
MIT Open Access Articles

AI-Augmented Feature to Edit and Design Mobile Applications

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Granquist, Ashley, Kim, David and Patton, Evan. 2023. "AI-Augmented Feature to Edit 
and Design Mobile Applications."

As Published: https://doi.org/10.1145/3565066.3608248

Publisher: ACM|25th International Conference on Mobile Human-Computer Interaction

Persistent URL: https://hdl.handle.net/1721.1/152325

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/152325


AI-Augmented Feature to Edit and Design Mobile Applications 
Ashley Granquist 
David Y.J. Kim 
Evan Patton 

ashleymg@mit.edu 
dyjkim@mit.edu 
ewpatton@mit.edu 

Massachusetts Institute of Technology 
Cambridge, MA, USA 

ABSTRACT 
We are developing an AI assistance platform that enables individuals 
with a limited technical background, such as children, to create 
mobile applications from natural language input. The platform is 
based on MIT App Inventor and allows users to easily edit the 
interface and functionality of the components of their app using 
textual commands. The goal of the platform is to empower children 
and others without a background in coding with the ability to 
create their own mobile applications and foster their creativity and 
problem-solving skills in a fun and interactive way. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools. 

KEYWORDS 
Human-Computer Interaction, Mobile Application, MIT App In-
ventor 

ACM Reference Format: 
Ashley Granquist, David Y.J. Kim, and Evan Patton. 2023. AI-Augmented 
Feature to Edit and Design Mobile Applications. In 25th International Con-
ference on Mobile Human-Computer Interaction (MobileHCI ’23 Companion), 
September 26–29, 2023, Athens, Greece. ACM, New York, NY, USA, 5 pages. 
https://doi.org/10.1145/3565066.3608248 

1 INTRODUCTION 
The recent development of AI has been nothing short of revolu-
tionary, drastically changing the way we live and interact with 
technology [9]. While this has caused a degree of apprehension [6], 
it has also presented us with an incredible opportunity: the chance 
to collaborate with AI and leverage its strengths to unlock solu-
tions to complex problems and achieve our goals in ways that were 
previously unimaginable [16, 17]. Through this collaboration, AI 
and humans can work together to augment each other’s capabilities 
and create far more efficient and effective outcomes. 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9924-1/23/09. 
https://doi.org/10.1145/3565066.3608248 

AI-human collaboration refers to the use of AI technology in com-
bination with human expertise to achieve a common goal [3, 12, 14]. 
In the context of programming and software development, AI-
human collaboration can take many forms, such as text-to-code 
models that generate code based on human input or low-code plat-
forms that allow non-technical users to build applications with the 
help of AI-powered drag-and-drop interfaces [1, 2, 10]. There are 
several benefits to AI-human collaboration in programming and 
software development. For example, AI-powered code completion 
tools which suggest code snippets can help programmers write 
code more accurately and efficiently by reducing syntax errors and 
automatically completing code. 

In this paper, we introduce the development of a new feature for 
the MIT App Inventor platform [18]. This feature will allow users to 
edit and customize their mobile applications by providing a simple 
textual description of their desired changes. With this feature, users 
will no longer have to rely solely on programming elements to 
make changes to their apps. Instead, they can easily modify their 
apps using plain language, making the app creation process more 
accessible and user-friendly. This is a major step forward in our 
goal to democratize mobile app development and empower users 
to create their own apps with ease [15]. 

2 RELATED WORK 
Text-to-code models are AI-powered models that can generate code 
from natural language inputs, such as written descriptions or verbal 
commands [4]. These models use machine learning algorithms to 
understand the meaning of the input and generate code that imple-
ments the desired functionality. A major example is Copilot [4], an 
AI-powered code completion tool that helps programmers write 
code more efficiently and accurately. Text-to-code models can be 
used in various applications, such as code generation for web and 
mobile apps, software prototyping, and data analysis. They can 
also be used to automate repetitive tasks in software development, 
such as generating boilerplate code for common use cases [5]. One 
of the benefits of text-to-code models is that they can lower the 
barrier to entry for people who are interested in learning how to 
code but have limited programming experience. By allowing users 
to describe what they want to achieve in natural language, text-to-
code models can help individuals quickly generate working code 
without having to learn the intricacies of a particular programming 
language. Recently, the MIT App Inventor team has been devel-
oping a new platform called Aptly [8]. Aptly lets anyone – even 
young students – create original apps for tablets and smartphones 

https://orcid.org/0009-0006-4373-4030
https://orcid.org/0000-0003-4057-0027
https://orcid.org/0000-0002-6066-1922
https://doi.org/10.1145/3565066.3608248
https://doi.org/10.1145/3565066.3608248
mailto:ewpatton@mit.edu
mailto:dyjkim@mit.edu
mailto:ashleymg@mit.edu


MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece Granquist, et al. 

Figure 1: Our editing process begins when a user requests a change, such as “Change the text to ‘pet my dog Riley’." We feed the 
original code and the user’s request into one of OpenAI’s GPT-3.5 or GPT-4 models [11], which outputs the modified code. We 
then use the ZSS algorithm to compare the original code’s AST with the modified code’s AST and identify the series of changes 
needed to make the edit. Once we have processed the edits, we arrive at the target app. 

by writing in natural language. For example, a user might type 
in or speak: “Create an app with a few buttons corresponding to 
various languages. When I press a button, translate what I say into 
the language for that button and speak the result.” Using the verbal 
prompt, the platform creates a fully functional app on the user’s 
mobile device. 

3 METHODS 
The editing feature uses the technology of large language models 
to automatically generate Aptly code representing MIT App Inven-
tor mobile apps. The performance depends on the input given to 
OpenAI’s GPT-3.5 or GPT-4 [11], referred to as the “prompt.” We 
automatically craft a prompt by providing a set of examples (the 
original code, the textual description of the desired edit, and the 
modified code) along with current app code and the user’s requested 
textual edit. Such prompt engineering is referred to as few-shot 
learning [13]. 

The user begins with an in-progress app that they have created 
in MIT App Inventor, either by hand or by providing a natural 
language description to Aptly. The user could also begin with a 
blank MIT App Inventor project and create the app from scratch 
using a series of edits. 

When the user requests an edit for their app, the process is as 
follows: The user provides a natural language description of their 
desired edit, such as “Add another label that says ‘Welcome to my 
app!’ ” or “When the button is clicked, change the background color 
to blue.” 

The Aptly server then sends the original app’s Aptly code along 
with the edit description and several examples to GPT-3.5. To deter-
mine which examples to provide to GPT-3.5, we choose the exam-
ples from our example bank that are most similar to the requested 
edit, where similarity is measured using the cosine similarity of 
the embedding of each example’s edit description and the current 
user’s edit description. 

GPT-3.5 then generates updated Aptly code representing the 
new app, much like how GPT-3.5 is used to generate 



AI-Augmented Feature to Edit and Design Mobile Applications MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece 

Figure 2: Examples of editing the user interface of the mobile application. In the first command, the user asks to change the 
label text to “pet my dog Riley", and in the second command, the user asks to change the font size of the text to be 20 (from 14). 
Note that programmatic language for the edit description is not required; for the second command, a similar result could have 
been achieved by saying “make the text bigger." 

Aptly code when users create projects from natural language 
descriptions. 

Given the updated Aptly code, the Aptly server then computes 
a sequence of edits needed to efficiently transform the original 
app into the updated one. Specifically, we compute the minimum 
tree edit distance between the abstract syntax tree representing 
the current app and the abstract syntax tree representing the modi-
fied app using the Zhang-Shasha (ZSS) algorithm [19]. “Edits” can 
mean inserting, updating, or deleting components or blocks (or 
simply keeping them the same) between the original and modified 
program. 

Having computed the most efficient way to transform the orig-
inal program into the modified program through a sequence of 
insertions, updates, and deletions, we begin processing those edit 
events over several stages. We begin by checking whether all of 
our proposed insertions of components or blocks should actually 
be insertions. ZSS may have suggested deleting a component, cre-
ating a new version of that same component, and then inserting 
the new version elsewhere. In these cases, we could simply move 
the original component (i.e. update its parent) for increased effi-
ciency. Next, we process deletions, checking each proposed dele-
tion against our proposed insertions to ensure we move compo-
nents rather than deleting and re-inserting them where possible. 
We then process updates such as moving components around or 
changing their properties, and finally, we process insertions of 
new components and blocks. Having finalized the sequence of 
edit events, the Aptly server sends those events to MIT App In-
ventor through the Real-Time Collaboration (RTC) [7] server, and 

MIT App Inventor processes those RTC operations to modify the 
app. 

4 RESULTS 
A mobile application can be broken down into the user interface 
of the application and the functionality of each component within 
the application. Our editing feature allows for the editing of both 
the user interface and functionality of mobile applications. 

Figure 2 shows some simple examples of editing the user inter-
face of the application. As an example, the user can ask to change a 
label’s text to “pet my dog Riley" with a single command. They can 
also adjust the font size of the text with another simple command. 
These quick and straightforward updates demonstrate the ease with 
which users can manipulate their app’s visual appearance to match 
their preferences. 

Figure 3 shows some simple examples of editing the functionality 
of the components within an application. For example, a user might 
change the behavior of an image of a dog. Initially, clicking the 
image produces no effect, but with a simple command, the user can 
make a barking sound trigger whenever the image is clicked. The 
corresponding code blocks are automatically generated to imple-
ment the desired behavior change. 

5 CONCLUSION & DISCUSSION 
In this paper, we present our work on developing a cutting-edge 
platform that combines the simplicity of blocks-based coding with 
the power of AI. Our aim is to provide students with a user-friendly 
environment where they can easily edit and modify their block code 



MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece Granquist, et al. 

Figure 3: An example where the user changes the functionality of the app, specifically what happens when the image is clicked. 
Before the edit, nothing happens when the user clicks the image of a dog. The user adds a barking sound and then commands, 
“When the image is clicked, play Sound1." The change is represented in the Aptly code and implemented via the creation of new 
code blocks, as shown on the right. 

. 

with the aid of an AI-powered feature. This feature will stream-
line the coding process and provide students with suggestions and 
recommendations as they code, making the development process 
faster and more efficient. By leveraging the power of AI, we believe 
that we can empower students to take their coding skills to the 
next level and create more sophisticated and innovative applica-
tions. This work represents an important step forward in the field 
of educational technology and we are excited to see the impact it 
will have on students and the future of app development. Going 
forward, we aim to expand the editing capability to enable users 
to edit more diverse aspects of their mobile applications. In addi-
tion, we plan to conduct extensive case studies to demonstrate the 
impact of AI-student collaboration in the creation of mobile apps 
and how this collaboration can empower students to achieve great 
results. Our goal is to unlock the full potential of this collaboration, 
providing a platform for students to build their skills and create 
innovative, cutting-edge apps. 

ACKNOWLEDGMENTS 
We thank the MIT App Inventor team for their help and support 
throughout this project. 

REFERENCES 
[1] Simone Bales. 2018. Build Android apps without Coding: Get started with Android 

apps using Thunkable-MIT app Inventor. 
[2] Alexander C Bock and Ulrich Frank. 2021. Low-code platform. Business & 

Information Systems Engineering 63 (2021), 733–740. 
[3] Charlynne Bolton, Veronika Machová, Maria Kovacova, and Katarina Valaskova. 

2018. The power of human–machine collaboration: Artificial intelligence, busi-
ness automation, and the smart economy. Economics, Management, and Financial 
Markets 13, 4 (2018), 51–56. 

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira 
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, 
et al. 2021. Evaluating large language models trained on code. arXiv preprint 
arXiv:2107.03374 (2021). 

[5] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, 
Michel C Desmarais, Zhen Ming, et al. 2022. GitHub Copilot AI pair programmer: 
Asset or Liability? arXiv preprint arXiv:2206.15331 (2022). 

[6] Thomas G Dietterich and Eric J Horvitz. 2015. Rise of concerns about AI: reflec-
tions and directions. Commun. ACM 58, 10 (2015), 38–40. 

[7] Ting-Chia Hsu, Hal Abelson, Evan Patton, Shih-Chu Chen, and Hsuan-Ning 
Chang. 2021. Self-efficacy and behavior patterns of learners using a real-time 
collaboration system developed for group programming. International Journal of 
Computer-Supported Collaborative Learning (2021), 1–24. 

[8] David YJ Kim, Ashley Granquist, Evan Patton, Mark Friedman, and Hal Abelson. 
2022. SPEAK YOUR MIND: INTRODUCING APTLY, THE SOFTWARE PLAT-
FORM THAT TURNS IDEAS INTO WORKING APPS. In ICERI2022 Proceedings. 
IATED, 1653–1660. 

[9] Spyros Makridakis. 2017. The forthcoming Artificial Intelligence (AI) revolution: 
Its impact on society and firms. Futures 90 (2017), 46–60. 

[10] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1–15. 

[11] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL] 

https://arxiv.org/abs/2303.08774


AI-Augmented Feature to Edit and Design Mobile Applications MobileHCI ’23 Companion, September 26–29, 2023, Athens, Greece 

[12] Sun Young Park, Pei-Yi Kuo, Andrea Barbarin, Elizabeth Kaziunas, Astrid Chow, 
Karandeep Singh, Lauren Wilcox, and Walter S Lasecki. 2019. Identifying chal-
lenges and opportunities in human-AI collaboration in healthcare. In Conference 
Companion Publication of the 2019 on Computer Supported Cooperative Work and 
Social Computing. 506–510. 

[13] Jasmine L Shone, Robin Liu, Evan Patton, and David Young-Jae Kim. EasyChair, 
2022. Design and Optimization of an Automatic Mobile Application Generating 
Learning Platform. EasyChair Preprint no. 9136. 

[14] Konrad Sowa, Aleksandra Przegalinska, and Leon Ciechanowski. 2021. Cobots 
in knowledge work: Human–AI collaboration in managerial professions. Journal 
of Business Research 125 (2021), 135–142. 

[15] Mike Tissenbaum, Josh Sheldon, and Hal Abelson. 2019. From computational 
thinking to computational action. Commun. ACM 62, 3 (2019), 34–36. 

[16] Dakuo Wang, Elizabeth Churchill, Pattie Maes, Xiangmin Fan, Ben Shneiderman, 
Yuanchun Shi, and Qianying Wang. 2020. From human-human collaboration 
to Human-AI collaboration: Designing AI systems that can work together with 
people. In Extended abstracts of the 2020 CHI conference on human factors in 
computing systems. 1–6. 

[17] Dakuo Wang, Justin D Weisz, Michael Muller, Parikshit Ram, Werner Geyer, Casey 
Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019. Human-AI 
collaboration in data science: Exploring data scientists’ perceptions of automated 
AI. Proceedings of the ACM on human-computer interaction 3, CSCW (2019), 1–24. 

[18] David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. 2011. App inventor. "
O’Reilly Media, Inc.". 

[19] Kaizhong Zhang and Dennis Shasha. 1989. Simple fast algorithms for the editing 
distance between trees and related problems. SIAM journal on computing 18, 6 
(1989), 1245–1262. 


	Abstract
	1 Introduction
	2 Related work
	3 Methods
	4 Results
	5 Conclusion & Discussion
	Acknowledgments
	References

