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A Computational Methods

A.1 Nernst-Planck Model for Ion Transport in Electrodialysis

Based on chemical thermodynamics, the fundamental relationship between the Gibbs free energy

and the temperature, pressure and species mole fractions can be expressed as Eq. 1

dG = —SdT + vdP + Y (RTInvc; + z,F'¥)dN; (1)

i
where S (J mol™!) and T' (K) denote the system entropy and temperature, v (m® mol~!) and P
(Pa) denote the specific molar volume and system pressure, and ~; (-) and C; (mol L™!) denote
the rational activity coefficient and concentration of species 4, z; (-), F' (C mol™1), ¥ (V) and N;
(mol) denote the ion valency, Faraday’s constant, electric potential and molar quantity of species i,
respectively.

Based on classical irreversible thermodynamics, the species molar flux can be modeled with the
first spatial derivative of the species chemical potential, when the operating point is sufficiently
close to thermodynamic equilibrium.® The Nernst-Planck (NP) equation, as described by Eq. 3, is

obtained in combination with Eq. 1, in the isothermal and isobaric (NPT) ensemble

dp;
i = —Li— 2
J 7 (2)
Dmemzy F
— _Dmem mem __ i 77 mem U
7 VCZ RT G \% (3)

where L; denotes the proportionality constant in the chemical potential gradient and D" =
L;RT/c™™ (m? s71) denotes the Fickian diffusion coefficient of species i. The terms in the NP
equation correspond to ion transport from diffusion and electromigration, which are driven by the
concentration and electric potential gradients, respectively.

For a binary salt, the expressions for the cation and anion fluxes can be written based on Eq. 3,

as provided in Eq. 4 and 5

Dmemy

Jo= DIV e Y (4)
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_ mem mem
Jo=—=D; "V, —

where subscripts ¢ and a denote the cation and anion thermodynamic states and transport prop-
erties, respectively. Under the assumption of solution electroneutrality, the cation and anion fluxes

are constrained by Eq. 6

I en (&
= a2, (6)

J,
T F z

where Ij., (A m~2) denotes the applied current density. The stoichiometry coefficients of the
dissociated ions (v. and v,) can be related to their respective ionic valencies with Eq. 7. Further,
the stoichiometry and diffusion coefficients of the dissociated ions can be related to the apparent

salt diffusion coefficient with the Nernst-Hartley equation, as depicted in Eq. 8.

Za Ve

e (7)

Zc Vg

(Va + Vc) D,D,.

D. . =
e VoD, +v.D,

(8)

The transport number of ion ¢, as represented by 7; (-), which is defined as the fraction of the current
conducted by the ion across the ion exchange membrane relative to the total applied current, can
be expressed as a function of the ion concentration, diffusion coefficient and valency in Eq. 9.

21-2 Djcjrem

N> .27)..mem
Zj sz]cj

9)

T; —

Together with classical solution-diffusion theory,? Eq. 4-9 can be condensed to obtain an explicit
relationship between the cation and anion fluxes and the applied current density and concentration

gradients, as provided in Eq. 10

Ji = {TZI‘}” + B [cf - oo } (10)

where B; (m s~!) denote the solute permeability coefficient for diffusion, and Czd sint (mol L~1)

and C; ot (mol L™!) denote the solute concentration in the solution phase along the membrane-

solution interface for the diluate and concentrate electrolyte streams, respectively. The model was
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successfully generalized for multi-ionic mixtures by modeling the solutes as individual ions instead of
binary salts.® As discussed in a prior publication from our group,® the transport number and solute
permeability coefficient will become ion-specific, and are a function of the membrane properties
and the feed composition, salinity and acidity. Experiments with multi-ionic solutions with the
representative compositions must be used to accurately determine the respective coefficients.

The conventional Nernst-Planck equation assumes that the ion transport by convection is small
as compared to the contributions from diffusion and electromigration.® This assumption typically
holds for monovalent selective ion exchange membranes that are designed for salt production, as
a result of their thick composite structure that renders the water permeability coefficients low. 16
To capture convective coupling between the solvent and ion transport in the event of significant
transmembrane water flux, the model should be extended to include convection.” In this work, we
experimented with multi-layered composite ion exchange membranes. Consequently, the IEMs are
thick and the water permeability of the membranes is usually about an order of magnitude lower
than unmodified IEMs.® With these membranes, our experiments indicated that the kinetics of
water transport is approximately an order of magnitude lower the corresponding values for the ions,
which aligns with recent reports.?% As a consequence, the molar ion flux by convection (which is
defined as the product of the ion concentration and the molar water flux®) accounts for less than
1 % of the total ion flux in all of our experiments. These results suggest that convection likely
played a minor role in ion transport with the IEMs in this study.

Mass transfer limitations arising from concentration polarization in the electrolyte streams, as

depicted in Fig. 2B, are incorporated with Eq. 11°

| Ti —teu Lgen %
e (55 () ()

where AC; (mol L™1) denotes the concentration difference between the bulk flow and the membrane

interface, tq; (-) is the integral counter-ion transport number of species i, D; (m? s71) is the Fickian
diffusion coefficient, h (m) is the channel height and Sh (-) is the Sherwood number. The Sherwood
number is calculated based on mass transfer correlations proposed by McGovern et al.? for the
spacers adopted in our experiments.

The integral counter-ion transport number, t.,; (-), is calculated based on Eq. 12, in accordance
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with the ED literature.?!? Following which, the limiting current density (Icll’e”rf ;) of the each ion is
calculated to ensure that the experiments are conducted within the ohmic regime. Any current
excess of this limit leads to water dissociation along the fluid-membrane interface, or accelerates the

transport of multivalent and co-ions, ! both of which negatively impacts the monovalent selectivity

of the IEMs. The limiting current density for each ion i can be calculated with Eq. 13°

fo zz‘Dz’CZd’bUZk (12)
cu,r — N d,bulk
=12 D;C
- Dz F 2h
Il@m‘ — 151 “re Cd,bulk 13
den,i <Ti _ tcu,i Sh i ( )

where h (m) denotes the characteristic length of the flow channels.

A.2 Counter-ion Transport across Ion Exchange Membranes

Ion exchange membranes (IEM) are water-swollen polymers that comprises two phases: 1) a charged
gel phase formed by the hydrocarbon polymer chains and the hydrophilic ion exchange functional
groups and 2) an interstitial phase formed from the pores, interstices and structural defects of the gel
phase.% The void size is dictated by the swelling degree of the IEM, which is a function of the water
volume fraction of the membrane.? In conventional ED literature, the interstitial phase is assumed
to be filled by an electroneutral solution when the IEMs are contacted with a saline stream. 2
Driven by an electrochemical potential gradient, ions partition from the solution to the inter-
stitial phase of the IEM, and are transported across the IEM by diffusion and electromigration. 3
The ion selectivity of the IEM is governed by their respective ease of ion partitioning, and their
respective mobilities within the interstitial phase. The Donnan exclusion mechanism is commonly
employed to rationalize the relative differences in ion partitioning across the solution-membrane

interface. Under this framework, the Gibbs free energy of the ions is assumed to be continuous

across the solution-membrane interface to ensure chemical stability, as described in Eq. 14

,.Ymemcmem 2 F
W = W = fw |exp —ﬁAﬂsDonnan (14)
Vi i
where f, (-) represent the water volume fraction within the membrane, Adponnan = @™ —
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y (V) denote the Donnan potential and, 7" (-) and ~&IE () represent the ion activity

K3
coefficient within the membrane polymer and in the solution along the membrane-solution interface,

respectively. The activity coefficients are predicted using Manning’s counter-ion condensation 24

15,16 ysing the method described by Fan and Yip.2 Based on these theories,

and Pitzer-Kim models,
the ion concentration within the membrane phase is normalized by the volume of the interstitial
phase of the IEM.%13

Electroneutrality conditions are applied to the bulk solution and IEM’s interstitial phases, as

described by Eq. 15 and 16

N
> zCfint =0 (15)
[
N
Chem+ )z =0 (16)
7

where IV (-) is the total number of ions and CF}7%; (mol L~1) denotes the molar ion exchange capacity
of the IEM. 7 Here, we set C}’;;’e’fi to be 1.68 M based on prior ion exchange capacity measurements
on cation exchange membranes (CEM).?!8 Eq. 14, 15 and 16 are solved simultaneously using the
constrained trust region method to derive the concentrations of the partitioned ions and the resultant
Donnan potential, implemented with numerical solvers in Python.

The mobility of counter ions in polysulfonate CEM has received emerging interest in recent
literature. Using an extended Mackie-Meares framework, Fan et al. demonstrated that a linear
relationship exists between the ratio of the ion diffusion coefficient within the membrane relative to
the bulk solution, and the exponential of the square of the ionic valency.'® The observed reduction
in the apparent diffusion coefficient within the polymer matrix arises from spatial hindrance from
the tortuosity of interstitial phase, and the electrostatic friction between the cations and the ion
exchange groups.?? The relationship between the bulk and interstitial phase diffusion coefficients is

given by Eq. 17.

2

ppem — pint Ju exp(—Ag2?) (17)
2- fw

where D™ (m? s71) and Df’mt (m? s71) denote the ion diffusion coefficient within the interstitial

and bulk solution phases, respectively, and A (-) represents an electrostatic friction parameter

that is a function of the fixed charge density ( ;Z;‘;Z&) and the apparent dielectric constant. A
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323

is commonly employed as a regression parameter in IEM diffusion experiments, and the derived
constant ranges between 0.329 to 0.691 for commercial CEMs. 13

The Nernst-Planck equation is utilized in combination with the extended Mackie-Meares and
Donnan equilibria models to analyze the implications of current density increments. Based on
our experiments, when the applied current density is 2.5 mA c¢cm™2 or higher, we found that ion
transport by electromigration dominates; this conclusion is corroborated by prior experimental
and computational studies.!%21:22 When concentration-driven diffusion is small as compared to
electric potential-driven electromigration, based on the Nernst-Planck equation, the ratio of ion

fluxes between two distinct species tends towards the expression given by Eq. 18.

JZMOd. Dlmem 2 cmem

JJ‘MOd' D;nem 2 C?]Znem (18)

Eq. 14 and 17 are leveraged to relate the ion concentration and diffusion within the interstitial

phase to the bulk solution phase. The resultant expression is provided by Eq. 19

ot DM 5 CP ) A¢ponnant”
J;Mod. = D;d’int Z C}l,int Vi,j €XP [_Ael (Z’i B Zj)] eXp | — RT (zi - Zj) (19)

where 7; ; (-) represents the ratio of activity coefficients between the solution and the interstitial
phase, between species i and j, respectively. For calculations of Li/Mg and Na/Mg flux ratios,
the 7, prg and Yy, a7y ranges between 0.2874 — 0.2954 and 0.2698 — 0.2948, respectively. In this
expression, the Donnan potential and the interfacial concentrations are functions of the applied
current density, while A,; is a constant material parameter for a given CEM. The L2-norm error
between the experimental and model ion flux ratios is minimized using the constrained trust region
algorithm. The derived A.; value is 0.412, which is within the reported range for commercial CEMs
(0.329 - 0.691).

Eq. 19 indicates that the ion flux ratio between two species is proportional to the interfacial
concentration ratio and two exponential terms. The first exponential term (defined as the mobility
factor) corresponds to the differences in the ion mobility arising from electrostatic friction within
the CEM!? while the second exponential term (defined as the partitioning factor) corresponds to

the differences in ion partitioning from Donnan exclusion.® Multivalent cations experience stronger
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electrostatic friction within the CEM due to interactions with the negatively charged sulfonate moi-
eties.>% Therefore, the mobility factor between monovalent and multivalent cations is greater than
unity. An increment in the applied current density leads to a reduction in the ion concentrations
along the membrane-solution interface, improving the effectiveness of Donnan exclusion in rejecting
multivalent ions. This leads to an increase in the resultant Donnan potential, amplifying the parti-
tioning factor across the interface. When the applied current density is amplified, the combination
of the mobility and partitioning factors in Eq. 19 induces a larger than proportional increase in the

resultant ion flux ratios between monovalent and multivalent ions.

A.3 Impact on Ion Partitioning and Overall Selectivity

Ton selectivity is a result of differences in 1) ion partitioning and 2) ion mobility across the mem-
brane.%23 In this study, a two-pronged computational approach was adopted to investigate the ion
selectivity of the composite cation exchange membranes. In the first approach, as described in
Section 2.3 and Section A.1 of the SI, the transport numbers of the respective ions under differ-
ent operating conditions (i.e., current densities, feed salinities, composition and solution pH) were
determined, and were systematically compiled in Supp. Table 40. As described in Eq. 1 and 2,
the transport number is defined as the proportion of current conducted by the ion relative to the
total applied current, and it characterizes the combined effects of ion partitioning and mobility for
electromigration across the IEM.%23 As a result, the effective ion selectivity of both the PEI surface
layer and the PS-DVB substrate is captured by the regressed transport numbers in our study. The
separation factors were calculated with Eq. 1 and 2, leveraging the derived transport numbers and
ion permeability coefficients.

In the second approach, as described in Section 2.3 and Section A.2 of the SI, we seek to under-
stand the impact of the feed solution concentration and solution pH on efficacy of Donnan exclusion
for multivalent cation rejection, using the method developed by Fan and Yip.? This approach was
selected because prior studies on hypersaline electrodialysis indicated that the weakening of Donnan
exclusion was the primary mechanism for the observed reduction in counter-ion/co-ion selectivity
with high concentration feed solutions.??* In accordance with the theory of Donnan exclusion, the

ion concentrations within the PEI surface layer were simulated with Eq. 3,2 and are presented
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in Supp. Fig 13. Donnan exclusion from the positively-charged surface layer reduces the parti-
tioning rate of multivalent cations, as a consequence of their higher charge densities.?® Therefore,
the monovalent ions (i.e., Lit, Nat, K*) have a greater partition coefficient as compared to Mg?*,
aligning with the relative ion transport rates observed in Supp. Fig. 2 - 12. Given that the PS-DVB
substrate is negatively charged, exclusion of cations by the Donnan effect is negligible across the

interface between the PEI surface layer and the PS-DVB substrate. 25

B Experimental Methods

B.1 Experimental Apparatus

The bench-scale experimental setup that is employed for membrane characterization is depicted in
Supp. Fig. 1. The cathode and anode are fashioned from platinum-coated titanium electrodes. A
total of 20 feed spacers and 2 end spacers, each with a 0.5 mm thickness and a 45 ° mesh orien-
tation, are placed in the electrolyte channels. Sodium sulfate (0.2 M) solutions are used as the
catholyte and anolyte to suppress chlorine gas production and stabilize the solution pH.26 The
diluate, concentrate and rinse circuits, comprising 2L, 4L, and 4L of the respective solutions, are
operated in a batch configuration. By starting with the same composition and concentrations on
both streams, the contribution from concentration-driven diffusion can be decoupled and minimized
between the experiments.?” A larger concentrate solution volume is selected to slow the rate of in-
crease of concentrate stream over the course of the experiment, reducing the impact of ion transport
from back-diffusion.! Cross-flow is maintained at 95 L h~! with centrifugal pumps (Iwaki MD55R)
and valved rotameters. A potentiometric feedback loop regulates the temperature of the solutions
and a DC power supply generates the electric potential gradient for ion transport (GW Instek GPR-
60600). The solution volumes are monitored with digital mass scales (Ohaus Scout Pro SP601).
The solution conductivity, pH, cell potential difference and temperature are recorded at 60 Hz with
a digital acquisition unit (Vernier LabQuest, Hach HQ440d). The concentrate and diluate solutions
are sampled periodically and analyzed with ICP-OES. The wavelengths of the respective elements
are selected to avoid signal interference, and are summarized in Supp. Table 1.

The experiments in this study were all conducted at a constant current density to accurately
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Supplementary Figure 1: Schematic diagram of the bench-scale electrodialysis adopted in this in-
vestigation. The diluate, concentrate and rinse loops are composed of 2, 4 and 4 L of electrolyte
solutions, are cycled through the electrodialysis stack with centrifugal pumps. Over 10 alternating
cell pairs of CEMs and AEMs comprise the membrane stack, which is housed inside of a PCCell ED
200 unit. A counter-flow heat exchanger regulates the electrolye stream temperatures to a pre-set
value. An external direct current power supply is used to generate the potential difference for ion
transport. The illustration is adapted from our prior publication and used with permission from
Elsevier.!

characterize the transport numbers of the respective ions.*!? This is because the transport numbers
are defined as the proportion of the current conducted by a particular species, and constant current
conditions ensure that the normalization is standardized between the various experiments.!0 In
our bench-scale setup with 10 cell pairs, the majority of the voltage drop occurs at the electrodes.!
In the event of unprecedented side redox reactions, we would likely observe effervescence in the rinse

loop or solid deposition at the electrodes.'® However, we did not observe any noticeable changes

between the different current densities during our experiments.

Supplementary Table 1: Selected wavelengths for spectroscopic analysis with ICP-OES.

Elements ICP-OES wavelength (nm)

Na 568.263
K 404.721
Li 610.365

Mg 277.983
Cl 774.497
S 180.669
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B.2 Solution Composition and Results

In this paper, experiments are conducted on binary cation and multicomponent salt-lake brines
from Chile and China to ascertain the relative ion transport rates. The ionic composition of the
solutions are provided in Supp. Tables 2, 3 and 4, respectively. The feed salinities vary from 10 to
250 g/L, the solution pH from 3 to 7, and the current density from 2.5 to 30.0 mA cm~2.

The ion composition of the diluate stream is characterized based on ICP-OES. The propagated
uncertainties in the respective ion concentration are all under 4.5 %. To provide a comprehensive
database upon which future IEMs can be compared against, the experimental results are systemically
tabulated. Using the computational framework described in Section A, the ion transport number,
Donnan potential and the electrostatic friction parameter are determined based on Eq. 8 in the
main text, for each of the tested compositions. The ion-specific permeability coefficients were
determined based on diffusion experiments with multi-ionic feed solutions as described in our prior
publications. %26 The agreement between the model predictions and the empirical measurements
is illustrated in Supp. Fig. 2-12.

Ion selectivity arises as a result of differences in 1) ion partitioning and 2) ion mobility across the
membrane.?% The ion selectivity sequence for a variety of selective electrodialysis membranes has
been systematically compiled in review articles by Luo et al.® and Ying et al.?® In general, Donnan
exclusion reduces the partitioning rate of multivalent ions, as a consequence of their higher charge
densities.? Therefore, the monovalent ions (LiT, Nat, K*) have a greater partition coefficient as
compared to Mg?t, aligning with the relative ion transport rates observed in Supp. Fig. 2 — 12.
In accordance with the theory of Donnan exclusion, the ion concentrations within the PEI surface
layer were simulated with Eq. 3 and are presented in Supp. Fig 13.2 The model indicated that the
relative concentrations of Lit to Mg?* within the IEM increased up to 10, as compared to 1.8 in

Supplementary Table 2: Nominal ionic composition of binary cation feed solutions based on brine
from Salar de Atacama, at a solution molarity of 0.35 M.

Briziz3 bCorr}po.sition Nominal Composition (g/L) Solution Molarity (M)
(Abbreviation) Lit Mg CI- SO~ TDS
Lit-Mg?*+-Cl~ (LM-C) 0.34 205 7.70 0.00 10.09 0.35
Li+-Mg2+—SOZ_ (LM-S) 0.49 298 0.00 15.13 18.59 0.35
Lit-Mg?"-C17-SO;~ (LM-CS) 0.34 2.09 7.39 0.62 10.44 0.35

S18



409

410

411

412

413

414

415

416

Supplementary Table 3: Nominal ionic composition of feed solution based on brine from Salar de
Atacama, Chile, at total dissolved concentrations of 10, 30, 70 and 250 g/L.

Nominal Composition (g/L)
Lit  Nat Kt Mgt Ca?*  ClI- SO?" TDS

1.19 69.01 17.89 731 < 0.01 143.72 12.06 251.18
033 19.23 499 204 <0.01 40.10 3.36  70.00
014 824 214 087 <001 1717 1.44  30.00
0.06 27 071 029 <0.01 5.72 0.48  10.00

Salt Lake, Location

Salar de Atacama,
Chile

Supplementary Table 4: Nominal ionic composition of feed solution based on brine from Qaidam
Lake, China, at total dissolved concentrations of 10, 30, 70 and 250 g/L.

Nominal Composition (g/L)
Lit  Nat Kt Mgt Ca?*  ClI-  SO?" TDS

0.31 56.30 4.40 20.20 < 0.01 134.20 34.10 249.51
0.09 1579 1.23 5.67 <0.01 37.65 9.57  70.00
0.04 6.77 053 243 <0.01 16.14 4.10  30.00
0.01 226 0.18 081 <0.01 5.38 1.37  10.00

Salt Lake, Location

Qaidam Lake,
China

the feed solution.

Due to the smaller differences in charge density between the monovalent ions, Donnan exclusion
does not significantly influence the relative partitioning rate of Li™ compared to Na® and KT.
Despite that, as illustrated in Supp. Fig. 2 - 12, our experiments reveal faster transport rates
for Na™ and K*. The differences in relative transport rates of the monovalent cations have been
rationalized in the literature by their respective mobilities within the ion exchange membrane. 513
The order of the diffusion coefficients follows the descending sequence: H3O™ > K+ > Na™ > Li™T,

which agrees with our experiments, as illustrated in Supp. Fig. 2 — 12.
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Supplementary Figure 2: Comparisons between the experimental measurements and model predic-
tions for 10 g/L multicomponent brines from Salar de Atacama, Chile, under a constant current
density of 2.5 mA cm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 3: Comparisons between the experimental measurements and model predic-
tions for 30 g/L multicomponent brines from Salar de Atacama, Chile, under a constant at pH 7,
for current density of (A) 2.5 and (B) 7.5 mA cm™2, respectively.
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Supplementary Figure 4: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Salar de Atacama, Chile, under a constant current
density of 2.5 mA cm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 5: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Salar de Atacama, Chile, under a constant current
density of 7.5 mA ecm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 6: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Salar de Atacama, Chile, under a constant current
density of 15.0 mA cm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 7: Comparisons between the experimental measurements and model predic-
tions for 10 g/L multicomponent brines from Qaidam Lake, China, under a constant current density
of 2.5 mA cm~? at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 8: Comparisons between the experimental measurements and model predic-
tions for 30 g/L multicomponent brines from Qaidam Lake, China, under a constant at pH 7, for

current density of (A) 2.5 and (B) 7.5 mA cm™2, respectively.
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Supplementary Figure 9: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Qaidam Lake, China, under a constant current density
of 2.5 mA cm™? at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 10: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Qaidam Lake, China, under a constant current density
of 7.5 mA cm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 11: Comparisons between the experimental measurements and model predic-
tions for 70 g/L multicomponent brines from Qaidam Lake, China, under a constant current density
of 15.0 mA cm~2 at pH (A) 7, (B) 5 and (C) 3, respectively.
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Supplementary Figure 12: Comparisons between the experimental measurements and model pre-
dictions for 250 g/L multicomponent brines from (A) Salar de Atacama, Chile and (B) Qaidam
Lake, China, under a constant current density of 2.5 mA cm™2 at pH 7; corresponding results for
250 g/L multicomponent brine from Salar de Atacama, Chile, under a constant current density of
30.0 mA cm~2 at (C) pH 7 and (D) pH 3, respectively.

523



417

418

419

420

421

422

423

424

425

426

427

428

429

431

432

C Supplemental Analysis

C.1 Charge Density Impact on Donnan Exclusion
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Supplementary Figure 13: Concentration of LiT, Mg?t and Cl~ ions within the PEI layer of the
CEM for a constant volumetric charge density, as a function of the external solution concentration
along the fluid-membrane interface. Relative concentrations of Lit to Mg?* decay with increasing
solution concentration, arising from weakening Donnan exclusion effects.? The volumetric charge
densities of the PEI layer are (A) 0.5 M, (B) 1.68 M, and (C) 5.0 M, respectively, to simulate
the effects of the lowered volumetric charge density with acid pre-treatment for salt-lake brine
applications.

Our zeta potential measurements presented in Fig. 3C indicate that the interfacial potential
of the diffuse layer decreases by approximately 41.7 %, likely as a result of a lowered volumetric
charge density under low solution pH. This coincides with an increase in Mg?* leakage by 18 %,
and a decrease in the monovalent cation fluxes by 14 % or greater, suggesting that the weakening
of Donnan exclusion is principal for the selectivity decline.

Using the terminology as defined in Figure 3D and E in the main manuscript, Eq. 14-16 in the SI
are solved simultaneously to analyze the impact of the volumetric charge density on the monovalent
selectivity of the CEM. Here, a CEM with volumetric charge densities of 0.50, 1.68 and 5.00 M are
used to simulate the impacts of the solution pH on the charged moiety density of the PEI layer, 29
as illustrated in Supp. Figures 13A, B and C, respectively.

With a high volumetric charge density of 5.0 M, as observed in Supp. Figure 13C, a large
Li* /Mg?* molar ratio of the partitioned ions exceeding 30 is obtained at 10 g L=! TDS (0.35 M).

While the partitioning selectivity decreases with increasing feed solution concentrations, a Lit /Mg?*

molar ratio that is greater than parity is obtained even with salt-lake brine concentrations. When the
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volumetric charge density is reduced from 1.68 to 0.5 M to mimic our zeta potential observations, the
Lit /Mg?* molar ratio of the partitioned ions decreases drastically across the entire concentration
range, and falls under parity once the solution concentration exceeds the 0.5 M. When the solution
concentration exceeds the volumetric charge density of the CEM, more co-ions (i.e., Cl7) will
partition into the interstitial phase, and additional counter-ion partitioning (i.e., Li*, Mg?") is
necessary to maintain the electroneutrality condition. As a consequence, our model indicate that
the resultant Donnan potential will attenuate, and more multivalent cations will be able to partition
successfully into the CEM, reducing the effectiveness of Donnan exclusion of Mg?* ions. Therefore,
our numerical findings corroborate our empirical inference of the weakening of Donnan exclusion

under low solution pH.

C.2 Composition Impacts on Monovalent Selectivity

In our prior NF publication, we observed that apparent Li/Mg separation factors may be overesti-
mated by up to 40 % when the anionic composition of the feed solution is simplified to just one anion
(either C1~ or SO?[).?’O This arises from transport coupling between the cations and anions, induced
by electroneutrality constraints. For example, with Lit -Mg?* —SOZ_ feed solutions, the apparent
Lit and Mg?* rejection was significantly overestimated as a result of the poor permeability of SOZ_
ions. When the Cl_/SO?[ molar ratio was accurately replicated with the Li+—Mg2+—Cl_—SOif feed
solutions, the absolute errors for Li/Mg separation factors fell under 15 %. Similar to our previous
NF study, our ED experiments with binary cation feed solutions overpredict the Li/Mg separation
factors by 50 to 250 %. Unlike NF, however, the errors in the Li/Mg separation factors remained
large even when the C17 /SO~ molar ratio was accurately replicated with the Lit-Mg?*-Cl=-SO%~
feed solutions. This result indicates that the other monovalent cations have an influence on the
relative ionic flux between LiT and Mg?*.

Similar to NF, the diluate and concentrate streams are still subjected to same electroneutrality
constraint. In electrodialysis, however, the bulk anion and cation ions are transported separately
through the AEM and CEM, and the two ion exchange membranes behave as separate conductors
that are connected in series.® For a given current density, ED experiments with Li*—MgQJF—SOi_

(LMS) feed solutions will register a much greater SO~ ion flux than that with Lit-Mg?+-Cl-SO%~
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(LMCS) solutions, albeit with a significantly amplified potential difference across the membrane
stack due to the low conductance of SOZ_ ions across the AEM. If the applied current density is
equal in both experiments, the ion flux of SOi_ does not appear to present a significant barrier
to the transport of the monovalent cations between the LMS and LMCS experiments. This is
likely because the AEM is not perfectly monovalent selective and will allow SOZ‘ leakage when the
potential difference across the AEM is sufficiently high.

On the other hand, if the AEM rejects SO?{ ions perfectly (hypothetical ideal monovalent
selective AEM), then the ionic flux across the AEM would be negligible in experiments with Li-
Mg?T-SO;~ (LMS) feed solutions, and the ohmic resistance across the AEM would tend towards
infinity. In this scenario, we would expect to see the same behavior in the Li/Mg separation factors
as with NF, where the low transport rate of SO2~ limits the net ionic flux of Lit and Mg?*.
However, our AEMs are not perfectly selective, and significant SOZ_ ion fluxes were measured with

our LMS experiments.

C.3 Lithium Concentration in Salar de Atacama

In this section, we assess the implications of our research findings on the process duration and
land area requirements for direct salt-lake lithium extraction. Currently, over 50 % of the global
lithium supply originates from continental and geothermal brines, leveraging evaporitic technology
for solution concentration.3! Presently, the lithium-enriched hypersaline brines are pumped into
evaporation ponds and concentrated by direct solar irradiation, over an average production cycle of
two years.3? Carbonates and phosphates of sodium and potassium are injected into the evaporation
ponds when the solution concentrations of magnesium and lithium ions are close to their respective
saturation indices.33 The precipitated salts are subsequently collected and washed with fresh wa-
ter.3! The production dependence on evaporation ponds renders the lithium supply to be extremely
price inelastic and slow to respond to the market demand. Further, only large flat areas in low
humidity climates that are not prone to monsoon or seasonal changes are suitable to function as
evaporation ponds. As a result, there are very few suitable flat lands that coincide geographically
with lithium-rich aqueous deposits that can be exploited for direct lithium extraction.?? With the

appropriate selective IEM, an industrial-scale electrodialysis system can concentrate lithium in a
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continuous process, potentially overcoming the reliance on evaporation ponds and access untapped
lithium deposits for direct extraction.

The Salar de Atacama salt-lake in Chile produces 121,190 tones of lithium carbonate per year
with 3000 km? of salt flat area.3! Each production cycle takes approximately 2 years, and over
2.7 x10% m?3 of fresh water is consumed for solid salt isolation. On a molar basis, the Chilean
salt-lake produces 8.99 x10% moles of Li on average per day, and the land area impact per mole of
Li produced is 3.34 x10~* km? mol~!. For electrodialysis, the land area requirement per mole of

Li produced can be calculated with Eq. 20

LAI Pgp
tprod JLi AMem

Ap; = (20)

where Az; (km? mol~!) denotes the normalized land area requirement, LAI (km? GW~!) denotes
the land area impact per unit power, Prp (GW) denotes the power consumed by the industrial-scale
electrodialysis stack, tp,oq (h) denotes the daily production time, Jz; (mol m~2 h~!) denotes the
molar flux of Li, and Apsem (mz) denotes the total membrane area of the IEMs.

Here, we leverage our experimental results on the 250 g L~! Chilean brines to project the
energy and land area requirements for lithium extraction. An industrial-scale electrodialysis module
comprising 100,000 cell pairs that is typically used for salt production is employed to estimate
ED’s performance.® To simulate DLE application, the diluate and concentrate stream compositions
correspond to the salt-lake brine and a 0.1 M NaCl solution.3* The land area impact of a photovoltaic
solar farm to meet ED’s electrical work requirement is calculated based on the survey by Palmer-

1.,3% which incorporates the spatial demands arising from power generation, storage and

Wilson et a
transmission in a solar farm.
Assuming a 10 h daily production cycle, using existing monovalent selective CEMs driven by

2 our model indicates that over 7.70 x10% moles of Li can be

a current density of 30.0 mA cm™
extracted per day with a commercial-scale ED unit operation; the quantity of Li extracted from a
single ED operation is over 85 % of the current capacity of Salar de Atacama. In a single stage,
over 85.8 % of the dissolved Li can be extracted, and the product Lit/Mg* ratio decreases by a

factor of 6.58. Correspondingly, based on the land area impact survey, a solar farm operating for 10

h daily with a total footprint between 11.35 to 12.84 km? can generate sufficient electrical work to
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power the continuous ED process.?> The normalized land requirement (Ap;) for ED is estimated to
be between 1.21 x1076 to 1.67 x107% km? mol~!, which is over two orders of magnitude lower than
the corresponding value obtained for the evaporation ponds at Salar de Atacama. The favorable
results arise because the electrical work required for ion transport in ED is significantly lower than

the latent heat consumed to vaporize water in a evaporation pond.36
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521 D Experimental Data

Supplementary Table 5: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 10 g/L, solution pH of 7, under a current density of 2.5

mA cm 2.
t (min)  Lit (-) Mg** (-) Na™ (-) K*(-) Cl(-) SO7 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.929 0.974 0.917 0.815 0.898 1.038
30 0.847 0.977 0.787 0.660 0.818 1.071
45 0.815 0.971 0.651 0.515 0.726 1.098
60 0.745 0.943 0.599 0.392 0.596 1.106
120 0.434 0.833 0.213 0.096 0.252 1.147

Supplementary Table 6: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 10 g/L, solution pH of 5, under a current density of 2.5

mA cm™2.
t (min)  Li* (-) Mg** (-) Na* (-) K*(-) CI(-) SO7 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.925 0.984 0.876 0.771 0.826 0.981
30 0.877 0.969 0.765 0.594 0.701 0.988
45 0.791 0.950 0.648 0.448 0.540 0.980
60 0.710 0.908 0.523 0.324 0.422 0.941
120 0.292 0.811 0.131 0.072 0.115 0.906

Supplementary Table 7: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 10 g/L, solution pH of 3, under a current density of 2.5

mA cm 2.
t (min)  Li* (-) Mg** (-)  Na' () K*(-) Cl(-) SO5 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.923 0.978 0.886 0.796 0.883 1.006
30 0.864 0.951 0.771 0.603 0.780 1.024
45 0.774 0.934 0.605 0.448 0.665 1.053
60 0.722 0.921 0.560 0.333 0.562 1.098
120 0.342 0.798 0.156 0.070 0.183 1.166
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Supplementary Table 8: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 30 g/L, solution pH of 7, under a current density of 2.5
mA cm ™2

t (min)  Li" () Mg (-)  Na® () K™() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.953 0.980 0.921 0.846 0.912 1.245
30 0.833 0.958 0.788 0.671 0.786 1.203
45 0.778 0.936 0.712 0.546 0.711 1.285
60 0.717 0.914 0.634 0.446 0.632 1.298
90 0.553 0.892 0.456 0.272 0.454 1.221
120 0.413 0.870 0.310 0.137 0.321 1.107

Supplementary Table 9: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 30 g/L, solution pH of 7, under a current density of 7.5

mA cm—2.

6 (min)  Lit (-) Mg (-)  Na® () K*() Cl”(-) SO; ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.889 0.979 0.816 0.730 0.862 1.000
30 0.764 0.960 0.649 0.516 0.749 1.004
45 0.747 0.968 0.501 0.326 0.637 1.007
60 0.555 0.952 0.334 0.191 0.518 1.012
90 0.171 0.927 0.067 0.055 0.268 1.009
120 0.024 0.583 0.001 0.018 0.051 0.982

Supplementary Table 10: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 2.5

mA cm~ 2.

t(on)  Lit () Mg () Na' () K'() (5 07 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.963 0.973 0.954 0.944 0.950 0.985
60 0.907 0.922 0.876 0.825 0.884 0.965
90 0.878 0.901 0.832 0.768 0.833 0.955
120 0.796 0.851 0.764 0.672 0.747 0.937
150 0.767 0.829 0.736 0.624 0.716 0.932

Supplementary Table 11: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 2.5
mA cm2.

t (min)  Li* () Mg (-)  Na® () K*() Cl™(-) 01 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.964 0.982 0.952 0.931 0.924 0.946
60 0.841 0.869 0.836 0.789 0.787 0.842
90 0.820 0.876 0.809 0.753 0.769 0.859
120 0.788 0.843 0.759 0.701 0.721 0.827
150 0.809 0.874 0.776 0.692 0.731 0.861

S30



Supplementary Table 12: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 2.5

mA cm 2.

t (min)  Li" () Mg (-)  Na® () K™() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.951 0.948 0.923 0.914 0.913 0.977
60 0.917 0.907 0.860 0.834 0.862 0.939
90 0.876 0.879 0.813 0.768 0.830 0.916
120 0.850 0.866 0.794 0.716 0.784 0.914
150 0.832 0.858 0.747 0.690 0.768 0.917

Supplementary Table 13: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 7.5

mA cm~2.

6 (min)  Lit (-) Mg (-)  Na® () K() Cl”(-) SOi ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.928 0.989 0.931 0.902 0.935 0.992
30 0.898 0.982 0.876 0.823 0.894 1.000
60 0.866 0.984 0.811 0.753 0.838 1.005
90 0.816 0.963 0.751 0.678 0.777 0.980
120 0.615 0.950 0.564 0.515 0.585 0.983

Supplementary Table 14: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 7.5

mA cm 2.

t (min)  Lit () Mg (-)  Na® () K() ClI(-) 8O3 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.955 0.995 0.958 0.919 0.948 0.998
30 0.907 0.994 0.881 0.821 0.897 0.980
60 0.873 0.949 0.832 0.753 0.831 0.982
90 0.793 0.934 0.742 0.673 0.710 0.894
120 0.742 0.875 0.675 0.602 0.641 0.912

Supplementary Table 15: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 7.5

mA cm~—2.

t(un)  Lit () Mg () Na' () K'() (5 07 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.944 0.990 0.926 0.876 0.954 0.981
30 0.887 0.968 0.844 0.766 0.878 0.966
60 0.763 0.909 0.725 0.643 0.730 0.938
90 0.723 0.887 0.668 0.581 0.665 0.883
120 0.671 0.860 0.608 0.523 0.601 0.861
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Supplementary Table 16: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 15.0

mA cm 2.

t (min)  Li" () Mg (-)  Na® () K™() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.917 0.982 0.862 0.805 0.871 0.985
30 0.855 0.969 0.752 0.647 0.788 1.000
45 0.788 0.973 0.621 0.505 0.676 1.010
60 0.686 0.929 0.502 0.356 0.554 0.960
120 0.271 0.903 0.129 0.031 0.171 0.967

Supplementary Table 17: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 15.0

mA cm~2.

6 (min)  Lit (-) Mg (-)  Na® () K() Cl”(-) SOi ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.929 0.990 0.898 0.837 0.841 0.997
30 0.833 0.987 0.746 0.641 0.742 0.959
45 0.763 0.898 0.650 0.506 0.614 0.965
60 0.602 0.868 0.474 0.346 0.378 0.788
120 0.500 0.751 0.342 0.203 0.245 0.823

Supplementary Table 18: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 15.0

mA cm 2.

t (min)  Lit () Mg (-)  Na® () K() ClI(-) 8O3 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.911 0.983 0.881 0.802 0.926 0.970
30 0.819 0.949 0.750 0.626 0.804 0.946
60 0.621 0.854 0.560 0.430 0.567 0.901
90 0.557 0.820 0.469 0.330 0.463 0.813
120 0.474 0.775 0.374 0.239 0.360 0.779

Supplementary Table 19: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 250 g/L, solution pH of 7, under a current density of 2.5

mA cm~—2.

t (min)  Li* () Mg (-)  Na® () K™() CI () SOi” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.996 1.000 0.989 0.944 1.073 1.029
60 0.964 0.953 0.962 0.968 0.999 1.041
90 0.935 0.923 0.952 0.954 0.941 1.030
120 0.882 0.873 0.858 0.868 0.875 0.996
150 0.861 0.888 0.873 0.816 0.872 1.002
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Supplementary Table 20: Transient behavior of the normalized ion concentrations for Chilean brine
at a total dissolved solid concentration of 250 g/L, solution pH of 7, under a current density of 30.0
mA cm ™2

t (min)  Li" () Mg (-)  Na® () K™() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.787 0.989 0.753 0.724 0.996 0.946
60 0.691 0.967 0.656 0.599 0.800 0.990
90 0.537 0.952 0.463 0.477 0.655 0.981
120 0.254 0.935 0.108 0.196 0.245 0.904
150 0.142 0.919 0.020 0.011 0.135 0.957

Supplementary Table 21: Transient behavior of the normalized ion concentrations for Chilean brine

at a total dissolved solid concentration of 250 g/L, solution pH of 3, under a current density of 30.0

mA cm~2.

t (min)  Li" () Mg (-)  Na® () K*() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.856 0.999 0.825 0.794 0.999 1.176
60 0.729 0.949 0.710 0.659 0.797 1.250
90 0.572 0.899 0.506 0.519 0.650 1.179
120 0.275 0.849 0.120 0.211 0.246 0.974
150 0.152 0.799 0.022 0.012 0.134 1.011

Supplementary Table 22: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 10 g/L, solution pH of 7, under a current density of 2.5
mA cm~2.

t (min)  Li* () Mg (-)  Na® () K*() ClI () SOi” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.933 0.984 0.856 0.851 0.890 0.999
30 0.850 0.962 0.702 0.518 0.759 0.996
45 0.757 0.941 0.526 0.304 0.672 0.986
60 0.658 0.933 0.406 0.199 0.548 0.999
90 0.393 0.886 0.175 0.100 0.337 0.998
120 0.077 0.766 0.004 0.023 0.144 0.983

Supplementary Table 23: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 10 g/L, solution pH of 5, under a current density of 2.5
mA cm™2.

6 (min)  Lit () Mg (-)  Na® () K() ClI"(-) 8O3 ()

0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.912 0.976 0.841 0.764 0.806 0.971
30 0.832 0.945 0.712 0.571 0.623 0.972
45 0.759 0.935 0.563 0.411 0.513 0.953
60 0.617 0.912 0.443 0.288 0.404 0.950
90 0.413 0.870 0.207 0.125 0.235 0.916
120 0.127 0.805 0.033 0.031 0.119 0.903
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Supplementary Table 24: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 10 g/L, solution pH of 3, under a current density of 2.5
mA cm 2.

t(un)  Lit () Mg () Na' () Ki() I (5 07 ()

0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.901 0.950 0.865 0.840 0.895 1.017
30 0.863 0.940 0.744 0.713 0.804 1.017
45 0.765 0.919 0.618 0.477 0.680 1.016
60 0.663 0.901 0.502 0.384 0.615 1.007
90 0.446 0.902 0.267 0.123 0.389 1.004
120 0.119 0.833 0.059 0.018 0.198 1.006

Supplementary Table 25: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 30 g/L, solution pH of 7, under a current density of 2.5

mA cm—2.

6 (min)  Lit (-) Mg (-)  Na® () K*() Cl”(-) SO; ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.906 0.961 0.883 0.826 0.896 0.962
30 0.819 0.939 0.771 0.677 0.800 1.133
45 0.740 0.875 0.674 0.536 0.701 1.143
60 0.636 0.831 0.554 0.384 0.588 1.132
90 0.464 0.787 0.367 0.215 0.411 1.062
120 0.298 0.765 0.206 0.087 0.255 1.107

Supplementary Table 26: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 30 g/L, solution pH of 7, under a current density of 7.5

mA cm~ 2.

t(on)  Lit () Mg () Na' () K'() (5 07 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.934 0.993 0.860 0.796 0.882 1.008
30 0.848 0.961 0.701 0.590 0.755 1.006
45 0.768 0.964 0.580 0.447 0.640 1.025
60 0.659 0.936 0.427 0.275 0.498 1.012
120 0.064 0.815 0.040 0.055 0.056 0.959

Supplementary Table 27: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 2.5
mA cm2.

t (min)  Li* () Mg (-)  Na® () K*() Cl™(-) 01 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 1.003 0.989 0.977 0.962 0.979 0.983
60 0.917 0.934 0.890 0.793 0.886 0.964
90 0.922 0.929 0.856 0.712 0.863 0.953
120 0.858 0.898 0.793 0.657 0.820 0.934
180 0.816 0.868 0.716 0.600 0.747 0.934
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Supplementary Table 28: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 2.5

mA cm 2.

tun)  Lit () Mg () Na' () K'() I (5 07 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.964 0.980 0.962 0.916 0.975 0.957
30 0.932 0.954 0.907 0.855 0.897 0.935
45 0.883 0.890 0.837 0.764 0.806 0.871
90 0.834 0.873 0.759 0.657 0.721 0.860
120 0.857 0.904 0.757 0.621 0.734 0.915
150 0.709 0.785 0.621 0.499 0.566 0.785

Supplementary Table 29: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 2.5

mA cm 2.

t(un)  Lit () Mg () Na' () K'() I (5 07 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.970 0.969 0.934 0.767 0.934 0.987
60 0.881 0.926 0.860 0.774 0.877 0.949
90 0.809 0.856 0.768 0.627 0.789 0.927
120 0.756 0.807 0.698 0.574 0.730 0.901
180 0.669 0.749 0.594 0.428 0.631 0.850

Supplementary Table 30: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 7.5

mA cm™—2.

t (min)  Li" () Mg (-)  Na® () K™(-) CI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.918 0.966 0.916 0.831 0.975 0.992
30 0.752 0.918 0.735 0.549 0.802 0.971
60 0.687 0.913 0.605 0.433 0.692 0.976
90 0.627 0.911 0.486 0.295 0.624 0.937
120 0.389 0.851 0.254 0.128 0.414 0.929

Supplementary Table 31: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 7.5

mA cm 2.

t (min) Li* ()  Mg* () Na' () K() H30"(-) CI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0.935 0.979 0.917 0.854 0.722 0.948 0.964
30 0.870 0.949 0.821 0.729 0.560 0.846 0.941
60 0.738 0.868 0.685 0.580 0.450 0.675 0.888
90 0.682 0.842 0.599 0.477 0.326 0.579 0.834
120 0.646 0.831 0.546 0.411 0.216 0.528 0.840
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Supplementary Table 32: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 7.5
mA cm~2.

t (min)  Li* () Mg () Na® () K*() Cl™(-) 01 ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.945 0.990 0.929 0.868 0.938 0.931
30 0.903 0.946 0.866 0.747 0.878 0.911
60 0.842 0.904 0.803 0.697 0.821 0.876
90 0.767 0.838 0.684 0.571 0.738 0.848
120 0.672 0.755 0.594 0.456 0.633 0.818

Supplementary Table 33: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 70 g/L, solution pH of 7, under a current density of 15.0
mA cm™2.

6 (min)  Lit () Mg (-)  Na® () K() CI () SO; ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.971 1.020 0.931 0.800 0.980 1.084
30 0.793 0.917 0.713 0.537 0.811 1.013
60 0.696 0.914 0.563 0.437 0.681 0.993
90 0.654 0.932 0.448 0.289 0.618 1.011
120 0.344 0.872 0.192 0.104 0.387 0.960
150 0.083 0.812 0.029 0.020 0.223 0.970

Supplementary Table 34: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 70 g/L, solution pH of 5, under a current density of 15.0

mA cm—2.

6 (min)  Lit () Mg (-)  Na® () K() Cl”(-) SO; ()
0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.911 0.979 0.881 0.802 0.926 0.970
30 0.819 0.944 0.750 0.626 0.804 0.946
60 0.621 0.850 0.560 0.430 0.567 0.901
90 0.557 0.816 0.469 0.330 0.463 0.813
120 0.474 0.772 0.374 0.239 0.360 0.779
150 0.389 0.722 0.278 0.171 0.271 0.726

S36



Supplementary Table 35: Transient behavior of the normalized ion concentrations for Chinese brine
at a total dissolved solid concentration of 70 g/L, solution pH of 3, under a current density of 15.0
mA cm~2.

t (min)  Li* () Mg () Na® () K*() Cl™(-) 01 ()

0 1.000 1.000 1.000 1.000 1.000 1.000
15 0.912 0.994 0.898 0.855 0.914 0.783
30 0.849 0.927 0.811 0.731 0.831 1.160
60 0.809 0.886 0.756 0.634 0.775 0.849
90 0.732 0.823 0.615 0.525 0.696 0.879
120 0.604 0.713 0.509 0.360 0.553 1.208
150 0.464 0.599 0.358 0.193 0.432 1.154

Supplementary Table 36: Transient behavior of the normalized ion concentrations for Chinese brine

at a total dissolved solid concentration of 250 g/L, solution pH of 7, under a current density of 2.5

mA cm 2.

t (min)  Li" () Mg (-)  Na® () K™() ClI () SO;” ()
0 1.000 1.000 1.000 1.000 1.000 1.000
30 0.991 0.993 0.985 0.964 0.900 0.947
60 0.981 0.987 0.881 0.928 1.107 1.134
90 0.972 0.980 0.960 0.892 0.995 1.193
120 0.963 0.973 0.901 0.856 1.048 1.160
150 0.953 0.967 0.878 0.806 1.068 1.136

Supplementary Table 37: Transient behavior of the normalized ion concentrations for dual cation

(Li* - Mg?* - Cl~, abbreviated as LMC) brine at a total dissolved solid concentration of 0.35 M,

solution pH of 7, under a current density of 2.5 mA cm™2.

t (min) Lit () Mg** () CI"() 05 ()
0 1.000 1.000 1.000 0.00
15 0.755 0.985 0.900 0.00
30 0.513 0.947 0.819 0.00
45 0.283 0.931 0.751 0.00
60 0.106 0.899 0.674 0.00
90 0.015 0.754 0.542 0.00
120 0.009 0.598 0.420 0.00
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Supplementary Table 38: Transient behavior of the normalized ion concentrations for dual cation
(Lit - Mg?* - ClI~ - SO?{, abbreviated as LMCS) brine at a total dissolved solid concentration of
0.35 M, solution pH of 7, under a current density of 2.5 mA cm™2.

t(uin)  Li* () Mg?* () I (5 507 ()

0 1.000 1.000 1.000 1.000
15 0.744 0.983 0.905 1.009
30 0.451 0.976 0.812 0.987
45 0.257 0.949 0.752 0.992
60 0.082 0.909 0.685 0.991
90 0.019 0.770 0.536 0.997
120 0.014 0.627 0.418 0.986

Supplementary Table 39: Transient behavior of the normalized ion concentrations for dual cation
(Lit - Mgt - Q1™ - SOi_, abbreviated as LMCS) brine at a total dissolved solid concentration of
0.35 M, solution pH of 3, under a current density of 2.5 mA cm™2.

t(min)  Li* () Mg?* () I (5 507 ()

0 1.000 1.000 1.000 1.000
15 0.718 0.980 0.893 1.017
30 0.459 0.953 0.811 1.017
45 0.213 0.935 0.718 1.016
60 0.069 0.875 0.646 1.007
90 0.016 0.713 0.500 1.004
120 0.012 0.564 0.376 1.006
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