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Abstract

High-resolution location data (heartbeat data) of transit fleet vehicles is a newfound
data source for many transit agencies. On its surface, the heartbeat data can provide
a wealth of information about all operational details of a recorded transit vehicle
trip, from its location trajectory to its speed and acceleration profiles. In reality, the
heartbeat data is often noisy and recorded at inconsistent frequencies, making it a
challenging task for analysts to interpret the data as is. This thesis delves into the
task of extracting useful operational information about bus vehicles from heartbeat
data. In particular, the thesis focuses on three aspects of how heartbeat data can be
used to enable operational analysis of transit routes.

First, a methodology is proposed to convert the raw, timestamped coordinate
data into a continuous and smooth vehicle trajectory function of each bus trip. A
case study using historical heartbeat data collected from a real-world bus trip is
presented to showcase how a complete trajectory combined with the vehicle speed
profile could allow for qualitative assessment of bus operations. Then, details are
provided on how one can analyze the trajectories of multiple bus trips in aggregate to
quantify the different types of delay encountered by bus vehicles, including stop dwell
time, signal delay, crossing delay, and congestion delay. Case studies are presented
to demonstrate how one can quantify each type of delay for a specific bus route or
corridor served by multiple routes. Lastly, a thorough discussion is carried out about
how one can conduct observational before-after studies using heartbeat data to draw
conclusions about the effectiveness of transit improvement projects. A case study is
provided to illustrate how one can evaluate the effectiveness of a stretch of bus-only
lane by calculating the travel time savings due to the project.

The technical discussions presented in this thesis provide a solid foundation for
conducting in-depth analysis of bus operations using heartbeat data. The methodolo-
gies will allow transit analysts to gain better insight into the performance of transit
routes and corridors, thus allowing transit agencies to develop more targeted strate-
gies for continuously improving transit services.
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Chapter 1

Introduction

1.1 Background and Motivation

As more sensors and devices are installed on transit vehicles for monitoring various as-

pects of transit fleet operations, data with increasing quality and granularity becomes

available to transit agencies. One recent data source addition is the high-resolution

GPS data of vehicle locations, often called "second-by-second data" (referred to as

"heartbeat data" hereinafter), that records the historical location and other metadata

of each transit vehicle at almost every second.

The heartbeat data by nature resembles the Automated Vehicle Location (AVL)

data that is widely used by transit analysts in the evaluative studies of the operational

performance of transit routes. The nature of the AVL data is such that it records

the times a transit vehicle enters and departs from bus stops. As a result, the types

of assessment a transit analyst can conduct using AVL data are mainly on the exact

behaviors of vehicles while dwelling at bus stops, such as bus dwell time, door-open

time and door-closed dwell time, as well as the average behaviors of vehicles while

traveling between bus stops, such as average running time and speed between stops.

While analysts can use these metrics obtained from AVL data to identify areas

with reduced performance, it is difficult to determine what exactly contributes to

the reduced performance in each area. As an example, an analyst may find that the

average speed of buses is slower within one particular stop-to-stop segment than in

17



others, thus deciding that the segment is an area of concern and requires improvement.

However, the low average speed between two bus stops could be caused by slow-

moving traffic due to congestion, or by stopping delays incurred by traffic signals. The

average speed information alone offered by the AVL data is not enough to determine

which one of the two is the primary source of delay, thus making it challenging to

pinpoint the most effective transit improvement strategy.

In comparison, the heartbeat data offers timestamps of vehicles not only at bus

stops, but also at locations in between them. Therefore, the heartbeat data contains

a richer set of data than the traditional stop-level AVL data and allows analysts

to understand the exact behaviors of vehicles at any location along its route. Such

detailed information offers the unique opportunity to uncover the interactions between

bus vehicles and other road infrastructure and points of conflict besides bus stops that

could impede bus movement such as traffic signals, pedestrian crossings, etc.

This thesis provides an in-depth look into how one can leverage the wealth of

information contained in the heartbeat data to conduct detailed operational analysis

of transit vehicles, buses in particular, that is not possible using AVL data. The raw

heartbeat data often comes with noise and is presented in the form of coordinates and

timestamps, thus a method is proposed to convert the timestamped coordinates to

data points on a easy-to-understand time-space diagram. To account for the noise and

inconsistent time gaps inherent in the heartbeat data, data smoothing algorithms are

explored to convert the discrete time-space data into continuous trajectories, which

then allow for the extraction of the position and speed of the bus vehicle at any point

in time into its trip. Then, using the reconstructed bus trajectories, a method is

proposed to decompose the observed bus travel time into free-flow travel time and

different categories of delays. Finally, the quantified delays of bus vehicles are used

to conduct before-after studies of transit improvement projects in order to evaluate

the effectiveness of the strategies.

Throughout the thesis, case studies are provided following the discussions of

methodologies using real-world heartbeat data to demonstrate the practicality and

applicability of this research. A thorough literature review is conducted to illustrate

18



the contribution of each component of this thesis.

1.2 Research Objectives

This research aims to accomplish the following goals:

1. Define the characteristics of an ideal bus trajectory, and identify methods to

convert discrete timestamped bus coordinates to continuous bus trajectories.

2. Propose a systematic framework to decompose the total bus travel time into

different components, including free-flow travel time, dwell time, signal delay,

congestion delay and loss time.

3. Illustrate how different sources of delays can be used to evaluate the effectiveness

of transit improvement strategies, such as transit signal priority and bus-only

lane projects.

1.3 Research Approach

To meet the above research objectives, various data processing, smoothing, prob-

abilistic and statistical techniques are used. A separate chapter is dedicated to the

discussion of each research objective, where the proposed methodologies are discussed

in detail, followed by case studies carried out using real-world data. The focus of the

discussion around methodologies is to build the technical foundation and provide a

blueprint for working with heartbeat data and the products derived from it, with the

goal in mind that the methodologies are reproducible by any analyst and able to be

used in working with similar data from any transit agency. The purpose of the case

studies, on the other hand, serve as demonstrations for how the methodologies can

be applied to real-world data, and offer insight into the type of output that can be

expected.

The analysis of heartbeat data described in this thesis focuses on bus vehicle rather

than rail vehicles. Although heartbeat data offers an incredible amount of information
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for rail operations just as it does for bus operations, the significant differences in the

nature of rail and bus operations means that many assumptions and methodologies

made in this thesis about bus operations cannot be directly applied to rail. However,

with some adjustments to the basic assumptions to fit in the context of rail vehicles,

the concepts presented in this thesis can be modified for rail operations as well.

1.4 Data Sources

1.4.1 Heartbeat Data

Data Content

For the task of reconstructing vehicle trajectories, the most relevant fields in the

heartbeat data are the ones that describe the time and location variations of the

bus vehicles. One standard data protocol that serves such purpose is GTFS-RT,

which offers specifications for tables including VehiclePositions that is designed

for reporting vehicle location information and the timestamp for when the location

is measured [1]. Heartbeat data, such as archived GTFS-RT data1, often provides

historical records of the location of every bus vehicle as frequent as every a few

seconds.

For the purpose of reconstructing a complete and continuous vehicle trajectory

from heartbeat data, the latitude, longitude and timestamp columns will suffice,

as long as the data is recorded at roughly every 6 seconds, which is the frequency that

have been empirically tested by the author. In addition to storing vehicle positions

data, GTFS-RT also provides helpful metadata of each vehicle trip such as trip_id,

which is useful if one hopes to join the vehicle trajectory with the location of bus stops

to observe vehicle behavior around such infrastructure, or to analyze the performance

1More specifically, the heartbeat data used by the author are archived snapshots of MBTA’s
GTFS-RT data taken every second from the public-facing API (https://cdn.mbta.com/realtime/
VehiclePositions.json). To the author’s knowledge, the public-facing GTFS-RT data of the
MBTA is created by combining vehicle location data recorded by the Samsara tracking device
(https://www.samsara.com/pdf/docs/MBTA_Case_Study.pdf) and trip information recorded in
the CAD/AVL system.
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of the trip against schedule. In these cases, the data field trip_id can be used to query

information about the bus trip, such as its route number, stop IDs, stop locations,

etc. In other extended applications of heartbeat data where the bearing data is

proven valid and of high quality, the bearing information can also provide insight into

the operational impact of vehicle maneuvers such as moving in and out of bus lanes,

although the use of bearing data is not the focus of the discussion in this thesis.

A snippet of an example object stored in the GTFS-RT file published by the

Massachusetts Bay Transportation Authority (MBTA) is shown in Figure 1-1a.

Note that it is not necessary for the heartbeat data to be stored in the GTFS-

RT format for the methodologies proposed in this thesis to work, as any data source

that can provide high-resolution (roughly 6 seconds per record) timestamped location

data would work in reconstructing vehicle trajectories discussed in Chapter 2, and

any data that additionally contains the trip_id information, matching with those in

the static GTFS feed, would work in the delay analysis of transit routes or transit

corridors presented in Chapter 3.

Data Frequency

The heartbeat data recorded for each trip provides a snapshot in time of the location of

the transit vehicle. However, such snapshots are not recorded at a constant frequency.

An examination of nearly 900 outbound trips by MBTA’s Route 1, which amount to

around 185,000 heartbeat data records, shows that majority of data is recorded in

intervals shorter than 10 seconds with a median frequency of 6 seconds, mode of 3

seconds and mean of 9 seconds. A histogram of the frequency of these GTFS-RT

records is presented in Figure 1-1b,

1.4.2 Static GTFS Data

If the heartbeat data provided by the public agency contains information about each

vehicle trip, e.g. the trip_id column, then one can query additional information

such as the location of bus stops or the scheduled arrival time at each bus stop to
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(a) Sample entity object from the
GTFS-RT Vehicle Positions JSON
file provided by the MBTA.

(b) Histogram of data frequency of nearly 900 out-
bound Route 1 trips recorded in MBTA’s GTFS-
RT data.

Figure 1-1: Sample heartbeat data object and data frequency.

conduct more in-depth operational analysis.

Data Content

Provided that the given heartbeat data contains the trip_id column, then a few

join operations are needed in order to query the corresponding stop_ids and stop

coordinates corresponding to each trip. As illustrated in Figure 1-2, the stop_times

table in the static GTFS feed contains the stop-level trip information that can serve

as the basis in connecting the trip_id field with stop_id. The result of the join

operation is one table that contains all columns listed in Figure 1-2. Among these

columns, stop_lat and stop_lon provide the coordinates of bus stops along the

pattern of the bus route that the trip is serving. These bus stops, along with traffic

signals and pedestrian crossings can be matched to the same time-space reference

frame as the vehicle trajectory, allowing analysts to dive into analyzing the behavior of
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buses near various infrastructure. The route_id and direction_id columns allow for

easy labeling of heartbeat data by route and by direction. The arrival_time column

could be used to compare with the actual arrival time observed from heartbeat data

to understand on-time performance of bus trips.

Figure 1-2: Static GTFS table and fields used to supplement heartbeat data.

1.4.3 Data Flow Diagram

The data flow diagram is illustrated in Figure 1-3. In summary, the heartbeat data

alone can be used to construct vehicle trajectories. The vehicle trajectories combined

with static GTFS data can then be used to conduct delay analysis to quantify the

various types of delays and conduct before-after studies to understand the effectiveness

of transit improvement strategies.

1.5 Literature Review

1.5.1 Trajectory Smoothing Techniques

Researchers have looked into analyzing transit performance from the trajectory of

vehicles. Hall and Vyas analyzed bus vehicle trajectories obtained from location

tracking devices and evaluated bus speed by dividing the length of road segments
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Figure 1-3: Data flow diagram.

between stops by the travel time between stops without dwell time, and compared

the speed with automobile speed [2]. Cathey and Deiley used the Kalman Filter

to construct trajectories of transit vehicles traveling on freeways and compared the

speeds obtained from the trajectory to those calculated from loop detector data [3],

and concluded that granular AVL data gathered from bus vehicles can serve as an

additional data source for freeway performance monitoring. However, the transit

location data used is collected every 20 seconds, and the researchers did not mention

the monotonicity of the trajectory.

To the author’s best knowledge, there has not been previous research that at-

tempted to extract operational measures of transit vehicles by directly reconstructing

a continuous, smooth, and monotonic transit vehicle trajectory from high-resolution

location data. This study proposes a trajectory-building algorithm for bus vehicles

to address this gap in the literature.
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1.5.2 Transit Delay Analysis

From a review of the literature, the author finds that many researchers who have

explored using heartbeat data (or similar but lower frequency data) have focused on

decomposing the vehicle travel time into different categories by bus state.

Colghlan et al. categorized the total bus travel time by bus state into signal delay,

queueing delay, boarding/alighting time, and free-flow travel time [4]. They assumed

that signal delay is any delay from within 80 ft of a traffic signal, did not account for

vehicle acceleration and deceleration, and used the decomposed travel time of each

bus state as input to a regression model that predicts stop-to-stop travel time. Lind

and Reid analyzed heartbeat data by decomposing the passenger in-vehicle travel time

into time in-motion and time stopped, and used the result to calculate the total trip

time budget [5]. Aemmer et al. used the GTFS-RT data and proposed a method to

decompose the delay of transit vehicles into systematic and stochastic delays derived

from comparing the linear speed to the 95th percentile speed in each segment, and

used the results to evaluate transit reliability and efficiency [6].

Although these previous studies looked at using heartbeat data to analyze bus

operations, researchers had mainly focused on extracting particular types of bus delay

without examining all possible components of bus delays holistically. Furthermore,

there is no research involving heartbeat data that aggregates the performance of

multiple transit routes on the same corridor.

1.5.3 Effectiveness of Transit Improvement Strategies

In practice, analysts usually evaluate the effectiveness of transit improvement strate-

gies by taking the difference between the analyzed metric observed before the instal-

lation of the treatment and that after the treatment, such as the study commissioned

by the City of Cambridge in evaluating the effectiveness of a bus-lane project [7]. In

research literature, such methodology still prevails as researchers often examine the

effectiveness of a transit treatment by comparing specific operational metrics before

and after the treatment. Sakamoto et al. [8] evaluated the effectiveness of a bus
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priority lane in Shizuoka City, Japan by comparing the absolute difference in queue

length, jam length, travel time and dwell time of buses in the study corridor before

and after the treatment. Kim [9] drew conclusions about the performance of bus

lanes in Seoul, South Korea by calculating the change in bus and car speed measured

along the treated road segment before and after the project. The method of directly

comparing the observed metric before and after the treatment, referred to in the re-

mainder of the thesis as the naive method, naively assume that the metrics observed

in the "before" period are perfectly representative of what the metrics would have

been in the "after" period had there been no treatment. This assumption, however,

can be challenged because factors other than the treatment could have impacted the

unobserved, counterfactual travel time in the "after" period as well.

A field of research that had encountered the same challenge but had overcome it

with more statistically-sound methodologies is the field of road safety. In particular,

Hauer [10] presented several frameworks for evaluating the effectiveness of road safety

projects, and the methodologies have since been widely adopted by transportation

agencies. Therefore, the author attempts to adapt the naive method and the com-

parison group method explored by Hauer to fit in the context of transit improvement

project, in the hope of overcoming the simplistic assumption inherent in the naive

method.

1.6 Thesis Organization

This thesis is organized such that each chapter focuses on the discussion of one re-

search objective as listed in Section 1.2. Chapter 1 introduces the background and

motivation underlying the thesis, provides an overview of the thesis structure, and

presents a literature review concerning each research topic covered in the thesis. Chap-

ter 2 presents the methodologies concerning reconstructing a complete and continuous

vehicle trajectory from raw heartbeat data. Chapter 3 dives into the task of catego-

rizing and quantifying the magnitude of different types of delays. Chapter 4 provides

an in-depth discussion about how one can carry out observational before-after stud-
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ies to evaluate the effectiveness of transit improvement strategies. In each chapter,

thorough discussions about the proposed methodologies are provided to serve as the

technical foundation for practical applications, which are demonstrated through var-

ious case studies carried out using real-world data collected from public agencies.

Chapter 5 summarizes the contributions and implications of the research and high-

lights opportunities to expand the study of heartbeat data beyond this thesis.
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Chapter 2

Reconstructing Transit Vehicle

Trajectory

2.1 Introduction and Motivation

At first glance, the heartbeat data seems to provide information about the exact loca-

tion of each vehicle in such detail that it should be able to tell everything an analyst

would wish to know about a vehicle’s trip. However, a closer examination of the data,

an example of which is visualized in Figure 2-1a, illustrates that the coordinate data

can be noisy and vehicles may appear to straddle the road network, and the data

recorded can have inconsistent frequency and result in incomplete location informa-

tion within time intervals, making it difficult to directly read the exact location and

speed of the vehicle from the heartbeat data.

The task of extracting operational information from the heartbeat data could be

easier if one could reconstruct a complete transit vehicle trajectory. Note that the

notion "trajectory" refers to a continuous, not discrete, timestamped location data

of the transit vehicle consisting of two fields - time into trip, 𝑇 , and distance into

trip, 𝐷. This chapter discusses the data smoothing methodology an analyst can use

to convert the noisy, discrete, and inconsistent raw heartbeat data to a continuous,

smooth, and monotonic vehicle trajectory. Such a trajectory would provide reliable

information about the exact location, speed, and acceleration of the transit vehicle at
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any time and distance into the trip, which would be valuable to performance analysts

and decision makers when trying to understand how transit vehicles interact with the

built environment at a very granular level.

To accomplish the goal of reconstructing bus vehicle trajectories from raw heart-

beat data, the definition of what an "ideal" trajectory should be is provided. Then,

a map-matching process is introduced that can be used to snap each recorded coor-

dinate to the road segments that the bus traverses. With each coordinate matched

to a specific position on a specific road segment, the series of coordinate data can

then be turned into the more analytically convenient "distance into trip" data, each

of which has a corresponding "time into trip" information, together forming the dis-

crete time-distance data series. Finally, a smoothing algorithm is proposed to convert

the discrete time-distance data into a continuous data series that satisfies the char-

acteristics of an ideal vehicle trajectory.

2.2 Properties of An Ideal Bus Trajectory

Since the heartbeat data records vehicle location at a high frequency, it provides

a large volume of information that could be used to infer measures other than the

location of the vehicle, such as vehicle speed and acceleration. To reconstruct a

continuous transit vehicle trajectory from discrete timestamped location data and to

be able to retrieve the speed and acceleration of the vehicle at any point in time,

a series of data smoothing processing steps are needed. It is worth noting that

the objective of data smoothing is not to obtain the "smoothest" curve possible,

but rather a trajectory that resembles the real-world behavior of the bus vehicle as

realistically as possible. Therefore, a few properties must be considered for the result

to be representative of an actual transit vehicle trip. These properties include:

• The trajectory should be non-decreasing, i.e. the distance into the trip at a

later time should not be smaller than the distance into the trip at a previous

time.
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• The trajectory is made up of composite cubic polynomials. The position of the

vehicle is a result of control inputs and follows vehicle kinematics, and as Nagy

et al. studied, cubic polynomials are the lowest order curves that can be used

to generate the trajectory of car-like robots [11].

• The trajectory function should be continuous and at least once differentiable so

that the speed profiles are also continuous and can be easily retrieved from the

function.

2.3 Processing of Raw Coordinates

2.3.1 Map Matching

The bus vehicle locations recorded in the raw heartbeat data are subject to noise and

inaccuracy, which can possibly be attributed to the limited ability of GPS technology

in providing accurate position of moving objects in dense urban environments [12].

This results in coordinates that are not accurately located within the actual road

segment. To mitigate the issue with noisy coordinates, a map-matching process is

needed to "snap" each coordinate point to the closest road segment to restore the

location information as much as possible. One map-matching tool that is easy to use

and freely available is the Valhalla map engine, which offers the "trace attributes"

service that allows the client to post a request with a series of raw coordinate data and

retrieve a corresponding series of coordinates snapped to the OpenStreetMap road

network while guaranteeing the geographic order of the data points, i.e. data points

are kept in an upstream-to-downstream order [13, 14]. The result of processing raw

heartbeat data through the map-matching service is shown in Figure 2-1b, where it

can be seen that the processed coordinates are realigned with the road network.

2.3.2 Obtaining Time-Distance Data

The map-matching process infers the most probable location along the road network

for each raw coordinate, and returns the ID of the road segment and the position

31



(a) Raw heartbeat data points. (b) Map-matched heartbeat data points.

Figure 2-1: Raw and map-matched data points plotted on OpenStreetMap.

along the segment of each matched coordinate. With this information, each recorded

coordinate of the bus can be converted to a distance value relative to the starting

location of the trip.

Suppose there are 𝑛 raw timestamped coordinate data points recorded for a bus

trip. For each record 𝑖, where 𝑖 = 1, 2, ..., 𝑛, the timestamp at which the data is

recorded is 𝑡𝑠𝑖 and the raw coordinate is 𝐶𝑖. Denote the time into trip of the 𝑖th data

point by 𝑡𝑖, then

𝑡𝑖 = 𝑡𝑠𝑖 − 𝑡𝑠1. (2.1)

As shown in Table 2.1, for each raw coordinate 𝐶𝑖, the map-matching process

returns the matched coordinate, 𝑀𝑖, the ID of the road segment that the matched

coordinate belongs to, 𝑟𝑖, as well as its normalized position along the segment, 𝑝𝑖.

The normalized position value 𝑝𝑖 is given so that 0 ≤ 𝑝𝑖 ≤ 1. 𝑝𝑖 = 0 means the

coordinate 𝑀𝑖 is at the beginning of the segment 𝑟𝑖, while 𝑝𝑖 = 1 means the end. In

addition, the process provides a road segment lookup table which contains the length

information 𝐿𝑗 of each segment 𝑅𝑗 as shown in Table 2.2.

Denote the index of road segment 𝑟𝑖 by 𝑖𝑑𝑖 (i.e. 𝑟𝑖 = 𝑅𝑖𝑑𝑖), then the distance into

trip of the 𝑖th coordinate by 𝑑𝑖 is

32



𝑑𝑖 =

𝑖𝑑𝑖−1∑︁
𝑗=1

𝐿𝑗 + 𝐿𝑖𝑑𝑖 * 𝑝𝑖 − 𝐿𝑖𝑑1 * 𝑝1, (2.2)

where 𝐿𝑗 is the length of road segment 𝑅𝑗. Equation 2.2 states that the distance

into trip of the 𝑖th coordinate is equal to the sum of the lengths of all road segments

upstream of that of the 𝑖th point plus the distance into the segment that it lies within,

shifted with respect to the first data point.

Table 2.1: An example map-matched coordinate table.

𝑖 𝑇𝑆 𝐶 𝑀 𝑟 𝑝

0 2022-04-25
08:24:45

(42.372642, -71.119048) (42.372660, -71.119108) 𝑅0 0.639

1 2022-04-25
08:24:50

(42.372365, -71.119241) (42.372373, -71.119267) 𝑅0 0.940

2 2022-04-25
08:24:57

(42.372246, -71.119324) (42.372252, -71.119319) 𝑅2 0.463

3 2022-04-25
08:25:00

(42.372206, -71.119230) (42.372215, -71.119224) 𝑅3 0.116

4 2022-04-25
08:25:04

(42.372129, -71.119030) (42.372139, -71.119023) 𝑅3 0.452

...

Table 2.2: An example of a road segment lookup table.

𝑗 𝑅 𝐿 (m)

0 𝑅0 67
1 𝑅1 7
2 𝑅2 5
3 𝑅3 55
...

Combining the time into trip and distance into trip information calculated using

Equations 2.1 and 2.2, a discrete series of time-distance data can be obtained from

the map-matched coordinates and is shown in Table 2.3.
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Table 2.3: An example of time-distance data converted from map-matched coordi-
nates.

𝑖 𝑇 (𝑠𝑒𝑐) 𝐷(𝑚)

0 0 0
1 5 20.167
2 12 33.502
3 15 42.567
4 19 61.047

2.4 Trajectory Smoothing

In this section, four alternative methods for bus trajectory smoothing are discussed,

and the advantages and disadvantages of each are presented.

2.4.1 Linear Interpolation

The simplest method to construct a continuous curve on the time-space diagram using

the discrete time-distance data obtained from the previous steps is through linear

interpolation, or equivalently connecting adjacent data points using line segments

(LSEG).

Algorithm 1 Linear Interpolation (LSEG)
Input: an 1 × 𝑁 vector 𝑇 of timestamps 𝑡1 < 𝑡2 < ... < 𝑡𝑛, an 1 × 𝑛 vector 𝐷 of

distances 𝑑1 ≤ 𝑑2 ≤ ... ≤ 𝑑𝑁 for 𝑖 = 1, ..., 𝑛. Denote the continuous trajecto function
to be constructed by 𝑓(𝑡), then 𝑓(𝑡𝑖) = 𝑑𝑖.
1: for 𝑖 = 1, ..., 𝑛− 1 do
2: 𝑓(𝑡) = 𝑑𝑖+1−𝑑𝑖

𝑡𝑖+1−𝑡𝑖
* 𝑡+ 𝑑𝑖

3: end for
4: return 𝑓(𝑡)

An example snippet of the trajectory obtained from linear interpolation is shown

in Figure 2-2. Considering the three properties of an ideal bus vehicle trajectory

introduced above, it can be oberved that although the trajectory is continuous and

monotonic, it is not smooth and therefore is not differentiable. Intuitively, the con-

sequence of such drawback is that the speed profile calculated cannot be guaranteed

to be continuous.
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Figure 2-2: Trajectory constructed from Linear interpolation.

2.4.2 Polynomial Cubic Interpolation

To overcome the non-differentiability issue presented by linear interpolation, the

Piecewise Cubic Hermite Interpolant (PCHIP) algorithm developed by Fritsch et

al. is explored [15]. The PCHIP algorithm connects adjacent data points in 𝑇 and

𝐷 with a cubic polynomial function and guarantees that the trajectory is smooth

by enforcing that the first derivative evaluated at each data point is equal for the

connecting polynomial functions to the left and right of the data point [16]. There-

fore, the algorithm maintains the cubic polynomial and monotonic properties of all

sections of the trajectory.

An example snippet of the trajectory obtained from PCHIP is shown in Figure

2-3. It’s worth noting that although the PCHIP algorithm guarantees a continuous

first derivative, it does not guarantee a continuous second derivative, meaning that

a continuous speed profile can be retrieved from the PCHIP trajectory, but not a

continuous acceleration profile.

2.4.3 Local Regression

Although the PCHIP algorithm allows for the construction of a trajectory that sat-

isfies all three properties of an ideal trajectory, one of the fundamental assumptions

that has to be made is that all discrete distance into trip data points that serve as
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Figure 2-3: Trajectory constructed from PCHIP.

the input to the algorithm are the true distances, and that there is no error associ-

ated with each distance value. Such an assumption may not be valid, however, if the

measurement error of the onboard device is taken into consideration.

A local regression process (LOCREG) can be used to estimate the true distance

into trip of the bus vehicle at each recorded timestamp by weighing the importance

of nearby data points based on their distance from the timestamp of interest, conse-

quently smoothing out the transit vehicle trajectory [17].

Suppose the true distance of the vehicle at each time point 𝑡𝑖 is 𝑥𝑖 such that

𝑥𝑖 = 𝑑𝑖 + 𝜀𝑖, (2.3)

where 𝑑𝑖 is the measured distance at time 𝑡𝑖, and 𝜀𝑖 is the measurement error for 𝑑𝑖.

The objective of the local regression algorithm is to find a function 𝑓 : 𝑡 → 𝑥 such

that it solves the following minimization problem at each data point (𝑡𝑖, 𝑑𝑖):

min
𝑛∑︁

𝑗=1

𝑤𝑖,𝑗(𝑑𝑖 − 𝑓(𝑡𝑖))
2, (2.4)

where the value of each weight term 𝑤𝑖,𝑗 is determined by the selected bandwidth

and kernel function. In this study, the tricube kernel is used in the local regression

algorithm due to its computational efficiency and its low sensitivity to outliers which
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could be present in the time-distance data because of the difficulty faced by GPS

devices in locating bus vehicles in an urban setting. Since the average data frequency

of heartbeat data is smaller than 10 seconds per record, a bandwidth of 20 data points

are selected empirically, following the reasoning that the true distance is informed by

other distance values measured one minute before or after the time point for which

the distance value is estimated.

An example snippet of the trajectory obtained from local regression is shown

in Figure 2-4. LOCREG is superior to LSEG and PCHIP in that it produces a

continuous trajectory that takes into account the measurement error of each measured

distance, but it provides little guarantee for differentiability or monotonicity. This

can result in negative speed values when taking the first derivative of the LOCREG

trajectory, and also present challenge in deriving speed and acceleration profiles.

Figure 2-4: Trajectory constructed from Local Regression.

2.4.4 Interpolation and Regression

To address the issue with monotonicity from using local regression, an exploratory al-

gorithm is proposed to remove the non-monotonic sections of the LOCREG data, and

fill in the now missing intervals by passing the remaining data through a monotonic

interpolation algorithm (e.g. PCHIP).

Combining the LOCREG algorithm with PCHIP, a complete workflow that starts
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from data smoothing and ends with filling in data to obtain a smooth and monotonic

trajectory is detailed in Algorithm 2.

Algorithm 2 LOCREG-PCHIP
Input: an 1 × 𝑛 vector 𝑇 of time into trip values 𝑡1 < 𝑡2 < ... < 𝑡𝑛, an 1 × 𝑛

vector 𝐷 of distance into trip values 𝑑1 ≤ 𝑑2 ≤ ... ≤ 𝑑𝑛 for 𝑖 = 1, ..., 𝑛 and 𝑛 >
2.
1: X = []
2: 𝑓𝑙𝑜𝑐𝑟𝑒𝑔 = 𝐿𝑂𝐶𝑅𝐸𝐺(𝑇,𝐷)
3: for i = 1, 2, ..., n do
4: 𝑥𝑖 = 𝑓𝑙𝑜𝑐𝑟𝑒𝑔(𝑡𝑖)
5: if 𝑖 > 1 and 𝑥𝑖 < 𝑥𝑖−1 then
6: 𝑥𝑖 = 𝑥𝑖−1

7: end if
8: 𝑋.𝑎𝑝𝑝𝑒𝑛𝑑(𝑥𝑖)
9: end for

10: 𝑓 = 𝑃𝐶𝐻𝐼𝑃 (𝑇,𝑋)
11: return 𝑓

An example snippet of the trajectory obtained from the LOCREG-PCHIP al-

gorithm is shown in Figure 2-5. The trajectory obtained using LOCREG-PCHIP

preserves the true distance values estimated from local regression at all time points

except for those where the monotonicity principle is violated, in which case the dis-

tance value is chosen to be equal to the largest distance value observed prior the said

time points. Since the algorithm ends with constructing a PCHIP function using

the modified distance values, the resultant trajectory function is both monotonic and

differentiable.

2.5 Goodness of Algorithm Evaluation

A way to quantify the goodness of the trajectory smoothing algorithm is desirable.

The challenge with this task is that the ground truth, i.e. the actual historical lo-

cation, speed and acceleration of the transit vehicle, is not a data source that could

be easily obtained. There are a few limited strategies, however, that can be used

to evaluate the quality of the speed and acceleration profiles. The following sections

describe the details of these strategies and offer some discussion regarding reasons for
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Figure 2-5: Trajectory constructed from LOCREG-PCHIP.

choosing one algorithm over others.

2.5.1 Validation of the Speed Profile

Since the AVL data provides historical information regarding the bus stopping and

door open activities at bus stops, one way to validate the accuracy of the speed profile

is to take advantage of the stop-level AVL data and check if the speed from the

calculated trajectory is indeed zero when the transit vehicle was recorded as having

doors open at a bus stop. The speed profiles obtained from all methods mentioned

above (LSEG, LOCREG, LOCREG-PCHIP, PCHIP) can be displayed over color

bands of door-open intervals recorded in the stop-level AVL data collected for the

same bus trip as shown in Figure 2-6.

To measure how well the speed trajectory aligns with the AVL stop events, we

calculate among all integer seconds within AVL door-open intervals how many of

these seconds correspond to a zero speed on the speed profile. The notion of "zero

speed" corresponds to the speed of the vehicle with its doors open while dwelling at

a bus stop, which intuitively should be 0 mph. However, the 0-mph threshold could

be relaxed to a speed below which a vehicle is considered not traveling to account

for GPS data instability. As summarized in Table 2.4, if the "stop speed" is defined

as below 5 mph, the speed at over 90% of AVL door-open integer timestamps are
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Figure 2-6: Comparison of all speed profiles.

correctly captured using the LOCREG, LOCREG-PCHIP and PCHIP algorithms.

A more intuitive plot comparing the percentage of stop speed correctly captured by

each algorithm is shown in Figure 2-7, where it shows that the performance of the

LOCREG and LOCREG-PCHIP algorithms are almost identical to each other and

very close to that of PCHIP at stop-speed threshold above 0.5 mph.

Table 2.4: Percentage of AVL door-open integer timestamps at which speeds are
correctly captured by each algorithm.

Algorithm Stop-Speed Threshold (mph)

0 3 5

LSEG 0 77 86
LOCREG 7 77 100

LOCREG-PCHIP 0 84 92
PCHIP 0 92 98

2.5.2 Validation of the Acceleration Profile

Another way to check for the goodness of the algorithm is to examine the percent-

age of accelerations that are beyond a reasonable threshold. Based on the research

from Kirchner et al., the maximum bus vehicle acceleration is 0.17𝑔 = 3.7 mphps

and maximum deceleration is −0.24𝑔 = −5.3 mphps [18]. As indicated by the accel-

eration profiles shown in Figure 2-8, LOCREG-PCHIP produces a more reasonable
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Figure 2-7: Percentage of AVL door-open integer timestamps at which speeds are
correctly captured vs. the "stop speed" threshold.

acceleration profile than all other methods. This conclusion is verified by the per-

centage of unreasonable accelerations summarized in Table 2.5, which shows that only

1.3% of the accelerations from LOCREG-PCHIP are beyond the reasonable threshold,

whereas 5.3% of accelerations from PCHIP are unreasonable.

Table 2.5: Percentage of trajectory data of which accelerations are beyond the
[−5.3, 3.7] mphps threshold.

Algorithm % unreasonable acceleration

LSEG 53.6
LOCREG 0.0

LOCREG-PCHIP 1.3
PCHIP 5.3

Given the discussion above, the trajectory produced by the LOCREG-PCHIP

algorithm is the best trajectory overall, since it preserves all three necessary properties

of an ideal transit vehicle trajectory, while performing well when validating against

stop-level AVL data and reasonable acceleration thresholds.
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Figure 2-8: Comparison of all acceleration profiles.

2.5.3 Selection of the Best Algorithm

The "best algorithm" should produce trajectories not only satisfy all three charac-

teristics of an ideal trajectory, but also perform reasonably well in the evaluation of

speed and acceleration profiles. As shown in Table 2.6, the algorithms that satisfy

these criteria are LOCREG-PCHIP and PCHIP.

Table 2.6: Evaluation of algorithms.

Algorithm Evaluation Criteria

MONO1 CUBIC2 DIFF3 AVL4

(%)
ACC5

(%) Best

LSEG ✓ ✗ ✗ 86 46
LOCREG ✗ ✗ ✓ 100 100

LOCREG-PCHIP ✓ ✓ ✓ 92 99 ✓

PCHIP ✓ ✓ ✓ 98 95
1 MONO: the trajectory is non-decreasing
2 CUBIC: the trajectory is made up of cubic polynomials
3 DIFF: the trajectory is once differentiable
4 AVL (%): the percentage of AVL dwell activities correctly captured
5 ACC (%): the percentage of accelerations within a reasonable threshold

Comparing the LOCREG-PCHIP algorithm with PCHIP, LOCREG-PCHIP is
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preferable because it is able to predict the true distances from observed distances using

information provided by adjacent data points by taking advantage of the LOCREG

algorithm, rather than trusting each observation a hundred percent. Therefore,

LOCREG-PCHIP is used as the basis for reconstructing trajectories in the remainder

of the thesis.

2.6 Case Study

To illustrate how the trajectory produced by the LOCREG-PCHIP algorithm can be

used for bus operational analysis, a trajectory color-coded by vehicle speed is shown in

the time-space diagram in Figure 2-9. Since the trajectory is built upon time-distance

data returned by the map-matching process, which also provides information about

the OpenStreetMap way segment IDs associated with each data, one can identify the

exact way segment and distance along the segment of each data point. Therefore,

the exact location of other road infrastructure such as bus stops, traffic signals, and

pedestrian crossings with respect to the trajectory can also be identified and plotted

in the same figure.

The combination of vehicle trajectory, vehicle speed, locations of bus stops, signals,

and crossings, as well as the door-open time recorded in AVL data can provide a

wealth of information regarding the bus vehicle operations and lend insight into the

maneuver of the bus vehicle throughout its trip.

Several observations of the operations of the sample bus trip are described below

to showcase the information that a complete bus vehicle trajectory can provide.

2.6.1 Stop Dwelling Activities

The complete bus vehicle trajectory allows for a straightforward visualization of stop-

ping activities at bus stops. As shown by the sections of the trajectory labeled 𝐴 in

Figure 2-9, the trajectory captures the bus stopping at the far-side bus stop at Mas-

sachusetts Avenue & Albany St after it waits at the traffic signal just upstream of the

bus stop.
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Figure 2-9: LOCREG-PCHIP trajectory used for the operational analysis of a sample
weekday PM inbound trip of Route 1 operated by the MBTA.

The sections labeled 𝐵 in Figure 2-9, on the other hand, show that the bus opened

its door twice at the bus stop at 84 Massachusetts Avenue, once upstream of the stop

and once at the bus stop. Interestingly, the stopping activity upstream of the stop

could be due to the Massachusetts State regulation which requires bus drivers to stop

and open the door before a railroad track 1. Both of these stopping activities are

validated by the door-open intervals recorded in the AVL data.

1Regulation regarding the operation of motor buses near railroad crossings as required by the
Massachusetts State Department of Public Utilities: https://www.mass.gov/files/220_cmr_155.
00_final_8_7_09.pdf.
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2.6.2 Vehicle Speed

The section labeled 𝐶 in Figure 2-9 shows that the bus traveled at a speed of ap-

proximately 25-30 mph 1.9-2.2 miles into the trip, faster than its speed at most other

sections of the trip. This is because, within the 1.9-2.2-mile segments of the trip,

the bus is traveling on the Harvard Bridge shown in Figure 2-10a, unimpeded by any

signal or other source of delay.

2.6.3 Stopping at a Pedestrian Crossing

From the section labeled 𝐷 in Figure 2-9, one can see that the vehicle stopped just

upstream of a pedestrian crossing. An inspection of the satellite view of the road

segments near this location as shown in Figure 2-10b, reveals that there is indeed a

pedestrian crossing north of the bus stop at Massachusetts Avenue opposite the Chris-

tian Science Center. The trajectory shows that the vehicle stopped at the pedestrian

crossing before stopping at the bus stop.

(a) Satellite view of the Harvard Bridge. (b) Satellite view of the road segment
near the stop at Mass Ave opp Christian
Science Ctr.

Figure 2-10: Satellite images of the road segments associated with sections of the
trajectory labeled 𝐶 and 𝐷.
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2.6.4 Stopping at a Traffic Signal

The section labeled 𝐸 in Figure 2-9 shows that the bus stopped at the traffic signal

upstream of the far-side stop at Massachusetts Avenue & Tremont St. Besides clearly

showing the existence of the stopping activity at the traffic signal, the trajectory also

shows the length of duration that the bus stopped at the signal. Such information

about how long buses stop at a signal can be valuable for the decision making of

transit signal priority projects.

2.7 Conclusion

This chapter delved into the methodologies used to reconstruct continuous, monotonic

and differentiable bus vehicle trajectories from heartbeat data that contains noisy

coordinates recorded at inconsistent frequencies. Raw coordinates can be realigned

with the road networks through a map-matching process, and the result of such a

process can be used to convert timestamped coordinates to a series of discrete time-

distance data that serves as the input for the trajectory smoothing algorithm. Several

trajectory smoothing algorithms are explored, and their goodness compared, in the

selection of an algorithm that could produce a trajectory that not only satisfies the

ideal properties but also performs well when validated against the expected speed

and acceleration data. The best algorithm selected is LOCREG-PCHIP, which is

essentially an algorithm that first predicts the true distances into trip of the bus at

each recorded timestamp using nearby observed values using local regression, then

interpolates for the distance at unobserved timestamps using the Piecewise Cubic

Hermite Interpolant.

The continuous bus vehicles trajectories constructed using the methodologies de-

scribed in this chapter allow for the extraction of the bus location, speed and accelera-

tion at any point in time into its trip. The information contained in these trajectories

will allow for further analysis of transit performance at the route, corridor and net-

work levels, of multiple trajectories of the same route or of different routes traveling

the same corridor are aggregated together, which is the focus of the following chapter.
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Several limitations are present with the methodologies that could be addressed

in future research. First, the methodologies presented in this chapter are developed

using the heartbeat data with a frequency ranging between 1 and 10 seconds. Further

research may be needed to determine how the algorithm will perform if the data fre-

quency is much lower. Secondly, none of the smoothing algorithms presented in this

chapter guarantees that the trajectory is twice-differentiable, therefore the accelera-

tion profile is not guaranteed to be smooth. Although a check of the acceleration val-

ues illustrates that 99% of the accelerations produced by LOCREG-PCHIP are within

the reasonable threshold, an algorithm that could guaranteed twice-differentiability

could be useful if one wishes to obtain information such as driver aggressiveness.

Lastly, the validation method used in this chapter to evaluate the goodness of al-

gorithms is limited to comparing the speed and acceleration data with the expected

values. An ideal method, however, is to compare the location, speed and acceleration

of vehicles with real-world observations using high-precision measurement devices.
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Chapter 3

Transit Delay Analysis

3.1 Introduction and Motivation

As discussed in the literature review, many researchers have attempted to use the

historical GPS records of bus vehicles contained in the heartbeat data to understand

various operational aspects of buses, such as stopping behavior at bus stops, signal

delays, queuing delay, passenger in-vehicle travel time, etc. A common strategy used

by researchers when attributing delays to different sources such as bus stops and traffic

signals is by making certain assumptions, such that any delay activities observed

near location of stops and signals are categorized as the corresponding delay. These

assumptions do not always hold true when considering the real-world operations of

bus vehicles. For example, if one were to specify a signal distance and state that only

delays incurred within such distance are signal delays, then they would be assuming

that the queue at any traffic signal would not exceed the signal distance, which is

hardly justifiable. Similarly, if one were to specify a stop zone surrounding a bus stop

and state that any stopping activity incurred within such zone is due to passenger

pickup and drop off at the bus stop, they are assuming that the bus vehicle will

always stop within the zone, which is unrealistic especially at bus stops with frequent

bus bunching. Furthermore, existing research have mostly focused on analyzing the

operations of one single bus route, but rarely mentions the possibility of analyzing

multiple routes traveling on the same corridor.
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To that end, this chapter presents methodologies that tackle the task of decom-

posing the travel time of bus vehicles by taking advantage of the continuous bus

trajectories that can be reconstructed from heartbeat data. The author proposes

methods for delineating traffic signal delay from the observed travel time following

the logic from classic signal delay models and demonstrates ways to identify locations

of bus dwell activities using a probability estimation algorithm. The methodologies

presented in this chapter can be directly used to quantify the magnitude of various

types of transit delay experienced by a bus route or observed along a bus corridor.

3.2 Analyzing Multiple Transit Vehicle Trajectories

In the previous chapter, a method was proposed to reconstruct a continuous, mono-

tonic and differentiable transit vehicle trajectory, 𝑥 = 𝑓(𝑡), from a series of discrete

time-distance data 𝑇,𝐷 obtained from processing the raw heartbeat data of an indi-

vidual vehicle trip. The trajectory constructed using this method always starts from

the first recorded location given in the heartbeat data. For the trajectories of differ-

ent trips to be comparable, however, a common spatial frame of reference is required

to ensure that all trips depart from the same terminal stop and pass by the known

facilities at the same distance into trip. This section provides details about how one

can expand on the method for analyzing a single trajectory to perform such batch

analysis of multiple bus trajectories, which will then serve as the basis for the delay

analysis of bus routes and transit corridors.

3.2.1 Determining the Passing Times and Locations of Known

Facilities

As shown in Table 3.1, the map-matching and trajectory smoothing processes not only

associate each heartbeat record 𝑖 with a road segment ID (𝑟𝑖) and position along the

segment (𝑝𝑖), but also converts the distance 𝑑𝑖 into a point on the smoothed trajectory

𝑥𝑖 = 𝑓(𝑡𝑖). Conversely, one can take records of location points with known road seg-
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ment ID and position along the segment, determine the distances along the smoothed

trajectory, and back-calculate the corresponding timestamps when the vehicle would

have moved by these locations.

Table 3.1: An example time-distance data table before the records of road infrastruc-
ture are processed.

Record
Type

𝑖 𝑡𝑠 𝑡 (sec) 𝑟 𝑝 𝑑 (m) 𝑥 (m)

stop ST01 𝑅0 0.05
heartbeat 0 2022-04-25

08:24:45
0 𝑅0 0.639 0 0

heartbeat 1 2022-04-25
08:24:50

5 𝑅0 0.940 20.167 12.015

signal INT01 𝑅2 0.15
heartbeat 2 2022-04-25

08:24:57
12 𝑅2 0.463 33.502 29.743

heartbeat 3 2022-04-25
08:25:00

15 𝑅3 0.116 42.567 40.236

heartbeat 4 2022-04-25
08:25:04

19 𝑅3 0.452 61.047 63.008

... ... ... ... ... ... ... ...

To illustrate how the back calculation can be done, consider two records that can

be added to Table 3.1, one being the first stop (ST01) of the route, another being

the first signalized intersection (INT01) that the bus encounters after starting its

trip. Since the bus runs on a predetermined route, the location of all facilities and

infrastructure such as bus stops, signalized intersections and pedestrian crossings are

known to the analyst. Therefore, the road segment ID and position along segment

information of both records are known. With this information, one can calculate the

time and distance into trip at which the bus arrived at each facility.

Using Equation 2.2, the distance into trip of stop ST01 and signal INT01 can be

calculated as follows:

𝑥𝑆𝑇01 = 𝐿𝑟𝑆𝑇01
* 𝑝𝑆𝑇01 − 𝐿𝑟0 * 𝑝0

= 𝐿𝑅0 * 𝑝𝑆𝑇01 − 𝐿𝑅0 * 𝑝0

= 𝐿0 * 0.05− 𝐿0 * 0.639 = −39.463;

(3.1)
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𝑥𝐼𝑁𝑇01 =

𝑖𝑑𝐼𝑁𝑇01−1∑︁
𝑗=0

𝐿𝑅𝑗
+ 𝐿𝑟𝐼𝑁𝑇01

* 𝑝𝐼𝑁𝑇01 − 𝐿𝑟0 * 𝑝0

=
2−1∑︁
𝑗=0

𝐿𝑅𝑗
+ 𝐿𝑅2 * 𝑝𝐼𝑁𝑇01 − 𝐿𝑅0 * 𝑝0

= 𝐿0 + 𝐿1 + 𝐿2 * 0.15− 𝐿1 * 0.2

= 31.937.

(3.2)

Since the trajectory function 𝑓(𝑡) is monotonically increasing (i.e. non-decreasing),

the mapping from the time space 𝑡 to the distance space 𝑥 has a one-to-many relation-

ship, meaning that for any 𝑥𝑖 ∈ R≥0, there could be more than one 𝑡 where 𝑓(𝑡) = 𝑥𝑖.

When analyzing the impact of various facilities on bus movements, the "impact area"

of the facility is defined as the area stretching from just downstream of the previous

facility to just downstream of the facility of interest. Therefore, if the bus dwells at a

facility at distance 𝑥𝑖 and during the time interval [𝑡𝑎, 𝑡𝑑] for which 𝑥𝑖 = 𝑓(𝑡𝑎) = 𝑓(𝑡𝑑),

the departing time from the facility, i.e., 𝑡𝑑, is the more appropriate value to be used

in the calculation of the segment travel time. The distance into trip of each facility

can then be back-calculated as follows:

𝑡𝑖 = max{𝑡 : 𝑡 = 𝑓−1(𝑥𝑖)}. (3.3)

Therefore, the time and distance into trip information of known facilities can be

calculated using both Equations 3.3 and 2.2. After shifting the time and distance

into trip data of all records with respect to that of the first bus stop, a complete

time-distance data table can be obtained as shown in Table 3.2. Note that the time

and distance columns contain values that satisfy the trajectory function 𝑓(𝑡), and

although only records related to heartbeat data and certain facilities are shown, the

table can contain as many time-distance data points as the time resolution used in

the analysis permits, because the function 𝑓(𝑡) is continuous.
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Table 3.2: An example of a complete time-distance data table with records of road
infrastructure added.

Record
Type

𝑖 𝑡𝑖 (sec) 𝑥𝑖 (m) 𝑡𝑖 (sec)
shifted

𝑥𝑖 (m)
shifted

stop ST01 -10 -39.463 0 0
heartbeat 0 0 0 10 39.463
heartbeat 1 5 12.015 15 51.478

signal INT01 9 31.937 19 71.400
heartbeat 2 12 33.743 22 73.206
heartbeat 3 15 40.236 25 79.699
heartbeat 4 19 63.008 29 102.471

... ... ... ...

3.2.2 Aligning the Trajectories of Multiple Bus Trips

For trips that serve the same route pattern, bus vehicles are expected to pass by the

same set of fixed facilities such as bus stops, traffic signals and pedestrian crossings.

Therefore, such set of facilities can be used as a frame of reference when aligning the

trajectories of multiple different bus trips.

Consider the example trip given in Table 3.2, the list of facilities and their distances

into trip are calculated from the information about the corresponding road segment

and position along the segment, which is a property of the route pattern and does

not vary with trips. Therefore, all trips that serve the same pattern would share the

same list of facilities as well as the distance into trip values at each facility, while the

times at which the vehicle arrives at each facility are different. In other words, the

trajectory function 𝑓(𝑡) of each trip would satisfy the following condition:

∃𝑡 ∈ R≥0 : 𝑓(𝑡) = 𝑥𝑓 , ∀𝑥𝑓 ∈ X𝑓 , (3.4)

where: R≥0 = all non-negative real values;

𝑡 = a time into trip value;

𝑥𝑓 = the distance into trip value of a known fixed facility along the route;

X𝑓 = the set of all distance into trip values of all fixed facilities along the

route shared by all trips that serve the same route pattern.
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Therefore, the same calculation procedure detailed in the previous section can

be repeated on multiple trips serving the same route pattern, and the outcome of

the calculations would be a set of unique trajectory functions 𝑓(𝑡)’s, all of which

satisfy the condition in Equation 3.4. Table 3.3 provides an example showing the

time-distance data of multiple trips aligned to the same route pattern.

Table 3.3: An example of selected time-distance data of multiple trips that serve the
same route pattern.

Record Type 𝑖 𝑥𝑖 (m) 𝑡𝑖 (sec)

trip 1 trip 2 trip 3

stop ST01 0 0 0 0
signal INT01 71.40 19 22 21
signal INT02 189 55 60 61
stop ST02 ... ... ... ...

crossing CRS01 ... ... ... ...

The methodology described here for aligning multiple trips to the same time-

distance reference frame not only makes it easy to analytically compare the perfor-

mance of buses across trips, but also allows for the trips to be displayed on the same

time-space diagram for visual inspection.

3.2.3 Segmentation of Bus Routes

As mentioned above, a key concept when analyzing the impact of each facility on

bus movement is that of the "impact area" of a facility, which is defined as the area

stretching from just downstream of the previous facility to just downstream of the

facility of interest. For example, as illustrated in Figure 3-1, to evaluate the impact of

traffic signal INT02 on bus movements, the impact area can be defined as the stretch

of the road between just downstream of INT01 and just downstream of INT02. Any

delay observed within the segment INT01-INT02 can be attributed to one of the

following: the signal delay caused by INT02, dwell caused by a bus stop between

INT01 and INT02, or traffic congestion within the segment.
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Figure 3-1: Illustration of a traffic signal impact area.

3.3 Quantifying Sources of Transit Delay

A segment-based approach is taken to analyze the impact of various roadway facilities

on bus movements. This section details how the travel time and each delay compo-

nent can be analyzed for individual segments, and how the segment metrics can be

aggregated together when analyzing the performance of an entire route or a specific

corridor.

3.3.1 Travel Time Decomposition

According to TCQSM, the observed travel time of buses is comprised of unimpeded

running time 𝑇𝑢 and additional running time losses 𝑇𝑙 [19],

𝑇𝑜𝑏𝑠 = 𝑇𝑢 + 𝑇𝑙. (3.5)

In particular, the unimpeded travel time is made up of free-flow travel time, dwell

time, acceleration/deceleration time and bus slowdowns near the bus stop due to

congestion. The running time losses, on the other hand, include additional travel

times attributed to traffic signal delay and interference from other vehicles. These

terms involved in the calculation of bus running time can be generalized into a few
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categories, namely free-flow travel time, dwell time, signal delay, congestion delay and

loss time. Therefore, Equation 3.5 can be rewritten as follows:

𝑇𝑜𝑏𝑠 = 𝑇𝑓𝑓 + 𝑇𝑑𝑤𝑒𝑙𝑙 +𝐷𝑠𝑖𝑔𝑛𝑎𝑙 +𝐷𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠, (3.6)

where: 𝑇𝑜𝑏𝑠 = observed travel time;

𝑇𝑓𝑓 = free-flow travel time;

𝑇𝑑𝑤𝑒𝑙𝑙 = dwell time at bus stops;

𝐷𝑠𝑖𝑔𝑛𝑎𝑙 = traffic signal delay;

𝐷𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 = congestion delay (e.g. interference from other vehicles, slowdown

near bus stops);

𝐿𝑜𝑠𝑠 = loss time (e.g. acceleration, deceleration, etc.).

Equation 3.6 offers a method to decompose the total travel time of each bus trip

into individual components. If such decomposition is performed on a large sample of

trips, then one can take advantage of the distribution of each travel time component to

obtain statistics such as the mean value and variance, and determine the significance

that each source of delay carries in delaying bus movements. The expected value of

the observed travel time can be written as:

E[𝑇𝑜𝑏𝑠] = E[𝑇𝑓𝑓 ] + E[𝑇𝑑𝑤𝑒𝑙𝑙] + E[𝐷𝑠𝑖𝑔𝑛𝑎𝑙] + E[𝐷𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛] + E[𝐿𝑜𝑠𝑠]. (3.7)

In the following sections, details are provided on how one can calculate each term

in Equation 3.7 in order to quantify the different types of delay.

3.3.2 Observed Travel Time

The observed travel time of a segment bounded by two facilities such as traffic signals,

e.g. INT01-INT02, is measured as the difference between the time a bus departs from

the upstream signal and the downstream signal.

𝑇𝑜𝑏𝑠 = 𝑇𝐼𝑁𝑇02 − 𝑇𝐼𝑁𝑇01. (3.8)
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With a large sample of trips, the observed travel time of a segment, 𝑇𝑜𝑏𝑠, can

be calculated for each trip, leading to a probability distribution of the metric. The

expected value of the observed travel time can therefore be calculated as follows:

E[𝑇𝑜𝑏𝑠] =

∑︀
𝑠∈S 𝑇𝑜𝑏𝑠,𝑠

|S|
, (3.9)

where: 𝑠 = a bus trip that traverses between the segment of interest;

S = the set of all bus trips that traverse between the segment of interest;

𝑇𝑜𝑏𝑠,𝑠 = the travel time along the analyzed segment observed from trip 𝑠; and

|S| = the size of the set S.

3.3.3 Free-Flow Travel Time

By definition, the free-flow travel time of buses in a segment is the total time it takes

for a bus to travel from the beginning to the end of the segment without any delays.

In practice, analysts usually use the travel times recorded during off-peak periods

such as midnight as an estimator for the average free-flow travel time [20].

The expected value of the free-flow travel time obtained using the empirical esti-

mator can then be formulated as follows:

E[𝑇𝑓𝑓 ] = T𝑓𝑓(5), (3.10)

where: 𝑇𝑓𝑓 = the random variable for free-flow travel time;

T𝑓𝑓(𝑛) = the nth percentile free-flow travel time, or equivalently the ⌊𝑛*𝑁
100

⌋th

(smallest) order statistic of the random sample of free-flow travel

times, where 𝑁 is the sample size.

3.3.4 Dwell Time

Dwell time is defined as the length of time a bus spends dwelling at a bus stop to pick

up and drop off passengers. Since the onboard GPS device used to record heartbeat
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data is often the same device used to record AVL data, it is reasonable to combine

the two data sources together to support the analysis of dwell times. Specifically, the

timestamps at which doors are open and closed on a bus vehicle at each stop recorded

in the AVL data can be used to discern dwell activities from other stopping activities.

For each record 𝑘 in the AVL data, where 𝑘 = 1, 2, ..., 𝑠 and 𝑠 is the total number of

stops visited by a vehicle in its trip, the coordinate of the bus stop is 𝐶𝑘 = (𝑙𝑎𝑡𝑘, 𝑙𝑜𝑛𝑘),

the timestamp at which the first door opening activity occurs is denoted by 𝐷𝑂𝑘,

and the last door closing activity 𝐷𝐶𝑘. An example of the layout of the AVL data is

shown in Figure 3.4.

Table 3.4: An example of AVL data records.

trip_id stop_id 𝐶 door open time door close time

TRIP01 ST01 (𝑙𝑎𝑡1, 𝑙𝑎𝑡1) 𝐷𝑂1 𝐷𝐶1

TRIP01 ST02 (𝑙𝑎𝑡2, 𝑙𝑎𝑡2) 𝐷𝑂2 𝐷𝐶2

... ... ...

Since the heartbeat data is recorded at an inconsistent frequency every a few

seconds, the data may not capture precisely the exact times when the vehicle doors

are open and closed. One way to overcome the issue of imperfect dwell activity data

is to append the data given by AVL to the heartbeat data. Using Equations 2.1 and

2.2, the timestamps 𝐷𝑂𝑘 and 𝐷𝐶𝑘 as well as the stop coordinate in each AVL record

can be converted to time into trip and distance into trip values 𝑡𝑜𝑘, 𝑡𝑐𝑘 and 𝑥𝑘. The

result of the conversion is shown in Table 3.5.

Table 3.5: An example of AVL data records converted to time and distance into trip
values.

Record Type 𝑘 𝑡𝑘 (sec) shifted 𝑥𝑖 (m) shifted

avl ST01 𝑡𝑜1 𝑥1

avl ST01 𝑡𝑐1 𝑥1

avl ST02 𝑡𝑜2 𝑥2

avl ST02 𝑡𝑐2 𝑥2

... ... ...

The data in Table 3.5 can be appended to Table 3.2, and the combined data can
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then be sent to the smoothing algorithm to produce a trajectory that can correctly

reflect the dwell activities recorded in the AVL data.

The expected value of the dwell time at each bus stop can be estimated as follows:

E[𝑡𝑑𝑤𝑒𝑙𝑙] =

∑︀
𝑠∈S 𝑡𝑑𝑤𝑒𝑙𝑙,𝑠

|S|
, (3.11)

where: 𝑠 = a bus trip that dwells at the bus stop of interest;

S = the set of all bus trips that dwell at the stop of interest;

𝑡𝑑𝑤𝑒𝑙𝑙,𝑠 = the dwell time at the analyzed stop observed from trip 𝑠;

|S| = the size of the set S.

It may seem that since the dwell time information at each stop is already provided

by the AVL data, there is no point in perfecting vehicle trajectories or trying to

extract the same information from the trajectories. In fact, the purpose of improving

the vehicle trajectory with AVL data is not to extract dwell time from it, but rather

to make it possible to discern dwell time from other types of stopping activities such

as signal delays and crossing delays, as shown in Figure 3-2.

3.3.5 Signal Delay

Signal delay is perhaps the most difficult to quantify, yet the most crucial in the

operational analysis of buses on urban roads. The classical methods for modeling

traffic signal delay often generalize vehicle delays caused by traffic signals into three

categories, namely uniform delay, random delay and overflow delay [21].

As explained in the classical Webster model, uniform delay is the delay encoun-

tered by vehicles that arrive at a non-saturated signalized intersections at a constant

rate; random delay is the additional delay experienced by vehicles with arrival rates

following a probability (e.g. Poisson) distribution, where the random arrival of vehi-

cles results in occasional over-saturation of the signal and leads to further delay; and

overflow delay is the additional delay experienced by vehicles joining an ever-lasting

queue at a signal that is over capacity for an extended period of time [22]. The delays
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Figure 3-2: Example trajectories constructed using heartbeat data in combination
wth AVL data. Blue bands are door-open times recorded in the AVL data.

calculated from these models describe the average delay that vehicles can experience

at an intersection but does not offer insight into what each vehicle might experience

individually.

From the perspective of an individual vehicle, only uniform delay and overflow

delay are essential in the analysis of its movement through the signal. Regardless of

arrival rate, a vehicle experiences uniform delay if it spends time waiting in a standing

queue that can be served by the upcoming green phase, and overflow delay if it waits

for the downstream queue to clear up before standing in the queue that can be cleared

by the upcoming green phase. Random delay, in this case, is the result of vehicles

experiencing uniform delay and an occasional overflow delay.

To simplify the use of terminologies, a queue that can be served by the upcoming

green phase will be called a "typical queue"; on the other hand, a queue that cannot

be fully served by the upcoming green phase, leaving leftover vehicles to be served by

following cycles, will be called a "long queue".

Following the logic provided in the classical models, the signal delay of each vehicle
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can be separated into two terms as follows:

𝑑𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤, (3.12)

where: 𝑑𝑠𝑖𝑔𝑛𝑎𝑙 = random variable for signal delay;

𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = random variable for uniform delay;

𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = random variable for overflow delay.

Specifically, as shown in Figure 3-3, buses may encounter different types of signal

delay depending on the type of queue they end up joining. Some vehicles experience

no signal delay since they either are the first to arrive at a green light or can join a

moving platoon through the signal without stopping. Some only experience uniform

delay, since they either are the first to arrive at a red light or encounter a typical

queue without experiencing any cycle failure. Others would encounter a long queue

that cannot be dissipated within one green phase, therefore experience both uniform

delay and overflow delay.

Figure 3-3: Different scenarios of buses passing through a signalized intersection.

Such categorization of bus trips by the type of queue a vehicle joins allows for

the sample space of all bus trips to be divided into three sub spaces. Based on the
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relationship given in Equation 3.12 and the Law of Total Expectation, the expected

value of signal delay can be derived as follows:

E[𝑑𝑠𝑖𝑔𝑛𝑎𝑙] = E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤]

= E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤|bus did not queue] * P[bus did not queue]

+ E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤|bus stopped in a typical queue]

* P[bus stopped in a typical queue]

+ E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤|bus stopped in a long queue]

* P[bus stopped in a long queue].

(3.13)

A few characteristics of vehicle movements in each scenario described above could

help simplify Equation 3.13. Intuitively, buses that did not stop in a queue experi-

enced no signal delay. In addition, buses encountering a typical queue would stop

at the back of the queue and proceed to clear the intersection without experiencing

overflow delay. Lastly, buses encountering a large queue would stop at the back of

the queue, move forward when part of the downstream vehicles are cleared by one

or more green phases, before clearing the intersection when the large queue ahead of

the vehicle reduces to a typical queue. Therefore, Equation 3.13 can be rewritten as

follows:

E[𝑑𝑠𝑖𝑔𝑛𝑎𝑙] = E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚|bus stopped in a typical queue]

* P[bus stopped in a typical queue]

+ E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤|bus stopped in a long queue]

* P[bus stopped in a long queue].

(3.14)

With the simplified equation in 3.14, The problem of figuring out the average

signal delay then becomes the problem of finding out the probability that a bus

joined each type of queue as well as the corresponding uniform and overflow delays.
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The length of each type of signal delay is reflected by the duration of each stopping

activity, or equivalently the time span of each horizontal section of the bus trajectory

curve. Therefore, by observing the pattern and locations of all stopping activities

from each bus’s trajectory, one can determine the length and type of signal delays a

vehicle experiences. As shown in Figure 3-4, such observation would be easy to make

if one could obtain complete information of the trajectories of all vehicles traveling

along the road segment and records of the signal phasing history for the time period

of analysis. However, information regarding non-transit vehicles and traffic signals is

not usually available to transit analysts, and it is only fair to assume that analysts

have access to nothing beyond the transit heartbeat data and GTFS data.

Figure 3-4: Identification of signal uniform and overflow delay.

In absence of historical signal phasing records and information about non-transit

vehicle trajectories, the only data that is observable by transit analysts are bus vehicle

trajectories through signalized intersections as illustrated in Figure 3-5. Rather than

determining signal delays from the movements of vehicle platoons, one can discern

uniform and overflow delay from the trajectory of an individual bus vehicle. If no

stopping activity is observed from the trip as shown in Figure 3-5a, then the bus

can be considered as passing without queuing, and therefore experienced no signal
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delay. If only one stopping activity is observed as shown in Figure 3-5b, then the

delay observed is uniform delay, and the bus can be considered as having joined a

typical queue. If multiple stopping activities are observed at different locations of the

road segment as shown in Figure 3-5c, then the delay observed closest to the signal

is uniform delay while all others are overflow delay, indicating that the bus joined a

long queue.

(a) Trip not delayed
by signal.

(b) Trip passed
through within one
cycle.

(c) Trip waited for
more than one cycle.

(d) Trip waited for
more than one cycle
with creeping behav-
ior.

Figure 3-5: Different scenarios of buses moving through a traffic signal.

It is worth adding a few caveats to the arguments above. First, vehicles that

experience uniform delay would in theory clear the intersection within the upcoming

green phase, thus should not be delayed for longer than the duration of the red

phase. Therefore, uniform delay at a traffic signal should be capped by the duration

of the red phase. Second, it is common for buses in the back of a standing queue

to exhibit "creeping" behavior, where vehicles near the stop bar leave the queue by

turning on red, leading other vehicles in the queue to fill in the space by slightly

moving forward. To take this behavior into account, stopping activities that take
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place within a threshold distance of each other can be grouped together into the

same category as shown in Figure 3-5d.

Since the mean uniform delay and overflow delays of all trips can be measured

from the trajectories of individual bus trips, and the probability that a trip belongs

to each queue category can be determined by counting the number of each type of

trips, Equation 3.14 can be rewritten as follows:

E[𝑑𝑠𝑖𝑔𝑛𝑎𝑙] =
∑︀

𝑠∈Stypical
𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠

|Stypical|
* |Stypical|

|S|

+

∑︀
𝑠∈Slong

𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤,𝑠

|Slong|
* |Slong|

|S|

=

∑︀
𝑠∈S 𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠 + 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤,𝑠

|S|

(3.15)

where: 𝑠 = a bus trip that passes through the signal of interest;

S = the set of all bus trips that pass through the signal of

interest;

Stypical,Slong = the set of bus trips that encountered typical queue and

long queue, respectively;

𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠, 𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤,𝑠 = the uniform and overflow delay of trip 𝑠, respectively;

|S| = the size of the set S.

Consequently, the average uniform delay and overflow delay can be calculated as

follows:

E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚] =
∑︀

𝑠∈Stypical
𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠 +

∑︀
𝑠∈Slong

𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠

|S|
,

E[𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤] =
∑︀

𝑠∈Slong
𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤,𝑠

|S|
.

(3.16)

3.3.6 Duration of Red Signal Phase

As discussed above, the uniform signal delay should be capped by the length of the

red signal phase. Information about the red phase duration can be obtained from

traffic signal timing plans, which unfortunately are not always available to transit
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analysts. Therefore, a method for estimating the red phase duration using only bus

heartbeat data is provided here.

As shown in Figure 3-4, of all stopping activities observable from vehicle trajecto-

ries, the duration of ones taking place closest to the analyzed signal match the length

of the red phase. In other words, since vehicles that are stopped by the signal at the

stop bar would experience longer red time than all other vehicles further upstream in

the queue, the duration of stop activities at the stop bar can be a good estimator for

the length of the red phase.

𝑅 = {𝑑𝑎 : 𝑎 ∈ A𝑠𝑡𝑜𝑝_𝑏𝑎𝑟}(95), (3.17)

where: 𝑅 = estimator for the red phase duration;

𝑑𝑎 = duration of stopping activity 𝑎;

A𝑠𝑡𝑜𝑝_𝑏𝑎𝑟 = the set of all stopping activities that take place near the stop bar;

{𝑑}(𝑛) = the nth percentile stopping duration.

The choice of the percentile value to be used is up to the analyst and can be selected

after comparing vehicle stopping duration with real signal timing values. It is worth

noting that the 95th percentile value is used here instead of the maximum stopping

duration to avoid choosing outliers which indicate longer-than-normal stopping time

at the stop bar caused by downstream congestion.

3.3.7 Crossing Delay

For segments that end with pedestrian crossings, or railroad crossings which could

also impose variable delays to buses, rather than traffic signals, the signal delay term,

E[𝑑𝑠𝑖𝑔𝑛𝑎𝑙], in Equation 3.7 can be replaced by the crossing delay term E[𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔]. The

observed travel times of vehicles traveling through these types of crossing-bounded

segments can therefore be decomposed as follows:

E[𝑡𝑜𝑏𝑠] = E[𝑡𝑓𝑓 ] + E[𝑡𝑑𝑤𝑒𝑙𝑙] + E[𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔] + E[𝑑𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛] + E[𝑙𝑜𝑠𝑠]. (3.18)
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Since all other terms in Equation 3.18 are the same as in Equation 3.7 except

for the crossing delay term, details for how crossing delays can be calculated will be

discussed in this section, but signal-bounded segments will continue to serve as the

focus of the discussion in the paper.

The calculation of crossing delay is similar to that of signal delay, but much

simpler. Since pedestrians arrive at the crossing stochastically, the length of time a

crosswalk becomes occupied is also stochastic and is not under control as are traffic

signals. Therefore, there is no meaning in distinguishing uniform delay from overflow

delay at crossings, and crossing delay is simply the sum of lengths of all stopping

activities observed upstream of a pedestrian crossing. Formulaically, the expected

crossing delay at a pedestrian crossing can be calcualted as follows:

E[𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔] =
∑︀

𝑠∈S
∑︀

𝑎∈A𝑠
𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑎

|S|
(3.19)

where: 𝑠 = a bus trip that passes through the crossing of interest;

S = the set of all bus trips that pass through the crossing of interest;

𝑎 = a stopping activity;

A𝑠 = the set of all stopping activities experienced by trip 𝑠;

𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑎 = the duration of stopping activity 𝑎 that takes place upstream of

the crossing of interest;

|S| = the size of the set S.

3.3.8 Loss Time

Loss times include when vehicles decelerate from cruising speed to standstill or ac-

celerate back to travelling speed when approaching or departing from facilities such

as bus stops, traffic signals and pedestrian crossings. Intuitively, the more stopping

activities there are at these facilities, the larger the loss time would be. Technically,

the total loss time of a trip can be measured from the stopping activities recorded in

the vehicle trajectory, and the average loss time can be calculated as follows:
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E[𝑙𝑜𝑠𝑠] =
∑︀

𝑠∈S
∑︀

𝑎∈A𝑠
𝑎𝑐𝑐𝑎 + 𝑑𝑒𝑙𝑎

|S|
, (3.20)

where: 𝑠 = a bus trip that passes through the signal of interest;

S = the set of all bus trips that pass through the signal of interest;

𝑎 = a stopping activity;

A𝑠 = the set of all stopping activities experienced by trip 𝑠;

𝑎𝑐𝑐𝑎 = the time for bus to accelerate from standstill to travelling speed after

stopping activity 𝑎;

𝑑𝑒𝑐𝑎 = the time for bus to decelerate from travelling speed to standstill before

stopping activity 𝑎;

|S| = the size of the set S.

Compared to all the other delay terms and the total travel time of the trip, loss

time is insignificant in magnitude. Although analysts can choose to explicitly calculate

the loss time as formulated in Equation 3.20, the term is neglected in the analysis

presented in this thesis for simplicity.

3.3.9 Congestion Delay

Congestion delay can be viewed as times that buses spend traveling below free-flow

speed that are not due to stopping activities such as dwelling at bus stops or stopping

at traffic signals and pedestrian crossings.

With all other terms in Equation 3.7 identified, the average congestion delay can

be calculated as:

E[𝑑𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛] = E[𝑡𝑜𝑏𝑠]− E[𝑡𝑓𝑓 ]− E[𝑡𝑑𝑤𝑒𝑙𝑙]− E[𝑑𝑠𝑖𝑔𝑛𝑎𝑙]− E[𝑙𝑜𝑠𝑠]. (3.21)

3.4 Case Study 1: Route 1 Analysis

The previous sections detailed how the trajectories of individual bus trips can be

analyzed together to quantify bus vehicle delays of various types. This section aims
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to illustrate how the methodologies outlined above can be used in the delay analysis

of transit route and corridors using real-world examples.

The first case study focuses on analyzing and quantifying the different types of

delay impacting the outbound direction of Route 1 operated by the MBTA.

3.4.1 Study Area

The study area is spanned by all Route 1 stops and signals that the route passes

through, as shown in Figure 3-8.

Typical analysis of transit routes that uses AVL data usually defines study seg-

ments by bus stops as shown in Figure 3-6a, since AVL data only contains information

down to the stop level. With bus heartbeat data, on the other hand, the study area

can be divided into segments defined by traffic signals using methods described in

Section 3.2.1 as shown in Figure 3-6b.

(a) Route 1 outbound marked by stops. (b) Route 1 outbound marked by signals.

Figure 3-6: Study area of Route 1 outbound.

3.4.2 Study Time Period

The study analyzes the operations of Route 1 outbound (northbound) on 12 week-

days, Tuesdays through Thursdays, in a 5-week period between October 11, 2022

and November 3, 2022. Bus trips are grouped and aggregated by four time periods -

Midnight (10 pm - 1 am), AM Peak (6 am - 9 am), Midday (11 am - 2 pm) and PM
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Peak (4 pm - 7 pm). For simplicity, the following discussion only focuses on the bus

operations during the PM Peak.

3.4.3 Data Source

The bus vehicle heartbeat data used in this case study is the GTFS-RT data, static

GTFS data, and the AVL data of the analyzed Route 1 provided by the MBTA.

3.4.4 Time-Space Diagram of Multiple Bus Trajectories

The trajectory of multiple bus trips can be constructed and aligned to the same

time-distance reference frame as described in Section 3.2.2. The result of aligning

bus trajectories in the same time-space diagram is shown in Figure 3-7, where the

trajectory of each trip is plotted by displaying the time into trip on the x-axis, and

the distance into trip on the y-axis, and colored using the the speed of the bus that

can be easily calculated by taking the first derivative of the trajectory function.

A few observations about the operations Route 1 can be made from the time-

space diagrams. First of all, the coloring of trajectories by bus traveling speed allows

the analyst to visually identify the specific locations along the route where buses

are consistently slowed down or traveling freely, thus leading to easier identification

of intersections and corridors needing examination and improvements. Secondly, by

displaying the trajectories of the actual bus trips in parallel with those of the scheduled

trips given by the GTFS data, the analyst can not only identify how late a trip

departed from the first stop, but also inspect the stops, signals or crossings that

exacerbate the reduced on-time performance of bus trips. Lastly, the diagram offers

a easy visualization of the bus bunching phenomenon and allows analysts to have a

preliminary understanding of where exactly along the route the headway between bus

trips becomes substandard.

1Bus stops are not displayed to avoid overcrowding of graphics.
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Figure 3-7: A time-space diagram showing multiple trajectories serving Route 1 out-
bound1.

3.4.5 Delay Analysis

Besides making qualitative conclusions about transit operations by inspecting the

time-space diagram, analysts can also quantitatively evaluate the different types of

delay that transit vehicles experience and their relative impact on the overall bus

operations using the methodologies presented in this research.

As explained in Section 3.3, the delay experienced by a bus trip can be analyzed

using a segment-based approach, where the route is divided up into segments bounded

by traffic signals and selected pedestrian crossings (e.g. signalized crossings, mid-block

crossings, etc.). The northbound Harvard Bridge segment is used as an example to

demonstrate how delay analysis can be conducted for a particular road segment. The

location of the segment is shown on the map in Figure 3-8a, where it can be seen that
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the segment is bounded by the signal at Massachusetts Avenue & Beacon Street on

the south end and another traffic signal on the north end of the bridge.

A sample trajectory of a trip that served outbound Route 1 during the study

time period is shown in Figure 3-8b. One can observe from the trajectory of this

sample trip that while traveling on northbound Harvard Bridge, the bus was running

at cruising speed until reaching the traffic signal, stopped for the signal to turn green,

and then continued through the intersection. In this case, the bus encountered some

amount of uniform signal delay and no overflow delay. Such observation can be made

for all trips that traversed through this segment, and quantitative analysis can be

carried out to determine the average delays of each type.

While inspecting a single road segment, the absolute time at which buses enter

and leave the segment is less important than the relative time. Therefore, the time

axis of each trajectory can be shifted so that time is 0 seconds at the beginning of

the segment. Doing so will yield the plot of stacked trajectories as shown in Figure

3-9a, where trips displayed to the left of others experienced less delay, and the ones

that are further to the right in the time-space diagram experienced more significant

delays.

Observed Travel Time

The observed travel time of each trip during the PM Peak is the time at which the

bus leaves the segment. Of 298 outbound Route 1 trips recorded during the PM peak

of the study time period, 166 trips are considered valid as these trips did not contain

large data gaps within the analyzed segment, nor did the map matching algorithm

fail to match the recorded coordinates to the predefined bus route. The distribution

of the observed PM-peak travel times is shown in Figure 3-9b.

As formulated in Equation 3.9, the average observed travel time is the mean of

the observed travel time of each trip, and can therefore be calculated as follows:

E[𝑡𝑜𝑏𝑠] =
∑︀

𝑠∈S 𝑡𝑜𝑏𝑠,𝑠

|S|
=

104.3 + 56.4 + 110.1 + 159.0 + ...+ 77.3

161
= 130 sec. (3.22)
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(a) Northbound Harvard Bridge shown on a map.

(b) A sample trajectory passing through the northbound Harvard Bridge
segment.

Figure 3-8: The northbound Harvard Bridge segment.
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(a) Stacked trajectories of PM-peak trips traversing through northbound
Harvard Bridge.

(b) Histogram of observed travel times during the PM peak.

Figure 3-9: Observed travel times on northbound Harvard Bridge during the PM
peak.
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Free-Flow Travel Time

The free-flow travel time is derived from observations of 207 midnight trips, of which

161 are considered valid. The stacked trajectories and distribution of travel times of

midnight trips are shown in Figure 3-10.

Using Equation 3.23, the expected free-flow travel time can be estimated using

the 5𝑡ℎ percentile travel time observed from midnight trips as follows:

E[𝑡𝑓𝑓 ] = 𝑡𝑓𝑓(5) = 42 sec. (3.23)

Dwell Time

For segments that do not contain any bus stops, such as the analyzed northbound

Harvard Bridge segment, dwell time is zero and does not need to be taken into account

when decomposing the observed travel times along the segment.

An illustration of dwell times is shown in Figure 3-11a, where the stopping ac-

tivities of all trips that took place within the Vassar-Albany segment are plotted in

the scatter plot with x-axis being the normalized distance along the segment, and

y-axis the duration of the stopping activity. The dwell activities at the near-side

Albany Street bus stop are colored red, and mostly take place near the stop bar as

expected. The dwell times recorded from each bus trip in the Vassar-Albany segment

are distributed as shown in the histogram in Figure 3-11b.

Using Equation 3.11, the expected dwell time at the Albany Street stop can be

obtained as follows:

E[𝑡𝑑𝑤𝑒𝑙𝑙] =

∑︀
𝑠∈S 𝑡𝑑𝑤𝑒𝑙𝑙,𝑠

|S|
,=

0 + 9.4 + 0 + 46 + ...+ 39.8

159
= 26.7 sec. (3.24)

Duration of Red Signal Phase

As discussed in Section 3.3.6, the duration of the red phase of a traffic signal can be

estimated using the duration of stopping activities that occurred close to the stop
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(a) Stacked trajectories of midnight trips.

(b) Histogram of observed travel times during the midnight.

Figure 3-10: Observed travel times on northbound Harvard Bridge during midnight.
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(a) Scatter plot of stopping activities within the Vassar-Albany segment
during the PM peak.

(b) Histogram of dwell times during the PM peak at the Albany St stop.

Figure 3-11: Visualization of stopping activities and histogram of dwell times in the
Vassar-Albany segment.
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bar. For this case study, the authors chose to define an estimator for the red phase as

the 90𝑡ℎ percentile duration of all stopping activities that take place in the last 20%

of the segment length.

Take the northbound Harvard Bridge segment as an example - if the length of

the segment is normalized so that 0 represents the Massachusetts Avenue & Beacon

St signal, and 1 represents the signal at the north end of the bridge as shown in

Figure 3-12a, then the estimated red phase length is the 90𝑡ℎ percentile duration of

all stopping activities that took place between 0.8 and 1 segment length.

For all six signalized intersections in Figure 3-12, field observations were made

to compare the estimated red time to the observed red time. The result of the

comparison is detailed in Table 3.6, where it can be seen that out of six signals, the

estimated red times of five are within 12 seconds of the observed signal length or on

average with a 5-second difference, except for the Landsdowne signal.

Table 3.6: Comparison of Estimated and Observed Red Times

Location Est. Red
Time

Obs. Red
Time

Diff 1 % Diff 2

Harvard Bridge North End 42 54 12 22%
Amherst 37 34 -3 -9%
Vassar 61 59 -2 -3%
Albany 44 43 -2 -5%
Landsdowne 17 43 26 60%
Brookline 42 50 8 16%
1 Diff = Obs. Red Time - Est. Red Time
2 % Diff = Diff / Obs. Red Time * 100 %

Further examination of the Landsdowne signal reveals that the large difference

between the estimated and observed red times is in fact caused by the timing offset

with the upstream Albany signal. The visualization of stopping activities upstream

of the Landsdowne signal, as displayed in Figure 3-12e, shows that most stopping

activities near the stop bar have lengths much shorter than the observed red time,

indicating that a portion of the red signal phase is never experienced by bus vehicles.

This observation can be explained by the illustration in Figure 3-13. From field

observation, it was noticed that the upstream signal at Albany St turns green when
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(a) Northbound Harvard Bridge. (b) Mass Ave & Beach St to northbound
Harvard Bridge to Mass Ave & Amherst St.

(c) 77 Mass Ave to Mass Ave & Vassar St. (d) Mass Ave & Vassar St to Albany St.

(e) Mass Ave & Albany St to Landsdowne
St.

(f) Market Central Crossing to Mass Ave &
Sidney St.

Figure 3-12: Visualization of the length and location of stopping activities in different
segments.

the signal at Landsdowne St turns red. As a result, the length of red time at the

Landsdowne signal that can be experienced by any vehicle traveling northbound along
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Massachusetts Avenue, such as all vehicles serving outbound Route 1, will be shorter

than the actual red time at Landsdowne due to the time it takes for vehicles released

from the Albany to travel to the stop bar at Landsdowne. Therefore, the red time

estimated using methods described in Section 3.3.6 is an estimate of the "effective"

red time, i.e. the maximum possible red time that can be experienced by the bus

vehicles, and is not necessarily equal to the length of the entire red phase.

Figure 3-13: Illustration of the signal timing at the Albany and Landsdowne signals.

It is also worth noting that the estimated red time at Harvard Bridge North End

and Sidney St are 22% and 16% different from the observed red time. Without signal

time plans provided by the agency operating traffic signals, it would be difficult for

transit analysts to further improve the estimate using only heartbeat data. If analysts

can manage to obtain the timing plans of signals that buses travel through, the actual

red time can be used in place of the estimated red time in the signal delay analysis.

When using red times obtained from field timing plans, it is important to consider

the offset with the upstream signal and use the "effective red time" as opposed to the

maximum red time of coordinated signals.

Signal Delay

As described in Section 3.3.5, signal delay can be categorized into uniform delay and

overflow delay. Of all 166 trips that traversed through the northbound Harvard Bridge
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segment shown in Figure 3-9a, 50 experienced uniform delay only (Figure 3-14a), and

62 experienced both uniform and overflow delay (3-14c).

(a) Stacked trajectories of PM-peak trips
that only experienced uniform delay.

(b) Histogram of uniform delays during
the PM peak.

(c) Stacked trajectories of PM-peak trips
that experienced uniform and overflow
delay.

(d) Histogram of overflow delays during
the PM peak.

Figure 3-14: Stacked trajectories and histograms of delays of PM-peak trips on north-
bound Harvard Bridge that experienced uniform delay only as well as uniform plus
overflow delay.

Using Equation 3.16, the expected uniform delay and overflow delay can be cal-

culated as follows:
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E[𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚] =
∑︀

𝑠∈Stypical
𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠 +

∑︀
𝑠∈Slong

𝑑𝑢𝑛𝑖𝑓𝑜𝑟𝑚,𝑠

|S|

=
22.4 + 23.4 + 0 + ...+ 17.8

161
= 13.6 sec,

E[𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤] =
∑︀

𝑠∈Slong
𝑑𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤,𝑠

|S|
=

0 + 0 + 45.9 + 53.6 + ...+ 0

161
= 20.83 sec.

(3.25)

Crossing Delay

Crossing delay can be calculated for segments that end with a marked pedestrian

crossing. Such analysis can be helpful for analysts who wish to understand the impact

of crossings on transit operations. For example, the Norfolk-Pearl segment is bounded

by the mid-block crossing at Massachusetts Avenue & Pearl St, which is enhanced

with Rectangular Rapid Flashing Beacons (RRFB). Therefore, it may be of interests

to analysts to know how often or how long on average buses stop at the crossing due to

pedestrian crossing activities. The stacked trajectories of valid bus trips that traveled

along the Norfolk-Pearl segment is shown in Figure 3-15a, and the distribution of

crossing delays is shown in Figure 3-15b.

Using Equation 3.19, the expected crossing delay at the Pearl St crossing can be

obtained as follows:

E[𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔] =
∑︀

𝑠∈S
∑︀

𝑎∈A𝑠
𝑑𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔,𝑎

|S|
=

0 + 47.9 + 33.6 + 7.9 + ...+ 9.0

161
= 17.4 sec.

(3.26)

3.4.6 Results

Following the procedure above, delay analysis can be carried out for each segment

along the studied outbound Route 1, and the results of the delay analysis for selected

segments during the AM and PM peak periods are shown in Figure 3-16.
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(a) Stacked trajectories of PM-peak trips.

(b) Histogram of crossing delays during the PM peak.

Figure 3-15: Stacked trajectories and observed crossing delays of trips through the
Norfolk-Pearl segment.
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Figure 3-16: Result of the delay analysis for outbound Route 1 during the AM and
PM peak periods (segment names are shown from south to north bottom up).

3.5 Case Study 2: Arlington Massachusetts Avenue

Analysis

A second case study is provided as an example for how the methodology proposed in

this study can be used to quantify different types of bus delay for not just a single

route, but also multiple routes traveling the same corridor.

3.5.1 Study Area

The study area for this case study is southbound Massachusetts Avenue between

Wyman St in Arlington and Alewife Brook Parkway served by inbound (southbound)

Route 77 and Route 350 operated by the MBTA. The overlapping area served by
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both routes are shown in Figure 3-17.

(a) Inbound Route 77 marked by inter-
sections.

(b) Inbound Route 350 marked by inter-
sections.

Figure 3-17: Inbound Route 77 and Route 350 shown on maps.

3.5.2 Study Time Period

The study analyzes the operations of Route 77 and 350 inbound (southbound) on 24

weekdays, Tuesdays through Thursdays, in an 8-week period between September 6,

2022 and October 27, 2022. Bus trips of both routes that served the study corridor

during the AM Peak period, defined as the 3-hour window from 6 am to 9 am, are

used for the delay analysis.

3.5.3 Data Source

The data used in this case study is the same as that used in the previous case study,

namely the GTFS-RT data, static GTFS data and AVL data.

3.5.4 Delay Analysis Results

When conducting delay analysis of a transit corridor served by multiple bus routes,

the procedure is almost identical to that of a single route. The main differences

lie within the fact that corridor analysis can take advantage of a larger number of

trips completed by more than one route, thus allowing the analyst to obtain better

estimates of delays by using a richer set of vehicle trajectories.
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As shown in Table 3.7, if only Route 350 is used in analyzing the southbound

transit corridor on Massachusetts Avenue, then data from only 181 trips is available

during the AM peak. By aggregating the performance of Route 350 trips with those

of Route 77 that serves exactly the same corridor in a part of its route, the number

of trips available for analysis is increased to over 1,000.

Table 3.7: Number of bus trips available for delay analysis

Time Period Route 350
Only

Route 77 Only Both Routes
Combined

Midnight 41 521 562
AM Peak 181 855 1036
Midday 115 671 786
PM Peak 194 940 1134

To exemplify the impact of the increased sample size, the following discussion

is provided. A portion of the study corridor on southbound Massachusetts Avenue,

between Thorndike St and just before the Alewife Brook Parkway intersection, un-

derwent a transit improvement project where a bus-only lane is installed in the curb

lane. The bus-only lane operates on weekdays from 6 am to 9 am only and is open

to general traffic in other hours of the day.

Suppose for some reason an analyst wants to understand the effectiveness of the

bus-only lane by comparing the delay results between the AM and PM peak periods.

Without discussing the validity of this method, the point of this discussion is to

illustrate how the increased sample size offered by multiple routes can provide better

insight into the operations of the transit corridor. As shown in Figure 3-18, where

the total travel time and different types of delay are calculated and presented for

each route separately, it is unclear how the AM operations within the Lafayette-

Alewife segment compares with those in the PM. Results from Route 77 shows that

the average AM travel time through the segment is shorter than the PM, but results

from Route 350 show otherwise.

By aggregating all trips completed by both route 77 and 350, the delay analysis

results shown in Figure 3-19 illustrate that the segment travel time, and in particular,
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Figure 3-18: Delay analysis results of inbound Route 77 and Route 350 trips along
the study corridor calculated separately.

signal delay and congestion delay in the segment, are comparable between the AM

and PM peak periods.

In fact, an examination of the AM and PM travel times decomposed into each

category as alternatively displayed in Figure 3-20a reveals that the main factors that

resulted in the greater AM travel time than PM within the Lafayette-Alewife segment

are overflow signal delay and congestion delay, while dwell time and uniform signal

delays observed during the AM peak are less than or similar to those in the PM peak.

In theory, bus lanes should have helped reduce overflow delay and congestion delay,

so it is inconclusive whether or how much the bus lane helped improve congestion

within this segment by simply comparing delays between the AM and PM peaks.

If the analyst conducts similar analyses using data collected before and after the

installation of the bus lane, then the change in time of AM congestion delay would
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Figure 3-19: Delay analysis results of aggregating inbound Route 77 and Route 350
trips along the study corridor.

help quantify how much the bus-only lane had helped reduce congestion delay within

the Lafayette-Alewife segment. Such a study is discussed in detail in the following

chapter regarding before-after studies of bus improvement projects.

Another example given by the Orvis-Lake segment as shown in Figure 3-20b re-

veals that the main contributor to the greater PM travel time than AM are uniform

delay and congestion delay, while the overflow delay observed during the two peak

periods are very similar. This result suggests that the agency could investigate strate-

gies such as retiming of signals or transit signal priority to target reducing the uniform

delay during the PM peak.
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(a) Lafayette-Alewife (b) Orvis-Lake

Figure 3-20: AM and PM travel times along the segment decomposed into different
categories.

3.6 Conclusion

In this chapter, detailed methods are proposed to conduct quantitative analysis of

bus delays by taking advantage of vehicle trajectories built from bus heartbeat data.

By aligning the complete vehicle trajectories constructed from data of multiple bus

trips of one or many routes onto the same spatial-temporal reference frame, vehicle

travel times along the route can be decomposed into different types of delay, including

dwell time at bus stops, crossing delay at pedestrian crossings, signal uniform delay,

signal overflow delay, and congestion delay.

There are several limitations with the research presented in this chapter. First, the

categorization of dwell time heavily relies on the availability of AVL data. Although

it is often the case that the AVL data and heartbeat data are recorded by the same

device and thus should be simultaneously available, this might not be true for cases

where heartbeat data comes from GPS devices that are not associated with the AVL

system. In such cases, the task of delineating dwell activities from other stopping

activities could become challenging at near-side stops, where the dwell activities can

be easily characterized as signal delay. Secondly, the categorization of dwell time

and signal delay does not take into account the impact of traffic signal on dwell

times. At near-side bus stops where buses can be stopping for the red signal while

waiting for passengers to finish alighting and boarding, it is possible that part of signal

delay is contained in the observed dwell time. Thirdly, although the methodology
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allows for the analysis of multiple bus routes serving the same corridor, the boarding

and alighting patterns of different bus routes may be substantially different due to

the route pattern. For analysis that rely on precise categorization of dwell patterns

on a bus corridor, further considerations of such difference need to be taken into

account. Lastly, the analysis of signal delay does not account for situations when the

road segment downstream of a traffic signal is blocked thus preventing vehicles from

proceeding even when the signal is green. In this case, the delay incurred upstream

of the traffic signal should be attributed to downstream congestion, but would be

misclassified as signal delay instead. This limitation, however, can be overcome if

historical traffic signal time is available.

The methodology proposed in this chapter enables analysts to inspect the oper-

ations of not just any single transit route, but also any transit corridor served by

multiple routes. The result of the delay analysis offers insight into the magnitude

of different types of delay encountered by bus vehicles in each time period, therefore

allowing analysts to strategize over the type and scale of improvement projects to

target specific delay. In addition to the decomposed travel times, the segment-based

analysis also allows for the visualization of stopping activity scatter plots, which can

be a useful tool for understanding the temporal and spatial distribution of queues.

Furthermore, the decomposed travel times offers the unique opportunity to conduct

more in-depth studies that could unveil how different operational characteristics con-

tribute to different types of delay.
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Chapter 4

Evaluating Transit Improvement

Strategies

4.1 Introduction and Motivation

The management of public transit systems is often an iterative process, as agencies

constantly plan, operate, evaluate, and adjust elements of the network to meet the

ever-changing passenger demand while providing satisfying service. The preceeding

chapters delved into the mechanisms of using heartbeat data to extract information

about bus vehicle operations. This chapter focuses on how one can use the operational

information of buses to evaluate the effectiveness of transit improvement strategies.

Common strategies that agencies deploy to improve the quality and reliability of

bus services include the installation of bus-only lanes, transit signal priority, queue

jump lanes, stop relocation, off-board fare collection, etc. Depending on the targeted

issue being addressed, one or a combination of strategies are chosen by the agency,

who would analyze and communicate the costs and benefits as well as the impacts of

the project to the community. Following project completion, the agency would then

conduct before-after analyses to evaluate the effectiveness of the chosen strategies.

In many before-after studies of transit improvement projects aiming at improving

transit speed and reliability, analysts often quantify the effectiveness of the strategy

by analyzing the change of specific metrics such as travel time, on-time performance,
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or headway adherence from before to after the treatment strategies are implemented.

These before-after studies are observational as opposed to experimental because im-

provement projects are usually carried out at selected locations experiencing sub-

optimal service by agencies with available funding. As such, it is impractical to

conduct randomized control trials for any particular type of transit treatment, and

so there is no one-size-fits-all formula that can be derived to generalize the effective-

ness of a treatment. To understand the benefit of an improvement project, analysts

must conduct before-after studies on a case-by-case basis and rely on the limited data

collected during specific time intervals before and after project completion.

The conventional method that is widely used by transit analysts in before-after

studies is the naive method, which involves simply taking the difference or percent

difference between the selected metric (e.g., travel time) observed in the before and

after periods. This method, however, is valid only if certain assumptions are true, but

such constraints are not often clearly stated in the studies or understood by analysts.

In the following section, discussions are provided regarding the naive method as well

as its assumptions. In addition, a second method, namely the "comparison group

method", which relies on more relaxed assumptions, is presented.

4.2 Methodologies

Both the naive method and the comparison group method are discussed thoroughly in

the classic book in the field of road safety authored by Ezra Hauer [10]. In principle,

the observational before-after studies in road safety are very similar to those in traffic

operations, as in both cases, the task at hand is to compare the factual with the

counterfactual. In road safety, analysts evaluate how a certain treatment improves

or exacerbates safety by comparing the observed accident rates at study locations

after treatment with the prediction of what the accident rates would have been had

the treatment not been implemented. In transit operations, analysts quantify the

effectiveness of transit improvement projects by comparing the observed metric (e.g.,

travel time) after treatment with the prediction of what the metric would have been
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had the improvement strategy not been in place.

To keep the discussion relevant to transit operations, the following discussion

will use "travel time" as the metric of interest, although the methodologies could be

applied similarly to many other metrics.

4.2.1 Basic Elements of Before-After Studies of Travel Time

The Definition of "Travel Time"

Before diving into the technical discussion of the naive method, it is important to

clarify what "travel time" means. Depending on the type of treatment applied to the

transit corridor, the definition could vary. For example, in queue jump and transit

signal priority projects, analysts may be interested in knowing how much travel time

is saved in traveling between stops - in this case, "travel time" is defined as the

time from vehicles departing the upstream bus stop of the signal to arriving at the

downstream bus stop. Alternatively, in bus-lane projects where stretches of bus-only

lanes are installed along the bus route, analysts may wish to know the change in

travel time through the bus-lane corridor, so "travel time" in this case could mean

the time between the vehicle reaching the beginning and the end of the bus lane.

In the latter case of bus-lane analysis, analysts should decide whether dwell time

at bus stops should be excluded from travel time. Since bus lanes are installed to

improve vehicles’ travelling speed in between stops, some may argue that dwell time

should be excluded from the analyzed travel time, and only improvements in running

time should be used in the evaluation of bus-lane effectiveness. Others, however,

may argue that improving bus speeds also leads to improved bus reliability, which

consequently impacts dwell activities at bus stops, so dwell times should be included

in the analysis. In any case, it would be critical for analysts to clearly define what

"travel time", or any other chosen metric, means both spatially and temporally, before

carrying out before-after studies and reporting the results to the public.
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The Factual and the Counterfactual

As mentioned previously, the essence of observational before-after studies is to com-

pare the factual with the counterfactual. By definition, the factual is the realized

or observed travel time collected from the study location after the treatment is put

in place. The counterfactual, on the other hand, is the expected or predicted travel

time that buses would have experienced had the original configuration stayed and no

treatment was installed.

Assume that if one were to collect a large number of travel times from bus trips

that operated along a defined section of the route in a particular time period, then each

travel time value follows a distribution in the location-scale family parameterized by

mean 𝜇 and variance 𝜎2, i.e. travel time 𝑇 ∼ 𝐷𝑖𝑠𝑡(𝜇, 𝜎2). Let K = [𝐾1, 𝐾2, ..., 𝐾𝑛𝑘
]𝑇

be a random sample of travel times from a distribution with mean 𝜅 and variance

𝜎2
𝑘 collected at the study location before treatment (i.e., in the "before" period),

P = [𝑃1, 𝑃2, ..., 𝑃𝑛𝑝 ]
𝑇 be a random sample (∼ 𝐷𝑖𝑠𝑡𝑟(𝜋, 𝜎2

𝑝)) of predicted travel times

completed by trips in the "after" period had there been no treatment (i.e., the coun-

terfactual), and L = [𝐿1, 𝐿2, ..., 𝐿𝑛𝑙
]𝑇 be a random sample (∼ 𝐷𝑖𝑠𝑡𝑟(𝜆, 𝜎2

𝑙 )) of travel

times collected after the treatment is put in place (i.e., the factual). In evaluating

the effectiveness of a treatment, the task at hand is to evaluate how the treatment

changed the expected travel time at the study location. Therefore, the most rele-

vant statistics in the analysis are the expected values of travel times, which can be

estimated using the random samples collected from the information provided by the

heartbeat data. Furthermore, the variance of each estimator for the expected travel

times can also be estimated from the observed data. The notation for the different

types of travel times, their expected values, as well as the estimators for expected

values and their variances are summarized in Table 4.1.

"Before" and "After" Periods

The terms "before" period and "after" period are used to describe the time periods

before and after the treatment is installed in which bus travel time data is collected for
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Table 4.1: Random samples of travel times, their expected values, estimators for
expected values and the variances of estimators for each time period

Time Period Travel Time
at the Study

Location

Expected
Travel Time

Estimator of
expected

travel time

Variance of
estimator

Before K 𝜅 �̂� Var[�̂�]
After (prediction) P 𝜋 �̂� Var[�̂�]

After L 𝜆 �̂� Var[�̂�]

the purpose of before-after studies. The selection of these time periods should follow

the principle that within each time period, the travel time of each trip is a random

variable from the same distribution. For example, in a before-after study evaluating

the effectiveness of a bus lane in reducing bus travel time during the AM peak, the

"before" period should be such that the travel times of all AM bus trips within the

study corridor in this time period are independently and identically distributed. The

selection of time periods could either follow the rule of thumb, e.g. by selecting only

weekday trips within the same season of the year, or be determined using statistical

tests that verify whether multiple groups of travel time distributions are identical at

a certain confidence level.

Measures of Effectiveness (MOEs)

It is obvious that only K and L can be observed from the real-world operations of

bus vehicles, while P is unknown and needs to be estimated. The main difference

between the naive method and the comparison group method is exactly this, namely

how the statistics around P can be obtained. Regardless of the method used, the

effectiveness of a treatment can be measured using the following metrics, as proposed

by Hauer [10] for evaluating road safety projects and adapted by the author to fit in

the context of transit improvement projects:

1. The reduction in the expected travel time during the "after" period (i.e. the

difference between the predicted travel time had there been no treatment and
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the expected travel time after the treatment has been put in place), is

𝛿 = 𝜋 − 𝜆. (4.1)

Use �̂� and �̂� to estimate 𝜋 and 𝜆, 𝛿 can then be expressed as:

�̂� = �̂� − �̂�. (4.2)

2. Under the assumption that the travel times observed in the "after" period are

independent from those in the "before" period, the variance of �̂� is

Var[�̂�] = Var[�̂�] + Var[�̂�]; (4.3)

3. The ratio of the expected travel time after treatment to the predicted travel

time in the same "after" period had there been no treatment is

𝜃 = 𝜆/𝜋. (4.4)

An unbiased estimator for 𝜃, obtained from Taylor series expansion evaluated

at the means of �̂� and �̂�, is

�̂� =
�̂�

�̂�
/(1 +

Var[�̂�]

𝜋2
). (4.5)

4. The variance of �̂� is

Var[�̂�] ≈ (
𝜆

𝜋
)2(

Var[�̂�]

𝜆2
+

Var[�̂�]

𝜋2
)/(1 +

Var[�̂�]

𝜋2
)2. (4.6)

5. The percent reduction in travel time is then

𝛾 = 100× (1− 𝜃). (4.7)
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Intuitively, the treatment is effective if 𝛿 > 0, or 𝜃 < 1.

4.2.2 The Naive Method

Assumptions

In the naive method, the key assumption is that the operations of buses during the

"after" period had there been no treatment would be exactly the same as in the

"before" period. In other words, the counterfactual expected travel time during the

"after" period, if no treatment was applied to the study location, can be predicted

using the expected travel time during the "before" period.

An illustration of this assumption is shown in Figure 4-1. No matter what time

trend there might have been prior to the treatment placement, the expected travel

time in the "after" period without treatment is estimated as being exactly the same

as the travel time "before" treatment, or �̂� = �̂�.

Figure 4-1: Illustration of the naive method.
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Calculating MOEs

In order to calculate the MOEs listed in Section 4.2.1, samples of travel times need

to be collected from the "before" and "after" periods. Suppose the analyst obtained

the travel times of 𝑛𝑘 bus trips during the "before" period, namely 𝑘1, 𝑘2, ..., 𝑘𝑛𝑘
, and

of 𝑛𝑙 trips during the "after period, namely 𝑙1, 𝑙2, ..., 𝑙𝑛𝑙
. For each 𝑖 = 1, 2, ..., 𝑛𝑘, 𝑘𝑖 is

the realization of the random variable 𝐾𝑖; similarly for each 𝑗 = 1, 2, ..., 𝑛𝑙, 𝑙𝑗 is the

realization of 𝐿𝑗.

Since the expected value of the sample mean is equal to the population mean,

an unbiased estimator for the expected travel time in each period is the mean of all

travel times recorded in the corresponding random sample. Take the travel time in

the "before" period as an example, it can be trivially shown that the sample mean of

all 𝐾𝑖’s, denoted by �̄�, is an unbiased estimator for the population mean 𝜅:

E[�̄�] = E[
𝐾1 +𝐾2 + ...+𝐾𝑛𝑘

𝑛𝑘

]

= 𝑛𝑘
E[𝐾1]

𝑛𝑘

= E[𝐾1] = 𝜅.

(4.8)

Therefore,

�̂� = �̄� =
𝐾1 +𝐾2 + ...+𝐾𝑛𝑘

𝑛𝑘

. (4.9)

The variance of �̂� calculated using the unbiased estimator for 𝜎2
𝑘, i.e. 𝑠2[𝐾], is

Var[�̂�] = Var[
𝐾1 +𝐾2 + ...+𝐾𝑛𝑘

𝑛𝑘

]

=
Var[𝐾1] + Var[𝐾2] + ...+Var[𝐾𝑛𝑘

]

𝑛2
𝑘

=
𝑠2[𝐾]

𝑛𝑘

=

∑︀𝑛𝑘

𝑖=1(𝐾𝑖 − �̄�)2

𝑛𝑘 * (𝑛𝑘 − 1)
.

(4.10)
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Similarly, the estimator for 𝜆 and its variance can be expressed as:

�̂� = �̄� =
𝐿1 + 𝐿2 + ...+ 𝐿𝑛𝑙

𝑛𝑙

. (4.11)

Var[�̂�] =

∑︀𝑛𝑙

𝑖=1(𝐿𝑖 − �̄�)2

𝑛𝑙 * (𝑛𝑙 − 1)
. (4.12)

Since the naive study assumes that �̂� = �̂�, the four metrics presented in Equation

4.2, 4.3, 4.5, 4.6 can be calculated as follows:

1. The reduction in the expected travel time

�̂� = �̂� − �̂�

= �̄� − �̄�;
(4.13)

2. The variance of reduction of the expected travel time

Var[�̂�] = Var[�̂�] + Var[�̂�]

= Var[�̂�] + Var[�̂�]
(4.14)

3. The ratio of the expected travel times

�̂� =
�̄�

�̄�
/(1 +

Var[�̂�]

�̄�
2 ) (4.15)

4. The variance of the ratio of the expected travel times

Var[�̂�] ≈ (
�̄�

�̄�
)2(

Var[�̂�]

�̄�
2 +

Var[�̂�]

�̄�
2 )/(1 +

Var[�̂�]

�̄�
2 )2. (4.16)

4.2.3 The Comparison Group Method

Assumptions

The comparison group method relaxes the strong assumption in the naive method

that the counterfactual travel time in the "after" period is exactly the same as in
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the "before period". The method takes into account the change in travel time due to

factors not related to the treatment through the use of a comparison group.

While the treatment group is the stretch of the bus route that has been retrofitted

with a certain type of treatment, the comparison group is a different portion of

the route along which buses operate almost identically as along the portion in the

treatment group prior to the treatment placement. As shown in Figure 4-2, the

travel time of the treatment group changes in the same way as the comparison group.

Therefore, the ratio of travel time of the comparison group during the "after" period to

the "before" period is used to predict the counterfactual travel time of the treatment

group.

Figure 4-2: Illustration of the comparison group method.

Let M = [𝑀1,𝑀2, ...,𝑀𝑛𝑚 ]
𝑇 be a random sample of travel times from a distri-

bution with mean 𝜇 and variance 𝜎2
𝑚 collected at the locations in the comparison

group during the "before" period, and N = [𝑁1, 𝑁2, ..., 𝑁𝑛𝑛 ]
𝑇 be a random sample

(∼ 𝐷𝑖𝑠𝑡𝑟(𝜈, 𝜎2
𝑛)) of travel times collected of the comparison group in the "after" pe-

100



riod. The notation for the random sample and expected values of both the treatment

and the comparison groups are summarized in Table 4.2.

Table 4.2: Travel times random samples and the corresponding population means
used in the comparison group method

Time Period Treatment Group Comparison Group

Before K, 𝜅 M, 𝜇
After (prediction) P, 𝜋 -
After L, 𝜆 N, 𝜈

Estimating 𝜇, 𝜈 and variances of the estimators

Just as shown in the naive method, the estimators for the expected travel times of

the comparison group can be obtained from the corresponding sample mean:

�̂� = �̄� =
𝑀1 +𝑀2 + ...+𝑀𝑛𝑚

𝑛𝑚

; (4.17)

𝜈 = �̄� =
𝑁1 +𝑁2 + ...+𝑁𝑛𝑛

𝑛𝑛

. (4.18)

The variance of each estimator can be calculated as:

Var[�̂�] =

∑︀𝑛𝑚

𝑖=1(𝑀𝑖 − �̄�)2

𝑛𝑚 * (𝑛𝑚 − 1)
; (4.19)

Var[𝜈] =

∑︀𝑛𝑛

𝑖=1(𝑁𝑖 − �̄�)2

𝑛𝑛 * (𝑛𝑛 − 1)
. (4.20)

Selection of Comparison Group

As defined previously, the travel time ratio is the ratio of the expected travel time in

the "after" period to that in the "before" period. Therefore, the travel time ratio for

the comparison group is:

𝑟𝐶 =
𝜈

𝜇
; (4.21)

101



Similarly, the travel time ratio for the treatment group is

𝑟𝑇 =
𝜋

𝜅
. (4.22)

The goal in selecting a comparison group is to find one such that 𝑟𝐶 = 𝑟𝑇 . If one

were to evaluate a time series of comparison ratio Ω’s, where Ω = 𝑟𝐶/𝑟𝑇 , then by

definition,

Ω =
𝑟𝐶
𝑟𝑇

=
𝜅𝜈

𝜆𝜇
. (4.23)

Let Ω = [Ω1,Ω2, ...,Ω𝑛𝑜 ]
𝑇 be a sequence of comparison ratios calculated from the

expected travel times, namely 𝜅, 𝜆, 𝜇 and 𝜈, observed in a series of "before" and

"after" time intervals defined by a sliding time window. The sliding time window

essentially divides the time series into 𝑛𝑜 + 1 smaller intervals as it moves along,

creating 𝑛𝑜 pairs of "before" and "after" time intervals. For each "before" and "after"

pair 𝑡 (𝑡 = 1, 2, ..., 𝑛𝑜) in the time series, the comparison ratio can be expressed as:

Ω𝑡 =
𝜅𝑡𝜈𝑡
𝜆𝑡𝜇𝑡

. (4.24)

Since the expected travel times in Equation 4.23 are not known, an unbiased

estimator Ω�̂� for Ω𝑡 that uses the estimators for the expected travel times is found as:

Ω̂𝑡 =
�̂�𝑡𝜈𝑡

�̂�𝑡�̂�𝑡

/(1 +
Var[�̂�𝑡]

𝜆2
𝑡

+
Var[�̂�𝑡]

𝜇2
𝑡

). (4.25)

In the context of estimating Ω𝑡’s, each Ω𝑡 represents the true comparison ratio

between the travel time ratios of the comparison group and the treatment group for

the time interval 𝑡. Since the true value of Ω𝑡 can not be known, Ω̂𝑡 is used an as

unbiased estimator for the corresponding Ω𝑡. For each pair of "before" and "after"

time intervals, 𝑡, there would be an Ω𝑡 that is unknown but can be estimated by Ω̂𝑡.

Furthermore, each Ω𝑡 in Ω is not just unknown, but also follows a distribution with

unknown parameters mean 𝜔 and variance 𝜎2
𝜔.

Formulaically, the population mean of each Ω𝑡, 𝜔, can be estimated using the
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sample mean:

�̂� = E[Ω] =
Ω̂1 + Ω̂2 + ...+ Ω̂𝑛𝑜

𝑛𝑜

= Ω̄. (4.26)

Through differential analysis and the argument that the sample variance 𝑠2[Ω] is

a combination of the randomness in each expected travel time term and 𝜎2
𝜔 it self,

Hauer [10] established that

𝜎2
𝜔
ˆ = max{0, 𝑠2[Ω]− (

Var[�̂�]

𝜅2
+

Var[�̂�]

𝜆2
+

Var[�̂�]

𝜇2
+

Var[𝜈]

𝜈2
)}. (4.27)

The goal in selecting a good comparison group is to find one for which the distri-

bution of Ω𝑡’s centers around 1 with little variance, i.e., �̂� → 1 and 𝜎2
𝜔
ˆ → 0.

Estimating 𝑟𝑇 , 𝜋 and Var[�̂�]

Once a "before" period and an "after" period are selected, following the rule that the

travel time of all trips in each period are independent and identically distributed, the

value of 𝜇, 𝜈 and 𝜆 can be immediately obtained by calculating the sample mean of

travel times collected in each time period for each group.

In the process of selecting a comparison group, an estimate of the comparison

ratio 𝜔 given by Ω̄ is obtained. By the definition of 𝑟𝑇 ,

𝑟𝑇 =
𝜈

𝜇𝜔
. (4.28)

The value of 𝑟𝑇 can then be estimated using the unbiased estimator

𝑟�̂� =
𝜈

𝜇𝜔
/(1 +

Var[�̂�]

𝜇2
+

𝜎2
𝜔

𝜔2
). (4.29)

It is worth noting that, as was discussed above, an ideal comparison group would

have 𝜔 close to 0 and 𝜎𝜔 close to 1. As 𝜔 → 1 and 𝜎𝜔 → 0, the unbiased estimator

𝑟�̂� = 𝜈
𝜇𝜔
/(1+ Var[�̂�]

𝜇2 + 𝜎2
𝜔

𝜔2 ) → 𝜈
𝜇
/(1+ Var[�̂�]

𝜇2 ), which is an unbiased estimator for 𝑟𝐶 = 𝜈
𝜇
.

In other words, the travel time ratio of an ideal comparison group can be used to

estimate the travel time ratio of the treatment group, or 𝑟�̂� = 𝑟�̂� .
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The variance of the estimator 𝑟�̂� is

Varˆ [𝑟�̂� ] = 𝑟2𝑇 (
Var[𝜈]

𝜈2
+

Var[�̂�]

𝜇2
+

𝜎2
𝜔

𝜔2
);

⇒ Var[𝑟�̂� ]

𝑟2𝑇
=

Var[𝜈]

𝜈2
+

Var[�̂�]

𝜇2
+

𝜎2
𝜔

𝜔2
.

(4.30)

The expected travel time in the "after" period had there been no treatment is

then

�̂� = 𝑟�̂� �̂�. (4.31)

The variance of the estimator �̂� is

Varˆ [�̂�] = 𝜋2(
Var[�̂�]

𝜅2
+

Var[𝑟�̂� ]

𝑟2𝑇
). (4.32)

Calculating MOEs

To calculate the MOEs, the task is still to estimate the difference or the ratio between

the expected travel time before and after treatment and the corresponding variances,

in other words, �̂�, Var[�̂�], �̂� and Var[�̂�]. The main difference between the MOEs

calculated using the comparison group method and the naive method is how 𝜋 and

its variance are estimated.

The four metrics presented in Equation 4.2, 4.3, 4.5, 4.6 can be calculated as

follows:

1. The reduction in the expected travel time

�̂� = �̂� − �̂�

= 𝑟�̂� �̂�− �̂�.
(4.33)

2. The variance of the reduction in the expected travel time

Varˆ [�̂�] = Varˆ [�̂�] + Var[�̂�]

= 𝜋2(
Var[�̂�]

𝜅2
+

Var[𝜈]

𝜈2
+

Var[�̂�]

𝜇2
++

𝜎2
𝜔

𝜔2
) + Var[�̂�].

(4.34)
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3. The ratio of the expected travel times

�̂� =
�̂�

�̂�
/(1 +

Var[�̂�]

𝜋2
)

=
�̂�

�̂�
/(1 +

Var[�̂�]

𝜅2
+

Var[𝑟�̂� ]

𝑟2𝑇
)

(4.35)

4. The variance of the ratio of the expected travel times

Varˆ [�̂�] = (
𝜆

𝜋
)2(

Var[�̂�]

𝜆2
+

Var[�̂�]

𝜅2
+

Var[𝑟�̂� ]

𝑟2𝑇
)/(1 +

Var[�̂�]

𝜅2
+

Var[𝑟�̂� ]

𝑟2𝑇
)2. (4.36)

4.3 Case Study: Bus-Only Lanes

This case study aims at examining the effectiveness of a stretch of bus lanes installed

on Massachusetts Avenue between Alewife Brook Parkway and Dudley Street in Cam-

bridge, Massachusetts in both directions. Both the naive method and the comparison

group methods will be used to evaluate how much travel time is saved by bus trips

after the bus-lane treatment is put in place.

4.3.1 Study Area

The study area is on Massachusetts Avenue between Alewife Brook Parkway and

Dudley Street. Only one bus route, Route 77 operated by the MBTA, operates along

this stretch of the roadway. Illustrations of the study area as well as traffic signals

and bus stops along each direction of the study area are shown in Figure 4-3.

4.3.2 Study Time Period

The inbound bus lane only operates during the AM peak hours, while the outbound

one operates all day. For the purpose of this study, the operations of outbound

Route 77 during the PM peak (4 - 7 pm) will be examined. According to the City

of Cambridge, the installation of the bus lane took place between November and

December, 2021 [23]. To compare the travel times before and after the installation of
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(a) Inbound bus lane marked by signals
(blue) and stops (magenta)

(b) Outbound bus lane marked by signals
(blue) and stops (magenta)

Figure 4-3: Bus lanes in both directions of Massachusetts Avenue between Alewife
Brook Parkway and Dudley Street.

the bus lane, a two-month "before" period and two-month "after" period are selected.

Specifically, the "before" period is defined as all Tuesdays through Thursdays in

September and October of 2021, and "after" period the same days in September and

October of 2022.

4.3.3 Data Source

To understand the change in performance of Route 77 before and after the bus-lane

installation, travel times of each bus trip within the study area during the "before"

and "after" period are collected. Different from traditional before-after studies, such

as the one commissioned by the City of Cambridge [7], that use stop-to-stop AVL

data as the data source for transit vehicle travel time, this study uses the trip travel

time extracted from the heartbeat data. Although AVL data allows for extraction of

travel time between bus stops, it does not offer analysts the ability to understand the

travel time of buses between specific intersections where bus lanes usually begin and

end. As discussed in the previous chapters, heartbeat data allows analysts to know
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the distance into trip at any point in time, and equivalently the time into trip at any

location along the bus route. Therefore, the travel time of each bus trip between the

Alewife Brook Parkway and Dudley Street intersections during the study periods are

extracted from the heartbeat data and used in the following analysis.

4.3.4 Outbound 77

The Naive Method

In the two-month "before" period, the travel time of 191 outbound trips from Dud-

ley Street to Alewife Brook Parkway is collected during the PM peak on Tuesdays,

Wednesdays and Thursdays in September and October 2021. In the "after" period,

the outbound travel time of 271 PM-peak trips is collected in the same study area on

Tuesdays through Thursdays in September and October 2022.

The distributions of the "before" and "after" travel times are shown in Figure 4-

4a. An alternative way to visualize the change of travel time is by plotting the average

daily PM-peak outbound travel time, as shown in Figure 4-4b. From visual inspection

of both figures, it is clear that the travel time in the "after" period is smaller than in

the "before" period with reduced variability. The question to be answered remains

how one can quantify this reduction in travel time.

Using the naive method, the parameters in Table 4.1 can be estimated as follows:

�̂� = �̂� = �̄� =
𝐾1 +𝐾2 + ...+𝐾185

185
= 274 sec

Var[�̂�] = Var[�̂�] =
(𝐾1 − 274)2 + (𝐾2 − 274)2 + ...+ (𝐾191 − 274)2

185 * (185− 1)
= 53.8

�̂� = �̄� =
𝐿1 + 𝐿2 + ...+ 𝐿271

271
= 180 sec

Var[�̂�] =
(𝐿1 − 180)2 + (𝐿2 − 180)2 + ...+ (𝐿271 − 180)2

271 * (271− 1)
= 9.30

(4.37)

107



(a) Distribution of outbound trip travel times
within the study area before and after the
installation of the bus lane.

(b) Daily average outbound travel time
within the study area in Sep & Oct 2021
and 2022.

Figure 4-4: Comparison of outbound travel times within the study area before and
after the bus-lane treatment is put in place.

The MOEs can then be calculated as follows:

�̂� = �̂� − �̂� = 93.4 sec

𝜎�̂� =

√︁
Var[�̂�] + Var[�̂�] =

√
53.8 + 9.30 = 7.95

�̂� =
�̂�

�̂�
/(1 +

Var[�̂�]

𝜋2
) =

180

274
/(1 +

53.8

2742
) = 0.658

𝜎�̂� =
𝜆

𝜋
/(1 +

Var[�̂�]

𝜋2
)

√︃
Var[�̂�]

𝜆2
+

Var[�̂�]

𝜋2

=
180

274
/(1 +

53.8

2742
)

√︂
9.30

1802
+

53.8

2742
= 0.0209.

(4.38)

Therefore, the results from the naive method suggest that the outbound bus lane

in the study area reduced outbound bus travel time by 93.4 ± 7.95 sec, or reduced

the travel time by 34.2%± 2.09% during the PM peak.

The Comparison Group Method

Initially, it was thought that a 0.45-mile stretch of northbound Massachusetts Avenue

upstream of the 0.45-mile treatment (study) area should be selected as the comparison

group area. However, by definition, the operations of buses within the comparison
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group area should not be impacted by the treatment. Therefore, the comparison

group is chosen from the offset (by 0.35 miles) section of the route upstream of the

study area rather than immediately upstream or downstream to avoid any operational

impact of the bus-lane treatment on the comparison group. In the "before" period,

the outbound travel time of 204 PM-peak trips are collected in the comparison group

area on Tuesdays through Thursdays in September and October 2021, and for "after"

period, 234 trip travel times are collected in the same months in 2022.

The distributions of outbound trip travel times in the comparison group area

during the "before" and "after" periods are shown in Figure 4-5a. The outbound trip

travel times collected for PM-peak trips averaged by date are plotted as shown in

Figure 4-5b for both the treatment and comparison groups.

(a) Distribution of outbound trip travel times
in the comparison group area before and after
the installation of the bus lane.

(b) Daily average outbound travel time
within the treatment area and the compari-
son group area in Sep & Oct 2021 and 2022.

Figure 4-5: Distribution of outbound travel times within the area before and after the
bus-lane treatment is put in place and the change in daily average PM-peak travel
time of both groups.

From visual inspection of both figures, it appears that time series of travel times

observed from the comparison group resembles that of the treatment group. Further-

more, the average travel time of the comparison group observed during the "after"

period is larger than in the "before" period, indicating that the average travel time

of the treatment group in the "after" period would follow the same trend. Such ob-

servation shows that the assumption used in naive method, that the counterfactual
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travel time within the study area in the "after" period had there been no treatment

is identical to the travel time in the "before" period, no longer holds.

Using the naive method, the parameters in Table 4.2 can be estimated as follows:

�̂� = �̄� =
𝐾1 +𝐾2 + ...+𝐾185

185
= 274 sec

Var[�̂�] =
(𝐾1 − 274)2 + (𝐾2 − 274)2 + ...+ (𝐾191 − 274)2

185 * (185− 1)
= 53.8

�̂� = �̄� =
𝐿1 + 𝐿2 + ...+ 𝐿271

271
= 180 sec

Var[�̂�] =
(𝐿1 − 180)2 + (𝐿2 − 180)2 + ...+ (𝐿271 − 180)2

271 * (271− 1)
= 9.30

�̂� = �̄� =
𝑀1 +𝑀2 + ...+ 𝐿204

204
= 251 sec

Var[�̂�] =
(𝑀1 − 251)2 + (𝑀2 − 251)2 + ...+ (𝑀204 − 251)2

204 * (204− 1)
= 14.8

𝜈 = �̄� =
𝑁1 +𝑁2 + ...+𝑁234

234
= 325 sec

Var[𝜈] =
(𝑁1 − 325)2 + (𝑁2 − 325)2 + ...+ (𝑁234 − 325)2

234 * (234− 1)
= 20.8

(4.39)

To evaluate how well the comparison group represents the treatment group, a

sliding time window is applied to the time series of average daily PM trip travel times

to estimate the mean and variance of the comparison ratio, i.e. 𝜔 and 𝜎𝜔.

Table 4.3: Average travel times in a time series of "before" and "after" intervals.

Date �̂� �̂� �̂� 𝜈 Varˆ [𝜆] Varˆ [𝜇] Ω̂

2021-09-07 216 274 208 246 14.3 3.00 0.93
2021-09-08 274 231 246 240 19.1 5.47 1.16
2021-09-09 231 308 240 228 14.7 12.8 0.712
2021-09-14 308 269 228 222 33.6 10.2 1.11
... ... ... ... ... ... ... ...
2021-10-21 256 179 220 195 2.95 3.25 1.27
2021-10-26 179 248 195 246 45.3 3.72 0.909
2021-10-27 248 261 246 200 37.6 12.6 0.772
mean 255 256 225 226 - - 1.034
variance 1971 1989 244 241 - - 0.03671

From Table 4.3, it is clear that the mean of Ω̂’s, i.e. 𝜔, is close to 1 and variance
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close to 0. Therefore, the change in travel time of the comparison group can be used

to predict the change in travel time of the treatment group in the "after" period had

there been no treatment.

The travel time ratio of the treatment group as well as its normalized variance are

𝑟�̂� =
𝜈

𝜇𝜔
/(1 +

Var[�̂�]

𝜇2
+

𝜎2
𝜔

𝜔2
);

=
325

251 * 1.034
/(1 +

14.8

2512
+

0.03671

1.0342
) = 1.21

(4.40)

Var[𝑟�̂� ]

𝑟2𝑇
=

Var[𝜈]

𝜈2
+

Var[�̂�]

𝜇2
+

𝜎2
𝜔

𝜔2

=
20.8

3252
+

14.8

2512
+

0.03671

1.0342
= 0.0347.

(4.41)

The expected travel time of the treatment group in the "after" period and the

normalized variance can then be estimated as follows:

�̂� = 𝑟�̂� �̂�

= 1.21 * 274 = 330𝑠𝑒𝑐;

Varˆ [�̂�]

𝜋2
=

Var[�̂�]

𝜅2
+

Var[𝑟�̂� ]

𝑟2𝑇

=
53.8

2742
+ 0.0347 = 0.0354.

(4.42)

The MOEs can then be calculated as follows:

�̂� = �̂� − �̂� = 330− 180 = 150 sec

𝜎�̂� =

√︁
Var[�̂�] + Var[�̂�] =

√
0.0354 * 3302 + 9.30 = 62.2

�̂� =
�̂�

�̂�
/(1 +

Var[�̂�]

𝜋2
) =

180

330
/(1 + 0.0354) = 0.527

𝜎�̂� =
𝜆

𝜋
/(1 +

Var[�̂�]

𝜋2
)

√︃
Var[�̂�]

𝜆2
+

Var[�̂�]

𝜋2

=
180

330
/(1 + 0.0354)

√︂
9.30

1802
+ 0.0354 = 0.0997.

(4.43)

Therefore, the results from the comparison group method suggests that the out-

bound bus lane in the study area reduced outbound bus travel time by 150 ± 62.2
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sec, or reduced the travel time by 47.3%± 9.97% during the PM peak.

The MOE results from both the naive method and the comparison group method

are summarized in Table 4.4.

Table 4.4: Summary of MOEs from the naive method and the comparison group
method.

Method Travel Time Savings (sec) Percentage of TT Savings (%)

mean std. dev. mean std. dev.

Naive 93.4 7.95 34.2% 2.09%
Comparison Group 150 62.2 47.3% 9.97%

4.3.5 Naive Method vs. Comparison Group Method

Comparing the MOEs calculated from the naive method with those from the com-

parison group method for the northbound bus lane utilized by outbound Route 77,

it can be noted that the travel time saving calculated using the comparison group

method is much larger than the naive method, and the variance of each MOE in the

comparison group method is also greater than those in the naive method.

As discussed previously, the main difference between the two methods lies within

the assumption made for the counterfactual travel time, i.e. what the travel time in

the studied segment would have been in the "after" period had there been no treat-

ment. In the comparison group method, an upstream section of the route considered

representative of the treated section is chosen to account for the change in travel time

from the "before" to the "after" period that is not related to the treatment. As shown

in Figure 4-5, the travel time of the comparison group increased from September and

October 2021 to the same months in 2022, thus indicating that the the travel time

of the treatment group in the "after" period (i.e. the counterfactual travel time)

would have been larger than those observed in the "before" period had there been

no bus lane installed in 2022. The naive method, on the other hand, assumes that

the counterfactual travel time in the "after" period is exactly the same as those in

the "before" period. Therefore, it makes sense that the travel time saving calculated
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using the comparison group method is larger than that from the naive method in the

case of outbound Route 77.

Upon inspection of Equation 4.41, the dominant term is found to be 𝜎2
𝜔

𝜔2 , which

captures the variance in the series of comparison ratios between the treatment and

comparison groups calculated using a sliding time window. In other words, the closer

𝜎2
𝜔 is to 0 and 𝜔 is to 1, the smaller the term 𝜎2

𝜔

𝜔2 is. Since the series of comparison

ratio captures how closely the variation of travel times in the comparison group follows

those in the treatment group, this observation aligns with the intuition that the more

identical the comparison group is to the treatment group, the smaller the variance

of the MOEs would be. Therefore, it is worth spending time selecting a comparison

group that yields the smallest 𝜎2
𝜔

𝜔2 in order to minimize the variances.

4.4 Conclusion

In this chapter, in-depth discussions are provided on conducting observational before-

after studies of transit improvement projects. By adapting classical methods com-

monly used in road safety studies to fit in the context of transit analysis, the author

presented detailed methodologies for how one can evaluate the effectiveness of transit

improvement projects by comparing the travel time "before" and "after" the intro-

duction of a treatment. In particular, the naive method and the comparison method

are explored for calculating MOEs such as the absolute travel time saving and the

percent change in travel time due to the treatment.

The main difference between the two methods lies within the assumption made

about the counterfactual travel time, i.e. the travel time in the "after" period had

there been no treatment. The naive method calculates MOEs by taking the difference

between the observed travel time in the "before" period and that from the "after"

period, as the method relies on the assumption that the observed travel time in the

"before" period would be a perfectly good representation of the counterfactual travel

time in the "after" period had there been no treatment. The comparison group

method, on the other hand, assumes that the change in travel time from "before" to
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"after" the treatment is solely due to factors unrelated to the treatment. The method

estimates the counterfactual travel time in the treatment group by using a comparison

group that adequately represent the operations of the treatment group in the before

period. The change in travel time from "before" to "after" in the comparison group,

which would be due to factors other than the treatment, is translated to the treatment

group. The effectiveness of the treatment can then be calculated using the estimated

counterfactual travel time.

A case study is presented that evaluates the effectiveness of a 0.45-mile bus-only

lane on northbound Massachusetts Avenue in Cambridge, MA. The case study il-

lustrated that the naive method and the comparison method can produce different

MOEs and that the MOEs calculated from the comparison method are generally

larger than those from the naive method. The question of which particular method

the agency should use to evaluate and report the effectiveness of the improvement

project should be based on consideration of whether the assumption made in the

naive method holds. In cases where transit operations during the "before" period

are known to be very different from those in the "after" period, such as when the

"before" period is during the COVID-19 pandemic and the "after" period is after the

pandemic, the assumption made by the naive method may no longer hold. In such

cases, the comparison method should be used to trade variance for accuracy.

Several limitations are present with this research. One limitation is that the re-

search only explored evaluating the effectiveness of the improvement project by com-

paring travel times, but did not exploring other metrics such as on-time performance.

The effectiveness of a transit improvement project can be demonstrated by showing

not just travel time savings, but also an increase in reliability. Another limitation

is that the comparison groups method assumes that the operations of buses within

the comparison group is not impacted by the treatment during the "after" period.

Such assumption may not hold in cases where the comparison group is selected to be

immediately adjacent to the treatment group, as the effects of the treatment could

propagate upstream and downstream beyond the scope of the treatment itself. Fur-

ther research is needed to address these limitations to improve the robustness of the
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methodologies presented in this chapter.
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Chapter 5

Conclusions and Recommendations

5.1 Summary

In this thesis, the author delved into the task of understanding transit operations

using heartbeat data from three perspectives. First, a comprehensive approach is

proposed to reconstructing transit vehicle trajectories. Then, a methodology is pre-

sented for plotting the trajectories of multiple trips in the same temporal-spatial

reference frame for analyzing and categorizing transit delays. Lastly, two observa-

tional before-after study methods are proposed and compared for evaluating transit

improvement strategies.

Chapter 2 discussed how to reconstruct the trajectories of bus vehicles from raw

heartbeat data that is often noisy and recorded at inconsistent frequencies. The

methodology developed allows for the creation of a continuous, monotonic, and differ-

entiable trajectory that is validated against AVL data and a reasonable acceleration

threshold. The LOCREG-PCHIP algorithm was found to be the most effective in

achieving all three properties of an ideal vehicle trajectory. The resulting trajecto-

ries enable the extraction of bus location, speed, and acceleration at any point in

time during a bus trip, offering valuable information for further transit performance

analysis.

Chapter 3 introduced methods to conduct a quantitative analysis of bus delays

using the constructed vehicle trajectories. By decomposing the travel times into
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different types of delay, the methodology proposed in this chapter allows analysts to

inspect operations on any individual single transit route or transit corridor served by

multiple routes. This in-depth analysis offers insights into the magnitude and type

of bus delay, aiding in strategic decision-making for targeted transit improvement

projects.

Chapter 4 discussed methodologies for conducting before-after studies to evaluate

the effectiveness of transit improvement projects using travel times extracted from

heartbeat data. Two main methods, namely the naive method and the comparison

method, with different assumptions about counterfactual travel times are explored

and compared. While the naive and comparison methods for before-after studies

each have their strengths and limitations, the choice between them should be made

based on the specifics of the context and the nature of the transit operations during

the "before" and "after" periods.

In conclusion, this thesis offers an integrated approach to better understand tran-

sit operations using bus heartbeat data. By developing methodologies for trajectory

reconstruction, delay analysis, and before-after study for evaluating transit improve-

ment projects, it provides a framework for transit authorities to identify operational

issues, devise improvement strategies, and assess their effectiveness by leveraging the

wealth of information provided by the heartbeat data.

5.2 Recommendations

Based on the research in this thesis, the following recommendations are proposed:

1. For transit agencies that have the capability of archiving heartbeat data recorded

at an average frequency less than 10 seconds, the methodology proposed in

Chapter 2 can be used to reconstruct a complete trajectory of every bus trip.

The bus vehicle trajectory can be plotted on a time-space diagram for qualita-

tive analysis of bus operations.

2. By combining complete vehicle trajectories constructed from heartbeat data
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with GTFS data and AVL data, agencies can employ the methodology in Chap-

ter 3 to identify and quantify various types of delay of transit routes or corridors.

This would allow transit planners and decision-makers to prioritize projects that

target specific types of bus delay.

3. Transit analysts can incorporate the methodologies presented in Chapter 4 for

conducting before-after studies of transit improvement projects. The choice

between the naive method and the comparison method should be made based

on the specific context and nature of transit operations during the "before"

and "after" periods. This would allow for a more accurate assessment of the

effectiveness of implemented strategies and help guide future decision-making.

5.3 Limitations

Some limitations are present with the methodologies proposed in each chapter, and

can be summarized as follows.

In reconstructing vehicle trajectory, the methodology heavily depends on the

heartbeat data having an average of frequency of less than 10 seconds. The method-

ology also lacks guarantee for twice-differentiability to construct acceleration profiles.

Moreover, the unavailability of historical speed and acceleration measurements from

vehicles makes it difficult to validate the speed and accelerations calculated from the

constructed trajectories.

In decomposing vehicle travel time and categorizing transit delays, the method-

ology relies on the availability of AVL data for dwell time categorization. Other

limitations include the lack of consideration for the impact of traffic signal on dwell

times, and the inability to account for downstream congestion when analyzing signal

delay.

In evaluating transit improvement projects using before-after studies, the method-

ologies presented focus only on travel time comparisons without considering other

metrics such as on-time performance or headway adherence. Furthermore, the com-

parison method, albeit it overcomes the limitation of not accounting for change in
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travel time due to factors other than the treatment presented in the naive method,

assumes that the operations of buses in the comparison group are unaffected by the

treatment during the "after" period, which may not hold true in some cases.

5.4 Future Work

The research presented in this thesis builds a solid foundation for analyzing raw

heartbeat data and extracting useful information about bus operations. It is expected

that an analyst can follow the methodology presented in each chapter to completely

replicate the result and apply to other transit routes or networks. Nonetheless, there

are many opportunities to build upon this research and develop more applications for

using heartbeat data.

Firstly, additional algorithms can be explored that improves upon the LOCREG-

PCHIP algorithm for constructing ideal vehicle trajectories. Using the validation

method presented in this thesis, researchers can explore algorithms that take in the

time and distance into trip data and output trajectories that can be evaluated against

the benchmark values comparing against AVL data.

Secondly, in-depth analysis can be carried out to help agencies better understand

how each type of quantified delay can be translated to operational strategies targeting

the specific delay. It is also worth identifying the costs associated with each type of

delay as well as the entity or agency responsible for mitigating the delay. Further, the

ability to retrieve a complete vehicle acceleration profile could allow for investigation

of driver aggressiveness on various bus routes or corridors.

Thirdly, the detailed analysis of transit delays enabled by this research allows

for the causal analysis of how various road and operational features are related to

the different types of delay. In addition to the causal analysis, other methods for

conducting observational before-after studies can be explored to address the limitation

in the naive and the comparison group methods. Furthermore, before-after analysis

of operational metrics other than travel time, such as reliability, speed, as well as the

different type of delay obtained from travel time decomposition, can be conducted in
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order to build a more robust and holistic framework for evaluating the effectiveness

of transit improvement projects.
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