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Abstract

Research over the last few decades has provided more and more evidence that pre-
cise control of many-body quantum systems yields a method of computation more
powerful than what is achievable using conventional models of computation. This
culminated in recent years with experimental demonstrations on quantum devices of
computational tasks on the verge of classical intractability.

These current generation quantum devices are, however, too noisy and small to
perform any means of error correction. These limitations motivate the study of hybrid
quantum-classical algorithms as potential practical use-cases of these devices in the
near-term. This thesis is concerned with studying potential use-cases of these hybrid
algorithms, determining limitations of algorithms constructed via this framework, and
giving provable guarantees on the performance of such algorithms. Specifically:

1. We consider quantum-classical hybrid algorithms which are framed as opti-
mization problems with quantum-evaluated loss functions. We show that when
the operations implemented on the quantum device are drawn from a certain
problem-independent distribution, the loss landscapes (in expectation) exhibit
a phase transition in trainability. We argue that the trainable phase is typically
unachievable, and thus that such algorithms are not practical to implement.

2. We sharpen these arguments and show similar behavior for local, shallow, vari-
ational quantum algorithms. We also study the impact of noise on such al-
gorithms when they are in the trainable phase, and show that such noise is
capable of making otherwise trainable algorithms untrainable in a statistical
query setting.

3. We give efficient classical algorithms to simulate certain variational quantum
algorithms that circumvented the assumptions of our previous results and were
known to be trainable, demonstrating that care must be taken to strike a balance
between quantum implementability and classical intractability.
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4. We prove unconditionally that certain quantum neural networks are more ex-
pressive than a wide class of classical neural networks and demonstrate that
quantum contextuality is the resource for this separation. We also give argu-
ments (along with numerical evidence) that such models are efficiently train-
able, thus showing that there exists a regime where hybrid quantum-classical
algorithms outperform their purely classical counterparts.
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Chapter 1

Introduction

Classically, physical states were believed to be completely determined by a number of

canonical variables (namely, positions and momenta) linear in the system size 𝑛, and

the measurable properties of such a system were thought to be deterministic (in prin-

ciple) functions of these variables. The classical Hamiltonian dynamics governing the

evolution of these canonical variables are simple; Turing machines can simulate these

dynamics in time growing polynomially with 𝑛. This same principle has been true

not only for mechanics as known by Newton but also for most physical theories intro-

duced since. Einstein’s equations introduce a curvature tensor but still fundamentally

are deterministic and efficiently describable using Lagrangian dynamics. Classically,

the formalism of statistical mechanics also follows directly from treating (in this case,

many) classical canonical variables in a system.

With the formulation of quantum mechanics as a physical theory a century ago,

humanity’s understanding of the world around us changed remarkably. It has been

realized that nature is inherently probabilistic. Rather than being described by an

extensive number of scalar quantities, a physical state is described (at constant preci-

sion) by a state vector |𝜓⟩ with dimension exponentially large in 𝑛, and to date there

are no known methods for efficiently classically simulating the (generic) Hamiltonian

dynamics of such a state.

Inspired by this difficulty in modeling complex quantum systems, Richard Feyn-

man in a talk given in 1982 [1] posed the question: why should we restrict ourselves

17



to classical Turing machines as a model of computation? If the world is quantum

mechanical, we should model it using quantum mechanical systems—quantum com-

puters—not classical ones. What sorts of computational tasks can be efficiently solved

using this model of computation?

Even though it has been over forty years since Feynman initially proposed com-

puting using quantum systems, we do not yet have a full understanding of exactly

which tasks are efficiently solvable by quantum computers, which can be solved effi-

ciently using (perhaps as of yet unknown) classical algorithms, and which are difficult

for both classical and quantum computers. That said, there has been remarkable

evidence that there exist practical tasks that lie in the first category and not the

last two. Not only have efficient quantum algorithms been formulated for simulat-

ing quantum mechanical systems [2]—as originally proposed by Feynman—but also

quantum algorithms more efficient than their known classical counterparts have been

found for factoring large numbers [3], finding a marked element in an unstructured

database [4], solving linear systems [5], and much more. Furthermore, quantum de-

vices implementing these algorithms can be efficiently error corrected [6]. A general

overview of quantum computation and quantum algorithms can be found in Refer-

ence [7].

Though these algorithms are still perhaps decades away from being implemented

at a scale unachievable by current classical computers, the field of quantum informa-

tion processing has reached a watershed in recent years: multiple experiments [8–13]

have demonstrated quantum processors performing tasks on the verge of classical in-

tractability. Spurred on by these recent experimental developments, there has been

a push for finding algorithms that can be executed using these near-term quantum

devices [14], potentially with some form of error mitigation. However, due to the

constraints on these systems in terms of both size and coherence time, it is not at

all obvious whether they are capable of outperforming state-of-the-art classical algo-

rithms on practical tasks.

Motivated by these concerns, a subfield of quantum algorithms research has stud-

ied hybrid quantum-classical algorithms. In this framework, algorithms are con-

18



structed such that classically easy tasks are offloaded to a classical computer while any

classically difficult (and quantumly easy) inner loop is run on a quantum device. The

most commonly studied problems in this setting are optimization problems, where

the solution to some problem is encoded as the minimum of some function 𝑓 (𝜃) that

is classically difficult to evaluate yet quantumly easy to evaluate. Then, a classical

outer loop consisting of an optimization algorithm—utilizing a quantum computer as

a “black box” to access 𝑓 and its derivatives—can, in principle, optimize this func-

tion. In analogy with classical machine learning, this setting is often called quantum

machine learning (QML) [15–18] or, depending on the form of 𝑓 (𝜃), a variational

quantum algorithm (VQA) [16, 19–26].

Some of the excitement around QML is due to the widespread success of classical

machine learning algorithms in recent years. Thirty years ago, the gold standard for

variationally learning complicated probability distributions was through the use of

Bayesian networks ; these ansatzes for probability distributions found widespread use

in time series analysis [27], machine translation [28], natural language processing [29],

and more [30–33]. In these probabilistic models, a distribution is modeled via products

of conditional distributions associated with a directed acyclic graph:

𝑝model (𝑥1, . . . ,𝑥𝑛) =
𝑛∏︁
𝑖=1

𝑝𝑖 (𝑥𝑖 | 𝑃 (𝑖)) , (1.1)

where here 𝑃 (𝑖) is the set of direct predecessors of vertex 𝑖 in the underlying graph.

Given an underlying graph structure and a target distribution 𝑝target, a (local) max-

imum likelihood estimate of 𝑝model can be efficiently found using the expectation-

maximization algorithm [34, 35]. Unfortunately, the graph structure itself is difficult

to optimize over without a priori intuition as to what it should be. Furthermore,

though training of these models is efficient in the dimension of the combined state

space of the direct predecessors of vertices, these state spaces may need to be ex-

tremely large to fully capture more complex distributions with highly nonlocal corre-

lations.

Due to these shortcomings, the last few decades have seen the field of machine
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learning shift to artificial neural network (ANN)-based approaches. At finite preci-

sion, these models (when used for generative modeling) are a subclass of Bayesian

networks that are efficiently trainable using gradient-based methods [36, 37]. This re-

striction to efficiently trainable models has allowed for the construction of extremely

large neural networks—with parameter counts up to the order of a hundred billion—

capable of extremely accurate sequence modeling [38, 39], video game playing at a

high level [40], realistic text-to-speech [41], and much more [42, 43]. Given the ability

of quantum devices to naturally sample from distributions believed to be beyond the

reach of efficient classical algorithms, there is hope that quantum devices might one

day be useful as a tool in the machine learner’s toolkit [20, 21].

Unfortunately, there are many open questions regarding the usefulness of imple-

menting QML algorithms on a hybrid quantum-classical device, even beyond noise

concerns that typically arise when considering near-term quantum devices. For one,

the optimization of QML loss landscapes is not guaranteed to work. One “miracle” of

classical machine learning is the widespread trainability of neural network architec-

tures: somewhat counterintuitively, neural networks become easier to train even as

their widths (i.e., numbers of parameters per layer) grow [44, 45]. This behavior not

only holds for simple toy models of neural networks but also—at least empirically—

more generally. State-of-the-art neural networks today have hundreds of billions of

parameters and are capable of generating strings of text almost indistinguishable from

those generated by humans, all while being efficiently trainable [38, 39].

One might optimistically hope that the widespread success of machine learning

algorithms in the classical setting would “port over” to their quantum counterparts.

QML models generically explore exponentially large Hilbert spaces, in some sense

probing larger model dimensions than do classical machine learning models. If the

general heuristic that “wide models are easy to train” were to still hold true, this would

imply the generic trainability of QML models. Realistically, however, any intuition

gained from studying machine learning architectures in a classical setting has to be

closely examined before hoping it applies to the quantum setting. Specifically, does

this intuition for the efficient trainability of machine learning models still hold true
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in the quantum setting? If not, is there a restriction of QML models to an efficiently

trainable subspace, just as generative ANNs are for Bayesian networks? Do these

classes of trainable QML models exhibit any post-classical behavior, or are the classes

of trainable and classical machine learning models essentially identical?

This thesis answers these questions by studying QML models from a theoretical

perspective. From this general theory we then attempt to build intuition for construct-

ing QML models that not only are trainable but are also beyond the capabilities of

classical machine learning algorithms. We hope that the presented intuition aids in

the construction of new and exciting QML algorithms, just as the development of

heuristics in classical machine learning led to an explosion in the number of practical

and useful neural networks.

In a broad sense, we here show that QML models are generally not trainable. We

show that a generic lack of trainability arises from a “phase transition” in the loss

landscapes of QML models. More specifically, we show for the first time that when

these models have a number of parameters fewer than the degrees of freedom 𝑚 of

the system—generically exponentially large in the system size 𝑛—a proliferation of

poor local minima lead to loss landscapes unamenable to efficient training algorithms.

We call this phase the underparameterized phase. In contrast, when the number of

parameters of the model is at least 𝑚, the loss landscape of the model is nearly convex

and efficiently trainable in terms of the number of optimization steps; we call this

phase the overparameterized phase. Unfortunately, since this phase requires a number

of parameters at least 𝑚 ∼ exp (𝑛), QML models that are constructed to exist in this

phase are generally inefficient to implement.

Though these results are generally pessimistic, one benefit of the existence of this

phase transition is that it gives intuition for constructing trainable QML models.

Namely, model classes with 𝑚 growing only polynomially with 𝑛 can easily be made

to exist in the trainable phase. One natural way to restrict the effective dimension of

such models is by requiring that the models respect symmetries [46]. Intuitively, if

the dimension of the symmetry group 𝐺 a model respects is large enough, the model

should be trainable as the resultant degrees of freedom 𝑚 should be sufficiently small

21



that the overparameterized phase is eminently reachable. This was recently formalized

with 𝐺 = S𝑛, where it was shown that QML models equivariant under permutations

of qubits that have a number of parameters ≳ 𝑛3 are efficiently trainable [47]. Un-

fortunately, this solution is not a silver bullet. We here show that it is often the case

that such trainable QML models are efficiently classically simulable, and give classical

algorithms for simulating evolution symmetric under dynamics respecting such large

symmetries.

The trick, then, is to balance restricting QML architectures in some way—such

that they are trainable—while still maintaining an advantage over classical machine

learning architectures. Luckily, we here show that this is indeed possible. We quan-

tize a class of recurrent neural networks [48] and show the existence of a class of

sequence learning problems that this model can efficiently represent, but no classical

neural network with a subquadratic memory overhead can represent. We end with

some preliminary thoughts on extending this quadratic separation to larger polyno-

mial separations, and also with a general discussion of the trade-offs between the

trainability, expressivity, and practicality of constructing quantum machine learning

architectures.

1.1 Outline of Results

The results presented are drawn from a variety of papers [49–52] and would not

have been possible without the valuable contributions of my coauthors and collab-

orators. The final result is edited together in an effort to present two aspects of

QML research—the efficiency of training such algorithms, as well as their expres-

sive power—as two sides of the same coin, with natural trade-offs between the two.

We have also attempted to make each Chapter self-contained for readers primarily

interested in a subset of the results presented here.

The remainder of this thesis is organized as follows:

• For the remainder of this Chapter, we give background on quantum generative

modeling and variational quantum algorithms and give a summary of our re-
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sults. Along the way we also briefly introduce “physics” notation for concepts in

quantum computing to make them accessible to a classical computing audience.

• In Chapter 2, we consider the loss landscapes of a randomized class of variational

quantum algorithms (with global interactions) and derive a phase transition in

their trainability using techniques from Morse theory. To keep the exposition

straightforward, we contain the technical results and proofs to Appendix A.

These results are featured in Reference [49].

• In Chapter 3, we extend these results and consider the loss landscapes of lo-

cal variational quantum algorithms, deriving a similar phase transition as in

Chapter 2. We also consider the noisy optimization of such algorithms, and

show more general untrainability results in this setting. Once again, we defer

all technical details to Appendix B. These results are featured in Reference [50],

joint work with Bobak T. Kiani.

• In Chapter 4, we consider variational quantum algorithms shown to circumvent

these untrainability results; we show that, unfortunately, it is often the case that

such learning algorithms can be dequantized to yield equally efficient classical

algorithms. In Appendix C, we give technical background on properties of the

symmetric group, which as a symmetry group is considered as a special case

of our results. These results are featured in Reference [51], joint work with

Andreas Bauer, Bobak T. Kiani, and Seth Lloyd.

• In Chapter 5, we consider an explicit class of quantum machine learning models

that sidesteps the pessimism of the previous chapters. Namely, we prove that

this class of quantum machine learing models has a provable expressivity sep-

aration over a wide class of quantum neural networks, and give heuristic (and

numerical) evidence that this class is trainable. Technical details are once again

deferred to Appendix D. These results are featured in Reference [52], work done

in collaboration with Hong-Ye Hu, Jin-Long Huang, and Xun Gao.

• In Chapter 6, we give an outlook for this line of research and conclude.
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1.2 Preliminaries

Before discussing the details of our results, we first provide some basic background

on quantum machine learning (QML) in the context of hybrid quantum-classical

algorithms, and also more specifically discuss variational quantum algorithms. More

technical background that more specifically applies to individual Chapters are given

there.

1.2.1 Classical Machine Learning Models

The field of classical machine learning has grown to cover so many concepts in the past

few years that it would be impossible to give a complete background here. We thus

here focus on the models and tasks we more specifically consider in later Chapters; a

general introduction to the field is given in Reference [53].

Typically, the task one considers in machine learning contexts is the search for a

function 𝑓 within a given function class ℱ that minimizes some risk:

ℛ [𝑓 ] = E𝑥 [ℓ (𝑥 | 𝑓)] (1.2)

given a distribution of inputs 𝑥 and a loss function ℓ. To perform learning, one

searches over a parameterized subset functions 𝑓𝑤 ∈ ℱ termed models. When this

expectation cannot be efficiently taken, one instead minimizes the empirical risk (or

training error) ℛ̂ (𝑤) over a given training data set 𝐷:

ℛ̂ (𝑤) =
1

|𝐷|
∑︁
𝑥𝑖∈𝐷

ℓ (𝑥𝑖 | 𝑓𝑤) . (1.3)

There are many model classes often considered in machine learning, and which

is used typically depends on the specifics of the task being performed by the model.

Broadly, state-of-the-art models typically are feedforward neural networks (FNNs) [36];

here, functions are modeled as alternating trained linear functions 𝜆𝑖;𝑤 and fixed (up
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to, perhaps, tuned hyperparameters) nonlinearities 𝜈𝑖:

𝑓𝑤 =○𝑖 (𝜈𝑖 ∘ 𝜆𝑖;𝑤) . (1.4)

Typically, these 𝜆𝑖;𝑤 are just simple matrix multiplication by a matrix completely

parameterized by 𝑤. Somewhat miraculously, the empirical risk of typical machine

learning loss functions when the models take this simple layered form can be shown

to be (typically) efficient to optimize with simple gradient descent [44, 45]. The

widespread success of FNNs can, at least partially, be attributed to the tractability of

these loss landscapes along with the simplicity of calculating gradients via backpropa-

gation [37]. When implemented on specialized hardware such as graphical processing

units, this efficient training has allowed models with on the order of a hundred billion

parameters [38] to be trained for tasks with real-world applications.

1.2.2 Quantum Machine Learning Models

A quantum system of size 𝑛 is naturally represented by a quantum state, which is

a normalized vector—for simplicity, assumed to be over 𝑛 qubits—|𝜓⟩ ∈ C2𝑛 . Here,

we use the typical physics notation |𝜓⟩ to denote a column vector instead of (say)

𝜓 when we are describing a quantum state, with the notation ⟨𝜓| used to denote its

conjugate transpose. A quantum state in C2𝑛 can be considered a generalization of

probability distributions over 2𝑛 states (i.e., over states described by 𝑛 bits), where

the norm squared of entries of |𝜓⟩ give the measurement distribution over these states.

A general overview of quantum mechanics and, more specifically, its applications to

quantum computation can be found in Reference [7].

Just as operations that map probability distributions to probability distributions

are naturally described by stochastic matrices, operations that map (pure, 𝑛 qubit)

quantum states to (pure, 𝑛 qubit) quantum states are naturally described by unitary

matrices; equivalently, they are described by the matrix exponentials of 2𝑛×2𝑛 skew-

Hermitian matrices. Multiple quantum operations can then be described by the

sequential matrix multiplication of various matrix exponentials. It is then apparent
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that one can construct a QML model (often called an ansatz in the physics literature)

by parameterizing these matrix exponentials, giving rise to the layered structure:

|𝜃⟩ ≡
𝑞∏︁
𝑖=1

𝑈𝑖 (𝜃) |𝜓0⟩ ≡
𝑞∏︁
𝑖=1

e−i𝜃𝑖𝑄𝑖 |𝜓0⟩ , (1.5)

where here 𝑞 is the depth of the model and 𝑄𝑖 are fixed Hermitian matrices. Typically

𝑞 is polynomial in 𝑛, i.e., logarithmic in the dimension of the initial state vector |𝜓0⟩.

Though the linear nature of the model may be surprising, this model structure (for

large enough depth 𝑞) is known to be a universal approximator of all (pure) quantum

states, even for a fixed number of allowed 𝑄𝑖 [54, 55]. Note that unlike typical classical

machine learning models the unitaries in Equation (1.5) are parameterized by only a

single parameter each even though they are each of dimension 2𝑛 × 2𝑛.

For completely general (i.e., dense) 𝑄𝑖 in Equation (1.5), this model is not efficient

to implement on a quantum computer. Thus, due to their efficiency in physical

implementation, these 𝑄𝑖 are typically taken to be members of the 𝑛 qubit Pauli

group P𝑛 which forms a basis for all 2𝑛 × 2𝑛 Hermitian matrices. The Pauli group

is also convenient to study analytically, as is the normalizer of the group (called the

Clifford group). The assumption that each 𝑄𝑖 is a Pauli operator also allows us

to use a single parameter 𝜃𝑖 for each layer of the model without loss of generality;

in principle, more parameters can describe each layer by parameterizing sparse 𝑄𝑖.

However, as the Pauli group is a basis for Hermitian matrices, this is a special case

of the class of models we consider here (at the expense of larger 𝑞, new dependencies

among the 𝜃𝑖, and a controllable approximation error).

Just as in classical machine learning, QML algorithms are most often tasked with

minimizing some risk over (for our purposes, assumed pure) quantum states 𝜌 =

|𝜓⟩ ⟨𝜓|:

ℛ (𝜌) = E𝑥 [ℓ (𝑥 | 𝜌)] (1.6)

given a distribution of inputs 𝑥 and a loss function ℓ. To perform learning, one

optimizes this risk over parameterized models |𝜃⟩. In a completely analogous fashion

to classical machine learning, when this expectation cannot be efficiently taken one
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instead minimizes the empirical risk ℛ̂ (𝜃) over a given training data set 𝐷:

ℛ̂ (𝜃) =
1

|𝐷|
∑︁
𝑥𝑖∈𝐷

ℓ (𝑥𝑖 | |𝜃⟩ ⟨𝜃|) . (1.7)

Of course, just because machine learning can be performed using inherently quan-

tum models does not mean that necessarily it is a good idea to do so. Luckily, it is

known that under certain complexity theoretic assumptions there are certain tasks—

even on classical data sets—where there are known expressivity separations between

quantum and classical model classes [56–60]. These results essentially rely on reducing

certain machine learning tasks to problems believed to be in BQP but not in BPP.

However, the feasibility of performing an optimization over models which essentially

comprise all of efficient quantum computation was not considered—we will discuss

this in more detail in Section 1.3, along with Chapters 2 and 3.

1.2.3 Variational Quantum Algorithms

Perhaps the most well-studied class of quantum machine learning algorithm consists

of those classified as variational quantum algorithms (VQAs) [19]. This is a class of

generative modeling problems where the task is to prepare a state close to some target

state |𝜓target⟩. In this setting, we are not given |𝜓target⟩ directly; instead, we are given

a 2𝑛× 2𝑛 Hermitian matrix 𝐻 (called the problem Hamiltonian) where |𝜓target⟩ is the

eigenvector associated with the smallest eigenvalue of 𝐻 (called the ground state). In

this formulation, optimization proceeds via the minimization of:

𝐹VQA (𝜃) = ⟨𝜃|𝐻 |𝜃⟩ . (1.8)

In the language of risks typical in classical machine learning this can be expressed as

the minimization of:

ℛ̂VQA (𝜃) =
𝐴∑︁
𝑖=1

𝛼𝑖 ⟨𝜃|𝑃𝑖 |𝜃⟩ , (1.9)
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where:

𝐻 =
𝐴∑︁
𝑖=1

𝛼𝑖𝑃𝑖 (1.10)

is the Pauli decomposition of 𝐻. Assuming no degeneracies in the eigenspectrum

of 𝐻 and a sufficiently expressive model, the minimizer |𝜃*⟩ of Equation (1.8) is the

ground state of𝐻 up to an overall phase due to the quadratic nature of Equation (1.8).

Assuming 𝐻 is efficiently expressible as the weighted sum of O(poly (𝑛)) Pauli ma-

trices, Equation (1.8) and its gradients can be efficiently measured on a quantum

computer [19, 61]. This and similar formulations of quantum generative modeling

with Equation (1.8) as the loss function are called variational quantum algorithms

(VQAs) [19]. Generally, the goal of these algorithms is to find the state |𝜃⟩ that

optimizes Equation (1.8) up to some constant additive error in loss. Though there

are other formulations of quantum generative modeling, we here focus on VQAs as

they do not require coherent access to data |𝜓target⟩ which is generally believed to be

difficult [62].

Typically, models in VQAs come in one of two flavors: Hamiltonian agnostic mod-

els and Hamiltonian informed models. Hamiltonian agnostic models are constructed

such that the 𝑄𝑖 present in the model definition are independent of 𝐻, and are gen-

erally more efficient to implement. This is most analogous to the case in classical

generative modeling, where the model structure is usually independent from the spe-

cific choice of data distribution. This will be the setting we mostly consider through-

out this thesis, though we give some discussion on Hamiltonian informed ansatzes in

Chapters 2 and 3.

1.3 Summary of Results

1.3.1 Quantum Machine Learning Models Are Generically Un-

trainable

The close analogy between quantum and classical machine learning models gives one

hope that the same trainability results from the classical machine learning litera-
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ture [44, 45] might immediately apply to the quantum setting. Particularly, one

might hope that optimization of the loss landscape of Equation (1.9) is tractable.

Unfortunately, Chapters 2 and 3 are dedicated to showing that unlike the classical

setting, the performance of QML models is often dominated by poor performance

in the training procedure (see Appendix B.1 for a breakdown of potential sources of

error in the training of QML models). Typically the trainability of QML models is

studied more specifically in the context of VQAs, so in this summary we focus on that

setting. In Chapter 3 we also consider the trainability of more general QML models

when there is noise present by working in the statistical query setting, but we exclude

discussion in this summary for brevity.

Prior to the publication of the results featured in Chapters 2 and 3, research on

the trainability of VQAs was mainly focused on the deep model regime. It was previ-

ously known that in this regime gradients of deep variational quantum circuits vanish

exponentially with the problem size in many settings [63–65]. Unlike the vanishing

gradients that sometimes appear in classical machine learning contexts, these “barren

plateaus” in the quantum setting cannot be solved via clever initialization strategies

(like those found classically [66]) that limit their decay with depth; rather, they are

endemic to the models themselves and (for instance) can worsen even if one only in-

creases the width of a quantum model. Problematic training in the deep model regime

has also been studied beyond gradient descent [67, 68]. In short, these previous re-

sults left the door open for generic, trainable, shallow QML models. See Table 1.1

for a summary of these previous results compared with the results presented in this

thesis.

For the first time, the results presented in Chapters 2 and 3 demonstrate ana-

lytically the untrainability of QML models in the shallow regime. More specifically,

we analytically show the presence of a “phase transition” in the training of VQAs

for certain classes of randomized ansatzes inspired by the hardware-efficient class of

ansatzes, qualitatively similar to a trainability phase transition previously observed

numerically [69–72]. In particular, we demonstrate the convergence of these ansatzes

to a certain class of random fields on the hypertorus; we are then able to analytically
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Result Dimension Locality Depth Barren plateaus? Poor minima?
Reference [63] 𝑑 2 Ω

(︁
𝑛

1
𝑑

)︁
✓ ?

Reference [64] 1 2 ω (log (𝑛)) ✓ ?
Reference [65] 𝑑 2 ω

(︁
log (𝑛)

1
𝑑

)︁
✓ ?

Chapter 2 N/A 𝑛 Ω (1) ✓/✗ ✓/✗

Chapter 3 𝑑 2 Ω (1) ✗ ✓

Table 1.1: A summary of previous results on the untrainability of variational quantum
algorithms. A label of “✓/✗” denotes that certain regimes were studied where the
phenomenon was present, and certain regimes where it was not. A label of “?” denotes
that the phenomenon was not studied. “Dimension” indicates the locality structure
of the ansatzes study. For instance, Dimension = 1 denotes ansatzes with nearest-
neighbor interactions for qubits on a line.

calculate the distribution of critical points of a specified index as a function of loss

function value. Asymptotically, we are able to show that there is a “phase transition”

from an underparameterized regime—where all local minima are exponentially con-

centrated near half the mean eigenvalue of 𝐻, far from the constant additive error to

the ground state energy that is often the goal in VQAs [19]—and an overparameter-

ized regime—where all local minima are exponentially concentrated near the global

minimum of 𝐻. Numerically, we also observe this behavior at a modest depth 𝑝. Ad-

ditionally, in the process we prove novel results in the distribution of local minima for

this class of random fields which may be of independent interest. In Chapter 2, this

randomized class of ansatzes includes those with nonlocal interactions and essentially

is a result of a scrambling behavior in the ansatzes; we strengthen our arguments in

Chapter 3 to show that a similar phase transition exists even when the interactions

in the ansatzes are constrained to be local due to a “local scrambling” behavior. We

give an abbreviated overview of our results and techniques in the remainder of this

Section.

Mapping Loss Landscapes to Random Fields

Previous results in the classical machine learning literature [44, 45] on the distribution

of critical points in the loss landscape begin by mapping their class of machine learn-
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ing models of interest to a class of random fields known as Gaussian hyperspherical

random fields. These are random fields of the form:

𝐹GHRF (𝜃) ∝
𝛬∑︁

𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖
′
𝑟=1

𝜎𝑖1 . . . 𝜎𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝜎𝑖′1 . . . 𝜎𝑖′𝑟 , (1.11)

where 𝜎 is a point on the hypersphere 𝑆𝛬 parameterized by 𝜃 (for details, see Equa-

tion (2.4)). Here, each 𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟 is an i.i.d. random Gaussian variable. These

mappings rely on nonlinearities in the model providing the effective Gaussian inter-

action in Equation (1.11), and the fact that the linear transformations in the model

are completely parameterized gives the product of 𝜎𝑖 in Equation (1.11). Known

results on the loss landscape of this class of random fields [73–75] can then be used

to infer the loss landscape of the studied machine learning models; namely, that the

local minima of the landscape concentrate near the global minimum.

Our mapping of Equation (1.8) with a class of Hamiltonian agnostic ansatzes

differs from the classical machine learning construction in two major ways. First, the

variational ansatz is linear; the nonlinearity of the classical construction was crucial

in giving the effective Gaussian couplings 𝐽 . Second, the unitaries in variational

ansatzes are (usually) parameterized rotations by simple Pauli strings; this means

the product of unitaries in the ansatz do not give a simple product of the ansatz

parameters as in Equation (1.11), and each layer is vastly underparameterized. We

will later find that this latter fact gives rise to the qualitative differences in the loss

landscapes of deep neural networks and variational quantum algorithms.

Thus, our mapping relies on a different strategy. In Chapter 2, to make the

mapping tractable, we consider ansatzes built from rotations by uniformly random

Pauli strings. This has the added benefit of making the parameters of our ansatz

naturally described as points on the hypertorus. We then consider the path integral

expansion of Equation (1.8), where each path is weighted by the parameters of the

anstaz and various matrix elements of 𝐻. Then, we show at fixed 𝐻 that these matrix

elements are approximately a sum of (shifted) Wishart random variables. These are

just simple multivariate generalizations of the gamma distribution; for more details on
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Wishart random matrices as well as random fields constructed from Wishart matrices,

see Section 2.3.3. Finally, we express this sum of Wishart random variables as a single

Wishart random variable which is close in distribution under reasonable assumptions

on 𝐻. This means that, unlike the classical case, the natural random field to study

for VQAs is the Wishart hypertoroidal random field (WHRF) which we introduce in

Chapter 2. These results are summarized in the following (informal) theorem:

Theorem 1.1 (Nonlocal VQAs as WHRFs, informal statement of Theorems A.1

and A.2). Consider the class of ansatzes:

|𝜃⟩ ≡
𝑞∏︁
𝑖=1

𝑈𝑖 (𝜃) |𝜓0⟩ ≡
𝑞∏︁
𝑖=1

e−i𝜃𝑖𝑄𝑖 |𝜓0⟩ , (1.12)

where each 𝑄𝑖 is drawn uniformly from the Pauli group P𝑛 and |𝜓0⟩ is a uniformly

random stabilizer state. Let 𝑝 be the number of distinct 𝜃𝑖, and let 𝑟 = 𝑞/𝑝. Under

reasonable assumptions on the eigenvalues of 𝐻 (with ground state energy 𝜆1), the

random variational objective function

𝐹𝐻 (𝜃) =
⟨𝜃|𝐻 |𝜃⟩ − 𝜆1
2−𝑛 ‖𝐻 − 𝜆1‖*

(1.13)

converges in distribution to the random field

𝐹WHRF (𝜃) =
2𝑝∑︁

𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖
′
𝑟=1

𝑤𝑖1 . . . 𝑤𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝑤𝑖′1 . . . 𝑤𝑖′𝑟 , (1.14)

where 𝑤 are points on the hypertorus (𝑆1)
×𝑝 parameterized by 𝜃 and 𝐽 is a complex

Wishart random matrix normalized by its number of degrees of freedom. ‖·‖* denotes

the nuclear norm of ·.

For the class of ansatzes we consider and for physically relevant 𝐻, 𝐽 has 𝑚 =

Θ(2𝑛) degrees of freedom.

In Chapter 3, we extend these results to also include local VQAs (assumed to be

shallow, as untrainability results for deep local VQAs are already known [63–65]).

These results can be summarized by the following (informal) theorem:
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Theorem 1.2 (Local VQAs as WHRFs, informal statement of Theorem B.18). Con-

sider a class of ansatzes as in Equation 1.12 but with the 𝑄𝑖 now constrained to be

local and 𝑟 = 1 for simplicity. Let 𝑙 be the number of parameters in the reverse

lightcone of any observable in the Pauli decomposition of 𝐻. Then, 𝐹𝐻 converges in

distribution to the random field

𝐹WHRF (𝜃) =
2𝑙∑︁

𝑖,𝑖′=1

𝑤𝑖𝐽𝑖,𝑖′𝑤𝑖′ , (1.15)

where 𝑤 are points on the hypertorus (𝑆1)
×𝑝 parameterized by 𝜃 and 𝐽 is a complex

Wishart random matrix normalized by its number of degrees of freedom.

We find that in this setting, 𝐽 has 𝑚 = Θ
(︀
𝑛2𝑙
)︀
= 𝜔 (𝑙) degrees of freedom.

The Loss Landscapes of Wishart Hypertoroidal Random Fields

Once mapped to a standard random field on a compact manifold, we can utilize

results from Morse theory to find the expected distribution of critical points of the

WHRF loss function (and therefore those of Equation (1.8)) by studying the joint

distribution of the loss function, its gradient, and its Hessian. In the classical machine

learning case these random fields are all Gaussian. This follows from the fact that

sums of the independent Gaussian coefficients in Equation (1.11) are also Gaussian.

However, the entries of Wishart 𝐽 are not independent—this can easily be seen as 𝐽

is positive semidefinite. Luckily, through explicit calculation we are able to show that

the Hessian (conditioned on being at a critical point) takes the simple form of the

sum of a Wishart matrix and an independent Gaussian matrix. The joint distribution

with the loss and gradient takes on a similarly simple form.

With the joint distribution of the loss function and its derivatives in hand, we are

able to use results from Morse theory to find the expected distribution of critical points

of the WHRF loss function at various energies 𝐸 (in units of the mean eigenvalue

2−𝑛 ‖𝐻 − 𝜆1‖*). Though the results are unwieldy—involving an expectation over the

eigenvalues of the sum 𝐶 of independent Wishart and Gaussian matrices—they are
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exact. Furthermore, the exact formula allows us to probe the expected distribution of

critical points of various indices 𝑘, where 𝑘 labels the number of negative eigenvalues

of the Hessian at the critical point (e.g., 𝑘 = 0 probes local minima). The informal

result (for WHRFs on the 𝑝-torus) is as follows:

Theorem 1.3 (WHRF critical point distribution, informal statement of Theorem A.5).

Let 𝜇𝐶(𝐸) be the eigenvalue distribution of a random matrix 𝐶 (𝐸) drawn from a cer-

tain distribution of random matrices dependent on 𝐸. Then, the expected number of

critical points of index 𝑘 at an energy 𝐸 is

E [Crt𝑘 (𝐸)]

=
(︁π
𝑟

)︁ 𝑝
2
Γ (𝑚)−1𝑚(1+𝛾)𝑚E𝐶(𝐸)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝐸|)d𝜇𝐶(𝐸)1

{︁
𝜆
𝐶(𝐸)
𝑘+1 ≥ 2𝑟𝐸

}︁]︁
𝐸(1−𝛾)𝑚−1e−𝑚𝐸,

(1.16)

where

𝛾 =
𝑝

2𝑚
(1.17)

and 𝜆𝐶𝑖 is the 𝑖th smallest eigenvalue of 𝐶.

The precise statement of this theorem is given in Appendix A, along with the

distribution from which 𝐶 (𝐸) is drawn. We call 𝛾 in Equation (1.17) the overparam-

eterization factor ; it is the (scaled) ratio of the number of independent parameters of

the loss function to the number of degrees of freedom 𝑚 of the WHRF. As discussed

in Section 1.3.1, 𝑚 is generically exponential in 𝑛 for nonlocal ansatzes, so unless

the Hamiltonian agnostic ansatz has exponentially many parameters 𝛾 is very small.

Similarly, for shallow local ansatzes 𝑚 is generically exponential in 𝑙 + log (𝑛); here,

𝛾 will always be very small.

Asymptotic Limits of the Critical Point Distribution

Though Equation (1.16) gives the exact distribution of critical points, it is difficult to

use in practice. As mentioned in Section 1.3.1, this difficulty comes from the expec-

tation over eigenvalues of the sum of independent Wishart and Gaussian matrices.

Surprisingly, however, the eigenvalues of both Wishart and Gaussian orthogonal ma-
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trices converge in distribution to fixed distributions. Roughly, asymptotically in the

size of the matrix, the eigenvalue distributions of all normalized Wishart matrices

are the same (given by the Marchenko–Pastur distribution) and the eigenvalue dis-

tributions of all Gaussian orthogonal matrices are the same (given by the Wigner

semicircle distribution). Putting aside deviations from this convergence for the mo-

ment, an asymptotic treatment of Equation (1.16) can be given when considering the

asymptotic behavior of the eigenvalue distribution of the sum of these matrices.

Luckily, we can characterize the asymptotic distribution of eigenvalues of the sum

well using the tools of free probability theory. Roughly, free probability theory is

the probability theory of noncommutative random variables (e.g., random matrices).

As the distribution of the sum of two random variables in commutative probability

theory can be described by the convolution of the distributions of the two indepen-

dent random variables, so can the free convolution of the distributions of two freely

independent noncommutative random variables. Using the asymptotic free indepen-

dence of Wishart and Gaussian orthogonal random variables, we are able to show

that asymptotically the eigenvalue distribution of their sum weakly converges to the

free convolution of a Marchenko–Pastur distribution with a semicircle distribution.

However, weak convergence is not enough; due to the exponential factor in the

expectation, any large deviations from the asymptotic convergence—even if they occur

with exponentially vanishing probability—can potentially cause large deviations from

the naive application of free probability theory. In Appendix A we are able to bound

the probability of these large deviations, and show that unlike the Gaussian case [73]

to (logarithmic) leading order they do not contribute to the final result. This is due

to the contribution to the expectation from the deviations being dominated by what

is predicted by free probability theory.

Armed with an asymptotic expression for the distribution of critical points, we

specialize to two limits for WHRFs on the 𝑝-torus: 𝑝 ≥ 2𝑚 (i.e., the overparameterized

regime) and 𝑝≪ 𝑚 (i.e., the underparameterized regime). In the former, we show to

leading multiplicative order in 𝑝 ≫ 1 that all local minima are located at the global

minimum. Though the classes of ansatzes differ, we believe that a similar phenomenon
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gives rise to the phase transition in trainability observed in References [69–72]. In the

underparameterized regime, we show that the density of local minima approximately

follows a compound confluent hypergeometric (CCH) distribution [76]:

𝑓CCH (𝐸 | 𝑝,𝑚) ∝ e−𝐸𝐸𝑚− 𝑝
2 (1− 2𝐸)𝑝 , (1.18)

which has a width ∼ 𝑚−1 and is centered near 𝐸 = 1
2
− 𝛾 (i.e., near half of the

mean eigenvalue of the objective observable when units are restored) when 𝛾 ≪

1. In other words, these local minima are exponentially concentrated far from the

global minimum, rendering such models untrainable when in the underparameterized

machine. As reaching the overparameterized regime requires large-depth quantum

models—a regime shown by References [63–65] to be inconducive to training due

to the presence of barren plateaus—this result implies that all generic VQAs are

untrainable.

In the time since the results featured in Chapters 2 and 3 were made public, others

have studied the trainability of VQAs in the shallow model regime. In a similar line

of research, Reference [77] showed that for certain quantum variational ansatzes or

quantum neural networks there exist data sets and loss functions which induce expo-

nentially many local minima in the loss landscape. References [78, 79] both showed

that in an overparameterized regime these models experience good local minima,

though this transition to trainability typically occurs at an intractable number of pa-

rameters. Finally, assuming the presence of a constant rate of noise per ansatz gate,

Reference [80] showed convergence of the loss landscape to the uniform distribution

at a rate exponential in the circuit depth.

1.3.2 Classical Simulability of Symmetric Quantum Machine

Learning Models

The introduction of these untrainability results motivates the construction of non-

generic QML models. The most straightforward way to achieve this is through the

introduction of symmetry equivariant models [46]. Given a representation 𝑅 (𝐺) of a
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(here assumed finite) symmetry group 𝐺, these models undergo parameterized time

evolution under Hermitian operators 𝐻𝑖 that commute with the representation:

[𝑅 (𝐺) , 𝐻𝑖] = 0. (1.19)

As the untrainability results of Chapters 2 and 3—as well as the results mentioned

in Section 1.3.1—are due to the exponential scaling (with the system size) of the de-

grees of freedom of generic quantum machine learning models, considering symmetry-

restricted models that have fewer effective degrees of freedom intuitively yields train-

able QML models. Indeed, for the symmetric group 𝐺 = S𝑛 with representation

𝑅 (𝐺) given by products of SWAP operators acting on an 𝑛 qubit Hilbert space this

has been shown analytically [47].

However, in Chapter 4, we show that this reduction in the effective degrees of

freedom of the QML model can yield efficient classical simulation algorithms. We first

state very general results for general (finite) symmetry groups 𝐺 and then specialize

to the symmetric group as an explicit example.

General Symmetry Groups

Our general results are essentially a consequence of the (potential) existence of more

efficient representations of symmetry equivariant models than ones that act on a 2𝑛-

dimensional Hilbert space. As a warm-up, let us first consider finding the ground

state energy of a Hamiltonian 𝐻 that commutes with a group representation 𝑅 of 𝐺

acting on 2𝑛-dimensional Hilbert space. We can consider the isotypic decomposition

of this representation into irreducible representations (irreps):

𝑅 =
⨁︁
𝜆

𝑉 ⊕𝑞𝜆
𝜆 . (1.20)
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Schur’s lemma [81] then implies that any element 𝑎 of (the natural representation of)

the commutant 𝑋 of 𝑅 must be of the form:

𝑎 =
⨁︁
𝜆

𝑈𝜆 ⊗ 𝐼dim(𝑉𝜆), (1.21)

where 𝑈𝜆 acts on a 𝑞𝜆-dimensional vector space. However, 𝑋 has another represen-

tation 𝐵 where the element 𝑎 represents in 𝑋 has representation:

𝑏 =
⨁︁
𝜆

𝑈𝜆. (1.22)

Note that this representation is only
∑︀
𝜆

𝑞𝜆-dimensional rather than
∑︀
𝜆

dim (𝑉𝜆) 𝑞𝜆-

dimensional, and that the smallest eigenvalue of 𝑏 is identical to that of 𝑎. In par-

ticular, considering 𝐻 ∈ 𝑋 in a more efficient representation immediately yields an

algorithm for determining the ground state energy of 𝐻 more efficiently than the

naive algorithm. Luckily, there exists an efficiently (in the dimension of 𝑋) calcula-

ble representation of 𝑋 acting on a vector space only of dimension dim (𝑋) called the

regular representation. This observation immediately yields the following (informally

stated) theorem:

Theorem 1.4 (Algorithm for finding the ground state energy of symmetric Hamilto-

nians, informal statement of Theorem 4.2). Let 𝐻 be a Hamiltonian that represents

an element of the commutant 𝑋 of 𝑅. The ground state energy of 𝐻 can be found in

time O
(︀
dim (𝑋)3

)︀
. We give a classical algorithm to do so in Chapter 4.

We also give a variant of this algorithm that allows one to find the ground state

itself in a given preferred basis.

These same ideas can also be used to simulate equivariant dynamics followed by

measurement of an operator 𝑂 commuting with the group representation 𝑅. No-

tably, these results do not require the initial state of the dynamics to commute with

the group representation. Instead, we show that given a certain classical descrip-

tion (more specifically, a classical shadow [82] description) of a general initial state,

evolution under the given equivariant dynamics followed by measuring 𝑂 can be sim-
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ulated to small additive error with high probability. These results informally can be

summarized in the following way:

Theorem 1.5 (Algorithm for simulating equivariant dynamics, informal statement

of Theorem 4.4). Equivariant dynamics acting on an arbitrary quantum state fol-

lowed by measurement of a symmetry invariant operator 𝑂 can be simulated with high

probability to low additive error in time polynomial in dim (𝑋). We give a classical

algorithm to do so in Chapter 4.

Specialization to the Symmetric Group

These theorems immediately specialize to𝐺 equaling the symmetric group. In particular—

optimizing the time complexities slightly from the general statements—we have that:

Corollary 1.6 (Algorithm for finding the ground state energy of S𝑛-invariant Hamil-

tonians, informal statement of Corollary 4.5). Let 𝐻 be a Hamiltonian on 𝑛 qubits

invariant under permutations of these qubits. The ground state energy of 𝐻 can be

found in time O(𝑛8). We give a classical algorithm to do so in Chapter 4.

and:

Corollary 1.7 (Algorithm for simulating S𝑛-equivariant dynamics, informal state-

ment of Corollary 4.8). S𝑛-equivariant dynamics acting on an arbitrary quantum state

followed by measurement of a symmetry invariant operator 𝑂 can be simulated with

high probability to low additive error in time O(𝑛4). We give a classical algorithm to

do so in Chapter 4.

Interestingly, we show that this latter algorithm can be parallelized in a way

such that its time complexity is effectively less than the quantum algorithm given in

Reference [47] for performing inference using S𝑛-equivariant QML models; our result

in this instance can be thought of as a “fast-forwarding” of the quantum time evolution

as noticed in Reference [83]. Our results here demonstrate the nontrivial balancing

act one has to perform when constructing QML models: not only must they be

constructed in a way to avoid the untrainability results discussed in Section 1.3.1, but
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also (ideally) one should prove a separation over classical machine learning algorithms

to avoid dequantization results similar to those presented here.

1.3.3 Provable Expressivity Advantage in Trainable Quantum

Machine Learning Models

As mentioned in Section 1.2.2, all previous proofs of advantage in the expressivity

of QML models over classical models rely on results from computational complexity

theory, themselves conditional on complexity theoretic assumptions [56–60]. As the

proofs of separation are abstract, it is unclear what realistic classical data sets one

should expect a separation to hold in practice. Also, due to the universality of many

of these models, they are very likely to be untrainable due to phenomena outlined

in Section 1.3.1; and, as Section 1.3.2 demonstrated, it is nontrivial to find classes of

quantum models that exhibit both trainability and still yield a quantum advantage

over classical models. Because of these concerns, it has become increasingly clear that

quantum models should be carefully constructed to fit the task at hand. Above all

else, the interpretability of any expressivity separation achieved by a QML model has

become increasingly important. Interpretability reveals which features of quantum

mechanics yield more expressive models compared to classical models and, armed

with this knowledge, allows one to find classes of problems where a practical quantum

advantage on real data is potentially achievable.

In Chapter 5, we give the first unconditional separation in the expressive power of

quantum generative models and a wide class of classical neural networks on sequence-

to-sequence learning tasks [84]. We consider a quantization of linear recurrent neural

networks, where time evolution is performed under a Hamiltonian quadratic in the

canonical operators 𝑞𝑖 and 𝑝𝑖. To measure properties of the state of the system, the

most natural choice is to perform homodyne measurement ; that is, measure linear

combinations of the canonical operators. This yields a quantum generative model

where all operations are Gaussian. However, as all operations are Gaussian, there are

efficient Wigner function based simulations of sampling from such a system [85]. In
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other words, such models on 𝑛 modes are equivalent to deep belief networks [86]—a

class of commonly used classical models—with 2𝑛 latent variables.

Instead, we extend this model slightly further by allowing for measurements of the

canonical operators modulo 2π. We call this introduced class of models contextual re-

current neural networks (CRNNs). Our main result is that CRNNs are more memory

efficient at expressing certain distributions than essentially all trainable classical se-

quence models, even though CRNNs are not universal for continuous variable (CV)

quantum computation. Concretely, we show unconditionally that there exists a class

of CRNNs with O(𝑛) quantum neurons that can express certain distributions that no

“reasonable” classical model is able to represent without an Ω (𝑛2)-dimensional latent

space. Though this is only a quadratic separation in memory, the time complexity

of inference for classical models is typically superlinear in the model size [48, 87–

89], often yielding a superquadratic time separation. Surprisingly, this separation is

true even when the classical model is nonlinear even though the quantum model is a

quantization of a linear model.

Moreover, we are able to show directly that this quantum advantage is due to

quantum contextuality [90–94] present in our quantum model. Intuitively, the source

of our separation is the ability for the quantum model to efficiently store certain cor-

relations that can be probed via different measurement contexts. More formally, we

demonstrate that CV stabilizer states with contextual stabilizers have one-shot “par-

tially” distinguishing measurement sequences in the sense that one of many (certain)

hypotheses for a state can be ruled out with certainty using only one copy of the

state. This phenomenon is summarized via the following (informally stated) lemma,

proven in Appendix D:

Lemma 1.8 (Quantum contextuality yields partially distinguishing measurement se-

quences, informal statement of Lemma D.1). Consider three CV stabilizer states with

contextual stabilizers exhibiting certain properties. There exists a one-shot “partially”

distinguishing measurement sequence given by certain stabilizers of these states.

This property essentially requires any classical simulation of intermediate mea-
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surements on these stabilizer states to explicitly memorize the measurement context

at any given point, as otherwise a tester can with certainty determine that the classical

simulation algorithm is not accurately simulating the quantum system.

This inspires a method to prove a concrete memory separation between classical

and quantum sequence models. We consider the modeling of a conditional distribu-

tion 𝑝data (𝑚 | 𝑠) of measurement results𝑚 given a classical description of a sequence

of displacement operators 𝑠. The goal of the translation task is to output a sequence

of real numbers that are consistent with quantum mechanics when sequentially per-

forming phase estimation on these displacement operators when beginning in a fixed

initial GKP state [95]. We call this task (when the sequence length is 𝑘 and the dis-

placement operators are on 𝑛 qumodes) the (𝑘, 𝑛) stabilizer measurement translation

task. For arbitrary 𝑘, it is straightforward to see that a CRNN can sample from this

distribution with 𝑛 qumodes of memory. We first prove in Chapter 5 a separation on

this task over online models—namely, classical machine learning model which act on

the input sequence one word at a time.

Theorem 1.9 (Online stabilizer measurement translation memory lower bound, in-

formal statement of Theorem D.2). Consider a “reasonable” online model with latent

space 𝐿. If dim (𝐿) < 𝑛(𝑛−3)
2

, this model incorrectly translates an input sequence in

the (𝑘, 𝑛) stabilizer measurement translation task for all 𝑘 ≥ 𝑛+ 2.

We also show a more general separation over essentially all classical machine

learning models at the cost of a longer input sequence length. Interestingly, the class

of classical models this separation holds over includes Transformers [89], an example

of which is the state-of-the-art sequence model GPT-4 [39].

Theorem 1.10 (General stabilizer measurement translation memory lower bound,

informal statement of Theorem D.4). Consider a “reasonable” classical machine learn-

ing model with latent space 𝐿. If dim (𝐿) < 𝑛(𝑛−3)
2

, this model incorrectly translates

an input sequence in the (𝑘, 𝑛) stabilizer measurement translation task for all 𝑘 ≥ 𝑛2.

The strategy of these proofs involves demonstrating that classical machine learning

models must not be injective over certain inputs if dim (𝐿) is subquadratic in 𝑛, and
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then showing that the associated states must satisfy the assumptions of Lemma 1.8.

In Appendix D we also give an interpretation of our results as a memory lower bound

on the classical simulability of certain CV circuits.

Finally, we also show empirically that these models are more efficient at per-

forming a real-world translation task than classical sequence models of the same

dimension, even when compared with state-of-the-art neural sequence models such

as GRU RNNs [88] and Transformers [89]. This separation holds even when both

the classical and quantum models have very similar numbers of parameters. These

results taken together provide a promising avenue for showcasing a real (polynomial)

quantum advantage on a practical task in a near-term experiment.

To our knowledge, these results are the first unconditional proofs of an expressiv-

ity separation between a quantum neural network and classical neural networks on

classical data. By explicitly demonstrating that quantum contextuality is the source

of this advantage, we are also able to provide intuition as to which classes of prob-

lems CRNNs are able to outperform traditional machine learning models in solving.

Our numerics confirm the intuition that CRNNs perform extremely well on problems

exhibiting linguistic contextuality.

CRNNs demonstrate that even the quantization of a very simple class of classical

architectures—here, the class of linear recurrent neural networks (LRNNs)—is able

to outperform a wide range of classical models on certain tasks, even if the classical

models are much more powerful than LRNNs. In Chapter 6, we consider future

directions for constructing quantum models that exhibit a larger memory separation

over classical models while maintaining trainability.
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Chapter 2

Critical Points in Quantum

Generative Models

The results of this chapter were featured in Reference [49].

2.1 Introduction

One of the great successes of neural networks is the efficiency at which they are

trained via gradient-based methods. Though training algorithms often involve the

optimization of complicated, non-convex, high-dimensional functions, training via

gradient descent in many contexts manages to converge to local minima that are good

approximations of the global minimum in loss function value. This phenomenon has

begun to be understood in the context of random matrix theory, particularly when

applied to dense classifiers [44, 45].

Quantum generative models hold great promise in their ability to sample from

probability distributions out of the reach of classical models [8, 96]. Though deep

quantum generative models are believed to be difficult to train due to vanishing

gradients [63, 64, 97], the situation for shallow models is murkier. Some shallow

quantum models have empirically shown great promise in being trainable [70–72],

while others have empirically been shown to suffer from poor distributions of local

minima [69, 98]. Numerically, all of these models have been seen to experience a
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phase transition in trainability: below some critical depth, local minima are poor

approximators of the global minimum. Above this critical depth, they are good

approximators. This transition has been poorly understood analytically, as typically

the distribution of local minima monotonically improves as the size of the model

increases [44, 45].

In this Chapter, we (for the first time) analytically show the presence of a com-

putational phase transition in the training of a certain class of quantum generative

models. To achieve this, we first show that this class of randomized quantum models

is approximated in distribution by a Wishart random field on the hypertorus. We are

then able to use techniques from Morse theory to exactly calculate the distribution

of local minima (and general critical points) of this random field. Finally, we analyze

this distribution in the limit of large model size, and analytically show the presence

of this trainability phase transition. Roughly, we show that in this limit the expected

density of local minima for a model with 𝑝 parameters and Hilbert space dimension

∼ 𝑚 (exponential in the problem size) at loss value 0 ≤ 𝐸 ≤ 1
2

follows a generalization

of the beta distribution [76]:

E [Crt0 (𝐸)] ∼ e−𝑚𝐸𝐸𝑚− 𝑝
2 (1− 2𝐸)𝑝 . (2.1)

This distribution experiences a transition in behavior at 𝑝 = 2𝑚: when 𝑝 < 2𝑚,

local minima are exponentially concentrated (i.e. with width 𝑚−1) far away from

the global minimum 𝐸 = 0, implying poor optimization performance in this regime.

When 𝑝 ≥ 2𝑚, this distribution is exponentially concentrated at 𝐸 = 0, implying

good optimization performance. We also verify our results numerically, demonstrating

this concentration of minima even at small problem sizes. More specifically, when

𝛾 ≡ 𝑝

2𝑚
= o

(︂
1

log (𝑛)

)︂
, (2.2)

a superpolynomially small (in 𝑛) fraction of the local minima are within any con-

stant additive energy error to the global minimum. This is typically extensive in the

problem size when units are restored to Equation 2.1. We thus call 𝛾 the overparame-
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Figure 2-1: Plot of the asymptotic distribution of local minima of WHRFs with 𝑚
degrees of freedom on the 𝑙-torus in: the extremely underparameterized regime, where
𝑙 ≪ 2𝑚; the moderately underparameterized regime, where 𝑙 is a finite fraction of
2𝑚; and at the critical overparameterization regime, where 𝑙 = 2𝑚. Here, the energy
is scaled and shifted as per Equation (3.6) so that global minima have zero energy. In
the underparameterized regime, only a fraction ∼ exp (−𝑚) of the critical points are
within any constant additive error of the global minimum. In the overparameterized
regime, local minima are exponentially concentrated at the global minimum.
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terization factor. Representative plots of this distribution in various parameterization

regimes are shown in Figure 2-1.

For the class of quantum generative models we consider, our results mirror the

empirical results of [69, 98] in that only unreasonably overparameterized quantum

models have good local minima. Though these results are pessimistic, we emphasize

here that our results only apply to a certain class of quantum generative models. We

are also able to give a heuristic explanation based on our proof techniques as to how

one may be able to construct models of a reasonable size that are still trainable at the

expense of computational overhead in implementing the model, as seen empirically

in References [70–72].

2.2 Machine Learning Loss Landscapes as Random

Fields

2.2.1 Random Fields on Manifolds

As in previous results on the loss landscapes of machine learning models [44, 45], we

will map the distribution of a randomized class of quantum generative models to a

random field on a manifold. This will then enable us to use standard mathematical

techniques to study the distribution of critical points of the model.

Though they can be expressed in many ways, here we will be interested in random

fields of the form:

𝐹RF (𝜎) ∝
𝛬∑︁

𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖
′
𝑟=1

𝜎𝑖1 . . . 𝜎𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝜎𝑖′1 . . . 𝜎𝑖′𝑟 . (2.3)

Here, 𝜎 ∈ 𝑀 is some point on a manifold, and 𝐽 is a random variable. In the

context of most studies of machine learning loss landscapes, 𝑀 is typically the hyper-

sphere and 𝐽 a symmetric matrix of i.i.d. Gaussian random variables, i.e. a Gaussian

orthogonal ensemble (GOE) matrix.

We will instead find that variational quantum algorithms (VQAs) are naturally
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described as Wishart hypertoroidal random fields (WHRFs). For these models, the

manifold 𝑀 is a tensor product embedding of the hypertorus into exponentially large

Euclidean space; that is, points on this embedding are described by the Kronecker

product:

𝜎 =
⨂︁
𝑖

⎛⎝cos (𝜃𝑖)

sin (𝜃𝑖)

⎞⎠ (2.4)

for angles −π ≤ 𝜃𝑖 ≤ π. Furthermore, in these models, 𝐽 is drawn from a normalized

complex Wishart distribution. The complex Wishart distribution is a natural mul-

tivariate generalization of the gamma distribution, and is given by the distribution

of the square of a complex Gaussian random matrix. Specifically, for 𝑋 ∈ C𝑛×𝑚 a

matrix with i.i.d. complex Gaussian columns with covariance matrix 𝛴, the matrix

𝑊 =
1

𝑚
𝑋 ·𝑋† (2.5)

is normalized complex Wishart distributed with scale matrix 𝛴 and 𝑚 degrees of

freedom. Throughout this thesis we use the notation 𝑊 ∼ 𝒞𝒲𝑛 (𝑚,𝛴) to denote a

𝑊 drawn from such a complex Wishart distribution, and similarly 𝑊 ∼ 𝒲𝑛 (𝑚,𝛴)

when drawn from a real Wishart distribution. We will find that the degrees of freedom

𝑚 will greatly affect the distribution of local minima of the WHRF, and thus also of

the class of quantum generative models that we consider.

2.2.2 Quantum Generative Models as Random Fields

We first show that a certain randomized class of Hamiltonian agnostic VQAs—as de-

scribed in Section 1.2.2—can be expressed as WHRFs. In most quantum generative

models, various 𝜃𝑖 are completely dependent, e.g. 𝜃𝑖 = 𝜃𝑖+5 for all 𝑖 [61]. For sim-

plicity, we assume throughout this Chapter that each independent parameter appears

a constant number 𝑟 times in the model, and that the total number of independent

parameters is given by 𝑝 = 𝑞/𝑟.

This demonstration of the convergence of certain VQAs to WHRFs will allow us

to more easily study the critical points of the model using techniques from random
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matrix theory. Though we leave the full statement and proof for Appendix A.1, we

give an informal statement and discussion here.

Theorem 2.1 (VQAs as WHRFs, informal statement of Theorems A.1 and A.2).

Consider the class of models

|𝜃⟩ ≡
𝑞∏︁
𝑖=1

𝑈𝑖 (𝜃) |𝜓0⟩ ≡
𝑞∏︁
𝑖=1

e−i𝜃𝑖𝑄𝑖 |𝜓0⟩ , (2.6)

where each 𝑄𝑖 is drawn uniformly from the Pauli group P𝑛 and |𝜓0⟩ is the first column

of a uniformly random member of the Clifford group. Let 𝑝 be the number of distinct

𝜃𝑖, and let 𝑟 = 𝑞/𝑝. Under reasonable assumptions on the eigenvalues of 𝐻 (with

minimum eigenvalue 𝜆1 and mean eigenvalue 𝜆), the random loss function

𝐹𝐻 (𝜃) =
⟨𝜃|𝐻 |𝜃⟩ − 𝜆1

𝜆− 𝜆1
(2.7)

converges in distribution to the random field

𝐹WHRF (𝜃) =
2𝑝∑︁

𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖
′
𝑟=1

𝑤𝑖1 . . . 𝑤𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝑤𝑖′1 . . . 𝑤𝑖′𝑟 , (2.8)

where 𝑤 are points on the hypertorus (𝑆1)
×𝑝 parameterized by 𝜃 and 𝐽 is a complex

Wishart random matrix normalized by its number of degrees of freedom 𝑚.

Note that for convenience, we have shifted and scaled the typical VQA loss such

that it is always greater than zero and independent from overall scalings of the problem

Hamiltonian.

In the course of this mapping, we find that the degrees of freedom of the Wishart

matrix 𝐽 (formally a real number) is given by the ratio:

𝑚 ≡ ‖𝐻 − 𝜆1‖
2
*⃦⃦

𝐻 − 𝜆
⃦⃦2

F

. (2.9)

Here, ‖·‖* denotes the nuclear norm, and ‖·‖F the Frobenius norm. Generally, this

ratio is exponential in 𝑛, particularly when modeling the class of ground states typi-

50



cally represented by VQAs [19, 61, 99]. Though we are unable to prove Theorem 2.1

for Hamiltonian informed models, there are heuristic reasons to believe that they

are described by a similar random field with 𝑚 = O(poly (𝑛)), as opposed to Equa-

tion (2.9) (see Appendix A.1.3 and empirical evidence in Section 2.4). We will later

find that a number of independent model parameters 𝑝 that is twice the degrees of

freedom 𝑚 of the matrix 𝐽 marks the transition from the underparameterized to the

overparameterized regime of 𝐹WHRF, where the quality of local minima improves.

The general idea for showing this equivalence relies on the path integral expansion

of the VQA loss function. Effectively, this is just a Taylor expansion of the unitary

matrices composing the model, which is exact even at a finite number of terms.

One can then show that terms in this expansion can be assumed independent with

negligible error in distribution, and then show that the resulting random process is

asymptotically a WHRF. The reasonable assumptions on the eigenvalues of 𝐻 are

essentially just a requirement that the eigenvalues of 𝐻 are not “unnaturally” spread

out; for the quantum states VQAs typically model, this is never the case. We give a

full description of these requirements with the full proof in Appendix A.1.

2.3 The Loss Landscape of Wishart Hypertoroidal

Random Fields

2.3.1 Exact Results

Having shown that VQAs can be described as WHRFs, we now focus discussion

entirely on WHRFs. Our strategy for showing the distribution of critical points of

this random field will be similar to that in Reference [73], where similar results were

shown for Gaussian spherical random fields. Namely, we will lean heavily on the

Kac–Rice formula, which gives the expected number of critical points of a certain

index at a given range of function values for random fields on manifolds. We give an

informal description of the Kac–Rice formula here, with the formal version given in

Appendix A.2.
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Lemma 2.2 (Kac–Rice formula [100], informal statement of Lemma A.3). Let 𝑀

be a compact, oriented manifold. Assume a random field 𝐹 (𝜎) on 𝑀 is sufficiently

nice. Then, the number of critical points of index at most 𝑘 with 𝐹 (𝜎) ∈ 𝐵 for an

open set 𝐵 ⊂ R is

E [Crt𝑘 (𝐵)]

=

∫︁
𝑀

E
[︀⃒⃒
det
(︀
∇2𝐹 (𝜎)

)︀⃒⃒
1 {𝐹 (𝜎) ∈ 𝐵}1

{︀
𝜄
(︀
∇2𝐹 (𝜎)

)︀
≤ 𝑘

}︀
|∇𝐹 (𝜎) = 0

]︀
× 𝑝𝜎 (∇𝐹 (𝜎) = 0) d𝜎 ,

(2.10)

where ∇· is the covariant gradient, 𝜄 (·) is the index of ·, 𝑝𝜎 is the probability density

of ∇𝐹 (𝜎) at 𝜎, and d𝜎 is the volume element on 𝑀 .

From Lemma 2.2, we see that when the joint distribution of ∇2𝐹 , ∇𝐹 , and 𝐹 is

known, then the expected number of critical points with function values in an open

set 𝐵 can be calculated. Perhaps surprisingly, as in the Gaussian case, the joint

distribution of these derivatives for WHRFs is fairly simple. Once again leaving the

full proof for Appendix A.3, we show the distribution of the Hessian conditioned to

be at a critical point of function value 𝑥 can be described by the shifted sum of a

Wishart matrix with an independent GOE matrix. Similarly, the distribution of the

gradient conditioned on the function value being 𝑥 is given by a normal distribution.

Lemma 2.3 (Hessian and gradient distributions, informal statement of Lemma A.4).

The scaled Hessian 𝑚𝜕𝑖𝜕𝑗𝐹WHRF (𝑤) conditioned on 𝐹WHRF (𝑤) = 𝑥 and 𝜕𝑘𝐹WHRF (𝑤) =

0 is distributed as

𝑚𝐶𝑖𝑗 (𝑥) = −2𝑟𝑚𝑥𝛿𝑖𝑗 + 𝑟𝑊𝑖𝑗 + 𝑟
√
2𝑚𝑥𝑁𝑖𝑗, (2.11)

where 𝑊 is Wishart distributed with 2𝑚 degrees of freedom, 𝑁 GOE distributed, and

they are independent. Furthermore, the scaled gradient 𝑚𝜕𝑘𝐹WHRF (𝑤) conditioned

on 𝐹WHRF (𝑤) = 𝑥 is distributed as

𝑚�̃�𝑘 (𝑥) =
√
2𝑚𝑟𝑥𝑁𝑘, (2.12)
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where 𝑁𝑘 are i.i.d. standard normal distributions independent from all 𝑊𝑖𝑗 and 𝑁𝑖𝑗.

With all of the pieces in place, we are able to explicitly calculate the expected

distribution of local minima in WHRFs via the Kac–Rice formula (with full calcu-

lations left for Appendix A.3). In Section 2.4 we find empirical evidence that these

results hold not only in expectation, but in distribution; we leave further analytic

investigation of this to future work.

Theorem 2.4 (Distribution of critical points in WHRFs, informal statement of The-

orem A.5). Let

𝜇𝐶(𝑥) =
1

𝑝

𝑝∑︁
𝑖=1

𝛿
(︁
𝜆
𝐶(𝑥)
𝑖

)︁
(2.13)

be the empirical spectral measure of the random matrix

𝐶 (𝑥) =
𝑟

𝑚

(︁
𝑊 +

√
2𝑚𝑥𝑁

)︁
, (2.14)

where 𝑊 is Wishart distributed with 2𝑚 degrees of freedom, 𝑁 GOE distributed,

and they are independent. 𝜆𝐶𝑖 (𝑥) is the 𝑖th smallest eigenvalue of 𝐶 (𝑥). Then, the

distribution of the expected number of critical points of index 𝑘 of a WHRF at a

function value 𝐸 > 0 is given by

E [Crt𝑘 (𝐸)]

=
(︁π
𝑟

)︁ 𝑝
2
Γ (𝑚)−1𝑚(1+𝛾)𝑚E𝐶(𝐸)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝐸|)d𝜇𝐶(𝐸)1

{︁
𝜆
𝐶(𝐸)
𝑘+1 ≥ 2𝑟𝐸

}︁]︁
𝐸(1−𝛾)𝑚−1e−𝑚𝐸,

(2.15)

where

𝛾 =
𝑝

2𝑚
. (2.16)

We call the parameter 𝛾 the overparameterization factor. It describes the ratio

between the number of parameters of the model 𝑝 and twice the degrees of freedom

𝑚 of the model. We will later find that 𝛾 governs the phase transition between

an underparameterized phase of the model—where local minima are far from the
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global minimum—and an overparameterized phase—where local minima are good

approximators of the global minimum.

2.3.2 Asymptotic Results as 𝑝→∞

Though Theorem 2.4 gives the exact distribution of critical points, it is difficult to use

in practice. This difficulty comes from the expectation over eigenvalues of the sum of

independent Wishart and Gaussian matrices. Surprisingly, however, the eigenvalues

of both Wishart and Gaussian orthogonal matrices converge to fixed distributions.

Essentially, asymptotically in the size of the matrix, the eigenvalue distribution of all

normalized Wishart matrices are the same (given by the Marchenko–Pastur distri-

bution) and the eigenvalue distribution of all Gaussian orthogonal matrices are the

same (given by the Wigner semicircle distribution).

Luckily, we can characterize the asymptotic distribution of eigenvalues of the sums

of these matrices using the tools of free probability theory. Roughly, free probability

theory is the probability theory of noncommutative random variables (e.g. random

matrices). As the distribution of the sum of two random variables in commutative

probability theory can be described by the convolution of the distributions of the

two independent random variables, so can the free convolution of the distributions of

two freely independent noncommutative random variables. Using the asymptotic free

independence of Wishart and Gaussian orthogonal random variables, we are able to

show that asymptotically the eigenvalue distribution of their sum weakly converges to

the free convolution of a Marchenko–Pastur distribution with a semicircle distribution.

However, weak convergence is not enough; due to the exponential factor in the

expectation in Theorem 2.4, any large deviations from the asymptotic convergence—

even if they occur with exponentially vanishing probability—can potentially cause

large deviations from the naive application of free probability theory. Thus, our results

rely on using large deviations theory to show that to (logarithmic) leading order

these deviations do not contribute to the final result. This is due to the contribution

to the expectation from the deviations being dominated by what is predicted by

free probability theory. These results can be summarized via the following theorem
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(proved in Appendix A.4):

Theorem 2.5 (Logarithmic asymptotics of the local minima distribution, informal

statement of Theorem A.10). Let d𝜇*
𝐸 be the free convolution of a scaled Marchenko–

Pastur and scaled Wigner semicircle distribution, with 𝜆*𝐸,1 the infimum of its support.

Let 𝑝,𝑚 ≫ 1 with 𝑝
2𝑚

= 𝛾 = O(1). Then, the expected distribution of local minima

of a WHRF at a fixed function value 𝐸 > 0 is given by

1

𝑝
ln (E [Crt0 (𝐸)]) =

1

2
ln

(︂
π𝑞

2𝛾

)︂
+

1

2𝛾
(1− 𝐸) + 1

2

(︀
𝛾−1 − 1

)︀
ln (𝐸)

+

∫︁
ln

(︂⃒⃒⃒⃒
𝜆

𝑟
− 2𝐸

⃒⃒⃒⃒
1

{︂
𝜆*𝐸,1
𝑟
≥ 2𝐸

}︂)︂
d𝜇*

𝐸 + o (1) .

(2.17)

Note that, though we only prove the asymptotic distribution of local minima in

Theorem 2.5, we expect similar theorems to also hold for critical points of constant

index 𝑘 (taking 𝜆*𝐸,1 ↦→ 𝜆*𝐸,𝑘 in the integrand). The only difference in the derivation

is the exact form of the large deviations of the 𝑘th smallest eigenvalue of 𝐶 (𝑥). This

is similar to the case in Gaussian hyperspherical random fields, which are often used

to model neural network loss functions [44, 45, 73].

2.3.3 Discussion of the Critical Point Distribution

Let us now discuss the implications of Theorem 2.5. Note first that the rescaled

logarithmic number of critical points diverges when 𝑝 → ∞. Following the deriva-

tion closely, one finds that this is due to an exponentially suppressed (when 𝑚 is

exponential in 𝑛 and 𝑟 is fixed) gradient. We believe that this is a manifestation

of the “barren plateau” phenomenon, where for many deep VQA models it can be

shown that there is an exponentially vanishing variance of the gradient over the loss

landscape [63, 64, 97]. This interpretation suggests that these barren plateau regions

are filled with many small “bumps” that are exponentially shallow. Our methods

extend the typical barren plateau analysis, though, as we are also able to study a

regime without barren plateaus by considering models with sufficiently large 𝑟 (see
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Lemma 2.3). Furthermore, note that this class of random fields exhibits banded be-

havior in the eigenvalues. That is, local minima only exist in the band 0 ≤ 𝐸 ≤ 𝐸0,

where 𝐸0 is the solution to

𝜆*𝐸0,1
= 2𝑟𝐸0. (2.18)

This banded behavior is similar to that in the Gaussian spherical case. We will see,

however, that this does not give necessarily good guarantees on the distribution of

local minima. This is due to 𝐸0 being generally far from 0 when 𝛾 < 1 as 𝑝,𝑚→∞.

To illustrate this, we focus now on two cases: 𝑝 ≥ 2𝑚 (the overparameterized regime)

and 𝑝≪ 𝑚 (the underparameterized regime).

𝑝 ≥ 2𝑚

First, let us consider when 𝑝 ≥ 2𝑚, i.e. 𝛾 ≥ 1. In this limit, the Wishart term of

𝐶 is low-rank, and 𝜇*
𝐸 has support on eigenvalues ≤ 0 for all 𝐸 ≥ 0. Therefore, the

condition 𝜆*𝐸,1 ≥ 2𝐸𝑟 is never satisfied, and to leading order in 𝑝 there is a vanishing

fraction of local minima at any function value 𝐸 > 0. That is, all local minima are

global minima in the 𝑝→∞ limit when 𝛾 ≥ 1. Though the choice of model is slightly

different, we suspect that a related phenomenon may be what gives rise to the phase

transition in training numerically observed in References [69–72, 98].

𝑝≪ 𝑚

When the number of distinct parameters 𝑝 is poly (𝑛) and considering a physically rel-

evant problem Hamiltonian such that the number of degrees of freedom 𝑚 is exp (𝑛),

we have that 𝑝 ≪ 𝑚 (i.e. 𝛾 ≪ 1) for large 𝑛. In this limit, the spectral distribution

𝜇*
𝐸 is dominated by the Wishart term of 𝐶, as its eigenvalues are O(1) while the

eigenvalues of the GOE term are O
(︀√

𝛾
)︀
. Furthermore, the Marchenko–Pastur dis-

tribution in this limit only has support at 𝜆 = 1 + O
(︀√

𝛾
)︀
. Therefore, the expected
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number of local minima at a function value 𝐸 will be proportional to

E [Crt0 (𝐸)] ∝ e−𝑚𝐸+o(𝑝)𝐸𝑚− 𝑝
2 (1− 2𝐸 +O(

√
𝛾))𝑝 1

{︂
0 ≤ 𝐸 +O(

√
𝛾) ≤ 1

2

}︂
.

(2.19)

In particular, up to shifts on the order of √𝛾, the distribution of local minima is

roughly that of a compound confluent hypergeometric (CCH) distribution [76]. The

CCH distribution can be considered a generalization of the beta distribution, and

for our parameters has mean on the order of 1
2
− 𝛾 and standard deviation on the

order of 𝑚−1. Restoring the overall scaling in Equation (2.7), this implies that in this

limit the local minima of the variational loss function exponentially concentrate (in

expectation) near half the mean eigenvalue of𝐻−𝜆1 instead of the smallest eigenvalue.

Even worse, the CCH distributed form of the local minima implies that, even when

beginning at an initial function value well below half of the mean eigenvalue of 𝐻−𝜆1,

the found loss will only improve by a fraction of the initial function value before the

optimization algorithm finds a local minimum. This is insufficient to find the optimal

loss to constant additive error when beginning training at a random point, as is often

the goal in VQAs [19]. Empirically, we find that this occurs not just in expectation

but also for individual model instances in Section 2.4.

2.4 Numerical Experiments

We now test our analytic predictions using numerical simulations. First, we inves-

tigate the empirical performance of the class of randomized models we study theo-

retically, and give numerical evidence of things we were unable to prove. Then, we

give numerical evidence that, for models dependent on the objective Hamiltonian, the

effective degrees of freedom parameter 𝑚 can be much smaller than predicted. In all

cases, we numerically test the predictions of our results by modeling the ground state

of the 1D 𝑛 site spinless Fermi–Hubbard Hamiltonian [101] at half filling. Here, we

take units such that the mean eigenvalue of the considered Hamiltonian (minus its

smallest eigenvalue) is 𝐸 = 1. We give further details of our numerical simulations
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in Appendix A.5.

2.4.1 Empirical Performance of Random Ansatzes
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Figure 2-2: Here we plot the distribution of found local minima found after 52 separate
training instances using the randomized model on (a) 2𝑛 = 64- and (b) 2𝑛 = 256-
dimensional models. Dashed lines denote the predicted region local minima will lie.
Note the clustering of local minima at a finite function value when 𝛾 ≪ 1.

First, we analyzed the performance of a VQA on this loss function via the random

model construction procedure defined in Theorem 2.1. Previous numerical results on

related Hamiltonian agnostic ansatzes have already shown the concentration of local

minima far away in loss value from the global minimum below some degrees-of-freedom

transition, and concentration at the global minimum above this transition [69, 98].

Here, we tracked where our analysis predicts the local minima to lie as a function

of 𝛾 for 𝛾 ≪ 1, up to deviations on the order of √𝛾 that arise from numerically

considering the problem at finite size (as discussed in Section 2.3.3).

Concretely, for a given training instance and depth 𝑞 = 𝑝, we generated an ansatz

|𝜃⟩ composed of 𝑝 layers of Pauli rotations, where each Pauli rotation was chosen

uniformly from all nonidentity Pauli matrices on 𝑛 qubits. The numbers of model

layers we consider are typical of current physical implementations of Hamiltonian

agnostic VQAs [102]. A summary of the normalized distribution of found local minima

58



0.00 0.05 0.10 0.15 0.20 0.25
Energy E

0

10

20

30

40

Cr
iti

ca
l p

oi
nt

 d
en

sit
y Expectation over ansatzes

Fixed ansatz

Figure 2-3: Here we plot the distribution of found local minima found after 52 separate
training instances using the randomized model, with 𝑝 = 48 and 2𝑛 = 64 model
dimension. For even a small model size, qualitatively the expected distribution of
critical points and the distribution of critical points for a fixed random ansatz are in
agreement.

for the randomized model with model dimension 2𝑛 = 64, 256 is given in Figure 2-2,

along with the predicted region in which all local minima should lie in the 𝑝→∞ limit

as discussed in Theorem 2.5. See Appendix A.5 for details on how this distribution

was generated.

We see that almost all found local minima lie within the predicted region, even

at small 𝑝, 𝑛. In particular, for small 𝛾, the distribution of local minima is almost

entirely localized within √𝛾 of the predicted 1
2
− 𝛾 (in units of the mean eigenvalue

of 𝐻 − 𝜆1). Finally, we numerically observe that the distribution of local minima

are qualitatively similar in expectation and for a single choice of random model in

Figure 2-3.

2.4.2 Empirical Performance of a Hamiltonian Informed Model

Previous numerical results [70] on VQAs have shown that only a moderate number

of model parameters suffices for efficient training when using a Hamiltonian informed

model. As discussed in Section 2.2.2, we believe this is due to this class of models

effectively limiting the degrees of freedom 𝑚 of the associated WHRF model; to test

this, we performed more numerical experiments using a Hamiltonian informed ansatz.

We once again tracked where our analysis predicts the local minima to lie as a function

of 𝛾 for 𝛾 ≪ 1, up to deviations on the order of √𝛾.
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Figure 2-4: Here we plot the distribution of found local minima after 52 separate
training instances using a Hamiltonian informed model. Dashed lines denote the
predicted region local minima will lie. We see that the predicted region is overly
pessimistic. We believe that this is due to the Hamiltonian informed model lowering
the effective degrees of freedom 𝑚 of the WHRF instance the ansatz maps to; see
Section 2.2.2.

We show the empirical distribution of local minima in Figure 2-4 for 2𝑛 = 256,

along with the predicted region local minima should lie as discussed in Section 2.3.3.

The predicted local minima distribution is overly pessimistic (particularly at larger

𝑝). We suspect this is due to the fact that the ansatz is constructed in a way that

minimizes the effective degrees of freedom of the WHRF 𝑚 such that 𝛾 is close to 1

for smaller 𝑝 than is predicted analytically.

2.5 Conclusion

Though variational quantum algorithms are perhaps the most promising way to use

the error-prone quantum devices of today for practical computational tasks, there are

many caveats with regard to their trainability. In particular, previous work has shown

that utilizing deep quantum models that are independent of the problem Hamiltonian

can introduce a vanishing gradient phenomenon where, though the model is expressive

enough to capture the ground state of interest, in practice optimizing the loss function

is infeasible [63, 64, 97]. We extended these results by showing a particular class

of random models independent of the problem instance not only can exhibit these

vanishing gradients at large depth, but also has a concentration of local minima near
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the mean eigenvalue of the objective Hamiltonian. This is in contrast to the case in

traditional neural networks, where even generic model structure tends to lead to a

concentration of local minima in a band near the global minimum of the loss function.

Though our results may not seem encouraging for quantum generative models,

we emphasize that we expect our analytic results to hold only when the model is

independent of the problem Hamiltonian. Indeed, we found empirically (and heuris-

tically) good performance for a particular Hamiltonian informed ansatz, where our

analytic results seem much too pessimistic. In principle, this new way of thinking

about variational quantum algorithms may inform future quantum generative model

design; we leave for future work the study of how various model choices may impact

the distribution of critical points of the loss function positively, and how practical

considerations such as noisy model implementations may play a role.
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Chapter 3

Quantum Variational Algorithms Are

Swamped With Traps

The results of this chapter were featured in Reference [50], work done in collaboration

with Bobak T. Kiani.

3.1 Introduction

The trainability of classical neural networks via simple gradient-based methods is

one of the most important factors leading to their general success on a wide vari-

ety of problems. This is particularly exciting given the variety of no-go results via

statistical learning theory, which demonstrate that in the worst case these models

are not trainable via stochastic gradient-based methods [103–106]. There has been

recent hope that variational quantum algorithms—the quantum analog of traditional

neural networks—may inherit these nice trainability properties from classical neu-

ral networks. Indeed, in certain regimes [107], training algorithms exist such that

the resulting quantum model provably outperforms certain classical algorithms. This

would potentially enable the use of quantum models to efficiently represent complex

distributions which are provably inefficient to express using classical networks [96].

Unfortunately, such good training behavior is not always the case in quantum

models. There have been previous untrainability results for deep variational quan-
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tum algorithms due to vanishing gradients [63–65, 97], and in Chapter 2 we showed

the untrainability of shallow nonlocal models due to poor local minima; however, no

such results were known for shallow, local quantum models with local cost functions.

Indeed, there have been promising preliminary numerical experiments on the perfor-

mance of variational quantum algorithms in these regimes, but typically have relied

on good initialization [108] or highly symmetric problem settings [70–72] to show

convergence to a good approximation of the global optimum.

Here, we show that generally such models are not trainable, particularly when a

good choice of initial point is not known and when the model does not exhibit a high

amount of symmetry. We first prove general untrainability results in the presence

of noise using techniques from statistical query learning theory. Surprisingly, these

results hold for all learning problems in a wide range of variational learning settings,

and in many scenarios even when the magnitude of the noise is exponentially small

in the problem size. We then consider the trainability of models that may not have

noise by studying their typical loss landscapes. We prove that, for typical model

instances, local minima concentrate far from the global optimum even for certain

local shallow circuits that do not suffer from barren plateaus. This phenomenon can

be visualized in Figure 3-1, where the training landscape for a shallow QCNN learning

a random instance of itself is shown to concentrate far from the global optimum. As

in Chapter 2, this phenomenon is the result of a trainability phase transition in the

loss landscape of the quantum model. In Chapter 2, this transition was governed by

the ratio of the number of parameters to the Hilbert space dimension; we show in the

shallow case that instead, this transition is governed by the ratio of the local number

of parameters to the local Hilbert space dimension, in the reverse light cone of a

given measured observable. As this is typically much less than 1 for local variational

ansatzes, these models are typically untrainable. We then give numerical evidence of

this fact, and conclude by studying where there may be reason for optimism in the

training of certain variational quantum models.
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Figure 3-1: Loss landscapes of underparameterized quantum variational algorithms
generally appear “bumpy,” filled with various local minima and traps. Here, we plot
the loss landscape as a (a) surface and (b) contour plot along two random normalized
directions for the teacher-student learning task of the QCNN for 14 qubits. Though
a global minimum is located at the center of the plot, finding this global minima is
generally challenging due to the shape of the loss landscape. Details of this visual-
ization are given in Appendix B.6.

3.2 Statistical Query Learning

3.2.1 The Statistical Query Learning Framework

We first give a brief overview of the classical statistical query (SQ) setting here. A

more detailed review is provided in Appendix B.2.

Let 𝒟 be a distribution on an input space 𝒳 . Consider an output space 𝒴 , and

let 𝑐 : 𝒳 → 𝒴 be a target function. In the classical SQ setting, one queries the SQ

model by inputting a function 𝑓 and receiving an estimate of E𝑥∼𝒟 [𝑓 (𝑥, 𝑐 (𝑥))] within

a given tolerance 𝜏 . As an example, one can query a loss function ℓ for a model 𝑚𝜃

with parameters 𝜃 by querying the function ℓ (𝑚𝜃 (𝑥) , 𝑐 (𝑥)).

A special class of statistical queries are inner product queries, where query func-

tions 𝑔 are defined only on 𝒳 and the correlational statistical query returns an esti-

mate:

⟨𝑔, 𝑐⟩𝒟 ≡ E𝑥∼𝒟 [𝑔 (𝑥) 𝑐 (𝑥)] (3.1)
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within a specified tolerance 𝜏 . Correspondingly, we define the norm:

‖𝑔‖𝒟 ≡
√︁
⟨𝑔, 𝑔⟩𝒟. (3.2)

This inner product and norm lead to a natural definition of the statistical query

dimension [103, 109], which intuitively is the number of distinguishable elements in

a concept class under this inner product.

Definition 3.1 (Statistical query dimension [103, 109]). For a distribution 𝒟 and

concept class ℋ where ‖𝑀‖2𝒟 ≤ 𝐶max for all 𝑀 ∈ ℋ, the statistical query dimension

(SQ-DIM𝒟 (ℋ)) is the largest positive integer 𝑑 such that there exists 𝑑 elements

𝑀1,𝑀2, . . . ,𝑀𝑑 ∈ ℋ such that for all 𝑖 ̸= 𝑗 :
⃒⃒
⟨𝑀𝑖,𝑀𝑗⟩𝒟

⃒⃒
≤ 𝐶max/𝑑.

Standard results in SQ theory directly relate this quantity to the difficulty in

learning a hypothesis class. We use the term “learn” here loosely, but give a formal

definition in Appendix B.2.1.

Theorem 3.2 (Query complexity of learning [103, 104]). Given a distribution 𝒟

on inputs and a hypothesis class ℋ where ‖𝑀‖2𝒟 ≤ 𝐶max for all 𝑀 ∈ ℋ, let 𝑑 =

SQ-DIM𝒟 (ℋ) be the statistical query dimension of ℋ. Any learner making queries

with tolerance 𝐶max𝜏 must make at least (𝑑𝜏 2 − 1) /2 queries to learn ℋ up to error

𝐶max𝜏 .

3.2.2 Quantum Machine Learning in the Statistical Query Frame-

work

Quantum machine learning algorithms are inherently noisy due to both unavoidable

sources of error—such as shot noise from sampling outputs—or potentially correctable

sources of error such as gate errors and state preparation noise. In such noisy set-

tings, the SQ model provides a useful framework for quantifying the complexity of

learning a class of functions by considering how many query calls to a noisy oracle

are needed to learn any function in that class [104, 110, 111]. In this setting, we

consider the optimization of a risk of the form of Equation (1.7). We assume there
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Setting (𝑛 qubits, 𝐿 layers) Query complexity (𝛽 < 1/2*)
𝐿 = 1, global measurement, 1-local gates 2Ω(𝑛) if 𝜏 ≥ 3−𝛽𝑛

𝐿 = ⌈log2 (𝑛)⌉, single qubit measurement,
global 1- and 2-local gates

2Ω(𝑛) if 𝜏 ≥ 4−𝛽𝑛

𝐿 ≪ 𝑛, single qubit measurement, neighbor-
ing 1- and 2-local gates on a 𝑑-dim. lattice

2Ω(𝐿
𝑑) if 𝜏 = Ω(1)

**

𝐿 = 1, single qubit gates, unitary learning 2Ω(𝑛) if 𝜏 ≥ 4−𝛽𝑛

* Technically, we require 𝛽 = 1/2− Ω (1); ** 𝜏 = 2
−ω

(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁

is sufficient.

Table 3.1: Relatively simple classes of functions require exponentially many statistical
queries to learn using any naive algorithm that reduces to statistical queries. The
table above quantifies the number of queries needed to identify a target function in
the function class, over a distribution of states that forms a 2-design and with queries
that have tolerance 𝐶max𝜏 (query tolerance lower bounded by a constant times 𝐶max

suffices in all cases).

is a target observable 𝑀 that we would like to learn on some distribution over states

𝒟. We define a correlational statistical query qCSQ(𝑂, 𝜏), which takes in a bounded

observable 𝑂 with ‖𝑂‖∞ ≤ 1 (where ‖·‖∞ is the operator norm) and a tolerance 𝜏

and returns a value in the range:

E𝜌∼𝒟 [tr (𝑂𝜌) tr (𝑀𝜌)− 𝜏 ] ≤ qCSQ (𝑂, 𝜏) ≤ E𝜌∼𝒟 [tr (𝑂𝜌) tr (𝑀𝜌) + 𝜏 ] . (3.3)

Note that there are no guarantees on the form of the additive error other than it is

within the tolerance 𝜏 , and may for instance depend on the observable being queried

𝑂. Though SQ oracle calls may at first appear unrelated to variational algorithms,

we show in Appendix B.2.1 that many common variational optimizers in the presence

of noise of the magnitude 𝜏 reduce to calls to an SQ oracle; for instance, commonly

used first and second order optimization algorithms fall within the framework of

the SQ model we consider, like the parameter shift rule for analytically evaluating

gradients [112, 113]. In Appendix B.2.1, we also describe an analogous SQ model for

learning unitaries.

To quantify the hardness of learning variational circuits, we consider the task

of learning certain function classes generated by shallow variational circuits over a

distribution of inputs 𝒟 which forms a 2-design. Our results also generally hold
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for distributions that are uniform over states in the computational basis, recovering

the statistical query setting for classical Boolean functions. Table 3.1 summarizes

the number of queries needed to learn various function classes which are generated by

variational circuits, with proofs deferred to Appendix B.3. In all settings we consider,

an exponential number of queries (in either 𝑛 or the light cone size) are needed to

learn simple classes, such as the class of functions generated by single qubit gates

followed by a fixed global measurement. This hardness intuitively arises because each

individual query can only obtain information about a few of the exponentially many

orthogonal elements in the function class. More formally, we lower bound the SQ

dimension of the function classes considered in Table 3.1 to show our query lower

bounds.

Our hardness results hold for any target observable 𝑀 , as long as the learning

setting is one we consider in Table 3.1. Furthermore, they hold for any variational

ansatz—not just on average—provided it is in one of the settings of Table 3.1. Finally,

our results hold for any constant error 𝜏 in the statistical queries; indeed, the majority

of our results hold even if this noise were only exponentially small in the problem

size. For instance, training via gradient descent where the gradient is estimated

using polynomially many samples fits into this framework immediately just from the

induced shot noise. From the third row of Table 3.1, then, we find that certain barren

plateau untrainability results—those which suggest that gradient-based methods for

optimizing typical 𝑑-dimensional variational quantum ansatzes of depth 𝐿 ≪ 𝑛 take

2Ω(𝐿
𝑑) problem queries [65]—can be generalized to all training algorithms that fall

under the statistical query framework.

In a more positive light, learning local Hamiltonians generated by shallow depth

circuits can potentially be efficiently performed as the complexity grows exponentially

only with locality or depth in this setting. In fact, prior results have provably shown

that certain classes of Hamiltonians are efficiently learnable using properly chosen

algorithms [114, 115]. Nevertheless, this does not correspond to efficient learnability

of the ground state of a given Hamiltonian, as learnability of the properties of a

Hamiltonian is not the same as the learnability of its ground state. Indeed, we will
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see in Section 3.3 that typically, even in this setting, learning the ground state of such

a local Hamiltonian is difficult.

Though noise during optimization may appear unnatural in classical settings, noise

in quantum settings is rather endemic and the SQ model allows one to rigorously

analyze the complexity of learning in the presence of noise. One important caveat of

these results, however, is that in the SQ setting learning must succeed for all values

of the query within the given tolerance 𝜏 . Noise in quantum settings, which can arise

from sampling a finite data set, gate error, state preparation error, measurement

sampling noise, or other means does not exactly coincide with the assumed tolerance

of an SQ model as the SQ model assumes adversarial noise. We circumvent these

strong assumptions on the noise in Section 3.3 by instead considering untrainability

in terms of loss landscapes, though this is at the expense of the very strong no-go

results we prove here.

Our hardness results do not indicate that simple classes of functions like those gen-

erated by single qubit rotations are hard to learn for all algorithms, but only those

whose steps reduce to statistical queries. For example, the class of Pauli channels is

not learnable in the SQ setting, but there exist simple, carefully constructed, algo-

rithms which can learn Pauli channels [116–118]. This is analogous to the classical

setting where parity functions are hard to learn in the noisy SQ setting, but efficient

to learn using simple linear regression [111]. Similarly, the related work of Refer-

ence [119] showed that output distributions of Clifford circuits can be hard to learn

using statistical queries, but efficient using a technique that resorts to linear regres-

sion on a matrix formed from samples of the overall distribution. More loosely, our

results provide support to the basic maxim that algorithms which apply too broadly

will work very rarely [120]; more careful construction of learning algorithms tailored

to the problem at hand is generally necessary. One straightforward way to avoid the

hardness of the SQ setting is to construct algorithms whose basic steps do not reduce

to statistical queries, e.g. via the construction of non-global metrics [121–123]. How-

ever, such a fix is by no means guaranteed to avoid the more general issues of poor

landscapes and noise that also make learning in the SQ setting so difficult, as we now
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examine.

3.3 Loss Landscapes of Local Variational Quantum

Algorithms

We now consider the trainability of VQAs in the noise-free regime, beyond optimiza-

tion algorithms that reduce to statistical queries. Though we are unable to prove

the very strong no-go results proved in the SQ framework, we are able to show that

the loss landscapes of typical local variational algorithms with Hamiltonian agnostic

ansatzes are unamenable to optimization. We achieve this by showing that typically,

the loss landscapes of shallow, local VQAs are swamped with poor local minima.

As discussed in Table 1.1, it is already known that deep Hamiltonian agnostic

ansatzes are typically untrainable due to the presence of barren plateaus [63–65];

hence, here we focus on shallow ansatzes. In Chapter 2, we have also shown that

shallow, nonlocal models are untrainable, by showing that the scrambling of varia-

tional ansatzes over the entire system in these instances induce poor local minima.

These techniques are not extendable to shallow, local ansatzes, however, which do

not scramble globally.

Instead, here, we show that ansatzes that approximately scramble locally are

difficult to train. As we will later show, this includes common classes of variational

ansatzes, such as Hamiltonian agnostic checkerboard ansatzes on a 𝑑-dimensional

lattice. We show that this approximate, local scrambling suffices to imply that the loss

landscapes of these VQAs are close to those of Wishart hypertoroidal random fields

(WHRFs), introduced in Chapter 2. To review, these are random fields parameterized

by 𝑙,𝑚 of the form:

𝐹WHRF (𝑤) = 𝑚−1

2𝑙∑︁
𝑖,𝑗=1

𝑤𝑖𝐽𝑖,𝑗𝑤𝑗, (3.4)

where 𝐽 is drawn from a Wishart distribution with 𝑚 degrees of freedom, and 𝑤 are

points on a certain embedding of the hypertorus (𝑆1)
×𝑙 in R2𝑙 . We demonstrate this

convergence via new techniques, directly bounding the error in the joint characteristic
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function of the function value, gradient, and Hessian components of the variational

loss from those of WHRFs. As the typical loss landscapes of WHRFs are known given

these random variables, by demonstrating sufficient convergence of these random

variables to those of WHRFs, we will be able to infer the distribution of critical

points for local VQAs.

To begin, we take our (assumed traceless) problem Hamiltonian to have Pauli

decomposition:

𝐻 =
𝐴∑︁
𝑖=1

𝛼𝑖𝑃𝑖, (3.5)

and for simplicity scale and shift the loss landscape of Equation (1.9) to be of the

form:

ℛ̂VQE (𝜃) = 1 + ‖𝛼‖−1
1

𝐴∑︁
𝑖=1

𝛼𝑖 ⟨𝜃|𝑃𝑖 |𝜃⟩ , (3.6)

where 𝛼 is the vector of all 𝛼𝑖 and the ansatz |𝜃⟩ is as given in Equation (1.5). As

this ansatz is assumed to be shallow and local, we assume that the reverse light cone

of each 𝑃𝑖 under the ansatz is of size 𝑙≪ 𝑛.

As in most analytic treatments of Hamiltonian agnostic VQAs, we consider certain

randomized classes of ansatzes [49, 63–65]. Roughly, we assume that in a local region

around each measured Pauli observable 𝑃𝑖, the ansatz is an 𝜖-approximate 𝑡-design;

that is, its first 𝑡 moments are 𝜖-close to those of the Haar distribution. This is a

much weaker assumption than global scrambling of the ansatz. For instance, for 𝑃𝑖

of constant weight, such approximately locally scrambling circuits include constant

depth local circuits with random local gates [124]. We discuss in more detail when

this assumption holds in practice when specializing to common variational quantum

learning scenarios, and defer technical details to Appendix B.4.

Our main result, informally, is that the random field given by Equation (3.6)

under this approximate, local scrambling assumption converges in distribution to

that of a WHRF. The formal statement and derivation of this result are given in

Appendix B.4, where we also lay out our assumptions more explicitly. Informally, the

result follows by deriving a bound on the error in the joint characteristic function of

the loss function and its first two derivatives from that of a WHRF. We then use this
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to bound the error in distribution that is incurred by the induced scrambling being

only approximate. Finally, we show using properties of local Haar random gates and

the locality of the problem Hamiltonian that this suffices to prove convergence of

these random variables to those of a WHRF.

Theorem 3.3 (Approximately locally scrambled variational loss functions converge

to WHRFs, informal statement of Theorem B.18). Let

𝑚 ≡ ‖𝛼‖
2
1

‖𝛼‖22
2𝑙−1 (3.7)

be the degrees of freedom parameter. Assume 𝑞 log (𝑞) = o (𝑚), where 𝑞 is the number

of ansatz parameters in the reverse light cone of each 𝑃𝑖. Then, the distribution of

Equation (3.6) and its first two derivatives are equal to those of a WHRF

𝐹WHRF (𝜃) = 𝑚−1

2𝑙∑︁
𝑖,𝑗=1

𝑤𝑖𝐽𝑖,𝑗𝑤𝑗 (3.8)

with 𝑚 degrees of freedom, up to an error in distribution on the order of Õ
(︀
poly

(︀
1
𝑡
+ 𝜖+ exp (−𝑙)

)︀)︀
.

Here, 𝑤 are points on the hypertorus (𝑆1)
×𝑙 parameterized by 𝜃, where 𝜃𝑖 is the sum

of all 𝜃𝑗 on qubit 𝑖.

We interpret this result as the degrees of freedom 𝑚 of the model being given

by roughly the sum of the local Hilbert space dimensions of the reverse light cones

of terms in the Pauli decomposition of 𝐻. We interpret this as the local underpa-

rameterization of the model, to be contrasted with the global underparameterization

interpretation when 𝑚 is exponentially large in 𝑛. Using known properties of the loss

landscapes of WHRFs (see Chapter 2), we are then able to prove the following result

on the loss landscapes of local VQAs:

Corollary 3.4 (Shallow, local VQAs have poor loss landscapes, informal statement of

Corollary B.21). Let ℛ̂VQE be a local VQA loss function of the form of Equation (3.6).
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Assume all coefficients 𝛼𝑖 of the Pauli decomposition of 𝐻 are Θ(1), and

𝑙 log (𝑛) + 𝑞 log (𝑞) = o
(︀
2𝑙𝐴
)︀
. (3.9)

Then ℛ̂VQE has a fraction superpolynomially small in 𝑛 of local minima within any

constant additive error of the ground state energy.

Optimizing loss landscapes where only a superpolynomially small (in 𝑛) fraction

of the local minima are near the global minimum in energy is expected to be difficult.

Indeed, algorithms such as gradient descent would then expect to have to be restarted

a superpolynomial number of times before finding a good approximation to the global

minimum; we also give heuristic reasons why this should continue to be true for other

local optimizers in Appendix B.7. Our results stand in stark contrast with the loss

landscapes typically found in classical machine learning, where almost all local minima

closely approximate the global minimum in function value [44, 45].

In the shallow ansatz regime—where 𝑞, 𝑙 = O(polylog (𝑛))—and assuming an

extensive problem Hamiltonian such that 𝐴 = Ω(𝑛), the condition given by Equa-

tion (3.9) is always satisfied. Interestingly, this is a regime where barren plateaus are

known not to occur [65], demonstrating that poor local minima can give rise to poor

optimization performance even when the loss function features large gradients. We

now specialize to common variational quantum learning scenarios, and consider the

implications of Corollary 3.4.

First, let us consider 𝑑-dimensional checkerboard ansatzes of constant depth. Fix

𝑝, 𝑡 to be sufficiently large constants. We assume that the initial state forms an

O
(︁

1
poly(𝑡)

)︁
-approximate 𝑡 design on 𝑙 qubits around each Pauli observable of weight

𝑘; this can be done via a depth 𝑝, 𝑑-dimensional circuit of 2-local Haar random

unitaries when 𝑙 = O
(︁

(𝑝+𝑘)𝑑

poly(𝑡)

)︁
≥ 𝑘 for some fixed polynomial in 𝑡 [124, 125]. After

this state preparation circuit, a traditional depth Θ
(︁
𝑙
1
𝑑

)︁
(i.e. independent of 𝑛),

𝑑-dimensional, 𝑛 qubit checkerboard circuit is applied, with observable reverse light

cones of size at greatest 𝑙. By Corollary 3.4, these variational ansatzes are untrainable

due to poor local minima, yet by the results of Reference [65] do not suffer from barren
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plateaus.

One interesting consideration is extending this result to traditional checkerboard

ansatzes, without the special state preparation procedure we have considered. There,

the 𝑙 = O
(︁

(𝑝+𝑘)𝑑

poly(𝑡)

)︁
qubit local state is mixed, and our results therefore do not directly

apply. However, we expect no reason for the mixedness of the initial state to improve

training performance in any way. We validate this intuition numerically in Section 3.4.

We also consider a class of models similar to quantum convolutional neural net-

works (QCNNs) [108] previously shown not to suffer from barren plateaus [126].

Though these models are in full generality trained on arbitrary loss functions, for

learning various physical models the loss may take the form of Equation (1.9). QC-

NNs are defined by their measurement of a subset of qubits at periodic intervals,

via so-called pooling layers; for sufficiently deep (i.e., large constant depth) convolu-

tional layers, then, at some point in the model, the number of remaining qubits will

be sufficiently small such that the remaining convolutional layers are approximately

scrambling. If one then assumes that the initial states are adversarially chosen such

that they remain pure by this layer, this scenario reduces to the shallow checker-

board ansatz scenario, and once again we expect poor local minima by Corollary 3.4.

Even if the initial states are not adversarially chosen and the input to the scrambling

convolutional layers is mixed, we expect by similar intuition the model to remain un-

trainable; we will see this numerically, where we also observe that this poor training

occurs when training on loss functions beyond Equation (1.9).

3.4 Numerical Results

To numerically validate our theoretical findings, we perform numerical simulations

showing that learning in various settings cannot be guaranteed unless exponentially

many parameters are included in an ansatz. We only consider problems and ansatzes

where the existence of a zero loss global minima is guaranteed to study whether or not

optimizers can actually find the global minimum or a similarly good critical point. We

parameterize all trainable 2-qubit gates in the Lie algebra of the 4-dimensional unitary
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group, and implement the resulting unitary matrix via the exponential map which

is surjective and capable of expressing any local 4 × 4 unitary gate. In all cases, we

perform simulations using calculations with computer precision and analytic forms

of the gradient (see Appendix B.6 for more details). In practice, actual quantum

implementations will be hampered by various sources of inefficiency such as the lack

of an analogous method of backpropogation for calculating gradients, sampling noise,

or even gate errors. Thus, our numerical analysis can be interpreted as a “best

case” setting for quantum computation where we disregard such inefficiencies and

focus solely on learnability. In Appendix B.5, we further study variations of the

teacher-student learning and random variational quantum eigensolver (VQE) [19]

settings discussed here. We also consider the training performance of VQE in finding

the ground state of a Heisenberg XYZ Hamiltonian [127]. Our supplemental results

reinforce our findings here.

One may conjecture that it is plausible to learn the class of functions generated

by relatively shallow depth variational teacher circuits by parameterizing a shallow-

depth student circuit of the same form and training its parameters. In this so-called

teacher-student setup, we are guaranteed the existence of a perfect global minimum

since recovering the parameters of the teacher circuit achieves zero loss. In other

words, the global minimum is guaranteed to be achievable in the setting we consider

here. Still, we showed earlier that such circuits are typically have many poor local

minima, and are always hard to learn in the statistical query setting. Here, we provide

numerical evidence of these findings for the QCNN ansatz. Additional confirmation

of these findings with a checkerboard ansatz is included in Appendix B.5.

The quantum convolutional neural network (QCNN) presents an interesting test

bed for our analysis since it has been shown in prior work to avoid barren plateaus [126].

Nevertheless, the QCNN, like other models, is riddled with poor local minima in

generic learning tasks. For our analysis, we attempt to learn randomly generated

quantum convolutional neural networks (QCNNs) with a parameterized QCNN of

the same form. In the QCNN, both student and teacher circuits have parameterized

2-qubit gates at each layer followed by 2-qubit pooling layers (see Appendix B.6 for
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Figure 3-2: The student circuit is unable to learn the teacher circuit as the number
of qubits grows, converging to a local minimum of the loss landscape. The existence
of a global optimum is guaranteed as the teacher circuit is drawn from a random
initialization of the same QCNN structure of the student circuit. Here, for a ranging
number of qubits, 100 student circuits are trained to learn randomized teacher circuits
of the same form and the resulting swarm plots of the final training accuracy are
shown.

more details). Each 2-qubit gate is fully parameterized in the Lie algebra of the uni-

tary group. Networks are trained to predict the probability of the measurement of

the last qubit in the teacher circuit. In other words, the student network is trained on

a classification problem defined by teacher network where, by construction, perfect

classification accuracy is known to be achievable. We benchmark performance with

the classification accuracy, where a prediction is considered correct when it predicts

the most likely measurement of the last qubit correctly. Networks are trained via

the Adam optimizer [128] to learn outputs of 512 randomly chosen computational

basis states. QCNNs with 4, 8, 12, and 16 qubits have 32, 48, 64, and 64 trainable

parameters, respectively.

Figure 3-2 plots the final training accuracy achieved over 100 random simulations

for varying ranges of circuit sizes. For circuits with 4 qubits, the training is sometimes

successful, often achieving an accuracy above 85 percent on the training dataset.

However, as the number of qubits grows, even past 8 qubits, the optimizer is unable

to recover parameters which match the outputs of the teacher circuit. The results

here show that the QCNN circuit—which has O(log (𝑛)) depth—still locally scrambles
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Figure 3-3: (a) Scatter plot of the final loss and trace distance of the VQE state after
30000 steps of gradient descent optimization shows that the algorithm converges to
poorer local minima as the number of qubits grows. 24 simulations are performed for
each value of 𝑛. The algorithm always succeeds at obtaining the ground state with 4
qubits, but progressively struggles more with added qubits. (b) The number of layers
needed to guarantee convergence to the ground state empirically grows exponentially
with the number of qubits. Here, we consider 4-layer Hamiltonians of the form of
Equation (3.10) on 14 qubits where the number of layers 𝐿 in the ansatz is varied.
When the ansatz has 300 layers—enough that the number of ansatz parameters is
larger than the explored Hilbert space dimension—the model successfully converges
to the ground state, rather than remaining stuck in a poor local minimum.

outputs to hinder learnability.

We now consider VQE. To analyze the performance of variational optimizers, we

consider problems and ansatzes which are capable of recovering the global minimum.

We aim to find the ground states of local Hamiltonians 𝐻𝑡 over 𝑛 qubits that take the

form of single qubit Pauli 𝑍 Hamiltonians conjugated by 𝐿* layers of two alternating

unitary operators 𝑈1 and 𝑈2 which are product unitaries on neighboring 2-local qubits:

𝐻𝑡 =
(︁
𝑈 †
2𝑈

†
1

)︁𝐿*
[︃

𝑛∑︁
𝑖=1

𝑍𝑖

]︃
(𝑈1𝑈2)

𝐿*
+ 𝑛𝐼. (3.10)

The added identity matrix normalizes the Hamiltonian to have ground state with

energy 0. Since the ground state of
∑︀𝑛

𝑖=1 𝑍𝑖 is the state |1⟩⊗𝑛, we are guaranteed the

existence of a global minima when using a checkerboard ansatz of at least depth 𝐿*,

since this ansatz can “undo” the conjugation by unitary operators. In the remainder

of this Section, we consider Equation (3.10) with 𝐿* = 4.

We measure the performance of optimization with two metrics. The first is the
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loss function itself, which is the average energy ⟨𝜓|𝐻𝑡 |𝜓⟩ of the VQE ansatz state |𝜓⟩

for the given Hamiltonian 𝐻𝑡. The second is the trace distance to the ground state

|𝜑𝑔⟩ of 𝐻𝑡, equal to ‖|𝜑𝑔⟩ ⟨𝜑𝑔| − |𝜓⟩ ⟨𝜓|‖* /2 (where ‖·‖* is the nuclear norm). Both

of these metrics converge to zero at the global minimum.

We first aim to learn the ground state using a checkerboard ansatz by perform-

ing vanilla gradient descent on 𝐿 = 𝐿* = 4 parameterized layers, equal in depth

to the Hamiltonian conjugation circuit and thus capable of recovering the ground

state. In Figure 3-3(a), we plot the final values of the loss and trace distance for

24 randomly initialized VQE problems for a number of qubits ranging from 4 to 24.

Similar results are observed when using more advanced optimizers such as Adam (see

Appendix B.6) [128]. Consistent with our theoretical findings, convergence clusters

around local minima far from the ground state, particularly as the number of qubits

grows.

Our theoretical results also imply the difficulty of training beyond a finite fraction

of the ground state energy in a VQE setting. Figure 3-3(b) illustrates this phe-

nomenon when performing optimization on a 14 qubit ansatz. As more parameters

are added to the ansatz via increasing its depth 𝐿, the VQE algorithm performs bet-

ter, but it is not until the number of parameters is exponential in the problem size

that convergence to a global minimum (or even within a small additive error of the

global minimum) is guaranteed. This is true even though the ansatz is capable of

expressing the ground state at 𝐿 = 4. Simulations here are performed as before on

random 𝐿* = 4 Hamiltonians of the form of Equation (3.10).

3.5 Conclusion

Though variational quantum algorithms—and quantum machine learning models in

general—have been cited as perhaps the most promising use case for quantum devices

in the near future [14], theoretical guarantees of their training performance have been

sparse. Here, we have excluded a wide class of variational algorithms by showing

that in many settings, they are in fact not trainable. We showed this in two different
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frameworks: first, in Section 3.2.2, we studied various classes of quantum models in

the statistical query framework. We showed that in the presence of noise, exponen-

tially many queries in the problem size are needed for these models to learn. As a

complementary approach, we also examined the typical loss landscapes of variational

quantum algorithms in the noiseless setting in Section 3.3, and showed that even at

constant depth these models can have a number of poor local minima superpolyno-

mially large in the problem size. We also numerically confirmed these results for a

variety of problems in Section 3.4. These results go beyond the typical studies on

the presence of barren plateaus, as many of the models we study here have gradients

vanishing only polynomially quickly in the problem size. Our work demonstrates that

showing that barren plateaus are not present in a model does not necessarily vindicate

it as trainable.

These results, though they exclude a wide variety of variational quantum algo-

rithms, still leave room for hope in the usefulness of these algorithms. Particularly,

our analysis in the noiseless setting of landscapes of variational quantum algorithms

focuses on very general, Hamiltonian agnostic ansatzes; in various instances, more

focused ansatzes may be trainable. For instance, as previously shown in Refer-

ence [107], for certain classes of problems the quantum approximate optimization

algorithm (QAOA) [99] is provably able to outperform the best unconditionally proven

classical algorithms, even when taking into account the training of the model. This

is due to parameter concentration, where the global optimum for small problem in-

stances is close to the global optimum for large problem instances [129]. These results

demonstrate the power of good model initialization in variational quantum algorithms:

even if the total variational landscape is swamped with poor local minima, good ini-

tialization may ensure that the optimizer begins in the region of attraction of the

global minimum. Though this is perhaps most relevant for the variational quantum

eigensolver (VQE) [19] and QAOA [99], where there exists physical intuition for po-

tentially performant parameter initializations, in more traditional machine learning

settings this may manifest as good performance on certain inputs to the model.

Variationally studying models with many symmetries may also avoid our poor
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performance guarantees. Intuitively, our results here are the consequence of underpa-

rameterization. Namely, unless the ansatz is parameterized such that the number of

parameters grows with the (local) Hilbert space dimension, the model is not trainable.

Typically, this Hilbert space dimension is exponentially larger than the number of pa-

rameters the ansatz uses to explore it. However, if the model is heavily constrained

by symmetries, this dimension might be much smaller. Such models were studied nu-

merically in References [70, 130], where it was shown that certain variational quantum

algorithms optimize efficiently. Though often these models can be solved classically

when the symmetries are known (see in particular Chapter 4), these symmetries may

not be known a priori. Indeed, one may be able to test for the presence of symme-

tries in a given model by studying whether associated variational quantum algorithms

are trainable. Similar to these general symmetry considerations, known structure in

the problem may also allow one to build up hierarchical ansatzes that are able to be

trained sequentially. We leave further investigation in these directions to future work.

Finally, though many variational models fit the framework of Equation (1.9), there

exist other settings of variational quantum algorithms. One class of such models in-

cludes quantum Boltzmann machines, which attempt to model given quantum states

via the training of quantum Gibbs states [16]. When the full quantum Gibbs state

is observed, it is known that these models are efficiently trainable [114], and numer-

ically it is known that these models are trainable even when the full state is not

observed [16, 131]. Furthermore, though in full generality preparing quantum Gibbs

states is difficult, state preparation has been shown to be efficient in certain regimes

relevant to machine learning [131–133], potentially giving an end-to-end trainable

quantum machine learning model. We leave further analytical investigation on the

training landscapes of quantum Boltzmann machines to future work.

Our results contribute to the already vast library of literature on the trainability

of variational quantum models in further culling the landscape of potentially trainable

quantum models. We hope these results have the effect of focusing research efforts

toward classes of models that have the potential for trainability, and whittle down

the search for practical use cases of variational quantum algorithms.

80



Chapter 4

Efficient Classical Algorithms for

Simulating Symmetric Quantum

Systems

The results of this chapter were featured in Reference [51], work done in collaboration

with Andreas Bauer, Bobak T. Kiani, and Seth Lloyd.

4.1 Introduction

In the physical sciences, symmetries are useful for simplifying difficult computational

tasks by reducing the effective degrees of freedom of the problem. This general prin-

ciple has been used to find exact solutions to many problems, such as integrable

systems [134], topological fixed-point models [135], or conformal field theories [136].

There has been a hope that similar symmetries may enable the efficiency of quantum

algorithms for simulating or finding the ground state of a symmetric Hamiltonian.

Indeed, it is known that there exist theoretical guarantees for quantum algorithms for

finding the ground state [47] and fast-forwarding quantum dynamics [83] of Hamil-

tonians which commute under the action of the symmetric group S𝑛 on qubits. It

has also numerically been shown that quantum algorithms are capable of finding the

ground state of certain integrable systems [49, 70] even when the symmetry is not
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explicitly given to the quantum algorithm a priori. Furthermore, prior work used

Lie algebraic methods to efficiently classically simulate operators restricted to a Lie

algebra whose dimension is polynomially large (independent of the potentially ex-

ponentially large Hilbert space dimension) [137, 138]. Quantum machine learning

models that are symmetry equivariant are also believed to be more efficiently train-

able than their general counterparts [46, 50, 79, 139–141]. These quantum models are

partly inspired by classical neural network models that have enjoyed much recent suc-

cess [142–144]. However, restricting quantum algorithms to problems obeying many

symmetries potentially allows for efficient classical algorithms which also take advan-

tage of these same symmetries. This raises the natural question: are there efficient

classical algorithms capable of performing these tasks?

This is what we investigate here. Intuitively, we show that problems constrained

by large symmetry groups yield efficient classical algorithms for computing many

properties of interest, as illustrated in Figure 4-1(a). We first give a very general clas-

sical algorithm for finding the ground state and energy of Hamiltonians constrained

by many symmetries. We also consider the problem of simulating dynamics under

symmetric Hamiltonians. We then specialize to the case of systems invariant under

permutations of its qubits. Finally, we dequantize an algorithm for performing binary

classification problems using permutation-invariant systems on qubits.

4.2 Motivation and Setting

Our algorithms are motivated by the fact that symmetries significantly reduce the

number of degrees of freedom for a given problem. For example, consider the classical

setting of Boolean functions which are invariant under arbitrary permutations of the

bits. Such functions are defined up to the orbits of the Boolean cube with respect

to permutations of the bits. For a Boolean function on 𝑛 bits, there are 𝑛 + 1

orbits indexed by the Hamming weight of the bitstrings. Therefore, any problem over

symmetric Boolean functions need only consider a given element of each of the 𝑛+ 1

orbits to cover all possible degrees of freedom. As we will later show, the symmetric
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Figure 4-1: (a) Small groups of symmetry leave too large of an effective dimension
for the problem to be tractable via quantum computation. On the contrary, very
restrictive symmetries render a problem classically tractable. Between these two
regions lies an area of promise where quantum computers may offer an advantage.
(b) The Schur–Weyl decomposition shows that only a smaller representative subspace
(indicated by darker colors) of the larger Hilbert space needs to be considered for
permutation invariant operations. The size of this subspace grows as O(𝑛3) for 𝑛
qubits.

group acting over 𝑛 qubits similarly reduces systems to O(𝑛3) degrees of freedom. By

considering the algebra of the symmetric group on the symmetric subspace of linear

operators, we will show that all these degrees of freedom can be manipulated solely

through classical computation.

Before proceeding, we need to introduce important functions and definitions that

will be used in this setting. We first formalize the notion of symmetry by speaking of

invariant operators, defined in the following way:

Definition 4.1 (Invariant operator). Given a compact group 𝐺 with unitary repre-

sentation 𝑅 : 𝐺→ U(𝑁), a linear operator 𝐻 : C𝑁 → C𝑁 is invariant under 𝑅 (𝐺) if

∀𝑔 ∈ 𝐺:

𝑅 (𝑔)𝐻𝑅 (𝑔)† = 𝐻. (4.1)

Note that any invariant operator is also an equivariant operator [46] in the sense that

it commutes with the representation of the group.

Any operator can be projected onto the symmetric subspace induced by 𝑅 (𝐺) us-

ing the twirling superoperator Re𝑅 (more commonly known as the Reynold’s operator

in invariant theory) [145, 146], which maps any operator onto the set of equivariant

83



operators:

Re𝑅 (𝑀) =
1

|𝐺|
∑︁
𝑔∈𝐺

𝑅 (𝑔)𝑀𝑅 (𝑔)† . (4.2)

Invariant subspaces of a larger Hilbert space can be identified by performing an

isotypic decomposition of the representation of a group. As an example, in the case

of systems invariant under permutations of the qudits, the Schur decomposition maps

the computational basis into blocks of invariant subspaces. We graphically visualize

this phenomenon in Figure 4-1(b) and provide further details in Appendix C.1.

Throughout this study, runtime complexities are denoted as a function of the

matrix multiplication exponent ω. The best known upper bound is currently ω =

2.37188 [147], which implies asymptotic runtimes of O(𝑛ω+𝛼) for any 𝛼 > 0 for stably

performing common linear algebraic routines including eigendecomposition, singular

value decomposition, and matrix inversion [148].

4.3 Algorithms for General Symmetry Groups

In this Section, we discuss the general problem of finding the ground state energy,

ground state, and performing time evolution under a Hamiltonian 𝐻 on a finite-

dimensional Hilbert space which is invariant under some representation 𝑅 of a sym-

metry group 𝐺. Consider the *-subalgebra of operators invariant under 𝑅 to which

𝐻 belongs. We think of this subalgebra as a standalone *-algebra 𝑋, such that the

embedding of 𝑋 into the full operator algebra defines a representation 𝐴 of 𝑋.

The practical relevance of these considerations is when the size of the total Hilbert

space grows exponentially with some scaling parameter 𝑛. The paradigmatic example

is the Hilbert space of 𝑛 qubits. If there are enough symmetries, it can happen that

the dimension 𝑁 (𝑛) of 𝑋 only grows polynomially with 𝑛, in which case many prop-

erties can be calculated efficiently [137]. This restriction of 𝑋 to a lower-dimensional

subspace may more generally happen beyond systems symmetric in the sense of Def-

inition 4.1. Due to this, for now we focus explicitly on 𝑋 and 𝐴, rather than on 𝐺

and its representation 𝑅; we will discuss the connection of our results to 𝐺 and 𝑅
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more specifically at the end of this Section.

For the various algorithms we now consider, we will assume that different prop-

erties of 𝑋 and 𝐴 are known. For the algorithm for finding the ground state energy

of 𝐻 given in Theorem 4.2, we will assume that the structure constants of 𝑋 in

some preferred basis are known. In a slight abuse of notation, we will refer to those

structure constants as 𝑋 𝑖,𝑗
𝑘 , where 𝑖, 𝑗, and 𝑘 label basis elements. We note that the

structure constants can frequently be efficiently obtained from the generators of an

algebra, for example in the case of Lie subalgebras [137, 149].

In the course of proving Theorem 4.3, we give an algorithm for finding the ground

state of 𝐻. Every finite-dimensional *-algebra is isomorphic to a direct sum of irre-

ducible blocks, and every representation is isomorphic to a direct sum of irreducible

representations. That is, there is a block-diagonal orthonormal basis |𝜆, 𝑞𝜆, 𝑝𝜆⟩ of the

vector space acted upon by 𝐴, where 𝜆 labels an irrep of 𝑋, 𝑞𝜆 labels a basis vector

internal to 𝜆, and 𝑝𝜆 labels a basis vector in the multiplicity vector space of 𝜆; this is

the basis in which we compute the ground state of 𝐻 (for some arbitrary and fixed

dimension label 𝑝𝜆0). To prove our theorem, we assume knowledge of the matrix

elements:

𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆
≡ ⟨𝜆, 𝑞𝜆, 𝑝𝜆0|𝐴𝑖 |𝜆, 𝑞′𝜆, 𝑝𝜆0⟩ . (4.3)

Finally, for Theorem 4.4, we assume the knowledge of a symmetric transform

operator implementable on a quantum computer, i.e. an isometry 𝑉STO such that:

𝑉STO |𝜆, 𝑞𝜆, 𝑝𝜆⟩ = |𝜆⟩ |𝑞𝜆⟩ |𝑝𝜆⟩ . (4.4)

Here, |𝜆⟩ , |𝑞𝜆⟩ , |𝑝𝜆⟩ are bitstring encodings of 𝜆, 𝑞𝜆, 𝑝𝜆, respectively, in the compu-

tational basis, labeling the 𝜆 register, 𝑞 register, and 𝑝 register, respectively. An

example of such an operator is the Schur transform [150, 151], described in more

detail in the Supplementary Information.

In all three theorems, we assume we are given the Hamiltonian 𝐻 ∈ 𝐴 (𝑋) as
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ℎ ∈ 𝑋 expressed in the preferred basis, such that

𝐻 =
∑︁
𝑖

ℎ𝑖𝐴𝑖. (4.5)

We now state our main results. First, we give a simple construction of a classical

algorithm for finding the ground state energy of some representation of a Hamiltonian

obeying the given symmetries.

Theorem 4.2 (Finding the ground state energy of symmetric Hamiltonians). Con-

sider a subalgebra 𝑋 of dimension 𝑁 , and assume that the structure constants of 𝑋 in

some preferred basis are known as discussed above. Let 𝐻 ∈ 𝐴(𝑋) be a Hamiltonian

given in the preferred basis as in Equation (4.5). Then the ground state energy of 𝐻

can be found in time O(𝑁ω).

Proof. Consider the operator with indices:

ℎ̂𝑗𝑘 ≡
∑︁
𝑖

ℎ𝑖𝑋
𝑖,𝑗
𝑘 , (4.6)

which is nothing but the regular representation of ℎ for the algebra 𝑋. Then we have

that their ground state energies are equal:

GSE (𝐻) = GSE
(︁
ℎ̂
)︁
. (4.7)

This is because the regular representation is faithful, and the ground state energy of

an operator is the same in any faithful representation. Since 𝑋 has dimension 𝑁 , the

ground state energy of ℎ̂ can be found in time O(𝑁ω).

An advantage of this algorithm is that the only necessary information are the

structure constants of 𝑋; no knowledge of the irreps of 𝑋 is needed. However, due to

this we have poor scaling with the number of irreps 𝑛𝜆, as the direct sum structure

of 𝑋 is not necessarily known. Another disadvantage of this approach is that it only

gives the ground state energy, rather than the ground state itself (in a representation

that is not the regular representation).
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We now focus on the case when we are interested in finding the ground state

of some representation of such a Hamiltonian, in a basis where the action of the

representation is known.

Theorem 4.3 (Finding the ground state of symmetric Hamiltonians). Consider a

subalgebra 𝐴(𝑋), and assume that the matrix elements 𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆

are known as discussed

above. Then the ground state energy and ground state of 𝐻 in the |𝜆, 𝑞𝜆, 𝑝𝜆0⟩ basis

can be found in time O
(︀
𝑛𝜆𝑛

ω
𝑞

)︀
, where 𝑛𝜆 are the number of irreps of 𝑋 and 𝑛𝑞 the

maximum irrep dimension.

Proof. For each 𝜆, consider the operator with indices:

ℎ̂𝜆𝑞𝜆,𝑞′𝜆 ≡
∑︁
𝑖

ℎ𝑖𝐹
𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆
. (4.8)

Note that in the |𝜆, 𝑞𝜆, 𝑝𝜆⟩ basis, 𝐻 has a block diagonal form. Furthermore, as 𝑝𝜆

labels isomorphic copies of irreps, we can find the ground state by fixing 𝑝𝜆0 WLOG.

Namely, the ground state energy is given by:

GSE (𝐻) = min
𝜆

GSE
(︁
ℎ̂𝜆
)︁
, (4.9)

where:

GSE
(︁
ℎ̂𝜆
)︁
≡ min

|𝜓⟩
⟨𝜓| ℎ̂𝜆 |𝜓⟩ . (4.10)

Furthermore, let

𝜆min ≡ argmin𝜆GSE
(︁
ℎ̂𝜆
)︁

(4.11)

and

|𝜓*⟩ ≡ argmin|𝜓⟩ ⟨𝜓| ℎ̂𝜆min |𝜓⟩ . (4.12)

Then, for any 𝑝,

|𝜆min, 𝜓
*, 𝑝⟩ (4.13)

is a ground state in the |𝜆, 𝑞𝜆, 𝑝𝜆⟩ basis. The dimension of ℎ̂𝜆 is dim𝑋 (𝜆)× dim𝑋 (𝜆),

and thus calculating |𝜓*⟩ will take time O(dim𝑋(𝜆)
ω). In total, finding the ground
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state of 𝐻 in the |𝜆, 𝑞𝜆, 𝑝𝜆0⟩ basis takes time O(𝑛𝜆 dim𝑋(𝜆)
ω) = O

(︀
𝑛𝜆𝑛

ω
𝑞

)︀
.

We now show that the dynamics of an initial state under equivariant unitaries can

be classically simulated even if 𝜌 ̸= 𝐴 (𝑋). The given procedure is fully classical if

the initial state is given as a classical shadows description of the state; if the input is

given as a quantum state, we show that performing classical shadow measurements

is efficient and then reduces the algorithm to the purely classical setting. This gen-

eralizes a similar approach taken in Reference [152] in the case of particle number

symmetry.

Theorem 4.4 (Simulating equivariant dynamics). Let

𝑂 =
∑︁
𝑖

𝑜𝑖𝐴𝑖 (4.14)

be a projective measurement and

𝑈 =
∑︁
𝑖

𝑢𝑖𝐴𝑖 (4.15)

a unitary operator. Assume the matrix elements 𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆

as described previously are

known. Assume also the existence of a symmetry transform operator 𝑉STO with depth

𝑣. Then,

ℓ (𝜌) = tr
(︀
𝑂𝑈𝜌𝑈 †)︀ (4.16)

can be estimated to additive error 𝜖 with probability 1−𝛿 via Õ
(︀
|𝑂|2∞ 𝜖−2𝑛2

𝜆𝑛
2
𝑞 log (𝛿

−1)
)︀

calls to a quantum computer each of depth 𝑣 + 1, up to an additional time O
(︀
𝑛𝜆𝑛

ω
𝑞

)︀
in classical processing. Here, 𝑛𝜆 are the number of irreps of 𝑋 and 𝑛𝑞 the maximum

irrep dimension.

Proof. Let �̃�𝑝0 , �̃�𝑝0 be projections of 𝑉STO𝑂𝑉
†
STO, 𝑉STO𝑈𝑉

†
STO onto some particular

𝑝. Classically, we can calculate:

𝑀𝑝0 = �̃� †
𝑝0
�̃�𝑝0�̃�𝑝0 (4.17)
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in time O
(︀
𝑛𝜆𝑛

ω
𝑞

)︀
, as it is given by the matrix multiplication of 𝑛𝜆 blocks each of size

at most 𝑛𝑞 × 𝑛𝑞. Õ
(︀
|𝑂|2∞ 𝜖−2𝑛2

𝜆𝑛
2
𝑞 log (𝛿

−1)
)︀

random Pauli measurements of the state

𝜌 = tr𝑝

(︁
𝑉STO𝜌𝑉

†
STO

)︁
(4.18)

then suffice to estimate the expectation:

ℓ̃ (𝜌) = tr (𝑀𝑝0𝜌) (4.19)

to additive error 𝜖 with probability at least 1−𝛿 using classical shadows [82]. Finally,

observe that:
ℓ (𝜌) = tr

(︀
𝑂𝑈𝜌𝑈 †)︀

= tr
(︁
�̃�𝑝0�̃�𝑝0 tr𝑝

(︁
𝑉STO𝜌𝑉

†
STO

)︁
�̃� †
𝑝0

)︁
= ℓ̃ (𝜌) .

(4.20)

Note that in principle, the sample complexity of this procedure can potentially

be improved to Õ(|𝑂|2∞ 𝜖−2𝑛𝜆𝑛
2
𝑞 log (𝛿

−1)) as 𝜌 only has 𝑛𝜆𝑛2
𝑞 degrees of freedom.

However, the block diagonal structure over irreps is lost when transforming to the

bitstring encoding |𝜆⟩ |𝑞⟩ |𝑝⟩ via 𝑉STO, and thus we arrive at the sample complexity

given.

In the above considerations, the group 𝐺 and representation 𝑅 do not directly

enter. In practice, however, we might want to start with those two. The irreps

of 𝑋 are in one-to-one correspondence with those of 𝑅. By a simple corollary of

the von Neumann bicommutant theorem, the dimensions of the irreps of 𝑋 are the

multiplicities of the irreps of 𝑅. We thus have that:

dim (𝑋) =
∑︁
𝜆

dim𝑋 (𝜆)2 =
∑︁
𝜆

mult𝑅 (𝜆)2 . (4.21)

Thus, the problems discussed above become classically tractable if the number 𝑛𝜆 of

irreps of 𝐺 with nonzero multiplicity in 𝑅, as well as the maximum multiplicity 𝑛𝑞 of
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an irrep 𝜆 in 𝑅, both grow only polynomially with 𝑛.

4.4 Permutation Invariance on Qubits

We now discuss such an example of a symmetry group with low-multiplicity irreps.

Namely, we will apply the previously described procedures to the case where 𝐺 is

given by S𝑛 and 𝑅 is the representation on 𝑛 qubits acting by permutations

𝑅 (𝜋) |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑛⟩ = |𝑖𝜋−11⟩ ⊗ |𝑖𝜋−12⟩ ⊗ · · · ⊗ |𝑖𝜋−11⟩ . (4.22)

A straightforward basis for the algebra of invariant operators can be obtained by

applying the Reynold’s operator in Equation (4.2) to the Pauli basis. Normalizing

such that all operators 𝐴𝑖 are sums of unit norm Pauli terms, we obtain:

𝐴𝑖 =
1

𝑖1!𝑖𝑥!𝑖𝑦!𝑖𝑧!

∑︁
𝜋∈S𝑛

𝑅 (𝜋)
(︀
𝜎⊗𝑖1
1 ⊗ 𝜎⊗𝑖𝑥

𝑥 ⊗ 𝜎⊗𝑖𝑦
𝑦 ⊗ 𝜎⊗𝑖𝑧

𝑧

)︀
𝑅−1 (𝜋) (4.23)

for every 4-tuple of positive integers

𝑖 = (𝑖1, 𝑖𝑥, 𝑖𝑦, 𝑖𝑧) : 𝑖1 + 𝑖𝑥 + 𝑖𝑦 + 𝑖𝑧 = 𝑛, (4.24)

where 𝜎 denote Pauli operators, and 𝜎1 = id2. In the remainder of this Section we

assume that the systems, dynamics, and measurements being studied are given in

this basis. This is a natural setting for, for instance, quantum machine learning when

qubit permutation invariance is known to be present [47]. However, one could imag-

ine systems which “secretly” obey permutation invariance (or are secretly symmetric

under some other large symmetry group) and we are, for instance, only given orac-

ular access to matrix elements. We give no classical algorithms under such an input

model, and this may be a scenario where a quantum advantage still exists.

The dimension of the algebra 𝑋 is of order O(𝑛3), and the previously stated

theorems can be applied, reducing the naive ground state algorithm for permutation-

invariant Hamiltonians on 𝑛 qubits from an exponential to a polynomial runtime in
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𝑛. This is formalized below.

Corollary 4.5. The ground state energy of a permutation-symmetric Hamiltonian

on 𝑛 qubits, given as ℎ𝑖 in the basis of symmetrized Pauli monomials above, can be

computed in time O(𝑛3ω) via Theorem 4.2.

Proof. All that is needed for applying Theorem 4.2 are the structure constants of the

algebra 𝑋, which are computed in Appendix C.2 (see Lemma C.1).

One can similarly find the ground state of such an 𝐻 efficiently as well. The

output of the classical algorithm is a classical description of the state which can be

efficiently constructed on a quantum computer via the Schur transform [151].

Corollary 4.6. The ground state and ground state energy of a permutation-invariant

Hamiltonian on 𝑛 qubits, given as ℎ𝑖 in the basis of symmetrized Pauli monomials

above, can be computed in time O(𝑛ω+1) via Theorem 4.3.

Proof. To apply Theorem 4.3, we must know the action of 𝐴 (𝑋) on nontrivial eigen-

vectors of its projectors onto irreps. These eigenvectors are just the Schur basis [150];

we discuss this basis in more detail in Appendix C, where we also explicitly give ana-

lytical expressions for matrix elements of 𝐴 (𝑋) (see Lemma C.2). It is then easy to

see that dim𝑋 (𝜆) = O (𝑛), and also that the number of irreps with nonzero multiplic-

ity is O(𝑛). From Theorem 4.3, we immediately see that this gives an O(𝑛ω+1)-time

algorithm for computing the ground state of S𝑛-equivariant Hamiltonians in the Schur

basis.

Remark 4.7. Though the structure constants 𝑋𝑖,𝑗
𝑘 and matrix elements 𝐹 𝑖,𝜆

𝑞𝜆,𝑞
′
𝜆

for the

completely symmetrized Pauli representation are problem independent, it is impor-

tant to note that runtimes for evaluating the analytical expressions can be expensive

polynomials in 𝑛 that may matter in practice. Namely, we give expressions for the

structure constants that take a total time O(𝑛15) and matrix elements that take a

total time O(𝑛10) to evaluate numerically. We leave more efficient evaluations of

these to future work.
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Finally, we consider an application of Theorem 4.4 to the symmetric group case.

We note that the Schur transform on 𝑛 qubits can be implemented up to an accuracy

𝜖 in time Õ (𝑛 poly log (𝜖−1)) [150], giving an efficient (approximate) implementation

of 𝑉STO. As a specific application of this result, we now consider a learning problem

for which a variational quantum algorithm was given in Reference [47]. We emphasize

that here, just as in Theorem 4.4, we do not require that the input states 𝜌𝑖 respect

the symmetries of the model.

Corollary 4.8 (Efficient classical simulation of permutation-invariant models). Con-

sider a binary classification problem with labels 𝑦𝑖 ∈ {−1, 1} and empirical loss

ℒ̂ (𝜃) = − 1

𝑀

𝑀∑︁
𝑖=1

𝑦𝑖ℓ𝜃 (𝜌𝑖) , (4.25)

where ℓ𝜃 (𝜌𝑖) is as in Equation (4.16) with a 𝜃-dependent 𝑈 . ℒ̂ can be estimated to

additive error 𝜖 at 𝑃 points in time

Õ

(︂
𝑀 |𝑂|2∞ 𝜖−2𝑛5 log

(︂
𝑃

𝛿

)︂
+𝑀𝑃𝑛ω+1

)︂
(4.26)

with total probability of success at least 1− 𝛿.

Proof. This follows immediately from Theorem 4.4 with 𝛿 → 𝛿
𝑃

by the union bound.

Corollary 4.8 implies that the loss of these models can be estimated completely

classically when the states 𝜌𝑖 are given as certain classical shadows descriptions; in

Appendix C.4, we also show that this procedure is efficient when the 𝜌𝑖 have efficient

matrix product state descriptions, even if they do not respect the symmetries of

the model. As a point of comparison, consider the runtime of using a variational

quantum algorithm to perform this binary classification task. Assume the variational

circuits are of depth Ω (𝑛3) as required in Theorem 3 of Reference [47] to ensure

convergence. Then—taking Ω
(︀
|𝑂|2∞ 𝜖−2

)︀
samples for each measurement to achieve

an overall shot noise of O(𝜖)—this yields an overall runtime of Ω
(︀
𝑀𝑃 |𝑂|2∞ 𝜖−2𝑛3

)︀
.
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For 𝑃 sufficiently large, compare this to the time O(𝑀𝑃𝑛ω+1) algorithm found for

the classical algorithm where, even if quantum states are given as input, a classical

shadow representation can be measured in quantum depth only O(𝑛 poly log (𝜖−1)).

Unlike the quantum algorithm, this algorithm can be parallelized over irreps (i.e. over

𝑛𝜆) easily, giving an effective runtime O(𝑀𝑃𝑛ω) = o (𝑀𝑃𝑛3). Even for 𝑃 small,

given many QPUs capable of running depth ∼ 𝑛 quantum circuits, the classical

algorithm parallelizes more effectively than the quantum algorithm as the required

shadow tomography can be parallelized over shots.

4.5 Conclusion

We have specified a general framework for classically simulating highly symmetric

quantum systems. Specializing to the symmetric group, we showed that these tech-

niques yield an efficient classical algorithm for finding the ground state of quantum

systems obeying an S𝑛 symmetry, evaluating dynamics, and simulating S𝑛-equivariant

quantum machine learning models. We hope that this framework sets the foundations

for the future study of classical characterizations of symmetric quantum systems.
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Chapter 5

Interpretable Quantum Advantage in

Neural Sequence Learning

The results of this chapter were featured in Reference [52], work done in collaboration

with Hong-Ye Hu, Jin-Long Huang, and Xun Gao.

5.1 Introduction

In Chapter 4, we showed how certain approaches to construct efficiently trainable

quantum machine learning (QML) architectures based on symmetries yield efficient

classical simulation algorithms. This begs the natural question: is there any regime

where a trainable QML architecture exists, yet also yields a provable quantum ad-

vantage over classical architectures?

Previous results [56, 58–60, 153] have studied quantum advantages in machine

learning classical data, though they rely on complexity theoretic assumptions. Not

only do these architectures suffer from barren plateaus [63–65, 97] and poor local

minima [49, 50, 77] due to their universal nature, it is unclear what realistic clas-

sical data sets one should expect a separation to hold in practice since the proofs

of separation are abstract. Because of these concerns, it has become increasingly

clear that quantum models should be carefully constructed to fit the task at hand.

Above all else, the interpretability of any expressivity separation achieved by a QML
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model has become increasingly important. Interpretability reveals which features of

quantum mechanics yield more expressive models compared to classical models and,

armed with this knowledge, allows one to find classes of problems where a practical

quantum advantage on real data is potentially achievable.

Wishing to construct a model with an interpretable quantum advantage, we here

focus on sequence-to-sequence learning tasks [84], and consider a quantization of lin-

ear recurrent neural networks (LRNNs) [48]. Classical LRNNs are recurrent neural

networks with only linear activation functions. Such models can equivalently be con-

sidered a classical dynamical system governed by quadratic Hamiltonian evolution in

the canonical variables (𝑞,𝑝). By lifting these canonical variables to operators (𝑞,𝑝)

that satisfy the canonical commutation relations (in units where ℏ = 1
2
):

[𝑞𝑗, 𝑝𝑘] =
i

2
𝛿𝑗𝑘, (5.1)

we arrive at a continuous variable (CV) quantum model where time evolution on an

eigenstate of the canonical operators is performed under a quadratic Hamiltonian.

To measure properties of the state of the system, the most natural choice is to per-

form homodyne measurement ; that is, measure linear combinations of the canonical

operators 𝑞𝑗 and 𝑝𝑘. This yields a quantum generative model where all operations

are Gaussian. However, as all operations, initial states, and measurements are Gaus-

sian, there are efficient Wigner function based simulations of sampling from such a

system [85]. In other words, such models on 𝑛 modes are equivalent to deep belief

networks [86]—a class of commonly used classical models—with 2𝑛 latent variables.

Instead, we extend this model slightly further by allowing for measurements of

the canonical operators modulo 2π, beginning in an eigenstate of periodic functions

of the canonical operators [94, 95]. We call this introduced class of models contextual

recurrent neural networks (CRNNs). Our main result is that CRNNs are more mem-

ory efficient at expressing certain distributions than essentially all trainable classical

sequence models—independent of their internal, latent representations—even though

CRNNs are not universal for CV quantum computation. Concretely, we show uncon-
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Figure 5-1: (a) An online neural sequence model. The model autoregressively takes
input tokens 𝑥𝑖 and outputs decoded tokens 𝑦𝑖 with the map ℱ𝑖. The model also has
an unobserved internal memory with state 𝜆𝑖−1 ∈ 𝐿 that ℱ𝑖 can depend on. When
the model is quantized to a CRNN, the 𝑛-dimensional space of 𝜆𝑖 is promoted to the
Hilbert space of 𝑛 qumode states |𝜆𝑖⟩. (b) An implementation of a phase estimation
circuit for CV Pauli operators, which forms the recurrent cell of the CRNN we use
to prove our separations. Here, |𝑎⟩ is a fixed ancilla state and “QFT” represents the
quantum Fourier transform. Formally, if |𝑎⟩ is a GKP state, this circuit allows for
infinite precision measurements. In practice, |𝑎⟩ can be a tensor product of a constant
number of qubit |+⟩ states for finite precision phase estimation.

ditionally that there exists a class of CRNNs with O(𝑛) qumodes that can express

certain distributions that no “reasonable” (which we later describe) classical model is

able to represent without an Ω (𝑛2)-dimensional latent space. Though this is only a

quadratic separation in memory, the time complexity of inference for classical mod-

els is typically superlinear in the model size [48, 87–89], suggesting a superquadratic

time separation. As we show a memory (rather than a time) separation, our results

also potentially point to a practical generalization advantage for CRNNs, as smaller

models tend to generalize better than larger models due to formalized versions of

Occam’s razor [154].

Moreover, we are able to show directly that this quantum advantage is due to

quantum contextuality [90–94] present in our quantum model. Previously, quantum
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contextuality was known to be the resource for the expressive power of a certain class

of quantized Bayesian networks [96]. Our results show that this resource can be used

to separate quantum models even from neural networks, which can be exponentially

more efficient than generic Bayesian networks. Intuitively, quantum contextuality is

the statement that quantum measurement results depend on which measurements

were previously performed, even if the measurements in question commute. In other

words, quantum contextuality is the statement that the measurement of quantum ob-

servables cannot be thought of as the revealing of preexisting classical values for the

observables. Here, we give a proof of the intuition that reasonable classical models

cannot get around the need to “memorize” the measurement context of given observ-

ables, which is what yields the quadratic memory separation between the quantum

and classical models.

Qualitatively, quantum contextuality is similar to the linguistic contextuality

present in sentences. Namely, the meaning of a given word in a sentence depends

heavily on other words in the sentence, and without this context has no fixed, single

meaning. Inspired by this, we also test our constructed model against state-of-the-art

classical models on a real-world translation task to investigate whether the ability of

the quantum model to store information in its measurement context yields a prac-

tical quantum advantage in modeling the long-time correlations present in typical

sequential data sets. In particular, we evaluate the performance of an LRNN [155],

an RNN with gated recurrent units (GRU RNN) [88], a Transformer [89], a Gaussian

model, and our introduced contextual model on a standard Spanish-to-English data

set [156]. We show that our introduced contextual model achieves better translation

performance compared to all other models at each model size we consider. This sep-

aration holds even when the online models are constrained to have a similar (and

where possible, the same) number of trainable parameters in each recurrent cell.

Our methods provide a novel strategy for designing QML models: through the

quantization of simple classical machine learning models with some minimal quantum

extension. Though such models are most likely unable to outperform state-of-the-art

classical machine learning models on all tasks, the intuition gleaned from the simplic-
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ity of the quantum models gives guidance as to which problems the quantum models

may outperform classical models on. Furthermore, the simplicity of the quantum

models may circumvent the recent deluge of untrainability results of general quan-

tum models [49, 50, 63–65, 77, 97] as it is known that there exists a trade-off between

the trainability of such architectures and their generality [157]. Finally, as such mod-

els are restricted in their allowed operations, they are more amenable to experimental

implementation than completely generic quantum models.

5.2 Classical and Quantum Neural Sequence Learn-

ing

5.2.1 Classical Sequence Learning

Sequence-to-sequence or sequence learning [84] is the approximation of some given

conditional distribution 𝑝 (𝑦 | 𝑥) with a model distribution 𝑞 (𝑦 | 𝑥). This framework

encompasses sentence translation tasks [84], speech recognition [158], image caption-

ing [159], and many more practical problems.

Sequence modeling today is typically performed using neural network based gen-

erative models, or neural sequence models. Generally, these models are parameterized

functions that take as input the sequence 𝑥 and output a sample from the conditional

distribution 𝑞 (𝑦 | 𝑥). The parameters of these functions are trained to minimize an

appropriate loss function, such as the (forward) empirical cross entropy:

�̂� (𝑝, 𝑞) = − 1

|𝒯 |
∑︁

(𝑥,𝑦)∈𝒯

𝑝 (𝑦 | 𝑥) log (𝑞 (𝑦 | 𝑥)) , (5.2)

where 𝒯 = {(𝑥𝑖,𝑦𝑖)} are samples from 𝑝 (𝑥,𝑦). The backward empirical cross entropy

is similarly defined, with 𝑝 ↔ 𝑞. Note that a model with support on an incorrect

translation (i.e. 𝑞 ̸= 0, 𝑝 = 0) yields an infinite backward cross entropy, and a model

failing to have support on a correct translation (i.e. 𝑝 ̸= 0, 𝑞 = 0) yields an infinite

forward cross entropy.
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To maintain a resource scaling independent of the input sequence length, neural se-

quence models usually fall into one of two classes: online sequence models (also known

as autoregressive sequence models) [48, 87, 88], or encoder-decoder models (which in-

clude state-of-the-art sequence learning architectures, such as Transformers) [84, 89].

We focus on online models here, and discuss encoder-decoder models in more detail

in Appendix D.1.

In online models, input tokens 𝑥𝑖 are translated in sequence to output tokens 𝑦𝑖 via

functions ℱ𝑖. An unobserved internal memory (or latent space) 𝐿 shared between time

steps allows the model to represent long-range correlations in the data. A diagram of

the general form of online models is given in Figure 5-1(a). Generally, there are no

restrictions on the forms of ℱ𝑖, though most neural sequence models are composed

of simple smooth (or almost everywhere smooth) functions out of training consider-

ations [48, 87–89]. Here, we generalize from the typical smoothness constraints and

consider locally Lipschitz maps.

Assuming that the codomain of ℱ𝑖 is R𝑚, all maps that are almost everywhere

differentiable with locally bounded Jacobian norm are locally Lipschitz [160]. Re-

alistically, then, locally Lipschitz models can be thought of as all models trainable

using gradient based methods. Equivalently, they can be thought of as models not in-

finitely sensitive to infinitesimal changes in their inputs. This includes all models with

standard nonlinearities, including those with rectified linear unit (ReLU), hyperbolic

tangent, and sigmoid activation functions. Note that this condition is much weaker

than a globally Lipschitz constraint. We give a formal definition of local Lipschitzness

in Appendix D.1.

Though neural networks are often described as functions of real-valued inputs,

in practice they are implemented at finite precision. We emphasize that where we

analytically consider such networks here—such as in Section 5.3—we consider the

formal description of neural networks, which assumes infinite precision. Our numerical

experiments in Section 5.4, however, give evidence that our analytic results also hold

in the finite precision regime. We discuss this in more detail in Appendix D.3.
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𝑋1 (𝛼) 𝑋2 (𝛼) 𝑋1 (𝛼)
†𝑋2 (𝛼)

†

𝑋1 (𝛼)
† 𝑍2

(︀
π
2𝛼

)︀†
𝑍1

(︀
π
2𝛼

)︀†
𝑋2 (𝛼)

† −𝑋1 (𝛼)𝑍1

(︀
π
2𝛼

)︀
𝑋2 (𝛼)𝑍2

(︀
π
2𝛼

)︀
𝑍2

(︀
π
2𝛼

)︀
𝑍1

(︀
π
2𝛼

)︀
𝑍1

(︀
π
2𝛼

)︀†
𝑍2

(︀
π
2𝛼

)︀†
Table 5.1: An example of CV quantum contextuality using a Mermin–Peres magic
square [93], with CV Pauli operators 𝑋𝑖 (𝑎) , 𝑍𝑖 (𝑎) generated by −2i𝑎𝑝𝑖, 2i𝑎𝑞𝑖, re-
spectively. For any real 𝛼 ̸= 0, all operators in each row and column commute.
Additionally, the product of each row and column is the identity operator, except for
the final column, which gives −1. Thus, definite classical values cannot be assigned
to each operator without yielding a contradiction.

5.2.2 Contextual Recurrent Neural Networks

We now consider a quantization of a simple online model. Generally, online models

can be interpreted as a classical dynamical process, where queries 𝑥𝑖 are made to a

physical system described by the latent state 𝜆𝑖−1, yielding a result 𝑦𝑖 and trans-

forming the latent state 𝜆𝑖−1 ↦→ 𝜆𝑖 (see Figure 5-1(a)). For linear recurrent neural

networks (LRNNs), this can be interpreted as the physical process of querying proper-

ties of an underlying system described by 𝜆𝑖 undergoing Hamiltonian evolution under

a quadratic Hamiltonian; this can be seen straightforwardly from Hamilton’s equa-

tions and the linearity of the model. When quantizing the canonical position and

momentum variables to operators satisfying the canonical commutation relations,

such a model can then be interpreted as performing sequential measurements on a

system undergoing evolution via Gaussian operations. When these measurements are

restricted to homodyne measurements and all inputs are Gaussian states, this pro-

cess can be simulated classically with memory linear in the number of modes of the

Gaussian system [85]. We minimally extend this, and allow for non-Gaussian mea-

surements. In particular, we are here interested in measuring via phase estimation

the CV analogs of the Pauli operators [161] (in units where ℏ = 1
2
):

𝑋𝑖 (𝑎) = e−2i𝑎𝑝𝑖 , 𝑍𝑖 (𝑎) = e2i𝑎𝑞𝑖 . (5.3)
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We also promote the initial state of the network to a Gottesman–Kitaev–Preskill

(GKP) state [95], which is an eigenstate of CV Pauli operators. We call a recurrent

online model beginning in a GKP state, with cell that takes as input 𝑥𝑖 a description

of a CV Pauli operator and returns its measurement result 𝑦𝑖, a contextual recurrent

neural network (CRNN).

This measurement can formally be performed at infinite precision using Gaussian

operations and homodyne measurement with fixed ancilla GKP states [95, 162]. A

circuit description of this is given in Figure 5-1(b), where |𝑎⟩ is a uniform super-

position over squeezed states |𝑠⟩ with 𝑞 |𝑠⟩ = 𝑞 |𝑠⟩, where 𝑞 ≡ 0 (mod 2π). When

performed sequentially on an initial GKP state, these measurements are what we

consider when we compare in Section 5.3 CRNNs against the infinite precision clas-

sical neural networks described in Section 5.2.1. In this scenario, the model is not

universal for CV quantum computation, even when additional Gaussian operations

within the latent space are added [163]. Counterintuitively, when the initial state is

the vacuum state or a finitely squeezed GKP state, the model is universal [163, 164];

this suggests a potential superpolynomial advantage in the expressive power and the

time complexity of inference when implemented at finite precision. We discuss this

in more detail in Appendix D.3.

Just as in the classical case, one can consider a finite precision approximation of

these measurements. In this scenario, phase estimation using ancilla qubits can be

performed for each measurement [165]. We discuss proposals for the experimental

implementation of such a measurement in Appendix D.3. In general, parameterized

Gaussian operations can be included within each recurrent cell to yield a trainable

CRNN. This is a special case of the CV neural networks considered in Reference [26],

which also considered the training of such networks. For our expressivity separations,

however, we consider the fixed CRNN instance given in Figure 5-1(b).

For our purposes, these measurements are important as CV Pauli operators ex-

hibit quantum contextuality [94], in complete analogy with the contextuality present

in qubit Pauli operators [93]. Quantum contextuality is the statement that no defi-

nite classical values can be assigned to quantum operators, even when the measured
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Figure 5-2: (a) A schematic of the classical model when the dimension of the latent
space 𝐿 (green) is less than 𝑛(𝑛−3)

2
, where 𝑛 is the number of modes in the stabilizer

measurement translation task. Here, “|𝜓𝑖⟩” labels the input sequence that is com-
posed of the stabilizers of |𝜓𝑖⟩; we discuss this labeling in more detail in our proof
sketch of Theorem 5.2. We show that when dim (𝐿) < 𝑛(𝑛−3)

2
, in the neighborhood of

some input, only a subspace of inputs (gray) of the same dimension as 𝐿 are mapped
injectively. (b) A sketch of the space of inputs, with fibers locally induced by the
model. The base manifold is mapped injectively to 𝐿. All points on a fiber (e.g. |𝜓1⟩,
|𝜓2⟩) map to the same point as their base point (e.g. |𝜓0⟩) in 𝐿. When the dimension
of the fiber is large enough, we show that these states have contextual stabilizers. We
then show that this implies that the states have a single-shot distinguishing measure-
ment sequence.

operators in any given measurement scenario commute. For an example of this phe-

nomenon, see Table 5.1; there is no consistent assignment of classical values to each

operator in the Table for any real 𝛼 ̸= 0.

5.2.3 Stabilizer Measurement Translation

We now focus on a classical sequence learning task that is naturally performed by

the introduced CRNN. In particular, we consider the (𝑘, 𝑛) stabilizer measurement

translation task, parameterized by 𝑘 and 𝑛. Leaving the formal definition for Ap-
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pendix D.2, we give an informal definition here. We use the terminology of Figure 5-1

for clarity.

Definition 5.1 ((𝑘, 𝑛) stabilizer measurement translation task, informal). Given a

𝑘 long sequence of classical descriptions 𝑥𝑖 of CV Pauli operators on 𝑛 modes, out-

put a sequence of measurement outcomes 𝑦𝑖 that is consistent with measuring these

operators sequentially on a fixed GKP state |𝜆0⟩.

As described in Section 5.2.2, such measurement sequences can display nontrivial

correlations due to quantum contextuality. Note that this task is distinct from the

measurement of position and momentum operators. Here, we require the measure-

ment of linear combinations of position and momentum operators modulo 2π, as we

are measuring the phases of operators generated by position and momentum. This

can be done using the CRNN cell described in Section 5.2.2. We consider in Ap-

pendix D.2 a slight generalization of this task, though here we consider Definition 5.1

with its fixed GKP initial state for simplicity.

5.3 Bounds on Stabilizer Measurement Translation

We now give statements and proof sketches of our main results, which are lower

bounds on the performance of classical models in performing the stabilizer measure-

ment translation task described in Section 5.2.3. This will give an expressivity sepa-

ration between the classical and quantum sequence models.

For discrete models, quantum contextuality was the key resource for showing a

separation in expressivity between classical and quantum models [96]. Using differ-

ent proof techniques, we here show that quantum contextuality is also the resource

giving the separation between continuous classical and quantum models with infinite

dimensional Hilbert spaces. To do this, we specialize to two classes of models: online

neural sequence models, and encoder-decoder models (which include state-of-the-art

models such as seq2seq models [84] and Transformers [89]). Here, we focus on the

memory separation between CRNNs and classical online neural sequence models, and
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Figure 5-3: The forward empirical cross entropy (𝐿) on a test set for a Spanish-to-
English translation task as a function of the model dimension 𝑛 for GRU RNNs,
Gaussian RNNs, and CRNNs. The models are constrained such that the Gaussian
and CRNN models have an identical number of parameters. The recurrent cells of
the GRU RNN and quantum models have a number of parameters within 2.5% of
each other at 𝑛 = 26. Error bars denote the standard deviations of the loss over five
independent training runs.

discuss a similar separation against encoder-decoder models in Appendix D.2. We

also there formulate a general statement on the classical efficiency of simulating CV

Pauli measurements on an initial GKP state, similar in spirit to the fact that the

Gottesman–Knill theorem [166, 167] is optimal for qubit stabilizer simulation [168].

Our main result can be informally stated as the following Theorem (with the full

statement and proof left to Appendix D.2). Note that, as discussed in Section 5.2.3,

a CRNN can perform the stabilizer measurement translation task with 𝑛 qumodes of

memory.

Theorem 5.2 (Online stabilizer measurement translation memory lower bound, in-

formal statement of Theorem D.2). Consider a locally Lipschitz online model with

latent space 𝐿. If dim (𝐿) < 𝑛(𝑛−3)
2

, this model cannot achieve a finite backward cross

entropy on the (𝑛+ 2, 𝑛) stabilizer measurement translation task.

Proof sketch. The strategy of our proof is to show that, when the dimension of 𝐿 is

less than 𝑛(𝑛−3)
2

, the model must map an embedded submanifold 𝐾 of the space of the

first 𝑛 inputs to the same point in 𝐿; in other words, the model loses the ability to
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Input “Debemos limpiar la cocina.”
Truth “We must clean up the kitchen.”
CRNN “We must clean the kitchen.”
GRU “We have to turn the right address.”
Input “Admití que estaba equivocada.”
Truth “I admitted that I was wrong.”
CRNN “I was wrong to say that.”
GRU “They had a thing to be true.”
Input “¿Cual es el lugar más bonito del mundo?”
Truth “What’s the most beautiful place in the world?”
CRNN “What’s the world largest place?”
GRU “What’s the best of is in?”
Input “La caja es pesada.”
Truth “The box is heavy.”
CRNN “The box is heavy.”
GRU “My box is.”

Table 5.2: Random samples of translation results for 𝑛 = 26 models.

distinguish between inputs in 𝐾. The nontrivial aspect of this proof is to demonstrate

that such a 𝐾 exists, where distinct points in 𝐾 yield different translations. As the

model is unable to distinguish between points in 𝐾, this then demonstrates that

the model will get a translation incorrect, corresponding to an infinite backward

cross entropy on the stabilizer measurement translation task. This is equivalent to

demonstrating that the quantum mechanical processes being described by points in

𝐾 yield quantum states that are single-shot distinguishable.

To demonstrate that such a 𝐾 exists, we use the local Lipschitzness of the model

and the constant rank theorem [169]. This then implies that the map ℱ—given by the

𝑛-fold composition of the ℱ𝑖 as shown in Figure 5-1(a)—locally induces a fiber bundle

on the input space (as shown in Figure 5-2), where ℱ can be considered a projection

onto the base manifold of this induced fiber bundle. We slightly abuse notation in the

remainder of this proof sketch, and conflate the first 𝑛 inputs (and their associated

outputs) with the quantum state that would arise from this measurement sequence;

this same labeling is used in Figure 5-2.

We consider a fiber of this fiber bundle, with the goal of proving that there exist

points in this fiber that are single-shot distinguishable. We show in Appendix D.2
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that the dimension of this fiber is large enough such that there exist three states

in this fiber with stabilizers that exhibit quantum contextuality. We claim (and

prove in Appendix D.2) that due to the presence of quantum contextuality in these

stabilizers, these states have a distinguishing measurement sequence of length two.

When performing this distinguishing measurement sequence, then, the model must

give the incorrect measurement results for one of the three states, giving the lower

bound on classical simulation. It is easy to see from Equation (5.2) that this yields

both an infinite backward cross entropy when these sequences are in the data set 𝒯 .

As a simple example of this phenomenon, assume that three states |𝜓1⟩ , |𝜓2⟩ , |𝜓3⟩

with classical representations in the same fiber are respectively stabilized by the

rows of Table 5.1 for some real 𝛼 ̸= 0. As |𝜓3⟩ is stabilized by 𝑍1

(︀
π
2𝛼

)︀†
𝑍2

(︀
π
2𝛼

)︀†,
upon measuring this operator, the measurement result is constrained to be 1 for

the simulation to be accurate. The post-measurement state of |𝜓1⟩ is then stabi-

lized by 𝑋1 (𝛼)𝑋2 (𝛼) and 𝑍1

(︀
π
2𝛼

)︀†
𝑍2

(︀
π
2𝛼

)︀†. In particular, it is also stabilized by

𝑋1 (𝛼)𝑍1

(︀
π
2𝛼

)︀†
𝑋2 (𝛼)𝑍2

(︀
π
2𝛼

)︀†. Conversely, the post-measurement state of |𝜓2⟩ is sta-

bilized by−𝑋1 (𝛼)𝑍1

(︀
π
2𝛼

)︀†
𝑋2 (𝛼)𝑍2

(︀
π
2𝛼

)︀†. Thus, then measuring𝑋1 (𝛼)𝑍1

(︀
π
2𝛼

)︀†
𝑋2 (𝛼)𝑍2

(︀
π
2𝛼

)︀†
gives an incorrect translation for one of these states. This measurement sequence is

single-shot, as only a single copy of the state being measured is used.

Our results show that there is a general 𝑛 versus Ω (𝑛2) bound in the memory re-

quirements of contextual and classical models performing the stabilizer measurement

translation task. In practice, this can yield an even greater separation in time com-

plexity for given implementations of these models, as the time complexity of inference

using classical models is typically superlinear in the model size. We discuss this in

more detail in Appendix D.5.3.

5.4 Numerical Experiments

We now showcase the practical benefit of finding an interpretable advantage in the

expressivity of our quantum model. Namely, it is able to give us intuition as to which

data sets—beyond the constructed data set used in our proof—a CRNN may outper-
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form classical machine learning models on. As previously discussed, the contextuality

present in quantum operators behaves qualitatively similar to the linguistic contextu-

ality present in language. That is, words can have one of many meanings, and their

exact definition only becomes apparent when considering their context in a sequence.

This is important for translation tasks, where different meanings of a single word

in one language have different translations in other languages. We here investigate

whether the ability of the quantum model to store information in its measurement

context yields a practical quantum advantage in modeling the long-time correlations

present in a typical sequential data set.

To explore this intuition, we consider the application of a CRNN on a standard

Spanish-to-English translation data set [156], with trainable Gaussian interactions

within each recurrent cell. We also consider the performance of GRUs [88] in a seq2seq

learning framework [84], and Gaussian models (with Gaussian measurements). De-

tails of our numerical simulations for all of the models we consider are given in Ap-

pendix D.5, along with details of the architectures. We also discuss in Appendices D.4

and D.5 a Θ(𝑛2) memory classical simulation of CRNNs with 𝑛 latent modes on a

restricted space of Gaussian operations, which is what we use in our numerical sim-

ulations. The Gaussian and contextual models are constrained to have exactly the

same number of trainable parameters, and each recurrent cell of the GRU has a pa-

rameter count within 2.5% of those of the quantum models at the largest model size

considered. In Figure 5-3, we plot the final training performance of all of our models

over five independent training runs. It is easy to see that the contextual model out-

performs all models under consideration in forward empirical cross entropy at a wide

range of model dimensions 𝑛. It is also apparent that training CRNNs is no more dif-

ficult than training GRUs, justifying our intuition that restricted quantum machine

learning models should be more trainable than generic models [49, 50, 63–65, 77, 97].

Random samples of translation results after training are shown in Table 5.2.

We also compared the performance of CRNNs against classical LRNNs [155] and

Transformers [89]; for the latter, we also tested the model sizes required for the

quantum and classical models to achieve some fixed target in performance. We find
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that CRNNs substantially outperformed both LRNNs and Transformers. We also

verified that to attain a fixed target loss realized by a CRNN of size 𝑛 = 26 a

Transformer needed a memory of dimension roughly 𝑛(𝑛−3)
2

, which is the same as that

proven in the setting of Theorem 5.2. We give details of these results in Appendix D.6.

5.5 Conclusion

Our results pinpoint quantum contextuality as a resource that can be used to enhance

traditional machine learning models. We achieved this by constructing a sequence

learning task parameterized by 𝑛 that a contextual quantum model (a CRNN) of

size 𝑛 is able to model, yet provably no classical neural networks of size subquadratic

in 𝑛 can model due to their noncontextuality. To our knowledge, this is the first

unconditional proof of an expressivity separation between a quantum neural network

and classical neural networks on classical data. By explicitly demonstrating that

quantum contextuality is the source of this advantage, we are also able to provide

intuition as to which classes of problems CRNNs are able to outperform traditional

machine learning models in solving. Our numerics confirm the intuition that CRNNs

perform extremely well on problems exhibiting linguistic contextuality, such as the

Spanish-to-English translation task we consider here.

The simple structure of CRNNs also allow (finite precision approximations of)

them to be more amenable to potential experimental implementations when compared

with completely general quantum architectures. In particular, all operations in the

contextual model are Gaussian, up to the requirement for interactions with fixed

ancilla states to perform the required non-Gaussian measurements. Furthermore,

though we do not consider the effects of noise here in detail, a key component of

CRNNs is intermediate measurement using ancilla GKP states; this procedure is an

important building block of CV quantum error correction [95], and in future work

we hope to study how the addition of fast classical feedback may allow for error

correction in CRNNs. The restricted nature of the model may also circumvent the

poor training landscapes of generic quantum neural networks [49, 50, 63–65, 77, 97],
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though we leave further investigation of this to future work.

We believe that the specifics of the CRNN architecture can be relaxed some-

what. Due to recent results linking non-Gaussian operations to quantum contextual-

ity [170, 171], we suspect that any non-Gaussian measurement would make a suitable

replacement for the stabilizer measurements we consider here for technical reasons.

We also suspect that the technical requirement that the measurements be made with

infinite precision to be an artifact of the nature of our proof, which compares the

quantum architecture with infinite precision classical models. We believe that in

practice, performing phase estimation using ancilla qubits instead of GKP (or other

non-Gaussian CV) states is all that is necessary for a practical separation. In fact,

such a finite precision implementation may counterintuitively yield a larger quantum

advantage, as our architecture implemented with a finitely squeezed initial Gaussian

state is universal for CV quantum computation [163, 164]. We discuss these two

points in more detail in Appendix D.3.

CRNNs demonstrate that even the quantization of a very simple class of classi-

cal architectures—here, the class of LRNNs—is able to outperform a wide range of

classical models on certain tasks, even if the classical models are much more powerful

than LRNNs. We leave for future work the quantization of more powerful classical

architectures, which may achieve a practical quantum advantage on a wider variety

of tasks than we consider here.
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Chapter 6

Conclusion

In this thesis we have demonstrated generally a trade-off between two important as-

pects of any quantum machine learning (QML) algorithm: the efficiency of which

they are trained, and their expressive power. Unfortunately, the requirement to bal-

ance these two aspects makes constructing useful QML algorithms a difficult process

in general.

Luckily, there is hope. Though the separation is modest, in Chapter 5 we demon-

strated the existence of a sequence learning task for which there existed a quadratic

separation in the size of (trainable) quantum and classical models representing the

distribution. Where does the demonstration of such a separation leave us?

In practice, a quadratic separation may not be sufficient to justify the use of the

quantum model over any classical model. This is particularly true if the model is used

to represent the long sequences it is expected to have an advantage over classical mod-

els on; such a task would probably require some form of quantum error correction,

for which large constant factors may make impractical any quadratic time separation

in the near future [172]. Perhaps this is too pessimistic for the system discussed in

Chapter 5—where only Gaussian interactions, along with state preparation and mea-

surement (SPAM) errors need to be error corrected—but ideally a larger separation

would be shown.

One potential way forward is to consider generalizations of the quantized linear

system of Chapter 5. Particularly, one can consider quantizing polynomial systems
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of bounded degree. There, the analog of the graph states considered in Chapter 5

are hypergraph states [173]. Using the rough heuristic demonstrated throughout this

thesis that training times should scale with the dimension of Hilbert space explored

by the model, these QML architectures may yield a natural way to tunably balance

between trainability and expressivity.

Another way to extend the results presented here would be to consider notions

of trainability that are model independent. In particular, our untrainability results

specifically looked at certain randomized classes of QML models to ensure the tractabil-

ity of the proofs. This stands in stark contrast with methods used classically to prove

the unlearnability of—for instance—solutions to NP-hard problems. In the classical

setting, these sorts of learnability problems are tackled by looking at the solution

space of the problem itself, most famously via analogs of the overlap gap property

(OGP) [174–176]. Essentially, OGP results imply a clustering behavior in the so-

lution space for a variety of problems that cannot be learned by so-called “stable”

algorithms. Shallow instances of the quantum approximate optimization algorithm

(QAOA) have been shown to fall in this class, and thus the unlearnability of e.g.

Max-Cut using shallow QAOA can be derived using essentially no quantum tech-

niques [175, 176]. Exciting recent progress in studying the low-energy states of local

Hamiltonians may open the door to similar analysis for quantum problems [177], but

more work remains to be done.

The field of quantum information—which lies at the intersection of mathematics,

physics, and computer science—demonstrates how novel results can be found by look-

ing where fields coexist. The results in this thesis carve out a niche where quantum

algorithms, in their intersection with machine learning, may prove practically useful.

Though the landscape of all possible architectures is vast, we now know where to

begin the search.
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Appendix A

Technical Details for Chapter 2

A.1 Variational Quantum Algorithms as Random Fields

A.1.1 Technical Exposition of Variational Quantum Algorithms

Variational quantum algorithms (VQAs) are a class of quantum generative model

where one expresses the solution of some problem as the smallest eigenvalue and its

corresponding eigenvector (typically called the ground state) of an objective Hermitian

matrix 𝐻. In Section 1.2.3, we gave a brief and general overview of VQAs; we here

provide more details, with some slight changes in convention such that our theorems

are more easily expressed.

Given a choice of generative model—often called an ansatz in the quantum algo-

rithms literature:

|𝜃⟩ =
𝑞∏︁
𝑖=1

𝑈𝑖 (𝜃𝑖) |𝜓0⟩ (A.1)

that for some choice 𝜃 closely approximates the ground state of 𝐻, the solution is

encoded as the minimum of the loss function

𝐹 (𝜃) = ⟨𝜃|𝐻 |𝜃⟩ . (A.2)

This loss function can be computed on a quantum computer efficiently, under some

conditions on the matrix 𝐻. For simplicity of analysis, throughout this paper we will
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consider the loss function

𝐹 (𝜃) =
⟨𝜃|𝐻 |𝜃⟩ − 𝜆1

𝜆− 𝜆1
, (A.3)

where 𝜆1 is the smallest eigenvalue of 𝐻; this has the same loss landscape as Equa-

tion (A.2), but is minimized at 𝐹 = 0 (assuming a sufficiently expressive |𝜃⟩) and is

normalized by the mean eigenvalue of 𝐻 − 𝜆1. In Equation (A.1), 𝑞 is referred to as

the depth of the circuit, and the initial vector (i.e. quantum state) |𝜓0⟩ ∈ C2𝑛 is fixed

throughout the optimization procedure. Different choices of 𝑈𝑖 constitute different

choices of ansatz for the ground state of 𝐻.

Ansatz design choice generally falls in one of two categories: Hamiltonian in-

formed ansatzes, and Hamiltonian agnostic ansatzes. Examples of Hamiltonian in-

formed ansatzes include the chemistry-inspired unitary coupled cluster ansatz [19]

and the adiabatically inspired quantum approximate optimization algorithm (QAOA)

ansatz [99], known outside of the context of combinitarial optimization as the Hamil-

tonian variational ansatz (HVA) [178]. These ansatzes depend solely on the problem

objective Hamiltonian 𝐻, and are usually physically motivated ansatzes which, in

some limit, have convergence guarantees. Hamiltonian agnostic ansatzes, conversely,

depend solely on the hardware the VQA is run on, and not at all on the problem ob-

jective 𝐻. This class of ansatzes includes the hardware-efficient ansatz [102]. These

ansatzes are designed to eke out as much depth as possible in the objective ansatz

|𝜃⟩ by using 𝑈𝑖 that can be easily implemented on the given quantum device.

Though hardware-efficient ansatzes generally can be run at larger depth 𝑞 than

Hamiltonian informed ansatzes, the very generic nature of the ansatz circuit means

this class of ansatz is more difficult to train, often encountering barren plateaus in the

optimization landscape that are difficult to escape from when 𝑞 is large [63, 64, 97].

Heuristically, this can be understood as Hamiltonian agnostic objective functions

being so expressive that it must explore essentially all of Hilbert space to find a local

minimum, exponentially suppressing the gradients of the loss function [179].

We here consider a class of ansatzes that, like the hardware-efficient ansatz, is in-

dependent of the problem instance. In particular, we consider random parameterized
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ansatzes of the form:

𝑈𝑖 ≡ e−i𝜃𝑖𝑄𝑖 (A.4)

for Pauli operators 𝑄𝑖, where each 𝑄𝑖 is drawn uniformly and independently from the

𝑛-qubit Pauli operators. Throughout this paper, we will use 𝑞 to denote the total

number of Pauli rotations in |𝜃⟩ as in Equation (A.1), 𝑝 to denote the total number of

independent parameters 𝜃𝑖, and 𝑟𝑖 to denote the number of Pauli rotations governed

by a single independent parameter 𝜃𝑖. For simplicity, we will assume 𝑟𝑖 = 𝑟𝑗 ≡ 𝑟 for

all 𝑖, 𝑗, and thus take

𝑟 ≡ 𝑞

𝑝
(A.5)

to be a natural number.

A.1.2 Mapping Variational Quantum Algorithms to Random

Wishart Fields

With the background of VQAs in place, we will now show the asymptotic (weak)

equivalence of VQAs with the random choice of ansatz described in Appendix A.1.1

to Wishart random fields. Throughout this section, we will consider a problem Hamil-

tonian 𝐻 on 𝑛 qubits, with ground state energy 𝜆1 and mean eigenvalue 𝜆. We also

define the degrees of freedom parameter

𝑚 ≡ ‖𝐻 − 𝜆1‖
2
*⃦⃦

𝐻 − 𝜆
⃦⃦2

F

, (A.6)

whose interpretation will be discussed in Appendix A.1.3. Twice the degrees of free-

dom parameter𝑚 will turn out to govern the location of the transition from the under-

parameterized to the overparameterized regime (see Appendix A.3), and for physically

relevant Hamiltonians is expected to be exponential in 𝑛 (see Appendix A.1.3). We

will also consider the Pauli decomposition of the nontrivial part of 𝐻:

𝐻 − 𝜆 =
𝐴∑︁
𝑖=1

𝛼𝑖𝑅𝑖, (A.7)

115



where 𝐴 is the number of terms in the Pauli decomposition and 𝛼 the Pauli coeffi-

cients.

We begin by showing the convergence of a class of randomized VQAs to a weighted

sum of Wishart random fields at a rate ≳ log (𝑛); the seemingly arbitrary shifts by the

mean eigenvalue 𝜆 and the ground state energy 𝜆1 here will aid in future discussion,

when we approximate the weighted sum of Wishart random fields with a single random

field. The wide variety of assumptions will be discussed in detail in Appendix A.1.3.

We demonstrate this convergence in terms of the Lévy distance 𝐿 (𝐹𝑛, 𝐺𝑛), which

metrizes weak convergence:

𝐿 (𝐹𝑛, 𝐺𝑛)→ 0 ⇐⇒ 𝐹𝑛, 𝐺𝑛 ⇝ 𝐹. (A.8)

Theorem A.1 (VQAs as RFs). Let |𝜓0⟩ be an arbitrary stabilizer state (e.g. a

computational basis state) on 𝑛 qubits. Fix a sequence of 𝑞 angles 𝜃𝑖 ∈ [−π,π] such

that each 𝜃𝑖 is present 𝑟 times in the sequence. We let 𝑝 = 𝑞
𝑟

denote the number of

distinct parameters. Select an ansatz

|𝜃⟩ ≡
𝑞∏︁
𝑖=1

𝑈𝑖 (𝜃) |𝜓0⟩ ≡
𝑞∏︁
𝑖=1

e∓i𝜃𝑖𝑄𝑖𝐶 |𝜓0⟩ (A.9)

by independently at random drawing each ±𝑄𝑖 uniformly from the 𝑛-qubit Pauli group

P𝑛 and 𝐶 from the 𝑛-qubit Clifford group C𝑛. Consider the scaled and shifted

�̃� ≡ 𝐻 − 𝜆
𝜆− 𝜆1

=
𝐻 − 𝜆

2−𝑛 ‖𝐻 − 𝜆1‖*
, (A.10)

where ‖·‖* is the nuclear norm. Then, the random variational objective function

𝐹VQA (𝜃) =
⟨𝜃|𝐻 |𝜃⟩ − 𝜆1

𝜆− 𝜆1
=
⟨𝜃|𝐻 |𝜃⟩ − 𝜆1
2−𝑛 ‖𝐻 − 𝜆1‖*

(A.11)

has first two moments exponentially close in 𝑛 as 𝑛→∞ to those of

𝐹XHX (𝑤) = 2−𝑛

(︃
𝑝⨂︁
𝑖=1

𝑤⊺𝑖

)︃⊗𝑟

·𝑋 · �̃� ·𝑋† ·

(︃
1⨂︁
𝑖=𝑝

𝑤𝑖

)︃⊗𝑟

+ 1, (A.12)
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where 𝑤𝑖 are points on the circle parameterized by 𝜃𝑖 and 𝑋 ∈ C2𝑞×2𝑛 is a matrix of

i.i.d. complex standard jointly normal random variables. Furthermore, assuming

‖𝛼‖∞
𝜆− 𝜆1

≤ 𝑓 (𝑛)−1 (A.13)

for some 𝑓 (𝑛) = Ω (1), their distributions are bounded in Lévy distance by Õ

(︂(︁
lg(𝐴)𝑓(𝑛)𝑛

𝐴

)︁−1
)︂

.

Proof. The Feynman path integral representation (i.e. the exact Taylor expansion of

the matrix exponentials using the fact that Pauli operators square to the identity) of

the objective function Equation (A.11) is of the form

𝐹VQA =
∑︁

𝛾,𝛾′∈{0,1}×𝑞

𝑤†
𝛾′𝑤𝛾 ⟨𝜓0|𝐶†𝑄†

𝛾′�̃�𝑄𝛾𝐶 |𝜓0⟩+ 1, (A.14)

where 𝛾 labels a term in the path integral expansion of 𝑈 ,

𝑤𝛾 ≡
𝑞∏︁
𝑖=1

⎧⎨⎩ cos (𝜃𝑖) , if 𝛾𝑖 = 0

sin (𝜃𝑖) , if 𝛾𝑖 = 1
(A.15)

is the amplitude, and

𝑄𝛾 ≡ (−i)‖𝛾‖0
𝑞∏︁
𝑖=1

𝑄𝛾𝑖
𝑖 . (A.16)

We can rewrite the Feynman path integral as

𝐹VQA =

(︃
𝑝⨂︁
𝑖=1

𝑤⊺𝑖

)︃⊗𝑟

· �̃� · �̃� · �̃�† ·

(︃
1⨂︁
𝑖=𝑝

𝑤𝑖

)︃⊗𝑟

+ 1, (A.17)

where

𝑤𝑖 ≡

⎛⎝cos (𝜃𝑖)

sin (𝜃𝑖)

⎞⎠ (A.18)

and �̃� ∈ C2𝑞×2𝑛 is a random matrix with rows

⟨
�̃�
⃒⃒⃒
𝛾
≡ ⟨𝜓0|𝐶†𝑄†

𝛾 . (A.19)
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We will proceed as follows. First, we will bound the difference in the first two

moments of Equation (A.17) and its equivalent, where the rows of �̃� are i.i.d. Haar

random, to be exponentially small in 𝑛. As Haar random vectors have first three

moments matching those of random Gaussian vectors (scaled by 2−
𝑛
2 ), this gives the

desired convergence through second moments. Then, we will show that the character-

istic functions at 𝑥 of Equation (A.17) and its i.i.d. Haar random equivalent converge

exponentially quickly in 𝑛 for small enough 𝑥, giving a convergence in distribution at

a rate Ω̃
(︁

lg(𝐴)𝑓(𝑛)𝑛
𝐴

)︁
by [180]. Finally, convergence in distribution to Equation (A.12)

will follow as the error in the relevant higher-order moments between Haar random

and scaled Gaussian vectors exponentially decays in 𝑛 by a generalization of Borel’s

lemma [181].

Obviously the first moment of Equation (A.17) matches that of the i.i.d. Haar

random case; off-diagonal entries in the path integral average to zero, and the diagonal

entries are correct as 𝐶 is drawn from a unitary 2-design [182]. Let us now consider

the second moments of the nontrivial parts of both, where we are concerned with

terms of the form:

𝑐𝛼𝛽𝜇𝜈 = E
[︁
⟨𝜓0|𝐶†𝑄†

𝛾𝛼
𝐻𝑄𝛾𝛽

𝐶 |𝜓0⟩ ⟨𝜓0|𝐶†𝑄†
𝛾𝜇
𝐻𝑄𝛾𝜈𝐶 |𝜓0⟩

]︁
, (A.20)

and how they differ from the i.i.d. Haar random equivalent

ℎ𝛼𝛽𝜇𝜈 = E
[︀
⟨𝜓0|𝑈 †

𝛼𝐻𝑈𝛽 |𝜓0⟩ ⟨𝜓0|𝑈 †
𝜇𝐻𝑈𝜈 |𝜓0⟩

]︀
. (A.21)

First, assume 𝛼 = 𝛽 = 𝜇 = 𝜈; as 𝐶 is drawn from a unitary 2-design [182], the terms

are equal. Similarly, if

𝛾𝛼 ⊕ 𝛾𝛽 ⊕ 𝛾𝜇 ⊕ 𝛾𝜈 ̸= 0, (A.22)

then both expectations are equal to zero; this is because 𝑐𝛼𝛽𝜇𝜈 must have an odd

number of some 𝑄, and ℎ𝛼𝛽𝜇𝜈 an odd number of some 𝑈 (or 𝑈 †).

Let us now consider when the above conditions are not satisfied. We consider
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simultaneously terms of the form

(︀
⟨𝜓0|𝐶†𝑄†

𝛾𝛼
𝑅𝑄𝛾𝛽

𝐶 |𝜓0⟩+ 𝛾𝛼𝑗 ↔ 𝛾𝛽𝑗
)︀ (︁
⟨𝜓0|𝐶†𝑄†

𝛾𝜇
𝑅′𝑄𝛾𝜈𝐶 |𝜓0⟩+ 𝛾𝜇𝑗 ↔ 𝛾𝜈𝑗

)︁
,

(A.23)

i.e. all terms summed where unequal components of 𝛾𝛼 and 𝛾𝛽 (and 𝛾𝜇 and 𝛾𝜈) are

swapped. Note that the parity of the permutation determines the sign of the term

in Equation (A.17) (and thus in Equation (A.23)). Here, 𝑅 and 𝑅′ are terms in the

Pauli expansion of �̃�. Consider the largest 𝑗 where 𝛾𝛼 and 𝛾𝛽 differ; consider the

sum of each pair of terms in Equation (A.23) that have component 𝑗 permuted, but

are equal at all 𝑘 < 𝑗. Each pair of terms is of the form (with relative signs made

explicit)

⟨𝜓0|𝐶†𝐴𝑄𝑗𝐴
′𝑅𝐵′𝐵𝐶 |𝜓0⟩ − ⟨𝜓0|𝐶†𝐴𝐴′𝑅𝐵′𝑄𝑗𝐵𝐶 |𝜓0⟩

= 2 ⟨𝜓0|𝐶†𝐴𝑄𝑗𝐴
′𝑅𝐵′𝐵𝐶 |𝜓0⟩1[𝑄𝑗 ,𝐴′𝑅𝐵′]̸=0

(A.24)

for some 𝐴,𝐴′, 𝐵,𝐵′. For all 𝑄𝑗 that commute with 𝐴′𝑅𝐵′, the two terms cancel. In

particular, 𝑄𝑗𝐴
′𝑅𝐵′ cannot be proportional to the identity. As �̃� is traceless, both

𝑅 and 𝑅′ are also not proportional to the identity. This can be done inductively for

all 𝑗 where 𝛾𝛼 and 𝛾𝛽 differ.

Consider the case where 𝛾𝛼 + 𝛾𝛽 ̸= 𝛾𝜇 + 𝛾𝜈 ; we must have that 𝛾𝛼 and 𝛾𝛽 have a

coordinate 𝑖 where they are both one, and where 𝛾𝜇 and 𝛾𝜈 are both zero (assuming

Equation (A.22) is not satisfied). By Equation (A.24), WLOG we can consider the

product of Pauli observables between the two 𝑄𝑖 as being not proportional to the

identity. Then, averaging over 𝑄𝑖 will yield zero. This is the same as the i.i.d. Haar

random case, as every term in the expansion of Equation (A.23) must have only one

of some unitary when 𝛾𝛼 + 𝛾𝛽 ̸= 𝛾𝜇 + 𝛾𝜈 .

Finally, consider the case where 𝛾𝛼+𝛾𝛽 = 𝛾𝜇+𝛾𝜈 . Under this constraint, we must

have the same number of terms in each sum in Equation (A.23); we call this number

of terms 2𝑐. In the Pauli case, every time we combine terms as in Equation (A.24)

introduces an overall factor of 4, and we average only over the anticommuting Pauli

operators. As the value of the expectation over 𝐶 is independent of the (nonidentity)
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Pauli in the expectation value, this introduces a factor of 1
2

every time we combine

terms. This gives

2𝑐E𝐶∼C𝑛

[︀
⟨𝜓0|𝐶†𝑆𝐶 |𝜓0⟩ ⟨𝜓0|𝐶†𝑆 ′𝐶 |𝜓0⟩

]︀
, (A.25)

for some 𝑆 and 𝑆 ′ that are equal if and only if 𝑅 = 𝑅′. Similarly, in the i.i.d. Haar

random case, only products of terms with 𝛾𝛼 = 𝛾𝜇 and 𝛾𝛽 = 𝛾𝜈 are homogeneous in

their unitaries and give nonzero expectations, yielding

2𝑐E𝑈∼C𝑛

[︁
⟨𝜓0|𝑈 †

𝛼𝑅𝑈𝛽 |𝜓0⟩ ⟨𝜓0|𝑈 †
𝛽𝑅

′𝑈𝛼 |𝜓0⟩
]︁
. (A.26)

If 𝑅 ̸= 𝑅′ (and 𝑆 ̸= 𝑆 ′), these are both zero. If 𝑅 = 𝑅′ (and 𝑆 = 𝑆 ′), the latter is

equal to 2𝑐−𝑛 and the former to 2𝑐−𝑛 (1 + O (2−𝑛)). Putting everything together and

explicitly writing the overall factor of 2𝑛

‖𝐻−𝜆1‖*
, we have that the error in the second

moment is on the order of

𝜖2 =
22𝑛

‖𝐻 − 𝜆1‖2*

⎛⎝2−𝑛

⎯⎸⎸⎷ 𝐴∑︁
𝑖=1

𝛼2
𝑖

⎞⎠2

, (A.27)

where 𝛼𝑖 are the coefficients of the Pauli expansion of 𝐻 − 𝜆. We also have that

𝐴∑︁
𝑖=1

𝛼2
𝑖 = 2−𝑛

⃦⃦
𝐻 − 𝜆

⃦⃦2
F = 𝑚−12−𝑛 ‖𝐻 − 𝜆1‖2* , (A.28)

where 𝑚 is defined as in Equation (A.6). Thus,

𝜖2 = 2−(𝑛+lg(𝑚)). (A.29)

Let us now consider the 𝑡th moment for 𝑡 ≥ 3. We will bound the higher moments

of both models, and show that their characteristic functions have infinite radii of

convergence. Then, by showing that the difference in these characteristic functions

vanishes exponentially in 𝑛 for all 𝑥 ≥ 0 bounded below lg(𝐴)𝑓(𝑛)𝑛
𝐴

, we will show that
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the two models converge in distribution at a rate Ω̃
(︁

lg(𝐴)𝑓(𝑛)𝑛
𝐴

)︁
.

By grouping terms as in Equation (A.23), it is sufficient to only bound

𝑏𝑡 =
(︀
𝜆− 𝜆1

)︀−𝑡 E𝐶∼C𝑛

[︃
𝑡∏︁
𝑖=1

(︃
𝐴∑︁
𝑗=1

𝛼𝑗 ⟨𝜓0|𝐶†𝑆𝑖𝑗𝐶 |𝜓0⟩

)︃]︃
, (A.30)

where 𝑆𝑖𝑗 is not proportional to the identity, 𝑆𝑖𝑗 ̸= 𝑆𝑖′𝑗 for all 𝑖 ̸= 𝑖′, and 𝐴 is the

number of terms in the Pauli decomposition of �̃�. If a term in the expansion of Equa-

tion (A.30) contains two 𝑆𝑖𝑗 that anticommute, the contribution to the moment from

that term is zero as 𝐶 |𝜓0⟩ is a stabilizer state for all 𝐶. Generally, the contribution

to the moment is maximized when the 𝑆𝑖𝑗 are “maximally dependent”—that is, for

𝑑 distinct 𝑆𝑖𝑗 in a term, the contribution to the moment is maximized when the 𝑆𝑖𝑗

are generated by a cardinality ⌊lg (𝑑) + 1⌋ subset of them. Thus, the contribution

to the moment is bounded by 2−𝑐⌊lg(𝑑)+1⌋𝑛 for some constant 𝑐 [167]. Note that this

also bounds the i.i.d. Haar random case. Putting everything together and using the

multinomial theorem, the 𝑡th moment of the nontrivial part of both distributions is

bounded by

𝑏𝑡 ≤
∑︁

∑︀
𝑖
𝑘𝑖=𝑡

2−𝑐⌊lg(‖𝑘‖0)+1⌋𝑛
(︂

𝑡

𝑘1, . . . , 𝑘𝐴

)︂ 𝐴∏︁
𝑖=1

(︂
𝛼𝑖

𝜆− 𝜆1

)︂𝑘𝑖
. (A.31)

This corresponds to the case where 𝑆𝑖𝑗 = 𝑆𝑖𝑗′ ≡ 𝑆𝑖, i.e. when there is maximal

dependence between the matrix elements. Here, 𝑘𝑖 indexes how many times 𝑆𝑖 appears

in a term in Equation (A.30), and ‖·‖0 denotes the number of nonzero coordinates of

·. By Equation (A.13), as 𝑡→∞ for any given 𝐴 and 𝑛,

𝑏𝑡
𝑡!
≤ (1 + o (1)) 2−𝑡 lg(𝑡)−

1
2
lg(2π𝑡)+𝑡 lg( e𝐴

𝑓(𝑛))−𝑐 lg(𝐴)𝑛. (A.32)

Thus, the Taylor series of the characteristic functions of both distributions have in-

finite radii of convergence, and both are completely determined by their moments.

Furthermore, Equation (A.32) gives us that the difference in their characteristic func-

tions at 0 ≤ 𝑥 < 𝑐 lg(𝐴)𝑓(𝑛)𝑛
𝐴

is on the order of exp
(︁

𝐴𝑥
𝑓(𝑛)
− 𝑐 lg (𝐴)𝑛

)︁
as 𝑛 → ∞. As
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the two distributions have equal moments for 𝑡 ≤ 2, it can then be shown [180] that

the error in Lévy distance between the two is Õ

(︂(︁
lg(𝐴)𝑓(𝑛)𝑛

𝐴

)︁−1
)︂

.

Now that we have shown the weak convergence of our random class of VQAs to a

random field on the hypertorus, we can combine this result with a multidimensional

generalization of the Welch–Satterthwaite equation [183, 184] to show that our dis-

tribution of VQAs has first two moments matching that of a Wishart hypertoroidal

random field (WHRF). Once again, under further assumptions on the spectrum of 𝐻

we will also bound the higher moments of the two distributions to show convergence

in distribution.

Theorem A.2 (XHX RFs as WHRFs). The random field given by Equation (A.12)

has first two moments equal to the Wishart hypertoroidal random field (WHRF)

𝐹WHRF (𝜃) = 𝑚−1

2𝑝∑︁
𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖

′
𝑟=1

𝑤𝑖1 . . . 𝑤𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝑤𝑖′1 . . . 𝑤𝑖′𝑟 , (A.33)

where 𝐽 ∼ 𝒞𝒲2𝑞 (𝑚, 𝐼2𝑞) is a complex Wishart random matrix and the effective de-

grees of freedom defined in Equation (A.6) is formally a real number, but can be

rounded to the nearest natural number with negligible error. Furthermore, assum-

ing the largest eigenvalue of �̃� as defined in Equation (A.10) is at most 2𝑐𝑛 for

some constant 𝑐 bounded below 1, their distributions are bounded in Lévy distance by

2−Ω(min(𝑛,lg(𝑚))).

Proof. By the unitary invariance of random matrices with Gaussian entries, by diag-

onalizing �̃� we can rewrite 𝐹XHX as the random field

𝐹XHX (𝑤) = ‖𝐻 − 𝜆1‖−1
*

(︃
𝑝⨂︁
𝑖=1

𝑤𝑖

)︃⊗𝑟

·
2𝑛∑︁
𝑖=1

(︁(︀
ℎ𝑖 − 𝜆

)︀
𝑋𝑖 ⊗ (𝑋𝑖)

† + 𝜆− 𝜆1
)︁
·

(︃
1⨂︁
𝑖=𝑝

𝑤𝑖

)︃⊗𝑟

,

(A.34)

where 𝑋𝑖 is the 𝑖th column of 𝑋 and ℎ𝑖 are the eigenvalues of 𝐻. The sum over

Kronecker products of columns is just the weighted sum of (at most) 2𝑛 independent

Wishart random variables, each with a single degree of freedom. It is known [185–

187] that the first two moments of this weighted sum of independent Wishart random
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variables is equal (up to rounding of the degrees of freedom) to that of the single

Wishart random variable

𝐽 ∼ 𝒞𝒲2𝑞
(︀
𝑚,𝑚−1𝐼2𝑞

)︀
, (A.35)

where 𝑚 is defined as in Equation (A.6).

Let us now consider higher moments of both distributions. A useful property of

both 𝐹XHX and 𝐹WHRF is that they are invariant under rotations on the hypertorus

𝑤 ↦→ 𝑂 ·𝑤 (for real orthogonal 𝑂 ∈ SO (2)⊗𝑝) due to the invariance of the Wishart

distribution under orthogonal transformations [188]. Due to this property, we will

often take

𝑤 = 𝑛 ≡ (1, 0, . . . , 0)⊺ , (A.36)

i.e. perform calculations at a fixed point 𝜃 = 0 on the hypertorus. For instance, by

inspection of the marginal distributions of the elements of 𝑋 ⊗𝑋† and 𝐽 [189, 190],

we immediately see that

(︃
𝑝⨂︁
𝑖=1

𝑤𝑖

)︃⊗𝑟

·
(︀
𝑋 ⊗𝑋†)︀ ·(︃ 1⨂︁

𝑖=𝑝

𝑤𝑖

)︃⊗𝑟

∼ Γ (1, 1) (A.37)

and

𝐹WHRF (𝑤) ∼ 𝑚−1𝐽(1,...,1),(1,...,1) ∼ Γ
(︀
𝑚,𝑚−1

)︀
; (A.38)

here, Γ (𝑘, 𝜃) is a gamma distributed random variable with shape 𝑘 and scale 𝜃. We

therefore have that the moment-generating function for 𝐹XHX (𝑤) is

𝑀XHX (𝑥) = e𝑥
2𝑛∏︁
𝑖=1

(︂
1− ℎ𝑖 − 𝜆
‖𝐻 − 𝜆1‖*

𝑥

)︂−1

= e𝑥 det
(︁
1− 2−𝑛�̃�𝑥

)︁−1

(A.39)

and for 𝐹WHRF (𝑤) is

𝑀WHRF (𝑥) =
(︁
1− 𝑥

𝑚

)︁−𝑚
. (A.40)

Assuming the largest eigenvalue of �̃� is at most 2𝑐𝑛, we see that these moment generat-

ing functions differ at any given 0 ≤ 𝑥 < 2min((1−𝑐)𝑛,lg(𝑚)) by at most O
(︀
2−3(1−𝑐)𝑛𝑥3 +𝑚−3𝑥3

)︀
.

As the two distributions have equal first and second moments, it can then be shown [180]
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that the error in Lévy distance between the two is bounded by 2−Ω(min(𝑛,lg(𝑚))).

Combining the two theorems, we roughly see that under reasonable assumptions

on the spectrum of 𝐻 the random fields induced by the specific class of VQAs we con-

sider can be approximated by WHRFs up to an error on the order of Õ
(︂(︁

lg(𝐴)𝑓(𝑛)𝑛
𝐴

)︁−1

+𝑚−1

)︂
as 𝑚,𝑛→∞.

A.1.3 Discussion of the Mapping

Let us now briefly discuss the intuition and assumptions behind the results proved in

Appendix A.1.2, beginning with the random class of ansatzes we consider. Of course,

in practice, VQA ansatzes are not chosen at random. Indeed, VQA ansatzes have a

layered structure that precludes any independence between layers even if the layers

were randomly chosen. Though this randomness assumption is strong, heuristically

deep enough circuits (that are independent of the problem Hamiltonian) will still

look roughly uniform over stabilizer states in the Feynman path integral expansion

performed in the proof of Theorem A.1, giving qualitatively similar results. Impor-

tantly, even with this assumption, we are able to demonstrate regimes where there

exist no barren plateaus yet the model still has poor local minima; see Section 2.3.3,

where we discuss how barren plateaus can be demonstrated in our framework. Fur-

thermore, though throughout this paper we consider results in expectation over this

distribution of ansatzes, we find numerically in Section 2.4.1 that our analytic results

seem to also hold in distribution; we therefore suspect that our analytic results in

Appendix A.3 hold more generally for individual ansatzes that are independent of

the problem Hamiltonian.

Given the randomized class of ansatzes, in Theorem A.1 we show that the VQA

loss function is close in distribution to that of the random field given in Equa-

tion (A.12) (the “XHX” model). Intuitively, this just stems from the fact that different

paths in the Feynman path integral are matrix elements in uniformly random stabi-

lizer states. We then show that the error induced in higher moments by taking each

of these paths to be independent vanishes as 𝑛→∞. To prove this formally, we rely
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on the boundedness of Equation (A.13) to bound higher moments of the distribu-

tion. Luckily, in practice this bound holds; for extensive Hamiltonians, one expects

𝑓 (𝑛) ≳ 𝑛.

Theorem A.2 extends Theorem A.1 by showing that the XHX model can be writ-

ten as a sum of Wishart models weighted by the (scaled and shifted) eigenvalues of 𝐻,

which can then be approximated by a single Wishart model. Heuristically, one can

think of complex Wishart matrices as multidimensional generalizations of the gamma

distribution; then, the approximation used in Theorem A.2 is just a multidimensional

generalization of the Welch–Satterthwaite approximation [183, 184]. This approxima-

tion (in both the univariate and multivariate cases) is exact in the first two moments

of the distribution when the effective degrees of freedom 𝑚 given in Equation (A.6) is

allowed to be real. In practice, 𝑚 is rounded to the nearest natural number, induc-

ing a slight error in the approximation. Generally, errors in higher moments in the

Welch–Satterthwaite approximation may be large when the moments of the approx-

imated distribution is large, particularly when the coefficients of the sum can have

arbitrary sign and are at different scales [183, 191]. However, for physically relevant

Hamiltonians, the spectral radius is much smaller than 2𝑛, and the coefficients of the

sum are approximately equal. We show that under such conditions, errors in the

moment generating functions vanish as 𝑚,𝑛→∞ at the given rate.

The effective degrees of freedom 𝑚 as in Equation (A.6) can be interpreted as

roughly a signal-to-noise ratio of the mean eigenvalue of 𝐻 − 𝜆1, and generically is

at least exponentially large in 𝑛 (for small eigenvalue spacings, as is typically found

in physical Hamiltonians studied with VQAs [19, 61, 99]). We show in Section 2.3.3

that 𝑚 sharply dictates the variational loss landscape; for a number of independent

parameters 𝑝 ≥ 2𝑚, local minima concentrate near the global minimum. Conversely,

for 𝑝 bounded below 2𝑚, local minima concentrate far away from the global mini-

mum. This would imply that for the class of randomized ansatz we consider here,

training large instances is infeasible. However, consider an ansatz that is allowed to

depend on the problem instance 𝐻, such as in the Hamiltonian variational ansatz

(HVA) [178]. With a clever enough ansatz, one can in principle “reweigh” the coeffi-
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cients of Equation (A.34) by having a nonuniform distribution over stabilizer states

in the Feynman path integral expansion of Equation (A.17), effectively making 𝑚

smaller. This would be consistent with what was numerically investigated in prior

work [70] (and in Section 2.4.2), where it was shown that even for a modest number

of parameters the distribution of local minima concentrate near the global minimum

for the HVA. We leave further investigation in this direction for future work.

Finally, we note that all of our asymptotic equivalence results so far have been

shown to converge at a rate

𝜌 ≡ lg (𝐴) 𝑓 (𝑛)𝑛/𝐴, (A.41)

which is typically ≳ lg (𝑛) for physically relevant (i.e. two-local with arbitrary range,

molecular in the plane wave dual basis [192], etc.) Hamiltonians. In Appendix A.4,

we give the loss landscape of WHRFs (Equation (A.33)) as 𝑝,𝑚 → ∞, taking into

account large deviations in 𝑝. If 𝑝 grows as Ω (lg (𝜌)), then in principle uncontrolled

large deviations in the convergence of VQAs to WHRFs will dominate the asymptotics

of the landscape (Equation (2.17)). In particular, with probability ∼ 𝜌−1, deviations

of the eigenvalues of the Hessian on the order of the eigenvalues themselves can

occur, which are then “blown up” by a factor exponentially large in 𝑝 if all deviations

constructively interfere. Thus, though Equation (2.17) holds for WHRFs, it does not

necessarily hold for VQAs when 𝑝 = Ω(lg (𝜌)). If the deviations of eigenvalues of the

Hessian due to the mapping from VQAs to WHRFs are roughly independent between

eigenvalues, however, then these deviations are further exponentially suppressed in

𝑝, and the result holds independently of how 𝑝 scales with 𝑛. We believe in practice

this is what occurs, and see numerically in Section 2.4.1 that our analytic results hold

well even when 𝑝≫ 𝑛.
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A.2 The Kac–Rice Formula and its Assumptions

For completeness, we state the formal version of Lemma 2.2—with all assumptions—

here. We borrow heavily from [100]. By ∇𝑓 , we mean the covariant gradient of

𝑓 .

Lemma A.3 (Kac–Rice formula [100]). Let 𝑀 be a compact, oriented, 𝑁-dimensional

𝐶1 manifold with 𝐶1 Riemannian metric 𝑔. Let 𝐵 ⊂ R𝐾 be an open set such that 𝜕𝐵

has dimension 𝐾 − 1. Let 𝑓 : 𝑀 → R𝐾 be a random field on 𝑀 , and let 𝜄 (·) denote

the index of ·. Furthermore, assume that:

1. All components of 𝑓 , ∇𝑓 , and ∇2𝑓 are almost surely continuous and have finite

variances over 𝑀 .

2. The marginal density 𝑝𝑡 (∇𝑓 (𝑡)) of ∇𝑓 at 𝑡 ∈𝑀 is continuous at ∇𝑓 = 0.

3. The conditional densities 𝑝𝑡
(︀
∇𝑓 (𝑡) | 𝑓 (𝑡) ,∇2𝑓 (𝑡)

)︀
are bounded above and con-

tinuous at ∇𝑓 = 0, uniformly in 𝑡 ∈𝑀 .

4. The conditional densities 𝑝𝑡
(︀
det
(︀
∇2𝑓 (𝑡)

)︀
|∇𝑓 (𝑡) = 0

)︀
are continuous in the

neighborhood of det
(︀
∇2𝑓

)︀
= 0 and ∇𝑓 (𝑡) = 0, uniformly in 𝑡 ∈𝑀 .

5. The conditional densities 𝑝𝑡 (𝑓 (𝑡) |∇𝑓 (𝑡) = 0) are continuous for all 𝑓 and for

all ∇𝑓 in a neighborhood of 0, uniformly in 𝑡 ∈𝑀 .

6. The Hessian moments are bounded, i.e.

sup
𝑡∈𝑀

max
𝑖,𝑗

E
[︂⃒⃒⃒(︀

∇2𝑓 (𝑡)
)︀
𝑖,𝑗

⃒⃒⃒𝑁]︂
<∞. (A.42)

7. The moduli of continuity with respect to (the canonical metric induced by) 𝑔 of

each component of 𝑓 , ∇𝑓 , and ∇2𝑓 all satisfy

P [𝜔 (𝜂) > 𝜖] = o
(︀
𝜂𝑁
)︀

(A.43)

for all 𝜖 > 0 as 𝜂 → 0+.
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Then,

E
[︁
Crt𝑓𝑘 (𝐵)

]︁
=

∫︁
𝑀

𝑝𝜎 (∇𝑓 (𝜎) = 0)

× E
[︀⃒⃒
det
(︀
∇2𝑓 (𝜎)

)︀⃒⃒
1 {𝑓 (𝜎) ∈ 𝐵}1

{︀
𝜄
(︀
∇2𝑓 (𝜎)

)︀
≤ 𝑘

}︀
|∇𝑓 (𝜎) = 0

]︀
d𝜎 ,

(A.44)

where d𝜎 is the volume element induced by 𝑔 on 𝑀 .

It is obvious by Lemma A.4 that conditions 2-6 are satisfied by WHRFs given

𝐵 = (0, 𝑢). Furthermore, as 𝐹 is a polynomial in {cos (𝜃𝑖) , sin (𝜃𝑖)}, 𝐹 and its

derivatives are continuous for any value of the components of 𝑚−1𝐽 , and all have

finite variance. Similarly, it is easy to see that the modulus of continuity of 𝑓 and

its gradients go as 𝐽𝜂𝑟 as 𝜂 → 0+, where 𝐽 is the largest component of 𝑚−1𝐽 . As

the distributions of the components of a Wishart matrix have exponential tails, the

probability that 𝐽 = Ω(𝜂−𝑟) is indeed o
(︀
𝜂𝑁
)︀

and therefore all conditions are satisfied

by WHRFs.

A.3 The Loss Landscape of Wishart Hypertoroidal

Random Fields

A.3.1 The Joint Distribution of 𝐹WHRF and its Derivatives

In order to utilize the Kac–Rice formula (Lemma A.3), we must calculate the joint

distribution of the random field

𝐹WHRF (𝜃) = 𝑚−1

2𝑝∑︁
𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖

′
𝑟=1

𝑤𝑖1 . . . 𝑤𝑖𝑟𝐽𝑖1,...,𝑖𝑟,𝑖′1,...,𝑖′𝑟𝑤𝑖′1 . . . 𝑤𝑖′𝑟 , (A.45)

with its derivatives. In the course of proving Theorem A.2, we already have shown that

the function value is gamma distributed (see Equation (A.38)). Here, we explicitly

calculate the distribution of the Hessian when given the function value and that the

covariant gradient is zero, and also calculate the distribution of the gradient given
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the function value. We will heavily lean on the rotational invariance property of the

distribution discussed in the proof of Theorem A.2, with 𝑛 once again the fixed point

with all 𝜃𝑖 = 0. Note that for the given embedding of the hypertorus into R2𝑝 , the

Christoffel symbols are zero (i.e. we are considering the Euclidean hypertorus) and

thus for the most part we can ignore the distinction between covariant and normal

derivatives. Here, we choose local coordinates 𝜃 such that:

𝑤𝑖 =

⎛⎝cos (𝜃𝑖)

sin (𝜃𝑖)

⎞⎠ . (A.46)

Perhaps surprisingly, we will find that conditioned on being at a critical point at

a specified energy, the Hessian takes the simple form of a normalized and shifted

Wishart matrix summed with a normalized GOE matrix. The gradient conditioned

on the function value is similarly simple, given by independent Gaussian variables.

Lemma A.4 (Hessian and gradient distributions). The scaled Hessian 𝑚𝜕𝑖𝜕𝑗𝐹WHRF (𝑤)

conditioned on 𝐹WHRF (𝑤) = 𝑥 and 𝜕𝑘𝐹WHRF (𝑤) = 0 is distributed as

𝑚𝐶𝑖𝑗 (𝑥) = −2𝑟𝑚𝑥𝛿𝑖𝑗 + 𝑟𝑊𝑖𝑗 + 𝑟
√
2𝑚𝑥𝑁𝑖𝑗, (A.47)

where 𝑊 ∼ 𝒲𝑝 (2𝑚, 𝐼𝑝) and 𝑁 ∼ 𝐺𝑂𝐸𝑝 are independent. Furthermore, the scaled

gradient 𝑚𝜕𝑘𝐹WHRF (𝑤) conditioned on 𝐹WHRF (𝑤) = 𝑥 is distributed as

𝑚�̃�𝑘 (𝑥) =
√
2𝑚𝑟𝑥𝑁𝑘, (A.48)

where 𝑁𝑘 are i.i.d. standard normally distributed random variables independent from

all 𝑊𝑖𝑗 and 𝑁𝑖𝑗.

Proof. Without loss of generality we take 𝑤 = 𝑛. Let 𝑖 ∈ {1, 2}×𝑝 be the vector with

the 𝑖th component equal to 2 and all others equal to 1, (𝑖, 𝑗) similar with both the

𝑖th and 𝑗th component, and 𝑏 the vector with all components equal to 1. Taking
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derivatives explicitly yields

𝑚𝜕𝑖𝐹WHRF (𝑛) = 2Re
{︀
𝐽(𝑖,𝑏,...,𝑏),(𝑏,...,𝑏)

}︀
+ . . .+ 2Re

{︀
𝐽(𝑏,...,𝑖),(𝑏,...,𝑏)

}︀
(A.49)

and

𝑚𝜕𝑖𝜕𝑗𝐹WHRF (𝑛) = −2𝑟𝛿𝑖𝑗𝐽(𝑏,...,𝑏),(𝑏,...,𝑏)

+ 2Re
{︀
𝐽(𝑖,𝑏,...,𝑏),(𝑗,𝑏,...,𝑏)

}︀
+ 2Re

{︀
𝐽(𝑖,𝑏,...,𝑏),(𝑏,𝑗,...,𝑏)

}︀
+ . . .+ 2Re

{︀
𝐽(𝑏,...,𝑏,𝑖),(𝑏,...,𝑏,𝑗)

}︀
+ 2Re

{︀
𝐽((𝑖,𝑗),𝑏,...,𝑏),(𝑏,...,𝑏)

}︀
+ 2Re

{︀
𝐽(𝑖,𝑗,...,𝑏),(𝑏,...,𝑏)

}︀
+ . . .+ 2Re

{︀
𝐽(𝑏,...,𝑏,(𝑖,𝑗)),(𝑏,...,𝑏)

}︀
.

(A.50)

As 𝐽 is a Wishart matrix with identity scale matrix, it can be written as 𝑋 ·𝑋† for

𝑋 a 2𝑞×𝑚 matrix with i.i.d. standard complex normal entries. By performing an LQ

decomposition of 𝑋, one can then by inspection determine the distributions of the

entries of 𝐽 [189, 190]. For ease of notation, we let 𝜏 : {1, 2}×𝑞 → {1, . . . , 2𝑞} be a map-

ping between representations of the indices of 𝐽 , with the convention 𝜏 ((𝑏, . . . , 𝑏)) =

1. We then find (taking 𝜏 ((𝑖, . . . , 2)) < 𝜏 ((𝑗, . . . , 2)) WLOG) that

2𝐽(𝑏,...,𝑏),(𝑏,...,𝑏) = 2𝑚𝐹WHRF (𝑛) , (A.51)

2Re
{︀
𝐽(𝑖,...,𝑏),(𝑏,...,𝑏)

}︀
=
√︀

2𝑚𝐹WHRF (𝑛)𝑀(𝑏,...,𝑏),(𝑖,...,𝑏), (A.52)

2Re
{︀
𝐽(𝑖,𝑗,...,𝑏),(𝑏,...,𝑏)

}︀
=
√︀

2𝑚𝐹WHRF (𝑛)𝑀(𝑏,...,𝑏),(𝑖,𝑗,...,𝑏); (A.53)

and, for 𝜏 ((𝑖, . . . , 𝑏)) ≤ 𝑚,

2Re
{︀
𝐽(𝑖,...,𝑏),(𝑗,...,𝑏)

}︀
=
√︀

2𝛤(𝑖,...,𝑏)𝑀(𝑖,...,𝑏),(𝑗,...,𝑏)

+

𝜏((𝑖,...,𝑏))−1∑︁
𝜇=1

𝑀𝜏−1(𝜇),(𝑖,...,𝑏)𝑀𝜏−1(𝜇),(𝑗,...,𝑏) +

𝜏((𝑖,...,𝑏))−1∑︁
𝜇=1

�̃�𝜏−1(𝜇),(𝑖,...,𝑏)�̃�𝜏−1(𝜇),(𝑗,...,𝑏)

(A.54)
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and otherwise

2Re
{︀
𝐽(𝑖,...,𝑏),(𝑗,...,𝑏)

}︀
=

𝑚∑︁
𝜇=1

𝑀𝜏−1(𝜇),(𝑖,...,𝑏)𝑀𝜏−1(𝜇),(𝑗,...,𝑏)

+
𝑚∑︁
𝜇=1

�̃�𝜏−1(𝜇),(𝑖,...,𝑏)�̃�𝜏−1(𝜇),(𝑗,...,𝑏).

(A.55)

Here, 𝑀 and �̃� are symmetric with off-diagonal entries i.i.d. drawn from the stan-

dard normal distribution, and 𝛤𝜏−1(𝜇) ≡ 𝑀2
𝜏−1(𝜇),𝜏−1(𝜇) has entries i.i.d. drawn from

Γ (𝑚− 𝜇+ 1, 1). Note that each
√
2𝛤 is chi-square distributed with 2 (𝑚− 𝜇+ 1)

degrees of freedom; therefore, Equation (A.54) and Equation (A.55) can be consid-

ered as elements of a real Wishart matrix �̃� with 2𝑚 degrees of freedom. Also, note

that Equation (A.54) and Equation (A.55) are independent of 𝜕𝑘𝐹WHRF (𝑛) when

conditioned on 𝐹WHRF (𝑛) ≡ 𝑥 = 0. If 𝑥 ̸= 0, the condition 𝜕𝑘𝐹WHRF (𝑛) = 0 is

equivalent to taking each sum over the elements of 𝑀 from 𝜇 = 2 instead of 𝜇 = 1,

which is equivalent to taking the convention 𝜏 ((𝑏, . . . , 𝑏)) = 2𝑞 and shifting the in-

dices of 𝑀 and �̃� . Therefore, the (scaled) Hessian conditioned on 𝐹WHRF (𝑛) = 𝑥

and 𝜕𝑘𝐹WHRF (𝑛) = 0 is distributed as

𝑚𝐶𝑖𝑗 (𝑥) = −2𝑟𝑚𝑥𝛿𝑖𝑗 +
(︁
𝑂 · �̃� ·𝑂⊺

)︁
𝑖𝑗
+ 𝑟
√
2𝑚𝑥𝑁𝑖𝑗; (A.56)

here, 𝑁 ∼ 𝐺𝑂𝐸𝑝 (with the convention that diagonal entries ∼ 𝒩 (0, 2) and off-

diagonal entries ∼ 𝒩 (0, 1)), and 𝑂 is a matrix such that 𝑂𝑖𝜇 = 1 if and only if

𝜏−1 (𝜇) is of the form (𝑏, . . . , 𝑖, . . . , 𝑏), and is otherwise equal to 0. The invariance of

the Wishart distribution under orthogonal transformations and partitioning [188, 189]

leads to the final result.

A.3.2 The Exact Distribution of Critical Points

Given the joint distribution of 𝐹WHRF, its gradient, and its Hessian, we are now

equipped to calculate the expected number of critical points of a given index 𝑘 using

the Kac–Rice formula (Lemma A.3).
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Theorem A.5 (Distribution of critical points in WHRFs). Let

𝜇𝐶(𝑥) =
1

𝑝

𝑝∑︁
𝑖=1

𝛿
(︁
𝜆
𝐶(𝑥)
𝑖

)︁
(A.57)

be the empirical spectral measure of the random matrix

𝐶 (𝑥) =
𝑟

𝑚

(︁
𝑊 +

√
2𝑚𝑥𝑁

)︁
, (A.58)

where 𝑊 ∼ 𝒲𝑝 (2𝑚, 𝐼𝑝) and 𝑁 ∼ 𝐺𝑂𝐸𝑝 are independent and 𝜆𝐶𝑖 (𝑥) is the 𝑖th

smallest eigenvalue of 𝐶 (𝑥). Then, the distribution of the expected number of critical

points of index 𝑘 at an energy 𝐸 > 0 of 𝐹WHRF is given by

E [Crt𝑘 (𝐸)]

=
(︁π
𝑟

)︁ 𝑝
2
Γ (𝑚)−1𝑚(1+𝛾)𝑚E𝐶(𝐸)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝐸|)d𝜇𝐶(𝐸)1

{︁
𝜆
𝐶(𝐸)
𝑘+1 ≥ 2𝑟𝐸

}︁]︁
𝐸(1−𝛾)𝑚−1e−𝑚𝐸,

(A.59)

where

𝛾 =
𝑝

2𝑚
. (A.60)

Proof. As discussed in Appendix A.2, the assumptions of the Kac–Rice formula (i.e.

Lemma A.3) are satisfied. Furthermore, due to the invariance of the Wishart distri-

bution with respect to rotations on the hypertorus [188, 189], we can integrate out

the volume element independently; the volume of (𝑆1)
×𝑝 is

∫︁
(𝑆1)×𝑝

d𝑤 = (2π)𝑝 . (A.61)

Additionally, we have from Lemma A.4 that the probability density of the gradient

vector being zero at any 𝑤 conditioned on 𝐻WHRF (𝑤) = 𝑥 is

𝑝𝑤 (∇𝐻WHRF (𝑤) = 0 | 𝐻WHRF (𝑤) = 𝑥) =

(︂
4π𝑟𝑥

𝑚

)︂− 𝑝
2

. (A.62)
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Taking the expectation over 𝑥 via Equation (A.38) and using the Hessian distrribution

from Lemma A.4, we have from Lemma 2.2 that

E [Crt𝑘 (𝐵 = (0, 𝐸))] =
(︁π
𝑟

)︁ 𝑝
2
Γ (𝑚)−1𝑚(1+𝛾)𝑚

×
𝐸∫︁

0

E𝐶(𝑥)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝑥|)d𝜇𝐶(𝑥)1

{︁
𝜆
𝐶(𝑥)
𝑘+1 ≥ 2𝑟𝑥

}︁]︁
𝑥(1−𝛾)𝑚−1e−𝑚𝑥 d𝑥 .

(A.63)

Taking the derivative of this cumulative distribution with respect to 𝐸 yields the final

result.

A.4 Logarithmic Asymptotics via Free Probability

Theory

Though Equation (A.59) is exact, it is difficult to use in practice. Luckily, we are

able to use a surprising fact about the eigenvalue distributions of Wishart and GOE

matrices; asymptotically, the empirical spectral distributions of these matrices weakly

converge to fixed distributions. Concretely, in the limit 𝑝 → ∞ where 𝛾 = 𝑝
2𝑚

is

held constant, the eigenvalue distribution of 𝑊 /2𝑚 where 𝑊 ∼ 𝒲𝑝 (2𝑚, 𝐼𝑝) weakly

converges to the Marchenko–Pastur distribution [193]:

d𝜇M.P. =
(︀
1− 𝛾−1

)︀
1 {𝛾 > 1} 𝛿 (𝜆) d𝜆+ 1

2π𝛾𝜆

√︂(︁
(1 +

√
𝛾)2 − 𝜆

)︁(︁
𝜆− (1−√𝛾)2

)︁
d𝜆 .

(A.64)

Similarly, the eigenvalue distribution of 𝑁/
√
𝑝 where 𝑁 ∼ GOE𝑝 weakly converges

to the Wigner semicircle distribution [194]:

d𝜇s.c. =
1

2π

√
4− 𝜆2 d𝜆 . (A.65)

Furthermore, by using free probability theory one can find the asymptotic distribu-

tion of eigenvalues for a weighted sum of these matrices, given their eigenbases are

in “generic position” with respect to each other. We now give a brief review of free
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probability theory—at least in the context of random matrix theory—here. Later,

we will also briefly review large deviations theory, which we use to bound the proba-

bility of large deviations from the weak convergence of the eigenvalue distributions of

Wishart and GOE matrices. Note that, as we are unable to control large deviations

in Theorem A.1, in principle large deviations in the weak convergence of VQAs to

WHRFs could dominate the large deviations in WHRFs; however, as discussed in

Appendix A.1.3, this provably does not occur at shallow enough depths with respect

to 𝑛, and there are reasons to believe it does not occur even at large depths (which

we additionally give numerical evidence for in Section 2.4).

We begin by reviewing the techniques in free probability theory and large devia-

tions theory that we use in studying the asymptotic behavior of Equation (A.59).

A.4.1 Free Probability Theory

Free probability theory is the study of noncommutative random variables. Specializing

to random matrix theory on 𝑁 ×𝑁 matrices, we define the unital linear functional

𝜑 (𝑋) ≡ 1

𝑁
E [tr (𝑋)] (A.66)

as the free analog of the expectation. Note that the eigenvalues of a matrix 𝐴 are

completely constrained by the trace of powers 𝐴𝑘—therefore, one can study the av-

erage distribution of the eigenvalues of a random matrix 𝐴 via the moments 𝜑
(︀
𝐴𝑘
)︀
.

Free independence (or freeness) is a generalization of the notion of independence in

commutative probability theory to free probability theory. In the context of random

matrix theory, two 𝑁×𝑁 random matrices 𝐴 and 𝐵 are said to be freely independent

if the mixed moments are identically zero; that is,

𝜑 ((𝐴𝑚1 − 𝜑 (𝐴𝑚1)) (𝐵𝑛1 − 𝜑 (𝐵𝑛1)) . . . (𝐴𝑚𝑘 − 𝜑 (𝐴𝑚𝑘)) (𝐵𝑛𝑘 − 𝜑 (𝐵𝑛𝑘))) = 0

(A.67)

for all 𝑛𝑖,𝑚𝑖 ∈ N. Roughly, the free independence of two random matrices means

that their eigenbases are in “generic position” from one another.
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Taking the analogy with commutative probability theory further, the analog of

the moment-generating function associated with the distribution of a random variable

is the Stieltjes transform of the measure 𝜇:

𝐺𝜇 (𝑧) =

∫︁
d𝜇 (𝑡)

𝑧 − 𝑡
, (A.68)

which can be inverted via the Stieltjes inversion formula:

d𝜇 (𝑡) = − 1

π
lim
𝜖→0+

Im {𝐺𝜇 (𝑡+ i𝜖)} d𝑡 . (A.69)

Similarly, the free analog of the cumulant-generating function is the 𝑅-transform,

which can be defined via the Stieltjes transform as the solution to the implicit equa-

tion:

ℛ𝜇 (𝐺𝜇 (𝑧)) +
1

𝐺𝜇 (𝑧)
= 𝑧. (A.70)

The 𝑅-transform is important in that, if two random variables 𝐴 and 𝐵 are freely in-

dependent with probability measures 𝜇𝐴 and 𝜇𝐵 respectively, the probability measure

𝜇𝐴+𝐵 of 𝐴+𝐵 satisfies

ℛ𝜇𝐴+𝐵
= ℛ𝜇𝐴 +ℛ𝜇𝐵 . (A.71)

This can be interpreted as the free analog of the additivity of cumulants for commu-

tative random variables. The probability measure 𝜇𝐴+𝐵 is called the free convolution

of 𝜇𝐴 and 𝜇𝐵, and is denoted using the notation

𝜇𝐴+𝐵 = 𝜇𝐴 ⊞ 𝜇𝐵. (A.72)

Thus, given the probability distributions of two free random variables 𝐴 and 𝐵, there

is a prescription for determining the probability distribution of their sum by taking

their free convolution, just as the convolution in commutative probability theory

describes the distribution of the sum of random variables.
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A.4.2 Large Deviations Theory

In order to bound the probability of large deviations from the weak convergence of

the eigenvalue distribution of 𝐶 to its asymptotic limit we will use results from large

deviations theory, which we briefly review here. A sequence of measures {𝜇𝑛} is said

to satisfy a large deviation principle in the limit 𝑛 → ∞ with speed 𝑠 (𝑛) and lower

semicontinuous rate function 𝐼 with codomain [0,∞] if and only if [195]

− inf
𝑥∈𝛤 ∘

𝐼 (𝑥) ≤ lim inf
𝑛→∞

1

𝑠 (𝑛)
ln (𝜇𝑛 (𝛤 )) ≤ lim sup

𝑛→∞

1

𝑠 (𝑛)
ln (𝜇𝑛 (𝛤 )) ≤ − inf

𝑥∈𝛤
𝐼 (𝑥)

(A.73)

for all Borel measurable sets 𝛤 that all 𝜇𝑛 are defined on. Here, 𝛤 denotes the closure

of 𝛤 and 𝛤 ∘ the interior of 𝛤 . The rate function 𝐼 is said to be good if all level sets of 𝐼

are compact. Large deviations theory will be useful for us to bound the probabilities

of large deviations of the empirical spectral distribution of 𝜇𝐶(𝑥) as 𝑝 → ∞, and

show that they do not contribute to leading order in the (logarithmic) asymptotic

distribution of critical points. We do this using Varadhan’s lemma, which we state

now.

Lemma A.6 (Varadhan’s lemma [195]). Suppose {𝜇𝑛} satisfies a large deviation

principle with speed 𝑠 (𝑛) and good rate function 𝐼 and let 𝜑 be a real-valued continuous

function. Further assume either the tail condition

lim
𝑀→∞

lim sup
𝑛→∞

1

𝑠 (𝑛)
ln
(︀
E𝑋𝑛∼𝜇𝑛

[︀
e𝑠(𝑛)𝜑(𝑋𝑛)1 {𝜑 (𝑋𝑛) ≥𝑀}

]︀)︀
= −∞, (A.74)

or the moment condition for some 𝛾 > 1

lim sup
𝑛→∞

1

𝑠 (𝑛)
ln
(︀
E𝑋𝑛∼𝜇𝑛

[︀
e𝛾𝑠(𝑛)𝜑(𝑋𝑛)

]︀)︀
<∞. (A.75)

Then,

lim
𝑛→∞

1

𝑠 (𝑛)
ln
(︀
E𝑋𝑛∼𝜇𝑛

[︀
e𝑠(𝑛)𝜑(𝑋𝑛)

]︀)︀
= sup

𝑥
(𝜑 (𝑥)− 𝐼 (𝑥)) . (A.76)

136



A.4.3 Logarithmic Asymptotics of the Distribution of Critical

Points

Equipped with these mathematical tools, we prove our first result on the asymptotic

behavior of 𝜇𝐶(𝑥), which is present in the expectation of Equation (A.59).

Lemma A.7 (Asymptotic behavior of 𝜇𝐶(𝑥)). Define 𝐺*
𝑥 (𝑧) as the implicit solution

of the equation

8𝑟3𝛾2𝑥𝐺*
𝑥 (𝑧)

3 − 2𝑟𝛾 (𝑧 + 2𝑟𝑥)𝐺*
𝑥 (𝑧)

2 + (𝑧 − 2𝑟 (1− 𝛾))𝐺*
𝑥 (𝑧)− 1 = 0 (A.77)

with the smallest imaginary part. Define

d𝜇*
𝑥 ≡ −

1

π
Im {𝐺*

𝑥} d𝜆 . (A.78)

Let 𝑝,𝑚→∞ as 𝛾 = 𝑝
2𝑚

is held constant. Then, the empirical spectral measure 𝜇𝐶(𝑥)

satisfies a large deviation principle as 𝑝 → ∞ with speed 𝑝2 with good rate function

uniquely minimized at 𝜇*
𝑥 with a value of 0.

Proof. The empirical spectral measure of the random matrix 𝑁/
√
𝑝 satisfies a large

deviation principle at a scale 𝑝2, with good rate function minimized by Wigner’s

semicircle law [196]. Similarly, the empirical spectral measure of the random matrix

𝑊 /2𝑚 satisfies a large deviation principle at a scale 𝑝2, with good rate function

minimized by the Marchenko–Pastur distribution [197]. As the 𝑅-transform of the

empirical spectral distribution of 𝐴 satisfies the scaling property

ℛ𝑎𝐴 (𝑧) = 𝑎ℛ𝐴 (𝑎𝑧) , (A.79)

the 𝑅-transform of the empirical spectral distribution of the weighted GOE term of

𝐶 is of the form

ℛGOE (𝑧) = 4𝑟2𝛾𝑥𝑧 (A.80)
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and the 𝑅-transform of the weighted Wishart term is of the form

ℛWishart (𝑧) =
2𝑟

1− 2𝑟𝛾𝑧
. (A.81)

By the asymptotic freeness of independent GOE and Wishart matrices [198], 𝜇𝐶(𝑥)

converges weakly to the fixed measure 𝜇* with 𝑅-transform

ℛ𝑥 (𝑧) = ℛWishart (𝑧) +ℛGOE (𝑧) . (A.82)

Equation A.77 and Equation (A.78) now follow from inverting the 𝑅-transform ℛ𝑥

via Equation (A.70) and Equation (A.69), respectively.

We now consider large deviations in the weak convergence 𝜇𝐶(𝑥) ⇝ 𝜇*
𝑥. Con-

ditioning on the empirical spectral distribution of 𝑊 /2𝑚 and using the “strongest

growth wins” principle [195], we have that 𝜇𝐶(𝑥) satisfies a large deviation principle

with speed 𝑝2 with rate function given by

𝐼 (𝜇) = inf
𝜇𝑊/2𝑚

(︁
𝐽𝜇𝑊/2𝑚

(𝜇) +𝐾
(︀
𝜇𝑊 /2𝑚

)︀)︁
; (A.83)

here, 𝐾 is the rate function governing convergence of the empirical spectral dis-

tribution of the Wishart ensemble [197] and 𝐽𝜇𝑊/2𝑚
is the rate function governing

convergence of the empirical spectral distribution of a fixed matrix with asymptotic

eigenvalue distribution 𝜇𝑊 /2𝑚 summed with a GOE matrix [199]. This sum is obvi-

ously uniquely minimized by 𝜇 = 𝜇*, when 𝐼 (𝜇*) = 0.

Now, we examine the asymptotic behavior of the smallest eigenvalue 𝜆
𝐶(𝑥)
1 of

𝐶 (𝑥). Unlike the empirical spectral measure 𝜇𝐶(𝑥) which satisfies a large deviation

principle at a speed 𝑝2, we will see that this eigenvalue satisfies a large deviation

principle at a speed 𝑝, with deviations at this speed to the left of the asymptotic

value 𝜆*𝑥,1.

Lemma A.8 (Asymptotic behavior of 𝜆𝐶(𝑥)
1 ). Let 𝜆*𝑥,1 be the infimum of the support

of 𝜇*
𝑥 as defined in Equation (A.78). Then, the smallest eigenvalue 𝜆𝐶(𝑥)

1 of 𝐶 (𝑥)
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satisfies a large deviation principle with speed 𝑝 with good rate function that is infinite

at 𝑦 > 𝜆*𝑥,1 and is uniquely minimized at 𝑦 = 𝜆*𝑥,1 with a value of 0.

Proof. The limiting smallest eigenvalues 𝜆𝑊1 , 𝜆𝑁1 of 𝑊 /2𝑚 and 𝑁/
√
𝑝 both satisfy

large deviation principles with speed 𝑝 that are infinite for 𝜆1 in the bulk of their

respective limiting empirical spectral distributions [200, 201]. As in the proof of

Lemma A.7, we condition on large deviations of these eigenvalues [195] and therefore

have that the rate function governing 𝜆𝐶(𝑥)
1 is

𝐼 (𝑦) = inf
𝜆𝑊1 ,𝜆𝑁1

(︁
𝐽𝜆𝑊1 ,𝜆𝑁1

(𝑦) +𝐾
(︀
𝜆𝑊1
)︀
+ 𝐿

(︀
𝜆𝑁1
)︀)︁

; (A.84)

here, 𝐾 is the rate function governing the convergence of 𝜆𝑊1 , 𝐿 that of 𝜆𝑁1 , and 𝐽

that of the smallest eigenvalue 𝐶 (𝑥) conditioned on the eigenvalue distributions of

𝑊 and 𝑁 . Using known results on the large deviations of the smallest eigenvalue of

the sum of two matrices with fixed eigenvalues (i.e. 𝐽𝜆𝑊1 ,𝜆𝑁1
) [202], we see that 𝐼 (𝑦)

is infinite for 𝑦 > 𝜆*𝑥,1 and is uniquely minimized at 𝑦 = 𝜆*𝑥,1 with a value of 0.

Using Lemmas A.7 and A.8, we can prove the following logarithmic asymptotics

on the expectation term in Equation (A.59). We will find that neither the large

deviations in the convergence 𝜇𝐶(𝑥) or 𝜆𝐶(𝑥)
1 will contribute to leading order in the

logarithmic asymptotics of Crt𝑘 (𝐸), as at a speed 𝑝 the only large deviations are

𝜆
𝐶(𝑥)
1 ≤ 𝜆*𝑥,1 which are dominated by 𝜆𝐶(𝑥)

1 = 𝜆*𝑥,1 in the expectation.

Lemma A.9 (Logarithmic asymptotics of the determinant). Let d𝜇*
𝐸 be the spectral

measure given in Equation (A.78), with 𝜆*𝐸,1 the infimum of its support. Let 𝑝,𝑚≫ 1

with 𝑝
2𝑚

= 𝛾 = O(1). Then,

1

𝑝
ln
(︁
E𝐶(𝐸)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝐸|)d𝜇𝐶(𝐸)1

{︁
𝜆
𝐶(𝐸)
𝑘+1 ≥ 2𝑟𝐸

}︁]︁)︁
=

∫︁
ln
(︀
1
{︀
𝜆*𝐸,1 ≥ 2𝑟𝐸

}︀
|𝜆− 2𝑟𝐸|

)︀
d𝜇*

𝐸 + o (1) .

(A.85)

Proof. As 𝜇𝐶(𝐸) satisfies a large deviation principle with speed 𝑝2 with rate function

minimized at 𝜇*
𝐸 by Lemma A.7, and as 1

{︁
𝜆
𝐶(𝐸)
1 ≥ 2𝑟𝐸

}︁
≤ 1, we have that the tail
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condition of Varadhan’s lemma at speed 𝑝 is satisfied [195] and therefore

lim
𝑝→∞

1

𝑝
ln
(︁
E𝐶(𝐸)

[︁
e𝑝

∫︀
ln(|𝜆−2𝑟𝐸|)d𝜇𝐶(𝐸)1

{︁
𝜆
𝐶(𝐸)
1 ≥ 2𝑟𝐸

}︁]︁)︁
= sup

𝜆∈R

(︂∫︁
ln (1 {𝜆 ≥ 2𝑟𝐸} |𝜆− 2𝑟𝐸|) d𝜇*

𝐸 − 𝐼 (𝜆)
)︂
.

(A.86)

Here, 𝐼 is as in Equation (A.84). The supremum over 𝜆 is obviously achieved when

𝜆 = 𝜆*𝐸,1 by the properties of 𝐼 discussed in Lemma A.8, giving the leading order term

in Equation (A.85). The result being exact in the 𝑝→∞ limit gives the subleading

o (1).

Using Lemma A.9, we can therefore finally calculate the logarithmic asymptotic

distribution of local minima of a WHRF.

Theorem A.10 (Logarithmic asymptotics of the local minima distribution). Let d𝜇*
𝐸

be the spectral measure given in Equation (A.78), with 𝜆*𝐸,1 the infimum of its support.

Let 𝑝,𝑚 ≫ 1 with 𝑝
2𝑚

= 𝛾 = O(1). Then, the expected distribution of local minima

of 𝐹WHRF at a fixed energy 𝐸 > 0 is given by

1

𝑝
ln (E [Crt0 (𝐸)]) =

1

2
ln

(︂
π𝑞

2𝛾

)︂
+

1

2𝛾
(1− 𝐸) + 1

2

(︀
𝛾−1 − 1

)︀
ln (𝐸)

+

∫︁
ln

(︂⃒⃒⃒⃒
𝜆

𝑟
− 2𝐸

⃒⃒⃒⃒
1

{︂
𝜆*𝐸,1
𝑟
≥ 2𝐸

}︂)︂
d𝜇*

𝐸 + o (1) .

(A.87)

Proof. The result follows directly from applying Lemma A.9 to Theorem A.5.

Note that, though we only prove the asymptotic distribution of local minima in

Theorem A.10, we expect similar theorems to also hold for critical points of constant

index 𝑘 (taking 𝜆*𝐸,1 ↦→ 𝜆*𝐸,𝑘 in the integrand). The only difference in the derivation

is the exact form of the large deviations of the 𝑘th smallest eigenvalue of 𝐶 (𝑥). This

is similar to the case in Gaussian hyperspherical random fields [73].
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A.5 Details of the Numerical Simulations

We now give further details on the numerical simulations performed in Section 2.4.

We performed all simulations via Qiskit [203], and used standard gradient descent

(via the method of finite differences) to optimize the VQA loss function

𝐹 (𝜃) = ⟨𝜃|𝐻𝑇 ,𝑈 |𝜃⟩ (A.88)

until convergence. 𝐻𝑇,𝑈 is the 1D 𝑛 site spinless Fermi–Hubbard Hamiltonian [101]

𝐻𝑇 ,𝑈 = −
𝑛−1∑︁
𝑖=1

𝑇𝑖

(︁
𝑐†𝑖𝑐𝑖+1 + 𝑐†𝑖+1𝑐𝑖

)︁
+

𝑛−1∑︁
𝑖=1

𝑈𝑖𝑐
†
𝑖𝑐𝑖𝑐

†
𝑖+1𝑐𝑖+1, (A.89)

where 𝑐 is the fermionic annihilation operator. 𝑇𝑖 and 𝑈𝑖 are i.i.d. normally distributed

in order to break translational invariance. In our simulations, these random variables

were centered at 𝑇 = 1 and 𝑈 = 2, respectively, and each had a variance of 10−2.

Our implementation of gradient descent used a learning rate of 0.05 and a mo-

mentum of 0.9, and halted when either the function value improved by no more than

10−5 or after 106 iterations, whichever came first. We initialized each instance at a

uniformly random point in parameter space, with each parameter initialized within

[−2π, 2π].

To estimate the empirical distribution of local minima for the studied instances of

the varitional quantum eigensolver (VQE) [19], we repeated this procedure 52 times,

using a new ansatz and uniformly random starting point for each training instance.

We also verified numerically that 𝑚 as defined in Equation (A.6) is at least on the

order of 2𝑛 for 𝐻1,2, though we directly used Equation (A.6) when computing 𝛾. In

all plotted instances, we normalize the energy scale by a factor of 𝑐VQA, where

𝑐VQA = 𝜆− 𝜆1; (A.90)

this is just the overall factor of Equation (2.7). These units are such that the mean

eigenvalue of 𝐻 − 𝜆1 in the subspace of interest is at 𝐸 = 1.
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In Section 2.4.2, we tested our analytic results against a Hamiltonian informed

ansatz. Specifically, we used the Hamiltonian variational ansatz (HVA) [178]. For

the Fermi–Hubbard Hamiltonian of Equation (A.89), each HVA layer is of the form

𝑈𝑇 ,𝑈
𝑖 (𝜃𝑖) = e−i𝜃𝑖,2𝐻𝑇,𝑈,odde−i𝜃𝑖,2𝐻𝑇,𝑈,evene−i𝜃𝑖,1𝐻𝑇,𝑈,Coulomb . (A.91)

Here, 𝐻𝑇 ,𝑈 ,Coulomb is composed of the terms proportional to 𝑈𝑖 in 𝐻𝑇 ,𝑈 , 𝐻𝑇 ,𝑈 ,even

the hopping terms on even links, and 𝐻𝑇 ,𝑈 ,odd the hopping terms on odd links. We

took the starting state |𝜓0⟩ to be the computational basis state |1⟩ on the first 𝑛
2

qubits and |0⟩ on the other 𝑛
2

qubits. To observe the effects of scaling the number of

independent parameters 𝑝, we overparameterize our ansatz at a fixed overall depth by

fixing the total number of ansatz layers 𝑈𝑇 ,𝑈
𝑖 to be 6, but introduce extra parameters

to govern each evolution. For instance, for a multiplicative factor 𝑓 = 2, we double

the number of parameters by splitting into a sum of two terms

𝐻𝑇 ,𝑈 ,Coulomb = 𝐻
(1)
𝑇 ,𝑈 ,Coulomb +𝐻

(2)
𝑇 ,𝑈 ,Coulomb, (A.92)

𝐻𝑇 ,𝑈 ,even = 𝐻
(1)
𝑇 ,𝑈 ,even +𝐻

(2)
𝑇 ,𝑈 ,even, (A.93)

𝐻𝑇 ,𝑈 ,odd = 𝐻
(1)
𝑇 ,𝑈 ,odd +𝐻

(2)
𝑇 ,𝑈 ,odd, (A.94)

and parameterize the evolution under each term separately. For 𝑓 = 1, this ansatz

preserves the fermion number of the initial state; thus, for these simulations we cal-

culate 𝑚 in this 𝑛
2
-fermion subspace. For large 𝑓 , this parameterization breaks the

fermion number conservation of the ansatz, but still preserves the parity of the fermion

number. In practice, then, the 𝛾 we compute should be considered an upper bound

on the true 𝛾, strengthening our empirical results.
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Appendix B

Technical Details for Chapter 3

B.1 Training Error Dominates in the Optimization

of Variational Quantum Algorithms

The variational quantum eigensolver [19] is purely a problem of optimization and may

appear unrelated to the challenges in learning via variational algorithms; however, by

decomposing the error of a learning algorithm into key terms using well-established

methods [204], we will show that variational learning algorithms essentially face the

same optimization task and its associated challenges. In both cases, the hardness of

learning or optimizing with variational circuits manifests itself in the challenges of

optimizing over a cost landscape riddled with traps (or other barriers to optimization).

We restrict ourselves here to the supervised learning framework of empirical risk

minimization, where our goal is to learn a space of input and output pairs (𝑥,𝑦) ∈

𝒳 ×𝒴 drawn from a distribution 𝑃 (𝑥,𝑦). Given a loss function ℓ : 𝒴 ×𝒴 → [0,∞),

we quantify how well our function performs by considering the expected risk ℛ:

ℛ (𝑓) = E𝑥∼𝑃 (𝑥) [ℓ(𝑓 (𝑥) , 𝑓
* (𝑥))] , (B.1)

where the expectation above is taken with respect to 𝑃 (𝑥,𝑦). To benchmark perfor-

mance, we compare to the “optimal” or target function 𝑓 * which is the minimizer of
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the risk:

𝑓 * (𝑥) = argmin𝑦∈𝒴 E𝑦∼𝑃 (𝑦|𝑥) [ℓ (𝑦,𝑦)] . (B.2)

To perform learning, we search for a function 𝑓 ∈ ℱ in the function class ℱ (for

instance, the set of functions expressed by quantum neural networks). The expected

risk ℛ (𝑓) is not something one can calculate since it requires access to the full

probability distribution of the data. Instead, one minimizes the empirical risk ℛ̂(𝑓)

(often named the training error) over a given training data set 𝒟 of size 𝑁 consisting

of pairs {𝑥𝑖,𝑦𝑖}𝑁𝑖=1:

ℛ̂ (𝑓) =
𝑁∑︁
𝑖=1

ℓ (𝑓 (𝑥𝑖) , 𝑓
* (𝑥𝑖)) . (B.3)

Note that we use the hat in ℛ̂ and 𝑓 to denote the expected risk measure and func-

tion that one actually has access to during training or optimization. Given the above,

one can bound the expected risk of any function 𝑓 as a decomposition below [204]:

E
[︁
ℛ
(︁
𝑓
)︁
−ℛ (𝑓 *)

]︁
≤ min

𝑓∈ℱ
ℛ (𝑓)−ℛ (𝑓 *)⏟  ⏞  

approximation error

+2E
[︂
sup
𝑓∈ℱ

⃒⃒⃒
ℛ (𝑓)− ℛ̂ (𝑓)

⃒⃒⃒]︂
⏟  ⏞  

generalization error

+E
[︂
ℛ̂
(︁
𝑓
)︁
−min

𝑓∈ℱ
ℛ̂ (𝑓)

]︂
⏟  ⏞  

optimization error

,

(B.4)

where the expectation above is taken with respect to the distribution over data sets

or training sets. The proof of this statement follows by a careful, yet straightforward,

application of additions/subtractions with corresponding bounds [204].

Proof. Let 𝑓ℱ = argmin𝑓∈ℱ ℛ̂ (𝑓) and 𝑓ℱ = argmin𝑓∈ℱ ℛ (𝑓). Then, by adding and

subtracting quantities, we obtain the following result:

E
[︁
ℛ
(︁
𝑓
)︁
−ℛ (𝑓 *)

]︁
= E

[︁
ℛ
(︁
𝑓
)︁
−ℛ (𝑓 *)

+ ℛ̂
(︁
𝑓ℱ

)︁
− ℛ̂

(︁
𝑓ℱ

)︁
+ℛ (𝑓ℱ)−ℛ (𝑓ℱ) + ℛ̂ (𝑓ℱ)− ℛ̂ (𝑓ℱ)

+ ℛ̂
(︁
𝑓
)︁
− ℛ̂

(︁
𝑓
)︁]︁
.

(B.5)
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We reorder the above as follows and note their relation to the main statement:

E
[︁
ℛ
(︁
𝑓
)︁
−ℛ (𝑓 *)

]︁
=E [ℛ (𝑓ℱ)−ℛ (𝑓 *)] (approximation error) (B.6)

+ E
[︁
ℛ
(︁
𝑓
)︁
− ℛ̂

(︁
𝑓
)︁]︁

(generalization error) (B.7)

+ E
[︁
ℛ̂ (𝑓ℱ)−ℛ (𝑓ℱ)

]︁
(generalization error) (B.8)

+ E
[︁
ℛ̂
(︁
𝑓ℱ

)︁
− ℛ̂ (𝑓ℱ)

]︁
( ≤ 0 since 𝑓ℱ minimizes ℛ̂)

(B.9)

+ E
[︁
ℛ̂
(︁
𝑓
)︁
− ℛ̂

(︁
𝑓ℱ

)︁]︁
(optimization error). (B.10)

For the quantities in the generalization error, we have since 𝑓, 𝑓ℱ ∈ ℱ :

E
[︁
ℛ
(︁
𝑓
)︁
− ℛ̂

(︁
𝑓
)︁]︁
≤ E

[︂
sup
𝑓∈ℱ

⃒⃒⃒
ℛ (𝑓)− ℛ̂ (𝑓)

⃒⃒⃒]︂
E
[︁
ℛ̂ (𝑓ℱ)−ℛ (𝑓ℱ)

]︁
≤ E

[︂
sup
𝑓∈ℱ

⃒⃒⃒
ℛ (𝑓)− ℛ̂ (𝑓)

⃒⃒⃒]︂
.

(B.11)

Plugging these into Equation (B.5) and noting as before that E
[︁
ℛ̂
(︁
𝑓ℱ

)︁
− ℛ̂ (𝑓ℱ)

]︁
≤

0, we arrive at the desired result.

In the context of quantum variational algorithms, each of these has the following

properties:

• The approximation error quantifies how well the most optimal function in

the hypothesis class ℱ can fit the function. In variational settings, the approxi-

mation error is typically bounded by assuming the target function is generated

from a nice class of functions (e.g. shallow circuits) or arguing either analyti-

cally or theoretically that a given ansatz can (approximately) express the target

function [58, 179, 205, 206].

• The generalization error quantifies the statistical error that arises from hav-

ing a finite data set and is typically insignificant in quantum variational algo-

rithms where circuit complexity is limited with regards to the number of training

samples. More precisely, for data sets of size 𝑚, previous work [207, 208] bound
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the generalization error as Õ
(︁√︀
|𝐺| /𝑚

)︁
where |𝐺| is the number of trainable

gates. In contrast, generalization error in heavily overparameterized classical

neural network models are challenging to bound and it is still an open question

why deep learning models generalize so well [209, 210].

• The optimization error measures how well one is able to reduce the empirical

risk. Issues with optimization such as poor local minima and barren plateaus

arise here. Note that there is a distinct difference between quantum and clas-

sical deep learning here. With classical deep neural networks, this quantity is

typically negligible since neural networks are overparameterized with respect to

the data set size and can fit random data arbitrarily well [209, 211]. Further-

more, due to efficient means of calculating gradients with bit-level precision,

classical machine learning algorithms perform optimization over parameters far

more efficiently than quantum variational algorithms. In quantum variational

models, overparameterization with respect to the Hilbert space dimension is

generally needed to arbitrarily fit data [49, 69, 70]. Since the Hilbert space

dimension grows exponentially with the number of qubits, such overparameter-

ization becomes prohibitive rather rapidly.

In summary, the approximation error and generalization error can be bounded

efficiently with sufficient data so failures in learning are typically related to optimiza-

tion over the empirical risk. As an aside, this is loosely analogous to the classical

setting of learning polynomial size Boolean circuits which is strongly conjectured to

be hard since the space of Boolean functions is challenging to search over [212].

Finally, we would like to stress that the decomposition of the excess risk performed

in this section is neither unique nor necessarily tight. The decomposition can be per-

formed in various other ways depending on the quantities one would like to bound.

We chose the decomposition here to relate errors in quantum machine learning algo-

rithms to their classical counterparts and to highlight the challenges one may face

when attempting to provably learn a target function class.
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B.2 Statistical Query Framework: Background and

Additional Details

The statistical query (SQ) framework was introduced nearly 25 years ago to analyze

the hardness of learning problems [111]. This framework restricts algorithms to a

series of noisy queries, and hardness results are stated in terms of the number of

queries needed to learn a given class of functions. Since there are various different

ways of defining the statistical query model—including a recent quantum oracular

version proposed in Reference [213]—let us first review some of the various models

considered in prior work.

1. Classical statistical query model: Introduced by Reference [111], this was

the first statistical query model introduced. For a given distribution 𝐷 of inputs

over an input space 𝑋 and target concept 𝑐 : 𝑋 → {−1,+1}, one can make a

statistical query SQ (𝑞, 𝜏), by providing a threshold 𝜏 ∈ R+ and a query function

𝑞 : 𝑋 × {−1,+1} → {−1,+1}. The query returns a value in the range:

E𝑥∼𝐷 [𝑞 (𝑥, 𝑐 (𝑥))− 𝜏 ] ≤ SQ (𝑞, 𝜏) ≤ E𝑥∼𝐷 [𝑞 (𝑥, 𝑐 (𝑥)) + 𝜏 ] . (B.12)

2. Correlational statistical query model: The query is the same as before,

except now, one queries correlations CSQ (𝑞, 𝜏) only by providing a threshold

𝜏 ∈ R+ and a query function ℎ : 𝑋 → {−1,+1}. The query returns a value in

the range:

E𝑥∼𝐷 [ℎ (𝑥) 𝑐 (𝑥)− 𝜏 ] ≤ CSQ (ℎ, 𝜏) ≤ E𝑥∼𝐷 [ℎ (𝑥) 𝑐 (𝑥) + 𝜏 ] . (B.13)

This model is strictly less powerful than the standard statistical query model

since one can perform a correlational statistical query with a standard statistical

query [104].

3. Quantum statistical query model: This is a statistical query model with

quantum samples [213]. Here, we are restricted to target (classical) Boolean
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functions 𝑐 : {0, 1}𝑛 → {−1,+1}. A quantum statistical query Qstat (𝜏,𝑀)

is provided with a threshold 𝜏 ∈ R+ and an observable or Hamiltonian 𝑀 ∈

(C2)
𝑛+1 × (C2)

𝑛+1 satisfying ‖𝑀‖∞ ≤ 1 and returns a number in the range:

⟨𝜓𝑐|𝑀 |𝜓𝑐⟩ − 𝜏 ≤ Qstat (𝑀, 𝜏) ≤ ⟨𝜓𝑐|𝑀 |𝜓𝑐⟩+ 𝜏, (B.14)

where |𝜓𝑐⟩ =
∑︀

𝑥∈{0,1}𝑛
√︀
𝐷 (𝑥) |𝑥⟩ |𝑐 (𝑥)⟩. This model is useful to analyze the

hardness of learning classical Boolean functions when given the extra power of

querying the classical function in superposition. Our work considers learning

quantum data and thus does not fit into the framework of this SQ model.

The SQ learning setting is related to the probably approximately correct (PAC)

setting of learning theory [214] in that if an algorithm can learn a given function class

in the SQ learning setting under any input distribution, then that function class is

also PAC learnable [109, 111]. Two very recent works have studied the SQ hardness

of learning data generated by quantum circuits. First, Reference [119] analyze the

hardness of learning the output distribution of clifford circuits and stabilizer states

showing that these distributions are hard to learn using classical Boolean SQ oracles.

Nevertheless, when given samples from the Boolean hypercube of the distribution,

they provide an efficient algorithm based on linear regression to determine the sta-

bilizer state underlying the distribution. Such a result is similar to classic results in

Reference [111] showing that parity functions are hard to learn using only SQ oracle

calls but easy when performing linear regression with enough samples. Second, Refer-

ence [118] shows that learning stabilizer states is hard in an SQ setting where queries

are made over two-outcome POVMs. Their results show that learning stabilizer states

in such a setting is as hard as learning the function class of parity with noise in the

standard Boolean setting. Our results expand the set of quantum functions that are

hard to learn in SQ settings and relate such hardness results to the variational setting.
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B.2.1 Quantum Statistical Query Models

Variational quantum algorithms are inherently noisy due to unavoidable sources such

as the need for sampling outputs, or potentially correctable sources such as gate

errors and state preparation noise. In such noisy settings, the statistical query (SQ)

model provides a useful framework for quantifying the complexity of learning a class

of functions by considering how many query calls to a noisy oracle are needed to learn

any function in that class. We consider two forms of statistical queries which relate to

learning a target Hamiltonian or a target unitary, both of which result in exponential

hardness results for learning simple variational classes of data:

Definition B.1 (Quantum correlational statistical query (qCSQ)). Assume there is

a target observable 𝑀 that we would like to learn on some distribution over states

𝒟. Applying the correlational SQ model to the quantum setting, we define the query

qCSQ (𝑂, 𝜏) which takes in a bounded observable 𝑂 with ‖𝑂‖∞ ≤ 1 and a tolerance

𝜏 and returns a value in the range:

E𝜌∼𝒟 [tr(𝑂𝜌) tr(𝑀𝜌)− 𝜏 ] ≤ qCSQ(𝑂, 𝜏) ≤ E𝜌∼𝒟 [tr(𝑂𝜌) tr(𝑀𝜌) + 𝜏 ] . (B.15)

Definition B.2 (Quantum unitary statistical query (qUSQ)). In the unitary compi-

lation setting, one aims to learn a target unitary transformation 𝑈* over a distribution

𝒟 of input/output pairs of that unitary transformation. Here, the oracle qUSQ(𝑉, 𝜏)

takes in a unitary matrix 𝑉 and a tolerance 𝜏 and returns a value in the range:

E𝜌∼𝒟
[︀
Re
{︀
tr
(︀
𝑈 †
*𝑉 𝜌

)︀}︀
− 𝜏
]︀
≤ qUSQ (𝑉, 𝜏) ≤ E𝜌∼𝒟

[︀
Re
{︀
tr
(︀
𝑈 †
*𝑉 𝜌

)︀}︀
+ 𝜏
]︀
. (B.16)

Importantly, if 𝒟 is a 1-design over 𝑛 qubit states, then the above can be sim-

plified using the formula E𝜌∼𝒟
[︀
Re
{︀
tr
(︀
𝑈 †
*𝑉 𝜌

)︀}︀]︀
= 2−𝑛Re

{︀
tr
(︀
𝑈 †
*𝑉
)︀}︀

(see proof in

Appendix B.3). Queries to qUSQ are related to performing a Hadamard test [215],

also a common subroutine in variational algorithms [216].

The queries above take the forms of inner products, with ⟨𝑀1,𝑀2⟩𝒟 = E𝜌∼𝒟 [tr (𝑀1𝜌) tr (𝑀2𝜌)]

and ⟨𝑈1, 𝑈2⟩𝒟 = E𝜌∼𝒟

[︁
Re
{︁
tr
(︁
𝑈 †
1𝑈2𝜌

)︁}︁]︁
. The inner products also induce corre-
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sponding 𝐿2 norms: ‖𝑀‖𝒟 =
√︀
⟨𝑀,𝑀⟩𝒟. As the magnitude of this norm can

change with the dimension, we introduce the quantity 𝐶max to denote the max-

imum value a query can take for any target observable in the qCSQ model, i.e.

𝐶max = max𝑀 :‖𝑀‖∞≤1 ‖𝑀‖2𝒟. We quantify noise tolerances and hardness bounds

with respect to 𝐶max to normalize units. Note that for the qUSQ model 𝐶max = 1,

but in the qCSQ model, 𝐶max can decay with the number of qubits under for example

the Haar distribution of inputs.

A statistical query algorithm learns a function class if it can output a unitary or

observable that is close to any target in that class.

Definition B.3 (qCSQ / qUSQ learning of hypothesis class). A given algorithm using

only statistical queries to qCSQ (qUSQ) successfully learns a hypothesis class ℋ

consisting of observables 𝑀, ‖𝑀‖∞ ≤ 1 (unitaries 𝑈) up to 𝜖 error if it is able to

output an observable 𝑂 (unitary 𝑉 ) which is 𝜖-close to the unknown target observable

𝑀 ∈ ℋ (𝑈 ∈ ℋ) in the 𝐿2 norm, i.e., ‖𝑀 −𝑂‖𝒟 ≤ 𝜖 (‖𝑈 − 𝑉 ‖𝒟 ≤ 𝜖).

The statistical query dimension quantifies the complexity of a hypothesis class ℋ

and is related to the number of queries needed to learn functions drawn from a class,

as summarized in Theorem B.5.

Definition B.4 (Statistical query dimension [103, 109]). For a distribution 𝒟 and

concept class ℋ where ‖𝑀‖2𝒟 ≤ 𝐶max for all 𝑀 ∈ ℋ, the statistical query dimension

(SQ-DIM𝒟 (ℋ)) is the largest positive integer 𝑑 such that there exists 𝑑 observables

𝑀1,𝑀2, . . . ,𝑀𝑑 ∈ ℋ such that for all 𝑖 ̸= 𝑗,
⃒⃒
⟨𝑀𝑖,𝑀𝑗⟩𝒟

⃒⃒
≤ 𝐶max/𝑑.

Theorem B.5 (Query complexity of learning [103, 104]). Given a distribution 𝒟

on inputs and a hypothesis class ℋ where ‖𝑀‖2𝒟 ≤ 𝐶max for all 𝑀 ∈ ℋ, let 𝑑 =

SQ-DIM𝒟 (ℋ) be the statistical query dimension of ℋ. Any qCSQ or qUSQ learner

making queries with tolerance 𝐶max𝜏 must make at least (𝑑𝜏 2 − 1) /2 queries to learn

ℋ up to error 𝐶max𝜏 .

Proof. Since we are restricted to the weaker setting of correlational statistical queries

in this study, we can reuse a simple and elegant proof from Reference [104].
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Let 𝑀1,𝑀2, . . . ,𝑀𝑑 be 𝑑 functions that saturate SQ-DIM𝒟 (ℋ), i.e., ⟨𝑀𝑖,𝑀𝑗⟩𝒟 ≤

1/𝑑 for all 𝑖 ̸= 𝑗. Assume we apply query 𝑂 and let 𝑆 = {𝑖 ∈ [𝑑] : ⟨𝑂,𝑀𝑖⟩𝒟 > 𝐶max𝜏}

Then, by simple application of the Cauchy–Schwarz inequality, we have that for any

query 𝑂: ⟨
𝑂,
∑︁
𝑖∈𝑆

𝑀𝑖

⟩2

𝒟

≤ 𝐶max

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝑆

𝑀𝑖

⃦⃦⃦⃦
⃦
2

𝒟

= 𝐶max

∑︁
𝑖,𝑗∈𝑆

⟨𝑀𝑖,𝑀𝑗⟩𝒟

≤ 𝐶2
max

(︀
|𝑆|+ |𝑆|2 /𝑑

)︀
.

(B.17)

Note that we can also bound the quantity above from below by using the definition

of 𝑆: ⟨
𝑂,
∑︁
𝑖∈𝑆

𝑀𝑖

⟩
𝒟

≥ 𝐶max |𝑆| 𝜏. (B.18)

Combining the above, we have that

|𝑆| ≤ 𝑑

𝑑𝜏 2 − 1
. (B.19)

Similarly, defining 𝑆 ′ = {𝑖 ∈ [𝑑] : ⟨𝑂,𝑀𝑖⟩𝒟 < −𝐶max𝜏} with correlation less than

−𝜏 , we follow the steps above to also note that |𝑆 ′| ≤ 𝑑/ (𝑑𝜏 2 − 1). Altogether, we

have that |𝑆 ′| + |𝑆| ≤ 2𝑑/ (𝑑𝜏 2 − 1), which implies that each oracle call returning 0

is inconsistent with at most 2𝑑/ (𝑑𝜏 2 − 1) functions. This results in the lower bound

stated, as 𝑑 functions must be ruled inconsistent to learn the target class.

This result forms the basis for our resulting proofs of hardness, summarized in

Table 3.1 and proved in Appendix B.3.

Analogous to work in classical machine learning [110], one can perform noisy

gradient descent as a series of statistical queries. As an example, consider the task of

learning a target Hamiltonian 𝑀 by constructing a variational Hamiltonian 𝐻 (𝜃) =

𝑈 (𝜃)†𝐻𝑈 (𝜃) with parameterized Pauli rotations and minimizing the mean squared

error between expectations of 𝑀 versus 𝐻 (𝜃) over a distribution of states 𝒟. Our

loss function is

ℒ (𝜃) = E𝜌∼𝒟
[︀
(tr (𝑀𝜌)− tr (𝐻 (𝜃) 𝜌))2

]︀
. (B.20)
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The parameter shift rule [112] provides a means to calculate the partial derivative of

a function 𝑓 (𝜇) with respect to a parameter 𝜇 applied as a parameterized quantum

gate e−i𝜇𝐺 by calculating the function itself at two shifted coordinates. For example,

for parameterized Pauli gates (𝐺 ∈ 1
2
{𝑍,𝑋, 𝑌 }), this takes the form:

𝜕𝑓 (𝜇)

𝜕𝜇
=

1

2

(︁
𝑓
(︁
𝜇+

π

2

)︁
− 𝑓

(︁
𝜇− π

2

)︁)︁
. (B.21)

By applying the parameter shift rule [112], we can evaluate the gradient of the

loss with respect to parameter entry 𝜃𝑖 as

𝜕ℒ (𝜃)
𝜕𝜃𝑖

= E𝜌∼𝒟
[︀
(tr (𝐻 (𝜃) 𝜌)− tr (𝑀𝜌))

(︀
tr
(︀
𝐻
(︀
𝜃+
)︀
𝜌
)︀
− tr

(︀
𝐻
(︀
𝜃−
)︀
𝜌
)︀)︀]︀

, (B.22)

where 𝜃+ and 𝜃− are the values of the parameters shifted at the 𝑖th entry according

to the parameter shift rule for the gradient. The quantity:

E𝜌∼𝒟
[︀
tr (𝐻 (𝜃) 𝜌)

(︀
tr
(︀
𝐻
(︀
𝜃+
)︀
𝜌
)︀
− tr

(︀
𝐻
(︀
𝜃−
)︀
𝜌
)︀)︀]︀

(B.23)

can be directly evaluated without statistical queries, and the quantity:

E𝜌∼𝒟
[︀
tr (𝑀𝜌)

(︀
tr
(︀
𝐻
(︀
𝜃+
)︀
𝜌
)︀
− tr

(︀
𝐻
(︀
𝜃−
)︀
𝜌
)︀)︀]︀

(B.24)

can be evaluated using 2 statistical queries to qCSQ where the tolerance 𝜏 accounts

for the noise in the estimate.

As a second example, this time in the unitary compiling setting of qUSQ, we

can evaluate the commonly used procedure of measuring the inner product or aver-

age fidelity of 𝑛-qubit states between a target unitary 𝑈* and a variationally chosen

unitary 𝑉 (𝜃) using statistical queries analogous to a swap test on actual quantum

hardware [123, 217–219]. With slight abuse of notation, let |𝜑⟩ ∼ 𝒟 denote a distri-

bution over pure states which forms a 2-design. Then via averaging over 2-designs
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(see Appendix B.3 for details), the average fidelity equals

E|𝜑⟩∼𝒟 [𝐹 (𝑈* |𝜑⟩ , 𝑉 (𝜃) |𝜑⟩)] = E|𝜑⟩∼𝒟

[︂⃒⃒⃒
⟨𝜑|𝑉 (𝜃)† 𝑈* |𝜑⟩

⃒⃒⃒2]︂
=

2−𝑛
⃒⃒⃒
tr
(︁
𝑉 (𝜃)† 𝑈*

)︁⃒⃒⃒2
+ 1

2𝑛 + 1
.

(B.25)

Note that the key quantity:

⃒⃒⃒
tr
(︁
𝑉 (𝜃)† 𝑈*

)︁⃒⃒⃒2
= Re

{︁
tr
(︁
𝑉 (𝜃)† 𝑈*

)︁}︁2

+Re
{︁
i tr
(︁
𝑉 (𝜃)† 𝑈*

)︁}︁2

(B.26)

can be evaluated up to a desired tolerance using statistical queries qUSQ (𝑉 (𝜃) , 𝜏)

and qUSQ (i𝑉 (𝜃) , 𝜏).

Our proofs expand on recent research showing hardness results in the SQ setting

for certain quantum machine learning problems. More specifically, recent results that

have shown that certain fundamental and rather simple classes of quantum “func-

tions” are hard to learn in the SQ setting. Namely, (classical) output distributions

of locally constructed quantum states [119] and the set of Clifford circuits [118] are

hard to learn given properly chosen statistical query oracles. Following these results,

we show that simple classes of functions generated by variational circuits are also

exponentially difficult to learn in the SQ settings we consider. We also directly con-

nect the statistical query setting to actual optimization algorithms that are used in

practice for variational optimization. Our results indicate that training algorithms

must be carefully constructed to avoid these poor lower bounds.

B.2.2 Limitations of Hardness Results in the SQ Framework

Though the SQ framework is a useful tool for analyzing the hardness of learning a

class of functions in noisy settings, there are a few caveats and limitations of any

hardness results proven in the SQ setting:

• The statistical query model inherently requires noise in the form of the toler-

ance 𝜏 . Furthermore, the guarantees of learning must handle worst case noise

scenarios where the noise acts adversarially on the statistical query. Though
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quantum variational algorithms are inherently noisy, this noise typically does

not arise in an adversarial nature.

• The statistical query model places bounds on learning classes of functions using

optimizers that query this SQ model and is not directly related to issues of loss

landscapes since there is no loss landscape to actually optimize. Nevertheless,

since (noisy) calculations of gradients and loss function values are themselves

examples of statistical queries, any issues with optimizing over a loss landscape

will also arise in performing the optimizer through a series of statistical queries.

• Learning every function in a class 𝒞 can be restrictive, and in practice, one may

only really want to learn a given function or a small set of functions. In fact,

it can be shown that even the class of functions generated by shallow neural

networks is hard to learn in the SQ setting [105, 110, 220–222]; nevertheless,

neural networks are very successful at learning specific functions such as the

classification of real-world images [42].

• Specific to the settings considered here, our hardness results were obtained in

the correlational SQ setting by constructing a family of orthogonal functions

drawn from a given function class. We chose this setting for its close relation

to the algorithms used in practice for performing optimization over variational

parameters. However, as mentioned in the main text, the correlational SQ

setting is strictly weaker than the more general SQ setting, and separations

between SQ and correlational SQ results have been made in prior work [223,

224].

B.3 Proofs of Statistical Query Results

Throughout this section, we make use of standard formulas from Weingarten calculus

to integrate over Haar measure or 𝑡-designs [65, 225, 226]. Let |𝐼𝑛𝑚⟩ denote 𝑛 copies
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of the unnormalized maximally entangled state on a Hilbert space of dimension 𝑚:

|𝐼𝑛𝑚⟩ =
𝑚∑︁

𝑖1,𝑖2,...,𝑖𝑛=1

|𝑖1, 𝑖2, . . . , 𝑖𝑛⟩ |𝑖1, 𝑖2, . . . , 𝑖𝑛⟩ . (B.27)

For 𝑛 = 2, let |𝑆2
𝑚⟩ denote the same unnormalized state as above with a SWAP

operation applied to the second register:

⃒⃒
𝑆2
𝑚

⟩︀
= (𝐼 ⊗ SWAP)

⃒⃒
𝐼2𝑚
⟩︀

=
𝑚∑︁

𝑖1,𝑖2=1

|𝑖1, 𝑖2⟩ |𝑖2, 𝑖1⟩ .
(B.28)

The following hold over a distribution 𝒟 that is a 2-design over the unitary ma-

trices of dimension 𝑚:

E𝑈∼𝒟
[︀
𝑈 ⊗ �̄�

]︀
=

1

𝑚

⃒⃒
𝐼1𝑚
⟩︀ ⟨︀
𝐼1𝑚
⃒⃒
, (B.29)

E𝑈∼𝒟
[︀
𝑈 ⊗ 𝑈 ⊗ �̄� ⊗ �̄�

]︀
=

1

𝑚2 − 1

(︀⃒⃒
𝐼2𝑚
⟩︀ ⟨︀
𝐼2𝑚
⃒⃒
+
⃒⃒
𝑆2
𝑚

⟩︀ ⟨︀
𝑆2
𝑚

⃒⃒)︀
− 1

𝑚(𝑚2 − 1)

(︀⃒⃒
𝐼2𝑚
⟩︀ ⟨︀
𝑆2
𝑚

⃒⃒
+
⃒⃒
𝑆2
𝑚

⟩︀ ⟨︀
𝐼2𝑚
⃒⃒)︀
,

(B.30)

where �̄� denotes the matrix with entries that are the complex conjugate of entries of

𝑈 .

As a simple example of applying the techniques above, we show that for unitaries

𝑈* and 𝑉 of dimension 𝑑𝑛 (e.g., 𝑑 = 2 for qubits and 𝑛 is the number of qubits),

E𝜌∼𝒟
[︀
Re
{︀
tr
(︀
𝑈 †
*𝑉 𝜌

)︀}︀]︀
= 𝑑−𝑛Re

{︀
tr
(︀
𝑈 †
*𝑉
)︀}︀

whenever 𝒟 forms a 1-design. This is

a crucial formula that we use in the evaluation of statistical queries to qUSQ.

Lemma B.6. For any distribution 𝒟 that is a 1-design over states of dimension 𝑑𝑛,

E𝜌∼𝒟
[︀
Re
{︀
tr
(︀
𝑊 †𝑉 𝜌

)︀}︀]︀
= 𝑑−𝑛Re

{︀
tr
(︀
𝑊 †𝑉

)︀}︀
. (B.31)

Proof. WLOG, we rewrite the equation above in terms of a distribution over pure

states and with a slight abuse of notation, we let 𝒟 also denote a distribution over
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unitary matrices 𝑈 that forms a 1-design:

E𝜌∼𝒟
[︀
Re
{︀
tr
(︀
𝑊 †𝑉 𝜌

)︀}︀]︀
= E𝑈∼𝒟

[︀
Re
{︀
⟨0|𝑈 †𝑊 †𝑉 𝑈 |0⟩

}︀]︀
. (B.32)

Using Equation (B.27), we have:

E𝑈∼𝒟
[︀
Re
{︀
⟨0|𝑈 †𝑊 †𝑉 𝑈 |0⟩

}︀]︀
= E𝑈∼𝒟

[︀⟨︀
𝐼1𝑑𝑛
⃒⃒ (︀
(𝑊 †𝑉 )⊗ 𝐼

)︀ (︀
𝑈 ⊗ �̄�

)︀
|0⟩ |0⟩

]︀
.

(B.33)

Applying Equations (B.29) and (B.30), we have:

E𝑈∼𝒟
[︀
Re
{︀
⟨0|𝑈 †𝑊 †𝑉 𝑈 |0⟩

}︀]︀
= E𝑈∼𝒟

[︀
Re
{︀⟨︀
𝐼1𝑑𝑛
⃒⃒ (︀(︀

𝑊 †𝑉
)︀
⊗ 𝐼
)︀ (︀
𝑈 ⊗ �̄�

)︀
|0⟩ |0⟩

}︀]︀
=

1

𝑑𝑛
Re
{︀⟨︀
𝐼1𝑑𝑛
⃒⃒ (︀(︀

𝑊 †𝑉
)︀
⊗ 𝐼
)︀ ⃒⃒
𝐼1𝑑𝑛
⟩︀ ⟨︀
𝐼1𝑑𝑛
⃒⃒
0
⟩︀
|0⟩
}︀

=
1

𝑑𝑛
Re
{︀
tr
(︀
𝑊 †𝑉

)︀}︀
.

(B.34)

B.3.1 Proofs of Statistical Query Dimensions for Variational

Function Classes

Proposition B.7 (SQ dimension for 𝐿 = 1 and fixed global measurement). Given

𝑛 qubits, let ℋ be the concept class containing functions 𝑓 : C2𝑛 → R consisting of

single qubit rotations followed by a global Pauli Z measurement, i.e. functions of the

form

𝑓 (|𝜓⟩ ;𝑈1, 𝑈2, . . . , 𝑈𝑛) = ⟨𝜓|
(︁
𝑈 †
1 ⊗ 𝑈

†
2 ⊗ . . .⊗ 𝑈 †

𝑛

)︁
(𝑍1 ⊗ 𝑍2 ⊗ . . . 𝑍𝑛) (𝑈1 ⊗ 𝑈2 ⊗ . . .⊗ 𝑈𝑛) |𝜓⟩ ,

(B.35)

where |𝜓⟩ is the input to the function and 𝑈1, 𝑈2, . . . , 𝑈𝑛 are the parameterized 1-qubit

rotation operations on distinct qubits. Then, the concept class ℋ has SQ dimension

SQ-DIM𝒟 (ℋ) ≥ 3𝑛 under any distribution of states that forms a 2-design.

Proof. The simple proof of this proposition relies on the fact that all Pauli operators

are pairwise orthogonal for a 2-design, i.e. given two distinct Pauli operators 𝑃1 and
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𝑃2 then E𝜌∼𝒟 [tr (𝑃1𝜌) tr (𝑃2𝜌)] = 0. Therefore, we simply show that the concept class

ℋ is capable of producing any Pauli string not containing the identity.

To proceed, note that we can rewrite the function class as follows:

𝑓 (|𝜓⟩ ;𝑈1, 𝑈2, . . . , 𝑈𝑛) = ⟨𝜓|
(︁
𝑈 †
1𝑍1𝑈1

)︁
⊗
(︁
𝑈 †
2𝑍2𝑈2

)︁
⊗ . . .⊗

(︀
𝑈 †
𝑛𝑍𝑛𝑈𝑛

)︀
|𝜓⟩ . (B.36)

To obtain any arbitrary Pauli string, we simply conjugate the 𝑍𝑖 operator for the

𝑖th qubit by a corresponding operation. If the 𝑖th qubit of a Pauli string is equal to

𝑋, then we set 𝑈𝑖 = 𝐻 or the Hadamard transform. Similarly, if the 𝑖th qubit of a

Pauli string is equal to 𝑌 , then we set 𝑈𝑖 = 𝐻
√
𝑍

†
. By conjugation of the individual

1-qubit operators, we thus can produce any Pauli operator in {𝑋, 𝑌, 𝑍}⊗𝑛.

Corollary B.8. By application of Theorem B.5, the class of functions defined in

Proposition B.7 consisting of a single layer of parameterized single qubit unitary gates

and a fixed global measurement on 𝑛 qubits requires 2Ω(𝑛) queries to learn for a query

tolerance greater than 3−𝛽𝑛, where 𝛽 = 1/2− Ω (1).

Proposition B.9 (SQ dimension for 𝐿 = ⌈log2 (𝑛)⌉, 2-qubit gates, and single Pauli

𝑍 measurement). Given 𝑛 qubits, let ℋ be the concept class containing functions

𝑓 : C2𝑛 → R consisting of ⌈log2 (𝑛)⌉ layers of 2-qubit gates followed by a Pauli

𝑍 measurement on a single qubit. Then, the concept class ℋ has SQ dimension

SQ-DIM𝒟 (ℋ) ≥ 4𝑛 − 1 under any distribution of inputs that forms a 2-design.

Proof. We will show that ℋ is powerful enough to perform any nontrivial Pauli mea-

surement (i.e., any Pauli but the identity) and hence construct at least 4𝑛 − 1 or-

thogonal functions. Classically, any parity function can be constructed in ⌈log2 (𝑛)⌉

layers, and we use a similar construction here.

Without loss of generality, assume the Pauli measurement is on the first qubit.

Let 𝑈 (𝜃) represent a possible unitary that can be applied using the given hypothesis

class, resulting in a final measurement of 𝑈 (𝜃)† 𝑍1𝑈 (𝜃) on a given input state |𝜓⟩. We

will show that we can parameterize the circuit such that for any Pauli measurement,

𝑃1 ⊗ 𝑃2 ⊗ . . .⊗ 𝑃𝑛 = 𝑈 (𝜃)† 𝑍1𝑈 (𝜃) where 𝑃𝑖 indicates the Pauli operator of qubit 𝑖

(i.e., 𝑃𝑖 ∈ {𝐼,𝑋, 𝑌, 𝑍}).
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To construct any Pauli operator 𝑃1 ⊗ 𝑃2 ⊗ . . .⊗ 𝑃𝑛, we follow the steps below:

1. In the first layer, apply a unitary to each qubit 𝑖 which maps the computational

basis to the basis of the Pauli for qubit 𝑖. In more detail, if 𝑃𝑖 = 𝐼 or 𝑃𝑖 = 𝑍,

then apply the identity map to keep the basis the same. If 𝑃𝑖 = 𝑋, then apply

the Hadamard transform and if 𝑃𝑖 = 𝑌 then apply the operation 𝐻
√
𝑍

†
.

2. In the 𝑙th layer, apply a specific two qubit gate to qubit pairs:

{︀
1, 2𝑙−1 + 1

}︀
,
{︀
2
(︀
2𝑙−1

)︀
+ 1, 3

(︀
2𝑙−1

)︀
+ 1
}︀
,
{︀
4
(︀
2𝑙−1

)︀
+ 1, 5

(︀
2𝑙−1

)︀
+ 1
}︀
, . . . .

(B.37)

For a layer 𝑙 and a given pair {𝑖, 𝑗}, apply the following gate:

• if all of 𝑃𝑖, 𝑃𝑖+1, . . . , 𝑃𝑗+2𝑙−1 are equal to 𝐼, then apply the identity.

• if any of 𝑃𝑖, 𝑃𝑖+1, . . . , 𝑃𝑗−1 are not equal to 𝐼 and all of 𝑃𝑗, 𝑃𝑗+1, . . . , 𝑃𝑗+2𝑙−1

are equal to 𝐼 then apply the identity as well.

• if all of 𝑃𝑖, 𝑃𝑖+1, . . . , 𝑃𝑗−1 are equal to 𝐼 and any of 𝑃𝑗, 𝑃𝑗+1, . . . , 𝑃𝑗+2𝑙−1 are

not equal to 𝐼, then apply a SWAP gate between qubits 𝑖 and 𝑗.

• otherwise, apply the following 2-qubit gate to 𝑖 and 𝑗 which conjugates

𝑍 ⊗ 𝐼 to 𝑍 ⊗ 𝑍: ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.38)

3. Repeat step 2 from 𝑙 = 1 to 𝑙 = ⌈log2 (𝑛)⌉. Measuring the first qubit will

measure the corresponding desired Pauli. Note, that the single qubit operations

of step 1 and the 2-qubit operations of step 2 can be combined into a single

2-qubit gate thus not changing the depth.

Following the steps above, at layer 𝑙, the measurement of the first qubit corre-

sponds to the Pauli measurement of the first 2𝑙 qubits. Recursively applying this

procedure 𝑙 layers produces any arbitrary Pauli string.
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Corollary B.10. By application of Theorem B.5, the class of functions defined in

Proposition B.9 consisting of ⌈log2 (𝑛)⌉ 2-qubit unitary gates and a fixed measurement

on a single qubit requires 2Ω(𝑛) queries to learn for a query tolerance greater than 4−𝛽𝑛,

where 𝛽 = 1/2− Ω (1).

Proposition B.11 (SQ dimension for 𝐿 layers, neighboring 2-local gates in one-di-

mensional lattice and fixed single qubit measurement). Given 𝑛 qubits, let ℋ be the

concept class containing functions 𝑓 : C2𝑛 → R consisting of 𝐿 layers of 2-qubit uni-

tary operations followed by a Pauli Z measurement on a single qubit (labeled qubit 𝑚),

i.e. functions of the form

𝑓 (|𝜓⟩ ;𝑊1,𝑊2, . . . ,𝑊𝐿) = ⟨𝜓|𝑊 †
1𝑊

†
2 . . .𝑊

†
𝐿 (𝑍𝑚)𝑊𝐿 . . .𝑊2𝑊1 |𝜓⟩ , (B.39)

where |𝜓⟩ is the input to the function and 𝑊1,𝑊2, . . . ,𝑊𝐿 are the unitary operations at

each layer consisting of tensor products of 2-local unitary operators acting on neighbor-

ing qubits. Then, the concept class ℋ has SQ dimension SQ-DIM𝒟 (ℋ) ≥ 4min(2𝐿,𝑛)−1

under any distribution of states that forms a 2-design.

Proof. Our proof relies on the fact that with 𝐿 layers, one can conjugate the fixed sin-

gle qubit measurement on qubit 𝑚 to produce any 2𝐿-qubit Pauli on the 2𝐿 qubits

within the reverse light cone of 𝑚. We follow a proof outline similar to Proposi-

tion B.9.

Before we proceed, we assume without loss of generality, that 𝐿 is odd and the

first layer applies a two qubit unitary to qubit 𝑚 and the preceeding qubit 𝑚− 1. It

is straightforward to extend this to the case where 𝐿 is even. Therefore, qubit 𝑚 is

the 𝐿th qubit in the reverse light cone of qubit 𝑚, i.e., the light cone traverses qubits

𝑚−𝐿 to 𝑚+𝐿− 1. For the steps below, we then index the qubits from −𝐿 to 𝐿− 1

so that the numbering is relative to qubit 𝑚. To perform a given 2𝐿 Pauli operator

𝑃−𝐿 ⊗ 𝑃−𝐿+1 ⊗ . . . ⊗ 𝑃𝐿−1 in the reverse light cone of qubit 𝑚, we follow the steps

below, many of which are copied from Proposition B.9.:

1. In the first layer, apply a unitary to each qubit 𝑖 which maps the computational

basis to the basis of the Pauli for qubit 𝑖. In more detail, if 𝑃𝑖 = 𝐼 or 𝑃𝑖 = 𝑍,
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then apply the identity map to keep the basis the same. If 𝑃𝑖 = 𝑋, then apply

the Hadamard transform and if 𝑃𝑖 = 𝑌 then apply the operation 𝐻
√
𝑍

†
.

2. in the 𝐿th layer, for the 2-qubit unitary acting on qubits 0 and −1, apply the

following gate:

• if all of 𝑃−𝐿, 𝑃−𝐿+1, . . . , 𝑃−1 are equal to 𝐼 and all of 𝑃1, 𝑃2, . . . , 𝑃𝐿−1 are

equal to 𝐼, then apply the identity.

• if any of 𝑃−𝐿, 𝑃−𝐿+1, . . . , 𝑃−1 are not equal to 𝐼 and and any of 𝑃1, 𝑃2, . . . , 𝑃𝐿−1

are not equal to 𝐼, apply the following 2-qubit gate (CNOT) to 𝑖 and 𝑖+1

which conjugates 𝐼 ⊗ 𝑍 to 𝑍 ⊗ 𝑍:⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.40)

• otherwise, apply the SWAP operation between qubits 0 and −1.

3. In the 𝑙th layer for any 𝑙 ̸= 𝐿, apply a specific two qubit gate to neighboring

qubit pairs {−𝐿+ 𝑙 − 1,−𝐿+ 𝑙} on the edge of the reverse light cone. For

simplicity, let 𝑖 = −𝐿+1−1 and apply the following gate to qubit pair {𝑖, 𝑖+ 1}:

• if all of 𝑃−𝐿, 𝑃−𝐿+1, . . . , 𝑃𝑖 are equal to 𝐼, then apply the identity.

• if any of 𝑃−𝐿, 𝑃−𝐿+1, . . . , 𝑃𝑖 are not equal to 𝐼 and 𝑃𝑖+1 = 𝐼, then apply a

SWAP between qubits 𝑖 and 𝑖+ 1.

• otherwise, apply the following 2-qubit gate (CNOT) to 𝑖 and 𝑖 + 1 which

conjugates 𝐼 ⊗ 𝑍 to 𝑍 ⊗ 𝑍: ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.41)
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Similarly, for the other edge of the reverse light cone, we apply the same

gates, but in “reverse” logic. Here, we apply a 2-qubit unitary to qubit pair

{𝐿− 𝑙 − 2, 𝐿− 𝑙 − 1}. For simplicity, let 𝑖 = 𝐿− 𝑙− 2 and apply the following

gate to qubit pair {𝑖, 𝑖+ 1}:

• if all of 𝑃𝑖+1, 𝑃𝑖+2, . . . , 𝑃𝐿−1 are equal to 𝐼, then apply the identity.

• if any of 𝑃𝑖+1, 𝑃𝑖+2, . . . , 𝑃𝐿−1 are not equal to 𝐼 and 𝑃𝑖+1 = 𝐼, then apply

a SWAP between qubits 𝑖 and 𝑖+ 1.

• otherwise, apply the following 2-qubit gate to 𝑖 and 𝑖+1 which conjugates

𝑍 ⊗ 𝐼 to 𝑍 ⊗ 𝑍: ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.42)

4. Repeat step 3 from 𝑙 = 1 to 𝑙 = 𝐿− 1. Measuring the 𝑚th qubit will measure

the corresponding desired Pauli. Note that the single qubit operations of step 1

and the 2-qubit operations of step 2 can be combined into a single 2-qubit gate

thus not changing the depth.

Corollary B.12. By application of Theorem B.5, the class of functions defined in

Proposition B.11 consisting of 𝐿 layers of neighboring 2-qubit gates and a fixed mea-

surement on a single qubit requires 2Ω(min(2𝐿,𝑛)) queries to learn for a constant query

tolerance that does not depend on 𝐿 and 𝑛.

The above can be generalized to lower bound the statistical query dimension

for circuits of 𝐿 layers on 𝑑-dimensional lattices as we show below. In 𝑑-dimensional

lattices, since the light cone of a single qubit measurement grows at a rate of 𝐿𝑑 for an

𝐿 layers, we can prove that the statistical query dimension grows as 2Ω
(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁
.

Proposition B.13 (SQ dimension for 𝐿 layers, neighboring 2-local gates on 𝑑-dimensional

lattice and fixed single qubit measurement). Given 𝑛 qubits, let ℋ be the concept class
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Initial qubit

First layer

Second layer

Third layer

Figure B-1: Growth of the light cone for a 2-dimensional lattice, where the initial
qubit is the one that is measured. The size of the lattice grows with the perimeter
of the light cone for each layer which consists of local 2-qubit gates applied in each
dimension. Each qubit is connected to a qubit in the edge of the light cone of the
prior layer, forming a graph which is a tree rooted at the initial qubit.

containing functions 𝑓 : C2𝑛 → R consisting of 𝐿 layers of 2-qubit unitary operations

applied in each dimension followed by a Pauli Z measurement on a single qubit (labeled

qubit 𝑚), i.e. functions of the form

𝑓 (|𝜓⟩ ;𝑊1,𝑊2, . . . ,𝑊𝐿) = ⟨𝜓|𝑊 †
1𝑊

†
2 . . .𝑊

†
𝐿 (𝑍𝑚)𝑊𝐿 . . .𝑊2𝑊1 |𝜓⟩ , (B.43)

where |𝜓⟩ is the input to the function and 𝑊1,𝑊2, . . . ,𝑊𝐿 are the unitary operations

at each layer consisting of tensor products of 2-local unitary operators acting along

each dimension on neighboring qubits in a 𝑑-dimensional lattice. Then, the concept

class ℋ has SQ dimension SQ-DIM𝒟 (ℋ) = 2
Ω
(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁

under any distribution

of states that forms a 2-design.

Proof. Our proof relies on the fact that with 𝐿 layers, one can conjugate the fixed

single qubit measurement on qubit𝑚 to produce any Pauli on the Ω
(︀
𝐿𝑑
)︀

qubits within

the reverse light cone of 𝑚. We follow a proof outline similar to Proposition B.11.

To be more precise, let us introduce some notation. To perform any Pauli mea-
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surement in the reverse light cone at a given layer 𝑙 ∈ [𝐿] indexed in reverse order,

we apply gates to the perimeter of the reverse light cone at layer 𝑙 − 1. We assume

there are 𝑁𝑙 qubits in the reverse light cone at layer 𝑙 and index these qubits from 1

to 𝑁𝑙 to construct the Pauli 𝑃1 ⊗ 𝑃2 ⊗ . . .⊗ 𝑃𝑁𝑙
. Like in Proposition B.11, we grow

the Pauli at each layer.

To grow the light cone and properly choose the 2-qubit gates, we construct a graph

which is a tree where the parent of any qubit is the prior qubit which it was connected

to in the light cone of the previous layer (see Figure B-1 for an example). The root of

the tree is the qubit which is being measured. For example, at layer 𝑙 = 1, the light

cone is of size two in each dimension and the qubit being measured is the parent to

the child node which it is connected to. To construct any pauli 𝑃1 ⊗ 𝑃2 ⊗ . . .⊗ 𝑃𝑁𝐿
,

we follow the steps below:

1. In the 𝑙th layer, for all parent and child qubits 𝑝 and 𝑐 respectively connected

in the tree at layer 𝑙, apply a unitary acting on qubits 𝑝 and 𝑐 as follows:

• If all of the qubits that are descendants of qubit 𝑐 and qubit 𝑐 itself have

Pauli terms that are equal to 𝐼, then apply the identity gate between qubit

𝑝 and 𝑐.

• if any of the qubits that are descendants of qubit 𝑐 or qubit 𝑐 itself have

Pauli terms that are not equal to 𝐼 and the Pauli term of qubit 𝑝 is equal

to 𝐼, then apply the SWAP gate between 𝑝 and 𝑐.

• otherwise, apply the following 2-qubit gate to qubits 𝑝 and 𝑐 which conju-

gates 𝑍 ⊗ 𝐼 to 𝑍 ⊗ 𝑍: ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (B.44)

2. Repeat step 1 above from 𝑙 = 1 to 𝑙 = 𝐿.

3. In the first layer (𝑙 = 𝐿), apply a unitary to each qubit 𝑖 which maps the

computational basis to the basis of the Pauli for qubit 𝑖. In more detail, if
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𝑃𝑖 = 𝐼 or 𝑃𝑖 = 𝑍, then apply the identity map to keep the basis the same. If

𝑃𝑖 = 𝑋, then apply the Hadamard transform and if 𝑃𝑖 = 𝑌 then apply the

operation 𝐻
√
𝑍

†
.

Following the above steps, measuring the single qubit will measure the corresponding

desired Pauli. Note, that the single qubit operations of the first layer and the 2-qubit

operations of that layer can be combined into a single 2-qubit gate thus not changing

the depth.

In each layer, 2-qubit gates act along each dimension in some order. We can

assume an ordering of the dimensions without loss of generality and assume that we

apply gates along that dimension in order. After the first layer, the lattice has size 2

along each dimension. For each layer thereafter, the lattice grows by 2 qubits in each

dimension (see Figure B-1 for an example). Therefore, the reverse light cone grows

at a rate Ω
(︀
𝐿𝑑
)︀
. Since the light cone can be at most of size 𝑛 (number of qubits),

then the light cone is of size 2
Ω
(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁

for all 𝐿 layers.

Corollary B.14. By application of Theorem B.5, the class of functions defined in

Proposition B.13 consisting of 𝐿 layers of neighboring 2-qubit gates and a fixed mea-

surement on a single qubit requires 2
Ω
(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁

queries to learn for a query tol-

erance that decays no faster than 2
ω
(︁
min(2𝐿,𝑛1/𝑑)

𝑑
)︁
. For 𝐿≪ 𝑛, this is equal to 2Ω(𝐿

𝑑)

for any constant query tolerance that does not depend on 𝐿 or 𝑛.

Proposition B.15 (SQ dimension for 𝐿 = 1, unitary compiling, and single qubit

gates). Given 𝑛 qubits, let ℋ be the concept class containing unitary transformations

𝑉 : C2𝑛 → C2𝑛 consisting of single qubit rotations in a single layer

𝑉 (|𝜓⟩ , 𝑈1, 𝑈2, . . . , 𝑈𝑛) = 𝑈1 ⊗ 𝑈2 ⊗ . . .⊗ 𝑈𝑛 |𝜓⟩ , (B.45)

where |𝜓⟩ is the input to the transformation and 𝑈1, 𝑈2, . . . , 𝑈𝑛 are the parameterized

1-qubit operations. Then, the concept class ℋ has SQ dimension SQ-DIM𝒟 (ℋ) ≥ 4𝑛

under the qUSQ model and any distribution 𝒟 of inputs that is a 2-design.

Proof. From Lemma B.6, we have that ⟨𝑈, 𝑉 ⟩𝒟 = 2−𝑛Re
{︀
tr
(︀
𝑈 †𝑉

)︀}︀
. With one

164



layer of single qubit unitary operations, any Pauli matrix can be constructed. Since

tr (𝑃1𝑃2) = 0 for any two distinct Pauli matrices 𝑃1 and 𝑃2, there are at least 4𝑛

matrices in ℋ which are orthogonal under the inner product.

Corollary B.16. By application of Theorem B.5, the class of functions defined in

Proposition B.15 consisting of a single layer of single qubit unitaries requires 2Ω(𝑛)

queries to learn for a query tolerance greater than 4−𝛽𝑛, where 𝛽 < 1/2− Ω (1).

B.3.2 Swap Test via Statistical Queries

In the task of unitary compiling, one is given copies of states which are inputs and

outputs of a target unitary transformation, and the goal is to learn the unitary trans-

formation from those states. More formally, we aim to learn a unitary 𝑈* given a

distribution over inputs or a dataset of 𝑚 state pairs {|𝜑𝑖⟩ , 𝑈* |𝜑𝑖⟩}𝑖∈[𝑚].

One means of measuring overlaps between states is via the swap test [218]. For

pure states, |𝜑⟩ and |𝜓⟩, the swap test measures the fidelity |⟨𝜑|𝜓⟩|2. The measured

register in the swap test outputs |0⟩ with probability 1/2 + |⟨𝜑|𝜓⟩|2 /2 and |1⟩ other-

wise. As we show in Appendix B.2.1, this quantity can be calculated using queries to

qUSQ. We use the helper lemma below to prove this fact.

Lemma B.17. For any distribution 𝒟 over pure states that is a 2-design on a Hilbert

space of dimension 𝑚,

E𝜌∼𝒟
[︀
tr
(︀
𝑈*𝜌𝑈

†
*𝑉 𝜌𝑉

†)︀]︀ = 𝑚−1
⃒⃒
tr
(︀
𝑉 †𝑈*

)︀⃒⃒2
+ 1

𝑚+ 1
. (B.46)

Proof. With a slight abuse of notation, we let𝒟 also denote a distribution over unitary

matrices 𝑈 that forms a 2-design:

E𝜌∼𝒟
[︀
tr
(︀
𝑈*𝜌𝑈

†
*𝑉 𝜌𝑉

†)︀]︀ = E𝑈∼𝒟
[︀
⟨0|𝑈 †𝑉 †𝑈*𝑈 |0⟩ ⟨0|𝑈 †𝑈 †

*𝑉 𝑈 |0⟩
]︀

= E𝑈∼𝒟

[︁⃒⃒
⟨0|𝑈 †𝑉 †𝑈*𝑈 |0⟩

⃒⃒2]︁
.

(B.47)
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Using Equation (B.27) and Equation (B.28), we have

E𝑈∼𝒟

[︁⃒⃒
⟨0|𝑈 †𝑉 †𝑈*𝑈 |0⟩

⃒⃒2]︁
= E𝑈∼𝒟

[︀
⟨0|𝑈 †𝑉 †𝑈*𝑈 |0⟩ ⟨0|𝑈 †𝑈 †

*𝑉 𝑈 |0⟩
]︀

= E𝑈∼𝒟
[︀⟨︀
𝐼2𝑚
⃒⃒ (︀(︀

𝑉 †𝑈*
)︀
⊗
(︀
𝑈 †
*𝑉
)︀
⊗ 𝐼 ⊗ 𝐼

)︀ (︀
𝑈 ⊗ 𝑈 ⊗ �̄� ⊗ �̄�

)︀
|0⟩⊗4]︀ .

(B.48)

Applying Equations (B.29) and (B.30), we have that:

E𝑈∼𝒟

[︁⃒⃒
⟨0|𝑈 †𝑉 †𝑈*𝑈 |0⟩

⃒⃒2]︁
=

1

𝑚2 − 1

⟨︀
𝐼2𝑚
⃒⃒ (︀(︀

𝑉 †𝑈*
)︀
⊗
(︀
𝑈 †
*𝑉
)︀
⊗ 𝐼 ⊗ 𝐼

)︀
·
(︀⃒⃒
𝐼2𝑚
⟩︀ ⟨︀
𝐼2𝑚
⃒⃒
+
⃒⃒
𝑆2
𝑚

⟩︀ ⟨︀
𝑆2
𝑚

⃒⃒)︀
|0⟩⊗4

− 1

𝑚 (𝑚2 − 1)

⟨︀
𝐼2𝑚
⃒⃒ (︀(︀

𝑉 †𝑈*
)︀
⊗
(︀
𝑈 †
*𝑉
)︀
⊗ 𝐼 ⊗ 𝐼

)︀
·
(︀⃒⃒
𝐼2𝑚
⟩︀ ⟨︀
𝑆2
𝑚

⃒⃒
+
⃒⃒
𝑆2
𝑚

⟩︀ ⟨︀
𝐼2𝑚
⃒⃒)︀
|0⟩⊗4

=
1

𝑚2 − 1

(︀
tr
(︀
𝑉 †𝑈*

)︀
tr
(︀
𝑈 †
*𝑉
)︀
+ tr

(︀
𝑉 †𝑈*𝑈

†
*𝑉
)︀)︀

− 1

𝑚 (𝑚2 − 1)

(︀
tr
(︀
𝑉 †𝑈*

)︀
tr
(︀
𝑈 †
*𝑉
)︀
+ tr

(︀
𝑉 †𝑈*𝑈

†
*𝑉
)︀)︀

=

(︂
1

𝑚2 − 1
− 1

𝑚 (𝑚2 − 1)

)︂(︁⃒⃒
tr
(︀
𝑉 †𝑈*

)︀⃒⃒2
+𝑚

)︁
=
𝑚−1

⃒⃒
tr
(︀
𝑉 †𝑈*

)︀⃒⃒2
+ 1

𝑚+ 1
.

(B.49)

B.4 Shallow VQAs as Random Fields

B.4.1 Random Fields on Manifolds

Hardness results from barren plateaus or SQ models both intuitively arise from the

exponential decay of quantities necessary to perform optimization. To analyze the

shallow circuit setting beyond the SQ model—where such exponentially decaying

quantities tend not to exist—we look toward models of variational loss landscapes as

random fields on manifolds. This mirrors References [44, 45, 49] in studying the loss

landscapes of machine learning models via mapping to certain random fields which
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are easier to study analytically. As in Chapter 2, here we show that certain classes

of variational loss functions of shallow quantum models converge in some limit to

Wishart hypertoroidal random fields (WHRFs). Though in Chapter 2 we discuss

(and derive) the loss landscapes of WHRFs in great detail, we give a brief review here

such that our discussion is self-contained.

WHRFs in 𝑞 variables are random fields on a specific tensor product embedding

of the hypertorus (𝑆1)
×𝑞 in R2𝑞 . More specifically, points on this embedding are

described by the Kronecker product:

𝑤 =

𝑞⨂︁
𝑖=1

⎛⎝cos (𝜃𝑖)

sin (𝜃𝑖)

⎞⎠ (B.50)

for angles −π ≤ 𝜃𝑖 < π. These random fields are then of the form:

𝐹WHRF (𝜃) = 𝑤
⊺ · 𝐽 ·𝑤, (B.51)

where 𝐽 is drawn from the normalized complex Wishart distribution 𝒞𝒲2𝑞 (𝑚,𝛴)

with 𝑚 degrees of freedom. The complex Wishart distribution is a natural multivari-

ate generalization of the gamma distribution, and is given by the distribution of the

square of a complex Gaussian random matrix. Specifically, for 𝑋 ∈ C𝑁×𝑚 a matrix

with i.i.d. complex Gaussian columns with covariance matrix 𝛴, the matrix

𝑊 =
1

𝑚
𝑋 ·𝑋† (B.52)

is normalized complex Wishart distributed with scale matrix𝛴 and 𝑚 degrees of free-

dom. As discussed in Chapter 2, the loss landscapes of WHRFs exhibit a complexity

phase transition governed by the overparameterization ratio

𝛾 =
𝑞

2𝑚
, (B.53)

where models with 𝛾 ≥ 1 have local minima near the global minimum, and models

with 𝛾 ≪ 1 have local minima far from the global minimum. Thus, the degrees of
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freedom parameter 𝑚 plays a pivotal role in governing the loss landscapes of WHRFs:

when 𝑞 is much smaller than 𝑚, training is typically infeasible due to an abundance

of “traps” in the training landscape. Our main result here is in demonstrating that

even for certain shallow VQAs, the corresponding WHRF is such that 𝛾 ≪ 1, and

training is infeasible.

B.4.2 Shallow VQAs Converge in Distribution to WHRFs

As discussed informally in the main text, our goal is to demonstrate that certain

distributions of shallow variational quantum algorithms (VQAs) weakly converge to

Wishart hypertoroidal random fields (WHRFs). The distribution of local minima

of WHRFs was shown in Chapter 2 to exhibit a phase transition in trainability,

where underparameterized models are untrainable due to poor local minima, and

overparameterized models exhibit local minima close to the global minimum (though

may still be untrainable for other reasons, e.g. due to barren plateaus [63–65]).

Unlike the nonlocal ansatz case, here we are unable to show the full convergence

in distribution of shallow local VQAs to WHRFs. Instead, we focus on the joint

distribution of the loss function, gradient norm, and Hessian determinant, where the

gradient and Hessian have been normalized by the number of parameters 𝑞 in the

reverse light cone of each term in the Pauli expansion of the problem Hamiltonian;

by the parameter shift rule [112, 113], it is easy to see that this bounds the gradient

norm and Hessian eigenvalues as 𝑞 is large. The local minima results of Chapter 2

depend only on this joint distribution, and thus showing this convergence suffices for

our purposes.

We now review the setup of the VQA loss functions we are considering. Through-

out the course of this review, we will make various assumptions, particularly on the

distribution of gates in the VQA ansatz and on the independence of various reverse

light cones; we discuss these assumptions and whether or not they are reasonable in

more detail at the end of this Section. As mentioned in the main text, we consider
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optimizing VQAs on the problem Hamiltonian𝐻 ̸= 0, which has Pauli decomposition:

𝐻 =
𝐴∑︁
𝑖=1

𝛼𝑖𝑃𝑖. (B.54)

WLOG, we assume here 𝐻 is traceless, and that all 𝛼𝑖 > 0. To simplify our analysis,

we will consider the case where the reverse light cone of each term 𝛼𝑖𝑃𝑖 in the Pauli

decomposition of 𝐻 is i.i.d. drawn from the same distribution of ansatzes, with the

same parameter dependence. To make this more concrete, assume that the reverse

light cone of each 𝛼𝑖𝑃𝑖 is of the form 𝑉𝑖 (𝜃) |0⟩ where 𝜃 ∈ R𝑞, and has support on a

number 𝑙 ≪ 𝑛 of qubits. In this regime, we can scale and shift the loss landscape of

the standard variational loss function

𝐹 (𝜃) = ⟨𝜃|𝐻 |𝜃⟩ (B.55)

to be of the form:

𝐹VQE (𝜃) = 1−𝜆−1
0

𝐴∑︁
𝑖=1

𝛼𝑖 ⟨0|𝑉𝑖 (𝜃)† 𝑃𝑖𝑉𝑖 (𝜃) |0⟩ = 1+‖𝛼‖−1
1

𝐴∑︁
𝑖=1

𝛼𝑖 ⟨0|𝑉 †
𝑖 (𝜃)𝑃𝑖𝑉𝑖 (𝜃) |0⟩ ,

(B.56)

where 𝜆0 is the ground state energy of 𝐻 and 𝛼 is the vector of all 𝛼𝑖.

We assume that 𝑉𝑖 (𝜃) is of the form:

𝑉𝑖 (𝜃) = 𝑊𝑖 (𝜃)𝑈𝑖, (B.57)

where 𝑈𝑖 are i.i.d. drawn from an 𝜖-approximate 𝑡-design under the monomial measure

on 𝑙 qubits [124], where 𝜖 = O(1). Note that in particular, though the total ansatz

size 𝑛 may be large, all potential scrambling of the ansatz may only happen locally,

in regions of size 𝑙 ≪ 𝑛; in other words, these ansatzes are not expected to suffer

from barren plateaus, particularly if 𝑙 = O(log (𝑛)) [64, 65]. 𝑊𝑖 is composed of

fixed parameterized rotations which we take WLOG to be of the form 𝑅𝑌𝑎 (𝜃𝑏) =

exp (−i𝜃𝑏𝑌𝑎) (where as previously mentioned, this parameter dependence is identical

across all 𝑊𝑖), fixed gates, and potentially randomly chosen gates such that 𝑊𝑖 itself
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is a random field. For simplicity, we also assume that all 𝜃𝑖 are independent from one

another (i.e. we are in the 𝑟 = 1 regime of Chapter 2), and that each qubit in the

reverse light cone has at least one parameterized gate. We also assume that the field

𝑊𝑖 (𝜃) is rotationally invariant in 𝜃𝑖.

We now give the formal statement and proof of the loss landscapes of local, shallow

VQAs. First, the formal statement:

Theorem B.18 (Approximately locally scrambled variational loss functions con-

verge to WHRFs). Let 𝑝VQE,𝜃 be the joint distribution of the loss function of Equa-

tion (B.56), its gradient norm, and the determinant of its Hessian at 𝜃, where the

gradient and Hessian are normalized by 𝑞. Let 𝑝WHRF,𝜃 be the same for the WHRF:

𝐹WHRF (𝜃) = 𝑚−1

2𝑙∑︁
𝑖,𝑗=1

𝑤𝑖𝐽𝑖,𝑗𝑤𝑗 (B.58)

with 𝑚 =
‖𝛼‖21
‖𝛼‖22

2𝑙−1 degrees of freedom, where 𝐽 ∼ 𝒞𝒲2𝑙 (𝑚, 𝐼2𝑙). Here, 𝑤 are

points on the hypertorus (𝑆1)
×𝑙 parameterized by 𝜃, where 𝜃𝑖 is the sum of all 𝜃𝑗

on qubit 𝑖. We then have that 𝑝VQE,𝜃 weakly converges to 𝑝WHRF,𝜃, up to an error

Õ
(︀
poly

(︀
1
𝑡
+ 𝜖+ exp (−𝑙)

)︀)︀
in Lévy–Prokhorov distance.

As we previously mentioned, for technical reasons, we only prove the convergence

of the joint distribution of the loss and certain functions of its first two derivatives.

We emphasize once more that this does not affect our final conclusions, as all results

on the local minima distribution of WHRFs given in Chapter 2 depend only on this

joint distribution.

To prove Theorem B.18, we begin by showing that, up to terms that go to zero

polynomially quickly as 𝜖→ 0, 𝑡→∞, one can WLOG consider ansatzes of the form

of Equation (B.56) that are explicitly Haar random within each reverse light cone of

size 𝑙.

Lemma B.19 (Approximate local scrambling bound on the loss function and its

derivatives). Let 𝑝VQE,𝜃 be the joint distribution described in Theorem B.18. Let

𝑝Haar,𝜃 be the same, for 𝑈𝑖 taken to be i.i.d. Haar random. We then have that 𝑝VQE,𝜃
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weakly converges to 𝑝Haar,𝜃, up to an error Õ
(︀
poly

(︀
1
𝑡
+ 𝜖
)︀)︀

in Lévy–Prokhorov dis-

tance.

Proof. Let 𝜑VQE (𝑥 | 𝜃) be the joint characteristic function of 𝑝VQE,𝜃, and similarly

𝜑Haar (𝑥 | 𝜃). Since 𝑈𝑖 are assumed to be i.i.d. 𝜖-approximate 𝑡-designs under the

monomial measure, for any moments 𝑀VQE,𝜃,𝑀Haar,𝜃 of degree 𝑠 of 𝑝VQE,𝜃, 𝑝Haar,𝜃,

respectively, we have that:

|𝑀VQE,𝜃 −𝑀Haar,𝜃| = O(𝜖1 [𝑠 ≤ 𝑡] + 1 [𝑠 > 𝑡]) . (B.59)

In particular, for all 𝑇 sublinear in 𝑡,

|𝜑VQE (𝑥 | 𝜃)− 𝜑Haar (𝑥 | 𝜃)| = O

(︂
𝜖 poly (𝑇 ) +

(3𝑇 )𝑡

𝑡!

)︂
(B.60)

for all 𝑥 with ‖𝑥‖∞ ≤ 𝑇 . Similar inequalities hold for the partial derivatives of the

joint characteristic functions. Therefore, there exists some 𝑇 = Ω
(︀
poly

(︀
min

(︀
𝑡, 1

𝜖

)︀)︀)︀
such that the second bound of Theorem 4 of [227] (with 𝑚 = log (𝑇 )) on the Lévy–

Prokhorov distance is Õ
(︀
poly

(︀
1
𝑡
+ 𝜖
)︀)︀

.

Until now, we have considered ansatzes with generic parameter dependence. We

now show that up to terms vanishing exponentially quickly in the reverse light cone

size 𝑙, we can consider a canonical ansatz form WLOG.

Lemma B.20 (Canonical form for Hamiltonian agnostic variational loss functions).

Let 𝑝Haar,𝜃 be the joint distribution described in Lemma B.19. Let 𝑝can,𝜃 be the same

for the variational loss function

𝐹can (𝜃) = ‖𝛼‖−1
1

𝐴∑︁
𝑖=1

𝛼𝑖 ⟨0|𝑅 (𝜃)† 𝑈 †
𝑖 𝑃𝑖𝑈𝑖𝑅 (𝜃) |0⟩+ 1, (B.61)

where 𝑅 (𝜃) is the product of the parameterized rotations of Equation (B.57). We

then have that 𝑝Haar,𝜃 weakly converges to 𝑝can,𝜃, up to an error Õ (poly exp (−𝑙)) in

Lévy–Prokhorov distance.
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Proof. Let us consider (generally mixed) moments involving random variables of the

form:

𝐾𝑖𝑗 (𝜃𝑗) = ⟨0|𝑈 †
𝑖𝑊𝑖 (𝜃𝑗)

† 𝑃𝑖𝑊𝑖 (𝜃𝑗)𝑈𝑖 |0⟩ − ⟨0| �̃� †
𝑖𝑗𝑈

†
𝑖𝑊𝑖 (𝜃𝑗)

† 𝑃𝑖𝑊𝑖 (𝜃𝑗)𝑈𝑖�̃�𝑖𝑗 |0⟩ ,

(B.62)

where 𝑈𝑖, �̃�𝑖𝑗 are i.i.d. Haar random on 𝑙 qubits. By the asymptotic free independence

of Haar random matrices from constant matrices, and the fact that

tr
(︁
𝑊𝑖 (𝜃𝑗)𝑃𝑖𝑊𝑖 (𝜃𝑗)

†
)︁
= tr

(︁
|0⟩ ⟨0| − �̃�𝑖𝑗 |0⟩ ⟨0| �̃� †

𝑖𝑗

)︁
= 0, (B.63)

we have that any such moment is on the order of O(poly exp (−𝑙)) [228]. In particular,

it is easy to see that up to an error in Lévy–Prokhorov distance on this order, one

can WLOG take 𝑝can,𝜃 as if the gradient and Hessian components had i.i.d. 𝑈𝑖𝑗

rather than 𝑈𝑖—for instance, this follows identically to the proof of Lemma B.19 with

𝜖 = O(poly exp (−𝑙)). The result then follows from the unitary invariance of the Haar

measure.

We are now able to prove Theorem B.18, following essentially the same procedure

as proving Theorem A.2.

Proof. By Lemmas B.19 and B.20, 𝑝VQE,𝜃 weakly converges to 𝑝Haar,𝜃 up to an error

Õ
(︀
poly

(︀
1
𝑡
+ 𝜖+ exp (−𝑙)

)︀)︀
in Lévy–Prokhorov distance. By Corollary 1 of Refer-

ence [181], this then proves weak convergence of 𝑝VQE,𝜃 to the corresponding joint

distribution of a weighted sum of WHRFs each with 2𝑙−1 degrees of freedom, up to

an additional error in Lévy–Prokhorov distance exponentially small in 𝑙. Weak con-

vergence to 𝑝WHRF,𝜃 then follows from a trivial generalization of Theorem A.2.

Scope of results We now comment on the applicability of the results of Chap-

ter 2 on the local minima distribution of WHRFs when Theorem B.18 holds. All

analysis of the local minima distribution of WHRFs in Chapter 2 depends only on

the joint distribution 𝑝WHRF,𝜃, up to a change in normalization of the gradient and

Hessian by 𝑙 rather than 𝑞 that does not contribute to the logarithmic asymptotics
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(i.e. Theorem A.10) when 𝑞 log (𝑞) = o (𝑚). Thus, in the discussion of the main text,

we take this as an extra assumption. Furthermore, we note that the analysis in the

main text holds only up to shifts on the order of Õ
(︀
poly

(︀
1
𝑡
+ 𝜖+ exp (−𝑙)

)︀)︀
in the

joint distribution 𝑝WHRF,𝜃, due to the rate of convergence of Theorem B.18. However,

shifts on this order do not affect the conclusions of Chapter 2 for sufficiently large

constant 𝜖−1, 𝑡. For completeness, we summarize this discussion and known results

on the loss landscapes of WHRFs with the following Corollary:

Corollary B.21 (Shallow, local VQAs have poor loss landscapes). Let 𝐹VQE be a

local VQA loss function of the form of Equation (B.56). Assume all coefficients 𝛼𝑖 of

the Pauli decomposition of 𝐻 are Θ(1), and

𝑙 log (𝑛) + 𝑞 log (𝑞) = o
(︀
2𝑙𝐴
)︀
. (B.64)

Then 𝑝VQE,𝜃 weakly converges to 𝑝WHRF,𝜃 as in Theorem B.18, where the associated

WHRF has a fraction superpolynomially small in 𝑛 of local minima within any con-

stant additive error of the ground state energy.

Proof. The result follows immediately by applying Theorem A.10 to Theorem B.18.

Assumptions Let us now discuss in more detail the assumptions made in the course

of proving Theorem B.18. First, we assume that at least some part of the ansatz circuit

scrambles some local region around any measured observable; that is, we assume

that the ansatz locally is an 𝜖-approximate 𝑡 design for sufficiently large 𝜖−1, 𝑡. It is

known that shallow, local circuits dimensions exhibit this property, when 2-local Haar

random gates are applied [124]; thus, in a practical sense, our results assume that the

local gates in any distribution of ansatzes under consideration are approximately Haar

random. This is a typical model of Hamiltonian agnostic ansatzes, where the ansatz is

chosen independently from the problem Hamiltonian𝐻; see for instance the discussion

in the main text and the references therein. The inapplicability of this assumption

to Hamiltonian informed ansatzes—particularly for highly symmetric problems—is
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discussed in more detail in Section 3.5, where we review models that may not suffer

from the poor trainability properties we show here.

Our other major assumption is the independence of the 𝑉𝑖 (𝜃) (up to the repeated

use of parameters). Of course, in practice this is almost never true, as otherwise

variational optimization would proceed via optimizing each reverse light cone inde-

pendently. However, given a problem Hamiltonian 𝐻 and a shallow ansatz, one can

consider a subset of Pauli operators in the Pauli decomposition of 𝐻 such that their

reverse light cones do not overlap. There is little reason to believe that the loss

landscape of this simplified problem should be any more difficult to optimize over

than the full problem. We therefore suspect that this assumption is little more than

a technical requirement. A similar generalization one could consider is taking the

parameters of each 𝑉𝑖 to being almost entirely independent of one another (though

not entirely independent, as one could then optimize each subproblem independently,

and 𝑛 would no longer an accurate measure of the size of the problem). However, in

this regime we expect the “effective” overparameterization ratio 𝛾 to go as
(︀
𝑙
2𝑙

)︀𝐴, as

the problem essentially reduces to simultaneously optimizing 𝐴 loss functions. For

𝐴 ∼ 𝑛, for instance, this decays exponentially in 𝑛, and thus we believe that models

of this form are also not trainable.

B.5 Additional Numerical Experiments

B.5.1 Teacher Student Learning With Checkerboard Ansatzes

One particular challenge with quantum variational learning is that an overparame-

terized model needs more parameters than the dimension of the quantum input state

(exponential in the number of qubits), whereas classically, overparameterization with

respect to the size of the data set typically suffices [44, 229, 230]. To illustrate this

phenomenon, we consider learning states generated by random shallow checkerboard

circuits (denoted the teacher circuit) using checkerboard circuits of the same or more

depth (denoted the student circuit). The data set used to train the circuit consist of
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Figure B-2: Exponential depth is needed to overparamaterize a model to successfully
learn a random circuit of the same form. Here, for each student circuit depth denoted
by 𝐿, 10 randomly initialized 8 qubit student circuits are trained to learn a random
𝐿 = 4 layer teacher circuit drawn from the same ansatz and parameter distribution.

512 pairs of inputs randomly drawn from computational basis states with their corre-

sponding output state taken from applying the input state to the teacher circuit. We

use the loss ℓ (|𝜓⟩ , |𝜑⟩) = 1− |⟨𝜓|𝜑⟩|2 to measure the success of learning. Note that,

though this is a global loss metric, gradients are analytically calculated to precision

sufficient enough to obtain accurate values of the gradients for the relatively small

number of qubits considered here.

As shown in Figure B-2, exponential depth (and number of parameters) is needed

to always successfully learn the data generated by a shallow checkerboard circuit of

4 layers. We considered ansatzes only over 8 qubits, which is small enough to be

able to feasibly overparameterize the models in our simulations. For fewer qubits and

shallower circuits, we found that learning with equal numbers of qubits and layers

was sometimes successful; but unsurprisingly, as we show in the main text, learning

becomes much harder as qubits are added.

B.5.2 Random VQE Model

Here, we empirically analyze the performance of a layer-wise optimizer trained on the

random VQE task in the main text. In Figure B-3, we train an 11 qubit ansatz using
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Figure B-3: When optimizing in a layer-wise fashion, the VQE algorithm converges
to a local minimum at each layer until the overparameterized regime where the loss
function steadily decreases regardless of the number of layers. Even in the learnable
regime where the checkerboard ansatz is capable of expressing the global minima, the
ansatz is still unable to find the correct parameters for this global minimum. Bumps
in the loss function appear due to small instabilities in training immediately after
adding a layer.

a layer-wise optimizer [231, 232], which initially trains a single layer of the ansatz

and adds layers after every 5000 steps to continually add expressiveness. The target

Hamiltonian 𝐻𝑡 here has 4 layers of perturbations applied to it. Although layer-wise

optimizers can avoid issues with barren plateaus [231], our numerical findings clearly

show that this does not guarantee the algorithm will avoid traps in the landscape.

After 5 layers, the ansatz has enough parameters to capably express the global opti-

mum (denoted by the label “learnable”), but nevertheless stalls in optimizing to the

ground state. Not until there are at least 12 layers, enough to overparameterize the

ansatz with respect to the Hilbert space dimension, does learning smoothly converge

to the globally optimal solution.

B.5.3 XYZ Hamiltonian Model

All of the numerical experiments performed elsewhere studied settings where the

optimization was performed to numerical precision, two qubit gates were fully pa-

rameterized, and the existence of a global minimum at zero loss was guaranteed.
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The analysis there focused on answering the question of whether convergence to the

global minimum is empirically likely to be observed. To study a more realistic setting

where such favorable conditions cannot be guaranteed but there still exists hope of

some good convergence properties, we turn now to the problem of trying to variation-

ally obtain the ground state of an approximately translationally invariant Heisenberg

XYZ Hamiltonian [127]. Similar Hamiltonians have been studied and analyzed in

previous works related to VQE [178, 233]. We perform experiments both with and

without Gaussian noise added to the gradients to account for shot noise on a quantum

computer.

The particular target Hamiltonian we aim to optimize is one where qubits are

placed on a 2-dimensional grid and interaction terms take place between neighboring

qubits. The Hamiltonian takes the form

𝐻 =
∑︁
𝑖

𝑍𝑖 +
∑︁
⟨𝑖,𝑗⟩

𝛼𝑖𝑗𝑍𝑖 ⊗ 𝑍𝑗 +
∑︁
⟨𝑖,𝑗⟩

𝛽𝑖𝑗 (𝑋𝑖 ⊗𝑋𝑗 + 0.66𝑌𝑖 ⊗ 𝑌𝑗) , (B.65)

where ⟨𝑖, 𝑗⟩ sums over the neighboring qubits 𝑖 and 𝑗 in the grid and 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are

random numbers drawn from the normal distribution with standard deviations set to

0.25 and means set to 1 and 3, respectively.

As shown in Table B.1, finding the ground state of the XYZ hamiltonian is in

general challenging using the ansatz considered. For few layers, the ansatz is not

expressible enough to find the target and converges to a poor critical point. For

many layers, the VQE algorithm tends to converge to a better optimum, but issues

with barren plateaus can begin to arise as indicated by the comparison in performance

with assuming infinite shots versus finite shots.

B.6 Details of Numerical Experiments

All experiments were performed in Python using the PyTorch [234] package to per-

form automatic differentiation. Computation was performed on Nvidia RTX™ A6000

GPUs. Important hyperparameters for the experiments are listed in Table B.2. Un-
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energy error trace distance
grid size 3× 2 5× 2 7× 2 3× 2 5× 2 7× 2

layers shots
3 10000 0.459 0.512 0.504 0.983 0.999 1.000

400 0.456 0.501 0.392 0.983 0.999 1.000
∞ 0.466 0.512 0.395 0.981 0.999 1.000

9 10000 0.269 0.358 0.351 0.750 0.965 0.998
400 0.343 0.434 0.386 0.845 0.991 0.994
∞ 0.245 0.350 0.344 0.659 0.924 0.993

15 10000 0.104 0.293 0.303 0.428 0.894 0.997
400 0.180 0.356 0.318 0.577 0.965 0.987
∞ 0.054 0.244 0.251 0.293 0.842 0.968

21 10000 0.008 0.201 0.214 0.162 0.799 0.982
400 0.043 0.277 0.247 0.269 0.882 0.984
∞ 0.011 0.178 0.162 0.151 0.747 0.933

27 10000 0.009 0.177 0.200 0.152 0.752 0.976
400 0.034 0.254 0.251 0.244 0.882 0.976
∞ 0.010 0.122 0.129 0.136 0.663 0.948

Table B.1: Error in energy from the ground state (normalized by the magnitude of the
ground state energy), and trace distance from the ground state, of a VQE optimizing
the Heisenberg XYZ model. Results are averaged across 12 random initializations
of the experiment for each entry in the table. Note the poor performance of VQE,
particularly at the larger problem sizes.

less otherwise stated, all gradients were calculated using analytic formulas for auto-

matic differentation with computer precision (32 bit floating point). Therefore, issues

with decaying gradients and barren plateaus do not appear in these simulations for

the relatively small number of qubits considered. Gradient based optimization was

performed using vanilla gradient descent or the Adam optimizer [128], a popular

and effective algorithm for training deep neural networks. We tested other opti-

mizers as well and found no noticeable difference in performance. The processed

data generated and analyzed for this study—as well as the code—are available at

https://github.com/bkiani/Beyond-Barren-Plateaus and Reference [235].

Loss surface plot To generate this plot, we chart the loss landscape at initial-

ization of training in the teacher-student setup of the main text for the 14 qubit

QCNN circuit. The teacher and student circuit were both initialized as described in
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Ansatz Experiment # Parameters Optimizer Learning Rate
QCNN Teacher-Student 16 ⌈log2 (𝑛)⌉ = O (log (𝑛)) Adam 0.001
Checkerboard Teacher-Student 32𝐿

⌊︁
𝑛
2

⌋︁
= O (𝑛𝐿) Adam 0.001 (underparameterized)

0.0001 (overparameterized)
Random VQE (GD) 128

⌊︁
𝑛
2

⌋︁
= O (𝑛) vanilla GD 0.01

Random VQE (Adam) 128
⌊︁
𝑛
2

⌋︁
= O (𝑛) Adam 0.003

Adaptive VQE 160𝐿 = O (𝐿) Adam 0.002 (5% reduction each layer)
XYZ ansatz XYZ Hamiltonian VQE 7

⌊︁
𝐿
3

⌋︁
= O (𝐿) Adam 0.007 (halved every 1000 steps)

Table B.2: List of parameter counts, optimizers, and learning rates for the various
ansatzes and experiments. 𝐿 denotes the number of layers and 𝑛 the number of
qubits.

Appendix B.6.1.

The loss is plotted along two normalized directions of the parameter landscape.

Normalization is applied individually to the 3 filters of the 14 qubit QCNN. We

loosely follow the “filter-wise” normalization strategy of Reference [236], where we

first generate a random direction by drawing a value for each parameter from an i.i.d.

standard normal distribution. Then, we divide values for the parameters in a given

layer by the Frobenius norm of the matrix for the corresponding layer.
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Figure B-4: Loss landscape of the QCNN experiment replicated from the main text,
except the initialization of the student circuit is randomly chosen. Here, the global
minimum is likely far away and the landscape also appears “bumpy”; all local minima
in the region considered here are far from the global optimum.

In the loss surface plot of the main text, we plot the mean squared error loss

for the teacher-student task for a batch size of 128 randomly chosen computational

basis states. The legend in the plot is shown relative to the maximum value of the
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loss in the range considered. A value of 0 here corresponds to the loss at the global

minimum. The middle of the plot corresponds to the exact parameters of the teacher

circuit, and hence, is a global minimum. This setting is, in a sense, an optimistic

setting since initialization is near a global minimum. For comparison, we include in

Figure B-4 an example of a loss surface where the student circuit is not initialized

near the parameters of the teacher circuit. As is evident in this setting, no longer is

there a global minimum in the parameter region considered, and the landscape also

appears to be filled with traps.

B.6.1 QCNN Experiments

𝑈1

𝑈1

𝑈1

𝑈1

𝑈1

𝑈1

𝑈1

𝑈1

𝑈1

𝑈2

𝑈2

𝑈2

𝑈2

𝑈2

𝑈3

Figure B-5: Layers of shared 2-local unitary transformations are applied followed by
measurement of every other qubit. Gates at the edge of the circuit above are applied in
a cyclic fashion (i.e. the top and bottom qubit interact). The measurement colored
in green is the measurement outcome whose probability we aim to predict in the
teacher-student setup. Generically for 𝑛 qubits, this ansatz has depth ⌈log2 (𝑛)⌉.
During training, the 2-local unitaries are fully parameterized for our simulations.

The quantum convolutional neural network (QCNN) is an ansatz originally pro-

posed in Reference [108]. This ansatz features parameter sharing across gates in a

single layer. The form of this circuit is provided in Figure B-5. In our experiments,

we use the same form of the 2-local ansatz as in Reference [108] and also studied
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in Reference [126]. Between convolutional layers, we include no controlled unitary

operations based on the measurement outcomes. In learning settings, we fully pa-

rameterize the 2-local unitaries in the skew Hermitian basis of the unitary Lie algebra.

To achieve this, we train directly over parameter entries of a matrix 𝑀 and apply e𝐻 ,

where 𝐻 =𝑀 −𝑀 †, to perform the resulting unitary transformation. Entries of the

matrix 𝑀 were initialized i.i.d. from a standard normal distribution.

For the teacher-student experiments in the main text, we aim to predict the out-

come of the final green measurement depicted in Figure B-5 for 512 randomly chosen

computational basis states. For 𝑛 qubits, the QCNN ansatz for both the teacher

and student circuits have 16 ⌈log2 (𝑛)⌉ parameters which is a relatively small number

compared to the dimension of the Hilbert space. All networks were trained for 5000

epochs and a learning rate of 0.001 using the Adam optimizer.

B.6.2 Checkerboard Ansatz
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Figure B-6: Gates at the edge of the circuit above are applied in a cyclic fashion
(i.e. the top and bottom qubit interact). Generically for 𝑛 qubits, this ansatz has
32𝐿 ⌊𝑛/2⌋ parameters. During training, the 2-local unitaries are fully parameterized
for our simulations.

The checkerboard circuit applies gates in a one-dimensional lattice as shown in

Figure B-6. As in the QCNN experiments, we train directly over parameter entries
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of a matrix 𝑀 and apply e𝐻 , where 𝐻 = 𝑀 −𝑀 †, to perform the resulting unitary

transformation. Since the exponential map from the Lie algebra is surjective onto

the unitary group, this parameterization is capable of expressing any unitary matrix.

Entries of the matrix 𝑀 were initialized i.i.d. from a standard normal distribution.

For the teacher-student simulations of the main text, we train networks over 512

randomly chosen computational basis states which is more than the dimension of

the Hilbert space and enough information to recover the full unitary transforma-

tion. Optimization was performed using the Adam optimizer and a batch size of

128. Networks were trained for 5000 epochs and training was stopped if the loss fell

below 0.001 which only occured for the overparameterized setting. We observed that

for fewer than 8 qubits, training was successful with very small probability in the

underparameterized setting.

B.6.3 VQE Experiments on Random Hamiltonians

For all of our VQE experiments, the target Hamiltonian 𝐻𝑡 was constructed by con-

jugating a local Hamiltonian of 𝑛 qubits equal to
∑︀𝑛

𝑖=1 𝑍𝑖 with alternating layers of

products of 2-qubit unitaries 𝑈1 and 𝑈2. That is, 𝐻𝑡 takes the form below as copied

from the main text:

𝐻𝑡 =
(︁
𝑈 †
2𝑈

†
1

)︁𝐿 [︃ 𝑛∑︁
𝑖=1

𝑍𝑖

]︃
(𝑈1𝑈2)

𝐿 + 𝑛𝐼. (B.66)

𝑈1 and 𝑈2 are the tensor product of 2-qubit unitaries which for 𝑛 even take the

form:
𝑈1 = 𝑈

(1,2)
1 ⊗ 𝑈 (3,4)

1 ⊗ . . .⊗ 𝑈 (𝑛−1,𝑛)
1

𝑈2 = 𝑈
(2,3)
2 ⊗ 𝑈 (4,5)

2 ⊗ . . .⊗ 𝑈 (𝑛,𝑛+1)
2 ,

(B.67)

where superscripts above indicate the pair of qubits each 2-local unitary acts on and

indexing is taken modulo 𝑛. Each 2-local unitary is drawn from the distribution e𝐻 ,

where 𝐻 = 𝐺 − 𝐺†, and each 𝐺 is a 4 × 4 matrix with entries drawn i.i.d. from a

random normal distribution. Trained unitaries in the checkerboard ansatz are also

initialized in this fashion. Optimization is then performed directly on the entries
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of the matrix in the Lie algebra which form a complete basis for all of the 2-local

unitaries.
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Figure B-7: Scatter plot showing the values of the loss and trace distance of the final
VQE state after 30000 steps of optimization using the Adam optimizer shows that the
algorithm converges to poorer local minima as the number of qubits grows. Setting
is replicated from the VQE loss experiment from the main text, with the sole change
of the optimizer from gradient descent to Adam.

In the VQE loss experiment of the main text, each VQE instance was optimized

for 30000 steps using a vanilla gradient descent optimizer with a learning rate of 0.01.

For completeness, we replicate this plot with the Adam optimizer in Figure B-7 and

unsurprisingly observe similar convergence results. All calculations were performed

to computer precision, which provides a best-case setting for optimization via real

quantum hardware, since gradients and loss function values would have to be calcu-

lated using less precise sampling methods on actual quantum computers. In layer-wise

VQE experiment of the main text, optimization is performed using an adaptive VQE

algorithm similar to the one in Reference [232]. Here, a checkerboard ansatz is ini-

tialized as a single layer and optimization is performed layer-wise. We set 𝑛 = 11

and small enough such that it is computationally feasible to overparameterize the

ansatz. Each 5000 steps of optimization, a layer is added to the ansatz and initialized

to the identity mapping. Each additional layer adds 160 trainable parameters to the
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ansatz. After each layer is added, the learning rate is multiplied by 0.95 to make the

training more stable with more parameters. At each point in time, all parameters of

the ansatz across all layers are trained. For aesthetic purposes and to see the course

of training without significant jumps in the plot, we plot a moving average of the

values across 10 sequential datapoints in the main text.

B.6.4 VQE experiments on XYZ Hamiltonian

Layer 1
single qubit gates

fully parameterized

Layer 2
two qubit gates

Parameterized 𝑍⊗ 𝑍

Layer 3
two qubit gates (offset)
Parameterized 𝑍⊗ 𝑍

Figure B-8: Here, alternating blocks of three layers are composed onto each other. The
first layer in each block is a fully parameterized single qubit gate. The next two layers
are parameterized Pauli 𝑍 ⊗ 𝑍 terms to connect all neighboring qubits. Parameters
are shared across a layer to better address the near translationally invariance in the
model.

For the XYZ Hamiltonian model empirically analyzed in Appendix B.5.3, we

implemented a gate-based ansatz which is fully parameterized in the single qubit

gates and parameterized only with Pauli 𝑍 ⊗ 𝑍 terms for two qubit gates. The

form of the ansatz is depicted in Figure B-8. Since the Hamiltonian of the model is

approximately translationally invariant in both directions, we implemented sharing

of parameters across a layer. Parameters were initialized as random normal variables.

Each instance was optimized using the Adam optimizer [128] for 5000 steps. The

learning rate was initially set to 0.007 and halved every 1000 steps. For calculations

of the trace distance to the ground state, the ground state of the Hamiltonian was
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calculated by performing an eigendecomposition of the complete Hamiltonian. To

account for shot noise, random centered Gaussian noise with standard deviation equal

to 1/
√

# shots was added to gradients with respect to the parameters.

B.7 Untrainability Beyond Gradient Descent

One may wish to avoid local minima by changing the loss function or performing more

advanced versions of gradient-based optimizers. Here, we gives heuristic reasons why

these two adjustments will likely not fix any issues of untrainability.

First, we examine changes in the loss function. This is commonly done to avoid

barren plateaus and make gradients easier to compute. Let us assume that ℒ (𝜃) is

our original loss function (as a function of the parameters 𝜃), which is changed to a

new loss function ℒ̃ (𝜃). Typically, ℒ̃ (𝜃) is chosen so that it upper and lower bounds

ℒ (𝜃), i.e. 𝐶ℒ̃ (𝜃) ≤ ℒ (𝜃) ≤ 𝐷ℒ̃ (𝜃) for some constants 𝐶,𝐷. This guarantees

convergence in both metrics when changing the loss function and is the case for e.g.

local versions of the inner product and the quantum earth mover’s (EM) distance [121,

237]. Now, let us assume that every continuous path from a local minimum at 𝜃𝑙 to

the global minimum 𝜃* must increase the loss function by a factor 𝑀 > 𝐷/𝐶, i.e.

there exists a point in the path that has value at least 𝑀ℒ (𝜃𝑙). Then, in the new

loss function ℒ̃ (𝜃𝑙) ≤ ℒ (𝜃𝑙) /𝐶. Furthermore, at some point in any continuous path,

ℒ (𝜃) > 𝑀ℒ (𝜃𝑙) which implies that at that point ℒ̃ (𝜃) ≥ ℒ (𝜃) /𝐷 > 𝑀ℒ (𝜃𝑙) /𝐷 =

ℒ (𝜃𝑙) /𝐶. Thus, 𝜃𝑙 is not within a convex region around the global optimum. This

may be too restrictive of an assumption since local minima can often be very shallow,

but it also seems to be backed by experiments.

Second, we consider changing the optimization algorithm to a second order op-

timization algorithm such as in Reference [238]. These algorithms perform gradient

descent by applying a transformation to the gradient of the form:

𝜃𝑡+1 = 𝜃𝑡 − 𝜇𝛴+∇𝜃𝑡ℒ (𝜃𝑡) , (B.68)
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where𝛴 incorporates our second order term, e.g. the Hessian or Fubini–Study metric

tensor, and 𝛴+ is its pseudoinverse. Clearly, in the above, this does not allow one to

escape a local minima. Setting 𝜃𝑡 = 𝜃* above sets the gradient term to zero, and one

again one is stuck in a local minimum.

Though other training methods exist, it is not clear a priori why they should

succeed. For example, training in a layer-wise fashion also does not work as Refer-

ences [98, 121, 231] show. Finally, note that the above methods can be very effective at

alleviating barren plateaus. In fact, changes in metric and second order optimization

methods are often precisely designed to fix this issue. Nevertheless, these methods

only provably converge to the global optimum in convex or close to convex settings,

which is not the case for essentially all variational quantum models.
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Appendix C

Technical Details for Chapter 4

C.1 The Schur Basis

In the presence of permutation invariance, the action of operations can be fully under-

stood by analyzing a much smaller subspace of the larger Hilbert space. To precisely

understand the form of that subspace, we turn to the Schur–Weyl decomposition of 𝑛

qubits into subspaces corresponding to irreducible representations of the symmetric

and unitary groups labeled by Young diagrams. Schur–Weyl duality offers a means

to perform this decomposition by considering the natural representations of the per-

mutation group and 𝑛-fold unitary group acting on 𝑛 qubits [150, 239]. To describe

the Schur basis and the resulting Schur transform, first we note the natural action of

a permutation operation 𝑅 (𝜋) acting on qubits:

𝑅 (𝜋) |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑛⟩ = |𝑖𝜋−11⟩ ⊗ |𝑖𝜋−12⟩ ⊗ · · · ⊗ |𝑖𝜋−11⟩ (C.1)

as in the main text.

Similarly, a unitary 𝑈 ∈ U(2) acting as the 𝑛-fold product 𝑄 (𝑈) takes the form

𝑄 (𝑈) |𝑖1⟩ ⊗ |𝑖2⟩ ⊗ · · · ⊗ |𝑖𝑛⟩ = 𝑈 |𝑖1⟩ ⊗ 𝑈 |𝑖2⟩ ⊗ · · · ⊗ 𝑈 |𝑖𝑛⟩ . (C.2)

Schur–Weyl duality takes advantage of the fact that 𝑄 (·) and 𝑅 (·) are each others’
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commutants, stating that the subspace of (C2)
⊗𝑛 decomposes as

𝑄 (𝑈)𝑅 (𝜋) ∼=
⨁︁
𝜆

𝜌𝜆 (𝑈)⊗ 𝜎𝜆 (𝜋) , (C.3)

where 𝜆 runs over the set of partitions of 𝑛 into at most two elements, and 𝜌𝜆 (·) and

𝜎𝜆 (·) are irreducible representations of the unitary group U(2) and the symmetric

group S𝑛, respectively. Note that irreps of both of these groups are indexed by

partitions. More generally, for the space
(︀
C𝑑
)︀⊗𝑛 of 𝑛 qudits of dimension 𝑑, the 𝜆

would span over partitions of 𝑛 into at most 𝑑 elements. Partitions can equivalently

be enumerated by Young diagrams. For example for the setting of 4 qubits, we have

the 3 Young diagrams below that appear in the decomposition above:

𝜆 = (4, 0) : ,

𝜆 = (3, 1) : ,

𝜆 = (2, 2) : .

A consequence of the above is that there exists a basis indexed by |𝜆, 𝑞𝜆, 𝑝𝜆⟩ called

the Schur basis where the actions of 𝑄 (·) and 𝑅 (·) are separated [150]:

𝑄 (𝑈) |𝜆, 𝑞𝜆, 𝑝𝜆⟩ = 𝜌𝜆 (𝑈) |𝜆, 𝑞𝜆, 𝑝𝜆⟩ , (C.4)

𝑅 (𝜋) |𝜆, 𝑞𝜆, 𝑝𝜆⟩ = 𝜎𝜆 (𝜋) |𝜆, 𝑞𝜆, 𝑝𝜆⟩ , (C.5)

where we have implicitly projected onto the subspace indexed by 𝜆. Here, 𝜌𝜆 (𝑈) and

𝜎𝜆 (𝜋) act only on the 𝑞𝜆 and 𝑝𝜆 space, respectively. 𝜌𝜆 (𝑈) and 𝜎𝜆 (𝜋) are respec-

tively the linear transformations corresponding to the irreducible representations of

U(2) and S𝑛 for the irreducible representation indexed by 𝜆. The above also presents

a useful fact about permutation invariance. Namely, such an operation will act in-
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variantly on the permutation register |𝑝𝜆⟩ thus significantly reducing the degrees of

freedom of a problem. The Schur transform 𝑈Sch is a unitary transformation that

acts as a change of basis from the computational to the Schur basis described above.

The Schur transform can be efficiently implemented on a quantum computer running

in time O(𝑛 poly (𝑑, log (𝑛) , 1/𝜖)) for error 𝜖 on qudit systems of dimension 𝑑 [150].

We follow the notation of Reference [150]:

|𝜆, 𝑞𝜆, 𝑝𝜆⟩ =
𝑑−1∑︁

𝑖1,𝑖2,...,𝑖𝑛=0

[𝑈Sch]
𝜆,𝑞𝜆,𝑝𝜆
𝑖1,𝑖2,...,𝑖𝑛

|𝑖1⟩ |𝑖2⟩ · · · |𝑖𝑛⟩ . (C.6)

As noted in the main text, the total degrees of freedom reduces to
(︀
𝑛+3
3

)︀
in settings

with permutation invariance. To see this, note that the dimension of the |𝑞𝜆⟩ register

for a partition (𝑎, 𝑏) is equal to 𝑎− 𝑏+ 1. Therefore, we have

DOF =

⌊𝑛/2⌋∑︁
𝑘=0

(︁
2𝑘 + 1 + 𝑛− 2

⌊︁𝑛
2

⌋︁)︁2
=

(︂
𝑛+ 3

3

)︂
(C.7)

degrees of freedom. A similar calculation can be performed via a stars-and-bars

counting argument. The above is also enumerated by the tetrahedral numbers [240].

To expand and manipulate individual basis states indexed by the |𝑞𝜆⟩ register,

one can use the Young symmetrizer Π𝑝𝜆 to project onto an explicit basis for each

𝜆 [150, 241]. Here, 𝑝𝜆 is a particular Young tableau for the Young diagram 𝜆. The

Young symmetrizer projects onto a subspace isomorphic to the subspace spanned by

|𝑞𝜆⟩:

Π𝑝𝜆 =
dim (𝜆)

𝑛!

⎛⎝ ∑︁
𝑐∈Col(𝑝𝜆)

sgn (𝑐)𝑅 (𝑐)

⎞⎠⎛⎝ ∑︁
𝑟∈Row(𝑝𝜆)

𝑅 (𝑟)

⎞⎠ , (C.8)

where Row (𝑝𝜆) and Col (𝑝𝜆) are the set of permutations which permute integers

within only rows and columns of the Young tableau 𝑝𝜆, respectively [150, 241]. An

example of the basis found via application of the Young symmetrizer is shown in

Figure C-1. Throughout our study, we consider the Young tableau formed by filling

entries in order first column-wise and then row-wise to be the “canonical" basis that
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⟩|0000
!
"
| ⟩0001 + & ⟩0010 + | ⟩0100 + | ⟩1000

!
#
| ⟩0011 + | ⟩0101 + & ⟩1001 + | ⟩0110 + | ⟩1010 + | ⟩1100

!
"
| ⟩0111 + & ⟩1011 + | ⟩1101 + | ⟩1110

⟩|1111
!
"
| ⟩01 − | ⟩10 ⟩|00

!
"
| ⟩01 − | ⟩10 | ⟩01 + | ⟩10

!
"
| ⟩01 − | ⟩10 ⟩|11

!
"
| ⟩01 − | ⟩10 | ⟩01 − | ⟩10

𝒏 = 𝟐

𝒏 = 𝟑

𝒏 = 𝟒

Figure C-1: Graphical depiction of Schur decomposition for 𝑛 = 4 qubits. There
are three Young diagrams of at most two rows for 4 qubits. Due to the presence
of permutation invariance, we can restrict attention to the darker colored subspaces
which correspond to a single subspace over the multiplicity of the permutation irreps.
To project onto this darker colored subspace, we use the Young symmetrizer (Equa-
tion (C.8)).

we study. As an example, for 4 qubits, there are the following Young tableaus in our

“canonical" basis:

1 2 3 4 , 1 3 4

2
, 1 3

2 4
. (C.9)

C.2 Structure Coefficients of 𝑋 for Qubit Permuta-

tion Invariance

In this Appendix we evaluate the structure constants of the algebra 𝑋 of operators

symmetric under the action of permutation operators on qubits.

Lemma C.1. The structure coefficients 𝑋𝑖,𝑗
𝑘 of the completely symmetrized Pauli

representation are given by:

𝑋𝑖,𝑗
𝑘 =

∑︁
{𝑓𝑎𝑏}𝑎,𝑏∈{1,𝑥,𝑦,𝑧}

/Equation(C.11),Equation(C.12)

𝑘1!

𝑓11!𝑓𝑥𝑥!𝑓𝑦𝑦!𝑓𝑧𝑧!

𝑘𝑥!

𝑓1𝑥!𝑓𝑥1!𝑓𝑦𝑧!𝑓𝑧𝑦!

𝑘𝑦!

𝑓1𝑦!𝑓𝑦1!𝑓𝑥𝑧!𝑓𝑧𝑥!

𝑘𝑧!

𝑓1𝑧!𝑓𝑧1!𝑓𝑥𝑦!𝑓𝑦𝑥!

× i𝑓𝑥𝑦+𝑓𝑦𝑧+𝑓𝑧𝑥 (−i)𝑓𝑦𝑥+𝑓𝑥𝑧+𝑓𝑧𝑦

(C.10)
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where the variables in the sum are non-negative integers subject to the constraints

∑︁
𝑎∈{1,𝑥,𝑦,𝑧}

𝑓𝑎𝑏 = 𝑗𝑏,
∑︁

𝑏∈{1,𝑥,𝑦,𝑧}

𝑓𝑎𝑏 = 𝑖𝑎, (C.11)

and
𝑓11 + 𝑓𝑥𝑥 + 𝑓𝑦𝑦 + 𝑓𝑧𝑧 ≡ 𝑘1,

𝑓1𝑥 + 𝑓𝑥1 + 𝑓𝑦𝑧 + 𝑓𝑧𝑦 = 𝑘𝑥,

𝑓1𝑦 + 𝑓𝑦1 + 𝑓𝑥𝑧 + 𝑓𝑧𝑥 = 𝑘𝑦,

𝑓1𝑧 + 𝑓𝑧1 + 𝑓𝑥𝑦 + 𝑓𝑦𝑥 = 𝑘𝑧.

(C.12)

Proof. For calculating the structure constants 𝑋, we first note that

𝐴𝑗 =
1

𝑖1!𝑖𝑥!𝑖𝑦!𝑖𝑧!

∑︁
𝜋∈S𝑛

𝑅 (𝜋)
(︀
𝜎⊗𝑖1
1 ⊗ 𝜎⊗𝑖𝑥

𝑥 ⊗ 𝜎⊗𝑖𝑦
𝑦 ⊗ 𝜎⊗𝑖𝑧

𝑧

)︀
𝑅−1 (𝜋) =

∑︁
𝑝𝑖∈𝑃𝑖

𝑝𝑖, (C.13)

where 𝑃𝑖 is the set of Pauli words with 𝑖𝑎 times 𝜎𝑎 for 𝑎 ∈ {1, 𝑥, 𝑦, 𝑧}. Now we

evaluate the product:

𝐴𝑖 · 𝐴𝑗 =
∑︁

𝑝𝑖∈𝑃𝑖,𝑝𝑗∈𝑃𝑗

𝑝𝑖𝑝𝑗 =
∑︁

𝑘,𝑝𝑘∈𝑃𝑘

∑︁
𝑝𝑖∈𝑃𝑖,𝑝𝑗∈𝑃𝑗 :

𝑝𝑖𝑝𝑗=𝛼𝑝𝑖,𝑝𝑗 ,𝑝𝑘
·𝑝𝑘

𝛼𝑝𝑖,𝑝𝑗 ,𝑝𝑘𝑝𝑘. (C.14)

This is a sum over products of exponentionally many Pauli words. The idea to

evaluate this is that many of the summands have equal value, so it suffices to sum

over a few different values multiplied by the number of summands with that value.

For every summand, define the subsets of qubits 𝐿𝑎𝑏 for 𝑎, 𝑏 ∈ {1, 𝑥, 𝑦, 𝑧},

𝐿𝑎𝑏 ≡ {𝑙 : (𝑝𝑖)𝑙 = 𝜎𝑎, (𝑝𝑗)𝑙 = 𝜎𝑏, 0 ≤ 𝑙 < 𝑛}, (C.15)

and let

𝑓𝑎𝑏 ≡ |𝐿𝑎𝑏| (C.16)

be the numbers of elements in those subsets. Since every Pauli operator 𝑖𝑙 at a

qubit 𝑙 is paired with some other Pauli operator 𝑗𝑙, 𝑓𝑎𝑏 fulfill the constraints in Equa-
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tion (C.11). The multiplication algebra of Pauli operators directly implies Equa-

tion (C.12).

Let us now count how many Pauli words there are in the sum for a fixed set of num-

bers 𝑓𝑎𝑏 and a fixed resulting Pauli word 𝑝𝑘. Every triple 𝑝𝑖, 𝑝𝑗 , 𝑝𝑘 corresponds to a

decomposition of each 𝑘𝑐-element set of qubits {𝑙 : (𝑝𝑘)𝑙 = 𝜎𝑐} for 𝑐 ∈ {1, 𝑥, 𝑦, 𝑧} into

four subsets 𝐿𝑎𝑏 for the four different combinations 𝑎, 𝑏 ∈ {1, 𝑥, 𝑦, 𝑧} with 𝜎𝑎𝜎𝑏 ∝ 𝜎𝑐

under the Pauli algebra. For each 𝑐, the number of decompositions into the corre-

sponding four subsets is given by

𝑘𝑐!∏︀
𝑎,𝑏:𝜎𝑎𝜎𝑏∝𝜎𝑐 𝑓𝑎𝑏!

. (C.17)

In total, the number of decompositions into four subsets for different 𝑐 is given by

𝑘1!

𝑓11!𝑓𝑥𝑥!𝑓𝑦𝑦!𝑓𝑧𝑧!

𝑘𝑥!

𝑓1𝑥!𝑓𝑥1!𝑓𝑦𝑧!𝑓𝑧𝑦!

𝑘𝑦!

𝑓1𝑦!𝑓𝑦1!𝑓𝑥𝑧!𝑓𝑧𝑥!

𝑘𝑧!

𝑓1𝑧!𝑓𝑧1!𝑓𝑥𝑦!𝑓𝑦𝑥!
. (C.18)

Finally, the prefactor 𝛼𝑝𝑖,𝑝𝑗 ,𝑝𝑘 in Equation (C.14) only depends on the 𝑓𝑎𝑏. Using the

Pauli algebra,
𝜎𝑥𝜎𝑦 = i𝜎𝑧 𝜎𝑦𝜎𝑧 = 𝑖𝜎𝑥 𝜎𝑧𝜎𝑥 = i𝜎𝑦

𝜎𝑦𝜎𝑥 = −i𝜎𝑧 𝜎𝑧𝜎𝑦 = −i𝜎𝑥 𝜎𝑥𝜎𝑧 = −i𝜎𝑦,
(C.19)

it is given by

𝛼𝑝𝑖,𝑝𝑗 ,𝑝𝑘 = i𝑓𝑥𝑦+𝑓𝑦𝑧+𝑓𝑧𝑥 (−i)𝑓𝑦𝑥+𝑓𝑥𝑧+𝑓𝑧𝑦 . (C.20)

Using Equation (C.18) and Equation (C.20) in Equation (C.14) directly yields Equa-

tion (C.10).

Let us quickly discuss the complexity of the computation of 𝑋𝑖,𝑗
𝑘 . In the summa-

tion of Equation (C.10), we sum over 16 variables within a range of the order 𝑛, so if

we naively evaluate the sum, we already obtain a polynomial runtime O(𝑛16). How-

ever, due to the constraint Equation (C.11), we can reduce the summation to only

9 variables 𝑓𝑎𝑏 with 𝑎, 𝑏 ∈ {𝑥, 𝑦, 𝑧}. Equation (C.12) poses another three indepen-

dent constraints, reducing the summation to 6 variables. Thus, an individual entry

𝑋𝑖,𝑗
𝑘 can be calculated in O(𝑛6) runtime, whereas all O(𝑛9) coefficients together take
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runtime O(𝑛15).

Note that this is only the runtime for a naive evaluation of the sum in Equa-

tion (C.10). It seems likely that the runtime O(𝑛6) for the evaluation of a single

coefficient can be reduced to a smaller exponent. We will leave this open to further

investigation.

C.3 Irrep Basis of 𝐴 for Qubit Permutation Invari-

ance

In this section, we compute the matrix elements 𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆

from the main text for the

case of S𝑛 action on 𝑛 qubits by permutation. To this end, we first find the irrep

basis |𝜆, 𝑞𝜆, 𝑝𝜆0⟩ where 𝑝𝜆0 is a standard choice of Young tableau, and then consider

the representation 𝐴 in this basis.

Lemma C.2. Recalling that 𝜆 is given by a Young diagram, we choose 𝑝𝜆0 to be

the standard Young tableaux for that diagram, with numbers increasing first in the

column direction and then in row direction, as shown in Equation (C.9). Then the

tensor components 𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆

discussed in the main text for the completely symmetrized

Pauli representation are given by:

𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆
=

∑︁
𝑓11,𝑓𝑥𝑥,𝑓𝑦𝑦 ,𝑓𝑧𝑧 ,

𝑔010,𝑔111,𝑔0𝑥1,𝑔1𝑥0,
𝑔0𝑦1,𝑔1𝑦0,𝑔0𝑧0,𝑔1𝑧1
/𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (C.22)

1√︁(︀
𝑛−2𝜆1
𝑞𝜆

)︀(︀
𝑛−2𝜆1
𝑞′𝜆

)︀ i2𝑓𝑥𝑥+2𝑓𝑦𝑦+2𝑓𝑧𝑧+2𝑔1𝑧1−𝑔0𝑦1+𝑔1𝑦0

· 𝜆1! (𝑛− 2𝜆1)!

𝑓11!𝑓𝑥𝑥!𝑓𝑦𝑦!𝑓𝑧𝑧!𝑔010!𝑔111!𝑔0𝑥1!𝑔1𝑥0!𝑔0𝑦1!𝑔1𝑦0!𝑔0𝑧0!𝑔1𝑧1!
,

(C.21)
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where the sum is over a set of 12 non-negative integers fulfilling the constraints

𝑔010 + 𝑔0𝑧0 + 𝑔0𝑥1 + 𝑔0𝑦1 = 𝑛− 2𝜆1 − 𝑞𝜆,

𝑔010 + 𝑔0𝑧0 + 𝑔1𝑥0 + 𝑔1𝑦0 = 𝑛− 2𝜆1 − 𝑞′𝜆,

𝑔111 + 𝑔1𝑧1 + 𝑔1𝑥0 + 𝑔1𝑦0 = 𝑞𝜆,

𝑔111 + 𝑔1𝑧1 + 𝑔0𝑥1 + 𝑔0𝑦1 = 𝑞′𝜆,

2𝑓11 + 𝑔010 + 𝑔111 = 𝑖1,

2𝑓𝑥𝑥 + 𝑔0𝑥1 + 𝑔1𝑥0 = 𝑖𝑥,

2𝑓𝑦𝑦 + 𝑔0𝑦1 + 𝑔1𝑦0 = 𝑖𝑦,

2𝑓𝑧𝑧 + 𝑔0𝑧0 + 𝑔1𝑧1 = 𝑖𝑧

(C.22)

and 𝜆1 is the length of the second row of 𝜆.

Proof. Following the previous section, we can project onto the space with an S𝑛 irrep

𝜆 and a fixed multiplicity label 𝑝𝜆0 using the Young symmetrizer in Equation (C.8).

Acting with the Young symmetrizer on a computational basis state yields a superpo-

sition of basis states with the same number of 0s and 1s. Let us write 𝜆 = (𝜆0, 𝜆1) for

the lengths of the first and second row of 𝜆. Then we see that applying the Young

symmetrizer yields 0 unless the number of 1s is between 𝜆1 and 𝜆0. This is because

the row symmetrizer does not change the number of 1s, and the antisymmetrizer on

𝜆1 length-2 columns yields 0 if any columns are 00 or 11. Thus, the irrep basis states

can be obtained by applying the Young symmetrizer to states with 𝜆1+𝑞𝜆 ones, where

0 ≤ 𝑞𝜆 ≤ 𝑛− 2𝜆1. Specifically, we can use

|𝜆, 𝑝𝜆0, 𝑞𝜆⟩ = Π𝜆:𝑝𝜆0 |𝑥𝑞𝜆⟩ , (C.23)

with

|𝑥𝑞𝜆⟩ ≡ |01⟩
⊗𝜆1 ⊗ |0⟩⊗𝑛−2𝜆1−𝑞𝜆 ⊗ |1⟩⊗𝑞𝜆 . (C.24)

194



Let us first evaluate

∑︁
𝑟∈Row(𝑝𝜆0)

𝑅 (𝑟) |𝑥𝑞𝜆⟩ = Π𝑟→𝑐

(︁⃒⃒
Σ𝑞𝜆
𝜆0

⟩︀
⊗ |1⟩⊗𝜆1

)︁
, (C.25)

where |Σ𝑦
𝑥⟩ denotes the equal-weight superposition of all computation basis states on

𝑥 qubits with 𝑥 − 𝑦 zeros and 𝑦 ones, which (up to normalization) is also known as

Dicke state on 𝑥 qubits [242, 243]. Π𝑟→𝑐 denotes the permutation of qubits needed to

obtain the "column-standard" Young tableau 𝑝𝜆0 from an analogous "row-standard"

Young tableau where the numbers first increase in the row direction and then in

column direction. In other words, if we think of the qubits being associated to the

tiles of the Young diagram 𝜆, then the qubits in the first row are in state
⃒⃒
Σ𝑞𝜆
𝜆0

⟩︀
, and

the qubits in the second row are in state |1⟩⊗𝜆1 .

Next, for a two-row standard Young tableau 𝑝𝜆0, we have

∑︁
𝑐∈Col(𝑝𝜆0)

sgn (𝑐)𝑅 (𝑐) = (id2−𝜏)⊗𝜆1 ⊗ id⊗𝑛−2𝜆1
2 = (|Ψ⟩ ⟨Ψ|)⊗𝜆1 ⊗ id⊗𝑛−2𝜆1

2 , (C.26)

where |Ψ⟩ is the 2-qubit singlet state

|Ψ⟩ = 1√
2
(|01⟩ − |10⟩) , (C.27)

and 𝜏 denotes the SWAP operator acting on two qubits. The qubits in the second

row of 𝜆 in the state of Equation (C.25) are fixed to |1⟩, so applying |Ψ⟩ ⟨Ψ| to each of

the first 𝜆1 columns has the same effect as applying |Ψ⟩ ⟨Ψ| (|0⟩ ⟨0| ⊗ id2). Applying

|0⟩ ⟨0| to the first 𝜆1 qubits of
⃒⃒
Σ𝑞𝜆
𝜆0

⟩︀
yields |0⟩⊗𝜆1 ⊗

⃒⃒
Σ𝑞𝜆
𝜆0−𝜆1

⟩︀
. Thus, we find:

|𝜆, 𝑝𝜆0, 𝑞𝜆⟩ = Π𝜆:𝑝𝜆0 |𝑥𝑞𝜆⟩ = |Ψ⟩
⊗𝜆1 ⊗

⃒⃒
Σ𝑞𝜆
𝑛−2𝜆1

⟩︀
. (C.28)
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Now, we are ready to evaluate

𝐹 𝑖,𝜆
𝑞𝜆,𝑞

′
𝜆
≡⟨𝜆, 𝑞𝜆, 𝑝𝜆0|𝐴𝑖 |𝜆, 𝑞′𝜆, 𝑝𝜆0⟩

=
(︁
⟨Ψ|⊗𝜆1 ⊗

⟨︀
Σ𝑞𝜆
𝑛−2𝜆1

⃒⃒)︁(︃∑︁
𝑝𝑖∈𝑃𝑖

𝑝𝑖

)︃(︁
|Ψ⟩⊗𝜆1 ⊗

⃒⃒⃒
Σ
𝑞′𝜆
𝑛−2𝜆1

⟩)︁

=
1√︁(︀

𝑛−2𝜆1
𝑞𝜆

)︀(︀
𝑛−2𝜆1
𝑞′𝜆

)︀
⎛⎜⎝ ∑︁
𝑠∈𝑆𝑞𝜆

𝑛−2𝜆1

⟨Ψ|⊗𝜆1 ⊗ ⟨𝑠|

⎞⎟⎠(︃∑︁
𝑝𝑖∈𝑃𝑖

𝑝𝑖

)︃⎛⎜⎜⎝ ∑︁
𝑠′∈𝑆

𝑞′
𝜆

𝑛−2𝜆1

|Ψ⟩⊗𝜆1 ⊗ |𝑠′⟩

⎞⎟⎟⎠ ,

(C.29)

where we used 𝑆𝑥𝑦 to denote the set of bitstrings of length 𝑦 with exactly 𝑥 ones.

This is a sum over (more than) exponentially many terms. Similarly to the previous

Appendix, it can be evaluated efficiently by realizing that many summands have

equal value. Thus, we instead sum over the different possible values multiplied with

the number of summands with that value, which can be counted using combinatorics.

Each summand is an overlap of two product states with a product operator in between.

More precisely, we have a product of first 𝜆1 two-qubit overlaps, and then 𝑛 − 2𝜆1

single-qubit overlaps.

For each summand in Equation (C.29), let us denote by 𝐿𝑎𝑏 with 𝑎, 𝑏 ∈ {1, 𝑥, 𝑦, 𝑧}

the subset of two-qubit pairs:

𝐿𝑎𝑏 ≡ {(2𝑙, 2𝑙 + 1) : (𝑝𝑖)2𝑙 = 𝜎𝑎, (𝑝𝑖)2𝑙+1 = 𝜎𝑏, 0 ≤ 𝑙 < 𝜆1}, (C.30)

and let us write 𝑓𝑎𝑏 = |𝐿𝑎𝑏| for the number of elements in those subsets. The according

overlap

⟨Ψ| (𝜎𝑎 ⊗ 𝜎𝑏) |Ψ⟩ (C.31)

is 0 if 𝑎 ̸= 𝑏, so we only need to consider subsets where 𝑎 = 𝑏. The number of

summands for given numbers 𝑓𝑎𝑎 is the number of decompositions of the first 𝜆1

qubit pairs into the four subsets 𝐿𝑎𝑎 with 𝑎 ∈ {1, 𝑥, 𝑦, 𝑧}, which equals

𝜆1!

𝑓11!𝑓𝑥𝑥!𝑓𝑦𝑦!𝑓𝑧𝑧!
. (C.32)
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The value which the overlap on the first 𝜆1 qubit pairs contributes to each summand

only depends on the numbers 𝑓𝑎𝑎. The overlap in Equation (C.31) is given by 1 if

𝑎 = 𝑏 = 1, and −1 if 𝑎 = 𝑏 otherwise. Thus, the overall contribution to each summand

is

(−1)𝑓𝑥𝑥+𝑓𝑦𝑦+𝑓𝑧𝑧 . (C.33)

Next, let us consider the 𝑛 − 2𝜆1 single-qubit overlaps. For each summand in

Equation (C.29), let us denote by 𝐾𝑖𝑎𝑗 for 𝑖, 𝑗 ∈ {0, 1} and 𝑎 ∈ {1, 𝑥, 𝑦, 𝑧} the subset

of the last 𝑛− 2𝜆1 qubits

𝐾𝑖𝑎𝑗 ≡ {𝑙 : (𝑝𝑖)2𝜆1+𝑙 = 𝜎𝑎, 𝑠𝑙 = 𝑖, 𝑠′𝑙 = 𝑗, 0 ≤ 𝑙 < 𝑛− 2𝜆1}, (C.34)

and let us write 𝑔𝑖𝑎𝑗 = |𝐾𝑖𝑎𝑗| for the number of elements in those subsets. The

according overlap

⟨𝑖|𝜎𝑎 |𝑗⟩ (C.35)

is only nonzero if 𝑖 = 𝑗 for 𝑎 ∈ {1, 𝑧} and 𝑖 ̸= 𝑗 for 𝑎 ∈ {𝑥, 𝑦}, so we can restrict

to summands where only those 8 subsets are non-empty. The number of summands

for given numbers 𝑔𝑖𝑎𝑗 is the number of decompositions of the set of the last 𝑛− 2𝜆1

qubits into the 8 subsets 𝐾𝑖𝑎𝑗, and is thus given by

(𝑛− 2𝜆1)!

𝑔010!𝑔111!𝑔0𝑥1!𝑔1𝑥0!𝑔0𝑦1!𝑔1𝑦0!𝑔0𝑧0!𝑔1𝑧1!
(C.36)

The contribution of the overlap on the last 𝑛− 2𝜆1 qubits to each summand only

depends on the numbers 𝑔𝑖𝑎𝑗. The single-qubit overlap in Equation (C.35) evaluates

to 1 for 𝑔010, 𝑔111, 𝑔0𝑋1, 𝑔1𝑋0 and 𝑔0𝑧0, −1 for 𝑔1𝑧1, i for 𝑔0𝑦1, and −i for 𝑔1𝑦0. Thus

the overall contribution to each summand is

(−1)𝑔1𝑧1 (−i)𝑔0𝑦1 i𝑔1𝑦0 . (C.37)

Overall, the number of summands for given 𝑓𝑎𝑎 and 𝑔𝑖𝑎𝑗 is the product of Equa-

tion (C.32) and Equation (C.36), and the value of each summand is given by the
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product of Equation (C.33) and Equation (C.37). Plugging this into Equation (C.29)

yields Equation (C.21). The constraints in Equation (C.22) are explained as follows.

The first four constraints are due to the fact that the number of zeros and ones in 𝑠

and 𝑠′ is determined by 𝑞𝜆 and 𝑞′𝜆, respectively. The last four constraints correspond

to the fact that the number of Pauli operators 𝜎1, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 in 𝑝𝑖 is given by 𝑖1, 𝑖𝑥,

𝑖𝑦, and 𝑖𝑧, respectively.

In a similar fashion to the previous Appendix, we can easily evaluate the run-

time this method achieves in calculating all of the matrix elements. Note that each

component is a sum over four independent variables due to the constraints, yielding

a runtime of O(𝑛4). Taking into account the O(𝑛6) tensor components of 𝐹 yields

the final runtime of O(𝑛10). Once again, it seems likely that the O(𝑛4) runtime for

a single tensor component can be reduced to a smaller exponent. We will leave this

open to further investigation.

C.4 End-to-End Classical Simulation From Tensor

Networks

We here consider a slight variant of Corollary 8 where the inputs are given as classical

matrix product state (MPS) descriptions rather than as quantum states. From Ref-

erence [244], we have that ⟨𝑚1,𝑚2,𝑚3,𝑚4|𝜆, 𝑞𝜆, 𝑝𝜆⟩ ⟨𝜆, 𝑞𝜆, 𝑝𝜆| has an efficient MPS

description, where |𝑚1,𝑚2,𝑚3,𝑚4⟩ is a computational basis state; a four-qubit (i.e.,

𝑛 = 4) example is given in Figure C-2, where we have used the Clebsch–Gordan

coefficients 𝐶𝜆,𝑞𝜆
𝑝1,𝑚1;𝑝2,𝑚2

. 𝑝𝑖 indices in Figure C-2 are discarded for clarity where they

are trivial. Note that these Clebsch–Gordan coefficients can be classically computed

efficiently up to 𝑝 bits of precision (i.e., up to additive error exponentially small in 𝑝)

in time poly (𝑛, 𝑝) by the Racah formula [245]. The indices associated with 𝑚𝑖 can

then be efficiently contracted with an efficient MPS description of an initial state—

even if it is not permutation invariant on qubits—and the 𝑝𝑖 indices efficiently traced

out to efficiently yield matrix elements of 𝜌 as defined in Equation (4.18).
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Cp1,M2
m1;m2

Cp2,M3
p1,M2;m3

C
λ,qλ
p2,M3;m4

M2

p1 p2

M3

λ qλ

m1 m2 m3 m4

Figure C-2: A four-qubit example of the MPS giving
⟨𝑚1,𝑚2,𝑚3,𝑚4|𝜆, 𝑞𝜆, 𝑝𝜆⟩ ⟨𝜆, 𝑞𝜆, 𝑝𝜆|.
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Appendix D

Technical Details for Chapter 5

D.1 Background on Sequence Learning

D.1.1 Sequence Learning

Sequence-to-sequence or sequence learning [84] is the approximation of some given

conditional distribution 𝑝 (𝑦 | 𝑥) with a model distribution 𝑞 (𝑦 | 𝑥). This framework

encompasses sentence translation tasks [84], speech recognition [158], image caption-

ing [159], and many more practical problems.

The training and evaluation of sequence-to-sequence models is most often per-

formed on the forward (conditional) cross entropy :

𝐻 (𝑝, 𝑞) = −
∫︁

d𝑥

∫︁
d𝑦 𝑝 (𝑥,𝑦) log (𝑞 (𝑦 | 𝑥)) . (D.1)

Here, “forward” indicates the ordering of the arguments of 𝐻; the backward cross

entropy is given by 𝑝↔ 𝑞. Given a finite test set 𝒯 = {(𝑥𝑖,𝑦𝑖)} of 𝑀 points sampled

from 𝑝 (𝑥,𝑦), we can also define the forward empirical cross entropy

�̂� (𝑝, 𝑞) = − 1

𝑀

∑︁
(𝑥,𝑦)∈𝒯

𝑝 (𝑦 | 𝑥) log (𝑞 (𝑦 | 𝑥)) , (D.2)

with the backward empirical cross entropy once again given by 𝑝↔ 𝑞.

201



λ0 ℱ1

y1

x1

λ1 λk-1 ℱk

xk

yk(a)

ℰ λ %

x1 xk

y1 ykEncoder

Decoder

(b)

1

Figure D-1: (a) An online neural sequence model. The model autoregressively takes
input tokens 𝑥𝑖, and outputs decoded tokens 𝑦𝑖, with map ℱ𝑖. The model also has an
unobserved internal memory with state 𝜆𝑖 ∈ 𝐿 after decoding token 𝑖 that ℱ𝑖+1 can
depend on. (b) A general encoder-decoder model. ℰ encodes the input 𝑥 into some
latent representation 𝜆 ∈ 𝐿. A decoder 𝒟 then outputs the decoded sequence 𝑦.

Historically, sequence learning was performed using Bayesian networks such as

hidden Markov models [246, 247]. However, in recent years, the performance of these

models have been eclipsed by neural network based models.

D.1.2 Neural Sequence Models

Sequence modeling today is typically performed using neural network based genera-

tive models, or neural sequence models. Generally, these models are parameterized

functions that take as input the sequence 𝑥 and output a sample from the conditional

distribution 𝑝 (𝑦 | 𝑥); the parameters of these functions are trained to minimize an

appropriate loss function, such as the empirical cross entropy of Equation (D.2).

To maintain a resource scaling independent of the input sequence length, neural

sequence models usually are one of two classes: online sequence models (also known

as autoregressive sequence models) [48, 87, 88], or encoder-decoder models [84, 89].

Examples of both are given in Figure D-1. In the former class of models, input tokens

𝑥𝑖 are translated in sequence to output tokens 𝑦𝑖 via functions ℱ𝑖. An unobserved

internal memory (or latent space) shared between time steps allows the model to
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represent long-range correlations in the data.

In the latter of these models, an encoder ℰ maps the input sequence 𝑥 to a

latent space representation 𝜆 ∈ 𝐿; then, a decoder 𝒟 transforms this representation

to the output sentence 𝑦. The advantage of encoder-decoder models over generic

representations of 𝑝 (𝑦 | 𝑥) is the improved time complexity when considering a lower

dimensional representation 𝜆 of 𝑥. When the encoder map is trivial (i.e. when 𝐿 is

congruent to the input space and ℰ is the identity), then no compression occurs, and

the model is equivalent to a general representation of 𝑝 (𝑦 | 𝑥) given by 𝒟.

Generally, there are no restrictions on the forms of ℱ𝑖, ℰ , or 𝒟, though most neural

sequence models are composed of simple smooth (or almost everywhere smooth) func-

tions out of training considerations [48, 87–89]. Here, we generalize from the typical

smoothness constraints and consider locally Lipschitz maps. A function ℱ : 𝐾 → 𝐿

for metric spaces 𝐾 and 𝐿 is locally Lipschitz if

𝑑𝐿 (ℱ (𝑥) ,ℱ (𝑥′)) ≤ 𝐶𝑥𝑑𝐾 (𝑥,𝑥′) , (D.3)

where 𝐶𝑥 is constant in some neighborhood of 𝑥. Here, 𝑑𝑆 is the distance function

on the metric space 𝑆.

All practical neural sequence models are locally Lipschitz. Indeed, assuming 𝐿 =

R𝑚, all maps that are almost everywhere differentiable with locally bounded Jacobian

norm are locally Lipschitz [160]. Realistically, then, locally Lipschitz models can be

thought of as all models trainable using gradient based methods; equivalently, they

can be thought of as models trainable via methods not arbitrarily sensitive to local

noise 𝑥𝑖 ↦→ 𝑥𝑖 + 𝜖.

D.2 Proofs of Expressivity Separations

Before giving proofs of expressivity separations between our quantum model and

classical models, we first give a formal definition of the translation task we will prove

a separation on: namely, (𝑘, 𝑛) stabilizer measurement translation, parameterized by
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𝑘 and 𝑛. Note that the technical description of the task described here is a certain

limit of the construction presented in the main text. First, we take 𝑘 → 𝑘−𝑛, as our

task is only explicitly defined when the sequence length is at least 𝑛. For instance,

the (𝑛+ 2, 𝑛) stabilizer measurement translation task as presented in the main text

will, here, be referred to as the (2, 𝑛) stabilizer measurement translation task. We

make this change as the formal definition of this task as presented here is undefined

when 𝑘+𝑛 < 𝑛. Second, we now set the first 𝑛 measurements to be infinite precision

Gaussian measurements, i.e. measurements of linear combinations of position and

momentum operators. These measurements are a limit of the periodic measurements

we consider in the main text, with infinitely large periods.

To be more explicit, we consider an input language given by 𝑛+ 𝑘-long sequences

of linear combinations of position and momentum operators on 𝑛 modes. Specifically,

input sentences are composed of words which are of the form of rows of:

𝑥 =

⎛⎜⎜⎜⎝
𝑠𝑞1,1 . . . 𝑠𝑞1,𝑛 𝑠𝑝1,1 . . . 𝑠𝑝1,𝑛
...

...
...

...
...

...

𝑠𝑞𝑛+𝑘,1 . . . 𝑠𝑞𝑛+𝑘,𝑛 𝑠𝑝𝑛+𝑘,1 . . . 𝑠𝑝𝑛+𝑘,𝑛

⎞⎟⎟⎟⎠ . (D.4)

The first 𝑛 rows describe the sequential measurement of each operator

𝑠𝑖 =
𝑛∑︁
𝑗=1

𝑠𝑞𝑖𝑗𝑞𝑗 +
𝑛∑︁
𝑗=1

𝑠𝑝𝑖𝑗𝑝𝑗 (D.5)

when beginning in some given fixed state |𝜓0⟩ on 𝑛 modes that is either a GKP

state [95] or an infinitely squeezed Gaussian state, which maintains the nonuniversal-

ity of the model [163]. The final 𝑘 rows describe the sequential measurement of each

operator

𝑠𝑖 = exp

(︃
i

𝑛∑︁
𝑗=1

𝑠𝑞𝑖𝑗𝑞𝑗 + i
𝑛∑︁
𝑗=1

𝑠𝑝𝑖𝑗𝑝𝑗

)︃
(D.6)

via e.g. phase estimation, as shown in the main text. Note that the measurement of

𝑠𝑖 is not equivalent to the measurement of its generator. For instance, given states
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such that:

𝑞 |𝜓1⟩ = 0, 𝑞 |𝜓2⟩ = 2π, (D.7)

one has

(exp (i𝑞)− 1) |𝜓1⟩ = (exp (i𝑞)− 1) |𝜓2⟩ = 0. (D.8)

A translation 𝑦 of 𝑥 is considered correct if it is of the form

𝑏 =

⎛⎜⎜⎜⎝
𝑚1

...

𝑚𝑛+𝑘

⎞⎟⎟⎟⎠ , (D.9)

where the measurement outcomes 𝑚𝑖 are consistent with those of quantum mechanics.

To prove our separations, we will consider input sentences that exhibit quantum

contextuality.

D.2.1 Expressivity Separation for Online Models

We now show that locally Lipschitz online with latent space dimension less than 𝑛(𝑛−3)
2

can stabilizer measurement translate. Our general proof strategy is as follows:

1. We first define a potentially random online learning model with locally Lipschitz

cell maps ℱ𝑟
𝑖 (𝑠𝑖,𝜆𝑖−1) = (𝑚𝑖,𝜆𝑖), where we use 𝑚𝑖 to indicate the measurement

result when measuring the nullifier described by 𝑠𝑖, and 𝑟 is a random vector

shared between all ℱ𝑖. We assume for any 𝑟 that ℱ𝑟
𝑖 is deterministic. Let

ℱ𝑟 (𝑠1, . . . , 𝑠𝑛) = 𝜆𝑛 be the 𝑛-fold composition of ℱ𝑟
𝑖 on some fixed initial 𝜆0

(where any 𝑚𝑖 is implicit, as each 𝑚𝑖 is fully determined by 𝑟 and 𝑠𝑖). Note that

once 𝑟 is specified, ℱ𝑟 is a deterministic function. Due to this, in the following,

we take the 𝑟 dependence to be implicit.

2. We assume the dimension of 𝜆𝑖 is less than 𝑛(𝑛−3)
2

. We prove that then, the

described online model will give a wrong measurement outcome on the final two

measurement results 𝑚𝑛+1,𝑚𝑛+2. In the following, we will refer to this as the

theorem statement.
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3. To prove that the theorem statement is true, we show that it is true for a

subspace 𝐾 of inputs which describe CV graph states, where the associated

graphs have no self-loops. It is easy to see that the dimension of such a space is
𝑛(𝑛−1)

2
, by studying the space of adjacency matrices. We let ℱ|𝐾 be ℱ restricted

to this space 𝐾. Let 𝐵 be coordinates of 𝐾, as defined in Equation (D.26).

We assume the Jacobian of this map achieve its maximal rank at 𝐵 = 0, which

describes a set of measurements yielding the position squeezed state |0⟩𝑞. By

doing so, we guarantee the robustness of the Jacobian rank in a neighborhood

of 𝐵 = 0. The assumption that 𝐵 = 0 is a point of maximal rank is taken

WLOG, as there exist Gaussian operations that transform the 𝐵 at which the

Jacobian of ℱ|𝐾 attains its maximal rank to 𝐵 = 0.

4. As the rank is constant in the neighborhood of 𝐵 = 0, by the constant rank

theorem [169], ℱ𝑟|𝐾 induces a fiber bundle structure in the neighborhood of

𝐵 = 0. That is, ℱ𝑟|𝐾 is a projection of fibers in a neighborhood of 𝐵 = 0 to

their base points. This means that the model is unable to distinguish between

points that share a fiber in this neighborhood.

5. We then show that when dim (𝜆𝑛) < dim (𝐾) − 𝑛, there exist 𝐵′,𝐵′′ on the

fiber with base point 𝐵 = 0 such that 𝐵,𝐵′,𝐵′′ describe distinct states. We

show in Lemma D.1 that these states have stabilizers which share quantum

contextuality, yielding distinguishing one-shot measurement sequences. As the

model is unable to distinguish between 𝐵,𝐵′,𝐵′′, this implies that there exist

𝑠𝑛+1, 𝑠𝑛+2 describing this distinguishing measurement sequence such that the

model returns the wrong measurement result for at least one of 𝐵,𝐵′,𝐵′′ with

certainty. This proves the theorem statement. We also use this general proof

strategy when considering encoder-decoder models in Theorem D.4, up to some

minor details.

With our proof strategy now clear, we now proceed to prove the details. First, we

prove our lemma demonstrating that indeed, the stabilizer operators we consider ex-

hibit quantum contextuality. We also show that this contextuality induces a one-shot
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distinguishing measurement sequence on the states stabilized by the given operators.

Lemma D.1 (CV graph state stabilizers exhibit quantum contextuality). Consider

|0⟩𝑞, the state nullified by all 𝑞𝑖. Consider two states |𝜓1⟩ and |𝜓2⟩ that are CV graph

states (up to arbitrary phases on their stabilizers) with no loops with distinct (modulo

π) adjacency matrices. There exist operators that stabilize these three states that ex-

hibit quantum contextuality. Furthermore, there exists a distinguishing measurement

given by one of the stabilizers of |0⟩𝑞 that maps |𝜓1⟩ and |𝜓2⟩ to orthogonal post-

measurement states when the measurement result is 1; in other words, there exists

a distinguishing measurement sequence of length two that distinguishes these three

states.

Proof. As |𝜓1⟩ and |𝜓2⟩ are CV graph states with distinct adjacency matrices (modulo

π), they must differ (modulo π) in the edges 𝑒𝑖 touching some vertex 𝑖. That is, |𝜓1⟩

is stabilized by some:

𝑠′𝑖 = e2i𝜃
′
𝑋𝑖 (1)𝑍 (𝑒′𝑖) , (D.10)

and |𝜓2⟩ by some:

𝑠′′𝑖 = e2i𝜃
′′
𝑋𝑖 (1)𝑍 (𝑒′′𝑖 ) , (D.11)

where 𝑒′𝑖 and 𝑒′′𝑖 differ (modulo π) in some element indexed by 𝑗 ̸= 𝑖 (as there are

no loops in either graph), and where 2𝜃′, 2𝜃′′ are phases. Here, 𝑍 (·) is defined as the

tensor product:

𝑍 (𝑣) =
⨂︁
𝑖

𝑍𝑖 (𝑣𝑖) . (D.12)

An example diagram of the entries of 𝑒′𝑖, 𝑒′′𝑖 is given in Figure D-2. By the symmetry

of CV graph state adjacency matrices, we thus have that the former is also stabilized

by

𝑠′𝑗 = e2i𝜑
′
𝑋𝑗 (1)𝑍

(︀
𝑒′𝑗
)︀

(D.13)

and the latter by

𝑠′′𝑗 = e2i𝜑
′′
𝑋𝑗 (1)𝑍

(︀
𝑒′′𝑗
)︀
, (D.14)

where 𝑒′𝑗 and 𝑒′′𝑗 differ (modulo π) in some element indexed by 𝑖, and where 2𝜑′, 2𝜑′′
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Figure D-2: An example of two graphs, with edges leaving vertex 𝑖 given by 𝑒′𝑖 and
𝑒′′𝑖 , respectively. As the two graphs differ, they must differ by an edge; indeed, they
differ in the weights of both ⟨𝑖, 𝑗⟩ and ⟨𝑖, 𝑘⟩.

are phases. Note in particular that we have the commutation relations

[𝑠′𝑖, 𝑠
′′
𝑖 ] = 0,

[︀
𝑠′𝑗, 𝑠

′′
𝑗

]︀
= 0,

[︀
𝑠′𝑖, 𝑠

′
𝑗

]︀
= 0,

[︀
𝑠′′𝑖 , 𝑠

′′
𝑗

]︀
= 0, (D.15)

𝑠′𝑖𝑠
′′
𝑗 = e2i𝜁𝑠′′𝑗 𝑠

′
𝑖, 𝑠′𝑗𝑠

′′
𝑖 = e2i𝜁𝑠′′𝑖 𝑠

′
𝑗, 𝑠′𝑖𝑠

′′†
𝑗 = e−2i𝜁𝑠′′†𝑗 𝑠

′
𝑖, 𝑠′𝑗𝑠

′′†
𝑖 = e−2i𝜁𝑠′′†𝑖 𝑠

′
𝑗,

(D.16)

where

𝜁 ≡ 𝑒′𝑖𝑗 − 𝑒′′𝑖𝑗 = 𝑒′𝑗𝑖 − 𝑒′′𝑗𝑖 ̸= 0 (mod π). (D.17)

As 𝜁 ̸= 0 (mod π), there exists some 𝛼 ∈ R*
+ such that

{︀
𝑠′𝛼𝑖 , 𝑠

′′𝛼
𝑗

}︀
= 0,

{︀
𝑠′𝛼𝑗 , 𝑠

′′𝛼
𝑖

}︀
= 0, (D.18){︁

𝑠′𝛼𝑖 , 𝑠
′′†𝛼
𝑗

}︁
= 0,

{︁
𝑠′𝛼𝑗 , 𝑠

′′†𝛼
𝑖

}︁
= 0. (D.19)

To save on notation, we redefine all stabilizers to be given by their 𝛼 power, i.e.

𝑠𝛼 → 𝑠 (and similarly redefine the phases 𝜃′, 𝜃′′, 𝜑′, 𝜑′′ by their scaling by 𝛼). As

|𝜓1⟩ , |𝜓2⟩ are CV graph states, these rescaled operators are still stabilizers. We also

define:

𝑠𝑖 ≡ e−2i(𝜃′−𝜃′′)𝑠′𝑖𝑠
′′†
𝑖 , (D.20)

𝑠𝑗 ≡ e−2i(𝜑′−𝜑′′)𝑠′𝑗𝑠
′′†
𝑗 , (D.21)

which are stabilizers of |0⟩𝑞. Thus, we have constructed nine observables with con-

straints satisfying those of a Mermin–Peres magic square (see Table D.1 for an exam-
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𝑠′𝑖 𝑠′𝑗 𝑠′†𝑖 𝑠
′†
𝑗

𝑠′′†𝑖 𝑠′′†𝑗 𝑠′′𝑖 𝑠
′′
𝑗

𝑠†𝑖 𝑠†𝑗 𝑠𝑖𝑠𝑗

Table D.1: The Mermin–Peres magic square of stabilizers of states mapping to the
same latent space under a locally Lipschitz map (with 𝜃′ = 𝜃′′ = 𝜑′ = 𝜑′′ = 0 for
simplicity). Stabilizers of |𝜓1⟩, |𝜓2⟩, and |0⟩𝑞 make up the three rows. All observables
in each row and column commute. Furthermore, the product of observables in each
row and column is the identity, except for the third column, which gives minus the
identity. See the main text for a special case of this magic square.

ple), a well-known proof of quantum contextuality [93].

Consider now the post-measurement states |𝜓′
1⟩ , |𝜓′

2⟩ of |𝜓1⟩ , |𝜓2⟩, respectively,

when 𝑠𝑖𝑠𝑗 is measured to be 1. By Table D.1, |𝜓′
1⟩ is stabilized by 𝑠′𝑖𝑠

′
𝑗 and 𝑠𝑖𝑠𝑗;

furthermore, |𝜓′′
2⟩ is stabilized by 𝑠′′𝑖 𝑠′′𝑗 and 𝑠𝑖𝑠𝑗, and therefore is also stabilized by

𝑠𝑖𝑠𝑗𝑠
′′
𝑖 𝑠

′′
𝑗 = −e−2i(𝜃′−𝜃′′+𝜑′−𝜑′′)𝑠′𝑖𝑠

′
𝑗. (D.22)

If

𝜃′ − 𝜃′′ + 𝜑′ − 𝜑′′ ̸= π

2
(mod π), (D.23)

we have that |𝜓′
1⟩ and |𝜓′

2⟩ are orthogonal. If it is congruent to π
2
(mod π), then

either 𝜃′ − 𝜃′′ ̸= 0 (mod π) or 𝜑′ − 𝜑′′ ̸= 0 (mod π) (or both). Assume the latter

WLOG (the former case is the same with 𝜑→ 𝜃 and 𝑗 → 𝑖), and instead consider the

post-measurement states |𝜓′
1⟩ , |𝜓′

2⟩ of |𝜓1⟩ , |𝜓2⟩, respectively, when 𝑠𝑗 is measured to

be 1. By Table D.1, |𝜓′
1⟩ is stabilized by 𝑠′𝑗 and 𝑠𝑗; furthermore, |𝜓′′

2⟩ is stabilized by

𝑠′′𝑗 and 𝑠𝑗, and therefore is also stabilized by

𝑠𝑗𝑠
′′
𝑗 = e−2i(𝜑′−𝜑′′)𝑠′𝑗. (D.24)

Thus, again, |𝜓′
1⟩ and |𝜓′

2⟩ are orthogonal.

We now consider the locally Lipschitz online learner, with structure given by

Figure D-1(a). We assume that the learner is deterministic, and discuss the extension

to randomized models at the end of this Section.
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Online neural sequence models at time step 𝑖 map an input token 𝑥𝑖 and a latent

vector 𝜆𝑖−1 to an output token 𝑚𝑖 and a new latent vector 𝜆𝑖. After 𝑛 steps, then,

we can consider the online model as a locally Lipschitz map:

ℱ𝑟 :
(︀
R2𝑛
)︀𝑛 → 𝐿× R𝑛, (D.25)

where 𝐿 is a locally Lipschitz latent manifold and 𝑟 is a random vector such that, for

any 𝑟, ℱ𝑟 is deterministic. This consideration of ℱ𝑟 as a deterministic function of

a random 𝑟 is typically the implementation of stochastic learners, such as generative

adversarial networks (GANs) [248] and flow-based models [249]. This also includes

implementations of stochastic simulation algorithms such as Wigner function simula-

tion [85]. As for each 𝑟, there exists an input sequence such that any classical model

with dim (𝐿) < 𝑛(𝑛−3)
2

deterministically outputs a measurement sequence inconsistent

with quantum mechanics, our results still hold for these classes of random models.

Due to this, in the following, we take the 𝑟 dependence to be implicit.

With the preliminaries in place, we now prove our expressivity separation.

Theorem D.2 (Online stabilizer measurement translation lower bound). Consider

an online model with locally Lipschitz latent manifold 𝐿 and locally Lipschitz map ℱ as

described in Equation (D.25). If dim (𝐿) < 𝑛(𝑛−3)
2

, this model cannot achieve a finite

backward empirical cross entropy on the (2, 𝑛) stabilizer measurement translation task.

Proof. Consider 𝐾 ⊂ (R2𝑛)
𝑛, with elements of the form:

𝑄 =
(︁
𝐵 +𝐻/2 ‖𝐵‖F 𝐼𝑛

)︁
; (D.26)

here, ‖𝐵‖F is the Frobenius norm of 𝐵, and 𝐵 is an 𝑛 × 𝑛 hollow (zero diagonal

elements) symmetric matrix with entries bounded to be
[︀
−1

4
, 1
4

]︀
. 𝐻 is the fixed 𝑛×𝑛
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symmetric hollow matrix of ones, i.e.

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 · · · 1

1 0 · · · 1
...

... . . . ...

1 1 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.27)

It is obvious from this construction that 𝐾 is an 𝑛(𝑛−1)
2

-dimensional embedding of

a compact subspace of hollow symmetric matrices (with bounded entries and norm)

𝐵. Note that the states described by the measurement scenarios of points in 𝐾

are exactly CV graph states without loops (with bounded weight edges, as 𝐾 is

compact) and, depending on the measurement results, perhaps overall phases on the

stabilizers. To see this, note that the symmetric constraint on 𝐵 ensures that the

symplectic product of any two rows of 𝑄 is zero; furthermore, the final 𝑛 columns of

𝑄 are linearly independent for all 𝐵 ̸= 0, and the first 𝑛 columns for 𝐵 = 0 due to

the shift by 𝐻 . Thus, all points in 𝐾 are full row rank, and the rows of 𝑄 completely

determine the CV stabilizer state, up to phases given by the measurement results

of these operators. Furthermore, as 𝐵 and 𝐻 are hollow, the CV graph state 𝑄

describes has no loops. Also note that, up to independent rescalings of the rows of 𝑄,

different𝑄 correspond to different graph states. We assume WLOG that the Jacobian

of ℱ attains its maximum rank at 𝐵 = 0 (that is, the squeezed state |0⟩𝑞); this can

always be done by implicitly transforming the basis of inputs to the model (i.e. by

appropriately relabeling points in (R2𝑛)
𝑛+2), and then considering 𝐾 as previously

defined in this new basis.

We will proceed as follows. First, we will show that when dim (𝐿) is sufficiently

small, ℱ must map three distinct CV graph states described by different 𝑄 to the

same point in latent space. Then, we will use Lemma D.1 to show that the stabilizers

of these states exhibit quantum contextuality (independent of the associated 𝑛 mea-

surement results), and give rise to a distinguishing measurement sequence. Thus, by

considering measurement sequences of length 𝑛+2 that include these three𝑄 and the
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length two distinguishing measurement sequence, one of the final two measurement

outcomes must be incorrect. This implies that there is an infinite backward empirical

cross entropy on any finite set containing these three measurement sequences.

Let us begin by showing that ℱ|𝐾 (i.e. the locally Lipschitz map that is ℱ

restricted to 𝐾) must map three nontrivially distinct 𝑄 (i.e. three distinct CV graph

states) to the same point in latent space when dim (𝐿) is sufficiently small. By the

constant rank theorem and the local Lipschitzness of ℱ|𝐾 , ℱ|𝐾 is not injective for

dim (𝐿) < dim (𝐾) =
𝑛 (𝑛− 1)

2
. (D.28)

In particular, in a sufficiently small neighborhood of 𝐵 = 0 (where the Jacobian of

ℱ|𝐾 attains its maximal rank), there exist local coordinates �̃� of 𝐾 and 𝐿 such that

ℱ|𝐾
(︁
�̃�1, . . . , �̃�𝑛(𝑛−1)

2

)︁
= (�̃�1, . . . , �̃�𝑙, 0, . . . , 0) (D.29)

for some 𝑙 ≤ dim (𝐿) < 𝑛(𝑛−1)
2

[169]. WLOG, we identify �̃� = 0 with 𝐵 = 0, which is

the state infinitely squeezed in all 𝑞𝑖. We will call 𝐶 the fiber with local coordinates

�̃� =
(︁
0, . . . , 0, �̃�𝑙+1, . . . , �̃�𝑛(𝑛−1)

2

)︁
, (D.30)

which is of dimension at least

𝛥 ≡ 𝑛 (𝑛− 1)

2
− dim (𝐿) ≥ 1. (D.31)

By construction, all points in 𝐶—including 𝐵 = 0—map to the same point 𝑙 ∈ 𝐿

under ℱ|𝐾 . We now assume that dim (𝐿) < 𝑛(𝑛−3)
2

such that 𝛥 ≥ 𝑛+ 1.

Now fix 𝐵 = 0 and 𝐵′ ̸= 𝐵 in 𝐶. As described previously, 𝑄 (and thus 𝐵)

completely determines a CV graph state after 𝑛 measurements, up to independent

rescalings of the rows of 𝑄 (and the measurement results). As the dimension of the

space of points that differ (modulo π) from 𝐵′ +𝐻/2 by just a scaling factor in

each row is at most 𝑛, because 𝛥 ≥ 𝑛 + 1 we must have that there exists another
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𝐵′′ ̸= 𝐵,𝐵′ describing a distinct CV graph state. Therefore, by Lemma D.1, we have

that there exists a distinguishing measurement sequence for these three states. Note

that as Lemma D.1 does not depend on the phases of the CV stabilizers, the existence

of this distinguishing measurement holds true regardless of what the measurement

results are (i.e. independently from what the model outputs for the first 𝑛 tokens in

the decoded sequence). As after 𝑛 tokens all three sequences map to the same point in

latent space in the model, and as they share a distinguishing measurement sequence,

the model must obtain an infinite backward empirical cross entropy on these three

input sequences when followed by the distinguishing measurement sequence.

D.2.2 A CV Gottesman–Knill Lower Bound

We now show that our results can be reformulated as a memory lower bound on

the classical simulation of stabilizer measurement scenarios. In practice, using finite

resources (i.e. at finite precision), any classical ontological model simulating 𝑝 (𝑦 | 𝑥)

can only be evaluated at a finite number of 𝑥. We now show that any locally Lipschitz

interpolation of such a model to real 𝑥 cannot accurately simulate Gaussian operations

on an initial GKP state. This includes, for instance, any polynomial interpolation

(which always exists).

Corollary D.3 (CV Gottesman–Knill lower bound). Consider a classical ontological

model 𝑝 (𝑦 | 𝑥) with a latent space of dimension less than 𝑛(𝑛−3)
2

, simulating (𝑘, 𝑛)

stabilizer measurement translation with 𝑘 ≥ 2. Assume that this ontological model

is defined at a finite number of 𝑥. There exists a locally Lipschitz interpolation of

this model to all 𝑥. Furthermore, no locally Lipschitz interpolation of this model can

faithfully perform stabilizer measurement translation at all 𝑥.

Proof. As there exists a polynomial interpolation of 𝑝, and as all polynomials of finite

degree are locally Lipschitz, there exists a locally Lipschitz interpolation of this model

to all 𝑥. Furthermore, no locally Lipschitz interpolation of this model can faithfully

perform stabilizer measurement translation by Theorem D.2, as the composition of

locally Lipschitz functions is locally Lipschitz.

213



D.2.3 Expressivity Separation for Encoder-Decoder Models

Though online sequence models are perhaps conceptually the simplest as they directly

map input tokens to output tokens, in practice encoder-decoder models outperform

them [84, 89]. We now show that no encoder-decoder model with a locally Lipschitz

encoder (and an additional technical assumption) can perform stabilizer measurement

translation to finite backward empirical cross entropy. The proof will be similar to

that of Theorem D.2; however, as the model can see the entire input sequence at

once, we do not directly have the freedom to choose the distinguishing measurement

sequence as in Theorem D.2. Instead, we will require an input sequence of length

quadratic in 𝑛 (and our additional technical assumption) to force the distinguishing

measurement sequence. Note that, as the memory of the contextual learner is in-

dependent of the sequence length, this new sequence length has no impact on the

memory separation.

We consider an encoder-decoder model with structure given by Figure D-1(b).

The encoder of such a model can be considered a locally Lipschitz map

ℰ𝑟 :
(︀
R2𝑛
)︀𝑛2

→ 𝐿 (D.32)

to some locally Lipschitz latent manifold 𝐿. As in Section D.2.1, 𝑟 is a random vector

such that, for any 𝑟, ℰ𝑟 is deterministic. We once again make the 𝑟 dependence

implicit in the following.

For technical reasons, we slightly change the definition of the (𝑘, 𝑛) stabilizer mea-

surement translation task, where now the final 𝑘 measurement descriptions instead

describe the measurements of the operators:

𝑠𝑖 = exp

(︃
i

𝑛∑︁
𝑗=1

1
[︀
𝑠𝑞𝑖𝑗 ̸= 0

]︀
𝑠𝑞𝑖𝑗

𝑞𝑗 + i
𝑛∑︁
𝑗=1

1
[︀
𝑠𝑝𝑖𝑗 ̸= 0

]︀
𝑠𝑝𝑖𝑗

𝑝𝑗

)︃
, (D.33)

where we define 1[𝑥 ̸=0]
𝑥

to be zero when 𝑥 = 0. We will call this the modified (𝑘, 𝑛)

stabilizer measurement translation task. This can obviously still be performed per-

fectly with a CRNN of model size 𝑛, by either changing the parameters of the phase
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estimation circuit used in the CRNN to be given by 1[𝑥𝑖𝑗 ̸=0]

𝑥𝑖𝑗
, or more formally by

introducing a quantum circuit computing 1[𝑥𝑖𝑗 ̸=0]

𝑥𝑖𝑗
on which these gates control.

We now discuss our additional technical assumption. Defining the subspace 𝑅 of

inputs as in the proof of Theorem D.4, we assume that the Jacobian of the encoder

restricted to 𝑅 attains its maximal rank at some point of the form (𝑄,0) ∈ 𝑅.

A sufficient condition for this is requiring that some point of the form (𝑄,0) is

not a critical point of ℰ|𝑅; this condition is satisfied by generic ℰ when dim (𝐿) <

𝑛(𝑛−3)
2

, and also by models with encoders constrained to be submersions (such as

encoders composed of linear transformations and tanh or sigmoid nonlinearities). In

fact, when the encoder is constrained to be a submersion, it is easy to see from

the proof of Theorem D.4 that the separation still holds on the unmodified (𝑘, 𝑛)

stabilizer measurement translation task, as all properties we use that hold locally

then hold globally. Any one of these conditions is sufficient, and needed for our proof

technique to be able to analyze any neighborhood of the non-Gaussian measurements

we consider.

Theorem D.4 (Encoder-decoder stabilizer measurement translation lower bound).

Consider an encoder-decoder model with locally Lipschitz latent manifold 𝐿. Let ℰ

be the associated locally Lipschitz encoder function, as defined in Equation (D.32),

and assume that the Jacobian of the map ℰ|𝑅 (where the subspace 𝑅 is defined below)

attains its maximal rank at some point of the form (𝑄,0) ∈ 𝑅. If dim (𝐿) < 𝑛(𝑛−3)
2

,

this model cannot achieve a finite backward empirical cross entropy on the modified

(𝑛2 − 𝑛, 𝑛) stabilizer measurement translation task.

Proof. Consider 𝑅 ≡ 𝐾 × (R2𝑛)
𝑛2−𝑛 ⊂ (R2𝑛)

𝑛 × (R2𝑛)
𝑛2−𝑛 ∼= (R2𝑛)

𝑛2

with elements

(𝑄,𝑃 ) of the following form:

1. 𝑄 ∈ 𝐾 is given by rows of matrices of the form:

𝑄 =
(︁
𝐵 +𝐻/2 ‖𝐵‖F 𝐼𝑛

)︁
; (D.34)

here, ‖𝐵‖F is the Frobenius norm of 𝐵, and 𝐵 is a hollow symmetric matrix

with entries bounded to be
[︀
−1

4
, 1
4

]︀
. 𝐻 is the fixed symmetric hollow matrix of
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ones, i.e.

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 · · · 1

1 0 · · · 1
...

... . . . ...

1 1 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (D.35)

2. 𝑃 ∈ (R2𝑛)
𝑛2−𝑛 is an 𝑛2 − 𝑛× 2𝑛 matrix that is arbitrary.

It is obvious from this construction that 𝐾 is an 𝑛(𝑛−1)
2

-dimensional embedding of a

compact subspace of hollow symmetric matrices (with bounded entries and norm) 𝐵.

We assume WLOG that the Jacobian of ℰ|𝐾 (that is, the locally Lipschitz restriction

of ℰ to points of the form (𝑄,0) ∈ 𝑅) attains its maximum rank at 𝐵 = 0 (that is,

the squeezed state |0⟩𝑞); this can always be done by implicitly transforming the basis

of the inputs to the model (i.e. by appropriately relabeling points in (R2𝑛)
𝑛2

), and

then considering 𝐾 as previously defined in this new basis.

We now give some intuition behind points in the smooth manifold (with boundary)

𝑅. At fixed 𝑃 = 0, the states described by the measurement scenarios of points in

𝑅 are exactly CV graph states without loops (with bounded weight edges, as 𝐾 is

compact) and, depending on the measurement results, perhaps overall phases on the

stabilizers. To see this, note that the symmetric constraint on 𝐵 ensures that the

symplectic product of any two rows of 𝑄 is zero; furthermore, the final 𝑛 columns of

𝑄 are linearly independent for all 𝐵 ̸= 0, and the first 𝑛 columns for 𝐵 = 0 due to

the shift by 𝐻 . Thus, all points in 𝐾 are full row rank, and the rows of 𝑄 completely

determine the CV stabilizer state, up to phases given by the measurement results of

these operators (which are not yet determined at the time of encoding). Furthermore,

as 𝐵 and𝐻 are hollow, the CV graph state 𝑄 describes has no loops. Also note that,

up to trivial rescalings of the rows of 𝑄, different 𝑄 correspond to different graph

states. At general 𝑃 , the state after the first 𝑛 measurements is still a CV graph state

completely determined by 𝑄 (up to phases from the first 𝑛 measurement results);

different 𝑃 correspond to different (non-Gaussian) measurement scenarios given an

initial CV graph state determined by 𝑄 (and the first 𝑛 measurement results).
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We will proceed as follows. First, we will show that as dim (𝐿) < 𝑛(𝑛−3)
2

, ℰ must

map three distinct CV graph states described by different 𝑄 to the same point in

latent space when 𝑃 = 0. Then, we will use Lemma D.1 to show that the stabilizers

of these states exhibit quantum contextuality (independent of the associated 𝑛 mea-

surement results), and give rise to a distinguishing measurement sequence. Finally,

we will show that one can locally find 𝑃 ̸= 0 mapping to the same point in latent

space that contains this distinguishing measurement sequence, forcing an incorrect

measurement outcome on one of these states. This gives rise to an infinite backward

empirical cross entropy on this task.

Let us begin by showing that ℰ|𝑅 (i.e. the locally Lipschitz map that is ℰ restricted

to 𝑅) must map three nontrivially distinct 𝑄 (i.e. three distinct CV graph states)

to the same point in latent space. We will consider the restriction ℰ|𝐾 , which is the

(locally Lipschitz) restriction of ℰ to points of the form (𝑄,0) ∈ 𝑅. We will show

that this map is not injective for small enough dim (𝐿). As ℰ|𝑅 lifts to ℰ|𝐾 , this will

show that three distinct 𝑄 map to the same point in latent space under ℰ|𝑅. This is

similar to the construction for ℱ|𝐾 in the proof Theorem D.2; we repeat it here for

completeness.

By the constant rank theorem and the local Lipschitzness of ℰ|𝐾 , ℰ|𝐾 is not

injective for

dim (𝐿) < dim (𝐾) =
𝑛 (𝑛− 1)

2
. (D.36)

In particular, in a sufficiently small neighborhood of 𝐵 = 0 (where the Jacobian of

ℰ|𝐾 attains its maximal rank), there exist local coordinates �̃� of 𝐾 and 𝐿 such that

ℰ|𝐾
(︁
�̃�1, . . . , �̃�𝑛(𝑛−1)

2

)︁
= (�̃�1, . . . , �̃�𝑙, 0, . . . , 0) (D.37)

for some 𝑙 ≤ dim (𝐿) < 𝑛(𝑛−1)
2

[169]. WLOG, we identify �̃� = 0 with 𝐵 = 0, which is

the state infinitely squeezed in all 𝑞𝑖. We will call 𝐶 the fiber with local coordinates

�̃� =
(︁
0, . . . , 0, �̃�𝑙+1, . . . , �̃�𝑛(𝑛−1)

2

)︁
, (D.38)
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which is of dimension at least

𝛥 ≡ 𝑛 (𝑛− 1)

2
− dim (𝐿) ≥ 1. (D.39)

By construction, all points in 𝐶—including 𝐵 = 0—map to the same point 𝑙 ∈ 𝐿

under ℰ|𝐾 . We now assume that dim (𝐿) < 𝑛(𝑛−3)
2

such that 𝛥 ≥ 𝑛+ 1.

Now fix 𝐵 = 0 and 𝐵′ ̸= 𝐵 in 𝐶. As described previously, 𝑄 (and thus 𝐵)

completely determines a CV graph state after 𝑛 measurements, up to trivial rescalings

of the rows of 𝑄 and the measurement results. As the dimension of the space of

points that differ (modulo π) from 𝐵′ +𝐻/2 by just a scaling factor in each row is

at most 𝑛, because 𝛥 ≥ 𝑛 + 1 we must have that there exists another 𝐵′′ ̸= 𝐵,𝐵′

describing a distinct CV graph state. Therefore, by Lemma D.1, we have that there

exists a distinguishing measurement 𝑠 that is a stabilizer of the state corresponding to

𝐵 = 0. Note that as Lemma D.1 does not depend on the phases of the CV stabilizers,

the existence of this distinguishing measurement holds true regardless of what the

measurement results are (i.e. independently from what the model outputs for the

first 𝑛 tokens in the decoded sequence). Depending on these measurement results,

however, the distinguishing measurement could be one of three different measurement

sequences, depending on the validity of Equation (D.23).

We have now shown that there exists (𝑄𝑖,0) for 1 ≤ 𝑖 ≤ 3 such that all 𝑄𝑖

are distinct, and that there exists a measurement of a stabilizer of 𝑄1 such that the

post-measurement states of 𝑄2, 𝑄3 are orthogonal. We will now show that there

exist 𝑃𝑖 such that (𝑄𝑖,𝑃𝑖) also maps to the same point in latent space, and 𝑃𝑖 is a

distinguishing measurement sequence. This will give the final separation.

First, note that one can find a 𝑃𝑖 given an arbitrarily small bound on its norm

that encodes a distinguishing measurement sequence; this is because, in the proof of

Lemma D.1, one can repeatedly take 𝛼→ 3𝛼 to yield a distinguishing measurement

sequence using arbitrarily large stabilizer powers, which corresponds to arbitrarily

small 𝑃𝑖 in the modified stabilizer measurement translation task. Now, consider ℰ|𝑆,

defined as the restriction of ℰ to points of the form (𝑄𝑖,𝑃 ) ∈ 𝑅 for any of the
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fixed 𝑄𝑖 ∈ 𝐾, where 𝑃 is zero in all rows except for the last 𝑆 rows. Initially, let

𝑆 = 𝑆1 = 2; that is, 𝑃 is restricted to be all zero except for its final two rows,

which are allowed to vary. Let 𝑑𝑆1 be the dimension of the image of ℰ|𝑆. If 𝑑𝑆1 = 0,

then ℰ is locally independent from the final two rows of 𝑃 at 𝑄𝑖,𝑚𝑖 when all other

rows are fixed to be zero, and we are done as we can set these two rows to be the

distinguishing measurement sequence. If 𝑑𝑆1 > 0, then consider 𝑆 = 𝑆2 = 4. If

𝑑𝑆2 = 𝑑𝑆1 , then for all local choices of the third and fourth final rows, there exists

a choice of the final two rows such that ℰ is constant. Then, all of the possible

distinguishing measurement scenarios can be encoded into the third and fourth final

rows of 𝑃 (with the appropriate choice of final two rows) and map to the same point

in latent space as when 𝑃 = 0, yielding the appropriate distinguishing measurement

sequence.

If 𝑑𝑆2 > 𝑑𝑆1 instead, we are able to iterate this procedure once more. As dim (𝐿) <

𝑛(𝑛−3)
2

, eventually this iteration will stop with 𝑑𝑆𝑖
= 𝑑𝑆𝑖−1

, and we have the freedom

to set two rows of 𝑃 to be the distinguishing measurement sequence and map to the

same point in latent space as 𝑃 = 0.

We have thus shown that the encoder-decoder model must map three points in 𝑅

that give rise to a distinguishing measurement scenario to the same point in latent

space. That is, when dim (𝐿) < 𝑛(𝑛−3)
2

, there exists input sequences 𝑠𝑖 that map to

the same point in the latent space of the model that must give rise to orthogonal

measurement results. As they are mapped to the same point in the latent space of

the model, the model must output the same translation for all of them, giving at least

one incorrect result. Thus, the backward empirical cross entropy when translating

one of these 𝑠𝑖 must be infinite.
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D.3 Considerations for Experimental Implementa-

tions

We have shown in Section D.2 that CRNNs are more expressive than both online

and encoder-decoder sequence models, assuming a locally Lipschitz condition on the

models (and an additional technical condition on the latter class of models). Though

CRNNs only utilize Gaussian operations—which are believed to be much simpler

to implement that universal CV quantum computing [161]—our model also utilizes

non-Gaussian ancilla states to perform non-Gaussian measurements. As we formally

compare our quantum model with infinite precision classical models, we have a formal

requirement for GKP ancilla states with infinite homodyne precision measurements

to show a separation.

Of course, in practice, classical neural sequence models are finite precision. In

particular, tensor processing unit (TPU) implementations of classical neural net-

works often use as imprecise as 8-bit arithmetic. We therefore expect that one can

circumvent the formal need for GKP states to use qubit ancilla states to perform

phase estimation of the CV stabilizer operators to a precision matching that of clas-

sical neural networks. There are proposals for engineering the required longitudinal

photon/qubit interactions using circuit quantum electrodynamics (QED) [250, 251].

As similar couplings are already used in proposals for the generation of approximate

GKP states [252], this direct approach is likely more experimentally feasible. Fur-

thermore, such a finite precision implementation may actually gain expressive power

compared to infinite precision CRNNs. Assuming the back action of the finite pre-

cision measurement yields a finitely squeezed state in the CRNN, with this one can

construct a model capable of universal CV quantum computation [163, 164]. This

also holds when the initial state of the model is taken to be the vacuum state (or any

other finitely squeezed Gaussian state). This suggests a potential superpolynomial

advantage in the expressive power and the time complexity of inference when this

model is implemented at finite precision.

If one wishes to avoid coupling to qubits, we make the bolder conjecture that
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any non-Gaussian ancilla state is enough to yield a separation. Our intuition for this

comes from recent work [170, 171] demonstrating that non-Gaussian operations are

equivalent to the presence of quantum contextuality. As the presence of quantum

contextuality is the source of the separations in our proofs, this gives evidence that

one could use a more experimentally feasible non-Gaussian ancilla state than a GKP

state—such as a photon subtracted state [253]—and achieve similar results.

D.4 Classical Simulation of Gaussian Operations and

GKP States

We now describe the high level strategy of classically simulating both Gaussian op-

erations applied to Gaussian states, and (restricted) Gaussian operations applied to

GKP states. The former strategy will roughly follow that given in Reference [254],

and the latter that given in Reference [255]. These will be the building blocks of

the Gaussian RNN and contextual RNN cells we numerically test in the main text;

we give the details of the full architectures, including the classical architectures, in

Section D.5.

D.4.1 Gaussian States

First, we describe the simulation of Gaussian operations performed on Gaussian

states. It is well known that any 𝑁 mode Gaussian pure state can be created from

the ground state of 𝑁 harmonic oscillators with unitary operations ei𝑓(𝑞,𝑝), where

𝑓 (𝑞,𝑝) are at most quadratic in terms of the quadrature operators 𝑞 and 𝑝. By

stacking 𝑞 and 𝑝 together, we call �̂� = (𝑞,𝑝)⊺ the quadrature operator. The Heisen-

berg evolution of the quadrature operator under a Gaussian unitary operator 𝑅 is in

general:

𝑥′ = 𝑅†�̂�𝑅 = 𝑆�̂�+ 𝑐, (D.40)

where 𝑆 is a symplectic matrix of c-numbers, and 𝑐 = (𝑐𝑞, 𝑐𝑝)
⊺ is a vector of c-

numbers denoting the mode center shift. There are various ways to decompose a

221



symplectic matrix 𝑆; WLOG (as discussed in Reference [254]), we will consider sym-

plectic matrices of the form:

𝑆 =

⎛⎝ 𝑈−1/2 0

𝑉 𝑈−1/2 𝑈 1/2

⎞⎠ , (D.41)

where 𝑈 and 𝑉 are both real symmetric matrices. In addition, 𝑈 is positive definite,

i.e. 𝑈 = 𝑈 ⊺ > 0. If the covariance matrix of the 𝑁 mode ground state is

cov (�̂�0) =
1

2
𝐼, (D.42)

then the covariance matrix of the transformed Gaussian state is:

𝛴 = cov (�̂�) = cov (𝑆�̂�0) =
1

2

⟨{︁
(𝑆�̂�0)

† , (𝑆�̂�0)
⊺
}︁⟩

=
1

2
𝑆𝑆⊺ =

1

2

⎛⎝ 𝑈−1 𝑈−1𝑉

𝑉 𝑈−1 𝑈 + 𝑉 𝑈−1𝑉

⎞⎠ .
(D.43)

We can also write down its wavefunction in position space as:

𝜓𝑍,𝑐 (𝑞) = 𝜋−𝑁/4 (det (𝑈 ))1/4 exp

(︂
−1

2
(𝑞 − 𝑐𝑞)⊺ (𝑈 − i𝑉 ) (𝑞 − 𝑐𝑞)

)︂
= 𝜋−𝑁/4 (det (𝑈))1/4 exp

(︂
i

2
(𝑞 − 𝑐𝑞)⊺𝑍 (𝑞 − 𝑐𝑞)

)︂
,

(D.44)

where 𝑞 and 𝑐𝑞 are c-number column vectors, and 𝑍 = 𝑉 +i𝑈 is a complex symmetric

matrix. We can interpret 𝑍 as the adjacency matrix for an undirected graph with

complex-valued edge weights. Therefore, any Gaussian pure states can be interpreted

as a Gaussian graph states with complex-valued weights on the graph edge. As

Gaussian states are uniquely identified by the linear combinations of position and

momentum operators that nullify them [256], we can consider what the nullifiers are
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for the CV graph state defined by 𝑍 and 𝑐 = (𝑐𝑞, 𝑐𝑝)
⊺:

(𝑝−𝑍𝑞 +𝑍𝑐𝑞 − 𝑐𝑝) |𝜓𝑍,𝑐⟩ =(𝑝−𝑍𝑞 +𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=𝑅𝑍,𝑐𝑅
†
𝑍,𝑐 (𝑝−𝑍𝑞 +𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=𝑅𝑍,𝑐

(︁
−𝑍 𝐼

)︁
(𝑆𝑍�̂�+ 𝑐) |0⟩+ (𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=𝑅𝑍,𝑐

(︁
−𝑍 𝐼

)︁⎛⎝ 𝑈−1/2𝑞 + 𝑐𝑞

𝑉 𝑈−1/2𝑞 +𝑈 1/2𝑝+ 𝑐𝑝

⎞⎠ |0⟩
+ (𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=𝑅𝑍,𝑐

(︀
−i𝑈 1/2𝑞 +𝑈 1/2𝑝−𝑍𝑐𝑞 + 𝑐𝑝

)︀
|0⟩

+ (𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=𝑅𝑍,𝑐 (−𝑍𝑐𝑞 + 𝑐𝑝) |0⟩+ (𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=(−𝑍𝑐𝑞 + 𝑐𝑝)𝑅𝑍,𝑐 |0⟩+ (𝑍𝑐𝑞 − 𝑐𝑝)𝑅𝑍,𝑐 |0⟩

=0.

(D.45)

In the second to last line, we have use the fact that −𝑍𝑐𝑞 + 𝑐𝑝 is a c-number vector,

which commutes with 𝑅𝑍,𝑐. In addition, we also use the fact that 𝑍 = 𝑉 + i𝑈 , and

(−i𝑞 + 𝑝) |0⟩ = −i
√
2�̂� |0⟩ = 0. Therefore, the Gaussian graph state with complex

adjacency matrix 𝑍 and mode shift center 𝑐 has complex nullifiers:

(𝑝− 𝑐𝑝 −𝑍 (𝑞 − 𝑐𝑞)) |𝜓𝑍,𝑐⟩ = 0. (D.46)

We now restrict to the case 𝑉 = 0 and 𝑐𝑝 = 0, which are the class of states we

consider in our numerical experiments. Then, the nullifiers are of the form:

(𝑝− i𝑈𝑞 + i𝑈𝑐𝑞) |𝜓𝑍,𝑐⟩ = 0. (D.47)

We also restrict to symplectic transformations of the quadratures of the form:

𝑆 =

⎛⎝𝑊 ⊺ 0

0 𝑊−1

⎞⎠ , (D.48)
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where𝑊 is some assumed invertible matrix. We restrict to operations of this form to

more efficiently allow for the classical simulation of the contextual RNN using Gaus-

sian operations of an identical form, as discussed in Reference [255] and Section D.4.2.

After performing the quantum operation described by such a symplectic matrix, the

nullifier for the whole system is updated as (𝑊−1𝑝− i𝑈𝑊 ⊺𝑞 + i𝑈𝑐𝑞) |𝜓⟩ = 0, which

is equivalent to (𝑝− i𝑊𝑈𝑊 ⊺𝑞 + i𝑊𝑈𝑐𝑞) |𝜓⟩ = 0. Homodyne detection of the po-

sition quadrature on 𝑚 qumodes is then, in general, a multivariate Gaussian random

variable which is centered at 𝛱𝑌𝑊
−1⊺𝑐𝑞 with variance 𝛱𝑌𝑈

−1𝛱⊺
𝑌 , where 𝛱𝑌 is

the projection operator onto the subspace of the 𝑚 qumodes being measured. To

make the training of our Gaussian models more stable—and to maintain simulability

with GKP input states, as is done in Section D.4.2—we assume in our numerical

simulations that there is an implicit large scaling for 𝑈 , 𝑐𝑞 such that this variance

is small. After the measurement, the hidden state at 𝑖th step is updated to a gen-

eralized graph state with adjacency matrix 𝛱𝐻𝑈𝛱
⊺
𝐻 and mode shift 𝛱𝐻𝑊

−1⊺𝑐𝑞,

where 𝛱𝐻 is the projection operator onto the subspace of the latent 𝑛 qumodes.

D.4.2 Gaussian Operations on GKP States

Our methods for the simulation of (restricted) Gaussian operations on GKP states

are similar to the methods used by Reference [255]. We restrict to (unnormalized)

states of the form:

|𝜓⟩ =
∑︁
ℓ∈Z𝑛

|𝜓ℓ⟩ , (D.49)

where each |𝜓ℓ⟩ is a Gaussian state with nullifiers given by:

�̂�ℓ = 𝜖𝑝−𝑍 (𝑞 − 𝑐𝑞 −𝐿ℓ) . (D.50)

We assume 𝜖→ 0+, such that all |𝜓ℓ⟩ are approximately orthogonal. Time evolution

is simulated as in Section D.4.1, simultaneously for all |𝜓ℓ⟩. As all |𝜓ℓ⟩ are approxi-

mately orthogonal, measurement is simulated via choosing ℓ uniformly at random, and

performing the corresponding measurement. In principle, using many measurements
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(over multiple instances of the state), one can read out 𝐿 and 𝑐𝑞; these are the mea-

surement results we use in our numerical expirements, as described in Section D.5.2.

For any given measurement on a subset of the modes, the post-measurement state

on the remainder of the modes is just the uniform superposition over all ℓ consistent

with the resulting measurement outcome 𝑦.

To make this latter observation more concrete, assume after evolution under 𝑆 of

the form of Equation (D.48), the nullifiers of |𝜓ℓ⟩ are (see Section D.5):

�̂�ℓ = 𝜖𝑝−𝑊𝑍𝑊 ⊺
(︀
𝑞 −𝑊−1⊺𝑐𝑞 −𝑊−1⊺𝐿ℓ

)︀
, (D.51)

We wish to find all ℓ consistent with the position measurement result 𝑦 (in the limit

𝜖→ 0+); that is, all ℓ such that:

𝛱𝑌

(︀
𝑊−1⊺𝑐𝑞 +𝑊

−1⊺𝐿ℓ
)︀
= 𝑦, (D.52)

where 𝛱𝑌 is the projector onto the 𝑚 mode space being measured. Let 𝐻 label the

space of the other 𝑛 modes, and the projector onto this space 𝛱𝐻 . Writing (with the

assumptions that �̃�𝑌 𝑌 and 𝑊𝐻𝐻 are full rank):

𝑊−1⊺ =

⎛⎝�̃�𝐻𝐻 �̃�𝐻𝑌

�̃�𝑌 𝐻 �̃�𝑌 𝑌

⎞⎠ , (D.53)

𝑊 ⊺ =

⎛⎝𝑊𝐻𝐻 𝑊𝐻𝑌

𝑊𝑌 𝐻 𝑊𝑌 𝑌

⎞⎠ , (D.54)

ℓ =

⎛⎝ℓ𝐻
ℓ𝑌

⎞⎠ , (D.55)

and assuming 𝐿 (assumed full rank) is of the form:

𝐿 =

⎛⎝𝐿𝐻𝐻 0

0 𝐿𝑌 𝑌

⎞⎠ , (D.56)
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we find from Equation (D.52) that all ℓ consistent with the measurement result satisfy:

𝐿𝑌 𝑌 ℓ𝑌 = �̃�−1
𝑌 𝑌

(︁
𝑦 −𝛱𝑌𝑊

−1⊺𝑐𝑞 − �̃�𝑌 𝐻𝐿𝐻𝐻ℓ𝐻

)︁
. (D.57)

Assuming the entries of 𝐿𝑌 𝑌 are sufficiently small, up to any given machine precision

the ℓ𝐻 are in one-to-one correspondence with the ℓ consistent with the measurement

result. Furthermore, for all such ℓ:

𝛱𝐻

(︀
𝑊−1⊺𝑐𝑞 +𝑊

−1⊺𝐿ℓ
)︀
=𝛱𝐻𝑊

−1⊺𝑐𝑞 + �̃�𝐻𝐻𝐿𝐻𝐻ℓ𝐻 + �̃�𝐻𝑌𝐿𝑌 𝑌 ℓ𝑌

=𝛱𝐻𝑊
−1⊺𝑐𝑞 + �̃�𝐻𝐻𝐿𝐻𝐻ℓ𝐻

+ �̃�𝐻𝑌 �̃�
−1
𝑌 𝑌

(︁
𝑦 − 𝑐𝑞 − �̃�𝑌 𝐻𝐿𝐻𝐻ℓ𝐻

)︁
=𝛱𝐻𝑊

−1⊺𝑐𝑞 +
(︁
�̃�𝐻𝐻 − �̃�𝐻𝑌 �̃�

−1
𝑌 𝑌 �̃�𝑌 𝐻

)︁
𝐿𝐻𝐻ℓ𝐻

+ �̃�𝐻𝑌 �̃�
−1
𝑌 𝑌

(︀
𝑦 −𝛱𝑌𝑊

−1⊺𝑐𝑞
)︀

=𝛱𝐻𝑊
−1⊺𝑐𝑞 +𝑊

−1
𝐻𝐻𝐿𝐻𝐻ℓ𝐻

+ �̃�𝐻𝑌 �̃�
−1
𝑌 𝑌

(︀
𝑦 −𝛱𝑌𝑊

−1⊺𝑐𝑞
)︀
.

(D.58)

Using the appropriate displacement operator to remove the final term of Equa-

tion (D.58), then, yields the effective transformation:

𝑐𝑞 ↦→𝛱𝐻𝑊
−1⊺𝑐𝑞, (D.59)

𝐿 ↦→𝑊−1
𝐻𝐻𝐿𝐻𝐻 . (D.60)

D.5 Details of the Numerical Simulations

We now discuss the details of our numerical simulations. For all models, we studied

the performance in modeling a standard Spanish-to-English data set [156]. In the

main text, we considered the performance over five independent training runs for

each model. For each model and each 𝑛, the training set was taken to be a random

sample of 80% of the data set, and the test set 20%. Each model was trained for 80

epochs, with a batch size of 64. To map the words in this data set to vectors (taken to
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Figure D-3: An overview of the recurrent models we study. Each red box represents
the recurrent cell, and the variational parameters in the recurrent cells are shared
within the encoder and decoder. 𝜆0 is a random fixed hidden memory vector. In the
decoding phase, the output of each recurrent cell is also treated as the input for the
next recurrent cell.
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Figure D-4: One recurrent cell of the quantum recurrent architectures. Note that
the only trained part of the dense network at the input of each recurrent cell are
displacements in phase space acting on |𝜑𝑒⟩, in order to keep the number of trainable
parameters in line with the GRU RNN at the same 𝑛. |𝜑𝑒⟩ is a Gaussian state for
the Gaussian model, and a GKP state for the CRNN.
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also be of dimension 𝑛, the model dimension), we used the Keras [257] implementation

of word2vec (“TextVectorization”) adapted to the data, with a maximum vocabulary

size of 5000. The first 5000 most frequent words are mapped to distinct integers, and

other words are mapped to a unique token “[Unk].” At the beginning and end of each

sentence, we add unique “[Begin]” and “[End]” tokens. For the recurrent translation

models, such as the GRU RNN or the CRNN, we do not need to set the length of

the sentences. For the Transformer model, we set the sentence length to be 20 words.

If the sentence is shorter than 20 words, the additional token “[Pad]” is added to the

sentence. For the rare case when the sentence contains more than 20 words, additional

words are truncated. All networks were trained using Adam [128] (with a learning

rate of 10−3, 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−7), trained on the forward empirical

cross entropy (as the backward empirical cross entropy is difficult to train on).

D.5.1 Classical Sequence Models

We studied three standard classical sequence models in our numerical experiments: an

implementation of an orthogonal recurrent neural network [155], an implementation

of a network using gated recurrent units (GRU) [88], and an implementation of a

Transformer [89]. The first two networks were trained in a seq2seq configuration [84];

the models autoregressively map the input sequence to a latent space, which then

is autoregressively decoded. For the orthogonal recurrent neural network, we used

the implementation of Reference [155], with network capacity equal to the model

dimension. An illustration of these architectures is given in Figure D-3.

The Transformer models we considered follow the standard construction of Ref-

erence [89]. To fairly compare against the shallow RNN cells we consider, we used a

single Transformer encoder and decoder layer for each model. Our implementation

used a trained positional embedding with uniform initialization, and the encoders and

decoders used ReLU activations in the feedforward network layers, Glorot weight ini-

tialization, zero bias initialization, no dropout, and a single head. Each encoder and

decoder layer was followed by the layer normalization implementation of Keras [257]

with its default parameters. The final layer normalization of the decoder of each
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Transformer we considered was followed by a dense layer with a softmax activation

function.

D.5.2 Quantum Sequence Models

Based on the discussion in Section D.4, we simulated both the Gaussian RNN and

the contextual RNN described in the main text. The training and architecture of

these models were identical to those of the orthogonal neural network described in

Section D.5.1, other than the structure of each unit cell of the recurrent network.

Once again, Figure D-3 describes the overall architecture of the models, and Fig-

ure D-4 describes the recurrent cell of these models. For the Gaussian model, the

simulated homodyne position measurements are what we used for our cell outputs;

for the CRNN, we simulated the lattice (and position measurement) readout proce-

dure described at the end of Section D.4.2. The pseudocode for the cells of both are

given in Algorithm 1; for the Gaussian model, one takes 𝐽0,𝐾 = 0. By considering

the Gaussian RNN cell as a limit of the contextual RNN cell, and by not training 𝐾

or 𝐽0 in the contextual RNN, we were able to maintain identical parameter counts

for the two models. For the contextual RNN, 𝐽0 is fixed to the identity, and 𝐾 is the

result of an untrained dense layer ℎ applied to the cell input (with uniform Glorot

initialization and linear activation function, and biased such that 𝐾 has mean the

identity). Specializing to the notation of Algorithm 1: 𝑟 is similar. 𝑓 and 𝑔 are

similar, except with no bias.

D.5.3 Time Complexity

We now discuss the time complexity of implementing a CRNN, both as a quantum

model implemented on a quantum computer, and as a quantum-inspired classical

algorithm. On a quantum computer, each cell of the CRNN we consider in our proofs

of an expressivity separation can be implemented in depth O(𝑛), assuming access to

the fixed ancilla state |𝑎⟩ used for non-Gaussian measurement. This further decreases

to O(1) time if one assumes access to quantum fan-out [258]. More general Gaussian
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Algorithm 1: Contextual RNN Cell
Input: // cell inputs

𝑛× 𝑛 latent graph adjacency matrix 𝐴𝑖−1

𝑛× 𝑛 lattice 𝐽𝑖−1

𝑛× 1 stabilizer phases 𝛼𝑖−1

𝑚× 1 input 𝑥𝑖

// trainable parameters
(𝑛+𝑚)× (𝑛+𝑚) weight matrix 𝑊
Dense layers 𝑓 , 𝑔

// constants
Dense layers ℎ, 𝑟
Projectors onto latent and input spaces, respectively, 𝛱𝐻 ,𝛱𝑌

Output: 𝑛× 𝑛 latent graph adjacency matrix 𝐴𝑖

𝑛× 𝑛 lattice 𝐽𝑖
𝑛× 1 stabilizer phases 𝛼𝑖
𝑚× 1 measurement outcome 𝑦

begin
𝛼← 𝛼𝑖−1 +𝐴

−1
𝑖−1𝑓 (𝑥𝑖); // perform mode shifts using a general

function 𝑓

𝛽 ← 𝑔 (𝑥𝑖); // prepare the state associated with the input
register
𝐾 ← ℎ (𝑥𝑖);
𝑆 ← 𝑟 (𝑥𝑖);
𝐵 = 𝑆𝑆⊺; // ensure the adjacency matrix is positive
semidefinite

𝑈 ← 𝐴𝑖−1 ⊕𝐵; // consider the tensor product of the latent
and input states
𝛾 ← 𝛼⊕ 𝛽;
𝐿← 𝐽𝑖−1 ⊕𝐾;

𝑈 ←𝑊𝑈𝑊 ⊺; // transform the graph state by performing a
Gaussian operation
𝛾 ←𝑊−1⊺𝛾;
𝐿←𝑊−1⊺𝐿;

𝑦 ←𝛱𝑌𝐿,𝛱𝑌 𝛾; // read out the lattice and stabilizer phases

𝐴𝑖 ←𝛱𝐻𝑈𝛱
⊺
𝐻 ; // project out the measured register

𝐽𝑖 ← (𝛱𝐻𝑊𝛱⊺
𝐻)−1 𝐽𝑖−1;

𝛼𝑖 ←𝛱𝐻𝛾;
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operations can also be implemented in depth O(𝑛) utilizing a swap network [259].

Examining Algorithm 1, it is easy to see that our algorithm simulates inference on

a CRNN with model dimension 𝑛 with time complexity O(𝑛ω). Here, ω is the matrix

multiplication exponent, with best-known bounds 2 ≤ ω < 2.37286 [260]. Our re-

sults show that on certain tasks, such a CRNN of model dimension 𝑛 performs on par

with e.g. GRU RNNs with model dimension Ω (𝑛2), which performs inference in time

Ω (𝑛4) due to matrix-vector multiplications present in the model [88]. Thus, our clas-

sical simulation of CRNNs may be thought of as a quantum-inspired classical model

that, though it is not efficient as implementing a CRNN on a quantum computer, is

asymptotically more time efficient in inference and training than typical RNNs with

an 𝑛2-dimensional latent space. Of course, our Algorithm 1 relies on matrix inversion.

Though asymptotically matrix inversion takes time O(𝑛ω), unlike matrix multiplica-

tion it has poor GPU implementations and thus often is slow in practice. We leave

further investigation of the practical utility of these quantum-inspired classical models

to future work.

D.6 Supplementary Numerical Results

We now provide supplemental numerical experiments, comparing CRNNs with Trans-

formers [89] and a formulation of linear RNNs dubbed efficient unitary neural net-

works (EUNNs) [155].

The difficulty in comparing CRNNs and Transformers is that the effective memory

of a Transformer—in the language of Figure D-1(b), the dimension 𝑛 of the latent

space of the model—grows with the sentence length. Thus, we fixed a trained 𝑛 =

26 CRNN, and compare the performance of a Transformer at a variety of model

dimensions against this model. This also allows us to test for the Spanish-to-English

translation task whether, given a fixed performance target achieved by a CRNN of

model dimension 𝑛, a Transformer is only able to achieve the same target given a

memory dimension of 𝑛(𝑛−3)
2

; this is the separation we prove in Theorem D.4 on the

constructed translation task we consider there. We plot these results in Figure D-5,
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Figure D-5: The performances of an 𝑛 = 26 CRNN model and the Transformer mod-
els. The dashed line shows the converged forward empirical cross entropy (𝐿) for the
𝑛 = 26 CRNN model. The dimension of the latent space (labeled “Effective memory”)
of a Transformer is the model dimension multiplied by the length of the (padded) in-
put sentences. The red region labeled “𝑛 ≤ 26 × 23/2” is where the dimension of
the memory of the Transformer is at most 𝑛(𝑛−3)

2
, where 𝑛 is the model dimension of

the CRNN. We find that the Transformer models with dimensions roughly equal to
𝑛(𝑛−3)

2
achieve losses approximately equal to that of the CRNN.
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Figure D-6: The converged forward empirical cross entropy (𝐿) as a function of the
model dimensions 𝑛 for ORNNs, and the online models we considered in the main
text. We see that ORNNs are greatly outperformed by the other online models we
consider at the given task.
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where we indeed find that the performances of the Transformer models achieve that

of the 𝑛 = 26 CRNN when their memory is of dimension roughly 𝑛(𝑛−3)
2

.

We also consider the performance of EUNNs compared with CRNNs, as both

are linear models. We constrain the EUNN to be real—as in our simulations of

Gaussian models and CRNNs—and call the resulting model an orthogonal recurrent

neural network (ORNN), using the implementation from Reference [155]. We see in

Figure D-6 that CRNNs—and indeed, all of the online models we consider—greatly

outperformed ORNNs at a variety of model dimensions.
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