
EXOPLANETARY SYSTEMS IN TECHNICOLOR

by

David Berardo

M.Sc., McGill University (2017)
B.S., McGill University (2015)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© David Berardo, 2023. All right reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Physics

May 18, 2023

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Julien de Wit

Assistant Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lindley Winslow

Associate Department Head of Physics



EXOPLANETARY SYSTEMS IN TECHNICOLOR

by

David Berardo

Submitted to the Department of Physics
on May 18, 2023, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

As the number of confirmed extra-solar planets surpasses 5000, our ability to char-
acterize exoplanets has equally advanced in the era of high precision photometry
afforded by instruments such as the James Webb Space Telescope. With increased
precision, longer baselines of observation, and access to multi-instrument data sets,
the study of exoplanets has reached a level of detail never before possible. In this
thesis, I focus on the analysis of several multi-planet transiting exoplanet systems
observed with the KEPLER, K2, Spitzer, TESS and Hubble instruments. Using data
from these instruments, I present a detailed study of the bright HIP41378 five-planet
system, extracting the orbital periods of two long-period planets, refining transit cen-
ter measurements, and detecting Transit Timing Variations (TTVs) of one of the
innermost planets in the system, which hints at the presence of an undetected 6𝑡ℎ

planet.
Beyond individual systems, I also consider two observable properties of exoplanets

at a population-level scale, in the context of treating planets as 3D objects. Measur-
ing the shape of a planet provides us with insight towards their internal structure,
formation, and atmosphere, and allows us to disentangle observational degeneracies
between surface features and their orbital parameters. First, I expand the study
of rotation-induced oblateness to a sample of almost 400 planets, quantifying the
detectability of oblateness for these planets in the context of future high-precision
observations with the James Webb Space Telescope and other observatories. Next,
I examine the observational effects of tidal deformation by the host star of nearly
200 exoplanets, and how current and future uncertainties in the measurement of a
planets density allow for such an effect to be detectable. Additionally, I report on
the analysis of a large data-set of the TRAPPIST-1 system obtained using the STIS
instrument on the Hubble Space Telescope. In keeping with the theme of planets in
3-D, this analysis aims to search for extended neutral Hydrogen exospheres around
the TRAPPIST-1 planets, which would appear as transit-like signals in the Lyman-𝛼
emission of the host star.

Finally, I turn to the stars themselves around which exoplanet orbit, considering
the effects of non-homogeneous stellar surfaces on exoplanet observations. I investi-
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gate how spatially and time varying surface features of a star contribute to baseline
trends that must be removed when analyzing exoplanet transits, and assess the feasi-
bility of empirically extracting precise stellar spectra due to star spots, which directly
impact the precision of measuring planetary emission spectra. Through these studies,
I aim to disentangle higher-order effects and biases which will become prevalent as the
quality of observations improves, and to contribute to a more complete understanding
of exoplanetary systems.

Thesis Supervisor: Julien de Wit
Title: Assistant Professor
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Chapter 1

Introduction

1.1 The Growth of Exoplanet Observations

For thousands of years up until the last decade of the 20𝑡ℎ century, as far as humanity

was concerned there were roughly nine planets in the known universe (plus or minus

a few as discoveries were confirmed, debunked, and demoted over time). With a

solar system sample of one, it was impossible to answer questions pertaining to the

multitude and variability of planets that might possibly exist. Questions such as the

formation and evolution of the solar system, of the individual planets themselves, of

the interactions that might have led to what we call home today, while each having

their own theories and possible explanations, were locked away behind the inability

to observe alternate outcomes. While there was no reason to believe that planets

shouldn’t exist elsewhere in the solar system, for a long time we did not possess the

technical capability and instrumental precision required to detect them.

Amid various tentative discoveries, it finally came to pass in 1995 that the first

extra-solar planet orbiting a solar-like star was confirmed to exist [Mayor and Queloz,

1995]. In the nearly 30 years that have since passed, the field of exoplanet astronomy

has exploded from the study of a handful of ideal candidates to a current sample of

over 5000 confirmed extra-solar planets along with over 6000 candidate exoplanets1.

An early example of one such surprise that came about this growth in sample size
1https://exoplanetarchive.ipac.caltech.edu/exoplanetplots/
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was the discovery of so-called ‘hot jupiters’ [Mayor and Queloz, 1995], planets with

sizes and masses similar to that of Jupiter in our solar system, but which orbited

significantly closer to their host stars. Where our Jupiter has an orbital period of

12 years, hot Jupiters often orbit on timescales of days to even hours [Howard et al.,

2010]. Another example of discoveries of planets unlike anything in our solar system

are "super-Earths" and "mini-Neptunes". As their names imply, they share some

features in common with the Earth and Neptune, be it their interior composition or

atmospheric characters, but in the case of super-Earths they can be as much as 8x as

massive (such as 55 Cancri e [McArthur et al., 2004]).

Figure 1-1: The total number of known exoplanets over time, broken down by
detection method. Figure courtesy of the Exoplanet Archive.

In addition to these entire outlier classes of planets, we’ve learned a great deal

about planet populations, such as the dichotomy in planetary radii [Fulton et al.,
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2017] or the Neptunian desert [Szabó and Kiss, 2011, Mazeh, T. et al., 2016]. These

discoveries provide insight towards the kinds of planets that are capable of existing,

and help us to place our own solar system on a scale of remarkable outlier to average

member.

Figure 1-1 shows the growth of known planets over time, broken down by discovery

methods. This explosive growth over the past few decades can be attributed to the

development of exoplanet-centric missions such as Kepler [Koch et al., 2010, Borucki

et al., 2010], (and later K2 [Howell et al., 2014]), TESS [Ricker et al., 2014], as well as

the steadily improving precision and quality of observations. Along with this growth

in sample size has been the growth of multi-disciplinary science, with researchers from

biology, seismology, geology, chemistry, orbital dynamics, stellar physics, and many

more fields finding a home amongst the data sets of exoplanets

1.2 Exoplanet Detection Methods

1.2.1 Radial Velocity

In the early days of exoplanet observations, as can be seen in figure 1-1, the radial

velocity (RV) method of planet detection provided the largest source of exoplanet

discoveries. In this case, the measurement being made is the Doppler shift in the

spectrum of a host star due to the perturbation of a massive planet. The key equation

behind radial velocities is:

𝐾 =

√︂
𝐺

1− 𝑒2
𝑚2sin𝑖 (𝑚1 +𝑚2)

−1/2 𝑎−1/2 (1.1)

where K is the semi-amplitude of the radial velocity oscillations, 𝑒 is the eccentric-

ity of the planet’s orbit, 𝑚2 is the mass of the perturbing planet, sin𝑖 is the inclination

of the orbital plane relative to the observer, 𝑚1 is the mass of the host star, and 𝑎 is

the semi-major axis of the binary orbit.

RVs provide a direct measurement of the mass of an exoplanet, which is one

of the two main measurements required to characterise an exoplanet’s composition
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and potential atmospheric properties [Seager et al., 2007]. In the modern era of

Extreme Precision Radial Velocity (EPRV) instruments such as ESPRESSO [Pepe

et al., 2021], the sensitivity of these measurements is approaching the scale of 1cm/s

deviations in the reflex motion of the star, which corresponds to a detectable planet

mass approaching that of the Earth.

1.2.2 Transits

While RV measurements are critical to the study of exoplanets, as time went on

transits became the primary method of detecting exoplanets. Of the over 5000 known

exoplanets, the transit methods accounts for just over 4000 of them2. The primary

reason for this has been the launch of dedicated transit-finding missions, such as

Kepler (and later k2) and TESS, which could observe large sections of the sky at

once and simultaneously detect multiple planets.

In figure 1-2 we show a diagram of the different components of a transiting ex-

oplanet. The most commonly observed piece of this is the primary transit, when

the planet passes between the star and the observer. This produces a drop in flux

anywhere from 10s of parts per million (ppm) up to several thousand ppm, in the

case of larger planets and/or smaller host stars.

The precise shape of an exoplanet transit is capable of providing us with the

inclination, semi-major axis, eccentricity, argument of periastron, and critically the

size of the exoplanet, which is measured through the depth of the transit [Winn, 2010].

This allows only for a measurement relative to the stellar radius, however this is often

measured to sufficient accuracy as to not be a limiting factor in the uncertainty of

the planetary radius. In particular, if we have for the planet radius 𝑟𝑝

𝑟𝑝 = 𝛿 *𝑅⋆ (1.2)

where 𝛿 is the transit depth, often measured in parts per million (ppt) or parts

per thousand (ppt) for larger gas giants, and 𝑅⋆ is the stellar radius, we can write
2https://exoplanetarchive.ipac.caltech.edu
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Figure 1-2: A schematic of the observable flux of a star-planet system, indicating
the possibilities of transit, phase curve, and occultation measurements. Figure taken
from Winn [2010]

the uncertainty on the radius of the planet (𝜎𝑟𝑝) as

𝜎𝑟𝑝
𝑟𝑝

=

√︃(︁𝜎𝛿
𝛿

)︁2

+

(︂
𝜎𝑅⋆

𝑅⋆

)︂2

(1.3)

We can thus directly quantify the contribution of each component, a technique

which we explore further in chapter 6 in the context of planet density measurements.

In addition to measurements described so far, if a planet is observed to transit

multiple times during a continuous observation, then its orbital period can also be

determined. Using Kepler’s 3rd law of orbital dynamics:

𝑃 2 =
4𝜋2𝑎3

𝐺𝑀⋆

(1.4)

allows one to directly measure the density of the host star by scaling by the volume

of the star:
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𝑃 2 =
4𝜋2𝑎3

𝐺𝑀⋆

4
3
𝜋𝑅3

⋆
4
3
𝜋𝑅3

⋆

(1.5a)

𝑃 2 =
3𝜋(𝑎/𝑅⋆)

3

𝐺𝜌⋆
(1.5b)

𝜌𝑠𝑡𝑎𝑟 =
3𝜋(𝑎/𝑅⋆)

3

𝐺𝑃 2
(1.5c)

where we have combined the mass and radius of the star into 𝜌⋆ [Seager and

Mallén-Ornelas, 2003], and we note that 𝑎/𝑅⋆ is the variable that is provided by

fitting exoplanet lightcurves (since flux values are always normalized, thus allowing

only relative measures of scales).

Alternatively, one can use the expression for the duration of a transit (𝑇dur)

𝑇dur =
𝑃

𝜋(𝑎/𝑅⋆)
(1.6)

to eliminate the semi-major axis parameter and re-write the stellar density in

terms of variables which are entirely model-independant (i.e. the time between tran-

sits and the duration of a transit, which can be read off directly from an observation):

𝜌⋆ =
3𝑃

𝜋2𝐺𝑇 3
dur

(1.7)

This relation however only holds true in the case of a perfectly circular orbit. If

the density of the host star is well known from previous observations, this can then be

used as a test of orbital eccentricity. One can compare the value obtained in equation

1.7 with the known stellar density, and using the framework of Dawson and Johnson

[2012], discrepancies between the two can be used to measure the eccentricity and

argument of periastron of the planets orbit.

1.2.3 Transit Timing Variations

The previous two measurement methods rely on the interaction between a planet

and its host star. Another way in which exoplanets can be detected is through their

impacts on other planets in a multi-planet system. If two planets are in near resonance
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with regards to their orbital periods (i.e. if their periods are near to a ratio of p/q

where p and q are whole numbers) then gravitational interactions will cause their

orbits to alter slightly, resulting in an oscillating transit center from the point of

view of an observer, as was first seen the three planet Kepler-9 system [Torres et al.,

2010]. These transit timing variations (TTVs), can be used to infer the presence of a

non-transiting planet, providing an estimate of its orbital period and mass.

In particular, for two planets in a co-planar orbit that lie near a j:j-1 orbital

resonance, we can analytically calculate the super-period of the TTV [Lithwick et al.,

2012], i.e. the period of the sinusoidal variation of the transit center of a perturbed

planet, as:

𝑃 𝑗 =
𝑃 ′

𝑗|∆|
(1.8)

where ∆, which characterises how close to resonance the two orbits are, is defined

as:

∆ =
𝑃 ′

𝑃

𝑗 − 1

𝑗
− 1 (1.9)

where 𝑃 and 𝑃 ′ are the orbital periods of the two planets. This model represents

a simplified case of two planets resulting in perfectly sinusoidal variations, but dy-

namical simulations of multi-planet systems reveal the potential for more complicated

behaviour for systems with more than two planets Deck et al. [2014].

1.2.4 Additional Detection Methods

In addition to the methods mentioned here, there exist additional techniques for dis-

covering and characterising exoplanets. One such method is known as direct imaging,

and allows for a direct detection of exoplanets, rather than through inferred effects

on their host star [Marois et al., 2008]. By comparing the brightness of the observed

planet and its age (inferred through the age of the system) with theoretical models,

this allows one to infer the mass of the observed planet [Baraffe et al., 2003, Bowler,

2016, Berardo et al., 2017]. Additionally, observing gaps and other structure in the
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dust disk surrounding the star allows for an analysis of the formation of the system.

Instruments such as the Gemini Planet Imager [Macintosh et al., 2014] have allowed

us to directly image massive, Jupiter-sized planets far out from their host star, and

new instruments such as the Roman Space Telescope [Spergel et al., 2015] will con-

tinue to push the envelope, allowing the detection of lower mass planets orbiting closer

in to their host star [Li et al., 2021].

A non-exhaustive list of further detection methods includes

1. Microlensing : The inferred presence of a planet due to due gravitational

magnification of a background object as a planet-hosting system passes between

it and an observer [Alcock et al., 1993, Udalski et al., 1993].

2. Astrometry : The visual detection of orbital motion of a star around an offset

center of mass, due to planetary bodies [Perryman et al., 2014].

3. Pulsar Timing Variations : Variations in the timing of a pulsar beam, which

is again due to gravitational interactions with a planetary body [Wolszczan and

Frail, 1992].

1.3 Characterising Exoplanets: Shapes & Surfaces

The methods described in the previous section allow us to characterise exoplanets in

a variety of different ways. Knowing the mass and radius of a planet allows us to

measure its density, which in turn allows us to estimate what its interior composition

may be [Rogers and Seager, 2010]. Spectral observations allow us to gain insight as to

whether or not a planet has a significant atmosphere, and what it may be comprised

of. All of these measurements however rely on a series of assumptions, which must

be continuously re-evaluated as the quality and quantity of observations continue

to improve, with instruments such as the James Webb Telescope (JWST) [Gardner

et al., 2006] and other future missions such as the proposed ELTs/TMTs, the Vera

C. Rubin observatory [Ivezić et al., 2019], and the LUVOIR mission [The LUVOIR

Team, 2019].
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1.3.1 The Shape of an Exoplanet

To first order, an exoplanet is often assumed to be perfectly spherical. This is the

assumption that is used in some of the most popular transit light-curve simulation

codes such as BATMAN [Kreidberg et al., 2014], which follows the analytic framework

of Mandel and Agol [2002] to calculate the effect of a spherical planet transiting in

front of a spherical star under the influence of various limb-darkening laws. However,

we know from our own solar system that planets need not be perfectly spherical, in

the case of of Saturn whose radius has been found to be ∼ 10% larger at its equator

relative to its poles. In most cases, the variations imparted on a lightcurve due to

a non-spherical planet are typically too small to be observed [Seager and Hui, 2002,

Barnes and Fortney, 2003, Carter and Winn, 2010a]. However, it was shown in de

Wit et al. [2012] that for planets observed at a high enough Signal to Noise Ratio

(SNR), degeneracies between orbital parameters, planetary surface features, and the

shape of a planet are degenerate with one another with regards to their observational

effect on light curves, particularly during ingress and egress. Thus if we ever hope

to be able to one day map the surface of an exoplanet, we must be certain that we

understand the effects due every aspect that may alter a lightcurve.

A brief derivation of the surface of a planet provides us insight to the forces at

play. The total surface potential of a planet is comprised of two components. Firstly,

a gravitational term

𝑉𝑔𝑟𝑎𝑣(𝑟, 𝜓) = −𝐺𝑀𝑝

𝑟

[︃
1−

∞∑︁
𝑛=2

𝐽𝑛

(︂
𝑅𝑒𝑞

𝑟

)︂𝑛

𝑃2(𝑐𝑜𝑠𝜓)

]︃
(1.10)

where 𝐽𝑛 are the spherical mass moment associated with rotation3 , 𝜓 is the

latitudinal angle along the planet’s surface, 𝑅𝑒𝑞 is the equatorial radius of the planet,

and 𝑃𝑛 is the Legendre polynomial of degree n. The other piece of the potential is

the rotational component:

𝑉𝑐(𝑟, 𝜓) =
1

3
Ω2𝑟2 [𝑃2(𝑐𝑜𝑠𝜓)− 1)] (1.11)

3J𝑛 = 1
𝑀𝑝𝑅𝑛

𝑒𝑞

∫︀ 𝑅𝑒𝑞

0

∫︀ +1

−1
𝑟𝑛𝑃𝑛(𝜇)𝜌(𝑟, 𝜇)2𝜋𝑟

2𝑑𝜇𝑑𝑟
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where Ω = 2𝜋/𝑃 is the rotational angular frequency of the planet. A common

assumption is that the 𝐽2 term dominates the potential, which allows us to write the

total potential as

𝑉𝑡𝑜𝑡 = −𝐺𝑀𝑝

𝑟
+

(︂
𝐺𝑀𝑝𝑅

2
𝑒𝑞

𝑟3
𝐽2 +

1

3
Ω2𝑟2

)︂
𝑃2(𝑐𝑜𝑠𝜓)−

1

3
Ω2𝑟2 (1.12)

Finally, we can use the fact that the surface of an exoplanet must lie on a surface

of equipotential in order to be stable, which can be expressed as 𝑉𝑡𝑜𝑡(𝑅𝑒𝑞, 𝜋/2) =

𝑉𝑡𝑜𝑡(𝑅𝑝𝑜𝑙, 0), which can be solved to leading order to arrive at a final expression

relating the polar (𝑅𝑝𝑜𝑙 and equatorial radii (𝑅𝑒𝑞):

𝑅𝑒𝑞 −𝑅𝑝𝑜𝑙

𝑅𝑒𝑞

=
3

2
𝐽2 +

1

2

Ω2𝑅3
𝑒𝑞

𝐺𝑀𝑝

(1.13)

A derivation of the previous equations can be found in Murray and Dermott [1999],

Hubbard [1984]. This relationship allow us to tie directly observable properties of an

exoplanet (namely its equatorial and polar radii) to it’s mass, size, and of greater

interest the distribution of mass throughout its interior, based on the value of the 𝐽2

parameter. While it has been possible for many years to determine bulk properties of

a planet like its mass and radius, describing a planet with higher order features such

as its internal structure remains an important goal in characterising the multitude of

planets which exist in the universe.

1.3.2 Non-Homogeneity of Stars

A guiding tenet in the field of exoplanet astronomy is "know thy star, know thy

planet". In most cases, in a planet-star system it is the star which will contribute

a significant portion of any observed signal. The first step in almost any analysis of

an exoplanet is the removal of this dominating signal, be it normalizing a lightcurve

in order to quantify relative changes in flux due to a planet, or subtracting a stellar

spectrum in order to study the emission from an exoplanet atmosphere [Seager and

Sasselov, 2000].

A first example of the complexity of stellar surfaces which must be considered
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when analysing in particular the lightcurve of a transiting planet is the limb-darkening

effect, in which the surface of a star appears dimmer towards its edges. A typical

limb darkening law can be written as a polynomial equation of the form

𝐼(𝜇)

𝐼0
= 1− 𝑢1 (1− 𝜇)− 𝑢2 (1− 𝜇)2 (1.14)

where here we have stopped after a quadratic term [Kopal, 1950]. In this expres-

sion, 𝜇 is the cosine of the angle between the normal to the stellar surface and the

observers line of sight, and 𝐼0 is the intensity at the center of the star. Many more

limb darkening laws exist, including higher order polynomials as well as logarithmic

expressions. The effect of limb darkening is to alter the shape of ingress and egress

of a transit. Given that many features, such as variation in shape, also express them-

selves through ingress and egress of a transit, it is imperative to have proper grasp of

limb darkening profiles, which vary with temperature and stellar type.

Limb darkening represents but the simplest form of stellar non-homogeneity, and

one which is very well understood [Claret, 2000]. More complicated variations include

features such as star spots and stellar flares, which can vary on a range of timescales

and introduce a host of degeneracies and biases into an analysis of an exoplanet

[Ioannidis, P. et al., 2016, Rackham et al., 2018], or even mimic the signal of a

transiting exoplanet [Dittmann et al., 2009]. Furthermore, in the era of high precision

stellar spectra provided by current and upcoming space based instruments such as

JWST, it has been found that discrepancies between physical models used to simulate

stellar spectra pose as a potential bottleneck when attempting to reach the photon-

noise limited regime. [Rackham and de Wit, 2023]

1.4 Outline of Thesis

This thesis is organized into three main parts (following this introduction). Part 2

(chapters 2-4) focuses on the detailed analysis and characterisation of multi-planet

systems, focusing on the bright star HIP41378 which has five known transiting planets,

with tentative evidence for a sixth planet. I analyse the system using archival Kepler,
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K2, and Spitzer data, as well as observations from a Spitzer proposal for which I was

the Principle Investigator. I additionally highlight work I contributed towards the

analysis of the multi-planet systems GJ 9827 and HIP 106315.

In part 3, comprising chapters 5-7, I focus on the methodology of analysing planets

in the context of them being three-dimensional objects which are potentially not

perfectly spherical. I analyse the observable outcomes of two effects, rotation-induced

oblateness and tidal distortion, and the biases that may be introduced if standard

spherical planet models are used to model their transit lightcurves. I also consider

these effects in the context of planet populations, where past studies have focused

on only the most likely candidates to present such effects. Additionally, I present

a study of the TRAPPIST-1 System conducted with the Space Telescope Imaging

Spectrograph (STIS) instrument on the Hubble Space Telescope, with the focus to

search for extended Hydrogen exospheres around its seven transiting planets.

Finally, in part 4 (chapters 8 & 9) I shift gears and focus on the stars themselves

around which exoplanets live. I consider the non-homogeneity of their surfaces, and

how features such as temporally and spatially varying spots and opaque disks may

interact to produce complex lightcurve signals. In the last chapter, I extend this

further by attempting to empirically recover the spectrum of a star and any surface

inhomogeneities, using a framework which considers stellar spectra as a linear com-

bination of ’basis curves’ generated by spot features. This is done without relying on

physical models which may not be accurate enough to extract the maximal amount

of information out of high-precision observations, allowing the empirical retrieval of

spectral libraries which can be used to accurately measure exoplanet emission spectra.
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Chapter 2

Multi-Instrument Observations of the

Five Planet System HIP41378

The work presented in this chapter originally appeared in the literature as

David Berardo, Ian J. M. Crossfield, Michael Werner, Erik Petigura, Jessie Chris-

tiansen, David R. Ciardi, Courtney Dressing, Benjamin J. Fulton, Varoujan Gorjian,

Thomas P. Greene, Kevin Hardegree-Ullman, Stephen R. Kane, John Livingston,

Farisa Morales and Joshua E. Schlieder, The Astronomical Journal, 157, 185, (2019).

2.1 Abstract

We present new observations of the multi-planet system HIP 41378, a bright star

(V = 8.9, Ks = 7.7) with five known transiting planets. Previous K2 observations

showed multiple transits of two Neptune-sized bodies and single transits of three

larger planets (RP = 0.33RJ , 0.47RJ , 0.88RJ ). K2 recently observed the system

again in Campaign 18 (C18). We observe one new transit each of two of the larger

planets d/f, giving maximal orbital periods of 1114/1084 days, as well as integer

divisions of these values down to a lower limit of about 50 days. We use all available

photometry to determine the eccentricity distributions of HIP41378 d f, finding that

periods ≲ 300 days require non-zero eccentricity. We check for overlapping orbits of
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planets d and f to constrain their mutual periods, finding that short periods (P < 300

days) for planet f are disfavoured. We also observe transits of planets b and c with

Spitzer/IRAC, which we combine with the K2 observations to search for transit timing

variations (TTVs). We find a linear ephemeris for planet b, but see a significant TTV

signal for planet c. The ability to recover the two smaller planets with Spitzer shows

that this fascinating system will continue to be detectable with Spitzer, CHEOPS,

TESS, and other observatories, allowing us to precisely determine the periods of d

and f, characterize the TTVs of planet c, recover the transits of planet e, and further

enhance our view of this remarkable dynamical laboratory.

2.2 Introduction

Multi-planetary systems are just one of the many exciting discoveries that NASA’s

Kepler and K2 missions have produced since the spacecraft’s launch in 2009. These

systems allow us to probe details regarding the formation, stability, and general struc-

ture of exoplanets, providing crucial data to motivate theories of exoplanet dynamics

e.g. [Becker et al., 2015, Weiss et al., 2018]. Although the K2 mission is winding

down, as we enter the next generation of exoplanet missions (TESS, CHEOPS, and

eventually JWST and ARIEL), K2 has proven its usefulness yet again with new

observations of the multiplanet 41378 system1, which it previously observed during

Campaign 5 (C5) [Vanderburg et al., 2016].

The initial observation revealed a rich system of two shorter-period planets and

three single transit events, which were statistically significant as planets. As is of-

ten the case with such systems, additional data were needed to refine the orbital

and physical properties of these outer planets and this was recently provided by K2

during Campaign 18 (C18), which took both long and short cadence observations of

HIP 41378. This system is not only one of a handful of known stars hosting five

planets, but is also the second brightest such system, with the host star having a V

band magnitude of 8.9 and K magnitude of 7.7 - beaten only by the 55 Cancri system
1RA: 08h26m27.85s, DEC: +10d04m49.4s
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[Fischer et al., 2008] - making it a compelling target for future characterization if the

periods of the larger planets can be precisely determined.

In Sec. 2.3 we discuss the various observations and analysis methods we use to

further characterize the system. In Sec. 2.4 we provide updated stellar parameters for

the host star based on Gaia data. Sec. 2.5 discusses the techniques and results of our

dynamical study of the system, including eccentricity estimates. Finally in Sec. 2.6

we summarize our results and discuss the potential for future observations.

2.3 Photometric Observations and Analysis

Below we describe our time-series photometry analysis of HIP 41378, which includes

photometry from K2 (Sec. 2.3.1), from Spitzer (Sec. 4), and a joint analysis of data

sets from both telescopes (Sec. 2.3.3).

2.3.1 K2

HIP 41378 was originally observed by the Kepler space telescope during Campaign 5

of the K2 mission for approximately 75 days. The system was then observed again

during Campaign 18 for approximately 50 days2,3. Additionally, since the system was

known to host planets, short cadence (1 minute) photometry was collected during

C184. The C5 data spans from BJD𝑇𝐷𝐵 = 2457140.5 to 2457214.4 and is composed

of 3378 frames, corresponding to observations every 30 minutes (with frames removed

for thruster firing and other data quality flags). The C18 data spans BJD𝑇𝐷𝐵 =

2458251.5 to 2458302.4 and consists of 2195 frames for the long cadence data and

60000 frames for the short cadence data, again with frames removed due to quality

issues. Thus there is a gap of approximately 1037 days between the end of C5 and

the beginning of C18.

In the analysis that follows we use the fully detrended C5 lightcurve provided by
2While there was also partial overlap between the fields of Campaigns 5, 16 and 18, HIP 41378

was not observed in C16.
3Long cadence observations proposed for in C18 GO programs 3, 6, 27, 36, 47, 49, 65, 67, 901
4Short cadence observations proposed for in C18 GO programs 6,27,36,47
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A. Vanderburg [Vanderburg et al., 2016]. The calibrated C18 short and long cadence

data are downloaded from MAST as target pixel files. These are then converted

into lightcurves by performing simple aperture photometry, using a circular aperture

centered on the ’center of light’ of each image to measure the stellar flux. The center

of light is determined by taking the weighted mean of the flux of each pixel in the

image. We then detrend both the long and short cadence lightcurves following the

methods outlined in Vanderburg and Johnson [2014]. Low frequency variations in

each lightcurve are removed by first masking out points associated with transits, and

then fitting a basis spline and dividing out the best fit to produce flattened light

curves. Additionally, we trimmed the data to include only points within two transit

durations from an expected transit center, to reduce analysis run times (Figure 2-1

shows the full short cadence lightcurve). This is done in order to fit for individual

planets without interference from the transit signals of the other planets in the system.

This process produces 15 lightcurves, corresponding to three observations times five

planets. Before trimming, we also check the lightcurves for signs of planet e, and

while there additional transit-like signals in the lightcurve, none of them agree with

the depth or duration of the known planets in the system and are likely due to

detrending issues.

We derive a best fit lightcurve model by fitting for each planet individually, using

the batman5 [Kreidberg, 2015] and emcee6 [Foreman-Mackey et al., 2012] Python

packages to perform an MCMC analysis. When calculating lightcurves with batman,

we divide the lightcurve into 30 minute intervals and then average over 10 points

within each interval. This is done to simulate the 30 minute cadence of the K2 data.

For 1 minute cadence, it was found that averaging over 1 minute intervals changed

the lightcurve at a level well below the scatter of the data, so averaging was not

done. We evolve 150 walkers for 20,000 burn-in steps, followed by an additional

20,000 steps which are used to estimate the posterior values of the fitted parameters.

These parameters are the center of transit 𝑡0, orbital period 𝑝, scaled planet radius
5https://github.com/lkreidberg/batman
6http://dfm.io/emcee/current/
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Figure 2-1: Light curves of HIP 41378across all three observation (in blue) with
transits of each planet highlighted. The orange line represents the best fit model.

𝑟𝑝/𝑟𝑠 (where 𝑟𝑠 is the radius of the host star), scaled semi-major axis 𝑎/𝑟𝑠, orbital

inclination 𝑖, and two limb darkening parameters for a quadratic limb darkening

model 𝑞1, 𝑞2 [Kipping, 2013]. Additionally, the scatter 𝜎 of each lightcurve is left as

a free parameter during the fit, producing three additional parameters (one for each

observation). Thus the likelihood being maximized has the form:

Lnℒ = −1

2

∑︁
𝑖

(fluxi −modeli)
2

𝜎2
𝑖

− 2Ln(𝜎𝑖) (2.1)

where the index i runs over the three observations, flux is the observed lightcurve,

and the model is the calculated lightcurve given a set of orbital parameters [Carter

and Winn, 2009]. For all parameters except the limb darkening coefficients, we use
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flat priors. We also use a flat prior for the limb darkening coefficients when fitting

for planet f. The high signal to noise of planet f produces the tightest constraints on

these parameters. For planets b through e, we then use the values of q1 and q2 found

for planet f as gaussian priors when running the MCMC. The resulting parameters

are given in Table 2.4, where we quote the median value of the MCMC posterior

distribution with 68% confidence intervals. The best fit models are shown in Figure

2-17, and in Figure 2-2 we show the individual lightcurves for each planet, phase

folded on their respective periods. In each case, the posterior value for the scatter is

consistent with the out of transit standard deviation of the lightcurves.

2.3.2 Spitzer

We also observed HIP 41378 using the 4.5𝜇𝑚 channel on Spitzer’s IRAC camera as

part of observing programs 11026 centered on BJD_UTC 2457606.932 and 13052

centered on BJD_UTC 2457790.680 (PI Werner). The first observation coincides

with an expected transit of HIP41378 c while the second corresponds to an expected

transit of HIP41378 b.

We downloaded data from the Spitzer Heritage Archive8 and processed it into

lightcurves as follows. First, we used a median filter with a span of 10 frames to

remove anomalous pixels (flux values > 4𝜎 from the median) due to cosmic rays and

other effects. The centroid of each frame is then calculated in two ways, once by

fitting a two dimensional Gaussian brightness profile, and again by calculating the

center of light:

𝑥𝑐 =

∑︀
𝑖 𝑓𝑖𝑥𝑖∑︀
𝑓𝑖

, 𝑦𝑐 =

∑︀
𝑖 𝑓𝑖𝑦𝑖∑︀
𝑓𝑖

(2.2)

where 𝑓𝑖 is the flux of the i𝑡ℎ column and 𝑥𝑖 is the x-position for of the i𝑡ℎ column

(similarly for 𝑦 and the rows). For each frame, we also calculated the background level

by taking the flux in a 10×10 square in each corner of the image, fitting a Gaussian

to the distribution of flux values, and taking the mean of the Gaussian to be the
7For planets d and f we show the fit results assuming the maximal period, although other periods

are possible as discussed in Sec. 2.5
8http://sha.ipac.caltech.edu/applications/Spitzer/SHA/
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Figure 2-2: Transits of all five planets of HIP 41378, showing K2 data from C5
(green points) and C18 short and long cadence (blue and red points), along with our
best-fit transit models (solid orange line). Planet e was not observed to transit during
C18, and so we only show C5 data for it.

background level.

Light curves are then computed by summing up the flux in a circular aperture

around the centroid and subtracting the appropriate amount of background flux, using

the photutils [Bradley et al., 2018] python package to account for partial pixels. We

do this for apertures whose radii span from 1.8 to 3.4 pixels in 0.2 pixel increments,

producing lightcurves for each combination of centroid method and aperture radius.

For each of these, we determine a best fit systematics model using the Pixel Level De-

correlation (PLD) technique [Deming et al., 2015]. This method attempts to correct
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for the varying response of the pixels as the centroid moves around the CCD. Despite

centroid motions of only about a tenth of a pixel, the magnitude of the intrapixel

sensitivity, combined with the shallow depths of the transits (100’s of ppm) requires

detrending of this effect in order to recover the transits.

We model the total flux as

𝑆 =
∑︁
𝑖

𝑐𝑖𝑓𝑖 +𝐷𝐸(𝑡) + ℎ𝑡+ 𝑔𝑡2 (2.3)

where D is the transit depth, E(t) is the transit model, 𝑓𝑖 is the flux of the i’th pixel,

𝑐𝑖 are coefficients correcting for the varying response of the pixels, and h and g are

parameters used to model a quadratic time ramp. We perform a 𝜒2 minimization for

each lightcurve to determine the best fit parameters, and use the quality of the fits to

determine which lightcurve to ultimately use. This is done by binning the residuals of

the fit, plotting the standard deviation versus bin factor, and choosing the one which

has the closest slope to -0.5 (in log space), indicating the lowest amount of correlated

noise. In addition to choosing the best lightcurve, we also bin down the data and

see what effect this has on the results as well. This procedure ends up selecting a

2D-Gaussian fit for centroiding, an aperture radius of 2.4 pixels, and a bin size of 200

points per bin.

Once we have chosen the best lightcurve for each observation, as for the K2 data

we run an MCMC chain in order to obtain posterior probability distributions and

determine the errors for each parameter. The values being fit during the MCMC are

the PLD pixel coefficients, the two time ramp parameters, the center of transit, the

transit depth, as well as the orbital inclination and semi-major axis. The best fit

transit signals are shown in Figure 2-3 and the values are listed in Table 2.5.

We also performed analyses with two independent implementations of PLD, fitting

the Spitzer data by itself (Hardegree-Ullman et al., in preparation) and also simulta-

neously with the K2 data (Livingston et al., in review), and the resulting parameter

estimates were consistent. We find that for both planets, the values of semi-major

axis and depth are consistent within the quoted errors between the Spitzer and K2
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Figure 2-3: Spitzer photometry of HIP 41378b (left) and c (right). Blue dots
show the (binned) photometry after removing systematic effects, red dots show the
photometry binned by an additional factor of five, and the solid orange line shows
the best fit transit models.

values.

2.3.3 Joint K2+Spitzer Analysis

Combining the K2 and Spitzer observations provides a total of 8 transits of HIP41378 b

and 4 transit of HIP41378 c, which allows us to check for transit timing variations

(TTVs) that could indicate the presence of other non-transiting bodies and/or con-

strain the planets’ masses. For both planets b and c, we keep fixed all of the best-fit

parameters described in Sec. 2.3.1 and re-fit each transit individually across the C5,

C18 short cadence, and Spitzer data, allowing only the transit center to vary. For

each planet we then fit a linear ephemeris to their epochs and observed transit times

(taking into account their relative uncertainties), and plot the difference between the

observed and calculated values in Figure 2-4 (these values are also listed in Tables 2.6

and 2.7). For planet b we discard the last observation, where we find a large offset

in the transit center which we attribute to our detrending of the short cadence C18

data. We feel comfortable discarding this point since we have two other transits of

planet b during C18 to establish a long baseline with previous observations.
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For HIP41378 b we find results consistent with a linear ephemeris. For HIP41378 c,

we find that the the transit times are inconsistent with a linear ephemeris. While the

systematic effects of the Spitzer observation make it difficult to obtain precise orbital

parameters, as mentioned in Sec. 4 we have two external independent analyses of the

observations which both produce similar TTV signals. We note while the C5 and

Spitzer observations are broadly consistent with a linear ephemeris, although they

predict that the transit of HIP41378 c in C18 should be ∼ 3 hours from where it is

currently measured. Despite larger scatter in the C18 data than the C5 data, we do

not believe that the transit center would shift by that amount. Additional transits

are required to confirm the TTV signal seen here (see Figure 2-4 and Sec. 2.6.1).
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Figure 2-4: Transit timing variations plot for HIP41378 b and c. Here we show the
deviation from a linear ephemeris as a function of measured transit center for the
two inner short period planets of the system. The dashed lines separate the three
observations.
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2.4 Stellar Parameters

We derive an updated set of stellar parameters for HIP 41378 for use in our subsequent

analysis. Vanderburg et al. [2016] report 𝑇eff = 6199 ± 50 K using spectroscopic

techniques. We infer 𝑇eff = 6283± 43 by comparing the 𝐵 − 𝑉 , 𝑉 −𝐾𝑠, and 𝐽 −𝐻

colors to Table 5 of Pecaut and Mamajek [2013] and taking a weighted mean of the

individual values from each color. We use the weighted mean of these two independent

temperatures, along with the Gaia DR2 parallax [Gaia Collaboration et al., 2016,

2018] and the apparent stellar magnitudes in 𝐾𝑠 and 𝑊1, as input parameters for

the isochrones package [Morton, 2015] with the MIST tracks [Choi et al., 2016].

The computed parameters are 𝑇eff = 6226 ± 43 K, 𝑅* = 1.375 ± 0.021 𝑅⊙, 𝑀* =

1.168 ± 0.072 𝑀⊙, and 𝑑 = 106.58 ± 0.65 pc. None of these (except 𝑅*) change by

more than 1.5𝜎 if we instead use the parallax with the magnitudes in 𝑉 , 𝐵, 𝐽 , 𝐻,

𝐾𝑠, 𝑊1, and 𝑊2. In this second analysis we find 𝑅* = 1.310± 0.016 𝑅⊙, so we take

the mean and report an uncertainty that covers both values. Thus our final stellar

radius is 1.343 ± 0.032 𝑅⊙. Our updated stellar parameters are listed in Table 2.1;

all are consistent with (but more precise than) those of Vanderburg et al. [2016].

We also derive stellar parameters using a high-resolution optical spectrum taken

from Keck/HIRES, following the approach of Fulton and Petigura [2018] . This

spectrum implies 𝑇eff = 6266 ± 100, 𝑅* = 1.33 ± 0.013 𝑅⊙, 𝑀* = 1.17 ± 0.030 𝑀⊙,

consistent with our analysis above.

Finally, we observe solar-like oscillations in the C18 short cadence data. These

could further refine the stellar parameters, but we defer that analysis for a subsequent

paper.

2.5 Dynamics

We used the transits of HIP 41378 f and HIP 41378 d to constrain each planet’s or-

bital eccentricity by applying the “photoeccentric” formalism of Dawson and Johnson

[2012], using the same software and approach as described by Schlieder et al. [2016].
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Table 2.1: Updated HIP 41378 Parameters
Parameter Units Value Comment

𝜛 mas 9.3799± 0.059 Gaia Collaboration et al.
𝑅* 𝑅⊙ 1.343± 0.032 This work, Sec. 2.4
𝑀* 𝑀⊙ 1.168± 0.072 This work, Sec. 2.4
𝜌* g cm−3 0.680± 0.064 This work, Sec. 2.4
𝑇𝑒𝑓𝑓 K 6226± 43 This work, Sec. 2.4

This technique uses knowledge of the true stellar density 𝜌⋆ (calculated using our

parameters in Sec 2.4), combined with the derived stellar density from a fit assuming

zero eccentricity 𝜌⋆,𝑐𝑖𝑟𝑐,

𝜌⋆,𝑐𝑖𝑟𝑐 =
3𝜋(𝑎/𝑟𝑠)

3

𝐺𝑃 2
(2.4)

in order to estimate the eccentricity of the orbit, where 𝑎/𝑟𝑠 is the scaled semi-

major axis and 𝑃 is the orbital period.

Since the two transits of HIP41378 d/f have a gap of ∼ 1000 days between them,

there is a range of allowed periods that would produce the observed signals. The

maximal possible period for the two planets, given by the delay between the observed

transits, is 1114 days for planet d and 1084 days for planet f. The minimum possible

periods are 48 days for planet d and 46 for planet f (shorter periods would have pro-

duced additional transits in either C5 or C18). Any fractional value of the longest

period is also valid, and so this gives a range of 23 possible periods for both planets,

for each of which we perform a photoeccentric analysis9. We show the results of the

five longest (and most plausible, as described below) periods for each planet in Ta-

bles 2.3 & 2.2, listing the maximum-likelihood values and 15.8% and 84.2% confidence

intervals for all parameters. In addition to 𝑒 and 𝜔, we include the photoeccentric

parameter 𝑔,

𝑔(𝑒, 𝜔) =
1 + 𝑒 sin𝜔√

1− 𝑒2
=

(︂
𝜌*,𝑐𝑖𝑟𝑐
𝜌*

)︂1/3

(2.5)

See Fig. 2 of Dawson et al. [2016] for the allowed relationships between 𝑒 and 𝜔 for
9None of the allowed periods predict transits of planet d or f during our Spitzer observations.
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Figure 2-5: Possible eccentricities of HIP 41378d (blue) and f (orange) from our
photoeccentric analyses. We see a similar decreasing trend in eccentricity for both
planets, indicating that lower eccentricities are consistent with longer periods.

various values of 𝑔. For 𝜌*, the stellar density, we use the value in Table 2.1. For

𝜌*,𝑐𝑖𝑟𝑐, the density inferred solely from the transit light curve assuming a circular orbit

[Seager and Mallén-Ornelas, 2003], we take the posteriors computed directly from our

MCMC analyses.

For both HIP 41378f and HIP 41378d, we find that 𝑔, 𝑒, and 𝑒 sin𝜔 have fairly

well-determined values. In contrast, the parameter 𝜔 and combination 𝑒 cos𝜔 are

only poorly constrained and so are not listed. Notable is that most possible periods

are consistent with non-zero eccentricity at the > 2𝜎, and even the lowest possible

eccentricity is 1𝜎 > than e = 0, indicating that both planets are most likely on

eccentric orbits (see Figure 2-5) .
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Figure 2-6: System stability of the HIP 41378 system for all possible periods of
planets d and f (see Sec. 2.5.1). It is unlikely that both planets have short periods
( 𝑃 ≲ 300 days), because then their orbits must be highly eccentric and they would
interact with planet c. Similarly, these two outer planets will be unstable if they both
have similar periods. We therefore find that one planet having a long period and the
other having a shorter period is the most likely scenario.

Table 2.2: Photoeccentric Analysis for HIP41378 d
Period 𝑔(𝑒, 𝜔) 𝑒 𝑒 sin𝜔

1114 1.47+0.229
−0.138 0.517+0.221

−0.16 0.262+0.136
−0.242

557 1.154+0.171
−0.113 0.304+0.296

−0.191 0.07+0.135
−0.139

371 1.022+0.135
−0.072 0.189+0.315

−0.139 −0.008+0.102
−0.128

278 0.974+0.095
−0.096 0.192+0.312

−0.133 −0.066+0.099
−0.149

222 0.936+0.106
−0.111 0.229+0.316

−0.159 −0.115+0.128
−0.171

2.5.1 Orbital Overlap

By using the results of the photoeccentric analysis, we perform a first-order stability

analysis by calculating the possible orbits of planets d and f and excluding combi-
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Table 2.3: Photoeccentric Analysis for HIP41378 f
Period 𝑔(𝑒, 𝜔) 𝑒 𝑒 sin𝜔

1084 1.337+0.031
−0.03 0.406+0.273

−0.108 0.217+0.061
−0.236

542 1.059+0.026
−0.024 0.153+0.326

−0.089 0.035+0.031
−0.104

361 0.931+0.023
−0.022 0.177+0.343

−0.096 −0.095+0.036
−0.11

271 0.844+0.02
−0.019 0.288+0.316

−0.108 −0.2+0.039
−0.126

216 0.784+0.019
−0.017 0.362+0.29

−0.109 −0.274+0.04
−0.13

nations of parameters where the planets’ come within 3.5 mutual Hill radii of one

another [Kane et al., 2016], with the mutual Hill radius of two objects given by

𝑟𝐻 = 0.5(𝑎1 + 𝑎2)[(𝑚1 +𝑚2)/𝑀 ]1/3 (2.6)

where we take 𝑀 to be the mass of the host star (Table 2.1) and 𝑚1 / 𝑎1 and

𝑚2 / 𝑎2 are the masses / semi-major axes of planets d and f. Since the masses of

planets d and f are unknown, we conservatively choose the smallest reasonable masses.

We use the publicly available Forecaster code [Chen and Kipping, 2017] to estimate

the probabilistic masses of the two planets given their radii (𝑟 = 0.33𝑅𝐽 , 0.88𝑅𝐽 for

planets d and f respectively). We then take the values one sigma below the median

masses as our conservative mass estimate for the planets. We find masses of 0.02 𝑀𝐽

& 0.2 𝑀𝐽 for planets d and f, which results in a value of 𝑟𝐻/(𝑎1 + 𝑎2) of ∼ 3%.

Since the eccentricity and semi-major axis span a wide range of values, we draw

samples from the posterior distributions obtained from the MCMC fits discussed in

Sec 2.3.1 and in our photoeccentric analysis. Since there are 20 possible periods

for planet f and 23 for d, we run an MCMC analysis for each possible period, and

perform a stability check for each pair of 20 * 23 periods. In this way, we calculate

the likelihood for the two planets to have orbits with overlapping Hill spheres. In

addition to checking for Hill sphere crossings, we also demand that any given orbit

of HIP41378 f and d does not overlap with the orbit of HIP 41378 c, which has a

well-defined period and semi-major axis.

An important point is that in the analysis above we do not consider the effects of

the fifth planet HIP41378 e. Due to only observing a single transit, we are not able
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Figure 2-7: HIP 41378d and f in context: orbital period vs. 𝐽 mag for all known
transiting planets. The shaded red lozenge approximately indicates HIP 41378d and f
— whatever the orbital periods of these planets, this system is several magnitudes
brighter than any comparable systems.

to constrain its period or semi-major axis and so elect to disregard any effects it may

have on the system.

We show the results of this analysis in Figure 2-6, with darker colors indicating

higher probability of overlap. At low periods (p ≲ 300 days) there is a higher chance

of overlap than long periods. This is likely due to the fact that at low periods, the

photoeccentric analysis predicts increasing eccentricities, shown in Figure 2-5, making

it much more likely that the orbits will overlap with either each other or with planet

c. Additionally, the dark diagonal indicates that similar periods for f and d are highly

disfavored.

In the most favored scenario (i.e. the one with the highest relative survivability),

HIP41378 d has 𝑝 = 1114 days and HIP41378 f has 𝑝 = 361 or 542 days; Fig. 2-5
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shows that this scenario also corresponds to the lowest eccentricities for these two

planets.

2.6 Discussion

We analyze new transits of four out of the five planets in the HIP41378 system using

K2 data, two of which previously only had a single observed transit. We study the

possible periods of the two planets, and also employ a photoeccentric analysis to

study their eccentricity distributions. We find that the eccentricity of the planets

increases with decreasing period, however this implies that their orbits will overlap

and so disfavors short periods.

We also observe one additional transit each of planets b and c using Spitzer IRAC,

providing a sufficient baseline to check for TTVs. For HIP41378 b we find all obser-

vations consistent with a linear ephemeris (𝑡0 = 2457152.281 ± 0.015 BJD & p =

15.572119 ± 0.000022 days). For HIP41378 c the Spitzer photometry, which occurs

roughly at the midpoint between the K2 campaigns, implies a transit deviation on the

order of 50 - 100 minutes. Our Spitzer analysis is consistent with two independent,

external analyses performed on the same data set.

2.6.1 Follow-up Opportunities

For HIP41378 f, it might seem that such a long-period planet around such a bright

star would be an attractive target for high-contrast characterization. Unfortunately,

the system lies 106 pc away and so even a 1084 d (2.2 AU) orbit places HIP 41378f

just 20 mas from its host star. Assuming a Jupiter-like geometric albedo of 0.35 and

a Lambertian phase function, the most favorable planet/star contrasts define a locus

from 6× 10−8 at 6 mas (for a 217 d period), to 7× 10−9 at 18 mas (for 𝑃 = 1084 d).

These values appear to lie just beyond the regime accessible to proposed high-contrast

instruments on the next generation of ground-based telescopes [Macintosh et al., 2006,

Beuzit et al., 2006, Crossfield, 2016]. Nonetheless, that the planets could come so

close to detection bodes well for high-contrast characterization of long-period planets
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around nearby stars discovered via single transits in TESS photometry [Villanueva

et al., 2018]. Additionally, we find that JWST transmission spectroscopy of the

planets is possible at a S/N of 8 − 10 for a cloud-free H2-dominated atmospheres if

the systematic noise can be kept extremely low (∼ 5 ppm). While this seems like a

strict requirement, it is nonetheless interesting to note that such measurements may

be feasible for any or all of the larger planets in the system, if their periods can be

properly constrained.

The two outer planets d and f also fall into a less-widely appreciated class of plan-

ets, transiting giants on ultra-long periods (T-GULPs). T-GULPs are those planets

with the longest orbital periods, orbiting at the widest separations, and consequently

having the lowest known equilibrium temperatures of any known transiting planet.

Figure 2-7 lists the known T-GULPs (see also table 7 of Beichman et al. [2018]

for a list of the properties of their properties). Interestingly, few other T-GULPs are

known to be in multi-planet systems, and no others orbit stars as bright as HIP 41378

(𝑉 = 9 mag). Whatever their true periods, HIP 41378d and f (together with their

sibling planets) form an exceptional system that will be studied for many years to

come.

The sample of T-GULPs will likely grow only slowly in the years to come, since

TESS and other future transit missions will not observe any single field of view

nearly as long as Kepler. Only through the extraordinary endurance of K2 was this

observatory able to redetect the transits of HIP 41378d and f. TESS will find a few

longer-period planets in its continuous viewing zones [e.g., Sullivan et al., 2015], but

only through an extended mission can the population of truly long-period T-GULPS

be substantially expanded.

Because the typical T-GULP has only a few transits observed, the effects of addi-

tional perturbing bodies or simple ephemeris drift could eventually result in many

of these rare specimens being lost. The situation is even more complicated for

HIP 41378d and f, since only a finite range of possible periods are known. Such

long-duration transits (13 hours for planet d and 19 hours for planet f) are challeng-

ing to observe from the ground (though it can be done e.g., Shporer et al. [2010]). In
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Table 2.4: K2 Fit Parameters
Planet name 𝑇 1

0 Period2 𝑎/𝑟𝑠 Inc.3 𝑟𝑝/𝑟𝑠 q1 q2

HIP41378 b 2319.2818+0.0012
−0.0012 15.572098+0.000018

−0.000019 21+2
−5 88.8+0.8

−1.4 0.01843+0.0011
−0.00037 0.463+0.015

−0.016 0.064+0.028
−0.028

HIP41378 c 2330.1609+0.0023
−0.0027 31.70648+0.00024

−0.00019 22+57
−7 87.5+2.2

−1.4 0.0200+0.018
−0.0037 0.456+0.017

−0.016 0.050+0.030
−0.027

HIP41378 d 2333.2604+0.0017
−0.0017 1113.4491+0.0018

−0.0018 533+81
−56 89.930+0.025

−0.018 0.02560+0.0005
−0.0007 0.444+0.015

−0.014 0.028+0.022
−0.018

HIP41378 e 2309.0194+0.001
−0.001 - 283+172

−177 89.910+0.22
−0.045 0.03686+0.0011

−0.0008 0.451+0.015
−0.015 0.041+0.026

−0.024

HIP41378 f 2353.91423+0.00039
−0.00038 1084.16156+0.00040

−0.00042 460+5
−4 89.98+0.009

−0.006 0.06602+0.00017
−0.00016 0.455+0.015

−0.014 0.044+0.029
−0.026

1𝐵𝐽𝐷TDB − 2454833
2Period in days
3Inclination in degrees
Note. - The limb darkening parameters for planets b-e use the posterior values from the fit for planet
f as gaussian priors.

contrast, space-based transit photometry is a proven technique for producing high-

quality system parameters. We have shown here that Spitzer is capable of retrieving

transits of the two smaller planets in the system, measuring their transit times to

within a few minutes. This implies that it will be easy to observe planets d and f,

larger planets with longer transit durations.

By employing a strategic observing strategy (i.e. observing during the fourth

longest period to simultaneously check for the eighth and sixteenth longest periods),

and using the mutual likelihood plot of the planet periods (figure 2-6, it may be

possible to pin down the periods of both HIP41378-d and f with only a few additional

measurements.

HIP41378 will also be in the field of view of TESS camera 1 in sector 7 (calculated

using the Web Tess Viewing tool10), from 01-07-2019 to 02-04-2019. This time frame

lines up with transits of 6 of the possible periods of planet d (53, 55, 58, 74, 111,

and 222 days) and 4 of the possible periods of planet f (57, 60, 77, 120 days). This

viewing window also coincides with an expected transit of planet c, allowing us to add

an additional point to the TTV analysis separated by ∼ 200 days from the previous

measurement.

10https://heasarc.gsfc.nasa.gov/cgi-bin/tess/webtess/wtv.py
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Table 2.5: Spitzer Fit Parameters
Planet name 𝑇0 [BJDTDB] Transit Depth (ppm) 𝑟𝑝/𝑟𝑠 𝑎/𝑟𝑠 Inclination (deg.)

HIP41378 b 2457790.734+0.016
−0.0035 374+60

−65 0.0194+0.0015
−0.0016 22+3

−7 89.05+0.6
−1.3

HIP41378 c 2457606.985+0.0036
−0.0036 444+92

−95 0.0211+0.0022
−0.0022 85+14

−31 89.6+0.2
−0.6

Table 2.6: Individual Transit Center for HIP41378 b
Epoch Observed [BJDTDB − 2454833] Calculated [BJDTDB − 2454833] O - C (min.) Data Set

0 2319.2797+0.0008
−0.0006 2319.2798 −0.1+1.2

0.9 K2 C5
1 2334.8499+0.0061

−0.001 2334.8519 −2.9+8.7
1.5 K2 C5

2 2350.4187+0.0055
−0.0011 2350.424 −7.7+8.0

1.6 K2 C5
3 2366.0033+0.001

−0.0039 2365.9962 10.3+1.5
5.6 K2 C5

41 2957.734+0.016
−0.003 2957.737 −4.0+23.2

4.3 Spitzer
71 3424.90086+0.00021

−0.00021 3424.9007 0.2+0.3
0.3 K2 C18

72 3440.47139+0.00021
−0.00021 3440.47282 −2.1+0.3

0.3 K2 C18

Note. - The calculated ephemeris is given by t = 2319.27979 + (15.57213)×E, where E is the epoch
of the transit. Errors on the calculated ephemeris are included in the errors of O-C listed above.

Table 2.7: Individual Transit Center for HIP41378 c
Epoch Observed [BJDTDB − 2454833] Calculated [BJDTDB − 2454833] O - C (min.) Data Set

0 2330.16576+0.00245
−0.00272 2330.15167 20.3+3.5

3.9 K2 C5
1 2361.86375+0.00297

−0.00284 2361.85836 7.8+4.3
4.1 K2 C5

14 2773.986+0.0036
−0.0036 2774.04529 −85.4+5.2

5.2 Spitzer
35 3439.88676+0.0008

−0.00074 3439.8857 1.5+1.2
1.1 K2 C18

Note. - The calculated ephemeris is given by t = 2330.15160 + (31.70669)×E, where E is the epoch
of the transit. Errors on the calculated ephemeris are included in the errors of O-C listed above.
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Chapter 3

Spitzer Follow up to Confirm Transit

Timing Variations

This chapter refers to observations taken with the Spitzer Space Telescope, arising

from a proposal for Director’s Discretionary Time (DDT) on which I was the Principle

Investigator (program 14215 DDT)

In light of the new insights provided by the joint analysis of observations from

Kepler, K2, and Spitzer, it was determined that additional follow up with Spitzer

would be an ideal opportunity to further characterise the dynamics of this multi-

planet system orbiting one of the brightest stars hosting long period planets. The

goal of the observations was twofold: (1) obtain additional transits of planet c, in order

to refine its transit timing measurement, and (2) search for an additional transit of

planet d to either rule out or confirm possible values of its orbital period.

3.1 The TTV Signal of planet HIP41378 c

Based on the work described in the previous chapter, it was found that HIP41378 c

displayed transit variations (TTVS) in the range of 20-100 minutes, the strongest ev-

idence for which was provided by a previous observation made of the system with the

IRAC instrument on Spitzer. TTVS are commonly modelled as sinusoidal variations
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[Lithwick et al., 2012], which allows the extraction of further constraints on planetary

properties (mass, orbital elements, etc.) than can be obtained from transits alone;

however, the HIP41378 system did not at the time have enough data to robustly

identify any individual TTV model. In figure 3-1 we show the range of possible sinu-

soids which could fit the current TTV data for planet c, extrapolated out to the two

Spitzer windows requested in our proposal, as well as a 27 day window during which

TESS would observe the system. We note however that a single measurement based

on a TESS observation would still be degenerate with several potential TTV signals.

While just the first Spitzer visit alone offered the chance to characterize the TTV

signal, there was still opportunity for strong degeneracy between different models,

and so it was determined that two visits would be ideal to help uniquely constrain

the TTV characteristics of HIP41378 c.

In the case that the TTV signal turned out to be nearly sinusoidal, which would

occur if the perturbation was due to a single other planet, we could then extract the

"superperiod" of planet c (the period on which the TTV amplitude varies), which

would in turn uniquely determine the period of the perturbing planet [Lithwick et al.,

2012]. From the previous data sets there is enough information to determine that

the period of planet b, the nearest planet in the system, is incompatible with the

TTV variations already seen for planet c. With these new measurements, we hoped

to gain enough insight in order to determine which of the known planets is causing

the perturbations to transit of planet c, or if indeed they are due to a sixth planet

which does not transit and thus hasn’t been observed.

3.2 Constraining the Period of HIP41378 d

In addition to the TTV signal of planet c, two of the single transiting planets in the

system (d and f), were seen to transit again during the campaign 18 K2 observations.

The spacing between these two observations (∼ 1000 days) provides an upper limit

on their orbital periods, as well as narrowing them down to integer divisions of these

maximal periods. Furthermore, the length of the longest observation (∼ 80 days from
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Figure 3-1: The different sinusoids that fit the TTV data for planet c from previous
observations. Here we show them projected forward into the TESS viewing window
as well as the two requested Spitzer DDT windows. The coloured curves show a rep-
resentative sample of all possible sinusoids, while the gray curves show the remaining
ones. Errorbars during the Spitzer transits indicate the uncertainty on the transit
center previously measured for Spitzer observations of planet c.

the original campaign 5 observation) provides a lower bound on their orbital periods.

The depth of planet f is large enough that ground follow-up was a feasible opportunity

to determine its orbital period. However planet d with a transit depth of ∼750 ppm

is too small to be detectable from the ground with current instruments.

It was determined that there was a unique window of opportunity during which

both planet c and d would transit, if planet d were to have an orbital period of 56,

70, 92, 140, or 142 days. This allowed the opportunity to either confirm a quarter

of the possible orbital periods of d, or rule out 75% of them. Given the duration of

the transit of planet d (∼ 12 hours), a full observation of both transits, allowing for

TTV variations for planet c, would have been well over 24 hours for just the first

visit. However, since the transit center of planet d is known with minute precision,
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Spitzer Visit 1

Figure 3-2: The observing window chosen to coincide with a transit of HIP41378 c,
accounting for possible TTVs, as well as potential transits of HIP41378 d. The scatter
in the lightcurves comes from drawing samples from the previous best fit posteriors
for the orbital parameters of planets c & d.

and the goal is only to detect the presence or lack of a transit, we elected for a transit

window in which only the egress of the transit of planet d is visible.

We show in figure 3-2 the requested window during with both planets would

transit. Our observing strategy involved ensuring the there was sufficient baseline on

either side of the expected transit of planet c, such that a robust transit center could

be measured in the case of up to a 1.5 hour transit variation in either direction. We

illustrate potential signals that might be detected in the case of only a single transit

of planet c, or in the case of a double transit with planet d.
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Table 3.1: Spitzer DDT Observing Parameters
Observation Number of 0.4s Frames AOR Duration [hr]

Peak-up and Settle - Visit 1 (4.5m) 1 × 64 0.50
HIP41378 c/d transit - Visit 1 (4.5m) 1366 × 64 10.5
Warm pixel check - Visit 1 (4.5m) 1 × 64 0.17
Peak-up and Settle - Visit 1 (4.5m) 1 × 64 0.5
HIP41378 c transit - Visit 2 (4.5m) 1366 × 64 10.5
Warm pixel check - Visit 2 (4.5m) 1 × 64 0.17

3.3 Collected Data & Analysis

As a result of our proposal, we were awarded 22.3 hours of observation across both

requested observing windows. In table 3.1 we show the parameters of the observing

schedule. The data was downloaded from the Spitzer Heritage Archive 1 and pre-

processed using similar methods described in Chapter 2. As before we first flag bad

or bright pixels using a sigma-clipping filter to remove high variance pixels, flagging

pixels > 5𝜎 away from the median along the time axis for each pixel. We then

calculate the background in two ways, either an annulus centered on the center of

light (COL) as well as by counting the flux in the corners of an image. We then

extract the centroid of the image by fitting a two-dimensional gaussian profile to the

brightness map of each individual 64x64 pixel frame. We additionally trim the first

and last 5% of each data set, in order to avoid biases near the beginning and end of

the observation.

Once the data has been processed, we simultaneously fit the data for both transit

signals, as well as variations due the differing response of the pixels. The details of

this Pixel Level Decorrelation are similar to those describe in chapter 2, and we again

focus on a 3×3 grid of pixels focused on the peak of the fitted gaussian profile.
1https://sha.ipac.caltech.edu/applications/Spitzer/SHA/
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Figure 3-3: The top panel shows the raw data, binned by a factor of 200 in blue.
In orange we show the best fit model, which includes two transiting planets with as
well as a noise model representing the pixel variation effect. In the bottom panel,
we show again the data and model (orange line), this time having subtracted the
detector noise model from both, leaving just the baseline flux and two transit signals.
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3.3.1 Analysis of First Observing Window

The first observing window was the one in which planet d was expected to potentially

transit. When fitting the data, we considered models both with and without planet

d, in order to robustly assess the transit center of planet c. Given that the focus was

solely on the transit center of planet c, and additionally since the ability of Spitzer

to characterise the shape of a transit is worse than instruments such as Kepler due

to higher scatter, we fit only for the period and depth of the transit signal. For all

other orbital parameters, including period, inclination, and semi-major axis, we use

the best values from previous observations. In addition, we include a quadratic ramp,

as well as nine pixel coefficients, to account for the flux variation in the PLD model.

We first run an MCMC analysis with the described noise model and a transit

template of planet c only. We recover a transit depth of 350 ppm, which is consistent

with previously values measured with Spitzer. We then run an MCMC fit with the

same model, this time including a transit model of planet d as well. We show an

example fit for the two transit model in figure 3-3, including both the global fit,

illustrating the strength of the model in capturing the noise signal, as well a lightcurve

with the noise model removed, showing the two transit fits.

In the case of a two planet fit, we find that the measured depth and transit center

of planet c match the case when planet d is excluded. Additionally, we find that the

residuals for the fit which exclude planet d are higher in the location where planet d

is expected to transit, indicating that the model struggles to match the data in that

part of the lightcurve. Regarding the fit for planet d, we find a depth of 520 ppm,

which is consistent with previous measurements (within 1 𝜎).

3.3.2 Analysis of Second Observing Window

The second observing window was chosen to coincide with only a single transit of

HIP41378 c, and thus we run an MCMC analysis with only a single light curve model.

As for the first visit, we allow only the transit depth and center to vary, and hold

all other orbit parameters fixed to their best fit values. We again find a consistent
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Table 3.2: Best Fit Transit Parameters for Both Observations

Parameter Value Lower Err. Upper Err. Comments
Transit Center c (BJD) 58716.372 0.001 0.001 Visit 2, planet c only
Transit Depth c (ppm) 350 75 75 Visit 2, planet c only
Transit Center c (BJD) 58557.848 0.003 0.004 Visit 1, planet c only
Transit Depth c (ppm) 300 72 71 Visit 1, planet c only
Transit Center c (BJD) 58557.844 0.013 0.007 Visit 1, planet c & d
Transit Depth c (ppm) 289 80 100 Visit 1, planet c & d
Transit Center d (BJD) 58557.47 0.0042 0.0074 Visit 1, planet c & d
Transit Depth d (ppm) 520 156 167 Visit 1, planet c & d

transit depth, and we record the outputs of all MCMC fits in table 3.2.

3.4 Transit Timing Analysis

Having estimated the best fit transit centers for the two transits of HIP41378 c,

we now focus on a transit timing variation analysis, including all previous timing

measurements of the transits of planet c. As mentioned, two planets perturbing

one another will produce a sinusoidal TTV signal, however we would like to allow for

more exotic behaviours and so we model the TTV measurements using the TTVFaster

package Deck et al. [2014]. Standard methods of simulating timing variations require

the a significant number of orbital integrations in order to recreate the dynamics of

a perturbed system. TTVFaster employs the use of simplectic integrators in order to

rapidly calculate the transit centers. The gain in speed with comes with a trade-off

of a loss of accuracy, however this is a tunable parameter within the model.

The benefit of a code like TTVFaster is that it allows an MCMC analysis of the

observed TTVs in the system, during which the TTV model may be called millions

of times. The forward model takes as input a list of planets, and for each planet in

the system it requires a mass, period, eccentricity, argument of periastron (𝜔), and

transit center. In order to avoid boundary issues favoring non-zero eccentricities, the

eccentricity and 𝜔 parameters are re-parameterized as 𝑒𝑐𝑜𝑠𝜔 and 𝑒𝑠𝑖𝑛𝜔.
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Figure 3-4: A distribution of posterior models (red curves) to the TTV signal of
planet c (orange line), along with a distribution of posterior models (green curves)
to the TTV signal of planet b (blue line). In this figure, posterior distributions come
from a TTV model which includes the five known planets in the HIP41378 system.
The black lines represent the location of the two new transit centers obtained from
the our observations.
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Figure 3-5: A distribution of posterior models (red curves) to the TTV signal of
planet c (orange line), along with a distribution of posterior models (green curves)
to the TTV signal of planet b (blue line). In this figure, posterior distributions come
from a TTV model which includes the five known planets in the HIP41378 system,
along with a sixth planet with a freelying varying orbital period and mass. The black
lines represent the location of the two new transit centers obtained from the our
observations.
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In our first set of fits, we include the parameters for the five known planets in the

system. For the masses of the planets, we use priors based on the results of extensive

radial velocity measurements of the system Santerne et al. [2019]. For planets d and f,

we chose the values 278.3618 days and 542.08 days respectively for the orbital periods,

from their list of possible values. These represent the highest likelihood periods based

on the analysis in Section 2.5.1. During the MCMC fit, for each set of parameters

we calculate the expected transit centers for planets b and c, and compare them to

measured values. We show the best fit posterior TTV signal in figure 3-4. We find in

this case that the model is incapable of fitting the TTV signal observed for planet c,

being unable in particular to explain the transit times of the two new measurements

based on our new observations.

In addition to fitting the TTV signal with the five known planets in the HIP41378

system, we run a similar fit where include a sixth planet. In this case, we find that

the model is able to properly fit the observed transit centers of planet c, and we show

the best fit posteriors in figure 3-5. We show the best fit values for the parameters of

the potential sixth planet in table 3.3.

Previous observations, particularly campaign 5 of the Kepler mission, have con-

tinuously observed the system for longer than 62 days, indicating that a planet on a

62 day orbital period would have had at least one observable transit thus far. Given

the mass of the host star (𝑀⋆ = 1.26𝑀⊙ Stassun et al. [2019]), we can estimate the

semi-major axis of this hypothetical planet g from Kepler’s law, which we find to be

55 times the stellar radius (𝑅⋆ = 1.31𝑅⊙). This in turn allows us to calculate the

maximum inclination value which would cause the planet to not transit, which we

find to be 88.95 degrees. Thus the fit value of 88.46 degrees quoted in table 3.3 would

be consistent with the planet being non-transiting.
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Table 3.3: MCMC Posterior Values When Fitting With a 6th Planet (HIP41378 g)

Parameter Value Lower Err. Upper Err.
𝑀𝑔 (MJ) 8.602 2.4 3.9

𝑃𝑒𝑟𝑔 (days) 62.415 0.062 0.038
ecos𝜔 -0.003 0.042 0.053
esin𝜔 0.004 0.047 0.044

Inclination (deg) 88.46 0.25 0.25

3.5 Discussion & Recent Observations of the HIP41378

System

We have analysed two new observations of the HIP4378 system made using the IRAC

instrument on Spitzer, observing at 4.5𝜇𝑚. We add two new transit center measure-

ments for HIP41378 c, bringing the total up to nine, as well as expanding the baseline

of observations to just over four years. We find that the five known planets in the

HIP41378 system are unable to explain the observed transit centers, however with the

inclusion of an as yet undetected sixth planet orbiting on a 62 day period we are able

to robustly fit the transit centers. Additionally, we marginally detect the presence

of a transit with a depth of ∼550ppm during the second observation window, which

would correspond with HIP41378 d having only four out of its 23 allowed periods.

Following the analysis performed in this and the previous chapter, several other

observations have been made of the HIP41378 system which support our findings.

The first study we wish to highlight is an extensive radial velocity campaign to char-

acterise the system and measure the masses of its planets. This work is summarized

in Santerne et al. [2019]. In particular, they find tentative RV evidence of a sixth

planet, which they dub HIP41378 g, with an orbital period of 62.06 ± 0.32 days,

which is consistent with the value obtained from our TTV fitting. They additionally

measure a mass of 7.5 ± 1.5 𝑀𝐽 (under the assumption of an 88 degree inclination),

which is similarly consistent with both the mass and inclination retrieved by our fit.

Regarding the orbital period of planet d, the recent work of Grouffal et al.

[2022] reported on measurements of the Rossiter-McLaughin (RM) effect [Holt, 1893,

Rossiter, 1924, McLaughlin, 1924] for HIP41378 d using the HARPS-N/TNG and
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ESPRESSO/ESO-VLT spectrographs. These measurement allow them to confirm

that the orbital period is ∼ 278 days, which is consistent with the orbital period

required for planet d to transit during our second observation window. Thus we find

supporting evidence not only that we observed a transit of planet d, but additionally

that the measured TTVs of planet c are accurate and consistent with fitting for two

transit signals during the second observing window.
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Chapter 4

Spitzer Follow-Up and Ephemerides

Refinement of Two Multi-Planet

Systems

The work presented in this chapter originally appeared as a contributed section in the

literature as

Molly R. Kosiarek, David A. Berardo, Ian J. M. Crossfield, et. al., The Astro-

nomical Journal, 161, 47, (2020).

The focus of this manuscript was a detailed characterisation of two multi-planet

systems, for which I contributed an analysis of Spitzer observations, resulting in ad-

ditional transit depth measurements as well as refined ephemerides to ensure the ob-

servability of future transits.

4.1 Introduction

Bright stars hosting earth-sized planets provide exciting opportunities to characterize

exoplanet atmospheres, due to their high signal-to-noise observations and associated

transmission spectroscopy metrics of their orbiting planets (TSM, Kempton et al.
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[2018]). Mass and radius alone are often degenerate with a range of interior planet

compositions, which atmospheric characterisation provides the opportunity to differ-

entiate [Figueira et al., 2009, Rogers and Seager, 2010]. We report here the results of

following up two multi-planet systems orbiting bright stars, GJ 9827 and HD 106315,

with the Spitzer space telescope. In addition to obtaining planet radii in a new

waveband, which can help to constrain atomspheric models, we also obtained refined

ephemerides on the planets, ensuring the ability to observe their transits in the future.

4.2 HD106315

HD 106315 (K2-109) is a bright (V=8.97 mag, K=7.85 mag) F5 dwarf star hosting

two planets discovered in K2 Campaign 10 [Crossfield et al., 2017, Rodriguez et al.,

2017]. Planet b is a small (R𝑏=2.40± 0.20 R⊕) planet with an orbital period of 9.55

days; planet c is a warm Neptune-sized (R𝑐=4.379± 0.086 R⊕) planet with an orbital

period of 21.06 days.

4.3 GJ 9827

GJ 9827 (K2-135) is a bright (V=10.3 mag, K=7.2 mag), nearby (distance=30 pc)

K6 dwarf star hosting three planets discovered in K2 Campaign 12 [Niraula et al.,

2017, Rodriguez et al., 2018]. Planets b and c orbit near a 3:1 resonance at 1.2 days

and 3.6 days, with planet d at 6.2 days. These three planets span the gap seen in

the radius distribution of small planets [Fulton et al., 2017] sized at 1.529±0.058 R⊕,

1.201±0.046 R⊕, and 1.955±0.075 R⊕ respectively. Niraula et al. [2017] additionally

collected 7 radial velocity observations with the FIbrefed Echelle Spectrograph (FIES)

[Frandsen and Lindberg, 1999, Telting et al., 2014] to vet the system and to derive

stellar parameters.
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4.4 Observations and Data Analysis

Predicting precise future transit times becomes harder as more time elapses from

previous transit observations and the uncertainty from the orbital period compounds

Dragomir et al. [2020]. These systems contain promising targets for future atmo-

spheric follow-up which require small uncertainties on the predicted transit time.

Therefore, we collected additional transit observations on the Spitzer Space Telescope

to refine the ephemerides for each planet as well as to provide a depth measurement

at 4.5𝜇𝑚. These observations were taken as part of the K2 follow-up program 13052

(PI: Werner), using the 4.5𝜇m channel of IRAC [Fazio et al., 2004]. A single transit

of each planet was observed, except for HD 106315 bwhich was observed twice. All

of the observations were collected with 0.4 second exposures and the target placed on

the ‘sweet spot’ of the detector.

Table 4.1: Spitzer Transit Results
Planet Date(UT) Time of Conjunction (BJD) Rp/R* (4.5) Semimajor Axis (R*) Inc. (∘)

GJ 9827 b 2018-03-10 2457738.82384+0.00081
−0.00080 0.0225+0.0018

−0.0017 7.19+0.56
−0.40 87.7+1.8

−1.6

GJ 9827 c 2018-03-06 2457742.1993+0.0025
−0.0028 0.0201+0.0023

−0.0020 13.0+1.7
−1.3 88.5+1.4

−1.1

GJ 9827 d 2018-03-28 2457740.98800+0.00064
−0.00055 0.0348+0.0014

−0.0013 21.8+2.5
−1.6 87.72+0.37

−0.21

HD 106315 b 2017-4-19 2457586.5394+0.0056
−0.0109 0.0201+0.0026

−0.0024 16.4+5.1
−3.1 88.4+2.3

−1.1

HD 106315 b 2017-9-10 2457586.5826+0.0121
−0.0043 0.0219+0.0034

−0.0026 10.4+2.2
−1.3 87.6+3.0

−1.7

HD 106315 c 2017-4-20 2457569.0103+0.0012
−0.0012 0.0329+0.0013

−0.0012 29.5+5.7
−4.2 88.89+0.69

−0.51

We follow a similar analysis approach to that described in Berardo et al. [2019],

which detrends the data using the Pixel Level Decorrelation method outlined in Dem-

ing et al. [2015]. In brief, we first applied a median filter to each pixel in the image

and calculated a background level for each frame by taking the median of the flux in

an annulus centered on the point spread function. We estimated the centroid of each

frame by fitting a two dimensional Gaussian to the image, and obtained a light curve

using a fixed radius aperture. We varied the aperture size and performed a linear

regression to determine the optimal radius; we found 2.4 pixels minimized the root

mean square (RMS) of the residuals for all observations.

We modeled systematics in the light curve by weighting the nine brightest pixels

individually as well as fitting for a quadratic time ramp. We then chose the combi-

nation of pixel coefficients, aperture size, and time-series binning that resulted in the
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Figure 4-1: Spitzer transits of GJ9827 b, c & d. Data (black points), binned data
(red circles), and model fit (blue line) are shown.

smallest RMS deviation. We ran a Markov-Chain Monte Carlo (MCMC) analysis to

estimate parameter uncertainties, using the systematic model in addition to a transit

signal which we modeled using batman [Kreidberg et al., 2015]. We fixed the period
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Figure 4-2: Spitzer transits HD 106315 b & c. Data (black points), binned data (red
circles), and model fit (blue line) are shown.

of each planet to the most recent measurements [Barros et al., 2017, Rice et al., 2019]

and allowed the transit depth, center, orbital inclination, and semi major axis to vary.

We also left the uncertainty of the data points as a free parameter, which we found
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Table 4.2: Ephemerides Update

Planet Time of Conjunction (BJD) Period (days)
GJ 9827 b 2457738.82586±0.00026 1.2089765±2.3e-06
GJ 9827 c 2457742.19931±0.00071 3.648096±2.4e-05
GJ 9827 d 2457740.96114±0.00044 6.20183±1.0e-05

HD 106315 b 2457586.5476±0.0025 9.55287±0.00021
HD 106315 c 2457569.01767±0.00097 21.05652±0.00012

converged to the RMS scatter of the raw light curve. We held fixed the quadratic

limb darkening parameters, which were determined using the tables of Claret and

Bloemen [2011]. The fit results are shown in Table 4.1 and Figures 4-1 and 4-2.

We calculated updated ephemerides (Table 4.2) to further refine the time of con-

junction and orbital period for future atmospheric follow-up and to better constrain

these values for radial velocity fits. We fit a straight line to the transit centers ob-

tained from each individual observation, incorporating all ground-based published

transits thus far [Lendl et al., 2017, Barros et al., 2017]. These planets will be ac-

cessible for future transmission spectroscopy observations throughout the JWST era.

As an example, the transit time uncertainty in 2025 is under two hours for all five

planets (GJ 9827 b: 0.1hr, GJ 9827 c: 0.5hr, GJ 9827 d: 0.1hr, HD 106315 b: 1.7hr,

HD 106315 c: 0.4hr).
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Part III

Planets in 3D
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Chapter 5

On the Effects of Planetary

Oblateness on Exoplanet Studies

The work presented in this chapter originally appeared in the literature as

David Berardo and Julien de Wit, The Astrophysical Journal, 935, 178, (2022).

5.1 Abstract

When studying transiting exoplanets it is common to assume a spherical planet shape.

However short rotational periods can cause a planet to bulge at its equator, as is the

case with Saturn whose equatorial radius is almost 10% larger than its polar radius.

As a new generation of instruments comes online, it is important to continually assess

the underlying assumptions of models to ensure robust and accurate inferences. We

analyze bulk samples of known transiting planets and calculate their expected signal

strength if they were to be oblate. We find that for noise levels below 100ppm, as

many as 100 planets could have detectable oblateness. We also investigate the effects

of fitting spherical planet models to synthetic oblate lightcurves. We find that this

biases the retrieved parameters by several standard deviations for oblateness values

> 0.1-0.2. When attempting to fit an oblateness model to both spherical and oblate

lightcurves, we find that the sensitivity of such fits is correlated with both the SNR
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as well as the time sampling of the data, which can mask the oblateness signal. For

typical values of these quantities for Kepler observations, it is difficult to rule out

oblateness values less than ∼0.25. This results in an accuracy wall of 10-15% for

the density of planets which may be oblate. Finally, we find that a precessing oblate

planet has the ability to mimic the signature of a long-period companion via transit

timing variations, inducing offsets at the level of 10s of seconds.

5.2 Introduction

Young planets which have yet to come into tidal equilibrium with their host star may

be rotating at speeds sufficient to cause their equators to bulge and thus deviate sub-

stantially from a sphere. When analyzing the lightcurves of transiting exoplanets it is

typical to assume that a planet is perfectly spherical, as is the case of the many fitting

routines which implement the transit models of Mandel and Agol [2002]. Within our

own solar system however, we observe that the equatorial radii of Saturn and Jupiter

are 9.8% and 6.5% larger than their polar radii. Planets can become distorted due

to tidal forces from their host star or, as is the case with Jupiter and Saturn, due

to rapid rotation, causing them to bulge uniformly about their rotation axis. The

amount by which a planet is oblate is tied to its rotation rate as well as its internal

structure, which determines its deformability. The ability to measure the oblateness

of a planet would thus allow us to better understand its current rotational properties

and internal dynamics, as well as its formation and evolution (which determine its

current rotation) [Lissauer, 1995].

The effect of oblateness on the lightcurve of a transiting planet has previously

described in the works of Seager and Hui [2002], Barnes and Fortney [2003], Carter

and Winn [2010a], and Carter and Winn [2010b]. These works highlight the features

of an oblate lightcurve, which is primarily a variation in the ingress and egress of

their transits on the order of 10’s to 100’s of ppm for the most optimal of planets.

These properties outline the difficulties in detecting oblateness through lightcurve

variations, which has thus far proven to be a difficult task. In Zhu et al. [2014], short

71



Figure 5-1: Left: A schematic showing the configuration of the planet and all relevant
quantities. The blue (polar) minor axis is the planet’s axis of rotation, which is scaled
down by a factor of (1− 𝑓proj) relative to the red (equatorial) major axis. The planet
may also be tilted by an angle 𝜃proj relative to its orbital plane. Note these quantities
are the sky-plane projected values an observer would see. Right: The difference in
the lightcurve of an oblate planet (solid) to a spherical planet (dashed) with the same
projected area. For a uniformly bright star, there is no difference once the planets
are fully inside the stellar disk. Note the asymmetry induced by the orbit having a
non-zero impact parameter.

cadence planets in the Kepler survey were searched, yielding a tentative result of

oblateness for the planet Kepler-39b (KOI432.01). A further search was conducted in

Biersteker and Schlichting [2017], which attempted to detect oblateness using depth

variations across multiple transits as an oblate planet precesses over time. This

yielded yet another tentative result of oblateness for the warm Saturn Kepler-427b.

Recently Akinsanmi et al. [2020] studied the potential of spectroscopic measurements

to detect oblateness, finding that a combination of photometry and spectroscopy has

the potential to provide more accurate and precise oblateness measurements.

In section 5.3 we outline the relevant quantities and processes that control plan-

etary oblateness. We then analyze a bulk sample of planets to determine how many

should have detectable oblateness for varying levels of sensitivity. In section 5.4 we fit

spherical planet models to synthetic oblate lightcurves to study biases on the retrieved

transit parameters. As shown in de Wit et al. [2012], orbital parameters can compen-

sate for shape and brightness distribution effects on the shape of transit and eclipses,

an effect which we seek to further understand. In section 5.5, we fit oblate models

to synthetic and real planets in order to determine the regimes in which such models
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can properly measure or rule out oblateness, as well as to determine if populations

can be separated into oblate/non-oblate based on properties such as orbital period.

Finally in section 5.6 we discuss the effects oblateness may have on the precision of

measured planet densities, as well as the ability for time-varying oblateness to mimic

transit timing variations due to precession of a planet’s orbital axis.

5.3 Description and Physical Background of Oblate-

ness

Oblateness refers to the amount by which the equatorial radius of a planet differs

from its polar radius. A common cause of planet shape distortions are tidal forces

which induce a bulge towards the host star [Love, 1911]. In our case we are inter-

ested in oblateness induced by a planets rotation, which causes its equator to bulge

out perpendicular to its rotation axis. Standard notation uses the parameter 𝑓 for

oblateness, which is defined as:

𝑓 =
𝑅𝑒𝑞 −𝑅𝑝𝑜𝑙

𝑅𝑒𝑞

(5.1)

where 𝑅𝑒𝑞 and 𝑅𝑝𝑜𝑙 are the equatorial and polar radii of a planet [Murray and

Dermott, 1999]. Thus oblateness ranges from 0 (for a perfectly spherical planet) to

1 (for a planet completely flattened along the radial direction). In principle 𝑓 could

also be negative for the case of a prolate planet, whose polar radius is larger than

its equatorial radius. While we restrict the oblateness to be a positive value in this

work, we do allow its rotational axis to be tilted up to 90 degrees relative to its orbital

axis, which would cause an oblate planet to appear prolate. For the planets in our

own solar system, 𝑓 ranges from near zero for the rocky planets such as mercury

and earth, to approximately 0.065 and 0.1 for Jupiter (𝑃𝑅𝑜𝑡 = 9.93 hrs) and Saturn

(𝑃𝑅𝑜𝑡 = 10.65 hrs) respectively1. The rotational period of a planet and its oblateness

are related by [Hubbard, 1984]
1Values taken from https://nssdc.gsfc.nasa.gov/planetary/planetfact.html

73

https://nssdc.gsfc.nasa.gov/planetary/planetfact.html


𝑃𝑟𝑜𝑡 = 2𝜋

√︃
𝑅3

𝑒𝑞

𝐺𝑀𝑝 (2𝑓 − 3𝐽2)
(5.2)

where 𝑀𝑝 is the planet’s mass, and 𝐽2 is its quadrupole moment, which is around

0.015 for Jupiter and Saturn, around 0.001 for Earth and Mars, and < 0.00001 for

Mercury and Venus.

The planet may also be tilted relative to its orbital plane by two obliquity angles

𝜃 and 𝜑. When an ellipsoid is rotated in three dimensions and projected onto the

sky plane we observe an ellipse which we can characterise by a projected oblateness

𝑓projand a projected obliquity 𝜃proj, as shown in the left panel of figure 5-1. The

projected values are related to the true values by

𝑓proj = 1−
√︁
sin2𝜃′ + (1− 𝑓)2cos2𝜃′ (5.3a)

tan𝜃proj = tan𝜃sin𝜑 (5.3b)

cos2𝜃′ = sin2𝜃sin2𝜑+ cos2𝜃 (5.3c)

This implies that for most planets what will be observed is an oblateness value

that is smaller than their true oblateness, diminishing the deviations from a spherical

planet. If one assumes that the orbital axis is randomly oriented (i.e. uniformly dis-

tributed on the unit sphere), then the median projected oblateness would be between

75% to 70% of the true oblateness (see appendix A). Constraints on the amount by

which a planet’s rotation can be tilted away from the normal vector of its orbital

plane would allow us to put limits on the effect of projection. However in our own

solar system we observe Uranus to have its rotational axis oriented by 97.77∘ relative

to its orbital plane, providing us with the two extremes of perfect alignment (as is the

case for Mercury) as well as perfect misalignment, along with several intermediate

values.

The observable effect of an oblate planet is illustrated in the right panel of figure

5-1. During ingress and egress of a transit, two planets with differing shapes will block

differing amounts of light from their host star. More specifically, the time-dependence
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Figure 5-2: The number of confirmed transiting planets whose lightcurve would vary
by a given amount if they had a certain level of oblateness, with a one minute inte-
gration time. The x-axis represents the Root-Mean-Square (RMS) deviations during
ingress. The solid, dashed, dotted, and dash-dot lines represent obliquities of 0, 45,
60, and 90 degrees respectively.

of the amount of light they block will vary, which affects the shape of the lightcurve

as the planet enters and exists the limb of the stellar disk. Once the planet is fully

inside the disk of the star, the dominating factor in the amount of light blocked is the

total projected area of the planet. Stellar heterogeneities such as limb darkening and

star spots would still produce differing signals for spherical and non-spherical planets,

however the effect is much weaker when compared to the differences during ingress

and egress, which may be be upwards of several 100’s of parts per million (ppm). It

is thus critical when searching for oblateness to ensure that the limbs of the transit

are sufficiently sampled in time.
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Figure 5-3: For the same sample of planets as in a), we keep the oblateness fixed to
0.2 in all cases. The curves correspond to different observing cadences which smooth
out the oblateness signal.

Figure 5-4: The expected oblateness of confirmed transiting planets

5.3.1 The observability of oblateness for known planets

Currently, the detection of oblateness is limited to a handful of tentative measure-

ments among the most suitable planet candidates. Previous studies such as Zhu et al.

[2014] and Biersteker and Schlichting [2017] have used the Kepler survey as their pool

of observations, which have provided us with some of the highest quality, as well as

longest baseline, transit observations to date.

The goal of this section is to quantify the average strength of an oblateness signal

that one expects to see across all known planets. This allows us to determine both

the number of expected planets whose oblateness may be measured with upcoming

instruments, as well as the potential to place upper limits on the oblateness of planets
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if no such signal is seen at increased signal to noise ratios (SNR). The amplitude

of an oblateness signal depends on properties such as the planet-to-star area ratio,

inclination, impact parameter etc. in non-linear ways, and so planets must be assessed

on an individual basis. We compiled a list of all known transiting planets, taken from

the exoplanet archive table of confirmed planets [NASA Exoplanet Archive, 2019]. As

will be discussed in section 5.6.3, it is expected that planets with short orbital periods

(≲ 15 days) will be rotating too slowly to be oblate. We thus cut out planets with a

period of less than 10 days, in order to exclude planets which we confidently do not

expect to exhibit oblateness so as to not inflate the number of potential candidates.

We also exclude planets which do not have reported values for any of the transit

parameters necessary to calculate a lightcurve model.

This leaves us with a sample of ∼900 planets. For each of these we then generate

synthetic lightcurves for a spherical planet (using the Batman package of Kreidberg

[2015]), as well for varying levels of oblateness. The oblateness is kept to be less than

0.5 (𝑟𝑒𝑞 ≤ 2𝑟𝑝𝑜𝑙) for stability considerations. Equating the centripetal and gravita-

tional forces at the planets surface

𝐺𝑀

𝑟2𝑒𝑞
=
𝑣2

𝑟
(5.4)

and substituting equation 5.2 into 𝑣 = 2𝜋𝑟𝑒𝑞/𝑃𝑟𝑜𝑡 to relate the velocity at the

surface to the oblateness parameter f, we find

𝑓𝑐𝑟𝑖𝑡 = (1 + 3𝐽2)/2 (5.5)

which is approximately 0.5, for 3𝐽2 << 1. To obtain values of f larger than 0.5, the

necessary rotational velocity of the planet would overcome its gravitational attraction

and become unstable.

We generate 1-minute cadence lightcurves of oblate planets using a Monte-Carlo

integration routine, based off appendix A of Carter and Winn [2010a], which includes

a quadratic limb darkening law2. The uncertainty in the model itself is at the level
2Using the corrected versions of equations (B5) and (B6) noted in Zhu et al. [2014], 𝑟 =
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of 1-2 ppm (set by the number of points used in the integration).

When generating oblate lightcurves of a given planet, we fix the transit parameters

to their measured values. The only parameter we vary is the equatorial radius of the

planet, which we adjust so that the depth of the transit remains constant. The transit

depth of a planet of oblateness f is given by

𝛿𝑜𝑏 = 𝑟𝑒𝑞𝑟𝑝𝑜𝑙𝑎𝑟 = 𝑟𝑒𝑞𝑟𝑒𝑞(1− 𝑓) (5.6)

and so if we were to keep the radius the same, the depth between an oblate and

spherical planet would differ in proportion to f. Given that during the center of

transit there is little to no information regarding the shape of the planet (depending

on the degree of limb darkening) we set 𝛿𝑜𝑏 = 𝛿𝑐𝑖𝑟𝑐, which gives the relation between

the equatorial radius of an oblate and spherical planet as

𝑟𝑜𝑏 = 𝑟𝑐𝑖𝑟𝑐/
√︀

1− 𝑓 (5.7)

We calculate the difference between the spherical and oblate lightcurves, and then

calculate the root mean square of the difference during ingress and egress, which we

show in figure 5-2. Alternatively, we could have chosen the amplitude or maximum

difference between the lightcurves. However for many planets which have low time-

sampling during ingress / egress, it would be misleading to report what is usually a

single high point as the overall strength of the oblateness signal.

We find that between 10ppm - 100ppm is when most planets begin to exhibit

oblateness. For nearly maximal value of f∼0.5 we find as many as 50 planets with

RMS deviations above 100ppm. However this is an extreme case, and as mentioned

due to projection effects it is unlikely many planets would display such a high level

of oblateness. At a signal amplitude of approximately 50ppm, there are on the order

of 30 planets which would exhibit variations at this level if they were to have an

oblateness factor of 0.2, and almost double this number of planets if they had an

oblateness of 0.3. Going down to 10ppm, we see these numbers roughly double again.√︀
𝑢+ (1− 𝑢)(𝑎1/𝑎2)2 and 𝜃 = (1− 𝑣)𝜃1 + 𝑣𝜃2
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In addition to oblateness, we also vary the obliquity angle of the planets. We find

that when considering a bulk population the obliquity does not significantly change

the number of observable planets at a given signal level. As shown in the right panel

of figure 5-1, it is possible for the signal to vary significantly between ingress and

egress, indicating that transit asymmetry may be a potential sign of oblateness. If

we calculate the RMS separately for ingress and egress and compare them, we find

that the ratio of their values is on average between 0.8 and 0.9, depending on the

oblateness value. For planets with sufficiently sampled limbs this effect would be an

additional marker of oblateness.

We also study the effect of observing cadence (i.e. the integration time between

data points), which is shown in figure 5-3. Given that oblateness primarily causes

variations during ingress and egress, the number of observations during these parts of

the transit directly impacts the ability to detect oblateness. We hold the oblateness

level fixed at 0.2 and alter the duration of the observing cadence, ranging from 1

minute to 30 minutes, as a reflection of the Kepler observing cadence modes. We see

in this case that for a given signal level, the number of planets which exhibit oblateness

decreases by more than half as the integration time increases. We note that for most

of the planets in our sample, a one minute observing cadence corresponds to about

5 - 50 data points during the transit limbs, with a median of 16 data points. The

effect of time sampling, which smooths and distorts the shape of a transit, is often not

considered when discussing oblateness. The significance of this is analysed further in

section 5.5.2.

5.3.2 Where are all the oblate planets?

We have shown that as many as several tens of exoplanets should have levels of

oblateness in the 30-100ppm range at observing cadences of < 10 minutes. While a

small signal, this is certainly within the capabilities of facilities such as Kepler, as

shown in figure 5 of Koch et al. [2010]. To date, there is only a small handful of

planets which have had tentative detections of oblateness, as mentioned in section

5.2. This begs the question of why there haven’t been a larger number of conclusive
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oblateness measurements. One explanation for this is that exoplanets are simply

not oblate, which would make the case of Saturn’s oblateness an extreme outlier, or

that oblate planets happen to be found around dimmer stars with lower photometric

precision. Another option which we will explore in the next section is that the transit

parameters of associated with a spherical planet model are able to mimic the signature

of oblateness and thus compensate for it.

5.4 Mapping the Degeneracies Between Oblateness

and Transit Parameters

As shown in the previous section, the typical deviations induced by oblateness will be

in the best case a few hundred ppm, and much more typically well below 100 ppm.

The additional fact of the signal being confined solely to the limbs of a transit means

that for many planets, depending on the duration of the transit and the cadence

at which the observations are taken, only a handful of data points may be useful

in detecting oblateness. It is thus not surprising that when analysing an exoplanet

transit the standard practice is to assume a perfectly spherical planet. Nevertheless,

we propose that even in cases of non-detection oblateness may have a significant effect

on parameter retrieval.

5.4.1 Bias on retrieved parameters during a transit analysis

Parameters of a model are often degenerate with one another, and given the low

signal strength of oblateness it’s possible that other transit parameters may be able

to compensate and mask an oblateness signal at current SNR. Assuming a planet to

be perfectly spherical could then introduce a bias when fitting for parameters such

as inclination or the semi-major axis of the planets orbit. The goal of this section is

to quantify such an effect through a series of simulation-retrieval studies. We note

that in Barnes and Fortney [2003] a similar analysis was done to study the biases

of assuming an oblate planet to be spherical. However in that case the effect was

80



Figure 5-5: Corner plot showing the deviations for each parameter from their truth
values, in units of standard deviations of the posterior. Colors represent different
levels of oblateness. The black circles show boundaries of 1, 2, and 3 standard devi-
ations.

only studied for a single planet, HD209458b [Charbonneau et al., 2000], whereas our

aim is to expand this analysis to a wider set of planets to understand the effect

more globally. We follow the methodology of de Wit et al. [2012] which looked at

the degeneracies between the orbital properties of a planet and its potential to have

non-uniform surface brightness, measured through minor variations during eclipse.

We first generate a set of lightcurves for a sample of oblate planets. The planet

parameters we use come from the exoplanet archive list of confirmed transiting plan-

ets, as was done in the previous section. The parameter space of possible planet and
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Figure 5-6: Results of fitting a spherical planet model to simulated data of an oblate
planet, using orbital parameters for the 100 largest (in terms of planet to stellar
radius) Kepler planets with periods greater than 10 days. The left vertical axis in
each plot represents the number of standard deviations between the truth and fitted
value for the planet to stellar radius, impact parameter, inclination, quadratic limb
darkening parameters, eccentricity parameters, and transit center. Dark and light
regions represent where 65% and 95% of the planets in the sample appear. The right
vertical axis and solid red line show the percentage of planets for which the retrieved
parameters deviate by >2 standard deviations. The bottom right panel shows the
median values of the reduced 𝜒2 in red, as well as the median Bhattacharyya distance
in blue.

orbital configurations is large, and so we restrict our study to known planets, which

at the time of writing is a sample of greater than 4000 objects, and from these we take

the 100 planets with the largest planet to stellar radius ratios (since the oblateness

signal scales proportionally with radius). For those planets, we generate 1 minute ca-

dence lightcurves with oblateness value from the range of 0, 0.1, 0.2, 0.3, and 0.5. We
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add Gaussian noise with a standard deviation of 50ppm for each data point. We then

run a Monte-Carlo Markov-Chain (MCMC) fit to the synthetic data using the emcee

package [Foreman-Mackey et al., 2012], assuming a spherical planet model during the

fit.

5.4.2 Description of Fit

We choose to fit for planet-to-stellar radius ratio, transit impact parameter, incli-

nation angle, eccentricity, argument of periastron, as well as two parameters of a

quadratic limb darkening model, using the q1 & q2 parametrization of Kipping [2013]

and finally center of transit. We hold the orbital period fixed. We note that some of

these parameters, specifically the eccentricity, could be constrained by radial velocity

observations which would be unaffected by planetary shape variations. Additionally,

for the fits described in this section we hold the obliquity angle of the planet fixed at

45 degrees. We ran a similar analysis for a fixed obliquity of zero which we discuss

further down.

Regarding the radius of the planet, we do not fit for it directly but rather scale it

by the appropriate oblateness factor as previously mentioned. If we fit for the radius

directly, we would see deviations on the order of 20% or more as oblateness increased

(in order to match the transit depth), however this would be somewhat misleading.

While it is true that the equatorial radius would differ by such an amount, the surface

area (and thus total occulted stellar area) would remain relatively unchanged. This

means that a 20% change in equatorial radius between a spherical and oblate planet

does not represent the same magnitude of change between two spherical planets whose

radii differ by 20%. By fitting for the scaled radius, any deviation we see is a more

meaningful difference in quantities such as the total surface area or volume of the

planet.

For a given planet we compare the posterior distributions of each fitted parameter

to the known value that was used to generate the simulated data. We calculate the

median value of the posterior distributions as well as the standard deviation. We then

calculate by how many standard deviations the fitted parameter value is from the true
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parameter used when generating the data. If one assumes Gaussian uncertainties for

the fitted parameters, then for an appropriate model it would be expected that ∼68%

of the time the true parameter should be within one standard deviation, ∼95% of

the time within two standard deviations and ∼98% of the time within three standard

deviations.

5.4.3 Results of injection-retrieval tests

The compiled outputs of our set of fits is shown in figures 5-5 & 5-6. As expected,

for low oblateness values the fitted parameters cluster around the true value, with

a spread of ∼ 2 standard deviations. This is the statistically expected result for a

model which matches the data.

5.4.3.1 Biases on radius, impact parameter, and inclination

We observe significant biases with clear trends for the equatorial radius 𝑟𝑝/𝑟⋆, impact

parameter (b), and inclination (incl). For oblateness values greater than 0.2, we see

that the first two of these parameters become biased towards smaller values, while

inclination is biased towards larger values (i.e. the orbits tend towards the observer

line of sight). We also see the distribution of fit parameters widen, which could be

an indication that the errors on these parameters are being underestimated.

For (𝑟𝑝/𝑟⋆) we find that 20% of the fits deviate by > 2𝜎 at f = 0.2, with this

number increasing to >60% as the oblateness increases. For the impact parameter

we find that 10% of the fits deviate by > 2𝜎 increasing to 40% at f = 0.5, and for

inclination we find that from f = 0.2 to f = 0.5 the percentage of fits >2𝜎 rises from

∼5% to 40%.

A potential explanation for this is the effect of oblateness at the very beginning

and end of transits. Compared to a spherical planet, and based on its orientation,

an oblate planet will begin transiting slightly earlier and end transiting slightly later.

This leads to a change in the overall duration of transit, which we see here is being

compensated for by the three parameters which directly affect the length of the transit
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chord.

In figure 5-5 we note a significant correlation in particular between the impact

parameter and inclination of the planet. We observe a similarly strong correlation

between the inclination and radius ratio.

For the specific case of HD209458b, it was found in Barnes et al. [2007] that when

fitting a spherical planet model to a simulated lightcurve of an oblate planet the

impact parameter tended towards a critical value of 𝑏 = 0.707 in order to account

for the change in ingress/egress duration. We do not observe a similar trend for the

larger sample of planets and parameters we have studied in this work. One important

distinction between the two analyses is that we have included additional parameters

in our fit, namely the inclination. The effect of this is that we have additional ways

to account for the change in transit durations. Thus we find differing trends in the

combination of impact parameter and inclination which can account for the variations

between spherical and oblate lightcurve models.

5.4.3.2 Biases on limb darkening coefficients

For both limb darkening parameters q1 and q2 there is no clear upwards or down-

wards trend, although we do see a widening of distributions (although with a smaller

amplitude of deviations compared to the other parameters). If a change in transit

duration is indeed the cause of any observed biases, this would make sense given that

the limb darkening parameters are unable to alter the length of the transit chord and

are less strongly biased. Despite a lack of a clear trend however, we still find that

a significant number of fits deviate by more than 2 standard deviations, indicating

that the limb darkening coefficients are still affected by the change in transit shape

to some degree.

For q1 we find that 10% of the fits deviate by > 2𝜎 at f = 0.2, increasing to 60% as

the oblateness increases towards 0.5. For q2 we see a larger initial value, with ∼20%

of fits deviating by > 2𝜎 at f = 0.2, increasing to ∼40% at f = 0.5.
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5.4.3.3 Biases on transit center

In the case of non-zero obliquity, we observe a significant shift in transit center for

large oblateness values. As will be discussed in section 5.6.2, this is an expected

effect due to the asymmetry in ingress and egress for a tilted planet. As previously

mentioned, we ran a similar analysis for a fixed obliquity of zero. In this case, the

transit will always be perfectly symmetric about its center, and thus no shift in transit

center is expected which is what was observed. We note here that the direction of the

shift is always the same. This is due to the fact that the obliquity is the same for all

planets, and we assign the impact parameter to positive values. Thus the asymmetry

induced in the lightcurve will always be in the same direction with regards to ingress

and egress. For f = 0.2 ∼ 10% of fits deviate by >2𝜎, increasing to 40% as f approaches

0.5.

5.4.3.4 Biases on eccentricity

For eccentricity and the argument of periastron 𝜔 (parameterized as
√
𝑒𝑐𝑜𝑠𝜔 and

√
𝑒𝑠𝑖𝑛𝜔) we find that the retrieved values are statistically consistent with the values

used to generate the data (i.e. all samples are <3𝜎). We note however that this is

likely to be a limitation of the data sets being analysed, which are single transit ob-

servations. Eccentricity can be more tightly constrained when additional information

such as stellar density [Dawson and Johnson, 2012] and planetary eclipses are used

[Winn et al., 2007]. We thus would expect to obtain significant biases on these param-

eters from perturbed ingress/egress for the increased precision derived from joint fits

of primary eclipses, secondary eclipses, and/or radial velocity measurements–similarly

to the point made in Fig. 4 of de Wit et al. [2012].

5.4.3.5 Goodness of Fit Metrics

In addition to having measured a clear bias for certain parameter when assuming a

spherical planet model, we also check the goodness of fit statistic to asses if, given

current precisions, there exists a range of oblateness leading to perturbations in the
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transit shape which cannot be compensated for by the orbital parameters. We show

in the bottom right panel of figure 5-6 the median value of the reduced 𝜒2 across all

planets in the sample for differing oblateness values. We note that this is measured

only using data points during ingress and egress of transit, as the rest of the lightcurve

is expected to be the same for both spherical and oblate planets. As shown, the

value remains close to one, increasing only for values of oblateness approaching 0.5

(although still remaining below ∼1.5). In the same panel we also show the mean value

of the Bhattacharyya distance (𝐷𝐵), which is a metric for comparing the similarity

of two distributions defined as

𝐷𝐵(𝑝, 𝑞) = −ln
(︁
Σ𝑖

√︀
𝑝(𝜃𝑖)𝑞(𝜃𝑖)

)︁
(5.8)

for two probability distribution p and q over a set of parameters 𝜃. The value

shown for a given oblateness is a comparison between the multi-dimensional posterior

distribution of that value and the posterior distribution for zero oblateness. We see a

clear trend to higher values as the oblateness increases, indicating a statistically sig-

nificant variation between the two distributions. Thus we find that assuming planets

to be spherical can statistically bias results in a way that does not set off the most

common alarm for improper models.

5.5 The sensitivity of oblateness retrieval & planet

populations

Measuring the oblateness of an individual planet is difficult and requires very precise

and well-sampled observations. The approach taken in this section is to study en-

sembles of planets in order to determine if planets can be separated into populations

of oblate and non-oblate planets. For example, as given by equation 5.12, the tidal

spin-down timescale varies strongly with orbital period (to the 4th power). Planets

below a period of 15 days are expected to have very short spin-down timescales, im-

plying they will be tidally locked to their host star and will have slowed down enough
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Figure 5-7: The results of MCMC retrievals to two populations of planets, using a
model which accounts for oblateness and obliquity. On the top is a population where
each planet has an oblateness value of 0.2, and the bottom plot is a population of
planets with zero oblateness. For each group, we test difference levels of observing
cadence (dt in minutes) and Gaussian noise level (𝜎 in ppm)
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to have effectively zero oblateness. For planets with an orbital period above 15 days

with much longer spin-down times, they are expected to have retained a high rate

of rotation from their formation and thus have non-zero oblateness. In addition to

searching for oblateness across a population, we also measure the sensitivity of oblate-

ness fits to the quality of the data, which we characterise by SNR and time sampling

of data points.

5.5.1 Synthetic populations

We generate 200 planets whose periods, radii, semi-major axis, and inclinations are

drawn from the population of known transiting planets. For a given choice of ob-

serving cadence, oblateness factor, and noise level we simulate an oblate lightcurve

as in previous sections. We do this process for two populations of planets with iden-

tical planet parameters, with one having zero oblateness and the other having an

oblateness of 0.2 for all planets.

Once we have these lightcurves, we run an MCMC retrieval on them using the

Allesfitter package [Günther and Daylan, 2021, 2019]. We include in Allesfitter our

own oblateness model, which allows us to fit for the oblateness parameters f (oblate-

ness) and 𝜃 (the obliquity of the planet).

We show in figure 5-7 the results of this analysis, in particular the posterior distri-

butions retrieved for the oblateness. We note that in our analysis we reparametrize f

and 𝜃 as
√
𝑓cos𝜃 and

√
𝑓sin𝜃, similar to the parametrization often used when fitting

for eccentricities [Van Eylen and Albrecht, 2015]. These reparametrized versions of

the shape parameters do not have hard boundaries at 0 and instead vary from -1 to

1, which removes the bias of forcing oblateness to be positive.

We first note that in the case of zero oblateness (the right panel), the general

trend is a flat posterior below a certain value, in this case around 𝑓 = 0.25, followed

by a sharp decrease beyond that. The model is able to confidently rule out high

oblateness values, which in turn can be used to rule out large rotational periods of

planets. Below the cutoff point the model is less sensitive to oblateness. We see that

for the most constraining set of parameters, namely a short observing cadence of dt
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= 1 minute and a small noise level of 50 ppm, the model is able to exclude smaller

oblateness values more confidently.

In the left panel of figure 5-7 we see two cases emerge, depending on the noise

properties and time sampling. For the shortest time sampling and lowest noise level,

the model is able to retrieve the population oblateness level of 0.2. As the noise level

increase along the with the time sampling, the posterior gradually shifts to that of

a zero oblateness population. Thus we see that between 50-100 ppm, and between

1min - 10 min observing cadence there is a cutoff point where oblateness shifts from

being confidently detectable to completely undetectable.

5.5.2 Sensitivity of oblateness fits to data quality

In order to investigate the shift in retrieval seen, we sample a grid of data quality,

which we characterise by two metrics. One metric is the signal-to-noise ratio, which

in our case we take to be the transit depth divided by the amplitude of Gaussian

noise. The other value we use to quantify the data quality is the number of data

points observed during ingress, which is calculated as the duration of transit divided

by the observing cadence. For each data point sampled, we run an MCMC retrieval

as described above, and calculate the oblateness value which encompasses 95% of the

posterior distribution (which is often asymmetric due to the boundary at f = 0).

The results of this are shown in figure 5-8. In this case the data being fit has

an oblateness value of zero, i.e. spherical planets. Thus we are demonstrating the

ability of the model to confidently rule out non-zero oblateness. We see that for low

SNR values and a low number of transit data points, the model is unable to rule out

values of oblateness below 0.3 at the one standard deviation level, and f = 0.4 at the

2𝜎 level. It is only for very high SNR values > several hundred and more than at

least 10 transit points that the model is even able to rule out oblateness values of

0.2 or greater. We note that the oblateness value within each cell varies to a certain

degree amongst the different planets. This is due to the fact that properties such as

the impact parameter also play a role in measuring oblateness, however here we focus

on the bulk results marginalized across such parameters.
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Figure 5-8: The median 2𝜎 oblateness upper limit values across a sample of planets
retrieved when fitting an oblate planet model to synthetic data sets with zero oblate-
ness (values shown in grid cells). The x axis indicates the transit depth divided by
the amplitude of Gaussian noise. The y axis shows the duration of transit ingress
divided by the observing cadence.

The significance of this is that the majority of transiting planet observations are

completely degenerate between a spherical planet and a planet having an oblateness

of ≲ 0.25. In the context of section 5.6.1 for example, this implies that analysis which

rely on relative density errors below ∼ 15% are over-confident, in the case of planets

which have the potential to be oblate (i.e. planets which are unlikely to be tidally

locked).
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Figure 5-9: Oblateness posteriors when fitting confirmed Kepler planets, separated
by orbital periods.

5.5.3 Oblateness fit of long and short period Kepler planets

We now turn to the potential oblateness of planets discovered by the Kepler survey.

The reason for picking this as our sample is the large number of planets it contains,

the fact that many of them were observed at a short (1 minute) cadence, the duration

of the survey which provides a large number of transits for most planets, and finally

the SNR it provides for most planets, which far surpasses ground based and many

spaced-based transit observations.

In contrast to previous studies which have searched for oblateness in individual

planets, our goal is to see if it is possible to highlight populations of planets which

globally either do or do not exhibit oblateness. Given that planetary rotation is the

root of the signal, we propose to separate planets into fast and slow rotators, which

would then translate into populations of high and low oblateness planets.
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We download the short cadence lightcurves of all planets with radii larger than

a cutoff value of 6 𝑅𝑒, to exclude rocky planets with low tidal dissipation factors

(and thus extremely short circularization timescales). We do this using the lightkurve

package [Lightkurve Collaboration et al., 2018], and extract the PDCSAP lightcurves.

We then run them through a suite of post-processing and normalizing steps. We first

remove points which have bad data quality labels. We next identify all transits of a

system, including those with multiple planets. We chose not to exclude these systems,

although we do remove observations where two transits come within a multiple of 3

transit durations of one another. We then apply a Savitzky-Golay filter to remove

long term variations in the lightcurve. We mask the known transits while doing this

in order to not have them bias the detrending. We next correct for systems which

exhibit large TTVs, which in some cases can be on the order of tens of minutes. We

do by this running an MCMC fit for each individual transit, holding fixed all known

transit parameters and allowing only the transit center and depth to vary.

Once we have measured transit centers for all planets, we repeat the previous

detrending steps, using the shifted transit centers to accurately mask out the transits

when fitting for low frequency lightcurve trends. Once this is done we phase fold

the data into a single lightcurve, which is what is finally used in the fitting routine.

We run an MCMC fit to the data utilizing the Allesfitter package as we did in the

previous sections.

We show in figure 5-9 the stacked posterior distributions for planets with periods

either above or below 15 days. We find similar distributions as in the previous section

for the cases in which the fit was unable to identify significant oblateness. The fact

that both distributions look similar indicate that the sample of Kepler planets does not

exhibit an oblateness bias or grouping based on their period. We analyzed different

groups of periods, cutting below 10 days or above 20, and similarly found no biases

or differences between any groups.

We also see the same cutoff at oblateness values above ∼0.25, again as in the

previous section. This indicates that the MCMC disfavors such high levels of oblate-

ness. High oblateness values in general are unlikely, due to the projection effects
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described in section 5.3 and Appendix A. In section 5.3.1 we showed the oblateness

signal induced among known planets, and show that very few planets produce a signal

beyond 100ppm. However for many planets in the Kepler survey the noise level is on

the order of 100s of ppm. Thus while we are able to exclude high values of oblateness

in general, we find that the sensitivity factors described in the previous subsection

limit the ability to detect or rule out more moderate values of oblateness.

We do note a slight increase in the posterior for oblateness values < 0.05 for planets

with orbital period > 15 days. This is again most likely due to increased sensitivity

discussed in the previous section, given that planets with larger orbital periods will

have increased sampling during ingress / egress and also tend to be larger. Thus we

do not attribute this as indicating that larger period planets have lower oblateness.

5.6 Discussion

So far we have studied the effects on standard transit analysis when allowing for an

exoplanet to be oblate instead of spherical. If not properly taken into consideration,

ignoring the potential of a planet to be oblate could introduce additional biases into

more sophisticated exoplanet analysis. This highlights a main point of this work,

which is that as the quality of data continues to improve, features such as oblate-

ness which were once undetectable may begin to bias and effect a wider range of

conclusions one may make about explanatory systems. In this section we consider

the measurement of bulk densities of planets, as well as transit timing variations and

the ways in which oblateness may impact any conclusions drawn. We also describe

a metric for quantifying which planets are more or less likely to exhibit oblateness,

based not only signal strength but also on their likelihood to be oblate in the first

place.

5.6.1 The relative uncertainty of bulk densities

When discussing radii in section 5.4, care was taken when comparing a spherical

planet described by just one radius to an elliptical planet with two radii. However for
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a quantity such as the density of the planet, there is less of a distinction since the bulk

density is typically the quantity of interest. We will illustrate that any analysis which

utilizes precise density measurements may be subject to biases due to the shape of

the planet.

Consider a planet which has an oblateness f, which induces oblateness at a level

that is too low to be detectable or even to induce the biases previously mentioned.

The depth - radius relation for an oblate planet is given by 𝛿 = 𝑟𝑒𝑞𝑟𝑝𝑜𝑙 = 𝑟2𝑒𝑞(1 − 𝑓).

This would translate to a measured planet volume of

𝑉 𝑜𝑙𝑜𝑏 =
4𝜋

3
𝑟2𝑒𝑞𝑟𝑝𝑜𝑙 =

4𝜋

3
𝑟3𝑒𝑞(1− 𝑓) =

4𝜋

3

𝛿3/2

(1− 𝑓)1/2
(5.9)

Assuming mass measured by radial velocities to be independent of shape, we can

compare the inferred volumes of a spherical and oblate planet, and thus their densities,

as

𝜌𝑐𝑖𝑟𝑐
𝜌𝑜𝑏

=
4𝜋

3

𝛿3/2

(1− 𝑓)1/2
3

4𝜋

1

𝛿3/2
=

1

(1− 𝑓)1/2
(5.10)

For an oblateness of even just 𝑓 = 0.1, this would translate to a true density

that is 5% smaller than the density inferred for a spherical planet. An oblateness of

𝑓 = 0.2 would mean a discrepancy of almost 11%.

In figure 5-10 we compare this oblateness induced density variation to the relative

uncertainty of the density of known planets. We take all planets from the exoplanet

archive which have a reported value of both physical radius and mass, as well as

reported uncertainty values. We calculate their relative density errors, and find for

an oblateness of 0.2, up to 20 planets would have their density differ by more than

their relative uncertainty. For an oblateness of 0.3, that number rises to almost 60.

It was demonstrated in section 5.5.2 that at low data sampling and/or transit SNR

it is impossible to rule out oblateness values less than 0.3 at the 2𝜎 level. This in

turn imposes an accuracy wall on relative uncertainty of a planet’s bulk density at

the level of 10∼15%.
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Figure 5-10: The cumulative number of planets with a fractional density error below
a certain value (blue line). The black lines show the percentage by which the density
would change if a previously assumed spherical planet were to be oblate to a certain
degree, calculated using equation 5.10. The red line indicating a value of f = 0.25 is
in reference the limits of current observations discussed in section 5.5.2.

5.6.2 TTV-like Signal induced by Oblateness

Thus far we have considered the oblateness of a planet to be constant, however it

is possible that a planet with a non-zero obliquity angle will precess over time as it

orbits its host star and exchanges angular momentum. For uniform precession in a

fixed orbit, the precession period is given by [Ward, 1975]

𝑃𝑝𝑟𝑒𝑐 = 13.3 years×
(︂

𝑃𝑜𝑟𝑏

15 days

)︂2(︂
10hr

𝑃rot

)︂(︂
𝜆/𝐽2
13.5

)︂
1

cos𝜃
(5.11)

where the value of 13.5 comes from the estimate of 𝜆/𝐽2 for Saturn [Ward and

Hamilton, 2004]. In this equation 𝜃 is the obliquity angle of the planet, which we
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Figure 5-11: The distribution of retrieved TTV amplitudes induced by asymmetry
stemming from oblate planets with f = 0.2 and 𝜃 = 𝜋/4. The y axis shows the
impact parameter of the transiting planets, which we expect to be correlated with
the asymmetry signal.

recall is the angle between the polar axis of the planet and its orbital plane. As

mentioned in section §5.3, as the orientation of an oblate planet changes in space, an

observer will see different elliptical projections on the sky plane. This will lead to

a time varying projected oblateness and obliquity, which will in turn lead to a time

varying transit shape.

The focus of Biersteker and Schlichting [2017] was to try and detect oblateness

due to do variations in the depth of a planets transit, caused by a time varying

projected surface area (including a change in both the projected oblateness as well as

equatorial radius). A secondary effect which was first mentioned in Carter and Winn

[2010b] is that the duration of the transit may change as well, which could mimic the

appearance of a transit timing variation (TTV) signal.
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Figure 5-12: The orbital periods of a companion that would be needed to induce the
TTV signals seen, based off the precession period and possible orbital resonance.

If an oblate planet has a non-zero impact parameter and obliquity, then it will

exhibit asymmetry in ingress and egress (as in figure 5-1). Thus when attempting

to fit a spherical transit model to the lightcurve of an oblate planet, the result could

be a perceived shift in the center of the transit. This effect is typically attributed

to another planet in the same system gravitationally perturbing the observed planets

orbit [Agol and Fabrycky, 2018]. Thus attempting to fit a spherical planet model to

a precessing oblate planet could potentially lead one to conclude the existence of an

additional planet causing timing variations.

We perform a set of injection retrieval tests, attempting to measure a shift in the

center of transit. We simulate a transit lightcurve of an oblate planet across multiple

epochs while altering the obliquity over time according to its precession period. As the

true obliquity of the planet changes over time, we also update the projected obliquity
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and projected oblateness. We must additionally account for the change in projected

equatorial radius of the planet, which we do using equation 4 of Carter and Winn

[2010b]. The formula provides the relative transit depth as a function of oblateness

and inclination parameters.

We use the same sample of planets as in previous sections in order to determine

the degree to which the current population of planets may be affected. We note that

the precession period given in equation 5.11 is only an estimate, and further effects

such as interactions with other planets in the same system could disrupt or alter the

precession in someway [Saillenfest et al., 2019]. We hold the parameter 𝜆/𝐽2 fixed

to the value of 13.5 for Saturn, and note that the precession period scales linearly

with it. We sample the obliquity of the planet from three value spaced out between

0 and PI/2. In the case of of either zero or maximal (PI/2) obliquity, there would be

no ingress/egress asymmetry and thus no induced TTV signal. For these values we

find that most precession periods range from 10 - 100 years, although there are some

planets with potential periods of only a couple years or less. For most planets such

an effect will thus occur on too long of a timescale to be observable. As the field of

exoplanetary science enters its 4𝑡ℎ decade however, it becomes more and more feasible

to observe such a long baseline transit shift and falsely attribute it to a long period

companion.

Many of the trials return a constant transit center as the best fit, indicating no

detectable variation. For a significant number of cases however the best fit is a clear

sinusoidal variation in the transit center, as one would expect from TTVs. For these

cases we fit a sinusoid to the time varying signal and retrieve the amplitude of the

variation. In figure 5-11 we show the distribution of these amplitudes, in units of

seconds, as a function of the impact parameter of the transit. We note a correlation

with the impact parameter, which is extremely tight for values less than 0.15, and

then widens above that. We find that for an underlying oblateness of 0.2 and an

obliquity of 45 degrees, the scale of the deviations is on the order of several seconds,

with the peak value being upwards of 15 seconds (and thus 30 seconds peak to peak).

While small, transit deviations have been measured at the level of seconds, for example
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in WASP-12 b [Maciejewski et al., 2016].

In figure 5-12 we show the possible orbital periods of the companion planets that

would be required to induce the observed TTV signal. This is calculated using equa-

tions 6 and 7 of Lithwick et al. [2012], where we substitute the precession period of

the oblate planet for the super-period of the TTV signal. We calculate a companion

period under the assumption of a 2:1, 3:2 and 4:3 period resonance. The periods we

find span the range of 10 - 1000 days.

As mentioned we repeated the above analysis while varying the obliquity angle of

the planet. This was done to ensure the results are consistent with the expectation

that for obliquity angles further from 45 degrees the induced amplitudes should be

smaller due to the reduced asymmetry between ingress and ingress. This is indeed

what was found, and in particular for an obliquity of zero/90 degrees (in which the

entire transit is perfectly symmetric about its midpoint) there were no statistically

significant transit center variations.

5.6.3 A metric to identify prime oblateness candidates

In this section we define an oblateness observability metric to determine which planets

are the most ideal for a targeted study of oblateness. It is built in such a way to favor

planets which would not only have a large oblateness signal, but which are also likely

to be oblate in the first place. The key factor we use to determine if a planet is likely

to be oblate or not is the age of its host star. As a planets rotation slows down over

time due to tidal de-spinning, its oblateness similarly decreases. The timescale for a

planet to spin down and become tidally locked can be estimated by:

𝜏𝑠𝑝𝑖𝑛 = 1.22 Gyr×
(︂
𝑀𝑝

𝑀𝐽

)︂(︂
𝑄𝑝

106.5

)︂(︂
𝜆

0.25

)︂
×
(︂

𝑃orb

15 days

)︂4(︂
𝑅𝐽

𝑅𝑒𝑞

)︂3(︂
10ℎ𝑟

𝑃rot,i

− 10ℎ𝑟

𝑃rot

)︂ (5.12)

which is derived by integrating the spin down rate of a planet as described in
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Goldreich and Soter [1966]. The quantities 𝑄𝑝 and 𝜆 are the tidal dissipation factor

and normalized moment of inertia 𝜆 = 𝐼/(𝑀𝑝𝑅
2
𝑝). If the mass of the planet is known,

one can additionally directly calculated the rotational period required for various

levels of oblateness.

Given the uncertainty and difficulty in calculating Q, we conservatively set it to

106.5, which is above the estimate for the solar system values of Saturn and Jupiter,

which are typically on the order of 104 and 106 respectively [Storch and Lai, 2014].

By over-estimating Q, we in turn will likely be over-estimating the tidal spin-down

timescale. Thus, we can be confident that systems which are older still than this

estimate will have already spun-down and are unlikely to be oblate. For the parameter

𝜆 we adopt the commonly used value of 0.25 for gas giants. As a comparison, the

Darwin-Radau equation3 gives a value of 𝜆 = 0.22 for Saturn, and 𝜆 = 0.27 is

calculated for Jupiter from Juno gravity measurements [Ni, 2018].

Conversely, planets whose associated star has an age that is well below 1 Gyr can

be assumed to not have had enough time to spin down and may still have a high

rotation gained during formation. We incorporate this information using a sigmoid

function, defined as 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) which is a smoothed out step function. We

scale the step width by the uncertainty of the stellar age, to allow for flexibility for

spin down estimates near the stellar age.

We multiply the factor for the timescale by both the RMS variation induced

by oblateness (as described in section 5.3.1), and additionally by a term which is

proportional to the expected SNR of a detection, for a given waveband. This takes

the form

𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑅𝑀𝑆𝑜𝑏 × 10−𝑀/5 × 𝜎((𝐴𝑔𝑒⋆ − 𝜏𝑢𝑝𝑝𝑒𝑟𝑠𝑝𝑖𝑛 )/𝜎𝐴𝑔𝑒⋆) (5.13)

Where M is the magnitude of the host star in a given waveband, and the expo-

nential term signifies the square-root SNR estimate of a given number of photons.
3 𝐽2

𝑓 = −3/10 + 5/2𝜆− 15/8𝜆2
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Planet Period
(days)

Radius
(Rj) K-Mag Ob. Amp

(ppm)
TOI-1899 b 29.02 1.15 10.51 110.45
TOI-1278 b 14.48 1.09 9.74 57.67
Kepler-699 b 27.81 1.46 13.67 104.8
CoRoT-10 b 13.24 0.96 11.78 66.27
TOI-837 b 8.32 0.77 8.93 29.19

Table 5.1: Top ranked planets according to oblateness metric

The 𝑅𝑀𝑆𝑜𝑏 term is the same ingress/egress deviation measured in the section 5.3.1.

5.7 Conclusions

In this work we have analyzed the effect of planetary oblateness on the analysis of

transit lightcurves, primarily through the use of injection-retrieval studies of spherical

/ oblate planets using spherical / oblate transit lightcurve models. We first estimated

the level of variation between the lightcurves of a spherical and oblate planet which

otherwise have identical orbital and planetary parameters. We find that for most

planets with periods greater than 10 days, this variation is at the 10-100ppm level.

This result is obtained across a sample of planets which range in size, orbital period,

impact parameter, and semi-major axis, which all affect the structure of an oblate

planets lightcurve.

Given that this is a level at which instruments such as Kepler are capable of

reaching, we then studied effects which may obscure oblateness signals, notably com-

pensation by orbital parameters [Barnes and Fortney, 2003, de Wit et al., 2012]. In

addition to SNR, we also analyzed the effects of time sampling on the ability to ro-

bustly measure or rule out oblateness. What is found is that ruling out Saturn like

oblateness (f = 0.1) at the 2𝜎 confidence level requires a sampling of > 10 data points

during ingress/egress and a transit depth which is ≥ 100 times the level of uncorre-

lated Gaussian noise. Combining both of these effects implies that for many planets

there will be a sensitivity wall which limits the ability of a retrieval method such

as MCMC to detect oblateness. When analyzing a sample of short cadence Kepler

observations, we find this limiting factor to be in the range of f = 0.15 - 0.25. A
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consequence of this result is a limit on the accuracy of the bulk density which can

be measured for planets which are potentially oblate. We find that relative density

uncertainties below 10% for planets with periods > than 10 days are likely to be

overestimated, given the difficulty in ruling out oblateness levels below f = 0.2. If we

extend this statement to planets which have been distorted through other processes

such as tidal bulging, then the effect may be prevalent for planets with shorter periods

as well.

In addition to density, we also find that attempting to fit spherical transit models

to data which come from oblate planets produces fits which are both statistically

consistent with regards to the reduced 𝜒2, but which also deviate significantly from

the values used to generate the data. For an oblateness approaching 0.5, we do find

that the reduced 𝜒2 begins to approach 2, indicating that the model is insufficient

for the data. However in the range of f = 0.1 - 0.3, we find that it remains close to

1, while the Bhattacharyya distance becomes ≳ 3 indicating deviation from the true

parameter distributions.

The planet radius, inclination, impact parameter, and transit center all demon-

strate biasing trends as oblateness increases, while the two parameters of a quadratic

limb darkening law deviate symmetrically about the true value. The eccentricity and

argument of perihelion however remain unbiased and consistent with the truth values,

even for large values of oblateness. This is expected given that we do not consider ad-

ditional information such as secondary eclipses or radial velocity observations, which

would provide a much more accurate measurement of eccentricity (in which case we

would expect biases to appear). Additionally, time variation of oblateness due to

precession is capable of mimicking a transit timing variation signal. We note however

that this variation would be over significant timescales (> 1 year) and only at the

level of 10’s of seconds.

When considering the biases and degeneracies we have found for oblateness, we

note that there is the potential to extend this to other sources of shape variation.

The models of Barnes et al. [2009] describe the effect of winds on an exoplanets

atmosphere, which would distort its outer shell into a myriad of potential shapes
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which may each bias a lightcurve fit in different ways.

Furthermore, atmospheric studies of exoplanet surfaces, such as those which lever-

age the eclipsing of a planet by its host star, could benefit significantly by having the

properties of the planets shape be pinned down precisely through an analysis of its

transit, where the signal is often much stronger. Alternatively, if a planet which is

potentially oblate is assumed to be spherical, this may further bias the results of any

higher order analysis which is based off an understanding of the orbital and physical

properties of a planet derived from transit observations.

5.8 Appendix A: The Degeneracy of Projecting an

Ellipsoid Onto a Two-Dimensional Plane

When observing an oblate planet what is seen is a two-dimensional projection, which

is itself still an ellipse which can be characterised by a projected oblateness and

projected obliquity. We consider the amount by which the true oblateness is altered

if we assume a planet to have any uniform orientation in space. Note that it is

only possible for projection to decrease the oblateness factor. When considering re-

orientations of the planet, which has two long major axes A and a short major axis

𝐵 = 𝐴(1 − 𝑓), the radii of the cross section of any rotation must be larger than B

and smaller than A. Namely the projected short axis b must obey 𝐵proj ≥ 𝐵 and the

project long axis 𝐴proj ≤ 𝐴. Recalling the definition of oblateness we find

𝑓proj = 1− 𝐵proj

𝐴proj

≤ 1− 𝐵proj

𝐴
≤ 1− 𝐵

𝐴
≤ 𝑓 (5.14)

When considering random rotations, in figure 5-13 we show the average transfor-

mation of a uniform distribution of oblateness values. As expected we see a noticeable

shift towards shorter oblateness values. In this case we have chosen the two orienta-

tion angles of the planet to be uniformly distributed across the unit sphere. Analysing

a large number of random projections, we find that any given oblateness value is on

average decreased by a factor of about 20%.
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Figure 5-13: The effect of projecting a three-dimensional ellipsoid onto the sky plane,
when its rotational axis is uniformly distributed across the unit sphere. As expected
there is general shift towards lower oblateness values. This implies an additional
level of difficulty when attempting to measure oblateness, since even if a planet were
to have a high oblateness it would present itself as closer to spherical. Utilising a
more informed model for the orientation of planets would provide a more accurate
description of the transformation, however this would still be plagued by uncertainty
about the true underlying oblateness distribution.

We may also ask, given a measurement from say an MCMC fit to a planet in

which one retrieves a best fit value along with an uncertainty for the (projected)

oblateness and obliquity, what possible underlying distribution of the true shape

properties would match the observed values. For a choice of the azimuthal angle,

there is a unique mapping between the projected and un-projected values, which can

be obtained using equations 5.3a,5.3b,5.3c. The results of this are shown in figure

5-14. For an azimuthal angle of 90 degrees we find that the two distributions are the

same. In this case the rotational axis of the planet is tipped towards the observer,
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Figure 5-14: The solid black cross and oval represent the 1𝜎 measurements of a
potential planet’s (projected) oblateness. The coloured patches represent various
distributions for the true (i.e. un-projected) values of oblateness and obliquity which
would match the projected observation, for different choices of the azimuthal angle.

thus the two semi-major axes seen are always the true long and short axis (implying

𝑓proj = 𝑓true) and the obliquity angle is similarly observed to be the same as the

un-projected value.
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Chapter 6

The Biasing Effect of Tidal

Distortions

The work presented in this chapter originally appeared in the literature as

David Berardo and Julien de Wit, The Astrophysical Journal, 941, 155, (2022).

6.1 Abstract

Improvements in the number of confirmed planets and the precision of observations

implies a need to better understand subtle effects which may bias interpretations of

exoplanet observations. One such effect is the distortion of a short period planet by

its host star, affecting its derived density. We extend the work of Burton et al. [2014],

Correia [2014] and others, using a gravitational potential formulation to a sample of

nearly 200 planets with periods less than three days. We find five planets exhibiting

density variations of > 10%, and as many as twenty planets with deviations > 5%.

We derive an analytic approximation for this deviation as a function of the orbital

period, transit depth, and mass ratio between the planet and host star, allowing for

rapid determination of such tidal effects. We find that current density error-bars are

typically larger than tidal deviations, but that reducing the uncertainty on transit

depth and RV amplitude by a factor of three causes tidal effects to dominate density
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errors (> 50%) in >40% of planets in our sample, implying that in the near future

upgraded observational precision will cause shape deviations to become a bottleneck

with regards to analysis of exoplanet compositions. These two parameters are found

to dominate uncertainties compared to errors on stellar mass and radius. We identify a

group of eight planets (including WASP-19 b, HAT-P-7 b, and WASP-12 b) for which

current density uncertainties are as much as four times smaller than the potential shift

due to tides, implying a possible 4𝜎 bias on their density estimates.

6.2 Introduction

As the list of confirmed exoplanets grows we continuously expand the sampled space

of known planetary parameters. Categories of planets such as those with ultra-short

orbital periods have gone from containing a handful of planets to hundreds of planets

thanks to missions such as Kepler [Borucki et al., 2010] and TESS [Ricker et al.,

2014]. In addition to this increase in population, the precision of instruments has

continued to reach new heights, reducing the uncertainty in quantities such as transit

depth or planetary mass. This trend will accelerate further with the next generation

of observatories and instruments such as JWST and PLATO [Heras et al., 2020],

as well as high precision RV instruments such as CARMENES [Reiners et al., 2018]

and ESPRESSO [Schmidt et al., 2021]. This increase in both the size and quality

of our sample implies that subtle effects which in the past where either too small

to be detectable or which affected a single digit number of planets may no longer

be disregarded. An example of this behaviour is the ‘Transit Light Source’ effect

[Rackham et al., 2018], in which variability of the stellar surface causes biases in

atmospheric characterisation by mimicking or muting effects which produce similar

results, acting a bottleneck towards properly understanding a planets atmosphere.

The focus of this work is on effects which alter the shape of an exoplanet, which

is often considered to be a perfect sphere such as in the commonly used models of

Mandel and Agol [2002], implemented in the widely used batman package [Kreidberg,

2015].
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Figure 6-1: An illustration of the process by which the surface of the sphere is con-
structed. Starting from an icosahedron on the left, triangular faces are continu-
ally subdivided. Finally, the points are normalized to generate a uniformly sampled
sphere.

For short period planets close to their host star, one such effect are tidal distor-

tions which can cause a planet to bulge out towards its host star [Leconte et al., 2011].

This effect in particular has the potential to introduce a significant bias on the density

of a planet since its sky projection remains close to a perfect circle. When considering

for example a planet which is deformed due to rotation causing ts equator to bulge,

its projection becomes elliptical [Seager and Hui, 2002, Barnes and Fortney, 2003].

In this case, subtle difference in the shape of ingress / egress of the transit lightcurve

may be used to break the degeneracy between a spherical and oblate planet [Carter

and Winn, 2010a, Berardo and de Wit, 2022]. For tidally deformed planets, phase

curve observations which observe the planet from different directions could in prin-

ciple determine these so called ‘ellipsoidal variations’ through lightcurve deviations

[Correia, 2014, Kreidberg et al., 2018], however full phase curve observations require

a significant amount of observing time to obtain, and at high precision there is likely

to be a significant amount of degeneracy between the orbit, shape, and brightness

distribution of a planet [de Wit et al., 2012].

Tidal distortions imply an underestimate of the volume of a planet, which in turn

implies an overestimate of its bulk density. Theoretical considerations of the effect of

this have previously been studied in Leconte et al. [2011] This effect has already been

considered, primarily in the work of Burton et al. [2014], which calculated the mag-

nitude of the distortion and the degree to which it altered the density measurement
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for a sample of just over 30 planets. Additionally, Correia [2014] expanded on this

work using a more detailed model to derive an analytic expression for the change in

density as a function of distance to the host star.

In this work we aim to expand on these efforts in several ways. Our primary

effort is to increase the sample of planets analysed using a gravitational potential

model, which has been found to provide similar results to more complicated structural

models. In the time since these previous studies were published, roughly 6x as many

planets have now been found to be in the space of parameters which are susceptible to

tidal distortion effects (i.e. planets with orbital periods below three days on circular

orbits).

In section 6.3 we briefly outline the theory of tidal deformation and describe our

method for calculating the effects of tidal interactions, and thus altered planetary den-

sities. In section 6.4 we first highlight our sample of planets to be analysed, followed

by the results of our analyses. We highlight trends as a function of various system

parameters and derive an approximation which accurately describes the changes in

density without the need for a full simulation. In section 6.5 we first highlight the

biases that may be introduced when attempting to retrieve the interior composition

of a planet using mass-radius relations under the assumption of being perfectly spher-

ical. We then compare the changes in density to current density uncertainties, and

we also analyse the relative contributions to these uncertainties from five parameters

underlying parameters. This allows us to determine how upcoming improvements in

quantities such as planet mass and stellar parameters will affect the ability to ignore

such effects, for example through extreme precision radial velocity efforts [Crass et al.,

2021].
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6.3 Calculating the Density of a Tidally Deformed

Planet

6.3.1 Physical description of scenario

To model the shape of the planet, we follow a similar methodology as that of Burton

et al. [2014], where the surface of the planet is assumed to be on a gravitational

equipotential. The value of the gravitational potential generated by a rotating planet

and its host star is calculated using the Roche approximation [Chandrasekhar, 1987]:

Φ1 = − 𝐺𝑀1

((𝑥+ 𝑎)2 + 𝑦2 + 𝑥2)1/2
(6.1)

Φ2 = − 𝐺𝑀2

(𝑥2 + 𝑦2 + 𝑥2)1/2
(6.2)

Φ3 = −1

2
Ω2

[︀
(𝑥+ 𝜇1𝑎)

2 + 𝑦2
]︀

(6.3)

where 𝐺 is the gravitational constant, 𝑀1 is the mass of the host star, 𝑀2 is the

mass of the planet, 𝑎 is the separation between the host star and planet (i.e. the

semi-major axis of a circular orbit), 𝜇1 = 𝑀1/(𝑀1 +𝑀2) and Ω = 2𝜋/𝑃 where 𝑃

is the orbital period of the planet. The coordinate system is such that the origin is

placed at the center of the planet. The x coordinate points along the line connecting

the center of masses of the two bodies, the z axis points along the orbital plane in the

direction of motion of the planet, and the y axis points normal to the orbital plane.

In order to use such an approximation to model the distortion of a planets surface,

we assume the planet is both tidally locked as well on a non-eccentric orbit. As we

shall see in later sections, the effect of the distortion is strongest for low period

planets (p < 3 days) which are most likely to be tidally locked and be on circular

orbits[Barnes, 2017].
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Figure 6-2: This figure shows two views of the surface of WASP-19 b. Points in black
show the spherical planet which matches the observed transit depth, while points in
red show the surface generated by fitting for an equipotential while also matching the
observed transit depth. On the left we see a top down view of the orbital plane. On
the right we see the view along the line of sight between the centers of mass of the
planet and star.

6.3.2 Calculating the volume of a deformed planet

We first calculate the surface of a deformed planet and then ‘measure’ its volume in

order to determine the amount by which its density is altered. In order to generate the

surface of our planet, we first construct a geodesic icosahedron as an approximation

of a sphere. This is an object commonly used in computer graphics and 3D rendering

software which has the benefit of having its points uniformly spread out across its

surface. We begin with the vertices of an icosahedron and then iteratively subdivide

each of its faces into smaller triangles (as shown in figure 6-1). After the last round

of subdivisions we normalize the length of each vertex from the origin to generate a

tiled sphere.

This process leaves us with a collection of triangular faces which allows us to cal-

culate two necessary quantities, the total projected surface area visible to an observer

as well as the enclosed volume of each tetrahedron generated by the origin and any

given triangular face. An additional benefit of this method is that we can adjust the
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number of iterations in order to achieve any level of precision we desire. We find

that after 5 subdivisions the calculated volume of our icosphere differs from that of

a perfect sphere by only 0.05%, while the calculated projected area varies by only

0.03%. We use this as a benchmark for the accuracy of our method and fix all further

calculations to 5 subdivisions, which gives us a surface of 10242 triangular tiles.

We next scale each vertex radially until all points have the same gravitational

potential, which requires us to pick a value of the equipotential Φ. We choose Φ such

that the projected surface area matches the observed transit depth, similar to what is

done in Burton et al. [2014]. We first evaluate the equipotential function for a range

of radii centered on the spherical planet radius. For each value of Φ generated this

way, we then calculate the radius of each vertex using a least squares regression in

order to find the surface of constant potential. For this surface, we then calculate the

projected planet area. This gives us a mapping between gravitational potential and

transit depth, which we use to select the value of Φ which corresponds to any depth

value of our choosing.

The result of this process is shown in figure 6-2, where we have calculated the

deformation of WASP-19 b [Hebb et al., 2009] using the described process. This

example highlights the potential for tidal deformation to alter a planets measured

density. In the left panel we see a significant deviation from a pure sphere, as the

planet is pulled towards its host star. However in the right panel we see that the

observer-projected shape of the planet remains nearly perfectly circular.

6.4 Density Variations of Confirmed Planets

6.4.1 Planet Sample

We begin with the full list of confirmed planets found in the exoplanet archive [NASA

Exoplanet Archive, 2019] which currently contains just over 5000 exoplanets. As

mentioned in the previous section, as well as motivated by the results of Burton et al.

[2014], we focus our efforts on short period planets, specifically planets with orbital
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period of less than 3 days. We do also analyze planets with periods in the range of

3-5 days, but those were found to have negligible tidal distortion effects, consistent

with expectations.

We additionally focus only on planets which have reported mass values. In prin-

ciple, relative variations in density can be measured based on just changes in planet

volume which is the focus of this work. However we also consider the magnitude of

such a difference relative to the uncertainty in the measured density, for which a mass

value (along with an error-bar) is required. We also cut for planets with eccentricity

values below e = 0.05. This leaves us with a final sample of 196 planets, just over 6

times larger than the sample of planets used in Burton et al. [2014].

6.4.2 Density Variation Results

We apply the process described in section 6.3.2 to each of the planets in our sample.

For each planet, we calculate its volume under tidal deformation that produces a depth

value which matches the median reported value to within 0.1% in order to minimize

differences caused by truncation or any other numerical effects. All analyses in this

section use these values in order to compare the spherical and tidal planet densities.

6.4.2.1 Absolute changes in density & trends

We first look at the percent difference in the density of each planet under the assump-

tions of being perfectly spherical or tidally deformed

∆𝜌

𝜌𝑠𝑝ℎ
=
𝜌𝑠𝑝ℎ − 𝜌𝑡𝑖𝑑𝑒

𝜌𝑠𝑝ℎ
(6.4)

where we calculate the value of 𝜌𝑠𝑝ℎ ourselves using the reported values of mass,

depth, and stellar radius. This is done to ensure a fair comparison in order to ac-

curately represent the amount by which density can shift due to changes in volume.

As we will see in the next section, this quantity is often comparable to the density

uncertainty, which is set by the underlying uncertainties from transit depth and RV

semi-amplitude measurements used to calculate density. Using the reported value of
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Figure 6-3: Relative change in the density of planets with orbital periods less than
three days. The curves show the functional dependence of equation 6.8 for represen-
tative values of planet mass and radius.

planet density thus suffers the risk of including measurement uncertainty (depending

on how density is reported which varies between analyses) when at this stage we only

wish to determine intrinsic differences. Thus we ensure that both our measurements

correspond to identical values of depth and planet mass.

The results of this are shown in figure 6-3. We show the variation as a function of

orbital period, where we note that the variation decreases as period increases. This

is not surprising given the factor of 1/𝑝2 which appears in the potential equation,

and acts as an additional confirmation that our code is accurately calculating planet

deformations (a similar trend with fewer planets was also seen in Burton et al. [2014]).

We truncate the plot at an upper limit of 𝑝 = 3 days, but note that we calculated

the deformation out to a period of 5 days and found that the trend continued, in
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particular the upper envelope which flattens out at a maximal deviation of ∼ 2%.

We find that for planets with orbital periods below 1.5 days, the tidal density may

deviate by as much as 15% compared to the density which comes from assuming a

perfectly spherical planet.

6.4.2.2 Functional Approximation of Density Variations

The scatter in figure 6-3 implies that orbital period is not the sole factor in determining

density variations, which is also apparent from the additional terms in equation 6.1.

We attempt to derive a functional form of the variation in density by comparing

the full tidal potential to that of an isolated spherically symmetric body, given by

Φ𝑠𝑝ℎ = −𝐺𝑀𝑝/𝑟. We first assume that points along the surface of a tidally distorted

planet are at a similar distance to the center of the planet as for a non-distorted

planet, i.e. no part of the planet is distorted by a factor of say two or more. Thus in

the Roche approximation we may replace quantities such as 𝑥2 + 𝑦2 + 𝑧2 with 𝑟2𝑝 or

equivalently
√
𝛿𝑅𝑠 where 𝛿 is the observed transit depth and 𝑅𝑠 is the stellar radius.

We also assume that 𝑎 >> 𝑅𝑝 (in our sample we always have at least 𝑎/𝑅𝑝 > 10), and

also that that solar mass is much larger than the planetary mass (for our sample we

always have 𝑀𝑠/𝑀𝑝 > 102). Under these assumptions the three terms from equation

6.1 become:

Φ1 ∼ −𝐺𝑀𝑠

𝑎
, Φ2 ∼ −𝐺𝑀𝑝

𝑟𝑝
, Φ3 ∼ −1

2
Ω2𝑎2 (6.5)

which we then combine and scale by Φ𝑠𝑝ℎ to get

Φ𝑠𝑝ℎ − Φ𝑡𝑖𝑑𝑒

Φ𝑠𝑝ℎ

=
3

2

𝑀𝑝

𝑀𝑠

𝑟𝑝
𝑎

(6.6)

where we’ve used Kepler’s 3rd law to combine the orbital period and semi-major

axis terms.

We now have an equation for the change in gravitational potential, which must be

converted to a change in density. Given that the potential is treated as a radial 1D

function, a reasonable assumption might be that the scaling term (rp/a) needs to be
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cubed in order to obtain a relationship for density. To confirm this, we parameterize

the change in density as

∆𝜌

𝜌𝑠𝑝ℎ
= 𝛼

(︂
𝑀𝑝

𝑀𝑠

)︂𝛽 (︁𝑟𝑝
𝑎

)︁𝛾

(6.7)

and fit for 𝛼, 𝛽, 𝛾 against the calculated values for ∆𝜌/𝜌. We do indeed find that

𝛾 ∼ 3, as well as 𝛼 ∼ 2 and 𝛽 ∼ 1. We present the final effect on the change in

density (having re-converted to orbital period) as

∆𝜌

𝜌𝑠𝑝ℎ
= 0.01428

(︂
𝑃

day

)︂−2(︂
𝑅𝑝

RJ

)︂3(︂
𝑀𝑝

MJ

)︂−1

(6.8)

We plot this function for representative values of planet radius and planet mass

in our sample in figure 6-3, where we find good agreement particularly in the upper

envelope of the data points which closely follows an inverse square dependence on the

period.

We additionally compare this analytic description of the change in density directly

to the values calculated in section 6.4.2.1 and show the results in figure 6-4. We

find that the bulk of the data points follow a linear relationship with a slope of

∼2, although we do still note a certain amount of scatter above the line. Planets

which deviate significantly from the trend tend to have smaller masses (closer to

being earth sized). This implies that one or more of the assumption we have made

in deriving this relationship breaks down for sufficiently low mass planets. At the

scales involved, our approximation deviates by at most a factor of ten from the true

relative density change. This implies an underestimate of the true volume change by

at most 10%, which in turn corresponds to an error on the linear scale of the planet

by 1.11/3 ∼ 3%. The true deviation is almost always larger than our functional

approximation. Thus equation 6.8 represents a fairly robust metric to determine

if a planet may be susceptible to tidal deformations, without needing to run a full

gravitational potential calculation.

A similar metric was derived in Correia [2014] (eq. 27), using a different approach

considering the Love number and fluid displacement of an exoplanet [Love, 1911]. The

117



Figure 6-4: We show here agreement between the functional form the of the density
perturbation we derive in section 6.4.2.2 (x-axis) against the values calculated in
section 6.4.2.1 (y-axis). The black line a linear relationship with a slope of 2 passing
through the origin. The coloring represents the mass of each planet on a log scale.

result they obtain is similar in that it is proportional to the ratio of planet to stellar

mass, as well to the third power of planet size to orbital semi-major axis. While we find

a constant scaling factor of two, they obtain a scaling factor of 7ℎ𝑓/4, where ℎ𝑓 is the

fluid second Love number. Estimating ℎ𝑓 using the Darwin-Radau relation [Bourda

and Capitaine, 2004] and a value of ∼ 0.27 for the moment of inertia of Jupiter [Ni,

2018] gives a prefactor of 2.5. This difference of 25% in estimated tidal density is

well below the measurement uncertainty on planet density, and using either equation

would indicate weather or not the planet of density may be significantly different from

that of a spherical planet.

An additional consideration of Correia [2014] is the effect of inclination on the
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Figure 6-5: Mass-Radius relationships along with data points (and error-bars) for
the sample of planets considered in this work. The left and right panels refer to low
and high mass planets respectively. Black curves in the left figure are taken from
Zeng et al. [2019]. Colored bands represent variations of these curves by up to 4.7%
in radius, corresponding to density variations of up to 15%. The right hand panel
shows a similar phenomenon for high mass planets, where we show constant-density
relations corresponding to solar system gas giants giant densities, as well as a planet
with half the density of Saturn and a planet with a density of 0.2𝑔/𝑐𝑚3 representative
of ‘super puffs’. The planets highlighted in red are those mentioned in Table 6.2 whose
density uncertainty is less than the deviations caused by tides.

derived density, which introduces a correction term in their equation 27 proportional

to 𝑐𝑜𝑠2𝑖. We find that for the planets in our sample, the effect of this correction term

is at most 2% for a handful of planets, and more typically well below a 1% correction.

Thus in our analysis we have chosen to neglect the effects of inclination, in order

to provide a simple framework which still captures the bulk of the deviations. Even

when considering the maximum inclination that would allow for a transit to occur,

the correction term is at most 2% for the shortest period planets in our sample, and

for most planets is much less than 1%.
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Figure 6-6: This figure illustrates the relative contribution of five underlying factors to
the derived measurement error of a planets density. The x-axis represents a minimum
amount that a given parameter contributes to the overall uncertainty on density. Solid
colored lines represent directly observable quantities (period, transit depth and RV
amplitude), while dashed colored lines refer to model-dependant quantities (stellar
mass and radius). The black line (‘shape’) shows the ratio of tidally-induced variation
to measurement error (∆𝜌/𝜎𝜌). The grey line shows a similar value, after having
artificially reduced the overall uncertainty on density by a factor of three to highlight
the effect of future measurement improvements.

6.5 Discussion

In the previous section we considered the absolute changes in density a planet may

experience under the effects of tidal forces. We now focus on contextualizing these

results with regards to measurement accuracy, and biases that may be introduced in

measuring planet compositions to high precision.
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6.5.1 Uncertainty in Mass-Radius Relations

During transit a tidally distorted planet will still have a nearly circular projection

while having a larger than expected volume as shown in figure 6-2. The implication

of this is that a spherical transiting planet could have the same density as a deformed

planet with a smaller projected area, due to the ‘hidden’ extra volume. Thus when

considering mass-radius composition curves, there is in-fact a degeneracy wherein a

single curve could actually correspond to a range of projected radii, which we show

in figure 6-5. The implication of this is that even if a planet had no error whatsoever

on its transit depth, there would still remain uncertainty on its composition due to a

lack of knowledge of its shape, becoming a bottleneck when attempting to measure

planetary compositions to high precision.

We separate our sample of planets into low mass (Earth-sized) and high mass

(Jupiter-size) planets, and for each we show a selection of various composition curves.

For the low mass planets we show curves taken from Zeng et al. [2019], for a range

of iron fractions as well as an Earth-like composition and a planet with a 25% water

composition. For gas giant planets, we show a range of densities corresponding to

the solar system gas giants, as well as a lower density of 0.2𝑔/𝑐𝑚3 as a representative

value of large planets with low densities, so called ‘super-puffs’[Masuda, 2014, Lopez

and Fortney, 2014]. For each curve, we a plot a range of values (the colored regions)

corresponding to a radius difference of ∼ 5%, which corresponds to a maximal density

variation of ∼ 15%. This represents the range of projected radii which could all

correspond to the same density.

The effect of these considerations is that, for example, a composition of 20% iron

and one of pure-rock become a near continuous region of parameter space, and a

planet such as Kepler-10 b, which we note in the next section has a relatively low

measurement error, could now be equally described by either model. We additionally

see planets which fall between models of 25% water and one of pure rock. While

their own uncertainties make the distinction clear, with one model being two or three

standard deviations away, it becomes much less obvious which model is correct once
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the additional uncertainty from shape variations (colored bands) is considered.

6.5.2 Uncertainty of Density Measurements

In the previous section we considered the limiting case of perfect transit depth and

mass radius knowledge and their effect on compositional analysis. We now focus on

current measurement errors, how they compare to changes induced by tidal varia-

tions, and how upcoming improvement in precision of the quantities used to calculate

density, namely transit depth, stellar radius, and planet mass (which itself depends

on the stellar mass, RV semi-major amplitude, and orbital period) will in turn affect

the uncertainty on density.

For a function 𝑓 which depends on independent variables 𝑥𝑖, we can write the

uncertainty of 𝑓 (denoted 𝜎𝑓 ) as:

𝜎2
𝑓 =

∑︁
𝑖

(︂
𝜕𝑓

𝜕𝑥
𝜎𝑥𝑖

)︂2

(6.9)

which for a density calculated using planet mass (𝑀𝑝), transit depth (𝛿) and stellar

radius (𝑅𝑠) becomes

𝜎𝜌 =

√︃(︂
𝜌

𝑀𝑝

𝜎𝑀𝑝

)︂2

+

(︂
3

2

𝜌

𝛿
𝜎𝛿

)︂2

+

(︂
3
𝜌

𝑅𝑠

𝜎𝑅𝑠

)︂2

(6.10)

We note that most of the planets in our sample have reported values for their

density along with an error-bar in their entries in the exoplanet archive. We addi-

tionally calculate the uncertainty by ourselves using equation 6.10 and the reported

uncertainties for the involved quantities, and find a good agreement between the two

values. An additional consideration is that the planet mass itself is dependant on the

radial velocity semi-major amplitude (K), stellar mass (𝑀𝑠), and orbital period (p),

which allows us to write the uncertainty on the planet mass as:

𝜎𝑀𝑝 =

√︃(︂
𝑀𝑝

𝐾
𝜎𝐾

)︂2

+

(︂
3

2

𝑀𝑝

𝑀𝑠

𝜎𝑀𝑠

)︂2

+

(︂
1

3

𝑀𝑝

𝑃
𝜎𝑃

)︂2

(6.11)

The benefit of calculating the uncertainty directly in this way is that we are then
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Error Contributor Min % Max % Median %
1 31 100 59
2 0 45 25
3 0 28 9
4 0 18 3

Table 6.1: Summary of the ranked contributions to density error across all planets
where 1 = largest contributing factor and 4 = smallest. We find that the largest
source of error (regardless of which underlying parameter it comes from) comprises
anywhere from 31%-100% of the uncertainty on a planets density, with a median
value of 59%.

able to compare the relative contribution of each term to the overall uncertainty. We

quantify the relative contribution of a variable 𝑥𝑖 as:

(︂
𝜕𝜌

𝜕𝑥𝑖
𝜎𝑥𝑖

)︂2

/𝜎2
𝜌 (6.12)

such that the sum of the contributions of each variable is 100%. The results of this

breakdown are shown in figure 6-6, where we illustrate how often a given parameter

contributes a minimum amount to the uncertainty. We find for example that in our

sample of planets the orbital period never contributes more than 0.0001% relative

to the other parameters, which is unsurprising given that the orbital period of a

transiting planet is typically measured to extremely high precision.

For the remaining four parameters we can categorise them as being either measure-

ment dependant (transit depth and RV amplitude) or model dependant (stellar mass

and stellar radius). We find that it is the measurement parameters which more often

contribute the largest amount of uncertainty, with the RV amplitude alone contribut-

ing at least 60% of the relative uncertainty for ∼20% of the planets in our sample, and

in some case it even contributes almost the entirety of the uncertainty. Transit depth

similarly can contribute as much as 90% in some cases, whereas the model dependant

parameters never contribute more than 80% of the relative uncertainty. In table 6.1

we show the ranked breakdown of error contributions, in order of largest to smallest

contributor (regardless of which parameter it comes from). We find for example that

for a given planet the largest source of uncertainty always contributes at least 31% of

the error and potentially the entire uncertainty, with a median contribution of 59%.
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This indicates that for most planets there is a single parameter which contributes

more than half of the density uncertainty.

When we consider the overall uncertainty on the spherical density, we find that

for most planets the calculated difference between the spherical and tidal density

(∆𝜌) is smaller than the uncertainty (𝜎𝜌), illustrated by the black line in figure 6-6

which shows the ratio between the two. This implies that with current data precision

assuming a planet to be spherical in most cases does not introduce a significant

statistical bias, but may be causing density error uncertainties to be underestimated.

Given this result, we can then ask by how much the error on planet density needs

to be reduced before we have 𝜎𝜌 = 𝜌𝑠𝑝ℎ𝑒𝑟𝑒 − 𝜌𝑡𝑖𝑑𝑎𝑙, which we show in figure 6-7. We

see that the peak lies around an improvement of roughly 3-10x, although for many

planets the required improvement is much smaller. For planets where the radial

velocity amplitude or transit depth are the largest contributing factor, this implies

that at a reduction in their uncertainties by 3-10x, tidal effects on density will begin

to become relevant and the planet can no longer safely assume to be spherical. This

is shown by the grey curve in figure 6-6, where we reduce the density error by a factor

of three and show the relative value of tidal effects, which is comparable to ∼ 50% of

the measurement error on density for > 35% of planets.

We note that there is a small sample of planets for which current measurement er-

rors are in fact less than the calculated deviation on their densities due to tidal effects

(the highlighted orange part of Figure 6-7). We report these planets in Table 6.2,

sorted by the multiplicative factor by which tidal deviations outweigh measurement

uncertainties. In the worst case, we find that for WASP-19 b this is almost a factor

of four, implying that the reported precision on its density is significantly underes-

timated. Again we note that grey curve of figure 6-6 shows that after reducing the

total error on density by a factor of three, we find ∼ 20% of our sample or almost 40

planets for which tidal variations on density would become larger than measurement

errors.
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Planet Name Period (days) ∆𝜌/𝜎𝜌 Reference
WASP-19 b 0.8 3.8 Hebb et al. [2009]
HAT-P-7 b 2.2 3.6 Pál et al. [2008]
WASP-12 b 1.1 3.0 Hebb et al. [2009]
WASP-121 b 1.3 1.9 Bourrier et al. [2020]
WASP-4 b 1.3 1.4 Bouma et al. [2019]
WASP-103 b 0.9 1.4 Gillon et al. [2014]
Kepler-10 b 0.8 1.4 Esteves et al. [2015]
K2-141 b 0.3 1.1 Malavolta et al. [2018]

Table 6.2: List of planets with density uncertainties less than the potential deviation
due to tidal effects.

Figure 6-7: The factor by which the uncertainty on a planets density needs to be
improved such that it is equal to the change in density due to tidal deformations. The
black dotted line highlights a decrease by a factor of 3 in the uncertainty on spherical
planet density. The orange region highlights planets whose density uncertainty is
currently less than the difference between the spherical and tidal density values.
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6.6 Conclusions

Using a gravitational potential framework to determine the shape of a planet under the

influence of tidal distortions, we have expanded on the work of Burton et al. [2014]

and calculated the amount by which such effects may bias the estimated density

of an exoplanet with orbital periods of less than three days. In comparison to an

assumption of being perfectly spherical, tidal effects serve to increase the perceived

volume of an exoplanet (and thus decrease its density) by an amount of up to 15%

for the shortest period planets, which agrees with the values reported in Burton et al.

[2014] and Leconte et al. [2011], which reported their results as a change in effective

planet radius. Similarly, Akinsanmi et al. [2019] considered a framework of a planet

with ellipsoidal variations how that would affect their lightcurves and identified many

of the same planets as we do in table 6.2 as being those which would exhibit the

strongest signal of shape deformation.

We quantify this change more precisely in terms of the semi-major axis, planet to

star mass radio, and planet radius for which we are able to derive a robust relationship

(eq. 6.8). This allows for a rapid estimate of the magnitude of such variations, and

whether or not an analysis of a planets density (and thus its internal composition) will

be significantly biased by assuming the planet to be perfectly spherical. In Correia

[2014] a similar expression was derived through an alternate analytic consideration,

including the effect of inclination as well as the fluid Love number of the planet.

We find the inclination effect to alter the density perturbation by at most 2% for

the planets in our sample, although in most cases the effect is much less than 1%.

The additional consideration of the fluid response of the planet implies potential

variations of ∼ 20% between our results (i.e. a 15% density perturbation could

change by a factor of 0.8-1.2), however this is strongly affected by uncertainty in

the Love number. A more detailed analysis of the fluid response of planets in Wahl

et al. [2021] identified WASP-12 b, WASP-103 b, and WASP-121b as those with the

potential for the greatest variation in tidal response, which we also found to be among

planets with the highest deviation in derived densities.
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For planets with orbital periods beyond 2.5 days we measured variations of no more

than 2%, well below current measurement errors (𝜎𝜌/𝜌 > 2.7% for 𝑝 > 2.5 days). We

find also that for most planets, even those with shorter orbital periods, measured

uncertainties are currently too large to be affected by such deviations, however we

identify a sample of planets whose uncertainties may be as much as four times smaller

than the potential change caused by shape distortions. One such planet, WASP-103

b, was recently found to show tentative tidal deformations using multiple transit

observations [Barros et al., 2022], where it is reported that the volumetric radius of

a fit derived using an ellipsoidal planet model is 5-6% larger than the radius derived

from a spherical planet model. This further strengthens the notion that for such

planets susceptible to tidal deformation, any attempts to characterise their interior

composition based on their density derived using spherical planet models are likely to

be under-estimating their errors, and that there is a wall of accuracy which is limited

by a lack of knowledge of their true shape. For other short period planets however

we calculate that an overall improvement by a factor of three in density error would

cause ∼ 25 planets to have density errors comparable to tidal distortions, and for

∼ 50 planets tidal distortions would compare to at least 50% of the measured density

uncertainty.

With this in mind, we find that radius values in a range of up to a 5% deviation

could in fact correspond to planets with the same density. This implies that compo-

sition curves are not just one-to-one functions but rather correspond to a family of

mass-radius relationships, where there is a degeneracy induced by a lack of knowl-

edge of the shape of a planet. This highlights a fundamental limit in the precision

of characterising the composition of an exoplanet when disregarding tidal variations,

which will become more severe as measurement errors decrease.

Finally, we break down the uncertainty on a planets density further as a contribu-

tion of five underlying factors, three of which are directly observable and two which

are model-derived. This breakdown highlights the fact that it is the directly observ-

able quantities (specifically RV amplitude and transit depth) which are in most cases

responsible for the bulk of the error in a planets density (in some cases contributing
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almost the entirety of the error budget). We also find that the median contribution

of the largest piece of the uncertainty budget is 59%, implying that for most planets

there is a single key parameter contributing the bulk of the uncertainty. Thus up-

coming extreme precision RV measurements as well as high SNR transit observations

such as those from JWST and PLATO imply that biases due to tidally-induced shape

deformations will become a significant and unavoidable bottleneck when attempting

to measure the density of planet to a high level of accuracy as the error in these key

contributing factors is reduced.
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Chapter 7

Searching for Exospheres Around

Planets in the TRAPPIST-1 System

The contents of the following chapter represent work intended for submission

7.1 Introduction

The following chapter presents an analysis of data that was obtained as a result of

Hubble Space Telescope (HST) proposal 15304 (PI: Julien de Wit), entitled "Col-

lecting the Puzzle Pieces: Completing HST’s UV+NIR Survey of the TRAPPIST-1

System ahead of JWST". The proposal consisted of 114 HST orbits with the goal of

characterising the TRAPPIST system in preparation for upcoming observations with

the James Webb Space Telescope. Previous observations with the Wide Field Camera

3 (WFC3) instrument on HST have ruled out the presence of 𝐻2 atmospheres around

the 5 innermost planets b-f [de Wit et al., 2016, De Wit et al., 2018]. It was found

in [Wakeford et al., 2019] that for TRAPPIST-1g, an 𝐻2/He-dominated atmosphere

is ruled out at greater than 3𝜎 significance. For TRAPPIST-1h, [Garcia, L. J. et al.,

2022] reported that is unlikely to host an aerosol-free H/He-dominated atmosphere,

with a transmission spectrum consistent with having no features due to a high mean

molecular weight (≥1000× solar).

Of the 114 requested orbits, 16 were observed with WFC3 in order to complete
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Figure 7-1: A schematic showing the motion of a transiting planet along with an
extended exosphere (blue outline). The bottom plots show the effect of the exteneded
exosphere on the observed Lyman-𝛼 signal from the host star, as a function of time.
Figure taken from Owen et al. [2023]

the near infra-red reconnaissance survey of the system. The remaining 98 orbits were

taken with the STIS instrument on HST, with the goal of searching for extended

Hydrogen exospheres around the planets in the TRAPPIST-1 system, which would

be the result of intense stellar irradiation causing the atmospheres of the planets to

evaporate [Burrows and Lunine, 1995, Guillot et al., 1996]. H-exospheres provide the

most accessible observables for volatile reservoirs, which have yet to be ruled out by

the previously mentioned WFC3 observations. They have been previously observed

to cause dips of up to 56% in the blue wing of stellar Lyman-𝛼 emission, as in the

case of GJ 436 b[Lavie et al., 2017].

The goal of this work is to search for these H-exospheres around the planets in

the TRAPPIST-1 system by observing the Lyman-𝛼 emission of the host star [Owen

et al., 2023]. Planets which orbit sufficiently close to their host star suffer the risk

of significant atmospheric escape due to high levels of stellar irradiation [Lammer

et al., 2003, Yelle, 2004, García Muñoz, 2007, Murray-Clay et al., 2009, Owen and
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Jackson, 2012], causing an extended tail of this evaporated material to trail behind

the planet. In figure 7-1 we show a schematic of how this extended exosphere would

transit the star, in particular long after the primary transit due to the planet has

occurred. It is in this context that the full 3D nature of a planet must be considered

[Bourrier and Lecavelier des Etangs, 2013], requiring 3D dynamical simulations of

an evaporating exosphere to properly model the observed signals (eg Bisikalo et al.

[2013], Carroll-Nellenback et al. [2017] and others).

7.2 Description of the data set

The observations are broken up into individual visits, each of which contain anywhere

from 2-7 orbits of HST, taken with the STIS instrument using the G140M grating,

which has a spectral range of 1140-1740Å1. The observations were taken with a central

wavelength setting of 1222Å, spanning 1194-1249Å with a resolution of ∼20kms−1

ensuring adequate coverage of the 1216Å Lyman-𝛼 emission line. The observations

were taken periodically from September 2017 to July 2022, each coinciding with a

transit of one or more of a planet in the TRAPPIST-1 system. In table 7.1 we outline

in detail the individual visits taken, the number of orbits per visit, and which of the

TRAPPIST-1 planets are seen to transit (taking into account transit timing variations

of the individual planets which can be up to nearly an hour [Agol et al., 2021]). In

total the observations overlap with 3 transits of planet g, 4 transits of planets e &

h, 5 transits of planets b, d and f, and 6 transits of planet c. Each visit typically

contains at least one orbit before and after the transit of one or more planets. The

individual orbits have a typical integration time of ∼2000 seconds.

We show in figure 7-2 a sample exposure for one particular orbit of HST/STIS.

The dominant feature in the image is geocoronal Hydorgen emission from the Earth’s

atmosphere [Meier and Mange, 1970], along with the faint signal due to Lyman-𝛼

emission from TRAPPIST-1 just to its left.
1https://hst-docs.stsci.edu/stisihb/chapter-13-spectroscopic-reference-material/13-3-

gratings/first-order-grating-g140m
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Visit Id orbits Start (MJD) End (MJD) Transiting Planets
odhs07 6 57999.80554628 58000.13234036 h
odhs29 6 58010.53201628 58010.8597711 g
odhs30 6 58013.51192369 58013.83968999 c,e
odhs32 7 58024.3072022 58024.70121849 b
odhs16 4 58043.97447072 58044.16982961 e
odhs05 4 58066.49076783 58066.68606894 d
odhs08 4 58070.46400857 58070.65934413 d
odhsd1 4 58244.62177988 58244.8160301 d
odhsb1 4 58269.25489373 58269.44886373 b,f
odhsb2 4 58335.73444453 58335.92925934 b,c
odhsc1 4 58371.95377446 58372.14935298 b,c
odhsf1 4 58453.33295479 58453.52589479 f
odhsc2 4 58459.22383442 58459.4193785 c,d
odhsg1 4 58616.00951054 58616.2045798 g
odhsf2 4 58637.46029758 58637.65537832 d,f
odhse1 4 59135.84576521 59136.03995521 e
odhsg2 4 59159.54331234 59159.73883345 g
odhsh1 4 59163.38209716 59163.57863642 h
odhsc3 4 59166.36554642 59166.55782642 c,e
odhsf3 4 59438.47639171 59438.67289652 f
odhsh2 4 59501.15662499 59501.35231943 h
odhse3 4 59782.3657781 59782.56156514 e
odhs33 5 58039.00752627 58039.26906553 f
odhs31 7 58018.41267591 58018.80671554 b,c,h

Table 7.1: Description of the observations taken as part of the observing program.
Times listed are start of the first orbit and end of the last orbit with a visit, comprising
anywhere from 4 - 7 individual orbits/integrations. The rightmost column lists which
of the TRAPPIST-1 planets transits during the visit (typically during the central
orbit).
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Figure 7-2: A raw CCD image of the observation obtained with each image. The left
panel shows the full exposure, including the shift along the spatial direction. The
right panel shows a zoomed in view, which highlights not only the strong airglow
signal, but additionally a secondary signal due to Lyman-𝛼 emission just to its left.

7.3 Description of Observational Model

Each individual observation can be modeled as the sum of several components: a

background signal, an airglow contamination signal due to the Earth’s atmosphere,

and finally the emission signal from TRAPPIST-1, which has been attenuated due to

absorption from the interstellar-medium (ISM) [Landsman and Simon, 1993, Wood

et al., 2005]. We describe here the mathematical formulation of each of these com-

ponents, and how they are used to ultimately retrieve a Lyman-𝛼 lightcurve of

TRAPPIST-1.

7.3.1 Airglow Model

The dominant signal observed is from geocoronal Hydrogen emitting Lyman-𝛼 pho-

tons around the Earth (which extends well past the orbit of the moon [Baliukin et al.,

2019]), which we model with a Voigt profile [Sim, 2001] across the wavelength axis

(the x-axis in figure 7-2):
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𝑉 (𝑥;𝜎, 𝛾) =

∫︁ ∞

−∞
𝐺(𝑥′;𝜎)𝐿(𝑥− 𝑥′; 𝛾)𝑑𝑥′ (7.1)

where 𝐺(𝑥;𝜎) is a zero mean gaussian

𝐺(𝑥;𝜎) =
𝑒−𝑥2/2𝜎2

√
2𝜋𝜎2

(7.2)

and 𝐿(𝑥;𝜎, 𝛾) is a Lorentzian profile

𝐿(𝑥;𝜎, 𝛾) =
𝛾

𝜋(𝑥2 + 𝜎2)
(7.3)

which we implement using the astropy package [Astropy Collaboration et al.,

2013, 2018, 2022]. In this framework, the Voigt profile is defined using a positional

offset 𝑥𝑎𝑖𝑟𝑔𝑙𝑜𝑤, an amplitude 𝐴𝑎𝑖𝑟𝑔𝑙𝑜𝑤, and the full-width half-maximum (FWHM) of

both the Gaussian and Lorentzian profiles, fwhm𝐺 and fwhm𝐿 respectively. These

fwhm values are taken to be constant across all observations, and are thus fixed

during fitting, having been measured during preliminary fitting to be 1.83458 for the

Lorentzian width and 2.08911 for the Gaussian width. The position is taken to be

a ‘visit’ parameter (i.e. it is calculated once for each set of orbits corresponding to

a visit), and the amplitude is taken to be an orbit parameter and is kept as a free

parameter for each observation.

7.3.2 Background Model

The background flux is modeled using a linear model on the spatial axis (the y-axis

in figure 7-2), which accounts for a ramp effect across the image. The offset and slope

of the ramp are found to change between each orbit, and so are parameters which

must be varied in each fit:

background = offset𝑜𝑟𝑏𝑖𝑡 + 𝑌 * 𝑠𝑙𝑜𝑝𝑒𝑜𝑟𝑏𝑖𝑡 (7.4)
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Figure 7-3: A flowchart diagram of the MCMC fitting pipeline used to analyse the
images obtained from STIS

.

7.3.3 Signal Model

The final components to describe are the emission signal coming from TRAPPIST-1,

as well the attenuation due to absorption by the interstellar medium (ISM) along the

observer line-of-sight. The Lyman-𝛼 emission is modeled with a Voigt profile in the

wavelength (X) axis (as was done for the Earth’s airglow) and with a Gaussian profile

in the spatial (Y) axis:

𝑆𝑖𝑔𝑛𝑎𝑙(𝑋, 𝑌 ) = 𝑉𝑠𝑖𝑔(𝑋) *𝐺𝑠𝑖𝑔(𝑌 ) * (𝑓𝐿𝑠𝑖𝑔/𝑓𝐺𝑠𝑖𝑔) (7.5)

where V is the Voigt profile defined in equation 7.1 and G is a normalized Gaussian

profile with amplitude one. The overall profile is then multiplied by a scaling factor

𝑓𝐿𝑠𝑖𝑔/𝑓𝐺𝑠𝑖𝑔 in order to decorrelate the widths from the amplitude in the Voigt profile.

This allows for greater precision when fitting, since in general modifying the width

of a Voigt profile will adjust its amplitude, which may not always be intended or

necessary.

Finally, the absorption due to the interstellar medium is modeled as the negative

exponential of a gaussian along the wavelength axis:

Absorption = 𝑒−𝐺(𝑥) (7.6)
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Figure 7-4: Sample MCMC fit output. The leftmost panel indicates the systematic-
corrected signal image, for which a model fit is retrieved, which is shown in the central
panel. The rightmost panel shows the spatially-flattened spectral profile of the image,
indicating the strong airglow peak and blue shifted emission signal from TRAPPIST-
1, along with the best fit model in orange.

Thus the overall model for the observed data, as a function of both spatial po-

sition and wavelength (the two axis in the detector image), can be described as a

combination of three described components:

Modeltotal = Background + Signal× Absorption + Airglow

7.4 Description of Analysis Routine

The analysis pipeline is broken down into a series of steps, which is shown as a

flowchart diagram in figure 7-3. The analysis for each visit starts with a file with the

𝑟𝑎𝑤 tag, which contains an un-calibrated image. This image must first be adjusted

for rotation, which in turn requires padding along the edges to ensure the image

remains rectangular. Additionally, sigma clipping is used to highlight outlier pixels

and replace them with the mean of their surrounding pixels. This process generates

files with the 𝑚𝑜𝑑𝑟𝑎𝑤 tag.

Once this initial calibration has been done, we use the calstis module which is

part of the stistools2 suite of analysis functions, designed for the STIS instrument.

This converts the 𝑚𝑜𝑑𝑟𝑎𝑤 tagged files to 𝑚𝑜𝑑𝑥2𝑑 files, which are finally ready for
2https://stistools.readthedocs.io/en/latest/calstis.html
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Figure 7-5: All visits which contained a transit of TRAPPIST-1 b, shown in orange
indicating the duration of its transit. Other planets which happened to be transiting
during these windows are also shown. The signal flux is the retrieved amplitude of
the signal component of the observational model.

model fitting (i.e. the input on the left side of figure 7-3). The effect of the calstis

function is to perform standard data reduction tasks, including flat-fielding, subtract-

ing the dark image, rejecting cosmic rays, as well as perform wavelength calibration.

Wavelength calibration is done using calibration files and the wavecal component of

calstis to assign a wavelength value to each pixel.

Once the files have been calibrated, the first step is to fit for the Voigt profile of

the airglow signal. For each orbit, the position, amplitude, and widths of the airglow

signal are extracted, providing prior values for the airglow signal in the following

steps. This is done at this stage independently of other fits since the signal due to

Earth’s glow is much stronger than any other signal present in the observations.

A first round of MCMC fitting is done using the full model description, including

background, airglow, and emissions contributions. The output of this fitting is used to

create an error map, i.e. a residual map to which sigma clipping can then be applied

in order to remove noise pixels >4𝜎 away from the mean. Following the removal of

these outliers, a final run of MCMC fitting is performed, providing the final posterior

distributions for the individual model components. These outputs are then used to

generate various diagnostic and summary information described in the next section.
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Figure 7-6: Normalized flux values of Lyman-𝛼 emission phases folded to the orbital
periods of each of the seven transiting planets in the system. The blue bands highlight
the duration during which each planet is transiting.

7.5 Fitting Results

Once MCMC analysis have been run for each orbit, within each visit, from each fit we

extract the median and posterior values of the signal amplitude, i.e. the amplitude of

the Voigt profile component of equation 7.5, which is used to construct a lightcurve

of Lyman-𝛼 emission for each visit.

We first show an example fit in figure 7-4, which demonstrates a modified signal

image, the combined signal, background, and airglow model, and finally the spatially

flattened wavelength profile of the signal and best fit model. The larger peak is

due to the airglow signal, while the smaller, Doppler shifted peak is due to emission

from TRAPPIST-1. We then show in figure 7-5, a sample report for planet b. The

five panels each represent lightcurves for a visit during which planet b happened to

transit, indicated by the green bands. We additionally show any other planets which

happened to be transiting during the same visit.

The lightcurves are normalized by considering only orbits which do not coincide
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Table 7.2: Lyman 𝛼 transit depths of TRAPPIST-1 planets
Planet Depth (%) Depth Uncertainty (%) OOT Baseline Scatter(%)
T1 b -8.5 7.6 6.62
T1 c 1.1 15.0 14.54
T1 d -13.3 8.5 5.84
T1 e -19.2 24.5 24.04
T1 f 16.9 10.2 9.0
T1 g -13.1 9.9 8.57
T1 h -2.7 13.3 11.76

with the transit of any of the planets. For each visit, we then calculate the scatter of

these background points, along with the difference between in-transit points and the

background signal. We also add the scatter of the in-transit and out of transit points

in quadrature, to obtain an estimate for the Lyman-𝛼 transit depth. For each planet,

we compute this depth across all visits where it is seen to transit, and then calculate

their mean value and uncertainty (again by adding the individual uncertainties in

quadrature). We report these final transit depths, as well as background scatter, in

table 7.2. We additionally show in figure 7-6 the flux values across all relevant orbits,

phase folded to the periods of each individual planet. This was carefully done by the

subtracting the transit center during each visit, using the predicted TTV variations

provided by Agol et al. [2021] to account for any offsets in the transit centers. We

similarly observe no correlated drop in flux either during or after a transit (during

which the tail of an extended exosphere would continue to transit the host star).

7.5.1 Measuring the Rotation Period of TRAPPIST-1

In addition to the phase folded lightcurves shown in figure 7-6, we also examined

the variability of the flux across all observations and looked for trends or periodic

signals, in particular those which would be tied to the rotation period of TRAPPIST-

1 itself. We first show the full extent of the observations across the total time they

were observed in figure 7-7, where there is no immediate trend visible. Additionally,

we show the same lightcurve folded to the current best guess for the rotation period,
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Figure 7-7: Left: Absolute emission flux from TRAPPIST-1, across all visits and
orbits of STIS. Right: Absolute emission flux phase folded to the rotational period of
TRAPPIST-1 (3.295 days).

P = 3.295 days, where again there is no discernible trend. We note however that due

to the long baseline of the observations (just under five years), even miniscule changes

to the folding period would cause a dramatic change in the folded lightcurve.

We normalized the flux within each visit as before, and in the left panel of figure

7-8 we show the stellar flux folded to a range of period values. These particular

values were found to be global peaks in the Lomb-Scargle periodogram [Lomb, 1976,

Scargle, 1982] of the time series Lyman-𝛼 emission of TRAPPIST-1. Several period

values were found to have comparable signal power when phase folded, included the

highest peak at an orbital period of P = 3.274 days, which closely matches the

current estimate of the rotation of 3.295 days [Vida et al., 2017]. We find that

even a minor adjustment of 0.021 days, or about 30 minutes, is enough for a coherent

signal to emerge in the folded lightcurve. Thus despite the high amount of scatter

and uncertainty in the data, we are still able to tentatively retrieve the rotational

period of TRAPPIST-1 with a high degree of confidence.
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7.6 Discussion

This work has focused on the analysis of nearly 100 HST/STIS orbits, grouped into 24

visits, in order to search for decreases in Lyman-𝛼 emissions from TRAPPIST-1 which

would be indicative of extended neutral Hydrogen exospheres. The results compiled

in table 7.2 indicate that there is no significant decrease in Lyman-𝛼 flux emitted

from TRAPPIST-1 which can be associated with any of its seven known transiting

planets. For each planet, the variation between in and out of transit observations is

consistent with no decrease in flux, to within one standard deviation. In addition to

measuring lightcurves occurring around transits of individual planets, we also show

in figure 7-7 the absolute flux across all orbits, as well the flux phase folded to the

rotational period of TRAPPIST-1 (p = 3.295 days [Vida et al., 2017]). This is done

to monitor the time variability of the emission from the star. While an orbital period

of 3.295 days not show a significant trend, when we analyze the power of the Lomb-

Scargle periodogram of the full signal, we find that a nearby value of P = 3.274 days

exhibits a noticeable sinusoidal variation in the Lyman-𝛼 emission of TRAPPIST-1

(shown in figure 7-8, although still at a low level of significance. Contemporaneous

infrared observations with the Spitzer Space Telescope have found similarly low levels

of variability over time [Delrez et al., 2018].

In Owen et al. [2023], a detailed description of the physical processes behind

extended atmospheres is provided, in the context of absorbing stellar emission. In

particular, they outline a sweet spot necessary to observe such transits, dependant

on the stellar emission properties. If the amount of irradiation being absorbed by the

planet is too low, then there won’t be an active enough outflow generated, however

if the amount of irradiation is too large, then the gas will become ionized more

quickly and thus be incapable of absorbing Lyman-𝛼 photons. These arguments have

previously been used as potential explanations for other non-detections, particular in

cases of planets which are expected to be receiving significant amounts of radiation

from their host star, such as HD 97658 b [Bourrier et al., 2017].

Finally, it is worth noting that non-detections stemming from HST/STIS observa-
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Figure 7-8: Left: Absolute emission flux from TRAPPIST-1, folded to various periods.
Right: Lomb-Scargle periodogram power, centered on the current best estimate for
the rotation period of TRAPPIST-1 of 3.295 days.

tions vary significantly in their ability to constrain the presence of extended neutral

Hydrogen exospheres. In the case of HD 63433b, in Zhang et al. [2022] a 2𝜎 upper

limit of ∼ 3% was able to be achieved. However in the case of K2-25b, only a 2𝜎

of 30% was achievable [Rockcliffe et al., 2021]. Thus it remains possible that tran-

sit depths of a few percent could be attributed to the planets in the TRAPPIST-1

system, however HST’s limited sensitivity prohibits them from being observed.
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Part IV

Stellar Surfaces
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Chapter 8

Simulating Lightcurves of Complex,

Periodic Signals Observed in a sample

of TESS M-dwarfs

The work presented in this chapter originally appeared as a contributed section in the

literature as

Maximilian N. Gunther, David A. Berardo, Elsa Ducrot, et. al., The Astronomical

Journal, 163,144, (2022).

In this chapter, I focus on the analysis of a set of rapidly rotating M-dwarfs first

described in Zhan et al. [2019] which exhibit complex and periodic lightcurve mod-

ulations. In particular, I describe a robust and flexible star spot model I developed,

which is capable of accounting for occultations from a range of sources including tran-

siting planets, opaque clouds of dust, and an opaque torus of dust. The results of this

work are a proof of concept that (1) the model I developed is capable of simulating

the complex modulations observed and (2) that in the absence of a disk, it is difficult

to recreate the sharp features seen in the lightcurves.
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8.1 Introduction

Young M-dwarfs (20-150 Myr) have been observed to have rapid rotation rates (≲

2 days) [Rappaport et al., 2014]. Furthermore, their lightcurves are often found

to display a range of anomalous features, including flares [Davenport et al., 2019,

Mondrik et al., 2018, Günther et al., 2020] and large amplitude periodic modulations

[Vida et al., 2010, Barnes et al., 2017]. These modulations are typical easily described

by either a simple flaring model, or by a handful of spot features on the stellar surface

described by just a few Fourier components. Some such stars exhibiting rotationally

modulated signals do exhibit more complex features which are not as easily described

by a simple spot model, such as KIC 7740983 [Rappaport et al., 2014] and HSS 348

[Strassmeier et al., 2017], however even these more complex lightcurve can be still be

described with a more careful configuration of surface spots.

In Zhan et al. [2019], a new model was proposed to explain a new set of lightcurves

which could not be explained by existing models, the so called ‘dusty-torus’ scenario

in which an opaque, inclined disk which is mis-aligned with the stellar rotation axis

accounts for the multitude of observed features. They also outlined counterarguments

explaining why more simplistic models are incapable of re-creating the observed sig-

nals. Models with spots alone, even many spots, lead to smooth variations which can

describe all the peaks in the frequency spectrum of the signals [Kővári and Bartus,

1997, Stauffer et al., 2017]. An accreting disk, on the other hand, would lead to too

stochastic and aperiodic of a model compared the stable periodicity observed in the

new complex rotator signals [Stauffer et al., 2017].

8.2 Observations

The original sample of ten complex rotators were discovered in TESS short-cadence

photometry from Sector 1 (2018-07-25 to 2018-08-22) and Sector 2 (2018-08-22) ob-

tained as part of the cool dwarf catalog [Stassun et al., 2018, Muirhead et al., 2018].

We present the set of lightcurves relevant to this work in figure 8-1. These represent
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the pre-search data conditioned simple aperture (PDC_SAP) light curves, which

have been detrended for instrumental systematics and which were prepared with the

Science Processing Operations Center (SPOC) pipeline Jenkins et al. [2016].

8.3 Description of the Model

In order to generate the various models proposed to explain the observed lightcurves,

it was necessary to consider either adapting currently existing transit generation

codes, or to create a custom forward model which was capable of generating the

necessary lightcurves.

8.3.1 Existing Lightcurve Simulation Codes

One of the most ubiquitous codes to generate transit lightcurves is BATMAN, written by

Laura Kreidberg [Kreidberg et al., 2014], however this would have been insufficient

for our purposes. The BATMAN code operates by solving the equations of [Mandel

and Agol, 2002], which are applicable planets transiting the surface of a star with

a radially symmetric limb darkening law. This code is highly optimized, producing

accurate lightcurves very quickly. However, the cases we consider in this work are

highly non-symmetric with regards to the kinds of occultations we consider, and in

addition while spots can be considered in some context as disks transiting across the

surface of a star, their geometric projection changes over time, altering their light

curve signature.

A potentially more applicable code is the STARRY package, written by Rodrigo

Luger [Luger et al., 2017]. This code is capable of producing more lightcurves of

more complicated situations, including in particular stellar surface with star spots,

and their interaction with planets. However, again the discrepency with our models

proved to be insurmountable with the codebase of STARRY. The representation of spots

in STARRY is through spherical harmonics, which allows for rapid surface brightness

calculations give that the surface can be described completely analytically. This again

results in accurate, rapidly generated lightcurves. However, our model requires the
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Figure 8-1: All available TESS light curves of young M dwarfs with complex photo-
metric variability, spanning multiple Sectors of TESS observations. Each light curve
shows the data of one TESS orbit (14 days of observations) phase-folded onto the ro-
tational period of each star, with, e.g., "S1 i" denoting the first orbit of Sector 1 and
"S13 ii" denoting the second orbit of Sector 13. Flares have been removed prior to
phase-folding and plotting. All complex rotators’ features show remarkable stability
and longevity over many weeks to a year (at least). Figure taken from Günther et al.
[2022]
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interaction of a spotted stellar surface with an ‘external’ source, namely co-rotating

clouds or an opaque disk. While clouds could in principle be modelled as transiting

planets, the geometry of a disk proved to be too difficult to include the framework of

STARRY.

8.3.2 The Spot Disk Model

Given the scale of the variations in the observed signals (∼5-10% for most of the

lightcurves shown in figure 8-1), it was determined that the resolution of the models

need not be sufficiently high as to exclude the use of non-analytic models. As such,

I opted to develop a grid based model, where different effects could be simulated as

different ‘layers’, and then composited together to create the final observed surface.

A schematic of the model features is shown in Figure 8-2, and I describe the model

in further detail here.

The surface of the host star is represented as two dimensional grid, with axis

running across the latitudinal and longitudinal directions, having twice as many reso-

lution elements running along the latitudinal direction (perpendicular to the rotation

axis of the star). For each grid point, we calculate the projected area as 𝑑𝜑sin𝜃𝑑𝜃,

where 𝜃 and 𝜑 refer to the latitudinal and longitudinal directions respectively. We

store this information as an area map, along with a map of the normal vector of each

cell. This facilitates both rotating the grid (corresponding to an offset stellar rotation

axis relative to the observer), as well as rapidly determining the contribution of each

cell to the observed flux. We then generate three separate maps to describe the effect

of spots, limb darkening, and a transiting opaque disk.

8.3.3 The Spot Layer

The spot layer is shown in the top left panel of figure 8-2. Each spot is described

by four parameters: two coordinates 𝜃 and 𝜑, a size parameter r, and a temperature

T. These spots then need to be ‘painted’ onto the surface of the star. One approach

would be to calculate the distance between each cell and the center of the spot, and
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Figure 8-2: A breakdown of the individual components of the forward model used
to simulate lightcurves, shown as un-wrapped projections of the stellar surface. In
the top left panel we show a sample distribution of spots, with darker / brighter
spots representing hot / cold surface regions (warping is an affect of the projection
onto a rectangular grid). Similarly, the top right panel illustrates the unwrapped
photosphere, accounting for a quadratic limb darkening law. The bottom left panel
shows the projection of a disk on the stellar surface, and finally the bottom right panel
shows the total map, where the three effect maps have been multiplied together.

use that as a determination of whether or not the cell is inside or outside the spot.

In this case however care would need to be taken to ensure that the distance used

accounts for the curvature of the stellar surface. In order to circumvent this, I consider

a plane intersecting the stellar surface. I then need only to consider whether a spot on

the stellar surface is above or below the intersecting plane. I then employ a ‘flood-fill’

algorithm, where I check this condition for each cell relative to each spot, and record

the temperature of any spot which intersects with it. It should be noted that in this

model, we don’t account for any interactions between the spots, and allow spots of

different temperatures to intersect.

For each cell which is found to belong to a particular spot, we attribute to it a flux

value associated with a blackbody at the temperature of the spot, integrated across
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the TESS bandpass (∼ 600 − 1000)nm1. In this spot layer we record only this total

flux, and account for the size of the cell and the viewing angle through a series of

geometry maps, which are used in the final flux calculation.

8.3.4 The Limb Darkening Layer

The top right panel of figure 8-2 shows the effects of a quadratic limb darkening law,

parameterized by two parameters u1 and u2 as:

𝐼(𝜇)/𝐼0 = 1− 𝑢1(1− 𝜇)− 𝑢2(1− 𝜇)2 (8.1)

where 𝐼0 is the intensity at the center of the disk and 𝑚𝑢 is the angle between

the normal vector at the stellar surface and the observer line of sight. In principle,

any limb darkening law which depends on the position along the stellar disk may be

used, since this is used as a multiplicative factor to scale the flux of the stellar surface,

regardless of whether it is from the photosphere or spots. An assumption being made

with this model however is that both the spots and photosphere adhere to the same

limb darkening law. This assumption is further assessed in the following chapter.

8.3.5 The disk layer

The final component of the model is the occultation due to an external object. In

a standard exoplanet model, this might be surface occultation due to a transiting

planet. In our case, we consider a thin, opaque disk which may be tilted relative

to observers line of sight. This is the ‘dusty torus’ model considered in section 7 of

Zhan et al. [2019]. The inclination of the disk is what provides the thickness to the

projection of the disk onto the stellar surface, which is shown in the lower left panel

of figure 8-2.

The disk position on the stellar surface is calculated by considering a straight

line in 3-dimensional space, and then projecting that line along the line of sight and

calculating the intersection with a spherical surface. In addition to a disk, this layer
1Values taken from: https://heasarc.gsfc.nasa.gov/docs/tess/the-tess-space-telescope.html
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can also be used to simulate other features, such as co-rotating clouds, and in those

cases a similar projection is done to calculate the surface occultation. The disk map

is taken to be 1 everywhere the disk doesn’t intersect with the surface, and where it

does, a value from 0 to 1 is chosen representing the opacity of the disk, with a value

of 1 indicating a completely opaque disk which blocks all emitted stellar light.

8.3.6 Simulating Observed Lightcurves

The final model is represented as a multiplication of the spot, limb darkening, and

disk occultation map, and is shown in the bottom right panel of figure 8-2. Since

each map is stored separately, we are able to apply arbitrary transformations in order

to simulate rotation. Based on the orientation of the stellar rotation axis, a global

rotation matrix is calculated, which is used to orient the normal vectors of the stellar

surface. Thus for a given cell 𝑖, 𝑗, it’s final contribution to the observed lightcurve

can be expressed as

Flux𝑖𝑗(𝑡) = Spot𝑖𝑗 × Limb𝑖𝑗 ×Disk𝑖𝑗 *∆𝜑∆𝜃sin𝜃 * 𝜇𝑥(𝑡) (8.2)

where the factor 𝜇𝑥(𝑡) represents the dot product of the normal vector with the

observers line of sight as a function of time. Given that the observer vector is parallel

to the x-axis, this simply picks out the x-value of the normal vector of each cell. We

note also that through this formalism, we have confined all aspects of time-variability

into rotations of the normal vectors of the stellar surface, in addition to determining

if a cell is visible at all (based on the sign of the x-component normal vector).

8.4 Comparing The Spot-Model to Observations

We took the TESS light curve of TIC 201789285 as an example, and tried to imitate

its morphology as closely as possible while keeping the models simple, using a hybrid

of statistical inference and manual parameter selection. The rotation axis of the star

is left as a free parameter, and a quadratic limb darkening effect is applied to each
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cell based on its orientation relative to the observer.

Figure 8-3: We show here the best fit posterior models for two scenarios. In both
cases, we allow the model to vary the position, size, and temperature of two spot
features. The blue curve represents the fit from a model which additionally contains
an inclined, opaque disk.

For the spots and misaligned disk hypothesis, we fit spots with four parameters:

two angles describing the location on the star, its size, and its temperature. The disk is

parameterized by its inner and outer radius, inclination, and opacity. With this model

setup, we then calculate the flux for each cell as described in the previous section.

We then try to mimic the TESS light curve of TIC 201789285 by choosing a simple

model with three cold spots and a fully opaque disk, optimizing their parameters

using nested sampling via Dynesty (Speagle 2020). The results of fitting these two

models are shown in 8-3, where we find that the spot model alone is incapable of

recreating the sharp features seen in the lightcurve. This is due to the fact the

regardless of how many spot components are added, the rotation period of the star
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dictates the duration that they’re visible, making it difficult to simulate sharp features

which appear and disappear on different timescales. The disk model however allows

precisely for this kind of behavior, given that some spots will briefly be occulted by

the disk, while others may never intersect it all while they’re visible. We note that

while a significant improvement over the non-disk model, the fit (i.e. the blue line

in figure 8-3) still struggles to re-create the lightcurve perfectly, however this may be

due to requiring additional spot features to introduce higher order modulations to

the signal.

In total (including the intersecting disk) we developed three simplified forward

models for the three most promising ideas to explain the complex modulation signal

of the TESS M-Dwarf sample:

• (i) co-rotating clouds

• (ii) spots and misaligned disk

• (iii) spots and co-rotating clouds

We run a similar analysis for the co-rotating clouds and spots and co-rotating

clouds hypotheses, replacing the disk map with the relevant projection maps for

these two new models. For the model with co-rotating clouds, we have as variables

the size of the clouds, as well as their clustering.

We find that all three toy models can replicate the typical morphology of complex

rotators (Fig. 8-4). Additionally, spots as drivers for an underlying large- ampli-

tude modulation can explain a large portion of the signal, easing the constraints on

circumstellar material.
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Figure 8-4: Three lightcurves representing simulations of a model with co-rotating
clouds (top), spots and a misaligned opaque disk (middle) and stellar spots and co-
rotating clouds (bottom).
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Chapter 9

Empirically Retrieving Stellar

Spectra

The contents of the following chapter represent work in progress intended for publica-

tion

9.1 Introduction

Transmission spectroscopy remains one of the best tools at our disposal when attempt-

ing to study and characterise the atmosphere of an exoplanet [Seager and Sasselov,

2000, Brown et al., 2001]. Typically, however, the light emitted from a planets host

star will dominate any spectral observation of the system, and so it must be sub-

tracted in order for the planetary spectra to be accurately measured. In the case of a

perfectly homogeneous photosphere (taking into account limb-darkening), this could

be done by obtaining an out-of-transit (OOT) stellar spectrum and subtracting that

from an in-transit spectrum [Sing, 2018]. However if the surface of a star contains

spots, faculae, or any other non-uniform features then this can introduce degenera-

cies and biases when attempting to measure the spectrum of a transiting planet. The

features may be varying in time, either due to intrinsic changes in the properties such

as intensity and size, or simply due to the rotation of the star altering their geometric

contribution to the total flux, and these variations can imprint themselves as features

155



in a transmission spectrum of a planet [Sing et al., 2011, McCullough et al., 2014].

Much work has been done towards retrieving features on the stellar surface, typi-

cally through fitting lightcurves of spotted surfaces and using template spectra gen-

erated by physical simulations in order to remove the signal due to these non-uniform

components [Zhang et al., 2018, Wakeford et al., 2019, Garcia, L. J. et al., 2022]. How-

ever as the precision of data afforded by space-based missions continues to improve,

lack in fidelity of stellar spectral models can introduce uncertainty in the retrieved

spectra which can be higher than the noise floor of the observations themselves [Rack-

ham and de Wit, 2023]. Additionally, models which consider disk-averaged spectra,

characterising star spots as just covering some fraction of the stellar surface, lose

resolution and information content that could be use to reduce the uncertainty of

retrieved spectra. This is especially true for late-M dwarfs such as TRAPPIST-1

[Gillon et al., 2016], as well as for active FGK stars which are expected to produce

significant stellar contamination, such as the ‘Transit Light Source’ effect described

in Rackham et al. [2018]. Thus, improvements in both theoretical and empirical spec-

tral models are required in order to move towards measuring planetary spectra in a

photon-dominated dominated regime, the latter of which is explored here.

The focus of this work is particularly on stars with properties similar to that of the

M-dwarf TRAPPIST-1, which offers a wide range of opportunities to characterise its

seven transiting planets. Additionally, I consider observations made with the NIRISS

single object slitless spectroscopy (SOSS) instrument on JWST, which has spectral

resolution of R≈700 at 0.6-2.8 𝜇m1, providing an adequate compromise between re-

solving power and spectral coverage for such work considering the spectral energy

distribution (SED) of stars (including M-dwarfs) [Allard et al., 2003].

In this chapter I first describe a model I developed to generate synthetic spectro-

scopic observations of spotted stellar surfaces, based off the framework described in

Günther et al. [2022] (chapter 8 of this thesis) used to model interactions between a

non-uniform stellar surface and arbitrarily shaped transiting objects. I then describe
1https://jwst-docs.stsci.edu/jwst-near-infrared-imager-and-slitless-spectrograph/niriss-

observing-strategies/niriss-soss-recommended-strategies
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a framework for extracting the spectra of individual spots, by considering the total

observed spectrum as a linear combination of a constant photospheric component and

a set of ‘basis’ lightcurves derived from the geometric projection of time varying spot

feature. I then run a series of injection-retrieval tests on a suite of test stars with

various spot configurations, using no prior knowledge about the truth spectra used

to generate the data in order to assess the accuracy which which spectra can be re-

trieved. Finally, I consider the effects on the performance of a retrieval when varying

both the duration of an observation (as a fraction of the stellar rotation period) as

well as the phase of the stellar rotation cycle during which an observation begins.

9.2 Description of Synthetic Observations

Synthetic observations are generated using a stellar surface grid-model similar to the

one described in the previous chapter, although in this work I omit the opaque disk

and cloud features which were present in the model. As before, I define a list of spot

objects, which are each described by a latitude, longitude, and radius. A critical

difference here is the way in which surface flux is considered. In the previous chapter,

the model was used to re-create broadband lightcurves, particularly those observed in

the TESS band-pass of 600-1000nm2, and so the temperature of a cell on the stellar

surface was converted to a flux measurement by integrating a blackbody spectrum

across this relevant wavelength range.

In this work the focus is specifically on retrieving the spectral contribution of

each component of the stellar surface. Thus, when generating synthetic observations I

generate a range of lightcurves for wavelengths that span the entire NIRISS bandpass.

In order to model the emission of a spot object, I utilize models from the PHOENIX

stellar spectral model grid [Husser, T.-O. et al., 2013]. I note that although I use

simulated models to generate the data, this does not invalidate the premise of this

study to empirically retrieve stellar spectra. This is because when I fit for these

spectra, no information about the input spectra whatsoever is used, and thus the
2Values taken from: https://heasarc.gsfc.nasa.gov/docs/tess/the-tess-space-telescope.html
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retrieval is not biased based on prior knowledge.

These grids provide adequate coverage to describe the photospheric background of

an M-dwarf, as well as spots which vary by several hundred degrees in either direction.

For the constant photosphere I use a spectral model with a temperature of 2500K, a

logg of 5.0, and an [Fe/H] metallicity of zero (compared with TRAPPIST-1 which has

a surface temperature of 2566±26, a logg of 5.2396±0.006 [Agol et al., 2021] and an

[Fe/H] metallicity of 0.05±0.08 [Ducrot et al., 2020]). For spot features, I alter only

the temperature of the model spectrum used, since the surface gravity and metallicity

are typically expected to remain constant across a stellar surface [Freeman and Bland-

Hawthorn, 2002]. The spectral resolution of the PHOENIX grids is much higher than

can be observed with JWST, and so I first down-sample them to a resolution of R

= 700 to match the expected signal from NIRISS. After adjusting the resolution, I

also bin the spectra down a wavelength spacing of 8.8 𝜇m. These are appropriate

transformation in this case given that the forward model is linear, and thus high

resolution is not needed (see Niraula et al. [2022] for further discussion on the effects

of binning and down-sampling spectra).

The phoenix grid come in two ‘flavors’, one which is presented as a disk-averaged

spectrum, and specific intensity spectra which provide spectral information as a func-

tion of viewing angle 𝜇3. When sampling from these specific intensity spectra, I take

the value corresponding to 𝜇 = 0 (i.e the center of the star, normal to the observers

line of sight). I then calculate a quadratic limb darkening profile for the stellar sur-

face, and scale this central intensity across the stellar surface, allowing me to have

control over the generated signal.

Once a flux value is assigned to each grid on the stellar surface, the code described

in the previous chapter is used to generate lightcurves for the star across a full ro-

tation period, and for a wavelength range and spacing consistent with what would

be observed by NIRISS. As before, we chose a rotation period of P = 3.295 days in

order to match that of TRAPPIST-1 [Vida et al., 2017], and sample lightcurves with
3All spectral models referenced in this chapter were taken from: https://phoenix.astro.physik.uni-

goettingen.de/
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Figure 9-1: A schematic illustrating the way in which spot features on the surface of
a star are modulated in both time and wavelength, and then combined to produce
a final observed signal. The aim of this work is to demonstrate the ability to follow
this diagram in reverse, going from multi-wavelength observations to individual com-
ponent spectra, without the use of template spectra or any prior knowledge.

an integration time of two minutes.

9.3 Fitting for Spectral Components

In order to empirically retrieve the signatures due to individual spot features, I con-

sider a framework in which the total observed spectra is taken to be a linear combina-

tion of the geometric signals of spots and photospeheres, modulated by the spectral

signal of each components, which can be written as:

Flux(𝜆, 𝑡) = 4𝜋Λphot(𝜆) +
∑︁
𝑖

[Λ𝑖(𝜆)− Λphot(𝜆)]× 𝑆𝑖(𝑡) (9.1)

where Flux(𝜆,t) is the observed flux at a given wavelength 𝜆 and time t, Λphot

is the constant in time, spectral signal of the photosphere, Λ𝑠(𝜆) is the spectrum of

the 𝑖𝑡ℎ spot, and 𝑆𝑖(𝑡) is the time varying geometric projection of a spot, which is a

function of its size and position on the stellar surface, as well as any limb darkening

effects. The sum runs over the number of individual spot features. A graphical

depiction of this decomposition is show in figure 9-1

The contribution of spot components is written as a deviation from the photo-

159



sphere, so that the geometric projection of the photosphere can just be taken to be

the disk-averaged integration 4𝜋.

9.3.1 SVD Decomposition of Observation

Given both a method of generating synthetic spectra, as well as a description for

describing an observed spectral data-set as a linear combination of base components,

I now describe our process for fitting our model to observations and retrieving the

individual spectra of each basis component.

The data being considered are time series spectral observations of a rotating star,

consisting of a 𝜆×𝑡 array where 𝑡 is the number of time samples, and 𝜆 are the number

of wavelength bins. By treating the photosphere as a spot component with constant

projection, and considering a model with N feautres (N-1 spots + 1 photosphere), I

can condense equation 9.1 in the following form:

(𝐹 )𝜆×𝑡 = (Λ)𝜆×𝑁(𝑆)𝑁×𝑡 (9.2)

where the quantities are now being treated as matrices:

⎡⎢⎢⎢⎣
𝐹11 . . . 𝐹1𝑡

... . . . ...

𝐹𝜆1 . . . 𝐹𝜆𝑡

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Λ11 . . . Λ1𝑁

... . . . ...

Λ𝜆1 . . . Λ𝜆𝑁

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑆11 . . . 𝑆1𝑡

... . . . ...

𝑆𝑁1 . . . 𝑆𝑁𝑡

⎤⎥⎥⎥⎦ (9.3)

When attempting to retrieve the component spectra, we seek to estimate the

matrix Λ, based on a series of flux measurements (F) and spot signatures (S) generated

by our model. In order to do this, we employ the use of Singular Value Decomposition

(SVD)4, which allows us to easily invert our (generally non-square) spot matrix S and

use the standard solution for the matrix formulation of least-squares regression. The

SVD algorithm works by decomposing a matrix, in this case our spot matrix S, into

three matrices:
4https://en.wikipedia.org/wiki/Singular_value_decomposition
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𝑆𝑇
𝑡×𝑁 = 𝑈𝑡×𝑁Σ𝑁×𝑁𝑉𝑁×𝑁 (9.4)

where U is an 𝑡 × 𝑁 unitary matrix, Σ is a t by N rectangular matrix (where

only the first N rows are kept), and V is an N by N unitary matrix. As indicated by

the superscript T, in practice we decompose the transpose of the spot matrix S. In

addition, I can calculate the ancillary matrix d which is comprised of the diagonal

entries of Σ, which are known as the singular values of the original matrix.

The general ordinary least squares estimator for a linear equation X𝛽 = Y can

be written as

𝛽 =
(︀
𝑋𝑇𝑋

)︀−1
𝑋𝑇𝑌 (9.5)

and using the SVD decomposition of S given by equation 9.4, I can easily calculate

the transposes and inverses needed to estimate Λ in equation 9.2 as

Λ̃𝑇
𝑁×𝜆 = 𝑉 𝑇𝑑−1

(︀
𝑈𝑇𝐹𝜆𝑡

)︀
(9.6)

where the matrix 𝐹𝜆𝑡 is the original matrix of observations. Inverting the matrix

Λ̃𝑇 one last time gives the estimated matrix Λ̃, containing the ordinary least squares

best fit values for the spectra of each component of the stellar surface. From the

𝜆 × 𝑁 matrix Λ̃, the fitted spectrum of the photosphere is simply read off from the

first row of the matrix. For the individual spot spectra, they are calculated as the

sum of the remaining rows of Λ̃ and its first row, representing that was fit for was the

difference between the spot and photosphere spectra, as per equation 9.1

9.3.2 A Note on Limb Darkening

The geometric signal of the a spot in the previous equations (i.e. the quantity 𝑆𝑖(𝑡))

requires the choice of limb darkening coefficients for the stellar surface, since it is

calculated the combination of the size of a cell, as well as its projected area towards

the observer, multiplied finally by a limb darkening factor. However in general limb-
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darkening is an effect which depends on the temperature of the stellar surface, which

is the quantity we are attempting to fit for. Thus we find ourselves in a catch-22 where

the stellar spectrum is required in order to know the appropriate value of the limb

darkening coefficients, which is required in order to fit for the stellar spectrum. The

result of fitting in this way is that I am assuming that limb-darkening is independent of

wavelength or temperature, which is known in general to be an incorrect assumption

[Claret and Bloemen, 2011].

One approach to mitigate this would be to retrieve the spectra through an iter-

ative process, where in the first iteration all features are generated using the same

limb darkening law. Once a spectrum is extracted for each feature, the geometric

lightcurves can be re-calculated using previously estimated limb-darkening coefficient

tables. The spectral fit can then be re-done, and this process continued until the

models converge, which comes at the cost of time when fitting the models with say an

MCMC. An alternate consideration would be to precisely quantify the effect this has

on the final retrieval, which would depend on the rate of the change of limb darkening

coefficients across the relevant temperature range.

9.4 Injection Retrieval Tests

In order to test the effectiveness of the model in retrieving spectral features of a star, I

describe a series of injection retrieval tests in an idealized scenario in which I assume

to know the number of spot features, as well as their positions and sizes. Thus I

am attempting to retrieve only the spectral features of the spots and photosphere,

and this represents a best case scenario, effectively acting as an upper limit on the

strength of the current framework. Ongoing and future developments, described later

in this chapter, will also implement a full MCMC retrieval in which the positions,

sizes, and limb darkening effects will all be simultaneously fit for.

The model was tested on a suite of stellar surfaces, including ones with spots

hotter than the photosphere, colder than the photosphere, both hot and cold spots,

as well as anywhere from one to four individual spot features. Additionally, I tested
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a series of single spot models with all but one parameter being held constant, varying

either the size of a spot or its latitudinal position. I list the full sample of surfaces

considered in table 9.1, along with the deviation from the true spectra used to simulate

the observations. I show in figure 9-2 the breakdown of the SVD retrieval described in

the previous section for each individual spot component. In addition, residual signal

is also shown below the fits, in terms of % deviations from the injected truth spectra.

In figure 9-3, the time-series lightcurve is shown, as well the total fitted flux and

the flux broken down by individual component. This figure highlights a potential

weakness in the model, in the scenario where two spots (in this case spots 2 & 3),

occur at the same longitude/phase along the stellar rotation (for this model the values

of the longitudinal component were 𝜃 = VALUES respectively). This introduced a

potential degeneracy, since a spot is identified solely by its geometric signal, and may

be an explanation for why the retrieval of spot 1 shown in figure 9-2 is significantly

worse than the other components.

It is found that in all cases the model is able to accurately retrieve the photospheric

spectrum, often to a precision of well below 1%. Regarding the retrieval of the spot

components, the precision is much more dependant on the specific details of the

model, depending heavily in particular on the size of a spot, as well as its latitudinal

position.

Future work will seek to expand on both the range of models considered and more

critically on testing the feasibility of the model to retrieve the positional information

of the spot in addition to the spectral information. Preliminary MCMC retrievals,

fitting for all components of spots as well as for a quadratic limb darkening effect,

have shown promising results and suggest that the model will be able to accurately

retrieve stellar spectra with no prior assumptions on stellar spectra.

9.5 Varying Observation Baseline

In this section I focus on the biases and retrieval capabilities of an observation which

encompasses only a fraction of the total rotational period of a star. Given the time-
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Figure 9-2: The results of fitting a model consisting of four spot features, plus a
constant photosphere, to a set of lightcurves across a range of wavelength bins.

variability of a spot signal, there exists a strong correlation between the duration

of an observation, the phase offset relative to a spots longitude, and the retrieved

uncertainty on the stellar photosphere.

In order to test these biases, I first simulate a spotted stellar surface as in this

previous section, with anywhere from 1-4 spot features which may be colder or hotter

than the background photosphere. From this model, I then generate a set of synthetic

observations again as described in the previous sections. In the previous section

I considered observations which spanned the entire rotation phase of the star. I

now seek to study the ability for our model to retrieve spectra signals when only a

fraction of the total rotational cycle of a star is observed (although I still consider to

be observing the full range of wavelengths as in the previous section).

164



Figure 9-3: The results of fitting a model consisting of four spot features, plus a
constant photosphere, to a set of lightcurves across a range of wavelength bins.

For each observation, I chose two parameters: (1) an offset for the longitudinal

rotation of the star relative to the observer, and (2) a viewing window, defined as

a fraction from 0-1 of the stellar rotation period. Selecting a value of 1 represents

the analysis done in the previous section, for which the entire stellar rotation was

supplied to the fitting routine. These two values then defined a time series, for which

I generate the base-vector signals attributed to each spot feature on the stellar surface.

I then use SVG decomposition to run a least-squares regression analysis and fit for

the contribution function of each spot. As in the previous section, I can then compare

the retrieved spectrum to the injected spectrum for each component (photosphere +

spots), the results of which are shown in figure 9-4.

The various curves represent different observing covering fractions. The variation
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Table 9.1: Test Model Details
𝜃1 𝜑1 r1 T1 𝜃2 𝜑2 r2 T2 𝜃3 𝜑1 r3 T3 𝜃4 𝜑4 r4 T4 𝜎𝑝 𝜎1 𝜎2 𝜎3 𝜎4

2.26 -1.34 0.31 2700.0 1.01 -1.01 0.11 2700.0 1.27 -0.26 0.09 2300.0 -1.68 0.66 0.2 2700.0 0.19 11.89 80.08 106.87 4.6
-1.25 -0.01 0.08 2700.0 -1.14 -0.56 0.24 2700.0 1.58 -0.57 0.12 2700.0 0.95 0.3 0.14 2700.0 0.06 49.94 8.23 7.49 4.09
-2.32 1.12 0.13 2300.0 2.84 1.28 0.09 2700.0 3.04 0.32 0.15 2300.0 -2.36 0.66 0.08 2700.0 0.05 357.09 167.68 31.97 254.66
2.65 0.91 0.09 2700.0 0.48 -1.33 0.19 2700.0 -1.02 -0.45 0.22 2700.0 1.19 1.12 0.11 2300.0 0.11 23.92 16.43 2.12 40.85
-1.51 -0.57 0.34 2300.0 3.11 1.43 0.11 2700.0 0.07 -0.06 0.06 2300.0 2.06 -0.25 0.2 2300.0 0.24 2.45 118.47 82.94 5.77
-1.72 -1.36 0.08 2700.0 0.19 -1.03 0.12 2700.0 2.97 -1.22 0.2 2300.0 0.11 70.83 14.42 16.5
-0.31 0.89 0.3 2700.0 -0.98 -0.45 0.24 2300.0 1.16 -1.23 0.12 2300.0 0.05 1.59 3.23 35.74
0.6 -0.58 0.27 2300.0 1.47 0.59 0.11 2700.0 -1.41 0.03 0.22 2700.0 0.06 1.8 6.94 1.29

-2.71 -0.25 0.2 2700.0 0.72 -1.19 0.17 2700.0 1.34 1.49 0.11 2700.0 0.07 1.87 11.7 140.47
-1.87 -0.86 0.24 2700.0 -1.14 1.11 0.23 2700.0 -1.47 -0.13 0.27 2300.0 0.05 6.63 14.95 11.11
-1.0 1.36 0.16 2300.0 -1.91 0.55 0.13 2700.0 0.04 31.72 4.23
2.75 0.82 0.08 2300.0 -1.43 -0.41 0.18 2700.0 0.05 28.56 2.05
-1.62 1.19 0.3 2300.0 -2.32 -0.95 0.32 2700.0 0.04 5.69 1.37
-2.78 -0.36 0.34 2300.0 -0.2 1.48 0.25 2700.0 0.11 1.24 22.2
0.79 1.19 0.24 2300.0 -0.6 0.21 0.09 2700.0 0.04 5.91 5.98
0.0 0.0 0.1 2700.0 0.04 4.43
0.0 0.39 0.1 2700.0 0.04 4.92
0.0 0.79 0.1 2700.0 0.04 7.93
0.0 1.18 0.1 2700.0 0.04 20.51
0.0 0.0 0.2 2700.0 0.04 1.14
0.0 0.39 0.2 2700.0 0.04 1.48
0.0 0.79 0.2 2700.0 0.04 1.92
0.0 1.18 0.2 2700.0 0.04 4.83
0.0 0.0 0.05 2700.0 0.04 17.85
0.0 0.0 0.11 2700.0 0.04 4.55
0.0 0.0 0.17 2700.0 0.04 1.62
0.0 0.0 0.24 2700.0 0.04 0.9
0.0 0.79 0.05 2700.0 0.04 33.53
0.0 0.79 0.11 2700.0 0.04 6.35
0.0 0.79 0.17 2700.0 0.04 2.72
0.0 0.79 0.24 2700.0 0.04 1.47

Table 9.2: Parameters for the different stellar surfaces used to test the retrieval
framework. The horizontal solid lines separate families of models. The first three
are a random sampling of models with 4, 3 and 2 spot features, with maximal spot
sizes of 𝑟 = 0.3 and temperatures of either 2300K or 2700K. The fourth and fifth
group show models with a single spot of varying latitudes, for two fixed sizes. The
last two groups are for a series of models with spots of varying sizes, at two fixed
latitudes. The 𝜎 value show the % difference between the retrieved spectra and the
injected truth spectra for each component (including the photosphere 𝜎𝑝)

as the offset shifts can be attributed to spots coming into and out of view. For this

particular example, it is seen that only for a covering fraction of > 80% can the

stellar photosphere be reliably and consistently constrained to within 1%, regardless

of where a spot is positioned along the stellar surface. Recall that this is a best-case

scenario, where I assume to know the true position and size of the spot features. Thus

for a real observation, it is likely that well above half of a stellar-rotation period is

required to be observed in ordered to obtain 1% precision on the spectrum of the

stellar photosphere.
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Figure 9-4: The median stellar photospheric spectral precision retrieved as the du-
ration of an observation is varied from just a tenth of the stellar rotation period to
a full rotational cycle (colored curves). The model analysed here contains four spot
features. Additionally, I show the effect of varying the offset during the rotational cy-
cle, indicated by the x-axis. The dashed line represents the out of transit uncertainty
of a previous NIRISS observation of the TRAPPIST-1 system.

9.6 Discussion & Future Steps

I have described here a framework which can be used to generate synthetic time and

wavelength observations of a stellar surface with an arbitrary disposition of inhomo-

geneities, focusing specifically on spot features. In addition to generating synthetic

NIRISS data for a TRAPPIST-1 like planet, I have also described a framework for

using Singular Value Decomposition (SVD) to quickly retrieve an Ordinary Least

Squares estimate for the spectra used to generate the signal, without using any prior

information about the spectra themselves. Within this framework I am able to em-
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pirically estimate the spectra of a spotted photosphere to well below 1% accuracy,

and the spectra of individual spot features to as low as just a few percent in ideal

scenarios.

An additional benefit of this framework is the ability to consider interactions

between a transiting planet and spot features. Since the model provides spectral fits

for each component, they can be weighted appropriately during a transit in order to

accurately calculate the total amount of flux observed from the stellar surface.

This work represents the first steps towards building a completely empirical library

of spotted stellar surfaces (similar in scope to the work of Kesseli et al. [2017] which

compiled a library of empirical spectra for various stellar types). An important dis-

tinction here is that the spectra being measured are not for disk-integrated features,

but rather for ‘pure’ basis components which may be combined with rotational geom-

etry in order to produce accurate spectra for stars with arbitrarily complex surface

features.

The next steps for this study will involve first and foremost relaxing the constraints

on prior knowledge, particularly on assumed positions and sized of spots, however a

blind fit MCMC fit of all parameters would be too unconstrained. For example, the

model might attempt to place two spot features near each other and attribute to each

of them half the total flux emerging from a single spot. In order to mitigate this, it

would be necessary to run a pre-fit analysis of any features in the lightcurves which

would allow priors to be placed on spot features. Following this, an MCMC can then

be run with a fixed number of spots, each confined to their own regions on the stellar

surface. Statistics of fit metrics such as the Bayesian and Aikaike Information Criteria

(BIC & AIC respectively) could then be used in order to determine how many spot

features best describes the stellar surface. Additional improvements would also seek

to incorporate knowledge from spectra models, in a way that would not bias the final

results. This might consist of using models such as gaussian processes in order to

constrain the correlations between spectral features as a function of wavelength.

The work presented thus far represents the initial steps and proof of concept that

under ideal conditions we are able to accurately retrieve the individual spectra of
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spot features, at the level of uncertainty that is provided by instruments such as

NIRISS on the James Webb Space Telescope. It has also been shown however that

even under such ideal conditions, a significant baseline of observation with regards to

stellar rotation period is required in order to retrieve such an accurate measurement.
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Part V

Summary
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Chapter 10

Summary

The scope of topics in this thesis has been wide, illustrating the multitude of opportu-

nities for characterising exoplanets that have resulted from both an explosive growth

in the number of known exoplanets, as well as an increase in the quality of their ob-

servations. When considering the tools at our disposal for characterizing exoplanets

in this and future decades, it is astounding to consider how far this fledgling field has

advanced in a short 30 year time span. The focus of my work over these past years has

been to ensure that we are able to extract the greatest amount of information from

these rich data sets, as we continue towards the goals of finding new worlds, both like

and unlike any we have previously found, and ultimately one day potentially finding

life elsewhere in the universe.

In part two of this thesis (chapter 2 - 4), I first presented an in-depth analysis

of the HIP41387 system. This is among a handful of exoplanet systems with five or

more planets, and the brightness of the host star implies that the outer gas giants will

provide excellent opportunities for atmospheric characterization [Alam et al., 2022].

My first contribution towards characterising this system was a combined analysis of

several years and instruments worth of data, providing refined orbital parameters, as

well as narrowing down the potential orbital periods for the two outer planets, which

at the time of my analysis remained completely unknown. I used the known value of

the stellar density to constrain the shape of the orbits of the two outer planets, based

on the photoeccentric effect Dawson and Johnson [2012]. Using arguments pertaining
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to orbital stability, which disallow intersecting orbits, I was able to predict the most

likely specific values for the orbital periods of planets d and f, which in the interim

have been shown to be their true values [Grouffal et al., 2022, Santerne et al., 2019].

Following these observations, as described in chapter 3 through a successful Spitzer

DDT proposal I was able to obtain two additional transit times for HIP41378 c, which

across all observations now spanned a 4 year baseline. Using dynamical TTV models,

I found that perturbations from the five known planets in the system were not able to

recreate the shifts in transit centers observed for planet c. It was only once I included

an as yet-undetected sixth planet with an orbital period of 62 days (which is nearly

a 2:1 resonance with the period of planet c), was I able to reproduce the observed

TTV signal. Furthermore, in chapter 4 I highlighted contributions I made towards

the refinement of the ephemerides of planets in two multi-planet systems, ensuring

the ability to detect future transits for characterisation. The culmination of this work

is the characterization of a series of multi-planet systems, which are ripe for the high

signal-to-noise atmospheric characterization which will be afforded missions such as

JWST, as well as future ground based ELTs (Extremely Large Telescopes) and next

generation space based missions.

In part three of this thesis comprising chapters 5 - 7, I consider planets as proper

three dimensional objects, and in particular focus on how deformations in their struc-

ture affect the analysis of their lightcurves. The aim of this work was to bring to light

effects, which while previously considered in the literature, had yet to be properly con-

textualized in the regime of high precision photometry, while also including a larger

sample of planets in my analysis than had previously been considered. In particular,

I focused on the precision required for these effects to present themselves robustly

in observations of transiting exoplanet lightcurves. Instruments such as JWST allow

us to obtain high SNR transits of exoplanets with just a handful of observations,

whereas with previous instruments it was often necessary to stack several observa-

tions in order to achieve a similar level of precision. The implication of this is that

effects which were too small to be detectable with previous observations may begin

to appear in more and more lightcurves, and that ignoring them could lead to biases
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in the characterisation of an exoplanet.

Indeed, such a bias was found to occur in the case of planets experiencing tidally

induced oblateness. If the degree of oblateness was low enough, then it was seen that

a spherical transit model could seemingly fit the data to a high degree of statistical

accuracy, while in fact retrieving the incorrect truth value. This is due to the flexibility

of transit models, and degeneracy between certain parameters which allow them to

adjust for variations during ingress and egress.

In addition to oblateness, in chapter 6 I also considered close in planets undergoing

tidal deformation, which would imply an incorrect assessment of a planets density if it

were assumed to be spherical. This effect was framed in the context of the uncertainty

of the parameters that are used to calculate the density of an exoplanet. It was found

that with current measurements, for many planets the observational impact of tidal

distortions is below the uncertainty limit provided by measured parameters. However

for a large number of planets, a reduction in the uncertainty on their density by

just a factor of three is enough to causes these distortions to dominate their error

budget. I conducted this analysis on the largest number of planets to date, focusing

on nearly 200 planets with orbital periods less than 3 days, which is often taken to

be a boundary for when planets will begin to experience tidal deformation.

As a final consideration of planets as proper 3-d objects, in chapter 7 I present

an analysis of over 100 Hubble STIS observations of the TRAPPIST-1 system. The

goal of these observations was to measure Lyman-𝛼 emission from the star, and to

determine if its orbiting planets hosted exospheres which would cause transit like

signals to appear. It was found the for most planets in the system, there is not

a statistically significant associated reduction in flux from the host star, indicating

the lack of an extended neutral Hydrogen exosphere. By looking at the nearly five

year baseline of observations, it was however found to be possible to retrieve the

current best estimate rotation period of TRAPPIST-1 (P = 3.295), indicating that

the Lyman-𝛼 emission of the star is modulated by its rotation. This additionally

confirms that an accurate retrieval of the Lyman-𝛼 lightcurve of the star is being

obtained, since it is expected to exhibit variations correlated to the overall flux of the
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star as it rotated.

In the last part of this thesis, comprising chapter 8 & 9, I turned my attention

to stellar surfaces, and the way in which surface features and inhomogeneities can

manifest themselves in both time series and spectral observations. In chapter 8 I first

describe a model I created which is capable of calculating the lightcurve of a stellar

surface which has hot and cold spots, which is also being eclipsed by an arbitrarily

shaped object. The context for this study was a series of M-dwarfs, observed by TESS,

which were found to have complex, periodic signals with high amplitudes which could

not be explained by typical scenarios of M-dwarf variability. The model I created was

used to show that interactions between start spots on the photosphere and a thin,

opaque, misaligned disk of orbiting debris could properly recreate the sharp features

observed in many of the observed lightcurves.

In the final chapter I adapt the model described in chapter 8 in order to generate

simulated stellar spectral observations of TRAPPIST-1, using NIRISS observations of

the system to calibrate the noise levels of the simulated spectra data. Using the same

model of a spotted stellar surface, I generated ’base-vectors’ representing the time-

varying geometric projection of a star spot, which varied based on the latitude and size

of the spot. Using these base curves, I then used SVD to empirically calculate the best

fit spectral signature of each spot, which were retrieved using no prior information

about the input spectra. This represents the first steps towards a framework of

empirically measuring the spectra of stellar surfaces, without relying on simulated

models which have been shown to be potential bottlenecks in reaching the highest

levels of precision possible for space-based observatories [Rackham and de Wit, 2023].

Each of these individual components represent steps towards characterising ex-

oplanets in greater detail than has ever been possible before. Upcoming ground

based instruments such as the TMT [Skidmore et al., 2018], as well future space

based missions such as LUVOIR [The LUVOIR Team, 2019] and the Vera C. Rubin

observatory [Ivezić et al., 2019] will provide unprecedented opportunities to study

exoplanets. However these advancements would be for nought if the methods used

to analyze them do not account for details and features which were previously unde-
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tectable. This would open the door to a host of degeneracies and biases which would

limit us from realizing the full potential these instruments can provide. Indeed, we

continuously strive towards a future in which we are able to describe exoplanets with

a level of detail similar to what is capable for the planets in our own solar system,

including precise descriptions of their orbits, shapes, surfaces features, atmospheres,

internal structure, and more.
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