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Abstract
A network of observers is considered, where through asynchronous (with bounded delay) communications,
they cooperatively estimate the states of a linear time-invariant (LTI) system. In such a setting, a new type
of adversary might affect the observation process by impersonating the identity of the regular node, which
is a violation of communication authenticity. These adversaries also inherit the capabilities of Byzantine
nodes, making them more powerful threats called smart spoofers. We show how asynchronous networks are
vulnerable to smart spoofing attack. In the estimation scheme considered in this paper, information flows
from the sets of source nodes, which can detect a portion of the state variables each, to the other fol-
lower nodes. The regular nodes, to avoid being misguided by the threats, distributively filter the extreme
values received from the nodes in their neighborhood. Topological conditions based on strong robustness
are proposed to guarantee the convergence. Two simulation scenarios are provided to verify the results.

Keywords: Cyber-physical systems, smart spoofing, distributed resilient algorithm, secure observers

1 Introduction
Security is becoming an increasingly important con-
cern for the stability and safety of networked control
systems. Nowadays, in large-scale control systems,
communication channels connecting various physical
components for real-time measurement and control
mostly make use of general purpose cyber-networks
such as the Internet and wireless networks, which
create vulnerabilities to adversarial intrusions. While
conventional network security-based measures may be
partially effective, novel resiliency methods explicitly
taking the dynamical nature of physical components
into account should be developed as any failure in
security of the cyber components in such systems
may turn into irrecoverable harms to the physical
infrastructure.

Security experts define various security goals in-
cluding (i) Confidentiality, ensuring privacy of impor-
tant data against outside eavesdroppers; (ii) Integrity,
maintaining fidelity of system signals; (iii) Availabil-
ity, capability of timely having access to the required
signals; (iv) Authenticity, verifying identity of each
signal; (v) Authorization, adjusting legitimacy of ac-
cess by each component to other parts of the system;
and (vi) Accountability, detection of any potential
attacks and faults in the system [1].

In this paper, we consider masquerading, spoofing,
or impersonation attack strategy on cyber-physical
networked systems, which is a threat of authenticity. A
broad range of wired and wireless networks including
sensor networks, in-vehicle networks, and Internet-
based networks are susceptible to be threatened by
spoofing. For instance, the reader can refer to [2]
for satellite mobile communication networks, [3] for
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mobile ad hoc networks, and [4] for CAN-based net-
works. Spoof-resiliency techniques would be essential
for all of these network setups to detect and/or mitigate
the adversarial effects. However, mostly in literature,
the spoof-resilient algorithms are studied for the in-
teractions between only two agents: a spoofer and a
normal [5–9]. For example, [6] presents an application
of spatial processing methods for spoofing detection
and mitigation. Also, a GPS spoofing scenario is for-
mulated as a constrained optimization problem and
an effective solution is provided to compute the fal-
sified GPS measurement of each time instant [7].
The false-data injection attack on unmanned vehi-
cles is investigated in [8]. Although, this differs a
little from spoofing attacks. The attacker masquer-
ades as a disturbance for control system of a vehicle
and deviates its path smoothly. Furthermore, a game-
theoretic approach is developed in [9] to counteract
spoofing attacks. However, a common point all the
above researches share is that there is no network
of agents. Only two-side interplay scenarios are con-
sidered, where the spoofing or masquerading is the
attacking method. Recently though, [10] and [11] fo-
cused on the sequels of spoofing attack on the network
of agents. However, both of these references use phys-
ical fingerprints of communication signals to undo
the attacks, which is a different approach and cannot
resist against onmniscient adversaries in practice. De-
spite [10], in our work, the attackers do not leave any
sign and thus the regular nodes cannot identify them.
Also, omniscient attackers in our setup could break
any type of signal encryption and perform masquerad-
ing. Particularly, our emphasis is on the resiliency of
a network in terms of its topology that is a more ba-
sic level of counteraction to cyber threats. Moreover,
in [10], attackers cause an availability threat by jam-
ming the server with fake identities, which is a special
case of our adversarial model. We combine adver-
sarial capabilities of the so-called Byzantine model,
which is an integrity attack capable of sending incon-
sistent erroneous signals to the receivers introduced
and used in [12,13], with spoofing, that is use of
other nodes’ identities to send data on their behalf,
and introduce a novel and more powerful adversar-
ial model called smart spoofer. In [14], resiliency of
synchronous networks is investigated against mobile
Byzantine adversaries that are different from our ad-
versarial model. In our setting, smart spoofers can
use the asynchrony of network communications to
mislead the nodes with impersonated identities.

One of the targets of spoofers in network sys-
tems would be inserting erroneous values into the
distributed state estimations performed by the nodes.
Distributed state estimation algorithms are extensively
studied in the literature [15–18]. However, all these
research works focused on the interaction between dy-
namic system, observers and the graph topology. A
minimum cost communication graph which enables
limited communication for decentralized estimation
is investigated in [15] . The interplay between net-
work connectivity, global observability, and system
instability is studied in [16]. Necessary and sufficient
conditions for existence of distributed observers are
studied in [17]. Also, [18] generalizes distributed ob-
server design for LTI systems with singular transition
matrices. None of the above research works consider
communication security among the physical and cyber
layers. The resilience of distributed observers against
cyber attacks has recently received more attention. For
instance, the resiliency of LTI systems has been inves-
tigated in [19,20] against Byzantine attacks. However,
our adversarial model is more complex by considering
the impersonation capability of adversaries. We also
consider asynchrony and delays in communications
and propose a randomization strategy for relaxing the
imposed topology constraints for secure distributed
estimation problem.

In the current paper, we consider impersonation on
a network of distributed observers for an LTI system.
Like the network communication settings in [21,22],
the observers communicate with bounded delays and
asynchrony; however, they must deal with stronger at-
tacks, i.e., smart spoofing. Similar to [19], the regular
(un-attacked) nodes are partitioned to source nodes
and follower nodes, where source nodes can detect the
corresponding eigenvalues and via distributively con-
structing a directed acyclic graph (DAG), the associ-
ated state estimates disseminate through the network.
In both DAG construction and estimation propaga-
tion, smart spoofers interfere to avoid convergence.
We present a strategy based on local filtering that is
able to defend against smart spoofing and define lo-
cal subgraphs to mimic the graph behavior for analysis
of the estimation convergence, turning into sufficient
conditions on network topology based on graph ro-
bustness that is a connectivity measure (see [13,23]
for application of similar filtering algorithms in con-
sensus problem). Consistency of the defined spoofing
model with the network security literature, considera-
tion of delays, asynchrony, and accurate assumptions
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in network communications make our proposed al-
gorithms, update rule, and concluding results more
practical in real world applications. In the develop-
ment of our results and the proofs, we adopted the
concept of motifs, the smallest possible subgraphs of
the original network with certain properties, as a new
proof technique. We analyze how the information is
disseminated through the motifs. All in all, the main
contributions of this paper to the literature are:

• Introducing, modeling and formulating a new type
of cyber attack in asynchronous network settings
which inherits the properties of both Byzantine
adversaries and spoofing agents, called smart spoof-
ing.

• Analyzing the vulnerability of asynchronous net-
works to smart spoofers and proposing a resilient
distributed state estimation strategy for a class of
LTI systems.

• Using motifs, as the smallest possible repeating pat-
terns in a network, to mathematically analyze the
topology constraints required for convergence of
the distributed state estimation.

• Presenting a randomized update rule to relax the
spoof-resilient topology constraint required for con-
vergence of the distributed state estimation.

The paper is organized as follows. The preliminar-
ies and problem statement come in Sect. 2. In Sect. 3,
we take a look at the resilient distributed estimation
scheme and the local filtering-based algorithm that
we used in this paper. Our main results are presented
in Sect. 4. We put forward the simulation results in
Sect. 5. Finally, we conclude the paper and discuss the
future tendency of the research in Sect. 6.

2 Preliminaries and problem
statement

2.1 Notations
2.1.1 Graph theory

A directed graph is represented by G = (V, E), where
the set of nodes and edges are represented by V =
{1, . . . , N} and E ⊆ V × V respectively. An edge
from node j pointing to node i implies data transmis-
sion from node j to node i and is denoted by (j, i).
The neighbourhood of the i-th node is defined by the
set Ni = {j|(j, i) ∈ E}. A node j is said to be
an outgoing neighbour of node i if (i, j) ∈ E . A
spanning sub-graph for G is a sub-graph of G which

contains every vertex of G. Consider node v1 to vp
of G. A path is a sequence (v1, v2, . . . , vp) in which
(vi, vi+1) ∈ E for i = 1, . . . , p − 1. The length of a
path is measured by its number of edges. A cycle is a
sequence (v1, v2, . . . , vp, v1) in which (vi, vi+1) ∈ E
for i = 1, . . . , p − 1 and (vp, v1) ∈ E . A directed
acyclic graph (DAG) is a directed graph which has no
cycles.

For the consensus-based state estimation rule de-
signed in this paper, the critical topological notion is
graph robustness, which is a connectivity measure of
graphs (see [24]).

Definition 1 (r-reachable set) For a graph G = (V, E) and
a set C ⊂ V , we say that C is an r-reachable set if there
exists an i ∈ C such that |Ni \ C| ≥ r, where r ∈ N+.

Definition 2 (Strongly r-robust w.r.t. S) For a graph G =
(V, E), a set of nodes S ⊂ V and r ∈ N+, we say that G
is strongly r-robust with respect to S, if for any non-empty
subset C ⊆ V \ S, C is r-reachable.

2.1.2 Linear algebra

The set of all eigenvalues of a matrix A is denoted
by σ(A). The set of all marginally stable and unsta-
ble eigenvalues of a matrix A is denoted by σU (A) =
{λ ∈ σ(A)||λ| ≥ 1}. We use aA(λ) and gA(λ) to
denote the algebraic and geometric multiplicities, re-
spectively, of an eigenvalue λ ∈ σ(A). An eigenvalue
λ is said to be simple if aA(λ) = gA(λ) = 1.

2.2 System dynamics and distributed
observers

Consider the following discrete-time LTI system:

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is
the state vector and A ∈ Rn×n is the system matrix.
The system is observed by an N -node network G =
(V, E). Access of the i-th node to the measurement of
time instant k is given by

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. For computa-
tional or control purposes, each node needs to estimate
the entire system state x[k]. Nodes of the network
G are called distributed observers if they maintain
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and update the estimates using only their own mea-
surements and those received from their neighbors.
Fig. 1 shows the layout of a typical cyber-physical
system threatened by adversarial nodes. Let x̂i[k] de-
note the state estimate of node i at each time step k.
The following definition describes the objective of the
distributed estimation scheme.

Definition 3 (Omniscience) Over the N -node network G,
the distributed observers are said to achieve omniscience if
limk→∞ |x̂i[k]− x[k]| = 0, ∀i ∈ {1, 2, . . . , N}.

Physical layer
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Figure 1 A typical cyber-physical system: In the physical layer,
the plant dynamic (maybe unstable in some modes) propagates
over time. In the cyber layer, the plant’s outputs are monitored by
a network of distributed observers (R1, R2, . . . , RN̄ ) while only
some of them are directly connected to the plant. The network is
threatened by adversarial nodes (s1, s2, . . . , sf ).

2.3 Adversarial model
We consider an adversarial model that is able to
threaten the following system protection services: au-
thentication, authorization, confidentiality, integrity
and availability. In what follows, we formally define
the abilities of such an adversarial node.

Definition 4 (Smart spoofer) An adversarial node is called
a smart spoofer if it has the following capabilities:

1) The adversarial node can have complete knowledge
about the topology, plant dynamics, and informa-
tion flow over the network at all time steps.

2) The adversarial node can refuse to perform any pre-
assigned algorithm and can send arbitrary values
to each of its neighbors at the same time step.

3) The adversarial node can send its data with in-
tended delays and asynchrony.

4) The adversarial node can impersonate other nodes
and send arbitrary data with their identities.

The first two actions are performed by Byzantine
adversaries, while the last one is performed by a threat
called spoofing or masquerading in [1] that directly
threatens the authentication among systems’ protec-
tion services. In fact, the introduced adversarial model
is an advanced spoofing threat with additional capa-
bilities of Byzantine adversaries that we call smart
spoofing. Note that we use the terms “spoof” and
“impersonate” interchangeably in this paper.

It is apparent that no distributed estimation algo-
rithm would succeed if all the nodes are adversarial.
Therefore, the set of nodes V is partitioned into two
subsets of regular nodes and adversarial nodes denoted
by R and A = V \ R, respectively. In the literature
of distributed fault-tolerant algorithms, a common as-
sumption is to assign an upper bound f to the total
number of adversarial nodes in the network, which
is known as f -total adversarial model. To consider a
large number of adversaries in large scale networks,
locally bounded fault models are used, as in [25],
defined below.

Definition 5 (f -local smart spoofer model) A set A of smart
spoofers is f -locally bounded if it contains at most f smart
spoofers in the neighbourhood of any of the regular nodes,
i.e., |Ni ∩ A| ≤ f,∀i ∈ V \ A.

Similarly, any distributed estimation algorithm
fails if a smart spoofer can impersonate all the network
nodes. Thus, to tackle the problem, we impose an up-
per bound for the number of nodes that smart spoofers
can send data on their behalf as follows.

Definition 6 (Capacity of smart spoofers) The maximum
number of nodes that a smart spoofer can send data on
their behalf at each time step, including itself, represents its
capacity and is denoted by α ≥ 1.

2.4 Problem statement
We aim to formulate the resilient version of omni-
science problem (Definition 3), where the network is
under smart spoofers’ attack with two challenging

4            
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constraints on the network communications, i.e., asyn-
chrony and delays. Accordingly, we set the following
assumptions on the network communications protocol
remarking the practical aspects of our results.

Assumption 1 All nodes update by a global clock. This
means that the sampling time T is the same for all observers.

Assumption 2 All nodes communicate through serial links
and have access to only the last data packet they have
received from neighbor nodes.

Assumption 3 All nodes make, at least, one update within
k̄ steps and communication delays are upper-bounded by τ̄ .

Referring to the introduced LTI dynamic system
and the observation model of the network, we put
forth a more complicated version of the standard
omniscience problem (Definition 3) in the following
definition.

Definition 7 (Resilient omniscience) Given a system dynam-
ics of the form (1), a network represented by the graph G,
and an observer model at each node given by (2), a state
estimation design is said to achieve resilient omniscience if
limk→∞ |x̂i[k] − x[k]| = 0, ∀i ∈ R, regardless of the
actions of any f -locally bounded set of smart spoofers.

This paper investigates the design of a distributed
estimation scheme, proper to cope with smart spoofers
threatening a given cyber network that is observ-
ing an LTI system. For this purpose, based on the
assumptions on the network communications proto-
col and the smart spoofer adversarial model, we first
present the distributed estimation scheme under a spe-
cific network topology. Next, we analyze the required
topology constraints which guarantee resilient omni-
science of all regular nodes that update their estimates
using the proposed estimation strategy.

3 Resilient distributed observers
Under Byzantine adversarial model introduced in [12],
the network achieves omniscience by distributed ob-
servers proposed in [19]. The design performs obser-
vation task by separating detectable and undetectable
eigenvalues of the system and the related states. Here,
we use a similar scheme with a different distributed es-
timation rule, proper for resilient omniscience defined

in Definition 7. To this end, consider a Jordan canoni-
cal decomposition of state transition matrixAwith the
following assumption on its eigenvalues. This assump-
tion is made for sake of simplicity, is not restrictive,
and can be relaxed by some extra mathematical efforts
and the techniques denoted in [19], which is not the
focus of this paper.

Assumption 4 Eigenvalues of A are real and simple.

This assumption allows us to diagonalize A by the
coordinate transformation matrix Ψ = [ψ1, . . . , ψn],
where ψ1, . . . , ψn are n linearly independent eigen-
vectors of A. With z[k] = Ψ−1x[k], the system (1) is
transformed into the form{

z[k + 1] = Āz[k],

yi[k] = C̄iz[k], ∀i ∈ {1, . . . , N}, (3)

where Ā = Ψ−1AΨ is a diagonal matrix, and C̄i =
CiΨ . The eigenvalues of Ā (which are the same as
those of A) are denoted by λ1, . . . , λn. Each regular
node i distinguishes its detectable and undetectable
eigenvalues by PBH test and divides them into the sets
Di and Ui, respectively. Also, the set of regular nodes
are partitioned into sets of source nodes and follower
nodes as defined below.

Definition 8 (Source nodes and follower nodes) For each
λj ∈ σU (A), the set of nodes that can detect λj is denoted
by Sj , and is called the set of source nodes for λj . The rest
of the nodes are called follower nodes.

Each regular node, depending on being a source
node or a follower node for λj , adopts a different
strategy for estimating the related states.

3.1 State estimation by source nodes
Referring to [19], each regular node i relies on its own
measurements and uses a local Luenberger observer to
estimate a patch of the states ẑDi

associated to all λj ∈
Di. To this end, letΛi ∈ Rρi×ρi (recall ρi = |Di|) be a
diagonal matrix consists of the detectable eigenvalues
in Di and C̄Di

∈ Rri×ρi stand for the columns of C̄i

corresponding to those eigenvalues. Then we have:

ẑDi
[k+1] = ΛiẑDi

[k]+Li(yi[k]− C̄Di
ẑDi

[k]), (4)
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where Lj
i ∈ Rρi×ri is the observer gain matrix at node

i. Since the pair (Λi, C̄Di
) is detectable, Li can be

chosen in a way that (Λi − LiC̄Di
) is Schur stable, so

limk→∞ |ẑji [k]− zj [k]| = 0 based on Assumption 4.

3.2 Distributed state estimation by
follower nodes

A regular node i cannot estimate a portion of the states
associated with its undetectable eigenvalues of the sys-
tem. In fact, the regular node i is a follower node
in estimating the sub-state related to the eigenvalues
λj ∈ Ui and needs to receive information from its
neighbors through a directed acyclic graph for each λj
(defined later) rooted in the set of associated source
nodes. In what follows, we propose an updating rule
for the follower node i accomplishing its estimation
task in a network with communication delays and
partial asynchrony1.

There is a major difference between resilient dis-
tributed state estimation rather than resilient consen-
sus using local filtering presented in previous research
works such as [22]. Considering asynchronous net-
work communications and observability of dynamics
of the physical layer is a new challenge in design of the
update rule and leads to a totally different convergence
analysis. Combining the ideas behind the consensus
update rules in [19] and [22], we present a novel up-
date rule with the following algorithm based on local
filtering method for node i to update its own state
estimate for λj ∈ Ui.

1) Each regular node i, at each time step k when it
wants to update its estimate, gathers the state esti-
mate of zj [k] lastly received from only the nodes
in N j

i ⊆ Ni (N j
i represents the set of neighbors

in the DAG related to λj that is selected by Al-
gorithm 1 for each regular node i, which will be
proposed later) and arranges them from the largest
to the smallest.

2) Node i drops the largest and smallest (β + 1)f es-
timates (β will be defined later) and executes the
following update rule:

ẑji [k + 1] = λj
∑

ℓ∈N j
i

ωj
iℓ[k]ẑ

j
ℓ [k − k̃iℓ[k]− τiℓ[k]],

(5)

1The term partial asynchrony refers to the case where nodes share some
level of synchrony by having the same sampling times; however, they make
updates at different times based on bounded information delays [26]

where τiℓ[k] is the time delay of the last data packet
that node i has received from node ℓ until time in-
stant k (it may be time-varying), k̃iℓ[k] is the time
steps elapsed from the time that node i receives the
packet of the node ℓ sent the last time before time
k up to the time it makes an update (k̃iℓ[k] < k̄),
and ωj

iℓ[k] is the weight that the i-th node dedicates
to the ℓ-th node at the k-th time instant for the esti-
mation of zj [k]. The weights are non-negative and
chosen to comply

∑
ℓ∈N j

i

ωj
iℓ[k] = 1,∀λj ∈ Ui. Node

i removes the (β + 1)f largest and (β + 1)f small-
est estimates from N j

i by setting their associated
weights to 0. Note that delays have an upper bound
(τiℓ < τ̄ ).

In practice, each node i has a memory for each of
its neighbors where stores the most recently received
data. Node i uses the most recent estimate values re-
ceived from its neigbours in N j

i in update rule (5),
regardless of delays and asynchrony in communica-
tions.

4 Main results
In this section, we provide the main results of the
paper giving the analysis of the spoof-resilient dis-
tributed estimation strategy and the topology con-
straints under which our adopted algorithms and up-
date rule succeed.

First, we consider how harsh the misbehaviour ef-
fects of a smart spoofer would be in the network. In
Definition 6, we introduced the spoofing capacity in
each time step. In the following lemma, we generalize
capacity of smart spoofers for a period of time.

Lemma 1 Let Assumption 3 hold and capacity of a smart
spoofer be α. Then, each smart spoofer is able to send
data on behalf of β = αk̄ − 1 regular nodes within each
consecutive k̄ steps.

Proof According to Definition 6, a smart spoofer can send
data on behalf of α nodes including itself at each time step.
Also, according to Assumption 3, all nodes have to make
at least one update within consecutive k̄ steps (note that
if a node does not follow this rule can be detected as an
adversarial node by the regular nodes). Consider the time in-
terval k + 1 ≤ t ≤ k + k̄. Let the smart spoofer choose
to make an update with its own identity at t = ks, where
k+ 1 ≤ ks ≤ k+ k̄. Considering each consecutive k̄ steps,
the smart spoofer s has α − 1 capacity for impersonation at
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ks and α capacity in other k̄ − 1 steps. Therefore, the smart
spoofer is able to impersonate αk̄ − 1 nodes overall within
k̄ steps, i.e., α− 1 + α(k̄ − 1) = αk̄ − 1. □

In fact, Lemma 1 indicates that we cannot sim-
ply replace the smart spoofers and impersonated nodes
with Byzantine nodes. Because the key question is that
how many Byzantine nodes have the same effect of a
smart spoofer with capacity α. This is what we math-
ematically clarified in Lemma 1. Asynchrony lets the
adversarial nodes spoof a specific number of regular
nodes within each k̄ time-steps. Besides, from adver-
sarial nodes’ perspective, this spoofing (and sending
false data packets) must be continued for all the fu-
ture time – in every k̄ steps – in order to be effective.
Thus, the distributed algorithms of regular nodes must
be modified to be resilient against the attack. In other
words, network providers need to be aware that in
a network with asynchrony (almost all the networks
are practically asynchronous), there is the possibility
of stronger attacks rather than Byzantine attacks. The
following necessary condition on the network com-
munications formally states when a smart spoofer can
impersonate regular nodes.

Proposition 1 Consider a network of nodes interconnected
by complete graph G, which contains smart spoofer s ∈ N j

i ,
where i ∈ R. Suppose that s is able to impersonate, at least,
one regular node within each consecutive k̄ steps (β > 0).
Smart spoofer s can impersonate a regular node ℓ ∈ N j

i ∩R
for node i at a time instant t > k only if the packet which
is broadcast by node ℓ at time instant t = k is received by
node i with delay k̃iℓ[k] + τiℓ[k] > 0.

Proof We prove by contradiction. Considering Assump-
tion 1, let node ℓ ∈ N j

i broadcast a data packet at t = k and
node i ∈ R receives the packet at the same time (τiℓ[k] = 0)
and use it for its next update at the same time (k̃iℓ[k] = 0).
Also, suppose that smart spoofer s decides to impersonate
node ℓ for node i. There are two possibilities for the arrival
time of the packet sent by s to i. The packet can arrive ei-
ther before or after the time t = k (the time instant t = k is
excluded as it contradicts Assumption 2). In case the packet
sent by s arrives at any time t > k, the node i has already ac-
cepted the last packet it received, that is, the packet of node
ℓ received at t = k, and has already made an update. Other-
wise, if the packet sent by s arrives at any time t < k, then i
will receive the packet sent by node ℓ at t = k and since, ac-
cording to Assumption 2, all nodes only access the last data
packet they receive. In either case, the smart spoofer s fails
to impersonate node ℓ for node i, which is a contradiction.
This completes the proof. □

Note that the necessary condition of Proposition 1
is independent of amounts of communication delays.
This is because we would like to deal with smart
spoofers that can impose arbitrarily bounded amount
of delays on their links to the regular nodes, that is, if
a smart spoofer wants to impersonate node ℓ ∈ N j

i ,
it can arrange to send the packet to node i after node
ℓ with appropriate delay so that it will be received af-
ter the packet sent by node ℓ. Then, node i accepts a
packet sent by s with identity of node ℓ as it is the last
packet received.

According to Proposition 1, the best case for the
regular node i is that both k̃iℓ[k] = 0 and τiℓ[k] = 0,
so the smart spoofers in the neighborhood of i cannot
impersonate neighbors of the node i. However, even
if we suppose that k̃iℓ[k] = 0, i.e., node i has not
any lag in updating its estimate using the last data re-
ceived from node ℓ, regular nodes cannot be sure about
spoofing attack. In practice, the regular nodes cannot
guess, before receiving a packet, whether it will be
received with delay and, if so, how much the delay
will be (although communication links’ delays in real
network systems are inevitable). Besides, as we said,
smart spoofers can send data packets with intended de-
lays. Therefore, the regular nodes must be aware that
all the communications may be done with delays in
each time step. Therefore, to consider the worst case,
we develop our further results on required topology
constraints by assuming that the necessary condition
on delays is satisfied for all time in the network.

4.1 Spoof-resilient mode estimation
directed acyclic graph (SR-MEDAG)

Recall the local filtering for resilient consensus based
estimation law (5). Inspired by the algorithm pre-
sented in [19], for construction of directed acyclic
graphs associated with undetectable eigenvalues of an
LTI system, we present a spoof-resilient algorithm
which is distributively executed by all the regular
nodes. The overall distributed estimation scheme con-
stitutes the construction of these sub-graphs and the
prescribed local filtering-based algorithm which are
performed in parallel. In what follows, we define the
directed acyclic graphs that are paths for information
flow over the network.

Definition 9 (SR-MEDAG) For each eigenvalue λj ∈
σU (A), the spanning sub-graph Gj = (V, Ej) of G is
Spoof-Resilient Mode Estimation Directed Acyclic Graph
(SR-MEDAG) if it has the following properties:
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8 Spoof-resilient distributed observers

Algorithm 1 SR-MEDAG Construction Algorithm
1: while k ≤ K̄j do
2: for λj ∈ σU (A) do ci(j) = 0,N j

i = ∅.
3: if i ∈ Sj then
4: Node i updates ci(j) to 1, sets N j

i = ∅
and broadcasts a message

5: χj (e.g., “110”) to its neighbors.
6: end if
7: if i ∈ V \ Sj then
8: if (ci(j) = 0, and node i has received
mj from at least 2(β+1)f+1 distinct neighbors)
then

9: Node i updates ci(j) to 1 and
stores the labels of the neighbors from which it
received χj to N j

i .
10: end if
11: if ci(j) = 1 then
12: Node i broadcasts χj to its neigh-

bors.
13: end if
14: end if
15: end for
16: end while
17: Result: N j

i , ∀λj ∈ σU (A)

1) If i ∈ (V \ Sj) ∩R, then |N j
i | ≥ 2(β + 1)f + 1.

2) There is a partition of R into the sets Lj
0,Lj

1, . . . ,

Lj
ξj

, such that Lj
0 = Sj ∩ R, and N j

i ∩ R ⊆⋃m−1
r=0 Lj

r for i ∈ Lj
m, where 1 ≤ m ≤ ξj .

Also, N j
i ∩R is the set of parent nodes of node i and Lj

m is
the m-th layer of Gj . In fact, for each λj , we can organize
the set of regular nodes of the graph G as a directed acyclic
graph Gj . In Gj , the set of regular source nodes are denoted
by Lj

0. Also, the set of regular nodes which have at least
one path with length of m to L0 are in the m-th layer of
Gj denoted by Lm. Each regular node in m-th layer has at
least 2(β + 1)f + 1 parent nodes from the previous layers
(
⋃m−1

r=0 Lj
r).

Each regular node i ∈ R distributively executes
the SR-MEDAG construction algorithm, presented as
Algorithm 1. The final result of the algorithm for node
i is the set N j

i associated with every undetectable
eigenvalue λj ∈ σ(A). By executing the algorithm at
each time step k, node i stores a counter value ci(j)
and a list of indices N j

i in persistent memories for
each undetectable eigenvalue λj . The stored values in
N j

i ⊆ Ni are the parent nodes’ indices of node i in

the SR-MEDAG of λj . Each regular node i starts with
ci(j) = 0 and N j

i = ∅. If node i was a source node
for λj , i.e., i ∈ Sj , it sets ci(j) = 1 and N j

i = ∅,
then it begins and keeps broadcasting an arbitrary pre-
set message χj to its neighbors2 for at least K̄j steps
(later we prove that K̄j is bounded). If node i was a
follower node for λj , i.e., i ∈ V \ Sj , it waits un-
til it receives χj from at least 2(β + 1)f + 1 distinct
neighbors. Then, it sets ci(j) = 1, saves the indices
of the neighbors from which it received χj as N j

i , be-
gins and keeps broadcasting χj to its neighbors for at
least K̄j steps. Finally, we say that SR-MEDAG con-
struction algorithm terminates for node i if the counter
value ci(j) = 1, ∀λj ∈ σU (A). Also, we say that SR-
MEDAG construction phase terminates for λj if the
counter value ci(j) = 1, ∀i ∈ R.

Interestingly, it is not necessary for the regular
nodes to know K̄j (in that case, they have to execute
the construction algorithm for all the future time not
up to K̄j). Indeed, each regular node i can begin up-
dating its state estimates in parallel as soon as it sets
ci(j) = 1 for λj although the SR-MEDAG construc-
tion phase has not been terminated yet. However, we
know that the construction phase will be terminated at
some time instant in the future (bounded by K̄j) when
all regular nodes will be able to update their own state
estimates corresponding to each of the undetectable
eigenvalues using the distributed consensus-based rule
(5). In this regard, consider that delay and asynchrony
do not affect the output of the algorithm for each reg-
ular node i. Because node i waits until it receives the
predefined message χj from a specified number of
nodes regardless of the time it takes. Indeed, asyn-
chrony and bounded delays only postpone termination
of the algorithm.

Furthermore, one may concern that some of the
regular nodes are exposed to be impersonated by smart
spoofers at any time while they are executing the con-
struction algorithm. In fact, each smart spoofer not
only can impersonate regular nodes (by sending ar-
bitrary messages other than the true message χj on
behalf of them) but also can misbehave as follows:

i) It chooses to transmit any message different from
the true message χj from start to termination of the
construction phase.

2We used the term broadcast considering the case of wireless networks.
Regular nodes may transmit the information to their known outgoing neigh-
bors in wired networks.
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Spoof-resilient distributed observers 9

ii) It transmits the true message before the counter
value is triggered by a regular node.

iii) It chooses not to transmit a message at all.

In the first case, regular nodes are able to identify the
adversarial node as it goes against the rules of Algo-
rithm 1. In the latter two cases, the adversarial node
is undetectable by regular nodes relying just on lo-
cal information. However, later we discuss constraints
on the graph topology so that adversarial nodes fail
to make any problem neither for the construction
algorithm nor the estimation process.

It is noteworthy that the upper bound for the pa-
rameter K̄j in Algorithm 1 is a function of the param-
eter β, which is the capacity that asynchrony provides
for smart spoofers to impersonate regular nodes. This
upper bound would be different if we consider simply
more Byzantine nodes instead of spoofers and imper-
sonated nodes. Actually, another contribution of our
paper with respect to [19] is the MEDAG construc-
tion algorithm and its convergence time. In the case
of synchronous networks, each regular node updates
only once and goes to sleep, while, in asynchronous
networks, regular nodes have to continue updating up
to K̄j time-steps in order to complete the SR-MEDAG
construction.

In the following theorem, we show that the sub-
graphs distributively found by the regular nodes, after
termination of the construction phase, satisfy proper-
ties of the SR-MEDAG.

Theorem 1 If the SR-MEDAG construction phase termi-
nates for λj ∈ σU (A), there exists a sub-graph Gj

satisfying all the properties of an SR-MEDAG.

Proof First, we prove by contradiction that the spanning
sub-graph Gj is a directed acyclic graph. Suppose there is a
directed cycle iP i, where i and the nodes in P belongs to R.
The path P originates from i which changes its counter value
ci(j) from 0 to 1 and begins transmitting χj to its neighbors
at a time instant t = kji . Let the last node on the path P be
ℓ. Clearly, node i receives data from node ℓ at a time instant
t > kji . As an edge from ℓ is pointing to node i, node i is
supposed to receive the message χj from node ℓ even when
its counter value ci(j) is set to 1. This contradicts what node
i has to do according to Algorithm 1. The same argument
holds for every regular node belonging to Gj .

Next, we associate the notion of path length, referring to
graph theory, to the found sub-graphs after the termination
of the SR-MEDAG construction phase to show that the set
R in Gj is partitioned to the sets Lj

0,L
j
1, . . . ,L

j
ξj

. To this

end, let a regular node i update its counter value ci(j) from
0 to 1 at a time instant t = kji . Then, we say that the node
i belongs to Lj

m of Gj if length of its longest path to a node
in Sj be m at kji . Apparently, Lj

ξj
is set of the nodes which

have at least a path with maximum length (among all acyclic
paths of Gj ) to a node in Sj as 1 ≤ m ≤ ξj . Accordingly,
node i belongs to Lj

0 of Gj if i ∈ Sj ∩ R. Now, suppose
that the SR-MEDAG construction phase terminates for λj ∈
σU (A). Since all the nodes update their counter values from
0 to 1 at some time instant, it is concluded that

⋃ξj
r=0 L

j
r =

R. Moreover, a regular node in R cannot update its counter
value at two different time steps (the converse contradicts
the rules of Algorithm 1). Thus Lj

r ∩ Lj
s = ∅, ∀r ̸= s. This

completes the proof according to the definition of the sets
Lj
m (0 ≤ m ≤ ξj). □

Remark 1 Since the network communications are asyn-
chronous and because each regular node does not know the
communication delays between other nodes, regular nodes
in the sets Lj

0,L
j
1, . . . ,L

j
ξj

do not update their counter
values in the same order as their layer number.

We intentionally used the minimum number of
variables to be communicated in SR-MEDAG so as to
avoid potential masquerading threats caused by those
variables. For example, it is not possible for regular
nodes to realize their layer order in Gj as they can-
not identify which of their parent nodes are spoofed.
To clarify this, consider a regular node i in Lj

m. The
regular node has to receive 2(β + 1)f + 1 incoming
edges from the nodes in

⋃m−1
r=0 Lj

r which broadcast
their layer numbers so that the node i can realize its
own layer number by sorting the received values and
selecting the maximum as the previous layer num-
ber. However, smart spoofers can impersonate some
of these nodes and send a wrong layer number behind
of them. Thus, the node i can be deceived about the
maximum layer number it received. Interestingly, in
our method, there is no need that the regular nodes
know their layer orders since they only needs to know
2(β+1)f+1 of their parent nodes to succeed in the es-
timation phase. Therefore, the construction algorithm
can still be executed distributedly. Moreover, our strat-
egy succeeds even if some of the source nodes in Sj

are smart spoofers.
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10 Spoof-resilient distributed observers

4.2 Analysis of the resilient distributed
estimation strategy

In this section, we introduce a repeating pattern sub-
graph which is used to simplify the analysis of our
distributed estimation scheme. These sub-graphs are
constructed and organized for each regular node ac-
cording to its incoming edges from smart spoofers
and other regular neighbors. Note that they may have
overlaps in specific nodes and are defined as follows.

Definition 10 (Motifs) Consider a regular node i ∈ Lj
m

at time instant k and λj ∈ σU (A). Partition N j
i into

subsets {q}, {pr}, r = {1, 2, . . . , r}, and {hl}, l =
{1, 2, . . . , l̄}, where q and pr are the parent nodes of node
i that are not impersonated and hl is a smart spoofer in
N j

i or an impersonated parent node of the node i. Then,
Gj
i (l, r) =

(
Vj
i (l, r), E

j
i (l, r)

)
is a sub-graph of Gj in-

dicating the motif associated with hl and pr around the
node i, where Vj

i (l, r) = {i, pr, q, hl} and Ej
i (l, r) =

{(pr, i), (q, i), (hl, i)}.

We aim to associate each motif Gj
i to each node i

to ensure that a smart spoofer or an impersonated node
cannot deviate the estimation of the node i. In fact,
each motif is the smallest sub-graph of Gj which is re-
silient against Byzantine attacks. Note that imperson-
ated regular nodes are potential Byzantine adversaries
since smart spoofers can use their identities to send
arbitrary values to their neighbors.

Definition 11 (Independent and common nodes) Consider
γ̄ motifs associated with hl and pr around the regular node
i denoted by Gj

i (l, r), r = 1, 2, . . . , γ̄. Let pγ be a regular
node in the set Vi

j(l, r), r = γ. Then, pγ is an independent
node if pγ /∈ Vi

j(l, r) ∀r ̸= γ. A node that is not independent
is called common.

The analysis strategy is to find the set of motifs
around node i ∈ Lj

m such that they have only one
common node. The following lemma determines the
number of such motifs and investigates the possibility
of this strategy (see Fig. 2 for an example).

x

Lemma 2 Consider the network G which contains an SR-
MEDAG Gj for each λj ∈ σU (A). There exist at least (β+

1)f motifs around each regular node i ∈ Lj
m, where each

motif has at least an independent node.

2 1
L
0

j

L
1

j

L
2

j

Figure 2 Motifs found in SR-MEDAG of Gj for f = 1 and β = 1

with the regular node i in Lj
2, three regular parent nodes of i in Lj

0
(p1 and p2 are independent nodes of the motifs and q is a common
node) and a parent node in Lj

1 which can be impersonated by a smart
spoofer. Here, node h is impersonated by the smart spoofer s for the
node i.

Proof For each regular node i ∈ Lj
m, referring to Def-

inition 10, consider partitioning of N j
i into subsets {q},

{pr}, r = {1, 2, . . . , r}, and {hl}, l = {1, 2, . . . , l̄}.
Based on the first property of SR-MEDAG Gj , we have
N j

i ≥ 2(β + 1)f + 1. Under f -local smart spoofer model,
there are at most f smart spoofers around the node i, i.e.,
|N j

i ∩R| ≥ (2β +1)f +1. These regular nodes are parent
nodes of i based on the second property of SR-MEDAG Gj .
According to Lemma 1, at most βf of these parent nodes
may be impersonated by the smart spoofers. Thus, at most
(β + 1)f of the nodes in N j

i are whether smart spoofers
or impersonated parent nodes of the node i which are par-
titioned as {hl}, l = {1, 2, . . . , l̄}, i.e., l̄ ≤ (β + 1)f . We
can organize at least (β + 1)f + 1 of the remaining par-
ent nodes, which cannot be impersonated, to construct the
motifs around the node i. Based on Definition 10 and Def-
inition 11, we pick a parent node q as a common node and
leave the rest in the set of independent parent nodes {pr},
r = 1, 2, . . . , r, i.e., r ≥ (β+1)f . Since r ≥ l̄, we can find
at least (β + 1)f motifs around the regular node i such that
all of them have one common parent node q and each associ-
ated with an independent parent node pr and a node hl. This
completes the proof. □

Fig. 2 exhibits two overlapping motifs. In this ex-
ample, there is a smart spoofer node around the regular
node i, i.e., f = 1. Also, it is supposed that β = 1.
Thus, according to Lemma 2, two motifs are found
around node i. Note that smart spoofer s can imper-
sonate node h, so a motif has to be constructed with
the node h as the adversarial node. Also, node q is se-
lected as the common node while p1 and p2 are the
two independent parent nodes of node i.
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Next, we use the notion of motifs to analyze es-
timation resilience of the network G enhanced by the
distributed estimation update rule (5) at each node
against the adversarial nodes in the presence of com-
munication delays and asynchrony. We start with reg-
ular node i ∈ Lj

m and generalize our analysis to the
whole network afterwards.

Lemma 3 Consider the network G which contains an SR-
MEDAG Gj for each λj ∈ σU (A). Suppose that the state
estimates of regular parent nodes of node i ∈ Lj

m, for the
state related to λj , converge to zj asymptotically. Then, the
local filtering-based algorithm governed by update rule (5)
ensures that limk→∞ |ẑji [k]− zj [k]| = 0 in the presence of
communication delays and asynchrony under f -local smart
spoofer model.

Proof Based on Lemma 2, node i has at most (β + 1)f po-
tential threats and at least (β + 1)f motifs around node i
such that they have one common node. Consider the motifs
around node i: Gj

i (l, r), r = 1, 2, . . . , r, l = 1, 2, . . . , l̄,
where r ≥ (β + 1)f and l̄ ≤ (β + 1)f . Let pr be an
independent parent node of the node i, q the common par-
ent node, and hl the potential Byzantine adversarial node in
Gj
i (l, r), where the state estimation of pr and q converge to

zj asymptotically for the state related to λj . For simplicity
of notations, we define kiℓ = k − k̃iℓ[k]− τiℓ[k]. Note that
τiℓ[k] and k̃iℓ are upper bounded by τ̄ and k̄, thus kiℓ = k
if k → ∞. Therefore, for each node i, we calculate the
asymptotic estimation error of node ℓ ∈ N j

i for zj [k] by the
last transmitted data to the node i: ejℓ [k] = ẑjℓ [kiℓ] − zj [k],
k → ∞. Also, the asymptotic estimation error of the node
i for zj [k] is denoted by eji [k] = ẑji [k] − zj [k], k → ∞.
Then, subtracting zj [k + 1] from both sides of (5) and not-
ing that zj [k + 1] = λjz

j [k] based on (3), we derive
Equation 6 from (5). Equation (6) represents that the esti-
mation error of the node i is a linear combination of the
estimation errors of its neighbors which are grouped as mo-
tifs. Note that

∑
ℓ∈N j

i

ωj
iℓ[k] = 1. For the un-impersonated

parent nodes of node i, we have limk→∞ ejq[k] = 0 and
limk→∞ ejpr [k] = 0, r = 1, 2, . . . , r.

Now, consider the motifs Gj
i (l, r), l = r = 1, 2, . . . , l̄

(note that r ≥ l̄) for the adversarial nodes hℓ, l = 1, 2, . . . , l̄.
In construction of the motifs, we arbitrarily pick the com-
mon node q; so we suppose that ẑjpr [k] ≤ ẑjq [k], r =
1, 2, . . . , l̄. The following two cases are possible regarding
the estimation values of the nodes in the motif Gj

i (l, r):
(i) ẑjhl

[k] < ẑjpr [kipr
] or ẑjhl

[k] > ẑjq [k], (ii) ẑjpr [k] ≤
ẑjhl

[k] ≤ ẑjq [k]. In the former case, according to the local

filtering algorithm, values of the node hl will be removed
by setting ωihl

[k] = 0. From the latter case, we infer that
ejpr [k] ≤ ejhl

[k] ≤ ejq[k]; the asymptotic estimation error
of the adversarial node hl will be trapped by the estima-
tion errors of the parent nodes pr and q in motif Gj

i (l, r)
at time step k and will be sandwiched by them over time
as they converge to 0 asymptotically. Therefor, we conclude
that limk→∞ ejhl

[k] = 0.

eji [k + 1]

= λj
∑

ℓ∈N j
i

ωj
iℓ[k]ẑ

j
ℓ [kiℓ]− λj

( ∑
ℓ∈N j

i

ωj
iℓ[k]

)
zj [k]

=
l̄∑

l=r=1

(
λjω

j
ipr

[k]ẑjpr [kipr
]− λjω

j
ipr

[k]zj [k]

+ λjω
j
ihl

[k]ẑjhl
[kihl

]− λjω
j
ihl

[k]zj [k]
)

+
r∑

r=l̄+1

(
λjω

j
ipr

[k]ẑjpr [kipr
]− λjω

j
ipr

[k]zj [k]
)

+ λjω
j
iq[k]ẑ

j
q [kiq]− λjω

j
iq[k]z

j [k]

= λj
l̄∑

l=r=1

(
ωj
ipr

[k]ejpr [k] + ωj
ihl

[k]ejhl
[k]

)
+ λj

r∑
r=l̄+1

ωj
ipr

[k]ejpr [k] + λjω
j
iq[k]e

j
q[k].

(6)

The same argument holds for all adversarial nodes hl ∈
Gj
i (l, r), l = 1, 2, . . . , l̄. Therefore, the estimation error

eji [k + 1], which is the linear combination of the estimation
errors ejpr [k], r = 1, 2, . . . , r, ejhl

[k], l = 1, 2, . . . , l̄ and

ejq[k], converges to 0 asymptotically, i.e., limk→∞ eji [k] =

limk→∞ |ẑji [k]− zj [k]| = 0, ∀i ∈ Lj
m. □

Now, we analyze resilience of the estimation of
all the follower nodes in the whole network G with
communication delays and asynchrony against f -local
smart spoofer model.

Lemma 4 Consider the network G which contains an SR-
MEDAG Gj for each λj ∈ σU (A). Then, for each regular
node i ∈ R and each λj ∈ Ui, the local filtering-
based algorithm governed by update rule (5) ensures that
limk→∞ |ẑji [k] − zj [k]| = 0 in the presence of communi-
cation delays and asynchrony under f -local smart spoofer
model.

Proof As G contains an SR-MEDAG for each λj ∈ σU (A),
the sets Lj

0,L
j
1, . . . ,L

j
ξj

form a partition of the set R. To
prove, we use induction on the layer number m.

For m = 0, by definition of the set Lj
0, all the regu-

lar nodes in Lj
0 belong to the set Sj and can estimate zj [k]
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asymptotically. Then, consider the regular node i belonging
to the set Lj

1. Suppose that the regular node i has f incoming
edges from adversarial nodes. Then, according to Lemma 2,
we can find at least (β+1)f motifs around node i with each
of them having an independent regular source node from the
set Lj

0. Each smart spoofer is able to impersonate at most
βf parent nodes of i. Therefore, there are at most (β + 1)f
Byzantine adversarial nodes (including smart spoofers and
impersonated regular nodes) around node i. However, we
infer from Lemma 3 that the state estimate value of each
adversarial node is trapped and sandwiched by one of the
motifs according to the local filtering algorithm. Thus, the
state estimate of node i converges to zj asymptotically.

Next, suppose the result holds for the regular nodes of all
layers from 0 to m (where 1 ≤ m ≤ ξj − 1). By induction,
it is concluded that the result holds for all the regular nodes
in Lj

m+1 as well based on the definition of SR-MEDAG.
□

Due to the linear dynamics of the local Luenberger
observers for source nodes and since the estimation er-
ror of each follower node is a linear combination of its
un-impersonated parents, we infer the following corol-
lary about the convergence rate of the follower nodes’
estimation error.

Corollary 1 Estimation convergence rate of all the follower
nodes in the network is exponential as the estimation error
of the source nodes converges to 0 exponentially.

Theorem 2 Consider the network G which contains an
SR-MEDAG for each λj ∈ σU (A). Then, the distributed
estimation scheme governed by the Luenberger observers
described by (4), and the local filtering-based algorithm
governed by update rule (5), achieves resilient omniscience
in the presence of communication delays and asynchrony
under f -local smart spoofer model.

Proof Based on the observable canonical decomposition
represented by (3), for each regular node i, states of the
dynamics system (1) are mapped and partitioned into two
sub-states zDi

[k] and zUi
[k] corresponding to the detectable

and undetectable eigenvalues of the node i, respectively. Us-
ing the designed Luenberger observers, ẑDi

[k] converges to
zDi

[k] asymptotically. As an SR-MEDAG exists for each
λj ∈ σU (A), the result of Lemma 4 also holds. Conse-
quently, node i is able to estimate zUi

[k] asymptotically even
in the presence of communication delays, asynchrony and
adversarial actions of smart spoofers. Combining these re-
sults, we infer that node i can estimate the entire state z[k]
which leads to resiliently observing x[k] using the transfor-
mation x[k] = Ψz[k]. This completes the proof. □

4.3 Spoof-resilient graph topologies
In this section, we characterize graph topologies
which ensures termination of the SR-MEDAG con-
struction phase for each λj ∈ σU (A) under misbehav-
ior of smart spoofers.

Lemma 5 The SR-MEDAG construction phase terminates
for λj ∈ σU (A) if G is strongly

(
3(β + 1)f + 1

)
-robust

w.r.t. Sj .

Proof Contradiction is used for the proof. Consider any
λj ∈ σU (A) and let G be strongly

(
3(β + 1)f + 1

)
-

robust w.r.t. the set of source nodes Sj . If the SR-MEDAG
construction phase does not terminate for λj , there exists
a set of regular nodes C ⊆ V \ Sj which never update
their counter values ci(j) from 0 to 1 for i ∈ C. As G is
strongly

(
3(β + 1)f + 1

)
-robust w.r.t. Sj , it follows that

C is
(
3(β + 1)f + 1

)
-reachable, i.e., there exists a node

i ∈ C which has at least 3(β + 1)f + 1 neighbors out-
side C. Under the f -local smart spoofer model, at most f
of these nodes are smart spoofers which are able either to
misbehave themselves or to impersonate βf regular nodes
during the SR-MEDAG construction phase. Therefore, at
least, 2(β+1)f+1 of them are regular nodes with ci(j) = 1
which must have transmitted χj to node i. Thus, node i must
have changed ci(j) from 0 to 1 at some point of time, ac-
cording to the rules of Algorithm 1. This is a contradiction.

□

Proposition 2 Suppose that G is strongly
(
3(β +1)f +1

)
-

robust w.r.t. Sj , ∀λj ∈ σU (A), and let the SR-MEDAG
construction phase starts at k = 0. Then, K̄j in Algo-
rithm 1 is upper bounded by l̄j

(
(η + 1)k̄ + τ̄ + 1

)
where

η = β⌊(τ̄ − k̄)/k̄⌋ and l̄ is length of the longest path of Gj .

Proof Since G is strongly
(
3(β + 1)f + 1

)
-robust w.r.t.

Sj , according to Lemma 5, each regular node has at least
2(β + 1)f + 1 parent nodes which remain safe from spoof-
ing and transmit χj at least once to the regular node. Each
of these parent nodes has to make at least an update within k̄
consecutive steps.

We consider two separate cases: i) τ̄ ≤ k̄ and ii) τ̄ > k̄.
Let node i be in Lj

1 of Gj . In the first case, each smart
spoofer s ∈ N j

i is able to impersonate at most βf parent
nodes of node i in each consecutive k̄ steps. Therefore, the
other 2(β+1)f+1 parent nodes will remain safe and trans-
mit χj to node i. For the second case, we consider the worst
case where all these parent nodes postpone their updates by
k̄− 1 steps and communicate to their neighbors with τ̄ steps
delay (because we are seeking the maximum time steps that
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Spoof-resilient distributed observers 13

a smart spoofer can prevent exactly 2(β + 1)f + 1 parent
nodes to transmit χj to their neighbors). As τ̄ > k̄, the
smart spoofer has more η = β⌊(τ̄ − k̄)/k̄⌋ capacity after
the first update to impersonate more parent nodes. However,
they cannot do it permanently, i.e., at some time the par-
ent nodes will transmit χj to node i. Suppose that the smart
spoofer use this additional capacity to impersonate just one
additional parent node. In fact, η updates of this parent node
will be spoofed which takes ηk̄ time steps. Considering the
first k̄ − 1 steps that the parent node may postpone its first
update and τ̄ steps delay of its last update, the overall time
that the spoofed parent node succeeds to transmit χj to node
i will be (η + 1)k̄ + τ̄ + 1 steps.

Now, consider the last node in the longest path of Gj

which is the last node that updates its counter value from 0
to 1. Let the length of the longest path of Gj be l̄j and each
node in this path updates its counter value from 0 to 1 after
at most (η + 1)k̄ + τ̄ + 1. Then the maximum time needed
for each regular node to keep transmitting χj is bounded by
l̄j
(
(η + 1)k̄ + τ̄ + 1

)
. □

Remark 2 The maximum time that is needed for each reg-
ular node i ∈ Lj

m to keep transmitting χj is bounded by
(l̄j −m)

(
(η+1)k̄+ τ̄ +1

)
. However, as the regular nodes

cannot characterize their layer numbers, they have to keep
transmitting the message χj up to K̄j steps.

Finally, we propose the overall constraint on the
network topology which makes sure that the net-
work achieves resilient omniscience despite of smart
spoofing actions.

Theorem 3 Resilient omniscience of a network with com-
munication delays and asynchrony under f -local smart
spoofer model is achieved using the proposed estimation
scheme if G is strongly

(
3(β + 1)f + 1

)
-robust w.r.t.

Sj , ∀λj ∈ σU (A).

Proof According to Lemma 5, the SR-MEDAG construc-
tion phase terminates for every undetectable eigenvalue λj
if G is strongly

(
3(β + 1)f + 1

)
-robust w.r.t. Sj , ∀λj ∈

σU (A). Thus, based on Theorem 1, as SR-MEDAG exists
for every λj ∈ σU (A). Finally, from Theorem 2, the ex-
istence of an SR-MEDAG for every λj ∈ σU (A) leads to
resilient omniscience by using our proposed distributed esti-
mation scheme in a network with communication delays and
asynchrony under f -local smart spoofer model. □

Remark 3 Suppose that smart spoofers impersonate none
of the regular nodes during SR-MEDAG construction phase.
Then, the sufficient constraint on the network topology to

achieve resilient omniscience is strongly
(
2(β + 1)f +

1
)
-robust w.r.t. Sj , ∀λj ∈ σU (A).

Note that the presented sufficient conditions on the
topology will be the same as the case of Byzantine at-
tacks, proposed in [19], if we set the parameter β = 0.
It means that the estimation will converge for all reg-
ular nodes under a simpler topology, i.e., strongly
(3f + 1)-robust w.r.t. Sj , ∀λj ∈ σU (A). This is con-
sistent with the most important massage of our paper
which asserts that asynchronous networks are more
susceptible against cyber attacks; asynchronous net-
works can be threaten by adversaries that are stronger
than Byzantine nodes, i.e., smart spoofers, which can
use free time-steps between updates of regular nodes
to impersonate some of them in order to mislead the
others.

4.4 Time-varying networks
In the presented results so far, the observers over net-
work G were supposed to be fixed, that is, the edge set
E was time invariant. We now reconsider the results
with a partially asynchronous time-varying network
G[k] = (V, E [k]) instead of the original time-invariant
graph G earlier. To this end, similar to what is pre-
sented in [21], we define a jointly graph robustness
measure as follows.

Definition 12 (Jointly strongly r-robust w.r.t. S) The time-
varying graph G[k] = (V, E [k]) is said to be jointly strongly
r-robust w.r.t. S if there exists a fixed µ̄ ≥ 0 such that⋃µ̄

µ=0 G[k − µ], k ∈ Z≥µ̄, is strongly r-robust w.r.t. S.

Referring to Lemma 1, the capacity of smart
spoofers for impersonating regular nodes is bounded
within each consecutive k̄ steps by β. Thus, the hori-
zon parameter µ̄ of time-varying graph G[k] has to
satisfy the following inequality:

µ̄ ≤ k̄. (7)

Note that, otherwise, each smart spoofer would have
extra capacity to impersonate more than β regular
nodes after each k̄ steps.

Now, the following result states the extension of
our main result (Theorem 3) for the case of time-
varying networks.

13            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      
Springer Nature 2021 LATEX template

14 Spoof-resilient distributed observers

Corollary 2 Resilient omniscience of a network with com-
munication delays and asynchrony under f -local smart
spoofer model can be achieved using the proposed estima-
tion scheme if G is jointly strongly

(
3(β + 1)f + 1

)
-robust

w.r.t. Sj , ∀λj ∈ σU (A), under condition (7).

Similarly, reconsidering the case where smart
spoofers do not impersonate any of the regular nodes
during the SR-MEDAG construction phase, the fol-
lowing result holds for time-varying networks.

Corollary 3 Suppose that smart spoofers impersonate none
of the regular nodes during SR-MEDAG construction phase.
Then, the sufficient topology constraint on the network G[k]
to achieve resilient omniscience is jointly strongly

(
2(β +

1)f+1
)
-robust w.r.t. Sj , ∀λj ∈ σU (A), with condition (7).

These results follow Lemmas 3 to 5 as the time-
invariant nature of the original graph G is not used in
the proofs.

4.5 Randomized update rule
Consider the case that each regular node, at each time
instant, randomly decides whether to update its state
estimate or not. That is, the follower node i ∈ R up-
dates its state estimate at each time instant k with the
probability of Pi[k]. Note that with such updates, the
algorithm remains fully distributed. Even the proba-
bilities Pi[k] need not be identical. Intuitively, this is
in alignment with Assumption 3 as the regular node
will update at least once within each consecutive k̄
steps. With this strategy, the topology constraint re-
quired for resilient omniscience can be relaxed. This
is because the smart spoofers cannot predict the up-
date times in advance and need to use more of their
spoofing capacity to make sure that the regular nodes,
at each time step, receive and accept false data with
fake identities; they cannot impersonate other nodes
in a systematic manner in each consecutive k̄ steps.
In fact, regular nodes utilized randomization in update
times as a defensive means against smart spoofers.

What follows is the modification of Theorem 3
for the suggested network with randomized updating
strategy.

Theorem 4 Resilient omniscience of a network with com-
munication delays and asynchrony under the f -local smart
spoofer model can be achieved using the proposed estima-
tion scheme if each follower node i ∈ R, at each time instant

k, updates using rule (5) with the probability of Pi ∈ (0, 1]
and if G is strongly

(
3(β′+1)f+1

)
-robust w.r.t. Sj , ∀λj ∈

σU (A), where β′ = ⌊β/k̄⌋+ 1.

Proof Referring to Lemma 1, each smart spoofer was able
to impersonate at most β regular nodes within k̄ steps in case
the smart spoofers knew when exactly each regular node
updates its state estimate. Now, consider that each regular
node i make an update at each time instant k randomly with
a probability of Pi[k] ∈ (0, 1]. Then, each smart spoofer
s ∈ Ni cannot predict when exactly the node i updates; so
it has to impersonate the incoming neighbors of the node i
for all the time steps within each consecutive k̄ steps, that
is k̄ times. As a result, the smart spoofers need to dedicate
more capacity to produce faulty data packets with the mim-
icked identities of the neighbors of the node i. Thus, the
smart spoofers will be able to impersonate ⌊β/k̄⌋ regular
nodes for any of k̄ steps and one regular node for a limited
number of time-steps, i.e., less than k̄. In this situation, to
ensure that the smart spoofers cannot impersonate any ex-
tra regular nodes, we define β′ = ⌊β/k̄⌋ + 1. Accordingly,
similar to the proof of Theorem 3, the required topology con-
straint for omniscience based on the parameter β′ is strongly(
3(β′ + 1)f + 1

)
-robust w.r.t. Sj , ∀λj ∈ σU (A). □

Remark 4 Based on Lemma 1, we have β′ = ⌊(αk̄−1)/k̄⌋.
On the other hand, we know k̄ ≥ 1. Therefore, it is con-
cluded that β′ = α−1 in the case of a synchronous network
(k̄ = 1) and β′ = α in an asynchronous network (k̄ > 1).

5 Simulation results
In this section, we present a simulation example to
demonstrate how a smart spoofer can misbehave and
how it can be restrained in a given network of dis-
tributed observers. In particular, we show why the
constraints on the network topology, proposed in The-
orems 2 and 3, are critical for achieving resilient
omniscience under f -local smart spoofer model in
the presence of asynchronous communications and
delays.

To this end, consider the network illustrated in
Fig. 3. The directed edges of the graph represent all to
one connections and edges pointing in both directions
represent all to all connections. The network has three
sets of regular nodes R1, R2, R3, and a smart spoofer
s (f = 1). The capacity of s is assumed to be α = 1
and all of the nodes are supposed to make, at least,
an update within k̄ = 2 steps. Thus, the parameter is
set as β = 1. There are 2(β + 1)f nodes in each of
the sets R1 and R2 and 2(β + 1)f + 1 nodes in the
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set R3, where the nodes within each set are not con-
nected. Furthermore, communication delays over the
network are defined as follows:

τij =



3, if (i ∈ R3 and j ∈ R2),

2, if (i ∈ R2 and j ∈ R3)

or (i ∈ R3 and j ∈ R1),

1, if (i ∈ R1 and j ∈ R3)

or (i ∈ R3 and j = s),

0, if i = s and (j ∈ R1 or j ∈ R2).

Note that the smart spoofer fully knows the dy-
namic system and the observation models of the regu-
lar nodes and calculates its own and the impersonated
states estimations in a way that the targeting regular
nodes fail to reach omniscience. Thus, to give a better
intuition, we deal with the transformed dynamic sys-
tem and states in our simulations; the original system
can be analyzed accordingly. For sake of simplicity,
we use the terms “send” and “receive” with ẑi1 (or ẑi2),
while our purpose is the original state x̂i1 associated to
the ẑi1.

System
dynamics

R2

R3

R1

λ1 λ2

Figure 3 A sample network that is
(
2(β + 1)f + 1

)
-robust w.r.t.

λj . Node h ∈ R1 is impersonated by the smart spoofer s for the
nodes in set R3.

The transition matrix of the original dynamic sys-
tem and the initial state are assumed to be

A =

[
0.98 0.02
−0.04 1.04

]
, x0 =

[
2
5

]
,

which, according to (3), are transformed by

Ψ =

[
0.1 1
0.2 1

]

into the following diagonal system and initial state:

Ā =

[
1.02 0
0 1

]
, z0 =

[
30
−1

]
.

The first eigenvalue of the system (λ1 = 1.02) is un-
stable and the second one (λ2 = 1) is marginally
stable. The observation model of the network system
is assumed to be Ci = [−10 10], ∀i ∈ R1, Ci =
[2 − 1], ∀i ∈ R2 and Ci = 0, ∀i ∈ R3. The trans-
formation of the observation model is given by Ψ as
C̄i = [1 0], ∀i ∈ R1, C̄i = [0 1], ∀i ∈ R2 and C̄i = 0,
∀i ∈ R3. This means that the nodes in R1 are source
nodes for λ1 and followers for λ2 as they can only de-
tect λ1, the nodes in R2 are source nodes for λ2 and
followers for λ1, and the nodes in R3 are followers for
both λ1 and λ2. Also, the nodes in the set R3 and the
node s update at all time instants and the nodes in R1

and R2 update at time instants k = mk̄, m ∈ Z+.
We present the simulation results in two test sce-

narios. In both scenarios, the smart spoofer just im-
personate only one node in R1 and only for the state
z1. Thus, all the nodes of the network will accurately
estimate the state z2. In scenario 1, we show that the
follower nodes for λ1 can asymptotically estimate z1
even though the smart spoofer s tries to mislead the
follower nodes but the network finally achieves om-
niscience. However, in scenario 2, the follower nodes
cannot reach a true estimate of z1 as the required
topology constraint for estimation (Theorem 2) is not
satisfied.

Scenario 1 The smart spoofer sends the message χs = 1 to
all the nodes in R3 to pretend that it is a parent node for λ1.
Although the smart spoofer can impersonate a regular node
during the SR-MEDAG construction phase, it decides not to
do so and goes through the estimation phase. The initial es-
timates of z1 for nodes in R1 are ẑi1[0] = 100, i = 1, 2 and
ẑi1[0] = 0, i = 3, 4. Also, we have ẑi1[0] = 0, i ∈ R2, and
ẑi1[0] = 0, i ∈ R3. Moreover, each regular node i ∈ R1

uses a Luenberger observer with the gain L1
i = 0.5 to es-

timate z1. Starting the estimation phase, the smart spoofer
s sends two sequences of estimate values to all the nodes
in R3 in a way that the receiving estimate values from the
nodes in R1 are eliminated in local filtering: i) the esti-
mate value ẑs1[k] = 60, where k = mk̄ − 1,m ∈ Z+,
which keeps the smart spoofer s among the accepted neigh-
bors of the nodes in R3 as each node has to send a data
packet at least in each consecutive k̄ steps, ii) a false esti-
mate value ẑh1 [k] = 30, where k = mk̄,m ∈ Z≥0, on
behalf of the node h = 1, h ∈ R1 to the nodes in R3.
As shown in Fig. 4, all the regular nodes can estimate z1
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16 Spoof-resilient distributed observers

although the smart spoofer caused a deviation in the estima-
tions of the nodes in R3 (and accordingly the nodes in R2)
up to time instant k = 12. Note that the estimate value of
ẑh1 [k] will not be filtered only if it converges to z1. In fact, re-
ferring to Lemma 3, estimate values of the smart spoofer are
sandwiched by estimate values of the regular parent nodes,
thanks to our proposed rule (5) and the network topology
constraint discussed in Theorem 2.

10620 20 24 28 301284 14 16 18 22 26

1, ∈ R1, = 2iˆ

1, ∈ R1, = 3, 4iˆ
1 , ∈ R1, = 1hˆ

1
sˆ
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iˆ

1, ∈ R2
iˆ

1
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1i
ˆ

1
, 
  

Figure 4 Omniscience of the sample network: the regular source
nodes in R1 asymptotically estimate z1 using Luenberger ob-
servers. The follower nodes in R2 and R3 can asymptotically
estimate z1 despite of the efforts smart spoofer does for misleading
them by impersonating the node h ∈ R1. They also estimate z2
since there is no spoofing for λ2.

Scenario 2 Here, the smart spoofer s sends a message
χs = 1 to the nodes in R3 while it impersonates the node
p = 1, p ∈ R1 in the SR-MEDAG construction phase by
setting the message χp = 0, i.e., the node p cannot be a
parent node of the nodes in R3 for λ1. In other words, Al-
gorithm 1 does not terminate in the case of λ1 for the nodes
in R3. In fact, the constraint on the network topology is
not satisfied for the estimation of z1 since the nodes in R3

recognizes only 2(β + 1)f parent nodes for λ1. However,
assume that the nodes in R3 decide to start the estimation
regardless of the termination of the SR-MEDAG construction
phase. As a result, the smart spoofer is able to imperson-
ate one more regular node of the set R1 this time in the
estimation phase. The initial estimates of z1 are given as
ẑi1[0] = 10, i ∈ R1, i = 2, ẑi1[0] = 0, i ∈ R1, i = 3, 4,
ẑi1[0] = 6, i ∈ R2, and ẑi1[0] = 7, i ∈ R3. Again, the smart
spoofer s sends two sequences of estimate values to the
nodes in R3 in a way that the estimate values of the nodes
i ∈ R1, i = 3, 4, are eliminated in local filtering: i) the esti-
mate value ẑs1[k] = 8, where k = mk̄ − 1,m ∈ Z+, which

keeps the smart spoofer s among the accepted neighbors of
the nodes in R3, ii) a false estimate value ẑh1 [k] = 9, where
k = mk̄,m ∈ Z≥0, on behalf of the node h = 1, h ∈ R1,
to the nodes in R3. Fig. 5 shows the consequence of spoofing
in the estimations. The initial estimate values of the nodes
in R2 and R3 remain constant for all the future time. It is
noteworthy that, not only the nodes in R3 are affected by
the spoofing, but the nodes in R2 are also affected indirectly
and none of them can reach omniscience for z1.
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Figure 5 The smart spoofer s prevents the follower nodes for λ1

in R2 and R3 to estimate z1 by sending false estimate values on
behalf of node h ∈ R1 to all the nodes in R3.

While we primarily analyzed the success or fail-
ure of the network omniscience in the transformed
dynamic system, the main results are valid for the orig-
inal dynamic system with different time histories of
state values (Fig. 6 and Fig. 7).

6 Conclusions
Combining Byzantine adversarial model and spoofing
as a misbehaving technique, we introduced a new type
of cyber attack called smart spoofing. Then, we in-
vestigated the problem of distributed observer design
for LTI systems in the presence of this attack which
uses the asynchrony in communications to threaten the
network. Using a two-step distributed mechanism, in-
cluding a pre-executing algorithm for recognizing the
trusted neighbors and a local-filtering algorithm for
removing possible incorrect values induced by the ad-
versarial nodes, the regular nodes can achieve resilient
observation over so-called strongly robust graphs. We
proposed resilient topology constraints on static and
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Figure 6 All the regular nodes truly estimate x1 while the smart
spoofer s impersonates the node h ∈ R1 for the nodes in R3.
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Figure 7 The regular nodes in R2 and R3 fail to estimate x1 if the
smart spoofer s impersonates the node h ∈ R1 for the nodes in R3.

time-varying networks under the proposed adversarial
threat. Numerical simulations with a sample network
validate our analytic results. The proposed designs are
applicable to a vast range of networked systems. In fu-
ture studies, we consider resilient consensus problems
prone to the smart spoofing attacks.
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