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Abstract

Curved surfaces are fundamental parts of living systems. This thesis examines how
materials can order on curving interfaces, resulting in shape changes and pattern
formation. Many phenomena that are well-studied in at space display new behavior
when lifted onto a deformable surface: liquid crystals buckle membranes into peaked
shapes, diusing particles can sense curvature and localize patterns, and anisotropic
growth can form branching structures over many scales.

The systems I study include uid membranes and growing solids. My framework
connects the study of liquid crystals to cytoskeletons of living cells, and provides tools
for understanding the machinery of vesicles as well as the remodeling of entire cells.
Orientational order plays a central role on these surfaces. Topological defects in an
orientation eld are an area of intense historical and on-going interest. This work was
published in a paper with my coauthor and advisor Mehran Kardar.

I show that curvature modies diusion and can change the spatial patterns gen-
erated by Turing instabilities. Turing patterns have been studied extensively on at
substrates. To lift this patterning mechanism onto the highly curved shapes of living
systems, we apply tools from perturbation theory and dierential geometry to an-
alytically compute modications to the Laplacian and its normal modes on curved
surfaces. This extends the framework of dierential geometry to understand chemical
concentrations diusing on biological interfaces. In this thesis, I expand upon a paper
I published with my coauthors Jemal Guven, Mehran Kardar, and Henry Shackleton.

I conclude with initial results from a new cellular automaton of anisotropic solid
growth, which generates tree-shaped morphologies. This suggests that branching
structures in botanical trees may result from a simple, universal growth process.
Topological defects naturally appear at the branch points of these structures in sim-
ulations and in nature. By expanding biophysics from its historical focus on the
molecular realm to include macroscopic living solids, we may eventually learn to save
our global forests and engineer growing structures on Earth and beyond.

Thesis Supervisor: Mehran Kardar
Title: Professor of Physics
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3-14 This shows the amplitude of rst-order corrections for the perturbed

mode in Fig. 3-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3-15 Illustration of the Bragg-like matrix for our momentum-dependent pe-

riodic potential ( = 1). This shows just one harmonic, so a single

cosine. Other periodic ripple proles could be decomposed into a super-

position of multiple harmonics. For large , these o-diagonal stripes

will be well-separated. The three blue dashed squares show examples

of the 2 × 2 Bragg matrix just below the BZ, exactly on the BZ, and

just above it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3-16 Diusion Band Gap: the spectral band gap familiar from solid-

state physics appears in this new context. The horizontal axis is the 

labeling the eigenfunctions, and the vertical axis is the corresponding

eigenvalue.  = 100,  = 0.5,  = 50 . . . . . . . . . . . . . . . . . . . . . 112
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3-17 Near the edge of the BZ, eigenfunctions have wavelengths approxi-

mately twice the ripple wavelength. The sine mode has extrema in the

troughs of the ripples, and the cosine mode on the peaks. . . . . . . . 113

3-18 Like the deformed cylinder, a sphere has several lengths and angles

that can be measured in the lab. The examples on the right show ℎ =
0.3 cos for  = 21 and  = 2. The orange circles are the undeformed

reference shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4-1 This remarkable stereo image shows a membrane constriction produced

in vitro. Reproduced from “Architecture of the ring formed by the

tubulin homologue FtsZ in bacterial cell division” by Szwedziak et al

in eLife 2014.[276]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4-2 “All the branches of a tree at every stage of its height when put together

are equal in thickness to the trunk [below them]. All the branches

of a water [course] at every stage of its course, if they are of equal

rapidity, are equal to the body of the main stream.” passage 394 in J.P.

Richter’s “The literary works of Leonardo da Vinci” [50], which comes

from pages 78v – 79r in the Paris Manuscript M [4], see also Plate

XXVII in Ref. [50]. [See 274, Minamino & Tateno] for an analysis of

how closely real botanical trees obey da Vinci’s Tree Rule. . . . . . . . 124

4-3 Left: pulling back outer layers of a Lilac branch from my garden. Right:

Helianthus stem in section showing A-Epidermis, B-Cortex, C-Pith, D-

Xylem, E-Phloem bers, F-Vascular cambium. Scale=0.2mm. “Cells

of the vascular cambium (F) divide to form phloem on the outside,

located beneath the bundle cap (E), and xylem (D).” This vascular

cambium is in bundles of phloem and xylem together, and is starting

to connect the bundles at point F. (Reproduced by Wikipedia, image

made by Jon Houseman and Matthew Ford.) . . . . . . . . . . . . . . . 127
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4-4 (Top) basswood branch with bark soaked o in hot water, one nds +1

topological defects in the notches of branches. The defect core traces

a line through the layers of growth that is visible in a cross-section on

the top-left. (Bottom) From left to right: Basswood, White Pine, and

Silver Maple branches have dierent grain sizes, and all exhibit defect

structures in the notches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4-5 (Left) Woody spike emerging below a –1/2 defect in Silver Maple, a

dicot. The other –1/2 defect is on the other side of this small branch

growing out of a larger branch. (Center) Cross section of Maize (Zea

mays), a monocot, about 800 μm diameter. A lateral root is bursting

out of the parent root. Root tips can diverge at any location. In con-

trast, shoots that form leaves and stems typically emerge only from the

apical meristem. Image by John Bebbington FRPS. (Right) Diagram

of tip geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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4-6 Anisotropic RSOS of a Spin Wave. These nematic test cases have

a ⇑2 spin wave frozen at the boundaries: left spins pinned pointing

inward and right spins pointing up. The initial height prole is a cosine

wave in the horizontal direction, so there are “hills” on the left and

right edges that are 80 height steps above the “valley” in the center.

The left column shows low temperature (b=100), and the right shows

high temperature (b=1). The bottom row shows small coupling of

growth rate to alignment (p=0.1), and the top row shows stronger

coupling (p=10). upper-left: at low temperature and high enough

coupling constant, growth quickly moves the spin wave to a crevice

that falls behind and the surface width diverges. In all other cases,

even if crevices form, they lag behind only a small amount and the

surface remains stable. lower-left: at lower coupling, the misaligned

spins focus in a crevice that lags the rest of the surface by a small

amount. upper-right: at high temperature and coupling, a network

of crevices form between domains of mostly aligned spins. lower-

right: at high temperature and low coupling, the surface becomes

approximately uniform in height and the spin eld evolves on a at

substrate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4-7 Anisotropic RSOS of a Spin Wave (zoom). The same four cases

as Fig. 4-6 zoomed in to show details. The deep crevices in the upper-

left will fall farther and farther behind. This is analogous to the branch

points with –1 topological defects in the SDS models below. . . . . . . 136

4-8 Various Morphologies at mass=1e7. This illustrates observed

morphologies as a function of noise  on the horizontal axis versus

aspect ratio  on the vertical axis. Green indicates a site that has

open child sites, which we call “cambium” in analogy to woody trees.

Orange indicates a site with no open child sites, which we call “wood.”

The colored contour plot back drop is discusssed below. . . . . . . . . 139
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4-9 Branches diverge and coalesce on many scales. (left) zoom in on

a portion of the shape on the right. (right) full view of 17,061,445 cells

grown at  = 2000 and  = 0.05 using Vicsek-style noise. The black

stair steps are a scale bar. The number of steps indicates the power of

ten, so the largest step is 103 lattice sites. The stack bar chart shows

that wood sites (orange) out number cambium sites (green) 58% versus

42% in this snapshot. The inner stacked bar chart indicates that there

are roughly as many +1 defects as –1 defects. Eventually, all of this

interstities shown here will ll in with wood; however, by that time,

the farthest tendrils will have reached even farther. . . . . . . . . . . . 141

4-10 Concept of Statistical Self-Similarity: Figure from Bouda, Ca-

plan, & Saiers: “Construction of the Koch curve, following Falconer

(2003). Each interval (A) is divided evenly into three and the middle

section is replaced by the complementary two sides of an equilateral

triangle (B). The process is repeated for each newly created interval,

yielding the second (C), third (D), and nth iterations. The Koch curve

is the limit approached as  → ∞. The limit curve can be subdivided

into four quarters, each an exact copy of the whole, scaled down by

a factor of three. The curve is thus self-similar with a similarity di-

mension of log4⇑ log3. Even with n = 10 (E), zooming in on the

pinnacle of the curve by a factor of three yields an image visually in-

distinguishable from the largest magnication ve times over, meaning

the curve is approximately self-similar over a nite range of scales. Fol-

lowing the same construction, but randomly choosing the side of the

old interval on which each new pair of intervals is placed, yields one

of many “statistically self-similar” curves (F). These cannot be divided

into sets of identical copies; rather, their parts are scaled random vari-

ations on the whole and they only conform to a fractal dimension on

average.”[283] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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4-11 Estimating Self-Similarity and Fractal Dimension: Branched

shapes in the middle region of Fig. 4-8 exhibit self-similarity over sev-

eral scales. This plot comes from the shape in Fig. 4-9.  is the side

length of boxes in a grid. The blue-dashed line counts the number of

boxes  that contain part of the shape at a given . The horizontal

axis is log2 1⇑. The blue circles mark reductions in  by half. Right

axis shows the slope of this line. Red dots are slopes of individual seg-

ments of the blue-dashed line within 2  of the average slope. Black

x markers have been dropped. The green range shows seven segments

used in the best t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4-12 Proposed Draft of Phase Diagram for 2+1D self-directed growth:

Like the morphologies found in 1+1D (Fig. 4-12, the 2+1D SDS model

generates pillars and trees and spheres. (Left) very small noise  = 0.01.

(Middle) small noise  = 0.07. (Right) high noise  = 1. I have sketched

possible boundaries lines between the three modes of growth. . . . . . 146

4-13 –1 defect appears at branch: (Right) Surface pattern in the shape

of a –1 topological defect appears in the notch of this branch. The

“view” angle shown on the right is the camera position for the image

on the left. (Left) Looking through the trunk with wood cells hidden.

This was grown at  = 50 and low temperature,  = 0.01, so new

branches do not emerge and disrupt our view. . . . . . . . . . . . . . . 148

C-1 Illustration of the Bragg-like matrix in the lab frame  surface param-

eter ( = 1). In these coordinates, the momentum-dependent potential

has the inconvenient challenge of being zero on the anti-diagonal, hence

the utility of the conformal coordinates. . . . . . . . . . . . . . . . . . . 188
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D-1 The matrix is non-zero on diagonal stripes only. The blue, red, and

green diagonal lines are xed values of ̃  . The center diagonal is


0}
 = − 2⇑2 is symmetric around its center point. Elements

near the dashed orange line ( = −) lead to near degeneracies. For

example, the inner dashed blue box illustrates a two-by-two matrix

with nearly equal diagonal elements. . . . . . . . . . . . . . . . . . . . . 210

D-2 Eigenvalues with rst order corrections as a function of , see Eqn. D.42,

in units of  = 1,  = 1,  ⋂̃  ⋂ = 1
10

0}
⇑2, and  = 100. . . . . . . . . . 213
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icity. Degenerate perturbation theory shows the perturbed eigenfunc-
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Chapter 1

Introduction

Highly curved surfaces are essential parts of physical systems on many length and

time scales, including galaxies, stars, rivers, and living things. For living systems,

the boundaries of individuals are curved surfaces. Interfaces between individual cells,

colonies, and whole organisms are closed surfaces and thus must be suciently curved

to have an inside and outside. Fields dened on these surfaces can couple to curvature

such that emerging patterns and order are inherently non-at.

When materials adhere to or embed in an interface, the particles can form oriented

phases, such as liquid crystals. Such an orientation eld can interact strongly with

the curvature. In Chapter 2, I will show that topological defects in such orientational

order can drive shape changes in membranes. Chapter 2 is a paper that I wrote with

my advisor, Mehran Kardar, and published in Physical Review E in 2008 [235]. In

Chapter 3, I will show that Turing patterns are also strongly inuenced by curvature

and can act as a chemical measuring stick for cell shape deformations. Section 3.2

of Chapter 3 is a paper that I wrote with my coauthors Jemal Guven, Mehran Kar-

dar, and Henry Shackleton, which we published in European Physics Letters in 2019

[308]. The other sections of Chapter 3 and Appendix C are my extensions and clari-

cations of the ideas produced by our collaboration. In Chapter 4, I will conclude by

presenting preliminary data from simulations of directional order coupled with solid

growth, which suggests that cells in woody trees could be an exciting area of further

exploration in biophysics. Chapter 4 is not published yet. These shapes and patterns
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occur for simple physical reasons without requiring active matter or the machinery

of life (ribosomes, actin, etc). In this sense, these phenomena are more foundational.

Life emerges out of them, or on them. Thus, by understanding the interactions be-

tween ordering and curvature, we are building infrastructure for understanding living

systems.

Several historical threads are converging to make our present era an exciting time

to study biophysics. These threads standout on backdrop of human history.1 To put

my work in context, this Introduction highlights the history of geometry in Section 1.1,

diusion in Section 1.2, vortex dynamics in Section 1.3, and bio-physics in Section 1.4.

These historical developments were motivated by art, engineering, and science.

Art and engineering seek control, and thus more parameters. In contrast, we seek the

simplest model that can capture essential features observed in nature.

Biology and geometry began with Aristotle[1] and Euclid[2] in the fourth century

bce. Intellectual progress was slow until the Renaissance when innovators like da

Vinci[4, 5] and Mercator[6] brought observational inquiry and geometric reasoning

back to center stage.

In the two millennia between Euclid and Newton[12], Earth’s human population

doubled to half a billion [326]. At this time, North America was still “lled with

immense tall forests.”[8]2

In the next two hundred years of Enlightenment, the human population doubled

again, crossing a billion before Gauss established dierential geometry with his paper

of 1827 [25], see Section 1.1 on geometry. In this time, laws of nature based on

potentials came into clear view with works by Laplace[22], Fourier[23], and many

others. See Section 1.2 on diusion.

Over the next hundred years, the human population doubled again, reaching two

billion by 1930. During this Technical Revolution, our exponential growth became

evident to the general public as concepts of globalization and macroeconomics entered

public discourse. In 1858, Hermann von Helmholtz explained that previous hydrody-

1Citations are sorted by year, so earlier citation numbers were published earlier.
2Today, Earth has about 3 trillion trees, possibly half as much as before humans.[280]
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namic theories based on potentials did not allow vortices [37]. Ramications of this

essential insight are summarized in Section 1.3 on vortex dynamics and orientational

order.

A year after von Helmholtz paper on vortices, Darwin published his Origin of

Species, which nally provided a non-teleological mechanism for life’s diversity [39].

Further advancement in biophysics had to wait until the atomistic view of nature

matured enough to explain muscles[74, 75], nerves[77], and DNA[79]. The convergence

of such mechanistic understanding marks the beginning of modern biophysics in the

1950s, see Section 1.4. The world’s population doubled again to four billion by the

mid-1970s when I was born. It has doubled again during my life thus far.

1.1 Geometry

A mathematical understanding of curvature developed only gradually. Euclid’s rec-

tilinear geometry[2] was sucient for two thousand years of engineering, architec-

ture[111], da Vinci’s art[4], and even Isaac Newton[12] (1687 ce).

To support the spread of commerce across oceans, Mercator made his world map

to depict sailing at a constant compass heading (rhumb lines) as a straight line on

paper [6].

In 1673, Huygens famous Horologium Oscillatorium formalized the concept of the

curvature of a line [10]. In the 1760s, Lagrange extended Euler’s work on variational

calculus to integrals of two variables so he could consider minimal surfaces [70]. In

the same time period, Euler identied the minimum and maximum radii of curvature

at each point on a surface, and questioning whether curvature could be dened at

saddle points [15]. More than fty years passed before Gauss resolved that and many

other questions in his important paper of 1827 based on lectures he gave in 1825 [25].

Gauss’ paper founded dierential geometry.

That said, Gauss relied on previous innovations, including those of Gaspard

Monge, the “father of projective geometry.” His approach to representing a patch

of surface as a height ℎ,  above a Cartesian plan is now known as the “Monge
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patch”, see Figure 1-1. It is still a central tool today. Quantities built from ℎ,  are
dened on the surface. Monge developed his geometry tools while designing forts and

river embankments 1765-1781[17], and they were so useful that the French treated

them as military secrets [111].

Figure 1-1: Monge’s representation of a curved surface uses a Cartesian plane {, } to
parameterize a single-valued height function ℎ{, } that cannot accommodate overhangs.
1 and 2 are the minimum and maximum radii of curvature at a point. These radii have
a sign that identies the two sides of the surface.

By construction, the Monge height eld ℎ,  cannot wrap around a closed shape

or accommodate overhangs. Staying within the Monge representation, one constructs

an “embedding vector” that locates a patch of surface within a xed lab frame, which

is assumed to be three-dimensional Euclidean space:

# »

1,2 Monge———→ # »

,  =






ℎ, 

∈ R3 .

The embedding vector is a vector-valued function of two parameters. For the Monge

representation,  = , . As sketched in the gure, each point on a surface has a

two-dimensional tangent plane. A convenient way to construct basis vectors for the
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tangent planes is to consider derivatives of an embedding vector,

#»
  ≡  # »




≡  # »

 ≡ # »

 , ,

where subscript  indexes over the two parameters. A comma in the subscript denotes

a partial derivative. These partial derivatives appear in many calculations involving

the surface. For example, an innitesimal line element constrained to the surface has

arclength,

2 =  #»
  ⋅ #»

 ⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊)


 ,

where repeated indices imply summation – the so-called Einstein summation conven-

tion. The two-by-two matrix  is just the dot product of the tangent vectors. Gauss

called this the “rst fundamental form.” Today, it is called the “metric tensor.” On a

Monge patch, it is

 = 
1 + ℎ2, ℎ,ℎ,

ℎ,ℎ, 1 + ℎ2,
 .

Gauss considered a more general embedding vector. Taking second derivatives, he

constructed his “second fundamental form” and showed that, when diagonalized, its

diagonal elements are the reciprocals of the maximum and minimum radii of curvature

at each point,[25]

 = 1⌈
1 + ℎ2, + ℎ2,


ℎ, ℎ,

ℎ, ℎ,


principal—————→ = 

1⇑1 0

0 1⇑2

 .

The arrow marked principal indicates rotating and rescaling to an orthonormal

frame aligned with the principal directions of minimum and maximum curvature,
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where Gauss’ curvature tensor is diagonal with elements equal to the reciprocal of

the radii of curvature. Gauss’ accomplishment is all the more amazing because he

did not have the more modern technology of Christoel (born 1829) and Levi-Cevita

(born 1873). We will use it below. After Gauss’ 1827 paper [25], decades passed again

before Riemann introduced the Riemann surface in his thesis (1851) and the concept

of an -dimensional object in 1854 [34].

The “covariant” derivative is a central concept in dierential geometry. To moti-

vate it, consider that in a Euclidean frame, basis vectors are constant, so

̂ = 0 .

We use Latin-letter indices , , ∈ 1,2, 3 to refer to the lab frame directions. This

constancy of the basis vectors greatly simplies expressions in a Euclidean frame.

This property is lost when we lift a problem onto a curving surface, because coordi-

nate frames on the surface change from point to point. Fortunately, we can recover

this property that basis vectors do not contribute to derivatives by dening a new

derivative operator that co-varies with the surface frame. We denote this covariant

derivative by ∇. It is dened such that

∇ ≡ 0 . (1.1)

There are several ways to make this equation true. The most direct route is via the

“Christoel symbols”, Γ, which Erwin Christoel introduced in his study of second-

order dierential equations [44]. This became a cornerstone of the tensor analysis

developed by Levi-Cevita, Cartan, and others, and is essential to general relativity.

Briey, the covariant derivative in Eqn. 1.1 can be written:

0 = ∇ =  − Γ − Γ (1.2)
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where Γ is the Christoel symbol,

Γ ≡ 1

2
 , + , − , ,

where a subscript comma denotes partial derivative,  = ,, and  = −1 the
matrix inverse of the metric. Since the metric can be constructed from the tangent

vectors, and the tangent vectors from an embedding vector, the Christoel symbols

provide a key element of practical calculations on curved surfaces.

With these tools in hand, consider the covariant derivative of the tangent vectors.

By construction, this quantity is always along the surface normal. The coecients

are Gauss’ curvature tensor, :

∇
#»
  =̂ , (1.3)

where ̂ is the unit normal vector, which can be constructed as the normalized cross

product of the tangent vectors. As nal step for this brief summary of dierential

geometry of curved surfaces, the trace of the curvature tensor is a reparameterization

invariant scalar, so it must be the same in any coordinate system. Gauss showed that


 is diagonal in coordinates aligned with the principle principle curvatures, so we

know that its trace is an invariant scalar:

 =
 = 1

1

+ 1

2

(1.4)

The determinant of Gauss’ curvature tensor is also an invariant scalar and is now

called the “Gaussian curvature.”

det
 = 1

12

(1.5)

These tools are sucient to study most curved two-dimensional surfaces that appear

in biology, see Appendix A for further details.

In 1920, Einstein made dierential geometry famous with his theory of gravity [63,

35



64]. Einstein replaced Newton’s 1⇑2 gravity force law with geometry. This inspired

revolutions in eld theory, gauge theory, Yang-Mills theory and the Standard Model

— all based on dierential geometry.

Even with the success of dierential geometry in Einstein’s theory of gravity, it was

not until the second half of the 1900s that it entered biology with papers like Canham’s

“The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape

of the Human Red Blood Cell” in 1970[92]. Helfrich[102] extended Canham’s model

with the concept of spontaneous curvature, so the energy of a closed vesicle can be

computed by integrating over the surface, ,

ch = ∮

  + 

2


 −02 , (1.6)

where  is a cost for creating more surface area;  is a bending rigidity; 
 is the

trace of the curvature tensor and equal to twice the mean curvature; and 0 is a

preferred curvature. A productive industry emerged to calculate and enumerate the

shapes of uid vesicles, see the review by Seifert [164]. It is on-going today [182, 255,

298, 310].

Udo Seifert, Reinhard Lipowsky and coworkers carried the Canham-Helfrich model

to several successful conclusions. Figure 1-2 shows part of their phase diagram of

vesicle shapes that minimize the ch, which they computed by numerically integrating

the shape equation obtained from taking a functional derivative:

0 = ch


# »


.
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Figure 1-2: This is part of the marvelous phase diagram of minimum energy shapes for
the Canham-Helfrich model augmented with volume and area constraints. These shapes
are axisymmetric. The horizontal axis is the reduced volume that reaches 1 for a sphere.
This segment of the overall diagram is at zero spontaneous curvature. As the reduced
volume is increased from left to right, the energy minimum goes through two discontinous
transitions. Reproduced from Fig. 9 with permission from Udo Seifert, Karin Berndl, and
Reinhard Lipowski’s “Shape transformations of vesicles: phase diagrams for
spontaneous-curvature and bilayer coupling models,” Phys Rev A 44 (2) p1182–1202
©1991 by the American Physical Society.

Note that recent measurements have suggested that the abrupt transition from

prolate barbell to discocyte should move to the right (higher reduced volume), which

is likely the result of tilt in the lipid tails [182, 255, 298, 310].

Fluid ows inspired the earliest eld theories[13, 14, 16], so it is interesting that

dierential geometry only reached hydrodynamics in 1970, the same year Canham’s

paper on red blood cells [93], and is still an active subject of research [284].

In Chapter 2, we will extend the Canham-Helfrich model ch to include orien-

tational order embedded in the surface and solve the shape equations for some bi-

ologically relevant congurations. We use a variant of the tangent angle surface

parameterization used by Seifert et al.

Today, the tools of dierential geometry are used [262, 312] by elds as diverse as

machine learning[286, 317] and dynamical systems[208].

1.2 Diusion

Around 60 B.C.E., the Roman philosopher Lucretius wrote a widely cited poem argu-

ing for the existence of atoms based on observing dust motes dancing in a sunbeam [3].

His description foreshadowed the kinetic theory of gasses. However, a quantitative
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understanding was still lacking in 1827, the same year as Gauss’ paper, when English

botanist Robert Brown examined pollen grains jittering from thermal uctuations in

water [27]. Brown used a magnifying glass hardly more advanced than what Hooke

used 152 years earlier to produce his Micrographia (1665) [9].

While Brown did not present a analytical theory, the mathematical tools were

already known. Laplace had introduced his famous solutions to second-order dier-

ential equations [18]. He had been studying the tides using the tools that Euler and

Lagrange had developed on top of Newton’s variational calculus. In 1805, Laplace

explained Young’s observations[21] of capillary action and surface tension [22].

In 1822, Fourier extended these early successes of potential theory to describe heat

conduction and his famous decomposition of a function into a series of sine waves [23].

In 1827, Georg Ohm published his book explaining his potential theory of electrical

conduction.[26]

Thus, these tools were available when Brown made his observations.[27] He fol-

lowed up with an experiment to conrm that the motion also occurred for small

particles of non-biological origin [29], i.e. the machinery of life is not the source of

Brownian motion. Yet, he refrained from asserting a cause. That would have to wait

until 1905 when the idea of atoms was more developed.

In 1828, Green wrote his long paper introducing integral expressions as solutions to

Poisson equations,[28] which Gauss further formalized in 1840. In the 1850s, Graham

& Fick[35], Darcy[36] found potential theories for chemical diusion and ow through

porous media.

In 1860, J.C. Maxwell rened the concept of diusion in order to write a kinetic

theory of gases. His velocity distribution function for gas particles was the rst

statistical law of physics.[40, 41]

In 1863, J.W. Gibbs wrote the rst doctoral thesis in engineering in the United

States using geometry to optimize gears [42]. Ten years later, his rst two pub-

lished papers presented geometrical tools for reasoning about thermodynamics [45,

46]. Maxwell immediately appreciated this and added it to the next addition of

his book, The Theory of Heat [47]. In the same decade, Boltzmann was extending
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Maxwell’s work with his H-theorem [48]. Gibbs’ classic 1902 text book on statistical

mechanics generalized Boltzmann’s analysis of entropy to a general ensemble. This

claried the derivation of the second law of thermodynamics and set the stage for

Shannon’s information theory [56].

Building on this foundation of kinetic theory of gasses, Einstein (1905)[57] and

Smoluchowski (1906)[59] were nally able to restate Lucretius’ poem[3] and calcu-

late the mean-square displacement of particles experiencing Brownian motion. This

oered an experimental procedure for measuring Avogadro’s number, which Perrin

accomplished in 1908 and wrote about in his famous book “Brownian Movement and

Molecular Reality” [60]. Perrin won the Nobel Prize in 1926.

In 1926, Schrödinger presented his wave equation[65] and used the perturbation

theory developed by Lord Rayleigh in studying sound vibrations in 1896 [55], which

we will use in Chapter 3 to analyze Turing patterns.

In 1953, Turing brought diusion to a new level by explaining how chemical reac-

tions plus diusion can be linearly unstable and generate patterns, which he proposed

could describe morphogenesis [78]. Specically, consider a (nonlinear) chemical re-

action involving multiple constituents. Denote the concentrations of these chemicals

as Ψ1,Ψ2, ..., which are functions of space and time. Consider a steady-state xed

point of the chemical reaction dynamics, denoted Ψ∗
 , and consider small deviations

from these concentrations, denoted  To be a stable xed point, small deviations

must fade away under the action of the chemical reactions. Mathematically, this

means that if one linearizes the reaction around the xed point and computes the

reaction Jacobian, it must have only negative eigenvalues. Illustrating this with just

two concentrations, one has:






1

2

 = 
1,1 1,2

2,1 2,2


∫∫∫∫∫∫∫∫∫∫∫∫∫∫ #»Ψ∗⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

Reaction Jacobian


1

2

 ,
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and the eigenvalues,

0± = 1,1 +2,2

2
±
}
1,22,1 + 1,1 −2,2

2
2

must be negative for
#»

Ψ
∗
to be a stable xed point. Note that this eld theory

representation of a reaction proceeds at each point in space independently, so no

spatial derivatives appear.

Diusion is also stable. That is, if only diusion is active, small deviations fade

away. Mathematically, this is because the Laplacian has negative eigenvalues. How-

ever, Turing pointed out that the combination of a stable chemical reaction and

diusion leads to a new situation in which an instability can arise:






1

2

 = ⎨⎝⎝⎝⎝⎪

1,1 1,2

2,1 2,2


∫∫∫∫∫∫∫∫∫∫∫∫∫∫ #»Ψ∗⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

Reaction Jacobian

+
1 0

0 2

∇2

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
Diusion

⎬⎠⎠⎠⎠⎮

1

2

 +2
  .

Note the higher-order terms on the right! Fourier transforming both space and time:

0 =∑



#» ⋅ #»

⎨⎝⎝⎝⎝⎝⎪

1,1 − 12 1,2

2,1 2,2 − 22

∫∫∫∫∫∫∫∫∫∫∫∫∫∫ #»Ψ∗

− 
⎬⎠⎠⎠⎠⎠⎮

̃1
̃2

 . (1.7)

This new matrix can have positive eigenvalues, , see Figure 1-3. The wavelengths

corresponding to these positive eigenvalues are linearly unstable.

After higher order terms stabilize the pattern, the characteristic length scale of the

pattern will be approximately 1⇑∗. In order to make +
∗ > 0, these two inequalities

must hold:

1 ≜ −2,2

1,1

≜ 2
1

0 ≜ −2,21,1 ≜ −1,22,1 ≜ 2,21 −1,122
412

.

The study of reaction-diusion systems has focused on selecting higher order terms
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and adding more chemical components to generate patterns that match various goals.

Artistic goals often require adding more parameters to control the resulting patterns.

Here, we’re focused on capturing physical processes with as few parameters as possi-

ble.

Reaction-only 
eigenvalues

Unstable Band

most unstable 
   wavelength

ω(q)

qλ   = −q

ω(0)

q

q*

Figure 1-3: Turing’s Unstable Band of wavelengths resulting from the interplay of
reaction and diusion.

While many expressed interest in using Turing’s remarkable idea, concrete progress

lagged for more than a decade. In 1968, Lindenmayer proposed a formal grammar

for iteratively generating patterns inspired by Turing’s ideas.[89, 90] Now called “L-

systems,” these string rewriting rules are widely used in computer science to generate

realistic-looking plants and scenes. In 1972, Gierer & Meinhardt examined systems

of nonlinear equations that can stabilize the patterns initiated by a Turing instability

[99]. This led up to Meinhardt’s inuential 1982 book “Models of Biological Pattern

Formation”[120], which was a precursor to Cross & Hohenberg’s widely cited 1993 ar-

ticle in Reviews of Modern Physics on “Pattern formation outside of equilibrium.”[142]

We will expand on this line of discussion in Chapter 4.

Turing’s instability depends on short-range autocatalysis and long-range inhibi-

tion [99]. This occurs when the inhibitor diuses much faster than activator, which

appears unlikely to occur via diusion between cells, because materials diuse at simi-

lar rates through the intracellular environment. However, Rauch3 & Millonas showed

that accounting for signal transduction through the cell membrane leads to eec-

tive diusion rates that can generate Turing-type patterns in realistic physiological
3Erik Rauch and I became friends through Dan Rothman’s seminar. He had the unusual hobby

of collecting place names. We founded MetaCarta together with Doug Brenhouse in early 2001.
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conditions, such as during embryo morphogenesis.[203]

Reaction-diusion (RD) models are now a widely used framework for understand-

ing biological pattern formation.[247] RD systems have now been found in systems as

diverse as starsh embryogenesis[323, 329], parrot sh coloration [217, 340], and the

internal structuring of tree tissues [333].

In Chapter 3, we lift Turing-type patterns onto curved interfaces. To do this,

we lift the Laplacian onto a curved surface and study how curvature changes its

eigenfunctions and eigenvalues. Using dierential geometry, conformal mapping and

Rayleigh-Schrödinger perturbation theory, we show how curvature can anchor Turing

patterns to regions of curvature. This paper was published in 2019 with my coauthors

Jemal Guven, Mehran Kardar, and Henry Shackleton [308].

How curvature inuences time-varying patterns is an on-going area of research

[323, 328, 329, 337].

1.3 Vortex Dynamics

Swirling motions in uids mesmerize observers. For example, Leonardo da Vinci

studied bubbles rising through water and found that small bubbles move in a straight

line and larger bubbles move in a rising circular path (spiral) [5]. This spiralling

remained a “paradox” until recently [201, 313, 336].

While Newton[11] and Euler[14] reasoned about vortex motion, it was not until

1858 that the topological nature of vorticity emerged as a framework for understand-

ing. In 1755, Euler had used vortex motion as a counterexample to show that there

are uid motions for which no velocity potential exists. In 1822, Navier extended

Euler’s inviscid uid equations to derived his eponymous uid mechanics in 1822[24].

Stokes re-derived the viscous ow equations and extended the analysis in 1845.[31]

The Navier-Stokes equations admit vortices. However, the concept of deriving all of

the motion of a uid from a potential was still often tacitly assumed.

In 1858, Hermann von Helmholtz referenced Euler and explained methodically

that hydrodynamics based on a potential does not allow rotating motion. His con-
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struction of vortex lines and studies of integrals of the hydrodynamic equations es-

tablished the beginning of our topological understanding of vorticity [37]. This was

a watershed moment. Vortex dynamics and the topological nature of these special

points immediately became essential areas of study. In 1885, Poincaré showed that

a tangent vector eld on any even-dimensional closed manifold must have vortices

surrounding special points where the vector eld vanishes [51].

In 1958, one hundred years after Helmholtz’ paper, Charles Frank provided a free

energy functional of a orientational order to describe liquid crystals [81]:

Charles = ∮ 3 1

2
#»

 ⋅ ̂2 + 2

2
̂ ⋅ #»

 × ̂2 + 3

2
̂ × #»

 × ̂2 (1.8)

The unit vector ̂ is aligned with the rod-shaped particles in a uid that is suciently

dense that the rods are forced to align their orientations. Vortices are a dening

feature of liquid crystals. Liquid crystals quickly grew into an active eld, including

P.G. de Gennes’ Nobel Prize.[143] The topological nature of these defects in the

orientation eld are a central to their study in condensed matter.[113]

A year earlier, in 1957, Abrikosov explained that Type II superconductors involved

a lattice of vortices.[80] This built on the free energy model of Ginzburg-Landau.[76]

Over the next fteen years, intense research in phase transitions led to the renormal-

ization group and our modern understanding of phase transitions.[103] In particular,

Berezinski[97] and Kosterlitz & Thouless[100] showed how an orientation eld in two

dimensions can undergo a transition in which pairs of vortices of opposite orientation

can “unbind” from each other and interact with a Coulomb-like potential.

Defect dynamics are now an essential part of understanding diverse systems, in-

cluding Bose-Einstein condensates, crystals, active nematics, and many other dynam-

ical systems that exhibit phase transitions [339].

In 1995, Vicsek et al [154] and Toner & Tu[153] extended such orientational order

to a non-equilibrium, dynamical setting.[109, 123]

In vitro assays of cytoskeletal laments and motor proteins have been found to

produce striking dynamic patterns with orientational order. Vortex shapes were ob-
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served in tubulin and myosin in a petri dish in 1997 [162, 165]. More recently actin

has been observed to develop polar patterns on synthetic cell membranes [321].

Recently, defects have been identied as playing a role in morphogenesis.[314, 319,

322, 327, 330, 331]

In Chapter 2, we lift Eqn. 1.8 onto a two-dimensional membrane and show that

defects can buckle a deformable membranes into the third dimension. Defects will

appear again in Chapter 4 on branch points in woody trees and my simulations of

directed growth of living solids.

1.4 Physics of Biology

1.4.1 Early Biophysics

Biology began with Aristotle. His studies of living systems are still foundational. For

example, he originated our modern theory of angiogenesis[1, 213]. However, Aristotle

often resorted to “nal causes” to explain observations in terms of future outcomes.

Questions about causality continue to be central to biology.

Darwin’s explanation of evolution provided a partial solution: once life emerges,

genetic variation and natural selection drive diversication into niches [39]. However,

much remains to be understood in terms of underlying causes, including origin(s) of

life, how intelligence works, and what aspects of life could be universal in the cosmos.

Ninety years ago, classical mathematics was dethroned by Gödel’s incompleteness

theorem[68] and Turing’s halting problem [72]. Ironically, many great minds reacted

to these impossibility results by turning attention to computing and understanding

errors. Claude Shannon’s masters thesis at MIT implemented Boolean algebra [73]

and his famous paper spanning two issues of the Bell Technical Journal described

what is possible in a noisy communication channel [32]. Leslie Valiant’s 1984 paper

on “A Theory of the Learnable” provided mathematical basis for learning from errors

[121]. Perhaps this or one of its intellectual descendants will someday be seen as a

Darwin-like moment for intelligence.
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In 1892, Pearson coined the name “bio-physics” as better than the previous name

“ætiology” from the Greek αιτιον meaning a cause. He predicted that only after

applied mathematics and bio-physics are “fully accomplished, shall we be able to

realize von Helmholtz’ prediction and conceive all scientic formulæ, all natural laws,

as laws of motion” [54]. D’Arcy Thompson published his carefully researched tome

“On Growth and Form” in 1917 [62]. It still receives many citations, because it

articulates a central theme: new knowledge in biophysics expands the arena in which

life is not slave to nal causes.

This uncovering of causes in biology has been underway for at least 200 years,

and we’re far from done. In the same decade that Young[21] and Laplace[22] were

guring out capillary action, Galvani was experimenting with nerve conduction in

frogs [19], which inspired Volta to further develop his invention of the battery [20].

von Helmholtz measured the speed of nerve conduction and published a book about

it in 1850 [33, 186]. In 1864, Kühne published his book about protoplasm and mus-

cle contraction. He isolated and named “myosin” [43]. As electrical tools improved,

Adrian & Matthews measured action potentials in humans [69], and Hodgkin & Hux-

ley identied the biochemistry of axons [77]. Further studies of the contituents of

muscle bers led to an understanding of actin and the cytoskeleton [74, 75].

1.4.2 Microscope Era of Biophysics

These biochemistry successes motivated new microscopy techniques. As microscopes

became more powerful, biophysics gradually took on a new character. By the early

1970s, when Canham[92] and Helfrich[102] proposed their mechanical model of cell

shapes, it was commonplace to take pictures of cells. Both microscopes and telescopes

had come a long way from Robert Hooke[9] and Galileo[7]. Today, we can track

particles in uid membranes [270, 275] as well as topological defects (vortices) in

ordering elds in non-equilibrium, living matter [314].

To put my work in context, I highlight two big-picture aspects of biophysics:

1. 1011: Biological interfaces exist over at least eleven orders of magnitude, from
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surfaces of proteins embedded in membranes (nanometers) up to the branching

cambium of woody trees as large as 100 meters.

2. Gaps: As mentioned in the famous “Powers of Ten” lm, activity appears at

alternating scales [108]. These separations of scales enable eective theories.

Surface orderings appear at many scales, and biophysics has not yet explored all

them. I will highlight four.

Early motivations for biophysics focused on our own nerves, muscles, and genes.

After isolating polymers of DNA and actin, it was natural to focus on the amazing

molecular machines that operate on these one-dimensional laments. The discovery

of ribosomes and mRNA helped establish the (rst) central dogma of biology that

genetic information ows from DNA to RNA to proteins.

As proteins fold into their active conformations, the “second” central dogma of bi-

ology says that shape determines function [239]. While myosin and ribosomes are not

transmembrane proteins, many essential molecular machines operate in a membrane,

including many ATPases, chlorophyll, and ion channels. As the membrane inuences

the shape of these proteins, it also adjusts their functioning.

Treating DNA or actin as a lament is one separation of scales. Treating a lipid

membrane as a continuum surface is a second, see Figure 1-4.
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50 nm

0.275 nm

~10x
~10x

Figure 1-4: The bacterium Bacillus Subtilis on the right has a diameter of 600nm. “The
furry appearance on the outside is due to a coat of long-chain sugars attached to the cell
membrane. This coating helps trap water to prevent the bacterium from becoming
dehydrated,” from Lipid Bilayer article in Wikipedia. Image taken with a Tecnai T-12
TEM by Allon Weiner, The Weizmann Institute of Science, Rehovot, Israel, gure from
Wikipedia. Center diagram shows the extent water penetration into a lipid bilayer, gure
from Wikipedia. On the left, a water molecule measures about a quarter of a
nanometer[207] and has 10x higher electron density around Oxygen, gure from Martin
Chaplin’s website on water, see Internet Archive’s copy. [311].

Many open questions in biophysics remain at the scale of a single cell. For typical

lipid bilayers, the bending modulus  ≈ 20 , where  ≈ 4.1 × 10−21 ≈ 0.6 kcal/-

mol is the thermal energy. Using the Canham model of Eqn. 1.6, one can estimate

the energy needed to bend a membrane into a sphere of radius R as approximately
1
22⇑2 × 42 ≈ 8 ≈ 500 [227]. This sets the energy scale for many cellular

processes acting in and around the membrane. We will comment on this more in

Chapter 2 when we calculate the equilibrium shapes of defects in a nematic mem-

brane.

Figure 1-5 shows whole cell remodeling during mitosis and chemotaxis. Lamel-

lipodia are of a few microns [190]. The mitotic spindle and cortical ring of cell division

are often tens of microns in size [233].
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Figure 1-5: (Left) A cortical ring in silkworm spermatocytes from Chen et al in PLOS
Biology 2008.[233](Center) Overlays of two image series taken at 15 second intervals to
show keratocyte crawling via its large lamelipodia, and (Right) keratocyte stained with
rhodamine phalloidin to label the actin laments.Reprinted from Cell 112 (4) “Cellular
Motility Driven by Assembly and Disassembly of Actin Filaments” by Thomas D Pollard
& Gary G Borisy ©2003, p453–465, with permission from Elsevier.[190]

Much of biophysics has focused on building up from molecules. Endocytosis is a

good example. Clathrin coated pits were rst observed in the 1960s in tissues from

mosquitos and guinea pigs [85, 91]. In 1975, Barbara Pearse extracted clathrin from

pig brain tissue, puried it, and named it [104]. See the incredible picture in C of

Figure 1-6 showing pits forming in muscle cells from a chicken [129]. Work in the

2000s continued in rening the molecular structure of proteins like clathrin[192] and

BAR domains [200]. Today, it is still an open question how the cell’s machinery

selects locations for creating vesicles [304].

In recent decades, biophysicists have developed models of epithelial sheets, which

are 300X larger, see D in Figure 1-6. This third separation of scales allows for ana-

lytical modeling with coarse-grained eective theories, like polygonal vertex models

[292]. Many of the shapes observed in embryogenesis, and epithelial sheets in gen-

eral, resemble the simpler shapes of vesicles shown in Fig. 1-2, however the theory of

epithelial sheets is a work-in-progress [271, 297].

48



Figure 1-6: Illustrating four orders of magnitude. A: BAR protein domain is a
banana-shaped with a radius of curvature of 11nm. It is highly conserved in evolution and
plays key roles in the formation of tubules and other structures. (Reprinted with
permission from AAAS: “BAR Domains as Sensors of Membrane Curvature” by Peter et al
in Science 2004.[200]) B+C: clathrin triskelions make cages and pits that form vesicles.
Image reconstruction in B shows a 36 clathrin hexagonal barrel with D6 symmetry.
(Reproduced with permission from Springer Nature, “Molecular model for a complete
clathrin lattice from electron cryomicroscopy” by Fotin et al 2004.) C: clathrin pits
forming in a chick broblast. (From Heuser et al “Hypertonic media inhibit
receptor-mediated endocytosis by blocking clathrin-coated pit formation” in JCB
1989.[129] D: Epithelial cells stretched over a surface, from “An adaptive microscope for
the imaging of biological surfaces by Abouakil et al in DGD 2021.

Even on the scale of just single cells, models must account for phenomena ranging

from 0.1 nm up to 104nm. As illustrated in Figure 1-4, lipid bilayer membranes are

typically 4nm thick, and their lipid tails can tilt a fraction of that [272]. Endocytosis

makes vesicles of 60–140nm in diameter.[304] Extracellular synaptic vesicles garrying

neurotransmitters between neurons are smaller, e.g. 40nm [219].

Forces between inclusions in membranes can extend distances of 102nm.[144] How-

ever, membranes are typically so crowded that they resemble “cobblestone pavement,

with the proteins organized in patches that are surrounded by lipidic rims, rather than

icebergs oating in a sea of lipids.”[219] Typical membranes have more molecular mass

in proteins than in lipids (ratio approximately 3:2), and the center-to-center spacing

of transmembrane macromolecules is only about 10nm![242] However, a crucial point

has emerged that the local curvature of the membrane often changes the functioning

of transmembrane proteins, because all of these materials are soft and biochemical

function is often shape-dependent [242]. Membrane deformations between inclusions

is a fruitful area of application for dierential geometry [209, 225].
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Figure 1-7: (Left) A –1 topological defect in the notch of a White Pine branch. (Right)
Model of plant cell wells highlighting that the extra cellular matrix is extruded through
the cell membrane by molecular machines that create a ordered array of laments, often
with orientational order. by Yoshimi Nakano, Masatoshi Yamaguchi, Hitoshi Endo, Nur
Ardiyana Rejab, and Misato Ohtani, May 2015, in Frontiers in Plant Science 6 (288), CC
BY 4.0.[281]. Note that the membrane thickness shown on the right side of Figure 1-7 is
not to scale, because the cell walls extend for microns beyond the 4nm-thick membrane.
This is necessary, because it shows that a transmembrane protein is extruding the cellulose.

Membrane inclusions and their orientations aect the coarse-grained mechanical

properties of membranes. In fact, work continues beyond the Canham-Helfrich model

to account for tilted tails of lipids [255]. This accounts for membrane fusion processes,

which the Canham-Helfrich failed to accurately predict [182]. Biophysical systems at

many scales exhibit such orientational order, including:

1. 0.1 to 2nm: tilted tails of lipids in bilayer membranes,

2. 1 to 10nm: protein waves on membranes [315],

3. 10 to 100nm: actin laments in the cortical cytoskeleton [321],

4. 10 to 100μm: epithelial sheets of cells with planar cell polarity [261, 269], and

5. 1cm to 100m: elongated cells in plant tissues.
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Botany oers a fourth separation of scales that is under-explored in biophysics.

Plant cell walls are an active area of engineering research. The shapes of woody plants

are many orders of magnitude larger than their constituents, so ripe for eective

theories. See Figure 1-7 I will revisit this last point in Chapter 4.

In the next chapter, we will study a model of orientational order in uid mem-

branes.
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Chapter 2

Defects in nematic membranes can

buckle into pseudospheres

This chapter was published in Physical Review E in 2008 with my co-author

Mehran Kardar[235].

A nematic membrane is a sheet with embedded orientational order, which can

occur in biological cells, liquid crystal lms, manufactured materials, and other

soft matter systems. By formulating the free energy of nematic lms using

tensor contractions from dierential geometry, we elucidate the elastic terms

allowed by symmetry, and indicate dierences from hexatic membranes. We

nd that topological defects in the orientation eld can cause the membrane to

buckle over a size set by the competition between surface tension and in-plane

elasticity. In the absence of bending rigidity the resulting shape is universal,

known as a parabolic pseudosphere or a revolved tractrix. Bending costs oppose

such buckling and modify the shape in a predictable manner. In particular, the

anisotropic rigidities of nematic membranes lead to dierent shapes for aster

and vortex defects, in principle enabling measurement of couplings specic to

nematic membranes.
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2.1 Background Review

By “nematic membrane” we refer to any exible sheet incorporating ordered rod-

like constituents. For example, thin lms of smectic-C liquid crystals are nematic

membranes [94, 112, 146, 160]. Also, recently developed sheets of carbon nanotubes

have nematic character [194, 231]. Nematic order arises in lipid membranes with

inclusions [167] and in the cell cytoskeleton, e.g. during mitosis [135]. Interestingly,

in vitro experiments on mixtures of cytoskeletal laments and protein motors ob-

serve topological defects (asters and vortices), which spontaneously self-organize into

a variety of patterns [162, 165, 198]. These experiments, and related simulations,

use at geometries with various boundary conditions [177, 211]. Similar topologi-

cal defects inuence the shapes of real cells. For example, cells of the alga Bryopsis

sprout branches out of vortex-shaped defects that appear naturally in their cell wall

of cellulose microbrils [83]. To take a step toward understanding such living and in

vitro systems, we consider equilibrium shapes around defects in deformable nematic

membranes.

We show that topological defects can buckle the membrane. This has similarities

to two other systems. One is bulk nematic liquid crystals, which buckle into the third

dimension around defect lines [96, 98, 101] in a manner directly analogous to the

shapes we nd. A second example is provided by deformable triangular latices, which

have been studied extensively in the theory of two-dimensional melting. While the

physical picture is dierent, the model energy is equivalent to a nematic membrane

with isotropic elastic constants. Disclination defects culminating in a site with ve

or seven bonds (instead of the usual six) can lower their energy by buckling [125,

128, 147, 184]. When draped over curved surfaces, collections of such defects arrange

in specic patterns [204, 205, 220, 221]. If surface tension is neglected, ve-fold

disclinations assume an approximately cone-shaped form [128].

In contrast to the above cases, competition between the cost of surface area and rod

misalignment determines the shape of the defects we consider. When bending rigidity

is neglected, we nd that topological defects deform membranes into a simple universal
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shape known as a parabolic pseudosphere [136, 230]. The size (height and extent) of

this universal form is governed by the ratio of surface tension to in-plane elasticity.

The inclusion of bending rigidity opposes this puckering. If the bending cost is small,

the singularities at the tip and rim of the defect become smoother. The logarithmically

diverging tip of the parabolic pseudosphere is replaced by the nite height of an

elliptic pseudosphere [136], and the sharp rim is replaced by an exponential fallo

with a length scale related to rigidity. Higher bending costs completely eliminate the

buckling instability. The anisotropic elasticity of nematics singles out specic defect

orientations (asters and vortices); and corresponding anisotropies in bending rigidity

lead to dierent length scales for their shapes.

The rest of the manuscript is organized as follows: In Sec. 2.2, we describe the

free energy of a nematic membrane using tensor contractions from dierential geom-

etry. This provides a compact formulation applicable to all deformations, including

highly curved shapes. In Sec. 2.3, we describe vortex and aster defects, derive shape

equations for radially symmetric congurations, and solve them to nd the buckled

defect shapes. Section 2.4 provides a summary and indications for future research. In

Appendix 2.5, we study lament orientations in xed geometries, which may provide

other ways of measuring the nematic membrane parameters. In Appendix 2.6, we

check the linear stability of the buckled defect shapes.

2.2 Elastic Free Energy of Nematic Membranes

Using dierential geometry to describe a two-surface in three-space, we construct a

power series expansion for the free energy by selecting a linearly independent set of

scalar contractions of the surface tensors. For a surface described by an embedding

vector
# »

1,2, one constructs tangent vectors, #»
  =  # »

, by taking derivatives

of the embedding vector with respect to its two parameters. The metric tensor

is then  = #»
  ⋅ #»

 . The covariant derivative is dened such that ∇ = 0. The

curvature tensor is constructed from covariant derivatives of the tangent vectors as

 = ∇
#»
  ⋅ ̂, where ̂ is a surface normal. One must choose a side to dene the
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sign of ̂. In the principle directions basis,  = 
1⇑1 0

0 1⇑2

, where  are the

radii of curvature [188].

A unit-magnitude tangent vector eld
#»

 =   #»
  represents the nematic particles.

At constant lament density, the magnitude   = 1 is xed and only its orientation

changes 1. Nematic symmetry implies invariance under   → −  2. A complete set

of scalars up to second order in derivatives is

ℱ = + 1

2
∇

2 + 3

2
∇

⊥ 2
+ ⋃⋃

2
 

 −⋃⋃2
+ ⊥

2
 ⊥

⊥ −⊥2
+ ×

2
 

⊥ −×2 . (2.1)

This free energy density must be integrated with a surface area element  = ⌋
 2,

where  is the determinant of the metric. The weighted antisymmetric tensor  =⌋
 

rotates one-tensors by ⇑2, such that  ⊥ =  [188]. Each term is manifestly posi-

tive, so stability demands that the moduli be positive. In the remainder, we consider

reection symmetric, non-chiral membranes without spontaneous curvatures ⋃⋃,⊥,×.
Unlike parameterizations used to study nematic membranes near the hexatic xed

line [141, 152], this set of scalars cleanly delineates the anisotropic bending energies

that make nematic membranes unique. Creating more surface area costs  [105, 134].

In-plane splay and bend cost 1 and 3, which are the two-dimensional analogs of

the bulk nematic Frank constants [81, 160]. Membrane curvature in the direction

of the local lament orientation costs ⋃⋃. Curvature perpendicular to the laments

costs ⊥. These out-of-plane bending terms are the anisotropic analogs of the the

Canham[92]-Helfrich[102] bending rigidity. Saddle curves cannot be constructed from

the other two out-of-plane bending terms and incur an independent energy cost of

1Relaxing   = 1 would introduce independent  and ⊥⊥ terms and several new
gradient terms.

2Dropping the nematic symmetry requirement introduces four new spontaneous curvatures, two
of which are chiral.
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×. The square of the chiral scalar ⊥ [141, 145] is non-chiral. The underlying

membrane has a uid character in that the particles can rearrange in the surface

without stretching or shearing costs.

Compared to the splay, bend, and twist of bulk nematics, nematic membranes

have additional freedom that comes from relaxing a constraint: instead of three elds

constrained to a unit vector, the nematic membrane constrains only two elds to a

unit vector and allows a third eld to range freely in describing the membrane’s local

deviation from atness 3.

In a system of motor proteins pulling on cytoskeletal laments, 1 would be

proportional to motor density, which we assume to be uniform, and ⊥ would be

determined primarily by the bare membrane’s isotropic rigidity. Filament rigidity

would inuence both 3 and ⋃⋃. See Appendix 2.5 for comments on ×.
Perturbative RG near the hexatic xed line [152] shows that thermal uctuations

reduce weak anisotropy, i.e., the three quantities × − ⋃⋃ − ⊥, ⋃⋃ − ⊥, and 1 −3

fade at long distances, so that only the hexatic membrane energy remains, and

ℱℎ =  + 

2
∇∇  + 

2


 −02 , (2.2)

where  = 1
21 +3 and  = 1

2⋃⋃ + ⊥. Under further rescaling, → 0 and  is

unrenormalized. Note that while the hexatic energy takes its name from the six-fold

symmetry of triangular lattices, any n-atic symmetry with  ≥ 3 restricts 1 =3

and ⊥ = ⋃⋃ = 2×. For polar ( = 1) or nematic ( = 2) membranes, the isotropic

approximation is an important limiting case at one extreme of a phase diagram that

deserves further attention.

Estimates of the thermal persistence length,  , of weakly anisotropic rigid mem-

branes indicate an exponential form log  ∝  [124, 152, 214]. Modest changes in

 can thus sweep the persistence length from small values up to thousands of times

the short-distance cut-o [118]. Eects unique to the nematic membrane can then

appear in patches of material smaller than this persistence length.

3Such constraints deserve further study in the spirit of Capovilla’s and Guven’s study of mem-
branes with isotropic rigidity in Ref. [212].
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2.3 Buckled Defects Shapes

In the nematic phase, the rod orientation varies slowly throughout most of the mate-

rial. However, at particular defect points, the orientation may be undened, because

rods at neighboring locations point in all directions. The topological charge of a defect

is the number of times that the orientation rotates through 2 as the coordinate angle

 sweeps through 2. Dierent patterns appear for integer, half integer, and positive

and negative charges. The defect depicted in Fig. 2-1 is radially symmetric, and is

rotated by a uniform angle  with respect to the radial vectors.

ξ

ξ

θ

Figure 2-1: Rod orientations around a general uniform +1 topological defect.  = 0
corresponds to an aster, and  = ⇑2 to a vortex.

In the limit of isotropic rigidity, +1 defects with any radially uniform  have

the same energy. The symmetry is removed by the anisotropic moduli in a nematic

membrane, which distinguish asters ( = 0) and vortices ( = ⇑2). The energy of such

a planar defect as a function of  is

 =  1 cos
2 +3 sin

2 ln 

+, (2.3)

where  is the size of the membrane,  is a short distance cuto, and  is a core

energy reecting the defect’s microscopic situation inside of the core radius .

For 3 >1, asters have lower energy than vortices and are stable against in-

plane deformations. If 1 > 2⊥, the defect energy is further reduced by buckling out

of atness to align the laments in the third dimension. (See Appendix 2.6 for linear

stability analysis.) Buckling comes at the expense of creating more area, so surface
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tension sets the size of the deformation. Analogously, when 1 >3 > 2⋃⋃, vortices
are stable and can reduce their core energy by tilting the surface around the defect.

To study this buckling, we minimize the nematic membrane energy, Eq. (2.1),

around xed aster and vortex arrangements. For a radially symmetric surface with

no overhangs, we use the polar Monge tangent representation with embedding vector
# »

, . The height above the Monge plane is found by integrating the tangent angle

 from a base value, so that

# »

,  =

 cos
 sin
 

tan′′


. (2.4)

This yields a metric with no derivatives and thus lower order shape equations. To

handle shapes with overhangs, such as prolate vesicles [140], one can parameterize

the shape by contour length instead of Monge radius.

Figure 2-2: An illustration of the coordinate system.

The unit vector constraint is enforced by dening the angle  such that

  = 
cos cos

sin⇑
 . (2.5)
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With this parameterization, the nematic membrane free energy becomes

 = 2 






cos +
⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪

⋃⋃sin2 tan2 + 2 cos2′2+
⊥cos2 tan2 + 2 sin2′2+
̄× sin2 cos2tan − ′2+
1cos −  sin′2 +3sin +  cos′2

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮

cos
2


,

(2.6)

where ̄× = × − ⋃⋃ − ⊥. We could have written the energy directly in terms of ̄× by

switching from a  2 to a  parameterization as permitted by the unit-

vector constraint. Fixed aster or vortex congurations carry no energy cost from the

term proportional to ̄×. Setting to zero the functional derivative of  with

respect to  yields a shape equation, which for an aster ( = 0) becomes

0 =  sin
cos2 + ⋃⋃

2
−2 cos′ +  sin′2 − 2 cos′′ + ⊥

2
1 + 1

cos2 sin


− 1

2

sin


.

(2.7)

For xed vortices, the same shape equation holds after switching the coecients

⊥ ↔ ⋃⋃ and 1 ↔3.

For any membrane (hexatic or nematic) without stiness ( = 0), defects have a

simple universal shape resulting from the competition between the in-plane misalign-

ment cost and surface tension. The misaligned rods near the defect core can align by

bending out of the plane into the third dimension, at the cost of increasing surface

area. The optimum tangent angle is given by the simple formula

cos =
}

22

1

= 
0

, (2.8)

where 0 =⌈
1⇑2 is the distance outside of which surface tension dominates and

attens the surface. Integrating the angle gives the universal shape

ℎ = 0
sech−1  

0
 −

}
1 −  

0
2 , (2.9)

60



which approaches vertical at  = 0 where the height is logarithmically divergent. This

may be regulated by a cut-o, such as the membrane thickness. As a reference, at

half the rim radius: ℎ0⇑2 ≈ 0.45 0. In a hexatic membrane 1 =3, so asters

and vortices have the same radius. In a nematic membrane, asters and vortices have

dierent radii; the lower energy defect also has smaller size.

This shape, Eq. (2.9), is known as a parabolic pseudosphere or antisphere, because

it has constant negative Gaussian curvature equal to −1⇑20 [136, 230]. It is also known
as a tractrisoid, because it is half the surface of revolution generated by revolving a

tractrix about its asymptote [187]. The tractrix is the path of an object being dragged

by a string of constant length along a straight line that does not intersect the object.

Leibniz likened this problem to a dog owner dragging his hound by its leash and

named the solution hundskurve. The hundskurve has been studied by Huygens and

others [84]. This construction makes it clear that the distance to the axis along the

line tangent to any point on the surface is constant, i.e. the leash length is 0. These

shapes of constant negative curvature are also known in quantum gravity as solutions

to classical Liouville theory [133].

This simple shape has singularities at the origin and at the rim  = 0, which are

modied by the membrane bending rigidities, ⊥ and ⋃⋃, respectively. Setting ⋃⋃ = 0

removes all derivatives of  from the shape equation, so a simple rearrangement

provides the solution,

cos =
}

22 + ⊥
1 − ⊥ =

⟨⧸⧸⟩ 
1
2 + 
1 +  , (2.10)

where 1 =⌈1 − 2⊥⇑2 is the new rim radius, and  = ⊥⇑1 − 2⊥ is related to

the now nite slope at the tip. For suciently large 1, the surface puckers out of
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the plane for  ≜ 1, with a prole

ℎ =  1


tan

⎨⎝⎝⎝⎝⎪± cos
−1 

}
22 + ⊥
1 − ⊥


⎬⎠⎠⎠⎠⎮ (2.11)

= ±1 1


1

}
1 − 2
 + 2  . (2.12)

For 1 ≜ 2⊥ or for 1 ≜ , this solution is not real, so  = 0 becomes the only solution

to the shape equation.

Equation (2.12) is a complete elliptic integral of the second kind [222]. We change

variables →⌋
 sinh to obtain

ℎ = ±1⌋1 + 
}

1 −  cosh2
1 +   , (2.13)

where the integration ranges from sinh−1⇑1⌋ to sinh−11⇑⌋. In the study of

surfaces with constant Gaussian curvature, Eq. (2.13) is a familiar expression for an

elliptic pseudosphere [136]. Figure 2-3 shows an example elliptic pseudosphere.

The bending rigidity cuts o the logarithmically diverging tip near the core.

Near the origin, the elliptic pseudosphere is approximately cone-shaped with slope⌈
1⇑ =⌈1 − 2⊥⇑⊥,

ℎ→ ± ⌋

. (2.14)

If the 2 term in Eq. (2.10) were not present, the shape would be a cone. Unlike the

cone, pseudospheres have constant Gaussian curvature,

1

12

= det 
  = det ̂ ⋅ ∇

#»
 

= − 1

211 +  , (2.15)

where ̂ is the unit vector proportional to #»
 1 × #»

 2 and we have carried through the
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computation after inserting the coordinate tangent vectors for the elliptic pseudoshere,

#»
 1 = cos, sin,

⟨⧸⧸⧸⟩1 −  
1
2

 +  
1
2


#»
 2 = − sin,  cos,0 . (2.16)

Figure 2-3: An example of buckled shape for 1 = 1 and  = 1.

Even with nite ⊥ the above shape retains a cusp-like singularity at the origin.

We may well question how the singularity is modied by inclusion of cut-os and

higher order terms. A simple short-distance cut-o, , can be introduced as the

radius of a hemispherical or similar cap over the singular point at the origin. The

curvature energy density ∼ 1⇑2 integrated over the cap’s area ∼ 2 leads to a nite

energy. We can then regard this as a benign singularity that adds a constant to the

defect core energy  in Eq. (2.3).

Substituting Eq. (2.10) into the full shape equation, Eq. (2.7), leaves a term

proportional to both ⋃⋃ and to , so the elliptic pseudosphere is expected to remain

valid as  → 0 near the core. The situation at the rim is very dierent: Designating the

distance from 1 by  = 1 − ⇑1, one sees that ∝⌋
 as → 0+ and is zero immediately

outside this radius. The abrupt rim would cause the energy proportional to ⋃⋃ to
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diverge, so when ⋃⋃ > 0, the defect shape must be dierent. Since  tends to zero

away from the core, we linearize the shape equation for small  and ′ to

0 ≈ 1 − 2⊥1

− 2 + 2⋃⋃′ + ′′ . (2.17)

After changing variables to  and redening →   to be a function of , the

linearized shape equation is

0 =  − 2 − 2⋃⋃ − 1
1 − 2⊥ ′ +  − 1′′ . (2.18)

Note that the approximation is made for small  and ′, and  need not be small. For

real-valued , this equation is solved by modied Bessel functions of the second

kind with imaginary order. The order and argument both diverge with vanishing ⋃⋃,
as

 ∝  ,  
1
 , (2.19)

with

 =
⟨⧸⧸⟩1 − 2⊥

2⋃⋃ . (2.20)

This solution decays exponentially and has no zeros for 1 ≤ . Since our parameter-

ization does not handle overhanging surfaces,  is limited to the range −⇑2,⇑2.
Thus, for a given value of , the amplitude must be such that the solution stays in

this range. For  of order one and larger, an amplitude of unity yields a  that is

suciently small for 1 ≤  that the linearized shape equation is valid. It approaches

zero asymptotically, so the rim radius at which  = 0 shifts to innity. The asymptotic

form of Eq. (2.19) is [87, 95]

 ∼ −
⌉

3
2
 
1⌈


1


, for , —→∞ , (2.21)
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which shows that bending rigidity introduces a new length scale

2 ≡
}

2

3

1


=
}

2⋃⋃
3

. (2.22)
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Figure 2-4: The tangent angle (not the height) as a function of radius in units of 1.
Solid curve: The Bessel function solution for {} for  = 1. Dashed curve:

cos−1 ⌉{⇑1}2 + ⇑{1 + } for  = 2.5 chosen to suggest matching in the crossover.

As shown in Fig. 2-4, this solution for  oscillates sharply near the core, which

invalidates the small ′ approximation. In this region, nonlinearities take over and

the shape crosses over to the elliptic pseudosphere. As ⋃⋃ approaches zero, the Bessel
function becomes at for 1 ≜  and oscillates rapidly inside this radius, thus restoring

the abrupt rim.

2.4 Conclusions and Outlook

We predict that topological defects can buckle nematic membranes into elliptic pseu-

dospheres with exponentially decaying rims. Let us explore this possibility in the case

of a freely suspended thin lm of smectic-C liquid crystal. The observation that these

lms maintain orientational order at room temperature suggests that1 (and3) are

at least of the order of room ≈ 4 × 10−14erg. If we assume a surface tension typical of

bulk liquid crystal interfaces,  ∼ 10 ergs⇑cm2, and ignore bending rigidities ( = 0),

then from  ∼ room, we would estimate a rim radius 0 =⌈
⇑2 ≈ 1⇑2 nm, which

is smaller than a typical lm thickness and beyond the limits of this coarse grained

model. To create larger (observable) defects requires either smaller surface tension or

65



larger in-plane stiness than this initial estimate. Some physical systems may allow

this.

For example, studies of thin lms of liquid crystal often observe a small surface

tension, because the chemical potential for particles in the lm is similar to the

chemical potential in the meniscus surrounding the lm [105]. This reservoir on the

edge of the suspended lm allows the lm to increase its area at a low energetic cost.

One might control the size of buckled defects by manipulating the surface tension via

this reservoir.

In addition to having a surface tension smaller than our initial estimate, some

materials have observed values of  one or two orders of magnitude larger than

room temperature. For example, scattering studies by Spector et al on thin lms

of smectic-C 8OSI found large values of  and surface tension made small by

the meniscus [146]. This particular study used a smectic-C tilt angle of 32.2○ and

found 1⇑3 = 4.6±0.4, ⋃⋃⇑3 = 3.4±0.3, ×⇑⋃⋃ = 5.5±3.1, ⊥⇑⋃⋃ = 75±24,
and ⋃⋃ ≈ 10−12ergs. Unfortunately, the large value of ⋃⋃⇑3 prevents buckling. Since

1⇑3 > 1, at vortices should be stable relative to asters. For other tilt angles or

other materials, one might hope to nd lower values of ⋃⋃⇑3 that allow buckling.

For suciently oppy lms, buckled defects could be observable via specular re-

ection or by interferometry techniques used to measure the atness of mirrors. Ad-

ditionally, islands of smectic-C material may provide means of manipulating single

defects with laser tweezers, although coupling between the island’s multiple smectic

layers may introduce additional aects [199].

While smectic-C 8OSI has suciently small surface tension and large in-plane

stiness, its bending rigidity suppresses buckling. That such shapes have not been

observed so far in other materials may well be an indication of the importance of

bending rigidity. Since typical lipid membranes have  ∼ 5room, this is a severe

constraint. We note, however, that for sti rods (nanotubes, cytoskeletal laments)

embedded in membranes, the rigidities, ∥ and ⊥, and corresponding stinesses, 1

and 3, may well dier by orders of magnitude. The challenge remains to obtain

estimates of these parameters for specic microscopic models, and come up with an
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appropriate system for the study of buckled defects. Observations of these shapes in

nematic membranes may provide estimates of the ratios between ⊥, ⋃⋃, 1, 3, and

. Measurements of × are possible via other shapes as described in Appendix 2.5.

If one could control the anisotropic bending rigidities individually, one might be

able to sweep a nematic membrane through a sequence of regimes in which dierent

types of defects are stable. For example, for 3 ≜1, if one could hold ⋃⋃ xed while

adjusting ⊥ one might observe buckled vortices when 2⊥ ≜1 −3 + 2⋃⋃, and buck-

led asters when 1 −3 + 2⋃⋃ ≜ 2⊥ ≜1, and buckled vortices again when 1 ≜ 2⊥.
By increasing ⋃⋃ while keeping ⊥ in any of these regimes, one would atten the pre-

ferred shape of vortices. Thus, it is possible for vortices and asters to prefer buckled

or at shapes independently.

In focusing on shapes of minimal energy, we have neglected thermal uctuations.

At long distances, thermal uctuations reduce the dierences between aster and vor-

tex defects in weakly anisotropic membranes [152]. In future work, we would like

to explore if this is still the case in strongly anisotropic membranes, or if thermal

uctuations can enhance the anisotropy.

Unlike bulk nematics, nematic sheets often appear with naturally periodic bound-

aries such as closed vesicles. By the Poincare-Brouwer theorem [180], a genus zero

nematic vesicle must have topological charge of +2. In fact, defects can burst the

vesicle [139, 156, 159]. This resembles Bryopsis sprouting branches out of defects in

its tethered nematic cell wall – a topic to which we hope to return in the future.

2.5 Appendix: Nematic Membranes in Fixed Ge-

ometries

While × did not contribute to the shape of +1 defects, it aects other geometries.

Following de Gennes’ molecular eld argument [143], we impose the unit vector con-

straint via a Lagrange multiplier  and seek energy minimizing lament congura-

tions in xed geometries. In a two-bein basis aligned with the principle directions,
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the curvature tensor is diagonal and   =  , where  is a transformation to local

coordinates in which  →  at each point [188]. In the principle two-bein,

 = 
cos
sin

 . (2.23)

In the following, there is no summation over  or ̄ =  + 1 mod 2. The functional
derivative of Eq. (2.1) in the principle two-bein reads

 ≡ 


= −1,2
= ⋃⋃2

 + ⊥2
̄ + ̄× 2

̄ 1 −22
−1 ∇ −3 ∇

= ⋃⋃2
 + ⊥2

̄ + ̄× 2
̄ 1 −22

−1  −⊥
−3  − , (2.24)

where  are the principle curvatures and  = ̂1 ⋅ ̂2 is the spin connection. The

three-vectors ̂ =  #»
  form an orthonormal basis in the principle two-bein. To setup

the molecular eld equation, one must carry out the derivatives and pullout an overall

factor of  to obtain an expression for  that is a function of index . One obtains

an equation for  by requiring  to be a scalar, i.e., to have the same value for both

 = 1 and  = 2. Solutions to this equation for  extremize the energy.

Considering rst 1 = 0 =3, the equation yields a simple solution for ,

cos2 = 1

2
1 + ⋃⋃ − ⊥

× − ⋃⋃ − ⊥ 1 +2

1 −2

 . (2.25)

This is only valid with both components of  are non-zero, so  = 0 and  = ⇑2 must

also be considered in the list of possible  values. One must check which candidate

value for  minimizes the energy for particular values of  and the principle cur-

vatures. In the following, we list a few special cases. When  ≡ ⋃⋃ = ⊥ ≠ ×⇑2 and
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1 ≠ 2, one has that  = ⇑4 minimizes the energy if



× > −1 −22
412

. (2.26)

Otherwise, the laments align with the least curved direction.

When × = ⋃⋃ + ⊥, so that ̄× = 0, the orientation can be found by minimizing the

energy with respect to  directly, instead of the molecular eld equation. The result

for 1 = 0 =3 and 1 ≜ 2 is shown in Table 2.1.

Angle Stability Criterion
 = 0 1⋃⋃ > 2⊥
 = ⇑2 1⊥ > 2⋃⋃

cos2 = 1⊥−2⋃⋃1−2}⊥+⋃⋃}
1⊥ ≜ 2⋃⋃,
1⋃⋃ ≜ 2⊥

Table 2.1: Stability criteria when ̄× = 0, and 1 = 0 = 3 and 1 ≜ 2.

On a developable surface, i.e. 1 = 0 and 2 ≠ 0, when × ≥ 2min⋃⋃,⊥ the

stable orientation is aligned with the uncurved direction. For smaller values of ×, a
special intermediate angle is the global minimum,

cos2 = 2⋃⋃ − ×
2 ⋃⋃ + ⊥ − × . (2.27)

Note that this only occurs when both parallel and perpendicular bending are more

costly than ×⇑2. This might result from rods that weaken the sheet or have a specic

texture on the rod’s surface.

For a developable surface, the spin connection is zero, so the covariant deriva-

tives become regular partial derivatives. Thus, on a cylinder, far from boundaries, a

constant orientation solves the full molecular eld equation with the gradient terms

included. This could allow experimental measurement of 2⋃⋃ − ×⇑⋃⋃ + ⊥ − ×.
In more general geometries, in-plane splay and bend compete with out-of-plane

bending in a non-linear PDE, which, in principle, can be numerically integrated to

t model parameters to vectorized images of a real nematic membrane. Computing

model parameters from such images in the presence of topological defects requires
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care.

2.6 Appendix: Stability of Buckled Defect Shapes

As discussed in Appendix 2.5, the relative strength of × plays an important role

in the stability of orientation patterns on curved shapes. Substituting the principle

curvatures for the elliptic pseudosphere into Eq. (2.25) yields an equation for  that

is not constant,

cos2 = 2⊥  
1
2 − ×

2⊥ − × , (2.28)

and thus not the perfect aster (or vortex) that we assumed when setting up the shape

equation, Eq. (2.7). Since Eq. (2.25) was derived assuming 1 = 0 =3, the question

remains whether the buckled defect is stable to perturbations away from a perfect

aster (or vortex).

To check this, we construct linearized evolution equations for small perturbations,






∆

Ξ

 ∝ − 

∆,Ξ ≈ 
∆

Ξ

 , (2.29)

where ∆ represents deviations of the surface away from a pseudosphere, and Ξ repre-

sents deviations away from an aster ( = 0). Perturbations of the height eld couple

with perturbations of the angle eld, so all four components of the two-by-two matrix

of dierential operators,  , are non-zero. The perturbations are functions of both

radius and angle, and are generally not radially symmetric. To solve this, we write

the perturbations in a Fourier basis,


∆, , 
Ξ, , 

 = ∑



∆
Ξ

  , (2.30)

where each two-vector ∆,Ξ is independent. Substituting this solution into the

evolution equation gives a separate set of coupled equations for each -value.
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Neglecting bending rigidity, and choosing units of energy such that  = 1 and units

of length such that 1 = 2, we have for each value of ,

 } =
⎨⎝⎝⎝⎝⎝⎪

−3
2+21−2}2−42}+1−2}2 }}

1−2 2−3}−2−2−3}2}}⌋
1−2

3+1−2}2−2−3}2}}
1−2}3⇑2 −22

4 +32

⎬⎠⎠⎠⎠⎠⎮ . (2.31)

For  = 0, the equations decouple. Since these are perturbations, we must nd

real-valued solutions that vanish at the boundaries  = 0 and  = 1. The equation for

Ξ has such a solution,

Ξ∝ sin

}−0
3

 , (2.32)

if 0 = −322 for integer . This is always negative. The equation for ∆ has the

real-valued solution

∆ ∝ 2 21, + 3

2
; 2 + 3

2
; 2

+2 21,  + 3

2
; 2 + 3

2
; 2 , (2.33)

where 21 is the Gauss hypergeometric function and  = −1 −⌋
1 + 20⇑4 and  = −1 +⌋

1 + 20⇑4.
Since the third argument exactly equals the sum of the rst two, 0 ≜  ≜ 1 is the conver-

gent domain for these functions. An ad hoc numerical study indicates that 0 → −∞
might extend this domain and allow the limit ∆1→ 0. These functions also diverge

at  = 0, and again a large negative 0 appears to mediate this because the function

oscillates rapidly and might average to zero as  → 0. We lack an analytic treatment

of this asymptotic regime, so we turn to a numerical method below.

Considering 0 ≜  and substituting  = 2, one sees that Eq. (2.31) consists of

second-order ODEs with non-essential singularities at two points (the boundaries),

so the equations can be transformed into hypergeometric dierential equations [229].

By combining linearly independent solutions, one might construct real solutions that

meet the boundary conditions for all values of . After satisfying these constraints,

one would obtain expressions for , which, when negative, indicate stable regions of
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parameter space. This approach is complicated even when rigidity is neglected.

Instead of taking this approach, we have checked stability numerically by dis-

cretizing the elds. We represent the deviations of the height and angle elds by a

large column vector of eld values at discrete steps in radius and polar angle. By

representing the derivative operators as banded square matrices acting on this large

vector, one obtains a matrix of numbers for any given set of parameter values. The

largest non-zero eigenvalue of this matrix determines the stability of the shape. If

the largest non-zero eigenvalue is negative, then that set of parameters suppresses

perturbations and the shape remains stable.

We have carried out such a numerical procedure. Generally, the buckled aster is

stable for 2⊥ ≜1 ≜3 and any 0 ≜ ×. The analogous statement holds for buckled

vortices.
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Chapter 3

Turing Patterns on Curved Interfaces

Diusion-driven patterns appear on curved surfaces in many settings, initiated

by unstable modes of an underlying Laplacian operator. On a at surface or

perfect sphere, the patterns are degenerate, reecting translational/rotational

symmetry. Deformations, e.g. by a bulge or indentation, break symmetry and

can pin a pattern. We adapt methods of conformal mapping and perturbation

theory to examine how curvature inhomogeneities select and pin patterns, and

conrm the results numerically. The theory provides an analogy to quantum

mechanics in a geometry-dependent potential and yields intuitive implications

for cell membranes, tissues, thin lms, and noise-induced quasipatterns.

3.1 Motivation

In Chapter 2, we studied orientational order on curved interfaces. As discussed in

Chapter 1, such order arises in biological systems on many length scales, including

rod-shaped molecules oating in cell membranes. These systems also exhibit pattern

formation, which can often be modeled using Turing or Turing-like reaction-diusion

processes. For example, in bacteria, the MinCDE system of proteins acts as a mea-

suring stick for detecting a cell’s size and locating its midplane where the division

ring forms during mitosis [245]. MinCDE also forms patterns in vitro, see Figure 3-

1. When such patterns occur on cell membranes or multi-cellular tissues, how does
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curvature inuence the patterning?

Many microscopic factors could be at play in real patterns, including the three-

dimensional orientation of particles in the surface. While one would like a unied

model that includes orientational order and chemical patterning, such a model will be

complicated. As a step toward this larger goal, we ask how pattern formation proceeds

on a curved surface. As discussed in Chapter 1, irregularly shaped transmembrane

proteins can anchor machinery to curved regions of membranes. For example, the

banana-shaped BAR domain has a radius of curvature of 11nm and plays many

roles in cellular processes, including generating membrane tubules [200]. BAR can

also sense curvature and cooperatively enhance processes in curved regions [206].

Endocytosis depends on a concert of molecular machines including clathrin triskilions

and dynamin that create “pits” in the cell membrane and then pull pits into the cell

to form vesicles of 60-140nm in diameter.

Similarly, actin has been observed to localize to curved regions in cells, which

is relevant to lamellipodia and cell motility [268, 303]. However, it is still an open

question as to what mechanisms select a the locations for these various patterns on the

membrane [304]. While the Bacillus Subtilis cell in Figure 1-4 appears approximately

spherical, most cells not perfect spheres. When rotational symmetry is broken by a

deformation, how does this inuence patterning?

In the following, I will show that membrane-bound diusion alone can sense re-

gions of curvature and localize patterns without help from irregularly shaped molecules.
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Figure 3-1: Spiral waves formed by Min proteins, showing only MinE. (Both MinD and
MinE are 1 μM concentration.) Reprinted with permission from AAAS, “Spatial
Regulators for Bacterial Cell Division Self-Organize into Surface Waves in Vitro” by Loose
et al. in Science 2008.[237]

When beginning this work to study localization phenomena, I built simulations

in COMSOL.1 Based on the considerations outlined above, I had expected that

curvature-sensing particles would be an essential ingredient. I had expected that

diusion would be mostly a bystander. When one looks at Turing’s basic reaction-

diusion system described in Eqn. 1.7, more ink is dedicated to reaction rates than

to the Laplacian.

Let us represent protein concentration by a eld Φ, , . As a heuristic equation
of motion, one might expect the proteins to seek regions where the membrane’s radii

of curvature  are close to the protein’s preferred radius of 0:

Φ


= ′  1

1

+ 1

2

− Φ

0

 +∆Φ . (3.1)

A diusion term is “tacked on” at the end for stability.

1In 2008-10, the global nancial crisis pulled me out of MIT and back into my company
MetaCarta, which landed at Nokia in April of 2010 just three weeks after my wife gave birth to
our rst child. Later that year, I dove back into physics with the COMSOL simulations that even-
tually led to the paper in the next section.
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Given the success of minimum energy shapes in the study of vesicle, it is natural to

look at extending the Canham-Helfrich energy of Eqn. 1.6 with a location-dependent

spontaneous curvature. That is, Helfrich’s spontaneous curvature constant 0 = 1⇑0

is now multiplied by the chemical concentration Φ that varies in space and time:

 = ∮

  + 

2


 −0Φ2 + ∇Φ ∇Φ . (3.2)

Where again, we add diusion ∇Φ2 for stability. Minimizing such an energy yields

the same Langevin equation as Eqn. 3.1,

Φ


∝ −

Φ
= 0 

 −0Φ +∆Φ . (3.3)

However, I quickly found that pattern localization occurred with 0 = 0 in simple

simulations. Even with just one compound diusing on a simulated membrane in a

dierential equation solver like COMSOL, concentrations in regions of high curvature

and low curvature equilibrate dierently. Inspired by this observation, I implemented

two-component reaction diusion systems, like the Thomas-Murray model, and found

that pattern localization occurred generically without inserting a curvature sensing

term like 0.

Therefore, curvature sensing arises naturally in the Laplacian itself. The paper in

the next section presented our analytical explanation of this phenomenon.2

As the simplest scalar dierential operator, the Laplacian ∇2 appears in many

models of natural phenomena. Laplace found its eigenfunctions in rectangular coor-

dinates in 1787 [18], and Fick used it to describe diusion in 1855 [35]. Laplace’s

familiar −2 eigenvalues and 
#»
 ⋅ #» eigenfunctions appear throughout scientic and

engineering literature. The cylinder and sphere also have simple eigenvalues for the

Laplacian, −2 − 2 and − + 1, respectively. The Laplacian is well-dened on less

simple shapes, however its eigenvalues and eigenfunctions are generally not known

2I presented key parts this work at a Gordon Conference and the APS March Meeting in 2011.
However, the launch of my second text-mining startup Dieo delayed expanding the results and
publication for several years. I am very grateful to my co-authors. European Physics Letters
accepted the paper in 2019 just a few weeks before Salesforce completed the acquisition of Dieo.
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in closed form. By considering surfaces that are small deviations away from simple

geometries for which closed forms exist, we calculate corrections to the eigenvalues

and eigenfunctions, and thus also to diusion.

Ripples imposed on a cylinder or sphere cause diusion to speed up in regions of

negative Gaussian curvature, and to slow down where curvature is positive [244]. This

geometric principle foreshadows our results and is useful guide, so let me emphasize

the connection to Gaussian curvature. The celebrated “Einstein relation” was derived

independently by three people around 1905 [57–59]:

 = 

6a

where  is the ideal gas constant,  is temperature,  is the dynamic viscosity

of the uid,  is the radius of the particle moving through the uid, and a is

Avogadro’s number. M.J. Perrin used this expression for the rate of diusion to

measure Avogadro’s number as 7.05 × 1023 and publish his famous book “Brownian

Movement and Molecular Reality”[60], for which he won the Nobel Prize in 1926. The

granules in Perrin’s experiment moved in at Euclidean space, so  was the same

at each point in his chamber. However, when the experiment is lifted onto a curved

surface the mean-square-displacement (MSD) of a diusing particle is changed, such

that the short-time mean-squared-displacement is larger (diusion faster) in regions

of negative Gaussian curvature, and smaller (diusion slower) in regions of positive

Gaussian curvature. See Figure 3-2
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Figure 3-2: This torus illustrates dierent values of Gaussian curvature. The red outer
region has positive Gaussian curvature where the MSD of a diusing particle is shorter, so
diusion is slower. The interior neck region has negative Gaussian curvature and longer
MSD, so faster diusion. See Ref. [244] for further discussion.

Remarkably, this change to the MSD is an intrinsic property of the surface. This is

not obvious from the picture. It requires a careful calculation to nd that the leading

order correction from surface curvature to the short-time mean-square-displacement

of a diusing particle is proportional to the Gaussian curvature [244]:

∐2

= 4 − 4

3

1

12

2 + ...

In the following, we will expand this idea in three ways. First, we show how this

modies the eigenfunctions and eigenvalues of the Laplacian on various geometries.

Second, our procedure for computing these modications provides a general tool set

for understanding diusion on curved surfaces. Third, we show how this location-

dependent diusion modies reaction diusion systems such that deformations can
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anchor patterns. Our approach connects these results to diusion and biological

pattern formation.

Just as we’ve discussed in previous chapters, we can locate the surface using an

embedding vector,

# »

1,2 =

1,2
1,2
1,2


∈ R3 . (3.4)

I emphasize this structure of the embedding vector, because in this chapter, we will

construct a special parameterization  called “conformal” coordinates. To motivate

this, let me briey outline the steps that I initially took that revealed the need for

this.

Our agenda is to start with a surface shape that admits closed form eigenfunctions

of the Laplacian, such as a cylinder, and then perturb the geometry into a slightly

dierent shape whose eigenvalues and eigenfunctions we approximate using those of

the unperturbed shape. When rst writing these expressions, one naturally writes 

as a selection of the lab frame coordinates. For example, for a nearly at patch, we

can follow Monge and parameterize the surface by , . For a cylinder, cylindrical

coordinates ,  are natural, or for a sphere, , . However, in this introduction

section, we will briey illustrate that the conformal coordinates are easier to use than

the lab frame coordinates.

Just as in quantum mechanics, we can use the eigenfunctions of any normal op-

erator as a basis for the function space.3 As is commonly done, the Laplacian’s

eigenfunctions are a convenient choice. Since the Laplacian is manifestly self-adjoint,

it is certainly normal, even if we cannot write its eigenfunctions in closed form. Let

us denote these eigenfunctions by Φ1,2 and expand them in terms of the unper-

turbed eigenfunctions, 0} .

From the embedding vector, we compute tangent vectors and then a metric in-

3A normal operator commutes with its adjoint, i.e.  † = †. The adjoint operator is its
transpose conjugate, which in matrix notation is †

 = ∗
 . Self-adjoint means that  = †.

79



duced by our choice of parameters. Denote the metric . To use perturbation

theory, we require that this new metric is close to the unperturbed metric and can be

written as a expansion in some small parameter :

 =  + 1}
 + 22}

 + ...

Any other quantity of interest can also be written as an analogous expansion.

Denote the Laplacian on the perturbed shape as ∆. This is a more nuanced

object. We want to write it as ∆ plus corrections. We can organize those corrections

as follows:

∆ = 1⌋
 aΩ⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊)
=⌋



⌋


G⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(⌋
  −   = 1

aΩ
∆ −∇

 . (3.5)

We have dened two new quantities:   and aΩ.

aΩ is the ratio of area elements. The area element d = ⌋
d1 d2, so when

we use the same parameters for both the undeformed and deformed shapes, then aΩ

equals the ratio of the square roots of the determinants of the metrics:

aΩ ≡ d

d = ⌋
⌋


This ratio aΩ is useful analytically because the surface parameters d are the same

in the numerator and denominator, so they cancel. This will not be the case for

conformal scale factor cΩ introduced below.

The second object,  , is the “one-tensor inner product correction” that appears

in formulae like this:


 = 

G = 
 −



Note that

G is the matrix inverse of . We must use such a new symbol to denote
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the inverse metric of the deformed manifold when writing it in terms of tensors dened

on the undeformed manifold.

We can directly apply Rayleigh-Schrödinger perturbation theory to the Laplacian

in Eqn. 3.5 to obtain corrections to the eigenfunctions and eigenvalues. However,

as explained in Appendix C, the rst-order corrections are typically zero in the lab

frame coordinates, so one must go to second-order, which is more complicated.

Conformal coordinates allows rst-order perturbation theory to extract the key

results. This is the benet of using the conformal surface coordinate, which we denote

 on the cylinder and Θ on the sphere. We construct this new surface parameter

from one of the lab frame coordinate. For example, in cylindrical coordinates, our

conformal coordinate  ≈  plus small corrections. The benet of constructing this

new surface parameter is that it provides a at metric with a location-dependent

factor that rescales all directions equally at each point on the shape. Denoting this

location-dependent scale factor by cΩ, the Laplacian on the deformed shape becomes:

∆ = 1
cΩ2

∆0 (3.6)

where ∆0 is the unperturbed Laplacian in the new surface parameters, so we call it

“conformally at.” In these coordinates,   = 0. This is the source of the power of our

conformal approach. I’m indebted to Jemal Guven for teaching me this approach. In

this chapter, any reference to Ω ≡ cΩ. Where necessary, we use the pre-superscript “c”

and “a” to distinguish between the conformal scale factor and the related but dierent

ratio of area elements in the lab frame coordinates. Further details in Appendix C.

The remainder of this chapter is organized as follows. Section 3.2 is the paper

that we published in European Physics Letters in 2019 [308]. Section 3.3 expands the

development of the conformal mapping approach that eciently extracts rst-order

corrections to diusion from curved shapes. I comment on future work in Chapter 4.
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3.2 Pinning of Diusional Patterns by Non-Uniform

Curvature

In 1952, Turing coined the term “morphogen” in a seminal paper that showed how

combining diusion with generalized reactions can create spatial and temporal pat-

terns even though separately each leads to uniform, static concentrations [78]. Such

reaction-diusion (RD) patterns are but one example of diusion-driven instabilities

that have since been studied on scales ranging from tens of nanometers on neu-

rons [253], microns in cells [246] and active uids [251, 257, 264, 273, 303, 306],

millimeters in hydrodynamics [243], centimeters in zoology [116], to meters in ecol-

ogy [252]. Diusion-driven patterns are known to determine morphology [248] in

model organisms like zebrash [241, 278] and complex organs like the eye [265]. Re-

cent theoretical progress in patterning [293, 294] encourages further study.

Substrate curvature plays a role in pattern formation in many systems, including

cell membranes [263] and thin lms [250]. The importance of surface curvature on

collective behavior has recently been explored in liquid crystals [295], ocking [301],

and wave propagation [305]. Closer to our work, the geometric dependence of pat-

tern formation has recently been studied in various models of protein [290, 291] and

molecular bonding [302].

Recent studies of Turing patterns have explored the eects of curvature on highly

symmetric shapes such as spheres, cylinders, toroids [287, 307], and ellipsoids [299]

where the Laplacian is known in closed form.[18] Inhomogeneities in curvature, such

as protrusions or cavities, reduce such symmetries and can pin or modify the patterns.

To understand how nonuniform curvature can entrain and modify patterns, we study

perturbations to the Laplacian, and its eigenmodes. To our knowledge, the intimate

link between pinning of patterns and the spectrum of the Laplacian has not been

pursued.

We follow a two prong strategy. First, we identify the onset of instabilities, by

linearizing evolution equations expressed in terms of the appropriate ‘modes’, e.g.,

Fourier, cylindrical, or spherical harmonics. Modes with the largest positive real part
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grow fastest and are harbingers of the nal patterns molded by nonlinearities. The

modes are eigenfunctions of the diusion (Laplacian) operator on the relevant man-

ifold. Symmetries of the manifold, reected in degeneracies of the eigenfunctions,

must be broken in the nal patterns. Previous work on the Laplacian on Rieman-

nian manifolds focused on its determinant [86, 148, 163, 232] and short-time behavior

appropriate to eld theory [126, 179, 244]. We focus instead on how non-uniform cur-

vature breaks degeneracies, pinning eigenfunctions to inhomogeneities. To do this, we

utilize conformal mappings and perturbation theory. There is no guarantee, however,

that patterns resulting from non-linear evolution are similarly entrained, so the second

step in our study explores patterns with simulations. We implemented the Thomas-

Murray RD equations [116] on COMSOL Multiphysics® [285]. We conclude with

suggestions for experiments.

We rst consider a cylinder with axially symmetric deformations described in

cylindrical polar coordinates as  = . The surface line element is

d2 = 1 +2
d2 +2 d2 , (3.7)

where  denotes the derivative with respect to . The Laplacian of a scalar  is

∆ = 1⌋

 ⌋ , (3.8)

where  is the metric of the underlying geometry;  is the determinant of the metric.

Conformal mapping simplies analysis through mapping to a at geometry. We

introduce a conformal axial coordinate , such that the line element acquires the

conformally at form

d2 = Ω2 d2 +2
0 d

2 , (3.9)

where 0 is the asymptotic radius and Ω is the conformal factor. In the conformal

coordinates, ⌋
 = Ω20, and thus the Laplacian on the deformed geometry takes

the simple form ∆ = Ω−2∆0, where ∆0 is the Laplacian in the conformally at

coordinates. Since the behavior of ∆0 is well understood, and Ω is determined by the
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equality of Eqs. 3.7 and 3.9, this conformal mapping provides a tractable method of

understanding ∆.

Solutions for  and Ω for arbitrary  are in the supplement. To develop

perturbation theory, we set  = 01+ ℎ, in which case  ≈  and Ω ≈ 1+ 2ℎ
to lowest order, such that the eigenfunctions  of ∆, with eigenvalues , satisfy

−∆0 + 2ℎ = − . (3.10)

In analogy with quantum mechanics, one can interpret the deformation as giving rise

to a potential in the conformal coordinates, whose magnitude is dependent on the

eigenvalue . (This diers from da Costa’s geometric potential, which comes from

conning a particle to a surface [115].) For physical phenomena described by the

Laplacian, this mapping can be interpreted as the replacement of the diusion oper-

ator −∆ on a deformed geometry, with a spatially-dependent diusion coecient

̃ ≡ ⇑Ω2 in the conformally-related homogeneous geometry. This provides an

intuitive picture of how diusion is modied by curvature.

The undistorted cylinder of length  with periodic boundary conditions has eigen-

functions and eigenvalues


0}
 = ⌋

20

2⇑⌋


,


0}
 = − 2

2
0

− 2


2 ≡ −̄2 − ̄2 , (3.11)

with integers  and . Consider an axially-symmetric bump on the cylinder, shaped

like a Gaussian of standard deviation  and height 0. We apply Rayleigh-Schrödinger

perturbation theory to Eqn. 3.10 to calculate eigenvalue corrections to rst order in

 ≡ 0⇑, which simplify for the case  = 0 to

±0 = −̄2 1 ∓ 2
⌋
2


−2̄22 +2 . (3.12)

The positive/negative sign (on ±0) is set by the mode: positive for cosine (symmetric)
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modes, and negative for sine (antisymmetric) modes. The sign of  depends on the

orientation of the ridge-like deformation: positive for a bulge and negative for a

constriction. Thus, to rst order, a ridge breaks the degeneracy in the eigenvalues of

a Laplacian on the cylinder, causing the eigenvalues of sine (cosine) modes to become

more negative in the case of an outward (inward) ridge.4 This correction is largest for

2⇑̄ = 4, when the wavelength is approximately twice the width of the ridge. This

is a general trait of deformations, explored later for a rippled cylinder. The ridge can

be positioned anywhere along the cylinder, and the modes will shift with the ridge.

Modications to the Laplacian spectrum aect any physical system involving dif-

fusion. For example, consider a two-component RD system:



Ψ1x, 
Ψ2x, 

 =
Reactions⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

1 Ψ1,Ψ2
2 Ψ1,Ψ2

+
Diusion⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

1 0

0 2

∆

Ψ1

Ψ2

 . (3.13)

After linearization, small deviations around a uniform stable xed point of the reac-

tions, Ψ1,Ψ2∗, evolve as


Ψ1x, 
Ψ2x, 

 = 
Ψ1

Ψ2


∗
+∑




1

2

 } x ,

with  satisfying eigenvalue equation, M =R + ,
⎨⎝⎝⎝⎝⎝⎪

1,1 1,2

2,1 2,2


∗
+ 

1 0

0 2


⎬⎠⎠⎠⎠⎠⎮

1

2

 = 
1

2

 .
While the diusion and stable reaction matrices separately posses negative eigenval-

ues, Turing showed that their sum can have positive eigenvalues (+ > 0) signaling

4The words following Eqn. 3.12 were correct in [308]; however, the ∓ sign inside the parentheses
in Eqn. 3.12 was incorrectly ipped. Here it is corrected. This agrees with the general principle that
negative Gaussian curvature has shorter path lengths [244], so diusion is faster on the shoulders
of the outward ridge. For the constriction, this is reversed and diusion is faster in the bottom of
the valley at the origin where the Gaussian curvature is most negative. The sine modes sample the
shoulders, and the cosine modes sample the origin. See Eqn. 3.46 for full derivation.
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nite-wavelength instabilities [78]. The possibly degenerate modes, ∗, with largest

eigenvalue evolve to the nal pattern. On a cylinder with a ridge, the degeneracy

between sine and cosine modes is broken: an outward (inward) ridge leads to sine

(cosine) growing faster.

Figure 3-3: Patterns from the Thomas-Murray RD model in Eqn. (3.14) are entrained to
a Gaussian-shaped ridge, switching in phase between inward and outward deformations.
Red (blue) indicates a high (low) concentration of chemicals. Vertical dimension magnied
3x. Parameters: 1 = 1, 2 = 10, 10 = 92, 20 = 64,  = 1.5,  = 0.1,  = 2, and  = 18.5.
Unless specied otherwise, other gures have these parameters. (See Sec. 3.3.1.1 for
details.)

This linear analysis indicates only the onset of instabilities. To understand the

patterns formed after nonlinearities stabilize the dynamics, we conducted nite ele-

ment simulations of the Thomas-Murray model [116]:

Ψ̇1 = 1∆
Ψ1 +  Ψ1 − 10 − Ψ1Ψ2

1 +Ψ1 +Ψ2
1⇑ 

Ψ̇2 = 2∆
Ψ2 +   Ψ2 − 20 − Ψ1Ψ2

1 +Ψ1 +Ψ2
1⇑  . (3.14)

We used COMSOL Multiphysics®[285], which approximates the Laplacian by nite

dierences on a mesh and computes the fully non-linear reaction terms. (Supplement

includes .mph le.) It should be noted that, although periodic boundary conditions

are enforced in the numerical calculations, the computational methods using by COM-
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SOL have a tendency to pin the resulting Turing patterns in a specic conguartion,

even on a at cylinder. Despite this, as shown in Fig. 3-3, density maxima of Turing

patterns on a deformed cylinder are entrained by a ridge. An inward (outward) ridge

selects the sine (cosine) mode.

This conformal mapping approach enables studies of other geometries, including

bumps on spheres (below), drums (supplement), and rippled cylinders. An axially

symmetric rippled cylinder, ℎ = cos 2⇑ ≡ cos̄, gives a Schrödinger-

like equation at  (cf. Eqn. 3.10):

−∆0 − 2
0}
 cos̄ = 2 . (3.15)

This Schrödinger equation describes a particle moving in a weak periodic poten-

tial, whose properties are well understood in the context of solid-state physics [195].

At leading order, this perturbation gives rise to a broken degeneracy (band-gap) at

 = ⇑2 with magnitude 4
0}
 . Our analysis predicts that when an RD system

governs surface concentrations, the eective diusion rate will increase in troughs

and slow down on ridges. Hence, diusion is enhanced (diminished) where Gaussian

curvature is negative (positive). This agrees with the short-time analysis of diusion

on Riemannian manifolds, where the leading order correction to diusion is propor-

tional to Gaussian curvature [126, 179, 244]. 5 For Turing patterns, steady-state

regions of high concentration switch sharply from ridges to troughs as the most un-

stable wavelength is dialed past twice the ripple wavelength, see Fig. 3-4. Note that

Eqn. 3.15 predicts a broken degeneracy only when the most unstable wavelength is

commensurate with the ripple wavelength. However, in numerical simulations (pre-

sumably due to higher-order eects), we observe pinning for a range of wavelengths

close to commensurability, although the patterns become unpinned for suciently

incommensurate wavelengths.

5One can compare this slowing of diusion in regions of negative curvature with general relativity,
which tells us that time runs slower where space-time is more curved. Clocks run fastest in free space
far from masses. Indeed, clocks on Earth run 56 microseconds slower per day compared with the
Moon.[334, 335] Viewers of the movie Interstellar will recall Miller’s Planet, where clocks advance
only one hour for every seven years on Earth [277].
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Figure 3-4: (Left) three functions of wave-number: (blue) Laplacian eigenvalues on a
rippled cylinder, including a band gap at the edge of the Brillouin zone (BZ) at ⇑2;
(black dotted) Turing spectrum on a non-rippled cylinder; (red) Turing spectrum on a
rippled cylinder. For the case shown with ∗ > ⇑2, the sine mode is selected; (cosine
selected if ∗ ≜ ⇑2). (Right) Numerical conrmation: Concentration patterns in the
Thomas-Murray model switch from troughs to ridges as the unstable chemical wavelength,
∗, is dialed past twice the ripple wavelength by changing  = 1.125 (upper) to  = 0.975
(lower). Vertical dimension magnied 3x. Supplement includes video of sweeping 
(Mathematica & COMSOL les).

An axially-symmetric distorted sphere, described by , has line element

d2 = 2 +′2d2 +2 sin2  d2 ,

where prime denotes derivatives. Mapping to conformally at coordinates:

d2 = Ω2 dΘ2 + sin2Θd2 .
The Laplacian eigenvalue equation in conformal coordinates becomes (see supplement,

Eqn. 3.16)

−∆0 + 2 2
0 −2 sin

2 

sin2Θ
Φ = 22

0Φ , (3.16)

where ∆0 is the Laplacian on a round sphere. Setting  = 0 1 + ℎ, we expand

in powers of . To ,  = Θ, and Eqn. 3.16 reduces to

−∆0 − 222
0ℎΦ = 2Φ . (3.17)
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Using Eqn. 3.17, we study how deformations modify the Laplacian eigenfunctions

 
ℓ ,. The perturbation depends only on , breaking rotational symmetry by

xing polar orientation of eigenmodes while preserving azimuthal symmetry. This

can potentially entrain Turing patterns, although there are competing inuences from

nonlinear eects and incommensurability of length scales as seen in Fig. 3-5. In fact,

in numerical simulations, we often found that the initial patterning predicted by

linear stability analysis would stabilize to more complex patterns. In contrast, on a

cylinder, initial patterning tends to persist indenitely. We attribute this to diering

degrees of degeneracy. The spherical eigenmodes,  
ℓ , have 2ℓ + 1 degeneracy. Thus,

near the most unstable eigenmode, there are 2ℓ additional unstable modes that can

contribute to non-linear pattern formation. In contrast, a cylinder presents only a

twofold degeneracy.

As evident from Eqn. 3.17, eigenfunction modications are sensitive to the sign of

ℎ. An inward (outward) bump causes an increase (decrease) in diusion. Non-linear

eects in the Thomas-Murray model are known to stabilize spotted patterns instead

of the single most unstable spherical harmonic, see Ref. [170]. However, during the

initial development of Turing patterns, the most unstable  
ℓ is visible, and the mode

selected by a deformed sphere diers from that of an uniform sphere, see Fig. 3-5.

Including extrinsic noise in RD systems leads to temporally uctuating quasi-

patterns for a broader range of parameters than those required for a Turing instability

[238, 252, 266, 293]. We have investigated how curvature inuences such noise-induced

transient patterns. We add uncorrelated white noise x,  of zero mean and vari-

ance  to Eqn. 3.13. In the linearly stable regime, this noise leads to eigenfunction

uctuations with a power spectrum   proportional to  detM−1. On a uni-

form surface, time averaged uctuations are translationally invariant, ⋃Ψ⋃2 =Ψ2
0.

Deformations break this symmetry, leading to average uctuations on a cylinder of

the form

⋃Ψ⋃2∝∑


cos2̄
detM+0 +

sin2̄
detM−0 +2 . (3.18)

On spheres, the spherical harmonics replace the Fourier modes. Figure 3-6 shows
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Figure 3-5: Suciently large bumps entrain spotted patterns (top pair). Initial
patterning on an undeformed sphere shows  5

5 (bottom-left); the inward bumps of a
“pinched sphere” amplify lower harmonics, causing  0

3 to appear (bottom-right).

numerical verication that such deformations x the phase of uctuations and create

non-uniform time-averaged intensities. Such behavior is expected to hold generically

for quasi-patterns induced by intrinsic noise [238, 252, 266, 293], where the power

spectrum describing uctuations is qualitatively similar.

If these eects can be realized in manufactured or experimental systems they could

enable systematic manipulation of patterns. For example, collagen vitrigel (CV) for

corneal endothelial regenerative treatment [279] could be molded in a hemispherical or

eggcrate geometry and used to support zebrash chromatophores, which were recently

cultured for in vitro studies [278] to explore RD models [241]. Mice hair follicle

patterning is also driven by an RD system involving WNT growth factor [218], and
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Figure 3-6: Noise-induced quasipatterns appear when geometric ripples split degenerate
eigenmodes of an RD system below threshold. Deformations pin the time-averaged
intensity of uctuations in RD quasipatterns (top); compare this with the same intensity
of extrinsic noise on a at surface (bottom). For all two gures, 2 = 6 and  = 0.15.

might be cultured on molded CV using established in vitro techniques [131]. Zebrash

stripes and hair follicles have spacing on the order of hundred microns. Three orders

of magnitude smaller, cytoskeletal suspensions exhibit patterns [251, 257, 306] that

may realize our results. For example, a pinched sphere might be constructed in the

recently studied encapsulations of actomyosin in giant unilamellar vesicles [303]. A

recent review of such active uids suggests that coupling to RD systems looks like a

fruitful direction for research [264].

Even in a system as simple as a cylinder with a ridge, geometry can dramatically

aect pattern formation. Our approach to the Laplacian on curved surfaces opens a

new route to analytical understanding of patterns in real systems, taking advantage

of intuition and tools from quantum mechanics. Future directions include pattern

formation in the presence of advection [273], and on time-varying shapes. Our ap-

proach can also be applied to scenarios involving interactions between the surface

and boundary physics. In particular, it would be interesting to examine the eect of

nonuniform surface curvature when additional reaction-diusion processes take place

at the boundary [258]. Our mathematical methods apply to any process described by

the Laplacian, and may also nd application in soap lms [185], or Marangoni ows

from surface tension gradients [226].
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3.3 Perturbation Theory

The paper in the previous section was published with a two-page supplement describ-

ing the construction of conformally at coordinates for cylinders, spheres, and drums

with one axis of rotational symmetry [308]. Here, I expand the calculations to explain

the perturbation theory and illustrate the overall approach in more detail.

3.3.1 Deformed Cylinder

By constructing a conformal mapping from the lab frame coordinates to a related sur-

face of constant curvature, analysis of the Laplacian eigenfunctions on the deformed

surface can be made more tractable.

Consider a cylinder with radius 0. Using cylindrical polar coordinates, radially-

symmetric deformations from this geometry can be described by a position-dependent

radius,  = 0 1 + ℎ. The coordinate  has dimensions of length and ranges

 ∈ 0,. The embedding vector,

# »

,  =

 cos
 sin




,

where  ∈ 0,2. We refer to changes in tube radius as a function of  as “longitu-

dinal” variations:

0 → 0 1 + ℎ ⇒ ,  = 
2

0 1 + ℎ2 0

0 1 +2
0ℎ

2


 (3.19)

This parameterization of the perturbed metric depends only on ℎ, and it depends

indirectly on  through ℎ being written as a function of . Where ℎ denotes a
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rst derivative with respect to . We also sometimes include a comma for clarity by

writing ℎ, and ℎ, to denote rst and second derivatives with respect to .

When ℎ = 0, then the metric returns to the non-curved metric of the cylinder:


ℎ=0——→  = 

2
0 0

0 1

 .

To prepare to change coordinates from  to a conformally at coordinate , we

introduce a few tools. The radial perturbation ℎ has a simple relationship with 

illustrated in Figure 3-7. The tangent angle  is related to the change in height as a

function of  by

tan = ℎ


= ℎ, . (3.20)

However, an essential point is that ℎ is a measurable quantity that a model can

parameterize in many ways. For example, we could parameterize ℎ, , and  as

functions of arclength .

Figure 3-7: Illustration of three lengths and an angle that can be measured on a
cylindrically symmetric shape.

Instead, we will now dene a new parameter  that is not directly measurable

with a measuring stick in the lab. To arrive at this coordinate, we will examine the

measurement of path lengths on the surface. The innitesimal line element on the
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surface is:

d22 =  d
 d

= 1 +2
0ℎ

2
d2 +2

0 1 + ℎ2 d2

= 1 + ℎ2  1 +2
0ℎ

2
1 + ℎ2 d2

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
d2

+2
0 d

2  . . (3.21)

The third line shows a rearrangement that motivates the denition of the new coor-

dinate . We put a subscript 2 on this line element d2 to distinguish it from the

arclength coordinate  that is measured parallel to the axis of symmetry. The general

line element d2 travels in both surface parameters.

We will map this to a conformally at cylinder, whose line element is given by

d22 = Ω2 d2 +2
0 d

2 . (3.22)

First, note that prefactor for d has a simple expression in terms of the tangent

angle :

⌉
1 +2

0ℎ
2
, =⌈

1 + tan2  = 1

cos

While not independent, comparing expressions in terms of ℎ and  can help maintain

intuition while moving to conformal coordinates.

The equality between the two line elements Eqns. 3.21 and 3.22 implies the rela-

tionship

 =  

0
1 +2

0ℎ
2
 1

2
d′

1 + ℎ′ +
=  

0

0 d′
 cos

+ . (3.23)
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The condition  ∼  at  = 0 implies that  = 0. To rst order in ℎ and its gradients,

 ≈  − 

0
ℎ′d′ . (3.24)

The conformal factor is given by Eqn. 3.21 and 3.22 as

Ω2 = 1 + ℎ2 , (3.25)

where ℎ can be expressed as a function of  or .

Going the other direction in the derivation:

d

cos
= 1 + ℎd = 

0

d

⇒  =  

0
d =  

0
1 + ℎ cosd =  

0



0

cosd (3.26)

where the integration constant is zero for the same reason as above.

Similarly, the function ℎ is not the same as ℎ. Other useful expression for

understanding ℎ comes from computing the radius as

 =  

0
tan

d⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(1 + ℎ cosd
⇒ ′ = sin



0

(3.27)

which has the solution:

 = 0 exp 1

0
 

1
sind . (3.28)

We can also rearrange this to get another expression:

0ℎ, = sin1 + ℎ
⇒ 0ℎ,

1 + ℎ = sin , (3.29)
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which combines with Eqn. 3.26 to give:

 =  

0

⌉1 + ℎ2 −2
0ℎ

2
, d , (3.30)

which we use in parametric plots in the following.

In upcoming sections, we will study a Gaussian bump and sinusoidal ripple. As a

preliminary, here, we show that we can use either  or  as a coordinate for roughly

approximating such a geometry. As shown in Figure 3-8, it is close to  but can grow

faster or slower depending on the deformation.

Figure 3-8: Illustration of the conformal coordinate {} as a function of  on three
dierent cylinders of initial radius 0 = 3 and  = 20. The two straight blue dotted lines are
guides to the eye: the horizontal dotted line is located at the undeformed cylinder radius
of 0 = 3, and the diagonal dotted line has a slope of one. The two deformed cylinders
have a Gaussian bump centered at  = 0 with  = 3. The solid blue line shows shows a
bump with amplitude  = 0.3, and dashed orange line  = 0.6. The corresponding diagonal
lines show the {} curves. The solid blue diagonal line is {} for the lower amplitude
bump. Note that these plots use ℎ = exp−2⇑{22} − , where  is a constant that
keeps the surface area of the cylinder the same as the undeformed cylinder, see Eqn. 3.40.

A key point here is that we can use either  or  as a coordinate. To illus-

trate this, Figure 3-9 shows four bumps, two expressed as exp−2⇑22 and two

as exp−2⇑22. For the purposes of modeling biological interfaces with diusing
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materials, either coordinate  or  can be used to t a Gaussian shape to approxi-

mate a real “bump” or “constriction.” The price that must be paid for the analytical

simplicity of  is that it cannot be measured directly on a sample, and instead must

be computed using measurements of  and ℎ or .

Our goal here is to understand general mechanisms of pattern localization. Com-

parison with laboratory measurements or simulations will involve stabilization by

nonlinear terms and boundary eects, so approximate shapes will satisfy our needs

here.

Figure 3-9: These parametric plots show show exp−2⇑{22} on the left and
exp−2⇑{22} on the right. The dashed redlines are {}, and the solid blue lines are
{}. The horizontal axes count both  and . These use the same numerical values as the
higher amplitude orange dashed line in Fig. 3-8. The lower two have  → − to make an
inward constriction.

Further note that far from the bump, the slope of  returns to one as follows:

d

d

→∞——→ 1

1 + 


,

where  is a constant oset in ℎ that enables keeping the cylinder area constant,

which we compute in Eqn. 3.40.

Similarly, a rippled cylinder expressed as ℎ = cos̄ works just as well as if

we expressed it as ℎ = cos̄. See Figure 3-10.
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Figure 3-10: Ripple in . The horizontal axis is the lab frame coordinate  along the
axis of the cylinder. The solid line is what is seen in the lab frame when we express the
deformation as a function of the conformal coordinate, . The dotted line has slope of one
to guide the eye, and the dashed line is the value of the conformal parameter . This is
plotted parametrically in  using Eqn. 3.30.  = 0.1, = 5,0 = 10, = 50.

What does the embedding vector look like in terms of coordinates , ?

# »

,  =

01 + ℎ cos
01 + ℎ sin



=

01 + ℎ cos
01 + ℎ sin
 1 + ℎ cos′


,
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so the tangent vectors are:

#»
  = 01 + ℎ


− sin
cos

0


#»
  =


0ℎ′ cos
0ℎ′ sin

′

= 1 + ℎ


sin cos

sin sin

cos


.

The normal vector:

̂ = #»
  × #»

 ⋂#»  × #»
 ⋂ =


cos cos 

cos sin 

− sin

.

This gives a perturbed metric:

,  = 
2

01 + ℎ2 0

0 2
0ℎ

2
, + 2,


= 

2
01 + ℎ2 0

0 1 + ℎ2 sin2  + 1 + ℎ2 cos2 


= 1 + ℎ2 
2

0 0

0 1

 ,

and its inverse is

G,  = 11 + ℎ2


1
2

0
0

0 1

 .

The area element is:

 = dd
⌋
 = dd 01 + ℎ2 (3.31)
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To compute Christoel symbols, we compute derivatives of this metric:

,,  =


, = 0

, = 2ℎ,1 + ℎ
2

0 0

0 1

 .

From these, the Christoel symbols in the ,  coordinates are:

Γ = 1

2
 , +, −,

= sin

0




0

−2
0



1

0



1

0



0

1




.

As a result, the curvature tensor:

,  = ̂ ⋅ ∇
#»
 

= 1 + ℎ
−0 cos 0

0 ,

 .

Therefore, the mean curvature is 
 = , − cos⇑0⇑1 + ℎ. The Gauss curvature

is:

det  = −  cos1 + ℎ20

. (3.32)

The perturbed Laplacian in these special conformal coordinates ,  is:

∆0,  = 1⌈


⌈
 G

= 11 + ℎ2 2 + 1

2
0

2 .

NB: ∆0 is not the same as ∆0} with the superscript zero in parentheses, which we
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sometimes use to denote the unperturbed Laplacian, because ∆0 has the structure

of the unperturbed Laplacian but the coordinates are changed to use the conformal

coordinate .

Compare this conformally at Laplacian with the the Laplacian in the lab frame

coordinate :

∆,  = 1

0 1 + ℎ⌈1 +2
0ℎ

2
,

 01 + ℎ⌈
1 +2

0ℎ
2
,

 +
⌈
1 +2

0ℎ
′2

01 + ℎ 2
 ,

where ℎ = ℎ in this expression, so we explicitly write the partial derivative w.r.t.

to the lab frame  coordinate instead of just writing ℎ′.
Since ℎ = ℎ, we can separate variables and denote the eigenfunctions of the per-

turbed Laplacian in conformal coordinates as ; ⇑⌋0, where the functions

 are parameterized by the angular wavenumber :

∆̂
0 ⌋
0

;  =  ⌋
0

; 
= 11 + ℎ2 2 + 1

2
0

2 ⌋
0

; 
= ⌋

0

11 + ℎ2 2 − 
2

2
0

;  . (3.33)

Dene ̃ ≡  + 2⇑2
0. We will expand ̃ perturbatively. Comparing this to

the unperturbed eigenvalue, ̃
0}
 = −2.

Rearranging:


′′
 =

cΩ2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(1 + ℎ2̃
⇒ 

′′
 −2ℎ + ℎ2̃⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)



 =̃ , (3.34)

The term in underbraces is like a momentum-dependent potential. We will examine

the rst order term in small ℎ, just as in Eqn. 3.10.

Operator perturbation theory (OPT) is reviewed in Appendix D. To apply OPT
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to rst order, replace ̃ and  with ansätze series for small :

̃ = ̃0} + ̃1} + ... (3.35)

 = 0} +∑
′

0}
′ 

1}
′ + ... . (3.36)

Carrying out derivatives and integrating:

0 = 0
0}∗
′ 2 − ̃0} + ̃1}  − ̃0} + ̃1} 2ℎ0} (3.37)

+ 0
0}∗
′ 2 − ̃0} + ̃1}  − ̃0} + ̃1} 2ℎ∑

′′

0}
′′ 

1}
′′

=̃0} ′ − ̃0} + ̃1}  ′ − ̃0} +
̃
1}
 2ℎ′

+ ̃0}′′1}′ − ̃0} +
̃
1}
  1}′ − ̃0} + ̃1} ∑

′′ 


1}
′′2ℎ′′′

⇒ 0 = − ̃1}±′′±± − ̃0}±2ℎ′±± + ̃0}′′± − ̃0}±± 1}′±± , (3.38)

where we have put a strike through second-order terms. On the last line, we denote

the ± modes separately in anticipation of the potential   splitting the sine and

cosine modes.

3.3.1.1 Cylinder Ridge: Splits the Modes

With those preliminaries in hand, let’s compute the mode splitting mentioned in

Section 3.2 in Eqn. 3.12. We estimated how a ridge-like deformation selects even

or odd modes that can pin a diusion-driven pattern. We now recapitulate this

calculation more carefully.

To consider a bump geometry, take the conformal coordinate  ∈ −⇑2,⇑2 and
set

ℎ =  exp−2⇑22 −
where we will choose an oset that keeps the surface area of the cylinder constant,

so-called “isoperimetric.” For a cylinder of nite length,  , can just be a constant
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dened by:

0 =  d ℎ (3.39)

⇒  =⌋
2



erf  

2
⌋
2

 . (3.40)

Take  = 0⇑0 as a small parameter. Note that the Gaussian is not normalized, so

that its height is controlled only by . We must ensure that its height remains less

than the radius, so that the perturbed shape does not intersect itself.

With this choice of  ,

d

d

→∞——→ 1

1 +   erf  
2
⌋
2


so when  ≜≜ , the slope returns to 1.

Inserting this choice of ℎ into Eqn. 3.34 and expanding to rst order in :

0 = 2 − ̃
 }⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(−2̃−2⇑22}  . (3.41)

The quantity   is our momentum-dependent potential.

We’re interested in chemical concentrations, so want real-valued eigenfunctions:


0}
±± =



cos⌋
0

}
2


cos2


 = 0}++

cos⌋
0

}
2


sin2


 = 0}+−

sin⌋
0

}
2


cos2


 = 0}−+

sin⌋
0

}
2


sin2


 = 0}−−

(3.42)
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where the second column of -dependent sines and cosines are the 0}± :


0}
± =



}
2


cos2


 denoted +}

2


sin2


 denoted −

(3.43)

These are orthonormal when integrated over the cylinder from  = −⇑2 to ⇑2 using

area element in Eqn. 3.31.

To use Eqn. 3.38, we need the integral ℎ′±± ,

ℎ′±± = ′±⋃ℎ⋃±
= 


 d −2⇑22} − 2


cos2′


 cos2




 d −2⇑22} − 2


sin2′


 sin2




= ⌋2



′ −  exp−22′ − 2 2

2
 ±′ +  exp−22′ + 2 2

2
  .

(3.44)

where the endpoints of integration are ±⇑2. The prefactor  is the real part of

an error function, which goes to one rapidly as  becomes larger than :

 = 1

2
erf  

2
⌋
2

+ ⌋
2

 + erf  

2
⌋
2

− ⌋
2


≜≜——→ 1

Going forward, we will drop the  as negligible. One can imagine the bump being

far removed from the ends of the real physical cylinder, so that patterns can shift

gradually over many wavelengths and thus become unconstrained by the boundaries.

Setting ′ =  in Eqn. 3.38 gives the leading order eigenvalue correction is:

̃
1}
± = ∓̃0} 2

⌋
2



−2̄22

. (3.45)

Recall that ̄ = 2⇑. Note that without the  oset, this integral would make a
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leading order correction to the zero-mode of
⌋
2⇑.

This provides the result mentioned in explanation of our numerical simulation

in Fig. 3-3. The perturbed eigenvalue estimated through this conformal mapping

combined with Rayleigh-Schrödinger perturbation theory is:

0+1± = −̄2 − ̄2 1 ∓ 2
⌋
2



−2̄22 + ...

= −̄2 − ̄2 ± 2̄
2

⌋
2



−2̄22 + ... (3.46)

For 0 ≜ , the cosine mode (+ sign) is less negative than the sine mode (–). This is

the same as Eqn. 3.12.

To nd the maximum value of the rst order correction, take the derivative of 1}±
w.r.t.  and set equal to zero. The correction is largest for ∗:

∗ = ± 

2
⌋
2

. (3.47)

The corrected spectrum, 0+1}± , is plotted for select values in Fig. 3-11. On the

ridge deformation, cosine modes diuse slower than sine modes. That is, the cosine

modes’ eigenvalues are less negative. The cosine modes sample the peak, where Gaus-

sian curvature is positive, and the sine modes sample the rim, where the Gaussian

curvature is negative.
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Figure 3-11: Mode Splitting for Outward Bump 0 ≜ : The horizontal axis is the
wavenumber, , and the vertical axis is the eigenvalue 

0+1}
 at  = 0,  = 1000, and  = 10,

the mode splitting is largest at ∗ = 11 and the cosine mode’s eigenvalue is 184 larger (less
negative) than the sine mode’s, for an outward bump. This means that the eective
diusion coecient for the sine mode is larger than for cosine. These lines are produced
with  = 0.6 and the dierence between the 

1}
± made more visible by magnifying the

vertical axis 20x.

See COMSOL simulation for this geometry in Figure 3-3.

3.3.1.2 Cylinder Ridge: First-Order Eigenfunction

The rst-order corrections to the eigenfunctions are found by considering the o-

diagonal elements of Eqn. 3.38:


1}
′±± = 2

̄
2

̄
′2 − ̄2 cΩ

1}
′±±

Fortunately, the bump is an even function, so overlaps of sines and cosines are zero,

i.e. cΩ
1}
′+− = 0. Thus, these modes are already separated and not degenerate.

Eqn. 3.38 provides no information about the self-corrections, 1}±± . As in Rayleigh-

Schrödinger perturbation theory for Euclidean space, we can constrain these diagonal

elements using the orthogonality relation. While we may not be able to nd a close

form ;  that solves Eqn. 3.33 for any particular ℎ, we still expect that they
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form an orthonormal basis:

′′±± = ′′±⋃± = 
d⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

dd
⌈
,  −′⌋

0

∗′±; ′ ⌋
0

±; 
⇒ ′ = d 1 + ℎ2∗′±±

= d 1 + ℎ2
∑
′′

′′±′± + 1}∗′′±′± + ...0}∗′′± ∑
′′′

′′′± ± + 1}′′′± ± + ...0}′′′±  .

Unlike the Euclidean version shown in Eqn. D.13 in the appendix, here, the rst

two orders are modied by the presence of the conformal factor 1 + ℎ2 These new

identities are:

0 =1}∗±′± + 1}′±± + cΩ
1}
′±± (3.48)

0 =2}∗±′± + 2}′±± + cΩ
2}
′±± (3.49)

0 =2≜}∗±′± + 2≜}′±± .

The third line states that all of the higher order recursion relations are unchanged

from Euclidean space. From this, Re1}±± = cΩ
1}
±± .

Therefore, a cosine-cosine mode on the unperturbed cylinder becomes:


0+1}
++ =cos⌋

0

}
2


×

cos ̄ 1 + −2̄22 + 2⌋2



∑
̄
′≠̄

̄
2

̄
′2 − ̄2 cos ̄′ −̄

′−̄}22⇑2 + −̄′+̄}22⇑2 +2
(3.50)

Two examples are shown in Figure 3-12.
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Figure 3-12: For,  = 0.6,  = 1000,  = 10,  = ∗ = 11. The left shows an inward
constriction and the right shows an outward ridge. The dashed lines show the unmodied
mode, which is normalized. The perturbed mode is not normalized. The relative
magnitude of the mode near the bump compared to far from the bump shows how much
the mode is localized at the bump.

The sine modes are not modied by the perturbation, because they exactly cancel

as follows. The 1}′−− are even functions of ′, and sin̄′ is odd. Therefore,


1}−′−− sin−̄′ = −1}′−− sin̄′

so the summation over ̄′ exactly cancels.

Figure 3-13: Turning on the localization: This shows the amplitude of the perturbed
mode in Fig. 3-12 turning on gradually as  sweeps from zero up to 0.6.
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Figure 3-14: This shows the amplitude of rst-order corrections for the perturbed mode
in Fig. 3-12.

3.3.1.3 Cylinder with Ripples

The Fourier transform of the Gaussian bump involves modes of many wavelengths.

Consider a deformation of a single wavelength. Periodic potentials arise in the study

of crystal lattices. Their simplicity was discovered independently in the late 1800s by

Gaston Floquet[49], George W. Hill[52], and Alexander M. Lyapunov[53]. Approxi-

mately forty years later, Felix Bloch[66] applied these ideas to the quantum mechanics

of crystal lattices. We summarize these tools in Appendix Section D.3.

Consider a rippled cylinder perturbation in the conformal coordinate  mentioned

in Eqn. 3.15:

ℎ = cos2

 = cos̄ (3.51)

Referring to our one-dimensional eigenvalue equation, our Eqn. 3.41 now becomes:

0 = 2 − ̃ − 2̃ cos̄ .
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The ripple does not need an oset  , because this integral is already zero:

0 =  d ℎ =  ⇑2
−⇑2  cos̄ .

The cylinder’s unperturbed eigenfunctions apply here. However, given the peri-

odic potential, it is more straightforward to start with the complex eigenfunctions

0} = exp̄⇑⌋ and directly apply the analysis of a one-dimensional crystal

described in Appendix D.3. The dierence here will be that the potential carries with

it a factor of 0} = −2.
The rst-order recursion relations derived in Eqn. 3.38 apply here with the new

denition of the integral ℎ′±± :

ℎ′±± =  

0
d −̄′ cos̄̄

= 
2
−′++ + −′−+ (3.52)

We have allowed periodic boundary conditions, so other than discretizing the modes

to have wavelengths commensurate with the length, the boundaries do not eliminate

either sines or cosines.

Now our potential is:

′ = ̃0} 2ℎ′±±
= −̄2 −′++ + −′−+ (3.53)

Setting ′ =  shows that for most  there is no rst-order correction. However, we

expect degeneracy near the edges of the Brilliouin Zone (BZ), where the eigenfunction

corrections become singular:


1}
± = ̃

0}
 2ℎ′±±
̃
0}
′ − ̃0}

=  ̄
2

̄
′2 − ̄2 −′++ + −′−+
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This leads to a non-symmetric, momentum-dependent Bragg-like matrix at the edge

of the BZ is shown in Figure 3-15 and mathematically here:

′⋃bz =
⎨⎝⎝⎝⎝⎝⎪

0}
− −,

+, 
0}


⎬⎠⎠⎠⎠⎠⎮ =
⎨⎝⎝⎝⎝⎝⎪

0}
− 

0}
 ⇑2


0}
−⇑2 

0}


⎬⎠⎠⎠⎠⎠⎮ (3.54)

Figure 3-15: Illustration of the Bragg-like matrix for our momentum-dependent periodic
potential ( = 1). This shows just one harmonic, so a single cosine. Other periodic ripple
proles could be decomposed into a superposition of multiple harmonics. For large , these
o-diagonal stripes will be well-separated. The three blue dashed squares show examples
of the 2 × 2 Bragg matrix just below the BZ, exactly on the BZ, and just above it.
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Figure 3-16: Diusion Band Gap: the spectral band gap familiar from solid-state
physics appears in this new context. The horizontal axis is the  labeling the
eigenfunctions, and the vertical axis is the corresponding eigenvalue.  = 100,  = 0.5,
 = 50

Just as in Appendix D.3, near the BZ edge, we can dene  by

 = 
2
+  ,

so for positive 0 ≜ , we can pull the larger of the unperturbed eigenvalues out of

0+1}+, and the smaller out of 0+1}−, to obtain:

0 ≜  ⇒




0+1}
 + = 0}])

−̄2
+̄̄′

+}⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(−̄̄
′ +

}
1 + 

̄̄
′ 2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)


{1}



0+1}
 − = 

0}
−])

−̄−̄2


{1}
−⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

−̄̄′ −̄̄
′ +

}
1 + 

̄̄
′ 2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

+}

. (3.55)

Note the function + comes from Bloch’s analysis and equals one at  = 0. Here,
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our momentum dependent potential ̄̄′ replaces the Fourier coecient of the crystal’s

potential, ̃  .

Figure 3-17: Near the edge of the BZ, eigenfunctions have wavelengths approximately
twice the ripple wavelength. The sine mode has extrema in the troughs of the ripples, and
the cosine mode on the peaks.

3.3.2 Conformal Mapping of a Deformed Sphere

Consider a rippled two-sphere in three-space with non-constant radius ,:

# »

, = ,

sin  cos

sin  sin

cos 


⇒  = 

2 +2
 

 2 sin2  +2


 ,

where  ∈ 0,2 and  ∈ 0,. The subscripts mean partial derivatives, e.g.

 ≡ .
The general line element on such an unsymmetric sphere is:

d22 =  d
 d

= 2 +2
d2 + 2 d d + 2 sin2  +2

d . (3.56)

The cross-terms make it challenging to construct a conformal mapping to back to an

unperturbed sphere. Therefore, we specialize to perturbations independent of ,

,→  = 0 1 + ℎ (3.57)
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See Figure 3-18 for the relationship between the shapes , and arclength from

the pole, , and tangent angle relative to the reference plane.

Figure 3-18: Like the deformed cylinder, a sphere has several lengths and angles that
can be measured in the lab. The examples on the right show ℎ = 0.3 cos{} for  = 21 and
 = 2. The orange circles are the undeformed reference shape.

In these coordinates, the line element is given by

d22 = 2 +2
d2 +2 sin2  d2 . (3.58)

Recall that d2 is the general line element and only equal to the arclength  for points

on the same line of longitude. To map this to a conformally-at sphere, we wish to

dene a new coordinate that we denote Θ:

d22 = Ω2 dΘ2 + sin2Θd2 . (3.59)

The key property here is that all coordinates are rescaled by the same function Ω.

Equating the expressions for the line elements in the two coordinate systems gives

sin2  Θ′2 = sin2Θ1 + ′2
2

 . (3.60)
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Comparing the two expressions for the line element gives,

ΩdΘ = d

}
1 + 2



2
, (3.61)

and,

Ω sinΘ =  sin  . (3.62)

Using the latter to eliminate Ω from the former and expanding for ℎ ∼  ≜≜ 1

dΘ

sinΘ
= d

sin 

}
1 + ′2

2

≈ d

sin 
1 + 2

0ℎ
2


2
01 + ℎ +ℎ4 . (3.63)

This implies that Θ =  +2. Further, Ω =  +2.

The Laplacian eigenvalue equation in conformal coordinates becomes:

∆Φ = Φ

⇒ 1

Ω2
∆0Φ = Φ

⇒ ∆0Φ = Ω2Φ

= 01 + ℎ +ℎ22 Φ

≈ 2
01 + 2ℎΦ

⇒ ∆0 − 22
0ℎΦ ≈ 2

0Φ (3.64)

Substituting  = −2 yields Eqn. 3.17 in the published paper presented in Section 3.2.

Here we provide more detail. As we noted in the previous section, the additional term

on the LHS of Eqn. 3.64 breaks the polar symmetry in the eigenfunctions, eectively

“xing” the resulting polar orientation of the eigenfunctions, although azimuthal sym-

metry is preserved.
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To examine modied spectrum and eigenfunctions, consider a radial deformation:

ℎ =  cos + , (3.65)

where  must be small like  for the deformation to remain small. As with the

cylinder, we will choose  to keep the area constant:

 =  2

0
d 

0
d sin 2

01 + ℎ2 (3.66)

A straightforward calculation yields:

 = −1 + Odd
2 − 1

+
⟨⧸⧸⟩1 − 2Even2 − 12 + 245 − 222 − 1222 − 1

= Odd
2 − 1

− 2Even2 − 12 + 2 45 − 222 − 1222 − 1 +3 (3.67)

The conformally at line element in Eqn. 3.59 corresponds to this metric, inverse

metric and area element:

0
 = Ω2


1 0

0 sin2Θ

 ,

G0 = 1

Ω2


1 0

0 1
sin2 Θ

 ,

⌋
dΘd = Ω2 sinΘdΘd . (3.68)

These are desirable, because the (surface) Laplacian in these coordinates is:

∆ = 1⌋


⌋


G

= 1

Ω2
 1

sinΘ
Θ sinΘΘ + 1

sinΘ
2

= 1

Ω2
∆0 , (3.69)

where the ∆0 is the Laplacian on an undeformed sphere of unit radius, which has the
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familiar spherical harmonics as eigenfunctions:

∆0 
 = − + 1 

 ≡ 0}Φ
0}
 .

The indices , now replace the  in our schematic eigenvalue equation Eqn. 3.16.

As we are in pursuit of chemical concentrations, we form real-valued linear com-

binations of the  
 . These are odd and even in , which we denote with ±:

 ±
 , =

⟨⧸⧸⟩2 + 1

4

 −! +!
 cos  × 

cos
sin (3.70)

where 
 are the associated Legendre polynomials.

Using these as our function basis, let’s apply perturbation theory. Using the

Rayleigh-Schrödinger ansätze in Eqn. 3.36, we arrive at the same expression as

Eqn. 3.38 with the rst-order matrix element of cΩ now being:

cΩ
1}
′′±± = d d

⌈
{0}[(

sin 


{0}
′′±[(

′±
′

cΩ{1}⌊[ ⌊(
22

0ℎ


{0}
±[(
 ±


=22
0′±±

⟨⧸⧸⟩2′ + 1

4

′ −!′ +!
⟨⧸⧸⟩2 + 1

4

 −! +!
× 

0
d sin 

′ cos 
 cos   cos + ,

where we’ve resolved the  integral because ℎ is independent of  and inserted the

perturbation discussed above. Therefore, the eigenvalue corrections at rst order are:


0+1}
 = −  + 1

0

1 + cΩ
1}
±± . (3.71)

While the cΩ
1}
±± appears to depend on , the numerical values turn out to be

independent of , so this does not split the 2+1 degenerate modes labeled by index

±. This is obvious from the fact that our perturbation is independent of . As a

result, while we can approach axisymmetric perturbations analytically, their inuence
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on the nonlinear evolution of Turing patterns is more complex, as we discussed in the

previous section.

3.3.3 Conformal Mapping of Deformed Planar Drum

The technique of using conformal mapping to understand how deformations modify

the Laplacian can be applied to a variety of surfaces. To elaborate on the procedure

that we used for deformed spheres and cylinders, we show the steps of the calculation

for a circularly symmetric deformation on a planar drum. Consider a height function,

ℎ. The line element on this surface is given by

d2 = 1 + ℎ2d2 + 2 d2 , (3.72)

We assume a reparameterization of the surface geometry , → , so that the

line element assumes the manifestly conformally at form

d2 = Ω2 d2 + 2 d2 . (3.73)

Setting these two line elements equal to each other, we obtain the two relations

1 + ℎ2d2 = Ω2d2 ,
2 = 2Ω2 .

(3.74)

Rearranging, one obtains a relationship between  and ,

 =  exp 

0
1 + ℎ2 1

2 − 1 d

. (3.75)

Provided our bump possesses a tangent plane at  = 0, the relationship  ∼  at

 = 0 sets the constant of integration to  = 1, which gives an exact relationship that

can be expanded in powers of ℎ. To ℎ2,
 = 1 − 1

2 


0

d


ℎ2 , (3.76)
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where we have inverted the equation to obtain . As  → ∞, this relationship

becomes linear,

 = 1 − Γ

2
 ,

where Γ ≡  ∞
0 dℎ2⇑.

From Eqn. 3.74, we also obtain Ω, and hence the relationship between the Lapla-

cian dened on the curved coordinates, ∆, and conformally at coordinates, ∆0,

∆, = 2,→∆0, = 2
2

, . (3.77)

Using Eqn. 3.76 and the denition of Γ, we can express this in a more telling form,

−∆0 +   = 21 − Γ, (3.78)

where

  = −2 ∞


d


ℎ2 . (3.79)

Similar to the cases of the deformed sphere and cylinder, we can express the eect

of a deformation as the addition of an eigenvalue-dependent potential. As an example,

if one considers a planar drum with a circularly symmetric Gaussian bump, Eqn. 3.79

shows that this leads to a Gaussian potential in conformal coordinates.

3.4 Conclusion

We have shown that diusion on curved interfaces can sense curvature. This clearly

should aect pattern formation via Turing-type instabilities. What other aspects of

natural interfaces might this help explain? We will suggest one possibility in the next

chapter.
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Chapter 4

Outlook

In the previous chapters, we showed how curvature aects ordering in biologically

relevant ways. Despite the tremendous progress since 1892, when Pearson named

biophysics, there are still many biological laws of motion to uncover [54]. In this

chapter, I will highlight two particular areas of future work. Section 4.1 comments

on ingredients that may lead to a minimal model of the role of geometry in the origin

of life. Section 4.2 describes simulations of orientational order in growing solids.

4.1 Filaments on Neck Geometries

Consider the remarkable in vitro system in Figure 4-1. With just three ingredients

plus water, Szwedziak et al demonstrated membrane neck constriction. The three

ingredients are (1) lipids that form a lipid liposome membrane, (2) prokaryotic tubulin

homologue FtsZ forms the visible laments, and (3) the prokarytoic actin homologue

FtsA adheres the laments to the membrane. No molecular motors are present. The

constrictions evidently result from the minimum energy conguration of the proteins

inside the liposome.
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Figure 4-1: This remarkable stereo image shows a membrane constriction produced in
vitro. Reproduced from “Architecture of the ring formed by the tubulin homologue FtsZ in
bacterial cell division” by Szwedziak et al in eLife 2014.[276].

Inspired by this, one can ask: What are the minimal geometric ingredients for

laments to drive division of vesicles? In Sec. 2.5, we calculated that laments can

assume a variety of minimum energy orientations on cylinders. If the cylinder can de-

form to develop ridges or necks, which geometric couplings might suppress or enhance

the deformation?

Is it possible that diusion of the particles in the curving membrane contributes

to their localization? Or are spontaneous curvatures required?

In setting up Eqn. 2.1 for our nematic membrane, we carefully avoided polar terms.

These include spontaneous curvatures, some of which break chiral symmetry, which

distinguishes between the two sides of the membrane and thus between the inside

and outside of the vesicle. These spontaneous curvatures could be good eective

descriptions for the static shapes shown in Fig. 4-1.

With the various updates to the Canham-Hilfrich model from oriented elds,

perhaps it’s time to revisit Seifert’s phase diagram and extend it to include more

anisotropies. It may still be possible to address parts of this question using the

nice arclength parameterization that Siefert, Berndl, and Lipowski used in their 1991

paper to produce Figure 1-2.[140] See Figure 3-18 for an illustration.

Such an extended phase diagram may help distinguish between curvature-sensing
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by diusion versus particle shape.

4.2 Self-Directed Growth of Living Solids

Living systems grow through active processes that drive the shape evolution of the

boundaries between living and non-living matter. Many lifeforms develop body plans

during an early stage of growth. For example, vertebrates establish a body plan during

gestation of the fetus. In contrast, other lifeforms develop their shape gradually over

time.

Recently, Homan et al extended the results of our Chapter 2 to the active mat-

ter context where hydrodynamic ows continue driving the buckled membrane to

create protrusions and droplets [327]. This illustrates how defect structures can drive

morphodynamical processes.

Botanical woody trees are another example of life that develops its shape over

time. Woody trees are living solids whose eventual shape emerges through many

small iterations of cell reproduction in a thin two-dimensional layer of cells known as

the cambium.

Are woody trees predominantly a biological phenomenon whose essential features

depend on complex details of biochemistry and interactions between many types of

cells? Indeed, biologists have identied many details in the structures of plants, see

Figure 4-3. In contrast to this, I will present initial evidence of that the branching

shapes of woody trees may result from a simple, universal growth process.

This section is structured as follows. Section 4.2.1 briey reviews previous research

on branching systems. Section 4.2.2 shows pictures of wood from real botanical trees

that motivate the present work. Section 4.2.3 explains a simulation that extends a

widely used model of isotropic surface growth to incorporate anisotropy from spins

that inuence growth. That motivates a new model that I call “self-directed solids”

(SDS). Section 4.2.4, shows SDS in 1+1D, and Section 4.2.5 shows 2+1D.
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4.2.1 Review of Previous Branching Models

The arrangment leafs and petals of plants have obvious repeating patterns and spirals,

which have attracted wonder since antiquity. This study of “phyllotaxis” receives

comment in literature across essentially all time periods of human history.

In the Renaissance, Leonardo da Vinci observed that the cross-sectional area of

daughter branches equals the parent’s cross-sectional area, see Figure 4-2.

Figure 4-2: “All the branches of a tree at every stage of its height when put together are
equal in thickness to the trunk [below them]. All the branches of a water [course] at every
stage of its course, if they are of equal rapidity, are equal to the body of the main stream.”
passage 394 in J.P. Richter’s “The literary works of Leonardo da Vinci” [50], which comes
from pages 78v – 79r in the Paris Manuscript M [4], see also Plate XXVII in Ref. [50]. [See
274, Minamino & Tateno] for an analysis of how closely real botanical trees obey
da Vinci’s Tree Rule.

As mentioned in Chapter 1, many scholars saw Turing’s instability as a likely

cornerstone to understanding morphogenesis. However, it took time to develop con-
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nections between his simple idea and real systems. Lindenmayer’s L-systems [89, 90]

and Gierer & Meinhardt’s [99] are dierent approaches to morphogenesis built on

Turing. Each initiated a subeld.

Building on Lindenmayer’s L-systems computer scientists have developed pro-

grams for generating realistic-looking leaf patterns and whole tree branching patterns

[132, 202, 210, 228, 300]. While instructive, these models use many free parameters

to oer control knobs that allow a user to congure resulting shapes. This is useful

for programmatic generation of scenes in movies and video games. Here, we focus on

a minimal model to understand how such shapes emerge from the smallest number

of ingredients.

As described in Chapter 1, Hans Meinhardt expanded the study of Turing patterns

by considering many dierent systems of nonlinear equations that generate patterns

after the onset of a Turing-type instability.1 In 1976, Meinhardt proposed models

for patterns of veins in leafy plants.[107] In 1977, Mitchison oered an explanation

based on reaction-diusion modeling for the long-standing puzzle of why Fibonacci

sequences appear so frequently in the spirals of owers and plants [110]. Subsequent

work in leaf patterning has focused on capturing ner details of veins in real plants

and biological understanding of hormones like auxin [114]. Levitov connected these

Fibonacci sequences of phyllotaxis to the physics of soft growth [130, 137, 138, 168,

224].

Leaf venation has also been explored from the perspective of the mechanics of

materials. Couder et al showed that leaf patterns emerge from a tensorial structure

of the mechanical stress eld in thin sheets [178]. Bends, folds, and creases in soft thin

shells is an active area of on-going work [254, 259], and is relevant to the explosion of

interest in soft robotics [282]. These approaches often focus on understanding param-

eters and conditions for control material samples that are typically a few centimeters

or smaller.

Diusion limited aggregation (DLA) is a well-studied minimal model that exhibits

1Like Prusinkiewicz & Lindenmayer’s “Algorithmic Beauty of Plants,”[132], Meinhardt’s models
are now available in a popular book, “Algorithmic Beauty of Sea Shells.”[240]
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branching and statistical self-similarity. However, “the large-scale structure of a DLA

cluster is dominated by non-local eects.” [175] Here, we focus on minimal local

growth rules of anisotropic growth.

Another physical model of branching comes from the study of branching and an-

nihilating random walks (BARW), which grew out of understanding diusion-limited

chemical reactions that violate detailed balance [155]. This line of thought starts with

the assumption of branching and coalescing of paths. We might hope to eventually

develop a formal connection between the models presented below and BARW. Indeed,

BARW has inspired models of branching organs in animals [296].

Neurons also exhibit branching patterns, see for example Ref. [176] from the

Les Houches summer school “Branching in Nature, Dynamics and Morphogenesis

of Branching Structures, from Cell to River Networks.”

Data on the metabolic rates of animals suggest that they follow a power-law

relationship with body mass with a 3⇑4 exponent:

 = 03⇑4 .

West, Brown, & Enquist at the Sante Fe Institute proposed an explanation of this data

based on the hierarchical branching structure of vascular networks [166, 172]. Subse-

quently, they extended this idea to propose a fractal self-similar structure for branch-

ing in woody trees [171]. However, follow-on work has suggested that space ling and

hydro-mechanical constraints may better t available data from real trees.[249]

It seems that most biophysics researcher have not focused on the grain patterns

of wood. A notable exception is Eric Kramer, whose work has connected wood grain

polarity with auxin [197, 216, 236].

Wood grain patterns exhibit topological defects. These defect structures evolve

as the living solid grows (see photos below). Moving defects in biological systems are

an increasingly hot topic in biophysics [338, 341]. Thus far, that work has focused on

cell membranes and mammalian tissues.
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4.2.2 Observations of Wood

The hormone auxin plays a key role in the development of the cambium, which is

the thin layer of living cells that form a two-dimensional sheath of cells in the outer

layers of woody plants, see Figure 4-3.

Figure 4-3: Left: pulling back outer layers of a Lilac branch from my garden. Right:
Helianthus stem in section showing A-Epidermis, B-Cortex, C-Pith, D-Xylem, E-Phloem
bers, F-Vascular cambium. Scale=0.2mm. “Cells of the vascular cambium (F) divide to
form phloem on the outside, located beneath the bundle cap (E), and xylem (D).” This
vascular cambium is in bundles of phloem and xylem together, and is starting to connect
the bundles at point F. (Reproduced by Wikipedia, image made by Jon Houseman and
Matthew Ford.)

Wood grains show a history of the iterative growth of a living solid. In this

history, one readily observes topological defects in the wood grain, as required by

Poincaré’s 1885 theorem [51]. In the notch of any branch, one can remove the bark

to nd negative topological defects, see Figure 4-4. From boiling o the bark of a

half-dozen branches from various species, I have found –1 topological defects in most

cases where the two branches are of roughly equal diameter. When a child branch is

much smaller than its parent branch, I have found pairs of –1/2 topological defects

arranged symmetrically. In some cases, a turbulent proliferation of defects appears,

see the Silver Maple (bottom-right Fig. 4-4). This may accompany its ner grain

compared to the larger grains of the Basswood on the left. From looking at the

region surrounding this turbulence, one readily identies a total topological charge of

–1. From examining the scars on bark on many living trees, I believe that this total
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charge of –1 is found at essentially all branching points — again, this is required by

Poincaré’s “cowlick” theorem [51].

The tip of the diverging branch is a +1 topological defect escaping into the third

dimension, analogous to bulk liquid crystals [96, 98, 101]. Thus, each branch consists

of a pair of +1 and –1 defects. This is reminiscent of the Berezinskii-Kosterlitz-

Thouless (BKT) [97, 100] transition. However, here, the +1 defect escapes rapidly

into the third dimension as the tip grows. The –1 defect remains anchored at the

notch and grows much more slowly.

Figure 4-4: (Top) basswood branch with bark soaked o in hot water, one nds +1
topological defects in the notches of branches. The defect core traces a line through the
layers of growth that is visible in a cross-section on the top-left. (Bottom) From left to
right: Basswood, White Pine, and Silver Maple branches have dierent grain sizes, and all
exhibit defect structures in the notches.
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Tip growth is faster than lateral growth. This asymmetry is fundamental to the

emergent morphologies of woody plants. Denote the tip growth speed as ⋃⋃. It is

parallel to the aligned long axis of the cells. Denote the lateral growth speed as ⊥
along the surface normal. Growth rates clearly vary in time with available sunlight,

water, and nutrients. Growth rates could depend on many other factors, including

maturity (or diameter) of a beam or proximity to other features along the beam.

However, setting those complexities aside, assume constant ⋃⋃ and ⊥. Denote the

aspect ratio  = ⋃⋃⇑⊥. The +1 defect of the tip advances at + = ⋃⋃. However, the –1

defect of the notch advances in a more subtle way. In this simplied model, we can

estimate −. As shown in the right-most subgure of Figure 4-5, both sides of the

notch “zipper” the gap at a rate of ⊥. Thus, the –1 defect advances along the dashed

line at a speed of

sin


2
= ⊥
− ⇒ − = ⊥

sin ⇑2 (4.1)

In this mean-eld-like model, when a tip begins to diverge from a parent beam, the

angle of divergence  has a critical angle  below which the tip fails to escape and

lateral growth overtakes the tip:

sin  = ⊥
⋃⋃ = 1


. (4.2)

This is only an estimate, because if a +1 defect were to diverge at this critical angle,

then both defects would stay at the same radius from the center of the parent beam

and also pull apart from each other. More likely, the soft matter nature of the

cambium would allow the defects to annihilate.

One might also estimate the critical angle based on thermal uctuations of the

surface, and thus hope to nd a formula for the critical aspect ratio as a function of

noise strength, . However, a usefully accurate estimate of this form has yet to

be put forward.
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Figure 4-5: (Left) Woody spike emerging below a –1/2 defect in Silver Maple, a dicot.
The other –1/2 defect is on the other side of this small branch growing out of a larger
branch. (Center) Cross section of Maize (Zea mays), a monocot, about 800 μm diameter.
A lateral root is bursting out of the parent root. Root tips can diverge at any location. In
contrast, shoots that form leaves and stems typically emerge only from the apical
meristem. Image by John Bebbington FRPS. (Right) Diagram of tip geometry.

Plant hormones clearly inuence branching. The full picture surely involves the

interplay of gene networks and the activity of asymmetric growth. However, I will

show that a simple cellular automaton with a constant aspect ratio can product

branched growth.

Nonequilibrium growth of solids has been studied for decades. Many dierent

systems have been found to be within the basin of attraction of the KPZ universality

class [123]. Given the highly curved nature of these self-directed solids, in Subsec-

tion 4.2.6 we lift the KPZ growth equation into a covariant form and augment it with

an orientational eld, #» . An initial look at all terms allowed by symmetries suggests

a dizzying number of possible couplings. Therefore, at this stage, we present initial

results from three types of simulations aimed at gaining intuition.

To model this 2 + 1-dimensional growth process, we introduce a simple o-lattice

automaton that exhibits asymmetry such that growth along an oriented axis is faster

than lateral growth. This model exhibits a transition between growing spheres and

long pillars. The spheres arise from isotropic growth when the spins are ignored or

scrambled by noise. When the noise does not overwhelm the asymetry, anisotropic

growth generates long pillars, possibly with long-range order. These two states may

130



be analogous to the two phases of the ocking transition: disordered motion with

birds scrambling in all directions (spheres) and ordered motion with a single ock

direction (pillars) [153, 154]. Interestingly, the nite size of real ocks allows them to

twist and turn. This is our dominant visual experience of ocks in nature. However,

the mostly thoroughly studied aspects of ocking models and eld theories focus on

the bulk rather than the boundary of ocks [169].

This model of self-directed growth also generates visually interesting images at

nite-size. In between the sphere and pillar growth modes, the model produces

branched objects that resemble botanical trees. These forms may be statistically

self-similar, and thus fractal.

Each of these three simulations is a simple automaton that lls in sites in a 2D

or 3D space. These models live in a two-parameter space of aspect ratio, , and

temperature or noise, . Setting  = 1 produces isotropic growth at all values of noise

strength . As aspect ratio  is increased above 1, interesting morphologies unfolds.

Anisotropic automatons:

1. 2+1D anisotropic restricted-solid-on-solid (ARSOS) with an orientation #» at

each site that causes faster growth when local alignment is higher. RSOS models

are on-lattice and the isotropic form has been thoroughly studied as a member

of the KPZ universality class. This anisotropic variant exhibits a transition from

stable to unstable growth. At low aspect ratio, growth “heals” misalignments

and the surface width is reduced. When  is above a critical value, pillars form

and the surface width diverges such that the RSOS automaton becomes invalid.

2. 1+1D self-directed solid (SDS) is an “over lattice” automaton consisting of “cells”

positioned in R2 that produce “child” cells a short distance away. Each cell car-

ries an orientation vector, #» , that determines where child cells are deposited.

The child’s orientation angle is set by averaging neighbors plus noise. An under-

lying square lattice enables self-avoidance and keeps the density approximately

uniform by allowing cells to avoid depositing cells on top of existing cells. Even

in this two-dimensional space, a rich phase space of morphologies and topolog-
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ical defects arises.

3. 2+1D self-directed solid (SDS) extends the previous automaton to R3. Instead

of a single angle describing #» , each cell now carries an “attitude” dened by three

angles that evolve as cell lineages propagate in space. Like the previous two

models, this is parameterized by aspect ratio  and noise strength . A similar

array of morphologies arise with important dierences from greater freedom in

R3. Branching does not resemble botanical woody trees until a third automaton

rule is added to favor growth sites in the tangent plane of the emerging solid.

With this third rule, –1 and pairs of –1/2 topological defects become visible,

and resemble those in real tree branches.

4.2.3 2+1D Anisotropic Restricted Solid-on-Solid (ARSOS)

To make an initial connection with the extensive literature on nonequilibrium surface

growth, consider the following asymmetric extension to the standard restricted-solid-

on-solid (RSOS) model. The standard RSOS model considers a columns above a at

plane. A column is picked at random and the height increment ℎ → ℎ + 1 if the

nearest-neighbor columns are not lagging behind, i.e. ℎ − ℎ ≤ 1.[151] Note that

the standard RSOS condition is restricted to looking downward toward the reference

plane. The standard RSOS condition generates hills of unit slope. We augment this

model in three ways:

1. Spins: Each site now carries a unit spin vector, #» . The spin direction is

computed by averaging existing neighbor sites plus noise and then frozen in

place when the site is deposited. We denote noise by .

2. Spin Alignment Coupling: Instead of always depositing allowed sites like

standard RSOS, in ARSOS we randomly skip some growth opportunities where

neighboring spins are misaligned. This backo probability is controlled by a

coupling parameter that we denote “.” Further details below.

3. Floppy Condition: To allow steep domain wall crevices to form, we replace
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the standard RSOS condition with “oppy RSOS” that allows for a threshold

number of neighboring cells to be lled. For 2+1D implemented on a cubic lat-

tice, the total number of possible neighbors is 33−1 = 26. We found that requir-

ing between six and nine neighbors generated growth that resembled standard

RSOS, and typically used a oppy RSOS threshold of seven neighbors. Unlike

standard RSOS, this allows the supporting sites to come from any side, not just

from “below,” i.e. from the direction of the reference plane.

The simplest spin alignment rule we considered is a polar model:

1. For a candidate growth site located at #» = , ,ℎ, , compute “alignment”,

 as the magnitude of the vector sum of the nearest-neighboring sites’ unit

vectors divided by the number of neighbors:

 = 1


⋁ ∑


#» ⋁
2. Compute the site’s growth probability as

 #» = 1 +
1 +  .

3. Draw a random number between zero and one. If the draw is less than   #»,
then proceed with depositing a new spin at that site, otherwise skip it and allow

it to be revisited later.

When the coupling constant is turned o  = 0, the surface grows like standard

RSOS and the spin eld is convected down slopes. This makes pretty pictures in

which valleys are lled via sedimentation ows, and the spin eld evolves to passively

indicate where the sedimentation is occurring.

We also explored nematic alignment rules using the largest eigenvalue of the

Oseen–de Gennes tensor. Given a random initial conguration of spins, the spins

on the growing surface evolve dierently for nematic versus polar alignment rules.

We observed pairs of integer defects in polar spins, and pairs of half-integer defects
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in nematics. However, we focused on the formation of domain walls, and both polar

and nematic alignment rules produced qualitatively similar crevices.

As shown in Figure 4-6, this model exhibits a transition. When the coupling

constant  is above a threshold, areas of misalignment get frozen in place and grow

much slower than aligned areas. This leads to runaway growth of aligned regions,

such that the RSOS model becomes invalid.
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Figure 4-6: Anisotropic RSOS of a Spin Wave. These nematic test cases have a ⇑2
spin wave frozen at the boundaries: left spins pinned pointing inward and right spins
pointing up. The initial height prole is a cosine wave in the horizontal direction, so there
are “hills” on the left and right edges that are 80 height steps above the “valley” in the
center. The left column shows low temperature (b=100), and the right shows high
temperature (b=1). The bottom row shows small coupling of growth rate to alignment
(p=0.1), and the top row shows stronger coupling (p=10). upper-left: at low
temperature and high enough coupling constant, growth quickly moves the spin wave to a
crevice that falls behind and the surface width diverges. In all other cases, even if crevices
form, they lag behind only a small amount and the surface remains stable. lower-left: at
lower coupling, the misaligned spins focus in a crevice that lags the rest of the surface by a
small amount. upper-right: at high temperature and coupling, a network of crevices form
between domains of mostly aligned spins. lower-right: at high temperature and low
coupling, the surface becomes approximately uniform in height and the spin eld evolves
on a at substrate.
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Figure 4-7: Anisotropic RSOS of a Spin Wave (zoom). The same four cases as
Fig. 4-6 zoomed in to show details. The deep crevices in the upper-left will fall farther and
farther behind. This is analogous to the branch points with –1 topological defects in the
SDS models below.

My study of 2+1D ARSOS suggests that when the noise is turned o, the threshold

for  is zero. That is, at zero temperature, any amount of coupling leads to domain

wall formation and a surface width that diverges. At nite temperature, a small

enough coupling gets washed away by the noise, so our simulations suggest that the

threshold becomes nite at nite temperature.

While this observation of a transition in the ARSOS model is helpful, there are

limitations to the ARSOS model. Once a domain wall falls behind, it can continue

growing up, however it does not move laterally. This prevents regions from healing

over the domain wall, as anticipated in Appendix B. Therefore, we set ARSOS aside

and move on to Self-Directed Solid models, which are o-lattice.
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4.2.4 1+1D Self-Directed Solid (SDS)

In my initial attempts at growing a more general oriented solid on-lattice, all of the

automatons that I tried ended up locked to the lattice directions. Cube-like trees were

easy to grow; natural trees not. Moving o-lattice, I tried growing long ellipsoids in

free space. Each cell could deposit child cells as adjacent ellipsoids. By giving a higher

growth probability to child sites near the head or tail of the long axis, it was clear that

anisotropic growth resulted. However, detecting collisions required spatial indexing.

While r-trees are ecient [309], the computational cost of controlling density increased

with larger aspect ratios. To explore large growths of very elongated ellipsoids, I had

to either spend a lot of compute cycles or have pile ups of cells in high density regions

where collision detection was inadequate.

Here, we present a better o-lattice model. I call this “over-lattice” because a

lattice is present; however, cells are not positioned on the vertices of the lattice.

Instead, cells are located at points in R, and their density is tracked in the grid cells

of a lattice. For 1+1D, the lattice is a square lattice in the plane, and for 2+1D

a cubic lattice in R3. Instead of ellipsoids, each cell is a just a point that carries

a unit spin vector. This means that each cell exists in a single lattice plaquette or

voxel. Instead of using a general r-tree index to nd neighboring cells, the lattice grid

sites provide a sucient index. When a cell is created, its position #» is marked on

the corresponding grid coordinate Int{ #»}. When deciding whether to deposit a new

child cell at #», it is easy to check whether it falls in a lattice site that is already

populated by an existing cell. All lengths are measured in units of the lattice spacing.

There are many algorithms for selecting child sites that result in qualitatively

similar growth morphologies. Since we want to assign higher growth likelihood to

child sites in the direction of the parent’s spin vector, a particularly ecient procedure

uses a priority queue of parent cells with open child sites. We call this priority queue

the “open edge.” Cells in the “open edge” are analogous to the cambium of a woody

tree.

1. When depositing a cell at #» compute the locations of four candidate child sites
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and assign each site the following odds of growth:

• #» + #» , odds = 
• #» − #» , odds =  for nematic growth or odds = 1 for polar

• #» + #» ⊥, odds = 1, and

• #» − #» ⊥, odds = 1,

where #» ⊥ is perpendicular to the spin.

2. Remove any child locations that land in lattice sites that are already lled,

unless the cell in that lled lattice site is the parent, in which case allow the

growth, because the diagonal of the square plaquettes is longer than one.

3. Register the parent cell in the priority queue with a priority equal to the highest

odds of its candidate child locations.

At each iteration of the algorithm, consider the sum of all priorities in the queue,

denoted  . Roll a metaphorical  -sided dice to get a number 0 ≤ ≜ , and count

 steps down the ordered priorities in the queue. Pop that parent cell and grow

a new cell at its highest odds child location, unless its lattice site has already been

colonized. If the parent cell still has open child sites, put it back in the queue.

In 1+1D, each spin is a dened by a single angle . We will consider more general

attitudes in the next section on 2+1D. A simulation is initialized with a single rst

cell. When depositing a new child cell, its angle is determined by averaging over all of

the existing cells in its one-hop lattice neighborhood. In 1+1D, this is a 3x3 region.

To mimic the eect of thermal noise, an additional noise angle is added to  before

depositing the cell. Noise is parameterized by . We used Vicsek-style noise from the

Vicsek et al ocking model in which the noise angle is a uniform draw from −⇑2, ⇑2
[154]. Other approaches to drawing a random angle, such as from a Gaussian mapped

on to −⇑2,⇑2, appear to result in qualitatively similar morphologies.
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Figure 4-8: Various Morphologies at mass=1e7. This illustrates observed
morphologies as a function of noise  on the horizontal axis versus aspect ratio  on the
vertical axis. Green indicates a site that has open child sites, which we call “cambium” in
analogy to woody trees. Orange indicates a site with no open child sites, which we call
“wood.” The colored contour plot back drop is discusssed below.

I should emphasize that Figure 4-8 is a draft and could change when the shapes are

grown to larger sizes using more compute cycles. For example, as the outer tendrils

of cells escape further, the region where box counting can detect self-similarity over

many scales may become an annulus. Here, we use the full shape for box counting.

However, we can already see that the core is becoming solid with a box counting

dimension of 2, and the outer most radius is pushed by just a few tendrils with a

box counting dimension of 1. Developing a principled theory of box counting for this

context is an area for future work.

With these simple rules, three distinct morphologies emerge. See draft phase dia-

gram in Figure 4-8. At high temperatures, large  scrambles the spins and isotropic

growth generates a “ball” with a layer of active growth sites expands outwards uni-
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formly in all directions. The surface of the ball changes as  is increased. At low ,

the active layer is thin, and most of the ball is wood. At high , the ball’s surface

becomes diuse with a thick cambium of active growth. The roughness of these balls’

surfaces is likely in the KPZ universality class, at least at low , although I have not

conrmed this quantitatively.

When  is close to one, the ball morphology persists down to low temperature,

i.e. small . Like the 2+1D ARSOS model, at  = 0, any amount of anisotropy, 1 ≜ ,
results in a new morphology, which we call a “pole,” see left side of Fig. 4-8. While

growth occurs in all directions, the ends of the pole grow much faster than the sides.

The direction of the pole is set by the initial seed.

Between ball and pole shapes, a branching shape emerges. We refer to these as

“trees” or more precisely “smashed trees” because they cannot escape into an actual

third dimension until the next section. With high  and a little noise, but not too

much, long slender bers grow outward. These bers branch o of each other and

re-connect, forming a web. Voids in the web eventually ll in. However, the outer

radius of the structure grows faster than the thickness of these in-lling trunks near

the origin. As a result, the region of active growth is very large. Within this region

of active growth, we observe self-similarity. Figure 4-9 shows an example from this

branching morphology.
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Figure 4-9: Branches diverge and coalesce on many scales. (left) zoom in on a
portion of the shape on the right. (right) full view of 17,061,445 cells grown at  = 2000
and  = 0.05 using Vicsek-style noise. The black stair steps are a scale bar. The number of
steps indicates the power of ten, so the largest step is 103 lattice sites. The stack bar chart
shows that wood sites (orange) out number cambium sites (green) 58% versus 42% in this
snapshot. The inner stacked bar chart indicates that there are roughly as many +1 defects
as –1 defects. Eventually, all of this interstities shown here will ll in with wood; however,
by that time, the farthest tendrils will have reached even farther.

Concepts of statistical self-similarity and fractals have been studied extensively in

nonequilibrium growth of surfaces [150, 161].

Before Mandelbrot’s famous 1967 paper on coastlines,[88] mathematicians had

found many examples of non-dierentiable curves and surfaces, such as the Sierpi’nski

triangle and Koch’s snowake, see G. Edgar’s “Classics on Fractals” for translations

of original papers [191]. However, these were often viewed as mere curiosities. In the

same time period that Wilson and coworkers were establishing the importance of scale

invariance in eld theory and inventing the renormalization group [103], Mandelbrot

and coworkers were nding scale invariance in mathematical geometry. In 1982, the

same year as Meinhardt’s book on reaction-diusion patterning [120]. Mandelbrot’s

landmark book on “The Fractal Geometry of Nature” drew signicant attention to

the idea that scale-invariance applied to observable structures around us [119].

Box-counting is a widely used technique for estimating the fractal dimensions of

spatial patterns [189, 256]. The idea is that a spatial pattern generated by a scale-
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invariant process will have regions of open space and lled space such that if one

covers the shape with a grid of boxes of side-length  then some of the boxes will be

lled and others empty. Counting the lled boxes provides an estimate of the “fractal

dimension,”  ,

 = lim
→0

log

log 1⇑ (4.3)

There are many possible denitions of “fractal dimension,” so care must be taken

in ascribing detailed meaning to exactly which physical quantity is exhibiting scale

invariance, see E. Stanley’s chapter “Form: An Introduction to Self-Similarity and

Fractal Behavior” in Ref. [122].
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Figure 4-10: Concept of Statistical Self-Similarity: Figure from Bouda, Caplan, &
Saiers: “Construction of the Koch curve, following Falconer (2003). Each interval (A) is
divided evenly into three and the middle section is replaced by the complementary two
sides of an equilateral triangle (B). The process is repeated for each newly created interval,
yielding the second (C), third (D), and nth iterations. The Koch curve is the limit
approached as  →∞. The limit curve can be subdivided into four quarters, each an exact
copy of the whole, scaled down by a factor of three. The curve is thus self-similar with a
similarity dimension of log{4}⇑ log{3}. Even with n = 10 (E), zooming in on the pinnacle
of the curve by a factor of three yields an image visually indistinguishable from the largest
magnication ve times over, meaning the curve is approximately self-similar over a nite
range of scales. Following the same construction, but randomly choosing the side of the old
interval on which each new pair of intervals is placed, yields one of many “statistically
self-similar” curves (F). These cannot be divided into sets of identical copies; rather, their
parts are scaled random variations on the whole and they only conform to a fractal
dimension on average.”[283]

Declaring that any given natural data set “is fractal” has become a meme in science,

and many are likely not fractal. For example, measuring the shapes of plant roots

or tree branches typically produces data over less than 5 doublings, 25, which does

not exhibit a suciently constant slope over enough box sizes to condently assert

self-similarity [283, 325]. Further, the box counting procedure for statistically self-

similarity diers from exact self-similarity in an important practical way. In counting
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the boxes covering an exactly self-similar shape, one easily minimizes  by aligning

the grid with large edges in the pattern. In statistically self-similar shapes, one must

search for the grid oset and rotation that minimizes  .[283] We have implemented

such a pattern search algorithm, based on Bouda et al ’s proposal. However, as noted

above, the annular nature of these growing structures suggests that more theoretical

work is needed.

Applying this algorithm to the balls, poles, and trees shown in Figure 4-8, we

nd that balls tends to  ≈ 2 and poles tend to  ≈ 1. However, their jagged

edges may have interesting scaling properties. The tree morphology exhibits roughly

constant slopes over several doublings, suggesting that they possess scale invariance,

see Figure 4-11.
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Figure 4-11: Estimating Self-Similarity and Fractal Dimension: Branched shapes
in the middle region of Fig. 4-8 exhibit self-similarity over several scales. This plot comes
from the shape in Fig. 4-9.  is the side length of boxes in a grid. The blue-dashed line
counts the number of boxes  that contain part of the shape at a given . The horizontal
axis is log2 1⇑. The blue circles mark reductions in  by half. Right axis shows the slope of
this line. Red dots are slopes of individual segments of the blue-dashed line within 2  of
the average slope. Black x markers have been dropped. The green range shows seven
segments used in the best t.
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4.2.5 2+1D Self-Directed Solid (SDS)

The self-directed solid model extends naturally to R3 with the important modication

that spins now become general attitude matrices parameterized by three angles. Like

a rocket in ight, the direction of ight requires two angles and the orientation of

the object around the axis dened by the direction of ight requires a third angle.

Averaging such rotation matrices is easily accomplished using quaternions to represent

the rotations [183, 260].

Figure 4-12: Proposed Draft of Phase Diagram for 2+1D self-directed growth:
Like the morphologies found in 1+1D (Fig. 4-12, the 2+1D SDS model generates pillars
and trees and spheres. (Left) very small noise  = 0.01. (Middle) small noise  = 0.07.
(Right) high noise  = 1. I have sketched possible boundaries lines between the three
modes of growth.

Figure 4-12 shows a 3x3 grid of example morphologies, which I have grouped into

these categories:
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1. Pillars: At  = 0 and 2 ≤ , a pillar maintains its order and grows to an

arbitrarily large shape while maintaining its length-to-width aspect ratio equal

to . At very small but positive 0 ≜ , it appears that there is a region of

small  for which the pillar is maintained and noise does not disrupt the long-

time aspect ratio. The lateral disturbances from noise are smaller than the

lateral growth rate, so branches may nucleate but are subsequently overtaken

and absorbed by the pillar.

2. Spheres: At high noise a lateral disturbances can escape, however, its per-

sistence length is so short that it quickly turns back and reconnects with the

object. It is likely that the thickness of this layer of branches meandering and

reconnecting grows faster than the core, like we see in 1+1D; however, our

computational tools for exploring this are not yet well developed.

3. Trees: With  small but not too small, and higher , lateral disturbances

escape and form branches that have large enough persistence length that they

appear to not reconnect with the main trunk. I have labelled this region “Tree”

in Fig. 4-12. It remains to be seen whether this mode of growth is truly distinct

from spheres.

Figure 4-12 shows a guess at approximate boundaries between these modes of

growth. It is not clear whether these boundaries continue to exist for arbitrarily

large growths, and their exact locations are just guesses. Does the line separating

pillars and trees reach either axis? It seems likely, and this motivates developing an

analytical understanding.

Our implementation uses integer values of 1 ≤ . At  = 1, the growth expands

randomly in all directions.

It appears possible that the 2+1D tree morphology could exhibit statistical self-

similarity. Measuring this will require more data. Before rewriting this automaton in

a faster programming language, we may be able to make more headway analytically

using the tools suggested in the next section.

As shown in Fig. 4-4, botanical trees exhibit defects with topological charge of –1
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in the notches of branches. As shown in Fig. 4-5 pairs of –1/2 defects also appear

in botanical trees. From my limited observations, it seems that such pairs of –1/2

defects arise around small branches coming out of larger trunks. It seems possible

that they may eventually merge to form a –1 defect as the branch grows.

It is possible to zoom in on the branch points and examine them visually. However,

extracting a winding number around possible defects is noisy. To get a better look

at the surface textures around the notch of a branch, I initialized a simulation with

two strands of cells: rst a trunk and second a strand that follows the trunk for a

distance and then arcs away. By setting the temperature low, the initialized shape is

preserved and growth proceeds in the “pillar” mode with two pillars touching. The

result is shown in Figure 4-13.

Figure 4-13: –1 defect appears at branch: (Right) Surface pattern in the shape of a
–1 topological defect appears in the notch of this branch. The “view” angle shown on the
right is the camera position for the image on the left. (Left) Looking through the trunk
with wood cells hidden. This was grown at  = 50 and low temperature,  = 0.01, so new
branches do not emerge and disrupt our view.

Regarding color coding in these images, these follow the color coding of the 1+1D

model: the green markers and lines connecting them represent cells that have open

child sites for growth, and are thus “cambium.” The orange sites correspond to “wood.”

While it was practical to categorize defect sites in the planar model, it has not yet

proven practical here. The black-colored segments in these images are new. They

correspond to highly curved segments, which were not tracked in the 1+1D model.
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When examining these close up defects, I found that adding a new growth rule

was helpful, which can be called “tangent plane adhesion (TPA).” In areas where

neighboring spins are misaligned, like the notch of a branch, the averaging process can

encounter a near-zero pivot and eectively generate a random direction and splinter.

This also happens in the 1+1D model; however, it is more pronounced in averaging

the larger number of degrees of attitude freedom in 2+1D, see Ref. [260] on averaging

of attitudes.

To ameliorate this, the TPA rule sets a new cell’s orientation to the weighted

average of the local average orientation and the orientation pointing in the nearest

open direction of the local tangent plane:

q#» = q + 1 −O ,

where q#» is the attitude (quaternion) for a new cell being deposited at site #» . The

measure of agreement amongst neighboring sites  ∈ 0,1 comes from the averaging

process over nearest-neighbors, which also computes their average attitude q. The

O points toward an open spot in the tangent plane. Identifying the local tangent plane

can be noisy at tip locations. At cambium cells with sucient neighboring wood, the

local normal vector is accurately computed from the discrete density gradient, and

the tangent plane can be dened from that normal vector. Activating this TPA rule

appeared to not qualitatively change the phase diagram in Fig. 4-12, so it is turned

o there. It is activated for Fig. 4-13 and has two eects: splintering is much less

likely and more highly bent cells appear.

I have attempted to examine pairs of –1/2 defects by examining a spike growing

out of a plane. However, mounding of wood like in the Silver Maple shown in Fig. 4-5

does not happen in this toy model. Without such mounding, the junction between

the plane and stalk stays sharp and it is dicult to discern where a –1/2 defect is

located; even if the far-eld orientations imply that it is there.

Microscopic mechanisms with nematic order at microscopic scales have been ob-

served to form polar order at larger scales through “polarity sorting” in assays of actin
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laments [321], perhaps something analogous happens in wood.

Before attempting to push these models farther, it would be helpful to have more

instructions from nature. Perhaps wood cells cultured in the lab can reproduce aspects

of the planar shapes.

In parallel, an analytical understanding of relevant couplings might inspire a better

choice of rules for an automaton.

4.2.6 Covariant Model of Surface Growth

Motivate by these simulations, I will briey describe elements of eld theory that may

help understand the morphologies analytically.

The Canham-Helfrich model Eqn. 1.6 is most often expressed in a reparameterization-

invariant form,2 because the highly curved shapes of membranes require that one pay

attention to the coordinates. In contrast, surface growth is often expressed in terms

of a Monge height eld, ℎ, , , which is not reparameterization invariant. For

example, the KPZ equation is typically written,[123]

ℎ̇ =  + 
2
ℎ2 + ∆ℎ + ℎ + ... (4.4)

This expansion in small ℎ has been very productive for analytical study [123].

A reparameterization invariant form of the KPZ equation is:

# »


˙ = ̂ ⌋ + 

 +  + ... , (4.5)

where the embedding vector
# »

 locates the surface in the laboratory frame, R3. To

extract Eqn. 4.4 from Eqn. 4.5, one simply inserts the Monge embedding vector
# »

 = , ,ℎ, ,  and expands in small ℎ.

Shape equations of this form has been studied by several authors [158, 215, 234].

The surface normal vector ̂ and curvature tensor  
 can be computed from the

embedding vector. In principle, one could include tangential ows   #»
  on the

2Another name for “reparameterization invariant” is “covariant.”
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right-hand side of Eqn. 4.5; however, when considering only the shape of the evolving

surface, such tangential ows are extraneous.

Examining Eqn. 4.5, let’s highlight the meaning of these covariant terms. It is well

known that the mean curvature 
 ∼∆ℎ is the gradient of the surface area. Given

an energy proportional to the surface area, a functional derivative yields this term:

ℋ =  ∮
shape

d =  ∮
shape

d1 d2
⌋
 ⇒ ℋ


# »


= 

 ̂ . (4.6)

The ̂ term comes from varying the volume enclosed by the surface, which can

be written:

  = 1

3 ∮shape
d ̂ ⋅ ⇒ 


# »


= 2

3

⌋
̂ (4.7)

where the surface normal, ̂, the embedding vector,  , and the area element ,

each depend on time. In constructing such an integral, one must take care to include

all of the surface that enclose the shape. See Appendix A.5 for a derivation. See also

Guven 2006 for treatment of Laplace pressure using this expression.[215]

One can combine these two terms to dene a “KPZ Hamiltonian,”[158]

ℋ = 
shape

d3
2
̂ ⋅ # »

 +  (4.8)

⇒ # »


˙ = ℋ


# »


= ̂ ⌋ + 

 . (4.9)

This is unbounded as the volume goes to innity (ℎ→∞), so Eqn. 4.4 does not have

expℋ as the equilibrium distribution of ℎ.[158]

Nonetheless, using Eqn. 4.8 as a guide, we seek to include the orientation eld #»

in the Hamiltonian. Even in a limit where #» is constant magnitude, there are many

independent scalar contractions, because there are now two special directions at each

point: the surface normal ̂ and the spin #» .

Assume that once solidied in the bulk, spins only contribute through the 

term. That means that frozen spins in the bulk inuence the value of . At the
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surface, spin misalignment contributes new terms from contracting surface indices

and ambient space vector indices, such as ̂ ⋅ #» and  ⋅ ∇ and  ⋅ ̂ × . Writing

a Langevin equation of motion for #»̇ and
# »


˙ allows even more terms than can be

obtained from a functional derivative of such an energy integral.

Decomposing surface spins into tangential and normal components at each point:

#» =  + ̂ . (4.10)

The tangential component is a one-tensor and the normal component is a scalar.

Decompose the ambient derivative into

#»

 = #»
 ∇ + ̂ , (4.11)

where the normal derivative ̂ ⋅ #»

 provides the missing piece of the ambient space

gradient at each point on the surface, see Ref. [262]. These normal derivatives appear

in the generalized Cole-Hopf transform solution for including a spin eld in the Monge

form of the KPZ evolution, see Appendix B.

To build an eective Hamiltonian or Langevin equation, there’s no a priori reason

to expect that terms like 2 and  would have the same coupling constant even

though they both appear in the magnitude of #» ⋅ #» . Indeed, a glance at the elongated

bers of natural wood says that they surely contribute with dierent coecients.

Similarly,  and − should result in dierent contributions, because the inside and

outside of the surface are dierent.

To Be Continued...

4.3 Conclusion

Why pursue a deeper understanding of these diverging and coalescing branches?

One reason is manufacturing. Additive manufacturing or 3D printing recently

emerged as an alternative to traditional subtractive manufacturing. Trees build them-

selves in place. Such in situ manufacturing could oer a third choice. Recent eorts

152



to create lab-grown wood are heading in this direction [318, 324]. I hope that in-place

manufacturing will enable us to stop cutting down forests for building materials and

toilet paper.

While our simulations suggest scale invariance, it is not clear whether this will

persist to innitely large trees. Real trees are limited by the weight of water in Earth’s

gravity [196, 267]. Perhaps a tree growing in microgravity would grow to unlimited

size with a fractal dimension constant over many more scales. While photosynthesis

on Earth relies on transpiration with the atmosphere, perhaps anisotropic growth

could arise in other lifeforms, such as fungi that could function as chemoautotrophs

elsewhere in our solar system, such as the moon [316]. Active matter has much to

contribute to our progress in space [332].

If these structures represent a universality class, then it might shed light on why

trees are ubiquitous on Earth. Such living solids may appear on remote exoplanets.

If so, perhaps an image of a tree would be recognized in messaging to extraterrestrial

intelligence [223].
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Appendix A

Dierential Geometry

Continuing from the brief section on dierential geometry in Section 1.1, this ap-

pendix provides several derivations and tools from dierential geometry. Many good

references exist for understanding dierential geometry of surfaces, including Refs [61,

106, 181, 188, 262, 288, 289, 320].

As discussed in Sec. 1.1, we start with an embedding vector,
# »

1,2 ∈ R3.

That’s a function of two parameters that returns a Euclidean three vector. One

constructs tangent vectors by taking derivatives w.r.t. the surface paramters:

 ≡ 


≡  ≡ , ,

The surface normal vector can be computed from the cross product of the tangent

vectors.

#» = #»
 1 × #»

 2

A nicer arrangement uses the antisymmetric tensor , which is a constant:

#» = 1

2


#»
  × #»

  (A.1)

This is unnormalized. ̂ = #»⇑ ⋃#»⋃.
The metric is simply  = #»

  ⋅ #»
 . The covariant derivative satises the require-
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ment that ∇ = 0. In Sec. 1.1, we briey explained the Christoel symbols that

enable explicit construction of ∇. Here, we present an intuitive motivation for the

metric tensor .

Since we’re focused on describing a surface under observation in a three-dimensional

lab frame, we often have vectors in R3 that are on the surface. To represent these in

terms of the surface parameters, we write:

#» =  #»
  + ̂ . (A.2)

The one-tensor  is the tangential component for the surface parameters . If the

vector is tangent to the surface, then the scalar eld describing its component out

of the tangent plane is zero,  = 0. Note that this coordinate systems functions

perfectly well, even though its three basis change at every point on the surface. For

example, dot products in the ambient space become:

#» ⋅ #» =  #»
  + ̂ ⋅  #»

  + ̂
=  #»

  ⋅ #»
 ⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊)



 + ̂ ⋅ ̂

=  +  .
The metric tensor arose naturally out of representing our three-vectors in terms of

the surface coordinates.

Focusing on tangent vectors, the upper- and lower-position of indices indicates

whether a quantity “co”varies with the coordinates  or “contra”varies with the deriva-

tives . To convert between the two, we can write  ≡  and notice that the

inner product continues to hold,

#» ⋅ #» = 
⌊⌊[⌊⌊(

 


=  .
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if we dene the matrix inverse of the metric:  ≡ −1. The Kronecker delta  is

just the two-by-two identity matrix.

The three-vector gradient operator
#»

 ≡ ̂ + ̂ + ̂ can be projected into the

surface to obtain a covariant derivative in the surface: ∇ = #»
  ⋅ #»∇. We can also write

the ambient

#»

 = #»

∇ + ̂ , (A.3)

where  is the directional derivative along the normal direction dened at each point

on the surface. The directional derivative of a function is computed by contracting the

regular lab gradient with the vector in that direction, e.g.  . For example, consider

the directional derivative of a vector valued function #» :

 =  , (A.4)

where the index  ranges over the Euclidean coordinates of the lab.

The covariant derivative acts on functions dened on the surface. If the function is

a scalar, then the covariant derivative is simply equal to the partial derivatives w.r.t.

the  coordinates: ∇ = . When applied to a tensor, it acquires a correction for

the motion of the tangent vector, which vary from point to point.

∇ =  + Γ ,

where the Γ is called a Christoel symbol.

As mentioned near Eqn. 1.3, Gauss resolved a question raised by Euler when he

introduced his second fundamental form or “curvature tensor” for a two-dimensional

surface. Recall that this was decades before Riemann generalized these ideas to -

dimensional manifolds.

 = ̂ ⋅ ∇ . (A.5)
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We will explore this tensor in the next section.

A.1 Gauss-Codazzi-Weingarten and Similar Identi-

ties

The basic constructions of dierential geometry in the previous section imply several

further identities. Many similar identities can be computed for time varying man-

ifolds. See the recent texts by Grinfeld [262], and the standard text by MTW on

Gravitation.[174] Here, we provide the simpler, constant-time identities.

The constant magnitude of the unit normal vector:

1 = ̂ ⋅ ̂
⇒ 0 = ∇̂ ⋅ ̂

= 2̂ ⋅ ∇̂ , (A.6)

so the gradient of the unit normal is also purely tangential.

By denition, a unit normal is orthogonal to the tangent vectors, so:

0 =  ⋅ ̂
⇒ 0 = ∇ ⋅ ̂

= ∇ ⋅ ̂ +  ⋅ ∇̂
= +  ⋅ ∇̂
⇒ ∇̂ = −

 . (A.7)

This set of equations is called the Gauss Equations.

Additional identities can be found by computing the tangential and normal pro-
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jections of two derivatives applied to ̂:

∇∇̂ = −∇

 

= −
; +


 ̂

⇒ ̂ ⋅ ∇∇̂ = 



⇒ ̂ ⋅ ∇∇̂ = ; (A.8)

A.2 Principle Two-Bein

We used the principle two-bein in Sec. 2.5. This is the two-dimensional analog of the

four-bein or vier bein in German.

The principle two-bein denes orthonormal unit vectors in the tangent space of

the surface, ̂ =  #»
 . By selecting a two-bein aligned with the principle directions

of curvature, we obtain a coordinate system that diagonalizes the curvature tensor:

 = ̂ ⋅ ∇
= ̂ ⋅ ∇ ̂
=  ̂ ⋅ ∇̂
= 

1 0

0 2

 .

In a two-bein, the Christoel symbols are converted into the simpler spin connection,

 = , where the angle  is dened by the covariant derivative of the two-index

object, :

∇ = −

 . (A.9)

Any tensor expressed in the embedding coordinates, e.g. , can be re-expressed in
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two-bein coordinates,  =  , so the covariant derivative becomes:

∇ = ∇

 = ∇ + ∇




=  −  



=  −
 . (A.10)

A.3 Scalar Laplacian

The Laplacian for scalar functions is constructed from appling the covariant derivative

twice:

∆ ≡ ∇∇

= ∇

= 1⌋


⌋
 , (A.11)

where one can verify the nal line by writing  = ∇ − Γ
. This identity can

be written:

1⌋


⌋
 = ∇ = ∇

 (A.12)

There is extensive mathematical literature on this Laplacian, as well as vector

Laplacians and other variants. This simple denition suces for our purposes.
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A.4 Geometric Identities

Covariant derivatives do not commute. Riemann gave us

;( ≡ ; − ; ≡ ∇∇ −∇∇

= 


=   − 
=   −  , (A.13)

where the second line is the simplied form of the Riemann tensor on a two-dimensional

surface, where it has only one independent degree of freedom, which is equal to the

Guassian curvature,  = det = −1
2

. Therefore,

∇∇ =  ∇∇ +  − 
= ∇∇ +  −  trace
= ∇∇ −  , (A.14)

so the contracted commutator is:

∇,∇  = − . (A.15)

Another set of identities comes from explicitly separating the symmetric and an-

tisymmetric parts of the commutator:

∇∇ = ∇∇ +∇∇

2
+ ∇∇ −∇∇

2


= ∇∇ +∇∇

2
 + − 

2
.

161



Contracting with an antisymmetric tensor gives:

∇∇ =


∇∇ +∇∇

2
 + − 

2

= 
2
⊥ .

A.5 Functional Derivatives

Given a functional of the embedding vector,

 # »

 = ∮
shape

dℱ# »

 ,
one can compute its functional derivative.




# »


=  


# »


+∇



∇
# »

 +∇∇


∇∇
# »

 +∇∇∇


∇∇∇
# »

 + ...ℱ
=  


# »


+∇



 +∇∇


̂ +∇∇∇


∇
# »

 + ...ℱ (A.16)

The integration in  is consumed by resolving delta functions from the partial deriva-

tives. The second line shows the partial derivatives replaced with their symbols from

dierential geometry. One fruitful approach to making progress is to assume that

these objects are independent of each other, and then impose their relationships via

Lagrange multipliers. See Guven Ref. [193].
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As an example, consider the functional derivative of the area:




# »


ℱ = 


# »


 

= 


# »


 2

⌈
det

= ∇


  2
⌉
det ⋅ 

= ∇ 2
1⌈

det
1

2



 det ⋅ 
= ∇ 2

1⌈
det

1

2
detTr ⋅ −1 

  ⋅  (A.17)

= ∇ 2
1⌋


1

2
 2

= ∇ 
=

 ̂ (A.18)

where Eqn. A.17 uses the Jacobi’s formula.

Consider a Hamiltonian that includes a bulk volume and the surface:

total = 1Volume⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
bulk

+∮
shape

 ℋ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
surface

. (A.19)

To compute the volume from an embedding vector,

  = 1

 + 1 shape
 ̂ ⋅ # »

 (A.20)

where  = 2. This is a direct consequence of the divergence theorem, because
#»

 ⋅ # »

 =
 + 1 [215]. The surface normal, ̂, and the area element , each depend on the

embedding vector,
# »

, which may depend on time.
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The unnormalized surface normal vector is:

#» = #»
 1 × #»

 2 = 12̂
= −#»

 2 × #»
 1 = −21̂

⇒ #» = #»
 1 × #»

 2 − #»
 2 × #»

 1

2

= 1

2





̂



Here, we have used ̂ to denote the -th component of the lab frame coordinate

vectors, which are constant. The magnitude of this vector is:

⌋
4#» ⋅ #» =⌉̂ ⋅ ̂

=⌉









=⌉
  −  

=⌈
  − 

=⌈
4det  .

The last line uses the formula for the determinant of an  ×  matrix,

det = 1

!
 .

This yields ⋃ #»⋃ =⌋
 and therefore,

̂ = 1

2
⌋






̂

 . (A.21)
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The functional derivative of the bulk component is:




# »


bulk = 1

3 ∮
shape






# »


+∇



 ∇
# »

 +∇∇


 ∇∇
# »

 + ...
 ̂ ⋅ # »



= 1

3 ∮
shape

2



# »



⌋
̂ ⋅ # »

 + 1

3 ∮
shape

2∇




⌋


̂⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(
1

2
⌋






̂

 ⋅# »



= 1

3 ∮
shape

2
⌋
̂

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)=0 for a closed object

+1

3
̂∇ 

= 1

3
̂


 





 + ∇

  +   ∇

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)



= 1

2

3

⌋
̂ . (A.22)

As noted in Ref. [158], this Hamiltonian is unbounded as the volume goes to innity

(ℎ→∞), so expℋ does not describe an equilibrium distribution.
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Appendix B

Note on Cole-Hopf Solutions to the

KPZ Equation

As pointed out by Kardar, Parisi, and Zhang in 1986, Ref. [123], the KPZ equation

can be linearized by a Cole-Hopf transformation, and the resulting diusion equation

can be solved in the deterministic limit by the diusion kernel solution:

 = exp ℎ #» , 
2


̇ = ∆ + 

2
 (B.1)

ℎ̇

2
 = 

ℎ,
2
 + 

2


ℎ̇

2
 = 

ℎ,
2
 +  ℎ,

2
2 + 

2
 ,

which is Eqn. 4.4 after dividing through by the common factor. In the deterministic

limit, i.e., without the noise, Eqn. B.1 can be solved from an arbitrary initial condition

using the diusion kernel:

 #» ,  =  #» ,  exp ℎ#» , 
2



=   #» ′
4⇑2 #» ′,  = 0 exp

−Φ #» , #» ′,ℎ #» ′,0}}⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(
−#» − #» ′2

4
+ ℎ#» ′,  = 0

2
 , (B.2)
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where we’ve dened Φ as the argument to the exponential and included an arbitrary

additional eld   #» ,  in the diusion kernel to show that it does not contribute to

the derivatives in time and space:

̇ = −
2




+  #» ′

4⇑2 #» ′,0 #» − #» ′2
42

−Φ

 =   #» ′
4⇑2 #» ′,0 −  − ′

2
−Φ

⇒  =   #» ′
4⇑2 #» ′,0− 

2
+ #» − #» ′2

422
 −Φ

= − 
2

+ 1

   #» ′
4⇑2 #» ′,0 #» − #» ′2

42
−Φ , (B.3)

and therefore even with the arbitrary additional eld, Eqn. B.2 is still a solution

to Eqn. B.1 without noise. In fact, the additional eld   #» ,  could be a vector

or tensor. To see the long time behavior of this solution, note that −Φ is strongly

peaked if  is small, so we can estimate  using the saddle point approximation.

When  is small enough, the maximum value of the integrand can be estimated:

max
#» ′  #» ′,0 −Φ #» ′} ≈  #» ′,0 −Φ #» ′}⋂

min #» ′ Φ , (B.4)

and these minima of Φ occur at maxima in the initial height prole, ℎ #»0,0, which
occur at the peaks of initial mounds, which we denote  #»0. Note that in this limit of

slow enough diusion, the additional eld does not inuence the height. Under these

evolution equations, the value of the auxiliary eld at later times is approximately

xed by the values of the auxiliary at  = 0,

#» ,  ≈ #»0,0 , (B.5)

so the height eld controls the long time behavior of the additional eld by spreading

its value at the peaks in the height prole toward neighboring points. This suggests

that adjacent regions will compete and eventually the higher region will overtake the

lower region, stochastically. Our ARSOS simulations do not capture this movement
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of the domain walls, even at low coupling.

As pointed out by Kardar in Ref. [173], the amplitude in  could be a texture

on the surface, which we denote by a vector eld of “spins” #» here:

#  »

 = #» #» ,  exp ℎ
2

 (B.6)

We will set ⋃ #» ⋃ = 1 below in order to regain the KPZ equation and an additional

equation for the spins.


#  »

 = ∆#  »

 + 

2
ℎ

#  »

 (B.7)

 exp ℎ
2

 #» = ∆ exp ℎ
2

 #» + 

2
ℎ exp ℎ

2
 #»

ℎ

2

#  »

 + exp ℎ
2

 #» =
 ∆ℎ

2

#  »

+ ℎ
2

ℎ

2

#  »

 + exp ℎ
2

 ℎ #»  + exp ℎ
2

∆#» + 

2
ℎ

#  »



(B.8)

The unit vector constraint means that any single derivative of #» is orthogonal to
#» :

1 = 2 ⇒ 0 = #» ⋅  #» (B.9)

Dotting Eqn. B.8 with #» and dividing through by the common factor yields:

ℎ = ∆ℎ + 
2
ℎ2 + 22


∆ + ℎ . (B.10)

Multiplying Eqn. B.10 by
#  »

⇑2 and subtracting it from Eqn. B.8 yields:


#» =  ∆#» − #» ∆ + ℎ #»  (B.11)

This equation of motion for the spins is convenient in that it preserves the length

of #» at unity. The new term is a directional derivative of #» in the direction of the
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surface gradient,

#»

ℎ =

ℎ,

ℎ,

0


≈ ̂ − ̂⌋ . (B.12)

At rst, such a term appears to treat “up” as a special direction, because ̂ −⌋
̂ is

not reparameterization invariant. However, this problem is resolved when one writes

the spin function in the same surface coordinates.

In the Monge representation, the surface coordinates are the coordinates of the

Cartesian plane, , , and therefore #» = #» , ,  and  #» = 0 by construction.

Using this, the new term in Eqn. B.11 becomes,

ℎ #»  =̂
#» − ⌋̂  #»

= − ⌋̂  #»

= −⌋
̂

#»

≈̂ #» , (B.13)

i.e. a directional derivative of the spins along the surface normal, which is reparam-

eterization invariant. This foreshadows other terms that could be relevant in general

evolution equations for spins on a growing surface, such as ̂ ⋅ #» and
# »




 ⋅ #» .
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Appendix C

Discussion of OPT in non-at

coordinates

In the introduction to Chapter 3, I briey explained that conformal coordinates avoid

a challenge that one encounters when applying perturbation theory to curved diusion

problems using lab frame coordinates as surface parameters. This appendix provides

more detail on that challenge.

In Chap. 3, we use Ω ≡ cΩ to refer to the conformal scale factor. It’s important

to note that aΩ means something similar and importantly dierent. aΩ is the ratio

of volume elements between the deformed and undeformed shapes in same surface

parameters.

In Chap. 3, we use the operator perturbation theory (OPT) developed by Lord

Rayleigh for sound waves[55] and further developed by Schrödinger for quantum me-

chanics. In Appendix D, we recite the standard development of OPT with Euclidean

support, which we use in Sec. 3.3.1.3. OPT is widely used for modeling interactions

as a simple part plus small corrections:

Φ̇ =complicatedΦ =simpleΦ +  Φ +2
Φ is usually an experimentally accessible quantity of interest, such as the probability

amplitude in quantum mechanics.
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One chooses the simple part simple to have nice eigenfunctions, such as the Lapla-

cian in Euclidean coordinates with its sine and cosine eigenfunctions, e.g. 0}
 = cos.

Then, one can use these eigenfunctions as a function basis for representing Φ. Further,

one can propose that Φ also has a simple part plus corrections:

Φ =∑



0}
 

0}
 + ∑




1}
 1} + 2∑




2}
 2} + ... .

The crucial insight made by John William Strutt, 3rd Baron Rayleigh, was that

one can seek a solution for the corrections in terms of the lower order terms. That is,

one can compute 1} in terms of 0}, and generally +1} using only } and lower

terms. These recursion relations allow a controlled perturbation expansion.

The crucial step of computing the coecients }
 involves an computing an

inner product in the function space spanned by the basis functions 0}
 . The usual

inner product of two functions is an integral over the volume. Using Dirac’s bra-ket

notation, this integral is:

⋃ = ℳ  
∗
  ,

where ℳ denotes the supporting space and  is the volume element of ℳ. Ap-

pendix D summarizes OPT when the supporting space is familiar Euclidean space,

i.e. ℳ = R. However, ℳ could be more general, such as a Riemannian manifold.

If the manifold ℳ supporting the Hilbert space is Riemannian rather than Eu-

clidean, then the integration measure changes from  =  to  =⌋
, where

 is the determinant of the manifold’s metric  and  are local coordinates. See

Appendix A for explanation of the metric tensor. This new volume element modies

the inner product, and therefore also matrix elements of operators and orthogonality

of eigenfunctions, like Eqn. D.2.

Here, we will mostly stay in two dimensions, so the “volume” element is the area
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element, :

area =  d1 d2
⌈
det ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)



.

Next, consider a modication to the surface that changes the embedding vector

by a small amount
# »

0—→ # »

, where  is a small parameter that we will use

extensively for bookkeeping.

Essential Point: Any quantity dened on the modied shape can be written in

terms of its counterpart on the original shape plus small corrections proportional to

, 2, ...

This new surface located by
# »

 will have a metric that we denote by . If

the modication is small enough, then the surface parameters  will continue to

cover the new manifold. We assume that the perturbation is such that the same

coordinate charts continue to parameterize the perturbed manifold, so the  do not

change. For example, cylindrical coordinates  = ,  continue to describe a rippled
cylinder unless the deformation becomes so unruly as to make the surface no longer

a single-valued function of those coordinates.

In the following, we dene tensors only on the original manifold, so for rais-

ing/lowering indices, we only ever use the original manifold’s metric, 0} , and its

matrix inverse, called the inverse metric, 0} ≡ .
Since the coordinate charts do not change, the Hilbert space of functions remains

valid and the basis functions 0}  are still a basis on the modied surface. Before

considering changes to the spectrum of any particular operator, we consider correc-

tions to the basis functions, which we write } . Here, we will make use of Dirac’s

bra-ket notation from quantum mechanics, which allows us to refer to the abstract

eigenfunction ⋃ without reference to a particular set of physical coordinates. The

projection of ⋃ on to specic coordinates is written  ≡ ⋃ ≡ .
This notation makes it easy to write the matrix elements of an operator as a bra-

ket. The simplest example is a bra-ket of 1, which is just the overlap of eigenfunctions.

173



This is easily computed by inserting a resolution of the identity, 1 =   ⋃ ⋃,
∐0}⋂1⋂0}0} =  0} ∐0}⋂ ∐⋂0} (C.1)

=  
⌋
 

0}∗
 

0}
 (C.2)

=  . (C.3)

The superscript 0 means unperturbed manifold. The Kronecker delta, , is zero

or one for normalized eigenfunctions. We need not raise/lower the indices on this

Kronecker delta, because they are eigenvalue labels – not labels for the coordinates

on the curved surface.

Superscript numbers in parenthesis, , indicate quantities proportional to .

The unperturbed metric is 0} and corrections to it are written } . The metric 

is the fully modied metric, i.e. sum of all } including  = 0. For simplicity, we

sometimes drop the 0 on the unperturbed metric,  ≡ 0} , and also on its covariant

derivative ∇ ≡ ∇0}
 . Any other quantity written without a superscript  means the

object on the fully modied manifold, i.e. the sum of all corrections including  = 0.

For clarity, when we mean covariant derivatives for the perturbed metric, we will

write a superscript , like ∇
 or ∆

The framework of Rayleigh-Schrödinger perturbation theory constructs an ansatz

for each perturbed quantity in terms of unperturbed quantities, see Appendix D.

Specically, the ansatz for the fully perturbed basis function ⋃ is written as a su-

perposition of unperturbed basis functions, ⋃0}:
⋃ = ∞∑

=0 ⋂}
= ∞∑
=0∑ ⋂0} ∐0}⋂}⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

≡{}


. (C.4)

The second line inserts a partition of unity 1 =  ⋃0}0}⋃.
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Projecting these onto particular coordinates:

 = ∞∑
=0∑ 0} 

}
 , (C.5)

where the coecients, } , are computed from overlapping the -th order correction

with the unperturbed basis functions. This is an integration over the unperturbed

manifold:


}
 ≡ ∐0}⋂}

=  0}0}∗ 
}
 . (C.6)

Each object with a superscript 1 is carrying an 1, and 2 carries 2, etc. Lord

Rayleigh’s insight was that -order correction } in Eqn. C.6 could be constructed

inductively through recursion relations that build the th order correction from the

 − 1th order corrections; see Appendix D for details.

In a moment, we will nd that a modication to the shape can rescale the basis

functions, i.e. have non-zero } , even at rst order. To see this, we will use the

perturbative ansatz to expand the orthogonality relation for basis vectors on the

perturbed manifold. This can be compared to the Euclidean analog in Eqn. D.13:

 = ⋃ =  ∗
=   ⨋

′ ′ + 1}∗′ + ...0}∗′ ⨋
′ ′ + 1}′ + ...0}∗′ 

= ⨋
′′ ′ + 1}∗′ + ...′ + 1}′ + ... 

0}∗
′ 

0}∗
′

1 +

}





1} + ...


= ⨋

′′ ′ + 1}∗′ + ...′ + 1}′ + ...′′ + aΩ
1}
′′ + ... , (C.7)

where the  symbol indicates that the labels of the basis functions could be par-

tially discrete and partially continuous. In the following, we will usually suppress

this notation. Any repeated primed index, like  ′ or ′, implies summation and/or

integration.
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We dened the ratio of volume measures:

aΩ ≡
⟨⧸⧸⟩ 
 0 =

}



. (C.8)

Its matrix elements at a given order are:

aΩ
}
 ≡ ̂0}∫∫∫∫∫∫∫∫∫∫∫∫∫


}



0}

}∫∫∫∫∫∫∫∫∫∫∫∫∫

0}
0}

=  
⌋
 

0}∗



}



0}

}

0}


=   
0}∗
 ⌋} 0} . (C.9)

Note the cancellation of unperturbed ⌋
 on the penultimate line. These integrals are

often straightforward to compute.

In Eqn. C.7, each order in  must equal zero independently,

 =0 + 1}∗ + 1} + aΩ
1}
 ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)∼1

+ 2}∗ + 2} + aΩ
2}
 + 1}∗′ 

1}
′ + 1}∗′ aΩ

1}
′ + 1}′ aΩ

1}
′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)∼2

+...

+ ∑
1+2+3= 

1}∗
′ 

2}
′ aΩ

3}
′′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)∼

+... . (C.10)

Note that repeated primed indices implies summation, e.g. over  ′. Each order of

0 ≜  must equal zero independently, which leads to useful simplications below. In

computing these terms, one must remember that 0} =  = aΩ
0}
 .

Thus, changing the shape can rescale the eigenfunctions. This should be expected,

because volume changes in Euclidean space also rescale the eigenfunctions.

Re 1}  = −1
2

aΩ
1}
 . (C.11)
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This does not specify the imaginary part, so we can choose it to be zero as an arbitrary

phase factor. These rescalings would aect any orthonormal function basis, regardless

of whether it was associated with a particular normal operator. Note that this is in

contrast to regular quantum mechanics with Euclidean support, where one can always

arrange the corrections such that 1} = 0.

The general term from Eqn. C.10 can be rearranged:

0 = }∗ + −1∑
=1 

−}∗
′ 

}
′ + }⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

familiar from quantum mechanics

+ ∑
1=1

aΩ
1}
′′

−1∑
2=0 

−1−2}∗
′ 

2}
′

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
from modifying geometry

(C.12)

The Laplacian for the perturbed manifold is easily seen to be Hermitian. The

Laplacian on the new manifold located by
# »

 with metric  is

∆ = 1⌋


⌋


G ,

where we have dened the upside-down G symbol,
G, to be the matrix inverse of

the new shape’s metric tensor, :

G ≡ −1 (C.13)

Recall that we dene tensors only on the unperturbed manifold, so

G is not the same

as  ≠ G. (Recall that  ≡ 0} .) See appendix for how to construct this

representation of the scalar Laplacian, Sec. A.3. We will focus on the scalar Laplacian.

The Laplacian operator for higher rank tensors, such as the vector Laplacian, is a

separate subject, see for example Ref. [284].

Its matrix elements are computed via a bra-ket on the perturbed manifold:

∐∆


=   0}∗

G∇
0}


=̇ −   0}∗  G 0}  , (C.14)

where the overdot on the equals symbol indicates an integration by parts in which we
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dropped the boundary term and used the dening property of the covariant derivative:

∇


⌋
 = 0. The last line is manifestly equal to its transpose conjugate. However,

this same operator integrated over the unperturbed manifold is not guaranteed to be

Hermitian:

∐∆0}


=   0}0}∗

G∇
 

0}


=̇ −  ∇


⌈
0}0}∗  G 0}  ,

which is not equal to its transpose conjugate unless ∇


⌈
0} just happens to equal

zero. Note that we’re being careful to distinguish between the covariant derivatives

on the perturbed and unperturbed manifolds, which we denote ∇
 and ∇ ≡ ∇

,

respectively.

Rescaling the Laplacian by aΩ xes this:

∐ aΩ∆0}


=  
⌈
0}⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

 {0}

0}∗


}


0}⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊)
aΩ

1⌋


⌋


G

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
Δ̂


0}


=  
0}∗
 

⌋


G
0}


=̇ −  0}∗ ⌋ G 0}  . (C.15)

which is the same as Eqn. C.14 and manifestly self-adjoint.

If the perturbation leaves the volume measure unchanged, then the volume mea-

sure is simply carried through all the calculations of Sec. D, and Eqns. D.17 remain

valid with the implicit change that the matrix elements,  }
 , now depend on the

more nuanced volume measure of the manifold instead of Euclidean space. Similarly,

other relations derived for Euclidean space would remain unchanged.

However, if the perturbation changes the volume measure, then it must be ex-

panded in our bookkeeping parameter, ,

  ≡ ⌋ =  0}
}



0} =  0} aΩ ,
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as we dened earlier.

For any surface, the scalar Laplacian’s eigenfunctions, 1,2, are dened by

∆ =  , (C.16)

where  is the eigenvalue labeled by parameter , which represents a collection

of parameters, one for each spatial dimension. When the space is compact, these

parameters are discrete and can be enumerated by the integers. When the space

is non-compact, these parameters are real valued. The compact case is generally

more physically relevant. While the Laplacian is less well-understood in non-compact

spaces, it can be a useful abstraction. The Laplacian’s eigenvalues are always negative

real numbers. While the plane waves  =  #» ⋅ #» are most familiar, this is true for any

surface, even when the eigenfunctions are not known in closed form.

We can rewrite ∆ in terms of ∆ plus corrections:

∆ = 1⌋
 aΩ⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊)
=⌋



⌋


G⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(⌋
  −   = 1

aΩ
∆ −∇

 . (C.17)

Here, we have used Eqn. A.12 and dened the “one-tensor product correction”:

  = −  aΩ

G −  . (C.18)

This construction has two useful properties: rst, each term is manifestly self-adjoint.

Less useful arrangements lead to terms with matrix elements in the basis of the un-

perturbed Laplacians eigenfunctions that are not equal to their transpose conjugate.

Second, the objects   and aΩ are easily calculated. The ratio of volume measures,
aΩ, is equal to one plus corrections at each order in . The one-tensor product prod-

uct correction,  , is only perturbative, starting at 1. Using this expression for

the Laplacian, we wish to write its eigenvalues and eigenfunctions in terms of their

counterparts on the original manifold plus small corrections proportional to , 2, ...
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Note that   has broader applicability than just the Laplacian. Consider one-

tensor elds on the manifold. Denote two such elds as  and . The inner product

of these elds is

G. When integrated over the entire manifold, this is:

 =  

G =  
⌋


G .

The dierence between this quantity on the perturbed and unperturbed manifold is:

 −  0} =  

−⌋⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(⌋ G −⌋
 . (C.19)

In the following, we focus on the Laplacian.

To compute corrections to the Laplacian’s spectrum of eigenvalues, we write the

new eigenvalue equation analogous to Eqn. C.16 for ∆ from Eqn. C.17:

 =∆ = 1
aΩ

∆ −∇
 . (C.20)

To proceed, move aΩ to the left side, multiply from the left with an arbitrary

basis function 0} , and integrate over the entire unperturbed manifold:

0 =  0}0}∗ ∆ −∇
 −  aΩ . (C.21)

Next, we apply the framework of Rayleigh-Schrödinger perturbation theory by

constructing ansätze according to the standard pattern for each perturbed quantity,

,  , aΩ, see Appendix D. For example,

aΩ = 1 + aΩ1} + aΩ2} + aΩ3} + ... ,

where aΩ} ∝ . Grouping expanded terms of Eqn. C.21 order by order in , each

collection of th-order terms proportional to  must cancel independently.

Since the coordinate charts have not changed in Eqn. C.21, we can replace the
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wavefunctions with Eqn. C.5 and integrate by parts in the second term to obtain:

0 =  
0}∗
 ∆ −∇

 −  aΩ
∐ #» ⋃̃⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

 ∞∑
=0∑′ 2}

′ 
0}
′ 

=∑
′

∞∑
=0 

2}
′])∼

0}′ ′⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊)
rst

+ ′])
second

− aΩ′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
third

 . (C.22)

The second and third terms are the fully perturbed objects, so we must organize

Eqn. C.22 into groups of equal order in . One obtains dierent parts of the recursion

relations for  =  and  ≠ .
Note that the “second” term in Eqn. C.22 switched signs compared to the previous

line, because we have dened matrix elements our one-tensor product corrections after

taking an integration by parts:

 =  0} 0}∗   0}  .

At zeroth order in Eqn. C.22, the rst and third terms cancel trivially. The second

term is only perturbative and does not contribute at zeroth order.

Expanding Eqn. C.22 to second order:

0 = 
0}∗
 ∆ −∇

 −  aΩ 0} + 1}′
0}
′ + 2}′

0}
′ 

=1} 0} − 0}  − 1}  +  1}
 − 0}

aΩ
1}


+ 2} 0} − 0}  − 2}  +  2}
 − 0}

aΩ
2}
 + 1}′  1}

′ − 0}
aΩ

1}
′  − 1}  aΩ

1}
 + 1} 

(C.23)

The rst-order terms yield these two relations:


1}
 0} − 0}  =  1}

 − 0}
aΩ

1}
 ,


1}
 =  1}

 − 0}
aΩ

1}
 , (C.24)
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The second-order terms must cancel separately, yielding these two relations:


2}
 0} − 0}  =  2}

 − 0}
aΩ

2}
 + 1}′  1}

′ − 0}
aΩ

1}
′  − 1}  aΩ

1}
 + 1}  ,


2}
 =  2}

 − 0}
aΩ

2}
 + 1}′  1}

′ − 0}
aΩ

1}
′ − 1}  aΩ

1}
 + 1}  ,

(C.25)

A simple two-dimensional manifold for our purposes is the at 2-torus, or a cylin-

der with periodic boundary conditions connecting the ends – known as Born–von Kar-

man boundary conditions. This diers from a 2-torus embedded in three-dimensions,

which has non-zero Gaussian curvature. We will introduce Gaussian curvature to the

at torus, but only through small perturbations. The unperturbed at torus has zero

Gaussian curvature, and cannot be embedded in three-space – although it can be

embedded in four-space.

Consider a at torus with tube radius 0 and length  with embedding vector,

# »

, =

0 cos
0 sin



⇒  = 

2
0 0

0 2

 ,

where  ∈ 0,2 and  ∈ 0,1. We refer to changes in tube radius as a function of 

as “longitudinal” variations:

0 → 0 1 +  ⇒  = 2
0


1 + 2 0

0  
0

2 + 2′2
 (C.26)

For a perturbative expansion, we take  smaller than 1⇑ and 1⇑′. Also, we consider
the length to be of similar size as the radius,  ∼ 0.
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The Laplacian is:

∆ = 1⌈


⌈
 G

= 1

2
0 1 + ⌉ 

0
2 + 2′2

2∑
,=1



{ 
0

2+2′2
1+ 0

0 1+{ 
0

2+2′2



= 1

2
0

 11 + 22 + ′
 
0

2 + 2′2
 1

1 +  − ′′
 
0

2 + 2′2
 + 1

 
0

2 + 2′22


→0——→  1

2
0

2 + 1

2
2 .

Thanks to the periodic boundary conditions connecting the ends of the tube, the

unperturbed eigenfunctions are:


0}
 = ⌋

20

2⌋


,

where the -component would have been restricted to only a sine wave for non-periodic

Dirichlet boundary conditions. The unperturbed eigenvalues are:


0}
 = −

≡̄2[(
2

2
0

−
≡̄2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

2


2 ,

where we have dened barred variables that absorb the inverse-length dependent

factors.

Following the rescaling prescription described in Eqn. C.15, we compute the ma-

trix elements of the perturbed Laplacian density, aΩ∆̂

, using unperturbed basis
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functions. This is equivalent to integrating over the perturbed manifold:

′′⨄ aΩ∆̂⨄̃ = 0} I′′ − ′′
=  2

0
 1

0
 

⌈
0}0}∗′′

⟨⧸⧸⟩
0⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
aΩ

∆̂


0}


=  2

0
 1

0
  

0}∗
′′ ⌈ G⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

Δ−∇


0}


=̇ − 2

0
 1

0
  0}∗′′ ⌈ G0}  ,

where the overdot indicates an integration by parts in which our periodic boundary

conditions ensure that the boundary component is zero. Computing the derivatives

of the eigenfunctions and completing the angular integral in ̃ ′′:

= − ′
0

 1

0
 2−′} ′

⌉ 
0

2 + 2′2
1 +  + 2′2 1 + ⌉ 

0
2 + 2′2

 (C.27)

= −′ 1

0
 2−′}


2

2
0

1 − +2 2 + 0


2 ′2

2  −3 3 + 0


2 ′2

2  +...
+ 2′}2}

2 1 + −2 0


2 ′2

2 −3 0


2 ′2

2 +...
 .

(C.28)

This agrees with the unperturbed eigenvalues at zeroth order:

′′⨄ aΩ∆̂
0}⨄̃ = −̄2 − ̄2 ′′⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊)

I′′

,

where I′′ is the identity operator.

The simplest case is a deformation consisting of a single wavelength. This makes

our problem identical to the analysis of periodic potentials that is widely used in the

quantum mechanics of crystal lattices, see Sec. D.3.

Following the standard approach for periodic potentials, represent  as a su-
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perposition of the longitudinal basis functions, i.e. a Fourier series,

 = ∞∑
=−∞ ̃

2 ,

where ̃− = ̃∗ and is the number of periods of  that t within L. If  has only

the periodicity of the boundary conditions, then  = 1; however, we typically assume

that many wavelengths t within . We dene ̄ ≡ 2⇑. The important feature

of periodic deformations is that while a general deformation  would involve many

modes, the periodic ripple only activates its harmonics. Below, we will take just a

single value of p, to examine a perfect sinusoidally rippled cylinder.

Before considering how the ripple aects the modes, we must address the zero

mode. In general, changing the area of a manifold shifts the spectrum. To remove

this trivial shift, we could rescale all lengths to maintain constant area:

 —→ 
⌈
0}

 ⌋



2



= 
20

2  1

0 
2
01 + ⌉ 

0
2 + 2′2


2



= 1 − 2  1

0
 

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
average of 

+2 1

0
32 − 2

0
′2

2
 + ...

 . (C.29)

By arranging our perturbation to be symmetric about the average embedding vector,

it has no zero mode (̃0 = 0) and also no rst-order change in area. By arranging our

representation of the perturbation to have no zero mode, we need not worry about

removing a trivial shift from the spectrum.

At rst order, Eqn. C.28 gives this matrix element:


1}
′′ = ′ ∞∑

=−∞ ̃ −̄2 + ̄̄′ −′, . (C.30)

The dierence in signs of the angular and longitudinal wavenumbers originates

in the structure of
⌋


G, so it is a general feature of the cylinder with a radially
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symmetric deformation. The Kronecker delta function is zero for all values of  and

′ unless their dierence equals  , i.e. a harmonic of the ripple.

The second-order corrections from Eqn. C.28 are:

̃
2}
′′ = ′ ∞∑

1,2=−∞ 
2̃1 ̃2−′+1+2 ̄1̄2 ̄2 1 + 2

0

2
 − 2

0

2
̄̄

′ . (C.31)

where the ̄1 and ̄2 come from the two copies of the Fourier transformed ripple inside

′2. The delta function comes from the area integral over the modes and requires that

 − ′ + 1 + 2 = 0.

Similarly, the matrix elements of aΩ are:

′′⋃ aΩ⋃ =  2

0
 1

0
 

⌈
0}0}∗′′

⟨⧸⧸⟩
0 0}

= ′ 1

0

2−′}
0

0 + 0 + 23
0

′2
2

+ 33
0

′2
2

+ ...
= ′′⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊)

aΩ
{0}
′′

+ ∞∑
=−∞ ̃′−′,⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

aΩ
{1}
′′

+ 2
0

2

∞∑
1,2=−∞ 

2̃1 ̃2−′+1+2 ̄1̄2
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

aΩ
{2}
′′

+... .

(C.32)

Combining these terms at rst order cancels the angular wavenumber, and the

eective potential matrix elements to rst order are:

1}
′′ =  1}

′′ − 0}
aΩ

1}
′′

= ′ ∞∑
=−∞ ̃ −̄2 + ̄̄′ −′+ − −̄2 − ̄2 ∞∑

=−∞ ̃′−′,

= ∞∑
=−∞ ̃ ̄̄′ + ̄2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)≡̃ 

′−′, . (C.33)

The term with the underbrace is the analogue of ̃  Fourier transformed potential

in the one-dimensional crystal, see appendix Eqn. D.36.

By construction, ̃0 = 0, so the diagonal elements of both  1}
′′ and aΩ

1}
′′
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are zero. Thus, there is no rst-order correction to the eigenvalues except near the

boundaries of Brillouin zones (BZs), ̄ = ̄
2 + ̄. See the stripes in Fig. C-1.

For a given value of , the full Hamiltonian matrix at rst order has four non-

zero elements near the edge of a BZ identied by harmonic . Just as in the one-

dimensional crystal, this forms a 2 × 2 matrix. The diagonal elements are the unper-

turbed eigenvalues , and ,− . The potential  from Eqn. C.33 contributes the

two o-diagonal matrix elements at ± . Rewritting the wavenumbers in terms of

distance from the edge of the BZ:  = ⇑2 +  and ′ =  −  = −⇑2 + . In
this notation, the upper-right matrix element corresponds to +:

1}
′+ = ̃ 42

2


2
+ −

2
+  + 

2
+ 2 ′−′,

= ̃  ̄
2
+ ̄2̄′−′, ,

where we’ve absorbed the 2⇑ into the ̄ ≡ 2⇑ and ̄ ≡ 2⇑. The lower-left
matrix element is corresponds to −:

1}
′− = ̃− 42

2
−

2
+ −−

2
+  + −

2
+ 2 ′−′,−

= ̃− −̄
2

+ ̄2̄′−′,− ,

This matrix does not produce a band gap. The o-diagonal elements have mag-

nitude proportional to the distance from the BZ edge. It is zero at the BZ edge,

so regular non-degenerate perturbation theory carries through without singularities.

Contrast Figure C-1 here with the analogous Bragg matrix in conformal coordinates

Fig. 3-15 and for a one-dimensional crystal Fig. D-1.
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Figure C-1: Illustration of the Bragg-like matrix in the lab frame  surface parameter
( = 1). In these coordinates, the momentum-dependent potential has the inconvenient
challenge of being zero on the anti-diagonal, hence the utility of the conformal coordinates.

The rst-order eigenfunction corrections are:


1}
′′ =∑



1}
′−′2 + 2

= 
2

∞∑
=−∞ ̃ 1 + ̄̄

2

 ′−′, (C.34)

In the lab frame coordinate , the  makes the deformation doubly small at rst

order in . Let’s look at second-order. Using Eqn. C.25:


2}
 = 2}

 − 0}
aΩ

2}
 + 1}′′  1}

′′ − 0}
aΩ

1}
′′ −


1}
  aΩ

1}
 + 1}

= ∞∑
1,2=−∞ 

2̃1 ̃21+2 ̄1̄2
from 

{2}
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

̄2 1 + 2
0

2
 − 2

0

2
̄
2−

from 
{0}


aΩ
{2}
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

2
0

2
−̄2 − ̄2

+∑
′
∑
′

∞∑
1=−∞ ̃1 ̄′̄ + ̄2 ′−′,1
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)


{1}
′′

∞∑
2=−∞ ̃2′−′+2 −̄̄′ + ̄̄′ − −̄2 − ̄2
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)


{1}
′′−{0}

aΩ
{1}
′′

=2 ∞∑
=−∞ ⋃̃ ⋃2 −̄2̄2 1 + 2

2
0

2
 + 4̄

2 ̄ − ̄
2
2 . (C.35)
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Note that when  = 0, this correction to the eigenvalue 2} ∼ 2̄2 .

Using Eqn. C.25 again, for ′′ ≠  the matrix elements of the potential at second

order are:

0} − 0}′′ 2}′′ = ̃ 2}
′′ − 0}

aΩ
2}
′′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

′′

+̃ 1}
′′′′′′ − 0}

aΩ
1}
′′′′′′ 1}′′′′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

′′

+1}∗ 

1}
 .

(C.36)

Using Eqn. C.31 and Eqn. C.32 for  2}
′′ and aΩ

2}
′′ in term  in Eqn. C.36

gives:

′′ =′ ∞∑
1,2=−∞ 

2̃1 ̃2−′+1+2 ̄1̄2 ̄2 1 + 2
0

2
 − 2

0

2
̄̄

′
− −̄2 − ̄22

0

2

∞∑
1,2=−∞ 

2̃1 ̃2−′+1+2 ̄1̄2

=′2 ∞∑
=−∞ ̃ ̃−+′− ̄−̄ + ̄′ − ̄̄2 1 + 2

2
0

2
 + 2

0

2
̄2 − ̄̄′ . (C.37)

The term  in Eqn. C.36 is not the same as 1}′′
1}
′′. It is:

′′ = ∑
′′′′

 {1}
′′′′′′−{0}

aΩ
{1}
′′′′′′⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

′′′
∞∑

1=−∞ ̃1′−′′+1 −̄′2 + ̄′̄′′ − −̄2 − ̄2
× ∞∑
2=−∞ ̃2

̄
′′
̄ + ̄2

−̄2 − ̄′′2 ′′−′′,2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

{1}
′′′′

=2′ ∞∑
=−∞ ̃ ̃−′+− ̄′̄′ + ̄ + ̄2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

from 
{1}
′′′′′′−{0}

aΩ
{1}
′′′′′′

̄′ + ̄̄ + ̄2
−̄2 − ̄′ + ̄2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

from 
{1}
′′′′

.
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Adding these together:

0} − 0}′′ 2}′′ =′2 ∞∑
=−∞ ̃ ̃−+′− ̄−̄ + ̄′ − ̄̄2 1 + 2

2
0

2
 + 2

0

2
̄2 − ̄̄′

+ 2′ ∞∑
1=−∞ ̃1 ̃−′+−1 ̄′̄′ + ̄1 + ̄2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

from 
{1}
′′′′′′−{0}

aΩ
{1}
′′′′′′

̄′ + ̄1̄ + ̄2−̄2 − ̄′ + ̄12⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
from 

{1}
′′′′

=′2 ∞∑
=−∞ ̃ ̃−+′−,′, , (C.38)

where the momentum-dependent term ,′, is:

,′, =̄−̄ + ̄′ − ̄̄2 1 + 2
2

0

2
 + 2

0

2
̄2 − ̄̄′

+ ̄′̄′ + ̄ + ̄2 ̄′ + ̄̄ + ̄2
−̄2 − ̄′ + ̄2 . (C.39)

Consider a single ripple of at some xed wavelength 0 . The Fourier transform

as a single value with two delta functions:

̃ = ̃0 ,0 + ,−0 . (C.40)

Note that its complex conjugate is:

̃− = ̃∗ = ̃∗0 ,0 + ,−0 . (C.41)

Using this, we can resolve the sum over  in Eqn. C.38:

0} − 0}′′ 2}′′ =′2 ∞∑
=−∞ ̃0 ,0 + ,−0 ̃∗0 −+′−,0 + −+′−,−0,′, .

(C.42)

The rst pair of delta functions is only non-zero if  = ±0 . The second pair

of delta functions is only non-zero if  = ′ −  ± 0 . If  = 0, then either (a)

0 = ′−+0 implies ′ = , but that’s forbidden by the construction of Eqn. C.25,
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or (b) 0 = ′ −  − 0 implies ′ −  = 20 . Similarly,  = −0, then either (a)

−0 = ′ −  − 0 implies ′ = , but that’s forbidden, or (b) −0 = ′ −  + 0
implies ′− = −20 . Thus, the corrections can only be nonzero when ′ = ±20 .

This is the edge of a BZ at  = 0 . Consider  = 0+ and thus ′ = −0 + .
Is the coecient ,′, nonzero at these values? If so, then we have a degeneracy.

0 + ,−0 + ,0
=̄0−̄0 − ̄ − ̄0 + ̄ − ̄0̄2 1 + 2

2
0

2
 + 2

0

2
̄0 + ̄2 − ̄0 + ̄−̄0 + ̄

+ −̄0 + ̄−̄0 + ̄ + ̄0 + ̄0 + ̄2 −̄0 + ̄ + ̄0−̄0 + ̄ + −̄0 + ̄2−̄0 + ̄2 − −̄0 + ̄ + ̄02
=3̄20 ̄2 1 + 2

2
0

2
 + 2

0

2
2̄0̄0 + ̄

+ ̄2 + ̄0̄ + 2̄2 −̄0 + ̄ −̄0 + 2̄−̄0 + ̄2 − ̄2 . (C.43)

This is not zero at  = 0, which means that there is a second-order degeneracy. One

could employ the technology of Van Vleck to pursue this, see Sec. D.2.1.

Clearly, the conformal mapping approach presented in Chapter 3 is signicantly

more tractable than this approach.
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Appendix D

Operator Perturbation Theory with

Euclidean Support

In this appendix, we document perturbation theory for operators on functions dened

in Euclidean space. We start with non-degenerate Rayleigh-Schrödinger perturbation

theory, and then continue with degenerate perturbation theory to rst and second

order.

The general context is a physical system described by scalar functions dened

over some region of space. The physical quantities of interest could be chemical con-

centrations, pressures, probability amplitudes, etc. To study time evolution, ground

states or some process of interest in the system, when denes “operators” that act

on these scalar quantities. To make analytical progress in understanding the system,

one often must pick particularly simple operators, and then consider small deviations

away from this simplied picture.

A now-standard approach to such perturbation theory was introduced by John W.

Strutt (a.k.a. Lord Rayleigh) in the second volume of his study of acoustics published

in 1896.[55] Schrödinger generalized the approach in analyzing his quantum wave

equation.[65]
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D.1 Non-Degenerate Perturbations

We start with an Hermitian operator, ̂
0}

, which we call the unperturbed Hamilto-

nian. Assume that we know its eigenfunctions ⋃0} and corresponding eigenvalues


0}
 .

Consider a perturbed Hamiltonian that includes a convergent series of perturba-

tions:

̂ ≡ ̂0} + ̂1} + 2̂2} + 3̂3} + ... ,

where  is a small parameter that we use for bookkeeping. The perturbed Hamiltonian

has its own eigenfunctions and eigenvectors:

̂ ⋃ =  ⋃ . (D.1)

We dene the Hamiltonian by its action on functions dened in Euclidean space,

R. As a Hermitian operator, its eigenfunctions provide an orthogonal set that span

this function space. By the notation ⋃, we mean the normalized form of these

functions. If either  or  is from a discrete set, then

⋃ ≡  ∗ =  , (D.2)

where  indicates the -dimensional integration. If both  and  are part of a

continuous set, then the Kronecker delta is replaced by a Dirac delta distribution.

The analogous relation holds for the unperturbed eigenfunctions, which are dened

in the same Euclidean space.

This denes the standard bra-ket notation, which we also use to construct matrix

elements of operators:

 = ∐⋂̂ ⋂ =  ∗ ̂ . (D.3)

“Hermitian” means that ̂ is self-adjoint: ̂ = ̂†
, or in matrix notation:  =∗

.
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“Normal” means that an operator commutes with its adjoint: ̂̂
† = ̂†

̂. Self-

adjoint operators are clearly a subset of normal operators. The spectral theorem states

that the eigenfunctions of a normal operator provide an orthogonal basis spanning

the Hilbert space of functions on which the operator acts. We make frequent use of

this property of the eigenfunctions.

The Rayleigh-Schrödinger approach uses the bookkeeping parameter to construct

an ansatz for the eigenfunctions and eigenvalues of the perturbed Hamiltonian in

terms of their unperturbed values via a convergent series of corrections:

⋃ = ⋂0} +  ⋂1} + 2 ⋂2} + 3 ⋂3} + ...

 = 0} + 1} + 22} + 33} + ... . (D.4)

Given a particular perturbation, one solves for these corrections by inserting the per-

turbative ansatz into Eqn. D.1 and projecting back onto the unperturbed eigenbasis:

0 = ∐0}⋂̂ − ⋂
=  

0}∗
 ̂ . (D.5)

Grouping terms order by order in , we have:

0 =0 ̂0} − 0}  ⋂0}+
+ 1 ̂0} − 0}  ⋂1} + ̂1} − 1}  ⋂0}+
+ 2 ̂0} − 0}  ⋂2} + ̂1} − 1}  ⋂1} + ̂2} − 2}  ⋂0}+
+ 3 ̂0} − 0}  ⋂3} + ̂1} − 1}  ⋂2} + ̂2} − 2}  ⋂1} + ̂3} − 3}  ⋂0}+
...

+  ∑
=0̂

} − }
  ⋂−} + ... (D.6)

Each order in  must equal zero independently. Eqns. D.6 underspecify the correction

terms in the ansatz. Normalization provides an additional constraint. Following the
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usual procedure, one takes the unperturbed eigenfunctions as a basis and writes the

corrections as superpositions of these basis functions:

⋂} = ⨋
′ 

}
′ ⋂′0} , (D.7)

where we sum over discrete eigenvalues and integrate over continuous portions of the

spectrum. Note that 0}′ = ′. Eqn. D.7 denes }′ coecients. Below, we will use


}
 to normalize the eigenkets.

Substituting this representation of ⋃} into Eqn. D.6 gives:

0 = ∑
=0̂

} − }
 ⨋

′ 
−}
′ ⋂′0} . (D.8)

To solve for the }′ and } , we form the inner product of Eqn. D.8 with an arbitrary

unperturbed eigenfunction, 0} , i.e. we multiply from the left with 0}⋃. This gives
a recursion relation for the }′ and } that depends on all lower order perturbations

to the Hamiltonian, ̂
≤}

:

0 = ∑
=0⨋′ }

′ − }
 ′ −}

′ . (D.9)

We have introduced the notation }
 for the , matrix element of the -th order

correction to the operator with respect to the unperturbed eigenfunctions,


}
 = 0}⋀̂}⋀0}

=  
0}∗
 ̂}


0}
  .

The steps above have expanded the inner product ∐0}⋂̂⋂ using the perturbative
ansatz.

This procedure works because at each value of , the highest order corrections to

the eigenvalues, } , and eigenfunctions, } , are coupled only to the unperturbed
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eigenvalues and eigenfunctions. This allows the following rearrangement:

0} − 0}  } + }  =}
 + −1∑

=1⨋′ }
′ − }

 ′ −}
′ . (D.10)

Considering  =  and  ≠  separately:

 =  ⇒ 
}
 =}

 + −1∑
=1⨋′}

′ 
−}
′ (D.11)

 ≠  ⇒ 0} − 0}  
}
 =}

 + −1∑
=1⨋′ }

′ − }
 ′ −}

′ .(D.12)

The Hermiticity of the Hamiltonian ensures that the } are real. However, the }


could be complex and therefore also the } .

Note that Eqn. D.12 provides no constraint on the >0 . Expanding the orthogo-

nality relation gives:

 = ⋃ = ⨋
′ ′ + 1}∗′ + ... ∐′0}⋂ ⨋

′ ′ + 1}′ + ... ⋂′0} . (D.13)

Grouping terms order by order in :

 = 0 +
+ 1 1}∗ + 1}  +
+ 2 2}∗ +⨋

′ 
1}∗
′ 

1}
′ + 2}  +

...

+  }∗ + −1∑
=1⨋′ −}∗

′ 
}
′ + }  + ... , (D.14)

where repeated indices imply summation. The rst term cancels the l.h.s., and each

order in  must equal zero independently. For  = 1, we see that 1} is completely

antihermitian; its Hermitian part is zero. For o-diagonal elements of 1} , this anti-

hermiticity is evident in Eqns. D.17.

The real part of 1} is constrained to zero by Eqn. D.14, and the imaginary part
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is unconstrained:


1}
 ≡ ∐1}⋂0} =  ,

with  real. This amounts to a phase change at rst order:

⋃ = ⋂0} +  ⋂1} + ...

= ⋂0} 1 + 1}  + ⨋
≠ ′ ⋂′0} +2

= ⋂0}  + ⨋
≠ ′ ⋂′0} +2 ,

where the higher order terms dier between the last two lines. Since the phase of ⋃
is arbitrary, we can choose  = 0 without loss of generality. That is, we can choose


1}
 = 0

For values of  ≥ 2, the Hermitian part is not zero:

2 × Herm}  = }∗ + } = − −1∑
=1⨋′ −}∗

′ 
}
′ . (D.15)

For  = 2, we have:


2}∗
 + 2} = −⨋

′ 
1}∗
′ 

1}
′

= −⨋
′


1}∗
′ 

1}
′0} − 0}′ 0} − 0}′  .

For  = , this means:

Re 2}  = −1
2 ⨋

′


⨄1}
 ⨄2

0} − 0} 2 ,

where the prime on the sum-integral means that the pole at  =  is explicitly avoided

by our choice of 1} = 0. We can again use the arbitrary phase of ⋃ to choose the

imaginary part of Im2}  = 0.
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From these, one can extrapolate to get a second identity:

2 × Herm}  = }∗ + } = − −1∑
=1 

−}∗
′ 

}
′

= ∑
1+...+=⨋′ ...⨋{} −1 1}

′ 
2}
′′′ ...

}
{} , (D.16)

where the sum goes over all sets of two or more integers 1, ..., that sum to .

The complete set of corrections for  = 1, 2,3 is:

 = 1 ⇒



1}
 = 

1}



1}
 = 

1}
 0} − 0}  ,  ≠ 


1}
 = 0,  = 

 = 2 ⇒



2}
 = 

2}
 + ∑

′≠


1}
′

1}
′


0}
 − 0}′


2}
 = 2}

 + ∑
′≠ 1}

′ −1}
 ′ 

1}
′


0}
 − 0}′

0} − 0}  ,  ≠ 

2}
 = −∑

≠ ⨄1}
 ⨄20} − 0} 2 ,  = 

(D.17)

D.2 Degenerate Perturbation Theory

These perturbative expansions fail if any of the sums over states connect states with

equal, or nearly equal, eigenvalues 0} ≈ 0} , because Eqn. D.12 multiplies the cor-

rection by the dierence between the eigenvalues. Such a connection only occur if

particular o-diagonal matrix elements,  }
 , or combinations of these elements, are

non-zero. The exact eigenfunctions for the full Hamiltonian are non-singular, so the

innity that results from dividing by 0} − 0}  is a non-physical artifact of our

procedure. It arises from an inadequate choice of function basis. By construction,

the perturbative framework assumes that as  → 0, each perturbed eigenfunction

approaches a distinct unperturbed eigenfunction. This innity in our perturbation

expansion indicates that a set of eigenfunctions of ̂
0}

have the same eigenvalue, and

that our perturbed eigenfunctions approach a linear combination of these degenerate
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eigenfunctions rather than a distinct member of the set.

To avoid this innity, one must nd the linear combinations of 0}
 that represent

the  → 0 limit of the exact eigenfunctions, and must use these in the function basis

instead. To discover these new basis functions, one must diagonalize a submatrix of

the full Hamiltonian. That is, one must exactly solve a subset of the problem instead

of seeking an approximate solution. This procedure amounts to a transformation that

removes the problematic o-diagonal elements.

Fortunately, symmetries often make many zero elements in  }
 , so degeneracies

are often isolated in small submatrices that are easily diagonalized. In the simplest

case, a perturbation connects a state to only one other state that has nearly equal

eigenvalue. This denes a two-by-two submatrix, which is easily diagonalized. For

example, this arises from a periodic perturbation to the free particle Hamiltonian

in one dimension with globally periodic boundary conditions, see Sec. D.3.1 or a

standard textbook on quantum mechanics, e.g. [see 149, Shankar].

Such a degeneracy can happen at any order. An -th order degeneracy occurs

when two eigenvalues are equal at −1-th order are connected by -th order matrix

elements. Given the structure of the recursion relation in Eqn. D.12, such a connection

can involve just one matrix or a chain of up to  matrices multiplied together. Even

in the simplied case of having only  1}
 and no higher order perturbations, a second

order degeneracy may require eliminating the numerator of

∑
′≠


1}
′

1}
′0} − 0}′ 0} − 0}  . (D.18)

If 0} = 0} , then the second-order corrections are valid only if no intermediate

states connect these eigenvalues, i.e. either or both of  1}
′ and 1}

′ are zero for all

′ [127]. When intermediate states exist, we must diagonalize this entire submatrix

to construct a new set of degenerate eigenfunctions. This submatrix can be so large

as to prevent exact solution.
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D.2.1 Second-Order Degenerate Perturbation Theory

Fortunately, [67, Van Vleck] introduced a method of approximate diagonalization

that enables perturbation theory up to third and even higher order. The Van Vleck

transformation has been developed and applied in chemistry [71, 82], see Professor

Field’s lecture notes for MIT course 5.76 [157]. Here, we document two derivations of

the Van Vleck transformation using our notation, starting rst with a generalization

of the derivation presented in [127, Schi].

We restrict attention to discrete sets of degenerate eigenfunctions. Given a set

of  degenerate eigenfunctions 0} , we seek the linear combinations that match

the perturbed eigenfunctions. Van Vleck’s direct approach to obtaining these linear

combinations is to restate our perturbative ansatz to explicitly include these linear

combinations at the zeroth order. Denoting eigenfunctions in the degenerate subspace

by , ′, ′′, ...:

 =∑
′
′0}′ + ⨋ ′



1}
 

0}
 + 2⨋ ′



2}
 

0}
 + ... (D.19)

where the prime on the sum-integral indicates that that the degenerate states are

excluded,  ≠ . Compared to Eqn. D.7 and Eqn. D.4, the only dierence is that

part of 0}′ = ′ has been replaced by the  ×  non-diagonal matrix ′, which
constructs linear combinations of the degenerate unperturbed eigenfunctions. The

ansatz for eigenfunctions outside the degenerate subspace remains unchanged.

To solve for ′, we repeat the steps for non-degenerate perturbations, see Sec. D.1.
Substituting this new ansatz into Eqn. D.6 and grouping terms order by order gives

the  equation:

̂0} − 0} ⨋ ′


}
 ⋂0} + ̂} − } ∑

′
′ ⋂′0} = − −1∑

=1̂
} − }

 ⨋ ′


−}
 ⋂0} .(D.20)

We form two inner products with Eqn. D.20. One with an arbitrary unperturbed

eigenfunction from the degenerate subspace, 0}′′ , and another with an arbitrary un-
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perturbed eigenfunction from outside the degenerate subspace, 0}′ , respectively:

0}′′ − 0} }′′ +∑
′
}

′′′ − } ′′′′ = − −1∑
=1⨋

′

}

′′ −

}
 ′′ −}

(D.21)

0}′ − 0}  }′ +∑
′
}

′′ −

}
 ′′′ = − −1∑

=1⨋
′


}

′ − }
 ′ −}

 .(D.22)

Considering the  = 1 equations makes the r.h.s. zero. By denition,  = 0. Since

this is a second-order degeneracy, we have already diagonalized the rst-order per-

turbation within the degenerate subspace, i.e.  1}
′′ = 0 for ′′ ≠ . Thus, Eqn. D.21

gives:

0 = ∑
′
1}

′′′ − 1} ′′′′
= 1}

′′′′ − 1} ′′
⇒ 

1}
 = 1} , (D.23)

which is expected, because the rst-order perturbation has already been diagonalized

and 0}′′ = 0} . Considering Eqn. D.22 where  is chosen to be outside the degenerate

subspace we have:

∑
′


1}
′ ′ = −0} − 0}  1} . (D.24)

For  = 2, Eqn. D.21 gives:

∑
′
2}

′′′ − 2} ′′′′ = −⨋ ′



1}
′′

1}
 . (D.25)

Using Eqn. D.24 to replace 1} , we have:

0 = ∑
′
2}

′′′ − 2}′ ′′′ +⨋ ′



1}
′′

1}
′


0}
 − 0}′′

′ , (D.26)

This is a secular equation for our unknown matrix ′. The eigenvectors of this
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matrix,

′ =2}
′ +⨋ ′




1}
′

1}



0}
 − 0}′

, (D.27)

provide the linear combinations of degenerate eigenfunctions that diagonalize the

degenerate block of total Hamiltonian up to second order. The eigenvalues of this

matrix are the 2} . This approach can be taken to higher orders by considering  ≥ 2

in Eqns. D.21 and D.22

The derivation in Crawford & Kemble [82, 157] highlights that the new ansatz,

Eqn. D.19, represents a unitary transformation on our Hamiltonian. Denoting this

transformation by ̂  = exp̂, with ̂ a Hermitian matrix, we have:

̂ ≡ ̂
†
̂̂

=1 − ̂ − 
2
̂
2 + ...̂0} + ̂1} + 2̂2}

...1 + ̂ − 
2
̂
2 + ...

=̂0} + ̂1} + ̂0}
̂ − ̂̂0}

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
̂

{1}

+ (D.28)

+ 2 ̂2} + ̂1}
̂ − ̂̂1} + ̂̂0}

̂ − 1

2
̂0}

̂
2 + ̂2

̂
0}

⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)
̂

{2}

+

+ 3̂3} + ... , (D.29)

where

̂
3} =̂3} + ̂2}

̂ − ̂̂2} + ̂̂1}
̂ − 1

2
̂1}

̂
2 + ̂2

̂
1}

+ 
2
̂̂0}

̂
2 + ̂2

̂
0}
̂ − 

6
̂1}

̂
3 + ̂3

̂
1}

To remove a second-order degeneracy, we wish to nd an ̂ that removes those
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parts of ̂
1}

that couple degenerate and non-degenerate states. That is,

⎨⎝⎝⎝⎝⎝⎝⎪
⋀̂1}⋀′ ⋀̂1}⋀′
⋀̂1}⋀′ ⋀̂1}⋀′

⎬⎠⎠⎠⎠⎠⎠⎮
=

⎨⎝⎝⎝⎝⎝⎝⎪
⋀̂1}⋀′ 2

2 ⋀̂1}⋀′
⎬⎠⎠⎠⎠⎠⎠⎮
, (D.30)

where  denotes states outside the degenerate subspace, and  the degenerate states.

The three kinds of blocks in Eqn. D.30 determine ̂ . The two blocks on the diagonal

indicate that ̂ must leave these blocks of ̂
1}

unchanged:

⋀̂1}⋀′ = ⋀̂1}⋀′ ⇒ ′ = 0

⋀̂1}⋀′ = ⋀̂1}⋀′ ⇒ ′ = 0

The o-diagonal blocks give:

2 = ⋀̂1}⋀
= ⋀̂1} + ̂0}

̂ − ̂̂0}⋀
⇒  = 

1}



0}
 − 0}

= ∗
 . (D.31)

Substituting ̂ into Eqn. D.28, we obtain the transformed Hamiltonian. The ×
submatrix of ̂

2}
is


2}
′ = 

⨋
′




1}



1}
′


0}
 − 0}′

− 
1}



0}
 − 0}


1}
′

 +

+⨋ ′



˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂˂


1}



0}
 − 0}


0}



1}
′


0}
 − 0}′

− 1

2

0}


1}



0}
 − 0}


1}
′


0}
 − 0}′

+ 
1}



0}
 − 0}


1}
′


0}
 − 0}′


0}
′




= ⨋ ′



1}
 

1}
′

 1


0}
′ − 0}

+ 1


0}
 − 0}

—→ 2⨋ ′



1}
 

1}
′


0}
 − 0}

, (D.32)

where the arrow in Eqn. D.32 results when the second-order degeneracy results from
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a eigenvalues that are equal at zeroth order – not just at rst order.

The  ×  submatrix of ̂
3}

is


3}
′ =3}

′ + ⨋
′




2}



1}
′


0}
 − 0}′

− 
1}



0}
 − 0}


2}
′

+
+⨋ ′



 
1}



0}
 − 0}

⨋ ′
′ 

1}
′


1}
′′


0}
′ − 0}′

− 1

2 ⨋′′ 1}
′′


1}
′′


0}
′′ − 0}


1}
′


0}
 − 0}′

+ 
1}



0}
 − 0}


1}
′′


0}
 − 0}′′


1
′

+ 
2

 
1}
′


0}
 − 0}′


0}
′ ′′′


1}
′′


0}
′′ − 0}


1}
′


0}
 − 0}′

+ 
1}



0}
′ − 0}


1}
′′


0}
 − 0}′′


0}
′ ′′′


1}
′′


0}
′ − 0}′

+
− 
6

1}
′′


1}
′′


0}
′′ − 0}


1}
′′′


0}
 − 0}′′′


1}
′′


0}
′ − 0}′

+


1}
′


0}
 − 0}′


1}
′′′


0}
′′′ − 0}


1}
′′


0}
 − 0}′′


1}
′′′


=3}

′ +⨋ ′


 
2}
 

1}
′


0}
′ − 0}

+ 1}
 

2}
′


0}
 − 0}

 +⨋ ′

⨋ ′
′


1}
 

1}
′

1}
′′0} − 0} 0}′ − 0}′ 

− 1

2 ⨋
′


⨋
′′



1}
′′

1}
′′

1}
′0}′′ − 0} 0}′ − 0}  + 

1}
 

1}
′′

1}
′′′0} − 0} 0}′′ − 0} 

 . (D.33)

These formulas dier by a factor of one-half from Crawford & Kemble [82, 157], which

may have a minor error (or perhaps I do).

D.3 Periodic Potentials

Periodic potentials arise frequently in modeling solids and other materials. For ex-

ample, electrons moving through a crystal experience a periodic potential from the

lattice of atoms. The free particle Hamiltonian has plane wave eigenfunctions, and by

adding a periodic potential, one couples plane wave states that have the same energy.

This leads to singularities in the formalism of non-degenerate perturbation theory,

so one must replace the plane waves with a new function basis in the degenerate

subspace – this is degenerate perturbation theory.

We illustrate this procedure in one dimension using periodic boundary conditions,

which is the usual approach. Then, to clarify details, we impose alternative boundary

conditions. Modifying the boundary conditions aects the Hilbert space of functions
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on which the Hamiltonian acts.

Denote the unperturbed Hamiltonian by ̂
0} ≡ ∇2, where  takes on dierent

meanings for dierent models. For quantum mechanics,  = −ℎ2⇑2, so that ̂
0} =

−ℎ2∇2⇑2 = ̂2⇑2, where ̂ = −ℎ∇ is the momentum. For a diusing particle,

 =  , where  is the mobility, which describes the dissipative interactions of the

particles with the medium. In low symmetry situations  can be a tensor, e.g. for

rod-like particles or crowded media with concentration gradients or other orienting

inuences.

The perturbing potential,  ;, is a periodic function,   +  =  , which
is controlled by a small parameter, , so the total Hamiltonian is:

̂ = ∇2 +  ; .

The resulting equations of motion for a state function ,  are:

̇ = ∇2 +  ; .

For a time-independent potential, the time variable is easily integrated by substituting

,  = ,
 = ∇2 +  ; , (D.34)

where  is now the eigenvalue of our time-independent Hamiltonian. For quantum

mechanics,  = , the energy.  can be complex, and for a system in which 

represents a physical concentration, a positive real part of  indicates the emergence

of spatio-temporal patterns.

The periodic potential mixes eigenstates of the Laplacian, and some of these eigen-

states will have the same eigenvalues. Nonetheless, these eigenfunctions are indeed

dierent, and therefore have distinct sets of quantum numbers. In this case, these

additional quantum numbers come from translational invariance of the total Hamil-

tonian. Translation by any integer multiple of  commutes with the full Hamiltonian,
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i.e. ̂ ̂ = ̂̂ . As discovered independently by Gaston Floquet[49], George W.

Hill[52], Alexander M. Lyapunov[53], and Felix Bloch[66], the dierential equations

resulting from such a periodic potential have eigenfunctions that simultaneously di-

agonalizes the Laplacian and the translation operator. These eigenfunctions take the

general form:

 =  ,
where  has the same periodicity, .

D.3.1 Periodic Boundary Conditions

The easiest boundary condition to consider is macroscopic periodicity – also known

as Born–von Karman boundary conditions. For a one dimensional solid of  atoms

on a lattice of spacing , one implements periodic boundary conditions by requiring

that functions dened on the lattice are smooth and continuous across the ends, i.e.

0 =  and also  ′0 =  ′. The length of the lattice is  = .
With these boundary conditions, the eigenfunctions of ∇2 are any linear combi-

nation of sines or cosines with wavelengths commensurate with , which we write

as


0}
  =  2


⌋


= 2⌋


,

with  ∈ Z and  =  with  ∈ 0,1. Note that sin with an odd value of

 would be continuous across the boundary, but its derivative would not be. This

requires full periods of sine. Thus, requiring continuity of rst derivatives ensures

that all higher derivatives are also continuous. Since the 0} form a complete basis,

this further implies that all functions in this Hilbert space are innitely smooth across

the boundary.
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These wave functions are normalized so that

0} ⨄0} ̃ =  1

0


=[(⌋
 

0}∗
 

0}
 =  .

The eigenvalues of ̂
0}

0}
 = 0} 

0}
 are 0} = −2⇑2.

Since the domain of these functions is bounded, it provides compact support for

the Hilbert space. This compactness causes the eigenvalues of the Laplacian to be

discrete.

By construction, the perturbing potential of periodicity  also obeys these macro-

scopic periodic boundary conditions:   =   +  =   + . The Fourier

components of   are non-zero only for integer multiples of  = 2⇑ = 2⇑.
Writing the potential as a function of dimensionless  = ⇑:

  = ∞∑
=−∞ ̃ 

2 . (D.35)

From this, one calculates the matrix elements of   in the unperturbed basis:

 = 0} ⨄ ⨄0} ̃
=  1

0

−⌋

 ⌋




= ∞∑
=−∞ ̃   1

0
−222

= ∞∑
=−∞ ̃ −, . (D.36)

By choosing the minimum potential energy to be zero energy, we ensure that the  = 0

Fourier component is zero, ̃ 0 = 0, and therefore  = 0 for all .

To write the matrix elements in a manifestly self-adjoint manner, we write the

Fourier components of the potential in terms of an amplitude and a phase, ̃  =
⋃̃  ⋃ exp. Since   is real, the Fourier coecients ̃  = ̃ ∗− , and there-
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fore:

⋃̃  ⋃ exp = ⋃̃ − ⋃ exp−−
⇒ ⋃̃  ⋃⋃̃ − ⋃ = exp + − = 1

⇒  = −− .

Where the = 1 on the penultimate line follows from the constraints that the left side

is real and positive, and the right side has a magnitude of one. Using this, we can

reorganize the sum in the matrix element so that it is manifestly equal to its conjugate

transpose:

 = ∞∑
=1 ̃ −, + ̃ −−,−

= ∞∑
=1 ⋃̃  ⋃ exp−, + ⋃̃ − ⋃ exp−−,

= ∞∑
=1 ⋃̃  ⋃  −, + − −, . (D.37)
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n= ...   N    ...   (N/2) ...    2   1   0   (-1) (-2) ...  (-N/2)   ...   (-N)   ...


~


~


~


~

Figure D-1: The matrix is non-zero on diagonal stripes only. The blue, red, and green
diagonal lines are xed values of ̃  . The center diagonal is 

0}
 = − {2⇑}2 is

symmetric around its center point. Elements near the dashed orange line ( = −) lead to
near degeneracies. For example, the inner dashed blue box illustrates a two-by-two matrix
with nearly equal diagonal elements.

Naively applying non-degenerate perturbation theory, one constructs the pertur-

bative expansion for the eigenvalue:

 = 
0}
 +  + 2 ∑

≠


0}
 − 0}

+3

= 
0}
 + 2 ∑

≠
 ∞∑
1=−∞ ̃ 1−,1 ∞∑

2=−∞ ̃ 2−,2

0}
 − 0}

+ ...

= 
0}
 + 2 ∞∑

1,2=−∞
̃ 1 ̃ 21,−2

0}
 − 0}+2

+ ...

= 
0}
 + 2 ∞∑

=−∞
⋂̃  ⋂2


0}
 − 0}−

+ ... . (D.38)
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Here we encounter a problem: when  ≈ ⇑2, the denominator approaches zero,

because 0} = 0}− . Introducing  by

 = 

2
+  ,

Eqn. D.38 becomes:

 = 0} + 2 ∞∑
=−∞

⋂̃  ⋂2
− 2


2 2



+ ... . (D.39)

Clearly, when  is zero or suciently small, we must use degenerate perturbation

theory.

Figure D-1 illustrates the structure of the full Hamiltonian matrix. The system

size  =  provides an IR cuto, so the matrix elements are discrete rather than

continuous. However,  has not been specied as a UV cuto, so the matrix is innite

dimensional.

Fortunately, for large enough  there are so many zero elements in the Hamil-

tonian that applying degenerate perturbation theory is simple. While several states

near  = ⇑2 may have  small enough to require degenerate treatment, each is

connected to only one other state of similar energy. Other non-zero matrix elements

are far enough away that they connect states of very dierent energy.

For each value of  in Eqn. D.37, we can solve the degeneracy by considering just

a two-by-two matrix, like the one illustrated by the smaller blue dashed square in

Fig. D-1 for the rst Brillouin zone (BZ):

⎨⎝⎝⎝⎝⎝⎪

0}
− ̃ −
̃  

0}


⎬⎠⎠⎠⎠⎠⎮ . (D.40)
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The eigenvalues of this matrix are the corrected eigenvalues up to rst order:


0+1}
 ± =

eigenvalues of two-by-two matrix⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(
1

2


0}
 + 0}− ± 2⋃̃  ⋃

⟨⧸⧸⧸⟩1 + 

0}
 − 0}−
2⋃̃  ⋃


2

=⇑2————→ 0} ± ⋃̃  ⋃ . (D.41)

As shown on the last line, exactly at the BZ edge,  = 0, the perturbation splits the

eigenvalues to produce a band gap. The exact same split appears at −. Slightly

away from the BZ edge, the diagonal elements of Eqn. D.40 are not equal. The larger

unperturbed eigenvalue acquires a correction that smoothly connects it to the larger

value at  = 0, and the smaller eigenvalue smoothly connects to the smaller value

at the BZ edge. Thus, for  positive, we can pull the larger of the unperturbed

eigenvalues out of 0+1}+, and the smaller out of 0+1}−, to obtain:

0 ≜  ⇒




0+1}
 + = 

0}
])

− 2


2
+⋃̃  ⋃

+}⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(− +
}

1 + 

2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)


{1}



0+1}
 − = 

0}
−⌊⌊] ⌊⌊⌊)

− 2{−}


2


{1}
−⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(

−⋃̃  ⋃ − +
}

1 + 

2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

+}

, (D.42)
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where we have dened the ratio of energies,




= 
0}
 − 0}−
2⋃̃  ⋃

= − 2− 
2




2


⋃̃  ⋃
= 

0}
⇑2
⋃̃  ⋃⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊)

1⇑

4
])


.

The ratio  is itself a ratio of energies: magnitude of the perturbation relative to

exactly degenerate unperturbed eigenvalue. The ratio  is a ratio of integers: four

times  divided by the -th harmonic of the perturbation’s fundamental frequency:

 = 4


= 4


− 2 .

 is the relative distance in Fourier space from exact degeneracy. Note that for  ≜ 0,

the relative magnitudes of 0} and 0}− are reversed, and thus they swap roles in

Eqn. D.42. This role reversal will appear again when we construct a new eigenbasis

below.

10 0 10 20
p

50000

100000

150000

01

Figure D-2: Eigenvalues with rst order
corrections as a function of , see Eqn. D.42,
in units of  = 1,  = 1,  ⋂̃  ⋂ = 1

10
0}
⇑2,

and  = 100.

An important feature of Eqn. D.42 is that

both eigenvalues depend on +, which

tends to zero as  >> , i.e. far from BZ edge.

We can also dene an − with a minus sign

in front of the square root, however it grows to

≈ −2⇑ far from the BZ edge. Fig. D-2 plots

Eqn. D.42 for example values. Since both 

and  may be small, one must take care in the

order of applying limits or expanding in a se-

ries. All values of  ≤  are nearly degenerate

in the sense that our perturbative expansion does not converge. To remedy this, we
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will construct a new eigenbasis from linear combinations of the unperturbed eigen-

functions that diagonalize the perturbation for nearly degenerate values of , thus

omitting these terms from our perturbative expansion.

To compute second order corrections, one would Taylor expand Eqn. D.42 to

second order, choose a range of  values to treat as degenerate, and exclude these

values from the sum in Eqn. D.38, which provides additional second order corrections

through intermediate states.

λ+λ

Sine

Cosine

bandgap 
proportional 
to potential

p
δ

Figure D-3: The periodic potential opens a gap in the spectrum at half the periodicity.
Degenerate perturbation theory shows the perturbed eigenfunctions on either side of the
gap connect with sine and cosine standing waves constructed from superpositions of the
unperturbed basis functions.

Turning attention to the eigenfunctions. As the perturbation turns o, each per-

turbed eigenfunction connects with the unperturbed eigenfunction labeled by the

corresponding unperturbed eigenvalue. When multiple eigenfunctions have the same

eigenvalue, the perturbed eigenfunction connects with a particular linear combination

of these degenerate eigenfunctions. Since  and − have the same eigenvalue,


0}± = −2, we must gure out the particular linear combination that connects with

the perturbed eigenfunctions for each value of . Away from exact degeneracy, the

perturbation mixes states of similar but distinctly dierent eigenvalues, so one must

apply quasi-degenerate perturbation theory. Exactly at the BZ edge, the perturbation

mixes two eigenfunctions in the exact same degenerate subspace. Using the eigenvec-
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tors of the two-by-two matrix, we nd that at the BZ edge, as  → 0, the perturbed

eigenfunctions connect with these two unperturbed eigenfunctions:

− = −2⌋
20

}
2


sin + 

2


+ = −2⌋
20

}
2


cos + 

2
 ,

where  is the phase of ̃ . The sine mode has the more negative eigenvalue. This is

essentially identical to the textbook analysis of a one-dimensional crystal that shows

that electrons localize around the positively charged atomic sites.

Before computing eigenfunction corrections, we must construct a new eigenbasis

of unperturbed eigenfunctions that prevent ̂ from connect states of nearly equal

energy. That is, we must diagonalize ̂ in each two-dimensional -subspace where

 ≤ .

To construct this new eigenbasis, we examine the eigenvectors of the two-by-two

matrix, Eqn. D.40. Generally, the eigenvectors of a two-by-two matrix,

 = 
 

 

 ,

are:

#» ±
 =


− +

eigenvalue±⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊[ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊(
Tr

2
±
}

Tr2
4

− det



∝





− + Tr
2

±
}

Tr2
4

− det
⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊] ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

eigenvalue±


= #» ±

 ,

where ± represents the two vectors on the left, and ± the two on the right. ±
points in the same directions as ± with a dierent magnitude – they are simply

rescaled. Now, restrict attention to our self-adjoint matrices,  = 0}− and  = 0}
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and ∗ =  = ̃  . For  ≥ 0,  ≥  and the eigenvectors become:

#» +
 = 

−0} + 0+1} +
⋃̃  ⋃

∝ 
⋃̃  ⋃−

−0}− + 0+1} +
 = #» +



#» −
 = 

−0} + 0+1} −
⋃̃  ⋃

∝ 
⋃̃  ⋃−

−0}− + 0+1} −
 = #» −

 .

Noting that these combinations of ’s simplify,

−0} + 0+1} ± = ⋃̃  ⋃±
−0}− + 0+1} ± = −⋃̃  ⋃∓,

and normalizing the vectors gives:

̂± ≡ ̂± = 1⌈
1 + ±2


− ⇑2±
 ⇑2

 = 
− ⇑2

− ⇑2∓


±1⌈
1 + ∓2 = ̂± .

We show ̂± as indication of the various identities the result from the special structure

of ±.

As above, we write the Fourier components of the potential in terms of an ampli-

tude and a phase, ̃  = ⋃̃  ⋃ exp, the new eigenfunctions of each degenerate

subspaces described by an instance of the matrix in Eqn. D.40 are

± = 0} + 0}−
− ±

}
1 + 


2⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊)

±}=±},}}

. (D.43)

For each non-zero Fourier mode, ̃  , with  ∈ 1,2, 3..., we replace all the nearly de-

generate basis functions 0} around  ≈ ± − 1⇑2 with the new linear combination

± . The matrix of the potential in this new basis is diagonal in this problematic re-

gion. How large a range of  is appropriate? The range of states to replace can be

at most the  states between  − 1 and  . Beyond this region, this particular

216



combination of states becomes non-orthogonal. In principle, for small perturbations

and large  , the range can be much smaller.

The integer  in Eqn. D.43 is the BZ number in a repeating zone scheme. For

example, near the rst BZ’s edge,  in the range 0 ≜  ≤  , 0} gets paired with 0}′ in

the range − ≜  ≤ 0. For the -th BZ, 0}−1}≜≤ gets paired with 0}−≜′≤−−1} .
If ̃  = 0 for a particular value of , then there is no need to replace the original

basis functions for that range of .

The mixing coecient ± is more properly described as a function of

 =  +⇑2 div 

and

 =  mod ⇑2 − ⇑2 ,
because  =  and  = .

Exactly on the BZ boundary,  = 0 so  = 0, and the amplitude for left and right

moving plane waves in ± are equal, which produces two standing waves. This is

Bragg scattering. For an attractive potential, the lower energy standing wave, −
 is

a sine wave with peaks aligned with the potential.

An electron injected into such a material is described by a wave packet covering

a range of wave numbers. The group velocity  = ⇑ is zero at the boundary of

a BZ, so an electron described by a wave packet with momentum centered near the

boundary of a BZ moves very slowly through the material.

Considering a purely sinusoidal potential, i.e.  = 1 only, this modied eigenbasis

is orthogonal:

∐± ⋂± = 0}− ⨄0}−̃ + 0} ⨄0} ̃ −±±
+ 0} ⨄0}−̃ −± + 0}− ⨄0} ̃ ±

= ,1 + ±± + ,−−± + −,
±

The matrix elements in this new eigenbasis are related to the  from Eqn. D.37.
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We denote the new matrix elements with a superscript ±± to indicate the left and

right eigenfunctions:

±±
 = ∐± ⋂ ⋂±

= −,− + ,±± + ,−−± + −,
±

= ⋂̃  ⋂  −, + − −, 1 + ±±
+  −+, + − −−, −± +  −−, + − −+, ±

= ⋂̃  ⋂  −, + − −, 1 + ±±
+ , + −2 −,2± + 2 −,2 + ,± ,

which equals zero for  = −:
±±−, = ⋂̃  ⋂  −2, + − 2, 1 + ±−±

+ −, + −2 ,±− + 2 ,− + ,−±
= ⋂̃  ⋂  −2, + − 2, 1 + ±−±

+±0 + ±0 + −2 ,±− + 2 ,−±
, (D.44)

D.3.2 Limit of Innity System Size

We now reduce wave number spacing to zero by taking the double limit , → ∞
such that their ratio ⇑ =  remains constant. Alternatively, we could have taken

 → 0 and  → ∞ while keeping their product constant  = . To illustrate, we

preserve  and take system size to innity.

Taking both left and right boundaries to innity and assuming periodic boundary

conditions at innity, the eigenfunctions of ∇2 are any linear combination of sines or

cosines with any wavelengths, which we write as 0}  = ⇑⌋2 with  ∈ R. This
is normalized so that

0} ⨄0} ̃ =  ∞
−∞ 

0}∗
 

0}
 =  −  , (D.45)
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where this is a Dirac delta distribution, rather than the previous Kronecker delta.

The eigenvalues of ̂
0}

0}
 = 0} 

0}
 are now 

0}
 = −2, and  has dimensions

−1.
This unbounded domain is non-compact, and therefore the Hilbert space lacks

compact support. This underlies the change of normalization for the eigenfunctions

and switch to a continuous spectrum for the Laplacian.

The perturbing potential of periodicity  now oers the only length scale:   =
  + . As before, the Fourier components of   are non-zero only for integer

multiples of  = 2⇑, so Eqn. D.35 applies again. Instead of using the integration

variable  = ⇑, one must integrate the dimensionful  from −∞,∞ and one obtains

exactly the matrix elements of   as Eqn. D.37 with the Kronecker delta replaced

by a Dirac delta function.

 = ∞∑
=−∞ ̃  −  +  , (D.46)

As before, by choosing the minimum potential energy to be zero energy, we ensure

that the  = 0 Fourier component is zero, ̃ 0 = 0, and therefore  = 0 for all .

To apply non-degenerate perturbation theory, one constructs the perturbative

expansion for the eigenvalue:

 = 
0}
 +  + 2 ∞

−∞ 



0}
 − 0} + ′ +3 , (D.47)

where the ′ prescription avoids the pole at  =  on the real axis. This does not

prevent the singularities that arise from Bragg scattering when attempting to apply

non-degenerate perturbation theory. Carrying the integration leads to the same result

as Eqn. D.38. Just as before, modes near the boundaries of Brillouin zones are nearly

degenerate. Fig. D-1 carries over with the modication that the matrix indices are

now continuous. The eigenvectors and eigenvalues of the matrix in Eqn. D.40 are

essentially the same with eliminated by taking its ratio with  and the identication

that  is now a real number instead of restricted to integers.
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D.3.3 Non-Periodic Boundary Conditions

We now restrict the Hilbert space by replacing the periodic boundary conditions with

non-periodic Dirichlet boundary conditions. This means that in setting up our original

problem, Eqn. D.34, we specify the value of  at the boundary. Alternatively, we could

specify its derivative (Neumann B.C.) or a combination of the two. A constant oset

satises a Dirichlet boundary condition, so our non-constant basis functions must

equal zero at the boundaries. This forbids the cosine component of exp. The

eigenfunctions of ∇2 are sine waves with wavelengths commensurate with , which

we write as


0}
  =

}
2


sin2




=
}

2


sin2 , (D.48)

with  ∈ Z. The eigenvalues of ̂
0}

0}
 = 0} 

0}
 are 0} = −⇑2.

We now briey consider a more general potential with periodicity  that is not

necessarily commensurate with , i.e.  = ⇑ ∈ R instead of being restricted to

integers. In addition to non-commensurate periodicity, there may be a phase shift

such that   = 0 ≠ 0. As before, we require that   =   + , so the

Fourier components of   are non-zero only for integer multiples of  = 2⇑ =
2⇑, however these Fourier modes need not be the same as the eigenfunctions of

the Laplacian:

  = ∞∑
=−∞ ̃  sin2


 − 0

= ∞∑
=−∞ ̃  sin 2 − 0 , (D.49)

where 0 is the smallest argument for which the potential is zero, i.e.  0 = 0.

Again, we switch to dimensionless coordinates  = ⇑ and 0 = 0⇑. From this, one
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calculates the matrix elements of   in the unperturbed basis:

 = 0} ⨄ ⨄0} ̃
= ∞∑

=−∞ ̃   1

0
sin sin − 0 sin2 , (D.50)

where  ≡ 2⇑ is the Fourier frequency of the potential. This expression causes

immediate concern, because  sin3 is zero – unless the integration does not cover a full

period or phase shifts or wavelengths are non-commensurate. We investigate these

exceptions below.

After making trigonometric substitutions, we have:

 = ∞∑
=−∞ ̃   1

0
 − − −0} − −−0}  − − 

4


= ∞∑
=−∞ ̃   1

0
+} + −+} − −} − −−} −0} − −−0} 

4


= ∞∑
=−∞ ̃   1

0
cos −  − cos +  sin cos0 − cos sin0

= ∞∑
=−∞ ̃ 


cos0
− sin0

 ⋅  1

0


sin
cos

cos −  − cos + 

= ∞∑
=−∞ ̃ 


cos0
− sin0

 ⋅ 
−1+ − cos

sin


−2−1+ − ⇑2 − 2 + ⇑2 − 22 .

(D.51)

The three length scales, , , and 0, make for a rich space of possible behaviors that

[117, Aubry] has studied. Even when ⇑ is an integer, Fig. D-1 is not an accurate

description for non-periodic boundary conditions. Examples in Fig. D-4 illustrate

how the perturbation matrix now contains anti-diagonal stripes in addition to the

diagonal stripes of the periodic case.
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Figure D-4: Examples of  in Fourier space for various values of . The lower row
illustrates how wavelengths commensurate with  lead to alternating zero and non-zero
values. The upper row illustrates how non-commensurate wavelengths blur the matrix into
all non-zero values.

The system size  determines the spacing of the Laplacian’s discretized eigenval-

ues. The wavelength of the potential, , modies the magnitude of the potential’s

Fourier coecients in the basis of the Laplacian’s eigenfunctions. One can segment

the parameter space by considering three regimes for :  >>  to  ≈  to  ≜≜ ,
and also whether ⇑ is irrational, rational, half-integer, or integer valued.

The matrix is symmetric in several ways:  = , and , = −−, = −,−, and
also −, = −,. The diagonal and cross diagonal are equal with opposite sign. For

0 = 0 and ⇑ = ⇑2 with integer  , the diagonals are:

−− =  = ∞∑
=1

4 Im ̃ 2 1 − −1
2 − 2 +  , (D.52)

which illustrates why there are no poles in : the denominator only equals zero

when  is even, which is exactly when the numerator is zero.

As expected, various restrictions on ⇑, 0, and the Laplacian’s eigenfunctions

can make all elements zero,  = 0. For example, taking 0 = ⇑, with integer

, selects the upper element of the column vectors in the dot product in Eqn. D.51.

Further requiring full-period eigenfunctions of the Laplacian restricts  and  to even

values. In this case, if ⇑ =  is integer, then  = 2 and all elements zero.

Non-zero elements arise for odd values of  and , or non-integer values of ⇑.
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Figure D-5: Illustration of  for a cosine potential in a space with sine eigenfunctions,
such as a non-periodic compact space. The diagonal stripes are the same as Fig. D-1, and
the anti-diagonal stripes are of equal and opposite magnitude. The two orange boxes
indicate the near degeneracy that results from the anti-diagonal stripes crossing the center
diagonal at ⇑2, which is also where the o-diagonal stripes cause degeneracy. The four
corners of the orange boxes that sit on the center diagonal represent states of nearly equal
energies that get mixed by the perturbation.

An oset of 0 = 2 + 1⇑2, with integer , selects the lower element in the

dot product in Eqn. D.51. In this case, if ⇑ = ⇑2 is integer or half integer, then

 =  and most elements are zero – but not all! This choice of 0 corresponds to

shifting the potential by a quarter period, so that Eqn. D.49 becomes:

  = ∞∑
=−∞ ̃ −1 cos  . (D.53)

This leads to  ∼  sin2 cos, which evaluates to a set of four Kronecker delta func-

tions.Note that for real-valued  , the Fourier coecients are real, so ̃ − = ̃  .

For simplicity, take  = 0. In the following, we allow the more general eigenfunc-

tions sin with possibly odd values of .

 = ∞∑
=−∞ ̃ 

1

2
−,−+ + ,+ . (D.54)

This matrix is illustrated in Fig. D-5. This has the same diagonal stripes as Fig. D-1

plus additional anti-diagonal stripes of equal and opposite magnitude.
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Considering the non-degenerate perturbative expansion:

 = 
0}
 +  + 2 ∑

≠


0}
 − 0}

+3 ,

The term linear in  results from the anti-diagonal element crossing the main

diagonal:

 =


− ̃ 

2 if  = 2 =  
 , ∈ Z

0 otherwise
(D.55)

The term quadratic in  has more structure than the periodic case:

∑
≠

1

4

1


0}
 − 0}

∞∑
,=−∞ ̃  ̃ −,−+ + ,+− ,−+ +  ,+

1

4

∞∑
,=−∞ ̃  ̃  ∑

≠
,−+ ,−+


0}
 − 0}

+ ,+ ,+


0}
 − 0}

− ,−+ ,+


0}
 − 0}

− ,+ ,−


0}
 − 0}

1

4

∞∑
,=−∞ ̃  ̃ 

 ,−+

0}
 − 0}−+

+ ,++

0}
 − 0}+

− ,−−+

0}
 − 0}+

− ,−++

0}
 − 0}−+


1

4

∞∑
,=−∞ ̃  ̃ 

 ,


0}
 − 0}−+

+ ,−

0}
 − 0}+

− ,−2


0}
 − 0}+

− ,−+2


0}
 − 0}−+


1

4

∞∑
=−∞

 ̃  ̃ 


0}
 − 0}−+

+ ̃  ̃ −

0}
 − 0}+

− ̃ IsInt2


 ̃ −2+

0}
 − 0}−2+

+ ̃ 2−

0}
 − 0}−+2−

 ,

(D.56)

where IsInt() is one if its argument is an integer and zero otherwise. Next, we exploit

the fact that the sum ranges over positive and negative integers and also that 0} =
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
0}− and ̃ − = ̃  :

1

4

∞∑
=−∞

 ̃ − ̃ −

0}
 − 0}+

+ ̃  ̃ −

0}
 − 0}+

− ̃ IsInt2


 ̃ −2+

0}
 − 0}−+

+ ̃ 2−

0}
 − 0}−


1

4

∞∑
=−∞

 ̃
2




0}
 − 0}+

− IsInt2


 ̃  ̃ −2

0}
 − 0}−


1

4

∞∑
=−∞

 ̃
2




0}
 − 0}+

− IsInt2


 ̃ − ̃ −−2

0}
 − 0}+


1

2

∞∑
=−∞

̃  ̃  − ̃ +2IsInt 2





0}
 − 0}+

1

2

∞∑
=−∞

̃  ̃  − ̃ −2IsInt 2




0}
 − 0}−

, (D.57)

which is degenerate when  = ⇑2. While this satises the IsInt(), it generates ̃ 0,

which is zero, so the exactly degenerate case gets an additional term that is identical

to the periodic boundary condition case:

⇑2 = 
0}
 +  ⋂̃  ⋂ −1

2
± 1 +2 ,

The case of near degeneracy is more complex, because the anti-diagonals mix

states of similar energy where they cross the central diagonal. Instead of the two-

by-two matrix encountered previously, we have the four-by-four matrix illustrated in

Fig. D-5:

⎨⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎝⎪


0}
⇑2}+ −̃  ̃  0

−̃ ∗
 

0}
⇑2}− 0 ̃ 

̃
∗
 0 

0}−⇑2}+ −̃ 

0 ̃
∗
 −̃ ∗

 
0}−⇑2}−

⎬⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎠⎮
, (D.58)

where  = ⇑ indicates the number of discrete wave number steps away from

exact degeneracy. For each value of ⋃⋃ = 1, 2,3, ..., and each value of ⋃⇑⋃ = ⋃ ⋃ =
1, 2,3, ..., there is a set of four nearly degenerate eigenvalues that are connected by

225



 :
0} ⋀ = −1

2
+ −1 with ,  ∈ 0,1 , (D.59)

where we have introduced the binary parameters  and . The eigenvalues of this

matrix in Eqn. D.58 are:

 =

−22 1 ±  


2 ,−22 1 +  


2 ± 2 ⋂̃  ⋂

⟨⧸⧸⧸⟩1 +  ⋂̃  ⋂

2

.

(D.60)
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