
Accelerated algorithms for constrained optimization
and control

by

Anjali Parashar
B.Tech, Indian Institute of Technology, Indore (2020)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Anjali Parashar. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide,

irrevocable, royalty-free license to exercise any and all rights under
copyright, including to reproduce, preserve, distribute and publicly

display copies of the thesis, or release the thesis under an open-access
license.

Author .
Department of Mechanical Engineering

May 12, 2023
Certified by. .

Anuradha M. Annaswamy
Senior Research Scientist

Thesis Supervisor

Accepted by .
Nicolas Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

2

Accelerated algorithms for constrained optimization and

control

by

Anjali Parashar

Submitted to the Department of Mechanical Engineering
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

Nonlinear optimization with equality and inequality constraints is a ubiquitous prob-
lem in several optimization and control problems in large-scale systems. Ensuring
feasibility along with reasonable convergence to optimal solution remains an open
and pressing problem in this area.

A class of high-order tuners was recently proposed in adaptive control literature
with an effort to lead to accelerated convergence for the case when no constraints are
present. In this thesis, we propose a new high-order tuner based algorithm that can
accommodate the presence of equality and inequality constraints. We leverage the
linear dependence in solution space to guarantee that equality constraints are always
satisfied. We further ensure feasibility with respect to inequality constraints for the
specific case of box constraints by introducing time-varying gains in the high-order
tuner while retaining the attractive accelerated convergence properties. Theoretical
guarantees pertaining to stability are also provided for time-varying regressors. These
theoretical propositions are validated by applying them to several categories of opti-
mization problems, in the form of academic examples, power flow optimization and
neural network optimization.

We devote special attention to analyze a special case of neural network optimiza-
tion, namely, linear neural network training problem, to understand the dynamics
of nonconvex optimization governed by gradient flow and provide lyapunov stability
guarantees for LNNs.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist

3

4

Acknowledgments

Firstly, I would like to express my sincere gratitude to my thesis supervisor Dr. Anu-

radha Annaswamy, for her invaluable guidance and support throughout the research

process. Her expertise and profundity in research helped me achieve my goal of de-

veloping a strong conceptual understanding of theoretical engineering tools. The last

two years have been a great learning experience, thanks to her mentorship, encour-

agement and kind reminders about my strengths and skills.

I would like to extend my heartfelt thanks to the members of the Active Adaptive

Control lab, for their feedback and support in advancing my research and helping me

to navigate the challenges of graduate study. I am lucky to have had the opportunity

of working with Dr. Priyank Srivastava for his guidance and invigorating discussions

which helped me improve the quality of my work. I am also grateful to have worked

with Johannes, Jules, Peter and Rabab.

I acknowledge the support of Boeing Strategic University initiative and the Siemens

Fellowship in enabling me to pursue my academic goals and make a meaningful contri-

bution to the field of control systems and learning. I am truly grateful to Dr. Joseph

Gaudio and Dr. Heather Hussain for their invaluable expertise and insights in shap-

ing the direction of my research. I would also like to thank Dr. Amit Chakraborty

and Dr. Biswadip Dey, especially for helping me identify the right problems to solve.

Lastly, I wish to thank my friends and family. My special thanks to my friends

Sunbochen, Kanishkar, Jai, and Simran who looked after me and cheered for me with

unconditional support on a daily basis over the last two years. To my parents, brother

and all of my family, who always believed in me, thank you for everything.

5

6

Contents

1 Introduction 17

1.1 Problem Statement . 17

1.2 Challenges in constrained optimization problems 17

1.2.1 Challenges in feasibility guarantees 18

1.2.2 Speed of convergence . 18

1.3 Contributions & Outline . 19

2 Preliminaries 21

2.1 Notations . 21

2.2 Convex Optimization . 22

2.3 Constraint Satisfaction Techniques 23

2.3.1 Nonlinear optimization via Lagrange Loss formulation 23

2.3.2 Partitioning of solution-space 24

2.4 High Order Tuner . 25

3 Constrained Optimization using HT: Equality Constraints 29

3.1 Problem Statement . 29

3.1.1 Equality-constrained convex optimization 30

3.2 High Order Tuner for Equality Constrained Convex Optimization . . 31

3.2.1 Convex optimization problems with equality & inequality con-

straints . 32

3.3 Convex Optimization for a Class of Nonconvex Problems 34

3.3.1 Equality-constrained nonconvex problems 34

7

3.3.2 Numerical Example . 36

3.3.3 High Order Tuner . 38

4 Constrained Optimization using HT: Inequality Constraints 41

4.1 Problem Statement . 41

4.2 Optimization with Box constraints 42

4.2.1 HT for Inequality Constraints 43

4.2.2 An academic example . 44

4.2.3 Provably hard problem of Nesterov 45

4.3 HT for constrained linear regression 47

4.3.1 Analogy between Second order LTI systems and High Order

Tuner . 47

4.4 General Case (non-LTI) . 49

4.4.1 Using Projection Operator for HT 50

4.4.2 Application of projection operator to 𝜃(𝑡) 50

4.5 Numerical Simulation . 51

4.5.1 Linear Regression . 52

4.5.2 Projection for Rosenbrock function 53

4.6 Conclusions . 57

5 Accelerated Methods for solving OPF problems: Numerical study 59

5.1 Introduction . 59

5.1.1 Problem formulation . 60

5.2 Solving DC-OPF using Neural Networks 63

5.2.1 Approach Outline . 63

5.3 Numerical Experiments . 68

5.4 Conclusion & Future Work . 75

6 Lyapunov Theory for Neural Network Optimization 77

6.1 Lyapunov Theory for optimization 77

6.1.1 Overview . 78

8

6.2 Linear Neural Network optimization as a dynamic system 78

6.2.1 Scalar case . 78

6.2.2 Phase Portait of LNN: Scalar case 79

6.3 Lyapunov Theory for Linear Neural Networks 80

6.4 Numerical Simulations . 85

6.4.1 Dataset design . 85

6.4.2 Design of Neural Network . 85

6.4.3 Results . 86

7 Conclusions and Future Work 91

A Stability and Convergence proofs 93

A.1 Propositions and Theorems from Chapter 3 93

A.2 Propositions and Theorems from Chapter 4 98

B Details of IEEE Case-300 and Case-1354 simulations 105

B.1 IEEE Case-300 . 105

B.2 IEEE Case 1354 . 107

B.2.1 Analysis of Training & Validation Loss 107

9

10

List of Figures

2-1 Graphical representation of one of the ways in which the partitioning

technique can be utilized to construct a lower-dimension subspace in

R𝑚 which can be converted to an all-time feasible solution space in R𝑛

using (2.5) . 25

2-2 Gradient Descent Update . 26

2-3 Comparison of Nesterov and HT update. Notice that in Nesterov’s

method, the average 𝜈𝑘 is calculated first and then gradient step is

called to 𝜃𝑘+1. In HT, gradient step is taken for 𝜈𝑘, 𝜃𝑘 and then their

average is calculated as 𝜃𝑘+1 . 27

3-1 Overview of the feasibility satisfaction framework presented in Sec-

tion 3.2.1 . 32

3-2 Illustration of inequality constraint satisfaction without violation of

eqaulity constraints . 33

4-1 Convergence of 𝜃 using Algorithm 3 for the Problem-1 in (4.5); Algo-

rithm 1 fails to converge . 45

4-2 Feasibility and convergence comparison for HT with and without Time-

varying gains for Problem 2 (4.6) . 46

4-3 Block Diagram of Linear Regression 47

4-4 Convergence of 𝜃 to the optimal value 𝜃* = [0.1965 − 0.3835 − 1]𝑇 for

Algorithm 1 and Algorithm 2 . 52

11

4-5 ‖𝜃‖ for Algorithm 1 and Algorithm 2. Notice that the norm constraint

(norm limit denoted in red) is conserved with Algorithm 2 with pro-

jection whereas Algorithm 1 violates the constraint 53

4-6 Rosbenbrock function: (vertical axis-y, horizontal axis-x) region in blue

represents lesser value of loss function and yellow represents higher

value of loss. Hence, the minimum lies at (1, 1). 54

4-7 Convergence of 𝑥 for Rosenbrock function: Algorithm 1 fails to con-

verge to the global minimum 𝑥* = 1 since this is a non-convex optimiza-

tion problem. However, Algorithm 2 utilizes the projection operator

to contain the parameter within a set where the loss is always convex

and convergence is ensured, as explained in Chapter 3. 55

4-8 Convergence of 𝑦 for Rosenbrock function: Algorithm 2 converges to

the global minimum with a carefully chosen convex set and projection

operator to ensure that the parameter stays within the set 56

5-1 Schematic summarizing the general approach for solving DC-OPF with

Neural Network [37]. The ’Optimizer’ can be any optimization algo-

rithm, and has been chosen as HT for our method 62

5-2 IEEE Case-9: Comparison of performance between HT and GD with

baseline . 70

5-3 Comparison of predicted Power Generation in IEEE Case-30 by HT

and GD with baseline MATPOWER. HT power prediction is more

accurate than GD . 71

5-4 IEEE Case-30 Power Generation Prediction Error Distribution from

baseline. HT performs better than GD in prediction hypothetically

due to its ability to avoid local minimum 72

12

6-1 Phase portait of a scalar representation of Linear Neural Network (as-

suming 𝑣*𝑢* > 0, phase portait will be a mirror image for 𝑣*𝑢* < 0).

Notice that all points eventually converge to a point lying on the hy-

perbola 𝑣𝑢 = 𝑣*𝑢* except for when initialized on the line 𝑢 = −𝑣, in

which case it converges to the saddle point (0, 0) 80

6-2 Block Diagram explaining the Linear Neural Network architecture. We

assume existence of 𝑊 *
2 ,𝑊 *

1 , 𝐵
*
1 , 𝐵

*
2 such that 𝜃* = 𝑊

*
2𝑊

*
1𝑢 as shown

in (6.11) . 82

6-3 Distribution of input data 𝑥 with 𝑥1, 𝑥2 being the vectors along the

2-dimensions of input data . 86

6-4 Lyapunov Function V(𝑡) for different values of ℎ under gradient update

(𝑙𝑟 = 5 × 10−3). Notice that increasing ℎ, i.e, overparametrizing the

network leads to smoother convergence to 𝑊 *
2𝑊

*
1 , as is often seen in

practice [13] . 88

6-5 Lyapunov Function V(𝑡) for ℎ = 20 under gradient update with a

slower learning rate to clearly show the monotonic behavior of the

lyapunov function (𝑙𝑟 = 5× 10−4). 89

B-1 IEEE Case-300 Training Loss comparison: (a) HT outperforms GD sig-

nificantly due to acceleration, which can be noticed in the osciallatory

behavior, (b) With more training data, HT still performs better but

GD’s performance improves incrementally, (c)GD and HT performance

converges more as dataset size increases 106

B-2 IEEE Case-1354 Training and Validation Loss comparison: (a)-(b)

Training Loss with single point and larger training dataset. GD gets

stuck in a local minimum while HT converges. (c)-(d) Validation loss

comparison illustrates similar phenomenon is observed as in Training

loss . 107

13

14

List of Tables

5.1 IEEE-Case 300 Training metrics comparison with baseline (MATPOWER).

Notice that HT is marginally closer to the average baseline cost. Note

that all 3 methods generate 100% feasible solutions. The NN-based

methods do so because of the variable reduction technique that gener-

ates feasible solution . 73

B.1 Fixed epochs: comparison of dataset size required to converge for HT

and GD . 106

B.2 Fixed Dataset: comparison of epochs required to converge for HT and

GD . 106

15

16

Chapter 1

Introduction

1.1 Problem Statement

There is an immense need to study two broad areas in optimization: constrained

optimization and non-convex optimization. It is quite challenging to propose theoret-

ical guarantees of convergence and stability for constrained optimization problems in

a very general context. Specifically, these optimization problems can be formulated

as [11]

min 𝑓(𝑥)

s.t. ℎ(𝑥) = 0

𝑔(𝑥) ≤ 0,

(1.1)

where 𝑥 ∈ R𝑛 is the decision variable, 𝑓 : R𝑛 → R, ℎ : R𝑛 → R𝑚, and 𝑔 : R𝑛 → R𝑝

are continuously differentiable functions. Without loss of generality, we assume that

problem (1.1) is not overdetermined, i.e., 𝑚 ≤ 𝑛. Unless specified, 𝑓(𝑥), ℎ(𝑥), 𝑔(𝑥)

are assumed to be convex.

1.2 Challenges in constrained optimization problems

By considering the case of constrained convex optimization, we face two main chal-

lenges: feasibility and speed of learning. In this section, we discuss them in detail

17

which provides us with the problems we have attempted to solve in this thesis.

1.2.1 Challenges in feasibility guarantees

Efforts have been made towards feasibility and convergence for specific instances of

constrained optimization such as equality constrained optimization which are mathe-

matically tractable [4]. There are known and established solutions for linear programs

and quadratic optimization problems with linear constraints [34], [8]. As the complex-

ity of the objective function and the nature of constraints becomes complex, feasibility

guarantees are hard to provide. Feasibility is not just important from the perspective

of constraints, but it also affects convergence. Several well known algorithms such

as Alternating Direction Method of Multipliers (ADMM) [10] and Douglas-Rachford

Splitting (DRS) [41], developed for composite convex optimization problems tend to

diverge in the case of infeasible convex optimization.

However, even in these cases, infeasibility detection is limited to the case of linear

programs (LPs), quadratic programs (QPs), second-order cone programs (SOCPs)

and semidefinite programs (SDPs) constrained by closed, convex sets [6]. Overall,

the set of constrained optimization problems that can be reduced to an unconstrained

convex program with necessary and sufficient conditions is very limited. We attempt

to solve this problem by expanding the scope of problems which can be converted

to unconstrained convex optimization programs by providing a list of sufficient con-

ditions for the same. We also make sure that the method for ensuring feasibility

is modular, i.e., only depends on a set of basic assumptions regarding the objective

function and is relatively agnostic to the optimization method and its order itself (i.e,

valid for both first and second order methods such as GD, Netwton’s, etc).

1.2.2 Speed of convergence

Most of the proposed methods in the literature are gradient based methods , that

rely on first-order information of the system to make updates [7], which work well for

high-dimensional computations but have drawbacks such as sensitivity to appropriate

18

learning rates and being very slow in learning [18]. One might argue that a way to re-

solve this problem is to use second-order methods such as Newton’s method [20], how-

ever, these are computationally expensive, since they require calculating and storing

the hessian of the loss function at every iteration. Moreover, in the case of nonconvex

optimization, it is a known problem that Gradient Descent and Quasi-newton meth-

ods often get stuck at saddle points in high-dimensional spaces, since they perform

local minimization [14],[45].

Recently, there have been promising numerical results with the implementation

of fast learning based methods such as Nesterov’s Accelerated method [35], Gradient

descent with Momentum, that impart acceleration to the parameter convergence for

unconstrained convex optimization. Recently, a class of algorithms called High-Order

Tuner (HT) [32, 22] with guaranteed convergence and stability for unconstrained

convex optimization was proposed for accelerated learning based applications in con-

trols and optimization. In this space, constraint satisfaction remains an unaddressed

problem due to the mathematical complexity of the discretized implementation of

these methods. Specifically, some results pertaining to Accelerated primal and dual

methods are available but restricted to linear constraints [30] or min-max problem of

saddle points [24].

1.3 Contributions & Outline

We study the class of problems in (1.1) with the objective of satisfying constraints

and ensuring fast convergence of parameters. As one of the first contributions of

this work, we propose a framework for sufficient guarantees of convexity in the pres-

ence of equality constraints. We utilize the attractive properties of stability of HT

in the presence of time-varying regressors and accelerated convergence for constant

regressors to solve the stated optimization problems. We extend the idea of con-

straints beyond equality constraints and provide analytical tools for accommodating

inequality constraints by using projection-based updates in HT.

In chapter 2, we introduce some preliminary notations, definitions and concepts

19

for reference.

In Chapter 3, we explore a framework for assessing the convergence and stability

for a broader class of equality-constrained convex optimization and propose HT for

constrained convex optimization (Algorithm-1) [40].

We provide dedicated treatment for a specific case of inequality constraints called

as box-constraints in Chapter 4, which commonly occurs in many physical systems

as state and input limits [39]. We propose a modified form of HT (Algorithm-2) with

time-varying gains to ensure feasibility at every instance of time. We also propose

a projection-based method for inequality constraint satisfaction in this chapter. We

further validate the application of HT and its apparent advantages over GD in aca-

demic examples and challenging optimization problems which have been studied in

the literature.

Chapter 5 is dedicated to the validation of HT in the context of optimization

for real-life applications. We explore the application of HT in providing a Neural

Network (NN) based method for solving DC-Optimal Power Flow problem.

Chapter 6 refers to the study of neural network training, which is currently devoid

of any theoretical guarantees due to the non-convex nature of loss landscape. We share

some interesting insights into the stability of neural networks using Gradient flow for

a class of NNs called Linear Neural Networks (LNNs). This is meant to serve as

a primer in establishing some fundamental properties of LNNs under gradient flow

which can then be extended to the case of accelerated methods like Nesterov and HT

with some efforts in the future.

Finally, Chapter 7 provides some interesting insights into the future directions of

these ideas and presents conclusions of the work covered in the thesis.

20

Chapter 2

Preliminaries

This chapter provides some preliminaries relevant to the work. We introduce stan-

dard notations used in the thesis and outline some constraint satisfaction techniques

utilized in optimization problems for solving equality constraints which are used in

Chapter 3. We also provide definitions pertaining to Convex optimization. Lastly,

we introduce High Order Tuner (HT) which has been used to provide accelerated

learning features in the solutions presented.

2.1 Notations

Let R denote the set of real numbers. ‖.‖ denotes the 2-norm of a vector or matrix.

For a continuously differentiable function 𝑓 : R𝑛 → R, ∇𝑓 denotes its gradient. (.)𝑇

denotes the transpose of a vector or matrix. For vectors 𝑥, 𝑦 ∈ R𝑛, 𝑥 ≥ 𝑦 implies

that the inequality holds elementwise. For a vector 𝑥 ∈ R𝑛, with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑥𝑖:𝑗

denotes the subvector with elements from the 𝑖-th entry of 𝑥 to the 𝑗-th entry.

Remark: By "p is convex on Ω𝑚," we mean that 𝑝 : R𝑚 → R𝑛−𝑚 is a vector

function and each scalar function 𝑝𝑖 : R𝑚 → R is convex ∀ Ω𝑚

21

2.2 Convex Optimization

Definition of Convex Function

A function 𝑓 : R𝑛 → R is defined as convex function if [11]:

• dom 𝑓 as a convex set 𝐶 &

• for 0 ≤ 𝜃 ≤ 1 and 𝑥, 𝑦 ∈ 𝐶 we have:

𝑓(𝜃𝑥+ (1− 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1− 𝜃)𝑓(𝑦) (2.1)

Any constrained/unconstrained optimization problem where the associated loss func-

tion satisfies the above mentioned properties and a convex set 𝐶 can be identified

as the domain of the function is treated as a convex optimization problem. A con-

vex function is always continuous within its domain [11] and there are several useful

properties related to convex analysis that help in parameter convergence.

The advantage of convex optimization lies in the attractive properties of relation

between optimal solution and gradient, which is called as First-Order Conditions:

Assuming differentiability of function 𝑓 , then 𝑓 is convex iff :

• dom 𝑓 as a convex set 𝐶 &

• for 0 ≤ 𝜃 ≤ 1 and 𝑥, 𝑦 ∈ 𝐶 we have:

𝑓(𝑦) ≥ 𝑓(𝑥) +∇𝑓(𝑥)𝑇 (𝑦 − 𝑥) (2.2)

Additionally, if a function 𝑓 is twice differentiable, then the hessian being PSD matrix,

i.e, ∇2𝑓(𝑥) ⪰ 0, is a necessary and sufficient condition for convexity of 𝑓 . This is

called as Second-Order Condition.

Besides these basic properties, there are several inequalities specific to convex

functions that depend on gradient and smoothness parameters of the convex function

itself. These have been summarized in [33] and are extremely useful in the proof of

Lyapunov stability theorems presented in Chapter 3,4.

22

The basic approach in many constrained optimization problems involves reducing

it to an unconstrained optimization with guarantees of convexity, which help in estab-

lishing convergence to optimal parameter with several algorithms. In the subsequent

section, we provide an overview of such constraint satisfaction approaches.

2.3 Constraint Satisfaction Techniques

In this section, we outline two important techniques utilized in reducing constrained

optimization to unconstrained optimization programs, which are widely utilized in

the optimization literature [16], [37], [38].

2.3.1 Nonlinear optimization via Lagrange Loss formulation

We consider optimization problems of the form

min 𝑓(𝑥)

s.t. ℎ(𝑥) = 0

𝑔(𝑥) ≤ 0,

(2.3)

Here, 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) are differentiable and convex functions. For the equation (2.3),

we define a loss function ℒ : R𝑛 → R, consisting of the original objective function

and soft loss terms penalizing the constraint violation [9, 1]

ℒ(𝑥) = 𝑓(𝑥) + 𝜆ℎ‖ℎ(𝑥)‖2 + 𝜆𝑔‖ softplus(𝑔(𝑥))‖2, (2.4)

where 𝜆ℎ, 𝜆𝑔 > 0 are design parameters. Given 𝑦 ∈ R𝑝, the function softplus : R𝑝 →

R𝑝 is defined as

softplus(𝑦) = log(1 + 𝑒𝑦),

and serves as a smooth approximation to ReLU (Rectified Linear Unit). Note that

we use softplus to ensure differentiability of ℒ(𝑥) which is utilized in First-Order

Condition for convexity.

23

2.3.2 Partitioning of solution-space

Equality constraints introduce linear dependencies in the feasible solution space, as

explored in several works previously. Assuming that problem (2.3) is not overdeter-

mined, 𝑥 can be partitioned into an independent variable 𝜃 ∈ R𝑚 and a dependent

variable 𝑧 ∈ R𝑛−𝑚,

𝑥 = [𝜃𝑇 𝑧𝑇]𝑇 .

We assume that ℎ is such that given 𝑚 entries of 𝑥, its remaining (𝑛−𝑚) entries can

be computed either in closed form or recursively. In other words, we assume that we

have knowledge of the function 𝑝 : R𝑚 → R𝑛−𝑚 such that

ℎ([𝜃𝑇 𝑝(𝜃)𝑇]𝑇) = 0, (2.5)

holds for all 𝜃 ∈ R𝑚. For all the points where 𝜕ℎ
𝜕𝑧
̸= 0, existence and uniqueness of 𝑝 is

guaranteed from the Implicit Function theorem. The reduction of variable dimension

as explained above ensures that equality constraints are always satisfied.

Using the function 𝑝(·) defined as above, we now define a modified loss function

𝑙 : R𝑚 → R as

𝑙(𝜃) = ℒ([𝜃𝑇 𝑝(𝜃)𝑇]𝑇).

The optimization problem in (2.3) is now reformulated as an unconstrained minimiza-

tion problem given by

min 𝑙(𝜃), (2.6)

with 𝜃 ∈ R𝑚 as the decision variable. Since we are also reducing the dimension of the

overall optimization problem while simultaneously satisfying the equality constraints,

we call this approach as variable reduction technique. Depending on the information

about the mapping 𝑝, gradient of the modified loss function could be computed ei-

ther explicitly or using the Implicit Function theorem as in [2]. In the proceeding

chapter we utilise the partitioning technique for solving different kinds of constrained

optimization problems.

24

Figure 2-1: Graphical representation of one of the ways in which the partitioning
technique can be utilized to construct a lower-dimension subspace in R𝑚 which can
be converted to an all-time feasible solution space in R𝑛 using (2.5)

2.4 High Order Tuner

The emergence of gradient-based optimization update laws such as Gradient Descent

(GD) has sought applications in the realm of optimization and control systems. Re-

cently, a method emerging from the family of Bregman-Lagrangians called High-Order

Tuner (HT) was proposed as an update law with accelerated convergence and stability

in the presence of time-varying regressors for the purpose of unknown parameter esti-

mation in a linear regression setting [22]. The stability property was further extended

to a class of unconstrained convex optimization [32].

The second order-differential equation of a HT can be written as [21]:

𝜈̇(𝑡) = − 𝛾

𝒩𝑡

∇𝐿(𝜃(𝑡))

𝜃(𝑡) = −𝛽(𝜃(𝑡)− 𝜈(𝑡))

(2.7)

25

An equivalent discretization of the continuous HT can be expressed as [22]:

𝜃𝑘 = 𝜃𝑘 − 𝛾𝛽∇∇𝑙(𝜃𝑘)
𝒩𝑘

𝜃𝑘+1 = 𝜃𝑘 − 𝛽(𝜃𝑘 − 𝜈𝑘)

𝜈𝑘+1 = 𝜈𝑘 − 𝛾∇∇𝑙(𝜃𝑘+1)

𝒩𝑘

(2.8)

HT shares accelerated learning properties with Nesterov’s method [33] for the case of

linear regression. The discretized version of HT and Nesterov’s method are different in

the way the update steps are defined. In both methods, there is an ’averaging’ action

and a ’gradient’ action. In HT, the ’gradient’ action is performed first, generating

intermediate variables 𝜈𝑘, 𝜃𝑘 and then the ’averaging’ is performed to obtain 𝜃𝑘+1.

In Nesterov’s method, the averaging happens first, to obtain 𝜈𝑘, and then the

’gradient’ action is taken to obtain 𝜃𝑘+1. One important difference is that the general

Nesterov’s method is not equipped with stability guarantees in the presence of time-

varying regressors. However, HT also incorporates a normalizer, 𝒩𝑘, which is chosen

carefully based on the optimization problem, such that a Lyapunov function can be

provided for a class of convex optimization problems. Due to these advantages, we

have chosen HT as the optimization algorithm for accelerated convergence in this

study. The difference between the update steps in Gradient Descent and Accelerated

learning methods is shown in Figure 2-2, 2-3.

Figure 2-2: Gradient Descent Update

26

Figure 2-3: Comparison of Nesterov and HT update. Notice that in Nesterov’s
method, the average 𝜈𝑘 is calculated first and then gradient step is called to 𝜃𝑘+1.
In HT, gradient step is taken for 𝜈𝑘, 𝜃𝑘 and then their average is calculated as 𝜃𝑘+1

27

28

Chapter 3

Constrained Optimization using HT:

Equality Constraints

3.1 Problem Statement

In this chapter we look at two specific classes of the general optimization problem

discussed in the last chapter (2.3). We begin by analyzing constrained convex op-

timization problems, for which the equality constraints must be linear. We then

propose a HT algorithm (Algorithm 1) for solving such problems with guaranteed

stability and convergence.

Formally, consider the problem:

min 𝑓(𝑥)

s.t. 𝐴𝑥 = 𝑏

𝑔(𝑥) ≤ 0,

(3.1)

where 𝑥 ∈ R𝑛 is the decision variable, 𝑓 : R𝑛 → R and 𝑔 : R𝑛 → R𝑝 are continuously

differentiable (strongly) convex functions, 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚. We first provide

feasibility guarantees for equality constraints and then generalize our approach to

problems involving both equality and inequality constraints.

29

3.1.1 Equality-constrained convex optimization

Equality-constrained convex optimization problems have the general structure

min 𝑓(𝑥)

s.t. 𝐴𝑥 = 𝑏.
(3.2)

With 𝜆ℎ > 0, the loss function ℒ (2.4) and the modified loss function 𝑙 (2.6) take the

form:

ℒ(𝑥) =𝑓(𝑥) + 𝜆ℎ‖𝐴𝑥− 𝑏‖2, (3.3a)

𝑙(𝜃) =𝑓([𝜃𝑇 𝑝(𝜃)𝑇]𝑇). (3.3b)

Here we have used the fact that 𝜆ℎ‖𝐴[𝜃𝑇 𝑝(𝜃)𝑇]𝑇 − 𝑏‖2 = 0. We can conclude that 𝑝

is an affine function of 𝜃 in this case. Let

𝑝(𝜃) = 𝑃𝜃 + 𝑞, (3.4)

where 𝑃 ∈ R(𝑛−𝑚)×𝑚 and 𝑞 ∈ R𝑛−𝑚. ℒ is convex by construction. We characterize

the convexity properties of 𝑙 in the following result.

Proposition 3.1.1 For the equality-constrained convex optimization problem (3.2),

assume 𝑓 is a 𝐿-smooth convex function, and let

𝑀 =
√︀

1 + ‖𝑃‖2(1 + ‖𝑃‖)𝐿. (3.5)

Then 𝑙 is 𝑀-smooth convex.

The next result extends Proposition 3.1.1 to the case of strongly convex functions.

Corollary 3.1.1 For the equality-constrained convex optimization problem (3.2), as-

sume 𝑓 is a 𝐿-smooth and 𝜇-strongly convex function. Then 𝑙 is 𝑀-smooth and

𝜇-strongly convex, where 𝑀 is defined in equation (3.5).

30

Now that we have established the convexity and smoothness properties of the

modified loss function 𝑙 which is unconstrained, we leverage the properties of HT [22,

32] to propose an accelerated algorithm to solve (3.2).

3.2 High Order Tuner for Equality Constrained Con-

vex Optimization

Let 𝒩𝑘 be the normalizing signal defined as

𝒩𝑘 = 1 +𝐻𝑘,

where

𝐻𝑘 = max{𝜁 : 𝜁 ∈ 𝜎(∇2𝑙(𝜃𝑘))},

where 𝜎(∇2𝑙(𝜃𝑘)) denotes the spectrum of the Hessian matrix of the loss function

𝑙 evaluated at 𝜃 = 𝜃𝑘. Note that it is also possible to make a more conservative

selection for 𝒩𝑘 such as 𝑀 , i.e., smoothness parameter of the loss function if accurate

information about ∇2𝑙 is not available. Next we introduce Algorithm 1 to solve

problem (3.2). The following result formally characterizes the convergence properties

of Algorithm 1.

Theorem 3.2.1 If the objective function 𝑓 is 𝐿-smooth convex, then with 0 < 𝛽 < 1

and 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

, the sequence of iterates {𝜃𝑘} generated by Algorithm 1 satisfy

lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*), where 𝑙(𝜃*) = 𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the optimal value of (3.2).

Following Corollary 3.1.1 and [32, Theorem 3], a similar result exists for the

strongly convex case as well.

31

Figure 3-1: Overview of the feasibility satisfaction framework presented in Sec-
tion 3.2.1

3.2.1 Convex optimization problems with equality & inequal-

ity constraints

Here we extend our approach to solve general convex optimization problems involving

equality as well as the inequality constraints in the form (3.1). Redefine the loss

function and the modified loss functions by including a penalty term corresponding

to the inequality constraints violation as

ℒ(𝑥) =𝑓(𝑥) + 𝜆ℎ‖𝐴𝑥− 𝑏‖2 + 𝜆𝑔‖ softplus(𝑔(𝑥))‖2, (3.6a)

𝑙(𝜃) =𝑓([𝜃𝑇 𝑝(𝜃)𝑇]𝑇) + 𝜆𝑔‖ softplus(𝑔([𝜃𝑇 𝑝(𝜃)𝑇])𝑇)‖2. (3.6b)

Since the penalty term corresponding to the inequality constraints is convex, it follows

from Proposition 3.1.1 that the modified loss function (3.6b) is convex.

Our adopted approach is based on the inequality correction procedure proposed

in [16]. The method involves first implementing the HT Algorithm 1 on the loss

function (3.6b) ensuring that the equality constraints are met at all times. Then

we apply an additional update that drives the decision variable towards the feasible

region corresponding to the inequality constraints as well. Let 𝛼 > 0 be the stepsize

and define 𝜌 : R𝑛 → R𝑛 as

𝜌

(︃⎡⎣ 𝜃

𝑝(𝜃)

⎤⎦)︃ =

⎡⎣ 𝜃 − 𝛼Δ𝜃

𝑝(𝜃)− 𝛼Δ𝑝(𝜃)

⎤⎦ , (3.7)

32

where

Δ𝜃 =

(︃
𝑑

𝑑𝜃
‖ softplus

(︂
𝑔

(︂⎡⎣ 𝜃

𝑝(𝜃)

⎤⎦)︂)︂‖2)︃𝑇

.

Figure 3-2: Illustration of inequality con-
straint satisfaction without violation of
eqaulity constraints

Note immediately that the inequal-

ity correction step above does not affect

the feasibility with respect to the equal-

ity constraints (Figure 3-2). Hence by

implementing the described method, we

obtain Algorithm 1 (with steps 7 and 8

included as shown) that satisfies equal-

ity constraints at each step and moves

closer towards satisfying the inequality

constraints with each successive itera-

tion. Constraint feasibility approach is

summarized in Figure 3-1

Algorithm 1 HT optimizer for equality + inequality constrained convex optimization
1: Initial conditions 𝑥0, 𝑥0, 𝜈0, gains 𝛼, 𝛾, 𝛽
2: for k=0,1,2,... do
3: Compute ∇𝑙(𝜃𝑘) and let 𝒩𝑘 = 1 +𝐻𝑘

4: ∇𝑞𝑘(𝜃𝑘) =
∇𝑙(𝜃𝑘)
𝒩𝑘

5: 𝜃𝑘 = 𝜃𝑘 − 𝛾𝛽∇𝑞𝑘(𝜃𝑘)
6: 𝜃𝑘+1 ← 𝜃𝑘 − 𝛽(𝜃𝑘 − 𝜈𝑘)
7: 𝑥𝑘+1 = [𝜃𝑇

𝑘+1 𝑝(𝜃𝑘+1)
𝑇]𝑇

8: Compute 𝑥𝑘+1 ← 𝜌(𝑥𝑘+1)
9: Compute ∇𝑙(𝜃𝑘+1) and let

10: ∇𝑞𝑘(𝜃𝑘+1) =
∇𝑙(𝜃𝑘+1)

𝒩𝑘

11: 𝜈𝑘+1 ← 𝜈𝑘 − 𝛾∇𝑞𝑘(𝜃𝑘+1)
12: end for

It is reasonable to expect that if the hypotheses of Theorem 3.2.1 are satisfied and

𝛼 is properly selected, Algorithm 1 solves problem (3.1).

33

3.3 Convex Optimization for a Class of Nonconvex

Problems

In this section, we extend our approach of achieving accelerated convergence via high-

order tuners to a class of nonconvex optimization problems that arise out of certain

kinds of constrained convex optimization problems. The presented approach utilizes

properties of convex functions discussed in Chapter 2. We focus only on problems

involving just the equality constraints which can be combined with generalized meth-

ods to problems involving inequality constraints as well. We consider a family of

problems where the loss function is convex and equality constraints are convex. The

arguments could be generalized easily to the strongly convex case.

3.3.1 Equality-constrained nonconvex problems

Consider the optimization problem

min 𝑓(𝑥)

s.t. ℎ(𝑥) = 0,
(3.8)

The associated soft loss function can be defined as:

ℒ(𝑥) = 𝑓(𝑥) + 𝜆ℎ‖ℎ(𝑥)‖2. (3.9)

The following lemma provides the conditions under which ℒ is convex.

Lemma 3.3.1 If 𝑓 is convex, and ℎ is an elementwise non-negative or non-positive

convex function, then ℒ defined in (3.9) is convex.

The modified loss function in this case once again takes the form (3.3b), however

the functional form of 𝑝 will not necessarily be affine. Therefore, establishing the

convexity of 𝑙 over the entire domain as in Proposition 3.1.1 may not be feasible

anymore. Additionally, the loss function 𝑙(𝜃) will no longer be necessarily convex.

34

We first search for conditions under which the modified loss function 𝑙 is convex.

We use these conditions to identify compact sets within the domain over which the

loss is always convex to extend the existing results of stability. We summarize a set

of such conditions in the following result.

Proposition 3.3.1 Assume that there exists a convex set Ω𝑛 ∈ R𝑛 such that the

hypotheses of Lemma 3.3.1 are satisfied on Ω𝑛. Let

Ω𝑚 = {𝜃 | 𝜃 = 𝑥1:𝑚, 𝑥 ∈ Ω𝑛}. (3.10)

If either of the following conditions is satisfied:

1. ∇ℒ(𝑥) ≥ 0 for all 𝑥 ∈ Ω𝑛, and 𝑝 is convex on Ω𝑚,

2. ∇ℒ(𝑥) ≤ 0 for all 𝑥 ∈ Ω𝑛, and 𝑝 is concave on Ω𝑚,

then 𝑙 is convex on Ω𝑚.

Remark: 1. Note that these conditions are sufficient but not necessary and sufficient

for identifying all possible regions of convexity for 𝑙(𝜃). Therefore, they serve as an

analytical tool to validate convexity of 𝑙(𝜃) over a chosen compact set.

2. Not only is 𝑝 non-affine, in several cases, 𝑝 cannot be explicitly formulated.

However, the above stated conditions rely on knowledge of ∇𝑝(𝜃),∇2𝑝(𝜃), which can

be easily obtained using Implicit Function Theorem as explained below.

Gradient of dependent variables using Implicit Function Theorem

Recall that ℎ([𝜃𝑇 𝑝(𝜃)𝑇]𝑇) = 0. Therefore, by taking the derivative of the above

equation:

𝜕

𝜕𝜃
ℎ

(︃⎡⎣ 𝜃

𝑝(𝜃)

⎤⎦)︃ =
𝜕ℎ

𝜕𝜃
+

𝜕ℎ

𝜕𝑝(𝜃)

𝜕𝑝(𝜃)

𝜕𝜃
= 0

𝜕𝑝(𝜃)

𝜕𝜃
=

(︃
𝜕ℎ

𝜕𝜃

)︃−1
𝜕ℎ

𝜕𝜃

(3.11)

35

Note that 𝜕ℎ
𝜕𝜃

and 𝜕ℎ
𝜕𝑝(𝜃)

are simply ∇ℎ[0:𝑚] and ∇ℎ[𝑚:𝑛] respectively. This approach has

been adopted from [16]. Further, readers are encouraged to refer to [3] for construction

of 𝜕𝑝(𝜃)
𝜕𝜃

in an efficient way to avoid space complexity problems in high dimensional

problems. Similar ideas have been explored in [12, 29]

Additionally, using Implicit Function theorem, we can establish the following suf-

ficient conditions on ℎ(·) for which 𝑝(·) is convex or concave. This set of conditions

is also not exhaustive but helpful in certain structures of problems, where we can

comment on convexity of 𝑝(𝜃) directly using ℎ(𝑥).

Proposition 3.3.2 Following from Proposition 3.3.1, assuming f and h are convex

on a given set Ω̄𝑛 ⊆ R𝑛, and ℎ𝑖 is twice differentiable ∀ 𝑖 = 1, ..., 𝑛 − 𝑚, it follows

that:

1. if ∇𝑝ℎ(𝑥) < 0 for 𝑥 ∈ Ω̄𝑛 then 𝑝(𝜃) is convex on Ω𝑚

2. if ∇𝑝ℎ(𝑥) > 0 for 𝑥 ∈ Ω̄𝑛 then 𝑝(𝜃) is concave on Ω𝑚

Additionally, if h is linear in 𝑧 and convex in 𝜃, then condition (i) follows.

3.3.2 Numerical Example

The following example illustrates how the conditions of Proposition 3.3.1 and Propo-

sition 3.3.2 can be verified. We consider the problem in (3.8) where 𝑥 ∈ R2, ℎ(𝑥) =

𝑥1
2 + (𝑥2 − 4)2 − 1 = 0 and 𝑓(𝑥) = log(

∑︀2
𝑖=1 𝑒

𝑥𝑖) are convex functions (ℎ : R2 → R,

𝑚 = 1). With 𝑥1 as the independent variable, we write 𝑥 = [𝑥1 𝑝(𝑥1)]
𝑇 , and use the

implicit function theorem to determine 𝑝(𝑥1) explicitly. We therefore set 𝜆ℎ = 0 while

formulating the loss function, and hence ℒ is the same as 𝑓 . Now we demonstrate the

application of Propostion 3.3.2 to define region Ω𝑛 where 𝑝(·) is convex or concave.

Clearly, ∇𝑝ℎ(𝑥) = 2(𝑝(𝑥1)− 4), and it is evident that ∇𝑝ℎ(𝑥) < 0 for 𝑥2 < 4 and

∇𝑝ℎ(𝑥) > 0 for 𝑥2 > 4 (as 𝑥2 = 𝑝(𝑥1)). Using Proposition 3.3.2, we conclude that for

𝑥2 ≤ 4, 𝑝(·) is convex and for 𝑥2 ≥ 4, 𝑝(·) is concave. Additionally, to ensure that to

𝑝(𝑥1) evaluates to a real number, we must constrain −1 ≤ 𝑥1 ≤ 1. Thus, following

36

Proposition 3.3.2, we construct sets Ω̄1
𝑛 and Ω̄2

𝑛 as:

Ω̄1
𝑛 = {𝑥 = [𝑥1 𝑥2]

𝑇 | − 1 ≤ 𝑥1 ≤ 1, 𝑥2 < 4} (3.12)

Ω̄2
𝑛 = {𝑥 = [𝑥1 𝑥2]

𝑇 | − 1 ≤ 𝑥1 ≤ 1, 𝑥2 > 4} (3.13)

Since ℒ(𝑥1, 𝑥2) = log(𝑒𝑥1 + 𝑒𝑥2) it is evident that:

∇𝑥1 ℒ =
𝑒𝑥1

𝑒𝑥1 + 𝑒𝑥2
(3.14a)

∇𝑥2 ℒ =
𝑒𝑥2

𝑒𝑥1 + 𝑒𝑥2
(3.14b)

Clearly, ∇ℒ(𝑥1, 𝑥2) > 0 for all 𝑥 ∈ R2. From Proposition 3.3.1, case (ii), we can see

that for −1 ≤ 𝑥1 ≤ 1 and 𝑥2 ≤ 4, ∇ℒ(𝑥1, 𝑥2) > 0 and 𝑝(·) is convex. Therefore, 𝑙(𝑥1)

is convex in this region. Formally, we define Ω𝑛 ≡ Ω̄1
𝑛 as:

Ω𝑛 = {𝑥 = [𝑥1 𝑥2]
𝑇 | − 1 ≤ 𝑥1 ≤ 1, 𝑥2 ≤ 4} (3.15)

Within the chosen Ω𝑛, Proposition-3.3.1 guarantees that 𝑙(𝑥1) is convex. Conse-

quently, Ω𝑚 is automatically defined as:

Ω𝑚 = {𝑥1 ∈ R | − 1 ≤ 𝑥1 ≤ 1} (3.16)

Indeed, for values of 𝑥1 ∈ Ω𝑚 there are two cases for 𝑝(𝑥1) using Implicit Function

Theorem [25] given as:

𝑝(𝑥1) = 4−
√︀

1− 𝑥1
2 for 𝑥2 ≤ 4 (3.17)

𝑝(𝑥1) = 4 +
√︀
1− 𝑥1

2 for 𝑥2 ≥ 4 (3.18)

As we seek to expand the set Ω𝑛 where 𝑙(·) is convex, we note that due to the simple

nature of the problem, it is easy to conclude that 𝑙(·) is concave for 𝑥2 ≥ 4, hence Ω𝑛

for this problem is equivalent to the one in (3.15).

Hence, using Ω𝑛 as defined in (3.15), 𝑝(·) takes the form mentioned in (3.17),

37

and by defining 𝑙(·) as the one in (3.3b), the optimization problem reduces to the

following convex optimization problem which is much simpler to solve:

min log(𝑒𝑥1 + 𝑒4−
√

1−𝑥2
1)

s.t. 𝑥1 ∈ Ω𝑚

(3.19)

The approach for feasibility of inequality constraints present in the form of 𝑥1 ∈ Ω𝑚

has been addressed in Chapter 4 in detail. We now state a HT based Algorithm

which guarantees convergence to optimal solution provided the condition 𝜃 ∈ Ω𝑚 is

satisfied.

3.3.3 High Order Tuner

Now that we have established sufficient conditions for the convexity of the modified

loss function, we can use high-order tuners to find an optimizer of (3.8). In fact, if the

sequence of iterates lie within the set Ω𝑛, then we can use Algorithm 1, stated earlier

for convex programs, to find a solution of (3.8). The following result formalizes this.

Theorem 3.3.2 If the objective function 𝑓 and the equality constraint ℎ are convex

over a set Ω𝑛, In addition, with 0 < 𝛽 < 1, 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

, and 𝜃0 ∈ Ω𝑚, where Ω𝑚

is defined in (3.10), if the sequence of iterates {𝜃𝑘} generated by Algorithm 1 satisfy

{𝜃𝑘} ∈ Ω𝑚, then lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*), where 𝑙(𝜃*) = 𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the optimal

value of (3.8).

Theorem 3.3.2 enables us to leverage Algorithm 1, provided that the state remains

inside the set over which the modified loss function is convex. It is reasonable to argue

that this is always not the case. To overcome this assumption, we use the projection

operator defined as

projΩm
(𝜃) = argmin‖𝜃 − 𝜃‖, ∀𝜃 ∈ Ω𝑚

to make sure that the state remains inside the set Ω𝑚. Algorithm 2 states this

concisely.

38

Algorithm 2 HT Optimizer for equality-constrained nonconvex optimization
1: Initial conditions 𝜃0, 𝜈0, gains 𝛾, 𝛽
2: 𝜃0 ← projΩm

(𝜃0)
3: for 𝑘 = 1 to 𝑁 do
4: Compute ∇𝑙(𝜃) and let 𝒩𝑘 = 1 +𝐻𝑘

5: ∇𝑞𝑘(𝜃𝑘) =
∇𝑙(𝜃𝑘)
𝒩𝑘

6: 𝜃𝑘 = 𝜃𝑘 − 𝛾𝛽∇𝑞𝑘(𝜃𝑘)
7: 𝜃𝑘+1 ← projΩm

(𝜃𝑘 − 𝛽(𝜃𝑘 − 𝜈𝑘))
8: Compute ∇𝑙(𝜃𝑘+1) and let

9: ∇𝑞𝑘(𝜃𝑘+1) =
∇𝑙(𝜃𝑘+1)

𝒩𝑘

10: 𝜈𝑘+1 ← 𝜈𝑘 − 𝛾∇𝑞𝑘(𝜃𝑘+1)
11: end for

The arguments of this section show how the proposed approach could be applied

to solve nonconvex problems, where a convex objective function needs to be optimized

with respect to nonlinear convex equality constraints.

Note that the proposed method depends on a clearly defined projection operator

𝑝𝑟𝑜𝑗Ω𝑚(𝜃) which has been discussed in detail in the subsequent chapter.

39

40

Chapter 4

Constrained Optimization using HT:

Inequality Constraints

Convex optimization with inequality constraints is a ubiquitous problem in several

optimization and control problems in large-scale systems. In this chapter, we propose

a new high-order tuner that can accommodate the presence of box inequality con-

straints. In order to accommodate the underlying box constraints, time-varying gains

are introduced in the high-order tuner which leverage convexity and ensure anytime

feasibility of the constraints. Numerical examples are provided to support the theo-

retical derivations. On a concluding note, some other ideas pertaining to constraint

feasiblity by using a projection operator are presented with numerical simulations.

4.1 Problem Statement

Recalling the discussion in Chapter 3, Section 3.3.1, a convex optimization problem

with constraints often ends up being non-convex. Since the underlying objective

function 𝑙(𝜃) is non-convex in nature, we require the parameter 𝜃 to be constrained

within a set Ω𝑚 where Ω𝑚 is a subset of the domain where loss 𝑙(𝜃) is convex.

41

Thus, the optimization problem can be written as:

min 𝑙(𝜃)

s.t. 𝜃 ∈ Ω𝑚.
(4.1)

It must be noted that the set Ω𝑚 in (4.1) is a subset of the feasible solution-space

which is present in the form of inequality constraints 𝜃 ∈ Ω𝑚 due to variable reduction

performed on originally prescribed equality constraints ℎ(𝑥) = 0. However, it is unlike

a general convex optimization with inequality constraints, since 𝑙(·) is not guaranteed

to be convex anywhere outside of set Ω𝑚. While it is tempting to apply a projection

procedure for ensuring 𝜃 ∈ Ω𝑚, the lack of convexity guarantees of 𝑙(·) for all 𝜃 ∈ R𝑚

makes it very challenging to apply general projection procedures. Furthermore, lack

of monotonicity of 𝜃 in accelerated learning setting inhibits us from commenting on

time-invariant nature of the set Ω𝑚. In the next section, we delineate a general

computational procedure for ensuring that the constraint 𝜃 ∈ Ω𝑚 is always satisfied.

4.2 Optimization with Box constraints

Without loss of generality, we assume Ω𝑚 to be a compact set in R𝑚. For any such

Ω𝑚, it is always possible to find a bounded interval 𝐼 = 𝐼1 × 𝐼2... × 𝐼𝑚 ⊆ Ω𝑚 where

𝐼𝑖 is a bounded interval in R defined as 𝐼𝑖 = [𝜃𝑖𝑚𝑖𝑛, 𝜃𝑖𝑚𝑎𝑥] for all 𝑖 = 1, 2, ...,𝑚.

Using the above arguments, we reformulate the constrained optimization in (4.1)

as:
min 𝑙(𝜃)

s.t. 𝜃 ∈ 𝐼
(4.2)

note that 𝐼 is chosen such that 𝜃* ∈ 𝐼, where 𝜃* is the solution of problem (4.2). To

ensure that a given set containts 𝜃*, the condition to be satisfied is provided by the

Proposition below.

Proposition 4.2.1 For a given compact set 𝐼, if there exist 𝜃1, 𝜃2 such that 𝑙(𝜃1) =

𝑙(𝜃2), then 𝜃* ∈ 𝐼

42

4.2.1 HT for Inequality Constraints

In this section, we present Algorithm 3 to guarantee convergence to 𝜃* while ensuring

feasibility with respect to the inequality constraints generated by 𝜃 ∈ 𝐼. For Algo-

rithm 3, we first prove that 𝜃𝑘, 𝜈𝑘, 𝜃𝑘 ∈ 𝐼 for all 𝑘 ∈ N through Proposition 4.2.2 and

subsequently provide guarantees of convergence of the iterates {𝜃𝑘}∞𝑘=1 generated by

Algorithm 3 to 𝜃* using Theorem 4.2.1.

For the purpose of feasibility, we first make sure that for each 𝑘, 𝜃𝑘 ∈ 𝐼. We define

define quantities 𝑎̂𝑘, 𝑎̃𝑘 as:

𝑎̃𝑘 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑘 − 𝜃𝑖𝑚𝑖𝑛)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|

𝑎̂𝑘 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑚𝑎𝑥 − 𝜃𝑖𝑘)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|
.

(4.3)

Similarly, we next ensure that 𝜈𝑘 ∈ 𝐼.We define define quantities 𝑏̂𝑘+1, 𝑏̃𝑘+1 as:

𝑏̃𝑘+1 = min
𝑖∈{1,...,𝑚}

(𝜈𝑖
𝑘+1 − 𝜃𝑖𝑚𝑖𝑛)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘+1)|

𝑏̂𝑘+1 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑚𝑎𝑥 − 𝜈𝑖
𝑘+1)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘=1)|
.

(4.4)

Proposition 4.2.2 guarantees that Algorithm 3 generates iterates such that 𝜃𝑘, 𝜈𝑘 ∈ 𝐼,

consequently 𝜃𝑘 ∈ 𝐼 ∀𝑘

Proposition 4.2.2 Consider Algorithm 3, for a given 𝑘 ∈ N, if 𝜃𝑘, 𝜈𝑘 ∈ 𝐼, there

exist real numbers 𝑎𝑘 = min{𝑎̂𝑘, 𝑎̃𝑘} and 𝑏𝑘+1 = min{𝑏̂𝑘+1, 𝑏̃𝑘+1} ∀𝑘 (where 𝑎̂𝑘, 𝑎̃𝑘

and 𝑏̂𝑘+1, 𝑏̃𝑘+1 are defined in (A.11) and (A.12) respectively), such that 𝜃𝑘, 𝜈𝑘+1 ∈ 𝐼.

Consequently, for 0 < 𝛽 ≤ 1, and 𝜃0, 𝜈0 ∈ 𝐼, Algorithm 3 guarantees 𝜃𝑘, 𝜃𝑘, 𝜈𝑘 ∈ 𝐼 for

all values of 𝑘 ∈ N.

Proposition 4.2.2 outlines conditions under which all parameters generated by Algorithm-

3 are bounded within set 𝐼, where the convexity of loss function 𝑙(·) is guaranteed.

Theorem 4.2.1 formally establishes the stability and convergence of Algorithm 3 to

an optimal solution 𝜃*.

43

Theorem 4.2.1 For a differentiable 𝐿̄𝑘-smooth convex loss function 𝑙(.), Algorithm 3

with 0 ≤ 𝛽 ≤ 1, 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

and 𝑎𝑘, 𝑏𝑘+1 satisfying 𝑎𝑘 ≤ min{1, 𝑎̄𝑘}, 𝑏𝑘+1 ≤

min{1, 𝑏̄𝑘+1}, where 𝑎̄𝑘+1 and 𝑏̄𝑘+1 are defined in (A.11) and (A.12) ensures that

𝑉 = ‖𝜈−𝜃*‖2
𝛾

+ ‖𝜈−𝜃‖2
𝛾

is a Lyapunov function. Consequently, the sequence of iterates

{𝜃𝑘} generated by Algorithm 3 satisfy {𝜃𝑘} ∈ Ω𝑚, and lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*), where 𝑙(𝜃*) =

𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the optimal value of (4.1).

Algorithm 3 HT Optimizer for localized convex optimization
1: Initial conditions 𝜃0, 𝜈0, gains 𝛾, 𝛽

2: Choose 𝜃0, 𝜈0 ∈ 𝐼

3: for 𝑘 = 1 to 𝑁 do

4: Compute ∇𝑙(𝜃) and let 𝒩𝑘 = 1 +𝐻𝑘

5: ∇𝑞𝑘(𝜃𝑘) =
∇𝑙(𝜃𝑘)
𝒩𝑘

6: 𝜃𝑘 = 𝜃𝑘 − 𝛾𝛽𝑎𝑘∇𝑞𝑘(𝜃𝑘)

7: 𝜃𝑘+1 = 𝜃𝑘 − 𝛽(𝜃𝑘 − 𝜈𝑘)

8: Compute ∇𝑙(𝜃𝑘+1) and let

9: ∇𝑞𝑘(𝜃𝑘+1) =
∇𝑙(𝜃𝑘+1)

𝒩𝑘

10: 𝜈𝑘+1 ← 𝜈𝑘 − 𝛾𝑏𝑘+1∇𝑞𝑘(𝜃𝑘+1)

11: end for

4.2.2 An academic example

We consider the same example as before which led to the following constrained convex

optimization problem (Problem 4.1):

min log(𝑒𝑥1 + 𝑒4−
√

1−𝑥2
1)

s.t. − 1 ≤ 𝑥1 ≤ 1
(4.5)

The box constraint in (4.5) is imposed to ensure that the objective function is always

real-valued. While we can choose certain step-sizes that ensure that −1 ≤ 𝑥1 ≤ 1

for solving (4.5), there are no guarantees that such a step-size exists to ensure this

constraint. Algorithm 3 solves this problem with suitable choices of 𝛾, 𝛽, 𝑎𝑘 and

44

𝑏𝑘+1 as specified in Theorem 4.2.1. Figure 4-1 shows the convergence of parameter

𝜃 (equivalent to 𝑥1 in (4.5)) using Algorithm 3 for a specific value of 𝛾, 𝛽. It should

be noted in Figure 4-1 that Algorithm 1 fails to lead to convergence, since the box

constraints are not satisfied.

Figure 4-1: Convergence of 𝜃 using Algorithm 3 for the Problem-1 in (4.5); Algo-
rithm 1 fails to converge

4.2.3 Provably hard problem of Nesterov

We consider a provably hard problem which corresponds to a strongly convex function

(Problem 4.2) (see [32] for details)

𝑙(𝜃) = log (𝑐𝑘𝑒
𝑑𝑘𝜃 + 𝑐𝑘𝑒

−𝑑𝑘𝜃) +
𝜇

2
‖𝜃 − 𝜃0‖2.

𝑠.𝑡. 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥

(4.6)

Here 𝑐𝑘 and 𝑑𝑘 are positive scalars chosen as 𝑐𝑘 = 1
2

and 𝑑𝑘 = 1. This function has

a unique minimum at 𝜃* = 0. The objective is to show that High Order Tuner in

Algorithm 3 ensures that the iterates lie within a closed interval [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥].

Figure 4-2a shows the results with Algorithm 3. Also provided as a comparison

are the results using Nesterov’s algorithm [35]. In all cases, 𝜇 = 10−4, the intial value

was chosen to be 𝜃0 = 2 and the constraints are chosen as 𝜃𝑚𝑖𝑛 = −1 and 𝜃𝑚𝑎𝑥 = 2.

Also included are the results using Algorithm 1. It is clear that with Algorithm 3, the

parameters converge to the optimal value while remaining within the specified limits,

as observed in Figure 4-2b. It can also be observed that the speed of convergence is

45

faster than that of Algorithm 1. Finally, it can be seen that Algorithm 3 exhibits the

least amount of oscillations compared to all other algorithms, which is an attractive

property. While in the first example, the box constraints were for ensuring convexity

in a bounded domain, in the second example, the 𝜇-term in (4.6) was added to ensure

strong convexity.

(a) Accelerated learning properties of the
HT in Algorithm 3 for the provably hard
problem in comparison with Nesterov’s
algorithm as well as the HT in Algo-
rithm 1. Algorithm-3 converges faster

(b) Constraint satisfaction by Algorithm-
3. Algorithm-1 generates iterates
that violate the box constraints [-1,2].
Algorithm-2 displays smaller amplitude
oscillations compared to Algorithm-1

Figure 4-2: Feasibility and convergence comparison for HT with and without Time-
varying gains for Problem 2 (4.6)

The methods outlined above work for constraint satisfaction for a non-convex

optimization problem because convexity is guaranteed by virtue of feasibility. The

overall approach involves tuning the hyperparameters.

In the following sections, we explore the task of constrained optimization within a

compact set by using a projection operator. We motivate the problem by comparing

HT for linear regression with a second order linear dynamic system and utilize this

study as a basis for applying projection. We initiate the discussion with a linear

regression problem and extend the underlying idea to a broader category of applica-

tions.

46

4.3 HT for constrained linear regression

Consider an optimization problem in linear regression setting, parameterized by 𝜃 ∈

R𝑛 where the gradient of the loss function is ∇𝑙(𝜃) = 𝜑𝜑𝑇 𝜃, 𝜃 = 𝜃* − 𝜃 with 𝜑 ∈ R𝑛

being the input regressor and loss being 𝑙(𝜃) = ‖𝑦 − 𝜃𝑇𝜑‖2. The true system is

represented as 𝑦* = 𝜃*𝑇𝜑. The optimization problem is shown as a block diagram

in Figure 4-3. We add additional constraints to this and the overall minimization

problem can be written as:
min 𝑙(𝜃)

s.t. |𝜃| ≤ 𝐴
(4.7)

Figure 4-3: Block Diagram of Linear Regression

Where 𝐴 > 0 is a constant used to denote the constraint on the maximum per-

missible amplitude of the parameters. We address this problem using HT. Due to the

oscillatory behavior of parameter [21], it is challenging to apply projection schemes

typically used in gradient-descent based algorithms. For the case where 𝜑 is time-

invariant and is a diagonal matrix (i.e., zero correlation between different components

of the input data), we can decompose the problem into simulatenous scalar linear

regression problems. The consequent section evaluates this specific problem and pro-

vides comparison of the HT to the governing equation of a second order LTI system.

4.3.1 Analogy between Second order LTI systems and High

Order Tuner

Equation for a damped oscillator with 𝑓(𝑋) being the potential field can be written

as [52]:

𝑋̈(𝑡) +
𝑐

𝑚
𝑋̇(𝑡) +

1

𝑚
∇𝑓𝑡(𝑋(𝑡)) = 0 (4.8)

47

Here 𝑚 is the effective mass of the system, 𝑐 is the damping factor. This is equivalent

to the HT in continuous time as [22]:

𝜃(𝑡) + 𝛽𝜃(𝑡) +
𝛾𝛽

𝒩𝑡

∇𝐿𝑡(𝜃(𝑡)) = 0 (4.9)

HT with linear regression with constant regressors for a scalar input-output problem,

where ∇𝐿𝑡(𝜃(𝑡)) = ‖𝜑‖22𝜃(𝑡) can be written as:

𝜃(𝑡) + 𝛽𝜃(𝑡) +
𝛾𝛽

𝒩𝑡

‖𝜑‖22𝜃(𝑡) = 0 (4.10)

For an equivalent mass-spring damper system:

𝑋̈(𝑡) + 2𝜔𝑛𝜏𝑋̇(𝑡) + 𝜔2
𝑛𝑋(𝑡) = 0 (4.11)

Using 𝒩𝑡 = 1 + ‖𝜑‖22 as established in [22]. Comparing (4.10) and (4.11) we have:

𝛽 = 2𝜔𝑛𝜏

𝛾𝛽‖𝜑‖22 = 𝜔2
𝑛(1 + ‖𝜑‖22)

(4.12)

We would like the HT to imitate the lightly damped case, i.e., 𝜏 < 1 to preserve the

acceleration and oscillation. This leads to the following inequalities in addition to

those required by Lyapunov stability criteria for linear regression:

0 <
𝛽(1 + ‖𝜑‖22)

4𝛾‖𝜑‖22
< 1

0 < 𝛽 < 1

0 < 𝛾 ≤ 𝛽(2− 𝛽)

(16 + 𝛽2)

(4.13)

Now we would like to tune the amplitude, in such a way that the maximum possible

amplitude is contained within a box. We first find the position and time of maximum

amplitude for a second order under-damped LTI using the closed form solution of a

48

2-dimensional LTI system:

𝜃(𝑡) = 2𝑒−𝜎𝑡(𝛼𝑐𝑜𝑠(𝑤𝑑𝑡) + 𝛽𝑠𝑖𝑛(𝑤𝑑𝑡))

Here 𝛼 = 𝜃0
2
, 𝛽 = − 𝜃0+𝜎𝜃0

2𝑤𝑑
. Hence, I.C provides us with a choice in shaping the time

at which maximum amplitude can be obtained.

Since ˙𝜃(𝑡) = 0 at every local maximum and minimum, we get:

𝑡𝑎𝑛(𝑤𝑑𝑡) =
𝛼𝜏 + 𝛽

√
1− 𝜏 2

𝛼
√
1− 𝜏 2 + 𝛽𝜏

We want all such maximas and minimas to be contained within some set, say |𝜃(𝑡)| ≤

𝐴. This can be done by appropriately choosing I.C. and setting 𝜃(𝑡) ≤ 𝐴.

For instance, if we choose 𝛼, 𝛽 such that 𝑤𝑑𝑡1 = 𝜋/2, (𝑡1 represents the first

instance of maximum/minimum) then the corresponding inequality will look like:

𝑒
− 𝜋𝜏

2
√

1−𝜏2

√
1− 𝜏 2

𝜏
𝜃0 ≤ 𝐴 (4.14)

The ideal approach would be to find one of the system parameters, i.e., 𝜏 such

that (4.13) can be satisfied and thereby use (4.14) to find the right value of 𝜃0.

Shortcomings of this approach

The caveat of this approach is that it is very restrictive to the case when regressors are

constant, can be decoupled and the system evolves under a linear regression setting.

However, we can use some of the insights with the comparison of hyperparameters in

HT to damping factors in a second-order dynamic system.

4.4 General Case (non-LTI)

In the general setting, we can equate the normalized gradient to the potential field.

∇𝐿𝑡(𝜃(𝑡))

𝒩𝑡

= ∇𝑓𝑡(𝑋(𝑡)) (4.15)

49

Similarly, we can write 𝑐 = 𝑘𝛾 and 1
𝑚

= 𝑘𝛾𝛽, here 𝑘 is a scaling constant to ensure

that 0 < 𝛾, 𝛽 < 1. Clearly, for a fixed 𝑘, by increasing 𝛾 we will increase the damping

in the system, thereby reducing the amplitude of oscillations, and we would have

to carefully decrease 𝛽 in order to preserve the effective mass of the system. The

simultaneous increase and decrease of these quantities will then depend on the exact

nature of the loss function. However, if we re-write equation (4.9) as a coupled linear

system, we have:

𝜈̇(𝑡) = −𝛾∇𝐿𝑡(𝜃(𝑡))

𝒩𝑡

𝜃(𝑡) = −𝛽(𝜃(𝑡)− 𝜈(𝑡))

(4.16)

We focus on a more general problem, where we want to constrain our parameter to

be within a compact set 𝐶.

Inspired from the LTI comparison, we model the effective gain 𝛽 in such a way

that 𝜃(𝑡) = 0 at the boundary of set 𝐶.

4.4.1 Using Projection Operator for HT

Inspired from the idea of tuning 𝜃(𝑡), we apply a projection operator commonly seen in

adaptive systems [28, 27] for containing the parameter 𝜃(𝑡). The underlying concept

is to control the rate 𝜃(𝑡) to preserve ‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥 + 𝜖, for some given 𝜃𝑚𝑎𝑥, 𝜖. Thus we

can re-state the optimization problem as:

min 𝑙(𝜃)

s.t. ‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥 + 𝜖
(4.17)

4.4.2 Application of projection operator to 𝜃(𝑡)

The continuous-time equations of HT updates with projection can be written as:

𝜈̇(𝑡) = −𝛾∇𝐿𝑡(𝜃(𝑡))

𝒩𝑡

𝜃(𝑡) = −𝛽𝑃𝑟𝑜𝑗(𝜃(𝑡), (𝜃(𝑡)− 𝜈(𝑡), 𝑓)

(4.18)

50

Here, 𝑓 is a convex function such that 𝑓(𝜃(𝑡)) = 0 when ‖𝜃(𝑡)‖ = 𝜃𝑚𝑎𝑥, where ‖𝜃(0)‖ ≤

𝜃𝑚𝑎𝑥‖, i.e, the parameters are initialized within the norm-ball 𝜃𝑚𝑎𝑥. Additionally,

𝑓(𝜃(𝑡)) = 1 when ‖𝜃(𝑡)‖ = 𝜃𝑚𝑎𝑥 + 𝜖. The projection operator can be written as:

𝑝𝑟𝑜𝑗𝐶(𝜃, (𝜃(𝑡)− 𝜈(𝑡), 𝑓) =⎧⎪⎪⎨⎪⎪⎩
(︂
𝐼 − ∇𝑓(𝜃)∇𝑓(𝜃)𝑇

‖∇𝑓(𝜃)‖2 𝑓(𝜃)

)︂
(𝜃(𝑡)− 𝜈(𝑡)) if 𝑓(𝜃) > 0

⋀︀
𝑦𝑇𝑓(𝜃) > 0

(𝜃(𝑡)− 𝜈(𝑡)) otherwise

(4.19)

For a given 𝜖, 𝜃𝑚𝑎𝑥 we adopt a simple definition of 𝑓(𝜃) from [28] as:

𝑓(𝜃) =
‖𝜃(𝑡)‖2 − ‖𝜃𝑚𝑎𝑥‖2

2𝜖𝜃𝑚𝑎𝑥 + 𝜖2
(4.20)

With the above-mentioned projection operator and HT updates given by (4.18), we

can guarantee stability for the case of linear regression as summarized below:

Theorem 4.4.1 For a quadratic loss function 𝑙(𝜃) = ‖𝑦 − 𝜃𝑇𝜑‖2, a compact and

convex set 𝐶 defined as 𝐶 = {𝜃|‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥+𝜖} the sequence of iterates {𝜃𝑘} generated

by Algorithm 2 with 𝑝𝑟𝑜𝑗𝐶 defined by (4.19) satisfy {𝜃𝑘} ∈ 𝐶 and 𝑉 = ‖𝜈−𝜃*‖2
𝛾

+ ‖𝜈−𝜃‖2
𝛾

is a valid Lyapunov function

In a discrete-time implementation of this approach, we can use Algorithm 2, with the

projection operator replaced by (4.19).

4.5 Numerical Simulation

We validate the utility of the proposed projection operator first in a linear regression

setting (stability guarantees in continuous time) and then in a non-convex optimiza-

tion setting.

51

4.5.1 Linear Regression

Problem Setup

We perform simulation for a 3-dimensional linear regression problem (4.17), with

𝜃𝑚𝑎𝑥 = 0.7 and 𝜖 = 1, therefore, we need ‖𝜃‖ ≤ 1.7, where

𝜃* = [0.1965 − 0.3835 − 1]𝑇

We perform simulation using HT with and without projection (i.e, Algorithm 2 and

Algorithm 1 respectively) to show the influence of projection in containing the pa-

rameter 𝜃 within the required norm-ball. For both algorithms, 𝛾 = 0.8, 𝛽 = 10−2

was chosen and optimization was performed for 1000 iterations each with constant

regressor 𝜑, which was chosen to be such that 𝜑𝜑𝑇 is a diagonal matrix of identical

terms.

Figure 4-4: Convergence of 𝜃 to the optimal value 𝜃* = [0.1965 − 0.3835 − 1]𝑇 for
Algorithm 1 and Algorithm 2

52

Figure 4-5: ‖𝜃‖ for Algorithm 1 and Algorithm 2. Notice that the norm constraint
(norm limit denoted in red) is conserved with Algorithm 2 with projection whereas
Algorithm 1 violates the constraint

Observations

Figure 4-4 shows the convergence of parameter 𝜃 to the optimal value for both algo-

rithms. It appears that the difference between both algorithms is nominal, however,

to notice the conservation of norm, we look at the evolution of ‖𝜃‖ as shown in Fig-

ure 4-5. As evident, ‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥 + 𝜖 i.e, ‖𝜃‖ ≤ 1.7 for Algorithm 2 by using the

projection operator as defined in (4.19). However, ‖𝜃‖ often violates the required

constraint.

4.5.2 Projection for Rosenbrock function

Problem Setup

We consider a 2-D non-convex optimization problem in this section, to strongly moti-

vate the requirement of constraints in accelerated learning and how it can be solved.

53

Figure 4-6: Rosbenbrock function: (vertical axis-y, horizontal axis-x) region in blue
represents lesser value of loss function and yellow represents higher value of loss.
Hence, the minimum lies at (1, 1).

Formally, a Rosenbrock function is defined as [43]:

𝐿(𝑥, 𝑦) = (1− 𝑥)2 + 100(𝑦 − 𝑥2)2 (4.21)

Here 𝜃 = [𝑥 𝑦]𝑇

This function is non-convex, except for the region where 𝑦 ≤ 𝑥2 − 1
200

. The loss

function has a global minimum at (1, 1), which is also within the convex region of the

function. Figure 4-6 shows the contour of the Rosenbrock function. Firstly it must

be stated that GD often fails to converge for most hyperparameter settings on such

a problem and converges to a sub-optimal point. Here, accelerated learning plays an

important role.

Observations

In order to perform optimization to the optimal value in this case, we initialize 𝑥0 =

−0.5, 𝑦0 = 0.5 for both Algorithm 1 and Algorithm 2 and choose 𝛾 = 5 × 10−3, 𝛽 =

10−6. For Algorithm 2, we constrain ‖𝜃‖ ≤ 1.21 to enable convergence and retain

the parameters (𝑥, 𝑦) in a set where 𝐿(𝑥, 𝑦) is convex. Figures 4-7, 4-8 illustrates

54

Figure 4-7: Convergence of 𝑥 for Rosenbrock function: Algorithm 1 fails to converge to
the global minimum 𝑥* = 1 since this is a non-convex optimization problem. However,
Algorithm 2 utilizes the projection operator to contain the parameter within a set
where the loss is always convex and convergence is ensured, as explained in Chapter
3.

55

Figure 4-8: Convergence of 𝑦 for Rosenbrock function: Algorithm 2 converges to the
global minimum with a carefully chosen convex set and projection operator to ensure
that the parameter stays within the set

56

the importance of projection to a convex set in the case of non-convex optimization,

which can be utilized to guarantee stability and convergence.

4.6 Conclusions

In this chapter, we discuss techniques for parameter feasibility within compact set

while ensuring acceleration, which is a challenging mathematical problem to solve.

We present two approaches, one involves tuning the hyperparameters at every instant,

and provide stability proof in discrete-time for the same. This may not always be

feasible due to the choice of hyperparameters being restrictive.

Thus, as an alternative we provide a projection based approach for HT, and

demonstrate its merit for two examples. This approach is intuitively inspired from

the equivalence of the algorithm to a spring-mass damper system. A proof of stability

in continuous time is presented for linear regression setting in this case and has po-

tential to be extended to discrete-time setting for convex optimization, as is evident

from the numerical simulations.

57

58

Chapter 5

Accelerated Methods for solving OPF

problems: Numerical study

In real world applications, the underlying optimization problem is often non-convex.

In this chapter, we specifically look at a widely-considered nonconvex optimization

problem, i.e, Neural Network training for solving DC-Optimal Power Flow prob-

lem, which has been widely looked at [16, 37]. We utilize a combination of several

techniques illustrated in the previous chapters to demonstrate their application on a

real-world optimization problem.

5.1 Introduction

The emergence of learning-based optimization techniques has sought applications in

the realm of optimization problems within power systems domain [48, 53, 15]. The

vast majority of the work in this collaborative space has been demonstrated through

numerical simulations in solving DC-OPF and AC-OPF. We examine a learning-

based technique to solve DC-OPF in this Chapter using HT to illustrate the impact

of acceleration in large-scale non-convex optimization. Due to the simplicity of the

problem and availability of solvers, we are also able to compare the performance of

our method against the baseline, which has been chosen as MATPOWER for this

study [54].

59

The existing learning-based methods exploit the availability of abundance of data

of varying nature which is already made available through solvers and real-time solving

of grid, and with accurate predictions, they reduce the online solving time by 100-

200 times [17], [37]. The vast majority of the work in this space focuses on ensuring

feasibility of the solution process. In this work, we have two main contributions:

• We utilize the variable reduction techniques in Proposition 3.1.1 to ensure

feasibility

• We address an important issue in large-scale NN training-peed of convergence

and dataset requirement and how accelerated learning can help.

5.1.1 Problem formulation

A general OPF can be written as (3.1), and DC-OPF specifically takes the following

form:

Objective function:

𝑓(𝑃𝑔, 𝜑) = 𝑃 𝑇
𝑔 𝐶𝑃𝑔 (5.1)

Equality Constraints: ℎ(𝑃𝑔, 𝜑)

𝐵 · 𝜑− (𝑃𝑔 − 𝑃𝑑 − 𝑃𝑠ℎ) = 0 (5.2)

Inequality Constraints:

𝑃𝑚𝑖𝑛
𝐺𝑖 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝑚𝑎𝑥

𝐺𝑖 , 𝑖 = 1, 2, ..., 𝑁𝑔𝑒𝑛 (5.3a)
1

𝑥𝑖𝑗

(𝜑𝑖 − 𝜑𝑗) ≤ 𝑃𝑚𝑎𝑥
𝑖𝑗 𝑖 = 1, 2, ..., 𝑁𝑏𝑢𝑠 (5.3b)

Guarantees for equality constraint satisfaction

As we can see, the equality constraints are linear, hence, as per the process described

in Section 2.3.2, a convex loss function ℒ(𝑃𝐺, 𝜑) can be reduced to a convex loss

function 𝑙(𝑃𝐺), with 𝜑 being the dependent variable and 𝑃𝐺 being the independent

variable (recall 𝑥 = [𝜃 𝑧]𝑇). Hence, we can easily leverage Algorithm-1 along with

60

guarantees provided by Proposition 3.1.1 and Theorem 3.2.1 to solve a DC-OPF

problem to generate solution which is feasible with respect to the equality constraints.

Using NN to solve this problem makes it non-convex, and devoid of the optimal-

ity guarantees. However, we can still utilize the variable reduction guarantees from

Section 2.3.2 since they are agnostic to convexity of the problem. Across different

instances of applications, the input load 𝑃𝐷 is utilised as the input for training a neu-

ral network which predicts generated power 𝑃𝐺. The phase angle 𝜑 is predicted as a

function of 𝑃𝐺 using (5.2). This helps substantially in reducing the overall dimension

of the problem.

Inequality constraints

While in theory, the inequality constraint completion procedure described in Chapter

2 can be used to solve a complete DC-OPF problem, however, unlike the case of

equality constraints, the inequality constraints are not guaranteed to be satisfied.

The objective is to train a neural network such that predicted value is feasible with

respect to the inequality constraints. Overall, the merit of this approach is that we

save substantial amount of time in online OPF computation with a well-trained neural

network.

We attend the inequality constraint problem by using the NN to predict a quantity

𝛼. It has been shown that the usage of activation functions in the output layer

activation greatly helps with feasibility preservation. Therefore, we use a sigmoid

activation function to ensures that the output is between 0 and 1. This approach has

been adopted from [37]. Hence, instead of training the neural network for 𝑃𝐺, it is

trained to output 𝛼, which is a vector consisting of elements with values between 0

and 1. 𝛼 is then transformed to 𝑃𝐺 using:

𝑃𝐺𝑖 = 𝛼𝑖(𝑃
𝑚𝑎𝑥
𝐺𝑖 − 𝑃𝑚𝑖𝑛

𝐺𝑖) + 𝑃𝑚𝑖𝑛
𝐺𝑖 𝑖 = 1, 2, ..., 𝑁𝑔𝑒𝑛 (5.4)

Having described the constraint satisfaction procedure, we address the loss formula-

tion in this section for our NN training. The proceeding sections detail the integration

61

Figure 5-1: Schematic summarizing the general approach for solving DC-OPF with
Neural Network [37]. The ’Optimizer’ can be any optimization algorithm, and has
been chosen as HT for our method

of the neural network with the variable reduction approach of Section 3.2 and the im-

plementation of High Order Tuner an optimizer to such a problem.

HT for solving DC-OPF using learning-based methods

The underlying neural networks must approximate the mapping of an albeit large

power grid extremely well. This is a well-posed problem that becomes more complex

as the size of power grid increases, thereby increasing the dimension of input and

output data and the size of training dataset. Despite of employing the best data

pre-processing practices, under certain circumstances, training of neural network is

affected by the performance of gradient-descent based optimization algorithms in

converging to the global minimum. In this work, we demonstrate the efficacy of

HT for training the underlying neural networks efficiently across different sizes of

networks.

Figure 5-1 summarizes our approach for solving DC-OPF using Neural Network

training, which is covered in detail in the next section.

62

5.2 Solving DC-OPF using Neural Networks

5.2.1 Approach Outline

The following section outlines the details of implementation of learning-based tech-

nique for DC-OPF. The illustrated method is inspired by several works in the liter-

ature, since they address the concept of feasibility with neural networks efficiently.

For the purpose of this study, the objective was to compare the performance of High

Order Tuner and Gradient Descent as optimizers under different settings. The re-

mainder of this section outlines the numerical experiment conditions step-by-step and

has been adopted from [16], [37].

Input Load & Data generation: 𝑃𝐷

A uniform sampling method was applied to choose input load values with a user-

defined deviation (between 90-110% in our case) about the default load value. Subse-

quently, MATLAB based OPF solver called MATPOWER was chosen to generate the

outputs 𝑃𝐺, 𝜑 corresponding to each 𝑃𝐷. For numerical experiments, IEEE Datasets

corresponding to various cases were chosen and fed through MATPOWER for data

generation.

Since the problem is a Quadratic Programming problem with constraints, MAT-

POWER generates optimal and feasible solutions, hence the generated data is chosen

as reference data for training. Subsequently, the weights and biases of the chosen

neural network are trained in a supervised setting to generate predictions.

Neural Network Design

The concept of selection of the right number of layers and size of each layer can be

referred to as hyperparameter tuning, and is usually done by observing the perfor-

mance of the trained network for a given set of hyperparameters, i.e., ℎ number of

neurons in each layer and 𝑁ℎ𝑖𝑑 number of hidden layers. For simplicity, we started

out by choosing the same number of neurons across all layers.

63

Note that this was an especially challenging task, since various bodies of work in

this field refer to certain hyperparameter settings specific to their study and validate

their choices by showing convergence of prediction error to a desirable level. However,

none of the works in the literature provide insights into the process of selection of

these hyperparameters.

While there are rough heuristic guidelines one can employ, such as keeping ℎ small

to prevent the NN from becoming a memory bank of the train dataset. Quite often

however, it leads to trial and error with little or no theoretical basis. To navigate

through this problem, we restricted our attention to the performance of a neural net-

work with a single hidden layer i.e., 𝑁ℎ𝑖𝑑 = 1. Hence, the problem of hyperparameter

tuning reduces to one of finding an optimal number of neurons ℎ. There were two

main factors that led to this choice:

1. It was observed that the performance (i.e., training and validation losses) of a

single-hidden layer NN was comparable to that of a multi-layer NN, so there

was not a substantial loss of accuracy with this choice

2. More importantly, even though a single hidden layer NN itself leads to non-

convex optimization, it can be transformed to an equivalent convex optimiza-

tion problem with linear inequality constraints using dual optimization tech-

niques [42, 49], allowing us to be closer to guarantees.

Choice of Activation Function

There are several choices of activation functions, such as ReLU, sigmoid, etc for the

hidden layer. In this study, ReLU was chosen as the activation function for the single

hidden layer NN. This was based on the fact that a non-decreasing activation function

is required to transform the neural network training problem into a constrained convex

optimization [42].

One may argue that using multiple hidden layers with ReLU activation functions

in the hidden layers is a better heuristic choice. For higher dimension cases, the

absence or presence of sigmoid is rather insignificant in improvement in training

64

performance. Ultimately, the results obtained on Single hidden layer NN with ReLU

activation function can be extended to a larger and complex network easily, with

carefully chosen settings that aid accuracy improvement.

This kind of analysis is beyond the scope of this work, hence, we restrict our

attention to "single hidden layer neural network with ReLU activation function."

Computing dependent variable and soft loss formulation

The approach described in Section 2.3.2 is utilized to compute the predicted value of

dependent variables (𝜑) from predicted output of Neural Network 𝑃𝐺 using (5.2). As

we can see, the relation between 𝜑 and 𝑃𝐺 is linear, i.e., 𝜑 is an explicit function of 𝑃𝐺,

hence easy to compute. In case of AC-OPF, it is not possible to express 𝜑 = 𝑓(𝑃𝐺),

hence an iterative solver has to be used, such as Newton’s method [16].

Once we have the predicted values, we formulate loss function 𝑓(𝑥) similar to the

one shown in Section 2.3.1, (2.4). To ensure the function is convex, a mean squared

error loss function is chosen, to compare 𝑃𝐺 with 𝑃𝐺, where 𝑃𝐺 is the value obtained

for the given 𝑃𝐷 using MATPOWER. Thus, loss function can be written as:

𝑓(𝑃𝐺, 𝜑) =
1

𝑁𝑔𝑒𝑛

𝑁𝑔𝑒𝑛∑︁
𝑖=1

‖𝑃𝐺 − 𝑃𝐺‖2 (5.5)

Similar to the inequality violation term in (2.4), a penalty loss function is proposed

to penalize violation of (5.3b) which is modelled as a quadratic loss function and can

be written as:

𝑔(𝑃𝐺, 𝜑) =
1

𝑁𝑎

𝑁𝑎∑︁
𝑘=1

(𝐴𝜑𝑘)
2 − 1 (5.6)

where 𝑁𝑎 is the number of adjacent buses, and 𝐴 is a 𝑁𝑎×𝑁𝑏𝑢𝑠 matrix, with each row

in 𝐴 corresponding to an adjacent bus pair. Element 𝐴𝑖𝑗 of the matrix corresponds

to a flow from 𝑖𝑡ℎ bus to 𝑗𝑡ℎ bus. This is modification of (5.3b), since directly (5.3b)

cannot be utilized as a penalty loss function. The relation of the inequality constraint

65

with matrix 𝐴 can be expressed as:

𝑎𝑖 =
1

𝑃𝑚𝑎𝑥
𝑖𝑗 · 𝑥𝑖𝑗

and 𝑎𝑗 = −
1

𝑃𝑚𝑎𝑥
𝑖𝑗 · 𝑥𝑖𝑗

(5.7)

where 𝑎𝑖, 𝑎𝑗 refer to the corresponding entries of matrix 𝐴.

Collectively, the overall loss function ℒ(𝑃𝐺, 𝜑) can be written as:

ℒ(𝑃𝐺, 𝜑) = 𝑤1𝑓(𝑃𝐺, 𝜑) + 𝑤2𝑔(𝑃𝐺, 𝜑) (5.8)

𝑤1, 𝑤2 correspond to percentage of loss function’s weightage towards penalization

and optimization. In practice, it is observed that the Neural Network is able to

satisfy inequality constraints and generate feasible solutions. Hence, for the purpose

of training, 𝑤2 was chosen to be much smaller than 𝑤1, so that the training is largely

centered around optimization.

Overall, ℒ(𝑃𝐺, 𝜑) is convex and reduction of ℒ(𝑃𝐺, 𝜑) to 𝑙(𝑃𝐺) is achieved by a

linear equation. Hence, this problem satisfies all conditions of Theorem 3.2.1. Hence,

theoretically, with 𝑃𝐺 as the decision variable, High Order Tuner is guaranteed to

converge to 𝑃 *
𝐺, the optimal solution of the DC-OPF problem, from which 𝜑* can be

derived easily. However, by choosing 𝑃𝐺 as the output of a NN, the decision variable

transforms to the weights of the NN as shown next.

Training a Neural Network using High Order Tuner

From optimization’s perspective, Neural Network training is a non-convex optimiza-

tion problem. A single hidden layer DNN problem can be formulated as:

𝑓(𝑢, 𝛼) =
ℎ∑︁

𝑗=1

𝜎(𝑥𝑇𝑤1𝑗)𝑤2𝑗 (5.9)

Here 𝑤1𝑗 and 𝑤2𝑗 are weights of the 𝑗𝑡ℎ neurons from input to hidden layer and hidden

layer to output layer respectively with 𝑥 ∈ R𝑁𝑏𝑢𝑠 being the vector corresponding to

the input layer which is 𝑃𝐷 in this case. Here, 𝜎(·) represents the ReLU activation

66

function.

As 𝑤2 → 0, (5.8) approximates a standard MSE loss. While the literature does

not report usage of regularization, during numerical experiments, there were instances

of overfitting observed through validation loss patterns. Hence, the recommended

approach was to use a 𝑙2 norm regularization in addition to the MSE loss. However,

an important distinction must be made. The decision variable for optimization is

not 𝑃𝐺, but instead the weights 𝑤1, 𝑤2 associated with the NN. Thus, neglecting

the inequality violation term and re-writing (5.8) with a regularization term, with

updated decision variables, the loss ℒ can be expressed as:

𝑙(𝑤1, 𝑤2) =
1

2𝑁𝑔𝑒𝑛

(︂𝑁𝑔𝑒𝑛∑︁
𝑖=1

‖
ℎ∑︁

𝑗=1

𝜎(𝑥𝑇
𝑖 𝑤1𝑗)𝑤2𝑗 − 𝑦𝑖‖2

)︂
+

𝛽

2

ℎ∑︁
𝑗=1

(︂
‖𝑤1𝑗‖22 + 𝑤2

2𝑗

)︂
(5.10)

Neural Network training as constrained convex optimization

It can be clearly noticed, that (5.10) is a non-convex function. However, recent work

done on representing neural networks as convex regularizers enables transformation

of minimization of (5.10) to a convex optimization problem which is written as:

𝑝* := min
𝑣,𝑤

1

2
‖

𝑃∑︁
𝑖=1

𝐷𝑖𝑋(𝑣𝑖 − 𝑤𝑖)− 𝑦‖22 + 𝛽
𝑃∑︁
𝑖=1

(‖𝑣𝑖‖2 + ‖𝑤𝑖‖2)

s.t. (2𝐷𝑖 − 𝐼𝑛)𝑋𝑣𝑖 ≥ 0, (2𝐷𝑖 − 𝐼𝑛)𝑋𝑤𝑖 ≥ 0 ∀𝑖

(5.11)

Here, 𝑃 is a variable dependent on the dimension of the original problem and 𝑋

represents the matrix form of input vectors 𝑥𝑖 organized column-wise for supervised

training. The details of this convex formulation can be found in [42].

This gives us a constrained convex optimization problem. For a fixed input dataset

and number of neurons ℎ, we can find the optimal loss value 𝑝* which using strong

duality is equivalent to 𝑙*. Similarly, the optimal values of weights 𝑤*
1, 𝑤

*
2 can also

be computed from solution 𝑣*, 𝑤*. There are several solvers such as Python based

CVXPY that can be used to solve such an optimization problem. While we cannot

directly utilize the convex formulation in neural network training, it gives us an insight

67

into the global loss value that can be achieved with a given number of neurons and size

of dataset, and tuning of these hyperparameters becomes easier with this knowledge.

Additionally, theoretical guarantees associated with High Order Tuner can also be

leveraged to solve the convex optimization problem directly, instead of using another

solver, however, that has been excluded from the scope of the current work.

5.3 Numerical Experiments

For validating the utility of accelerated convergence of High Order Tuner for solving

Neural Network based DC-OPF problems, we implemented the steps mentioned in

Section 5.2. Pytorch framework was used for neural network implementation. IEEE

Case 9, 30, 300 and 1354 sourced from [36] were used for dataset generation with the

following approach:

1. IEEE Case 9 was chosen to debug the network and implemented framework.

2. IEEE Case 30 and 300 were chosen to compare results between HT and GD in

test and training.

3. IEEE Case 1354 has not been discussed in the literature pertaining to learning-

based techniques for DC-OPF before, and the intent behind this selection was

to validate the capability of High Order Tuner in addressing challenges that

arise with a network topography that resembles real-time implementation and

solving.

Dataset & Implementation

Training dataset for Case 9,30 and 300 consisted of 30,000 datapoints of 𝑃𝐷 and

corresponding (𝑃𝐺, 𝜑) values. For Case 1354 50,000 datapoints were generated. Al-

though not all datapoints were utilized in training, since these are benchmark values

we started off with based on reference from [37]. Following the training dataset gen-

eration, 10,000 points were chosen for each case for validation dataset.

68

Loss formulation was done using custom loss class using Pytorch to replicate (5.8).

However, in practice it was observed that the predicted values had 100% feasibility

in test run, and having MSE loss instead did not make an overall difference. Addi-

tionally, there was no need for implementing inequality correction procedure similar

to a projection method (Algorithm 2) for simulations. However, it is strongly recom-

mended to have the inequality violation adjustment be present in real-time training

for DC-OPF.

For the purpose of test run, feasibility was checked for every instance. 10,000

datapoints were generated for test dataset. For Case-9 and 30, the average predicted

cost was also calculated to ensure that the prediction error is not extremely high. After

obtaining average predicted cost with percentage errors less than 1% with respect to

the reference average cost calculated over the entire dataset, and observing 100%

feasibility, the model validity was ensured.

This also led to the conclusion that with proper training, the sigmoid activation

function at the output layer that is typically used for constraint satisfaction is not

necessarily required and can be eliminated.This does spark a discussion however,

on the capability of the chosen model to generalize across different varieties of data.

However, the focus of this study has been to bridge the gaps in neural network training

and convex optimization using High Order Tuner. Readers are referred to [37],[38]

to better understand the neural networks that accurately serve the corresponding

topography of the chosen IEEE Cases.

For optimizers, custom optimizer classes for High Order Tuner and Gradient de-

scent’s implementation were chosen. Instead of using SGD, custom vanilla GD was

chosen for a fair comparison between High Order Tuner and Gradient Descent’s per-

formance. The normalizing parameter for HT in each case was set to be a constant

with value adjusted to suit the performance of the model.

69

IEEE Case-9: Testing & Debugging

Figure 5-2: IEEE Case-9: Comparison of performance between HT and GD with
baseline

• Training Dataset: 10,000 points

• Test Dataset: 5000 points

• 𝑁𝑏𝑢𝑠 = 9

• 𝑁𝑔𝑒𝑛 = 3

For this case, 2 hidden layers with 16 neurons in each was chosen as Neural Network

with ReLU activation function for each layer.

Observations: Within 20 epochs, both High Order Tuner and Gradient Descent

achieved desirable training loss of 8× 10−5 and 3× 10−4 respectively. The prediction

error histograms for both algorithms have been shown in figure

This ensured that the model is working correctly. It was observed that there is no

substantial difference between training performance in HT and GD, which is expected

since GD trains pretty well and Case-9 is a simple case (Figure 5-2)

IEEE Case-30: Extension of Case-9

The training, test dataset and structure of neural network chosen remainded the same

as Case-9. This was also because these values were taken based on results of IEEE

Case-30 DC-OPF in Table-2 of [37] . Case-30 corresponds to 𝑁𝑏𝑢𝑠 = 30, 𝑁𝑔𝑒𝑛 = 6.

70

Figure 5-3: Comparison of predicted Power Generation in IEEE Case-30 by HT and
GD with baseline MATPOWER. HT power prediction is more accurate than GD

Low learning rate 𝛾 = 10−3 was chosen for both HT and GD. Number of epochs

was set to 20 and prediction errors corresponding to Generators 1,2...6 were ob-

served. Here, even though the training loss was satisfactory for both HT and GD,

(approximately 3×10−4), in prediction performance over test dataset, HT performed

substantially better. This can be seen from the prediction error histograms shown in

Fig 5-4 and Fig 5-3.

Observations: The results obtained are not very strongly conclusive, since GD

can be trained better to obtain similar prediction performance. Moreover, the purpose

of comparison between HT and GD was to observe acceleration in training, which was

not substantial in Case-30 and 9 due to simplicity of these models.

Also, at this point, comparison was made between a multi-layer neural network and

a single layer neural network with larger neurons, and with no substantial difference

observed, latter was chosen for the subsequent cases. This was double-checked by

again comparing the performance of Case-300 and Case-1354 with single and multi-

layer neurons.

71

Figure 5-4: IEEE Case-30 Power Generation Prediction Error Distribution from base-
line. HT performs better than GD in prediction hypothetically due to its ability to
avoid local minimum

IEEE Case-300 (Summarized in Table 5.1)

• Training Dataset: 50,000 points, Validation Dataset: 10,000 points

• Test Dataset: 10,000 points

• 𝑁𝑏𝑢𝑠 = 300, 𝑁𝑔𝑒𝑛 = 69

• NN Model: Single hidden layer with 𝑁𝑛𝑒𝑢 = 2048

• Hyperparamters: HT (𝛾 = 10−3, 𝛽 = 0.09), GD (𝛾 = 10−3)

72

Note here that 𝛾 for GD refers to the learning rate or step-size of the algorithm. With

the above-mentioned details, the percentage deviation from average optimal reference

value obtained in test run was 0.041% in case of HT and 0.043% for GD. The entire

dataset consisting of 50, 000 datapoints with a batchsize of 32 was chosen for training.

After observing reasonable performance similar to Case-9 and 30, the objective was

to deconstruct the training process. Appendix B consists of details of the simulations

pertaining to training for IEEE Case-300, that led to some important conclusions.

IEEE-300 Average cost $ per hr Hyperparameters No. of Epochs Training loss

MATPOWER 706322 - - -

NN with HT 706612 (0.041%) 𝛾 = 0.1, 𝛽 = 0.9 50 3× 10−4

NN with GD 706625 (0.043%) 𝛾 = 0.1 50 3× 10−4

Table 5.1: IEEE-Case 300 Training metrics comparison with baseline (MATPOWER).
Notice that HT is marginally closer to the average baseline cost. Note that all 3
methods generate 100% feasible solutions. The NN-based methods do so because of
the variable reduction technique that generates feasible solution

Inferences from simulations for Case-300:

• For varying sizes of datasets and fixed batchsize (32), the number of epochs

required to converge for HT is approximately 8 times lesser than Gradient De-

scent

• For achieving comparable accuracy (∼ 7 × 10−3) in nearly the same number

of epochs, (maximum limit set to 300 epochs), the dataset size required for

training is 5 times larger for GD (50,000 points) than HT (10,000 points)

This has important implications in data-quality, quantity and consumption of time for

training the model for Case-300. We conclude that with HT, not only do we experience

an advantage in these aspects, but HT is comparatively much more beneficial than

GD for re-training as well.

IEEE Case-1354

• Training Dataset: 50,000 points, Validation Dataset: 10,000 points

73

• Test Dataset: 10,000 points

• 𝑁𝑏𝑢𝑠 = 1354

• 𝑁𝑔𝑒𝑛 = 260

• NN Model: Single hidden layer with 𝑁𝑛𝑒𝑢 = 2048

• Hyperparamters: HT (𝛾 = 10−3, 𝛽 = 0.09), GD (𝛾 = 10−3)

The objective of this simulation was to re-affirm the inferences drawn from pre-

vious simulation. With lower training dataset size, plateauing effect was observed.

Although uncommon, this is referred to the phenomenon of loss saturation for a lot

of epochs and then decreasing rapidly after a certain large number of epochs. It

was observed that HT was able to navigate across the saturation much more easily

compared to gradient descent. This observation made from single-point training and

validation loss comparison graphs extends very well into the case when 10, 000 points

are chosen for training. Details of this analysis can be found in Appendix B.

Due to complexity of the underlying network and large dimension of the prob-

lem, learning is extremely slow and due to practical time constraints, learning was

restricted to 400 epochs. Following are some suggestions to overcome this problem:

• Using CUDA associated tensors to speed-up training and performance

• Improving the diversity profile of training dataset: Currently, the training

dataset preparation mechanism chosen based on recommendations from [37]

generates repetitive data-pattern. This can be avoided by generating data with

larger variance than the currently chosen 10%.

Some other recommendations based on training process:

• Overcoming plateauing:A practical way of handling the plateauing effect is also

to have cyclic learning rate instead of constant learning rate

• Training the model using a local loss function instead of global loss function is

also suggested to overcome plateauing, and also to expedite the training

Overall, despite the observed hurdles, HT’s accelerated learning is quite evidently

observable compared to Gradient Descent.

74

5.4 Conclusion & Future Work

Experimental studies confirm the accelerated convergence of HT which can be seen

in contrast to the linear convergence of Gradient Descent. This is backed by the-

oretical guarantees mentioned earlier for convex optimization problems. While the

loss landscape is extremely unpredictable and non-convex with DNNs, using a single

hidden layer NN and the dual formulation proposed in [42] helps in drawing impor-

tant insights into hyperparameter tuning in a structured manner, such as impact of

increasing dataset size on the problem.

The simulations conducted for Case-1354 point to several possible directions of

future work in this direction of learning based methods for solving OPF problems.

While DC-OPF is numerically easier to solve than AC-OPF and one might argue

that learning-based solvers are an overkill for DC-OPF, structurally, the insights and

observations made in DC-OPF can be very easily extended to AC-OPF too, where

learning-based techniques have a strong potential. This is evident from the fact that

to generate a dataset of 50,000 points for training a Neural Network for AC-OPF by

solving the problem repeatedly using MATPOWER takes upto 3-4 days. Here, one

can advtantage significantly from HT’s accelerated performance.

Another key feature of HT which has not been tested yet in simulations is the

incorporation of time-varying normalizing parameter 𝒩𝑘. So far, the normalizing

signal has been chosen as the smoothness parameter of the convex loss function.

Presence of a normalizing signal that tunes itself based on the changing nature of the

loss function has been theoretically explored in depth and can have some rewarding

consequences when implemented in machine-learning based settings.

75

76

Chapter 6

Lyapunov Theory for Neural Network

Optimization

6.1 Lyapunov Theory for optimization

Lyapunov theory has long existed in controls and dynamics literature as an important

tool for establishing stability of the dynamic system under consideration [44]. The

notion of lyapunov stability summarized in a line would be to find a function 𝑉 asso-

ciated to a dynamic system, which shrinks over time, then by analyzing the behavior

of 𝑉 we can comment about the long-term statistics of the system [47]. In the past,

Lyapunov theory for optimization has been explored by treating optimization prob-

lems as deterministic and stochastic dynamic systems and finding energy-dissipative

functions for the same [50, 26]. This has then been utilized for obtaining upper bounds

on algorithm convergence for specific classes of functions [46].

By looking at the continuous time representation of any optimization problem

solved using gradient based methods such as GD, the translation between decision

variables and states can be easily achieved. By treating the decision variables as states

of a dynamic system, we propose Lyapunov function for neural network optimization

trained using Gradient Descent. This can be used to comment upon the convergence

performance of decision variables to the optimal value or critical points regardless of

the information available about input regressors (i.e,. they can be time-invariant or

77

not), which is currently a huge caveat in most approaches in learning theory.

6.1.1 Overview

In this chapter we focus our attention to single hidden layer Linear Neural Networks

(LNNs). Linear Neural Networks are simply networks without an activation function.

We first study the scalar-version of this network

6.2 Linear Neural Network optimization as a dy-

namic system

6.2.1 Scalar case

We first look at the scalar version of neural network optimization, to understand

the system dynamics and gain information about critical points and minimas of the

system. Consider a LNN with input 𝑥(𝑡), output 𝑦(𝑡) and a single hidden layer, with

weights from input to hidden layer described as 𝑢(𝑡) and that from hidden to output

layer described as 𝑣(𝑡). We further define 𝑢*, 𝑣* as the optimal values such that

𝑦(𝑡) = 𝑣*𝑢*𝑥(𝑡) Define:

𝑢̃(𝑡) = 𝑢(𝑡)− 𝑢*

𝑣(𝑡) = 𝑣(𝑡)− 𝑣*

Loss function (Mean Squared Error loss):

𝐿 =
1

2
‖𝑦(𝑡)− 𝑣(𝑡)𝑢(𝑡)𝑥(𝑡)‖22 (6.1)

Using Gradient Flow for weight update, we can write:

𝑣̇(𝑡) = (𝑦(𝑡)− 𝑣(𝑡)𝑢(𝑡)𝑥(𝑡)) · 𝑢(𝑡)𝑥(𝑡)

𝑢̇(𝑡) = (𝑦(𝑡)− 𝑣(𝑡)𝑢(𝑡)𝑥(𝑡)) · 𝑣(𝑡)𝑥(𝑡)
(6.2)

78

Loss convergence analysis (scalar case): Assuming there exists atleast one (𝑢*, 𝑣*)

such that 𝑦(𝑡) = 𝑣*𝑢*𝑥(𝑡)

𝐿̇(𝑡) = −𝑥(𝑡) · (𝑦(𝑡)− 𝑣(𝑡)𝑢(𝑡)𝑥(𝑡)) · (𝑢𝑣̇ + 𝑣𝑢̇)

= −𝑥2(𝑢2 + 𝑣2)𝐿(𝑡) ≤ 0

Therefore, using Gronwall’s lemma, 𝐿(𝑡) ≤ −𝐿(0)𝑒𝑥𝑝(−
∫︀ 𝑡

0
𝑥2(𝑢(𝑠)2 + 𝑣(𝑠)2) 𝑑𝑠).

Readers are referred to [31] for further information about the loss analysis presented

above and its extensions to the vector-case.

Notice this approach depends heavily on the assumption that 𝑥(𝑡) does not have

any dynamics, i.e, 𝑥̇(𝑡) = 0, and 𝑥(𝑡) can be treated as a constant input regressor,

making it suitable for the anaysis of supervised learning problems. However, analysing

the loss convergence deprives us of commenting on the stability or convergence in the

case where 𝑥(𝑡) is a time-varying regressor, such as a state of a dynamic system.

However, using this toy-case analysis of LNN dynamics, it becomes apparent that

we are treating 𝑢, 𝑣 as the states of our dynamic system and are interested in the

convergence properties of these weights.

6.2.2 Phase Portait of LNN: Scalar case

Using the gradient flow update in (6.2) we analyse the dynamics of a Linear Neural

Network. From the Figure 6-1, we can observe that the parameters (𝑢, 𝑣) will converge

to a point on the hyperbola 𝑢𝑣 = 𝑢*𝑣* everywhere in R2, except on the line 𝑢 = −𝑣.

Note that this is under the assumption that 𝑢*𝑣* ≥ 0.

On the separatrix 𝑢 = −𝑣: A linear network with weights (𝑢0, 𝑣0) initialized on

this line will converge to the sub-optimal saddle point (0, 0) instead. This explains

the basis behind the popular theory of imbalance in weight initialization [31, 5], as

this would amplify the chances of avoiding saddle points in a higher dimensional

network. Furthermore, it can be shown that (𝑢2 − 𝑣2) is a time-invariant set, and

the difference of square of weights is preserved throughout the training. This serves

the intuition behind proposing the Lyapunov Candidate function for a scalar neural

79

network 𝑉 = 1
2
‖𝑣*𝑢* − 𝑣𝑢‖2. For such a function 𝑉 , it can be easily shown that

𝑉̇ ≤ 0 and hence, 𝑉 is a valid lyapunov function for this linear neural network. We

now extend the analysis to a higher dimensional Linear Neural Network.

Figure 6-1: Phase portait of a scalar representation of Linear Neural Network (as-
suming 𝑣*𝑢* > 0, phase portait will be a mirror image for 𝑣*𝑢* < 0). Notice that all
points eventually converge to a point lying on the hyperbola 𝑣𝑢 = 𝑣*𝑢* except for
when initialized on the line 𝑢 = −𝑣, in which case it converges to the saddle point
(0, 0)

6.3 Lyapunov Theory for Linear Neural Networks

We assume that the true system is given by:

𝑦 = 𝑊 *
2 (𝑊

*
1 𝑥+𝐵*

1 · 1) +𝐵*
2 · 1 (6.3)

80

where 𝑊 *
2 ∈ R𝑚×ℎ,𝑊 *

1 ∈ Rℎ×𝑑, 𝐵*
1 ∈ Rℎ, 𝐵*

2 ∈ R𝑚 are true parameters. The problem

is to determine estimates for all of the parameters using a linear neural network of

the form

𝑦 = 𝑊2(𝑊1𝑥+𝐵1 · 1) +𝐵2 · 1 (6.4)

so that the estimated output 𝑦 converges to 𝑦. We propose some transformations to

accommodate the presence of biases in the network as: 𝑥 ∈ R𝑑+1

𝑥 =

⎡⎣𝑥
1

⎤⎦ (6.5)

𝑊1 ∈ Rℎ×𝑑+1:

𝑊1 =
[︁
𝑊1 𝐵1

]︁
(6.6)

Thus, 𝑊1𝑥+𝐵1 = 𝑊 1𝑥. We further transform 𝑊 1 to 𝑊 1𝑢 ∈ Rℎ+1×𝑑+1 as:

𝑊 1𝑢 =

⎡⎣ 𝑊 1

1

(
∑︀𝑑

𝑖=1 𝑥𝑖)+1

⎤⎦ (6.7)

Thus, 𝑊 1𝑢 · 𝑥 ∈ Rℎ+1

𝑊 1𝑢 · 𝑥 =

⎡⎣𝑊1𝑥+𝐵1

1

⎤⎦ (6.8)

Now we propose a transformation to 𝑊2 as 𝑊 2 ∈ R𝑚×ℎ+1:

𝑊 2 =
[︁
𝑊2 𝐵2

]︁
(6.9)

The transformations 𝑊 1𝑢,𝑊 2 help us write (6.4) as:

𝑦 = 𝑊 2𝑊 1𝑢𝑥 (6.10)

Similarly, true value of parameters can be written as:

𝑦 = 𝑊
*
2𝑊

*
1𝑢𝑥 (6.11)

81

Figure 6-2: Block Diagram explaining the Linear Neural Network architecture. We
assume existence of 𝑊 *

2 ,𝑊 *
1 , 𝐵

*
1 , 𝐵

*
2 such that 𝜃* = 𝑊

*
2𝑊

*
1𝑢 as shown in (6.11)

This allows us to write the loss function as:

𝐿 =
1

2
‖𝑦 −𝑊 2𝑊 1𝑢𝑥‖2 (6.12)

Using the gradient update law:

𝑊̇ 2 = 𝐷𝑥𝑥𝑇𝑊
𝑇

1𝑢 (6.13)

𝑊̇ 1 = 𝑊 𝑇
2 𝐷𝑥𝑥𝑇 (6.14)

Using 𝑊̇1 we can write:

𝑊̇ 1𝑢 =

⎡⎣𝑊̇1

0

⎤⎦ (6.15)

Therefore, 𝑊 2𝑊̇ 1𝑢 = 𝑊2𝑊̇ 1.

Theorem 6.3.1 Under gradient flow given by (6.13) and (6.14), and a mean sqaured

error loss function given by (6.12), the following function is a valid lyapunov function

V = 1
2
‖𝑊 *

2𝑊
*
1𝑢 −𝑊 2𝑊 1𝑢‖2𝐹

Proof: Note The proof makes use of several transformations and equations mentioned

in this Section, hence for ease of viewing it has been stated here directly.

Define 𝐷 = 𝑊
*
2𝑊

*
1𝑢 −𝑊 2𝑊 1𝑢, therefore, we have:

V̇ = 𝑡𝑟(𝐷𝑇 𝐷̇) (6.16)

82

𝐷̇ = −(𝑊̇ 2𝑊 1𝑢 +𝑊 2𝑊̇ 1𝑢) (6.17)

Using, (6.17), (6.13) and (6.14), V̇ can be written as:

V̇ = −𝑡𝑟(𝐷𝑇 (𝑊̇ 2𝑊 1𝑢 +𝑊 2𝑊̇ 1𝑢))

= −𝑡𝑟(𝐷𝑇 𝑊̇ 2𝑊 1𝑢)− 𝑡𝑟(𝐷𝑇𝑊 2𝑊̇ 1𝑢))

= −𝑡𝑟(𝐷𝑇 𝑊̇ 2𝑊 1𝑢)− 𝑡𝑟(𝐷𝑇𝑊2𝑊̇ 1))

= −𝑡𝑟(𝐷𝑇𝐷𝑥𝑥𝑇𝑊
𝑇

1𝑢𝑊 1𝑢)− 𝑡𝑟(𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥𝑥𝑇)

(6.18)

𝑡𝑟(𝐷𝑇𝐷𝑥𝑥𝑇𝑊
𝑇

1𝑢𝑊 1𝑢): Using the properties of trace operator we can write:

𝑡𝑟(𝐷𝑇𝐷𝑥𝑥𝑇𝑊
𝑇

1𝑢𝑊 1𝑢) = 𝑥𝑇𝐷𝑇𝐷𝑊
𝑇

1𝑢𝑊 1𝑢𝑥 (6.19)

This is valid for any vector 𝑥, hence, we have commutativity between 𝑊
𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷

and 𝐷𝑇𝐷𝑊
𝑇

1𝑢𝑊 1𝑢. For 2 symmetric PSD matrices 𝐴,𝐵, the product is PSD iff

(𝐴𝐵)𝑇 = 𝐴𝐵. Applying this, we have 𝐴 = 𝐷𝑇𝐷 and 𝐵 = 𝑊
𝑇

1𝑢𝑊 1𝑢 which is are

symmetric PSD matrices due to construction. Therefore, (𝐴𝐵)𝑇 = 𝑊
𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷,

and using 𝑊
𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷 = 𝐷𝑇𝐷𝑊

𝑇

1𝑢𝑊 1𝑢 we get (𝐴𝐵)𝑇 = 𝐴𝐵, hence the matrix

𝑊
𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷 is a PSD.

Therefore, for any vector 𝑥, using definition of PSD matrices we have:

𝑥𝑇𝑊
𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷𝑥 ≥ 0 (6.20)

Similarly, we can write

𝑡𝑟(𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥𝑥𝑇) ≥ 𝑡𝑟(𝐷𝑇𝑊2𝑊

𝑇
2 𝐷)𝜆𝑚𝑖𝑛(𝑥𝑥

𝑇) (6.21)

Since 𝑥𝑥𝑇 is a PSD, 𝜆𝑚𝑖𝑛(𝑥𝑥
𝑇) ≥ 0, and 𝐷𝑇𝑊2𝑊

𝑇
2 𝐷 can be written as (𝑊 𝑇

2 𝐷)𝑇 (𝑊 𝑇
2 𝐷)

and is hence a dyad, therefore a PSD. Using trace operator properties, we can write

𝑡𝑟(𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥𝑥𝑇) = 𝑥𝑇𝐷𝑇𝑊2𝑊

𝑇
2 𝐷𝑥

𝑥𝑇𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥 ≥ 0 since 𝐷𝑇𝑊2𝑊

𝑇
2 𝐷 is a dyad. Therefore,

83

𝑡𝑟(𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥𝑥𝑇) = 𝑥𝑇𝐷𝑇𝑊2𝑊

𝑇
2 𝐷𝑥 ≥ 0 (6.22)

Therefore, plugging (6.20) and (6.22) in the equation (6.18), we get:

V̇ = −(𝑥𝑇𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥+ 𝑥𝑇𝑊

𝑇

1𝑢𝑊 1𝑢𝐷
𝑇𝐷𝑥) ≤ 0 (6.23)

Remark 1: Theorem 6.3.1 implies that the product of weights 𝑊 2𝑊 1𝑢 remains

bounded at all times and the weights converge to the value where V̇ = 0. Note that

for ℎ ≥ 𝑑, and 𝐷 ̸= 0, the rank(𝑊 𝑇
2 𝐷) = 𝑑, which allows us to use rank-nullity

theorem to state that 𝑊 𝑇
2 𝐷𝑥 = 0 iff 𝑥 = 0. Since it was already established that

𝐷𝑇𝑊2𝑊
𝑇
2 𝐷 is PSD, for ℎ ≥ 𝑑 we can conclude that 𝐷𝑇𝑊2𝑊

𝑇
2 𝐷 is Positive Definite.

Therefore, V̇ < 0 if 𝑥𝑇𝐷𝑇𝑊2𝑊
𝑇
2 𝐷𝑥 > 0. Therefore, V̇ = 0 only if 𝐷 = 0, i.e,

𝑊 2𝑊 1𝑢 = 𝑊
*
2𝑊

*
1𝑢. Therefore it follows that except for the degenerate case where

𝑊 1𝑢 = 𝑊 2 = 0, for all other initial conditions, when the weights 𝑊 2 and 𝑊 1𝑢 are

adjusted using (6.13) and (6.14), all weights will converge to the set 𝐷 = 0. It should

be noted that on 𝐷 = 0, the loss function 𝐿 given by (6.12) is at its global minimum

of zero. This shows that the Lyapunov function V in Theorem 6.3.1 is global. Also

note that from (6.13) and (6.14), 𝐷 = 0 implies that 𝑊̇ 2 = 0, 𝑊̇ 1 = 0. Therefore

𝐷 = 0 is an invariant set. Hence, the largest invariant set obtained from the Lyapunov

function corresponds to the region of optimal product where 𝑊 2𝑊 1𝑢 = 𝑊
*
2𝑊

*
1𝑢.

Remark 2: Note that the Lyapunov function here is V = 1
2
‖𝑊 *

2𝑊
*
1𝑢−𝑊 2𝑊 1𝑢‖2𝐹 ,

which can also be written as 1
2
𝑡𝑟
(︀
(𝑊

*
2𝑊

*
1𝑢 − 𝑊 2𝑊 1𝑢)

𝑇 (𝑊
*
2𝑊

*
1𝑢 − 𝑊 2𝑊 1𝑢)

)︀
. By

defining 𝐷 = 𝑊
*
2𝑊

*
1𝑢 −𝑊 2𝑊 1𝑢, Lyapunov function can be equivalently written as

V = 1
2
𝑡𝑟(𝐷𝑇𝐷). This is similar to the scalar case where 𝑉 = 1

2
‖𝑣*𝑢* − 𝑣𝑢‖2 where

𝑡𝑟(𝑑𝑇𝑑) = 𝑑𝑇𝑑 for 𝑑 = 𝑣*𝑢* − 𝑣𝑢. The fairly symmetric structure suggests that

Theorem 6.3.1 can be extended in a straightforward manner to a linear network with

arbitrary number of layers.

84

6.4 Numerical Simulations

To further validate 6.3.1, we present a numerical simulation with true parameter repre-

sented by (6.3), with 2-dimensional input 𝑋, and 3-dimensional output 𝑦. Therefore,

𝑚 = 3, 𝑑 = 2. We choose ℎ = 6, and aim to estimate the weights 𝑊1 and 𝑊2. From

the above analysis, we can conclude that identifiability of the optimal weights is not

guaranteed under the given setup, however, V = 1
2
‖𝑊 *

2𝑊
*
1𝑢−𝑊 2𝑊 1𝑢‖2𝐹 is a positive

and monotonically decreasing function.

6.4.1 Dataset design

We choose a 2-dimensional dataset of 1000 points drawn from randomly between

(0, 1) distribution to represent 𝑥 (Figure 6-3)and design the true output 𝑦 as:

𝑦 = 𝑊 *
2𝑊

*
1 𝑥 (6.24)

Note that for simplicity we assume biases to be zero both in design and training. The

optimal weights 𝑊2,𝑊1 are chosen as:

𝑊 *
1 =

⎡⎣ 0.1 0.2 0.6 0.3 0.4 0.5

−0.1 −0.3 −0.6 −0.4 −0.8 −10

⎤⎦𝑇

(6.25)

𝑊 *
2 =

⎡⎢⎢⎢⎣
0.1 0.2 0.6 0.3 0.4 0.5

−0.1 −0.3 −0.6 −0.4 −0.8 −10

0 −0.7 −0.2 −1.0 2 0

⎤⎥⎥⎥⎦ (6.26)

6.4.2 Design of Neural Network

We design the neural network using a single hidden layer as discussed earlier, with

the estimated output 𝑦 of the network given by (6.4). We perform training of the

network for few different widths of the network, i.e., different values of ℎ in the hidden

85

Figure 6-3: Distribution of input data 𝑥 with 𝑥1, 𝑥2 being the vectors along the 2-
dimensions of input data

layer. The batch-size is chosen as 1, to ensure consistency with the vector structure

of 𝑥 in Theorem 6.3.1

6.4.3 Results

Figures 6-4,6-5 show the function V(𝑡), where 𝑡 denotes the epochs of the simula-

tion. Notice that the trend is monotonically decreasing, thus asserting the validity

of the proposed Lyapunov function. Also note that in the construction and proof

of Theorem 6.3.1, there is flexibility of working with any width of the hidden layer.

Therefore, in theory, a LNN of arbitrary width will try to converge to the optimal

solution 𝑊 *
2𝑊

*
1 .

For the specific case of ℎ = 6, we observe the values that weights converge to at

the end of 100 epochs, given by 𝑊 𝑐
1 and 𝑊 𝑐

1 :

𝑊 𝑐
1 =

⎡⎣−0.0479 −0.0671 −0.0787 −0.0895 −0.0532 −0.0564
1.1384 1.1531 1.1190 1.1073 1.1228 1.1103

⎤⎦𝑇

(6.27)

𝑊 𝑐
2 =

⎡⎢⎢⎢⎣
−9.1480× 10−2 −9.8865× 10−2 −7.5373× 10−2 −6.6551× 10−2 −8.4185× 10−2 −6.6059× 10−2

1.4982 1.5004 1.5062 1.5257 1.4837 1.4878

−2.5457× 10−2 −3.1113× 10−2 2.6396× 10−4 2.0192× 10−2 −1.4885× 10−2 −1.1681× 10−2

⎤⎥⎥⎥⎦
(6.28)

86

Clearly, 𝑊 𝑐
1 ̸= 𝑊 *

1 ,𝑊
𝑐
2 ̸= 𝑊 *

2 . However, if we look at the product 𝑊 𝑐
2 ·𝑊 𝑐

1 :

𝑊 𝑐
2 ·𝑊 𝑐

1 =

⎡⎢⎢⎢⎣
3.1108× 10−2 −5.4405× 10−1

−5.9034× 10−1 10.128

2.9320× 10−3 −7.1888× 10−2

⎤⎥⎥⎥⎦
𝑇

(6.29)

This is very close to the product 𝑊 ·
2𝑊

*
1 :

𝑊 *
2 ·𝑊 *

1 =

⎡⎢⎢⎢⎣
0.0910 −0.5870

−0.5870 10.1260

0.0240 −0.0870

⎤⎥⎥⎥⎦
𝑇

(6.30)

The marginal difference in values indicates that after fine-tuning the step size and

running the simulation for more epochs, the value 𝑊 𝑐
2𝑊

𝑐
1 will converge to the optimal

value 𝑊 *
2𝑊

*
1 .

87

Figure 6-4: Lyapunov Function V(𝑡) for different values of ℎ under gradient update
(𝑙𝑟 = 5× 10−3). Notice that increasing ℎ, i.e, overparametrizing the network leads to
smoother convergence to 𝑊 *

2𝑊
*
1 , as is often seen in practice [13]

88

Figure 6-5: Lyapunov Function V(𝑡) for ℎ = 20 under gradient update with a slower
learning rate to clearly show the monotonic behavior of the lyapunov function (𝑙𝑟 =
5× 10−4).

89

90

Chapter 7

Conclusions and Future Work

The central focus of this thesis is the clever adoption of accelerated learning techniques

prevalent in controls and dynamics literature, and their application to open-ended

problems in optimization and machine learning. We aim to contribute towards opti-

mization and learning theory with stability guarantees by formulating lyapunov func-

tions for different accelerated algorithms and providing feasibility guarantees wherever

needed.

Specifically, we make use of a recently proposed accelerated method called High

Order Tuner (HT) to impart acceleration for optimization problems, which plays a

major role in avoiding saddle points in nonconvex optimization, as evident in the

numerical simulations presented in Chapter 4 and 5.

In Chapter 3 and 4, we present various novel methods for constrained optimiza-

tion using HT which guarantee feasibility and convergence. We also make the line

between convexity and non-convexity clearer through Propositions providing analyt-

ical guarantees for feasibility of constraints while simultaneously retaining convexity

of objective function. By providing Theorems which prove stability of performance

of HT in these cases, we utilize fast learning to solve these problems. Scope of fu-

ture research within this work pertains to establishing theoretical guarantees with the

proposed projection operator which is introduced in the last section of Chapter 4.

In Chapter 5, we combine these techniques to present the application of HT to

solve a constrained optimization problem, DC-OPF, which is inherently convex. We

91

leverage Neural network training for this purpose, and use the tools for constraint sat-

isfaction provided in the earlier chapters. This numerical study allows us to appreciate

the importance of fast learning in non-convex optimization and the challenges faced

in this process. This Chapter is a dedicated study of the various selections backed

by theoretical guidelines to be made in a general study involving Neural Network

training. We are able to show that by appropriately tuning the Neural Network, with

accelerated methods we are able to avoid local minima in loss landscape, while simul-

taneously avoiding overfitting. It is a challenging but extremely important direction

of possible future work to consolidate these observations in the form of theoretical

results.

In Chapter 5 we observe that the lack of guarantees in non-convex optimization

inhibits us from fully exploiting HT’s capability in learning. We therefore steer our

attention in Chapter 6 to deconstruct the dynamics of neural networks.

Chapter 6 provides a novel analysis of Linear Neural Network stability in Lya-

punov sense. There is an immense scope of future research in this direction by formu-

lating a similar argument of stability for Neural Networks with activation functions

and regularization. Additionally, it will be interesting to compare the weight trajec-

tory under regularization with min-norm solutions which are widely popular in the

literature [31, 51, 23].

92

Appendix A

Stability and Convergence proofs

A.1 Propositions and Theorems from Chapter 3

Proposition 3.1.1 For the equality-constrained convex optimization problem (3.2),

assume 𝑓 is a 𝐿-smooth convex function, and let 𝑀 =
√︀

1 + ‖𝑃‖2(1 + ‖𝑃‖)𝐿. Then

𝑙 is 𝑀 -smooth convex.

Proof Convexity of 𝑙 follows in a straightforward manner from the definitions of 𝑙

and 𝑝 in (3.3b) and (3.4) respectively, and the convexity of 𝑓 . For the 𝑀 -smoothness,

using the chain rule, we have

𝑑𝑙

𝑑𝜃
=
𝜕𝑙

𝜕𝜃
+

𝜕𝑙

𝜕𝑝(𝜃)

𝜕𝑝(𝜃)

𝜕𝜃
.

Hence

∇𝑙 = ∇𝑓1:𝑚 + 𝑃 𝑇∇𝑓𝑚+1:𝑛.

Let us consider the gradient of 𝑙 at 𝜃1, 𝜃2 ∈ R𝑚 and examine the Lipschitz constant

93

of 𝑙.

‖∇𝑙(𝜃1)−∇𝑙(𝜃2)‖
‖𝜃1 − 𝜃2‖

≤‖∇𝑓1:𝑚(𝜃1)−∇𝑓1:𝑚(𝜃2)‖
‖𝜃1 − 𝜃2‖

+
‖𝑃 𝑇 (∇𝑓𝑚+1:𝑛(𝜃1)−∇𝑓𝑚+1:𝑛(𝜃2))‖

‖𝜃1 − 𝜃2‖

Since ‖∇𝑓𝑖:𝑗‖ ≤ ‖∇𝑓‖ for all 𝑖, 𝑗, we have

‖∇𝑙(𝜃1)−∇𝑙(𝜃2)‖
‖𝜃1 − 𝜃2‖

≤ (1 + ‖𝑃‖)‖∇𝑓(𝑥1)−∇𝑓(𝑥2)‖
‖𝜃1 − 𝜃2‖

(A.1)

To write the denominator of the above expression in terms of 𝑥1 and 𝑥2, remember

that

‖𝜃1 − 𝜃2‖2 + ‖𝑃𝜃1 − 𝑃𝜃2‖2 = ‖𝑥1 − 𝑥2‖2.

Using properties of the norm,

‖𝜃1 − 𝜃2‖2 + ‖𝑃‖2‖𝜃1 − 𝜃2‖2 ≥‖𝑥1 − 𝑥2‖2

‖𝜃1 − 𝜃2‖ ≥
‖𝑥1 − 𝑥2‖√︀
1 + ‖𝑃‖2

. (A.2)

Using (A.1) and (A.2), we have

‖∇𝑙(𝜃1)−∇𝑙(𝜃2)‖
‖𝜃1 − 𝜃2‖

≤
√︀

1 + ‖𝑃‖2(1 + ‖𝑃‖)‖∇𝑓(𝑥1)−∇𝑓(𝑥2)‖
‖𝑥1 − 𝑥2‖

≤
√︀
1 + ‖𝑃‖2(1 + ‖𝑃‖)𝐿,

where the last inequality follows from the 𝐿-smoothness property of 𝑓 .

Corollary 3.1.1 For the equality-constrained convex optimization problem (3.2),

assume 𝑓 is a 𝐿-smooth and 𝜇-strongly convex function. Then 𝑙 is 𝑀 -smooth and

𝜇-strongly convex, where 𝑀 is defined in equation (3.5).

Proof Consider 𝜃1, 𝜃2 ∈ R𝑚. Now consider 𝑥1, 𝑥2 ∈ R𝑛 defined as 𝑥1 = [𝜃𝑇1 𝑝(𝜃1)
𝑇]𝑇

94

and 𝑥2 = [𝜃𝑇2 𝑝(𝜃2)
𝑇]𝑇 . Then from the properties of 𝑓 , it follows that

𝑓(𝜆𝑥1 + (1− 𝜆)𝑥2) ≤𝜆𝑓(𝑥1) + (1− 𝜆)𝑓(𝑥2)

− 1

2
𝜇𝜆(1− 𝜆)‖𝑥1 − 𝑥2‖2,

for all 𝜆 ∈ (0, 1). Using the fact that ‖𝜃1 − 𝜃2‖2 ≤ ‖𝑥1 − 𝑥2‖2, we have

𝑓(𝜆𝑥1 + (1− 𝜆)𝑥2) ≤𝜆𝑓(𝑥1) + (1− 𝜆)𝑓(𝑥2)

− 1

2
𝜇𝜆(1− 𝜆)‖𝜃1 − 𝜃2‖2.

Rest of the proof follows from the definition of 𝑙 and the proof of Proposition 3.1.1.

Theorem 3.2.1 If the objective function 𝑓 is 𝐿-smooth convex, then with 0 <

𝛽 < 1 and 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

, the sequence of iterates {𝜃𝑘} generated by Algorithm 1

satisfy lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*), where 𝑙(𝜃*) = 𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the optimal value of (3.2).

Proof From Proposition 3.1.1, 𝐿-smoothness of the objective function 𝑓 implies

that the loss function 𝑙 is 𝑀 -smooth and convex. Rest of the proof follows from [32,

Theorem 2].

Proposition 3.3.1 Assume that there exists a convex set Ω𝑛 ∈ R𝑛 such that the

hypotheses of Lemma 3.3.1 are satisfied on Ω𝑛. Let

Ω𝑚 = {𝜃 | 𝜃 = 𝑥1:𝑚, 𝑥 ∈ Ω𝑛}.

If either of the following conditions is satisfied:

1. ∇ℒ(𝑥) ≥ 0 for all 𝑥 ∈ Ω𝑛, and 𝑝 is convex on Ω𝑚,

2. ∇ℒ(𝑥) ≤ 0 for all 𝑥 ∈ Ω𝑛, and 𝑝 is concave on Ω𝑚,

then 𝑙 is convex on Ω𝑚.

Proof We present here the arguments for only condition (i). The ensuing treat-

ment easily generalizes to condition (ii). It is immediate to see that Ω𝑚 is convex.

95

Consider 𝜃1, 𝜃2 ∈ Ω𝑚. Since 𝑝(𝜃) is convex, we have

𝑝(𝜆𝜃1 + (1− 𝜆)𝜃2) ≤ 𝜆𝑝(𝜃1) + (1− 𝜆)𝑝(𝜃2),

and it follows that⎡⎣ 𝜆𝜃1 + (1− 𝜆)𝜃2

𝑝(𝜆𝜃1 + (1− 𝜆)𝜃2)

⎤⎦ ≤ 𝜆

⎡⎣ 𝜃1

𝑝(𝜃1)

⎤⎦+ (1− 𝜆)

⎡⎣ 𝜃2

𝑝(𝜃2)

⎤⎦ .

Since ℒ is nondecreasing, it follows that

ℒ

(︃⎡⎣ 𝜆𝜃1 + (1− 𝜆)𝜃2

𝑝(𝜆𝜃1 + (1− 𝜆)𝜃2)

⎤⎦)︃

≤ℒ

(︃
𝜆

⎡⎣ 𝜃1

𝑝(𝜃1)

⎤⎦+ (1− 𝜆)

⎡⎣ 𝜃2

𝑝(𝜃2)

⎤⎦)︃. (A.3)

Moreover, it follows from Lemma 3.3.1 that ℒ is convex, and we have

ℒ

(︃
𝜆

⎡⎣ 𝜃1

𝑝(𝜃1)

⎤⎦+ (1− 𝜆)

⎡⎣ 𝜃2

𝑝(𝜃2)

⎤⎦)︃

≤𝜆ℒ

(︃⎡⎣ 𝜃1

𝑝(𝜃1)

⎤⎦)︃+ (1− 𝜆)ℒ

(︃⎡⎣ 𝜃2

𝑝(𝜃2)

⎤⎦)︃. (A.4)

Combining the inequalities (A.3) and (A.4), we get

ℒ

(︃
𝜆𝜃1 + (1− 𝜆)𝜃2

𝑝(𝜆𝜃1 + (1− 𝜆)𝜃2)

)︃

≤𝜆ℒ

(︃⎡⎣ 𝜃1

𝑝(𝜃1)

⎤⎦)︃+ (1− 𝜆)ℒ

(︃⎡⎣ 𝜃2

𝑝(𝜃2)

⎤⎦)︃.
And from the definition of the modified loss function, it follows that

𝑙(𝜆𝜃1 + (1− 𝜆)𝜃2) ≤ 𝜆𝑙(𝜃1) + (1− 𝜆)𝑙(𝜃2),

96

completing the proof.

Proposition 3.3.2 Following from Proposition 3.3.1, assuming f and h are convex

on a given set Ω̄𝑛 ⊆ R𝑛, and ℎ𝑖 is twice differentiable ∀ 𝑖 = 1, ..., 𝑛 − 𝑚, it follows

that:

1. if ∇𝑝ℎ(𝑥) < 0 for 𝑥 ∈ Ω̄𝑛 then 𝑝(𝜃) is convex on Ω𝑚

2. if ∇𝑝ℎ(𝑥) > 0 for 𝑥 ∈ Ω̄𝑛 then 𝑝(𝜃) is concave on Ω𝑚

Additionally, if h is linear in 𝑧 and convex in 𝜃, then condition (i) follows.

Proof We prove condition (i), similar arguments can be extended to prove condi-

tion (ii). Noting that

ℎ([𝜃𝑇 𝑝(𝜃)𝑇]𝑇) = 0, (A.5)

and applying the chain rule and differentiating (A.5) along the manifold 𝑧 = 𝑝(𝜃)

twice, for 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛−𝑚 we get:

𝜕2ℎ𝑖

𝜕𝜃2⏟ ⏞
𝐼

+
𝜕ℎ𝑖

𝜕𝑧𝑗

𝜕2𝑧𝑗
𝜕𝜃2⏟ ⏞

𝐼𝐼

+
𝜕2ℎ𝑖

𝜕𝑧2𝑗

𝜕𝑧𝑗
𝜕𝜃

(︂
𝜕𝑧𝑗
𝜕𝜃⏟ ⏞

𝐼𝐼𝐼

)︂𝑇

= 0 (A.6)

Since ℎ𝑖 is convex on Ω𝑛 ∀ 𝑖 ∈ N, it follows:

1. I: 𝜕2ℎ𝑖

𝜕𝜃2
is a positive semi-definite matrix

2. III: 𝜕𝑧𝑗
𝜕𝜃

(︂
𝜕𝑧𝑗
𝜕𝜃

)︂𝑇

is a symmetrical dyad, i.e., PSD matrix multiplied by ∇2
𝑧𝑗
ℎ𝑖 ≥ 0,

hence III is a PSD matrix.

For (A.6) to be valid, II has to be a negative semi-definite matrix, since it is the

negated sum of positive-semi definite matrices. From condition (i) we have 𝜕ℎ𝑖

𝜕𝑧𝑗
< 0

since 𝑧 = 𝑝(𝜃). Thus, 𝜕2𝑧𝑗
𝜕𝜃2

is PSD. Therefore, 𝜕2𝑝𝑗(𝜃)

𝜕𝜃2
is PSD, hence 𝑝𝑗(𝜃) is convex

∀𝜃 ∈ Ω𝑚,∀𝑗 = 1, ..., 𝑛−𝑚.

Theorem 3.3.2 If the objective function 𝑓 and the equality constraint ℎ are

convex over a set Ω𝑛, In addition, with 0 < 𝛽 < 1, 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

, and 𝜃0 ∈ Ω𝑚,

97

where Ω𝑚 is defined in (3.10), if the sequence of iterates {𝜃𝑘} generated by Algorithm 1

satisfy {𝜃𝑘} ∈ Ω𝑚, then lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*), where 𝑙(𝜃*) = 𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the

optimal value of (3.8)

Proof Convexity of the loss function 𝑙 follows from Proposition 3.3.1. Moreover,

since {𝜃𝑘} ∈ Ω𝑚 for all 𝑘, there exists a constant 𝑆 such that

‖∇𝑙(𝜃1)−∇𝑙(𝜃2)‖ ≤ 𝑆‖𝜃1 − 𝜃2‖,

for all 𝜃1, 𝜃2 ∈ Ω𝑚. Rest of the proof follows from [32, Theorem 2].

A.2 Propositions and Theorems from Chapter 4

Proposition 4.2.1 For a given compact set 𝐼 and convex loss function 𝑙(𝜃) if there

exist 𝜃1, 𝜃2 such that 𝑙(𝜃1) = 𝑙(𝜃2), then 𝜃* ∈ 𝐼.

Proof For a scalar case, i.e., Ω𝑚 ⊂ R, Rolle’s theorem can be applied to the

function 𝑙 being continuous and differentiable. For a subset [𝜃1, 𝜃2] ⊂ 𝐼, such that

𝑙(𝜃1) = 𝑙(𝜃2), by Rolle’s Theorem, there exists a 𝜃 ∈ [𝜃1, 𝜃2] such that ∇𝑙(𝜃) = 0.

Since 𝑙 is differentiable and convex, ∇𝑙(𝜃) = 0 ⇐⇒ 𝜃 = 𝜃*. This can be extended to

the general case where 𝑚 ≥ 1,Ω𝑚 ⊂ R𝑚, using the vector-version of Rolle’s theorem,

cf. [19].

Proposition 4.2.2 Consider Algorithm 3, for a given 𝑘 ∈ N, if 𝜃𝑘, 𝜈𝑘 ∈ 𝐼, there

exist real numbers 𝑎𝑘 > 0 and 𝑏𝑘+1 > 0 such that 𝜃𝑘, 𝜈𝑘+1 ∈ 𝐼. Consequently, for

0 < 𝛽 ≤ 1, and 𝜃0, 𝜈0 ∈ 𝐼, Algorithm 3 guarantees 𝜃𝑘, 𝜃𝑘, 𝜈𝑘 ∈ 𝐼 for all values of

𝑘 ∈ N.

Proof We first provide conditions for the selection of 𝑎𝑘.

For a given 𝜃𝑘 ∈ R𝑚 and 𝑖 ∈ N, consider 𝜃𝑖𝑘 ∈ R such that 𝜃𝑖𝑘 ∈ [𝜃𝑖𝑚𝑖𝑛, 𝜃𝑖𝑚𝑎𝑥].

There are two possible cases:

1. 𝜃𝑖𝑘 > 𝜃*𝑖 ⇐⇒ ∇𝑖𝑙(𝜃𝑘) > 0

2. 𝜃𝑖𝑘 < 𝜃*𝑖 ⇐⇒ ∇𝑖𝑙(𝜃𝑘) < 0

98

For case (ii), using Step-6 of Algorithm 3 we have,

𝜃
𝑖

𝑘 = 𝜃𝑖𝑘 + 𝑎𝑘
𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|
𝒩𝑘

(A.7)

For 𝑎𝑘 > 0, 𝜃𝑖𝑘 > 𝜃𝑖𝑚𝑖𝑛 in (A.7). We need to ensure that 𝜃𝑖𝑘 < 𝜃𝑖𝑚𝑎𝑥 for all 𝑖. Therefore,

we must ensure:

𝜃𝑖𝑘 + 𝑎𝑘
𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|
𝒩𝑘

≤ 𝜃𝑖𝑚𝑎𝑥 ∀𝑖. (A.8)

Inequality (A.8) would be true if 𝑎𝑘 ≤ 𝑎̂𝑘, where

𝑎̂𝑘 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑚𝑎𝑥 − 𝜃𝑖𝑘)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|
. (A.9)

Similarly, for case (i), we get the following inequality criteria for 𝑎𝑘 to ensure that

𝜃
𝑖

𝑘 > 𝜃𝑖𝑚𝑖𝑛 for all 𝑖:

𝑎𝑘 ≤ 𝑎̃𝑘 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑘 − 𝜃𝑖𝑚𝑖𝑛)𝒩𝑘

𝛾𝛽|∇𝑖𝑙(𝜃𝑘)|
(A.10)

Combining (A.9) and (A.10), we have

𝑎𝑘 ≤ 𝑎̄𝑘 = min{𝑎̂𝑘, 𝑎̃𝑘} ∀𝑘. (A.11)

We now outline conditions for selection of 𝑏𝑘+1, which follows similar approach to

selection of 𝑎𝑘, i.e., for given 𝜈𝑘 ∈ 𝐼 we prescribe range of 𝑏𝑘+1 such that 𝜈𝑘+1 ∈ 𝐼.

From Step-10 of Algorithm 3, it could be deduced that for all 𝑘, 𝑏𝑘+1 must satisfy

𝑏𝑘+1 ≤ 𝑏̄𝑘+1 = min{𝑏̂𝑘+1, 𝑏̃𝑘+1} (A.12)

where

𝑏̂𝑘+1 = min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑚𝑎𝑥 − 𝜈𝑖
𝑘)𝒩𝑘

𝛾|∇𝑖𝑙(𝜃𝑘+1)|

𝑏̃𝑘+1 = min
𝑖∈{1,...,𝑚}

(𝜈𝑖
𝑘 − 𝜃𝑖𝑚𝑖𝑛)𝒩𝑘

𝛾|∇𝑖𝑙(𝜃𝑘+1)|
.

99

Note however, that (A.11), (A.12) can generate 𝑎𝑘, 𝑏𝑘+1 = 0, which is undesirable. To

compensate for that, we introduce an additional rule:

𝑎𝑘 =

⎧⎪⎪⎨⎪⎪⎩
−𝜖 min

𝑖∈{1,...,𝑚}
(𝜃𝑖𝑘 − 𝜃𝑖𝑚𝑎𝑥) = 0

𝜖 min
𝑖∈{1,...,𝑚}

(𝜃𝑖𝑘 − 𝜃𝑖𝑚𝑖𝑛) = 0

(A.13)

Here 0 < 𝜖 < 1 is a very small real number of choice. Similar update rule can be

stated for 𝑏𝑘+1 to avoid the case of 𝑎𝑘, 𝑏𝑘+1 = 0. For a given 𝑘, by selecting 𝑎𝑘, 𝑏𝑘+1

such that (A.11), (A.12), (A.13) are satisfied, we ensure 𝜃𝑘, 𝜈𝑘 ∈ 𝐼. From Step-7 of

Algorithm 3:

𝜃𝑘+1 = (1− 𝛽)𝜃𝑘 + 𝛽𝜈𝑘 (A.14)

Hence, 𝜃𝑘+1 is a convex combination of 𝜃𝑘 and 𝜈𝑘 for a given 𝑘 and 0 < 𝛽 ≤ 1.

Additionally, set 𝐼 is compact, hence, if 𝜃𝑘, 𝜈𝑘 ∈ 𝐼, then 𝜃𝑘+1 ∈ 𝐼 for a given 𝑘 ∈ N.

By choosing 𝜃0, 𝜈0 ∈ 𝐼, by induction it can be shown that Proposition 4.2.2 can be

applied iteratively to generate parameters that are bounded within the compact set

I.

Theorem 4.2.1 For a differentiable 𝐿̄𝑘-smooth convex loss function 𝑙(.), Algo-

rithm 3 with 0 < 𝛽 ≤ 1, 0 < 𝛾 < 𝛽(2−𝛽)
8+𝛽

and 𝑎𝑘, 𝑏𝑘+1 satisfying 𝑎𝑘 ≤ min{1, 𝑎̄𝑘},

𝑏𝑘+1 ≤ min{1, 𝑏̄𝑘+1} and (A.13), where 𝑎̄𝑘+1 and 𝑏̄𝑘+1 are defined in (A.11) and (A.12)

ensures that 𝑉 = ‖𝜈−𝜃*‖2
𝛾

+ ‖𝜈−𝜃‖2
𝛾

is a Lyapunov function. Consequently, the sequence

of iterates {𝜃𝑘} generated by Algorithm 3 satisfy {𝜃𝑘} ∈ Ω𝑚, and lim
𝑘→∞

𝑙(𝜃𝑘) = 𝑙(𝜃*),

where 𝑙(𝜃*) = 𝑓([𝜃*𝑇 𝑝(𝜃*)𝑇]𝑇) is the optimal value of (4.1).

Proof This proof follows a similar approach to the proof of stability of High Order

Tuner for convex optimization, as illustrated in [32, Theorem 2].

Assuming that 𝜈𝑘, 𝜃𝑘, 𝜃𝑘 ∈ 𝐼, function 𝑙(·) is convex for all these parameters lying

within the set 𝐼. Applying convexity and smoothness properties (ref. [32, Section

II]) to 𝑙(·), the following upper bound is obtained:

𝑙(𝜗𝑘)− 𝑙(𝜃𝑘) = 𝑙(𝜗𝑘)− 𝑙(𝜃𝑘+1) + 𝑙(𝜃𝑘+1)− 𝑙(𝜃𝑘)

100

≤∇𝑙(𝜃𝑘+1)
𝑇 (𝜗𝑘 − 𝜃𝑘+1) +

𝐿̄𝑘

2
‖𝜗𝑘 − 𝜃𝑘+1‖2

+∇𝑙(𝜃𝑘+1)
𝑇 (𝜃𝑘+1 − 𝜃𝑘)

(A.15)

Alg.3
≤ ∇𝑙(𝜃𝑘+1)

𝑇 (𝜗𝑘 − 𝜃𝑘) +
𝐿̄𝑘

2
‖𝜗𝑘 − (1− 𝛽)𝜃𝑘 − 𝛽𝜗𝑘)‖2 (A.16)

𝑙(𝜗𝑘)− 𝑙(𝜃𝑘)

≤ −∇𝑙(𝜃𝑘+1)
𝑇 (𝜃𝑘 − 𝜗𝑘) +

𝐿̄𝑘

2
(1− 𝛽)2‖𝜃𝑘 − 𝜗𝑘‖2.

(A.17)

Similarly, we obtain:

𝑙(𝜃𝑘)− 𝑙(𝜗𝑘)

≤ ∇𝑙(𝜃𝑘)𝑇 (𝜃𝑘 − 𝜗𝑘) +
𝑎2𝑘𝐿̄𝑘𝛾

2𝛽2

2𝒩 2
𝑘

‖∇𝑙(𝜃𝑘)‖2.
(A.18)

Using (A.17) and (A.18) we obtain:

∇𝑙(𝜃𝑘+1)
𝑇 (𝜃𝑘 − 𝜗𝑘)

− 𝐿̄𝑘

2
(1− 𝛽)2‖𝜃𝑘 − 𝜗𝑘‖2

− 𝑎2𝑘𝐿̄𝑘𝛾
2𝛽2

2𝒩 2
𝑘

‖∇𝑙(𝜃𝑘)‖2 ≤ ∇𝑙(𝜃𝑘)𝑇 (𝜃𝑘 − 𝜗𝑘)

(A.19)

Using Algorithm 3, [32, Theorem 1] and (A.19), setting 𝛾 < 𝛽(2−𝛽)
8+𝛽

, 0 < 𝑎𝑘, 𝑏𝑘+1 ≤ 1

and defining Δ𝑉𝑘 := 𝑉𝑘+1 − 𝑉𝑘, it can be shown that

Δ𝑉𝑘 ≤
1

𝒩𝑘

{︃
− 2𝑏𝑘+1(𝑙(𝜃𝑘+1)− 𝑙(𝜃*))−

(︃
𝑏𝑘+1

2𝐿̄𝑘

−
2𝛾𝑏2𝑘+1

𝒩𝑘

)︃
‖∇𝑙(𝜃𝑘+1)‖2

−

(︃
1− 𝐿̄𝑘𝛾𝛽𝑎𝑘

𝒩𝑘

)︃
𝛾𝛽2𝑎2𝑘
𝒩𝑘

‖∇𝑙(𝜃𝑘)‖2 − [𝛽 − 𝑎𝑘𝛽(1− 𝛽)2]𝐿̄𝑘‖𝜃𝑘 − 𝜈𝑘‖2

−

[︃√︀
𝑏𝑘+1√︀
2𝐿̄𝑘

‖∇𝑙(𝜃𝑘+1)‖ − 2
√︀

2𝐿̄𝑘‖𝜃𝑘 − 𝜈𝑘‖

]︃2
− 4(

√︀
𝑏𝑘+1 − 𝑏𝑘+1)‖𝜃𝑘 − 𝜈𝑘‖‖∇𝑙(𝜃𝑘+1)‖

−(8 + 𝛽)‖𝜃𝑘 − 𝜈𝑘‖2
}︃
≤ 0

(A.20)

101

From (A.20), it can be seen that:

Δ𝑉𝑘 ≤
𝑏𝑘+1

𝒩𝑘

{−2(𝑙(𝜃𝑘+1)− 𝑙(𝜃*)} ≤ 0 (A.21)

Collecting Δ𝑉𝑘 terms from 𝑡0 to 𝑇 , and letting 𝑇 →∞, it can be seen that 𝑙(𝜃𝑘+1)−

𝑙(𝜃*) ∈ ℓ1 ∩ ℓ∞ and therefore lim𝑘→∞ 𝑙(𝜃𝑘+1)− 𝑙(𝜃*) = 0.

Theorem 4.4.1 For a quadratic loss function 𝑙(𝜃) = ‖𝑦 − 𝜃𝑇𝜑‖2, a compact and

convex set 𝐶 defined as 𝐶 = {𝜃|‖𝜃‖ ≤ 𝜃𝑚𝑎𝑥+𝜖} the sequence of iterates {𝜃𝑘} generated

by Algorithm 2 with 𝑝𝑟𝑜𝑗𝐶 defined by (4.19) satisfy {𝜃𝑘} ∈ 𝐶 and 𝑉 = ‖𝜈−𝜃*‖2
𝛾

+ ‖𝜈−𝜃‖2
𝛾

is a valid Lyapunov function

Proof Note: The proof contains important steps, parts of the proof have been

omitted for brevity and correspond to Lyapunov stability proof for linear regression

in unconstrained setting and can be found in [33].

The projection operator applied to 𝜃(𝑡) can be written as:

𝑝𝑟𝑜𝑗𝐶(𝜃, (𝜃(𝑡)− 𝜈(𝑡), 𝑓) =⎧⎪⎪⎨⎪⎪⎩
(︂
𝐼 − ∇𝑓(𝜃)∇𝑓(𝜃)𝑇

‖∇𝑓(𝜃)‖2 𝑓(𝜃)

)︂
(𝜃(𝑡)− 𝜈(𝑡)) if 𝑓(𝜃) > 0

⋀︀
𝑦𝑇𝑓(𝜃) > 0

(𝜃(𝑡)− 𝜈(𝑡)) otherwise

Thus, HT in continuous time can be written as:

𝜈̇(𝑡) = −𝛾∇𝐿𝑡(𝜃(𝑡))

𝒩𝑡

𝜃(𝑡) = −𝛽𝑃𝑟𝑜𝑗(𝜃(𝑡), (𝜃(𝑡)− 𝜈(𝑡), 𝑓)

We define the Lyapunov function 𝑉 as:

𝑉 (𝑡) =
1

2
‖𝜃(𝑡)− 𝜈(𝑡)‖2 + 1

2
‖𝜈(𝑡)− 𝜃*‖2 (A.22)

102

Using the above defined Projection, 𝑉̇ (𝑡) can be written as:

𝑉̇ (𝑡) = (𝜈(𝑡)− 𝜃*)𝑇
(︂
− 𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+

(𝜃(𝑡)− 𝜈(𝑡))𝑇
(︂
− 𝛽𝑝𝑟𝑜𝑗𝐶(𝜃, (𝜃(𝑡)− 𝜈(𝑡), 𝑓) +

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
= (𝜈(𝑡)− 𝜃*)𝑇

(︂
− 𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+ (𝜃(𝑡)− 𝜈(𝑡))𝑇

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

−𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇𝑝𝑟𝑜𝑗𝐶(𝜃, (𝜃(𝑡)− 𝜈(𝑡), 𝑓)

= (𝜈(𝑡)− 𝜃*)𝑇
(︂
− 𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+ (𝜃(𝑡)− 𝜈(𝑡))𝑇

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

−𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇 (𝜃(𝑡)− 𝜈(𝑡))

+𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇
∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))𝑇

‖𝜃(𝑡)‖2
(𝜃(𝑡)− 𝜈(𝑡))𝑓(𝜃(𝑡))

(A.23)

It can be easily established in a linear-regression setting that [33]

(𝜈(𝑡)− 𝜃*)𝑇
(︂
− 𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+ (𝜃(𝑡)− 𝜈(𝑡))𝑇

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

−𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇 (𝜃(𝑡)− 𝜈(𝑡)) ≤ 0

−(𝜈(𝑡)− 𝜃*)𝑇
(︂

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+ (𝜃(𝑡)− 𝜈(𝑡))𝑇

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

−𝛽‖𝜃(𝑡)− 𝜈(𝑡)‖2 ≤ 0

(A.24)

The term associated with projection:

−𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇 (𝜃(𝑡)− 𝜈(𝑡))

+𝛽(𝜃(𝑡)− 𝜈(𝑡))𝑇
∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))𝑇

‖𝜃(𝑡)‖2
(𝜃(𝑡)− 𝜈(𝑡))𝑓(𝜃(𝑡))

This can be equivalently written as:

−𝛽
[︂
‖𝜃(𝑡)− 𝜈(𝑡)‖2 − ‖𝜃(𝑡)− 𝜈(𝑡)‖2∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))

𝑇

‖𝜃(𝑡)‖2
𝑓(𝜃(𝑡))

]︂
= 𝛽‖𝜃(𝑡)− 𝜈(𝑡)‖2

(︂
1− ∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))

𝑇

‖𝜃(𝑡)‖2
𝑓(𝜃(𝑡))

)︂

103

Additionally, ∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))𝑇

‖𝜃(𝑡)‖2 𝑓(𝜃(𝑡)) ≤ 1, for 𝑓(𝜃(𝑡)) defined in Chapter 4, as shown

in [28]. Therefore,

−𝛽
[︂
‖𝜃(𝑡)− 𝜈(𝑡)‖2 − ‖𝜃(𝑡)− 𝜈(𝑡)‖2∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))

𝑇

‖𝜃(𝑡)‖2
𝑓(𝜃(𝑡))

]︂
≤ 0 (A.25)

By combining (A.24) with the above inequality, we get:

𝑉̇ (𝑡) = (𝜈(𝑡)− 𝜃*)𝑇
(︂
− 𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

)︂
+ (𝜃(𝑡)− 𝜈(𝑡))𝑇

𝛾

𝒩 (𝑡)
∇𝐿(𝜃(𝑡))

−𝛽
[︂
‖𝜃(𝑡)− 𝜈(𝑡)‖2 − ‖𝜃(𝑡)− 𝜈(𝑡)‖2∇𝑓(𝜃(𝑡))∇𝑓(𝜃(𝑡))

𝑇

‖𝜃(𝑡)‖2
𝑓(𝜃(𝑡))

]︂
≤ 0

Therefore, 𝑉 = ‖𝜈−𝜃*‖2
𝛾

+ ‖𝜈−𝜃‖2
𝛾

guarantees stability for HT with projection for the

case of linear regression.

104

Appendix B

Details of IEEE Case-300 and

Case-1354 simulations

B.1 IEEE Case-300

In this numerical simulation we analyze the effect of acceleration in training of a NN

by comparing the performance of HT and GD. To clearly observe the acceleration

effect of HT, dataset size was increased gradually, starting from a single-point training

(Fig B-1a).

While it is true that increasing size alters the underlying loss function as is evi-

dent from the dual optimization problem (5.11), training with varying sizes of datasets

helped in validating the hypothesis that the accelerated convergence of HT can con-

tribute in reducing the number of epochs for training or reducing the required dataset

size.

Fig B-1 shows that regardless of the size of dataset, HT converges to an ex-

tremely small loss value ∼ 10−4 in substantially less number of epochs. This is in

contrast with GD, where the direct correlation between increasing training dataset

size and improved training accuracy is extremely strong. Additionally, with a few

more training simulations, the difference in epochs and dataset was quantized more

firmly. Specifically,

105

(a) Single-point training, to
illustrate the speed of HT

(b) 1024 datapoints for
training, 32 batch-size

(c) 50,000 datapoints, 32
batch-size

Figure B-1: IEEE Case-300 Training Loss comparison: (a) HT outperforms GD
significantly due to acceleration, which can be noticed in the osciallatory behavior, (b)
With more training data, HT still performs better but GD’s performance improves
incrementally, (c)GD and HT performance converges more as dataset size increases

1. For a fixed 300 epochs, to ensure that the training loss is atmost 7 × 10−3,

training with GD required atleast 50,000 datapoints, whereas 1024 datapoints

sufficed for HT. (Table B.1)

2. For a fixed dataset of 1024 points, Ht is able to reduce the training loss to

atmost 7 × 10−3 in 250 epochs, whereas GD requires 2000 epochs. Intuitively,

by increasing the size of training dataset to 50,000 points, the number of epochs

can be brought down by 10 times for both, but is still higher for GD compared

to HT (Table B.2).

Epochs Dataset (HT) Dataset (GD)
300 1024 50,000

Table B.1: Fixed epochs: comparison of dataset size required to converge for HT and
GD

Dataset Size Epochs (HT) Epochs (GD)
1024 250 2000

50,000 25 200

Table B.2: Fixed Dataset: comparison of epochs required to converge for HT and GD

106

(a) Single-point training
loss comparison, to illus-
trate the speed of HT

(b) 50,000 datapoint, 32
batch-size: Training Loss
comparison

(c) 50,000 datapoints, 32
batch-size: Validation Loss
comparison

Figure B-2: IEEE Case-1354 Training and Validation Loss comparison: (a)-(b) Train-
ing Loss with single point and larger training dataset. GD gets stuck in a local
minimum while HT converges. (c)-(d) Validation loss comparison illustrates similar
phenomenon is observed as in Training loss

B.2 IEEE Case 1354

IEEE Case-1354 reflects how the training process would be executed on a realistic

instance of DC-OPF due to sufficiently high dimension of the problem. We extend

the analysis to training loss and validation loss in this case to observe the differences

more clearly.

B.2.1 Analysis of Training & Validation Loss

Similar to IEEE Case-30, we first perform a dummy single-point training to compare

between the peformance of HT and GD (Fig-B-2a). This shows how the acceleration

of HT helps in avoiding the plateuing effect, whereas GD gets stuck in a saddle. The

variance in loss is high in this case, so we increase the dataset to 50,000 points. We

observe the advantage of acceleration in this case more clearly (Fig-B-2b).

To assess if the advantages of acceleration can be extended to test case as well, we

analyse Validation loss over a dataset of 50,000 points, where the size of validation

dataset is 10,000 points. Here, we notice that while the variance of loss is high for

HT and reduces as we increase the training epochs, it is substantially lower than GD

(Fig B-2c). Some methods to refine the results have been discussed in Section 5.4.

107

108

Bibliography

[1] Manya V Afonso, José M Bioucas-Dias, and Mário AT Figueiredo. An augmented
lagrangian approach to the constrained optimization formulation of imaging in-
verse problems. IEEE transactions on image processing, 20(3):681–695, 2010.

[2] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer
in neural networks. In International Conference on Machine Learning, 2017.

[3] Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a
layer in neural networks. In Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 136–145. PMLR, 06–11 Aug
2017.

[4] P. Armand and R. Omheni. A globally and quadratically convergent primal-dual
augmented Lagrangian algorithm for equality constrained optimization. Opti-
mization Methods and Software, 32(1):1–21, 2017.

[5] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence
analysis of gradient descent for deep linear neural networks. arXiv preprint
arXiv:1810.02281, 2018.

[6] Goran Banjac, Paul Goulart, Bartolomeo Stellato, and Stephen Boyd. Infea-
sibility detection in the alternating direction method of multipliers for convex
optimization. Journal of Optimization Theory and Applications, 183:490–519,
2019.

[7] Amir Beck. First-Order Methods in Optimization. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2017.

[8] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems *. Society for Industrial and Applied Mathe-
matics, 2(1):183–202, 2009.

[9] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[10] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction

109

method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–
122, 2011.

[11] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[12] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
Neural ordinary differential equations. Advances in neural information processing
systems, 31, 2018.

[13] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-
parameterization is sufficient to learn deep relu networks? arXiv preprint
arXiv:1911.12360, 2019.

[14] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya
Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization. Advances in neural information
processing systems, 27, 2014.

[15] Frederik Diehl. Warm-starting ac optimal power flow with graph neural networks.
In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
pages 1–6, 2019.

[16] Priya L. Donti, David Rolnick, and J. Zico Kolter. DC3: A learning method
for optimization with hard constraints. In International Conference on Learning
Representations, 2021.

[17] Priya L. Donti, David Rolnick, and J. Zico Kolter. Dc3: A learning method for
optimization with hard constraints. 2021.

[18] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research, 12(7), 2011.

[19] Massimo Furi and Mario Martelli. A multidimensional version of rolle’s theorem.
The American Mathematical Monthly, 102(3):243–249, 1995.

[20] A. Galántai. The theory of newton’s method. Journal of Computational and
Applied Mathematics, 124(1):25–44, 2000. Numerical Analysis 2000. Vol. IV:
Optimization and Nonlinear Equations.

[21] Joseph E. Gaudio, Anuradha M. Annaswamy, Michael A. Bolender, Eugene
Lavretsky, and Travis E. Gibson. A Class of High Order Tuners for Adaptive
Systems. IEEE Control Systems Letters, pages 1–1, 6 2020.

[22] Joseph E Gaudio, Anuradha M Annaswamy, José M Moreu, Michael A Bolender,
and Travis E Gibson. Accelerated Learning with Robustness to Adversarial
Regressors. 3rd L4DC Conference, 2021.

110

[23] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing
implicit bias in terms of optimization geometry. In International Conference on
Machine Learning, pages 1832–1841. PMLR, 2018.

[24] Dmitry Kovalev, Alexander Gasnikov, and Peter Richtárik. Accelerated primal-
dual gradient method for smooth and convex-concave saddle-point problems with
bilinear coupling. Advances in Neural Information Processing Systems, 35:21725–
21737, 2022.

[25] Steven George Krantz and Harold R Parks. The implicit function theorem: his-
tory, theory, and applications. Springer Science & Business Media, 2002.

[26] Maxime Laborde and Adam Oberman. A lyapunov analysis for accelerated gradi-
ent methods: from deterministic to stochastic case. In International Conference
on Artificial Intelligence and Statistics, pages 602–612. PMLR, 2020.

[27] Gregory Larchev, Stefan Campbell, and John Kaneshige. Projection operator: A
step toward certification of adaptive controllers. In AIAA Infotech@ Aerospace
2010, page 3366. 2010.

[28] Eugene Lavretsky and Travis E Gibson. Projection operator in adaptive systems.
arXiv preprint arXiv:1112.4232, 2011.

[29] Andreas Look, Simona Doneva, Melih Kandemir, Rainer Gemulla, and Jan Pe-
ters. Differentiable implicit layers. arXiv preprint arXiv:2010.07078, 2020.

[30] Hao Luo. Accelerated primal-dual methods for linearly constrained convex opti-
mization problems. arXiv preprint arXiv:2109.12604, 2021.

[31] Hancheng Min, Salma Tarmoun, René Vidal, and Enrique Mallada. On the
explicit role of initialization on the convergence and implicit bias of over-
parametrized linear networks. In International Conference on Machine Learning,
pages 7760–7768. PMLR, 2021.

[32] José M. Moreu and Anuradha M. Annaswamy. A stable high-order tuner for
general convex functions. IEEE Control Systems Letters, 6:566–571, 2022.

[33] José María Moreu Gamazo. High-order tuners for convex optimization: stability
and accelerated learning. PhD thesis, Massachusetts Institute of Technology,
2021.

[34] Hédi Nabli. An overview on the simplex algorithm. Applied Mathematics and
Computation, 210(2):479–489, 2009.

[35] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer Interna-
tional Publishing, 2018.

[36] University of Washington. Power systems test case archive. 1993.

111

[37] Xiang Pan, Tianyu Zhao, and Minghua Chen. Deepopf: Deep neural network
for dc optimal power flow. pages 1–6, 10 2019.

[38] Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep
neural network approach for security-constrained dc optimal power flow, 2019.

[39] Anjali Parashar, Priyank Srivastava, and Anuradha M. Annaswamy. Accelerated
algorithms for a class of optimization problems with equality and box constraints,
2023.

[40] Anjali Parashar, Priyank Srivastava, Anuradha M. Annaswamy, Biswadip Dey,
and Amit Chakraborty. Accelerated algorithms for a class of optimization prob-
lems with constraints. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 6960–6965, 2022.

[41] Panagiotis Patrinos, Lorenzo Stella, and Alberto Bemporad. Douglas-rachford
splitting: Complexity estimates and accelerated variants. In 53rd IEEE Confer-
ence on Decision and Control, pages 4234–4239, 2014.

[42] Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact
polynomial-time convex optimization formulations for two-layer networks. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 7695–7705. PMLR, 13–18 Jul 2020.

[43] HoHo Rosenbrock. An automatic method for finding the greatest or least value
of a function. The computer journal, 3(3):175–184, 1960.

[44] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.
Prentice hall Englewood Cliffs, NJ, 1991.

[45] Richard S Sutton. Two problems with backpropagation and other steepest-
descent learning procedures for networks. In Proc. of Eightth Annual Conference
of the Cognitive Science Society, pages 823–831, 1986.

[46] Adrien Taylor, Bryan Van Scoy, and Laurent Lessard. Lyapunov functions for
first-order methods: Tight automated convergence guarantees. In International
Conference on Machine Learning, pages 4897–4906. PMLR, 2018.

[47] Russ Tedrake. Underactuated Robotics. 2023.

[48] Andreas Venzke, Guannan Qu, Steven Low, and Spyros Chatzivasileiadis. Learn-
ing optimal power flow: Worst-case guarantees for neural networks. In 2020
IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pages 1–7. IEEE, 2020.

[49] Yifei Wang, Jonathan Lacotte, and Mert Pilanci. The hidden convex optimiza-
tion landscape of regularized two-layer relu networks: an exact characterization
of optimal solutions. In International Conference on Learning Representations,
2021.

112

[50] Ashia C. Wilson. Lyapunov arguments in optimization. 2018.

[51] Xiaoxia Wu, Edgar Dobriban, Tongzheng Ren, Shanshan Wu, Zhiyuan Li, Suriya
Gunasekar, Rachel Ward, and Qiang Liu. Implicit regularization and convergence
for weight normalization. Advances in Neural Information Processing Systems,
33:2835–2847, 2020.

[52] Lin Yang, Raman Arora, Tuo Zhao, et al. The physical systems behind opti-
mization algorithms. Advances in Neural Information Processing Systems, 31,
2018.

[53] Ahmed S Zamzam and Kyri Baker. Learning optimal solutions for extremely fast
ac optimal power flow. In 2020 IEEE International Conference on Communica-
tions, Control, and Computing Technologies for Smart Grids (SmartGridComm),
pages 1–6. IEEE, 2020.

[54] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John
Thomas. Matpower: Steady-state operations, planning, and analysis tools for
power systems research and education. IEEE Transactions on Power Systems,
26(1):12–19, 2011.

113

