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Abstract: This paper studies the three-dimensional (3-D) ionospheric electron density variation
over the continental US and adjacent regions during the August 2017 Great American Solar Eclipse
event, using Millstone Hill incoherent scatter radar observations, ionosonde data, the Swarm satellite
measurements, and a new TEC-based ionospheric data assimilation system (TIDAS). The TIDAS
data assimilation system can reconstruct a 3-D electron density distribution over continental US and
adjacent regions, with a spatial–temporal resolution of 1◦ × 1◦ in latitude and longitude, 20 km in
altitude, and 5 min in universal time. The combination of multi-instrumental observations and the
high-resolution TIDAS data assimilation products can well represent the dynamic 3-D ionospheric
electron density response to the solar eclipse, providing important altitude information and fine-scale
details. Results show that the eclipse-induced ionospheric electron density depletion can exceed 50%
around the F2-layer peak height between 200 and 300 km. The recovery of electron density following
the maximum depletion exhibits an altitude-dependent feature, with lower altitudes exhibiting a
faster recovery than the F2 peak region and above. The recovery feature was also characterized by a
post-eclipse electron density enhancement of 15–30%, which is particularly prominent in the topside
ionosphere at altitudes above 300 km.

Keywords: 3-D ionospheric imaging; Great American Solar Eclipse; TIDAS data assimilation system;
Millstone Hill ISR

1. Introduction

A solar eclipse is a spectacular astronomical event and a natural experiment that provides
unique opportunities for investigating ionospheric effects. The ionosphere could undergo
substantial changes under the impact of the transient variation in solar radiation during
an eclipse [1]. These changes encompass the following aspects: (1) Localized reduction in
electron densities (Ne) and total electron content (TEC). The decrease in photo-ionization
induced by the eclipse would cause a predominant Ne decrease in the E/F region, along with
TEC depletion. This depletion can reach levels of ∼20–50% along the totality path, with a
time delay of a few to tens of minutes after the peak obscuration (e.g., [2–8]). (2) Cooling of
ion and electron temperatures. The reduced solar extreme ultraviolet (EUV) heating would
result in a decrease of 100 to 1000 K in electron temperature, along with a reduction of a
few tens to several hundreds of K in ion temperature (e.g., [9–12]). (3) Modified ambipo-
lar diffusion and neutral wind patterns [13]. The drop in ionospheric pressure due to de-
creased plasma temperature would lead to a reduction in the plasma equilibrium scale height,
thus enhancing the downward plasma diffusion in F2 and topside ionosphere (e.g., [14,15]).
Moreover, the eclipse-induced thermospheric cooling and composition changes may cause
wind disturbances near the totality path, consequently modifying local dynamics and even
electrodynamics through the dynamo effect (e.g., [16–21]). (4) Bow waves and traveling
ionospheric disturbances (TIDs). The moon’s supersonic shadow could cause instant changes
in atmospheric temperature and pressure gradients, triggering bow wave structures in the
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atmosphere and ionosphere (e.g., [22,23]), as well as gravity waves and associated TIDs
(e.g., [24–26]). (5) Conjugate ionospheric disturbances. The reduced photo-electron heating
in the eclipse region may lead to plasma cooling along the entire flux tube, extending to
the conjugate hemisphere due to large field-aligned thermal conduction; photo-electrons
from the conjugate hemisphere may transport along magnetic field lines to ingest into the
eclipse-darkened region (e.g., [14,27]). These processes can modify the photo-chemical and
thermodynamic reactions in the conjugate hemisphere, and trigger mesoscale perturbations
in ionospheric electron density and TEC therein [28,29].

On 21 August 2017, the Great American Total Solar Eclipse passed across the continental
United States, spanning from the Pacific to the Atlantic Oceans. The ionosphere–thermosphere
responses to this eclipse have been extensively studied through a variety of observations,
such as Global Navigation Satellite System (GNSS) TEC data (e.g., [3,23,26,29–34]), digisonde
measurements [35,36], incoherent scatter radar data [10], airglow emission data [19,37], and
satellite in situ or radio occultation measurements [11,15,38,39]. Moreover, numerical simu-
lations have also been used to study the eclipse-induced ionospheric–thermospheric effects
(e.g., [13,14,17,25,40–44]).

In spite of the notable advancements accomplished in previous studies, accurately
imaging the eclipse-induced three-dimensional (3-D) variations in ionospheric electron
density structures is still an important but a challenging issue. Besides the 2-D horizontal
morphology, the significant variability in the ionosphere induced by the solar eclipse is
also evident in the vertical domain. The altitude variation of the ionosphere represents a
fundamental characteristic of any ionospheric changes, which imparts vital and distinctive
information on ionospheric dynamics, such as vertical plasma movement and thermal con-
figuration [45]. Through investigating the 3-D ionospheric electron density variation, our
understanding of the multi-scale ionospheric changes and their underlying mechanisms
during an eclipse can be further advanced. Recently, a few pioneering studies have ven-
tured into reconstructing the 3-D ionosphere structures during the Great American Eclipse
using the tomography technique. For instance, He et al. [31] constructed tomographic
pictures of the 3-D configuration of eclipse-induced ionospheric electron depletion, using
ground-based GNSS TEC measurements. They reported that the maximum Ne depletion
occurred around 200 km. Chen et al. [46] also employed a three-dimensional tomography al-
gorithm with ground-based GNSS TEC observations to build the ionospheric Ne structures.
They found that the maximum Ne depletion was around ∼40% compared to the previous
day. Besides tomography, ionospheric data assimilation techniques have also been used
to specify 3-D ionospheric structures, wherein various ionospheric measurements are in-
corporated into a background model to derive an optimal state estimation. For example,
Chen et al. [17] used the Thermosphere Ionosphere Electrodynamics General Circulation
Model (TIEGCM) to perform a data assimilation analysis of the ionosphere responses to the
Great American Eclipse, focusing more on some remote ionospheric perturbations in the
equatorial and conjugate region. Lin et al. [47] reconstructed 3-D electron density structure
using the Global Ionospheric Specification and found that the eclipse caused a 30–50 km
uplift of the ionospheric F-2 layer peak height (hmF2).

In this study, we will revisit the August 2017 solar eclipse event to conduct an in-depth
analysis of the regional 3-D ionospheric electron density variations during the eclipse, using a
collection of multi-instrumental observations with a new high-resolution data assimilation tool.
In particular, the observations include the Millstone Hill incoherent scatter radar (MHISR),
which provides valuable altitude-resolved electron density measurements in the midlatitude
ionosphere over North America. We will also examine ionosonde electron density profiles
in the bottomside ionosphere, as well as Swarm in situ electron density measurements and
uplooking TEC data in the topside ionosphere. Notably, we will use a recently developed
new TEC-based ionospheric data assimilation system (TIDAS, Aa et al. [48]) to reconstruct
the 3-D ionospheric electron density distribution during the eclipse. Compared with the
above-mentioned tomography and data assimilation work, the powerful TIDAS system has
robust capabilities in assimilating an expansive set of datasets, including ground-based GNSS
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TEC and MHISR measurements, along with space-borne radio occultation and altimeter
datasets. Moreover, TIDAS can provide high-resolution 3-D time-evolving Ne maps over the
continental US and adjacent regions, with a spatial–temporal resolution of 1◦× 1◦ in latitude
and longitude, 20 km in altitude, and 5 min time cadence. Through synergistically combining
those multi-instrument observations and the high-fidelity TIDAS data assimilation results,
we aim to achieve a refined specification of the altitude-dependent ionospheric morphology
replete with fine-scale details during the Great American Solar Eclipse. This endeavor aspires
to further advance the current understanding of eclipse-induced ionospheric variations and
the underlying mechanisms.

2. Datasets and Methodology

The MHISR is a powerful ground-based ultra-high frequency radar system that has
maintained operations since the 1960s in Millstone Hill (42.6◦ N, 71.5◦ W). It comprises
a fixed-zenith antenna with 68 m diameter and a fully steerable antenna with diameter
of a 46 m. Through utilizing collective Thomson scatter diagnostics from thermal iono-
spheric plasma, the MHISR system can provide unique altitude-resolved measurements of
various ionospheric parameters, encompassing electron density, ion temperature, electron
temperature, plasma velocity, etc. (e.g., [49–52]). These measurements span the midlatitude
and subauroral regions over the North American region. For the 2017 eclipse event, the
local ionospheric measurements from the MHISR zenith antenna have been reported by
Goncharenko et al. [10]. However, the wide-coverage azimuth scan measurements from the
steerable antenna, especially the 3-D electron density variation in the vicinity of the totality
regions, have not been explored before and will be first analyzed in the current study.

The ionosonde measurements are from four stations with different levels of solar
obscuration: Idaho National Lab (43.8◦ N, 112.7◦ W, maximum obscuration: 100%), Boulder
(40.0◦ N, 105.3◦ W, maximum obscuration: 93%), Austin (30.4◦ N, 97.7◦ W, maximum
obscuration: 65.2%), and Millstone Hill (42.6◦ N, 71.5◦ W, maximum obscuration: 63.1%).
While the ionospheric height variation have been investigated for this eclipse event [36,47],
we will focus on the examination of the vertical electron density profiles measured by
those ionosondes.

The Swarm constellation comprises three satellites that fly in approximately circular
orbits with an inclination of 88◦. Specifically, Swarm A and C fly at an altitude of ∼450 km
side by side with 1.4◦ longitudinal separation, and Swarm B flies at a higher altitude at
∼510 km. During the period of this eclipse event, Swarm A/C fortuitously passed over
the North American sector at ∼12 LT. In this study, we will use the in situ electron density
measurements from the Langmuir probe and the up-looking TEC from the GPS receiver
onboard Swarm C satellite to unravel the topside ionosphere response during the eclipse.

The TIDAS data assimilation system is driven by four fundamental datasets: (1) Line-of-
sight (LOS) TEC data from 2000+ ground-based GNSS receivers situated across the continental
US and adjacent regions [53]. (2) Radio occultation Ne profiles derived from the Constellation
Observing System for Meteorology Ionosphere and Climate (COSMIC) satellites. COSMIC
satellites orbit the Earth at an altitude of 800 km with an inclination of 72◦. (3) Vertical TEC
data above the ocean surface from dual-frequency altimeters’ measurements aboard JASON
satellites [54]. (4) MHISR electron density measurements from the zenith antenna within
200–500 km altitudes. The TIDAS system leverages a hybrid Ensemble-Variational method
and a background ionospheric model of NeQuick [55] to conduct the data assimilation.

The TIDAS data assimilation commences with the computation of a non-static location-
dependent background error covariance matrix, which is computed from the ensemble
statistics of corrected NeQuick outputs. By embracing this ensemble-based strategy, the es-
timation of background error covariance and the reliability of the data assimilation system
is improved, particularly in scenarios with large spatial inhomogeneity, as encountered
during geospace events such as the eclipse. Subsequently, a three-dimensional variational
(3DVAR) algorithm is used to minimize a cost function that quantifies the weighted discrep-
ancies between the background model and observations, so that the maximum likelihood
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estimation of the state variable can be calculated (e.g., [56,57]). For a more comprehensive
description on TIDAS datasets and algorithms, readers may refer to Aa et al. [48,58], which
demonstrates the initial achievements of the TIDAS system in reconstructing regional
high-fidelity 3-D ionospheric structures.

3. Results and Discussion
3.1. MHISR and Ionosonde Results

The Great American Solar Eclipse traversed the continental US during ∼16–20 UT on
21 August 2017. Figure 1 shows 3-D Ne profiles from MHISR’s wide-coverage azimuth scan
and the corresponding 2-D projection maps at eight UT intervals from 16:43 to 20:24 UT
on 21 August, overlapping with the totality path and different solar obscuration zones.
As shown in each subpanel, The MHISR steerable antenna scanned from −48◦ to −148◦

azimuth angle in ∼12 min with an elevation of 6◦. This wide-azimuth scan provided
extensive spatial coverage of more than 20◦ in both latitude and longitude with altitude-
resolved Ne measurements. We here focus on discussing the Ne variation around F-
region heights, specifically between 200 and 400 km, to minimize errors due to large
range discrepancies.

During the pre-eclipse period of 16:43–16:55 UT (Figure 1a), when the majority of the
radar’s field-of-view has not been covered by the moon’s shadow, the ionospheric F-region
electron density around the totality path was ∼1.5–2.0 × 1011/m−3. In the subsequent four UT
intervals, the solar obscuration near the central field-of-view progressively increased to 10–25%
(Figure 1b), 30–50% (Figure 1c), 50–80% (Figure 1d), and 80–100% (Figure 1e). As can be seen,
the corresponding F-region electron density exhibited a noticeable reduction in these sequential
scans, reaching merely 0.5–1 × 1011/m−3 close to the totality between 18:43–18:55 UT (Figure 1e).
This indicates that the maximum depletion of F-region Ne can reach 50–60% compared with
pre-eclipse values. In comparison, some previous studies indicate that the 2-D TEC depletion
was up to 50% (e.g., [30]) and the ionospheric F-region peak electron density decrease was
around 30–50% (e.g., [10,35,36]). In addition, the tomography results given by Chen et al. [46]
showed a maximum Ne depletion of 40%. In comparison to these prior investigations, the
altitude-resolved measurements from MHISR clearly demonstrate that the Ne depletion could
be more substantial around regions of totality, reaching levels of 50–60% around 200-300 km as
illustrated in Figure 1e.

During the waning phase of the eclipse (Figure 1f–h), the F-region electron density
measured by MHISR rapidly recovered to the pre-eclipse levels with respect to the de-
crease in solar obscuration. For example, in the post-eclipse period of 20:13–20:24 UT
(Figure 1h), the F-region electron density experienced an increase to 1.7–2.2 × 1011/m−3.
This elevation was roughly 15–30% higher than the levels observed before the eclipse,
as shown in Figure 1a. This post-eclipse Ne enhancement was particularly notable to
the poleward side of totality path, in the mid- and subauroral latitudes around the Great
Lakes regions. Such a post-eclipse Ne enhancement was also detected by the zenith an-
tenna of the MHISR system [10] and by using satellite in situ measurements in the topside
ionosphere [30], which will be further discussed in the subsequent section.

Figure 2a–d shows the eclipse totality path and different obscuration lines at four
UT intervals between 17:15 and 18:45 UT on 21 August 2017. The totality traversed from
the west coast to the east coast in 90 min. Black stars mark the locations of four used
ionosondes with different percentages of maximum eclipse obscuration: 100% at Idaho
National Lab, 93% at Boulder, 65.2% at Austin, and 63.1% at Millstone Hill. Figure 2e–h
displays the electron density profiles observed by the ionosondes between 15 and 24 UT
on the eclipse day at these four stations, respectively. Vertical lines on these plots denote
the local eclipse start, maximum obscuration, and end times. In comparison, Figure 2i–l
shows the corresponding electron density profiles from the reference day measurements on
22 August. Although median values of multiple days could be used as a reference [59,60],
the geomagnetic activity was at more active to moderate levels on 19, 20, and 23 August. In
particular, a minor geomagnetic storm occurred on the day before the eclipse. Thus, many



Atmosphere 2023, 14, 1379 5 of 15

studies have selected the relatively quiet 22 August as the closest reference day to represent
the observed state of the non-eclipse ionosphere (e.g., [10,30]).
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Figure 1. (a–h) Three-dimensional electron density profiles of the Millstone Hill incoherent scatter
radar (red star) for the wide azimuth scan and the corresponding 2-D projection map using the same
longitude/latitude information on 21 August 2017. The totality path of the solar eclipse and the 0%,
25%, 50%, 75%, and 95% obscuration lines are plotted on the bottom surface.
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Figure 2. (a–d) The continental US maps with the eclipse totality path and the 0%, 25%, 50%, 75%,
and 95% obscuration lines at four UT intervals between 17:15 and 18:45 UT on 21 August 2017. The
locations of four ionosondes are marked with stars. (e–l) Comparison of ionosonde electron density
profiles between 15 and 24 UT on the eclipse day (21 August) and the day after (22 August). The local
eclipse start, maximum, and end times are marked with vertical white lines.

On the eclipse day, the predominant feature at all these ionosondes is a clear electron
density bite-out during the eclipse period at all altitudes from 100 to 600 km. Specifically,
the electron density reduction occurred shortly after the start of the eclipse and reached a
maximum depletion around 20–30 min after the local maximum obscuration, which then
gradually recovered to pre-eclipse levels after the ending of the local eclipse. This Ne
behavior agrees with our expectation and can be mainly ascribed to the eclipse-induced
suppression and recovery of photo-ionization (e.g., [2]). However, it is worth noting that
these automatic ionosonde data have sporadic data gaps, sometimes with large uncertain-
ties. In addition, the topside profile above the F2 peak is derived assuming an α-Chapman
shape of plasma distribution [61]. Therefore, these ionosonde profiles are more suitable
to providing a qualitative evaluation of the eclipse effect and we will use the TIDAS data
assimilation technique to provide a more quantitative analysis of the ionospheric electron
density response.

3.2. TIDAS Data Assimilation Results

Figure 3a–h show the temporal variation of reconstructed electron density profiles
given by TIDAS data assimilation at ionosonde locations between 15 and 24 UT on the
eclipse day and reference day, respectively. Through comparing these results with Figure 2,
it can be seen that the TIDAS data assimilation results exhibit good agreement with the
ionosonde observations, effectively capturing the eclipse-induced electron density reduc-
tion and subsequent recovery. Moreover, the high-resolution TIDAS results have the merit
of reproducing the localized ionospheric morphology with fine-scale details, without ex-
hibiting sporadic data gaps or conspicuous outliers. These images show a comprehensive
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view of the dynamic 3-D ionospheric variations, encompassing significant altitude infor-
mation across the bottomside and topside ionosphere. It is worth noting that a thorough
validation of the TIDAS products has been given by Aa et al. [48], affirming the reliability
of the data assimilation approach. We will also verify the TIDAS data assimilation results
using independent data such as Swarm in situ Ne in this paper and the focus will primarily
revolve on analyzing the 3-D ionospheric electron density response to the eclipse using
TIDAS results. To facilitate a more detailed quantitative analysis of the eclipse’s impact
and to emphasize the electron density variation, Figure 3i–l shows the electron density dif-
ference (dNe) between the eclipse day and the reference day at these respective ionosonde
locations. These profiles reveal two noteworthy features: the reduction in electron density
during the eclipse and the subsequent post-eclipse enhancements, which will be described
and discussed in detail below.
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Figure 3. (a–h) Comparison of TIDAS reconstructed electron density profiles at four ionosonde
locations between 15 and 24 UT on the eclipse day (21 August) and the reference day (22 August).
(i–l) The electron density difference between the eclipse day and reference day. The local eclipse start,
maximum, and end times are marked with vertical lines.

During the eclipse, a common feature in these ionosondes was a decrease in electron
density of 0.5–1.5 × 1011 el/m3, which was observed shortly after the commencement of the
local eclipse and reached its maximum depletion around 30–50 min after the local maximum
obscuration. The electron density depletion was more pronounced around the ionospheric F2
peak region than at lower altitudes. Taking the Idaho National Lab (Figure 3i) and Boulder
(Figure 3j) as examples, where the local maximum obscuration exceeded 90%, the largest
electron density reduction was 1.35 × 1011 el/m3 (∼46%) at Idaho and 1.55 × 1011 el/m3

(∼53%) at Boulder in the ionospheric F2 region between 200 and 300 km. In the cases of
Austin (Figure 3k) and Millstone Hill (Figure 3l), where the local maximum obscuration
was around 63–65%, the most substantial electron density decrease was 1.33 × 1011 el/m3

(∼51%) at Austin and 0.81 × 1011 el/m3 (∼37%) at Millstone Hill in the F2 region. It is worth
noting that, although Austin and Millstone Hill has similar levels of obscuration, Millstone
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Hill exhibited much less electron density reduction and a quicker recovery. This difference
might be ascribed to their latitude and local time discrepancies. From the latitude aspect, the
eclipse-induced downward plasma diffusion from the topside ionosphere and plasmasphere
can mitigate electron density reduction, which would be more effective at higher latitudes
with a larger dip angle [62]. The dip angle at the midlatitude Millstone Hill location is
20◦ larger than that in Austin, which is expected to have a larger downward plasma flux.
Moreover, Figure 3c,g shows that Austin had higher background densities compared to the
other sites, suggesting larger background neutral concentrations and associated ionospheric
loss coefficients, which would lead to more significant electron density reduction therein [4,63].
On the other hand, the path of the eclipse swept across Millstone Hill and the east coast around
local afternoon, when the ionosphere has been well-established with plasma transport being
dominant over the production process. For the other three sites, the eclipse started in the local
morning, during which the photo-chemical process ought to play a more dominant role than
transportation [64]. Thus, an abrupt cessation of photo-ionization during the eclipse likely led
to a more pronounced reduction in electron density in the morning sector than the afternoon
sector. The complex interplay of these factors contributed to the complicated ionospheric
behavior observed during the eclipse, as shown in Figure 3.

The recovery of electron density after the maximum depletion also exhibits an altitude-
dependent feature, with lower altitudes below 250 km exhibiting a faster recovery compared
to those at F2 peak height and higher altitudes. This is as expected since changes in the
photo-ionization rate have a more significant impact on the photochemical equilibrium at
lower altitude ionosphere [10]. Moreover, another noticeable feature in Figure 3i–l is the
post-eclipse electron density enhancement of 0.5–0.9 × 1011 el/m3 (∼15–30%) occurring
around 1–2 h later after the end of the local eclipse, which was particularly evident above
the F2 peak around 300–400 km. Such a post-eclipse Ne enhancement can also be seen in the
previous MHISR (Figure 1) and ionosonde measurements (Figure 2), and was also reported
in several studies of this eclipse event [10,26,30,36,43,46]. This post-eclipse Ne enhance-
ment could be related to the following three mechanisms: (1) Downward plasma diffusion.
The eclipse-induced ion and electron temperature decrease can lead to a reduction in plasma
scale height, consequently enhancing the downward plasma diffusion. This effect leads to a
replenishment of the electron density, especially pronounced around the F2 peak and higher
altitudes [6,9]. (2) Neutral wind changes. The eclipse-induced thermospheric cooling and low
air pressure can cause converging winds towards the totality path [18,21]. As measured by
the MHISR, there was a 50–150 K decrease in ion temperature during the eclipse, which was
close to the neutral temperature behavior. In this scenario, the disturbance wind is equator-
ward to the north of the totality path, which can push the plasma along field lines to higher
altitudes with slower recombination rates, thereby increasing the electron density. There
was a comparatively less noticeable post-eclipse enhancement at Austin, since it is located
to the south of the totality path, which ought to have a poleward disturbance wind pattern
that push plasma to lower altitudes along field lines. Moreover, Wang et al. [13] indicated
that the electron density recovery above the F2 peak is mainly driven by transport due to
winds and ambipolar diffusion. (3) Thermospheric composition change. Model simulations
conducted by Wu et al. [43] and Müller-Wodarg et al. [20] demonstrated that the combined
effects of eclipse-induced thermal cooling and downwelling led to an increase in the neutral
oxygen density, while the neutral N2 density was decreased due to the atmospheric cooling.
The above-mentioned thermosphere wind/composition changes take some time to build
up and cause the ionospheric electron density response, leading to a delayed post-eclipse
enhancement that lagged by several dozen minutes to a couple of hours after the end of the
local eclipse.

Figure 4 shows an example of the 3-D distribution of the absolute and percentage dNe
maps over the continental US and adjacent regions between 200 and 600 km at 18:30 UT on
21 August 2017. The eclipse totality path and different obscuration zones are also plotted.
These images were reconstructed using the high-resolution TIDAS data assimilation system
with the spatial grid size being 1◦ (latitude) × 1◦ (longitude) × 20 km (altitude), which
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shows a good representation of the eclipse-induced ionospheric electron density variation.
As can be seen, the ionospheric electron density reduction on an average of 30–40% occurred
across all altitudes with the 50% eclipse obscuration region. The most significant depletion
of ∼1.6 × 1011 el/m3 (∼55%) occurred near the F2-layer peak height of around 300 km.
Furthermore, a latitudinal effect is discernible, with more substantial electron density
decreases observed equatorward of the totality path than the poleward counterpart. This
trend is consistent with observations shown in Figure 3 and is also in alignment with GNSS
TEC observations (e.g., [3,30]), which can be ascribed to the latitudinal dependence of
downward plasma flux as previously discussed.
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Figure 4. Three-dimensional distribution of the absolute (upper panels) and percentage (bottom
panels) dNe maps reconstructed by TIDAS data assimilation between 200 and 600 km at 18:30 UT on
21 August 2017. The eclipse totality path and different obscuration zones of 95%, 75%, 50%, 25%, and
0% are plotted.

To provide a more comprehensive depiction of the time-evolving 3-D ionosphere electron
density variation during the eclipse, Figures 5 and 6 show absolute and percentage dNe maps
at various time intervals between 17:30 and 19:45 UT on 21 August 2017. These images reveal
that the electron density depletion traversed across the continental US, progressing from the
west coast to the east coast in response to the eclipse passage. Within the 50% obscuration
zone, the electron density reduction ranged between 0.5 and 1.5 × 1011 el/m3 (30 and 50%).
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The most dramatic depletion occurred between 200 and 300 km to the southwest of the totality
path. Moreover, Figure 7 shows the reanalyzed 2-D dTEC and dNmF2 (F2-layer peak density)
maps at different UT intervals generated by TIDAS data assimilation. Both the dTEC and
dNmF2 maps prominently exhibit the eclipse-induced reductions of 30–50% and post-eclipse
enhancements of 10–25%, which are consistent with prior observational and/or modeling
studies (e.g., [3,10,13,30,36,43]).
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Figure 5. (a–d) Three-dimensional distribution of the reconstructed dNe maps given by TIDAS data
assimilation at eight UT intervals between 17:30 and 19:45 UT. The eclipse totality path and different
obscuration zones of 95%, 75%, 50%, 25%, and 0% are plotted.
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Figure 6. (a–d) The same as Figure 5 but for 3-D distribution of percentage dNe maps.
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Figure 7. (a–d) Two-dimensional regional maps of reanalyzed dTEC and dNmF2 (F2-layer peak
density) given by TIDAS data assimilation between 17:15 and 19:30 UT on 21 August 2017. The
eclipse totality path and different obscuration zones of 95%, 75%, 50%, 25%, and 0% are plotted.

To better assess the performance of the TIDAS data assimilation system and analyze the
response of the topside ionosphere, Figure 8a–d show the TIDAS-derived 2-D dNe maps at
450 km and dTEC maps overlaid with orbits of Swarm C satellite at 18:40 UT and 20:10 UT on
21 August 2017, respectively. The corresponding subpanels on the right show the latitudinal
profiles of Swarm Ne and TEC (depicted in red lines) as well as TIDAS results (illustrated in
black lines), compared with the reference values (shown as dotted lines) on 22 August 2017.
Around 18:40 UT, Swarm C approximately flew along −100◦ longitude, passing over the
eclipse shadow zones of 25–50% obscuration. The in situ Ne measurements in Figure 8a
show that the eclipse-induced reduction in electron density was about 0.3–0.4 × 1011 el/m3

in comparison to reference day values. Notably, the TIDAS data assimilation results closely
match the Swarm in situ profiles, effectively capturing the electron density reduction with
a magnitude approximately the same as observations. Moreover, Figure 8c shows that the
decrease in Swarm uplooking TEC was approximately 1–2 TEC units, while the TIDAS-
derived TEC reduction was 4–6 TEC units. This reveals that ∼30% (∼70%) of the electron
density reduction was contributed by the ionosphere above (below) 450 km, which is consistent
with the findings reported for Swarm A by Cherniak and Zakharenkova [30]. During the
subsequent pass around 20:10 UT (as shown in Figure 8b,d), Swarm C flew along −123◦

near the west coast in the post-eclipse phase. Both Swarm and TIDAS results exhibit a clear
signature of electron density enhancement of 0.2–0.3 × 1011 el/m3 and a TEC increase of
1–2 TEC units. Note that Swarm only measures uplooking TEC above the satellite altitude,
which is why Swarm TEC values are generally smaller than the corresponding TIDAS data
assimilation results. However, it is noteworthy that the trends in their latitudinal variations
are highly consistent with each other. Collectively, these aforementioned results demonstrate
that the TIDAS data assimilation results show a good reconstruction of the 3-D ionospheric
dynamic response to the Great American Solar Eclipse.
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Figure 8. (a–d) TIDAS-derived 2-D dNe maps at 450 km and dTEC maps overlapping with the Swarm
C satellite orbits (red lines) at 18:40 UT and 20:10 UT on 21 August 2017. The eclipse totality path
and different obscuration zones are plotted. The right subpanels show the corresponding latitudinal
profiles of Ne or TEC given by Swarm C (red) and TIDAS (black), as compared with the reference
values on 22 August 2017 (dotted lines).

4. Conclusions

This paper revisits the 2017 Great American Solar Eclipse event, delving into a con-
centrated study of the 3-D ionospheric electron density response to the eclipse. The study
focuses on utilizing the Millstone Hill incoherent scatter radar (MHISR) observations,
ionosonde measurements, data from the Swarm satellite, and a new TEC-based ionospheric
data assimilation system (TIDAS), to analyze in coordination the altitude-resolved electron
density variation over the continental US and adjacent regions during the eclipse. The main
results are summarized as follows.

1. The high-resolution TIDAS products effectively reconstruct the 3-D ionospheric elec-
tron density variation during the eclipse, providing important altitude information.
This accurately captured the key features of eclipse-induced electron density reduction
and the subsequent post-eclipse enhancement in the 3-D domain, which showcase
intricate features with details at a finer scale.

2. The combination of multi-instrumental observations and TIDAS results demonstrate
that the eclipse-induced ionospheric electron density depletion exhibits an altitude-
dependent feature. This reduction can exceed 50% in the F2 region, especially between
altitudes of 200 and 300 km. Furthermore, the recovery of electron density after the
end of depletion also exhibits an altitude-dependent behavior, where ionosphere at
lower altitudes below 250 km exhibited a faster recovery than that at and above the
F2 peak height. This is because the recovery in the photo-ionization rate has a more
significant impact on the photo-chemical equilibrium at lower altitude ionosphere.

3. The multi-instrumental observations and TIDAS data assimilation results revealed the
feature of post-eclipse electron density enhancement of 15–30%. This enhancement
is more noticeable in the topside ionosphere, above the F2 peak height at altitudes
higher than 300 km, especially in midlatitude regions at the poleward of the totality
path. It is likely that this enhancement was primarily influenced by the downward
plasma flux associated with the eclipse and the accompanying disruption caused by
neutral winds.
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In summary, this work successfully captured the key features of eclipse-induced electron
density reduction and post-eclipse enhancement in the 3-D domain with important altitude
information and fine-scale details, which has important implications for advancing current
understanding of ionospheric changes and underlying mechanisms. In the future, continued
efforts should be devoted in developing operational capabilities of 3-D ionospheric imaging
to serve the needs of both research and space weather applications. The ultimate goal is to
establish a robust, accurate, and timely ionospheric 3-D nowcast/forecast system to improve
space weather specification, aiding in a quantitative assessment of the ionospheric weather
effects caused by forthcoming solar eclipses and other geospace disturbances.
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