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Demo: First Demonstration of Real-Time Photonic-Electronic
DNN Acceleration on SmartNICs

Zhizhen Zhong Mingran Yang Jay Lang Dirk Englund Manya Ghobadi
Massachusetts Institute of Technology

ABSTRACT

We demonstrate Lightning, a reconfigurable photonic-electronic
deep learning smartNIC that serves real-time inference requests at
4.055 GHz compute frequency. To do so, Lightning uses a novel dat-
apath to feed traffic from the NIC into its photonic computing cores
without incurring digital data movement bottlenecks. Lightning
achieves this by employing a reconfigurable count-action abstraction,
which decouples the compute control plane from the data plane.
The count-action abstraction counts the number of operations for
each computation task in the Directed Acyclic Graph (DAG). It then
triggers the execution of the next task(s) as soon as the previous
task is finished without interrupting the dataflow. Our prototype
shows that Lightning achieves 99.25% photonic MAC accuracy.
When serving real-time inference requests, Lightning accelerates
the end-to-end inference latency of the LeNet DNN by 9.4× and
6.6× compared to Nvidia P4 and A100 GPUs, respectively.
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1 INTRODUCTION

Photonic computing is an emerging area with the potential to rev-
olutionize the landscape of computing by leveraging lightwaves
and optical devices to execute computations with high speed and
energy efficiency within the analog domain [7, 9, 10, 13, 17]. Re-
cent research efforts have showcased the potential of performing
photonic computation at 100+ GHz frequency while consuming 40
atto Joules per operation [8–11, 14–16]. The Lightning paper [18]
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showed that data movement is a significant bottleneck in today’s
photonic computing approaches and proposed a reconfigurable
photonic-electronic smartNIC with fast and energy-efficient pho-
tonic vector dot product cores. The key enabler in Lightning is a
novel reconfigurable count-action abstraction that decouples the
control and data planes of inference requests. This abstraction en-
ables the datapath to keep track of the computation DAG of each
inference request without interrupting the dataflow in and out of
photonic multiplication cores [18].

In this demonstration, we demonstrate Lightning by serving
real-time inference queries, performing photonicmultiply-accumulate
(MAC) operations at a frequency of 4.055 GHz. This demo provides
an in-depth view of Lightning’s hardware implementation. We
further demonstrate a versatile benchmarking tool that allows de-
velopers from the SIGCOMM community to integrate photonic
computing into their code base using a Python API. Our demon-
stration source code and documentation are publicly available at
https://lightning.mit.edu.

2 IMPLEMENTATION

This section describes Lightning’s implementation details com-
plementary to our full paper [18]. Figure 1 illustrates our demon-
stration setup to serve real-time inference queries using photonic
computing cores, and Figure 2 is a picture of our prototype.
DAC/ADC configurations. In Lightning, we use Xilinx’s RF
data converter IP (ADC/DAC) [5]. We configure the data converter
IP to work at 4.055 Giga Samples per second (GS/s) data rate with a
reference clock rate of 253.44 MHz. We enable four DACs and two
ADCs, with multi-tile synchronization enabled. We set the DACs
and ADCs to work in Nyquist Zone 1 bypassing all its internal
mixers. We also configure the output current of the DACs to be
32 mA to provide the maximum output voltage. We configure the
ADC to work in the DC coupling state to preserve the DC signal in
the output of our photodetector.
100 Gbps CMAC configurations. We configure 100 Gbps CMAC
IP [3] to support four 25.7812 Gbps lanes to be compatible with the
ZCU111 board [6]. The CMAC core is configured to run at 156.25
MHz clock. For the receive port, we configure the maximum and
minimum packet length to be 64 bytes and 9600 bytes, respectively.
We also set the user interface of the CMAC to be AXI-Stream to be
compatible with our datapath implementation.
DRAM configurations. We configure the DRAM [4] that is di-
rectly connected to our FPGA to work under a clock frequency of
333.25 MHz. Our DRAM supports 2666 Mega transactions per sec-
ond, and each transaction is 64 bits, creating a data rate at≈170Gbps.
We store the DNN parameters in DRAM, and stream the parameter
data from the DRAM to our datapath through our DRAM con-
troller. At every datapath clock cycle, the DRAM controller reads
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Figure 1: Lightning datapath implementation [18].
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Figure 3: Lightning’s photonic computing developer kit.

512 bits DNN parameter data and forwards it to other modules
in our datapath. Note that our current prototype use two DACs
running at 4.055 GS/s to stream DNN parameters, creating a data
rate at 4.055 GS/s × 8b/S × 2 = 64.88 Gbps. Upgrading to higher
number of photonic parallelism or frequency requires higher data
rates. Therefore, it will require more DRAMs or high-bandwidth
memory (HBM).

3 DEMONSTRATION

We first demonstrate the performance of Lightning serving real-
time inference requests using its 100 Gbps network interface. Then,
we present an open-source photonic computing developer kit with
a Python API to lower the barrier to entry.
Inference serving with Lightning. We first demonstrate how
to serve inference queries with Lightning. The end-to-end latency
reflects the time from the moment the request arrives until the
moment the inference result packet leaves the system. We perform
real-time inference on a handwriting recognition DNN called LeNet-
300-100 [12] using the Lightning smartNIC. Our experimental
results show Lightning can accelerate inference serve time by
9.4× and 6.6× compared to Nvidia P4 and A100 GPUs, respectively.
Assembling “plug-and-play” open-source photonic developer

kit. To lower the barrier of entry into photonic computing, we
demo the detailed assembly steps to build a developer kit using the
same devices as in our prototype (shown in Figure 3). The developer
kit is designed to be “plug-and-play” such that a developer without
deep knowledge in photonics and FPGAs can get started easily.
Benckmarking photonic MAC operations. We then demon-
strate our customized Python API on Lightning’s FPGA using
PYNQ [2] and QICK [1] libraries to provide programmers an easy-
to-use, direct interface for photonic computing. We use this Python
API to perform photonic MAC operations on unsigned fixed-point
8-bit numbers, demonstrating 99.25% photonic MAC accuracy. This

Python API enables developers to prototype and benchmark appli-
cations (e.g., video encoding, data encryption, etc.) beyond machine
learning, without the need to construct a fully-fledged hardware de-
sign. Listing 1 shows a code snippet of using Python API to perform
a MAC operation using Lightning.
from lightning import LightningCompute , LightningConfig

from qick import QickSoC

import matplotlib.pyplot as plt

import numpy as np

from tqdm import tqdm

# Configure the firmware of the FPGA

soc = QickSoC()

soccfg = soc

ltng = LightningCompute(soccfg , soc , LightningConfig)

# automatic calibration on four modulators

fit_mod_0 = ltng.calibration(target_mod = 0)

fit_mod_1 = ltng.calibration(target_mod = 1)

fit_mod_2 = ltng.calibration(target_mod = 2)

fit_mod_3 = ltng.calibration(target_mod = 3)

fittings = [fit_mod_0 , fit_mod_1 , fit_mod_2 , fit_mod_3]

# configure input values

LightningConfig ["mod_0"] = input_0

LightningConfig ["mod_1"] = input_1

LightningConfig ["mod_2"] = input_2

LightningConfig ["mod_3"] = input_3

# check if the photonic computing result agrees with the truth

truth = input_0 * input_1 + input_2 * input_3

ltng_result = ltng.photonic_computing(fittings , LightningConfig)

print ("The truth is:", truth , "Lightning result is:", ltng_result)

Listing 1: Performing photonic MAC with our Python API.

Automatic calibration of the photonic components. To per-
form computation in the photonic domain where digital data is
represented in light intensity, it is important to derive a transfer
function that encodes a digital number into the modulator input
voltage and then decodes the measured photodetector output volt-
age back into the digital domain. We demonstrate the process to
calibrate the system before performing photonic computing on the
Lightning system. We believe this automatic calibration function-
ality facilitates a broader range of community members to be more
involved with photonic computing.
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A ENVIRONMENT AND RESOURCES NEEDED

To enable the live demo, we will package our experimental setup
and all essential devices (shown in Figure 2) and move it to the
conference site. Except the devices we can move from MIT, we also
need the following resources.

• 110V standard power outlet.
• office table with size at least 48 inches × 24 inches.
• internet access with wired Ethernet.
• two computer monitors (we can provide ourselves).
• a desktop computer running Windows or Ubuntu system
(we can provide ourselves).

1175

https://github.com/openquantumhardware/qick
https://github.com/openquantumhardware/qick
http://www.rfsoc-pynq.io/
https://docs.xilinx.com/v/u/en-US/pg203-cmac-usplus
https://docs.xilinx.com/v/u/en-US/pg203-cmac-usplus
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://docs.xilinx.com/v/u/en-US/pg269-rf-data-converter
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://techcrunch.com/2021/05/06/lightmatters-photonic-ai-ambitions-light-up-an-80m-b-round/
https://techcrunch.com/2021/05/06/lightmatters-photonic-ai-ambitions-light-up-an-80m-b-round/
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.1038/s41586-020-03070-1
https://doi.org/10.1103/PhysRevLett.128.073201
https://doi.org/10.1109/JLT.2021.3124520
https://doi.org/10.1109/JLT.2021.3124520
https://www.microsoft.com/en-us/research/project/aim/
https://www.microsoft.com/en-us/research/project/aim/
https://doi.org/10.1126/science.abq8271
https://doi.org/10.1126/science.abq8271
https://doi.org/10.1364/OFC.2022.Th3A.3
https://www.bbvaopenmind.com/en/technology/future/optical-computing-solving-problems-at-the-speed-of-light/
https://www.bbvaopenmind.com/en/technology/future/optical-computing-solving-problems-at-the-speed-of-light/

	Abstract
	1 Introduction
	2 Implementation
	3 Demonstration
	References
	A Environment and Resources Needed

