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Super invariant theory in positive characteristic 3

1 Introduction

For the entire paper we let k be a field of characteristic p > 0. We study invariant
theory for the general linear supergroup over k when p > 2.

For m; n 2 N, we consider the corresponding super vector space

V D Vmjn
..D kmjn:

For each r 2 Z>0, we have the algebra morphism

ˆ D ˆ
.r/

mjn
W kSr ! EndGL.mjn/

�
V ˝r

mjn

�
: (1.1)

Typically the ‘First Fundamental Theorem of Invariant Theory’ establishes that
ˆ

.r/

mjn
is surjective. This is known to be the case if p D 0 or n D 0, see for instance

[1,4].
The ‘Second Fundamental Theorem of Invariant Theory’ then usually refers to

descriptions of the kernel of ˆ
.r/

mjn
; in coarsest form this is the answer to the question

of when ˆ
.r/

mjn
is injective. Again the answer to the latter question is known and very

succinct if p D 0 or n D 0, and does not depend on p if n D 0, see [1,4].
In [6] it was observed that the injectivity question for ˆ

.r/

mjn
does depend on p

when mn 6D 0, and an upper bound on r for which the morphism can be injective
was given. In the current paper we show that this upper bound is in general not sharp,
and determine the precise sharp bound. The question turns out to have a much more
intricate answer than the previously known cases.

In fact, there exists a unique positive integer rp.m; n/ such that the ˆ
.r/

mjn
is injec-

tive if and only if r 6 rp.m; n/. Moreover, it is easy to see that rp.m; n/ D rp.n; m/

so it is harmless to assume that m > n. We prove (see Theorem 3.3):

Theorem A Let p > 2, m > n and set d D .p C n � m/=2. Then

rp.m; n/ D

8̂<̂
:

m C .p � 1/n if d < 2I

m C n C mn if d > n .i.e. p > m C n/I

d.n C 1/p � 1 � d 2e if 2 6 d 6 n:

We also demonstrate that the dependence on p for the injectivity question implies
that ˆ

.r/

mjn
is not always surjective either. We prove (see Theorem 4.1):

Theorem B Let p > 2.

(i) If rp.m; n/ < r 6 m C n C mn then the morphism ˆ
.r/

mjn
is neither injective

nor surjective.
(ii) If the morphism ˆ

.r/

mjn
is surjective for all r 2 N then mn D 0 or m C n < p.

It is an open question whether the necessary condition for surjectivity in The-
orem B (ii) is also sufficient. However, for p D 3, we prove that it is (see Corol-
lary 4.2):

Theorem C For p D 3, the morphisms ˆ
.r/

mjn
are surjective for all r 2 N if and only

if mn D 0 or m D 1 D n.

2            
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4 K. Coulembier, P. Etingof, A. Kleshchev, V. Ostrik

We further give some estimates and examples for when the morphisms ˆ
.r/

mjn
are

or are not surjective. For example, for GL.1j1/ the morphisms are proved to be al-
ways surjective, see Theorem 4.1 (iii). On the other hand for p D 3 we have that the
morphisms ˆ

.2C3i/

2j1
are not surjective for all i 2 Z>0, see Theorem 5.1.

The above lack of surjectivity implies that to study invariant theory for the gen-
eral linear supergroup in positive characteristic, one must look beyond the symmetric
group. Our final result demonstrates how a change of lattice in the integral symmetric
group algebra has a promise to augment (1.1) to a surjective morphism. To be more
precise, working over the integers, we define an intermediate Z-subalgebra †

.r/

mjn;Z
such that

im ˆ
.r/

mjn;Z � †
.r/

mjn;Z � End
�
V ˝r

mjn;Z
�
:

Informally speaking, the intermediate algebra †
.r/

mjn;Z is obtained from im ˆ
.r/

mjn;Z by
‘inverting p where necessary’, see Definition 6.3 and the example in Theorem E (iii)
below. Then we define †

.r/

mjn
..D k˝†

.r/

mjn;Z and prove (see Proposition 6.4):

Theorem D Let p > 2. Then we have:

(i) dimk †
.r/

mjn
D dimC EndGL.Vmjn;C/.V

˝r
mjn;C/.

(ii) There is a commutative diagram of algebra morphisms

†
.r/

mjn

� �
ê.r/

mjn // EndGL.mjn/

�
V ˝r

mjn

�
kSr

OO

ˆ
.r/

mjn

55llllllllllllllll

where ê.r/

mjn
is injective.

(iii) The morphism ê.r/

mjn
is an isomorphism if and only if

dimk EndGL.mjn/

�
V ˝r

mjn

�
D dimC EndGL.mjn/

�
V ˝r

mjn;C
�
:

This suggests a potential approach to super invariant theory in positive character-
istic:

� Show that dimk EndGL.mjn/.V
˝r

mjn
/ does not depend on the characteristic p.

� Determine explicitly the lattice †
.r/

mjn;Z.

We demonstrate how this strategy works in the first case where the surjectivity of
ˆ

.r/

mjn
fails (see Theorems 6.6, 5.1):

Theorem E Let p D 3, r D 5, m D 2 and n D 1.

(i) We have dimk EndGL.2j1/.V
˝5

2j1
/ D 120 and dim im ˆ

.5/

2j1
D 119.

(ii) The morphism ê.5/

2j1
in Theorem D (ii) is an isomorphism.

(iii) We have that †
.5/

2j1;Z is the subring of Z
�

1
3

�
S5 generated by S5 and

1
3

P
�2S5

sign.�/� .

3            
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Super invariant theory in positive characteristic 5

The paper is organised as follows. In Sect. 2 we introduce some necessary back-
ground. In Sect. 3 we determine completely when ˆ is injective. In Sect. 4 we study
when ˆ is surjective, in particular establishing for which m; n the morphisms ˆ are
surjective for all r , when p D 3. In Sect. 5 we focus on the example GL.2j1/. In
Sect. 6 we give a potential approach to a corrected ‘First Fundamental Theorem of
Invariant Theory’ for the general linear supergroup in positive characteristic.

2 Preliminaries

We set N D f0; 1; 2; : : : g.

2.1 Faithful algebra modules

Let A be a finite-dimensional algebra over k. Label the isomorphism classes of simple
A-modules by L.i/ and their projective covers by P.i/.

Lemma 2.1 Let M be a finite-dimensional A-module.

(i) Assume that k is a splitting field for A. For each i , denote by K.i/ � P.i/

the intersection of the kernel of all A-module morphisms P.i/ ! M . Then the
dimension of the image of A ! Endk.M/ is given byX

i

dimk L.i/ dimk.P.i/=K.i//:

(ii) Assume that A is self-injective, for instance A D kG for a finite group G. Then
M is faithful if and only if it contains every indecomposable projective as a
direct summand.

Proof For part (i), consider a decomposition of 1A into orthogonal primitive (hence
local) idempotents. It suffices to know the dimension of the image (so the codimen-
sion of the kernel) of A ! Endk.M/ restricted to Ae � A for each idempotent e in
the decomposition.

Fix such an idempotent e. It corresponds to some simple L.i/, and there are
dimk L.i/ idempotents in the decomposition corresponding to L.i/. The kernel of
the first map below is clearly equal to that of the composite

Ae ! Endk.M/ ! Homk.eM; M/ ' Homk.HomA.Ae; M/; M/:

This composite is just the evaluation homomorphism, so its kernel is the intersection
of the kernels of all A-linear homomorphisms Ae ! M . The conclusion follows
from the isomorphism Ae ' P.i/.

For part (ii), we start by observing that the algebra morphism A ! Endk.M/

can be interpreted as an A-module morphism A ! M dimk M . If M is faithful and the
regular A-module injective, it follows that A is a direct summand of M dimk M . That
M contains every indecomposable projective module then follows from the Krull–
Schmidt theorem. If k is a splitting field, the other direction follows from part (i).

4            
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In general, we can observe that if M contains every indecomposable projective, then
M n contains A for some n 2 N, so clearly M n is faithful. But A ! Endk.M n/ takes
values in Endk.M/n so also M is faithful. ut

2.2 Symmetric group

For r 2 Z>0, we denote the symmetric group on f1; 2; : : : ; rg by Sr .

2.2.1

We give an index for notation we will use relating to compositions:

ƒ.k/ Compositions of (maximal) length k

ƒC.k/ Partitions of (maximal) length k

ƒ.k; r/ Compositions of (maximal) length k and of size r

ƒC.k; r/ Partitions of (maximal) length k and of size r

ƒ.k j l/ D ƒ.k/�ƒ.l/ Bi-compositions of (maximal) lengths k; l

ƒC.k j l/ D ƒC.k/�ƒC.l/ Bi-partitions of (maximal) lengths k; l

ƒ.k j l; r/ Bi-compositions of (maximal) lengths k; l and total size r

ƒC
p .k j l; r/ Elements .˛; ˇ/ 2 ƒC.k j l/ with j˛j C pjˇj D r

Here, given � D .�1; : : : ; �k/ 2 ƒ.k/, we write j�j ..D �1 C � � � C �k .

2.2.2

We use some standard constructions of the representation theory of symmetric groups,
see [11]. In particular, we denote the Specht module over kSr corresponding to a
partition � of r by S�, see [11, Definition 4.3]. When we need to refer to the Specht
module over C we will use the notation S�

C .
If char.k/ D p > 0, we denote the unique simple quotient of S� by D� for

p-regular �. These are non-isomorphic and exhaust all simple modules, see [11, The-
orem 11.5]. We denote the projective cover of D� by P �.

2.2.3

Let .�; �/ 2 ƒ.k j l; r/. Then we have the standard parabolic subgroup

S� �S�
..D .S�1

� � � � �S�k
/�.S�1

� � � � �S�l
/ 6 Sr :

Let k�j� be the 1-dimensional k.S��S�/-module with .g; h/ 2 S��S� acting with
sign.h/. Define the sign-permutation module

M �j� ..D IndSr

S��S�
k�j�:

5            
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2.2.4 Duality

For any finite-dimensional representation M of a group, we have the canonical rep-
resentation structure on M � D Homk.M; k/: We have

.M �j�/�
' M �j�;

and also the simple modules are self-dual, by [11, Theorem 11.5].

2.3 The general linear supergroup

In this section we assume p 6D 2.

2.3.1

For a k-superalgebra A (including ordinary k-algebras) we will always work in the
supercategory of A-supermodules, see [2, Definition 1.1 and Example 1.2]. In partic-
ular, for A-supermodules V; W , we have

HomA.V; W / D HomA.V; W /N0 ˚HomA.V; W /N1;

where HomA.V; W /N0 (resp. HomA.V; W /N1) consists of all even (resp. odd) A-super-
module homomorphisms from V to W . We take the corresponding conventions for
co-superalgebras.

2.3.2

Let V be a superspace over k. We denote by dimk V the dimension of V considered
as a usual vector space (superdimensions will never be used in this paper). If V is
finite-dimensional, we have the associated affine group superscheme GL.V /, see for
instance [3, Section 2], with associated Lie superalgebra gl.V /. The latter is the space
of all k-linear morphisms V ! V equipped with super commutator.

Remark 2.2 Even for V D V N0, we always consider GL.V / as an affine group scheme
rather than an abstract group. For finite fields, the first fundamental theorem is known
to fail when GL.V / is considered only as an abstract group.

2.3.3

We consider the superspace Vmjn D kmjn. When k is clear from context, we also
write GL.mjn/ ..D GL.Vmjn/ and gl.mjn/ ..D gl.Vmjn/.

Let
fv1; : : : ; vmg

be the standard basis of .Vmjn/ N0 and

fv0
1; : : : ; v0

ng

6            
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be the standard basis of .Vmjn/ N1. We have a corresponding basis˚
Ei;j ; Ea0;b0 ; Ea0;j ; Ei;b0 j 1 6 i; j 6 m; 1 6 a; b 6 n

	
of gl.Vmjn/. For example Ea0;j is defined via Ea0;j vj D v0

a, while all other standard
basis elements are being sent to zero.

2.3.4

We fix the basis ˚
"i ; "0

j j 1 6 i 6 m; 1 6 j 6 n
	

for h�, with h � gl.mjn/ the standard Cartan subalgebra of diagonal matrices, as
follows. For all 1 6 i 6 m; 1 6 j 6 n

"i .Ej;j / D ıij and "i .Ej 0;j 0/ D 0;

"0
i .Ej;j / D 0 and "0

i .Ej 0;j 0/ D ıij :

We use the same symbols for the corresponding basis of the character group
X.T / ' ZmCn of the maximal torus T of diagonal matrices in GL.m/�GL.n/.
With this fixed basis we can interpret elements of ƒ.mjn/, or more generally of
ZmCn as characters (weights). More explicitly, we set

ƒ.mjn/ ,! X.T /; .˛; ˇ/ 7! .˛ jˇ/ ..D
X

i

˛i "i C

X
j

ˇj "0
j :

2.4 Tensor superspace

2.4.1

One of the many equivalent formulations of invariant theory for the general linear su-
pergroup asks for a description of the algebra of GL.mjn/-invariant endomorphisms
of tensor superspace:

EndGL.mjn/

�
V ˝r

mjn

�
I

typically in terms of the symmetric group algebra kSr . We note that we always con-
sider the group algebra kSr as a superalgebra concentrated in degree N0. We also note
that

EndGL.mjn/

�
V ˝r

mjn

�
D EndGL.mjn/

�
V ˝r

mjn

�
N0
:

This follows from the easily observed stronger fact that for the maximal torus T of
GL.mjn/ we also have

EndT

�
V ˝r

mjn

�
D EndT

�
V ˝r

mjn

�
N0
:

7            
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2.4.2

For a positive integer r , there is a structure of a left kSr -module on the tensor su-
perspace V ˝r

mjn
such that for all homogeneous v1; : : : ; vr 2 Vmjn and � 2 Sr , we

have
�.v1 ˝ � � � ˝vr / D .�1/h� Iv1;:::;vr iv��11 ˝ � � � ˝v��1r ;

where

h� I v1; : : : ; vri ..D #
˚
1 6 k < l 6 r j �k > �l and vk ; vl are odd

	
:

This defines the superalgebra morphism

kSr ! Endk
�
V ˝r

mjn

�
: (2.1)

By definition of GL.mjn/, this morphism actually takes values in GL.mjn/-endo-
morphisms, leading to (1.1).

We will occasionally also use the complex and integral versions Vmjn;C D Cmjn

and Vmjn;Z D Zmjn, so that the kSr -module V ˝r
mjn

is reduction modulo p of V ˝r
mjn;C

using the lattice V ˝r
mjn;Z.

3 Injectivity

In this section we assume that p 6D 2 unless stated otherwise.

3.1 Main result and examples

It is clear that there exists a unique positive integer rp.m; n/ such that the kSr -module
V ˝r

mjn
is faithful if and only if r 6 rp.m; n/. In this section we determine this value.

First, we give an overview of what is known.

Remark 3.1 (i) In characteristic zero, we have r0.m; n/ D m C n C mn. Indeed, by
[1, 3.20], the CSr -module V ˝r

mjn;C contains all irreducible CSr -modules as summands
if and only if r 6 m C n C mn. Now, we can apply Lemma 2.1 (ii).
(ii) We have rp.m; n/ D rp.n; m/. This follows from the fact that the kSr -module
V ˝r

mjn
is obtained from the kSr -module V ˝r

njm
by tensoring with the sign representation.

(iii) We have rp.m; 0/ D m. This is well known. For example by Lemma 3.2 below,
we have rp.m; 0/ 6 m, and for the opposite inequality it suffices to note that the
regular representation is a summand of V ˝m

mj0
.

(iv) The question makes sense for p D 2 in which case, by (iii), we find r2.m; n/ D

m C n.
(v) In [6, Example 4.3], the following lemma was observed, which demonstrates de-
pendence of rp.m; n/ on p, contrary to the value rp.m; 0/.

Lemma 3.2 If p > 2, then rp.m; n/ 6 m C n C min.mn; .p � 2/m; .p � 2/n/.

8            
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Proof In view of Remark 3.1 (ii), we may assume that m > n and then prove rp.m; n/

6 m C n C n min.m; p � 2/.
Suppose first that m < p � 2. We have to prove that for r ..D m C n C mn C 1 the

kSr -module V ˝r
mjn

is not faithful. Let � be the partition ..n C 1/mC1/ of r . We denote
the corresponding row centralizer by R� and the corresponding column centralizer
by C�. Let

a� D

X
�2R�

� and b� D

X
�2C�

sign.�/�:

These are considered as elements of the group algebra RSn for R D k; C or Z
depending on the context. Note that a�b� is a multiple of Young’s idempotent cor-
responding to �, so it annihilates all irreducible CSr -modules except S�

C . Moreover,
a�b� is non-zero when considered as an element of kSr . On the other hand, by [1,
3.20], V ˝r

mjn;C is missing the irreducible constituent S�
C , so a�b�V ˝r

mjn;C D 0, hence
a�b�V ˝r

mjn;Z D 0, hence a�b�V ˝r
mjn

D 0.
Suppose now that m > p � 2. We have to prove that for r ..D m C .p � 1/n C 1

the kSr -module V ˝r
mjn

is not faithful. We have a basis u1 ˝ � � � ˝ur of V ˝r
mjn

, where
each ui is equal to some standard basis element vs or v0

t . Since r D mC.p�1/nC1,
either ui D uj D vs for some s and some distinct i; j , or ui1 D � � � D uip D v0

t for
some t and some distinct i1; : : : ; ip . In both cases, it follows easily that� X

�2Sr

sign.�/�

�
.u1˝ � � � ˝ur / D 0

completing the proof. ut

In view of Remark 3.1 (ii), we may assume that m > n whenever convenient. We
also henceforth focus only on p > 2. The goal of this section is to prove the following
theorem:

Theorem 3.3 Let p > 2, m > n and set d D .p C n � m/=2. Then the maximal
value of r for which ˆ

.r/

mjn
in (1.1) is injective is

rp.m; n/ D

8̂<̂
:

m C .p � 1/n if d < 2I

m C n C mn if d > n .i.e. p > m C n/I

d.n C 1/p � 1 � d 2e if 2 6 d 6 n:

In the following subsections we will actually prove an alternative expression. For
this, we introduce, for s 2 N:

t s
p.m; n/ ..D s.mC1/C.p�s/.nC1�s/�1 D smC.p�s/nCs.s�p/Cp�1 (3.1)

and
t D tp.m; n/ ..D min

˚
t s
p.m; n/ j 1 6 s 6 min.p=2; n C 1/

	
: (3.2)

Theorem 3.4 Let p > 2 and m > n. Then rp.m; n/ D tp.m; n/.

If n D 0, both theorems return rp.m; 0/ D m. So in view of Remark 3.1 (iii), we
may assume that n ¤ 0, so from now on we assume that m > n > 1.

9            
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3.1.1 Equivalence of Theorems 3.3 and 3.4

Firstly we can observe that

tp.m; n/ D min
˚
t s
p.m; n/ j 1 6 s 6 n C 1

	
: (3.3)

Indeed, for (3.1), interpreted as a (quadratic) function of sW R ! R, the unique local
minimum is achieved at

d D
p C n � m

2
6

p

2
:

If d is an integer this is the unique minimum of sW Z ! Z. If d is a half integer, then
the minimum value is achieved at d ˙ 1=2. This completes the proof of (3.3).

Now, the case d < 2 corresponds to the case where the minimum of sW Z ! Z is
achieved either left of the interval Œ1; n C 1� or at s D 1. Both cases lead to

tp.m; n/ D t1
p.m; n/ D m C .p � 1/n:

The case d > n leads to

tp.m; n/ D tnC1
p .m; n/ D m C n C mn:

The case 2 6 d 6 n leads to

tp.m; n/ D td
p .m; n/ or tp.m; n/ D td˙1=2

p .m; n/;

both of which yield d.n C 1/p � 1 � d 2e.

Remark 3.5 (i) It is easy to see that t > m.
(ii) We can restate Lemma 3.2 as the claim rp.m; n/ 6 min.t1

p.m; n/; tnC1
p .m; n//.

Example 3.6 We continue to assume m > n > 1.
(i) If n D 1, then

rp.m; 1/ D m C 1 C min.m; p � 2/;

which is exactly the upper bound of Lemma 3.2.
(ii) If p D 3, then

r3.m; n/ D m C 2n;

which is exactly the upper bound of Lemma 3.2.
(iii) If p D 5, then

r5.m; n/ D min.m C 4n; 2m C 3n � 2/;

which can be below the upper bound min.m C 4n; m C n C mn/ of Lemma 3.2, see
Example 3.7.
(iv) If p D 7, then

r7.m; n/ D min.m C 6n; 2m C 5n � 4; 3m C 4n � 6/;

where the last term 3m C 4n � 6 has to be omitted if n D 1.
(v) For a fixed p, the generic value of rp.m; n/, i.e. for m � n, is m C .p � 1/n. As
has to be the case a priori (see [6, Remark 4.4]), for fixed m; n and generic p � 0,
we have rp.m; n/ D r0.m; n/.
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Example 3.7 Let p D 5 and m D n D 7. We have t1
5 .7; 7/ D 35 and t2

5 .7; 7/ D 33,
so r5.7; 7/ D 33. This is below the upper bound

min.t1
5 .7; 7/; t8

5 .7; 7// D min.35; 63/ D 35

from Lemma 3.2.

We will need the following observation:

Lemma 3.8 If ˛ D .˛1; : : : ; ˛k/ is a partition of t then ˛mC1 6 min.p � 1; n/.

Proof We will use the description of t given in (3.3).
Suppose ˛mC1 > p � 1. Then ˛mC1 > p and so

.m C 1/p 6 ˛1 C � � � C ˛k D t 6 t i
p.m; n/

for all 1 6 i 6 n C 1. If p 6 n C 1, then we have t
p
p .m; n/ D p.m C 1/ � 1 giving

a contradiction. If p > n C 1 then

.m C 1/p > .m C 1/.n C 1/ � 1 D tnC1
p .m; n/;

giving a contradiction again.
On the other hand, suppose ˛mC1 > n. Then ˛mC1 > n C 1 and so

.m C 1/.n C 1/ 6 ˛1 C � � � C ˛k D t 6 tnC1
p .m; n/ D .n C 1/.m C 1/ � 1;

giving a contradiction. ut

3.2 Indecomposable summands of tensor superspace

Recall the integer t D tp.m; n/ from (3.2) or (3.3). To prove Theorem 3.4, it suffices
to show that the kSt -module V ˝t

mjn
is faithful, while the kStC1-module V

˝.tC1/

mjn
is not.

By Lemma 2.1 (ii), this is equivalent to the statement that V ˝t
mjn

contains every pro-

jective indecomposable kSt -module as a summand, while V
˝.tC1/

mjn
is missing some

projective indecomposable kStC1-module as a summand. We therefore discuss these
indecomposable summands, following [9].

Unless further specified, we consider arbitrary k; l; r 2 N.

3.2.1

Recall the notation for compositions and partitions from 2.2.1. For 1 6 i 6 k, we
denote

�i
..D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 ƒ.k/

with 1 in the i th position. We have the usual dominance order on ƒ.k/ and on each
ƒ.k; r/.

We will identify ƒ.k j l; r/ with ƒ.k C l; r/ via the bijection mapping .�; �/ 2

ƒ.k j l; r/ to .�1; : : : ; �k ; �1; : : : ; �l / 2 ƒ.k C l; r/; the dominance order on
ƒ.k j l; r/ is then inherited from the dominance order on ƒ.k C l; r/ via this identi-
fication.

11            
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3.2.2

Given .�; �/ 2 ƒ.k j l; r/, we denote by .V ˝r
kjl

/�j� the span of all u1 ˝ � � � ˝ur such
that for each 1 6 i 6 k, exactly �i of the uk’s are equal to vi , and for each 1 6 j 6 l ,
exactly �j of the uk’s are equal to v0

j , where fvi ; v
0
j g is our standard basis from 2.3.3.

We have a kSr -module decomposition

V ˝r
kjl

'

M
.�;�/2ƒ.kjl;r/

�
V ˝r

kjl

�
�j�

: (3.4)

Moreover, it is clear that for every .�; �/ 2 ƒ.k j l; r/, we have that�
V ˝r

kjl

�
�j�

' M �j� (3.5)

as kSr -modules. This explains our interest in sign-permutation modules. The inde-
composable summands of sign-permutation modules have been studied in [9].

3.2.3

Donkin [9] defines the Schur superalgebra S.k j l; r/. By [9, 2.3 (1)] (see also [3,
Theorem 5.2]), we have

S.k j l; r/ ' EndkSr

�
V ˝r

kjl

�
:

The algebra S.k j l; r/ comes with the orthogonal idempotents

f��j� j .�; �/ 2 ƒ.k j l; r/g

summing to the identity. Under the isomorphism S.k j l; r/ ' EndkSr
.V ˝r

kjl
/, the

idempotent ��j� is the projection onto the summand .V ˝r
kjl

/�j� as in (3.4). For any
S.k j l; r/-module M and .�; �/ 2 ƒ.k j l; r/, the .�; �/-weight space of M is de-
fined as

M�j�
..D ��j�M:

We will often need to work under the additional assumption r 6 k; l . Recall

ƒC
p .k j l; r/ ..D

˚
.˛; ˇ/ 2 ƒC.k/�ƒC.l/ j j˛j C pjˇj D r

	
:

Note that for .˛; ˇ/ 2 ƒp.k j l; r/, we have .˛; pˇ/ 2 ƒ.k j l; r/, where

pˇ ..D .pˇ1; : : : ; pˇm/:

Lemma 3.9 ([9, 2.3 (4)], [3, Theorem 5.5]) Let r 6 k; l . For each .˛; ˇ/ 2 ƒC
p .k j l; r/

there exists an irreducible S.k j l; r/-module L.˛ jpˇ/ with highest weight .˛; pˇ/,
and

fL.˛ jpˇ/ j .˛; ˇ/ 2 ƒC
p .k j l; r/g

is a complete irredundant set of irreducible S.k j l; r/-modules.

12            
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3.2.4

Donkin [9, p. 662] uses a Schur functor to define the kSr -modules Y ˛jpˇ for all
.˛; ˇ/ 2 ƒC

p .r jr; r/, called sign-Young modules. Their main properties are collected
in Theorem 3.10 below.

3.2.5

Now we consider again m > n > 1 and t D tp.m; n/ from (3.2). We are thus in-
terested in V ˝r

mjn
for r D t or r D t C 1. Note by Remark 3.5 (i) that in both cases

n 6 m 6 r . So every composition with m parts can be considered as a composi-
tion with r parts by adding r � m zeros to the end, i.e. we naturally identify ƒ.m/

with a subset of ƒ.r/, and similarly for ƒ.n/. In this way we will always consider
elements of ƒ.mjn; r/ as elements of ƒ.r jr; r/. So the weight space L.˛ jpˇ/�j� in
the following theorem makes sense. Note also that the kSr -module M �j� is the same
whether we consider .�; �/ as an element of ƒ.mjn; r/ or ƒ.r jr; r/.

Theorem 3.10 ([9, 2.3 (6), (7)]) The modules˚
Y ˛jpˇ

j .˛; ˇ/ 2 ƒC
p .r jr; r/

	
are pairwise non-isomorphic and indecomposable. Moreover, for any .�; �/ 2

ƒ.mjn; r/, we have

M �j�
'

M
.˛;ˇ/2ƒ

C
p .mjn;r/

�
dimk L.˛ jpˇ/�j�

�
Y ˛jpˇ ;

for L.˛ jpˇ/ the simple S.r jr; r/-module.

Recall that a partition ˛ D .˛1; : : : ; ˛k/ is called p-restricted if ˛i �˛iC1 < p for
all i D 1; : : : ; k�1 and ˛k < p. By the classical theory of Young modules developed
in [12,15], for a p-restricted partition ˛ of r , we have that Y ˛j0 is the projective
cover of the irreducible module D˛0

˝sign. So, taking into account Lemma 2.1 (ii),
the kSr -module V ˝r

mjn
is faithful if and only if it contains every Y ˛j0 with p-restricted

˛ 2 ƒC.r; r/ as a summand. In view of (3.4), (3.5) and Theorem 3.10, to prove
Theorem 3.4, it suffices to prove the following

Proposition 3.11 Let m > n > 1 and t be as in (3.2).

(i) Then for every ˛ 2 ƒC.t/ there exists .�; �/ 2 ƒ.mjn; t/ such that
L.˛ j0/�j� ¤ 0.

(ii) There exists a p-restricted partition ˛ 2 ƒC.t C 1/ such that L.˛ j0/�j� D 0

for all .�; �/ 2 ƒ.mjn; t C 1/.

Note that Theorem 3.4 would follow from the weaker statement than Proposi-
tion 3.11, namely, we could assume in Proposition 3.11 (i) that ˛ is p-restricted, but
this assumption happens to be unnecessary.

The proof of the first part of this proposition will be given in Sect. 3.3 and the
proof of the second part will be given in Sect. 3.4.

13            
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Remark 3.12 In [19], Irina Suprunenko proved that for the irreducible GL.n/-module
L.�/ with p-restricted highest weight � and any weight �, the weight space L.�/�

is non-trivial in characteristic p if and only if it is non-trivial in characteristic 0. In
other words, while the weight multiplicities can be much smaller in characteristic
p than in characteristic 0, weights do not ‘disappear’, as long as the highest weight
is p-restricted. (A similar result for other reductive algebraic groups was proved by
Premet [17].)

Proposition 3.11 can be considered as a development of the work of Irina Supru-
nenko to the case of supergroups. Part (ii) of the proposition shows that the statement
analogous to that of Suprunenko’s theorem in general fails for GL.mjn/, while part
(i) of the proposition shows that it holds in a certain range. Our proof of part (i) using
lowering operators is inspired by Suprunenko’s techniques.

3.3 Lower bound

In this section we prove Proposition 3.11 (i). Let ˛ 2 ƒC.t/. We set L ..D L.˛ j0/

and denote by vC a highest weight vector of L. We will act on vC with appropriate
‘lowering operators’ to get a non-zero vector in the required weight space L�j�.

3.3.1

As explained in [3, p.25], the category of supermodules over the Schur algebra
S.t jt; t / is isomorphic to the category of degree t polynomial representations of the
supergroup GL.t jt /, which in turn can be considered as a subcategory of the category
of integrable representations over the distribution superalgebra Dist.GL.t jt //, see [3,
Corollary 3.5]. Under this identification, the weight spaces as defined in Sect. 3.2 cor-
respond to the GL.t jt /-weight spaces, via the embedding in 2.3.4.

Moreover, by [3, Theorem 3.2], the distribution superalgebra Dist.GL.t jt // is
isomorphic to the hyperalgebra Uk, which is obtained by extending scalars from Z
to k in the Kostant Z-form U.gl.t jt; C//Z of the universal enveloping superalgebra
U.gl.t jt; C//.

The explicit description of the hyperalgebra Uk is given in [3, Section 3]—from
it we will only need the basis elements of gl.t jt / � Uk

fEi;j ; Ei 0;j 0 ; Ei 0;j ; Ei;j 0 j 1 6 i; j 6 tg

from 2.3.3, which satisfy the commutation relations [3, (3.2)]. It will be especially
important for us to use the commuting relation

Ej;i 0Ei 0;j D Ej;j C Ei 0;i 0 � Ei 0;j Ej;i 0 (3.6)

(recall that Ei 0;j ; Ej;i 0 are odd), and the fact that for all .ˇ; / 2 ƒ.t jt; t / we have

Ei 0;j Lˇ j � Lˇ��j jC�i
: (3.7)

Finally, since Ei 0;j is odd and ŒEi 0;j ; Ei 0;j � D 0, we have in Uk:

E2
i 0;j D 0: (3.8)

14            
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Lemma 3.13 We have Ei 0;j 0vC D 0 for all 1 6 i; j 6 t .

Proof If i 0 D j 0 then Ei 0;i 0vC D 0 since vC has weight .˛ j0/. Otherwise, since
the weight .˛ j �i � �j / does not appear in polynomial representations (as it does not
appear in tensor powers of V ), so it follows that Ei 0;j 0vC D 0. ut

Let ˛ have h non-zero parts, i.e. ˛ D .˛1; : : : ; ˛h/ with ˛1 > � � � > ˛h > 0. If
h 6 m we can take .�; �/ D .˛; 0/ in Proposition 3.11 (i). So we assume from now
on that h > m. We identify the partition ˛ with its Young diagram, which consists of
the boxes .a; b/ 2 Z � Z satisfying 1 6 a 6 h and 1 6 b 6 ˛a.

Given integers c; d such that m < c 6 d 6 h, we consider the subset

˛Œc;d�
..D f.a; b/ 2 ˛ j c 6 a 6 dg � ˛

of the boxes of the Young diagram ˛ in the rows between c and d . Fix an integer e

such that ˛c 6 e 6 t , or in other words

fe � ˛c C 1; e � ˛c C 2; : : : ; eg � f1; : : : ; tg: (3.9)

For every box .a; b/ 2 ˛Œc;d� we set

ieIa;b
..D e � ˛a C b:

We note that
1 6 ieIa;b 6 e 6 t

for all .a; b/ 2 ˛Œc;d�.
For each integer a satisfying c 6 a 6 d , we consider the following elements of

Uk and L:

Y .e/
a

..D Ei 0
eIa;1

; a Ei 0
eIa;2

; a � � � Ei 0
eIa;˛a ; a

X .e/
a

..D Ea;i 0
eIa;˛a

Ea;i 0
eIa;˛a�1

� � � Ea;i 0
eIa;1

;

and

Y
.e/

Œa;d�
..D Y .e/

a Y
.e/

aC1 � � � Y
.e/

d
; (3.10)

X
.e/

Œa;d�
..D X

.e/

d
X

.e/

d�1
� � � X .e/

a ; (3.11)

va
..D Y

.e/

Œa;d�
vC: (3.12)

By convention, we set vdC1
..D vC: Note that the distinct (odd) elements Ei 0

eIa;b
; a

appearing in the product Y
.e/

Œc;d�
(resp. X

.e/

Œc;d�
) anti-commute, so without specifying the

order of the product, we can simply write

Y
.e/

Œc;d�
D ˙

Y
.a;b/2˛Œc;d�

Ei 0
eIa;b

; a; and X
.e/

Œc;d�
D ˙

Y
.a;b/2˛Œc;d�

Ea;i 0
eIa;b

:
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Example 3.14 Consider the case p D 5, m D n D 7 and ˛ D .310; 13/, so h D 13.
By Example 3.7, we have t D 33, so ˛ is a partition of t .

(i) Suppose c D 8, d D 9, and e D 3. Then

Y
.3/

Œ8;9�
D E10;8E20;8E30;8E10;9E20;9E30;9:

(ii) Suppose c D 10, d D 11, and e D 6. Then

Y
.6/

Œ10;11�
D E40;10E50;10E60;10E60;11:

(iii) Suppose c D 12, d D 13, and e D 7. Then

Y
.7/

Œ10;11�
D E70;12E70;13:

If in each case we insert ieIa;b into the box .a; b/ of the Young diagram, the cases
(i), (ii), (iii) are illustrated by the following pictures:

1 2 3

1 2 3

4 5 6

6

7

7

Lemma 3.15 Suppose that Y
.e/

Œc;d�
vC ¤ 0. Then Y

.e/

Œc;d�
vC is a weight vector of weight

�
˛ �

dX
bDc

˛b�b

ˇ̌̌ X
.a;b/2˛Œc;d�

�ieIa;b

�
:

Proof This is clear from (3.7). ut

For every .a; b/ 2 ˛Œc;d� we set

fa;b
..D b C #

˚
.a1; b1/ 2 ˛Œc;d� j a1 > a and ieIa1;b1

D ieIa;b

	
;

considered as a positive integer or as an element of k depending on the context.
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Lemma 3.16 We have

X
.e/

Œc;d�
Y

.e/

Œc;d�
vC D

� Y
.a;b/2˛Œc;d�

fa;b

�
vC:

In particular, if ˛c C d � c < p then Y
.e/

Œc;d�
vC ¤ 0.

Proof Note that for every .a; b/ 2 ˛Œc;d� we have

fa;b 6 fc;˛c
D ˛c C d � c < p

by assumption. So, considered as an element of k, every integer fa;b is non-zero.
Therefore it suffices to prove the first claim. Recall the notation (3.12). To prove the
first claim, it is sufficient to prove that for any .a; b/ 2 ˛Œc;d� we have

Ea;i 0
eIa;b

Ei 0
eIa;b

; aEi 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1

D fa;bEi 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1:

(3.13)

In this paragraph we prove that for any c 6 a 6 d and 1 6 j 6 t , we have

Ea;j 0vaC1 D 0: (3.14)

Indeed, note that Ea;j 0vC D 0 since vC is a highest weight vector. Moreover, note
that Y

.e/
aC1 � � � Y

.e/

d
is a product of Ei 0

eIa1;b
; a1

with a1 > a, so Ea;j 0 supercommutes
with such a factor unless ieIa1;b D j . For such exceptional factors Ei 0

eIa1;b
; a1

, we
have

Ea;j 0Ei 0
eIa1;b

; a1
D �Ei 0

eIa1;b
; a1

Ea;j 0 C Ea;a1
:

Now Ea;a1
commutes with every term appearing in Y

.e/
aC1 � � � Y

.e/

d
, and Ea;a1

vC D 0

since vC is a highest weight vector and a < a1. So we can supercommute Ea;j 0 all
the way to vC to get

Ea;j 0vaC1 D ˙Y
.e/

aC1 � � � Y
.e/

d
Ea;j 0vC D 0;

completing the proof of (3.14).
In this paragraph we prove that for any c 6 a 6 d and 1 6 b1 < b2 6 ˛a, we

have
Ei 0

eIa;b2
; i 0

eIa;b1

vaC1 D 0: (3.15)

Indeed,
Ei 0

eIa;b2
; i 0

eIa;b1

vaC1 D Ei 0
eIa;b2

; i 0
eIa;b1

Y
.e/

aC1 � � � Y
.e/

d
vC:

If we commute Ei 0
eIa;b2

; i 0
eIa;b1

all the way past Y
.e/

aC1 � � � Y
.e/

d
, we get zero since

Ei 0
eIa;b2

; i 0
eIa;b1

vC D 0 by Lemma 3.13. On the other hand, Ei 0
eIa;b2

; i 0
eIa;b1

will pro-

duce a non-trivial commutator with the factor Ei 0
eIa1;b

; a1
appearing in Y

.e/
aC1 � � � Y

.e/

d

only if ieIa;b1
D ieIa1;b , in which case the commutator equals Ei 0

eIa;b2
; a1

. Since
b1 < b2, we have that ieIa1;b D ieIa;b1

< ieIa;b2
6 e so Ei 0

eIa;b2
; a1

also appears
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in the product Y
.e/

a1
in the guise Ei 0

eIa1;b
; a1

. This means that the commutator term

will contain E2
i 0
eIa;b2

; a1
, hence it is zero by (3.8).

We now prove (3.13). Note that (3.6) implies that

Ea;i 0
eIa;b

Ei 0
eIa;b

; a Ei 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1

D
�
Ea;a C Ei 0

eIa;b
; i 0

eIa;b

�
Ei 0

eIa;bC1
; a � � � Ei 0

eIa;˛a ; a vaC1

C

˛aX
kDbC1

˙Ei 0
eIa;b

; a Ei 0
eIa;bC1

; a

� � � Ei 0
eIa;k�1

; a Ei 0
eIa;k

; i 0
eIa;b

Ei 0
eIa;kC1

; a � � � Ei 0
eIa;˛a ; a vaC1

˙ Ei 0
eIa;b

; a Ei 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a Ea;i 0

eIa;b
vaC1:

We denote the three summands in the the right-hand side by S1; S2 and S3, respec-
tively. Note that S3 D 0 by (3.14).

Furthermore, we have that

S1 D fa;bEi 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1:

Indeed, it is easy to see that

Ea;aEi 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1 D b Ei 0

eIa;bC1
; a � � � Ei 0

eIa;˛a ; a vaC1

and

Ei 0
eIa;b

; i 0
eIa;b

Ei 0
eIa;bC1

; a � � � Ei 0
eIa;˛a ; a vaC1 D C Ei 0

eIa;bC1
; a � � � Ei 0

eIa;˛a ; a vaC1

where
C D #

˚
.a1; b1/ 2 ˛Œc;d� j a1 > a and ieIa1;b1

D ieIa;b

	
using the fact that by definition we have ieIa;b 62 fieIa;bC1; : : : ; ieIa;˛a

g.
It remains to prove that every summand in S2 is zero. Let b C 1 6 k 6 ˛a. Then

Ei 0
eIa;bC1

; a � � � Ei 0
eIa;k�1

; aEi 0
eIa;k

; i 0
eIa;b

Ei 0
eIa;kC1

; a � � � Ei 0
eIa;˛a ; a vaC1

D Ei 0
eIa;bC1

; a � � � Ei 0
eIa;k�1

; aEi 0
eIa;kC1

; a � � � Ei 0
eIa;˛a ; aEi 0

eIa;k
; i 0

eIa;b
vaC1

which is zero since Ei 0
eIa;k

; i 0
eIa;b

vaC1 D 0 by (3.15). ut

We now define a non-negative integer k and positive integers b0 > b1 > � � � > bk

and a0 < a1 < � � � < akC1
..D h C 1 recursively as follows. We set

a0
..D m C 1 and b0

..D ˛a0
:

For j D 1; 2; : : : , on the j th step, if aj �1 C p � bj �1 > h then we define

k ..D j � 1 and aj
..D h C 1

and stop; if aj �1 C p � bj �1 6 h, then we define

aj
..D aj �1 C p � bj �1 and bj

..D ˛aj
:
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Note that

˛aj
C aj C1 � 1 � aj D bj C aj C1 � 1 � aj D p � 1

for 0 6 j < k, and ˛ak
CakC1 �1�ak < p by definition. So for all j D 0; 1; : : : ; k,

we have
˛aj

C aj C1 � 1 � aj < p: (3.16)

Lemma 3.17 We have b0 C b1 C � � � C bk 6 n.

Proof We will use the description of t given in (3.3).
By Lemma 3.8, we have b0 6 n, so

j˛j D t 6 tb0
p .m; n/ D b0.m C 1/ C .p � b0/.n C 1 � b0/ � 1:

On the other hand, note that

˛1 C � � � C ˛mC1 > .m C 1/˛mC1 D .m C 1/b0;

so, using the bound ˛a > ˛aj
D bj for aj �1 < a 6 aj , we have

j˛j � .m C 1/b0 >
hX

aDmC1

˛a >
kX

j D1

bj .aj � aj �1/ D

kX
j D1

bj .p � bj �1/:

It follows from the two inequalities that

kX
j D1

bj .p � bj �1/ 6 .n C 1 � b0/p � b0.n C 1 � b0/ � 1;

which is equivalent to

p

�
� n � 1 C

kX
j D0

bj

�
<

kX
j D1

bj �1bj � b0.n C 1 � b0/:

Now write
b0 C b1 C � � � C bk D n C 1 C u

for some u 2 Z, so that we need to show that u < 0. Using u we can rewrite the
above inequality as

pu <

kX
j D1

bj �1bj � b0

� kX
j D1

bj � u

�
;

which is equivalent to

.p � b0/u <

kX
j D1

.bj �1 � b0/bj :

Now p � b0 is strictly positive, by Lemma 3.8, while the right-hand side is negative
or zero, showing that indeed u < 0. ut
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Recalling (3.10), (3.11) we now consider the following elements of Uk:

Y ..D Y
.b0/

Œa0;a1�1�
Y

.b0Cb1/

Œa1;a2�1�
� � � Y

.b0Cb1C���Cbk/

Œak ;akC1�1�
;

X ..D X
.b0/

Œa0;a1�1�
X

.b0Cb1/

Œa1;a2�1�
� � � X

.b0Cb1C���Cbk/

Œak ;akC1�1�
:

Note using Lemma 3.17 that each Y
.e/

Œc;d�
appearing in the product Y satisfies the

assumption (3.9), so Y actually makes sense, and similarly so does X .
Taking into account Lemma 3.15, it follows that the vector Y vC lies in the weight

space L�j�, where

� D

mX
aD1

˛a�a 2 ƒ.m/

and

� D

kX
lD0

X
.a;b/2˛Œal ;alC1�1�

�ib0C���Cbl Ia;b
:

By Lemma 3.17, each ib0C���Cbl Ia;b appearing in this sum for � satisfies

1 6 ib0C���Cbl Ia;b 6 b0 C � � � C bl 6 n:

Therefore .�j�/ 2 ƒ.mjn; t/ as required.
To complete the proof of Proposition 3.11 (i), it remains to prove that Y vC ¤ 0.

To check this we first note that

XY vC

D ˙X
.b0/

Œa0;a1�1�
Y

.b0/

Œa0;a1�1�
X

.b0Cb1/

Œa1;a2�1�
Y

.b0Cb1/

Œa1;a2�1�
� � � X

.b0Cb1C���Cbk/

Œak ;akC1�1�
Y

.b0Cb1C���Cbk/

Œak ;akC1�1�
vC:

Indeed, if 0 6 l1 ¤ l2 6 k then for the terms Ej1;i 0
1

appearing in X
.b0Cb1C���Cbl1

/

Œal1
;al1C1�1�

and the terms Ei 0
2

;j2
appearing in Y

.b0Cb1C���Cbl2
/

Œal2
;al2C1�1�

we have j1 ¤ j2 and i1 ¤ i2,
since

al1
6 j1 < al1C1 and b0 C b1 C � � � C bl1�1 < i1 6 b0 C b1 C � � � C bl1

;

with similar bounds for l2. So Ej1;i 0
1

and Ei 0
2

;j2
anticommute. Hence X

.b0Cb1C���Cbl1
/

Œal1
;al1C1�1�

and Y
.b0Cb1C���Cbl2

/

Œal2
;al2C1�1�

commute up to a sign.

It remains to apply Lemma 3.16 to

X
.b0Cb1C���Cbl /

Œal ;alC1�1�
Y

.b0Cb1C���Cbl /

Œal ;alC1�1�
vC

for l D 0; 1; : : : ; k, noting that ˛al
C alC1 � 1 � al < p for all such l by (3.16).

20            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

22 K. Coulembier, P. Etingof, A. Kleshchev, V. Ostrik

Example 3.18 We continue with Example 3.14. In that case we have k D 2, a0 D 8,
a1 D 10, a2 D 12, a3 D 14 and b0 D 3, b1 D 3, b2 D 1. So

Y D Y
.3/

Œ8;9�
Y

.6/

Œ10;11�
Y

.7/

Œ12;13�
:

Note that Y
.3/

Œ8;9�
; Y

.6/

Œ10;11�
; Y

.7/

Œ12;13�
are described explicitly in Example 3.14. Note that

Y vC lies in the weight space L�j�, where � D .37/ 2 ƒ.7/ and � D .2; 2; 2; 1; 1; 6; 2/

2 ƒ.7/. The lowering operator Y in this example is illustrated by the following pic-
ture:

1 2 3

1 2 3

4 5 6

6

7

7

3.4 Upper bound

In this section we prove Proposition 3.11 (ii). We use the reformulation of the propo-
sition in terms of the general linear supergroup from 3.3.1.

Fix r 2 Z>0. The standard Borel subgroup of GL.r jr/ has even positive simple
roots

"i � "iC1 and "0
i � "0

iC1; 1 6 i < r;

and odd positive root "r � "0
1. For integers r > a > b > 1, we have a Borel subgroup

Ba;b with same even roots as above, but for which the odd simple positive roots are

"a � "0
1; "0

b � "aC1; "r � "0
bC1:

Lemma 3.19 For a given ˛ 2 ƒC.r/, the highest weight of L.˛ j0/ with respect to
Ba;b is of the form

aX
iD1

˛i "i C

bX
j D1

ˇj "0
j C

r�aX
lD1

l"aCl
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for some ˇj 2 N and l 2 Z. If there exists 1 6 l 6 r � a for which l > 0 and
l 0 D 0 for all l 0 > l , then

L.˛ j0/�j� D 0

for all .�; �/ 2 ƒ.ajb/ � ƒ.r jr/.

Proof The expression for the highest weight with respect to Ba;b follows immedi-
ately from the procedure of odd reflections, see [3, Lemma 4.2].

Clearly, in the partial order corresponding to Ba;b , a weight .�; �/ 2 ƒ.ajb/ is
not lower than the described highest weight of L.˛ j0/ under the imposed condition
on flg. ut

Recall that we have fixed m > n > 0.

Example 3.20 Consider 1 6 s 6 min.p � 1; n C 1/ and write

n � s C 1 D as C b; for a 2 N and 0 6 b < s:

For r > m C 1 C .a C 1/.p � s/, we can consider the partition

˛.n;s/
..D .smC1Ca.p�s/; bp�s/ 2 ƒC.r; t s

p.m; n/ C 1/:

Of course ˛.n;s/ actually depends on m; n; s; p, but we consider m; p as constant,
motivating the notation. We have for example

˛.n;1/ D .1mC1C.p�1/n/ and ˛.n;nC1/ D ..n C 1/mC1/:

Then L.˛.n;s/ j0/�j� D 0 for all .�; �/ 2 ƒ.mjn/, by Lemma 3.19.
Indeed, the calculation of the highest weight with respect to Bm;n, following the

rule in [3, Lemma 4.2], can for instance be structured as follows. First we can com-
pute the highest weight with respect to Bm;1, which is(

.˛.n�1;s/ j p � s/ if s 6 n;

..n C 1/m; nj1/ if s D n C 1:

Passing to Bm;2 (in case n > 1), Bm;3 etc. involves the exact same computation as
above. In particular, the highest weight with respect to Bm;n�sC1 (if s 6 n) is�

smC1
j.p � s/n�sC1

�
and subsequently, the highest weight with respect to Bm;n is�

sm; 1 j.p � s/n�sC1; 1s�1
�
:

In other words (with notation from Lemma 3.19), we have 1 D 1 and l D 0 for
l > 1.

The following corollary implies Proposition 3.11 (ii).

Corollary 3.21 For 1 6 s 6 min.p � 1; n C 1/ and r D t s
p.m; n/ C 1 as in (3.1),

there exists a p-restricted partition ˛ 2 ƒC.r/ such that L.˛ j0/�j� D 0 for all
.�; �/ 2 ƒ.mjn; r/.

Proof For ˛ D ˛.n;s/ as in Example 3.20, it only remains to observe that ˛ is p-
restricted, which follows from s < p. ut
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4 Surjectivity

In this section we study surjectivity of the morphism ˆ
.r/

mjn
from equation (1.1).

4.1 Main results

Recall the integer rp.m; n/ which was defined and determined in Sect. 3.

Theorem 4.1 Assume that p > 2.

(i) Whenever
rp.m; n/ < r 6 m C n C mn;

the morphism ˆ
.r/

mjn
is neither injective nor surjective.

(ii) For the morphism ˆ
.r/

mjn
to be surjective for all r 2 N, we need

mn D 0 or m C n < p:

(iii) The morphism ˆ
.r/

1j1
is surjective for all r .

It is an open question whether the necessary condition for surjectivity in The-
orem 4.1 (ii) is also sufficient. However, for p D 3, the combination with Theo-
rem 4.1 (iii) shows it is:

Corollary 4.2 For p D 3, the morphism ˆ
.r/

mjn
is surjective for all r 2 N if and only

if mn D 0 or m D 1 D n.

The remainder of the section is devoted to the proof of Theorem 4.1 and some
similar considerations for the orthosymplectic supergroup.

4.2 Failure of surjectivity

In this section we prove parts (i) and (ii) of Theorem 4.1.

Lemma 4.3 Consider a homomorphism �W A ! B between free abelian groups of
finite rank.

(i) We have an inclusion of vector spaces

k˝ ker � � ker.idk˝�/;

which is an equality if p D 0.
(ii) For a field extension K=k, we have the equality

K˝k.ker.idk˝�// D ker.idK˝�/:
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Proof Observe that im � is free, as a subgroup of B . It follows that we have a short
exact sequence

0 ! k˝ ker � ! k˝A ! k˝ im � ! 0:

Since idk˝� factors through k˝ im �, the inclusion in (i) follows. The equality in
(i) in characteristic zero follows since k is then flat over Z.

Part (ii) is obvious, since K˝k� is exact. ut

Denote by ır
mjn

.k/ the dimension of the right-hand side in (1.1):

ır
mjn.k/ ..D dimk EndGL.mjn/

�
V ˝r

mjn

�
:

Proposition 4.4 Fix r; m; n. The value ır
mjn

.k/ depends only on p D char.k/, and

ır
mjn.k/ > ır

mjn.Q/:

Proof Set
A D End

�
V ˝r

mjn;Z
�

' Z.mCn/2r

:

Then it is known, see below, that there exists a homomorphism

f W A ! Al

of abelian groups, for some l 2 N, such that

EndGL.mjn/

�
V ˝r

mjn

�
' ker.k˝f /:

The statements now follow from Lemma 4.3.
To construct f concretely, we can observe that one way of describing GL.mjn/-

morphisms, which does not use the antipode, is as the equaliser of two morphisms

A ! A˝B

where B is the r-th degree component of the superpolynomial algebra

ZŒXij j 1 6 i; j 6 m C n� � O.GL.mjn//;

when we view GL.mjn/ as a group superscheme defined over Z. ut

Proof of Theorem 4.1 (i) and (ii) By definition, ˆ
.r/

mjn
is not injective for

rp.m; n/ < r (4.1)

while, by Remark 3.1 (i), ˆ
.r/

mjn
is injective (and surjective) for k D Q under the

assumption
r 6 m C n C mn: (4.2)

It thus follows from Proposition 4.4 that under (4.2) the dimension of the right-hand
side in (1.1) is at least that of the left-hand side. If additionally (4.1) holds, it thus
follows that ˆ is not surjective as it is not injective. This proves part (i).

For part (ii), we can focus on the case m > n > 0. By part (i) and Lemma 3.2 a
necessary condition for surjectivity is

rp.m; n/ D m C n C mn D tnC1
p .m; n/:

By Theorem 3.3, for instance using 3.1.1, this condition is equivalent to the condition
p < m C n. ut
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4.3 Invariant theory for GL.1j1/

Here we always assume p 6D 2. Theorem 4.1 (iii) follows from the following theorem.

Theorem 4.5 For ˆ
.r/

1j1
W kSr ! EndGL.1j1/.V

˝r
1j1

/ in (1.1), we have

dimk EndGL.1j1/

�
V ˝r

1j1

�
D

 
2r � 2

r � 1

!
D dimk im ˆ

.r/

1j1
;

for any p 6D 2.

Proof Here we demonstrate the left equality, while the right equality follows from
Lemmas 4.8 (iii) and 4.9 (iii) below.

To prove the claim, we can use some basic facts about the representation theory
of GL.1j1/. A detailed exposition of this is given in [14] in characteristic zero. In
positive characteristic, the same story plays out, except we get an atypical line for
every multiple of p. For a; b 2 Z, the simple module L.ajb/ is projective if and only
if it is two-dimensional with lowest weight .a � 1 jb C 1) if and only if a C b is not
zero in k. In the other cases the simple module is one-dimensional and its projective
cover P.ajb/ is self-dual of Loewy-length 3 with middle layer L.a C 1 jb � 1/

˚L.a � 1 jb C 1/.
Consequently, if p does not divide r (or p D 0), from elementary character

comparison (where D denotes the dimension of the endomorphism algebra)

V ˝r
'

r�1M
iD0

L.r � i j i/˚.r�1
i /;

so

D D

r�1X
iD0

 
r � 1

i

!2

:

Since V D L.1j0/ is projective, it follows that all powers V ˝r are projective. If p

divides r , we thus similarly find

V ˝r
'

r�1M
iD1

P.r � i j i/˚.r�2
i�1/;

so

D D

r�1X
iD1

 
r � 2

i � 1

! 
r

i

!
:

Both sums are equal to the claimed dimension, by Vandermonde’s identity. ut

Remark 4.6 Since the second equality in the theorem will also be obtained by ex-
plicit calculation, we also obtain rather explicit descriptions of the kernel of (1.1).
For instance, if p does not divide r , the kernel, as a submodule of the regular module,
corresponds to the radicals of the projective covers of the simple modules labelled
by (p-regularisations of) hook partitions and the entire projective covers for the other
simple modules.
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4.3.1

For 0 < j 6 r , we denote by h.r I j � 1/ the hook partition of size r and length j . In
other words

h.r I i/ D .r � i; 1i /; for 0 6 i < r:

We denote the p-regularisation (as defined in [13, Section 6.3]) of a partition �

by R.�/. If p D 0 then by convention R.�/ D �.

Lemma 4.7 For r 2 Z>0 and 0 6 j < i < r , we have R.h.r I i// D R.h.r I j // if
and only if p divides r and

i D .p � 1/
r

p
and j D i � 1:

Proof For 0 6 i < r , we can write

i D .p � 1/a C b and i C 1 D .p � 1/a1 C b1

for unique a; b; a1; b1 2 N with 0 < b; b1 < p. For instance a1 D a and b1 D b C 1

whenever b < p � 1. It then follows easily that

R.h.r I i// D

(
.r � i; .a C 1/b; ap�1�b/ if a C 1 < r � i;

..a1 C 1/b1; a
p�1�b1

1 ; r � i � 1/ if a C 1 > r � i:

The only case in which the regularisations could become identical is if for h.r I j /

we are in the first line and for h.r I i/ on the second line (up to i $ j ). We use the
notation j D .p � 1/a0 C b0. Clearly we must have b1 D 1 and either a1 C 1 D r � i

(in which case b0 D p � 1) or a1 D r � i . The first option for a1 is not relevant,
because it would require r � j D a1 C 1 D r � i and hence j D i , a contradiction.
So we have a1 D r � i (implying already j D i � 1), which, together with b1 D 1,
shows indeed pi D .p � 1/r . ut

4.3.2

Since V D k1j1, we have
V ˝r

'

M
aCbDr

M ajb

as a kSr -module.
By the Littlewood–Richardson rule, for 0 < a; b, the module M ajb has a filtration

with subquotients the Specht modules Sh.rIb/ and Sh.rIb�1/.

Lemma 4.8 Fix r 2 N not divisible by p, or assume p D 0.

(i) For a C b D r with 0 < a; b, in RepkSr

M ajb
' Sh.rIb/

˚Sh.rIb�1/:
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(ii) For 0 6 i < r , the Specht module Sh.rIi/ is simple with

dimk Sh.rIi/
D

 
r � 1

i

!
:

(iii) The dimension of the image of ˆ
.r/

1j1
is
�

2r�2
r�1

�
.

Proof Part (i) follows from the fact that both Specht modules are in different blocks
and self-duality. All dimension calculations are then immediate. ut

Lemma 4.9 Fix r 2 N divisible by p > 2.

(i) There are non-isomorphic simple kSr -modules fDi j 0 6 i 6 r � 2g with

dimk Di D

 
r � 2

i

!
such that Sh.rI0/ ' D0 is the trivial module, Sh.rIr�1/ ' Dr�2 is the sign
module, and for 0 < i < r � 1 there are short exact sequences

0 ! Di�1 ! Sh.r;i/
! Di ! 0:

(ii) We have M rj0 ' D0, M 0jr ' Dr�2 and the socle filtrations

M r�1j1
W

D0

D1

D0

; M r�i ji
W

Di�1

Di�2˚Di

Di�1

for 1 < i < r � 1; and

M 1jr�1
W

Dr�2

Dr�3

Dr�2

:

(iii) The dimension of the image of ˆ
.r/

1j1
is
�

2r�2
r�1

�
.

Proof By restricting to Sr�1 < Sr and using Lemma 4.8, we can observe that each
Sh.rIi/ can be of length at most two, and in case i < r � 1 must contain a simple
constituent which does not appear in any Sh.rIj / for j < i . Moreover, it follows
similarly that Sh.rIi/ and Sh.rIj / have no simple constituent in common if ji �j j > 1.

The forms of M r�1j1 and Sh.r�1;1/ are well known and we prove the remaining
statements by induction:

Assume that for some 1 < i < r � 2, we already know Sh.rIi�1/ has the stated
filtration and the simple constituents have the stated dimension. The fact that M r�i ji

must be self-dual forces Sh.rIi/ to be one of four possibilities. Either it is Di�2, Di�1,
or is of length 2 with Di�1 in the socle or Di�2 in the top. The first two options are
excluded by the fact (see first paragraph) that Sh.rIi/ must contain a ‘new’ simple
constituent. We also know (again by the first paragraph) that Di�2 cannot appear as
a constituent in Sh.rIi/. Hence (by defining Di as the top of Sh.r�i Ii/) we find the
appropriate filtrations for Sh.r�i Ii/, M r�i ji and the stated dimension 

r � 2

i

!
D

 
r � 1

i

!
�

 
r � 2

i � 1

!
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for Di . Concluding the cases i D r � 2; r � 1 is then easy.
By Lemma 2.1(i), the dimension of the image is at least

r�2X
iD0

.dimk Di / dimk M r�iC1jiC1
D

r�2X
iD0

 
r � 2

i

! 
r

i C 1

!
;

where equality would be guaranteed if we have isomorphisms between the two-
dimensional quotients and submodules of the signed permutation modules. However,
by the (already proved) left equality in Theorem 4.5, the above value is also the
dimension of the target in (1.1), so it is the maximal value of the image. Part (iii)
follows. ut

Remark 4.10 We can easily check that

Di '

(
DR.h.rIi// for i < .p � 1/r=p;

DR.h.rIiC1// for i > .p � 1/r=p:

4.4 The orthosymplectic case

Let Br .ı/ be the Brauer algebra on r strands, with loops evaluated at ı 2 k. We fix
m; n 2 N. For V D kmj2n, we have an algebra morphism

Br .m � 2n/ ! Endk.V ˝r /; (4.3)

so that the restriction to kSr � Br .m � 2n/ corresponds to (2.1), see [16].

Proposition 4.11

(i) ([5,20]) If p D 0, then (4.3) is injective if and only if

r 6 m C n C mn:

(ii) If p > 2, then (4.3) is not injective if

r > min.m C n C mn; rp.m; 2n//:

(iii) If p D 2, and m even, then (4.3) is not injective if

r > m=2 C n:

Proof One condition in part (ii) comes from part (i) and Lemma 4.3 (i), the other
from restriction to kSr � Br .m � 2n/. Part (iii) follows again from part (i) and
Lemma 4.3 (i), by observing that for p D 2 we can replace kmj2n by k0j2.m=2Cn/.

ut
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4.4.1

If p 6D 2, then (4.3) yields

‰
.r/

mj2n
W Br .m � 2n/ ! EndOSp.V /.V

˝r /:

For k D C, the morphism ‰
.r/

mj2n
is always surjective, see [7,16,18].

Using the same dimensional arguments that led to Theorem 4.1, one can use the
above results to prove that ‰

.r/

mj2n
is not necessarily surjective in positive characteris-

tic. We just give an example.

Example 4.12 If p > 2, m > 2n > 0 and m > 2p � 3, then there are r for which
‰

.r/

mj2n
is not surjective.

5 Example: GL.2j1/

In this section we let k be of characteristic p > 2 and we investigate in detail the
failure of surjectivity from Theorem 4.1 in the smallest relevant case.

5.1 Results

The following theorem shows in particular that the lack of surjectivity observed in
Theorem 4.1 (i) actually persists to arbitrarily high degrees r .

Theorem 5.1 Set V D V2j1 and p D 3.

(i) If r D 2 C 3i for some i 2 Z>0, then ˆ
.r/

2j1
is not surjective.

(ii) We have dimk EndGL.2j1/.V
˝5/ D 120.

(iii) The image of ˆ
.5/

2j1
W kS5 ! EndGL.2j1/.V

˝5/ has dimension 119.

The rest of the section is devoted to the proof. For the remainder of the section,
we fix m D 2; n D 1, so V D V2j1:

5.2 Direct argument for failure of surjectivity

Unless further specified, we assume p > 2. We denote by es 2 kSr the (unique)
idempotent for which .kSr /es is the projective cover of the sign module.
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5.2.1

We denote by � i V and S i V the i -th divided and symmetric power of the super-
space V . Concretely, � i V is the subsuperspace of Si -invariants in V ˝i and S i V is
the quotient of coinvariants, where the action of the symmetric group is defined in
Sect. 2.4.2. On the other hand, for the action defined in Sect. 2.4.2 twisted by the
sign, we have invariants

Vi
V � V ˝i and coinvariants V ˝i � ƒi V . For example,

we have

� i V '

iM
j D0

� i�j .V N0/˝
Vj

cl.V N1/;

where
Vj

cl.V N1/ denotes the invariants for the sign action of the symmetric group Si

on V N1 considered as a usual vector space.

Lemma 5.2 Assume neither r nor r � 1 are divisible by p.

(i) Over GL.V /, the inclusion VrV ,! V ˝r

of the Sr -invariants for the sign-twisted action, is split.
(ii) If ˆ

.r/

2j1
is surjective, then dimk ˆ.kSres/ D 1.

Proof Claim (i) is only non-trivial for r > p, which is what we focus on. If neither
r nor r � 1 is divisible by p it is easy to check that the (4-dimensional) module
L ..D

Vr
V is simple. More precisely it is the simple module L.1; 1jr � 2/, with

lowest weight .0; 0 jr/.
However the weight space .0; 0jr/ in V ˝r is only 1-dimensional, meaning that

ŒV ˝r W L� D 1. By self-duality (or because the quotient ƒrV of V ˝r is isomorphic to
L too), L must form a direct summmand.

For part (ii), denote the sign module of kSr by D and its projective cover by
P D kSres . We observeVr

V ' HomkSr
.D; V ˝r / � HomkSr

.P; V ˝r / ' ˆ.es/.V ˝r /:

Hence, under the assumption that ˆ is surjective, the idempotent in EndGL.V /.V
˝r /

corresponding to the summand
Vr

V must be ˆ.es/ and the above inclusion an equal-
ity. Hence every kSr -module morphism P ! V ˝r acts trivially on the radical of P ,
from which (ii) follows. ut

Lemma 5.3 If p D 3 and r > 3, then dimk ˆ.kSres/ > 1.

Proof The p-regularisation � of the partition .1r / of r is .s; s/ if r D 2s, and
.s C 1; s/ if r D 2s C 1.

Since � is of length 2 D m, the Specht module S� appears as a subquotient of
V ˝r , for instance in M .r=2;r=2/j0 if r is even. Since the sign module D� is the top
of S�, it follows that the image in the statement of the lemma has at least dimension
dimk S� > 1.

Proof of Theorem 5.1 (ii) This is a consequence of Lemmas 5.2 (ii) and 5.3. ut
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5.3 Proof of Theorem 5.1 (ii)

We set p D 3, m D 2, n D 1 and V D V2j1. By Proposition 4.4, to calculate the
dimension of the endomorphism algebra we can assume that k is algebraically closed.

5.3.1

Recalling the definitions of Sect. 5.2.1, we have a decomposition

V ˝5
' S2.ƒ2V /˝V ˚ƒ2.ƒ2V /˝V

˚ƒ2.S2V /˝V ˚S2.S2V /˝V ˚..ƒ2V /˝.S2V /˝V /2:

We label the summands by Q.i/ for 1 6 i 6 5, where Q.5/ thus appears twice in
V ˝5.

Some general useful (easy to verify) facts are:

(a) The gl.2j1/-module ƒ2V is free as a g�1-module, where g�1 is the subalgebra
spanned by the Ei 0j . Consequently, also Q.1/; Q.2/ and Q.5/ are g�1-free.

(b) The module Q.i/ is self-dual, for every 1 6 i 6 5.
(c) The Casimir operator in U.g/ is central as an element of the hyperalgebra Uk.

Moreover on a simple GL.2j1/-representation L.a; b jc/ it acts via the scalar

a2
C .b � 1/2

� .c C 1/2
2 k:

(d) If a � b 6 p � 2 (so a � b 6 1 for us) and if .a C c C 1/.b C c/ is not zero
in k, then the character of L.a; b jc/ equals that of the (simple) Kac module with
highest weight .a; b jc/ over C. The relevant examples of this are: L.3; 2j0/ and
L.1; 1j3/.

(e) As p D 3, the GL.2j1/-representation L.2; 2j1/ is one-dimensional.

We will also freely use the multiplicities of the simple GL.2j1/-representations
in the (semisimple) analogues of the Q.i/ over C.

5.3.2

A quick computation shows that the subquotient .
V4

V ˝V /=
V5

V of Q.1/ is an
extension of L.2; 1j2/ and L.2; 0j3/, revealing in particular the character of both
simples. Using this, (e) and more character comparison shows that the simple multi-
plicities in Q.1/ correspond to the following:

Q.1/ ' L.3; 2j0/˚L.1; 1j3/˚

L.2; 1j2/

L.2; 2j1/˚L.2; 0j3/

L.2; 1j2/

:

That the above isomorphism then holds follows from (a), (b), (c) and (d). The proce-
dure determines also the character of all simples involved.
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5.3.3

Using similar arguments we can subsequently prove

Q.2/ D L.3; 1j1/˚

L.2; 1j2/

L.2; 2j1/˚L.2; 0j3/

L.2; 1j2/

;

Q.3/ D L.3; 1j1/˚

L.3; 2j0/

L.4; 1j0/

L.3; 2j0/

;

Q.5/ D L.3; 1j1/2
˚

L.3; 2j0/

L.4; 1j0/

L.3; 2j0/

˚

L.2; 1j2/

L.2; 2j1/˚L.2; 0j3/

L.2; 1j2/

:

5.3.4

Since the composition of the natural maps �5V ,! V ˝5 � S5V is not zero, it
follows quickly that S5V is a (non-split) extension of L.5; 0j0/ and L.2; 2j1/. A
tedious calculation shows that L.2; 1j2/ is not a submodule of Q.4/. It then follows
from (b) and (c) that

Q.4/ '

L.2; 2j1/

L.5; 0j0/˚L.2; 1j2/

L.2; 2j1/

˚

L.3; 2j0/

L.4; 1j0/

L.3; 2j0/

:

5.3.5

Regardless of the precise structure of the summands of the Q.i/ with the given socle
filtrations, the maximal dimension of the endomorphism algebra can be calculated to
be 120. This must be an equality by Proposition 4.4.

5.4 Proof of Theorem 5.1 (iii)

We set p D 3, m D 2, n D 1 and V D V2j1.

5.4.1

The simple kS5-modules are

D.5/; D.2;2;1/
j D.3;2/; D.4;1/

j D.3;1;1/

where we have split the list according to the blocks. The first two blocks are equiv-
alent, via tensoring with the sign module D.3;2/. The block decomposition in turn
implies that

S .4;1/
' D.4;1/ and S .3;1;1/

' D.3;1;1/:
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5.4.2

By (3.4) and (3.5), the kS5-module V ˝5 contains (projective) summands M .2;2/j1 '

M .2;2;1/ and M .2;1/j2. We claim that

M .2;2;1/ contains P .5/
˚P .4;1/

˚P .3;1;1/:

Indeed, the the first summand is obvious. The second follows from S .4;1/ ' D.4;1/

and the Littlewood–Richardson rule. The third summand follows similarly.
The same argument leads to the first two summands in the claim that

M .2;1/j2 contains P .4;1/
˚P .3;1;1/

˚P .2;2;1/;

while the appearance of P .2;2;1/ follows from observing that there is a non-zero
morphism M .2;1/j2 ! S .2;2;1/ but no such morphism M .2;1/j2 ! S .5/.

From Lemma 3.2 , we know that the kS5-module V ˝5 is not faithful. By Lemma
2.1 (ii), the one remaining indecomposable projective P .3;2/ therefore cannot appear
as a summand.

5.4.3

Using the dimensions of the simple modules and the block equivalence from 5.4.1,
expressing the dimension of kS5 yields

120 D 2 dim P .3;2/
C 8 dim P .2;2;1/

C 36:

Since kS5 is not semisimple it also follows easily that dim P .3;2/ > 6 and dim P .2;2;1/

> 9. Hence these bounds must be equalities and the projectives have (socle) filtrations

P .4;1/
W D.4;1/

j D.3;2/
j D.4;1/;

P .3;2/
W D.3;2/

j D.4;1/
j D.3;2/:

Since P .4;1/ appears in V ˝5, it follows that the submodule K of P .3;2/ from
Lemma 2.1 (i) is the socle D.3;2/, which is one-dimensional. The dimension now
follows from Lemma 2.1 (i).

6 Some further considerations

In this section we let p D char.k/ be prime.
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6.1 Towards an adapted first fundamental theorem

6.1.1 Construction

Consider a homomorphism of free abelian groups of finite rank

f W A ! B:

We have an induced morphism of ZŒ1=p�-modulesef W ZŒ1=p�˝A ! ZŒ1=p�˝B

and define the subgroup

Ip.f / ..D im.ef / \ B � B:

Example 6.1 For n 2 Z and f W Z ! Z given by multiplication by n we have

Ip.f / D
n

pi
Z � Z;

where i 2 N is maximal with pi j n.

Lemma 6.2 We have:

(i) dimk k˝Ip.f / D rank A � rank ker f D dimC C˝A � dimC ker.C˝f /.
(ii) The induced morphism

k˝Ip.f / ! k˝B

is injective.
(iii) If f is a ring homomorphism, then Ip.f / � B is a subring.

Proof The second equality in part (i) is just Lemma 4.3 (i). The first equality follows
from the observation that the quotient of the free abelian group Ip.f / by its subgroup
imf is p-torsion.

For part (ii) we can observe that by construction Ip.f /=p ! B=p is injective.
Part (iii) is immediate. ut

Definition 6.3 Define †
.r/

mjn
as the k-algebra k˝Ip.f / for f W ZSr ! End.V ˝r

mjn;Z/:

Proposition 6.4 Let p > 2. Then we have:

(i) dimk †
.r/

mjn
D dimC EndGL.Vmjn;C/.V

˝r
mjn;C/.

(ii) There is a commutative diagram of algebra morphisms

†
.r/

mjn

� �
ê.r/

mjn // EndGL.mjn/

�
V ˝r

mjn

�
kSr

OO

ˆ
.r/

mjn

55llllllllllllllll

where ê.r/

mjn
is injective.
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(iii) The morphism ê.r/

mjn
is an isomorphism if and only if

dimk EndGL.mjn/

�
V ˝r

mjn

�
D dimC EndGL.mjn/

�
V ˝r

mjn;C
�
:

Proof Part (i) follows from Lemma 6.2 (i) and surjectivity of

CSr ! EndGL.Cmjn/

�
V ˝r

mjn;C
�
:

Part (ii) follows from Lemma 6.2 (ii). Part (iii) follows from the combination of parts
(i) and (ii). ut

Remark 6.5 Proposition 6.4 reveals a potential approach for super invariant theory in
positive characteristic:

(i) Show that dimk EndGL.mjn/.V
˝r

mjn
/ does not depend on the characteristic p.

(ii) Determine explicitly ‘where to invert powers of p’ in ZSr (or its relevant quotient
corresponding to the characteristic 0 case) before reducing mod p, in the creation of
†

.r/

mjn
:

We demonstrate that, and how, this strategy works in the first case where surjec-
tivity of ˆ

.r/

mjn
fails.

Theorem 6.6 Consider p D 3, r D 5, m D 2 and n D 1.

(i) The morphism ê.5/

2j1
in Proposition 6.4 (ii) is an isomorphism.

(ii) Let R be the subring of ZŒ1=3�S5 generated by S5 and a=3 for a 2 ZS5 the
skew symmetriser, then

k˝R ' EndGL.2j1/

�
V ˝5

2j1

�
' †

.5/

2j1
:

Proof Part (i) follows immediately from Proposition 6.4 (iii) and Theorem 5.1 (ii).
Note also that

ZS5 ! End
�
V ˝5

2j1;Z
�

is injective.
By Theorem 5.1 (iii), the kernel of ˆ

.5/

2j1
is 1-dimensional and therefore spanned

by the skew symmetriser a. It follows easily that in the integral form a=3 is sent to
an element of End.V ˝5

2j1;Z/, whereas a=9 is not. The conclusion now follows. ut

6.2 Characteristic 2

It is observed in [8] that the traditional first fundamental theorem for the orthogonal
group, for instance formulated as surjectivity of

Br .m/ ! EndO.m/

�
V ˝r

m

�
; (6.1)

also fails for p D 2 (it is known to hold for all p 6D 2, see [10]). We show that the
procedure of the previous subsection also has potential here.
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6.2.1

We focus on O.2/ ' GmoZ=2. Denote by B2.2/ the integral Brauer algebra with
basis 1; s; e (with e2 D 2e, se D e D es and s2 D 1).

For p D 2, denote by eB2.2/ the k-algebra obtained by specialising the subring of
ZŒ1=2�˝B2.2/ generated by B2.2/ and .1 C s � e/=2. We have a canonical algebra
morphism

B2.0/ D B2.2/ ! eB2.2/

and this is precisely what one obtains from applying Construction 6.1.1 to (6.1).

Proposition 6.7 For p D 2 D m D r , the algebra morphism (6.1) has kernel and
cokernel of dimension 1, but extends to an isomorphism

eB2.2/
�

��! EndO.2/.V
˝2/:

6.3 Double centralisers

Lemma 6.8 Assume p 6D 2. The double centraliser of kSr acting on V ˝r
mjn

is given
by EndGL.mjn/.V

˝r
mjn

/.

Proof This is a direct consequence of the two equivalent definitions of the Schur
superalgebra; one as the centraliser of kSr and one as the algebra with represention
theory given by polynomial representations of GL.mjn/, see [9]. ut

Corollary 6.9 Assume p D 3. The double centraliser of kS5 acting on V ˝5
2j1

is the
‘deformation’ of kS5 described in Theorem 6.6 (ii).

Remark 6.10 In contrast, the algebra EndO.2/.V
˝2

2 / from Proposition 6.7 is not the
double centraliser of B2.0/. Indeed, one can compute directly that the double cen-
traliser is just kS2.
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