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Curvature induces active velocity waves in
rotating spherical tissues

TomBrandstätter 1,2,9, David B. Brückner1,3,9, Yu LongHan4, RicardAlert 5,6,7,8,
Ming Guo 4 & Chase P. Broedersz 1,2

The multicellular organization of diverse systems, including embryos, intes-
tines, and tumors relies on coordinated cellmigration in curved environments.
In these settings, cells establish supracellular patterns of motion, including
collective rotation and invasion. While such collective modes have been stu-
died extensively in flat systems, the consequences of geometrical and topo-
logical constraints on collective migration in curved systems are largely
unknown. Here, we discover a collective mode of cell migration in rotating
spherical tissues manifesting as a propagating single-wavelength velocity
wave. Thiswave is accompaniedby an apparently incompressible supracellular
flow pattern featuring topological defects as dictated by the spherical topol-
ogy. Using aminimal active particle model, we reveal that this collectivemode
arises from the effect of curvature on the activeflocking behavior of a cell layer
confined to a spherical surface. Our results thus identify curvature-induced
velocity waves as amode of collective cell migration, impacting the dynamical
organization of 3D curved tissues.

Collective cell migration in physiological processes ranging from
development1 to cancer2 take place in curved geometries3. A promi-
nent manifestation of curvature in cellular tissues is the conceptually
simple spherical geometry. This geometry arises naturally in a number
of in vivo systems, including blastocysts1, egg chambers4, and tumors2.
Furthermore, the consequences of a spherical geometry for collective
migration can be studied in vitro in systems such as epithelial
spheroids5–8, as well as intestinal9, pancreas10, and cerebral11 organoids.
Like cells in 2D circular confinements12–15, migrating cells in 3D sphe-
rical confinements often exhibit collective behaviors such as rotational
motion4,8,16–21. A variety of collective cell behaviors have been suc-
cessfully described using active matter theories based on active self-
propulsion and alignment interactions between cells22–25. Therefore,
collectively migrating cells can be placed within a broader class of
active matter systems26, ranging frommotile cytoskeletal filaments27,28

to swarming midges29, and flocks of birds30. Importantly, unlike in 2D,
collective cellmigration in 3D confinementsmaybe subject to physical
constraints imposed by the geometrical curvature31–37 and the topol-
ogy of the system. Indeed, recent theoretical studies on nematic38,39

and polar40–43 active matter on spherical surfaces illustrate how
ordering, collective behaviors, and motion patterns are drastically
affected by curvature due to fundamental symmetry and topology
principles44,45. For example, non-interacting self-propelled particles
move along geodesics that are shaped by the curvature of the system.
In addition, the topology of spherical systems prevents states with
uniform orientational order, resulting in the formation of topological
defects. However, the effects of these geometrical and topological
constraints on collective cell migration in inherently curved 3D sys-
tems are not understood. These physical constraints may have con-
sequences for the constantly evolving multicellular architecture of the
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tissue, which controls biological processes ranging fromdevelopment1

to cancer progression2. Identifying the basic principles of collective
migration in 3D curved geometries is thus central for understanding
how tissues form, develop shape, and maintain homeostasis.

Results
Spheroids perform stochastic global rotations
Here, we study spherical tissues (spheroids) consisting of human
mammary cells (MCF10A) as a model system for collective cell
migration in curved 3D geometries. The spheroids are embedded in an
alginate andMatrigel-based extracellularmatrix. Starting froma single
cell, within 5 days of proliferation, a large spheroid is formed com-
prising of the order of 100 cells with a roughly spherical shape and
radii in the range R≈ 15� 40μm (Fig. 1a, b). These cells are highly
motile and migrate in a coordinated fashion, making these spheroids
ideal for studying collective modes of 3D cell migration in spherical
geometries (Supplementary Movie 1).

To characterize the migratory dynamics, we perform 3D tracking
of the trajectories of the cell nuclei throughout each spheroid. These
trajectories reveal prominent global rotations of the spheroids, as
observed previously4,8,16–21, albeitwith significant fluctuations (Fig. 1d–f,
Supplementary Movie 2). To characterize these stochastic collective
rotations, we first calculate the correlation of velocity orientations as a
function of intercellular distance r: C rð Þ= hv̂ðr iÞ � v̂ðr jÞ∣rij = rii≠j , where
v̂ r i
� �

is the velocity orientation of the ith cell, and we condition on the
intercellular distance rij (see the “Methods” section). The correlation is
positive at shortdistances, indicating that nearby cellsmove in a similar
direction (Fig. 1c). At long distances, however, the correlation becomes
negative, signifying that cells on different sides of the spheroid (r ≈ 2R)
move in opposite directions. The distance dependence of these cor-
relations agrees with that expected for a global rigid-body rotation
(Supplementary Section 2). Such global rotations can be characterized
by the spheroid’s instantaneous angular speed ω and rotational order
parameter Ω quantifying alignment of rotational motion (see the

a c

d e f

g h

i

j

b

Migrating 
cells

Extracellular 
matrix

Fig. 1 | Stochastic global rotations of spheroids. a Fluorescence microscopy
image of a spheroidwith fluorescently labeled (GFP-NLS) nuclei (see the “Methods”
section). Scale bar 50μm. b Sketch of a rotating spheroid in its extracellular
environment. c Spatial correlation function of velocity directions Cðr=RÞ, where r is
the distance between two cells throughout the spheroids and R is the spheroid
radius (see the “Methods” section). Experimental curves for individual spheroids
(light blue) and their average (blue) are compared with the correlations of a sto-
chastic rigid-body rotation (orange) (Supplementary Section 2). d–f Time series of

cell trajectories in a spheroid. Green vectors show the instantaneous angular
velocity vector ω of the collective rotation. g Time evolution of angular speed
ω= ∣ω∣ in five different spheroids. The black curve shows the angular speed of the
spheroid shown in (d–f). Gray regions indicate the time period of the trajectories
shown in (d–f). h, i Distributions of angular speed ω (h) and rotational order Ω (i).
Both distributions are across both time and different spheroids. Red line in (i)
indicates the model result. j Time evolution of rotational order Ω in five different
spheroids.
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“Methods” section). Both these quantities show that, despite their
stochastic cell motion, the spheroids exhibit coherent and persistent
global rotations (Fig. 1g–j).

Rotating spheroids exhibit velocity waves
We next ask whether these spheroids exhibit additional collective
migration modes beyond the global rotation. To this end, we study
velocity fluctuations δv of cells around the global rotation (see the
“Methods” section). These velocity fluctuations are characterized by a
non-monotonic correlation function eC rð Þ= hδv̂ðr iÞ � δv̂ðr jÞ∣rij = rii≠j (see
the “Methods” section). At short distances, we find positive correla-
tions, indicating that nearby cells move in a similar direction, even
beyond the global rotation (Fig. 2a). Pronounced positive correlations
also appear at large distances up to the spheroid diameter, indicating
that cells on different sides of the spheroids tend to fluctuate in the

same 3D directions. We find that a correlation length lcorr defined byeC lcorr
� �

=0, scales with the system size (inset of Fig. 2a) and observe an
approximate collapse of eCðrÞ upon rescaling the intercellular distance r
by the spheroid radius R (Fig. 2a, Supplementary Fig. 12a, b). In sum-
mary, the correlations of velocity fluctuations reveal a collective
migrationmode in these spheroids with a dominant length scale set by
their size.

To investigate the nature of this collective mode, we analyze the
spatiotemporal structure of the velocity fluctuation field of cells in the
equatorial plane (Fig. 2b). Two distinct regions emerge in almost every
snapshot: one with cell velocities fluctuating in the direction of the
global rotation, and another, on the opposite side of the spheroids,
where cell velocities fluctuate against the rotation direction (Fig. 2c).
The azimuthal component of velocity fluctuationsmeasured along the
equator exhibits an approximately sinusoidal profile, with a
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Fig. 2 | Velocity waves in rotating spheroids. a Spatial correlation function of
velocity fluctuation directions eCðr=RÞ. The intercellular distance r is rescaled by the
spheroid radius R. Dashed orange line shows the correlation function for a rigid-
body rotation with additional uncorrelated Gaussian noise (Supplementary Sec-
tion 2). Solid red line shows themodel result. Inset shows the correlation length lcorr
as a functionof spheroid radius for both the experiment (blue) and themodel (red).
b Schematic of the spherical coordinate system. Theblue region indicates the cross
section of the surface layer of the spheroids. The core region is indicated by the
gray inner sphere. We choose the threshold between core region and surface layer
at r =0:6R. Schematic created with Geogebra. c Planar projection of the velocity
fluctuation field δv in a slab centered around the equatorial plane. The color code
indicates δvϕ, theϕ-component of δv, and the arrow scale is shown in the lower left
corner. The gray circle indicates the threshold between the core and the surface

layer. d, e Kymograph of the azimuthal component of velocity fluctuations,
δvϕ ϕ,tð Þ, along the equator of one spheroid, both in the COM frame (d) and in the
frame co-moving with the wave (e) (see the “Methods” section). f Velocity fluc-
tuation profile in the equator rescaled by the average angular speed ω and the
spheroid radius R and averaged over all spheroids and time points. Error bars
represent the standard error of the mean (s.e.m.) and dashed lines show individual
profiles averaged over 20-time points. g Wave propagation in different spheroids.
The solid line shows the integrated angular speed giving the total path length of the
global rotation. Dashed lines indicate the trajectory of the propagating velocity
wave maximum. We consider periods in time during which the axis of rotation of
the spheroids is approximately fixed over a minimum of 15-time points (Supple-
mentary Section 1.5).
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wavelength equal to the spheroid perimeter (Fig. 2f, Supplementary
Section 1.4). Thus, instantaneously, cells on one side of the spheroid
perform faster rotational motion than cells on the opposite side. This
fluctuation pattern propagates along the equator (Fig. 2d, e), and
hence we identify it as a velocity wave. The speed of wave propagation
is approximately equal to that of the global rotation (Fig. 2g, Supple-
mentary Section 1.5). These results thus demonstrate that spheroids
exhibit a velocity wave, which propagates along the equator of the
global rotation with a wavelength equal to the spheroid perimeter.

Supracellular flow patterns on the spheroid surface
To further investigate the properties of the velocity wave, we char-
acterize cellular flow throughout the spheroid. Importantly, we
observe no significant cellular exchange between the surface and the
core, as shown by the absence of significant radial cellular flows
(Supplementary Section 1.6). Therefore, we analyze the motion of

cells in the surface layer (Fig. 2b), which exhibits the largest velocity
fluctuations that are dominated by components tangential to the
spheroid surface (Fig. 2c, Supplementary Fig. 4a, c–i). Snapshots of
these tangential velocity fluctuations δvt in spherical coordinates
(see the “Methods” section) reveal that cell motion features sig-
nificant polar components near points on the equator where the
azimuthal flow either converges or diverges with correspondingly
high-velocity gradients of the equatorial velocity wave (Fig. 3a). This
supracellular pattern is organized by apparently incompressible
tangential flow across the whole spheroid surface. We show this by
measuring the tangential cell flux J =ρsδv

t in the surface layer, where
ρs is the surface density of cells (see the “Methods” section). While
there are significant cellular fluxes with large spatial variations, their
divergences are zero within our detection limit (Supplementary
Section 1.9), even around the extrema of the velocity gra-
dients (Fig. 3b).
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Fig. 3 | Supracellular flow patterns on the spheroid surface. a Snapshot of the
tangential velocity fluctuation field, δvt, in the surface layer of an individual
spheroid represented in spherical coordinatesϕ and θ (see the “Methods” section).
Inset: vector scale. b Flux analysis around the saddle point ahead of the velocity
wave maximum (see the “Methods” section). Bar plot shows the absolute values of
the average influx (mostly along the equator) and outflux (mostly towards the
poles). Black bar indicates the difference between influx and outflux, which is not
significantly different from 0 according to a two-sided t-test (p =0:9). c, d Backside
(c) and frontside (d) of the average velocity fluctuation field of the experimental
spheroids. Both are shown from the same perspective, with the backside field

shown by looking through the sphere. e Frontside of the average total velocity field
in the simulation shown from the same perspective as (d). Gray arrows indicate the
average polarity field in the simulation. f, h Tangential components of the average
velocity fluctuation field δv=rω

� �
in spherical coordinates for the experiment (f)

and our model (h). Inset of (f) shows the vector scale for all panels (f–i).
g, i Tangential components of the total velocity field v=rω

� �
in spherical coordi-

nates for the experiment (g) and our model (i). As in c–h, averages are performed
over both time and different spheroid realizations (Supplementary Section 1.7).
Gray vectors in (i) indicate the average polarity field in the simulation.
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The supracellular pattern associated with the velocity wave is
further illustrated by the average velocity fluctuation field in the frame
co-moving with the wave (Fig. 3c, d, see the “Methods” section). The
large-scale pattern in this field features a total of six topological
defects, at which the velocity direction is undefined (Fig. 3f). This
pattern is robust: it is not only visible in the population average, but
also appears instantaneously in individual spheroids (Supplementary
Section 1.7.2). The four vortex defects carry a topological charge of
qv = + 1, while the charge of the two saddle point defects is qs = � 1.
The topological charges add up to qtotal = 4qv + 2qs = 2, as dictated by
the Poincaré–Hopf theorem for continuous vector fields on a sphere.
In the average total velocity field of the spheroids, the defect structure
manifests as a diverging and converging pattern of motion around the
azimuthal position (ϕ≈ 3π=2) of the velocity wave minimum (Fig. 3g).
This pattern describes cell motion over the poles and two vortex
defects in the velocity field that are displaced away from the poles of

the average rotation. Thus, our results show that, in addition to the
azimuthal cell velocity at the equator, also the non-azimuthal com-
ponent of the velocity field away from the equator is spatially modu-
lated (Supplementary Fig. 5e). Altogether, the patterns in the velocity
and the velocity fluctuation fields show how cells ahead of the velocity
wave maximum divert towards the poles. Cells at the poles flow into
the equatorial region behind the wave maximum where cells accel-
erate again, thereby generating a global supracellular pattern of cell
motion shaped by the spherical geometry.

Active particle model on a sphere captures velocity waves
To theoretically elucidate the physical implications of the spherical
geometry (Fig. 4a, b) for the collective dynamics in the surface layer of
rotating spheroids, we employ aminimal biophysical model for a layer
of active particles constrained to a sphere40. This model features
common aspects of collective cell migration23, including self-
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Fig. 4 | Velocity waves in a model for active particles on a sphere. a, b Ground
states of an aligning vector field on a flat surface (a) and on a sphere (b). Both are
found by implementing alignment interactions between vectors at fixed positions.
Red lines show a chosen set of geodesics. On a spherical surface, no global order in
a vector field is possible and different geodesics intersect. c Phase diagram of
weakly compressible (ϵ= 2) active aligning particles constrained to a sphere con-
structed from the average angular speed hωi. The simulation timescale τ is defined
through the speed of self-propulsion: τ = 1μm

v0
: The green star indicates the para-

meter value (β=0:1, σ =0:4), where the model quantitatively reproduces the
rotational dynamicsmeasured experimentally. Black dashed lines suggest apparent
phase boundaries. d–f Snapshots of predicted states marked in the phase diagram.

Black vectors are particle polarities, trajectories are plotted as colored lines fading
over time (SupplementaryMovies 3, 4). The green vector shows the axis of rotation
of the spherical layer of active particles.g,hRepresentative kymographδvϕ ϕ, tð Þ of
a velocity wave predicted by our model in the regime of low noise collective
rotation (β =0:32, σ =0:006) (g) and for the experimental parameter values (h).
i, j Average rescaled velocity wave profile δvϕ=ωR (i), and average normalized
densityfluctuationsδρnorm = ρs� ρsh i

ρsh i (j).We showbothquantities for different values
of the particle stiffness ϵ. Stars indicate the repulsion strength (ϵ= 2) used
throughout this study to reproduce the experimental data. The blue lines indicate
the experimental result.

Article https://doi.org/10.1038/s41467-023-37054-2

Nature Communications |         (2023) 14:1643 5



propulsion along a polarity vector, which aligns with the polarity of
neighboring cells with strength β and is subject to dynamical noise
with amplitude σ (see the “Methods” section). Here, motivated by our
experimental observation of apparently incompressible flow (Fig. 3b,
Supplementary Section 1.9), we focus on the less explored46 limit of a
dense and weakly compressible spherical layer of active particles by
imposing strong repulsion interactions between particles.

We vary two key parameters, β and σ, in this model to construct a
phase diagram for active multicellular motion on the sphere (Fig. 4c).
For weak alignment, we find a disordered phase, exhibiting neither
polarity alignment nor global rotations. When alignment interactions
are strong, the system organizes into an ordered but quiescent regime
with a polarity field containing two aster defects (Fig. 4f), similar to the
ground state of a vector field with local alignment interactions on a
sphere (Fig. 4b). In contrast, at intermediate alignment strengths, we
find a regime with persistent global rotations (Fig. 4d). The collective
dynamics in this phase are remarkably similar to our experimental
observations (Fig. 4e). In fact, we identify parameter values for which
the model quantitatively reproduces the experimental distribution of
rotational order (Fig. 1i) and the correlation function of velocity fluc-
tuation directions (Fig. 2a), including the scaling of the correlation
length with spheroid size (inset of Fig. 2a, Supplementary Fig. 12).

Within the collective rotation regime, the model robustly pre-
dicts the emergence of velocity waves (Fig. 4g, h, Supplementary
Section 4.1). As in our experiments, the wave predicted by the model
consists of a single-wavelength velocity modulation along the equa-
tor, accompanied by four vortices (Fig. 3h, i). The two vortex defects
in the polarity field are displaced away from the poles, and therefore
drive a state of global rotation with polarized flows over the poles.
This indicates that particles in the model actively move towards and
over the poles (Fig. 3e, Supplementary Section 4.5.2). Furthermore,
the model predicts that the wave propagates approximately with the
same angular speed as the global rotation: ωwave ≈ω (Supplementary
Fig. 17e, f), consistent with our experiments. Finally, we find that the
emergence of the velocity wave does not depend sensitively on the
specific formof the alignment interactions between the self-propelled
particles, or the dimensionality of the model (Supplementary Sec-
tion 4.4). Specifically, we consider a 3D extension of our model with
particles also in the bulk (Supplementary Movie 7) and still find
velocity waves in the surface layer consistent with the experimental
observation. Our results thus suggest that the velocity wave and the
accompanying vortices in the rotating spheroids can be understood
as a collective mode emerging from interacting active particles con-
fined to a spherical surface.

While we do not detect signatures of compressible flow in our
experiments (Fig. 3b), the spherical layer of active particles in our
model can exhibit finite compressibility. To study the impact of com-
pressibility, we vary the particle stiffness ϵ, which sets the amplitude of
the repulsive interaction between particles in the model. Indepen-
dently of compressibility in this range, ourmodel robustly exhibits the
same velocity wave. However, in the compressible regime, the wave is
accompanied along the equator by a density wave (Fig. 4i, j, Supple-
mentary Fig. 17a, b, e), lagging the velocity wave by a phase-shift of
approximately π=4 (45°). As we reduce compressiblity in themodel by
increasing ϵ, the amplitude of the velocity wave relative to the global
rotation is largely unaffected (Fig. 4i), whereas the amplitude of the
density wave diminishes (Fig. 4j). At relatively high particle stiffnesses
(ϵ> 2), density modulations predicted by the model fall below our
experimental detection limit (Supplementary Fig. 13h–j) and the flow
pattern becomes apparently incompressible (Supplementary Fig. 9f),
as in our spheroid experiments. Thus, while the velocity wave in the
experimental spheroids is embedded in an apparently incompressible
cellularflowpattern, ourmodel indicates that the velocitywavemaybe
amore general collective mode of migration that remains robust even
with significant compressibility.

Curvature induces active velocity waves
Having demonstrated with a biophysical model that active velocity
waves occur in a layer of active particles constrained to a sphere, we
next investigate which properties of the sphere are required for their
formation. To this end, we use our simulations to disentangle the role
of the two key properties of the spherical geometry: positive Gaussian
curvature and the topology of a spherical surface. By removing two
opposing spherical caps from the sphere, we consider a truncated
sphere, whereby we retain the positive Gaussian curvature of the
sphere but change the closed spherical surface to a surface with
boundaries (Fig. 5b, Supplementary Movie 5). Remarkably, however,
the velocity wave still emerges, indicating its robustness to this change
of the topology of the confinement (Fig. 5e, Supplementary Sec-
tion 4.6.1). Importantly, for this case, the total topological defect
charge qtotal must be equal to zero, as we indeed observe in our
simulations (Fig. 5h). In contrast, on cylinders, which have the same
topology as truncated spheres but zero Gaussian curvature (Fig. 5c,
Supplementary Movie 6), we do not observe a single-wavelength
velocity wave propagating in the direction of the global rotation
(Fig. 5f, Supplementary Section 4.6.2). Taken together, these results
demonstrate that the curvature and topology of spheroids play dis-
tinct roles in determining the collective dynamics: While the topolo-
gical defect structure of the global flow pattern is constrained by the
spherical topology, the active velocity waves themselves are induced
by the Gaussian curvature.

Discussion
In conclusion, we discover a collective mode of cell migration mani-
festing as an active velocity wave modulating the global rotations of
mammary cell spheroids. This velocity wave propagates along the
equator with a wavelength equal to the spheroid perimeter and is
embedded in a supracellular pattern of motion that spans the entire
spheroid surface. We demonstrate using an active particle model that
this supracellular pattern emerges from the constraints imposed by
the curved spherical geometry on an interacting active matter system.
Ourmodel indicates that the active velocity wave emerges on surfaces
with Gaussian curvature and that its presence is robust against the
changes in topology and compressibility thatwe considered. Thus, the
emergence of this velocity wave in cell spheroids illustrates how cur-
vature and topology can shape the collective behavior of curved
multicellular tissues.

Wave-like instabilities are a key feature of collective behavior47

and give insight into the mechanical and dynamical properties of
active matter systems. For example, wave-like phenomena in mul-
ticellular systems include mechanical48 and mechanochemical49

waves in spreading epithelial monolayers arising from the activity
and mechanical interactions between cells. More broadly, sound
waves have been theoretically predicted50 and experimentally51

observed in active matter flocks on flat surfaces. Hydrodynamic
theories predict such sound waves to also manifest on spherical
surfaces41, where hydrodynamic instability causes velocity waves to
propagate in phase with density waves along the equator of the
rotating flock. The modulations in the velocity field associated with
these sound waves are purely azimuthal and propagate at multiple
wavelengths. The active velocity wave that we report here appears
to be different from the previously-reported sound waves: Our
model predicts that the velocity wave is accompanied by an out-of-
phase density wave, and both our model and experiments indicate
that the wave is embedded in a supracellular pattern of motion
characterized by non-azimuthal cell flows towards the poles. Fur-
thermore, we observe a single wavelength equal to the spheroid
perimeter. Finally, as an alternative to sound waves, the active
velocity wave may be related to kinematic waves, produced by the
advection of a fluctuation pattern by the background flow52. How-
ever, further theoretical work is needed to identify the
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hydrodynamic instability that gives rise to active curvature-induced
velocity waves in spheroids.

The curvature-induced velocity waves may be a general collective
mode of motile cellular layers in curved tissue. Thus, other spherical
cellular assemblies, such as egg chambers4 and intestinal9,
pancreatic10, and brain organoids11, but also a broader range of curved
epithelial sheets, including in vitro assays31, or in vivo in intestinal villi53

could exhibit similar wave phenomena. The topology of spheroids
dictates the existence of topological defects, manifesting as four vor-
tex defects and two saddle point defects in the flow field, where
equatorial cell fluxes are balanced by fluxes towards the poles of the
spheroid. Such a defect structure is similar to recent observations of
incompressible flow in fly embryos54. Moreover, cell fluxes near
topological defects were observed to drive layer formation in bacterial
colonies55, and they are related to mechanical stresses and sites of cell
death in epithelial monolayers56. While it is currently unclear whether
the velocity waves in spheroids serve a biological function, their pre-
sence in curved cellmigrationmayhavebeen identifiedby evolution as
a strategy to generate stresses onto the surrounding extracellular
matrix20. For example, these stresses could enable cells to invade the
extracellular environment, for instance during cancer metastasis5.

Finally, the generality of our model suggests that the patterns we
discover in multicellular spheroids could be relevant for a broader
range of curved active systems like spherical actin layers57 and schools
of fish58.

Methods
Mammary cell spheroid culture and immunofluorescence
staining
MCF10A cells were purchased fromATCC and cultured in a DMEM/F12
medium (Invitrogen, 11965-118) supplemented with 20ng/ml epi-
dermal growth factor (Peprotech, AF-100-15), 5% horse serum
(Invitrogen, 16050-122), 100 ng/ml cholera toxin (Sigma, C-8052),
0.5μg/ml hydrocortisone (Sigma, H-0888), 10μg/ml insulin (Sigma, I-
1882) and 1% penicillin and streptomycin (Thermo Fisher, 15140122).
To prepare the mammary spheroid, MCF10A cells were harvested
using a 0.05% trypsin solution (Thermo Fisher, 25300054) and
seeded in a collagen network (3.6mg/ml, FibriCol®, Catalog #5133)
supplied with Matrigel (2.0mg/ml, Corning, 354234). The initial cell
density is low (104/ml) to avoid interaction between spheroids. To
visualize the cell nuclei, the MCF10A cells were transfected with GFP-
NLS using lentivirus (Essen Bioscience, 4475). The three-dimensional

a b c

e f

g h

d

vortex defect
saddle point defect

Sphere

Sphere

Truncated sphere

Truncated sphere

Cylinder

Fig. 5 | Velocity waves on different geometries. a–c Snapshots of the dynamics
predicted by our model of active particles on a sphere in a low-noise rotation
regime (a), on a truncated spherewith low-noise rotations (b), and on a cylinder (c).
d–f Representative kymographs δvϕ ϕ,tð Þ of the equatorial azimuthal velocity
fluctuations predicted by our model for the three different geometries considered

in (a–c). g, h Tangential components of the average velocity fluctuation field
δv=rω
� �

in spherical coordinates for the closed sphere in the experimental para-
meter regime (g) and of the truncated sphere in an experimentally relevant para-
meter regime (h).
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motion of the cells within the mammary spheroid was recorded using
confocalmicroscopy (Leica, TCL SP8). The temperature, CO2 level, and
humidity were well-controlled using a culture box during the imaging
process. The cell nuclei were further tracked from the video with
Trackmate (v5.2.0, Fiji)59.

Analysis of trajectories
All 3D nucleus positions are transformed into the center of mass
(COM) frameof the spheroids. Translationalmotion of the spheroids is
uncorrelated and small compared to the spheroid radii (Supplemen-
tary Section 1.1). We write r i for the positions of the cell nuclei in the
COM frame. Cell velocities are estimated by numerical derivates of the
cell nucleus trajectories, viðtÞ= r i t +Δtð Þ � r i tð Þ

� �
=Δt, where

Δt = 10min is the observation interval. To characterize rotations, we
infer the rotation matrix R tð Þ of each spheroid at each point in time,
which describes the average rotation of all cells in the spheroid
between subsequent frames. We infer this matrix by simultaneously

minimizing the cost functions Ek
2 =

PN
i =0 rki t +Δtð Þ � erki tð Þ

� �2
, whereer i tð Þ =R tð Þr i tð Þ and k = 1,2,3 indicates the three spatial dimensions60.

The angular velocity ω tð Þ is then found from R tð Þ via a python imple-
mentation (OpenCv) of the Rodrigues’ rotation formular61 that solves
R tð Þω tð Þ =ω tð Þ. The angular speed is ωðtÞ= ∣ω tð Þ∣, and the axis of
rotation is ω̂ tð Þ = ω tð Þ=ω tð Þ. This axis of rotation is commonly stable,
but undergoes random reorientations (Supplementary Section 1.3.2).
Furthermore, we compute the rotational order parameter by29:

Ω tð Þ= 1
N

XN

i=0

r?i tð Þ× viðtÞ
∣r?i tð Þ× viðtÞ∣

� ω̂ tð Þ
���� ���� ð1Þ

where r?i = r i � r i � ω̂
� �

r i is the orthogonal component of the positions
of the cells with respect to the axis of rotation ω̂ tð Þ andN is the number
of cells. We determine the velocity fluctuations of cells around
the global rotation using δvi = r i t +Δtð Þ �R tð Þr i tð Þ

� �
=Δt. The cross-

correlation function of the velocity- and velocity fluctuation directions
are given by29

C rð Þ=
PN

i≠jδð∣r ij ∣� rÞv̂iv̂jPN
i≠jδð∣r ij ∣� rÞ

, eC rð Þ=
PN

i≠jδð∣r ij ∣� rÞδv̂iδv̂jPN
i≠jδð∣r ij ∣� rÞ

ð2Þ

where v̂i = vi=∣vi∣ and δv̂i = δvi=∣δvi∣ and r ij = r i � r j is the cell distance
in 3D space. We approximate the Dirac-delta function δð∣r ij ∣� rÞ by
discrete binning of the intercellular distances. Note that in the main
text we rescale the intercellular distance by the spheroid radius. For
more details see Supplementary Section 1.3.1.

Analysis of vector fields
For the sake of simplicity, we call the set of all velocities fvi tð Þg at their
respective positions ri the velocity field v r,tð Þ of the spheroids at time
t. Similarly, we call fδvi tð Þg the velocity fluctuation field δv r,tð Þ. Later
on, we explicitly coarse-grain to find v r,tð Þ and δv r,tð Þ: We rotate the
velocity- and the velocity fluctuation field such that the instanta-
neous axis of rotation describing the rotational motion patterns is
aligned to the z-axis of a new coordinate frame O0. We can formulate
this as a linear transformation τ tð Þ equivalent to a rotation of the
vector fields: r 0 = T tð Þr, v0 = T tð Þv, δv0 = T tð Þδv, where T tð Þ is con-
structed from the axis of rotation (Supplementary Section 1.3.3).
Henceforth, for simplicity we omit the primes in the coordinates of
the rotated frame. We represent the velocity- and the velocity fluc-
tuation field by the usual spherical coordinates ϕi, θi, ri

� �
for the

positions of the ith cell. The angle ϕ 2 0,2π½ � parameterizes the azi-
muthal angle and the angle θ 2 0,π½ � parameterizes the polar angle.
We define tangential velocity fluctuations of the ith cell as
δvtðr i,tÞ= δvðr i,tÞ � ½êr i � δvðr i,tÞ�êri = ½êϕi

� δvðr i,tÞ�êϕi
+ ½êθi � δvðr i,tÞ�êθi

and similarly the tangential velocity field vtðri,tÞ= ½êϕi
� vðri ,tÞ�êϕi

+

½êθi � vðr i,tÞ�êθi :We show theϕ- and the θ- components of the velocity
fluctuations as a vector field in Fig. 3a. When we employ this repre-
sentation, we restrict the velocity fields to the surface layer defined
by ∣r∣> rthresh =0:8R where R is the radius of the spheroids. The
spheroid radius R is determined by creating a convex hull around the
positions of the cells and averaging the distance of the outermost
cells to the COM (Supplementary Section 1.2). The pattern we
observe in this representation is not sensitive to the choice of rthresh.

Kymographs of velocity waves and density fluctuations
We find the kymograph of the equatorial azimuthal fluctuation profile
in the surface layer of the spheroids by defining Nb bins along the
azimuthal ϕ-direction with width dϕ . We furthermore focus on the
equatorial region defined by θ 2 π=2� dθ,π=2+dθ

	 

. We choose

dθ=π=4,Nb = 10 and dϕ=π=5, and focus on the surface layer defined
by ∣r∣> rthresh =0:6R. The ϕ-component of the velocity fluctuations at
time t : êϕi

δvðr i,tÞ is averaged inside these bins to obtain the kymo-
graph δvϕ ϕ,tð Þ. The resulting kymograph is insensitive to the choice of
rthresh (Supplementary Fig. 2g). Furthermore, we consider the nor-
malized equatorial density fluctuations defined by δρnorm = ρs� ρsh i

ρsh i ,
where ρs is the surface density found from counting the number of
cells inside the Nb bins along the azimuthal ϕ-direction with width dϕ
as for the velocity wave. ρs

� �
is the average surface density in the

equator found by averaging over ϕ. For more details refer to Supple-
mentary Sections 1.4 and 1.8.

Averaging of vector fields
The average velocity- and velocity fluctuation field in the frame of
reference of the propagating velocity wave are found by first rotating
v r,tð Þ and δv r,tð Þ around the axis of rotation ω̂ tð Þ so that all wave
maxima are alignedon the azimuthal angleϕ = π=2. The anglebywhich
we rotate is found through fitting a single-wavelength sinusoidal profile
to the individual equatorialfluctuationprofiles shown in thekymograph
(Fig. 2d,e). Then the velocity and velocity fluctuation field in the surface
layer are scaled down for each individual cell by ω tð Þ∣r i∣ to make them
dimensionless. This yields v r i,t

� �
=ω tð Þ∣r i∣ and δv r i,t

� �
=ω tð Þ∣r i∣. Finally,

the surface layer of the spheroids is covered in Nbins = 120 uniformly
distributed spherical bins. The size of each bin is defined by an angle
dΩ = 0:2 between the position vector of each bin and the position
vector of a cell. This results in sufficient covering of the surface layer
with bins. All rescaled velocities and velocity fluctuations inside one bin
are averaged over time and/or different experimental realizations.
Finally, we find the tangential components of the average vector fields
by employing the same procedure as for the individual snapshots. For
more details see Supplementary Section 1.7.

Flux analysis
We find the tangential cell flux ρsδv

t where ρs is the approximated
surface density of cells in the surface layer. We then construct a circle
around the position r0 to probe the incompressibility of the cellflowat
this position. The size of the circle is characterized by Ω which is the
angle between the positions of the cells r i and r0. We find the cell flux
through this circle by considering all cells whose positions is within
½Θ � dΘ,Θ+dΘ�. We project the cell flux on the normal vectors to this
circle and sumall positive values and all negative values to find the out-
and the influx. The sum of all projections is equal to the net cell flux.
For more details see Supplementary Section 1.9.

Active particles on curved surfaces
Based on previous work62–65, we model cells as active particles. We
describe the motility of cells by self-propulsion with speed v0 in the
direction of an internal polarization defined by the polarity vector p.
We impose an alignment interactionwith strengthβ betweenpolarities
of neighboring cells and polarities are subject to Gaussian white noise
with amplitude σ. In addition, cells repel each other by a soft repulsion
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potential with stiffness ε. On a flat surface the model is written as:

vi = v0pi + Frep, ð3Þ

Frep = � ε 2λ� rij
� � r ij

rij
, ð4Þ

pi = cos ϕi

� �
,sin ϕi

� �� �T, ð5Þ

dϕi

dt
= � β

X
j

sin ϕi � ϕj

� �
+ηi tð Þ, ð6Þ

ηi tð Þηj t
0ð Þ

D E
= σ2δijδ t � t0ð Þ ð7Þ

where λ is the radius of the particles and
P

j is the sum over all
neighbors of the ith particle within a radius of interaction rinter = 2:5λ.
The exact choice of rinter does not matter as long as the number of
nearest neighbors remains close to 6 corresponding to a close packing
of particles in 2D. To model the dynamics of the surface layer of the
spheroids, we study thismodel on a surface of a sphere40. Importantly,
we consider the less explored weakly compressible parameter regime
of this model by setting the repulsion stiffness ε to a sufficiently high
value such that the layer of cells covers the sphere and density fluc-
tuations are very small. We set the time scale of our simulation to
τ = l=v0, where l = 1μm is the length scale of our simulation. We set the
average surface density of cells on a sphere in our simulation to the
average surface density of the cells in the surface layer of the spher-
oids. Together with the number of cells, this also sets the size of the
sphere and the radius of cells. We numerically solve this model on a
sphere by an algorithm based on the Euler-Maruyama method40

(Supplementary Section 3). Furthermore, we vary the underlying
geometry from a sphere to a truncated sphere and a cylinder, which
are both unexplored for this model. For the truncated sphere, we
introduce soft boundaries at two specific latitudes. These boundaries
keep the cells from moving over the poles. We make sure that the
effectively excluded regions are large enough so that there are no
nearest-neighbor interactions between cells on opposite sides of the
excluded regions (Supplementary Section 4.6.1). For the cylinder, we
use cylindrical coordinates to constrain thedynamics.This asymmetric
geometry requires adjustment of how alignment interactions are
implemented. For more details refer to Supplementary Section 4.6.2.

Statistical analysis
Throughout, error bars represent the error of themean found through
bootstrapping of the underlying data set. For the average normalized
density fluctuations in the frame of reference of the velocity wave, we
propagate errors according to

σδρnorm
= δρnorm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σδρ

δρ

� 2

+
σhδρi
hδρi

� 2
s

ð8Þ

where σδρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ρS
+ σ2

δρh i
q

is the error of the density fluctuations. Here
σρs

is the error of the surface density and σhδρi is the error of the
average density. We perform an F-test to assess the statistical
significance of a sinusoidal profile in the density and velocity
fluctuation field. We consider two models δρ2 ϕð Þ=A sinðϕ� ϕ0Þ
(“model 2”) and a uniform profile δρ1 ϕð Þ=0 (“model 1”). We compute
the F-value according to

F =
ðRSS1 � RSS2Þ=ðf 1 � f 2Þ

RSS2=f 2
ð9Þ

where RSS1=2 refers to the residual sum of squares of the fit with the
two models δρ1=2 ϕð Þ: RSS1=2 =

P
i δρ1=2 ϕi

� �� δρnorm ϕi

� �� �2
, and ϕi

refers to the ith bin in our discrete approximation of δρnorm ϕð Þ: Fur-
thermore, f 1=2 is the degree of freedom of the fit. From these F-values,
we find p-values assuming that F is distributed according to an
F-distribution under the null hypothesis that a sinusoidal wave profile
does not significantly better fit the data than a uniform profile. Finally,
we perform a two-sided t-test to determine the statistical significance
of densityfluctuations anddivergences in the cellflux. Formoredetails
refer to Supplementary Sections 1.4 and 1.8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Experimental and simulation data is available from the corresponding
author upon request.

Code availability
Python code to analyze data and perform numerical simulations is
available from the corresponding author upon request.
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