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SCALING LIMITS OF FLUCTUATIONS OF
EXTENDED-SOURCE INTERNAL DLA

By

DAVID DARROW∗

Abstract. In a previous work, we showed that the 2D, extended-source
internal DLA (IDLA) of Levine and Peres is δ3/5-close to its scaling limit, if δ is
the lattice size. In this paper, we investigate the scaling limits of the fluctuations
themselves. Namely, we show that two naturally defined error functions, which
measure the “lateness” of lattice points at one time and at all times, respectively,
converge to geometry-dependent Gaussian random fields. We use these results to
calculate point-correlation functions associated with the fluctuations of the flow.
Along the way, we demonstrate similar δ3/5 bounds on the fluctuations of the
related divisible sandpile model of Levine and Peres, and we generalize the results
of our previous work to a larger class of extended sources.
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450 D. DARROW

1 Introduction

Internal diffusion-limited aggregation (IDLA) is a lattice growth model, tracking
the growth of a random set A(t) ⊂ Z

d defined as follows. At each time t, we start
a particle at the origin, and we let it undergo a simple random until it first exits
the set A(t − 1)—supposing it exits at the point zt, we set A(t) = A(t − 1) ∪ {zt}.
Intuitively, this process follows the diffusion of particles from an origin-centered
source. In fact, it was originally proposed by the chemical physicists Meakin and
Deutch [MD86] in order to model such diffusive processes, such as the smoothing
of a spherical surface by electrochemical polishing.

We are interested in a generalization of this model to the extended-source case,
wherein particles start instead from discretizations of a fixed mass distribution,
and the lattice size is allowed to grow arbitrarily small. This generalization was
first introduced and studied by Levine and Peres [LP08], although it corresponds
to Diaconis and Fulton’s earlier notion of a “smash sum” of two sets [DF91].

In both cases, a primary question of study is the overall smoothness of the
occupied setA(t). Following the work of Lawler, Bramson, andGriffeath [LBG92],
it is well-known that—in the point-source case—these sets closely approximate an
origin-centered ball for large t. Several authors have shown strong convergence
rates for this process [Law95, AG10]; most recently, Jerison, Levine, and Sheffield
proved that the fluctuations away from the disk are at most of order log t in
dimension 2, narrowly improving a log2 t result by Asselah and Gaudiliére [JLS12,
AG13a]. Independent works by Asselah and Gaudilliére and by Jerison, Levine,
and Sheffield proved bounds of order

√
log t in higher dimensions [AG13b, JLS13],

which have been shown to be tight [AG11]. In the extended-source case, Levine
and Peres first showed that the scaling limits of IDLA correspond to solutions of
a closely related free boundary problem [LP08]. We recently proved that, if the
lattice size is δ, the fluctuations of IDLA away from this expected set are at most
of order δ3/5.

The fluctuations can also be studied “on the aggregate”, however, which pro-
vides interesting insight into the geometry of the problem. Namely, we are in-
terested in studying mean fluctuations over an area of finite volume, as weighted
by a test function u ∈ C∞(Rd). To do this in the point-source case, Jerison et al.
[JLS14] introduced natural error functions on the lattice δZd, which quantify how
late or early the IDLA process is in getting to a given point. Specifically, they
introduced a fluctuation function Es and a lateness function L, that capture fluctu-
ations at a single time s and at all times, respectively. They proved that these error
functions weakly approach certain Gaussian random fields as the lattice spacing δ
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decreases, allowing them to find the scaling limits of fluctuations integrated against
a test function u. Eli Sadovnik studied this question more recently for an extended
source, in the special case of the single-time fluctuation function and with discrete
harmonic test functions [Sad16].

In this paper, we extend the techniques used in [JLS14] and [Sad16] in order to
prove more general scaling limits of random error functions in the extended-source
case. Our main results, Theorems 3.1 and 3.2, show that the fluctuation function Es

and the lateness function L converge weakly to geometry-dependent Gaussian
random fields, allowing for any C4 test functions. In particular, by choosing highly
localized test functions, we will be able to calculate “point-correlation functions”,
which encode the correlations between fluctuations of IDLA at two different points
in space. Furthermore, in Appendix B, we generalize these results and the results
of our previous paper to a larger class of extended sources, removing the most
restrictive hypothesis of our setting.

It must be noted that, in the point-source case of [JLS14], the functions Es and L
measure fluctuations away from a previously-calculated continuous limit of IDLA;
specifically, they measure the difference between A(t) and a smooth sphere. To our
knowledge, this is not possible in the general-source casewithout stronger estimates
on the convergence of discrete harmonic functions—as such, our general-source
versions of Es and L compare IDLA to a closely related deterministic process: the
divisible sandpile model of Levine and Peres [LP10]. We show in Theorem 2.8
that the divisible sandpile converges at least as quickly as the best known estimates
(from [Dar20]) on IDLA. In fact, we believe that it converges faster than IDLA,
but the estimate from Theorem 2.8 is sufficient for our purposes.

After briefly reviewing the necessary theory, we introduce our primary results in
Section 3. The following sections are spent proving these results; Section 4 proves
the scaling limit of the fixed-time fluctuation function, and Section 5 proves that
of the lateness function. Finally, we use these results to calculate point correlation
functions of IDLA fluctuations in Section 6.

2 Review of lattice growth processes

Here we provide a background on extended-source IDLA and on a related de-
terministic process, the divisible sandpile growth introduced also by Levine and
Peres [LP08]. Many of our specific definitions are taken from our preceding paper,
[Dar20]; see that paper for more information.

Following from [Dar20], we restrict attention to IDLA processes started from
concentrated mass distributions.
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Definition 2.1. Let D0 ⊂ R
2 be a compact, connected domain with smooth

boundary, and fix N ∈ Z
≥0 and T1, . . . ,TN ∈ R

≥0. For each i = 1, . . . ,N and
s ∈ [0,Ti], suppose Qs

i ⊂ D0 satisfies the following properties:

(1) Qs
i is a compact domain with Vol(Qs

i ) = s.
(2) Qs

i is bounded away from ∂D0—that is, Qs
i ⊂⊂ int(D0). This requirement is

lifted in Appendix B.
(3) Qs

i ⊂ Qs′
i for s ≤ s′ ≤ Ti.

(4) ∂Qs
i is rectifiable, with arclength bounded independently of s.

Finally, set T =
∑

k Tk, and fix increasing functions si : [0,T] → [0,Ti] satis-
fying

∑
k sk(s) = s for all s ∈ [0,T]. In this setting, the concentrated mass

distribution associated to the data (D0, {Qs
i }, {si}) is the map σs : R2 → Z

≥0

defined by

σs = 1D0 +
N∑
i=1

1
Q

si(s)
i
.

In short, a concentrated mass distribution is a collection of increasing compact
subsets Qsi

i of D0, such that the total mass at any time s is vol(D0) + s. The
functions si give the mass of each subset Qsi

i at the time s.

The second requirement above—thatQs
i ⊂⊂ int(D0)—merits explanation. This

is used in [Dar20] to guarantee that the source points never fall too close to the pole
of a certain Poisson kernel, and thus to bound the values of this Poisson kernel on
each source point. However, we provide a proof in Appendix B that versions of
our main theorems (Theorems 3.1 and 3.2) and versions of our fluctuation bounds
(Lemma 2.4 and Theorem 2.8) hold even with this requirement lifted.

The analysis of this paper holds in its entirety for infinite mass distributions,
whereT = ∞. For these, we simply require that the finite-time collections {Qs

i }|s≤T ′

and {σs}|s≤T ′ give rise to concentrated mass distributions for any T ′ > 0. We will
assume that T < ∞, but we can also imagine that we have simply “cut off” an
infinite mass distribution in the manner just described.

Since we are studying processes on discrete lattices, we are primarily interested
in the restrictions of these mass functions to the grid 1

mZ
2. Write Sm

s for the multiset
defined by

∑
1
mZ2 (σs − 1D0 ); that is, for any z ∈ 1

mZ
2 ∩ ⋃

Qsi
i , we have that z ∈ Sm

s

with multiplicity σs(z) − 1. We can order Sm
T into a sequence zm,j of source points

as follows:

(1) If z ∈ Sm
T with multiplicity k, let τi(z) := inf{t | z ∈ Sm

t with multiplicity i+1}
for i ≤ k − 1.

(2) Given {zm,1, . . . , zm,j−1}, choose zm,j ∈ Sm
T \ {zm,1, . . . , zm,j−1} to minimize

τi(z,j)(z), where i(z, j) is the multiplicity of z in {zm,1, . . . , zm,j−1}.
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In short, we are simply ordering the particles in Sm
T in the order they appear

(accounting for multiplicity) in the sets {Sm
s }. Given this sequence, we define the

discrete densities σm,n = 1 1
mZ2∩D0

+
∑n

i=1 1{zm,i}. It is clear that σm,n differs from its
continuum limit σn/m2 at only O(m−2) points, accounting for multiplicity.

The (resolution m) internal DLA (IDLA) associated with the mass distribution
is the following process:

Definition 2.2 (Internal DLA). Suppose we have a concentrated mass distri-
bution with initial set D0 giving rise to the sequences {zm,t}. The IDLA Am(t)
with the mass distribution is as follows. Define the initial set
Am(0) = 1

mZ
2 ∩ D0. Then, for each integer t ≥ 1, start a simple random walk

at zm,t, and let z′
t be the first point in the walk outside the set Am(t − 1)—then

Am(t) := Am(t − 1) ∪ {z′
t}.

Importantly, the law of Am(t) does not depend on the order of {zm,1, . . . , zm,t},
as proven by Diaconis and Fulton [DF91, Lemma 2.2] (see [DF91, Section 3] for
the application of this result to our setting).

For each time s, the sets Am(m2s) approach a deterministic limit Ds almost
surely, where Ds is the Diaconis–Fulton “smash” sum

Ds = D0 ⊕ Qs1
1 ⊕ · · · ⊕ QsN

N .

The smash sum operation is as defined in [LP10]:

Definition 2.3. If A,B ⊂ 1
mZ

2, we define the discrete smash sum A ⊕ B as
follows. Let C0 = A ∪ B, and for each xi ∈ {x1, . . . , xn} = A ∩ B, start a simple
random walk at xi and stop it upon exiting Ci−1. Let yi be its final position, and
define Ci = Ci−1 ∪ {yi}. Then A ⊕ B := Cn is a random set.

As proven in [LP10, Theorem 1.3], if we instead take domains A,B ⊂ R
2, the

smash sums Am ⊕ Bm of

Am :=
1
m
Z

2 ∩ A, Bm :=
1
m
Z

2 ∩ B

approach a deterministic limit, which we label A⊕B. Figure 1 (taken from [Dar20])
gives an example of this.

The convergence Am(m2s) → Ds was shown originally by Levine and Peres
[LP10]. In [Dar20, Theorem 3.1], we have recently shown the following conver-
gence rate for this scaling limit, in the special case that Ds is a smooth flow—that
is, that s �→ Ds is a smooth isotopy for s ∈ [0,T].
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A ∪ B A ⊕ B

Figure 1: The smash sum A ⊕ B is the deterministic limit of an IDLA-type growth
process starting from the sets A and B, representing the dispersal of particles in
A ∩ B (in dark blue above) to the edges of A ∪ B (in yellow above).

Lemma 2.4. Suppose Ds is a smooth flow arising from a concentrated mass
distribution. For large enough m, the fluctuation of the associated IDLA Am(t) is

bounded as

P

{
(Ds)Cm−3/5 ∩ 1

m
Z

2 ⊂ Am(m2s) ⊂ (Ds)
Cm−3/5

for all s ∈ [0,T]
}c ≤ e−m2/5

for a constant C depending on the flow, where (Ds)ε and (Ds)ε denote outer- and

inner-ε-neighborhoods of Ds, respectively.

In other words, the fluctuations of the random set Am(m2s) are unlikely to be
larger in magnitude than Cm−3/5, for some fixed C > 0. We will also use this to
bound the maximum fluctuations of a closely related, deterministic process—the
“divisible sandpile growth” of Levine and Peres [LP10]—defined as follows:

Definition 2.5 (Divisible Sandpile). Suppose we have a concentrated mass
distribution with initial set D0 giving rise to the sequences {zm,i}. The divisible
sandpile aggregation associated with our mass distribution is characterized by
its final mass distributions νm,t. Let νm,0 := 1Am(0) = 1D0∩ 1

mZ2 , and define νm,n

inductively as follows.

Given νm,n, define the intermediate function ν0
m,n = νm,n + 1{zm,n+1}. At each time

step t, choose a point z = z(t) ∈ supp νt
m,n such that νt

m,n(z) > 1. Set

νt+1
m,n(z) = 1, νt+1

m,n(z ± 1/m) = νt
m,n(z ± 1/m) +

1
4
(νt

m,n(z) − 1),

νt+1
m,n(z ± i/m) = νt

m,n(z ± i/m) +
1
4
(νt

m,n(z) − 1).

In other words, we define νt+1
m,n by taking the “excess mass” at z in νt

m,n and splitting
it evenly between the neighbors of z. For a large enough (but finite) t′, we will have
νt′

m,n ≤ 1 everywhere, and the above process must stop; then define νm,n+1 = νt′
m,n.
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A primary property of the divisible sandpile is a mean-value property for
discrete harmonic functions; we review the definition of the latter below:

Definition 2.6. Suppose K ⊂ 1
mZ

2, and define the interior int(K) to be the set
of z ∈ K with all neighboring lattice points z′ ∼ z also contained in K.

We say that h : K → R is discrete harmonic on K if, for all z ∈ int(K), we have

∑
z′∼z

(h(z) − h(z′)) = 0.

The following proposition follows directly from the definition of the divisible
sandpile:

Proposition 2.7. Suppose h : 1
mZ

2 → R is discrete harmonic on supp νm,n.
Then, ∑

z∈ 1
mZ2

h(z)νm,n(z) =
∑

z∈ 1
mZ2∩D0

h(z)σm,n(z).

Finally, we find the same m−3/5-bound on maximum fluctuations for the divisi-
ble sandpile as we do for IDLA; the following theorem is proved in the Appendix:

Theorem 2.8. Suppose Dτ is a smooth flow arising from a concentrated mass
distribution. For large enough m and any time s ∈ [0,T], the fluctuations of the

occupied set supp νm,m2s are bounded as

(Ds)Cm−3/5 ∩ 1
m
Z

2 ⊂ supp νm,m2s ⊂ (Ds)
Cm−3/5

for a constant C depending on the flow.

For both internal DLA and the divisible sandpile, we expect that this m−3/5-
bound is not optimal for the divisible sandpile. Indeed, in the single-source case, it
was shown in [LP08] that the fluctuations of the divisible sandpile are O(m−1), and
it was shown in [JLS12] that the fluctuations of internal DLA in two dimensions
are O(log(m)/m), and we expect the same to be true in the extended-source case.
However, as we apply the techniques used in [Dar20] to the divisible sandpile,
we are restricted in that our bound on the L1 convergence rate of discrete Green’s
functions to their continuum limit—Lemma 5.2(c) of [Dar20]—is of order m−8/5

rather than m−2 log m, as was shown in [JLS12] in the specific case of the disk.

The specific form of the limiting shapes Ds only enters into our analysis indi-
rectly. In particular, the critical fact is that both internal DLA and the divisible
sandpile converge to the same sets; this allows us to achieve an approximate version
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of the mean value property—Lemma 2.7—for the IDLA occupied set. By choos-
ing appropriate discrete harmonic functions, we then show that this approximate
equality is violated when IDLA fluctuations are too great.

To simplify notation, we will continue to write εm = Cm−3/5, as in Lemmas 2.4
and 2.8. We further define

Fs
m = (Ds)

εm \ (Ds)εm .

3 Main results

Our two primary results pertain to scaling limits of the fluctuations of Am(t) away
from its deterministic limit. Following [JLS14], we quantify these fluctuations
using the following random functions.

First, the (time s) error function Es
m : 1

mZ
2 → R is defined as

Es
m(x) := m(1Am(m2s)(x) − νm,m2s(x)).

This takes a positive value on “early” points, where the IDLA Am has reached by
time m2s but where the expected set—represented here by the divisible sandpile
occupied set—has not yet reached. It takes a negative value on “late” points, where
the divisible sandpile occupied set has reached but the IDLA has not.

Although Es
m itself does not converge (in m) to a well-defined random variable,

our primary objects of interest are the limits of inner products

(Es
m, u) = m−2

∑
x∈ 1

mZ2

Es
m(x)u(x) = m−1

∑
x∈ 1

mZd

u(x)(1Am(m2s)(x) − νm,m2s(x)).

We can think of (Es
m, u) as a snapshot of the discrepancy at the fixed time s,

weighted by the function u ∈ C4(R2).
Through the following theorem, we show that Es

m converges weakly to a Gaus-
sian random field on the fixed-time curve ∂Ds:

Theorem 3.1. Suppose u ∈ C4(Rd). The random variables (Es
m, u) converge

in law as m → ∞ to a normal variable of mean 0 and variance
∫

Ds

|ψ|2(1 − σs),

where ψ solves the Dirichlet problem on Ds with boundary values ψ|∂Ds ≡ u|∂Ds .

Of course, convergence holds for finite-dimensional distributions of Es
m (for

fixed s); as such, we can turn this into a covariance formula using a polarization
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identity; if u, v ∈ C4(R2), the variables (Es
m, u) and (Es

m, v) form a joint Gaussian
random variable with covariance

(1)
∫

Ds

ψϕ(1 − σs),

where ψ and ϕ are harmonic on Ds with ψ|∂Ds ≡ u and ϕ|∂Ds ≡ v, respectively.
The requirement that u ∈ C4 arises when we attempt to compareψ to a discrete-

harmonic approximation ψm (see Definition 2.6 for details on discrete harmonic
functions). As shown in [Che, Theorem 3.5], the error in this approximation can be
bounded by ‖∇4ψ‖, which in turn can be bounded by ‖∇4u‖ from the maximum
principle. This is a wider class of test functions than were allowed in [JLS14],
though the same generalization to C4 can be made in the point-source case.

A more sensitive metric is given by the lateness function,

Ls
m =

�m2s�∑
n=1

n
m

1Am,n\Am,n−1 −
�m2s�∑
n=1

n
m

(νm,n − νm,n−1).

Up to a scaling factor, the first term in this expression is the actual time of arrival
at each point. The latter term is an approximation of the expected time of arrival,
which we can see as follows.

Suppose x ∈ 1
mZ

d, and 〈Tm,x〉 is the expected time for Am,n to arrive at x. For
a brief window around Tx, the quantity νm,n(x) lies strictly between 0 and 1—say,
when n ∈ {n′, n′ + 1, . . . , n′ + 
 − 1}. As νm,n(x) is constant before n′ and after
n′ +
, only the terms involving {n′, n′ + 1, . . . , n′ +
− 1} contribute to the sum

(2)
m2s∑
n=1

n(νm,n − νm,n−1)(x).

Of course, the increments (νm,n − νm,n−1)(x) are non-negative, and

n′+
∑
n=n′

(νm,n − νm,n−1)(x) = νm,n′+
(x) − νm,n′−1(x) = 1,

so the sum (2) is aweighted average of {n′, n′+1, . . . , n′+
}. As this interval is tightly
centered around 〈Tm,x〉, we expect the overall sum to converge (in m) to 〈Tm,x〉.

Our second result is in the same spirit as Theorem 3.1, showing now that the
lateness function converges weakly to a 2D Gaussian random field:

Theorem 3.2. Suppose u ∈ C4
0(R

d), with supp u ⊂ Ds. The random variables

(Ls
m, u) converge in law as m → ∞ to a normal variable of mean 0 and variance

2
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′′
ψs′ψs′′(1 − σs′′),

where ψt solves the Dirichlet problem on Dt with boundary values ψt|∂Dt ≡ u|∂Dt .
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As before, this implies convergence along finite-dimensional distributions
of Ls

m. In particular, if u, v ∈ C4
0(R

d) with suppu, supp v ⊂ Ds, the variables (Ls
m, u)

and (Ls
m, v) form a joint Gaussian random variable with covariance

(3)
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′′

(ψs′ϕs′′ + ψs′′ϕs′)(1 − σs′′).

It bears mentioning that the parameter s can be disposed of, by always taking it
large enough that Ds ⊃ supp u. In particular, the function ψs vanishes uniformly
for larger s, so increasing the parameter past this point does not change the value
of the covariance (3). This gives rise to the perhaps-more-natural field L defined
by

(L, u) = lim
s→∞

(
lim
m

(Ls
m, u)

)
,

which always satisfies the covariance formula (3) without the boundary terms
introduced in Lemma 5.1.

After proving these results in the following sections, we will turn to an inter-
esting application of Theorem 3.2. Namely, we will use Equations (1) and (3) to
compute point-correlation functions, which encode the correlations between fluc-
tuations at two different points. In some sense, point-correlation functions will be
local versions of the above results.

4 Proof of Theorem 3.1

In our analysis below, we will make use of the grids

Gm :=
{
(x, y) ∈ 1

m
R

2
∣∣∣ x ∈ 1

m
Z or y ∈ 1

m
Z

}
.

In particular, we will use the following notion of a grid harmonic function on Gm:

Definition 4.1. A continuous functionφ : U ⊂ Gm → R is grid harmonic if


hφ(z) :=
m2

4
(φ(z + 1/m) + φ(z − 1/m) + φ(z + i/m) + φ(z − i/m)) − m2φ(z) = 0

on the nodes z ∈ U ∩ 1
mZ

2, and φ is linear on each edge of Gm.

Finally, we will let Fm,t be the filtration generated by Am(t).

Proof of Theorem 3.1, Step 1. We will first relate (Es
m, u) to a family of

martingales and show that the difference converges in law to zero.
Let εm = Cm−3/5, as in Lemmas 2.4 and 2.8, and let ψm be harmonic on (Ds)2εm

with boundary values u|∂(Ds)2εm . Let ψ(m) solve the corresponding grid Dirichlet
problem on Gm ∩ (Ds)2εm . That is, ψ(m) is grid-harmonic in Gm ∩ (Ds)2εm , and

ψ(m)|∂(Ds)2εm ≡ ψm|∂(Ds)2εm ≡ u|∂(Ds)2εm .
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Since ψ(m) = ψm on the boundary, standard estimates (for instance, see [Che,
Theorem 3.5]) give

(4) ‖ψ(m) − ψm‖∞ ≤ C1/m
2,

where C1 ∼ ‖∇4u‖. Next, define the martingales

Mm(t) := m−1
( ∑

x∈Am(t∧τ∗)\D0

ψ(m)(x) −
t∧τ∗∑
i=1

ψ(m)(zm,i)
)

= m−1
∑

Am(t∧τ∗)
ψ(m) · (1 − σm,t∧τ∗),

where τ∗ is the first time that Am(τ∗) �⊂ (Ds)εm . Note that Am(τ∗) ⊂ (Ds)2εm , so the
function ψ(m) is defined on all of Am(τ∗).

Consider the event E that suppEs
m ⊂ Fs

m; by Lemmas 2.4 and 2.8, this event
occurs with probability 1 − e−m2/5 ↗ 1. In this case, τ∗ ≥ m2s, so—since ψ(m)

is discrete harmonic—we have Mm(m2s) = (Es
m, ψ(m)). To relate this to (Es

m, u),
we first want to bound supFs

m
|u − ψm|. Suppose x ∈ Fs

m achieves this supremum,
and choose x′ ∈ ∂(Ds)2εm such that |x − x′| ≤ 4εm. Now, ∂iψm solves the Laplace
equation with boundary values ∂iu|∂(Ds)2εm , so by the maximum principle,

|∂iψm| ≤ sup∂D2εm |∂iu| ≤ sup(
⋃

m(Ds)2εm ) |∇u|.
In particular, |∇ψm| ≤ C1 = C1(u) for all m, choosing a larger C1 if necessary.
Without loss of generality, we can take C1 ≥ sup(

⋃
m Dεm ) |∇u|. This implies that

supFs
m
|u −ψm| = |u(x) −ψm(x)|

≤ |u(x) − u(x′)| + |u(x′) − ψm(x′)| + |ψm(x′) − ψm(x)|
= |u(x) − u(x′)| + |ψm(x′) − ψm(x)|
≤ 8εmC1.

By (4), this means supFs
m
|u − ψ(m)| = O(εm). Thus, we find

(5)
|(Es

m, u) − (Es
m, ψ(m))| ≤ m · Vol(Fs

m) supFs
m
|u − ψ(m)|

= O(mε2m) = O(m−1/5),

which converges to zero.
Now, for any δ > 0, we can choose m0 > 0 such that

|(Es
m, u) − Mm(m2s)| = |(Es

m, u) − (Es
m, ψ(m))| ≤ δ

on event E for any m > m0. The probability of Ec tends to zero, so we know that
(Es

m, u) − Mm(m2s) converges in probability (and thus in law) to zero. �
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Step 2. Now, we will show that the family of random variables Mm(m2s)
converges in law to a zero-mean normal variable with variance

∫
Ds

|ψ|2(1 − σs).

For this step, we will follow the style of proof in [Sad16]. Define

Xm,t = Mm(t)−Mm(t−1) =

⎧⎨
⎩

m−1(ψ(m)(Am(t) \ Am(t − 1)) − ψ(m)(zm,t)), t ≤ τ∗,

0, t > τ∗.

This is a mean-zero martingale difference array adapted to Fm,t. The martingale
central limit theorem stated in [HH80, Theorem 3.2] thus states that

Mm(m2s) =
∑

t≤m2s

Xm,t

converges in law to a normal variable of mean 0 and variance
∫
Ds

|ψ|2(1 − σs), so
long as the following three conditions hold:

(1) E[maxt |Xm,t|2] is bounded in m. This also implies that the array is square-
integrable, which is one of the hypotheses of the theorem.

(2) maxt |Xm,t| → 0 in probability as m → ∞.
(3)

∑
t≤m2s |Xm,t|2 → ∫

Ds
|ψ|2(1 − σs) in probability as m → ∞.

As in [Sad16], we will handle the first two conditions by showing that

E[max
t

|Xm,t|a] → 0 for a ≥ 1.

This is clear from the following estimate:

|Xm,t|a = m−a|ψ(m)(Am(t) \ Am(t − 1)) − ψ(m)(zm,t)|a
≤ 2am−a sup |ψ(m)|a
≤ 2am−a sup(

⋃
m Dεm ) |u|a,

from the maximum principle.

For the final condition, define the random variables

Sm(t) =
t∑

i=1

|Xm,i|2, Zm(t) = m−2
∑

x∈Am(t∧τ∗)\D0

|ψ(m)(x)|2 − m−2
t∧τ∗∑
i=1

|ψ(m)(zm,i)|2,

Nm(t) = Sm(t) − Zm(t).

Our goal is to show that Nm(m2s) → 0 in probability, and thus that Sm(t) can be
well-approximated by the simpler variable Zm(t).
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For this, first note that Nm satisfies the martingale property; we only need show
this for time intervals before τ∗, as Nm remains constant thereafter. For t ≤ τ∗,

E[Nm(t) − Nm(t − 1)|Fm,t−1]

= E[|Xm,i|2 − m−2(ψ(m)(Am(t) \ Am(t − 1))2 −ψ(m)(zm,t)
2)|Fm,t−1]

= E[m−2(ψ(m)(Am(t) \ Am(t − 1)) − ψ(m)(zm,t))
2

− m−2(ψ(m)(Am(t) \ Am(t − 1))2 −ψ(m)(zm,t)
2)|Fm,t−1]

= E[2m−2ψ(m)(zm,t)
2 − 2m−2ψ(m)(Am(t) \ Am(t − 1))ψ(m)(zm,t)|Fm,t−1]

= 2m−2ψ(m)(zm,t)E[ψ(m)(zm,t) −ψ(m)(Am(t) \ Am(t − 1))|Fm,t−1]

= 0.

Since Sm(0) = Zm(0) = 0, we have Nm(0) = 0 and thus

E[Nm(m2s)2] = E[(Nm(m2s) − Nm(1))2] =
�m2s�∑
t=1

E[(Nm(t) − Nm(t − 1))2]

from the martingale property. Again taking t ≤ τ∗, we estimate

E[(Nm(t) − Nm(t − 1))2]

≤ 2E[(Sm(t) − Sm(t − 1))2] + 2E[(Zm(t) − Zm(t − 1))2]

≤ 2E[|Xm,t|4] + 2m−4
E[(|ψ(m)(Am(t) \ Am(t − 1))|2 + |ψ(m)(zm,t)|2)2]

≤ 8m−4 sup |ψ(m)|4
≤ C1m

−4,

where C1 = C1(u). This implies

E[Nm(m2s)2] =
�m2s�∑
t=1

E[(Nm(t) − Nm(t − 1))2] ≤ m2s · C1m
−4 = O(m−2).

Thus, Nm(m2s) → 0 in the L2 norm, and thus also in probability.
Finally, we show that Zm(m2s) → ∫

Ds
|ψ|2(1 − σs) in probability. From the

above argument, this would imply that Sm(m2s) → ∫
Ds

|ψ|2(1 − σs) in probability,
which is exactly the third condition of the martingale central limit theorem.

For this purpose, note that, on event E (where τ∗ ≥ m2s),

Zm(m2s) = m−2
∑

Am(m2s)\D0

|ψ(m)|2 − m−2
�m2s�∑
i=1

|ψ(m)(zm,i)|2

= m−2
∑

x∈Am(m2s)

|ψ(m)|2(1 − σm,m2s).
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On Event E, we know that Am(m2s) differs from Ds ∩ 1
mZ

2 by at most O(m2εm)
points; in this case,

∣∣∣∣Zm(m2s) − m−2
∑

Ds∩ 1
mZ2

|ψ(m)|2(1 − σs)

∣∣∣∣ = O(εm),

as |ψ(m)(x)|2 is uniformly bounded (as we saw above) in terms of u and∑ |σs − σm,m2s| = O(1). In turn,
∣∣∣∣m−2

∑
Ds∩ 1

mZ2

|ψ(m)|2(1 − σs) − m−2
∑

Ds∩ 1
mZ2

|ψm|2(1 − σs)
∣∣∣∣

=
∣∣∣∣m−2

∑
Ds∩ 1

mZ2

(|ψ(m)|2 − |ψm|2)(1 − σs)
∣∣∣∣

=

∣∣∣∣m−2
∑

Ds∩ 1
mZ2

(ψ(m) − ψm)(ψ(m) + ψm)(1 − σs)

∣∣∣∣
= O(m−2),

using (4) in the final step. Now, we compare

m−2
∑

Ds∩ 1
mZ2

|ψm|2(1 − σs) with m−2
∑

Ds∩ 1
mZ2

|ψ|2(1 − σs),

whereψ solves the Laplace equation on Ds with ψ|∂Ds ≡ u|∂Ds. For this, suppose
that x ∈ ∂Ds maximizes |ψ− ψm|, and take x′ ∈ ∂(Ds)2εm such that |x − x′| ≤ 4εm.
As in Step 1, choose C1 such that |∇u|, |∇ψm| ≤ C1. Then we find

sup∂D |ψ− ψm| = |ψ(x) − ψm(x)|
= |u(x) − ψm(x)|
≤ |u(x) − u(x′)| + |u(x′) − ψm(x′)| + |ψm(x′) −ψm(x)|
= |u(x) − u(x′)| + |ψm(x′) − ψm(x)|
≤ 8εmC1.

Of course, ψ− ψm is harmonic in Ds, so the maximum principle implies

supDs
|ψ− ψm| ≤ 8εmC1.

Arguing as before, we find that
∣∣∣∣m−2

∑
Ds∩ 1

mZ2

|ψm|2(1 − σs) − m−2
∑

Ds∩ 1
mZ2

|ψ|2(1 − σs)
∣∣∣∣ = O(εm).
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Putting these inequalities together shows that∣∣∣∣Zm(m2s) − m−2
∑

Ds∩ 1
mZ2

|ψ|2(1 − σs)

∣∣∣∣ = O(εn)

on Event E. Since P(E) ↗ 1, this implies that the above difference converges in
probability to zero. Finally, m−2 ∑

Ds∩ 1
mZ2 |ψ|2(1−σs) converges to

∫
Ds

|ψ|2(1−σs),
so the theorem is proved. �

5 Proof of Theorem 3.2

We prove a slight generalization of this result, in the case that suppu is not
necessarily contained in Ds:

Lemma 5.1. Suppose u ∈ C4(R2). The random variables (Ls
m, u) converge in

law to a normal variable of mean 0 and variance

(6)
s2

∫
Ds

|ψs|2(1 − σs) + 2
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′
ψs′ψs′′(1 − σs′′)

− 2s
∫ s

0
ds′

∫
Ds′
ψsψs′(1 − σs′),

where ψt solves the Dirichlet problem on Dt with boundary values ψ|∂Dt ≡ u|∂Dt .

Remark. In the case of interest, with supp u ⊂ Ds, we have that ψs ≡ 0 and
thus that the above variance becomes

2
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′
ψs′ψs′′ (1 − σs′′).

Step 1. We first want to replace (Ls
m, u) with a suitable martingale. Let ψt

m

solve the Dirichlet problem for u on (Dt)2εm , with εm = Cm−3/5. Let ψt
(m) solve

the corresponding grid Dirichlet problem on Gm ∩ (Dt)2εm . As in the proof of
Theorem 3.1, this means that

(7) ‖ψt
(m) − ψt

m‖∞ ≤ C1/m
2,

where C1 ∼ ‖∇4u‖. Now define the martingale

Mm(t) = sm−1
t∧τ∗∑
j=1

(ψs
(m)(Am(j) \ Am(j − 1)) − ψs

(m)(zm,j))

− m−3
�m2s�∑
�=1

�∧τ�∧t∑
j=1

(ψ�/m
2

(m) (Am(j) \ Am(j − 1)) − ψ�/m
2

(m) (zm,j)),
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where τ� is the first time that Am(j) exits (D�/m2 )εm , and τ∗ := τm2s is the first time
that it exits (Ds)εm .

Consider the event E, in which

1
m
Z

2 ∩ (D�/m2 )εm ⊂ Am(�) ⊂ (D�/m2 )εm

for all � ≤ m2s. By Lemma 2.4, this occurs with probability 1 − e−m2/5 ↗ 1. On
this event, τ� ≥ � for all �, and

Mm(m2s) =sm−1
∑

1
mZ2

ψs
(m) · (1Am(m2s) − σm,m2s)

− m−3
�m2s�∑
�=1

∑
1
mZ2

ψ
�/m2

(m) · (1Am(�) − σm,�)

=sm−1
∑

1
mZd

ψs
(m) · (1Am(m2s) − νm,m2s)

− m−3
�m2s�∑
�=1

∑
1
mZ2

ψ
�/m2

(m) · (1Am,� − νm,�).

Of course, on event E, the function 1Am(�) − νm,� is supported on

F�/m
2

m = (D�/m2 )εm \ (D�/m2 )εm ;

this set has volume O(εm), and sup
F�/m

2
m

|u−ψ�/m2

(m) | = O(εm) as in the previous proof.
Then we have

Mm(m2s) = sm−1
∑
1
mZ2

u · (1Am(m2s) − νm,m2s)

− m−3
�m2s�∑
�=1

∑
1
mZ2

u · (1Am(�) − νm,�) + O(mε2m)

= m−3
�m2s�∑
�=1

∑
1
mZ2

�u · (1Am(�) − 1Am(�−1))

− m−3
�m2s�∑
�=1

∑
1
mZ2

�u · (νm,� − νm,�−1) + O(m−1/5)

= (Ls
m, u) + O(m−1/5).

(8)

Thus, Mm(m2s) − (Ls
m, u) converges to zero in probability.
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Step 2. Note that the martingale intervals Xm,t = Mm(t) − Mm(t − 1) take the
following form:

Xm,t =sm−11{t≤τ∗} · (ψs
(m)(Am(t) \ Am(t − 1)) − ψs

(m)(zm,t))

− m−3
∑

t≤�≤m2s
s.t. τ�≥t

(ψ�/m
2

(m) (Am(t) \ Am(t − 1)) − ψ�/m
2

(m) (zm,t)).

Nowwe need to show that Mm(m2s) approaches the appropriate normal distribution.
We will again make use of the martingale central limit theorem [HH80, Theorem
3.2]—namely, our result is proved if we can show the following three conditions:

(1) E[maxt |Xm,t|2] is bounded in m.
(2) maxt |Xm,t| → 0 in probability as m → ∞.
(3)

∑
t |Xm,t|2 converges to the expression in (6) in probability as m → ∞.

The first and second conditions follow from the following calculation, that
E[maxt |Xm,t|a] → 0 for a ≥ 1.

|Xm,t|a ≤ 2a−1sam−a|ψs
(m)(Am(t) \ Am(t − 1)) − ψs

(m)(zm,t)|a
+ 2a−1sam−a sup

�≥t
|ψ�/m2

(m) (Am(t) \ Am(t − 1)) − ψ�/m
2

(m) (zm,t)|a

≤ 2a+1sam−a sup |ψ(m)|a
= O(m−a),

which proves the first two conditions. For the final condition, we again define
auxiliary variables

Zm(t) =s2m−2
∑

1
mZ2

|ψs
(m)|2(1Am(t∧τ∗) − σm,t∧τ∗)

+ m−6
∑

1≤j,k≤m2s

∑
1
mZ2

ψ
k/m2

(m) ψ
j/m2

(m) (1Am(j∧τj∧k∧τk∧t) − σm,j∧τj∧k∧τk∧t)

− 2sm−4
∑

1≤j≤m2s

∑
1
mZ2

ψs
(m)ψ

j/m2

(m) (1Am(j∧τj∧t) − σm,j∧τj∧t),

Sm(t) =
t∑

j=1

|Xm,j|2,

Nm(t) =Sm(t) − Zm(t).

As before, Nm satisfies the martingale property. To see this, we first factor the
intervals of Zm as follows; below, write am,t := Am(t) \ Am(t − 1) for the tth point
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joined to our IDLA.

Zm(t) − Zm(t − 1)

= s2m−21{τ∗≥t} · (ψs
(m)(am,t)

2 −ψs
(m)(zm,t)

2)

+ m−6
∑

t≤j,k≤m2s
s.t. τj,τk≥t

(ψk/m2

(m) (am,t)ψ
j/m2

(m) (am,t) − ψ
k/m2

(m) (zm,t)ψ
j/m2

(m) (zm,t))

− 2sm−4
∑

t≤j≤m2s
s.t. τj≥t

(ψs
(m)(am,t)ψ

j/m2

(m) (am,t) −ψs
(m)(zm,t)ψ

j/m2

(m) (zm,t))

=
[
sm−11{τ∗≥t} · ψs

(m)(am,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψj/m2

(m) (am,t)
]2

−
[
sm−11{τ∗≥t} ·ψs

(m)(zm,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψ
j/m2

(m) (zm,t)
]2

.

We thus see that the only remaining terms of

Nm(t) − Nm(t − 1) = |Xm,t|2 − (Zm(t) − Zm(t − 1))

are the following cross-terms, from which the martingale property follows:

E[Nm(t) − Nm(t − 1)|Fm,t−1]

= E[|Xm,i|2 − (Zm(t) − Zm(t − 1))|Fm,t−1]

= E

[
2
[
sm−11{τ∗≥t} · ψs

(m)(zm,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψj/m2

(m) (zm,t)
]2

− 2
[
sm−11{τ∗≥t} ·ψs

(m)(am,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψ
j/m2

(m) (am,t)
]

×
[
sm−11{τ∗≥t} · ψs

(m)(zm,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψ
j/m2

(m) (zm,t)
] ∣∣∣∣Fm,t−1

]

∝ E

[[
sm−11{τ∗≥t} · ψs

(m)(zm,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψ
j/m2

(m) (zm,t)
]

−
[
sm−11{τ∗≥t} · ψs

(m)(am,t) − m−3
∑

t≤j≤m2s
s.t. τj≥t

ψ
j/m2

(m) (am,t)
] ∣∣∣∣Fm,t−1

]

= 0,
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using the fact that the last variable is a linear combination of martingale intervals
adapted to Fm,t. As in the proof of Theorem 3.1, we can use this martingale
property to show that—since (Sm(t) − Sm(t − 1))2 and (Zm(t) − Zm(t − 1))2 are of
order m−4—we have E[Nm(m2s)2] = O(m−2) and thus know that Nm(m2s) → 0 in
probability.

Finally, on event E, we estimate Zm(m2s) as follows:

Zm(m2s) = s2m−2
∑

1
mZd

|ψs
(m)|2(1Am(m2s) − σm,m2s)

+ m−6
∑

1≤j,k≤m2s

∑
1
mZ2

ψ
k/m2

(m) ψ
j/m2

(m) (1Am(j∧k) − σm,j∧k)

− 2sm−4
∑

1≤j≤m2s

∑
1
mZ2

ψs
(m)ψ

j/md

(m) (1Am(j) − σm,j)

= s2m−2
∑

1
mZ2

|ψs
(m)|2(1Am(m2s) − σs)

+ 2m−6
∑

1≤j≤k≤m2s

∑
1
mZ2

ψ
k/m2

(m) ψ
j/m2

(m) (1Am(j) − σj/m2 )

− 2sm−4
∑

1≤j≤m2s

∑
1
mZ2

ψs
(m)ψ

j/m2

(m) (1Am(j) − σj/m2 ) + O(m−2).

Now, from (7), we can continue with the substitutions ψτ(m) → ψτm:

Zm(m2s) = s2m−2
∑

1
mZ2

|ψs
m|2(1Am(m2s) − σs)

+ 2m−6
∑

1≤j≤k≤m2s

∑
1
mZ2

ψk/m2

m ψj/m2

m (1Am(j) − σj/m2 )

− 2sm−4
∑

1≤j≤m2s

∑
1
mZ2

ψs
mψ

j/m2

m (1Am(j) − σj/m2 ) + O(m−2).

On event E, the sets Am(j) and Dj/m2 differ by at most O(m2εm) points on the lattice
1
mZ

2, so we can replace 1Am(j) → 1Dj/m2 with only an additional O(εm) error:

Zm(m2s) = s2m−2
∑

1
mZ2

|ψs
m|2(1Ds − σs)

+ 2m−6
∑

1≤j≤k≤m2s

∑
1
mZ2

ψk/m2

m ψj/m2

m (1Dj/m2 − σj/m2 )

− 2sm−4
∑

1≤j≤m2s

∑
1
mZ2

ψs
mψ

j/m2

m (1Dj/m2 − σj/m2 ) + O(εm).

Finally, since the derivatives of ψτm are uniformly bounded in both m and τ, we can
swap these sums with the appropriate integrals with an error of O(m−1) (which we
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wrap into the existing O(εm) term):

Zm(m2s) = s2
∫

Ds

|ψs
m|2(1 − σs) + 2m−4

∑
1≤j≤k≤m2s

∫
Dj/m2

ψk/m2

m ψj/m2

m (1 − σj/m2 )

− 2sm−2
∑

1≤j≤m2s

∫
Dj/m2

ψs
mψ

j/m2

m (1 − σj/m2 ) + O(εm)

= s2
∫

Ds

|ψs
m|2(1 − σs) + 2

∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′′
ψs′

mψ
s′′
m (1 − σs′′)

− 2s
∫ s

0
ds′

∫
Ds′
ψs

mψ
s′
m(1 − σs′) + O(εm)

= s2
∫

Ds

|ψs|2(1 − σs) + 2
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′′
ψs′ψs′′(1 − σs′′)

− 2s
∫ s

0
ds′

∫
Ds′
ψsψs′(1 − σs′) + O(εm). �

6 Point correlation functions

In this section, we will compute point-correlation functions for extended-source
IDLA. In short, we want to find a local version of Equation (3), which would tell us
the correlation between IDLA fluctuations at two specific points, p, q∈ int(DT )\D0.
We phrase this problem in terms of limits of smooth bump functions, which we
already know how to handle from our main results. Fix ε > 0, and let ηεp and ηεq
be smooth functions satisfying

(9) suppηεp ⊂ Bε(p), suppηεq ⊂ Bε(q),
∫
ηεp =

∫
ηεq = 1.

Without loss of generality, we will assume that Bε(p),Bε(q) ⊂ DT , and we will
write Lm := LT

m for the lateness function at time T . From Theorem 3.2, we know
that (Lm, η

ε
p) (resp., (Lm, η

ε
q)) tends to a Gaussian variable L(ηεp) (resp., L(ηεq)) in m.

Our primary result is the following:

Theorem 6.1. Suppose p, q ∈ int(DT ) \ D0, and sp and sq satisfy p ∈ ∂Dsp,
q ∈ ∂Dsq . For ε > 0, further suppose that ηεq and ηεp are smooth functions satisfy-

ing (9). The covariance between

L(ηεq) = lim
m→∞(Lm, η

ε
q) and L(ηεp) = lim

m→∞(Lm, η
ε
p)

satisfies

g(p, q) := lim
ε→0

E[L(ηεq)L(ηεp)] =
1
vpvq

∫
Ds∗

FpFq(1 − σs∗),
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where s∗ = min(sp, sq), vp and vq are the velocities of the flow s �→ Ds at p and q

(at times sp and sq, respectively), and Fp and Fq are the Poisson kernels of Dsp

and Dsq at p and q, respectively.

For completeness’ sake, we first recall the notion of a Poisson kernel:

Definition 6.2. Suppose D is a smoothly bounded domain, and p ∈ ∂D. Then
the Poisson kernel Fp,D of D at p is the harmonic function on int(D) satisfying

(10) Fp(x) =
∂

∂n
GD(x, ξ)|ξ=p,

where GD(x, y) is the Green’s function for the domain D, and ∂/∂n is the inward
normal derivative with respect to the second variable.

Importantly, if f : C0(∂D), then the function

(11) φ(x) =
∫
∂D

dξ Fξ(x)

is harmonic on D and satisfies φ|∂D ≡ f .
We will use these functions in the following context. If p ∈ int(DT ) \ D0, there

is a unique sp > 0 such that p ∈ ∂Dsp . We write Fp for the Poisson kernel of Dsp

at p.

Proof of Theorem 6.1. We first deal with the case that sp �= sq, so that p
and q are hit at different times by the flow s �→ Ds. Without loss of generality,
suppose sp > sq, and suppose ε is small enough that

(12) inf{s | Bε(p) ∩ ∂Ds �= ∅} > sup{s | Bε(q) ∩ ∂Ds �= ∅}.
From (3), we know that

E[L(ηεq)L(ηεp)] =
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds′′
ψεs′ϕεs′′(1 − σs′′),

where ψεs and ϕεs are harmonic functions on Ds satisfying ψεs |∂Ds ≡ ηεp and
ϕεs |∂Ds ≡ ηεq. In the above formula, we removed the ψεs′′ϕεs′ term that appears
in (3); these terms must all vanish, from (12). Next, note that the remaining terms
can only be nonzero when s′ (resp., s′′) lies in a thin (i.e., O(ε)) band around sp

(resp, sq). Define
s− := inf{s | Bε(q) ∩ ∂Ds �= ∅}

to be the smallest value of s such that ϕεs is nonzero. From our above discussion,
we can write

E[L(ηεq)L(ηεp)] =
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−
ψεs′ϕεs′′(1 − σs−) + O(ε),
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also using the continuity of s �→ ∫
σs. Note that the third integral is now al-

ways taken over the same set. Now, introduce coordinates (s, θ) near p such
that (s, ·) ∈ Ds and such that θ|∂Ds measures the (signed) arclength from (s, 0)
along ∂Ds. Introduce similar coordinates (s, α) near q. Without loss of generality,
we assume p = (sp, 0). From (11), we can rewrite

ψεs(z) =
∫

dθ ηεp(s, θ)F(s,θ)(z), ϕεs(z) =
∫

dα ηεq(s, α)F(s,α)(z),

which gives the following formula for the covariance:

E[L(ηεq)L(ηεp)]

=
∫ T

0
ds′

∫
dθ ηεp(s

′, θ)
∫ s′

0
ds′′

∫
dα ηεq(s

′′, α)
∫

Ds−
F(s′,θ)F(s′′,α)(1 − σs−) + O(ε).

Now, ηεp is supported on an ε-ball around p, so we only have to consider F(s,θ) for
(s, θ) ∈ Bε(p). For these points, we find that1 |F(s,θ)(z) − Fp(z)| ≤ εC

|z−p|2 , and thus

∫
Dsp

|F(s,θ) − Fp| =
∫

B
ε1/3 (p)∩Dsp

|F(s,θ) − Fp| +
∫

Dsp\B
ε1/3 (p)

|F(s,θ) − Fp|

≤
∫

Dsp\(Dsp )
ε1/3

(|F(s,θ)| + |Fp|) + ε1/3C vol(Dsp) = O(ε1/3).

Repeating the same argument for F(s,α) and Fq (and using the fact that Fp and Fq

are bounded near the pole of the other), we find that

E[L(ηεq)L(ηεp)]

=
∫ T

0
ds′

∫
dθ ηεp(s

′, θ)
∫ s′

0
ds′′

∫
dα ηεq(s

′′, α)
∫

Ds−
FpFq(1 − σs−) + O(ε1/3).

Finally, we convert from the coordinates (s, θ) and (s, α) back to standard Eu-
clidean coordinates. For this, note that (s, θ) and (s, α) are orthogonal coordinate
systems, and that θ and α are unit-speed parametrized, by definition. Thus, the
only contributions to |d(s, θ)/d(x, y)| and |d(s, α)/d(x, y)| are the scaling factors in
the s-direction. These are exactly the (inverse) velocities v(s, θ)−1 and v(s, α)−1 of
the flow s �→ Ds, and we find that

∫
ds′

∫
dθ ηεp(s

′, θ) =
∫

dA v−1ηεp = v−1
p

∫
dA ηεp + O(ε) = v−1

p + O(ε),

1For instance, we can find this estimate by first comparing F(s,θ) and Fp to nearby Green’s functions
using (10), and then comparing the Green’s functions to one another by bounding their gradients above
as |∇xGD(x, y)| ≤ C|x − y|−1.
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and similarly
∫

ds′′ ∫ dα ηεq(s
′′, α) = v −1

q +O(ε). Putting these ingredients together,
we get

E[L(ηεq)L(ηεp)] =
1
vpvq

∫
Ds−

FpFq(1 − σs−) + O(ε1/3)

=
1
vpvq

∫
Ds∗

FpFq(1 − σs∗) + O(ε1/3),

wrapping the O(ε) error term from switching s− to s∗ into the existing O(ε1/3) error.
Now, assume that sp = sq, and suppose ε is small enough that Bε(p) and Bε(q)

are disjoint. Let

s− := inf{s | (Bε(q) ∪ Bε(p)) ∩ ∂Ds �= ∅},

so that, as before,

E[L(ηεq)L(ηεp)] =
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−

(ψεs′ϕεs′′ + ψεs′′ϕεs′)(1 − σs−) + O(ε).

We can split these terms as follows:

∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−

(ψεs′ϕεs′′ + ψεs′′ϕεs′)(1 − σs−)

=
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−
ψεs′ϕεs′′(1 − σs−) +

∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−
ψεs′′ϕεs′(1 − σs−)

=
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds−
ψεs′ϕεs′′(1 − σs−) +

∫ T

0
ds′′

∫ T

s′′
ds′

∫
Ds−
ψεs′′ϕεs′(1 − σs−)

=
∫ T

0
ds′

∫ T

0
ds′′

∫
Ds−
ψεs′ϕεs′′(1 − σs−).

At this point, we can follow the same logic as in the first case, and the theorem
follows. �

We can apply this formula concretely to the case of a radially-expanding disk.
Suppose that D0 is the unit disk, and set Qs

0 = B√
s/π for s ∈ [0, 1). In this setting,

we can imagine our source as a collection of outwardly moving rings of radius
0 ≤ r < 1, as shown in Figure 2. From symmetry considerations, it is clear that
Ds = B√

1+s/π are outwardly expanding disks. Suppose p and q lie in the plane, on
origin-centered circles of radii 1 < rq ≤ rp <

√
1 + 1/π and at polar angles θp, θq.

The functions Fp and Fq take the following forms:

Fp(re
iθ) =

∑
n∈Z

(r/rp)
|n|ein(θ−θp), Fq(re

iθ) =
∑
n∈Z

(r/rq)
|n|ein(θ−θq).
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Figure 2: An illustration of the flow s �→ Ds in the case of a radially-expanding
disk. Here, D0 is the unit disk (cyan, left), and our single source set QT

0 is a smaller
disk within it (red, left). As time passes, source points move from the center of Qs

0

to the outer boundary of Ds.

Then, from Theorem 6.1, we can calculate

g(p, q) =
1
vpvq

∫ rq

0
rdr

∫ 2π

0
dθ FpFq(1 − σπ(r2

q−1))

= (2π)2rprq

∫ rq

0
dr

∫ 2π

0
dθ rFpFq(1 − σπ(r2

q−1))

= (2π)2rprq

∫ rq

0
dr

∫ 2π

0
dθ r

∑
j,k∈Z

r|j|+|k|

r|j|
p r|k|

q
ei(j+k)θ−ijθp−ikθq(1 − σπ(r2

q−1)).

Only the terms with j + k = 0 survive when integrating θ:

g(p, q) = (2π)3rprq

∫ rq

0
dr

∑
j∈Z

r2|j|+1

r|j|
p r|j|

q
eij(θp−θq)(1 − σπ(r2

q−1)).

Now, we break this into two integrals using σπ(r2
q−1) = 1{r≤√r2

q−1} + 1{r≤1}:

g(p, q) = (2π)3rprq

∫ rq

1
dr

∑
j∈Z

r2|j|+1

r|j|
p r|j|

q
eij(θp−θq)

− (2π)3rprq

∫ √
r2
q−1

0
dr

∑
j∈Z

r2|j|+1

r|j|
p r|j|

q
eij(θp−θq)

= (2π)3rprq

∑
j∈Z

eij(θp−θq)

r|j|
p r|j|

q

(∫ rq

1
r2|j|+1dr −

∫ √
r2
q−1

0
r2|j|+1dr

)

= (2π)3rprq

∑
j∈Z

1
2|j| + 2

eij(θp−θq)

r|j|
p r|j|

q
(r2|j|+2

q − 1 − (r2
q − 1)|j|+1).
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We can discard the negative frequency modes by rewriting this sum as twice the
real part of its positive frequency modes:

g(p, q)

= (2π)3(rprq)
2 Re

( ∞∑
j=0

1
j + 1

eij(θp−θq)

rj+1
p rj+1

q

(r2j+2
q − 1 − (r2

q − 1)j+1)
)

= (2π)3(rprq)
2

× Re
(

e−i(θp−θq)
∞∑
j=0

1
j + 1

ei(j+1)(θp−θq)
(rj+1

q

rj+1
p

− 1

rj+1
p rj+1

q

− (r2
q − 1)j+1

rj+1
p rj+1

q

))

= −(2π)3(rprq)
2 Re[e−i(θp−θq)(Log(1 − ei(θp−θq)rq/rp) − Log(1 − ei(θp−θq)1/rprq)

− Log(1 − ei(θp−θq)(r2
q − 1)/rprq))]

= −(2π)3|pq|Re[pq(Log(1−q/p) − Log(1−1/pq) − Log(1−(|q|2−1)/pq))],

where Log denotes the principle value of the logarithm, and we view p and q as
complex numbers. This function is plotted in Figure 3.

Figure 3: A plot and contour map of the function g(p, q), where q = (1
2 +

√
5

4 , 0) is
fixed. In each image, the set D0—the unit disk—is shaded, and q is marked as a
black point [resp., line] alongside. Note the logarithmic singularity at p = q, and
that the function vanishes for p along the unit circle (the inner boundary of the
domain).

The function g(p, q) has several key properties, which we can see in Figure 3.
For one, g(p, q) is positive if and only if θp and θq are nearby. This confirms the
geometric intuition that, for instance, an early point leads to other nearby early
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points, but that it prevents distant early points (by using up particle mass itself).
Secondly, g(p, q) vanishes as either p or q approaches the unit disk, likely reflecting
the fact that points nearer to D0 are “more deterministic”—i.e., that the variance
of their lateness decreases to 0 as they get closer to D0. It is easy to check from
Theorem 6.1 that this property holds true for other flows, as well, with the unit
disk replaced by D0 in general.

Next, note the logarithmic singularity present at p = q. This is to be expected,
in analogy to the (free space) Green’s function G(x, y) = log |x − y|. Indeed, just
as we can view the Green’s function as giving an inner product

(u, v)−1 :=
∫

dxdy u(x)G(x, y)v(y) =
∫

dy (∇−2u)(y)v(y),

we can view the point-correlation function g as the kernel of the inner product
defined in Equation (3):

(u, v)g :=
∫

dxdy u(x)g(x, y)v(y) =
∫ T

0
ds′

∫ s′

0
ds′′

∫
Ds′′

(ψs′ϕs′′ + ψs′′ϕs′)(1 − σs′′),

where, as before, ψs and ϕs are the solutions of the Dirichlet problem on Ds for u

and v, respectively.

7 Directions for further research

One interesting extension of this work would be to extend these results to higher
dimensions. In dimension d, the appropriate scaling factor for the fluctuation
functions Es

m and Ls
m would be md/2 (just as it is m = m2/2 here). In general, then,

the error found in (5) and (8) would come out to be O(md/2ε2m). For this to decrease,
we then need the bound εm = o(m−d/4) on the maximum fluctuations. This is likely
possible to achieve if d = 3, but clearly impossible for d ≥ 4.

However, there are weaker results that remain possible for d ≥ 4. For
one, if we require the test function u to be harmonic, then we could achieve
‖u − ψ(m)‖∞ = O(m−2) on the domain of interest, rather than our existing
‖u − ψ(m)‖∞ = O(εm). In this case, the requirement on εm becomes εm =o(m2−d/2),
which now appears possible for dimensions 4 and 5.

Another important direction of research would be to generalize the sorts of pos-
sible sources for IDLA. For instance, it would be interesting to see if corresponding
scaling limits hold if, instead of starting from a concentrated mass distribution, we
were to start points evenly from a submanifold of D0. Starting from the boundary
of D0, for example, may provide a good substitute for starting particles evenly
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across D0 itself. In chemical applications, this adjusted setting could model a solid
particle source of a particular shape.

Fortunately, the methods used in this paper translate fairly straightforwardly
to other settings. The greatest obstacle to generalizing our results is finding an
analogue to Lemma 2.4, which was the primary result of the preceding paper
[Dar20]. Indeed, if it could be shown that the fluctuations of IDLA from a
particular source satisfy a similar O(m−1/2−ε) bound (for any ε > 0), the remainder
of our argument could likely be repeated.

A Appendix: maximum fluctuations of the divisible
sandpile

We will use the capital Nm(t) to denote the fully occupied set

Nm(t) := {νm,t = 1} ⊂ 1
m
Z

2.

We will also use the notation of [Dar20]—in particular, for any ζ ∈ 1
mZ

2 \ D0,
we will write τ = τ(ζ) for the time at which ζ ∈ ∂Dτ, and we will use Hζ and �ζ
exactly as in that paper. We will not give more details on these objects here.

Now, we say that a point z ∈ 1
mZ

2 is ε-early at time t if z ∈ Nm(t), but z /∈ (Dt/m2 )ε.
Similarly, z is ε-late at time t if z ∈ (Dt/m2 )ε, but z /∈ Nm(t).

Finally, we will define a stopped version of νm,t, as follows:

Definition A.1 (Stopped Sandpile). Given νζ,n, define the intermediate func-
tion ν0

ζ,n = νζ,n+1{zm,n+1}. At each time step t, choose a point z = z(t) ∈ supp νt
ζ,n\∂Dτ

such that νt
ζ,n(z) > 1. Let Wt

m,n(s) be a Brownian motion started from z on the grid

Gm :=
{
(x, y) ∈ R

2
∣∣∣ x ∈ 1

m
Z or y ∈ 1

m
Z

}
,

as defined in Definition 4.3 of [Dar20]. Define the stopping time

τ∗ := inf
{
s
∣∣∣ Wt

m,n(s) ∈
( 1

m
Z

2 \ Nm(n)
)

∪ ∂Dτ

}
,

and set

νt+1
ζ,n (z

′) = νt
ζ,n(z

′) + (νt
ζ,n(z) − 1) · (P[Wt

m,n(τ
∗) = z] − δz,z′).

For a large enough t′, we have that νt′
ζ,n(z) ≤ 1 everywhere in supp νt′

m,n \ ∂Dτ; then
we define νζ,n+1 = νt′

ζ,n.
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In parallel with the original divisible sandpile model, we define νζ,n+1 by taking
the excess mass at z in νζ,n and splitting it around the edge of supp νζ,n according
to a discrete harmonic measure. New in this case, however, is that we stop mass
before it exits the domain Dτ.

Note that this satisfies the same key equality as the original harmonic measure;
namely, for any grid harmonic (see [Dar20]) H defined in 1

mZ
2 ∩ Dτ,

∑
H · (νζ,t − σζ,t) = 0.

Lemma A.2 (No Thin Tentacles). There is an absolute constant b > 0 such

that for all z ∈ Nm(t) ⊂ 1
mZ

2 with d(z,D0) ≥ r,

#(Nm(t) ∩ B(z, r)) > bm2r2.

Proof. For this, we define the intermediate processes ν�m,t, for each integer
� ≥ 1:
(1) Define the initial set ν�m(0) = νm(0) = 1 1

mZ2∩D0
.

(2) For each i ∈ 1
�
Z>0, start a random walk at zm,�i�, and let z′

i be the first point
in the walk at which ν�m,i−�−1 (z′

i) < 1. Let ν�m,i = ν�m,i−�−1 + �−11{z′
i}.

Now, ν0
m,t is simply an IDLA, by definition, and ν�m,t → νm,t in law (pointwise)

in �. We can now lift the proof of Lemma 2 of [JLS12] (Lemma 3.2 of [Dar20])
verbatim,2 to show that

P[ν�m,t(z) > 0, #({ν�m,t = 1} ∩ B(z, r)) ≤ bm2r2] ≤ C0e
−c0mr

for constants c0,C0 independent of �. In particular, this probability is uniformly
bounded below 1 in �; since ν�m,t converges in law to the deterministic function
νm,t, we see that

lim
�→∞P[ν�m,t(z) > 0, #({ν�m,t = 1} ∩ B(z, r)) ≤ bm2r2] = 0,

from which the lemma follows. �
The next theorem is a restatement of Theorem 2.8, and a stronger version of

Theorem 3.9 of [LP08]:

Theorem A.3 (Theorem 2.8). There is a constant C > 0 dependent on the

flow such that, for large enough m and any s ∈ [0,T],

1
m
Z

d ∩ (Ds)Cm−3/5 ⊂ Nm(m2s) ⊂ (Ds)
Cm−3/5

.

2The only significant difference in proving the new result is that the total number of “trials”, as well
as the total number of required “failures” (in the language of [JLS12]), is scaled up by a factor of �.
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Lemma A.4. There are constants C, α > 0 dependent only on the flow such

that, for large enough m, s ∈ [0,T], a ≥ Cm2/5, and � ≤ αa, an a/m-early point
in Nm(t) by time m2s implies a different, �/m-late point at time m2s.

Proof. Suppose z ∈ Nm(t) \ Nm(t − 1) is the first a/m-early point in Nm—that
is, z /∈ (Dt/m2 )a/m, but Nm(t − 1) ⊂ (D(t−1)/m2 )a/m. Further assume that there are
no �/m-late points by the time t, or equivalently that (Dt/m2 )�/m ⊂ Nm(t).

Since z is adjacent to Nm(t − 1), we know that

Nm(t) ⊂ (Dt/m2 )(a+1)/m.

Let ζ = ζ(z, t) be the nearest point to z in the annulus

1
m
Z

2 ∩ (Dt/m2 )V(4a+2C)/mv+2/m \ (Dt/m2 )V(4a+2C)/mv,

where C will be specified later, and v,V > 0 are as in Lemma 3.5 of [Dar20].
Let τ > 0 be such that ζ ∈ ∂Dτ, and note that

dH(Dt/m2,Dτ) ≥ d(Dt/m2, ζ) ≥ V(4a + 2C)/mv.

By Lemma 3.5 of [Dar20], this implies

d(Nm(t),Dc
τ) ≥ d((Dt/m2 )(a+1)/m,Dc

τ)

≥ d(Dt/m2,Dc
τ) − (a + 1)/m

≥ v

V
dH(Dt/m2,Dτ) − (a + 1)/m

≥ (3a + 2C − 1)/m > 1/m.

From Lemma 4.2(a) of [Dar20], this means supp(νm,t) ⊂ �ζ , and thus we can
replace νm,t with νζ,t. As in [Dar20], we can show that if #(Nm(t)∩B(z, a/m)) > ba2

and no points are �/m-late by time t, then
∑

z′∈ 1
mZ2

(νζ,t(z
′) − σm,t(z

′))Hζ(z
′) ≥ vba/12V > 0.

Both of the listed assumptions are true; we know #(Nm(t) ∩ B(z, a/m)) > ba2 by
Lemma A.2, and we have assumed that no points are �/m-late by time t. However,∑

(νζ,t−σm,t)H = 0 for any H harmonic on supp(νζ,t), so this is a contradiction. �

Lemma A.5. There is a constant C > 0 dependent only on the flow such that,

for large enough m, s ∈ [0,T], and � ≥ Cm2/5, there can be no �/m-late point at
time m2s.
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Proof. Without loss of generality, let a = �2/Cm2/5 ≥ �. Fix an inte-
ger t ≤ m2s, and suppose that ζ ∈ 1

mZ
2 ∩ ((Dt/m2)�/m \ D0) is �/m-late by time t.

Then d(ζ, ∂Dt/m2 ) ≥ �/m, so by Lemma 3.5 of [Dar20],

t − m2τ ≥ 2m2
√

1 + τ(
√

1 + t/m2 − √
1 + τ)

≥ 2m2

V

√
1 + τ · dH(Dt/m2,Dτ) ≥ 2m2

V

√
1 + τ · d(ζ, ∂Dt/m2 ) ≥ 2m�

V
.

Since ζ is �/m-late at time t, we know that ζ /∈ Nm(t), so νζ,t(ζ) < 1. As in [Dar20],
the sum

M̃ζ(t) :=
∑

z′(νζ,t(z
′) − σm,t(z

′))Hζ(z
′)

is maximized if the interior of �̃ζ ∩ 1
mZ

2 is fully occupied by Nm(t). We can then
show, exactly as in [Dar20], that

M̃ζ(t) < 1 − c�

for some c > 0; the new constant term comes from the νζ,t(ζ)Hζ(ζ) < 1 contribu-
tion. So long as C is large enough, this is still negative; of course, we know that
M̃ζ(t) = 0, so this is a contradiction. �

Proof of Theorem 2.8. We can work with the set Nm(t) instead of supp νm,t;
indeed, the latter only differs from the former within one unit of the boundary. By
Lemma A.5, we only need to show that no O(m−3/5)-early point can exist. Suppose
a point is α−1Cm−3/5-early at a time t ≤ m2s. By Lemma A.4, this implies that
another point is Cm−3/5-late by the same time; this contradicts Lemma A.5, and
we retrieve our result. �

B Appendix: sources on the boundary of D0

The most restrictive hypothesis in our definition of concentratedmass distributions,
as outlined in Definition 2.1, is that the sets Qs

i are bounded away from ∂D0. For
instance, this prohibits the situation depicted in Figure 1, where we might take
D0 := A ∪ B (or, rather, a smooth equivalent thereof) and Q1 := A ∩ B. In this
appendix, we introduce and prove an alternate version of Lemma 2.4 necessary
to lift this hypothesis, and we discuss necessary modifications of the proofs of
Theorems 3.1 and 3.2 to accommodate this setting.

Definition B.1. Suppose the data (D0, {Qs
i }, {si}, σs) satisfies all of the hy-

potheses of Definition 2.1, except that Qs
i need not be bounded away from ∂D0. In

this case, we say that σs : R2 → Z
≥0 is a connected mass distribution.
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The internal DLA associated with σs can be defined as with a concentrated mass
distribution, and as follows from [LP10], its scaling limit is the smooth smash sum

Ds = D0 ⊕ Qs1
1 ⊕ · · · ⊕ QsN

N .

Our main results on connected mass distributions are the following three theo-
rems, which respectively bound the fluctuations of IDLA, bound the fluctuations
of the divisible sandpile, and show convergence of normalized fluctuations to the
Gaussian fields introduced in this paper.

Theorem B.2. Fix ε > 0. Suppose Ds is a smooth flow arising from a

connected mass distribution. For large enough m, the fluctuation of the associated

IDLA Am(t) is bounded as

P

{
(Ds)Cm−3/5 ∩ 1

m
Z

2 ⊂ Am(m2s) ⊂ (Ds)
Cm−3/5

for all s ∈ [ε,T]
}c ≤ e−m2/5

for a constant C = C(ε) > 0, where (Ds)δ and (Ds)δ denote outer- and inner-δ-

neighborhoods of Ds, respectively.

Theorem B.3. Fix ε > 0. Suppose Dτ is a smooth flow arising from a
connected mass distribution. For large enough m and any time s ∈ [ε,T], the

fluctuations of the occupied set supp νm,m2s are bounded as

(Ds)Cm−3/5 ∩ 1
m
Z

2 ⊂ supp νm,m2s ⊂ (Ds)
Cm−3/5

for a constant C = C(ε) > 0.

Theorem B.4. Theorem 3.1 holds as stated when σs is only a connected mass

distribution. Secondly, fix ε > 0 and let L(ε,s)
m be the ε-delayed lateness function

L(ε,s)
m =

m2s∑
n=m2ε

n
m

1Am,n\Am,n−1 −
m2s∑

n=m2ε

n
m

(νm,n − νm,n−1).

Suppose u ∈ C4
0(R

d) with suppu ⊂ Ds. The random variables (L(ε,s)
m , u) converge

in law as m → ∞ to a normal variable (L(ε,s), u) of mean 0 and variance

ε2
∫

Dε

|ψε|2(1 − σε) + 2
∫ s

ε
ds′

∫ s′

ε
ds′′

∫
Ds′
ψs′ψs′′(1 − σs′′)

+ 2s
∫ s

ε
ds′

∫
Dε

ψs′ψε(1 − σε)

= 2
∫ s

0
ds′

∫ s′

0
ds′′

∫
Ds′
ψs′ψs′′ (1 − σs′′) + O(ε).

(13)

In particular, the limit (in law) limε→0 limm→∞(L(ε,s)
m , u) is a normal variable of

mean zero and variance as given in Theorem 3.2.
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Remark. Removing the assumption that supp u ⊂ Ds gives an expression
akin to that of Lemma 6; we omit this general case for the sake of clarity.

In the above theorems, we see that the trade-off of allowing sources on the
boundary of D0 comes in the form of requiring the system to evolve a short time
before our estimates hold. Although we expect that similar results hold when ε = 0,
different methods would be necessary for their proof.

Below, suppose thatσs is a connectedmass distribution with data (D0,{Qs
i },{si}).

We continue with the notation of [Dar20].
Our proof of Theorem B.2 will be presented as a modification of the proof

of [Dar20, Thm. 3.1]. As discussed in our preceding paper (in the discussion
following [Dar20, Def. 2.1]), the lifted hypothesis is necessary only for the second
statement of [Dar20, Lemma 4.1(c)] and for [Dar20, Lemma 5.2(b)], which is used
to employ the constant R1 in subsequent lemmas. In its place, we introduce the
following:

Lemma B.5. Fix ε > 0. There is a constant R′
1 = R′

1(ε) > 0 such that, for
any ζ ∈ 1

mZ
2 ∩ (DT \ Dε), we have

|Hζ(zm,i) − Fζ(zm,i)| ≤ C1m
−2(R′

1)
−2

for any source points zm,i, and where Hζ , Fζ , and C1 are as in [Dar20]. Taking R′
1

slightly smaller if necessary, for any ζ ∈ 1
mZ

2 ∩ (DT \ Dε), we also have

∣∣∣GDτ
(ζ ′, zm,i) − c′

ζ

m
Jζ(zm,i)

∣∣∣ ≤ C2m
−2(R′

1)
−2

for any source points zm,i, where GDτ
, Jζ , and C2 are as in [Dar20].

Proof. The two statements follow directly from [Dar20, Lemma 4.1(c)] and
[Dar20, Lemma 5.2(b)], respectively, keeping in mind that d(D0,Dc

ε) = O(ε) from
[Dar20, Lemma 3.5]. �

Similarly, we replace [Dar20, Lemma 4.5] with the following:

Lemma B.6. Fix ε > 0, and suppose Ds is a smooth flow arising from a
connected mass distribution. For

m ≥ max(3a + C2, 2C2/ infζ R′
1),

all s ∈ [ε,T], and ζ /∈ (Ds)(4a+2C2)/m, we have

E[eSζ(m2s)1E(a+1)/m(m2s)c] ≤ mK,

where K = K(ε).
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Proof. Applying Lemma B.5 in place of [Dar20, Lemma 4.1(c)] to retrieve
the bound

− 1
2mR0

− 1
mR′

1 − C2
≤ Hζ(z) − Hζ(zm,i),

and defining R′
2 = min(R0/2,R′

1/4) in place of R2, the proof follows verbatim. �
This implies the following modification of [Dar20, Lemma 4.6]:

Lemma B.7. Fix ε > 0, suppose Ds is smooth, and fix a ≥ 2C2 + 2, � ≤ a,
and s ∈ [ε,T]. For

m ≥ max(3a + C2, 5a/ infζ R′
1)

and ζ ∈ 1
mZ

2 ∩ ((Ds)�/m \ Dε), we have

E[eSζ(m2s)1E(a+1)/m(m2s)c] ≤ mKeK ′a,

where K is as in Lemma B.6 and K′ = K′(ε) > 0.

In turn, replacing R1 by R′
1 and R2 by R′

2 everywhere in the proof of [Dar20,
Lemma 4.7] gives

LemmaB.8. Fix ε>0. For large enoughm, s∈ [ε,T], 3a + C2 ≥ a ≥ C3m2/5,

and � ≤ αa, we have

P(Ea/m[m2s] ∩ L�/m[m2s]c) ≤ e−2m2/5
.

Making the same substitutions in the setting of [Dar20, Section 5] gives a
parallel to our second estimate:

Lemma B.9. Fix ε > 0. There is a constant C4 = C4(ε) > 0 such that, for

large enough m, if s ∈ [ε,T], � ≥ C4m2/5, and a ≤ �2/C4m2/5, then

P(L�/m[m2s] ∩ Ea/m[m2s]c) ≤ e−2m2/5
.

Finally, putting these together as in [Dar20, Section 6], but considering only
s ≥ ε, gives Theorem B.2. To prove Theorem B.3, we can take the analysis of
Appendix A nearly verbatim; the only step where our lifted hypothesis becomes
relevant is at the endof the proof of LemmaA.5, wherewe show that M̃ζ(t) < 1−c�.
This makes use of the estimate [Dar20, Lemma 5.2(b)], which can now be safely
replaced with Lemma B.5 at the cost of requiring that s ≥ ε.

Proof of Theorem B.2. The first statement of Theorem B.2—that Theo-
rem 3.1 holds in our generalized setting—follows from simply letting ε < s and
replacing our references to Lemmas 2.4 and 2.8 by Lemmas B.2 and B.3. Indeed,



482 D. DARROW

in our proof of Theorem 3.1, we only make use of the fact that no point is too early
or too late at the fixed time s.

For the second statement, we adapt the proof of Lemma 6 by introducing the
martingale

Mε
m(t) = sm−1

t∧τ∗∑
j=0

(ψs
(m)(Am(j) \ Am(j − 1)) − ψs

(m)(zm,j))

− εm−1
t∧m2ε∧τ∗∑

j=0

(ψε(m)(Am(j) \ Am(j − 1)) −ψε(m)(zm,j))

− m−3
m2s∑
�=m2ε

�∧τ�∧t∑
j=0

(ψ�/m
2

(m) (Am(j) \ Am(j − 1)) − ψ�/m
2

(m) (zm,j)).

We replace the event E with the event Eε, in which

1
m
Z

2 ∩ (D�/m2 )εm ⊂ Am(�) ⊂ (D�/m2 )εm

for all m2ε ≤ � ≤ m2s; this event occurs with probability 1 − e−m2/5
by Theorem

B.2, and in this event, τ� ≥ � for all such �. Thus, as in the case of Lemma 6, we
find that

Mε
m(m2s)

= sm−1
∑

1
mZd

ψs
(m) · (1Am(m2s) − νm,m2s) − εm−1

∑
1
mZd

ψε(m) · (1Am(m2ε) − νm,m2ε)

− m−3
m2s∑
�=m2ε

∑
1
mZ2

ψ
�/m2

(m) · (1Am,� − νm,�)

= sm−1
∑

1
mZd

u · (1Am(m2s) − νm,m2s) − εm−1
∑

1
mZd

u · (1Am(m2ε) − νm,m2ε)

− m−3
m2s∑
�=m2ε

∑
1
mZ2

u · (1Am,� − νm,�) + O(m−1/5)

= m−3
m2s∑
�=m2ε

∑
1
mZd

u · (1Am(�) − 1Am(�−1))

− m−3
m2s∑
�=m2ε

∑
1
mZ2

u · (νm,� − νm,�−1) + O(m−1/5)

= (L(ε,s)
m , u) + O(m−1/5),

usingLemmaB.3 in place of Lemma2.8 to bound |u−ψ�/m2

(m) |. Now, since suppu⊂Ds,
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we know that ψs ≡ 0, and we can reduce

Mε
m(t) = −εm−1

t∧m2ε∑
j=0

(ψε(m)(Am(j) \ Am(j − 1)) − ψε(m)(zm,j))

− m−3
m2s∑
�=m2ε

�∧t∑
j=0

(ψ�/m
2

(m) (Am(j) \ Am(j − 1)) − ψ�/m
2

(m) (zm,j)).

Finally, following the logic of Step 2 of the proof of Lemma 6 shows that the
quadratic variation of Mε

m(m2s) converges to the expression (13), which completes
the proof. �
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