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Abstract 

Membrane proteins are critical mediators for tumor progression and present enor-
mous therapeutic potentials. Although gene profiling can identify their cancer-specific 
signatures, systematic correlations between protein functions and tumor-related 
mechanisms are still unclear. We present here the CrMP-Sol database (https://​bio-​
gatew​ay.​aigene.​org.​cn/g/​CrMP), which aims to breach the gap between the two. 
Machine learning was used to extract key functional descriptions for protein visualiza-
tion in the 3D-space, where spatial distributions provide function-based predictive 
connections between proteins and cancer types. CrMP-Sol also presents QTY-enabled 
water-soluble designs to facilitate native membrane protein studies despite natural 
hydrophobicity. Five examples with varying transmembrane helices in different catego-
ries were used to demonstrate the feasibility. Native and redesigned proteins exhibited 
highly similar characteristics, predicted structures and binding pockets, and slightly 
different docking poses against known ligands, although task-specific designs are still 
required for proteins more susceptible to internal hydrogen bond formations. The 
database can accelerate therapeutic developments and biotechnological applications 
of cancer-related membrane proteins.

Keywords:  Membrane protein, Protein design, QTY code, Machine learning, Protein 
function, Cancer, Bioinformatics

Background
Membrane proteins are miniscule molecular machines embedded in the phospholipid 
bilayer of cells that encompass essential enzymatic, signaling and molecular transport-
ing functions in living organisms. They make up ~ 30% of genes in higher eukaryotes and 
account for ~ 60% of therapeutic targets for modern drugs [1]. Unsurprisingly, mem-
brane proteins are involved in the most common forms of cancers and considered hall-
marks of tumor cells. They participate in all stages of tumor progression, from initiation, 
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invasion, growth, cellular proliferation to metastasis by mediating: (1) cell communica-
tion and signal transductions through interacting with ligands and downstream mes-
sengers [2–5]; (2) intracellular/extracellular ion homeostasis, metabolic pathways and 
chemoresistance [6, 7]; and (3) cell survival, proliferation and apoptosis [8]. Tumors can 
utilize membrane protein-regulated mechanisms to employ both the immune system 
and nervous system in favor of cancer progression[9–12]. Thus, great efforts are devoted 
to elucidate tumor possessed mechanistic pathways in specific malignancies for immu-
notherapy developments [13–15].

Membrane proteins’ pathological involvements are demonstrated by monitoring pro-
tein overexpression, whereas cancer-specific signatures were revealed by gene profiling 
[16, 17]. Correlation of their abundance with the clinical outcome of patients provides 
valuable insights in disease progression and prognosis [18, 19]. The research also helps 
to develop therapeutic strategies such as targeted drugs like monoclonal antibodies, 
nanocarrier drug delivery, and fluorescent tumor imaging in surgery. However, although 
gene patterns can reveal the significance of respective proteins in each pathology, func-
tional studies at the molecular level are required to illuminate mechanistic processes [4].

The binding of membrane proteins with endogenous ligands and subsequent signal-
ing are essential to explaining their functions in cancer-related biological processes [20, 
21]. Mainstream ligand identification methods include radio-ligand binding, calcium 
flux, GTPγ binding, and cAMP modulation, by exposing transcribed cells to synthetic 
compound libraries and observing cell activation profiles [22]. These indirect efforts are 
limited by the system complexity and knowledge of downstream pathways [23]. Alterna-
tive computational strategies use homologous mapping across species [24–26] or virtual 
screening [27] to predict interactions in different types of membrane proteins[2]. How-
ever, subsequent experimental verifications are required.

The major obstacle against structure determination, ligand identification and mecha-
nism studies of membrane proteins is their hydrophobicity and tendency to aggregate 
in aqueous solutions [28, 29]. Common stabilization methods such as detergent screen-
ing or nanodiscs require arduous individual efforts, and are difficult to push beyond 
research purposes [30]. The advent of AlphaFold2 partially resolved this issue, which is 
a computational tool for protein structure predictions [31, 32]. The deep-learning archi-
tecture uses co-evolution information and homologous crystal structures in the Protein 
Data Bank (PDB) to conduct accurate simulations. The program and its predicted struc-
tures for nearly all catalogued proteins with sequence information known to science are 
publicly available [33, 34].

Another experimental approach to circumvent such issues is through a rational design 
tool we previously devised that named QTY code [35]. The water-soluble and function-
ally equivalent variants of native membrane proteins can be easily designed through 
pairwise amino acid substitutions [35, 36]. Specifically, hydrophobic residues of Leucine 
(L), Valine (V) and Isoleucine (I), and Phenylalanine (F) in the transmembrane (TM) 
region are substituted by hydrophilic Glutamine (Q), Threonine (T), and Tyrosine (Y), 
respectively. The methodology was demonstrated first on chemokine receptors [35], and 
later used to elucidate structural basis of their ligand recognitions and regulatory role 
in vivo [35, 36]. Additional bioinformatic studies were conducted which applied this pro-
tocol on different classes of membrane proteins [32, 37, 38]. It is proposed that these 



Page 3 of 24Ma et al. BMC Bioinformatics          (2023) 24:360 	

detergent-free membrane proteins can be adopted to conduct screening in solution for 
ligand identification from a biophysiochemical aspect.

To date, despite extensive efforts to establish a membrane protein mediated network 
of human cancers [2, 4, 39], there is not yet a database to provide essential reference 
information for cancer-related researches with respect to the understanding of protein 
functions and molecular mechanisms. The systematic correlation between membrane 
proteins and tumor pathogenesis are still lacking beyond their cancer-specific signatures 
revealed by gene profiling. Here we present CrMP-Sol (Cancer-related Membrane Pro-
tein and Solubilization database), which is dedicated to connecting molecular charac-
teristics and biological functions of membrane proteins to their participation in cancer 
pathology, while presenting water-soluble designs to facilitate native membrane protein 
research.

The database contains 1309 entries related to 17 types of cancers, which were clas-
sified into 7 categories, and plotted into 3D-space using machine learning algorithms 
based on extraction of key functional descriptions. The spatial distribution can be 
used to predict inapparent relations between adjacent proteins and specific pathogen-
esis through common mechanisms beyond genetic level analysis. The QTY code was 
employed for water-soluble designs to facilitate native membrane protein studies in spite 
of natural hydrophobicity on all 1309 proteins in the database. Five exemplary proteins 
from different categories and varying numbers of TM helices were used for feasibility 
demonstration. The QTY variants exhibited highly similar characteristics and struc-
turally superimposed well with native proteins, in addition to enhanced hydrophilicity 
and stability. Beyond the scope of prior works, we performed comparative analysis on 
molecular dockings of native and QTY variant proteins against native ligands that might 
be involved in different pathogeneses. The docking showed slightly altered poses and 
closely-matched binding energies. Channel-forming proteins exhibited best agreements 
in geometry and hydrogen bonding sites. For binding pairs with significant changes in 
conformations and binding energies, molecular dynamic (MD) simulations revealed the 
decreased hydrophobic interactions to be accountable for the differences.

Our database provides essential information to connect and predict correlation 
between membrane protein functions and cancer types. The unraveling of hidden rela-
tions encoded within biomolecular processes and mechanistic pathways in specific 
malignancies can shed light on new research directions not apparent from gene-level 
analysis. The water-soluble designs are also presented in our database as an experimen-
tally feasible solution to facilitate subsequent researches, by offering physical simulators 
of native membrane proteins. Verification and regulation of these potentially indispensa-
ble biological processes can not only provide new scientific insights on the initiation and 
progression of diseases, but also benefit corresponding therapeutic developments and 
other biotechnological applications.

Results
CrMP‑Sol database

Information of cancer-related membrane proteins at the genetic level are based on a 
previous transcriptome study, which is available on The Human Protein Atlas (HPA, 
https://​www.​prote​inatl​as.​org/) [40–42]. Out of 20,090 entries in the database, 11,279 of 

https://www.proteinatlas.org/
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the proteins are associated with cell membranes [43], where 1309 proteins are clinically 
relevant to 17 types of cancers, including: colorectal cancer, endometrial cancer, mela-
noma, renal cancer, liver cancer, testis cancer, pancreatic cancer, glioma, thyroid can-
cer, prostate cancer, cervical cancer, lung cancer, urothelial cancer, breast cancer, head 
and neck cancer, stomach cancer, and ovarian cancer [41]. We classified these entries 
into 7 categories based on descriptions of their functions, which included 327 recep-
tors, 161 transporters, 44 carriers, 124 channels, 201 enzymes, 109 contact proteins, and 
344 others lacking apparent functional classifications. Other information about gene and 
protein expressions, distributions in organs, cell lines, immune cells and bloods are also 
available in the database [43].

Besides pathogenesis data, critical genetic and molecular information regarding the 
protein functions are also presented in CrMP-Sol, which referred to NCBI (National 
Center for Biotechnology Information), Uniprot and PDB. Genetic information consists 
of gene name, location, a summary of the gene encoding the protein, and open-source 
links. Molecular information includes name, primary sequence, subcellular locations, 
crystal and AlphaFold2 predicted structures, and descriptions about experimentally 
verified or proposed protein functions. The tissue and pathogenesis specificity are also 
presented.

As a core feature of our database, we designed water-soluble variants of all 1309 mem-
brane proteins by QTY code [44]. Specifically, the primary sequences of these QTY vari-
ants, AlphaFold2 predicted structures, and superimpositions with native proteins are 
presented. It is proposed that these easy-to-synthesize, cost-efficient, more hydrophilic 
structural and functional equivalents of naturally hydrophobic proteins can accelerate 
molecular and mechanistic study of the latter to facilitate the development of cancer 
treatments. These novel water-soluble variants of membrane proteins may also them-
selves be adopted in therapeutic applications [45].

Classification and visualization of protein‑cancer types

To intuitively establish correlation between protein functions and cancer specificities, 
we encoded data entries with functional descriptions and visualize them in a 3D-space. 
The TF-IDF (frequency-inverse document frequency) machine-learning algorithm was 
adopted to extract keywords based on their relative frequency of appearances in each 
description compared to the whole database, to distinguish minor functional differences 
in proteins [46]. Words not directly related to protein functions like PubMed ID were 
manually removed. As the most important hyperparameter for TF-IDF, the number 
for max features (MF) was adjustable in the interface with cut-offs between 50 and 250 
words and a step size of 50. This step allows users to choose either the most important 
or more inclusive descriptions of protein functions for tailored classifications, without 
making the data matrix non-efficiently large.

A 1309 × MF matrix was then established to represent the protein × function infor-
mation. The UMAP (Uniform Manifold Approximation and Projection for Dimension 
Reduction) algorithm was adopted to reduce the dimension of encoded data while pre-
serving its global structure and visualizing in a 3D-coordinate system (Fig. 1A). In this 
low-dimensional space, protein classifications were denoted by different colors, while 
halos around a single datapoint represented cancer types. The distant purple cluster at 
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top-left corner represents entries currently without functional descriptions. The interac-
tive graph is the front page of our database, where users can select a single datapoint to 
access the detailed information page. The interface also allows the selection and high-
lighting of each protein category, or those associated with one or several types of cancers 
(Fig. 1B–D). The feature provides information of membrane proteins or critical mecha-
nistic processes adopted by different pathologies in each category.

Beyond the apparent information that the same types of proteins exhibit relative clus-
tering in the 3D-space, we hypothesize that the graph also reveals functional connec-
tions encoded by dimension reduction. It is likely that adjacently positioned proteins 
have higher chance to participate in functionally relevant pathways contributing to the 
same pathology, whether or not they exhibit concurrent profiling in the gene analysis. 
For instance, when “receptor” and “glioma” were selected, we found datapoint EPHA7 
(Ephrin type-A receptor-7) not overexpressed in the gene-level, but was in close proxim-
ity of several receptors all associated with the cancer (Fig. 1E). Literature review indeed 
suggested its relation to malignant glioma despite genetic analysis labeling it as irrelevant 
[47]. Similarly, LPCAT1 is adjacent to five enzymes related to liver cancer. Its expression 
was found to enhance the phosphatidylcholine level in hepatocellular carcinoma tissues, 
which promoted cellular proliferation, migration, and invasion [48]. On the other hand, 

Fig. 1  Spatial distribution of cancer-related membrane proteins in 3D-space based on TF-IDF analysis on 
their functional descriptions with UMAP dimension reduction algorithm. A The interactive interface with 
all proteins shown. B The interface showing only receptor proteins. C The interface highlighting receptor 
proteins related to glioma cancer. D The interface highlighting receptor and enzyme proteins related to 
glioma and liver cancer. E The EPHA7 datapoint resides in close proximity of receptors associated with glioma 
(purple halo). F The LPCAT1 datapoint resides closely to enzymes that are associated with liver cancer (yellow 
halo). G The CERS3 datapoint resides in a pocket formed by proteins associated with glioma (purple halo), 
liver cancer (yellow halo), or both (dual halo). H The SLC34A2 data point resides near transporters that are 
associated with liver cancer (yellow halo)
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CERS3 (Ceramide synthase 3) resides in a wide pocket of 9 proteins related to glioma, 
liver cancer, or both (Fig.  1G). Despite its normal transcription level in either pathol-
ogy, a recent study found the enzyme to affect invasion and metastasis of hepatocellular 
carcinoma via SMAD6 gene [49], whereas it also regulates AKT/ERK1/2 signaling criti-
cal for angiogenesis of glioblastoma [50]. Furthermore, as shown in Fig.  1H, there are 
three other liver cancer-related transporters adjacent to SLC34A2 (Solute carrier family 
34 member), while the knockdown of the latter was also found to inhibit hepatocellular 
carcinoma cell proliferation and invasion [51]. The overall reliability of prediction effi-
cacy will need more extensive evaluation based on data mining and preferably dedicated 
experimental validation. Yet the few examples presented here already showed the pros-
pect of integrating functional information beyond genetic-level analysis into the clusters 
of proteins with correlation to pathologies.

QTY design and property comparisons

The design of water-soluble variants likely provides mechanistic insights for native 
membrane proteins and accelerate therapeutic developments, as has been demonstrated 
before [36, 52]. Thus, we conducted QTY design on all 1309 cancer-related membrane 
proteins in the database. The L, I, V, F residues in the TM region of native proteins were 
replaced by Q, T and Y accordingly in the designs (with T replacing both I and V). The 
process was conducted using an automated online PSS server established prior [44].

Since we cannot present all designed sequences in one paper, five proteins of different 
categories with varying numbers of TM helices are selected as exemplary demonstra-
tions, including MGAT3 (Monoacylglycerol O-Acyltransferase 3), GPR35 (G protein-
coupled receptor 35), GPR37 (G protein-coupled receptor 37), SLC10A1 (Solute carrier 
family 10 member 1), and NPC1L1 (Hepatic Niemann-pick C1-like 1). MGAT3 is a 3TM 
enzyme commonly expressed in the gastrointestinal tract that catalyzes the synthesis 
of 1,2-diacylglycerol from 2-monoacylglycerol and has a role in dietary fat absorption 
[53]. It is relevant to colorectal cancer, liver cancer and stomach cancer. Both GPR35 
and GPR37 belong to the G-protein coupled receptor family with 7TM helices. They 
regulate osteogenesis via the Wnt/GSK3β/β-catenin pathway [54], or bind prosaptide to 
enhance ERK signaling and inhibit cAMP levels [55]. GPR35 is related to colorectal can-
cer, pancreatic cancer and stomach cancer, while GPR37 is related to glioma, melanoma 
and liver cancer. SLC10A1 is a 8TM solute carrier co-transporter primarily localized in 
hepatocytes, and plays a key role in bile acid extraction and biliary excretion from por-
tal blood [56]. The protein hosts hepatitis B virus infection and is associated with liver 
cancer [57]. NPC1L1 is a large 13TM polytopic sterol transporter localized at the apical 
membrane of enterocytes and the canalicular membrane of hepatocytes [58]. It serves as 
a critical mediator for cellular cholesterol uptake and is involved in liver cancer, pancre-
atic cancer and stomach cancer [59].

Sequence alignments of QTY designed water-soluble proteins and their native coun-
terparts are shown in Fig. 2. Individual optimizations were not conducted for this mass-
design process. QTY substitutions were applied to all corresponding residues only in the 
TM region, but not those in extracellular domains and intracellular domains.

The protein characteristics were calculated and compared in Table 1. Despite signifi-
cant QTY substitutions on LIVF residues in TM regions (~ 48–54%), the isoelectric point 
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Fig. 2  Sequence alignments of 5 cancer-related membrane proteins with their water-soluble QTY variants. 
The alignments are: A MGAT3 versus MGAT3QTY, B GPR35 versus GPR35QTY, C GPR37 versus GPR37QTY, D 
SLC10A1 versus SLC10A1QTY, and E NPC1L1 versus NPC1L1QTY. The Q, T, and Y amino acid substitutions are 
in red. The α-helical segments (blue) are shown above the protein sequences, the external (red) and internal 
(yellow) loops of the receptors are indicated. The symbols | and * indicate the unchanged and changed 
amino acids, respectively
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(pI) and molecular weight (MW) of QTY proteins are quite similar to native proteins. 
This is due to that, although Q, T and Y can induce the formation of intra-, inter- and 
solvent-exposed hydrogen bonds, they do not carry additional charges. The substitutions 
enhance the protein solubility while retaining its overall integrity without introducing 
additional disruptive electrostatic interactions. The alteration of hydrophobicity in the 
helical region of membrane proteins without changes in steric and electrostatic interac-
tions is the essence of QTY code. The slight MW increase is due to the introduction of 
hydroxyl group in respective residues.

Superimpositions of AlphaFold2 predicted structures of native and QTY cancer‑related 

membrane proteins

The structural similarity between QTY designed MGAT3, GPR35, GPR37, SLC10A1, 
NPC1L1, and native counterparts were demonstrated by comparing AlphaFold2 pre-
dicted structures. The predicted structures were validated by ProSA web tool and 
reported as z-score values [60]. Lower z-scores correspond to higher model valid-
ity, where predicted structures of native and QTY variant generally exhibited closely 
matched z-score values (Additional file 1: Table S1). As shown in Fig. 3, predicted struc-
tures for native and QTY proteins superimposed very well. Both side views and top views 
of the superimpositions are shown. Despite > 48% changes in TM sequences, the RMSD 
(root mean square deviation) for two protein variants under investigation are < 1.5  Å, 
suggesting very high conformational similarities. Specifically, RMSDs for MGAT3 ver-
sus MGAT3QTY, GPR35 versus GPR35QTY, GPR37 versus GPR37QTY, SLC10A1 versus 
SLC10A1QTY, and NPC1L1 versus NPC1L1QTY are 0.157 Å, 1.478 Å, 1.216 Å, 1.233 Å, 
and 0.656  Å, respectively. TM region RMSDs for MGAT3 versus MGAT3QTY, GPR35 
versus GPR35QTY, GPR37 versus GPR37QTY, SLC10A1 versus SLC10A1QTY, and NPC1L1 
versus NPC1L1QTY are 0.309  Å, 1.044  Å, 0.899  Å, 0.544  Å, and 0.603  Å, respectively. 
Improvements on TM region RMSDs were attributed to the deletion of intrinsically flex-
ible loop domains that contribute more to the RMSDs, which further demonstrated the 
applicability of QTY methodology on TM helices without structural alterations [61, 62].

Table 1  Characteristics of native membrane proteins and their water-soluble QTY variants

Isoelectric focusing (pI), Molecular weight (MW), Transmembrane (TM), – = not applicable. The internal and external loops 
have no changes, the overall changes are not insignificant, and the TM changes are large

Name pI MW (kDa) TM variation (%) Total variation 
(%)

RMSD (Å)

MGAT3 8.86 38.73 – – 0.157, 0.309 (TM)

MGAT3QTY 8.79 39.13 52.38 9.68

GPR35 9.06 34.07 – – 1.478, 1.044 (TM)

GPR35QTY 9.01 34.65 49.32 23.62

GPR37 8.43 64.35 – – 1.216, 0.899 (TM)

GPR37QTY 8.41 64.79 52.38 13.12

SLC10A1 9.07 38.11 – – 1.233, 0.544 (TM)

SLC10A1QTY 8.99 38.64 48.81 24.64

NPC1L1 5.90 146.37 – – 0.656, 0.603 (TM)

NPC1L1QTY 5.90 147.50 53.48 11.43
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Despite that we cannot show superimpositions of all 1309 membrane proteins in this 
article, the RMSDs between native and QTY variants, along with MW and secondary 
structure changes were summarized and plotted in Fig.  3F. Most redesigned proteins 
exhibit RMSD values < 10 Å, with the densest distribution below 5 Å. The outliers are 
relatively darker in color, suggesting their higher MWs and more complex structures. 
Moreover, there are only a few designs falling outside the ± 45° sectors in the graph, 
while most datapoints reside close to the horizontal line. This suggests that most native 
and QTY variant proteins share similar secondary structures.

Hydrophobicity analysis of native and QTY cancer‑related membrane proteins

To computationally evaluate the solubilization efficacy of cancer-related membrane pro-
teins, we conducted bioinformatic simulations on surface hydrophobic patches of both 
native and QTY variant proteins. Due to the proteins being naturally embedded in the 

Fig. 3  Superposed AlphaFold2 predicted 5 cancer-related membrane proteins (green) with their 
water-soluble QTY variants (cyan). Side view and top view are presented. For clarity, both extracellular and 
intracellular regions are removed. A MGAT3 versus MGAT3QTY (RMSD: 0.157, 0.309 (TM)), B GPR35 versus 
GPR35QTY (RMSD: 1.478, 1.044 (TM)), C GPR37 versus GPR37QTY (RMSD: 1.216, 0.899 (TM)), D SLC10A1 versus 
SLC10A1QTY (RMSD: 1.233, 0.544 (TM)), and E NPC1L1 versus NPC1L1QTY (RMSD: 0.656, 0.603 (TM)). F RMSD 
distribution of the 1309 QTY designs for all cancer-related membrane proteins in the database. Each dot 
represents a QTY design, with the RMSD value corresponding to the distance from the origin. The angle 
in the polar coordinate system represents the degree of the secondary structure change. Higher angles in 
respect to the horizontal line represents greater secondary structure change. A color gradient represents the 
molecular weight of each protein
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phospholipid bilayer, native proteins were surrounded by nonpolar residues at the exte-
rior of TM helices, which represents the majority of water-repelling surfaces as colored 
yellow in Fig.  4A–E (top). After the QTY code was applied, the hydrophobic patches 
(bottom) have notably decreased compared to their native counterparts, indicating an 
enhanced capability for water molecule interactions in the QTY variants.

A distribution map containing hydrophobicity information of all 1309 membrane pro-
teins was shown in Fig. 4F. RH corresponds to the ratio of α-helical content in the pro-
tein, while HƳ represents calculated hydrophobicity using ProPAS. As expected, more 
significant decreases in hydrophobicity are observed for proteins with higher TM helical 
contents, which were the targets for the QTY design with amino acid substitutions. On 
the other hand, by comparing the color distribution of circles (native proteins) and dia-
monds (QTY proteins), slight increases of Tm (melting temperature) were predicted for 
solubilized proteins using a sequence-based method, indicating relatively higher protein 
stability [63]. Though accurate Tm values will require experimental determinations, the 

Fig. 4  The pairwise hydrophobic surface patch (brown) predictions of 5 cancer-related membrane proteins 
with their water-soluble QTY variants. For clarity, both extracellular and intracellular regions are removed. 
The native proteins are on top (A–D). A MGAT3 (top) versus MGAT3QTY (bottom), B GPR35 (top) versus 
GPR35QTY (bottom), C GPR37 (top) versus GPR37QTY (bottom), D SLC10A1 (top) versus SLC10A1QTY (bottom), 
and E NPC1L1 (left) versus NPC1L1QTY (right). F Global RH–HƳ distribution of the 1309 QTY designs for all 
cancer-related membrane proteins in the database. The RH indicates the content of α-helices in a protein. The 
hydrophobicity (HƳ) was calculated using the ProPAS and used for evaluating the water solubility of a protein. 
The Tm index shown in color gradient was calculated using a sequence-based method, which qualitatively 
represents the stability of a protein. The original membrane proteins are denoted by circles, and the 
QTY-designed variants are denoted by diamonds. The thin black line shows the corresponding relationship 
between the original protein and its variant
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predicted trend agrees with previous experimental findings [36]. Since water-solubility 
and structural stability are interconnected characteristics, it is possible that by designing 
more soluble proteins, we also provide a plausible method for their stabilization, which 
has both theoretical and practical significances [64].

Molecular docking of native and water‑soluble cancer‑related membrane proteins

Preliminary functional comparison of native and water-soluble variants of cancer-related 
membrane proteins was conducted by docking their known ligands into predicted bind-
ing sites. The examination of computed binding geometries contributed to the under-
standing of molecular interactions from both conformational and compositional aspects 
[65]. We continued using the five exemplary proteins as in previous tasks. Both small 
molecule ligands and protein binders were checked. Specifically, we conducted molec-
ular dockings for the following binding pairs: MGAT3 versus DAG (diacylglycerol), 
2-MAG (2-monoacylglycerol) and oleoyl-CoA; GPR35 versus cGMP, kynurenic acid, 
lysophosphatidic acid, pamoic acid and Zaprinast; GPR37 versus neuroprotection D1, 
Osteocalcin and Saposin C; SLC10A1 versus bile acid, estrone sulfate, GCDC (glyco-
chenodeoxycholic acid) and taurosholate; NPC1L1 versus cholesterol. Amongst the 
listed ligands, Osteocalcin and Saposin C are protein binders, whilst all others are small 
molecule ligands.

The binding pockets were predicted by PrankWeb for both native and QTY variant 
proteins [66]. Rational considerations were used to select a model from top 3 predic-
tions. For MGAT3, GPR35 and SLC10A1, the highest scoring pockets were selected for 
subsequent docking. Yet for GPR37, the pocket 1 and 2 of native and pocket 1 of QTY 
protein were predicted at the C-terminus, thus pocket 3 for native protein and pocket 2 
for QTY protein residing on the N-terminus were used for docking. NPC1L1 mediates 
cholesterol uptake by transporting it across the membrane, which involves the interac-
tion of cholesterol with TM channels. While the 4 highest scoring pockets all resided 
in the extracellular region far from the phospholipid membrane and were most likely 
relevant to interaction with cholesterol, we intentionally selected pocket 3 for both 
native and QTY variants near the N-terminal entrance of the TM channel to elucidate 
the impact of the QTY design on the cross-lipid transportation. As shown in Fig. 5, pre-
dicted binding pockets generally agreed well between native and QTY variant proteins, 
providing basis for similar binding interactions.

Dockings between protein models and respective ligands were performed using Audo-
Dock Vina [67]. Simulations for each protein–ligand pair were repeated at least three 
time to generate a reliable docking conformation and statistically meaningful binding 
energies. As shown in Fig. 6A–E, despite significant amino acid changes in TM regions, 
the binding between proteins and their respective ligands on the QTY variants generally 
occurred at closely-matching locations on the native protein. However, slight docking 
conformation differences were observed due to the inevitable changes to local environ-
ments, with some hydrogen bonds altered at new sites. These alterations can be attrib-
uted to interference from increased numbers of polar residues, which previously did not 
exist in the TM helices. Extensive internal hydrogen bond networks in QTY proteins 
may also lead to significant changes in ligand binding poses, as shown in MGAT3:2-
MAG, MGAT3:oleoyl-CoA, and GPR35:pamoic acid. The orientations of the ligands 
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Fig. 5  PrankWeb predicted binding pockets (gray) of 5 cancer-related membrane proteins (green) with their 
water-soluble QTY variants (cyan). A MGAT3 (top) versus MGAT3QTY (bottom), B GPR35 (left) versus GPR35QTY 
(right), C GPR37 (left) versus GPR37QTY (right), D SLC10A1 (left) versus SLC10A1QTY (right), and E NPC1L1 (left) 
versus NPC1L1QTY (right). The gray color areas are the predicted binding packets

Fig. 6  Molecular docking comparisons of 5 cancer-related membrane proteins (green, top) with their 
water-soluble QTY variants (cyan, bottom) against native ligands. A From left to right: MGAT3 versus DAG, 
MGAT3 versus 2-MAG, MGAT3 versus oleoyl-CoA; B from left to right: GPR35 versus cGMP, GPR35 versus 
kynurenic acid, GPR35 versus lysophosphatidic acid, GPR35 versus pamoic acid, GPR35 versus Zaprinast; C 
GPR37 versus neuroprotection D1; D from left to right: SLC10A1 versus bile acid, SLC10A1 versus estrone 
sulfate, SLC10A1 versus GCDC, SLC10A1 versus taurosholate; E NPC1L1 versus cholesterol
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were inverted, as previously outward-facing hydrophilic segments of the molecules were 
drawn by the polar core of QTY proteins, leaving hydrophobic segments to face solvents 
uncompensated. Such changes might not only impose additional energy penalties in 
docking, but also possibly negate the function associated with the binding events, such 
as the catalytic function in MGAT3. On the other hand, the channel forming proteins, 
namely SLC10A1 and NPC1L1, exhibited higher agreements both on the ligand dock-
ing poses and interaction sites between the native and QTY variants, with the best-per-
forming pair being NPC1L1:cholesterol. Almost identical poses and identical hydrogen 
bond formations were observed. It was deduced that the presence of high aspect ratio 
TM channels was likely to guide the binding and orientation of respective ligands. The 
transporting function was also most likely retained despite significant changes in amino 
acid sequences.

Table 2 summarizes the calculated binding energy (kcal/mol) for each protein–ligand 
pair extrapolated from AutoDock Vina. In general, QTY variant proteins showed 
slightly decreased binding energies as compared to their native counterparts, but were 
still close in numbers. The trends agreed well with our previous experimental results 
that QTY proteins generally exhibited very slightly lower binding affinities compared to 
native proteins [35, 36, 45]. It was also supported by docking pose observations, where 
both native and QTY variants bound to respective ligands in similar manners, despite 
the more complex internal hydrogen bond networks of the latter being slightly unfa-
vorable towards intermolecular interactions. Amongst all, the GPR35:pamoic acid pair 
exhibited the largest binding energy discrepancy of 2.0  kcal/mol. An alternative route 
was conducted to evaluate this binding pair, where AlphaFold_multimer was employed 
to predict GPR35/Gα complex structure and established a model for subsequent dock-
ing (Additional file 1: Fig. S1) [68]. Almost identical docking positions and orientations 
were observed for the complex model (Additional file  1: Fig. S2) and those presented 
in Fig. 6B. Additional MD simulations on this binding pair will be presented in a later 

Table 2  Binding energies for ligands versus native membrane proteins and their water-soluble QTY 
variants

Protein name Ligand Binding energy (kcal/mol)

Native Water-soluble

MGAT3 Diacylglycerol (DAG) − 6.8 ± 0.5 − 6.6 ± 0.3

2-Monoacylglycerol (2-MAG) − 6.6 ± 0.5 − 6.1 ± 0.2

Oleoyl-CoA − 7.9 ± 0.3 − 7.8 ± 0.2

GPR35 cGMP − 8.1 ± 0.0 − 7.6 ± 0.0

Kynurenic acid − 6.6 ± 0.0 − 6.5 ± 0.0

Lysophosphatidic acid − 6.5 ± 0.2 − 6.0 ± 0.1

Pamoic acid − 9.9 ± 0.0 − 7.9 ± 0.1

Zaprinast − 7.5 ± 0.1 − 6.8 ± 0.1

GPR37 Neuroprotection D1 − 6.3 ± 0.3 − 5.9 ± 0.2

SLC10A1 Bile acid − 8.0 ± 0.0 − 6.8 ± 0.2

Estrone sulfate − 8.3 ± 0.0 − 7.7 ± 0.0

Glyco-chenodeoxycholic acid (GCDC) − 7.7 ± 0.2 − 7.9 ± 0.1

Taurocholate − 7.9 ± 0.0 − 7.4 ± 0.1

NPC1L1 Cholesterol − 7.3 ± 0.1 − 6.8 ± 0.3
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section. However, it should be noted that most of our docking computations did not con-
sider the states of membrane proteins, complex with downstream biomolecules such as 
G-proteins, and potential small molecule induced conformational changes. This might 
render the simulated structures and calculated binding energies to have slight deviations 
when compared to the actual binding states of ligands, which should be determined in 
subsequent crystallographic studies.

Beside small molecule ligands, protein binders also play critical roles in the function 
of membrane proteins [61, 62]. We here used ZDOCK software to inspect the interac-
tions of GPR37 versus Osteocalcin and Saposin C. The TM and intracellular regions 
were blocked for binding based on rational considerations. As shown in Fig.  7, the 
docking poses for each binder are quite similar in the native proteins and the QTY vari-
ants. Additional hydrogen bonds were observed at the head of TM helices due to the 
increased availability of polar sites. Hydrophilic interactions between binders and extra-
cellular loops of GPR37 may form or disappear depending on conformational changes 
induced by either the design or the docking. However, one noteworthy consideration 
is that the pLDTT value of loop regions for AlphaFold2 predicted structures are gener-
ally low, suggesting their intrinsically disordered and flexible nature with higher energy 
states [69]. Thus, it is plausible that these regions may deform to accommodate for 
stronger interactions during the binding events. We then recomputed the complexes 
of GPR37 against Saposin C and Osteocalcin using AlphaFold_multimer, removed the 
respective binding partners, and redocked them back to the extracellular regions of the 
receptor using ZDOCK. The models of native and QTY GPR37 against Saposin C still 
exhibited aberrant N-terminal loops with slightly different docking poses and hydro-
gen bond interactions (Additional file 1: Fig. S3A). Yet the models of native and QTY 
GPR37 against Osteocalcin showed closely-matching docking poses and hydrogen bond 

Fig. 7  Molecular docking comparisons of GPR37 (green, top) with GPR37QTY (cyan, bottom) against protein 
binders (yellow): A Osteocalcin, B Saposin C
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interactions (Additional file 1: Fig. S3B). In general, similar molecular dockings between 
native and QTY proteins were observed in these simulations.

Molecular docking analysis of GPR35 versus pamoic acid

The docking poses of GPR35 versus pamoic acid in native and QTY variant proteins 
were notably different, associated with the largest binding energy change amongst all 
computed pairs. To further explain this phenomenon, we carried out MD simulations on 
both complexes using GROMACS and Charmm36 force field [70, 71]. The simulations 
were conducted for 50 ns to allow the full stabilization of both binding partners in com-
plexes (Additional file 1: Fig. S4).

The MMGBSA approximation was employed to calculate the binding free energies for 
stabilized complex structures [72]. As shown in Fig.  8A, the major energy terms that 
differed were ΔEele and ΔEvdw, representing the electrostatic interaction energy and the 
non-bonded van der Waals interaction energy, respectively. The decreased contributions 
from both terms in the QTY protein may be attributed to the inverted docking poses 
and more complex hydrogen bond network at the interface. These two factors combined 
led to a decreased binding energy between the two [36].

Fig. 8  MD simulations of native and QTY variant GPR35:pamoic acid binding pairs using GROMACS. The 
binding free energies are calculated by MMGBSA. A The comparison of binding energy terms in native and 
QTY proteins. ΔGbind: free energy of binding, ΔEele: electrostatic interaction energy, ΔEvdw: non-bonded van 
der Waals interaction energy, ΔGGB: polar solvation free energy, ΔGSA: nonpolar solvation free energy. B Top 20 
residues contributing to the binding complexes. C Contributions from residues in the binding pocket areas 
to the complexes. D Comparison of key unchanged residues contributing to the binding complexes of native 
and QTY variants of GPR35 versus pamoic acid
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The hypothesis was supported by the per-residue energy contribution graph shown 
in Fig.  8B. Despite a few stronger interaction sites (Tyr259, Leu80, Gln77), less resi-
dues contributed moderately in the QTY variant compared to the native protein, which 
cumulatively led to a weaker interaction. The energy contributions from residues in 
the binding pockets (Fig.  8C) again agreed with the above statement where decreases 
in hydrophobic residue contributions (Leu13, Phe163, Leu233, Leu237, Leu258) were 
likely to be resulted from the outward-facing nonpolar region of the ligand in the QTY 
complex. Colored boxes denoted energy contributions from sites subjected to QTY sub-
stitutions. Figure 8D summarizes the top unmodified interaction sites from native and 
QTY proteins. It was shown that the altered binding pose significantly changed interac-
tion sites in complexes, whereas the exclusion of the hydrophobic side of ligands from 
the interior of TM helices due to the additional internal hydrogen bond network likely 
played a critical role in this process. The observation for GPR35:pamoic acid binding 
pair suggested that, despite most QTY variants exhibiting high structural similarity with 
their native protein counterparts, the sequence change can still pose a notable impact on 
their interactions with certain binding partners, and should be taken into consideration 
for task-specific designs.

Discussion
Transmembrane proteins are the input/output machinery of living organisms and per-
form an extensive variety of functions crucial to biological and pathological processes, 
including mechanistic pathways essential for the progression of various types of cancers 
[73]. They bear great importance in understanding tumor pathogeneses with implica-
tions for cancer treatments and patient prognosis [9–12, 74]. Many types of membrane 
proteins also contain well-defined binding pockets that may be directly adopted as tar-
gets for therapeutics and modern medicine [1, 75, 76].

Yet to date, the systematic correlation between membrane protein types and diseases 
is still only at the genetic level, where gene profiling techniques were used to reveal over-
expressed species in certain cancers [16, 17]. Understanding of molecular mechanisms 
and functional roles in association with specific pathogenesis is still lacking [4], primarily 
due to the inherent hydrophobicity, the difficulty to express in native conformations, and 
the instability ex  vivo [23, 77]. The deep-learning based AlphaFold2 partially resolved 
the issue by providing highly accurate structure predictions for these hard-to-work-with 
protein species. Yet computed structures still need to be experimentally verified with 
subsequent mechanistic studies at the molecular level [31].

By establishing a dedicated cancer-related membrane protein database, our work con-
tributes to the current status quo of research in two aspects. Firstly, the machine-learn-
ing based correlation between protein functions, classifications and cancer types encode 
essential molecular information contributing to the key mechanistic pathways in tumor 
progressions. By reducing the high-dimension matrix with all critical functional descrip-
tions into 3-dimensions, the spatial distribution of datapoints may be used to predict 
previously inapparent relations between adjacent proteins involved in mechanistically 
connected pathways for specific pathogenesis that are not directly revealed by genetic 
level analysis.
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On the other hand, to circumvent the difficulties in membrane protein study induced 
by hydrophobicity, we have used a rational design tool called the QTY code, which regu-
lates protein solubility through pairwise amino acid substitutions [35]. The methodology 
was experimentally demonstrated on 12 types of membrane receptors including 7TM 
GPCRs [32, 35, 36, 45], with more types computationally designed and reported [32, 37, 
38]. It was also adopted to identify essential structural domains for ligand binding and 
proteins’ regulatory roles in vivo [35, 36]. The water-soluble variants can greatly benefit 
the molecular understanding on native proteins by providing physical simulators of the 
latter, due to their structural and functional similarities. However, no crystal structure or 
ligand docking studies have been conducted to date, both of which would further dem-
onstrate the QTY code’s applicability to facilitate membrane protein research.

We partially solved the problem by conducting ligand docking and molecular simula-
tions in the current work. With 5 selected membrane proteins that differ in TM helices, 
classifications, and functions, we compared the bindings between native and QTY vari-
ants against known ligands. While all 5 examples exhibited high similarities in protein 
characteristics, AlphaFold2 predicted structures, PrankWeb predicted binding pock-
ets, and slightly varied docking poses, some complexes showed notable changes in both 
ligand orientation and binding energies, including 2/3 complexes with MGAT3 and 1 
complex with GPR35. By MD simulation, we found that the reduced hydrophobic inter-
actions between ligand and QTY protein are accountable for the differences. It appeared 
that TM enzymes were most susceptible to such changes which might negate their cat-
alytic functions. Receptors were slightly affected, while the structure and functions of 
channel-forming proteins were best retained with the QTY design. Our observations 
further suggested the applicability of QTY code on different classes of proteins where 
task-specific designs need to be taken into consideration for species more susceptible to 
the formation of internal hydrogen bond networks.

The work presented in this manuscript provides a bioinformatic guideline to deter-
mine whether or not a specific QTY design on a membrane protein should be adopted 
for experimental studies or applications. Superimpositions between the native and QTY 
variant proteins, as well as the corresponding RMSD values are the primary factors to 
be considered. Designs with RMSD ≤ 2  Å are generally considered conformationally 
similar to their native counterparts and suitable for subsequent uses. Higher HƳ change 
with nearly vertical lines (little RH change, Fig. 4F) indicates superior design efficiency in 
enhancing protein solubility without changing its secondary structure, which in combi-
nation are positive selection factors. Prankweb predicted binding pocket is another fac-
tor to be considered but not necessarily determined upon whether a design should be 
pursued. The docking pose evaluations are typically conducted by end-users to evaluate 
the feasibility of ligand-specific applications.

However, there are still a few limitations in the current study that can be worked on to 
further improve our database and designs. Firstly, the extraction of keywords was pro-
cessed with the classic TF-IDF algorithm, which was effective in completing the task 
but fell short in context analysis and lacked biological specificity. We plan to evaluate 
new language models on this task with extensive training on biology texts to optimize 
the representation of protein functions. In addition, to further validate the predicted 
function-based protein-cancer relations in our database, a large language model-based 
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algorithm can be built to conduct literature-wide search and validation. On the other 
hand, the QTY designs in our database were conducted using the “simple design mod-
ule” on the PSS server, which featured high efficiency but lacked customization for each 
protein. In combination with the above-mentioned large language model, we plan to 
further optimize the QTY design process for individual membrane protein optimization 
that best retain their functions in specific pathogenesis. MD simulations and resolving 
the crystal structures of QTY variant proteins beyond AlphaFold2 models will also fur-
ther benefit both the understanding of these designs and their uses as physical simula-
tors of the native proteins.

In summary, our database provides well-documented information about molecular 
information of membrane proteins and its expressions in cancers. It pushes beyond the 
genetic level analysis to reveal undiscovered connections between proteins’ molecular 
functions and pathogenesis by machine-learning enabled predictions. QTY-code ena-
bled water-soluble designs of membrane proteins are presented as an additional solution 
for the lack of information on membrane proteins. The variants can be experimentally 
adopted to facilitate ligand identification from a biophysiochemical aspect and mecha-
nistic pathway studies of critical native proteins. They may also potentially serve as novel 
targets for immunotherapy in cancer treatments. The discovery, verification and modu-
lation of novel cancer-related molecular mechanisms can not only benefit the scientific 
understanding of initiation and progression of specific malignancies, but also add tools 
that can help to concur these diseases.

Methods
CrMP‑Sol (Cancer‑related Membrane Protein and Solubilization database)

The database is accessible at Metagene platform of Zhejianglab (https://​bio-​gatew​ay.​
aigene.​org.​cn/g/​CrMP). The website does require registration but is free to use.

Data acquisition and protein classification

Functional descriptions of each protein were obtained from Uniprot (https://​www.​unipr​
ot.​org/) and associate with corresponding entries. The classification of proteins was 
based on their names, keywords, and functional descriptions on corresponding Uni-
prot pages. Protein entries lacking meaningful keywords and functional descriptions are 
assigned into the “other” category.

Keyword extraction of protein functions

TF-IDF was conducted for keyword extraction. We first performed data cleaning and use 
regular expression to specify search strings in protein function descriptions. PubMed 
IDs and punctuation marks were removed to reduce meaningless texts during encoding. 
We then used the CountVectorizer function to extract text features from proteins’ func-
tional descriptions. Common English stopwords such as articles and conjunctions were 
also removed from the text during this process. The number of feature words can be 
adjusted by changing the ’max_feature’ parameter in this function. Subsequently, we use 
the TfidfTransformer function to encode the descriptions into a [1309 × max_feature] 
matrix.

https://bio-gateway.aigene.org.cn/g/CrMP
https://bio-gateway.aigene.org.cn/g/CrMP
https://www.uniprot.org/
https://www.uniprot.org/
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Dimension reduction and visualization

The UMAP algorithm was used to perform the dimension reduction on encoding 
matrix above. The parameters are set as follows: n_neighbors = 10, n_components = 3, 
min_dist = 0.5, metric = ’correlation’, random_state = 16. A [1309 × 3] matrix was 
obtained as the final output. Protein classifications and related cancer types are added 
as labels to the above matrix. The interactive visualization in the 3D coordinate sys-
tem was achieved using three.js (https://​three​js.​org/).

QTY code design

QTY code design on all 1309 membrane proteins were conducted using a server we 
have previously established (https://​pss.​sjtu.​edu.​cn/) [44]. FASTA sequences of each 
entry in the dataset was obtained from Uniprot using a custom Python code. The 
sequences were then converted into their soluble versions following the principles 
outlined by QTY method, namely all hydrophobic L, I and V, F were pairwisely sub-
stituted by Q, T, and Y in denoted TM domains. The information regarding starts and 
ends of each TM helices were extracted from the topological domain section in Uni-
prot database. Automated design was then conducted using the “simple design mod-
ule” on the server.

Sequence alignment and property calculation

The native protein sequences for cancer-related membrane proteins and their QTY-
variants are aligned using the same methods as described previously [32, 38]. The 
website ExPASy (https://​web.​expasy.​org/​protp​aram/) was used to calculate the MW 
and pI values of the proteins.

Structure prediction and superimposition

AlphaFold2 was used to predict structures for all cancer related membrane proteins 
in QTY forms, the service of which is freely provided by Zhejiang Gene Computation 
Platform (https://​cloud.​aigene.​org.​cn/). The predicted structures for native proteins 
were directly obtained from Uniprot as provided by the European Bioinformatics 
Institute (https://​alpha​fold.​ebi.​ac.​uk). Structure files for 5 selected proteins were then 
downloaded and superimposed using PyMOL with RMSD calculated. A Python script 
was programmed to calculate the RMSD values in batch with PyMOL 2.4.1.

The secondary structure of proteins was predicted using DSSP software [78], and 
the percentage of helical content changes was normalized to a polar coordinate sys-
tem to the 180° scale. Proteins with pI > 7 were placed above the horizontal line and 
those with pI < 7 were placed below the horizontal line. Datapoints were color-coded 
by protein MW weight and placed according to respective RMSD changes between 
the two protein variants.

Hydrophobicity prediction

The surface hydrophobic patch was visualized using a script developed by Hagemans 
et al. for highlighting with the YRB scheme [79]. The standalone software ProPAS was 
used for the prediction of the protein features including pI, MW, and hydrophobicity 

https://threejs.org/
https://pss.sjtu.edu.cn/)
https://web.expasy.org/protparam/
https://cloud.aigene.org.cn/
https://alphafold.ebi.ac.uk
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[80]. The Tm value was calculated using Tm Predictor localized software with the 
default Tm reference matrix [63].

Ligand docking comparison

The PrankWeb server (https://​prank​web.​cz/) was used to predict the binding pockets of 
native and QTY versions of 5 exemplary proteins based on their AlphaFold2 predicted 
structure models. Predictions were ranked based on their scores and selected from the 
top 3 candidates for docking analysis on a rational basis.

The structures for micromolecular ligands were downloaded from PubChem web-
site (https://​pubch​em.​ncbi.​nlm.​nih.​gov/) and converted into.pdb file using OpenBabel. 
GCDC was extracted from a complex structure from PDB entry: 7ZYI. After preproc-
essing of the ligand and protein (add polar hydrogen atoms and torsion), the dockings 
processes were performed by AutoDock Vina with PrankWeb predicted pocket center 
and defined box dimensions between 15 AND 25 Å.

Dockings were performed for at least 3 times for each protein–ligand pair. The top-
ranking conformations appeared 3 times were selected for presentation. The results were 
then visualized by PyMOL. Native proteins are colored green, and QTY proteins are 
colored cyan. The ligands are shown in yellow, and the hydrogen bonds are shown in 
magenta. Residues having polar contact with ligands are shown as stick, with labels dis-
played. All atoms in proteins are added with polar hydrogen atoms.

The docking between GPR37 and protein binders were performed by Linux ZDOCK 
3.0.2. The structure of Saposin C is obtained from PDB (PDB ID: 2GTG) while those 
for Parkin (Uniprot ID: O60260) and Oseocalcin (Uniprot ID: P02818) were obtained 
by AlphaFold2 prediction. The large N-terminus 1–255 residues with very low pLDTT 
(< 50) were removed before docking. The intracellular loops and C-terminus of the pro-
teins were blocked from docking simulations. The dockings processes were conducted 
at 6°rotational sampling density for maximal precision. Top 100 complexes with high-
est scores were selected out of 54,000 generated poses. Docking complexes within top 
3 were inspected and selected for presentation. The docking results were visualized 
by PyMOL. Native proteins are colored green, and QTY protein are colored cyan. The 
ligands are shown in yellow, and the hydrogen bonds are shown in magenta. Residues 
having polar contact with ligands are shown as stick, with labels displayed. All atoms in 
proteins are added with polar hydrogen atoms.

MD simulation

MD simulations of native and QTY variant GPR35 versus pamoic acid complexes were 
performed using GROMACS v2022.3 with the Charmm36 force field. The topology files in 
the Charmm force field of protein were generated by GROMACS, and the topology files in 
the Charmm force field of ligand were generated by CGenFF website (https://​cgenff.​umary​
land.​edu/). The complexes were immersed in the periodic orthorhombic water box (TIP3P) 
with added appropriate number of Cl− ions to neutralize the systems. The Steepest Descent 
(SD) algorithm was used to perform energy minimization. The system was equilibrated by 
two steps: a 100 ps NVT process at 310 K, and a 100 ps NPT process at 1 bar with posi-
tion restraints (1000 kJ/mol) on the heavy atoms of the protein and ligand. Subsequently, 
50 ns MD was performed at 300 K with trajectory saved every 50 ps. After the backbone of 

https://prankweb.cz/
https://pubchem.ncbi.nlm.nih.gov/
https://cgenff.umaryland.edu/
https://cgenff.umaryland.edu/
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proteins stabilized, the binding free energies were calculated using MMGBSA with the fol-
lowing equation:

Where

where ∆EMM: electrostatic interaction energy; ∆Eele: gas-phase molecular mechanics 
energy; ∆EvdW: non-bonded van der Waals interaction energy; ∆Gpolar: polar solvation 
free energy; ∆Gnonpolar: nonpolar solvation free energy; ∆Gpolar and ∆Gnonplar were calcu-
lated by Generalized Born Surface Area.

The 15–50 ns trajectory of native GPR35:pamoic acid and 10–50 ns trajectory of QTY 
GPR35:pamoic acid were extracted per 1 ns to generate frames for binding energy calcu-
lations. All residues were calculated to provide a ranking of respective contributions. For 
calculation in binding pockets, residues in overlapping sites of native and QTY variant pro-
teins within 6 Å were presented for comparison. Mutated residues were marked with boxes 
in different colors.
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