“ ϵσpiqpUρ̃psqUJqσ̂piq,j “ pUρ̃psqUJqi,σ̂pjqϵσpjq

σ2
`

ρ̃ptqi,i
˘

“ ρ̃ptqσ̂piq,σ̂piq, (B.22)

for all i, j, where ϵσpiq P t1,´1u. This implies that

σ
`

ρ̃psqi,j
˘

“ ρ̃psqσ̂piq,j or σ
`

ρ̃psqi,j
˘

“ ´ρ̃psqσ̂piq,j

σ
`

ρ̃psqi,j
˘

“ ρ̃psqi,σ̂pjq or σ
`

ρ̃psqi,j
˘

“ ´ρ̃psqi,σ̂pjq (B.23)

for all i, j P Indeg. This also implies that Dρ̃pσq defined in (3.6) is a signed permutation
matrix in the Indeg block, i.e. pDρ̃pσqqi,j for i, j P Indeg are matrix elements of a signed
permutation matrix.

(3) For all i, j,

σ
`

pUρ̃psqUJqi,j
˘

“
`

Uρ̃ptqaρ̃psqρ̃ptqbρ̃psqρ̃ptqaUJ
˘

i,j
(B.24)

where σ P GalpQordpρ̃ptqqq, and a, b are given by σpei2π{ ordpρ̃ptqqq “ eai2π{ ordpρ̃ptqq and ab ” 1
mod ordpρ̃ptqq. This implies that

σ
`

pρ̃psqqi,j
˘

“
`

ρ̃ptqaρ̃psqρ̃ptqbρ̃psqρ̃ptqa
˘

i,j
. (B.25)

for all i, j P Indeg.
(4) Both T and ρ̃ptq are diagonal, and without loss of generality, we may assume ρ̃ptq is a scalar

multiple of T . In this case U in (B.11) is a block diagonal matrix preserving the eigenspaces
of ρ̃ptq. Let Inonzero “ tiu be a set of indices such that the ith row of Uρ̃psqUJ contains no
zeros for some othorgonal U satisfying Uρ̃ptqUJ “ ρ̃ptq. The index for the unit object of
MTC must be in Inonzero. Thus Inonzero must be nonempty:

Inonzero ‰ H. (B.26)
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(5) Let Iθ̃ be a set of indices for an eigenspace Eθ̃ of ρ̃ptq

Iθ̃ :“ ti | ρ̃ptqi,i “ θ̃u. (B.27)

Then there exists a Iθ̃ such that

Iθ̃ X Inonzero ‰ H and TrEθ̃
C ą 0, (B.28)

where C is given in (B.17).
(6) If we further assume the modular data to be non-integral, then there exists a Iθ̃ that has a

non-empty overlap with Inonzero, such that Dρ̃pσqIθ̃
‰ ˘ id for some σ P GalpQordpρ̃ptqq{Qq.

Here Dρ̃pσq is defined in (3.6):

Dρ̃pσq “ ρ̃ptqaρ̃psqρ̃ptqbρ̃psqρ̃ptqaρ̃´1psq (B.29)

where a, b are given by σpe2πi{ ordpρ̃ptqqq “ ea2πi{ ordpρ̃ptqq and ab ” 1 mod ordpρ̃ptqq. Also
Dρ̃pσqIθ̃

is the block of Dρ̃pσq with indices in Iθ̃, i.e. the matrix elements of Dρ̃pσqIθ̃
are

given by pDρ̃pσqqi,j , i, j P Iθ̃.

Proposition B.5(6) is a consequence of Theorem 3.13(3). Using GAP System for Computational
Discrete Algebra, we obtain a list of symmetric irrep-sum SL2pZq matrix representations that satisfy
the conditions in Propositions B.3, B.4, and B.5. The list is given below for rank r “ 6 case (see
Appendix section B.2).

Some of those symmetric irrep-sum SL2pZq matrix representations are representations of modular
data, while others are not. However, the list includes all the symmetric irrep-sum SL2pZq matrix
representations of modular data or MTC’s which are not weakly integral (and some that are weakly
integral).

B.2. List of symmetric irrep-sum representations. The following is a list the all rank-6 sym-
metric irrep-sum representations that satisfy the conditions in Propositions B.3, B.4, and B.5. The
list contains all the rank-6 symmetric irrep-sum representations that are unitarily equivalent to
rank-6 MD representations, plus some extra ones.

For each symmetric irrep-sum representation, we may generate an orbit by orthogonal transfor-
mations

ρisumpsq Ñ UρisumpsqUJ, ρisumptq Ñ UρisumptqUJ, (B.30)

tensoring 1-dimensional SL2pZq representations χα, α “ 1, . . . , 12:

ρisumpsq Ñ χαpsqρisumpsq, ρisumptq Ñ χαptqρisumptq, (B.31)

and applying Galois conjugations σ in GalpQordpρisumptqqq:

ρisumpsq Ñ σpρisumpsqq, ρisumptq Ñ σpρisumptqq. (B.32)

We will call such an orbit a GT orbit. The following list includes only one representative for each
GT orbit. The list can also be regarded as a list GT orbits.

In the list, a representation ρisum is expressed as the direct sum of irreducible representations
ρisum “ ρ1 ‘ ρ2 ‘ ¨ ¨ ¨ , where ρaptq is presented as ps̃1, s̃2, ¨ ¨ ¨ q with s̃i “ argpρaptqiiq, and ρapsq is
presented as pρ11, ρ12, ρ13, ρ14, ¨ ¨ ¨ ; ρ22, ρ23, ρ24, ¨ ¨ ¨ q. The direct sum is also given via an index

form, for example, irreps = 21,02 b21,05 ‘ 21,05 . It means that the representation ρisum is a direct

sum of two irreducible representations 21,02 b 21,05 and 21,05 . Here 21,02 , 21,05 are indices of SL2pZq

irreducible representations with prime-power levels. Those prime-power-level SL2pZq irreducible
representation are listed in Appendix A, where the meaning of the indices is explained further.
21,02 b21,05 is the irreducible representation obtained by the tensor product of 21,02 and 21,05 .
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The dimensions of the representations ρisum are given by dims = pr1, r2, ¨ ¨ ¨ q, where ra is the
dimension of the irreducible representation ρa, satisfying r1 ě r2 ě ¨ ¨ ¨ . The levels of the repre-
sentations ρa are given by levels = pl1, l2, ¨ ¨ ¨ q, where la “ ordpρaptqq. We will use (dims;levels) =
pr1, r2, ¨ ¨ ¨ ; l1, l2, ¨ ¨ ¨ q to label those representations. Now we can explain how the representative
of a GT orbit is chosen. The representative for a GT orbit is chosen to be the one with minimal
rrr1, r2, ¨ ¨ ¨ s, ordpρisumptqq, rl1, l2, ¨ ¨ ¨ ss. Here the order of two lists is determined by first compare
the first elements of the two lists. If the first elements are equal, we then compare the second
elements, etc. The order of cyclotomic numbers are given by GAP.

To describe the entries of ρapsq, we also introduced the following notations:

ζmn “ e2πim{n, cmn “ ζmn ` ζ´m
n , smn “ ζmn ´ ζ´m

n ,

ξm,kn “ pζm2n ´ ζ´m
2n q{pζk2n ´ ζ´k

2n q, ξmn “ ξm,1n . (B.33)

We find that, for rank 6, there are only 25 GT orbits. The GT orbits can be divided into two
classes, resolved and unresolved, whose definition will to given in the next section. Below each GT
orbit, we indicate whether it is resolved or unresolved. Among 25 GT orbits, 17 are resolved and
8 are unresolved.

For the 17 resolved GT orbits, it is easy to compute all the corresponding pairs of pS, T q matrices
that satisfied the conditions in Proposition B.1, which will be done in next section. Below each
resolved GT orbit, we indicate the number valid pS, T q pairs obtain with such a computation.
Those valid pS, T q pairs will be listed in Appendix C.2. The 8 unresolved GT orbits are difficult to
handle by computer, which are discussed in the main text. (The main text also discussed most of
the resolved cases.)

1. (dims;levels) =p3, 2, 1; 5, 5, 1q, irreps = 315 ‘ 215 ‘ 111, pordpρisumptqq “ 5,

ρisumptq = p0, 15 ,
4
5q ‘ p15 ,

4
5q ‘ p0q,

ρisumpsq = (
b

1
5 , ´

b

2
5 , ´

b

2
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 ) ‘ i(´ 1?
5
c320,

1?
5
c120;

1?
5
c320) ‘ (1)

Resolved. Number of valid pS, T q pairs = 0.

2. (dims;levels) =p3, 2, 1; 8, 8, 1q, irreps = 31,08 ‘ 21,98 ‘ 111, pordpρisumptqq “ 8,

ρisumptq = p0, 18 ,
5
8q ‘ p18 ,

7
8q ‘ p0q,

ρisumpsq = i(0,
b

1
2 ,

b

1
2 ; ´1

2 ,
1
2 ; ´1

2) ‘ i(´
b

1
2 ,

b

1
2 ;

b

1
2) ‘ (1)

Resolved. Number of valid pS, T q pairs = 0.

3. (dims;levels) =p3, 2, 1; 5, 2, 1q, irreps = 315 ‘ 21,02 ‘ 111, pordpρisumptqq “ 10,

ρisumptq = p0, 15 ,
4
5q ‘ p0, 12q ‘ p0q,

ρisumpsq = (
b

1
5 , ´

b

2
5 , ´

b

2
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 ) ‘ (´1
2 , ´

b

3
4 ;

1
2) ‘ (1)

Unresolved.

4. (dims;levels) =p3, 2, 1; 5, 2, 2q, irreps = 315 ‘ 21,02 ‘ 11,02 , pordpρisumptqq “ 10,

ρisumptq = p0, 15 ,
4
5q ‘ p0, 12q ‘ p12q,

ρisumpsq = (
b

1
5 , ´

b

2
5 , ´

b

2
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 ) ‘ (´1
2 , ´

b

3
4 ;

1
2) ‘ (´1)

Unresolved.

5. (dims;levels) =p3, 2, 1; 4, 3, 2q, irreps = 31,34 ‘ 21,03 ‘ 11,02 , pordpρisumptqq “ 12,

ρisumptq = p0, 12 ,
1
4q ‘ p0, 13q ‘ p12q,
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ρisumpsq = i(´1
2 ,

1
2 ,

b

1
2 ; ´1

2 ,
b

1
2 ; 0) ‘ i(´

b

1
3 ,

b

2
3 ;

b

1
3) ‘ (´1)

Resolved. Number of valid pS, T q pairs = 0.

6. (dims;levels) =p3, 2, 1; 4, 3, 4q, irreps = 31,34 ‘ 21,03 ‘ 11,04 , pordpρisumptqq “ 12,

ρisumptq = p0, 12 ,
1
4q ‘ p0, 13q ‘ p14q,

ρisumpsq = i(´1
2 ,

1
2 ,

b

1
2 ; ´1

2 ,
b

1
2 ; 0) ‘ i(´

b

1
3 ,

b

2
3 ;

b

1
3) ‘ i(1)

Unresolved.

7. (dims;levels) =p3, 2, 1; 8, 3, 1q, irreps = 31,08 ‘ 21,03 ‘ 111, pordpρisumptqq “ 24,

ρisumptq = p0, 18 ,
5
8q ‘ p0, 13q ‘ p0q,

ρisumpsq = i(0,
b

1
2 ,

b

1
2 ; ´1

2 ,
1
2 ; ´1

2) ‘ i(´
b

1
3 ,

b

2
3 ;

b

1
3) ‘ (1)

Resolved. Number of valid pS, T q pairs = 0.

8. (dims;levels) =p3, 2, 1; 8, 3, 3q, irreps = 31,08 ‘ 21,03 ‘ 11,03 , pordpρisumptqq “ 24,

ρisumptq = p0, 18 ,
5
8q ‘ p0, 13q ‘ p13q,

ρisumpsq = i(0,
b

1
2 ,

b

1
2 ; ´1

2 ,
1
2 ; ´1

2) ‘ i(´
b

1
3 ,

b

2
3 ;

b

1
3) ‘ (1)

Resolved. Number of valid pS, T q pairs = 0.

9. (dims;levels) =p3, 3; 5, 3q, irreps = 315 ‘ 31,03 , pordpρisumptqq “ 15,

ρisumptq = p0, 15 ,
4
5q ‘ p0, 13 ,

2
3q,

ρisumpsq = (
b

1
5 , ´

b

2
5 , ´

b

2
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 ) ‘ (´1
3 ,

2
3 ,

2
3 ; ´1

3 ,
2
3 ; ´1

3)

Resolved. Number of valid pS, T q pairs = 0.

10. (dims;levels) =p3, 3; 16, 16q, irreps = 31,016 ‘ 31,616 , pordpρisumptqq “ 16,

ρisumptq = p18 ,
1
16 ,

9
16q ‘ p58 ,

1
16 ,

9
16q,

ρisumpsq = i(0,
b

1
2 ,

b

1
2 ; ´1

2 ,
1
2 ; ´1

2) ‘ i(0,
b

1
2 ,

b

1
2 ;

1
2 , ´1

2 ;
1
2)

Unresolved.

11. (dims;levels) =p3, 3; 5, 4q, irreps = 315 ‘ 31,04 , pordpρisumptqq “ 20,

ρisumptq = p0, 15 ,
4
5q ‘ p0, 14 ,

3
4q,

ρisumpsq = (
b

1
5 , ´

b

2
5 , ´

b

2
5 ; ´5`

?
5

10 , 5´
?
5

10 ; ´5`
?
5

10 ) ‘ (0,
b

1
2 ,

b

1
2 ; ´1

2 ,
1
2 ; ´1

2)

Resolved. Number of valid pS, T q pairs = 2.

12. (dims;levels) =p4, 1, 1; 9, 1, 1q, irreps = 41,09,2 ‘ 111 ‘ 111, pordpρisumptqq “ 9,

ρisumptq = p0, 19 ,
4
9 ,

7
9q ‘ p0q ‘ p0q,

ρisumpsq = (0, ´

b

1
3 , ´

b

1
3 , ´

b

1
3 ;

1
3c

2
9,

1
3c

4
9,

1
3c

1
9;

1
3c

1
9,

1
3c

2
9;

1
3c

4
9) ‘ (1) ‘ (1)

Unresolved.

13. (dims;levels) =p4, 2; 5, 5q, irreps = 415,1 ‘ 215, pordpρisumptqq “ 5,

ρisumptq = p15 ,
2
5 ,

3
5 ,

4
5q ‘ p15 ,

4
5q,
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ρisumpsq = i(15c
1
20 ` 1

5c
3
20,

2
5c

2
15 ` 1

5c
3
15, ´1

5 ` 2
5c

1
15 ´ 1

5c
3
15,

1
5c

1
20 ´ 1

5c
3
20; ´1

5c
1
20 ` 1

5c
3
20, ´1

5c
1
20 ´ 1

5c
3
20,

1
5 ´ 2

5c
1
15 ` 1

5c
3
15;

1
5c

1
20 ´ 1

5c
3
20,

2
5c

2
15 ` 1

5c
3
15; ´1

5c
1
20 ´ 1

5c
3
20) ‘ i(´ 1?

5
c320,

1?
5
c120;

1?
5
c320)

Unresolved.

14. (dims;levels) =p4, 2; 5, 5; aq, irreps = 415,2 ‘ 215, pordpρisumptqq “ 5,

ρisumptq = p15 ,
2
5 ,

3
5 ,

4
5q ‘ p15 ,

4
5q,

ρisumpsq = (
b

1
5 ,

´5`
?
5

10 , ´5`
?
5

10 ,
b

1
5 ; ´

b

1
5 ,

b

1
5 ,

5`
?
5

10 ; ´

b

1
5 ,

5´
?
5

10 ;
b

1
5) ‘ i(´ 1?

5
c320,

1?
5
c120;

1?
5
c320)

Resolved. Number of valid pS, T q pairs = 0.

15. (dims;levels) =p4, 2; 10, 5q, irreps = 215b21,02 ‘ 215, pordpρisumptqq “ 10,

ρisumptq = p15 ,
4
5 ,

3
10 ,

7
10q ‘ p15 ,

4
5q,

ρisumpsq = i( 1
2

?
5
c320,

1
2

?
5
c120,

3
2

?
15
c120,

3
2

?
15
c320; ´ 1

2
?
5
c320, ´ 3

2
?
15
c320,

3
2

?
15
c120;

1
2

?
5
c320, ´ 1

2
?
5
c120;

´ 1
2

?
5
c320) ‘ i(´ 1?

5
c320,

1?
5
c120;

1?
5
c320)

Unresolved.

16. (dims;levels) =p4, 2; 15, 5q, irreps = 215b21,03 ‘ 215, pordpρisumptqq “ 15,

ρisumptq = p15 ,
4
5 ,

2
15 ,

8
15q ‘ p15 ,

4
5q,

ρisumpsq = (´ 1?
15
c320,

1?
15
c120,

2?
30
c120, ´ 2?

30
c320;

1?
15
c320,

2?
30
c320,

2?
30
c120; ´ 1?

15
c320, ´ 1?

15
c120;

1?
15
c320) ‘ i(´ 1?

5
c320,

1?
5
c120;

1?
5
c320)

Resolved. Number of valid pS, T q pairs = 1.

17. (dims;levels) =p4, 2; 7, 3q, irreps = 417 ‘ 21,03 , pordpρisumptqq “ 21,

ρisumptq = p0, 17 ,
2
7 ,

4
7q ‘ p0, 13q,

ρisumpsq = i(´
b

1
7 ,

b

2
7 ,

b

2
7 ,

b

2
7 ; ´ 1?

7
c27, ´ 1?

7
c17,

1?
7i
s528;

1?
7i
s528, ´ 1?

7
c27; ´ 1?

7
c17) ‘ i(´

b

1
3 ,

b

2
3 ;

b

1
3)

Resolved. Number of valid pS, T q pairs = 1.

18. (dims;levels) =p5, 1; 5, 1q, irreps = 515 ‘ 111, pordpρisumptqq “ 5,

ρisumptq = p0, 15 ,
2
5 ,

3
5 ,

4
5q ‘ p0q,

ρisumpsq = (´1
5 ,

b

6
25 ,

b

6
25 ,

b

6
25 ,

b

6
25 ;

3´
?
5

10 , ´1`
?
5

5 , ´1`
?
5

5 , 3`
?
5

10 ; 3`
?
5

10 , 3´
?
5

10 , ´1`
?
5

5 ; 3`
?
5

10 ,

´1`
?
5

5 ; 3´
?
5

10 ) ‘ (1)
Unresolved.

19. (dims;levels) =p6; 9q, irreps = 61,09,3, pordpρisumptqq “ 9,

ρisumptq = p19 ,
2
9 ,

4
9 ,

5
9 ,

7
9 ,

8
9q,

ρisumpsq = (13 ,
1
3c

2
9,

1
3 , ´1

3c
1
9,

1
3 ,

1
3c

4
9;

1
3 ,

1
3c

4
9, ´1

3 ,
1
3c

1
9,

1
3 ;

1
3 , ´1

3c
2
9,

1
3 ,

1
3c

1
9;

1
3 , ´1

3c
4
9, ´1

3 ;
1
3 ,

1
3c

2
9;

1
3)

Resolved. Number of valid pS, T q pairs = 1.

20. (dims;levels) =p6; 13q, irreps = 6113, pordpρisumptqq “ 13,

ρisumptq = p 1
13 ,

3
13 ,

4
13 ,

9
13 ,

10
13 ,

12
13q,
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ρisumpsq = i(´ 1?
13
c552,

1?
13
c752,

1?
13
c352,

1?
13
c1152,

1?
13
c952, ´ 1?

13
c152; ´ 1?

13
c1152,

1?
13
c152, ´ 1?

13
c552,

1?
13
c352,

1?
13
c952;

1?
13
c752,

1?
13
c952, ´ 1?

13
c552,

1?
13
c1152; ´ 1?

13
c752, ´ 1?

13
c152, ´ 1?

13
c352;

1?
13
c1152,

´ 1?
13
c752;

1?
13
c552)

Resolved. Number of valid pS, T q pairs = 1.

21. (dims;levels) =p6; 15q, irreps = 31,03 b215, pordpρisumptqq “ 15,

ρisumptq = p15 ,
4
5 ,

2
15 ,

7
15 ,

8
15 ,

13
15q,

ρisumpsq = i( 1
3

?
5
c320,

1
3

?
5
c120,

2
3

?
5
c120,

2
3

?
5
c120,

2
3

?
5
c320,

2
3

?
5
c320; ´ 1

3
?
5
c320, ´ 2

3
?
5
c320, ´ 2

3
?
5
c320,

2
3

?
5
c120,

2
3

?
5
c120; ´ 1

3
?
5
c320,

2
3

?
5
c320,

1
3

?
5
c120, ´ 2

3
?
5
c120; ´ 1

3
?
5
c320, ´ 2

3
?
5
c120,

1
3

?
5
c120;

1
3

?
5
c320, ´ 2

3
?
5
c320;

1
3

?
5
c320)

Resolved. Number of valid pS, T q pairs = 0.

22. (dims;levels) =p6; 16q, irreps = 61,016,1, pordpρisumptqq “ 16,

ρisumptq = p0, 14 ,
1
16 ,

5
16 ,

9
16 ,

13
16q,

ρisumpsq = i(0, 0, 1
2 ,

1
2 ,

1
2 ,

1
2 ; 0, 1

2 , ´1
2 ,

1
2 , ´1

2 ; ´

b

1
8 , ´

b

1
8 ,

b

1
8 ,

b

1
8 ;

b

1
8 ,

b

1
8 , ´

b

1
8 ; ´

b

1
8 ,

´

b

1
8 ;

b

1
8)

Resolved. Number of valid pS, T q pairs = 4.

23. (dims;levels) =p6; 35q, irreps = 337b225, pordpρisumptqq “ 35,

ρisumptq = p 1
35 ,

4
35 ,

9
35 ,

11
35 ,

16
35 ,

29
35q,

ρisumpsq = i(´ 4
35c

1
140´ 3

35c
3
140´ 1

7c
5
140` 1

35c
7
140` 1

35c
9
140` 4

35c
13
140` 2

35c
15
140´ 3

35c
17
140` 9

35c
19
140´ 4

35c
21
140´

2
7c

23
140, ´ 1?

35
c435 ` 1?

35
c1135,

1?
35
c135 ´ 1?

35
c635,

2?
35
c335 ` 1?

35
c435 ` 1?

35
c1035 ` 1?

35
c1135, ´ 1?

35i
s3140 ´

1?
35i
s17140,

2
35c

1
140´ 1

35c
3
140´ 1

7c
5
140´ 3

35c
7
140` 1

5c
9
140´ 2

35c
13
140´ 1

35c
15
140´ 1

35c
17
140` 3

35c
19
140` 2

35c
21
140´

2
7c

23
140; ´ 1?

35i
s3140 ´ 1?

35i
s17140,

4
35c

1
140 ` 3

35c
3
140 ` 1

7c
5
140 ´ 1

35c
7
140 ´ 1

35c
9
140 ´ 4

35c
13
140 ´ 2

35c
15
140 `

3
35c

17
140 ´ 9

35c
19
140 ` 4

35c
21
140 ` 2

7c
23
140, ´ 1?

35
c135 ` 1?

35
c635, ´ 2

35c
1
140 ` 1

35c
3
140 ` 1

7c
5
140 ` 3

35c
7
140 ´

1
5c

9
140` 2

35c
13
140` 1

35c
15
140` 1

35c
17
140´ 3

35c
19
140´ 2

35c
21
140` 2

7c
23
140,

2?
35
c335` 1?

35
c435` 1?

35
c1035` 1?

35
c1135;

2?
35
c335` 1?

35
c435` 1?

35
c1035` 1?

35
c1135, ´ 2

35c
1
140` 1

35c
3
140` 1

7c
5
140` 3

35c
7
140´ 1

5c
9
140` 2

35c
13
140` 1

35c
15
140`

1
35c

17
140´ 3

35c
19
140´ 2

35c
21
140` 2

7c
23
140,

1?
35
c435´ 1?

35
c1135, ´ 1?

35i
s3140´ 1?

35i
s17140;

1?
35i
s3140` 1?

35i
s17140,

´ 4
35c

1
140´ 3

35c
3
140´ 1

7c
5
140` 1

35c
7
140` 1

35c
9
140` 4

35c
13
140` 2

35c
15
140´ 3

35c
17
140` 9

35c
19
140´ 4

35c
21
140´ 2

7c
23
140,

1?
35
c435´ 1?

35
c1135; ´ 2?

35
c335´ 1?

35
c435´ 1?

35
c1035´ 1?

35
c1135, ´ 1?

35
c135` 1?

35
c635;

4
35c

1
140` 3

35c
3
140`

1
7c

5
140 ´ 1

35c
7
140 ´ 1

35c
9
140 ´ 4

35c
13
140 ´ 2

35c
15
140 ` 3

35c
17
140 ´ 9

35c
19
140 ` 4

35c
21
140 ` 2

7c
23
140)

Resolved. Number of valid pS, T q pairs = 1.

24. (dims;levels) =p6; 56q, irreps = 317b21,68 , pordpρisumptqq “ 28,

ρisumptq = p 1
56 ,

9
56 ,

11
56 ,

25
56 ,

43
56 ,

51
56q,

ρisumpsq = ( 1?
14
c128,

1?
14
c328, ´ 1?

14
c528, ´ 1?

14
c528,

1?
14
c128,

1?
14
c328; ´ 1?

14
c528,

1?
14
c128,

1?
14
c128,

1?
14
c328,

´ 1?
14
c528; ´ 1?

14
c328,

1?
14
c328,

1?
14
c528, ´ 1?

14
c128;

1?
14
c328, ´ 1?

14
c528,

1?
14
c128; ´ 1?

14
c128, ´ 1?

14
c328;

1?
14
c528)

Resolved. Number of valid pS, T q pairs = 2.

25. (dims;levels) =p6; 80q, irreps = 33,316 b225, pordpρisumptqq “ 80,
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ρisumptq = p 1
40 ,

9
40 ,

3
80 ,

27
80 ,

43
80 ,

67
80q,

ρisumpsq = i(0, 0, 1?
10
c320,

1?
10
c120,

1?
10
c320,

1?
10
c120; 0, 1?

10
c120, ´ 1?

10
c320,

1?
10
c120, ´ 1?

10
c320; ´ 1

2
?
5
c120,

´ 1
2

?
5
c320,

1
2

?
5
c120,

1
2

?
5
c320;

1
2

?
5
c120,

1
2

?
5
c320, ´ 1

2
?
5
c120; ´ 1

2
?
5
c120, ´ 1

2
?
5
c320;

1
2

?
5
c120)

Resolved. Number of valid pS, T q pairs = 2.

C. A list of candidate modular data from resolved SL2pZq representations

C.1. The notion of resolved SL2pZq matrix representations. In the above, we have chosen a
special basis in the eigenspaces of an SL2pZq matrix representation ρ̃ to make ρ̃psq symmetric. But
such a special basis is still not special enough to make ρ̃ to be an MD representation ρ.

We can choose a more special basis to make ρ̃ps2q a signed permutation matrix, and ρ̃psq sym-
metric. We know that, for an MD representation ρ, ρps2q is a signed permutation matrix. So the
new special basis makes ρ̃ closer to the MD representation ρ.

We can choose an even more special basis in the eigenspaces of ρ̃ptq to make ρ̃ even closer to the
MD representation ρ, by using the matrix Dρ̃pσq in (B.29). For an MD representation ρ, Dρpσq is
suppose to be signed permutations. So we will try to choose a basis to transform each Dρ̃pσq into
signed permutations. We like to point out that, since both ρ̃ and ρ are symmetric SL2pZq matrix
representations that are related by an unitary transformation, according to Theorem 3.4, they can
be related by an orthogonal transformation.

Let us consider a simple case to demonstrate our approach. If ρ̃ptq is non-degenerate, then Dρ̃pσq

will automatically be a signed permutation matrix. Using signed diagonal matrices Vsd, we can
transform ρ̃ to many other symmetric representations, ρ’s:

ρ “ Vsdρ̃Vsd, (C.1)

where Dρpσq remains a signed permutation. In fact the signed diagonal matrices Vsd are the most
general orthogonal matrices that fix ρ̃ptq and transform all Dρ̃pσq’s into (potentially different)
signed permutations. Thus the resulting symmetric representations, ρ’s, include all the symmetric
representations where Dρpσq’s are signed permutations. From those ρ’s, we can then construct
many pairs of S, T matrices via (3.7), and check which one satisfies the conditions in Proposition
B.1. Those S, T matrices that satisfy those conditions may very likely correspond to modular data
(or MTC’s). If none of the S, T matrices satisfy the conditions, then the representation ρ̃ will not
be an SL2pZq representation of any modular data.

When some eigenspaces of ρ̃ptq are more than 1-dimensional, then the Dρ̃pσq may not be signed
permutations. There may be infinite many orthogonal matrices that can transform Dρ̃pσq into
signed permutations, which make the subsequent selection difficult. In the following, we will general-
ize the above notion of non-degenerate representation, to include some cases where some eigenspaces
of ρ̃ptq are 2-dimensional or more. We will show that, for those special representations, there is
only a finite number of orthogonal matrices that can transform Dρ̃pσq into signed permutations.

To carry through this program, let us concentrate on an eigenspace Eθ̃ of ρ̃ptq corresponding to

an eigenvalue θ̃, and let

Ωρ̃pθ̃q “ tσ P GalpQordpρ̃ptqqq | σ2pθ̃q “ θ̃u . (C.2)

Then Ωρ̃pθ̃q is a subgroup of GalpQordpρ̃ptqqq. By definition, Dρ̃pσq stabilizes the θ̃-eigenspace Eθ̃
for σ P Ωρ̃pθ̃q, and commute with each other. In particular, Dρ̃|Eθ̃

(restricted on Eθ̃) defines a

representation of Ωρ̃pθ̃q on Eθ̃.
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We can diagonalize tDρ̃pσq|Eθ̃
| σ P Ωρ̃pθ̃qu simultaneously within Eθ̃. The degeneracy of the

θ̃-eigenspace Eθ̃ is fully resolved by these Dρ̃pσq’s, if the common eigenspace of these Dρ̃pσq|Eθ̃
’s are

all 1-dimensional. In terms of the characters of Ωρ̃pθ̃q, the degeneracy of Eθ̃ can be fully resolved

if each irreducible character of Ωρ̃pθ̃q has multiplicity at most 1 in the character decomposition of

Eθ̃ as a representation of Ωρ̃pθ̃q. Now we can introduce the notion of resolved representation:

Definition C.1. A general SL2pZq matrix representation ρ̃ is called resolved if the degeneracy of

each of eigenspace of ρ̃ptq is fully resolved by Dρ̃pσq, σ P Ωρ̃pθ̃q, as described above.

Given a symmetric irrep-sum matrix representation (denoted as ρisum), we can use unitary ma-
trices, U ’s, to transform it into a symmetric representation ρ via

ρptq “ UρisumptqU :, ρpsq “ UρisumpsqU :. (C.3)

where Dρpσq|Eθ̃
, for all σ P Ωρ̃pθ̃q, are signed permutations within the θ̃-eigenspace. If ρisum is

resolved, then there is only a finite number of such representations. We then can check which of
those representations satisfy Proposition B.1. This is how we compute the potential modular data
S, T ’s from resolved ρisum’s.

To show a resolved ρisum is unitarily equivalent to only a finite number representations whose
Dρpσq|Eθ̃

are signed permutations, we note that both ρ and ρisum are symmetric, and according to
Theorem 3.4, ρ and ρisum are in fact orthogonally equivalent, i.e. the above U can be chosen to
satisfy U “ U˚ and UUJ “ id. If the number of most general orthogonal matrices U that transform
ρisum to ρ is finite, then the number of representations ρ are finite.

Since the orthogonal U acts within the eigenspace of ρisumptq, to show the number of possible

U ’s are finite, we can concentrate on a single θ̃-eigenspace Eθ̃, and denote σ P Ωρ̃pθ̃q as σinv. In the
following, we will consider the cases where Eθ̃ is 1-dimensional, 2-dimensional, etc.. For each case,
we will show the number of possible U ’s are finite, and give the possible choices of U ’s.

C.1.1. Within an 1-dimensional eigenspace of ρisumptq. Dρisumpσinvq|Eθ̃
“ ˘1 are already signed

permutations. In this case the orthogonal matrix U (within the 1-dimensional eigenspace) has only
two choices

U “ ˘1, (C.4)

which is finite.

C.1.2. Within a 2-dimensional eigenspace of ρisumptq. In this case, the matrix groupsMG generated
by 2-by-2 matrices, Dρisumpσinvq|Eθ̃

, can have several different forms, for those passing representa-
tions. By examine the computer results, we find that, for unresolved cases, matrix groups MG can
be

MG “

!

¨

˝

1 0

0 1

˛

‚

)

, for dimpρisumq ě 5;

MG “

!

¨

˝

1 0

0 1

˛

‚,´

¨

˝

1 0

0 1

˛

‚

)

, for dimpρisumq ě 6. (C.5)

For resolved cases, we have

MG “

!

¨

˝

1 0

0 1

˛

‚,

¨

˝

1 0

0 ´1

˛

‚

)

, for dimpρisumq ě 4;
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MG “

!

¨

˝

1 0

0 1

˛

‚,´

¨

˝

1 0

0 1

˛

‚,

¨

˝

1 0

0 ´1

˛

‚,

¨

˝

´1 0

0 1

˛

‚

)

, for dimpρisumq ě 6. (C.6)

In those two cases,

U “
1

?
2

¨

˝

1 1

1 ´1

˛

‚ or U “
1

?
2

¨

˝

´1 1

1 1

˛

‚ or U “

¨

˝

1 0

0 1

˛

‚ (C.7)

will transform all Dρisumpσinvq|Eθ̃
’s into signed permutations. In general we have

Theorem C.2. Let

MG2 “

!

¨

˝

1 0

0 1

˛

‚,

¨

˝

1 0

0 ´1

˛

‚

)

,

MG4 “

!

¨

˝

1 0

0 1

˛

‚,´

¨

˝

1 0

0 1

˛

‚,

¨

˝

1 0

0 ´1

˛

‚,

¨

˝

´1 0

0 1

˛

‚

)

. (C.8)

The most general orthogonal matrices that transform all matrices in MG2 or MG4 into signed
permutations must have one of the following forms

U “
PVsd
?
2

¨

˝

1 1

1 ´1

˛

‚, or U “
PVsd
?
2

¨

˝

´1 1

1 1

˛

‚, or U “ PVsd

¨

˝

1 0

0 1

˛

‚ (C.9)

where Vsd are signed diagonal matrices, and P are permutation matrices. The number of the
orthogonal transformations U is finite.

Proof of Theorem C.2. We only needs to consider the first matrix group MG2, where the matrix
group is isomorphic to the Z2 group. There are only four matrix groups formed by 2-dimensional
signed permutations matrices, that are isomorphic Z2. The four matrix groups are generated by
the following four generators respectively:

¨

˝

1 0

0 ´1

˛

‚,

¨

˝

´1 0

0 1

˛

‚,

¨

˝

0 1

1 0

˛

‚,

¨

˝

0 ´1

´1 0

˛

‚. (C.10)

An orthogonal transformation U that transformsMG to one of the above matrix groups must have
a from U “ V U0, where V transforms MG2 into itself, and U0 is a fixed orthogonal transformation
that transforms MG2 to one of the above matrix groups. We can choose U0 to have the following
form

U0 “
P

?
2

¨

˝

1 1

1 ´1

˛

‚, or U0 “
P

?
2

¨

˝

´1 1

1 1

˛

‚, or U0 “ P

¨

˝

1 0

0 1

˛

‚. (C.11)

To keep MG unchanged V must satisfy

V

¨

˝

1 0

0 ´1

˛

‚“

¨

˝

1 0

0 ´1

˛

‚V. (C.12)

We find that V must be diagonal. Thus V , as an orthogonal matrix, must be signed diagonal. This
gives us the result (C.9). □
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If dimpρisumq ě 8, it is possible that the matrix group of Dρisumpσinvq|Eθ̃
’s is generated by the

following non-diagonal matrix

˘

¨

˝

0 ´1

1 0

˛

‚ (C.13)

This is because the direct sum decomposition of ρisum contains a dimension-6 irreducible represen-
tation 60,11 in Appendix A, whose ρptq has a 2-dimensional eigenspace. The representation 60,11 can
give rise to such form of Dρisumpσinvq|Eθ̃

’s.

The eigenvalues of the matrices are pi,´iq. The most general orthogonal matrices that transform
all Dρisumpσinvq|Eθ̃

’s into signed permutations must have a form

U “ PVsd

¨

˝

1 0

0 1

˛

‚. (C.14)

If dimpρisumq ě 8, it is also possible that Dρisumpσinvq|Eθ̃
’s form the following matrix group:

¨

˝

1 0

0 1

˛

‚,

¨

˝

´1
2 ´

b

3
4

b

3
4 ´1

2

˛

‚,

¨

˝

´1
2

b

3
4

´

b

3
4 ´1

2

˛

‚ (C.15)

This is because the direct sum decomposition of ρisum contains a dimension-8 irreducible representa-
tion whose ρptq has a 2-dimensional eigenspace, which gives rise to the such form of Dρisumpσinvq|Eθ̃

’s
.

The eigenvalues of the later two matrices are ˘pei2π{3, e´i2π{3q. A permutation of two elements
can only have orders 1 or 2. The corresponding 2 ˆ 2 signed permutation matrix can only have
eigenvalues 1, ´1 or ˘i. Any other eigenvalue is not possible. Thus, there is no orthogonal
matrix that can transform the above two matrices into signed permutation. Such ρisum is not a
representation of any modular data.

C.1.3. Within a 3-dimensional eigenspace of ρisumptq for rank ď 6. There is only one such case for
rank ď 6. The 3 ˆ 3 matrix group MG generated by Dρisumpσinvq|Eθ̃

’s is given by

MG “

!

¨

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

´1 0 0

0 ´1 0

0 0 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

1 0 0

0 ´1 0

0 0 1

˛

‹

‹

‹

‚

,

¨

˚

˚

˚

˝

´1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‚

)

, for dimpρisumq “ 6.

(C.16)

which is resolved. To find the most general orthogonal matrices that transform the above 3 ˆ 3
matrices in MG into signed permutation matrices, we first show

Theorem C.3. If P is a permutation matrix with P 2 “ id, then P is a direct sum of 2 ˆ 2 and
1 ˆ 1 matrices. If Psgn is a signed permutation matrix with P 2

sgn “ id, then Psgn is a direct sum of
2 ˆ 2 and 1 ˆ 1 matrices.

Proof of Theorem C.3. If P is a permutation matrix with P 2 “ id, then P must be a pair-wise
permutation, and thus P is a direct sum of 2 ˆ 2 and 1 ˆ 1 matrices. The reduction from signed
permutation matrix to permutation matrix by ignoring the signs is homomorphism of the matrix
product. If Psgn is a signed permutation matrix with P 2

sgn “ id, then its reduction gives rise to a

permutation matrix P with P 2 “ id. Since P is a direct sum of 2 ˆ 2 and 1 ˆ 1 matrices, Psgn is
also a direct sum of 2 ˆ 2 and 1 ˆ 1 matrices. □
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Using the above result, similarly, we can show that the most general orthogonal matrices that
transform all Dρisumpσinvq|Eθ̃

’s into signed permutations must have a form

U “
PVsd
?
2

¨

˚

˚

˚

˝

1 1 0

1 ´1 0

0 0 1

˛

‹

‹

‹

‚

, or U “
PVsd
?
2

¨

˚

˚

˚

˝

´1 1 0

1 1 0

0 0 1

˛

‹

‹

‹

‚

,

or U “
PVsd
?
2

¨

˚

˚

˚

˝

1 0 1

0 1 0

1 0 ´1

˛

‹

‹

‹

‚

, or U “
PVsd
?
2

¨

˚

˚

˚

˝

´1 0 1

0 1 0

1 0 1

˛

‹

‹

‹

‚

,

or U “
PVsd
?
2

¨

˚

˚

˚

˝

1 0 0

0 1 1

0 1 ´1

˛

‹

‹

‹

‚

, or U “
PVsd
?
2

¨

˚

˚

˚

˝

1 0 0

0 ´1 1

0 1 1

˛

‹

‹

‹

‚

,

or U “
PVsd
?
2

¨

˚

˚

˚

˝

1 0 0

0 1 0

0 0 1

˛

‹

‹

‹

‚

. (C.17)

where Vsd are signed diagonal matrices, and P are permutation matrices. We note that the non-
trivial part of U is a 2 ˆ 2 block for index p1, 2q, p1, 3q, and p2, 3q. The 2 ˆ 2 block has three
possibilities given in (C.9). Such U ’s transform the diagonal matrices in MG into a direct sum of
a 2ˆ 2 and an 1ˆ 1 matrices. This is a general pattern that apply for all resolved diagonal matrix
group MG generated by Dρisumpσinvq|Eθ̃

.
The above are all the possibilities that can appear in resolved dimension-6 representations. In

the following, we will consider more possibilities, that appear only for resolved representations with
dimension larger than 6.

C.2. List of S, T matrices from resolved representations. We have constructed a list of irrep-
sum symmetric representations (see Appendix B.2) that include all the representations of modular
data. Among them, we can select a sublist of resolved symmetric representations, denoted as tρresu.
We then use the orthogonal matrix U constructed above (see (C.4), (C.9) and (C.17)) to transform
the resolved symmetric representations ρres to representations, ρ’s:

ρptq “ UρresptqU
J, ρpsq “ UρrespsqUJ. (C.18)

such that the corresponding Dρpσq are either zero or signed permutation in each eigenspace of ρptq.
Since the number of such representations is finite, we can examine all resulting representations one
by one.

For each U , the resulting representation ρ should satisfy Proposition B.1. In particular, we
examine all possible choices of index u that may correspond to the unit object, to see if ρ satisfy
the condition (B.9). If no choices of u can satisfy (B.9), then the representations ρ is rejected. If
some u’s satisfy (B.9), then for each u, we can construct S, T matrices via (3.7). We then check if
the resulting S, T matrices satisfy the conditions of modular data summarized in Proposition B.1

In the following, we list all the pairs of S, T matrices that satisfy the conditions in Proposition
B.1, and come from the dimension-6 resolved SL2pZq representations listed in Appendix B.2. The
list includes all the modular data with D2 R Z from resolved SL2pZq representations (and the list
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also includes some modular data with D2 P Z). In the list, the S, T matrices are grouped into orbits
generated by Galois conjugations, which are called Galois orbits. To save space, we only list one
representative for each orbit. If possible, the representative is chosen to have all-positive quantum
dimensions.

Each pair of S, T matrices is indexed by pr1, r2, ¨ ¨ ¨ ; l1, l2, ¨ ¨ ¨ qak, such as p3, 3; 5, 4q12. The first
part of index, p3, 3; 5, 4q = (dims;levels), is the index of GT orbit listed in Appendix B.2, indicating
that the S, T matrices arise from a particular SL2pZq representation in the GT orbit. The subscript

k labels the different Galois orbits. The a-index labels the Galois conjugation σa : ei2π{ ordpT q Ñ

eai2π{ ordpT q. Those a-indexed S, T matrices form a Galois orbit.
Some Galois orbits contain no unitary S, T matrices, but some of those S, T matrices are pseudo-

unitary, i.e. those S, T matrices can be obtained from unitary S, T matrices via a change of spherical
structure. In this case those Galois orbits can be obtained from Galois orbits that contain Galois
orbits. To save space further, we also drop those Galois orbits that contain pseudo-unitary S, T
matrices. There is only one orbit which contains no unitary and no pseudo-unitary S, T matrices.
The numbering in the following list includes gaps as we maintain the numbering from the arXiv
version for consistency.

In the list, T is presented in terms of topological spin ps1, s2, ¨ ¨ ¨ q with si “ argpTiiq. S is
presented as pS00, S01, S02, S03, ¨ ¨ ¨ ; S11, S12, S13, ¨ ¨ ¨ q. di “ S0i are the quantum dimensions.

Our calculation actually produces 174 pairs of S, T matrices, which are given in Supplementary
Material Section in the arXiv version. All those 174 pairs of S, T matrices can be obtained from
the pairs of S, T matrices in the following list, via Galois conjugations and change of the spherical
structures.

1. ind = p3, 3; 5, 4q11: di = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)

D2 “ 20.0 = 20

T “ p0, 0, 15 ,
4
5 ,

1
4 ,

3
4q,

S = (1, 1, 2, 2,
?
5,

?
5; 1, 2, 2, ´

?
5, ´

?
5; ´1 ´

?
5, ´1 `

?
5, 0, 0; ´1 ´

?
5, 0, 0; ´

?
5,?

5; ´
?
5)

2. ind = p3, 3; 5, 4q12: di = (1.0, 1.0, 2.0, 2.0, 2.236, 2.236)

D2 “ 20.0 = 20

T “ p0, 0, 25 ,
3
5 ,

1
4 ,

3
4q,

S = (1, 1, 2, 2,
?
5,

?
5; 1, 2, 2, ´

?
5, ´

?
5; ´1 `

?
5, ´1 ´

?
5, 0, 0; ´1 `

?
5, 0, 0;

?
5,

´
?
5;

?
5)

3. ind = p4, 2; 15, 5q11: di = (1.0, 1.0, 1.0, 1.618, 1.618, 1.618)

D2 “ 10.854 = 15`3
?
5

2

T “ p0, 13 ,
1
3 ,

2
5 ,

11
15 ,

11
15q,

S = (1, 1, 1, 1`
?
5

2 , 1`
?
5

2 , 1`
?
5

2 ; ζ13 , ´ζ16 ,
1`

?
5

2 , 1`
?
5

2 ζ13 , ´1`
?
5

2 ζ16 ; ζ
1
3 ,

1`
?
5

2 , ´1`
?
5

2 ζ16 ,
1`

?
5

2 ζ13 ;

´1, ´1, ´1; ´ζ13 , ζ
1
6 ; ´ζ13 )

7. ind = p4, 2; 7, 3q11: di = (1.0, 3.791, 3.791, 3.791, 4.791, 5.791)

D2 “ 100.617 = 105`21
?
21

2

T “ p0, 17 ,
2
7 ,

4
7 , 0,

2
3q,
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S = (1, 3`
?
21

2 , 3`
?
21

2 , 3`
?
21

2 , 5`
?
21

2 , 7`
?
21

2 ; 2´c121´2c221`3c321`2c421´2c521, ´c221´2c321´c421`c521,

´1 ` 2c121 ` 3c221 ´ c321 ` 2c521, ´3`
?
21

2 , 0; ´1 ` 2c121 ` 3c221 ´ c321 ` 2c521, 2 ´ c121 ´ 2c221 `

3c321 ` 2c421 ´ 2c521, ´3`
?
21

2 , 0; ´c221 ´ 2c321 ´ c421 ` c521, ´3`
?
21

2 , 0; 1, 7`
?
21

2 ; ´7`
?
21

2 )

9. ind = p6; 9q11: di = (1.0, 0.347, 1.0, 1.532, ´1.0, ´1.879)

D2 “ 9.0 = 9

T “ p0, 19 ,
2
3 ,

4
9 ,

1
3 ,

7
9q,

S = (1, c29, 1, c
1
9, ´1, c49; 1, c19, 1, ´c49, 1; 1, c49, ´1, c29; 1, ´c29, 1; 1, ´c19; 1)

10. ind = p6; 13q11: di = (1.0, 1.941, 2.770, 3.438, 3.907, 4.148)

D2 “ 56.746 = 21 ` 15c113 ` 10c213 ` 6c313 ` 3c413 ` c513

T “ p0, 4
13 ,

2
13 ,

7
13 ,

6
13 ,

12
13q,

S = (1, ξ213, ξ
3
13, ξ

4
13, ξ

5
13, ξ

6
13; ´ξ413, ξ

6
13, ´ξ513, ξ

3
13, ´1; ξ413, 1, ´ξ213, ´ξ513; ξ313, ´ξ613, ξ

2
13; ´1,

ξ413; ´ξ313)

12. ind = p6; 16q11: di = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)

D2 “ 8.0 = 8

T “ p0, 12 ,
1
4 ,

3
4 ,

1
16 ,

5
16q,

S = (1, 1, 1, 1,
?
2,

?
2; 1, 1, 1, ´

?
2, ´

?
2; ´1, ´1,

?
2, ´

?
2; ´1, ´

?
2,

?
2; 0, 0; 0)

16. ind = p6; 16q12: di = (1.0, 1.0, 1.0, 1.0, 1.414, 1.414)

D2 “ 8.0 = 8

T “ p0, 12 ,
1
4 ,

3
4 ,

1
16 ,

13
16q,

S = (1, 1, 1, 1,
?
2,

?
2; 1, 1, 1, ´

?
2, ´

?
2; ´1, ´1, ´

?
2,

?
2; ´1,

?
2, ´

?
2; 0, 0; 0)

20. ind = p6; 35q11: di = (1.0, 1.618, 1.801, 2.246, 2.915, 3.635)

D2 “ 33.632 = 15 ` 3c135 ` 2c435 ` 6c535 ` 3c635 ` 3c735 ` 2c1035 ` 2c1135

T “ p0, 25 ,
1
7 ,

5
7 ,

19
35 ,

4
35q,

S = (1, 1`
?
5

2 , ξ27 , ξ
3
7 , c

1
35 ` c635, c

1
35 ` c435 ` c635 ` c1135; ´1, c135 ` c635, c

1
35 ` c435 ` c635 ` c1135, ´ξ27 ,

´ξ37 ; ´ξ37 , 1, ´c135 ´ c435 ´ c635 ´ c1135,
1`

?
5

2 ; ´ξ27 ,
1`

?
5

2 , ´c135 ´ c635; ξ37 , ´1; ξ27)

24. ind = p6; 56q11: di = (1.0, 1.0, 1.801, 1.801, 2.246, 2.246)

D2 “ 18.591 = 12 ` 6c17 ` 2c27

T “ p0, 14 ,
1
7 ,

11
28 ,

5
7 ,

27
28q,

S = (1, 1, ξ27 , ξ
2
7 , ξ

3
7 , ξ

3
7 ; ´1, ξ27 , ´ξ27 , ξ

3
7 , ´ξ37 ; ´ξ37 , ´ξ37 , 1, 1; ξ37 , 1, ´1; ´ξ27 , ´ξ27 ; ξ27)

28. ind = p6; 80q11: di = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)

D2 “ 14.472 = 10 ` 2
?
5

T “ p0, 12 ,
1
16 ,

2
5 ,

9
10 ,

37
80q,

S = (1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 , c340`c540´c740; 1, ´
?
2, 1`

?
5

2 , 1`
?
5

2 , ´c340´c540`c740; 0, c340`c540´c740,

´c340 ´ c540 ` c740, 0; ´1, ´1, ´
?
2; ´1,

?
2; 0)
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36. ind = p6; 80q12: di = (1.0, 1.0, 1.414, 1.618, 1.618, 2.288)

D2 “ 14.472 = 10 ` 2
?
5

T “ p0, 12 ,
3
16 ,

2
5 ,

9
10 ,

47
80q,

S = (1, 1,
?
2, 1`

?
5

2 , 1`
?
5

2 , c340`c540´c740; 1, ´
?
2, 1`

?
5

2 , 1`
?
5

2 , ´c340´c540`c740; 0, c340`c540´c740,

´c340 ´ c540 ` c740, 0; ´1, ´1, ´
?
2; ´1,

?
2; 0)

The above list include all rank-6 modular data with non-integral D2 and coming from resolved
SL2pZq representations (as well as some with D2 integral, as we filter using conditions that imply
D2 P Z, but not conversely). The list misses two known modular data with non-integral D2 “

74.617, whose topological spins are si “ p0, 19 ,
1
9 ,

1
9 ,

1
3 ,

2
3q or si “ p0, 89 ,

8
9 ,

8
9 ,

1
3 ,

2
3q. From those si’s,

we find that they must come from the unresolved GT orbit p4, 1, 1; 9, 1, 1q. In the main text of
this paper, we showed that the unresolved SL2pZq representations can only produce such modular
data (and its conjugations by Galois action and signed diagonal matrices). The unresolved cases
are handled in the main text of the paper, which leads to a complete classification of all rank-6
modular data.
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