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Abstract

Two-dimensional solids often exhibit carrier bands with Berry phase in 𝑘 space, result-
ing in carriers behaving like spinning objects and generating orbital magnetization in
position space. This thesis explores the impact of orbital magnetization arising in this
way on the correlated electron phases. The effect of Berry phase is particularly inter-
esting for magnetic phases with spin and valley polarization originating from Stoner
instability, such as those seen in moiré graphene and other narrow-band systems.
Despite recent advances in the field, these questions remain largely unexplored, and
this thesis aims to address this gap in research. Interesting physics arises due to an
interplay between two distinct effects: geometric phases in 𝑘 space due to band Berry
curvature and geometric phases in position space arising for spin-polarized carriers
traversing a spin texture. This results in an interaction that we term the “chiral inter-
action,” a form of an emergent spin-orbital interaction that arises solely from electron
exchange, in the absence of microscopic spin-orbit couplings. The chiral interaction,
in contrast to microscopic spin-orbit coupling, respects the SU(2) spin rotation sym-
metry and exhibits other interesting characteristics. In this thesis, we establish the
existence of this interaction through a general symmetry argument and microscopic
calculations, and investigate its consequences. Specifically, we explore the emergence
of chiral edges that support spin excitations propagating without back-scattering and
the occurrence of skyrmions, the topologically protected particle-like objects stabi-
lized by the chiral interaction in the ground state of the system.

Thesis Supervisor: Leonid Levitov
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Overview

Stoner instability [165, 166, 167], explains ferromagnetism in itinerant electron sys-

tems through exchange interaction between band electrons that originatinges from

fermion exclusion. The instability arises when the exchange interaction exceeds the

carrier kinetic energy set by the conduction band dispersion and the carrier density.

Stoner magnetism is a broad framework that, over the years, has been applied to

a variety of different systems[32]. Unlike other forms of magnetism, Stoner mag-

netism occurs in a Fermi sea. As a result, it is uniquely sensitive to the details of the

conduction band and is tunable by carrier doping [32].

Recently a new class of materials was introduced, known as “quantum materials”,

which are a few atomic layers thin and host strongly interacting electrons [57]. The

recent addition to this family is twisted bilayers graphene [3], a system in which

band dispersion can be flattened to the point of kinetic energy becoming negligible

compared to the interaction energy. This favors Stoner magnetism, yielding a a variety

of magnetic phases that feature valley and spin polarization of different kinds[202,

203, 201, 35, 150].

A salient feature of quantum materials is Berry phase in 𝑘 space[187], a quantity

that describes the geometry of the bands and can be present in bands with non-

trivial topology as well as in topologically trivial bands that are lacking inversion
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symmetry or time-reversal symmetry. While the Berry phase is ubiquitous in quan-

tum materials, so far its role in Stoner physics escaped the attention of researchers

in the field. This motivates us to ask whether the Stoner magnetism is altered or

enriched if a conduction band is equipped with Berry curvature. Specifically, can

Berry curvature give rise to new interactions and generate new orders and new types

of low-energy excitations in Stoner magnets? These questions, besides being of funda-

mental interest for many-body theory, are further motivated by recent developments

in two-dimensional materials that allow engineering the band dispersion and tuning

the Berry curvature[202, 203, 201, 35, 150].

In this thesis, we will answer these questions in the affirmative. We will demon-

strate that the Berry curvature of the electron bands gives rise to a new chiral interac-

tion in Stoner-polarized bands, which couples the orbital and spin degrees of freedom.

This interaction can be viewed as an exotic form of spin-orbit interaction that arises in

Stoner bands equipped with Berry phase in the absence of a microscopic spin-orbital

interaction and can lead to a number of interesting effects. This thesis establishes

the chiral interactions microscopically as well as on general symmetry grounds and

explores their implications. In particular, it predicts that the chiral interaction gives

rise to unusual skyrmion ground states and leads to exotic excitations—spin waves

that propagate unidirectionally along the edge.

To provide context for the discussion, we will begin by reviewing Stoner mag-

netism in Section 1.2. We will describe the development of the theory of itinerant

ferromagnetism and introduce the conventional theoretical framework that explains

this physics. In Section 1.3, we will review the concept of the Berry phase and discuss

its properties in position and momentum space. Finally, in Sec. 1.4, we will introduce

multilayer graphene, a family of materials that host bands with non-zero Berry cur-

vature and exhibit Stoner magnetism. We will discuss their fundamental properties

and review recent experiments that observe Stoner magnetism in these systems. This

will set the stage for the discussion in the main part of the thesis.
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1.2 Stoner magnetism without Berry curvature

This section provides an overview of Stoner magnetism, starting with a brief review

of the theory of itinerant magnetism in Sec. 1.2.1, drawing from various sources such

as Refs. [179, 69, 2, 32]. Following this, we will proceed to review the mean-field

framework that describes Stoner magnetism in Sec. 1.2.2. Throughout these discus-

sions, we temporarily neglect the impact of Berry curvature. However, in chapter3,

we will utilize this framework to analyze Stoner magnetism in bands endowed with

Berry curvature.

1.2.1 A historical overview

The origin of ferromagnetism, a phenomenon familiar from every-day experience with

materials such as iron, cobalt, or nickel, puzzled people for quite some time. Despite

being known for ages, it was understood only after quantum theory came on stage.

It was not until 1906 that Pierre Weiss observed magnetic domains when examining

ferromagnets on a microscopic scale. This discovery led him to propose the first

mean-field theory, which introduced the concept of a molecular contribution to the

effective internal magnetic field[181, 182]:

𝐻 = 𝐻0 +∆𝜎𝑧 (1.1)

where 𝐻0 is the noninteracting Hamiltonian, ∆ is the Weiss field. However, the

origin of the Weiss field has not been understood at the time. Moreover, classical

mechanics failed to explain spontaneous magnetism due to the Bohr-van Leeuwen

theorem, independently proven by Niels Bohr and Hendrika van Leeuwen [18, 177].

This theorem showed that classical electrons without spin at thermal equilibrium

would have zero magnetization, even in a magnetic field [178]. The main argument

can be summarized as follows[32]: the magnetic field couples to charges through

the Peierls substitution 𝑝 → 𝑝 + 𝑒𝐴(𝑥), but because a classical system lacks a non-

commutation relation between 𝑥 and 𝑝, such substitution amounts to a local shift of
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𝑝, and therefore does not impact the partition function.

A comprehensive understanding of magnetism came with the development of quan-

tum theory. Edmund Stoner and John Slater’s contributions in the 1930s paved the

way for the theory of itinerant ferromagnetism in metals, which is now referred to

as Stoner magnetism [165, 166, 167, 159]. This theory explains itinerant magnetism

by competition between the kinetic energy of itinerant electrons and their exchange

interactions. Specifically, the kinetic energy favors equal occupation of spin-up and

spin-down states, tending to suppress ferromagnetism. In contrast, spin-independent

electron-electron repulsion gives rise to an exchange interaction due to fermionic quan-

tum statistics and results in a spontaneously spin-polarized Fermi sea.

In essence, the physical picture of Stoner magnetism is in many ways similar to

that of Hund’s rule in atomic physics, which predicts that electrons in an atom,

when filling the shell with a fixed angular momentum, preferentially occupy different

orbitals with the same spin rather than occupying the same orbital with opposite

spins. Both Stoner magnetism and Hund’s rule arise from the exchange interaction

between electrons, which favors the alignment of electrons’ spins.

1.2.2 Mean-field framework for Stoner magnetism

This section provides an overview of the mean-field approach for describing Stoner

magnetism. Specifically, we will primarily focus on the derivation of the Stoner

criterion[32, 2], the threshold for Stoner instability, within this framework. The fol-

lowing discussion serves as a crucial preparation for our analysis in Chapter 3. In

that chapter, we will expand upon this framework to study the central question of

our interest: Stoner magnetism in bands that possess Berry curvature.

To begin, we consider a metal in which carriers interact through a short-range

interactions:

𝐻 =
∑︁
𝑘

𝜖𝑘𝜓
†
𝛼,𝑘𝜓𝛼,𝑘 +

𝑈

2

∑︁
𝑘𝑘′𝑞

𝜓†
𝛼,𝑘𝜓

†
𝛽,𝑘′𝜓𝛽,𝑘′+𝑞𝜓𝛼,𝑘−𝑞 (1.2)

where 𝛼, 𝛽 are spin indices, taking values ↑ or ↓. Here 𝜖𝑘 is the band dispersion. Here

and below, unless stated otherwise, repeated indices are summed over. To describe
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ordering we decouple the quartic term by introducing an auxiliary field 𝑂𝛼𝛽. After

carrying out a Hubbard-Stratonovich transform[2] our problem becomes:

−𝑈
2

∑︁
𝑘𝑘′𝑞

𝜓𝛼,𝑘𝜓𝛽,𝑘−𝑞𝜓𝛽,𝑘′𝜓𝛼,𝑘′+𝑞 → −
∑︁
𝑘,𝑞

𝑂𝛼𝛽(𝑞)𝜓𝛽,𝑘+𝑞𝜓𝛼,𝑘 +
∑︁
𝑞

|𝑂𝛼𝛽(𝑞)|2

2𝑈
(1.3)

where the matrix 𝑂𝛼𝛽 has a nonzero expectation value describing order. As a result,

the partition function is given by

𝑍 =

∫︁
𝒟𝑂𝒟𝜓𝒟𝜓𝑒−𝑆,

𝑆 =

∫︁
𝑑𝜏
∑︁
𝑘

𝜓𝛼,𝑘(𝜕𝜏 + 𝜖𝑘)𝜓𝛼,𝑘 −
∑︁
𝑘,𝑞

𝑂𝛼𝛽(𝑞)𝜓𝛽,𝑘𝜓𝛼,𝑘+𝑞 +
∑︁
𝑞

|𝑂𝛼𝛽(𝑞)|2

2𝑈
(1.4)

To investigate the instability towards spatially-uniform spin-polarized order, we focus

only on the 𝑞 = 0 harmonic and neglect all finite-𝑞 contributions, e.g. such as those

responsible for the spin-density wave order. Furthermore, the SU(2) spin rotation

symmetry allows us to choose 𝑂𝛼𝛽(0) = ∆𝜎𝑧,𝛼𝛽 without loss of generality, which cor-

responds to a uniform spin polarization along the 𝑧 direction. By using the expression

𝐹 = −𝑇 ln𝑍, we obtain:

𝐹 =
∑︁
𝑘

∑︁
±

(𝜖𝑘 ±∆)𝑓(𝜖𝑘 ±∆) +
∆2

𝑈
(1.5)

where tilde denotes energy measured relative to the Fermi level, 𝜖𝑘 = 𝜖𝑘 −𝜇. Accord-

ingly, 𝑓(𝜖) is the Fermi-Dirac distribution function, 𝑓(𝜖) = 1 for 𝜖 < 0, 𝑓(𝜖) = 0 for

𝜖 ≥ 0. The instability of the spin-unpolarized state towards a spin-polarized state

occurs when
𝛿2𝐹

𝛿∆2
|Δ=0 < 0. (1.6)

Plugging Eq.(1.5) into Eq.(1.6) yields the Stoner criterion

𝑈𝜈0 > 1 (1.7)

where 𝜈0 represents the density of states in each spin species at the Fermi level.
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The nature of the Stoner phase transition (first-order or second-order) in the

mean-field framework is determined by the sign of the quartic term (𝑂(∆4)) in the

free energy, which depends on the details of the band dispersion. Specifically, when

ignoring the change of chemical potential due to the spin polarization, one finds a

quartic term coefficient of − 1
24
𝜈 ′′(0), where 𝜈 ′′(0) is the second-order derivative of the

density of states at Fermi level [32]. When accounting for the change of chemical

potential, one obtains a quartic term coefficient of 1
8

(︁
𝜈′(0)2

𝜈(0)
− 1

3
𝜈 ′′(0)

)︁
[5]. For most

transition metal ferromagnets, such as iron and cobalt, the quartic term coefficient

is positive, and the mean-field framework predicts a second-order phase transition

occurring at the Stoner threshold. In contrast, quasi-two-dimensional systems, such

as graphene multilayers—a class of materials that will be the primary focus in the fol-

lowing sections and chapters—typically exhibit a negative quartic term coefficient[32].

As a result, Stoner magnetism in these systems emerges before reaching the Stoner

threshold defined by Eq. (1.7), manifesting as a first-order phase transition.

1.3 Berry phase: definition, examples, and manifes-

tations

This section reviews the concept of the Berry phase[147], which is an essential element

in our study. We will begin by reviewing the origin and definition of the Berry phase

in generic systems. Then we will describe two implications: position-space Berry

phase and momentum-space Berry phase. These implications play a crucial role

our analysis throughout the upcoming chapters, particularly in Chapter 3. In that

chapter, we will illustrate how the momentum-space Berry curvature significantly

enhances Stoner magnetism, ultimately giving rise to the emergence of a position-

space Berry curvature.

The Berry phase[13] is a central concept in quantum mechanics, which describes

the change in an eigenstate of a quantum system when it undergoes an adiabatic

evolution in the parameter space. Namely, an eigenstate returns to its initial state

14



after this evolution while accumulating an extra phase factor of 𝑒𝑖𝛾𝐶 . The phase 𝛾𝐶

is geometric: it depends on the path 𝐶 the system is taking in the parameter space

but not on how fast or how slow the system evolves over that path.

Below we derive the expression of Berry phase following Berry’s original paper

[13]. Here we keep the discussion generic: we consider a generic quantum system

described by Hamiltonian 𝐻(𝑅), where 𝑅 is a set of parameters. By taking 𝑅 = 𝑟

or 𝑅 = 𝑘, the result presented below can be directly translate to the Berry phase in

position and momentum space — the two cases of our interest. For example, when

applied to position space, as we will elaborate in Sec.1.3.1, it directly gives the Berry

phase accumulated by an electron moving along a trajectory 𝑟(𝑡) on a Stoner magnet

background with a spin texture. Below, we keep using the language of a generic

system, and we study the Berry phase gained by a state |𝜓⟩ when the system evolves

along a path in parameter space 𝑅(𝑡). The time evolution of state |𝜓⟩ is governed by

the Schrodinger equation

𝑖ℏ
𝜕

𝜕𝑡
|𝜓⟩ = 𝐻(𝑅(𝑡))|𝜓(𝑡)⟩ (1.8)

Consider the evolution of a state |𝜓𝑛⟩ which starts at 𝑡 = 0 from the 𝑛-th eigenstate

|𝑛⟩ which satisfies

𝐻|𝑛⟩ = 𝜖𝑛|𝑛⟩, (1.9)

where 𝜖𝑛 represents the energy of state |𝑛⟩. Suppose this state is nondegenerate and

evolves adiabatically; then the state at time 𝑡 will still stay in the 𝑛-th eigenstate but

acquires a phase factor:

|𝜓𝑛(𝑡)⟩ = 𝑒𝑖𝜃(𝑡)+𝑖𝛾(𝑡)|𝑛(𝑡)⟩, 𝜃(𝑡) = −1

ℏ

∫︁ 𝑡

0

𝑑𝑡′𝜖𝑛(𝑡
′). (1.10)

Here, the first phase factor 𝜃 denotes the phase accumulation resulting from the

system’s dynamics, while the second phase factor, which is of main interest for us,

arises solely from the geometry of eigenstates and is insensitive to the particulars of
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the dynamics. Plugging Eq.(1.10) into the Schrodinger equation, one finds

𝑑

𝑑𝑡
|𝑛(𝑡)⟩+ 𝑖�̇�|𝑛(𝑡)⟩ = 0 (1.11)

This immediately yields

𝛾(𝑇 ) = 𝑖

∫︁ 𝑇

0

𝑑𝑡⟨𝑛(𝑡)|𝜕𝑡|𝑛(𝑡)⟩ (1.12)

This phase is gauge-dependent for 𝑅(𝑇 ) ̸= 𝑅(0), since relative phase between |𝑛(𝑅(𝑡))⟩

and |𝑛(𝑅(0))⟩ directly shifts 𝛾(𝑇 ). However, if the system returns to its initial pa-

rameter at time 𝑇 , i.e. 𝑅(𝑇 ) = 𝑅(0), then the geometrical phase 𝛾(𝑇 ) becomes

gauge invariant. We use subscript 𝐶 to label the loop in parameter space along which

the system evolves from time 0 to time 𝑇 . Then the gauge-invariant phase 𝛾𝐶 , which

is the Berry phase, can be written as an integral along the loop 𝐶 in parameter space,

𝛾𝐶 =

∮︁
𝐶

𝒜(𝑅)𝑑𝑅, 𝒜(𝑅) = 𝑖⟨𝑛(𝑅)|∇𝑅|𝑛(𝑅)⟩ (1.13)

Here, the vector field 𝒜(𝑅) is called the Berry connection. By Stokes’ theorem, this

loop integral can be rewritten as an integral over a surface enclosed by loop C:

𝛾 =

∫︁
Ω(𝑅)𝑑𝑅, Ω(𝑘) = 𝑖∇𝑅 × ⟨𝑛(𝑅)|∇𝑅|𝑛(𝑅)⟩ (1.14)

The quantity Ω is called Berry curvature. This form demonstrates two basic properties

of the Berry phase: first, this phase has the U(1) gauge invariance — it is independent

of the choice of phase at each point in the parameter space. Therefore, this phase is

physical and observable. Second, this phase is independent of the rate of change of

the parameter. Therefore, this phase represents a robust geometrical property of the

quantum system and is independent of the details of the system dynamics[187].

In the context of electrons in solids, the Berry phase has two primary origins.

One is due to the motion of electrons in position space in the presence of coupling

to position-dependent degrees of freedom (in what follows, our primary example will
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be a spin texture due to position-dependent magnetic order). The other kind of

Berry phase arises from the carrier band and momentum-space geometry of the sys-

tem. These two Berry phases result in profoundly different physical effects. The

position-space Berry phase induces an effective Aharonov-Bohm gauge field that elec-

trons experience when traversing the crystal lattice [125, 122, 53, 171], while the

momentum-space Berry phase impacts carrier dynamics in momentum space produc-

ing two important effects. The first one is the anomalous Hall effect, a Lorentz-like

force resulting from an electric field that acts in momentum space instead of position

space. The second effect is the gyration effect, which endows carriers with an orbital

magnetization and transforms them into spinning objects [187]. Both the position-

space and momentum-space effects are central to our discussion in this thesis. To

provide context for our discussion, below we will explore these two examples of Berry

phases in some detail.

1.3.1 Berry phase in position space

Next, we proceed to examine the Berry phase acquired by electrons as they move

in position space in the presence of a textured spin background. Understanding this

particular kind of Berry phase will be crucial for our analysis in Chapter 3.

The evolution of a single spin 1/2 in a time-dependent magnetic field was first

analyzed in Berry’s original work[13]. A generalization to the problem of spin mov-

ing through a position-dependent spin texture has been elaborated and reviewed in

Ref.[125, 122, 53, 171]. This body of work describes the generation of an emergent

electromagnetic field by a spin texture and the resulting nontrivial observable effects.

Below we review this approach and main results.

To start, we consider an electron moving in a textured magnetic background char-

acterized by a slow-varying local spin-polarization unit vector 𝑛(𝑟). In this case, the

moving electrons talk to the local magnetic texture through local exchange interac-

tion, which is modeled by the following Hamiltonian:

𝐻 = −𝐽𝑛(𝑟) · 𝜎 (1.15)
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where 𝐽 is the strength of the local exchange interaction, 𝜎 is the Pauli matrix

describing the spin of the moving electron, 𝑛(𝑟) is a unit vector describing a spatially

dependent spin polarization.

Next, substituting 𝑅(𝑡) in Eq.(1.13) with 𝑛(𝑟(𝑡)), we obtain the Berry connection

sensed by an itinerant electron moving along a trajectory 𝑟(𝑡). Namely, for an electron

in spin-up state, the Berry connection is given by[122, 125, 171, 53]

𝒜 = 𝑖⟨↑ |∇| ↑⟩ = 1

2
cos 𝜃∇𝜑 (1.16)

here, | ↑⟩ =
(︀
cos 𝜃

2
𝑒−𝑖𝜑/2, sin 𝜃

2
𝑒𝑖𝜑/2

)︀𝑇 , angles 𝜃 and 𝜑 are the polar and azimuthal

angles of the spatially dependent spin orientation. The prefactor 1/2 arises from

the angular momentum of spin-up state 𝑚𝑧 = ℏ/2. Consequently, the Berry phase

acquired along a loop is nothing else but one-half of the solid angle wrapped by

magnetic field texture 𝑛(𝑟) on that loop. In this case, the Berry curvature, which is

defined as the area density of the Berry phase, can be expressed through:

Ω = 2𝜋𝐶(𝑟), 𝐶(𝑟) =
1

4𝜋
𝑛(𝑟) · (𝜕1𝑛(𝑟)× 𝜕2𝑛(𝑟)) (1.17)

The quantity 𝐶 is called spin chirality. This quantity has a clear physical meaning:

the spatial integral of it represents how many times the magnetic texture wraps

around the Bloch sphere. Therefore, in the periodic-boundary system,
∫︀
𝑑𝑟2𝐶(𝑟) is

quantized.

The Berry phase arising from real-space magnetic texture has a nontrivial impact

on the behavior of electrons. For an electron moving inside a magnetic texture, the

Berry curvature Ω mimics an emergent electromagnetic field since the latter also

generates a geometrical phase for electrons moving in it, which is proportional to the

magnetic flux enclosed by the path of electrons. The emergent magnetic field sensed

by an itinerant electron is given by

𝐵 =
ℏ𝑐
𝑒
Ω =

ℏ𝑐
2𝑒

𝑛(𝑟) · (𝜕1𝑛(𝑟)× 𝜕2𝑛(𝑟)) (1.18)
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Similarly, a time-dependent spin configuration gives rise to an emergent electric field

𝐸 = −𝜕𝒜
𝜕𝑡

= − ℏ
2𝑒

𝑛(𝑟) · (𝜕𝑡𝑛(𝑟)×∇𝑛(𝑟)) (1.19)

The emergent electromagnetic fields generated by Berry phase effect of magnetic

textures lead to observable signatures, which have been reported and reviewed in

various studies[122, 125, 124]. Below we review these results.

Magnetic systems with non-collinear spin structures are one such example, where

the solid angle subtended by spins generates a static emergent magnetic field Eq.(1.18),

leading to the Hall effect [168] and [169]. The pyrochlore ferromagnet NdMo2O7 is a

good example of this, as it exhibits a non-coplanar spin structure due to the strong

single-spin anisotropy that enforces the rare-earth (Nd) moments to point outward

or inward from the center of the tetrahedron (see Fig.1-1), coupled to the itinerant

electrons of Mo atoms, as described in Ref.[170]. The itinerant electrons, therefore,

experience the emergent magnetic field and exhibit the anomalous Hall effect. The

magnetic ordering in this material does not alter the periodicity of the electronic

state, and the band structure is well-defined with the original first Brillouin zone.

Another system demonstrating the spin-texture-induced gauge field is the skyrmion

crystal discovered in magnets with B20 structure— a non-centrosymmetric cubic crys-

tal structure— such as iron monogermanide (FeGe)[193] and manganese monosili-

cide (MnSi)[121]. The lack of inversion symmetry in these systems gives rise to a

Dzyaloshinsky-Moriya interaction[44, 117] that favors spin textures, including skyrmion

crystals. Here, the skyrmion is considered as the mapping from the two-dimensional

space to the unit sphere, i.e. the direction of 𝑛, and it wraps the sphere once, implying

that the integral of the magnetic flux over one skyrmion is 2𝜋. The effective magnetic

field induced by the skyrmion is then estimated to be ∼ 4000T for a skyrmion size

of 𝜉 = 1𝑛𝑚. This fictitious magnetic field acts on the conduction electrons in MnSi,

(Fe, Co)Si, and MnGe, giving rise to the Hall effect due to the Lorentz force, with

𝐵 replacing the external magnetic field 𝐵0. This scenario [79] is confirmed by recent

experiments.
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Figure 1-1: Anomalous Hall effect in Nd2Mo2O7. FIgure adapted from Refs. [122]
and [169]. (a) The atomic structure of Nd2Mo2O7 where Nd and Mo atoms are
coupled antiferromagnetically through 𝐽𝑓𝑑, forming two interpenetrating networks
of tetrahedrons. A non-coplanar configuration with spin chirality arises from the
anisotropy of Nd spins. (b) The solid angle subtended by the Nd spins is partially
transferred to that of Mo conduction electrons. (c) The Hall resistivity sets in at a
low temperature when the applied magnetic field that suppresses the spin chirality
decreases.

In addition to the 𝐵 field, the effect of 𝐸 is also observable in realistic settings.

According to Faraday’s law, 𝐸 can be induced by 𝑑𝐵/𝑑𝑡, and hence, the effect of 𝐸

can be seen in the dynamics of skyrmions. These dynamics are relevant for realistic

systems such as MnSi, where experiments revealed that the motion of the skyrmion

crystal could be triggered by a low current density[77]. A theoretical framework

on the coupled dynamics of the skyrmions and conduction electrons[195] has been

developed. The skyrmion’s effective magnetic flux induces 𝑑𝐵/𝑑𝑡, and hence, 𝐸 due

to the electromagnetic induction. This 𝐸 field leads to an additional Hall effect to the

topological AHE due to static 𝐵 discussed above. Many other effects are predicted

from Eq.(1.18) and Eq.(1.19), such as a new mechanism for damping the skyrmion

motion and the motion of the skyrmion transverse to the current (skyrmion Hall

effect).

1.3.2 Berry phase in momentum space

Next, we proceed to review the concept of momentum-space Berry phase for electron

bands[194, 187], which is a primary focus of this thesis. By exploring this topic, we
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aim to elucidate how the 𝑘-space Berry phase leads to a distinctive gyration behavior

of electrons, ultimately resulting in an orbital magnetization that holds paramount

significance for our subsequent discussions.

Electrons in solids can be described by Hamiltonian 𝐻0 = −∇2

2𝑚
+ 𝑉 (𝑟) where 𝑉

is a periodical potential. Using Bloch theorem[6], the eigenstates of the Hamiltonian

𝐻 can be expressed as the following form:

𝜓𝑛𝑘(𝑟) = 𝑢𝑛𝑘(𝑟)𝑒
𝑖𝑘·𝑟 (1.20)

where 𝑘 is the crystal momentum, 𝑛 labels the band. Here we have ignored the spin

part of the wavefunction since two spin states (spin-up and spin-down) are degenerate.

The function 𝑢𝑛𝑘(𝑟) is a cell-periodic function satisfying 𝑢𝑛𝑘(𝑟) = 𝑢𝑛𝑘(𝑟 + 𝑎), where

𝑎 is an arbitrary lattice vector.From Eq.(1.20), it is straightforward to show that

functions 𝑢𝑛𝑘 is the eigenstate of the transformed Hamiltonian

𝐻𝑘 = 𝑒−𝑖𝑘𝑟𝐻0𝑒
𝑖𝑘𝑟 =

(−𝑖∇+ 𝑘)2

2𝑚
+ 𝑉 (𝑟). (1.21)

Using function 𝑢𝑛𝑘 we can define a Berry connection 𝒜 as follows:

𝒜(𝑘) = 𝑖⟨𝑢𝑛𝑘|∇𝑘|𝑢𝑛𝑘⟩ (1.22)

whereas the momentum-space Berry curvature in this band is defined as

Ω(𝑘) = 𝑖∇𝑘 × ⟨𝑢𝑛𝑘|∇𝑘|𝑢𝑛𝑘⟩ (1.23)

This Berry curvature characterizes the geometry of the band. As we will see below,

this band geometry leads to observable effects that will be crucial for our discussion

in this thesis.

One prominent outcome of the momentum-space Berry curvature is the electrons’

gyration motion in real space. This motion results in an orbital magnetization 𝑀 .

This effect is studied in Ref.[172, 188, 155] and is reviewed in [187]. Indeed, as
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shown in Ref.[187], the orbital magnetization of electrons consists of two parts: The

first contribution 𝑀𝐶 arises from the cyclotron motion of the electron wavepacket’s

center of mass. The second contribution 𝑀SR arises from the electron wavepacket’s

self-rotation — rotation around its center of mass. Their expressions are given by

𝑀𝐶 =
𝑒𝜖𝛼𝛽
ℏ𝑐

𝑖
∑︁
𝑘

(𝜇− 𝜖𝑘) ⟨𝜕𝑘𝛼𝑢𝑘|𝜕𝑘𝛽𝑢𝑘⟩𝑓𝑘 =
𝑒

ℏ𝑐
∑︁
𝑘

(𝜇− 𝜖𝑘) Ω𝑘𝑓𝑘 (1.24)

𝑀SR =
−𝑒𝜖𝛼𝛽
2ℏ𝑐

∑︁
𝑘

𝑖⟨𝜕𝑘𝛼𝑢𝑘|𝐻𝑘 − 𝜖𝑘|𝜕𝑘𝛽𝑢𝑘⟩𝑓𝑘 (1.25)

where 𝑓𝑘 represents the occupation number of state 𝑘: 𝑓𝑘 = Θ(𝜇−𝜖𝑘), 𝜖𝑘 is the energy

The sum of these two contributions yields the total orbital magnetization:

𝑀 =𝑀𝐶 +𝑀SR =
−𝑒𝜖𝛼𝛽
2ℏ𝑐

∑︁
𝑘

𝑖⟨𝜕𝑘𝛼𝑢𝑘|�̃�𝑘 + 𝜖𝑘 − 2𝜇|𝜕𝑘𝛽𝑢𝑘⟩𝑓𝑘 (1.26)

Interestingly, the center-of-mass contribution to orbital magnetization𝑀𝐶 is explicitly

proportional to the Berry curvature of the band. To understand this result, below, we

give a pedagogical derivation of 𝑀𝐶 based on the discussion presented in Ref. [187].

The derivation of the self-rotation part of the magnetization 𝑀SR, which is derived in

Ref.[28] and [188], is more technical and involved. We will not repeat this derivation

here. However, in Sec.1.4, we will derivate 𝑀𝑆𝑅 under a special setting — a two-band

model with particle-hole symmetry, which is the case of our interest. In this setting,

we will see that the derivation is greatly simplified, and the expression of 𝑀𝑆𝑅 will

be directly related to the Berry curvature.

The center-of-mass motion of the electron wavepacket contributes to orbital mag-

netization in the form of a loop current. Namely, local electrons move around a

cyclotron center. Therefore, to calculate 𝑀𝐶 , we need to know the local current den-

sity. However, the current density generated by this motion vanishes inside the bulk

since the opposite motion of nearby cyclotrons cancels. Therefore, the easiest way to

expose this current is by considering a finite system, where we expect a current to

flow on the system’s edge.

Here, we consider a disk. Let the trapping potential which defines the system be
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𝑉 (𝑟), and we find that the current flowing along the edge of the disk is simply a Hall

current generated by the gradient of 𝑉 :

𝑗‖(𝑟) =
1

𝑒
𝜕𝑟𝑉 (𝑟)𝜎𝑥𝑦(𝑟) (1.27)

Here 𝜎𝑥𝑦(𝑟) is the Hall conductivity at radius 𝑟. Using the relation between Hall

conductivity and Berry curvature[187]: 𝜎𝑥𝑦 = 𝑒2

ℏ
∑︀

𝑘 Ω𝑘𝑓(𝜖𝑘 − 𝜇 + 𝑉 ), where 𝑓 is

the Fermi Dirac distribution function, and carrying out the integral along the radial

direction, one finds the total current circulating around the disk is given by:

𝐼 =

∫︁
𝑑𝑟𝑗‖(𝑟) =

𝑒

ℏ

∫︁
𝑑𝑟𝜕𝑟𝑉 (𝑟)

∑︁
𝑘

Ω𝑘𝑓(𝜖𝑘 −𝜇+𝑉 (𝑟)) =
𝑒

ℏ
∑︁
𝑘

(𝜇− 𝜖𝑘) Ω𝑘𝑓𝑘 (1.28)

Here 𝑓𝑘 is the Fermi Dirac distribution function. Using the definition of orbital

magnetization, which is the magnetic dipole moment per unit area, we find 𝑀𝐶 =

𝐼𝐴/𝐴 = 𝐼, which gives the result in Eq.(1.24).

Although the derivation of 𝑀𝐶 describes it through the current flowing along

the system edge, the 𝑀𝐶 is not an edge effect. Rather, it represents a uniform

magnetization in the system bulk. The edge is only a tool to reflects 𝑀𝐶 uniformly

distributed in the bulk. Therefore, a magnetic flux 𝜑 threading the sample would

sense 𝑀𝐶 even if the flux 𝜑 is localized deep in the bulk where no net current exists.

This situation will be important for our discussion later.

1.4 Stoner magnetism in the presence of Berry cur-

vature: the case of multilayer graphene

In order to illustrate the impact of Berry curvature on Stoner magnetism, we will

utilize untwisted graphene multilayers as a realistic platform[58]. These materials

consist of stacked atomic layers of graphene which can be readily exfoliated from

graphite[134]. Due to their two-dimensional nature, these materials offer the ability

to tune various properties through electrical gates, including the band structure and
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Figure 1-2: Crystal structure of monolayer graphene (adapted from Ref.[110])

carrier density. Consequently, they have garnered significant theoretical and experi-

mental attention, making them an ideal subject for research.

Here we will focus on two materials in the family of graphene multilayers: Bernal

bilayer graphene (BBG)[107, 110] and rhombohedral trilayer graphene (RTG)[101].

As we will show below, these systems naturally realize the two properties that are

central to the physics discussed in this thesis: bands equipped with nonvanishing

Berry curvature and Stoner magnetism. To understand the origin of these two prop-

erties, one needs to first understand the band structure of these materials. Therefore,

below we will review the crystal structure, the tight binding model, and the low-

energy effective model. Based on these preparations, we will derive explicitly the

Berry curvature and the resulting orbital magnetization in these systems, and discuss

the Stoner magnetism which is observed recently[202, 203, 201, 150, 35].

24



Figure 1-3: Crystal structure of BBG (adapted from Ref.[110]). a) the top view, b)
a side view. The quantities 𝛾𝑖 (𝑖 = 0, 1, 3, 4) in b) represent the hopping elements
accounted by the tight-binding Hamiltonian.

1.4.1 Crystal structure and spatial symmetry in multilayer

graphene

We begin by reviewing the crystal structure of multilayer graphene, which serves

as a foundation for understanding the electron band structure in these materials.

While our primary focus remains on BBG, we will briefly comment on the RTG when

necessary, given the similarities between the two systems.

Bernal bilayer graphene is composed of two layers of graphene monolayers, each

featuring a hexagonal crystal structure made up of carbon atoms arranged in a hon-

eycomb lattice (as illustrated in Fig.1-2a)). Each unit cell of BBG consists of four

carbon atoms, labeled A1, B1 on the lower layer, and A2, B2 on the upper layer (as

depicted in Fig.1-3 a)). In this configuration, the B site from the lower layer (B1)

is situated directly beneath the A site from the upper layer (A2) in each unit cell.

These two atomic sites are referred to as “dimer” sites, owing to their relatively strong

interlayer coupling. Conversely, the other two atoms, A1 and B2, are not positioned

directly above or below any atoms in the other layer and are hence referred to as
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Figure 1-4: The crystal structure of RTG (adapted from Ref.[11]).

“non-dimer” sites. As we will see below, the orbitals on these two non-dimer sites

predominantly form the two bands that are relevant for low-energy physics.

We note parenthetically that the atomic structure of RTG[202, 203] (See fig. 1-4)

is similar to that in BBG. In RTG, the B site from the lowest layer (B1) is situated

directly beneath the A site in the middle layer (A2), and the B site in the middle

layer (B2) is directly beneath the A site in the top layer (A3). The other two sites in

the unit cell (A1 and B2) are not aligned with any sites in the layers directly above

or below.

Next, we proceed to analyze the crystalline symmetries in multilayer graphene,

which will be important for our discussion of orbital magnetism and chiral interaction

in the forthcoming sections. Notably, BBG and RTG have exactly the same symmetry

group[110]. Namely, in the absence of any applied field, the point group of BBG and

RTG is𝐷3𝑑 [110, 89, 104, 93], which consists of elements {𝐸, 2𝐶3, 3𝐶
′
2, 𝑖, 2𝑆6, 3𝜎𝑑}, and

can be considered as a direct product of group 𝐷3: {𝐸, 2𝐶3, 3𝐶
′
2} with the inversion

group 𝐶𝑖 ({𝐸, 𝑖}). Thus, the lattice is symmetric with respect to spatial inversion

symmetry (𝑥, 𝑦, 𝑧) → (−𝑥,−𝑦,−𝑧). In comparison, the symmetry is lowered upon

applying a transverse electric field, which is the case of our interest throughout the

thesis, as we will explain below. This field generates a voltage difference between two

layers, breaking the inversion symmetry 𝑖 and 𝐶 ′
2, but preserves the mirror symmetries

𝑀 that map 𝐾 to 𝐾 ′. Consequently, the point group symmetry is lowered to 𝐶3𝑣,

which consists of {𝐸, 2𝐶3, 3𝑀}.
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1.4.2 Tight-binding description and band structure

In this section, we introduce the tight-binding description of multilayer graphene band

structure[107, 110]. By examining the band structure, we demonstrate band flattening

due to an applied transverse electric field, an effect that quenches the kinetic energy

of electrons and drives the Stoner instability. We will also obtain the low-energy

effective model which will be frequently used in the following chapters. As before, we

will focus on the case of BBG [110] and will briefly comment on the case of RTG.

The low-energy theory of BBG can be described by a tight-binding model con-

structed from 2𝑝𝑧 orbitals on the four atomic sites in the unit cell, A1, B1, A2, and

B2. The resulting tight-binding Hamiltonian takes the form of the following 4 × 4

matrix [110, 109, 62, 131, 140, 120, 119]

𝐻𝐵𝐵𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝐴1 −𝛾0𝑓(𝑘) 𝛾4𝑓(𝑘) −𝛾3𝑓 *(𝑘)

−𝛾0𝑓 *(𝑘) 𝜖𝐵1 𝛾1 𝛾4𝑓(𝑘)

𝛾4𝑓
*(𝑘) 𝛾1 𝜖𝐴2 −𝛾0𝑓(𝑘)

−𝛾3𝑓(𝑘) 𝛾4𝑓
*(𝑘) −𝛾0𝑓 *(𝑘) 𝜖𝐴1

⎞⎟⎟⎟⎟⎟⎟⎠ (1.29)

Here, the hopping elements are shown in Fig.1-3, and are defined as follows[110]:

𝛾0 = −⟨𝜑𝐴1|𝐻|𝜑𝐵1⟩ = −⟨𝜑𝐴2|𝐻|𝜑𝐵2⟩ (1.30)

𝛾1 = ⟨𝜑𝐴2|𝐻|𝜑𝐵1⟩ (1.31)

𝛾3 = −⟨𝜑𝐴1|𝐻|𝜑𝐵2⟩ (1.32)

𝛾4 = ⟨𝜑𝐴1|𝐻|𝜑𝐴2⟩ = ⟨𝜑𝐵1|𝐻|𝜑𝐵2⟩. (1.33)
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Figure 1-5: Low-energy bands of bilayer graphene arising from 2𝑝𝑧 orbitals (adapted
from Ref.[110]). The inset shows the bands in the vicinity of the K point. Plots
were made using Hamiltonian 𝐻, Eq.(1.29), with parameter values 𝛾0 = 3.16eV,
𝛾1 = 0.381eV, 𝛾3 = 0.38eV, 𝛾4 = 0.14eV, ∆′ = 0.022eV, and 𝑈 = 𝛿𝐴𝐵 = 0 [92].

The quantities 𝜖𝐴1, 𝜖𝐵1, 𝜖𝐴2, 𝜖𝐵2 are onsite energies which are given by

𝜖𝐴1 = −𝐷 +
1

2
𝛿𝐴𝐵 (1.34)

𝜖𝐵1 = −𝐷 +∆′ − 1

2
𝛿𝐴𝐵 (1.35)

𝜖𝐴2 = 𝐷 +∆′ +
1

2
𝛿𝐴𝐵 (1.36)

𝜖𝐴2 = 𝐷 − 1

2
𝛿𝐴𝐵 (1.37)

Here 𝑈 represents a bias between the two layers [109, 62, 137, 107, 139, 114, 26, 4,

110, 63, 108, 61, 56, 20], ∆′ is the onsite energy difference between dimer and non-

dimer sites [131, 197, 97, 43] , and 𝛿𝐴𝐵 is the intralayer sublattice energy imbalance

[119, 118].Among all these parameters, 𝐷 is tunable by gate voltages, which provides

a crucial knob for low-energy physics, as we will discuss shortly. Other parameters 𝛾0,

𝛾1, 𝛾3, 𝛾4, ∆′, 𝛿𝐴𝐵 are given and have been probed by various methods in experiments.

We summarize several choices of realistic parameters in Table. In the absence of

interlayer bias 𝑈 , the band structure given by Eq.(1.29) is shown in Fig.1-5, which is

plotted using one set of the parameter (see caption).

In the realistic doping regime where the carrier density is 𝑛 ∼ 1012cm−2, the
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Fermi surfaces in BBG and RTG are small pockets around two valleys 𝐾 and 𝐾 ′,

with a radius 𝑘𝐹 ≪ 𝐾. These two valleys are related by time-reversal symmetry,

such that 𝐾 ′ = −𝐾. Consequently, the low-energy physics can be described by an

effective model that only involves carriers near 𝐾 and 𝐾 ′. To simplify the expression,

we define momentum measured from 𝐾 and 𝐾 ′ as 𝑝 = ℏ(𝑘 − 𝜉𝐾), where 𝜉 = ±1

denotes the valley index. Expanding the function 𝑓(𝑘) in powers of 𝑝, we obtain

𝑓(𝑘) ≈ −
√
3𝑎(𝜉𝑝𝑥 − i𝑝𝑦)/2ℏ. Plugging this expression into Eq.(1.29), we obtain the

following four-band Hamiltonian in the basis
{︁
𝑐𝜉,𝑠𝐴,1, 𝑐

𝜉,𝑠
𝐵,1, 𝑐

𝜉,𝑠
𝐴,2, 𝑐

𝜉,𝑠
𝐵,2

}︁
, where 𝐴 and 𝐵

denote the sublattice indices, 1 and 2 denote the layer indices, 𝜂 = ±1 denotes the

valley index, and 𝑠 denotes the spin index [110]:

𝐻
(4)
𝜉 (𝑝) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐷 𝑣𝜋† −𝑣4𝜋† 𝑣3𝜋

𝑣𝜋 𝐷 +∆′ 𝛾1 −𝑣4𝜋†

−𝑣4𝜋 𝛾1 −𝐷 +∆′ 𝑣𝜋†

𝑣3𝜋
† −𝑣4𝜋 𝑣𝜋 −𝐷

⎞⎟⎟⎟⎟⎟⎟⎠ (1.38)

where 𝜋 = ℏ (𝜉𝑝𝑥 + 𝑖𝑝𝑦), Here 𝑣, 𝑣3, 𝑣4 are associated with the microscopic hopping

amplitudes through 𝑣 =
√
3𝑎𝛾0
2ℏ , 𝑣3 =

√
3𝑎𝛾3
2ℏ , 𝑣4 =

√
3𝑎𝛾4
2ℏ .

This four-band model can be simplified further into a two-band model in the

realistic doping regime. This is because the top and bottom bands are sufficiently

isolated from the two bands next to charge neutrality by a gap of ∼ 400meV at 𝐾 and

𝐾 ′ points. This energy scale is much larger than the Fermi energy measured from

the bottom of the second band, which is between 1meV and 10meV for a realistic

carrier density (𝑛 ∼ 1012cm−2). Switching on the transverse field does not change

the comparison of energy scales because the interlayer bias generated by a realistic

transverse field is below 100meV[201, 150, 35], which is much smaller than 𝛾1. There-

fore, in our analysis, we can safely focus on the top and bottom bands near charge

neutrality. Thus, we project 𝐻𝐵𝐵𝐺 to the two bands next to the charge neutrality

while ignoring the subleading terms such as 𝑣3, 𝑣4, and ∆′ in Eq.(1.38). The impacts

of these subleading terms are interesting but inessential for the description here and

will be accounted for later. This band projection directly yields a quadratic Dirac
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model under the basis of {𝜓𝐴𝜉𝑝, 𝜓𝐵𝜉𝑝}:

𝐻
(2)
𝜉 (𝑝) = ℎ1(𝑝)𝜎1 + ℎ2(𝑝)𝜉𝜎2 +𝐷𝜎3 (1.39)

where 𝑚 = 𝛾1
2𝑣2

, 𝜎1,2,3 are the Pauli matrices acting on the sublattice (𝐴,𝐵) subspace.

As a reminder, 𝜉 = ±1 denotes valley 𝐾 and 𝐾 ′. The quantity 𝐷 is the interlayer

bias generated by the transverse electric field. Here ℎ1 and ℎ2 are given by

ℎ1(𝑝) = − 1

2𝑚

(︀
𝑝21 − 𝑝22

)︀
, ℎ2(𝑝) = −𝑝1𝑝2

𝑚
. (1.40)

This quadratic Dirac Hamiltonian yields the following dispersion

𝜖𝑘 = ±

√︃
𝐷2 +

(︂
𝑝2

2𝑚

)︂2

(1.41)

Throughout this thesis, we will frequently this quadratic Dirac model to describe

electrons in BBG since it is a minimal model that captures the main properties of

carriers. The only exception is in a few sections in Chapter 2 where the details, such

as trigonal warpings of the band, become essential to the physics discussed there.

1.4.3 Berry curvature and orbital magnetization in multilayer

graphene

Equipped with a comprehensive understanding of the band structure, we now pro-

ceed to demonstrate the presence of non-zero Berry curvature within the BBG bands

through a direct calculation. Subsequently, we will compute the orbital magnetiza-

tion that arises from the Berry curvature following the approac. This result will be

utilized in our analysis of chiral interaction (see Chapter 3).

Specifically, we calculate the Berry curvature using the quadratic Dirac band

model Eq.(1.39). To this end, we first compute the Berry phase for a circular trajec-

tory with radius 𝑝 centered at the 𝐾 point. This phase is precisely equal to the solid
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angle enclosed by the vector (ℎ1, ℎ2, 𝐷):

𝛾±𝑝 = ±2𝜋

⎛⎝1− 𝐷√︁
𝐷2 + (𝑝2/2𝑚)2

⎞⎠ (1.42)

Here ± corresponds to upper and lower Dirac bands, respectively. Then the Berry cur-

vature at momentum 𝑝 can be easily obtained using the definition of Berry curvature[196,

187]:

Ω±
𝑝 =

ℏ2

2𝜋𝑝

𝜕𝛾𝑝
𝜕𝑝

= ±ℏ2

2

𝐷𝑝2/𝑚2(︀
𝐷2 + (𝑝2/2𝑚)2

)︀3/2 (1.43)

Here we have used the U(1) rotation symmetry of the quadratic Dirac band Eq.(1.39),

which requires Ω±
𝑝 to be invariant when 𝑝 is rotated around 𝐾 point.

The nontrivial band geometry in BBG leads to a nonvanishing orbital magneti-

zation for each valley, which is a property useful for the analysis in the following

chapters. Therefore, below we calculate the orbital magnetization in each valley us-

ing Eq.(1.26). To simplify the calculation, we can utilize the following identity[189],

which holds for a generic particle-hole symmetric two-band model:

Im ⟨∇𝑝𝑢
𝑛
𝑝 | ×𝐻(𝑝)|∇𝑝𝑢

𝑛
𝑝⟩ = −𝜖𝑛𝑝 Im ⟨∇𝑘𝑢

𝑛
𝑝 | × |∇𝑝𝑢

𝑛
𝑝⟩ = −𝜖𝑛𝑝Ω𝑛

𝑝 . (1.44)

Here 𝑛 = ± represents the upper and lower bands. This identity can be derived by

writing 𝐻 as a sum of projections on upper and lower bands, namely, the left-hand

side of Eq.(1.44) is equal to

∑︁
𝑚=±

𝜖𝑚𝑝 Im
(︀
⟨∇𝑝𝑢

𝑛
𝑝 |𝑢𝑚𝑘 ⟩ × ⟨𝑢𝑚𝑝 |∇𝑝𝑢

𝑛
𝑝⟩
)︀

(1.45)

Then, using particle-hole symmetry of the band dispersion 𝜖−𝑝 = −𝜖+𝑝 , and the identity

Re ⟨∇𝑝𝑢
𝑛
𝑝 |𝑢𝑛𝑝⟩ = 0 one find Eq.(1.45)can be further reduced to:

−𝜖𝑛𝑝 Im
(︀
⟨∇𝑝𝑢

𝑛
𝑝 |𝑢−𝑛

𝑝 ⟩ × ⟨𝑢−𝑛
𝑝 |∇𝑝𝑢

𝑛
𝑝⟩
)︀
. (1.46)

Then using Re ⟨∇𝑝𝑢
𝑛
𝑝 |𝑢𝑛𝑝⟩ = 0 again we arrive at the right-hand side of Eq.(1.44).
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Plugging the identity Eq.(1.44) into Eq.(1.25) gives the self-rotation contribution to

the orbital magnetization for each spin species [189]:

𝑀SR =
𝑒𝜖𝛼𝛽
2ℏ𝑐

∑︁
𝑝

Im ⟨𝜕𝑝𝛼𝑢𝑘|𝐻𝑘 − 𝜖𝑘|𝜕𝑝𝛽𝑢𝑝⟩𝑓𝑝 =
𝑒

ℏ𝑐
∑︁
𝑝,±

𝜖±𝑝 Ω
±
𝑝 𝑓(𝜖

±
𝑝 − 𝜇) (1.47)

As a result, the total orbital magnetization for each spin speciesm is

𝑀 =
𝑒

ℏ𝑐
∑︁
𝑝,±

(︀
𝜖±𝑝 + 𝜇− 𝜖±𝑝

)︀
Ω±

𝑝 𝑓(𝜖
±
𝑝 − 𝜇) =

𝑒𝜇

ℏ𝑐
∑︁
𝑝,±

Ω±
𝑝 𝑓(𝜖

±
𝑝 − 𝜇) (1.48)

Finally, we apply this generic expression to electrons in one valley of BBG. Plugging

Eq.(1.43) into Eq.(1.48), we arrive at the following expression for the total orbital

magnetization for each spin species in valley 𝐾 of BBG1:

𝑀BBG
𝐾 (𝜇) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑒𝐷
2𝜋ℏ , 𝜇 > 𝐷

𝑒𝜇
2𝜋ℏ , −𝐷 < 𝜇 < 𝐷

− 𝑒𝐷
2𝜋ℏ , 𝜇 < −𝐷

. (1.49)

The orbital magnetization in valley 𝐾 ′ is associated with that in valley 𝐾 through

the relation: 𝑀BBG
𝐾′ (𝜇) = −𝑀BBG

𝐾 (𝜇) due to time-reversal symmetry. These results

show that the orbital magnetization is activated upon applying the transverse field

𝐷 and vanishes in the absence of 𝐷. This behavior is consistent with the anticipated

behavior based on the symmetry analysis presented above . In particular, the system

exhibits 𝐶2 symmetry when 𝐷 = 0, resulting in the enforced vanishing of the valley

orbital magnetization. However, a non-zero 𝐷 breaks the 𝐶2 symmetry, thereby

enabling the emergence of a nonvanishing valley orbital magnetization.
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Figure 1-6: Adapted from Ref.[201]. a) Measured inverse compressibility in BBG at
zero magnetic field. The 𝑥 axis is the electron density 𝑛𝑒. A negative value of 𝑛𝑒

means hole doping. The 𝑦 axis is the strength of the displacement field. b) Fast
Fourier transform (FFT) of 𝑅𝑥𝑥(1/𝐵⊥) measured at the (𝑛𝑒, 𝐷) points indicated by
the colored symbols in a). The 𝑥 axis is the frequency normalized to 𝑛𝑒. Peaks reflect
fractional areas of the Fermi seas enclosed by a phase-coherent orbit. The inset for
each trace is a schematic of the Fermi seas in four isospin species.
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1.4.4 Stoner orders in multilayer graphene

Stoner magnetism is expected to occur in BBG since its flattened band structure,

described by Eq. (1.41), results in a high density of states at low carrier density and

high transverse field. This high density of states makes the system highly susceptible

to the Stoner instability, as indicated by the Stoner criterion in Eq. (1.7). Indeed,

direct numerical calculations (see Chapter 2 and Ref.[202]) predict a variety of isospin-

polarized phases occurring in BBG and RTG, where the balance of electron occupation

number in valley 𝐾 and 𝐾 ′ and that in spin ↑ and ↓ is spontaneously broken.

Recent experiments[201, 35, 150] have confirmed the presence of these isospin-

polarized phases. Shown in Fig.1-6 a) is a typical phase diagram of BBG, adapted

from Ref.[201]. Here, the color code represents the measured inverse compressibility.

Each abrupt change of color indicates a phase transition between various phases

of different isospin polarization. A similar cascade of isospin-polarized phases has

been observed in RTG[202, 203]. In the experiments, the degeneracy of spin and

valley species is determined by measuring the quantum oscillation frequency[201, 35].

Namely, in an applied out-of-plane 𝐵⊥ field, the resistivity oscillates periodically as

a function of 1/𝐵⊥ due to Landau levels crossing the Fermi level[6]. The quantum

oscillation frequency is proportional to the size of each pocket. Thus the degeneracy

of isospin species can be determined by comparing the quantum oscillation frequency

with the total carrier density 𝑛, which can be extracted from gate voltages. Using this

technique, the authors of Ref.[201] identify several types of isospin polarized phases,

such as a partially isospin polarized phase (PIP2) where two out of four isospins have

higher densities than the other two, and a fully isospin polarized phase where all

carriers are in one isospin species.

1It should be noted that the expression for 𝑀BBG
𝐾 used in this thesis differs from the result

obtained from Eq.(1.48) by an overall minus sign. Therefore, the 𝑀BBG
𝐾 in this thesis should be

considered as the orbital magnetization along −𝑧 direction. This convention is chosen for convenience
and does not affect the analysis.
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1.5 Thesis outline

In the following chapters of this thesis, we will explore how Stoner magnetism and

Berry curvature give rise to new interactions, orders, and physics.

In Chapter 2 we will look into the details of Stoner orders in Bernal multilayer

graphene. The material of this chapter is based on Ref.[38]. We will start by deter-

mining the phase diagram of isospin magnetism in BBG. Then, we will extend the

concept of Stoner instability to fermi pockets in momentum space and demonstrate

that isospin Stoner orders coexist with momentum-polarized phases that arise through

a “flocking transition” in momentum space. These phases exhibit unique observables

such as persistent currents in the ground state. Furthermore, momentum-polarized

carriers “sample” the Berry curvature of the conduction band, which results in a

distinctive behavior of the anomalous Hall conductivity and an overall orbital mag-

netization. These findings will provide additional evidence that BBG possesses a

range of Stoner orders that coexist with an orbital magnetization.

Chapter 3 is based on Ref.[40]. In this chapter we will demonstrate a key effect

that arises from Stoner magnetism in bands with Berry curvature — the chiral inter-

action between Berry’s orbital magnetization and spin chirality density. This chiral

interaction originates from carriers moving in the presence of a spin texture. As dis-

cussed above, the carriers see the texture as a source of pseudo-magnetic field coupled

to their orbital motion through a geometric Aharonov-Bohm effect. This interac-

tion favors chiral spin textures, such as skyrmions, which are topologically protected

particle-like objects. The chiral interaction lowers the threshold for Stoner instabil-

ity, making chiral spin-ordered phases readily achievable under realistic conditions.

We will illustrate this effect using a graphene multilayer model, with magnetization

and pseudo-magnetic fields that assume distinct values in different valleys. However,

the results are applicable to generic Stoner magnets in bands endowed with Berry

curvature.

In Chapter 4, we will explore another phenomenon arising from the chiral interac-

tion: the chiral spin-wave edge mode. The material of this chapter is largely based on

35



Ref.[41]. We will demonstrate that Stoner spin-polarized phases that occur in bands

with Berry curvature spin support chiral spin-wave edge modes that propagate ballis-

tically along system boundaries without backscattering. The edge modes are weakly

confined to the edge. This unique character of edge modes reduces their overlap with

edge disorder and enhances their lifetime. The mode propagation direction flips upon

reversing valley polarization, providing a clear and testable signature of the chiral

interaction in Dirac bands and other systems with a 𝑘-space Berry curvature.
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Chapter 2

Isospin- and momentum-polarized

orders in bilayer graphene

2.1 Introduction

As discussed in Introduction, quantum materials with narrow bands have been found

to host a variety of strongly correlated phases with exotic properties that can be

accessed by tuning external fields and carrier density. Such phases were first discov-

ered in narrow bands in moiré graphene[15, 112, 116, 42]. These findings triggered

a large body of experimental work [21, 22, 80, 190, 135, 152, 186, 185, 154, 153,

176, 37, 99, 83, 29, 76, 23, 64, 74, 90, 191, 98] and, subsequently, inspired investiga-

tions into other narrow-band systems with interesting properties. Recently, two non-

twisted graphene multilayers—Bernal-stacked bilayers and rhombohedral trilayers—

have been identified[202, 203, 201, 35, 150] as systems showing cascades of ordered

phases resembling those seen in moiré graphene[146, 204, 30, 144, 141]. These systems

feature electron bands with field-tunable bandgaps and dispersion that flattens out

quickly as the field increases. Carriers in these bands become nearly dispersionless at

large fields, forming strongly interacting systems with interesting properties[34, 94,

164, 27, 25, 113, 174, 78, 31]. These developments prompted questions about new

symmetry-breaking types and new orders achievable in these systems.

Perhaps the most unusual aspect of these systems is that the flat band is not an
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Figure 2-1: a) Phase diagram for different isospin (valley and spin) orders in a lightly-
doped BBG band. Carriers form Fermi seas with the degree of isospin polarization
increasing with field bias. States with different numbers of isospin species, pictured in
the insets, are found in the four regions of the phase diagram obtained using realistic
parameters. The polarization degree varies from one layer (fully polarized) to four
layers (unpolarized) [see text beneath Eq. (2.12)]. b) Level-two symmetry breaking
occurring in a dashed box marked in a). Different orders arise due to the Fermi sea
spontaneously breaking into 𝑁 = 1, 2, or 3 pockets and shifting to different band
minima [see Fig. 2-2].
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isolated band, as in moiré graphene. Instead, it is a flattened part of a dispersive

band, with the degree of flatness and phase volume tunable by the displacement field.

This behavior leads to properties distinct from those of unbiased bilayer graphene

[128, 33, 174].

Here, starting from a simple Hubbard-like framework for the interaction effects in

biased bilayer graphene (BBG), we analyze different order types that may occur in

this system. The discussion in this Chapter is based on Ref.[39]. Electron exchange

interactions in flattened bands drive isospin (spin-valley) polarization instability and

produce a cascade of phase transitions between states with different polarizations,

resembling those known in moiré graphene[146, 204, 30, 144, 141]. A phase diagram

for this cascade, derived below and shown in Fig. 2-1 a), strongly resembles the phase

diagram seen experimentally[201, 35, 150].

Further, an interesting change in behavior occurs at lower densities, where inter-

actions lead to spontaneous momentum polarization of isospin-polarized Fermi sea, as

illustrated in Fig. 2-1 b). Momentum-polarized phases originate from the exchange-

induced “flocking” effect, wherein all carriers are shifted into one, two or three pockets

at the band minima produced by the trigonal warping effects. These orders develop

on top of the isospin-polarized phases.

Momentum-polarized states are described phenomenologically by an effective Hamil-

tonian:

�̃�(𝑘) = 𝐻(𝑘) + 𝑢 · 𝑘. (2.1)

Here 𝐻(𝑘) is the trigonal warped Hamiltonian which we can approximate with three

parabolic pockets displaced from 𝐾 points, as illustrated in Fig. 2-2, 𝑢 is the order

parameter that describes the polarization in momentum space. As we will see, a

spatial dependent 𝑢(𝑥) gives rise to a local persistent current and an orbital mag-

netization, which is allowed by the spontaneously broken time-reversal symmetry in

momentum-polarized phases. The persistent currents and orbital magnetization gen-

erated in this way are distinct from those familiar for the bands endowed with Berry

curvature.
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In addition to that, the momentum-polarized carriers “sample” the Berry curvature

of the conduction band, leading to jumps and other unique signatures in the anoma-

lous Hall effect. These effects are enhanced by the redistribution of Berry curvature

throughout the conduction band resulting from its trigonal warping (see Fig. 2-2).

An abrupt onset of a 𝐵 = 0 Hall effect, along with anisotropy of transport due to

electronic nematicity, will provide clear signatures of momentum-polarized orders.

2.2 An effective one-band model

Isospin polarization occurs when the exchange interaction between carriers in the

conduction or valence band exceeds the characteristic kinetic energy. In the BBG

system, the kinetic energy is quenched when band dispersion is flattened by bandgap

opening in the presence of a large transverse displacement field. This regime can

be described by a one-band Hamiltonian derived by projecting the bilayer Hamilto-

nian to the conduction or valence band. Here we obtain this model starting from a

conventional continuum two-band model (see Chapter1 or Ref.[110]):

𝐻0 =
∑︁
𝜉𝑠𝑝

Ψ†
𝜉𝑠𝑝

[︁
ℎ𝜉0 + ℎ𝜉𝑡 + ℎ𝑎 + ℎ𝐷′

]︁
Ψ𝜉𝑠𝑝 (2.2)

ℎ𝜉0 = ℎ1(𝑝)𝜎1 + ℎ2(𝑝)𝜉𝜎2 +𝐷𝜎3

ℎ𝜉𝑡 = 𝑣3 (𝑝1𝜉𝜎1 − 𝑝2𝜎2) , ℎ𝑎 =
𝑝2

2𝑚𝑎

, ℎ𝐷′ = −𝐷𝑝
2

𝑝2
𝜎3

where 𝜉 = 𝐾,𝐾 ′ represents valley 𝐾 and 𝐾 ′, 𝑠 =↑, ↓ represents spin-up and spin-

down, Ψ𝜉𝑠𝑝 = (𝜓𝐴𝜉𝑠𝑝, 𝜓𝐵𝜉𝑠𝑝)
T, 𝜎1,2,3 are the Pauli matrices acting on the valley and

sublattice (layer) degrees of freedom, respectively. Unlike in Eq.(1.39) from Chapter

1, here we have included subleading terms such as trigonal warping and the quadratic

term, as they are essential for the analysis of the three-pocket structure of the Fermi

sea, which is crucial to our analysis in the following sections. The quantity 𝐷 is the
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parameter value parameter value
a 2.46 Å 𝑣 1.1×106 m/s
𝛾0 3.16 eV 𝑚𝑎 0.19 𝑚𝑒

𝛾1 0.381 eV 𝑚 0.028 𝑚𝑒

𝛾3 0.38 eV 𝑣3 1.3×105 m/s
𝐷 0− 100 meV 𝑝𝑎CC 0.058

Table 2.1: Parameters in the Hamiltonian computed based on values in Ref. [110].
The velocities are defined as 𝑣𝑖 = (

√
3/2)𝑎𝛾𝑖 (ℏ = 1 throughout this paper). The BG

band mass is defined as 𝑚 = 𝛾1/2𝑣
2 ≈ 0.028𝑚e.

interlayer bias generated by the transverse electric field. Here ℎ1 and ℎ2 are given by

ℎ1(𝑝) = −𝑝
2
1 − 𝑝22
2𝑚

, ℎ2(𝑝) = −𝑝1𝑝2
𝑚

. (2.3)

The problem given in Eqs. (2.2) and (2.3) is derived under the assumption that intra-

and interlayer hoppings (A1B1 and A2B1-type terms in the original Hamiltonian,

which are 3.16 eV and 0.38 eV, respectively) are much larger than all other energy

scales. Here ℎ𝑡 produces the trigonal warping; ℎ𝑎 produces the particle-hole asym-

metry and ℎ𝐷′ is the momentum-dependent contribution that is proportional to the

displacement field with 𝑝 ≈ 0.058/𝑎CC a constant (see Table 2.1).

Our problem has a rich symmetry group that includes both exact and approx-

imate symmetries. The true symmetry group of the free-electron Hamiltonian in

Eq.(2) contains the spin-valley part which is U(1)v × SU(2)K × SU(2)K′ , where U(1)v

describes valley conservation and SU(2)K, SU(2)K′ describe spin rotations performed

independently in the two valleys. In addition, the true symmetry group contains a

𝐶3 rotation, a mirror symmetry that interchanges the 𝐾 and 𝐾 ′ valleys, and lattice

translations. In this and the next section, for simplicity, we focus on understanding

the isospin orders in a SU(4)-symmetric model, obtained by suppressing the sublead-

ing terms[110], such as trigonal warping ℎ𝑡. These terms govern subtle effects such

as momentum polarization, which will be considered in Sec. 2.4 and Sec.2.5.

We measure the energies in meV and the momentum is made dimensionless by

multiplying by the carbon-carbon atom distance 𝑎CC = 1.46 Å. The relevant system

parameters are given in Table 2.1.
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Here, we will be interested in the regime where the field-induced bandgap 2𝐷 is

large compared to the carrier kinetic energy (see inset in Fig. 2-1 a)). In this regime,

the upper and lower bands flatten out and effectively decouple. We, therefore, project

the problem onto the conduction band

�̃�0 = 𝑃𝐻0𝑃 , (2.4)

Here the projection operator 𝑃 is defined as

𝑃 =
∑︁
𝜉

1

2

(︃
ℎ𝜉0(𝑝)

𝐸(𝑝)
+ 1

)︃
, 𝐸(𝑝) =

√︃
𝐷2 +

(︂
𝑝2

2𝑚

)︂2

. (2.5)

This yields a one-band SU(4)-invariant Hamiltonian �̃�0 of the form:

�̃�0 =
∑︁
𝑖𝑝

𝐸(𝑝)𝜓†
𝑖,𝑝𝜓𝑖,𝑝, 𝑖 = 𝐾 ↑, 𝐾 ↓, 𝐾 ′ ↑, 𝐾 ′ ↓, (2.6)

where 𝜓𝑖,𝑝 is the field operator of conduction band electrons in two valleys and two

spins. From now on, we write the spin indices explicitly.

The electron-electron interaction, modeled as a density-density coupling, in nota-

tions of Eq.(2) reads:

𝐻𝑖𝑛𝑡 =
1

2

∑︁
𝑝𝑝′𝑞

𝑉𝑞𝜓
†
𝛼𝜉𝑠,𝑝𝜓

†
𝛽𝜉′𝑠′𝑝′𝜓𝛽𝜉′𝑠′(𝑝′−𝑞)𝜓𝛼𝜉𝑠(𝑝+𝑞), (2.7)

where 𝜉, 𝜉′ label the valley degree of freedom, 𝑠, 𝑠′ label the spin degree of freedom,

and 𝛼, 𝛽 label the sublattice degree of freedom. We adopt the usual convention that

the repeated pairs of indices are summed over. This interaction in Eq.(7), obtained by

suppressing the intervalley scattering processes and ignoring the difference between

the interlayer and intralayer interactions, is invariant under SU(4) spin/valley rota-

tions. At large 𝐷, the form of density-density interaction is approximately invariant
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under projection onto the conduction band:

�̃�𝑖𝑛𝑡 =
1

2

∑︁
𝑝𝑝′𝑞

𝑉𝑞𝜓
†
𝑖,𝑝𝜓

†
𝑗,𝑝′𝜓𝑗,𝑝′−𝑞𝜓𝑖,𝑝+𝑞 (2.8)

Similar to Eq. (2.6), subscripts 𝑖 and 𝑗 take values 𝐾 ↑, 𝐾 ↓, 𝐾 ′ ↑, 𝐾 ′ ↓. Here

we ignore the intervalley Coulomb scattering because the interaction 𝑉𝑞 drops as 1/𝑞,

leading to intervalley interactions that are smaller than the intra-valley interaction by

a factor of 𝑝𝐹/2𝐾 which is as small as 0.04 at carrier density 1012cm−2. As a result,

the approximate Hamiltonian, Eq.(2.8), has an isospin SU(4) symmetry. We note

parenthetically that at a small 𝐷 field, Eq. (2.8) is no longer a good approximation

since it should include a coherence factor that depends on the valley and momenta.

This makes the strength of coupling between charge densities in valley 𝐾 different

from the coupling between charge densities in valley 𝐾 and valley 𝐾 ′, breaking the

approximate SU(4) symmetry. However, this SU(4) symmetry-breaking effect is small

in the regime of interest. Namely, since these coherence factors are 1 − 𝒪(𝐸𝐹/𝐷),

the difference between the coherence factor in the intervalley density-density cou-

pling term 𝜓†
𝐾𝜓𝐾𝜓

†
𝐾′𝜓𝐾′ and the one in the intravalley density-density coupling term

𝜓†
𝐾𝜓𝐾𝜓

†
𝐾𝜓𝐾 is at most 𝒪(𝐸𝐹/𝐷), which is small when displacement field 𝐷 is much

larger than the Fermi energy 𝐸𝐹 .

To gain insight into the parameter regime for isospin polarization occurs we use a

simple constant interaction model, refining it in the subsequent analysis of momentum

polarized order. The isospin order is a result of a Stoner instability arising from the

exchange energy, which can be written as

𝐸ex = −1

2

∑︁
𝑖𝑞𝑞′

𝑉𝑞−𝑞′𝑛𝑖𝑞𝑛𝑖𝑞, 𝑛𝑖𝑞 = ⟨𝜓†
𝑖,𝑞𝜓𝑖,𝑞⟩ (2.9)

where 𝑖 indexes isospin as in Eq. (2.8). Below, for simplicity, we model the interaction

as a local interaction, 𝑉𝑞−𝑞′ = 𝑉 .

Perhaps the closest comparison to our analysis of BBG in the literature is the

early work on Stoner spin instability in BBG [27, 25, 164]. This work employed an
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Figure 2-2: a) Conduction band dispersion flattened by transverse field. Trigonal
warping interaction creates three mini-valleys, at low carrier density giving rise to
three electron pockets (red contours). b) A toy model for the three-pocket band
structure. c) Schematic for pockets positioned near 𝐾 and 𝐾 ′ points. d) The dis-
tribution of the Berry curvature in the conduction band near 𝐾 point. Parameters
used: bias potential 𝐷 = 100 meV, the chemical potential 𝜇 = 90 meV. The value
𝜇 < 𝐷 reflects the effect of the trigonal warping.
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atomic-scale short-ranged interaction, which did not allow treating valley and spin

degrees of freedom on equal footing. The interaction used here, in contrast, is blind to

valley and spin, leading to an approximate SU(4) symmetry and a cascade of isospin

orders.

2.3 Broken isospin SU(4) symmetry and phase dia-

gram

Next, we proceed to analyze the isospin polarization orders using as a framework the

SU(4) symmetric model introduced above. The onset of SU(4) isospin polarization is

determined by the Stoner criterion:

𝑉 𝜈 = 1, (2.10)

with the density of states 𝜈 (per isospin species) in the conduction band,

𝜈 =
𝑚

2𝜋

𝜇√︀
𝜇2 −𝐷2

≈ 𝑚2

(2𝜋)2
𝐷

𝑛
. (2.11)

Here we have used the expression for the electron density in the single-electron picture,

𝑛 = 𝑚
2𝜋

√︀
𝜇2 −𝐷2, taking the chemical potential to lie near the bottom of the band,

𝜇 ≈ 𝐷. With this, we estimate the carrier density at the onset of the Stoner instability,

finding a fan of phase boundaries 𝑛 vs. 𝐷 for 𝑀 = 1, 2, or 3 isospin species:

𝑛𝐷 =𝑀
𝑉𝑚2𝐷

(2𝜋)2
. (2.12)

While in general, the mean-field Stoner approach has limitations, in this case, it

appears to be accurate. For BBG parameters 𝑚 = 0.028𝑚e[110, 105, 180], 𝑉 =

103 meV nm2 [see Appendix 2.7 ], this simple model predicts an isospin ordering tran-

sition at carrier densities 𝑛𝐷 ∼ 1012cm−2 for the interlayer bias 𝐷 = 100 meV, in

excellent agreement with Ref.[201].
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irreps 𝐴2,Γ, 1D 𝐸±𝐾 , 2D
matrices 𝜏3 (𝜏1, 𝜏2)
𝑂1 𝑂𝑧

1 = 𝑃±𝑧
𝜏 𝑃𝑚

𝑠 𝑂𝑥𝑦
1 = 𝑃 𝛾

𝜏 𝑃
𝑚
𝑠

broken symmetries mirror, time reversal rotation, mirror, translation
Ohmic conductivity isotropic anisotropic
spatial modulation none Kekulé order
Hall conductivity nonvanishing vanishing

Table 2.2: Symmetry classification of different isospin orders. Listed are results for
two real irreducible representations (irreps) of the BBG space group discussed fol-
lowing Eq.(3), under which the order parameter for the full spin and valley polarized
phase, 𝑂1 ∼ (1 +

∑︀
𝑖 𝛾𝑖𝜏𝑖)𝑃

𝑚
𝑠 , can transform; other irreps (𝐴1,Γ, 𝐸Γ, etc.) are not

realized by isospin-polarized orders. Row 1 lists the irreps and their dimensions. In-
row 3, the projection operators in the valley and spin space constituting the order
parameter are 𝑃±𝑧

𝜏 = 1
2
(1± 𝜏3), 𝑃 𝛾

𝜏 = 1
2
(1 + 𝛾1𝜏1 + 𝛾2𝜏2), 𝑃𝑚

𝑠 = 1
2
(1 + 𝑠 ·𝑚), where

𝛾 = (𝛾1, 𝛾2)
T with real 𝛾1,2, 𝑚 = (𝑚1,𝑚2,𝑚3)

T is an arbitrary three-dimensional real
vector.rows 4-7 list broken symmetries and signature observables (see text).

The mean-field phase diagram, obtained by comparing energies of partially polar-

ized states with 𝑀 = 1, 2, 3, and 4 isospin species found numerically, is shown in

Fig. 2-1 a). The yellow area represents the disordered phase where all four isospin

species are equally filled. Purple, light blue, and green mark stability regions for

isospin-ordered states. The inset in the lower right corner shows electron dispersion

near charge neutrality, with the Fermi level marked by a red dashed line. The insets

at the top illustrate the layer-cake structure of electron distribution in each of the

phases, with the Fermi seas for different isospin species shown in different colors. The

gray region near charge neutrality marks the band insulator phase with an unoccupied

conduction band. The dashed rectangle marks the region of low carrier density on

which the second half of this paper will focus. As we will see in Sec.2.4 and Sec.2.5,

trigonal warping of the conduction band flattened by the external field 𝐷 gives rise

to Fermi sea breakups and level-two symmetry breaking through spontaneous mo-

mentum polarization. This behavior is summarized in the phase diagram in Fig. 2-1

b).

Because of the SU(4) symmetry of our problem, the phase diagram in Fig. 2-1

a) is insensitive to the order parameter orientation in the isospin space. However,

in reality, small valley anisotropy in the Hamiltonian, e.g. trigonal warping or in-
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tervalley scattering, can lift the SU(4) degeneracy and favor a certain orientation in

isospin space. Here, rather than analyzing the competition between phases with dif-

ferent symmetries, we take a general symmetry approach and list all possible ways

of breaking the SU(4) symmetry. The energetics describing this competition will be

discussed elsewhere.

Our symmetry analysis benefits from the observation that the symmetry aspects of

different orders and the general properties of the order parameter can be understood

regardless of detailed knowledge of which order is ultimately favored. Below, we

describe the possible order types and classify them through the symmetry of our

problem.

For simplicity, we focus on the case of phase 1 where electrons only occupy one

isospin species. Other orders can be studied in a similar manner. Table 2.2 summa-

rizes the results for phase 1. In this case, there are two possible phases, 𝑂𝑧
1 and 𝑂𝑥𝑦

1 ,

describing orders with valley imbalance and intervalley coherence, respectively. These

two order types break different symmetries and have different signature observables

as a result.

We arrive at this conclusion as follows. In phase 1 the order parameter is simply

a projection onto the state with a given valley-spin orientation. Therefore, it takes

the form of

𝑂1 = |𝑣⟩⟨𝑣| (2.13)

where 𝑣 is an arbitrary normalized complex-valued four-component spinor in the

isospin space, |𝑣⟩ = (𝛼1|𝑢1⟩, 𝛼2|𝑢2⟩)T where |𝑢1⟩, |𝑢2⟩ are arbitrary normalized two-

component state vectors in the spin subspace, 𝛼1, 𝛼2 are positive real numbers,

𝛼2
1 + 𝛼2

2 = 1. Overall phases are absorbed in |𝑢1⟩ and |𝑢2⟩. Using the symmetry

U(1)v × SU(2)K × SU(2)K′ [see discussion following Eq.(3)] we can perform indepen-

dent spin rotations in valleys𝐾 and𝐾 ′ to achieve |𝑢1⟩ = |𝑢2⟩. Upon doing so the order

parameter becomes factorized into a product of valley and spin projection, as given in

Table 2.2. The symmetry analysis of the Pauli matrices in valley basis (see Table 2.2)

indicates that 𝜏1,2 and 𝜏3 transform under different irreducible representations. Thus,
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an order parameter containing 𝜏1,2 matrices and another one containing 𝜏3 corresponds

to different broken symmetries. Therefore, to classify orders by symmetry, we look

for an order parameter, 𝑂, that contains 𝜏3 or 𝜏1,2 matrices only, but not a mixture of

𝜏3 and 𝜏1,2. This gives two possible types of the order parameter with distinct sym-

metry: 𝑂𝑧
1 = 1

4
(1± 𝜏3) (1 + 𝑠 ·𝑚) and 𝑂𝑥𝑦

1 = 1
4
(1 + 𝛾1𝜏1 + 𝛾2𝜏2) (1 + 𝑠 ·𝑚). Here,

𝑚 is an arbitrary vector determining the spin direction, and (𝛾1, 𝛾2) is an arbitrary

normalized real-valued vector.

The order 𝑂𝑧
1 represents a valley imbalance order, which transforms under 𝐴2,Γ

and thus, features a breakdown of the mirror symmetry that swaps the two valleys.

The second order parameter, 𝑂𝑥𝑦
1 , corresponds to the intervalley coherent order that

transforms under 𝐸±𝐾 . It breaks the three-fold rotation, reflection, and translation

symmetries of the original problem, Eq.(2). This aspect clearly differentiates the AB

bilayer graphene from the case of ABC trilayer: in the latter, the intervalley coherent

state does not break the 𝐶3 rotation symmetry[33, 34]. The symmetry classification

of possible orders in AB bilayer graphene is summarized in Table.2.2.

Our symmetry analysis allows us to identify two observables that distinguish the

valley imbalance and intervalley coherent orders in phase 1. These are anisotropy

of conductivity and a spatial charge density wave modulation. For valley imbalance

order 𝑂𝑧
1, neither rotation nor translation symmetry of the space group is broken,

so the conductivity is isotropic and there is no spatial pattern. In comparison, for

the valley coherence order 𝑂𝑥𝑦
1 , both rotation and translation symmetries are bro-

ken. The broken rotation symmetry leads to an anisotropic conductivity, whereas the

broken translation symmetry leads to a spatial pattern with momentum 2𝐾, i.e. a

Kekulé charge density wave. On a different note, temporal symmetry can be probed

by Hall conductance. For the valley imbalance order 𝑂𝑧
1 where time-reversal symme-

try is broken, the Hall conductivity is nonvanishing. In comparison, the intervalley

coherent order 𝑂𝑥𝑦
1 preserves time-reversal symmetry, guaranteeing a vanishing Hall

conductance. These observables are summarized in the last three rows in Table 2.2.
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2.4 Momentum-polarized order: the three-pocket model

Next, we turn to discuss momentum-polarized ordered states that are unique to BBG.

These orders are triggered by the Lifshits transition in which an isospin-polarized

Fermi sea splits into several distinct pockets centered around the minima of the

conduction band. Following this transition, exchange interactions drive symmetry

breaking between different pockets through momentum polarization instability.

It is instructive to start with a qualitative discussion of how this instability comes

into play. There is an anisotropy in a realistic BBG bandstructure at small momenta

due to the trigonal warping term, which is not included in the minimal description

of band structure Eq. (2.2). This anisotropy leads to a three-pocket shape of the

Fermi surface in the regime of extremely low carrier density. As a result, for each

isospin, instead of uniformly filling all three pockets, there are three candidate electron

configurations for the ground state, in which either one, two, or all three pockets are

filled. Which one wins is determined by the competition between the kinetic and

the exchange energy. The kinetic energy favors the configuration where all pockets

are uniformly filled, whereas the exchange energy is optimized when all electrons are

placed in the same pocket since the interpocket exchange interaction is weaker than

the intrapocket one.

To estimate of the energy scales that govern this competition, we consider the

total single-particle kinetic energy for all carriers polarized in one pocket:

𝐸kin ∼ 𝑛2/2𝜈*, (2.14)

where 𝜈* ∼ 5 × 10−5 meV−1 nm−2 is the density of states at the bottom of a single

pocket, obtained using the pocket dispersion parameters estimated below. To study

the pocket order, we take into account the momentum dependence of the interaction.

Then the exchange energy is:

𝐸ex ∼ −2𝜋𝑒2

𝜅|𝑝|
𝑛2 ∼ −

√
𝜋

𝜅
𝑒2𝑛3/2, |𝑝| ∼

√
4𝜋𝑛, (2.15)
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with the characteristic momentum scale estimated from particle spacing. As a result,

the exchange energy dominates at sufficiently small density 𝑛 ≲ 𝑛* =
4𝜋
𝜅2 𝑒

4𝜈2* ∼ 1011

cm−2, where we have used a realistic value 𝐷 ∼ 100 meV and the dielectric constant

𝜅 ∼ 5. The 𝜅 value was taken to be close to the “intrinsic” dielectric constant in

monolayer graphene arising due to intraband polarization in the Dirac band. The

realistic 𝜅 values will be somewhat larger and may depend on the substrate and other

details of the experimental setup.

The resulting phase diagram in the small density regime is shown in Fig. 2-1 b).

At the lowest carrier density, exchange energy dominates and all electrons prefer to

polarize in a single pocket. Upon carrier density increasing, the system undergoes

phase transitions, first to a two-pocket configuration, and then to a three-pocket

(unpolarized) phase. For illustration, in Fig. 2-1 b), we set the dielectric constant

to be 𝜅 = 3, so that the phase diagram showcases all possible phases. The details

of the phase diagram observed in the experiment may vary from system to system

since the competition of pocket orders is sensitive to screening effects that depend

on the experimental setup. If screening is made stronger [e.g. by a proximal gate],

the pocket-ordered state will be suppressed compared to that shown in Fig. 2-1 b).

Alternatively, if the screening is made weaker, the pocket-polarized phase will expand,

taking over a larger part of the phase diagram. We note that the energy difference

between the pocket polarized and unpolarized states is of the order of 0.1meV to

1meV per carrier, yielding a readily accessible ordering temperature scale of a few

kelvins.

We end this section by detailing the procedure through which we extract the

parameters 𝑘* and 𝑚* used in the three-pocket model by starting from the realistic

BG band structure. As we only care about the band dispersion near the band minima,

we model the three-pocket band structure using three isotropic parabolic bands:

𝐻𝛼(𝑝) =
(𝑝− 𝑘𝛼)

2

2𝑚*
, 𝛼 = 1, 2, 3. (2.16)

Here 𝛼 labels the pockets, 𝑘′
𝛼𝑠 are the centers of pockets, corresponding to three
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minima of the conduction band:

𝑘1 = 𝑘*(0, 1), 𝑘2,3 = 𝑘*

(︃
∓
√
3

2
,−1

2

)︃
. (2.17)

The values of 𝑘* and 𝑚* will be specified below.

In order to relate the three-pocket bandstructure represented by three parabolas

to the single-particle bandstructure shown before, we first adopt a minimal model

that possesses the pockets at a large displacement field 𝐷. This model is described

by the Hamiltonian

𝐻𝑚𝑖𝑛
3−𝑝 =

∑︁
𝑝

𝜓†
𝑖𝑝 [ℎ0(𝑝) + ℎ𝑡(𝑝) + ℎ𝐷′(𝑝)]𝑖𝑗 𝜓𝑗𝑝 (2.18)

Here 𝑖 labels isospin, the term ℎ𝐷′ is responsible for the Mexican-hat shape dispersion.

We find the value of 𝑘* by neglecting the trigonal warping term:

𝑘*(𝐷) ≈ 𝑝
𝐷

�̃�
, �̃� =

𝑝2

2𝑚
≈ 0.2 eV, (2.19)

The trigonal warping determines the positions of the three minima of the conduction

band but has a negligible effect on the radial coordinate of these minima.

The mass 𝑚* is a parameter that we introduced in the three-pocket toy model to

mimic the bottom of the conduction band from (2.18). The Hamiltonian Eq.(2.18)

near one of the minimums takes the following form

𝐻(𝑘1 + 𝛿𝑝) =
𝛿𝑝2𝑥
2𝑚*⊥

+
𝛿𝑝2𝑦
2𝑚*‖

, (2.20)

We find that the effective mass in radial direction 𝑚*‖ is determined mainly by ℎ𝐷,

whereas the perpendicular mass 𝑚*⊥ is only finite when we include the trigonal warp-

ing term:

𝑚*‖ ≈
𝑚�̃�

4𝐷
, 𝑚*⊥ ≈ 𝑝

6𝑣3
. (2.21)
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In our three-pocket toy model Eq.(2.16), we set the parameter 𝑚* as

𝑚* =
√
𝑚*⊥𝑚*‖. (2.22)

so that the three-pocket model reproduces the density of states of the realistic band

structure.

2.5 Stoner instability in the pocket channel. Phase

diagram.

Using the three-pocket model, we proceed to analyze the instability toward the

momentum-polarized state and obtain a phase diagram. For clarity, we focus on

the effects arising in phase 1 [see Fig.2-1], where the additional effects of densities in

different isospin states is absent. There are three possible candidate ground states in

which electrons fill up one, two or all three pockets. To determine which one of them is

the true ground state, we compare their energies 𝐸𝑁 (𝑁 = 1, 2, 3 is the number of oc-

cupied pockets) at the same total carrier density 𝑛. Their energies 𝐸𝑁 = 𝐸
(𝑁)
𝐾 +𝐸

(𝑁)
𝑒𝑥

consist of kinetic and exchange energy contributions. Using the fact that the density

of states in each pocket is a constant 𝜈* = 𝑚*/2𝜋, we can write the total kinetic

energy as

𝐸
(𝑁)
𝐾 =

𝑁

2𝜈*

𝑛2

𝑁2
=

𝜋𝑛2

𝑁𝑚*
(2.23)

In order to explore the pocket polarization, we restore the momentum dependence of

the interaction in the exchange part of the free energy:

𝐸(𝑁)
𝑒𝑥 = −1

2

𝑁∑︁
𝑖,𝑗=1

∑︁
𝑝,𝑝′

𝑉𝑝−𝑝′𝑛𝑖𝑝𝑛𝑗𝑝′ , 𝑉𝑝−𝑝′ =
2𝜋𝑒2

𝜅|𝑝− 𝑝′|
, (2.24)

where 𝑛𝑖𝑝 is the occupation number at momentum 𝑝 measured relative to the pocket

𝑖 center. For simplicity, as in Eq.2.15, we use momentum-independent dielectric

constant 𝜅. When the carrier density is small, the interpocket exchange interactions

52



yield a nearly momentum-independent renormalization of the energy of each electron,

which justifies approximating the Fermi surfaces in the pockets by discs centered at

𝑘𝑖. This yields an estimate for exchange energy

𝐸(𝑁)
𝑒𝑥 = −

𝑁∑︁
𝑖,𝑗=1

∑︁
𝑝,𝑝′

1

2
𝑉𝑝−𝑝′+𝑘𝑖𝑗

𝑛𝑝𝑛𝑝′ , (2.25)

𝑉𝑝−𝑝′ =
2𝜋𝑒2

|𝑝− 𝑝′|
, 𝑛𝑝 = 1− 𝜃(|𝑝| − 𝑝0). (2.26)

where 𝑘𝑖𝑗 = 𝑘𝑖 − 𝑘𝑗 are momentum differences between pocket centers, 𝑛𝑝 is the

occupation number of the state with momentum 𝑝 measured relative to the pocket

center 𝑛𝑝 = 1− 𝜃(|𝑝| − 𝑝0). Here 𝑝0 is the radius of the circular Fermi surface in each

pocket

𝑝0 =
√︀

4𝜋𝑛/𝑁. (2.27)

With these expressions, the exchange energy can be evaluated analytically by per-

forming the Fourier transform. Namely, perform Fourier transform:

𝑉 (𝑟) =
𝑒2

|𝑟|
=

∫︁
𝑑2𝑝

(2𝜋)2
𝑒𝑖𝑝·𝑟𝑉𝑝 (2.28)

and

𝑛(𝑟) =

∫︁
𝑑2𝑝

(2𝜋)2
𝑒𝑖𝑝·𝑟𝑛𝑝 (2.29)

Then, the exchange energy can be written as

𝐸(𝑁)
𝑒𝑥 = −1

2

∑︁
𝑖𝑗

∫︁
𝑑2𝑟𝑉 (𝑟)𝑛(𝑟)2𝑒𝑖𝑘𝑖𝑗 ·𝑟 (2.30)

= −1

2

∑︁
𝑖𝑗

∫︁ ∞

0

𝑉 (𝑟)𝑛(𝑟)22𝜋𝐽0(𝑟|𝑘𝑖𝑗|)𝑥𝑑𝑥

Here 𝐽0 is the Bessel function. To evaluate this quantity, we need to first work out

the form of 𝑛(𝑟):

𝑛(𝑟) =

∫︁
|𝑝|<𝑝0

𝑑𝑝𝑥𝑑𝑝𝑦
4𝜋2

𝑒𝑖𝑝𝑥𝑟 =

∫︁
𝑑𝑝𝑥
2𝜋2

√︁
𝑝20 − 𝑝2𝑥𝑒

𝑖𝑝𝑥𝑟. (2.31)
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Passing to polar coordinates, we have

𝑛(𝑟) =
𝑝20
2𝜋2

∫︁ 𝜋
2

−𝜋
2

𝑑𝜃 cos2 𝜃𝑒𝑖𝑧 sin 𝜃 (2.32)

=
𝑝20
8𝜋

[𝐽2(𝑧) + 2𝐽0(𝑧) + 𝐽−2(𝑧)] =
𝑝20
4𝜋

[𝐽2(𝑧) + 𝐽0(𝑧)]

where 𝑧 = 𝑟𝑝0 , 𝐽0 and 𝐽2 are Bessel functions. With these expressions, we finally

arrive at

𝐸(𝑁)
𝑒𝑥 = −𝑒

2𝑝40
16𝜋

∑︁
𝑖𝑗

∞∫︁
0

𝑑𝑟 [𝐽2(𝑟𝑝0) + 𝐽0(𝑟𝑝0)]
2 𝐽0(𝑟|𝑘𝑖𝑗|). (2.33)

Our isotropic parabolic bands model for pockets [see Eq.(2.16)] is expected to be

accurate when the distance 𝑘* from the pocket centers to𝐾 point is much greater than

the pocket radius 𝑝0. This yields an upper bound for carrier density: 𝑛 ≲ 0.3× 1012

cm2, where we used the value of 𝑘* estimated above. As Fig. 2-1 a) indicates, the

maximal density in phase 1 always satisfies the above validity condition. We can

therefore use the results in Eqs. (2.23),(2.33) to determine the phase diagram by

comparing the energies of one-pocket, two-pocket, and three-pocket configurations.

2.6 Momentum-polarized phases: observables and

phenomenology

There are several unique observables that can be predicted for the momentum polar-

ized phases. One surprising phenomenon that these phases display is the presence of

persistent currents in the ground state, which are allowed by spontaneously-broken

time reversal and inversion broken due to the transverse electric field. Such currents

will not survive in a spatially uniform system bulk, yet they will show up at boundaries

and interfaces. For example, they are expected to occur in the presence of spatial

domains in which electrons populate different pockets. This behavior can be un-

derstood by parameterizing the momentum polarization using a position-dependent

vector 𝑢(𝑥) as in the mean-field Hamiltonian given in Eq.(2.1). In each domain,
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𝑢(𝑥) is a uniform vector field aligned with a certain crystal axis. For a uniform 𝑢,

the electric current in equilibrium equals zero since the integral over the Fermi sea of

carrier velocities derived from Eq. (2.1) will vanish. However, at a domain wall 𝑢(𝑥)

varies in space and interpolates between different values in the domains. In this case,

a nonzero local current is allowed. This argument predicts a contribution to orbital

magnetization proportional to the curl of 𝑢(𝑥):

𝑚(𝑥) = 𝜒∇× 𝑢(𝑥), (2.34)

where the susceptibility 𝜒 is proportional to the Landau diamagnetic susceptibility.

Here, terms such as ∇ · 𝑢 must be excluded since 𝑚 is an axial vector. Therefore,

we expect a nonvanishing magnetization that peaks on the domain boundaries, orig-

inating from persistent currents that counter-propagate on the two sides of domain

boundaries. The magnetization distribution localized at the domain boundaries is a

directly testable signature of persistent currents.

Other interesting observables can arise from broken crystallographic symmetries.

Indeed, two possible orders of the “parent” phase, i.e. phase 1, correspond to two

kinds of broken symmetries— either breaking only mirror symmetry or breaking ro-

tation, mirror, and translation symmetries (see Table 2.2). If phase 1 only breaks

mirror symmetry, then populating one or two out of three pockets will further break

the three-fold rotation symmetry without breaking the translation symmetry, leading

to electron nematicity. This symmetry breaking can be observed by measuring the

anisotropy in the conductivity. If, however, the parent isospin order is intervalley

coherent, then the only remaining symmetry to be broken in the pocket-polarization

transition is the translation symmetry. Namely, the pocket polarization on top of

valley coherent states transforms the Kekulé charge density wave into an incommen-

surate density wave which carries momentum 𝑃 𝑖,𝑗′ = 2𝐾 + 𝑘𝑖 + 𝑘𝑗′ , 𝑖, 𝑗 = 1, 2, 3,

𝑘𝑖′ = −𝑘𝑖, see Fig. 2-2 c). In this case, the pocket order can be detected by imaging

long-period spatial modulations.

The momentum-polarized pocket orders can also be detected by measuring the
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Hall conductivity. When pocket orders occur on top of the valley imbalance order

𝑂𝑧
1 which allows a nonvanishing Hall conductivity, the Hall conductivity changes

abruptly since the Berry curvature is non-uniform near 𝐾 point [see Fig. 2-2 d)]. If

pocket ordering occurs on top of 𝑂𝑥𝑦
1 isospin order, which originally respects the time-

reversal symmetry, enforcing a vanishing Hall conductivity, then the onset of such a

momentum polarization can break the time-reversal symmetry so long as electrons

populate different pockets in valleys 𝐾 and 𝐾 ′ [e.g. pocket 1 and 2′ in Fig. 2-2 c)]. As

a result, the Hall conductivity will jump from zero to some finite value at the pocket

ordering transition. Therefore, regardless of the form of the parent isospin order, we

always expect a discontinuous behavior in Hall conductance at the onset of pocket

orders.

Another experimentally accessible signature of the Berry curvature is magnetiza-

tion due to orbital currents in the ground state of the system. The magnetization can

be estimated using the approach described in Refs.[187], giving ∼ 4 Bohr magnetons

per electron for the parameters used in Fig. 2-2 d) [see Appendix 2.8 ]. This is a few

times larger than the orbital magnetic moments of electrons in a Landau level and is

readily measurable.

2.7 Estimating interaction strength

In our analysis of the phase diagram above, we have been using the value of 𝑉 to

represent the strength of exchange interaction. Here, we provide an estimate for this

quantity.

The interaction strength used in our model can be taken as the strength of the

screened Coulomb interaction at the relevant momentum, which is Fermi momentum

𝑝0. This gives an estimate

𝑉 = 𝑉𝑝0 . (2.35)

Accounting for Thomas-Fermi screening, the screened Coulomb potential takes the
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following form

𝑉𝑝0 =
𝑉𝑝0

1 + 𝑉𝑝0Π𝑝0

, (2.36)

where Π𝑝0 is the polarization function at Fermi momentum. We estimate this quantity

using the value of density of states at Fermi surface 𝜈0. When the band is flat

compared to the interaction energy, which is the case of interest, we have

𝜈0𝑉𝑝0 ≫ 1. (2.37)

In this regime, the screened Coulomb interaction is approximately given by

𝑉𝑝0 =
1

𝜈0
. (2.38)

Therefore, we can estimate the interaction as

𝑉 ∼ 1

𝜈0
∼ 103 meV nm2 (2.39)

where we have used 𝜈0 ∼ 𝑛/𝑊 ∼ 10−3 meV nm−2, where 𝑛 is the carrier density

𝑛 ∼ 1012 cm−2, 𝑊 ∼ 10meV is the Fermi energy measured from the band bottom at

this carrier density.

2.8 The Berry curvature and orbital magnetization

It is straightforward to compute the Berry curvature using the Hamiltonian Eq. (2.18).

Here we consider the Berry curvature for a realistic BG model and obtain the result

of Fig.2-2. We take the form of the Hamiltonian projected to conduction band in

Eq. (2.18), and rewrite it as

𝐻𝑚𝑖𝑛
3−𝑝 =

∑︁
𝑝

𝜓†
𝑖𝑝ℎ(𝑝) · 𝜏 𝑖𝑗𝜓𝑗𝑝, (2.40)

ℎ(𝑝) · 𝜏 = ℎ0(𝑝) + ℎ𝑡(𝑝) + ℎ𝐷′(𝑝) (2.41)
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where 𝜏 = (𝜏1, 𝜏2, 𝜏3). Then the Berry curvature is given by

Ω𝑝 =
1

2

ℎ

|ℎ|
·
(︂
𝜕ℎ(𝑝)

𝜕𝑝1
× 𝜕ℎ(𝑝)

𝜕𝑝2

)︂
. (2.42)

In main text Fig.2-2 we use Eq.(2.42) to numerically compute the Berry curvature.

Next, we estimate the orbital magnetization which arises from Berry curvature.

Below, we recall the derivation of orbital moment described in Ref. [187], and apply it

to our problem. As an estimate, here we only consider the contribution to the orbital

magnetization due to the center-of-mass motion of electrons. The true orbital mag-

netization also includes a contribution due to the self-rotation effect. That, however,

does not change the order of magnitude of the magnetization.

As a starting point, we consider the current flowing along the sample boundary,

treating it as an anomalous current arising due to Berry’s curvature and driven by

the filed due to spatially varying trapping potential 𝑈 . This gives the current

𝐼 = 𝑒

∫︁
𝑑𝑥𝑛(𝑥)𝑣(𝑥) (2.43)

= 𝑒

∫︁
𝑑𝑥

∫︁
𝑑2𝑝

(2𝜋)2
Ω𝑝𝑓(𝜖𝑝 − 𝜇+ 𝑈)

𝜕𝑈

𝜕𝑥
(2.44)

where 𝑥 is the coordinate in the direction normal to the boundary. The magnetization

per unit area is therefore given by

𝑀 =
𝐼𝐴

𝐴
= 𝑒

∫︁ �̃�

0

Ω𝐹𝑆(�̃�− 𝑈)𝑑𝑈, (2.45)

Ω𝐹𝑆(𝐸) =

∫︁
𝑑2𝑝

(2𝜋)2
Ω𝑝𝑓(𝜖𝑝 − 𝐸) (2.46)

To estimate the magnetization value, we apply Eq. (2.46) to the three-pocket model

used in the main text, taking Ω𝑝 as a constant Ω𝑝 ∼ Ω within the Fermi sea. This

gives
𝑀

𝜇𝐵

≈ 𝑁𝑚*𝑚eΩ�̃�
2

2𝜋
. (2.47)

where 𝜇𝐵 is the Bohr magneton, 𝑚e is the electron mass, 𝑁 is the number of pockets
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that are filled, �̃� is Fermi level measured from the bottom of the band. We estimate

𝑀 for the case shown in Fig.2-2, where 𝑁 = 3, �̃� = 10 meV, and Ω ∼ 15 nm2

[extracted from Fig. 2-2], we find

𝑀

𝜇𝐵

∼ 4× 10−3nm−2 ∼ 4𝑛 (2.48)

where we used electron density 𝑛 = 1011 cm−2, a value corresponding to the regime

where pocket polarization is expected. This predicts a sizable orbital magnetic mo-

ment of ∼ 4 Bohr magnetons per conduction electron.

2.9 Summary for Chapter 2

The above analysis demonstrates that exchange interactions in the flattened BBG

bands result in a cascade of isospin-polarized orders and momentum-polarized orders.

These orders are of interest for a number of reasons, in particular, because they

feature persistent currents and magnetization in the ground state. We stress that this

phenomenon is distinct from orbital magnetization familiar in topological bands where

it arises due to the Berry phase. The momentum-polarized orders, rather than merely

providing additional symmetry-breaking options by extending 4 isospin species to 12

isospin and pocket species, lead to unique physical properties such as nematic order

with broken time reversal, persistent currents, and Hall conductivity. Momentum

polarization results in abrupt changes of the Berry curvature seen by electrons, leading

to jumps in the anomalous Hall conductivity and orbital magnetization that can

provide a convenient diagnostic of momentum polarization orders.
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Chapter 3

Chiral interaction and skyrmions

3.1 Introduction

This Chapter starts the discussion of the interplay between the 𝑘-space Berry curva-

ture and Stoner magnetism. As discussed in the Introduction, there are two primary

classes of interest in graphene-based narrow-band systems. One is moiré graphene[3,

21, 22, 24, 204, 184, 146]. Another is non-moiré graphene that hosts flat bands, such

as field-biased Bernal bilayers and rhombohedral trilayers [202, 203, 201, 150, 35].

New exotic orders appear when the moiré twist angle is tuned to a magic value [15]

or when bands are flattened by a transverse electric field [110]. The richness of the

observed orders, which include isopsin (spin and valley) polarized phases coexisting

with insulating and superconducting phases, motivates seeking new exotic orders.

Of special interest are the chiral itinerant magnetic phases, wherein spins wrap

around the Bloch sphere, spanning a solid angle. Chiral spin textures have been

explored in various magnetic systems[126, 48]. Famously, the Dzialoshinskii-Moriya

(DM) coupling favors spin textures[17] such as helical spin density waves [14, 127, 82]

and skyrmions—the seminal topologically-protected particle-like spin configurations[142].

Is it possible to achieve a chiral spin order in graphene-based systems? At first

sight, this may seem problematic as staple interactions that stabilize chiral magnetic

orders are absent or extremely weak in graphene. Indeed, in noncentrosymmetric

magnets—the bulk chiral magnetic metals[143, 121, 130, 193, 151, 149] and mag-
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netic layers[68, 75]—skyrmions are stabilized by the DM coupling governed by the

microscopic spin-orbit interactions (SOI)[17, 48]. However, the microscopic SOI in

graphene is usually negligible compared to other energy scales[129]. Likewise, the

mechanisms that utilize frustration[138, 95, 67] are not found in graphene systems.

In this paper, we address this challenge by demonstrating a new mechanism that

favors chiral spin orders. Namely, we show that chiral interactions that can drive

chiral spin orders are naturally present in interacting electronic systems with bands

that are equipped with Berry curvature. Unlike the mechanisms studied before, our

chiral interactions do not require any extra broken symmetries, microscopic SOI or

frustrations. The results of this Chapter have been published in Ref.[40]

Specifically we argue that the exchange interaction in Dirac bands such as those

found in graphene multilayers, moiré [162, 15, 3] and non-moiré[110, 27], results in

a chiral interaction which leads to Stoner instability towards chiral ordered states.

Fig.3-1 illustrates this for a quadratic Dirac band model of a field-biased bilayer

graphene (BBG). The chiral interaction that drives this ordering arises from orbital

magnetization due to 𝑘-space Berry curvature of Dirac carriers. This interaction

occurs in the presence of a position-dependent spin polarization, taking the form:

𝛿𝐹 =

∫︁
𝑑2𝑥

∑︁
𝑖

−(𝑀𝑖,+ −𝑀𝑖,−)𝐵𝑖(𝑥), (3.1)

where𝑀𝑖,± is the orbital magnetization of the majority-spin and minority-spin carriers

(see Eq.(3.10)). The quantity 𝐵𝑖(𝑥) is defined as the topological density of spin

texture multiplied by the flux quantum 𝜑0:

𝐵𝑖(𝑥) =
𝜑0

4𝜋
𝑆𝑖 · (𝜕1𝑆𝑖 × 𝜕2𝑆𝑖), 𝜑0 = ℎ𝑐/𝑒, (3.2)

where 𝑆𝑖(𝑥) is the unit-vector field representing spin polarization of carriers in valleys

𝑖 = 𝐾,𝐾 ′. The quantity 𝐵𝑖(𝑥) represents a ‘magnetic field’ associated with the spin-

dependent (chiral) Aharonov-Bohm effect.

The key aspect of the chiral interaction, Eq.(3.1), is that the position-dependent
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Figure 3-1: The mean-field phase diagram for chiral magnetic order in the quadratic
Dirac model, Eqs.(3.3) and (3.4), away from charge neutrality at 𝐷 = 0. Transition
between uniformly spin-polarized and unpolarized phases is first-order, occurring on a
straight line in the 𝑛-𝐷 plane given by Eq.(3.16). Transition between skyrmion phase
and uniformly polarized phase is second-order, with skyrmion density vanishing at
the phase boundary given by Eq.(3.24). Here we ignore valley ordering, focusing on
spin polarization in one valley (see text).

63



quantization axis along which carrier spins are polarized is, in general, allowed to

twist in space. Eq.(3.1), derived below, can be viewed as an extension of the basic

electromagnetic coupling of a magnetic moment and external field, 𝐸 = −𝑀 ·𝐵.

Since 𝑀𝑖 describes orbital magnetization whereas 𝐵𝑖 is a property of spin texture,

the interaction in Eq.3.1 resembles the atomic spin-orbital interaction (SOI) 𝐸 ∼ 𝐿·𝑆.

Yet, the interaction in Eq.3.1 is of a totally different origin, governed by the interplay

of momentum-space Berry curvature and exchange interaction, not relying on spin-

orbital coupling. It therefore has unique symmetry properties distinct from those

of SOI: the quantities 𝐵𝑖 are invariant under the 𝑆𝑈(2) spin rotations performed

separately in each valley, which leave the orbital quantities 𝑀𝑖,± intact. As discussed

below, the interaction in Eq.3.1 also respects discrete symmetries of BBG, including

the time-reversal and mirror symmetries.

3.2 Chiral interaction

We note that the chiral interaction that drives skyrmions in our theory is essentially

different from the one described in recent works, where skyrmions in isospin-polarized

moiré graphene flat bands have been invoked to predict exotic superconductivity

[19, 84]. The mechanism that stabilizes skyrmions in these papers is an isospin exten-

sion of quantum Hall ferromagnet physics, in which the skyrmion emerge in Landau

levels spin-split by exchange interactions [160, 102, 49, 126]. Skyrmions of this type

have been predicted [192, 133] and recently observed [200, 100] in graphene at high

magnetic fields.

Next, we derive the interaction between spin-chirality and orbital magnetization,

Eq.(3.1), by a microscopic analysis starting from a fully SU(2)-invariant Hamiltonian

not involving SOI. To that end, we consider Stoner magnetism of Dirac fermions with

spin-exchange coupling

ℋ =
∑︁
𝑝

𝑐†𝑝𝐻(𝑝)𝑐𝑝 −
1

2

∑︁
𝑥,𝑥′

𝑈(𝑥− 𝑥′) : 𝑠𝛼(𝑥)𝑠𝛼(𝑥
′) :, (3.3)
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where the last term is an exchange interaction written in terms of spin density

𝑠𝛼(𝑥) = 𝜓†(𝑥)𝜎𝛼𝜓(𝑥) with Pauli matrices 𝜎𝛼 representing ordinary spin-1/2 vari-

ables, 𝛼 = 1, 2, 3. The density-density interaction 𝑒2/𝜅|𝑟 − 𝑟′|, which generates

the exchange interaction on a microscale, is suppressed for conciseness. Its role

will be discussed below. Here we will use a toy-model form of exchange coupling

𝑈(𝑥 − 𝑥′) = 2𝜋𝑈0𝜉
−2𝑒−(𝑥−𝑥′)2/2𝜉2 , normalized so that

∫︀
𝑑2𝑥𝑈(𝑥) = 𝑈0. The Dirac

band is described by a general 2× 2 Dirac Hamiltonian in the sublattice 𝐴, 𝐵 basis.

Here we consider the quadratic Dirac problem

𝐻(𝑝) =

⎛⎝ 𝐷 (𝑝1−𝑖𝜂𝑝2)2

2𝑚

(𝑝1+𝑖𝜂𝑝2)2

2𝑚
−𝐷

⎞⎠ (3.4)

with 𝜂 = ±1 for the valleys 𝐾 and 𝐾 ′, respectively. Accordingly, the quantities 𝜓(𝑥),

𝜓†(𝑥), 𝑐𝑝, 𝑐†𝑝 are spinors with the 𝐴 and 𝐵 sublattice components and the ordinary

spin-1/2 components. The Hamiltonian 𝐻(𝑝) is particle-hole symmetric, with the

terms producing particle-hole asymmetry and trigonal warping ignored for simplicity.

Incorporating these terms later or generalizing to other Dirac band types would be

straightforward. Realistic parameter values are discussed beneath Eq.(3.24).

To describe spin textures, we perform a mean-field analysis in which the field

describing magnetic order is allowed to vary in space. Since the exchange inter-

actions are predominantly intravalley it will be sufficient to carry out the analysis

for an individual valley and consider the role of valley degrees of freedom later. The

Hubbard-Stratonovich (HS) transformation is carried out using an ordering field ℎ(𝑥)

with both the modulus and orientation being position-dependent, 𝑒
∫︀
𝑑𝑡

∑︀
𝑘

𝑈(𝑘)
2

𝑠𝑘·𝑠−𝑘 =∫︀
𝐷[ℎ]𝑒

∫︀
𝑑𝑡

∑︀
𝑘 ℎ𝑘(𝑡)·𝑠−𝑘−

ℎ𝑘(𝑡)ℎ−𝑘(𝑡)

2𝑈(𝑘) , where𝐷[ℎ] =
∏︀

𝑘,𝑡 𝑑ℎ𝑘(𝑡). Here we introduced Fourier

harmonics of the HS field, the spin density and the interaction ℎ𝑘 =
∫︀
𝑑2𝑥ℎ(𝑥)𝑒−𝑖𝑘𝑥,

𝑠𝑘 =
∫︀
𝑑2𝑥𝑠(𝑥)𝑒−𝑖𝑘𝑥, 𝑈(𝑘) =

∫︀
𝑑2𝑥𝑈(𝑥)𝑒−𝑖𝑘𝑥 = 𝑈0𝑒

−𝑘2𝜉2/2. Integrating out fermions

and assuming a time-independent ℎ(𝑥), we obtain the free energy with a nonlocal
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ℎ(𝑥)ℎ(𝑥′) interaction

𝐹 = Tr log [𝑖𝜔 −𝐻(𝑝)− ℎ𝛼(𝑥)𝜎𝛼] +
∑︁
𝑘

ℎ𝑘ℎ−𝑘

2𝑈(𝑘)
, (3.5)

where, for conciseness, the chemical potential 𝜇 is incorporated in 𝐻 and Tr denotes∑︀
𝑥

∫︀
𝑑𝜔𝑑2𝑝
(2𝜋)3

Tr 2×2. In this case, it is easy to compare the states with uniform polar-

ization and those with spatially dependent ℎ(𝑥) on equal footing. The saddle point

condition yields a time-independent ℎ = |ℎ|, which is nothing but the Stoner mean

field value

ℎ = 𝑈0(𝑛+ − 𝑛−)/2, (3.6)

where 𝑛+ and 𝑛− are local densities of carriers with spins parallel and antiparallel

to local spin quantization axis ℎ(𝑥). We will call these spin species the majority

and the minority spins, respectively. When the system is fully polarized, the mean

field equals ℎ = 𝑈0𝑛/2. The term −ℎ𝛼(𝑥)𝜎𝛼 describes electron spins coupled to a

spin texture with a position-dependent magnetization polarized along the unit vector

𝑆(𝑥) = ℎ(𝑥)/ℎ, where |ℎ(𝑥)| = ℎ.

Accordingly, we consider the last term in free energy [Eq.(3.5)] 𝐹ℎ =
∑︀

𝑘
ℎ𝑘·ℎ−𝑘

2𝑈(𝑘)

assuming that the local spin-quantization axis is slowly-varying, 𝜉𝜕𝜇𝑆𝛼 ≪ 1. As-

suming that the exchange interaction radius 𝜉 exceeds the Fermi wavelength, which

makes the short-wavelength fluctuations in ℎ(𝑥) weak, we can approximate 𝑈(𝑘)−1 =

𝑈−1
0 (1 + 𝑘2𝜉2/2), giving

𝐹ℎ =
∑︁
𝑘

ℎ𝑘 · ℎ−𝑘

2𝑈(𝑘)
≈
∑︁
𝑥

ℎ2

2𝑈0

+
1

2
𝐽(𝜕𝜇𝑆𝛼)

2, (3.7)

with the spin stiffness parameter defined as 𝐽 = 𝜉2ℎ2

2𝑈0
.

Next, we introduce a gauge field describing Berry phase for electrons in the pres-

ence of a slowly varying spin texture[12, 183, 148, 72]. This is done by carrying

out spin rotation at every point in position space, |𝑆(𝑥)±⟩ = 𝑈𝑆(𝑥) |𝑧±⟩, such that
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ℎ𝛼𝜎𝛼 = 𝑈 †
𝑆(𝑥)ℎ𝜎3𝑈𝑆(𝑥). Absorbing 𝜇 in 𝐻(𝑝), we have

𝐹 =

∫︁
𝑑2𝑥

∑︁
𝜔,𝑝

Tr log [𝑖𝜔 −𝐻(𝑝− 𝑎𝜎3)− ℎ𝜎3] + 𝐹ℎ (3.8)

where 𝐹ℎ is defined in Eq.(3.7). The gauge field 𝑎 describing position-dependent spin

rotation is defined as 𝑎𝜇(𝑥) = − 𝑖
2
Tr (𝜎𝑧𝑈

−1
𝑆(𝑥)𝜕𝜇𝑈𝑆(𝑥)) [136, 53, 65]. The quantity

∇× 𝑎 is nothing but the spin chirality density, since

∇× 𝑎 =
1

2
𝜖𝜇𝜈𝑆 · (𝜕𝜇𝑆 × 𝜕𝜈𝑆). (3.9)

This relation links the skyrmion topological density and the pseudomagnetic field,

Eq.(3.2). For a derivation of this result, which follows closely previous literature, see

Appendix.

We are interested in the instability of a spatially-uniform magnetic order towards

a twisted state with a nonzero gauge field 𝑎. We therefore consider power-series

expansion of the electronic energy in Eq.(3.8) in small 𝑎. We neglect the longitudinal

fluctuations of ℎ, which are gapped, focusing on the soft angular fluctuations, 𝛿ℎ(𝑥) ⊥

ℎ. For a slowly varying unit-vector field 𝑆(𝑥) = ℎ/|ℎ|, the dependence on 𝑎 in the

first term of Eq.(3.8), hereafter referred to as 𝐹1, can be found by an expansion in

powers of 𝑎. At order 𝑎2 we have

𝐹1 =
∑︁
±

𝐸± −∆𝑀𝐵 +
1

2
𝜒𝐵2, ∆𝑀 =𝑀+ −𝑀−,

𝐸± =
∑︁
𝑘

(𝜖±𝑘 − 𝜇)𝑓(𝜖±𝑘 ), 𝜒 = 𝜒+ + 𝜒−. (3.10)

where the quantities 𝑀± and 𝜒± are the orbital magnetizations and the Landau

diamagnetic susceptibility of the majority and minority spins, 𝐵(𝑥) = 𝑒
ℏ∇× 𝑎 is the

pseudo magnetic field. Using the relation in Eq.(3.9), it is straightforward to show

that 𝐵 defined in this way is identical to 𝐵 given in Eq.(3.2). The 𝐸± contributions

are the energies of spin-majority and spin-minority fermions in the bands with an

exchange spin splitting, 𝜖𝑠𝑘 = 𝜖𝑘 ∓ ℎ, evaluated at 𝑎 = 0, whereas the second and
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third terms represent the dependence on the pseudomagnetic field ∇ × 𝑎 at second

order in 𝑎.

The contributions ∓𝑀±𝐵 describe orbital magnetization of spin-majority and

spin-minority carriers, arising due to Berry curvature, coupled to the pseudomagnetic

field. Crucially, both the conduction and valence bands contribute to 𝑀 . Therefore,

perhaps counterintuitively, both up-spin and down-spin contributions to 𝑀 matter

even if the conduction band is fully polarized. The values 𝑀± depend on the band

filling and will be discussed below. The sign ∓ accounts for the fact that the Berry

phase for the carriers with opposite spins, moving in a slowly varying texture ℎ(𝑥), has

opposite signs, described by the 𝜎3 factor in Eq.(3.8). In this form, Eq.(3.8) describes

the limit of a weak, non-quantizing pseudomagnetic field 𝐵, which is sufficient for the

purpose of analyzing the transition from zero to nonzero 𝐵.

Putting everything together, we can write the system energy in the absence of

pseudo magnetic field 𝐵 as

𝐹 =

∫︁
𝑑2𝑥

[︂
𝐸+ + 𝐸− +

ℎ2

2𝑈0

+
𝐽

2
(𝜕𝜇𝑆)

2

]︂
(3.11)

Using this expression, we can seek the ground state by comparing the energies of the

ordered and disorder states. To account for the effect of a long-range 1/𝑟 density-

density interaction without incorporating it explicitly in the mean-field analysis, we

consider different states at the same total carrier density 𝑛. This approach is valid

due to the large charging energy values 𝐸𝑐 = 1
2
𝑉0𝑛

2 which typically exceed other

energy scales in the system. When 𝐸𝑐 is included in the analysis, the dependence of

the total energy on 𝑛 is dominated by the following terms:

𝑉0𝑛
2

2
− 𝜇𝑛 =

𝑉0
2

(︂
𝑛− 𝜇

𝑉0

)︂2

− 𝜇2

2𝑉0
(3.12)

These terms pin the density to 𝑛 = 𝜇
𝑉0

regardless of the order type. Therefore,

comparing energies of different states at the same 𝜇 in the presence of 𝐸𝑐 is equivalent

to comparing their energies at the same 𝑛.

To analyze the ordering described by Eq.(3.11) we proceed in two steps: First
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analyze the Stoner instability while temporarily ignoring 𝐵 . Next, we consider the

dependence on 𝐵 and the transition from a uniform magnetic order to a twisting

order.

In the absence of 𝐵, Eq.(3.11) describes the standard Stoner instability—a tran-

sition from a disordered state to a uniformly polarized state. Since the density of

states in the quadratic Dirac band monotonically decreases as a function of energy,

the ground state configuration is either fully spin polarized or spin unpolarized, de-

pending on the band parameters and interaction strength. [For a more general band

dispersion partial spin polarization can also occur.] The energy density of a fully

polarized phase where 𝑛+ = 𝑛, 𝑛− = 0 is given by

𝐹fp = 𝐸tot(𝑛)−
𝑈0𝑛

2

2
(3.13)

where 𝑛 is a given total carrier density. We have used Eq.(3.6) . Here 𝐸tot(𝑛) =∫︀ √
4𝜋𝑛

0
𝑑2𝑘
4𝜋2 𝜖𝑘 represents the total kinetic energy of electrons of density 𝑛 in one spin

one valley in the absence of interaction. Similarly, the energy of unpolarized state

where 𝑛+ = 𝑛− = 𝑛/2 is given by

𝐹unp = 2𝐸tot(𝑛/2) (3.14)

Here, we have used ℎ = 0 in unpolarized phase. For our quadratic Dirac band, 𝐸tot

takes the following form:

𝐸tot(𝑛) =
𝑚𝐷2

4𝜋

(︁
log(𝑥+

√
1 + 𝑥2) + 𝑥

√
1 + 𝑥2

)︁
, (3.15)

where 𝑥 = 2𝜋𝑛
𝑚𝐷

is a dimensionless density parameter. The regime of interest is that

of strong exchange interaction, which corresponds to low values 𝑛 ≪ 2𝑚𝐷. In this

case, we can use power-series expansion 𝐸tot(𝑛) =
𝑚𝐷2

2𝜋
(𝑥+ 5

12
𝑥3 + ...). This allows a

direct comparison of the energies of polarized and unpolarized states. Simple algebra
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then predicts the fully polarized state to win when

𝑛

𝐷
<

2𝑚2𝑈0

5𝜋2
. (3.16)

Therefore, the phase boundary is a straight line on the 𝐷-𝑛 phase diagram (see Fig.3-

1). This phase transition is first-ordered since the full polarization occurs abruptly.

Next, we consider the role of a spin texture 𝑆(𝑥) and derive the condition for

skyrmion proliferation. From Eqs.(3.10),(3.11), we see that system energy depends on

𝑆 as 𝐸𝑆 =
∫︀
𝑑2𝑥

[︀
𝐽
2
(𝜕𝜇𝑆𝛼)

2 ∓∆𝑀𝐵 + 𝜒
2
𝐵2
]︀
. Therefore, the spin texture enters the

energetics in two ways: through pseudo magnetic field 𝐵 which is proportional to the

spin chirality density Eq.(3.9), and also through the spin stiffness energy 1
2
𝐽(𝜕𝜇𝑆)

2.

However, the latter contribution has a lower bound associated with spin chirality

1

2

∫︁
𝑑2𝑥(𝜕𝜇𝑆)

2 ≥ 1

2

∫︁
𝑑2𝑥|𝜖𝜇𝜈𝑆 · (𝜕𝜇𝑆 × 𝜕𝜈𝑆)|.

This relation follows from the well-known identity[142]:

∫︁
𝑑2𝑥

[︀
(𝜕𝜇𝑆)

2 ∓ 𝜖𝜇𝜈𝑆 · (𝜕𝜇𝑆 × 𝜕𝜈𝑆)
]︀

(3.17)

=
1

2

∫︁
𝑑2𝑥(𝜕𝜇𝑆 ± 𝜖𝜇𝜈𝑆 × 𝜕𝜈𝑆)

2 ≥ 0, (3.18)

Expressing the stiffness energy through |𝐵| gives

𝐸𝑆[𝐵] =

∫︁
𝑑2𝑥

[︂
−∆𝑀𝐵 +

2𝐽𝑒

ℏ𝑐
|𝐵|+ 𝜒

2
𝐵2

]︂
, (3.19)

Obviously, the quantity 𝐸𝑆[𝐵] is only well-defined when spin polarization occurs.

Therefore, below we focus on the effect of 𝐸𝑆[𝐵] on the fully spin-polarized state.

3.3 Skyrmion phase

It is now straightforward to derive the condition for nonzero chirality to be favored.

The free energy in Eq.(3.19) gives the threshold for nucleating chiral spin textures in
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the ground state:

∆𝑀 ≥ 2𝐽𝑒/ℏ𝑐. (3.20)

As a reminder, ∆𝑀 = 𝑀+ −𝑀−, 𝑀± = 𝑀(𝜇 ± ℎ) in one particular valley. Below,

without loss of generality, we focus on 𝐾 valley. In our particle-hole-symmetric Dirac

model, the total orbital magnetization of all electrons in valley 𝐾 takes a simple

form[189]:

𝑀𝐾(𝜇) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑒𝐷
2𝜋ℏ , 𝜇 > 𝐷

𝑒𝜇
2𝜋ℏ , −𝐷 < 𝜇 < 𝐷

− 𝑒𝐷
2𝜋ℏ , 𝜇 < −𝐷

, (3.21)

taking opposite values in valleys 𝐾 and 𝐾 ′. This dependence, with 𝑀 being constant

in each band, is a unique property of our Dirac band. A more general model would

yield 𝑀 that depends on doping in each band.

For a fully polarized state at a carrier density 𝑛, 𝑀+ = 𝑒𝐷
2𝜋ℏ whereas 𝑀− depends

on density. To calculate 𝑀− we first calculate chemical potential using 𝜇 + ℎ =√︁
𝐷2 + (4𝜋𝑛

2𝑚
)2 which gives:

𝜇 =
√︀
𝐷2 + (2𝜋𝑛/𝑚)2 − 𝑈0𝑛/2 ∼ 𝐷 − 𝑈0𝑛/2 (3.22)

where we have ignored 𝑂(𝑛2) terms since we are interested in the low density regime.

Plugging this into Eq.(3.21) we find

𝑀− =𝑀(𝜇− ℎ) = (𝐷 − 𝑈0𝑛) 𝑒/2𝜋ℏ (3.23)

As a result, ∆𝑀 = 𝑒𝑈0𝑛/(2𝜋ℏ). Plugging this into Eq.(3.20) and using 𝐽 = 𝜉2ℎ2

2𝑈0
,

we find a transition from a fully polarized state to chiral spin state occurs at 𝑒𝑈0𝑛
2𝜋ℏ ≥

𝜉2𝑈0𝑛2𝑒
4ℏ which gives

𝑛𝜉2 ≤ 2

𝜋
(3.24)

Since our mean-field analysis works for 𝜉 exceeding the Fermi wavelength 𝜆𝐹 , the

condition in Eq.(3.24) is marginally met. The threshold Eq.(3.24) can be further
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softened in multilayer graphene (such as tilayer, quadlayer, or pentalayer) because

∆𝑀 is proportional to the valley Chern number, which for 𝑁 -layer graphene can

take values that scale with the number of layers, 𝐶 = 𝑁/2. As a result, the threshold

softens to 𝑛𝜉2 ≤ 2
𝜋
𝐶.

To show that the chiral phase is readily accessible we estimate the required size

of 𝜉 using realistic parameters. In BBG system of interest, the carrier density 𝑛𝑐

at the onset of Stoner transition can be estimated from Eq.(3.16). For interaction

strength 𝑈0 = 5 × 103meV nm2, a band mass 𝑚 = 0.03𝑚𝑒 and a typical high value

[201, 150, 35, 202, 203] 𝐷 = 100meV, it predicts Stoner instability at 𝑛𝑐 ∼ 3 × 1011

cm−2. Eq.(3.24) then predicts that to nucleate skyrmions the interaction radius must

satisfy 𝜉 ≲ 20nm, a realistic value comparable to the Fermi wavelength.

A phase diagram describing the competition between the orders described above

is shown in Fig.3-1. The transition line from uniformly polarized phase to skyrmion

phase is given by Eq.(3.24). We note that, compared to the transition line between

the uniformly polarized phase and unpolarized phase, the transition line between

skyrmion phase and unpolarized phase is pushed slightly into the unpolarized phase.

This is because when skyrmion condenses, the energy contribution from pseudo mag-

netic field Eq.(3.19) is always negative and tends to stabilize ordered state. This

phase boundary is a first-order phase transition because the translation symmetry

and the spin 𝑆𝑈(2) symmetry are simultaneously broken on this line.

We note that the condition for skyrmion instability Eq.(3.24) can be softened in

Dirac bands with larger valley Chern numbers, since ∆𝑀 is proportional to the total

Hall conductivity in the lower band. Large valley Chern numbers can be achieved in

graphene multilayers, such as trilayer, quadlayer, or pentalayer. Another appealing

system is moiré graphene, where valley-Chern minibands [162] give rise to a doping-

dependent orbital magnetization, potentially leading to a skyrmion instability trig-

gered by spin polarization onset.

The proliferation of skyrmions through the mechanism discussed above can lead

to two possible ground states—skyrmion crystal and skyrmion liquid, arising when

zero-point or thermal fluctuations are weak and strong, respectively. These phases
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have properties similar to those of the vortex lattice and vortex liquid phases in

superconductors [71, 51, 70, 16]. Which of the two states wins in the true ground

state is an interesting topic for future work.

These two phases can be readily distinguished by transport measurements. In the

presence of a valley polarization, which is ubiquitous in BBG and moire graphene

systems, we expect quantized topological Hall effect in both states in the absence of

an applied magnetic field [65, 60]. When time-reversal is not spontaneously broken

(no valley polarization), a quantized topological valley Hall effect will occur, since

the time-reversal requires skyrmions in valley 𝐾 and 𝐾 ′ to have opposite chirali-

ties. On the other hand, the longitudinal transport will be very different in the two

phases—vanishing for skyrmion crystal and nonzero for skyrmion liquid, dual to that

of superconducting vortex crystals and liquids.

3.4 Spin-dependent pseudo magnetic field

In this section we substantiate the physical picture of a spin-dependent gauge field

described above by a microscopic derivation. In essence, spin of an electron moving

through a spin texture is rotated in spin space. This spin rotation effect, arising due

to an electron spin being locked to the local spin quantization axis and tracking it

along the electron trajectory, is described by a spin-dependent geometric phase. This

adiabatic regime in which the geometric phase picture applies occurs when the Stoner

spin gap is large compared to ℏ𝑣/ℓ, where ℓ is the characteristic spatial lengthscale

of the spin texture modulation and 𝑣 is Fermi velocity.

Here we derive this result step by step starting from a microscopic Hamiltonian,

Eq.(3.2) of the main text, finding that a spin texture gives rise to an effective gauge

field whose flux density is associated with the spin chirality. In our analysis below,

without loss of generality, we focus on spins in valley 𝐾 and suppress the valley

label. A spin texture is described by a position-dependent 𝑆(𝑟). Our plan is to

carry out an 𝑆𝑈(2) spin rotation to bring all the local spin polarization to the same

orientation and, in this way, generate a Hamiltonian that features a spin-dependent
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pseudo-gauge-field term.

We start with a one-electron Hamiltonian in valley 𝐾, writing it in position space:

𝐻(𝑟) =

⎛⎝ 𝐷 (𝑝1−𝑖𝑝2)2

2𝑚

(𝑝1+𝑖𝑝2)2

2𝑚
−𝐷

⎞⎠ 1𝑆 − ℎ1𝐿𝑆(𝑟) · 𝜎 (3.25)

where 1𝑆 and 1𝐿 are respectively the identity matrix in spin and sublattice subspace.

In the first term, 𝑝1,2 = −𝑖𝜕1,2. The second term represents the effect of a position-

dependent spin polarization arising after a Hubbard-Stratonovich transformation, see

Eq.(3.5) of the main text. Next, we perform a position-dependent 𝑆𝑈(2) similarity

transformation 𝑇 (𝑟) on the Hamiltonian, such that it rotates all spins to the +𝑧

direction:

𝑇 †(𝑟)(𝑆(𝑟) · 𝜎)𝑇 (𝑟) = 𝜎3 (3.26)

After the spin rotation, the Hamiltonian becomes

�̃�(𝑟) = 𝑇 †(𝑟)𝐻(𝑟)𝑇 (𝑟)

=

⎛⎝ 𝐷 (Π1−𝑖Π2)2

2𝑚

(Π1+𝑖Π2)2

2𝑚
−𝐷

⎞⎠ 1𝑆 − ℎ1𝐿𝜎3 (3.27)

where

Π𝜇 = −𝑖𝑇 †(𝑟)𝜕𝜇𝑇 (𝑟) = 𝑝𝜇 + 𝐴𝜇,

𝐴𝜇 = −𝑖𝑇 †(𝑟) [𝜕𝜇, 𝑇 (𝑟)] , 𝜇 = 1, 2

Here 𝐴1,2 are 2×2 matrices representing an 𝑆𝑈(2) gauge field, and the square brack-

ets represent commutators. The quantities 𝐴𝜇 can be expressed in terms of Pauli

matrices:

𝐴𝜇 =
∑︁

𝑖=1,2,3

𝑎𝜇,𝑖𝜎𝑖 (3.28)

In the adiabatic regime, where all spins track the spin-up or the spin-down states in

rotated basis, the off-diagonal components 𝑎𝜇,1 and 𝑎𝜇,2 only contribute at a sublead-
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ing order. We therefore keep only the diagonal 𝜎3 components in spin, finding

Π𝜇 = 𝑝𝜇 + 𝑎𝜇𝜎3. (3.29)

where from now on 𝑎𝜇 will be used as a shorthand for 𝑎𝜇,3. This result indicates

that the spin-up and spin-down electrons, which describe the majority and minority

spin in the original basis, see a 𝑈(1) gauge field of opposite signs (here spin-up and

spin-down refers to states in a rotated basis). After some algebra[136], one finds

𝑎𝜇 =
1

2
(1− cos 𝜃)𝜕𝜇𝜑 (3.30)

where 𝜃 and 𝜑 are the spherical polar and azimuthal angles measured with respect

to the 𝑧 axis introduced in Eq.(3.26). The pseudo magnetic field 𝐵 is then given by

𝐵(𝑥) = 𝜖𝜇𝜈𝜕𝜈𝑎𝜇 = ∇𝑥×𝑎. The result in Eq.(3.30) indicates that the geometric phase

picked up by an electron moving in the pseudo magnetic field 𝐵(𝑥) is equal to 1/2 of

the solid angle swept by the spin quantization axis, which is the result used in main

text, Eq.(3.2).

3.5 Valley-dependent orbital magnetization in graphene

bilayer

To gain more insight into the physics of the orbital magnetization, Eq.(3.21) of the

main text, here we rederive this known result[189] by a method that does not ex-

plicitly use Berry curvature. Our plan is to calculate the orbital magnetization in an

individual graphene valley using thermodynamic relation:

𝑀𝐾 = −𝜕Ξ𝐾

𝜕𝐵
, (3.31)
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where Ξ𝐾 is the thermodynamic potential of electrons in this valley, defined as

Ξ𝐾 =
∑︁
𝛼

(𝜖𝛼 − 𝜇)𝑓(𝜖𝛼), 𝑓(𝜖) =
1

𝑒𝛽(𝜖−𝜇) + 1
(3.32)

where 𝜖𝛼 are the Landau level energies in the particle and hole bands, labeled by

𝛼 = {±, 𝑛}.

In order to obtain the magnetization at 𝐵 = 0 we first calculate the Landau level

energies 𝜖𝛼 and, by using the Euler-Maclaurin summation formula, extract the part

of the sum over 𝛼 in Eq.(3.32) which is linear in 𝐵 at small 𝐵. As we will see, the

contribution linear in 𝐵 is equal to that originating from the anomalous Landau levels

reduced by a factor of two, as discussed below. We will end this section by discussing

the general character of this result and its relation to the spectral flow.

The Landau level energies can be derived directly from the BBG Hamiltonian[110,

109]. For illustration, here we do it for a simplified form of the Hamiltonian involving

no trigonal warping terms:

𝐻𝐾(𝑝) =

⎛⎝ 𝐷 + 𝑝2

2𝑚0
+ 𝑝2

2𝑚𝑎
− (𝑝1−𝑖𝑝2)2

2𝑚

− (𝑝1+𝑖𝑝2)2

2𝑚
−𝐷 − 𝑝2

2𝑚0
+ 𝑝2

2𝑚𝑎

⎞⎠ (3.33)

Magnetic field can be incorporated in the Hamiltonian through the substitution 𝑝 →

𝑝 − 𝑒
𝑐
𝑎. We will first carry out the analysis ignoring the terms 𝑝2/2𝑚0 and 𝑝2/2𝑚𝑎.

This is justified because these two terms are subleading for a realistic BBG band[110].

For the same reason we ignore the trigonal warping term (not shown in Eq.(3.33)).

To illustrate the generality of our results, we will subsequently present the analysis

for the full Hamiltonian in Eq.(3.33), finding that the quadratic terms 𝑝2/2𝑚0 and

𝑝2/2𝑚𝑎 do not affect the result.

Next we consider the Landau levels formed in the presence of a 𝐵 field, at first

excluding the quadratic terms in the diagonal elements. As is well known, in each

valley — 𝐾 or 𝐾 ′ — the Hamiltonian in Eq.(3.33), with the quadratic terms excluded,

in the presence of a magnetic field generates three groups of Landau levels: (i) a pair

of anomalous Landau levels at the edges of the hole band for valley 𝐾 and particle
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band for valley 𝐾 ′, and (ii) two sequences of Landau levels in the particle and hole

bands that are related by particle-hole symmetry. The energies of these Landau levels

in valley 𝐾 can be written as [89]

𝜖±,𝑛 = 𝜖±(𝑥𝑛) = ±
√︂
𝑥2𝑛 −

1

4
ℏ2𝜔2

𝑐 +𝐷2, 𝑛 ≥ 2,

𝜖0,1 = −𝐷, 𝑥𝑛 = ℏ𝜔𝑐

(︂
𝑛− 1

2

)︂
, (3.34)

where 𝜔𝑐 = 𝑒𝐵/𝑚 is the cyclotron frequency. For valley 𝐾 ′ similar expressions

arise, however the anomalous Landau levels are positioned at the particle band edge,

𝜖0,1 = 𝐷.

Accordingly, the thermodynamic potential Ξ𝐾 in the presence of a 𝐵 field is a

sum of three contributions

Ξ𝐾 = Ξ+ + Ξ− + Ξ01, (3.35)

where

Ξ± =
𝑒𝐵

ℎ

∑︁
𝑛

(𝜖±,𝑛 − 𝜇)𝑓(𝜖±,𝑛), (3.36)

Ξ01 =
2𝑒𝐵

ℎ
(−𝐷 − 𝜇)𝑓(−𝐷), (3.37)

with 𝑒𝐵/ℎ representing the numbers of electrons in each Landau level per unit area.

Magnetization is given by the linear (𝑂(𝐵)) term in Ξ𝐾(𝐵). The 𝑂(𝐵) contribu-

tion from the anomalous levels in each valley is already clearly written in Eq.(3.37).

To calculate the 𝑂(𝐵) contribution from Ξ± we use the Euler-Maclaurin formula

which approximates a sum by an integral. For the contribution of the particle band

we have

Ξ+ =
𝑒𝐵

ℎ

[︂
1

ℏ𝜔𝑐

∫︁ ∞

𝑥𝑛=2

𝑑𝑥(𝜖(𝑥)− 𝜇)𝑓(𝜖(𝑥)) (3.38)

+
1

2
(𝜖 (𝑥𝑛=2)− 𝜇)𝑓 (𝜖(𝑥𝑛=2))

]︂
+𝑂(𝐵2),

where 𝑥𝑛=2 = 3
2
ℏ𝜔𝑐, see Eq.(3.34). Here we have used 𝜖(∞)𝑓(∞) = 0. Working out
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the integral gives

Ξ+ = −𝑒𝐵
ℎ

(𝐷 − 𝜇)𝑓(𝐷) +𝑂(𝐵2). (3.39)

Similarly, the 𝑂(𝐵) contribution of the lower-band Landau levels is given by

Ξ− = −𝑒𝐵
ℎ

(−𝐷 − 𝜇)𝑓(−𝐷) +𝑂(𝐵2). (3.40)

After plugging Eqs. (3.37), (3.39) and (3.40) into Eqs. (3.31) and (3.35), we arrive

at

𝑀𝐾(𝜇) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2𝑒𝐷
2𝜋ℏ , 𝜇 > 𝐷

𝑒(𝜇+𝐷)
2𝜋ℏ , −𝐷 < 𝜇 < 𝐷

0, 𝜇 < −𝐷

. (3.41)

We note that this dependence differs by a constant shift by ∆𝑀𝐾 = 𝑒𝐷
2𝜋ℏ from the

result in Eq.(3.21) of the main text that was inferred from the general expression

for orbital magnetization obtained in Ref.[189]. This constant shift arises from the

way the contribution of the deep-lying levels is cut off, which is different from the

conventional way[189]. However, this difference is immaterial because the deep-lying

states, due to their dubious valley character and identical occupancies for opposite

spins, are not expected to affect physical observables.

Indeed, at the bottom of the graphene band the carrier states cannot be unam-

biguously identified with the 𝐾 and 𝐾 ′ valleys. Therefore the ambiguity arising from

the cutoff is a matter of convention rather than a physical effect. Furthermore, the

quantity that matters for the physics of interest is the difference of the contributions

from the spin-up and spin-down bands, ∆𝑀 =𝑀𝐾,↑ −𝑀𝐾,↓. The bands for opposite

spins are filled equally at the bottom, such that the contributions of the deep-lying

states to 𝑀𝐾,↑ and 𝑀𝐾,↓ cancel each other.

The meaning of the resulting dependence 𝑀𝐾(𝜇), in which 𝑀𝐾 is constant when

the Fermi level lies within one of the bands, can be understood in terms of a spectral

flow induced by a variation of 𝐵. Namely, the role of the Landau levels moving

up and down is merely to cancel half of the contribution to magnetization 𝑀𝐾 of
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the anomalous Landau levels in the corresponding bands. As a result, there is no 𝜇

dependence when the Fermi level lies outside the gap. In that each anomalous level

contributes a half of the ‘nominal value’ of a single Landau level. This contribution

comes with a plus sign or a minus sign depending on whether an anomalous Landau

level is present for the band and valley in question. The resulting dependence of

orbital magnetization is identical for the 𝐾 and 𝐾 ′ valleys up to a sign reversal,

𝑀𝐾(𝜇) = −𝑀𝐾′(𝜇).

This analysis can be applied to a realistic model of biased Bernal bilayer graphene,

where the band Hamiltonian takes a more complicated form[110]. Here we show that

adding the two quadratic terms given in Eq.(3.33), that were neglected temporarily,

does not alter the result for 𝑀𝐾(𝜇).

The term 𝑝2/2𝑚𝑎 is an identity matrix in the sublattice variables. As a result, it

merely shifts the energy eigenvalues without affecting the electron wavefunction that

determines the orbital magnetization. Therefore, this term only affect the diamag-

netic susceptibility but does not affect the magnetization at 𝐵 = 0. Indeed, adding it

in Eq.(3.38) yields an 𝑂(𝐵2) contribution to the themodynamic potential, changing

somewhat the diamagnetic susceptibility but not changing 𝑀𝐾(𝜇).

The term 𝑝2/2𝑚0 has a 𝜎3 sublattice structure; therefore, this term does affect

the wavefunctions. However, this term alone does not break the particle-hole sym-

metry. Also, this term does not affect the energy of the lowest Landau level in the

particle band. As a result, the two conditions necessary for the reasoning above [from

Eq.(3.35) to Eq.(3.40)] — the particle-hole symmetry and the two anomalous Landau

levels — remain valid. Therefore, the result for magnetization remains unchanged.

3.6 Summary for Chapter 3

In conclusion, we have demonstrated that the chiral interaction — an emergent spin-

orbital coupling — exists in Stoner magnetism in bands with Berry curvature. This

interaction couples the spin chirality density to orbital magnetization while preserving

the SU(2) spin rotation symmetry. One significant implication of this chiral interac-
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tion is the emergence of a skyrmion ground state. Our study predicts that such a

skyrmion phase can occur in multilayer graphene systems at low carrier densities. The

new mechanism we propose for generating skyrmions provides electrical tunability,

as the orbital magnetization can be tuned directly by gate voltages. This discovery

holds great potential for advancing our understanding of fundamental physics and

developing practical applications.
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Chapter 4

Chiral spin-wave edge modes in

Stoner magnets

4.1 Introduction

The material of this Chapter is largely based on Ref.[41]. As discussed in Sec.1.4.4,

Stoner ferromagnetism is a correlated electron order ubiquitous in topological ma-

terials of current interest, including moiré graphene[3, 21, 22, 204, 184, 146], and

nontwisted graphene bilayers and trilayers [201, 150, 35, 202, 203]. Yet, the funda-

mental properties of this state, especially those governed by Berry curvature in 𝑘

space, are presently poorly understood. Here we predict that this state hosts chiral

spin excitations. These excitations are confined to system edges and domain bound-

aries between different valley-polarized regions, propagating along them in a manner

resembling Quantum Hall (QH) edge states, as illustrated in Fig.4-1. The microscopic

origin of this behavior is the geometric phase of carrier spins tracking magnetization

along carrier trajectories. Carrier spin rotation by a position-dependent magnetiza-

tion generates a Berry phase in direct space that serves as a spin-dependent magnetic

vector potential that couples to the orbital dynamics of carriers (see Eqs.(4.4),(4.5))

[136, 53, 125, 65]. The chiral edge behavior arises due to the coupling between this

geometric magnetic field and orbital magnetization due to Berry curvature in 𝑘 space.

The geometric character of this interaction ensures robust chiral edge physics even in
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Figure 4-1: (a) Schematic band structure of a fully spin-polarized Stoner phase in
a valley-polarized graphene bilayer or trilayer band. Only the valley populated by
carriers is shown. (b) The spin-wave edge mode dispersion obtained for a step in
orbital magnetization 𝑀1 ̸= 𝑀2 induced by a gate, Eq.(4.12). The mode (red) is
positioned outside the bulk magnon continuum (blue). The group velocity 𝑣𝑔 =
𝑑𝜔/𝑑𝑞 of a constant sign indicates the chiral character of the mode. The edge-to-bulk
scattering (black arrow) is blocked by the energy and momentum conservation. (c)
Schematic of the spatial dependence of the edge mode. The chiral mode is confined
to the step and propagates along it without backscattering.

“vanilla” spin-polarized Fermi seas such as those seen in Refs.[201, 150, 35, 202, 203].

The band magnetism of carriers exhibiting orbital magnetization is a broad frame-

work applicable to a diverse range of systems. This includes, in particular, the

QH ferromagnets [59, 133, 1, 192] and correlated excitonic phases in QH bilayers

[163, 45, 46, 96, 50]. Orbital magnetization in these systems exists due to Landau

levels rather than the 𝑘-space Berry curvature and in QH bilayers the layer index

plays the role of spin in our analysis. Here we focus on chiral edges in spin-polarized

metals and, afterwards, comment on possible extensions to the QH systems.

In graphene multilayers [201, 150, 35, 202, 203], the predicted chiral edge behavior

is sensitive to valley polarization. In a valley- and spin-polarized phase (identified as a

quarter metal in Refs.[201, 150, 35, 202, 203]), the band orbital magnetization exhibits

opposite signs in valleys 𝐾 and 𝐾 ′. As a result, the chirality (i.e., the propagation
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direction) of edge modes flips upon reversing the valley imbalance.

A very different behavior is expected in a valley-unpolarized but spin-polarized

phase (half-metal in the nomenclature of Refs.[201, 150, 35, 202, 203]). In this case,

the two valleys host Stoner metals with the band orbital magnetization of opposite

signs. In this phase, the edges will host pairs of counter-propagating chiral edge

modes, one for each valley. These two modes together respect the orbital time reversal

symmetry, unbroken in the half-metal phase, i.e. the system is non-chiral.

The exceptional cleanness of graphene multilayers makes them an appealing sys-

tem to probe this behavior. Spin lifetimes as long as 6 ns measurered in large bilayer

graphene (BLG) systems by a nonlocal Hanle effect at 20 K [66] are explained by

residual magnetic disorder [87, 88]. In contrast, recently, it was demonstrated that

electrons isolated from edge disorder by gate confinement and trapped in gate-defined

quantum dots acquire ultralong spin lifetimes, reaching values of 200 𝜇s [10] and 50

ms [54] when measured in an applied magnetic field by pulsed-gate spectroscopy.

Therefore, probing spin excitations in gate-defined electron puddles presents a dis-

tinct advantage. Yet, spin lifetimes measured in large BLG systems [66] also lie in

a suitable range. Spin lifetimes can be further increased by applying nonquantizing

magnetic fields that, apart from a constant offset, have little impact on the chiral

spin-wave dispersion (see Eq.(4.17)).

In a metallic state the chiral mode at the edge can, in principle, decay by scattering

into the 2D spin-one particle-hole continuum and spin waves. The former process

is blocked by energy conservation since the spin-one continuum is gapped at small

momenta [see Fig. 4-2 (a)]. The latter process, as shown by the black arrow in Fig.4-1

(b), is blocked by the energy and momentum conservation for a smooth edge but can

be viable for a rough edge. However, as discussed in Sec.4.3, in the long-wavelength

limit the edge modes have vanishing overlaps with the edge disorder potential, a

property that protects the modes from edge-to-bulk scattering.

The chiral edge behavior in a Stoner metal phase discussed here is distinct from

that predicted for magnetic phases with a nontrivial magnon band topology [115,

103, 36, 55, 111, 156, 157]. In these systems, chiral edge excitations lie above the first
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magnon band and are therefore gapped. To the contrary, the chiral modes described

here arise at the boundary of a uniformly spin-polarized Stoner Fermi sea—a metallic

compressible state with a nontopological bulk magnon band. The edge excitations are

gapless (in the absence of an externally applied magnetic field, see below) and have

dispersion positioned beneath that of bulk spin waves (in our case these are nothing

but the gapless magnons of a Heisenberg ferromagnet). Accordingly, here chiral modes

arise in the absence of microscopic spin-dependent interactions such as Dzyaloshinskii-

Moriya interaction (DMI) or dipolar interaction (as in Refs.[115, 103, 36, 55, 111] and

Refs.[156, 157], respectively). Instead, they originate from an interplay between the

exchange interaction and orbital magnetization in bands with Berry curvature and

broken time reversal symmetry. Our spin waves act analogously to the chiral edge

plasmons predicted for such bands [161], yet they transport spin rather than charge

and arise from a very different mechanism.

4.2 Edge mode dispersion

Collective spin dynamics, both bulk and edge, are readily analyzed in the long-

wavelength limit, at frequencies below the Stoner continuum [see Fig. 4-2 (a)]:

∆ = 𝑈𝑛𝑠 > 𝜔(𝑞), (4.1)

where ∆ is the Stoner gap, 𝑈 is the exchange interaction, 𝑛𝑠 is spin-polarized carrier

density and 𝜔(𝑞) is mode dispersion. We employ an effective action for spin variables

obtained by integrating out fermion orbital degrees of freedom. In that, we assume

the electron velocity is large compared to that of spin-waves, 𝑣𝐹 ≫ 𝑣𝑔 = 𝑑𝜔/𝑑𝑘. As

found below, the long-wavelength spin-wave dispersion is quadratic, 𝜔(𝑘) ∼ 𝑘2, a

behavior that confirms the separation of time scales for the orbital and spin degrees

of freedom and justifies our analysis. The effective action for spin variables takes the
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form [see e.g. [123, 52]]

𝐴 =

∫︁
𝑑𝑡𝑑2𝑟 (𝑖𝑛𝑠𝑆0⟨𝜂(𝑟, 𝑡)|𝜕𝑡|𝜂(𝑟, 𝑡)⟩ − ℋ[𝑛]) , (4.2)

where the first term is the Wess-Zumino-Witten action, hereafter referred to as 𝐴WZW,

representing the single-spin Berry phase accumulated through time evolution. The

second term is the Hamiltonian of a spin-polarized state discussed below. The quan-

tity |𝜂(𝑟, 𝑡)⟩ represents a coherent spin state in (2+1)D space-time. Here 𝑛𝑠 = 𝑛↑−𝑛↓

is the density of spin-imbalanced carriers, the factor 𝑛𝑠𝑆0 is the spin density, where

𝑆0 = ℏ/2. In what follows spin polarization is described by a unit vector

𝑛(𝑟, 𝑡) = ⟨𝜂(𝑟, 𝑡)|𝜎|𝜂(𝑟, 𝑡)⟩.

The term ℋ[𝑛] in Eq.(4.2) is the effective spin Hamiltonian. Symmetry arguments

and microscopic analysis predict [40] the long-wavelength Hamiltonian

ℋ[𝑛] = 𝑛𝑠

[︂
𝐽

2
(𝜕𝜇𝑛)

2 −𝑀(𝑟)𝐵(𝑟, 𝑡)− ℎ0 · 𝑛
]︂
. (4.3)

Here 𝐽 is spin stiffness, the second term is an interaction between the band orbital

magnetization and the geometric magnetic field, the last term is the Zeeman energy

per carrier, with the 𝑔-factor and Bohr magneton absorbed in the external magnetic

field ℎ0.

As indicated above, the interaction −𝑀𝐵 originates from a geometric Berry phase,

arising due to electron spins tracking magnetization along electron trajectories. Spin

rotation generates a Berry phase in position space defined by a spin-dependent mag-

netic vector potential [136]

𝑎𝜇 =
ℏ𝑐
2𝑒

(1− cos 𝜃) 𝜕𝜇𝜑, 𝜇 = 𝑥, 𝑦. (4.4)

Here 𝜃 and 𝜑 are the polar and azimuthal angles measured with respect to the spin

polarization axis in the ground state. The sign of 𝑎𝜇 is chosen to describe the Berry
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phase accrued by the majority-spin carriers. For the minority-spin carriers the vector

potential is of the opposite sign and is described by −𝑎𝜇, giving a Berry phase of the

opposite sign. The geometric magnetic field is simply the curl of 𝑎𝜇. In terms of 𝑛,

it reads:

𝐵(𝑟, 𝑡) = ∇× 𝑎 =
𝜑0

4𝜋
𝑛 · (𝜕𝑥𝑛× 𝜕𝑦𝑛), (4.5)

where 𝜑0 = ℎ𝑐/𝑒 is the flux quantum. This physics was first discussed in the early

literature on high 𝑇𝑐 superconductivity[12, 183, 148, 72] and later in the literature

on noncollinear magnetic systems [136, 53, 65, 125]. Importantly, unlike static spin

textures in the latter systems, our spin-wave dynamics generate a time-dependent

vector potential, Eq.(4.4). This yields a geometric electric field [125, 8]

𝐸𝜇 = −𝜕𝑎𝜇/𝑐𝜕𝑡−∇𝑎0 =
ℏ
2𝑒

𝑛 · (𝜕𝑡𝑛× 𝜕𝜇𝑛), (4.6)

which can enable electrical detection of the spin waves.

The quantity 𝑀(𝑟) in the second term in Eq.(4.3) describes the orbital magne-

tization per carrier in a spin-imbalanced band arising due to Berry curvature in 𝑘

space. It is given by a sum of contributions of the filled states in the spin-valley-

polarized Fermi sea. For a partially spin-polarized Fermi sea the contributions to

𝑀 from the majority-spin and minority-spin carriers are of opposite signs, giving

𝑀 = 𝑀↑ −𝑀↓. The opposite signs originate from the opposite signs of 𝑎𝜇 for the

spin-up and spin-down carriers discussed beneath Eq.(4.4). These opposite sign con-

tributions cancel in a spin-unpolarized state but lead to 𝑀 ̸= 0 in a fully or partially

spin-polarized state. The position dependence 𝑀(𝑟) reflects spatially varying spin or

valley imbalance arising, e.g., due to gating.

The geometric fields 𝑎𝜇, 𝐵 and 𝐸𝜇 are derived in the adiabatic regime when an

electron spin tracks spin texture along the electron’s trajectory. The adiabatic regime

occurs when the spin texture is sufficiently long-wavelength such that the Stoner spin

gap ∆ = 𝑈𝑛𝑠 is much greater than ℏ𝑣𝐹 𝑞, where 𝑞 is the characteristic spin-wave

wavenumber and 𝑈 is the exchange interaction (see Eq.(4.1)).

The Hamiltonian, Eq.(4.3), features different phases depending on the 𝑀 and
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𝐽 values [40]. If 𝑀 > 2𝐽 and ℎ0 is small enough, the uniformly polarized state is

predicted to become unstable towards twisting, giving rise to a skyrmion texture with

a nonzero chiral density 𝐵. Here, we consider excitations in a uniformly polarized

state

𝑛(𝑟, 𝑡) = 𝑛0 + 𝛿𝑛(𝑟, 𝑡), 𝛿𝑛 ⊥ 𝑛0, (4.7)

with 𝑛0 ‖ ℎ0, occurring for not too large 𝑀 values.

The spin wave dispersion can be obtained from the canonical equations of motion

found from the saddle-point condition 𝛿𝐴/𝛿𝑛 = 0, with 𝐴 given in Eq.(4.2). Indeed,

the variation of the Wess-Zumino-Witten term 𝐴WZW [the first term in Eq.(4.2)] can

be found by noting that this term equals to 𝑛𝑠𝑆0 times the solid angle swept by 𝑛.

As a result, its variation can be expressed as

𝛿𝐴WZW = 𝑛𝑠𝑆0

∫︁
𝑑𝑡𝑑2𝑟(𝛿𝑛× 𝜕𝑡𝑛) · 𝑛, (4.8)

The variation of the action in Eq.(4.2) gives 𝛿𝐴 = (𝑛𝑠𝑆0𝜕𝑡𝑛× 𝑛− 𝛿ℋ/𝛿𝑛)·𝛿𝑛, giving

equations of motion:

𝑛𝑠𝑆0𝜕𝑡𝑛(𝑟) = ℎ(𝑟)× 𝑛(𝑟), ℎ = −𝜕ℋ
𝜕𝑛

+ 𝜕𝜇
𝜕ℋ
𝜕𝜕𝜇𝑛

. (4.9)

Linearizing about a uniformly polarized state yields coupled linear equations for 𝛿𝑛

components, which are identical to those found for a nonchiral problem,

𝑆0𝜕𝑡𝛿𝑛(𝑟, 𝑡) = ℎ0 × 𝛿𝑛(𝑟, 𝑡) + 𝐽𝜕2𝜇𝛿𝑛(𝑟, 𝑡)× 𝑛0. (4.10)

Plane wave solutions to this equation yield a simple isotropic and non-chiral spin-wave

dispersion

𝜔±(𝑞) = ±(ℎ0 + 𝐽𝑞2)/𝑆0, (4.11)

with values approaching ±ℎ0/𝑆0 in the limit 𝑞 → 0, universally and independent of

the exchange interaction, as required by the Larmor theorem.

For a spatially uniform 𝑀 , the −𝑀𝐵 term is a topological invariant. Therefore,
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a local twist of spin does not change the ℋ value. As a result, this interaction neither

affects the energy nor impacts the spin waves. A spatially varying 𝑀 , to the contrary,

has a profound effect on spin waves. In particular, system boundaries and interfaces

between regions in which 𝑀 takes different values support chiral spin-wave modes

reminiscent of the QH edge states. To illustrate this behavior we consider a step

𝑀(𝑦) =

⎧⎪⎨⎪⎩𝑀1, 𝑦 > 0

𝑀2, 𝑦 < 0.

(4.12)

In this case, after linearization, Eq.(4.7), we find

ℎ = 𝑛𝑠

[︀
𝐽𝜕2𝜇𝛿𝑛− 𝜕𝑦𝑀(𝑦)(𝑛0 × 𝜕𝑥𝛿𝑛) + ℎ0

]︀
. (4.13)

Other terms vanish at first order in 𝛿𝑛. As a result, the linearized equations of motion

become

𝑆0𝜕𝑡𝛿𝑛 = ℎ0 × 𝛿𝑛+ 𝐽𝜕2𝜇𝛿𝑛× 𝑛0 +𝑚𝛿(𝑦)(𝑛0 × 𝜕𝑥𝛿𝑛)× 𝑛0,

where 𝑚 = 𝑀2 −𝑀1 is the difference between 𝑀 on two sides of the edge. These

equations are solved by writing 𝛿𝑛(𝑥, 𝑦) as a superposition of complex-valued helical

components:

𝛿𝑛(𝑟, 𝑡) =

⎛⎝𝛿𝑛𝑥(𝑟, 𝑡)

𝛿𝑛𝑦(𝑟, 𝑡)

⎞⎠ =
∑︁
𝑞

𝑒𝑖𝑞𝑥

⎡⎣𝑒−𝑖𝜔+𝑡𝜓𝑞,+(𝑦)

⎛⎝1

𝑖

⎞⎠+ 𝑒−𝑖𝜔−𝑡𝜓𝑞,−(𝑦)

⎛⎝ 1

−𝑖

⎞⎠⎤⎦ ,
where we carried out the Fourier transform in time and the translation-invariant 𝑥

direction. Plugging this ansatz into the equations of motion for 𝛿𝑛(𝑟, 𝑡), we obtain

two decoupled 1D problems for a quantum particle in a delta-function potential,

separately for each helicity:

𝑆0𝜔±𝜓(𝑦) = ±
[︀
ℎ0 + 𝐽(𝑞2 − 𝜕2𝑦)

]︀
𝜓 −𝑚𝑞𝛿(𝑦)𝜓(𝑦), (4.14)

where 𝜓(𝑦) is a shorthand for 𝜓𝑞,±(𝑦). These equations support bound states which
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are edge spin waves for the helical polarization of a plus (minus) sign for 𝑚𝑞 of a

positive (negative) sign, respectively.

Indeed, the bound state is described by an exponential solution for both helicities:

𝜓𝑞,±(𝑦) = 𝑢𝑞𝑒
−𝜆𝑞 |𝑦|, 𝜆𝑞 > 0, (4.15)

where the condition 𝜆𝑞 > 0 is required for the mode to be normalizable. The value

of 𝜆𝑞 and the dispersion are determined by the condition

0 = ±2𝐽𝜆𝑞𝛿(𝑦)−𝑚𝑞𝛿(𝑦), (4.16)

which gives 𝜆𝑞 = ±𝑚𝑞
2𝐽

. Therefore, the right-helicity mode 𝜓𝑞
+ exists only for 𝑚𝑞 > 0,

whereas the left-helicity mode 𝜓𝑞
− exists only for 𝑚𝑞 < 0.

𝜔±(𝑞) = ± 1

𝑆0

[︂
ℎ0 +

(︂
𝐽 − 𝑚2

4𝐽

)︂
𝑞2
]︂

(4.17)

The resulting dispersion is illustrated in Fig.4-1 (b) for 𝑚 > 0. The group velocity

𝑣𝑔 = 𝑑𝜔/𝑑𝑞 is of the same sign for both helicities, as expected for a chiral edge mode.

At 𝑞 = 0, the frequency value agrees with the Zeeman frequency for a single spin,

as required by Larmor’s theorem. At this point 𝜆𝑞 vanishes, which signals that the

mode ceases to be confined to the edge and transforms into a uniformly precessing

state.

Notably, the discrete chiral mode, Eq.(4.17), appears in a robust manner regardless

of magnetization values in the two halfplanes and the step size 𝑚 = 𝑀1 −𝑀2. At

𝑀1 approaching 𝑀2 the chiral mode, while remaining discrete, approaches the bulk

magnon continuum and merges with it at 𝑀1 = 𝑀2. Another interesting aspect

of the dispersion in Eq.(4.17) is that the group velocity reverses when 𝑚 exceeds

2𝐽 , upon which the mode propagation direction is reversed, with the left-moving

excitations becoming right-moving and vice versa. In this regime the frequencies

𝜔±(𝑞) reverse their signs when the wavenumber reaches a certain critical value, 𝑞 =

𝑞* =
√︀
4𝐽ℎ0/(4𝐽2 −𝑚2). Frequency sign reversal signals an instability towards a
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spatial modulation at the edge with spatial periodicity 2𝜋/𝑞*. Notably, this instability

can occur before skyrmions are nucleated in the bulk. This happens, in particular,

when 𝑀1 and 𝑀2 are of opposite signs. In this case, the condition for skyrmion

nucleation in the bulk, 2𝐽 < |𝑀1,2|, is more stringent than that for the instability at

the edge, 2𝐽 < |𝑀1 −𝑀2|.

Next, we consider polarization of chiral modes. As we found above, the modes

of both helicities, 𝜓+ and 𝜓−, propagate in the same direction. This gives rise to

an interesting space-time picture that combines propagation with velocity 𝑣𝑔 and

precession about ℎ0. Indeed, a narrow wavepacket 𝑢𝑞 centered at 𝑞 ≈ 𝑞0 evolves as

𝛿𝑛(𝑟, 𝑡) =
∑︁
𝑞>0

𝜑+
𝑞 (𝑟, 𝑡)

⎛⎝1

𝑖

⎞⎠+
∑︁
𝑞<0

𝜑−
𝑞 (𝑟, 𝑡)

⎛⎝ 1

−𝑖

⎞⎠ (4.18)

∼ 𝑒−𝜆𝑞0 |𝑦|𝑢(𝑥− 𝑣𝑔𝑡)

⎛⎝cos [𝜔0𝑡− 𝑞0𝑥+ 𝜃0]

sin [𝜔0𝑡− 𝑞0𝑥+ 𝜃0]

⎞⎠ .

Here, 𝜑±
𝑞 (𝑟, 𝑡) = 𝑒−𝑖𝜔±(𝑞)𝑡+𝑖𝑞𝑥−𝜆𝑞 |𝑦|𝑢𝑞. The quantity 𝑢(𝑥) is the Fourier transform of

𝑢𝑞, 𝜔0 = 𝜔+(𝑞0), 𝑣𝑔 is the group velocity 𝑑𝜔/𝑑𝑞 at 𝑞 = 𝑞0, 𝜃0 is a free parameter. This

describes spin precession and 1D propagation, as illustrated in Fig. 4-1 (c).

Lastly, we discuss the relation between the analysis above and the collective spin

excitations in QH ferromagnets. The seminal prediction of skyrmions in QH ferro-

magnets by Sondhi et al.[160] relies on the notion of an excess charge induced on

a chiral spin texture, 𝛿𝜌(𝑟) = 1
𝑐
𝜎𝑥𝑦𝐵(𝑟), a value that follows from the topological

pumping argument [173, 132] with 𝜎𝑥𝑦 the Hall conductivity of a filled Landau level

and 𝐵 the quantity in Eq.(4.5). This gives a contribution to the energy

𝛿𝐸 =

∫︁
𝑑2𝑟𝑉𝑔𝛿𝜌(𝑟), (4.19)

where 𝑉𝑔 is the gate voltage. Since 𝐵(𝑟) = 𝜑0

4𝜋
𝑛·𝜕1𝑛×𝜕2𝑛, the quantity in Eq.(4.19) is

identical in form to our −𝑀𝐵 interaction (the second term in Eq.(4.3)). Furthermore,

it is straightforward to link the prefactor with the orbital magnetization of a fully
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filled Landau level

𝑀 =
1

𝑐
𝑉𝑔𝜎𝑥𝑦. (4.20)

This relation follows from the thermodynamic relation 𝑑𝑀/𝑑𝜇 = 𝑑𝑛/𝑑𝐵ext and the

Streda formula 𝑑𝑛/𝑑𝐵ext = 𝜎𝑥𝑦

𝑐𝑒
. Having reproduced the −𝑀𝐵 interaction in the

QH framework, we are led to conclude that the chiral spin waves derived above

must also occur in QH ferromagnets. While a detailed analysis should be deferred

to future work, we expect that these modes differ in two distinct ways from various

chiral charge and spin edge modes that have been widely investigated in QH systems

[9, 106, 175, 73, 81, 198, 86, 145, 85]First, their dispersion at small 𝑘 will be quadratic

rather than linear. Second, rather than being tightly confined to the edge on a

magnetic length scale, these modes will feature a wider profile extending far into the

bulk. The weak confinement may suppress scattering by edge disorder and boost the

lifetimes for these modes.

Last, we envision that extending the pulsed gate spectroscopy of Refs. [10, 54]

to probe the gate-confined electron puddles can allow to launch the chiral spin waves

and detect them in a manner analogous to the time-domain detection of QH edge

magnetoplasmons [7, 199, 47, 91]. Further, electron-spin resonance (ESR) measure-

ments on such puddles by the technique recently used to probe ESR in graphene[158]

can provide direct information of the chiral mode dispersion. Indeed, for a puddle of

circumference 𝐿 the mode dispersion in Eq.(4.17), will translate into sidebands of the

ESR resonance with frequencies

𝜔𝑛 = 𝜔(𝑞𝑛), 𝑞𝑛 = 2𝜋𝑛/𝐿, (4.21)

with integer 𝑛. Here 𝑛 = 0 is the fundamental ESR frequency and 𝑛 = 1, 2, 3...

describes a family of chiral mode excitations. The 𝜔 = 𝜔𝑛 resonances will occur

over a continuous background due to the 2D spin-wave continuum, Eq.(4.11). As

an example, we consider a disk of circumference 𝐿 = 10𝜇m for which the minimal

wavenumber is 𝑞1 = 2𝜋/𝐿. Estimating the stiffness as the e-e interaction at the

Fermi wavelength scale, 𝐽 ∼ 𝑒2/(𝜅𝜆𝐹 ), and plugging realistic parameter values, we
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find the sideband frequency detuning of 𝜔1 − 𝜔0 ≈ 50 MHz. This value is greater

than 1/𝑇1 found in Refs.[10, 54] and lies in a convenient spectral range for microwave

measurements. We also note that, as discussed above, spin dynamics in our system

is accompanied by a geometric electric field given in Eq.(4.6). The oscillating electric

polarization induced by this field can be used for a direct electrical detection of the

chiral spin-wave dynamics.

4.3 Edge mode damping

Here, we discuss the intrinsic mechanisms of the edge spin wave damping. We first

consider the system ignoring edge roughness and then discuss the decay pathway that

is enabled by the edge roughness. We argue that both mechanisms give damping that

becomes negligible at long wavelengths and low frequencies.

First, we consider the Landau damping due to the 2D particle-hole continuum.

In spin-polarized metals there are two different particle-hole continua: the spin-zero

continuum and the spin-one continuum. The spin-zero particle-hole continuum spans

wavenumbers 0 < 𝑘 < 2𝑘𝐹 and extends in frequency down to 𝜔 = 0. Spin waves

cannot simply decay into these excitations owing to the spin U(1) symmetry that

ensures spin conservation. Therefore, these excitations do not impact the spin-wave

lifetime on a tree level. Scattering involving spin-zero continuum can only take place

through higher-order processes in which a spin wave is scattered by a spin-zero exci-

tation or emits it without decaying. However, such processes are suppressed by the

phase space volume for the final states.

Another 2D particle-hole continuum nominally available for decay, which is not

blocked by the spin conservation, is the spin-one continuum, in which an electron

is excited from the spin-majority band to the spin-minority band. However, the

spin-one excitations are fully gapped at small momenta [see Fig.4-2 (a)] and, as a

result, this scattering pathway is absent for long-wavelength (low-frequency) spin

waves. Moreover, for the fully spin-polarized phase, the spin-one excitation is fully

gapped at all momenta, which fully protects the long-wavelength spin waves from the
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edge-to-bulk scattering.

Next, we study the scattering from the spin wave edge mode to bulk spin waves by

edge disorder, and show that the lifetime is ultra-long for long-wavelength edge modes.

As a simple model, we consider a step in magnetization with a wiggly boundary,

illustrated in Fig. 4-2 (b). We will describe spin waves by a problem linearized in

a weak perturbation about the uniform state, as implemented in the main text [see

Eq.(7) therein]. Using the right and left helicity representation [see Eq.(14) of the

main text] and, without loss of generality, focusing on the 𝜓+ mode, we arrive at an

effective action

𝐴 =

∫︁
𝑑𝑡𝑑2𝑟𝜓+ (𝑖𝜕𝑡 −𝐻)𝜓+, (4.22)

where 𝐻 = ℎ0 − 𝐽
2
(𝜕2𝑥 + 𝜕2𝑦) + 𝜖𝑗𝑗′𝜕𝑗𝑀(𝑟)𝜕𝑗′ , and 𝑀(𝑟) describes two domains with

magnetization 𝑀1 and 𝑀2 [Fig.4-2 (b)]. The magnetization gradient 𝜕𝑗𝑀(𝑟) is a delta

function centered at the wiggly domain boundary. For conciseness, we suppressed

factors such as 𝑛𝑠, 𝑆0, etc.

A convenient way to carry out the analysis is to employ a coordinate change

that transforms a modulated boundary into a straight one. This can be done by a

conformal mapping defined by an analytic function in the halfplane 𝑦 > 0 and an

anti-analytic function in the halfplane 𝑦 < 0 with values matching at 𝑦 = 0. The

most general function of this type is of the form

𝑧′ = 𝑥′ + 𝑖𝑦′ = 𝑧 +
∑︁
𝑘

𝑔𝑘𝑒
𝑖𝑘𝑥−|𝑘||𝑦|. (4.23)

Under such conformal mapping the Schroedinger operator in Eq.(4.22) preserves its

form up to a change in coefficients, allowing to describe a wiggly edge as a straight edge

with a perturbation in the metric localized in its vicinity. The simple transformation

rule is a consequence of the conformal invariance of the 2D Laplacian and the chiral

density terms in our Hamiltonian, Eq.(3) in the main text. Indeed, denoting the

Jacobian of the mapping in Eq.(4.23) as 𝐷(𝑟) = (𝜕𝑥′, 𝜕𝑦′)/(𝜕𝑥, 𝜕𝑦), we find that
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Figure 4-2: (a) Collective spin excitations in the bulk (blue line) and at the edge (red
line) superimposed with the spin-one particle-hole continuum (gray region). Below
the Stoner gap ∆ = 𝑈𝑛𝑠 the collective modes are decoupled from the continuum and
are therefore discrete. Upon entering the continuum they become Landau-damped
(dashed lines). The spin-zero particle-hole continuum with wavenumbers 0 < 𝑘 < 2𝑘𝐹
and frequencies extending down to 𝜔 = 0 is not shown. This continuum is irrelevant
for the damping of spin waves since one-excitation processes are blocked by U(1) spin
conservation. (b) A wiggly step in magnetization 𝑀(𝑟) representing a rough edge. By
a conformal mapping, Eq.(4.23), the problem with a wiggly edge is mapped onto the
one with a straight edge and a fluctuating metric localized near the edge, Eq.(4.24).
The edge-to-bulk scattering gives rise to a finite lifetime of the edge mode, 𝜏 = 1/𝛾,
where 𝛾 is given in Eq.(4.25).
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under the conformal mapping the terms 𝑖𝜕𝑡 − ℎ0 in Eq.(4.22) are multiplied by 𝐷−1

whereas other terms remain unchanged.

The lifetime can now be calculated from the selfenergy for the Greens function

𝐺 =
1

𝜔 −𝐻
=

1
𝜔−ℎ0

𝐷(𝑟)
+ 𝐽(𝜕2𝑥 + 𝜕2𝑦)− 𝑖𝑚𝛿(𝑦)𝜕𝑥

Expanding the Jacobian in powers of the modulation amplitude 𝑔𝑘 gives 𝐷−1(𝑟) =

1 + 𝛿𝑝(𝑟) where 𝛿𝑝(𝑟) =
∑︀

𝑘 𝑘𝑔𝑘𝑒
𝑖𝑘𝑥−|𝑘||𝑦| + c.c. + 𝑂(𝑔2𝑘). We can now rewrite the

Greens function in terms of the Hamiltonian for the straight edge, 𝐻0 = ℎ0 − 𝐽(𝜕2𝑥 +

𝜕2𝑦) + 𝑖𝑚𝛿(𝑦)𝜕𝑥, and the perturbation 𝛿𝑝(𝑟) localized near the edge:

𝐺 =
1

𝜔 −𝐻0 + (𝜔 − ℎ0)𝛿𝑝(𝑟)
. (4.24)

This expression is exact and can therefore be used to obtain the lifetime of the chiral

edge mode in a closed form. Starting with a normalized wavefunction for the chiral

mode derived above, |𝜓0
+

⟩︀
= 𝑒𝑖𝑞𝑥𝑒−𝜆𝑞 |𝑦|𝜆

1/2
𝑞 , and calculating the lifetime from the

selfenergy of 𝐺 found at second order in 𝛿𝑝(𝑟) we find the decay rate

𝛾 = 2𝜋
∑︁
𝑄

Im𝐺0(𝜔,𝑄)|
⟨︀
𝑒𝑖𝑄𝑟|(𝜔 − ℎ0)𝛿𝑝(𝑟)|𝜓0

+

⟩︀
|2

where𝐺0 =
1

𝜔−𝐻0+𝑖0
and 𝑄 is the bulk magnon momentum. For a simple order of mag-

nitude estimate it will be sufficient to approximate the spectral function Im𝐺0(𝜔,𝑄)

as that of the bulk magnon continuum, Im𝐺0(𝜔,𝑄) = 𝜋𝛿(𝜔− 𝐽𝑄2). Estimating this

expression we find the decay rate that scales as

𝛾 ∼ 𝜆𝑞(𝜔 − ℎ0)
2 (4.25)

At small 𝑞 these quantities scale as 𝜆𝑞 ∼ |𝑞|, 𝜔 − ℎ0 ∼ 𝑞2 yielding the decay rate

that vanishes in the long-wavelength limit as 𝛾 ∼ 𝑞5. The long lifetime arises as a

combination of two effects. First, because of the Larmor theorem, in the small 𝑞

limit the mode frequency for both bulk and edge is pinned to ℎ0 regardless of the
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presence of an edge disorder. Second, because at small 𝑞 the edge mode has a large

penetration length into the bulk, 1/𝜆. As a result, the mode weakly overlaps with

the edge roughness, which suppresses the edge-to-bulk scattering.

4.4 Summary for Chapter 4

Chiral edge excitations represent a unique manifestation of chiral interactions in a

metallic spin-polarized Fermi sea with a Berry band curvature. Despite occurring

in a non-topological setting they are protected from backscattering by their chiral

character. Correlated-electron phases that host chiral edge modes allowing excitations

to propagate along system boundaries in a one-way manner are of keen interest for

fundamental physics and are expected to harbor interesting applications. We describe

the requirements for such modes to exist and argue that the chiral behavior and

associated exotic physics are generic and readily accessible in state-of-the-art systems.
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Chapter 5

Conclusions and Outlook

The central finding of this thesis is the existence of chiral interaction in Stoner magnets

in the presence of 𝑘-space Berry curvature. This chiral interaction represents an

emergent spin-orbital coupling that arises solely from the Stoner exchange interaction,

independent of microscopic spin-orbital interactions. It couples the spin degrees of

freedom in a Stoner magnet to the orbital magnetization of a spin-polarized Fermi sea

endowed with Berry curvature while maintaining the SU(2) spin rotation symmetry.

In Chapter 2 we introduce, through a microscopic framework that uses Bernal

bilayer graphene (BBG) band as a setting, a cascade of spin- and valley-polarized

phases and their generalization—the momentum-polarized orders that occurs in the

low carrier density regime of the system. This sets the stage for the discussion of the

new physics enabled by the chiral interaction.

In Chapter 3, using BBG as an example, we present a fully microscopic derivation

of the chiral interaction. Subsequently, we show that this interaction tends to stabilize

skyrmion ground states which can occur in multilayer graphene systems at low carrier

densities. What makes these skyrmions unique is that they are electrically tunable

due to the direct tunability of the orbital magnetization through gate voltages. This

feature opens up the possibility of controlling the skyrmion properties through all-

electrical methods, which can have significant implications for future technological

applications.

In Chapter 4, we explore another consequence of the chiral interaction: the chiral
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edge excitations, which are spin waves that propagate unidirectionally along the edge

or a step of orbital magnetization. These excitations exist in a uniformly polarized

phase, in the absence of skyrmion order, or in the presence of skyrmions. The long-

wavelength modes are long-lived because of small overlap with edge roughness, and

are immune to backscattering due to their chiral character. The propagation direction

for these excitation flips upon reversing the magnetization sign. As such, the chiral

edge spin excitations represent a surprising phenomenon of fundamental interest that

may have promising applications.

The work presented in this thesis poses a number of intriguing questions for future

research:

1. Chiral order in the absence of long-range spin order.

In 2D systems, at any finite temperature, thermal fluctuations suppress the

long-range spin order. Since the chiral interaction only requires short-range

correlations of spins, we expect it to be present even in the absence of a long-

range spin order. Due to the softness of spin fluctuations in a system that

possesses spin SU(2) symmetry, it is natural to expect the long-range spin order

to be suppressed without the chirality order being destroyed. As a result, the

skyrmion phase predicted in Chapter 3 will retain the chirality order when the

positional order and the long-range spin order are suppressed by fluctuations.

Such fluctuating spin textures with spin chirality of a definite sign will provide

a realization of a “chiral spin liquid” occurring in a metallic state, a novel phase

of matter with interesting properties. A similar question can be asked about the

role of quantum fluctuations of spin and the properties of the ground state at

zero temperature. While the role of thermal fluctuations can be analyzed by the

standard methods of statistical mechanics, the quantum problem is considerably

more subtle and calls for developing new ideas and new methods.

2. The chiral interaction, edge excitations and skyrmions for other Stoner

orders?

This thesis primarily focuses on the simplest case of 1/4 metal in which only one
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spin/valley species is occupied. However, as discussed above, the chiral inter-

action can also be derived for partially polarized orders, such as spin-polarized

half-metals, where both valleys are fully occupied and exhibit complete spin

polarization. In such cases, what happens to the edge modes and what type of

skyrmion order is favored? Since in a realistic setting the exchange interaction

is predominantly intravalley due to the smallness of 𝑘𝐹 compared to 𝐾 − 𝐾 ′,

we anticipate a simultaneous occurrence of several different edge modes with

an interesting valley structure. We also expect skyrmion ground states with

skyrmions in valley 𝐾 and antiskyrmions in valley 𝐾 ′, or vice versa. Realis-

tic systems may involve a weak intervalley exchange interaction, which favors

ferromagnetic alignment between the spins in the two valleys. Such an inter-

action would cause the skyrmions in valley 𝐾 to repel the antiskyrmions in

valley 𝐾 ′, resulting in the formation of a checkerboard superlattice composed

of alternating skyrmions and antiskyrmions.

3. Analogs of the chiral interaction for superconducting orders and other

many-body orders.

Specifically, does this type of interaction lead to new superconducting phases

with the spin and orbital degrees of freedom coupled together? An appealing

setting to probe this physics is the spin-triplet superconducting state in which

the triplet spin of the condensate takes on the role of the spin-polarization

discussed in this thesis. If the spin-triplet Cooper pairs form a texture with a

nonvanishing chirality, this texture will act on condensate as a pseudo magnetic

field, inducing vortices in the absence of an externally applied magnetic field. As

a result, we envisage a spin-triplet superconducting system that develops a new

ground state where chiral spin textures of Cooper pairs coexist with vortices.

It is interesting to understand under what conditions such exotic states can

occur in realistic systems, and explore questions such as topological properties

of vortices and quasiparticles with different spin, charge and statistics.
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