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Abstract

A human cell contains about 2 m of DNA, packed into a nucleus with diameter ∼10 µm. The
three-dimensional structure of this packing has been the subject of intense investigation essen-
tially since the discovery of DNA itself, with an explosion of the field over the past 15 years,
following the advent of chromosome conformation capture techniques. The fourth dimension—
time—however, has remained elusive and the dynamics underlying the organization of the
genome are much less known. In this thesis I present my contributions to our understanding
of these dynamics, working towards a full four-dimensional characterization of genome orga-
nization. First, by pulling on a genomic locus in live cells, we revealed the rather liquid-like
material properties of chromatin and dispelled the idea that chromatin in interphase forms a gel.
Second, by tracking genomic elements known to act as boundary elements for loop formation,
we quantified the dynamics of chromatin loops in live cells. My contribution to both projects
lay in the development and application of novel data analysis, modeling, and inference methods,
implementations of which have been made available to the community for future use. Finally,
we devised a simple scaling argument to reconcile the orthogonal observations of chromosome
structure, dynamics, and mechanics. In sum, these contributions further our understanding of
the dynamical behavior of chromatin in living cells and provide valuable tools and directions for
future research.
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Chapter 1

Introduction

DNA as a physical object is quite a fascinating thing: a typical human chromosome—that

is, a single molecule of DNA—is about 4 cm long [1]; this is a true macro-molecule. The

structure of this molecule has been resolved to the famous double helix by Franklin, Watson, and

Crick [2, 3], establishing pairs of the nucleobases Adenine, Thymine, Guanine, and Cytosine as

its fundamental building blocks. In eukaryotic nuclei, stretches of about 150 of these base pairs

then wrap around histone proteins, forming so-called nucleosomes—the lowest organizational

level of chromatin. On the scale of tens of nucleosomes (∼2 kb), chromatin structure seems to

be quite disordered and is subject to active research [4, 5]. Moving on to yet larger scales of

≳10 kb, however, we can mostly neglect these molecular details and consider chromatin as a

continuous fiber, i.e. a polymer.

How this chromatin polymer is organized and structured in the nucleus has been the subject

of intense research, recently fuelled by the development of chromosome capture methods such

as Hi-C [6, 7]. These experimental techniques allow capturing physical contacts between distal

genomic elements and thus provide a window into the structure of chromosomes all the way

from the whole chromosome—tens to hundreds of millions of base pairs—down to the kb length

scale (kb, “kilo-base”, referring to 1000 base pairs).

One of the intriguing outcomes of Hi-C data analysis is the loop extrusion model [8, 9]: a

protein complex acting as loop extruding factor (LEF; cohesin and condensin have been identified

in this role) loads onto the chromatin fiber and starts to progressively grow a loop by reeling

in material from both sides. This process stops when the LEF unbinds from chromatin, thus

releasing the extruded loop, or when it stalls at a boundary element (identified as genomic sites
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bound by the protein CTCF), thus stabilizing the loop in a fixed location. The presence of

these boundary elements therefore biases the positioning of the loops, such that they appear as

distinct features in ensemble averaged data like Hi-C—so-called TADs1. While loop extrusion

was originally proposed purely on the basis of these observed Hi-C features, the process has since

been observed in vitro [10–12] and is by now widely recognized as a plausible key mechanism

for genome organization. Direct evidence in vivo, however, is lacking.

The prediction of loop extrusion from purely structural data is quite striking. Readout from

Hi-C experiments is completely static: chromatin is crosslinked and digested, and detected

contacts recorded in a contact matrix. This gives an unprecedented view of the higher order

structure of chromatin, but of course leaves any dynamic processes out of the picture. TADs,

however, cannot be explained by the presence of static loops (unless one considers a fine-tuned

interaction landscape across the whole genome) [8]; the formation of TADs seems to require

the dynamic process of loop extrusion. We are thus faced with the conceptual mismatch of

studying an intrinsically dynamic process with a very static method.

Together with the group of Anders Hansen here at MIT and Christoph Zechner in Dresden

we attempted to remedy this state of affairs through live-cell single particle tracking of two

neighboring boundary elements [13]. We were able to infer the lifetime as well as absolute

frequency of loops formed between these two boundary elements and found them to be rare

and dynamic, quite in line with the loop extrusion model. While the precise dynamics of the

extrusion process itself are still beyond the limits of resolution in this study, we hope to decipher

these details with future studies in a refined experimental system.

A key challenge in these data sets is the very limited information obtained from the exper-

imental system: we track two defined genomic loci, so the experimental readout is a 2 × 3D

trajectory over time. Even to just extract the looping statistics highlighted above, i.e. detecting

sustained contact between the two target elements, we had to resort to developing a full-blown

Bayesian inference scheme that we term Bayesian Inference of Looping Dynamics (BILD), since

simpler approaches failed our simulation benchmarks.

As opposed to the “few locus” tracking possible in vivo, recent progress in fixed cells has led

to microscopy approaches with multiplexed reporters [14,15], where labels are attached to ∼100

individual genomic loci and read out by sequential rounds of imaging in a process referred to
1TAD as an acronym stands for topologically associated domain; however, “topological” in this context is

somewhat misleading, since it refers simply to spatial association. I therefore prefer to use TAD as independent
term describing features in Hi-C data.
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as barcoding. The structures reconstructed from these multiplexed FISH2 experiments overall

match the inferences from ensemble Hi-C data, but of course allow more detailed analysis on

the single molecule level. Developing a live-cell equivalent of these multiplexed methods would

tremendously boost the study of genome dynamics.

The study of genome organization as described so far is an observational science: Hi-C and

FISH probe the native structure of the chromatin polymer, while live-cell microscopy investigates

its dynamics. While these data allow detailed descriptive study of nuclear organization, simple3

questions about chromatin remain unanswered: what if we poke it with a stick? What kind

of material are we dealing with? Should we think of chromatin as a gelatinous, relatively solid

polymer mesh (as suggested by e.g. the observations in [16]), or is it more liquid-like? Does it

yield to stress or does it resist deformation?

With these questions in mind, we embarked on a fascinating journey led by the group

of Antoine Coulon in Paris. They had developed a magnetic micro-manipulation system to

exert sustained force onto a defined genomic locus in living cells. And—contrary to the gel-

hypothesis—it moved! Under the influence of sustained pN forces (comparable to the stall forces

of various molecular motors), the targeted locus moved across the nucleus over tens of minutes.

Quite interestingly, the observed motion was largely consistent with a simple Rouse model, the

“vanilla” model of polymer dynamics. This is surprising, since the Rouse model neglects all

but the one central component of a polymer system: the backbone connectivity of the chain.

Everything else, like excluded volume, topological4 interactions, non-specific interactions of the

polymer with itself, or any interaction of the polymer with its environment (beyond the viscous

solvent leading to overdamped dynamics) is left out of this model. Still, it seems to provide an

(at least effectively) accurate description of the observed responses.

The point that chromosome mechanics seem to be well described by a Rouse model adds

onto a curious conundrum in the chromosome organization literature: the structure observed

by Hi-C and FISH is quite compact and often reported to adopt a space-filling conformation,

whose signature is the scaling of the spatial distance 𝑅 between two loci that are separated by a

genomic distance 𝑠 as 𝑅(𝑠) ∼ 𝑠
1
3 ; the dynamics observed by single particle tracking are routinely

characterized by a mean-squared displacement (MSD) scaling as MSD(Δ𝑡) ∼ (Δ𝑡)
1
2 . These

2“fluorescence in situ hybridization”
3“simple” from a macroscopic perspective
4here in a more mathematical sense: different sections of the fiber cannot pass through each other; however,

strictly speaking this is still not a topological issue if we consider a finite linear polymer (as opposed to, e.g. a
ring)
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dynamics match the expectation from the Rouse model; the Rouse model, however, is based

on an ensemble of equilibrium polymer conformations, where one would expect 𝑅(𝑠) ∼ 𝑠
1
2 ,

a markedly looser packing. The observed 𝑅(𝑠) scaling, in turn, could be explained by the

fractal globule model; but this would predict more recurrent dynamics, such that MSD(Δ𝑡) ∼

(Δ𝑡)
2
5 [17]. In this discrepancy between structure and dynamics, the above study on chromosome

mechanics now sides with the dynamics, in that it seems consistent with a Rouse model. But it

is still unclear how to reconcile all aspects of chromosome organization into a single, consistent

model.

Pondering this issue, we realized that as long as we are interested in scale-free descriptions of

the system (such that the above observables are governed by powerlaws), a simple dimensional

argument gives constraints on the values of the different exponents and allows us to connect

the seemingly orthogonal aspects of chromosome structure, dynamics, and mechanics. The key

missing ingredient seems to be the dynamic behavior of finite size chromatin coils (as opposed

to the point-like loci mostly studied to date); this of course directly suggests a direction for

experimental investigation, which might be pursued in the not-too-distant future.

Outline of this thesis

The Rouse model in all forms and variants plays a central role in this thesis. A summary of

my understanding and useful technical results are provided in chapter 2. As a direct application

of the force inference developed at the end of that chapter, chapter 3 then describes the locus

pulling project with Antoine Coulon. Zooming further into the nucleus, chapter 4 describes the

looping inference based on single particle tracking with Anders Hansen and Christoph Zechner.

My main contribution to this project was the development of Bayesian Inference of Looping

Dynamics (BILD), described in detail in chapter 5. Originally a spin-off of the Rouse model

calibration necessary for BILD, I developed a separate Bayesian MSD fitting scheme based on the

theory of Gaussian processes, described in chapter 6. Then, having outlined my contributions

to our understanding of chromosome dynamics and mechanics, I present the scaling argument

making the connection to chromosome structure in chapter 7. Chapter 8 contains a formalized

and extended version of the same argument, which I found useful for a systematic understanding

of the underlying structure. Finally, chapter 9 provides my perspectives on what was achieved

and where the field is going from here.
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Chapter 2

The Rouse model

Much of the work presented in this thesis relies on different versions of the Rouse polymer

model [18–20]. While this is a well-known model, I have found it useful to synthesize my

understanding and specific results into a comprehensive overview, which I present in this chapter.

As such, none of the results can be called new per se, though some specifics seemed to be absent

from the literature. Two python modules are based on the treatment in this chapter: rouse [21]

implements the discrete Rouse model described in section 2.2; the force inference described in

section 2.4 is implemented in rousepull [22].

In its original formulation, the Rouse model describes a polymer as a collection of point

particles (“monomers”) connected by harmonic potentials [18]. Each monomer follows an over-

damped Langevin equation, subject to thermal noise and the potententials connecting it to

neighboring monomers. While this formulation in terms of a discrete chain undergoing contin-

uous time evolution is the textbook default [19, 20], I find it useful mostly as common ground

between two other formulations (table 2.1): when we are interested in the evolution only for

discrete time steps, the model becomes fully discrete and thus very well suited for computational

evaluation; conversely, taking a continuum limit along the chain removes the notion of discrete

“monomers”, giving rise to an analytically quite convenient framework.

This chapter is organized along these model variants (c.f. table 2.1). In section 2.1 we

introduce the classical picture of discrete monomers evolving in continuous time. At its core,

this is a general linear multivariate Langevin equation, such that the treatment does not only

apply to a linear polymer, but in fact captures any harmonic spring network. Section 2.2 makes

the transition to discrete time, thus introducing the model underlying the computations of e.g.
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Chain
discrete continuous

Ti
m

e

di
sc

re
te Computational

most convenient for numerical
computation; see section 2.2
and [21]

Specialized

useful in special cases like
force inference; see section 2.4
and chapter 3 and [22]

co
nt

in
uo

us Classical

original formulation; see
section 2.1

Analytical

most convenient for analytical
treatment of infinite polymers;
see section 2.3

Table 2.1: Variants of the Rouse model and their use cases.

chapter 5. We continue with the completely continuous model in section 2.3 and close in

section 2.4 with a specific application of the latter: inferring the force acting on a single point

on the chain, given its observed trajectory (cf. chapter 3).

Note: The Rouse model is completely isotropic, such that different spatial dimensions are fully

independent. Below, we thus work in 𝑑 = 1 spatial dimensions for notational convenience, and

remark on generalization to higher dimensions where necessary.

2.1 Classical: discrete chain in continuous time

Consider 𝑁 point particles at positions 𝑥1, . . . , 𝑥𝑁 , sequentially connected by harmonic springs

of spring constant 𝑘 and submersed in a viscous medium, such that they exhibit overdamped

dynamics with friction constant 𝛾 and are driven by thermal noise 𝜉𝑖(𝑡). The equations of motion

for this system read

𝛾�̇�1(𝑡) = 𝑘 [𝑥2(𝑡)− 𝑥1(𝑡)] + 𝜉1(𝑡) , (2.1)

𝛾�̇�𝑖(𝑡) = 𝑘 [𝑥𝑖−1(𝑡)− 𝑥𝑖(𝑡)] + 𝑘 [𝑥𝑖+1(𝑡)− 𝑥𝑖(𝑡)] + 𝜉𝑖(𝑡) ∀ 𝑖 = 2, . . . 𝑁 − 1 , (2.2)

𝛾�̇�𝑁 (𝑡) = 𝑘 [𝑥𝑁−1(𝑡)− 𝑥𝑁 (𝑡)] + 𝜉𝑁 (𝑡) , (2.3)
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with the thermal noise 𝜉𝑖(𝑡) a Gaussian random field satisfying

⟨𝜉𝑖(𝑡)⟩ = 0
⟨︀
𝜉𝑖(𝑡)𝜉𝑗(𝑡′)

⟩︀
= 2𝛾𝑘B𝑇𝛿𝑖𝑗𝛿(𝑡− 𝑡′) ∀𝑖, 𝑗, 𝑡, 𝑡′ , (2.4)

where the noise amplitude 2𝛾𝑘B𝑇 is dictated by the Einstein relation (fluctuation–dissipation

theorem). We will consider a slight generalization of this system: namely, letting

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1

−1 2 −1

−1 2 −1
. . .

−1 2 −1

−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑆 = 2𝛾𝑘B𝑇1 (2.5)

eqs. (2.1) to (2.4) constitute a special case of the linear multivariate Langevin equation

𝛾�̇�(𝑡) = −𝑘𝐵𝑥(𝑡) + 𝐹 + 𝜉(𝑡) ,
⟨
𝜉(𝑡)⊗ 𝜉𝑇 (𝑡′)

⟩
= 𝑆𝛿(𝑡− 𝑡′) , (2.6)

which will be the basis of our discussion in this section. Note that we introduced an external force

𝐹 for generality. Note that while 𝑆 in eq. (2.6) is symmetric positive definite by construction,

no such constraint applies to 𝐵 in principle. However, for simplicity (and relevance to our use

cases) we will usually assume that 𝐵 is symmetric, and thus orthogonally diagonalizable. The

only exception to this is section 2.2.1, where we show that 𝑆𝐵𝑇 = 𝐵𝑆 is a sufficient condition

for the system to reach an equilibrium steady state.

As can easily be checked by differentiation, under eq. (2.6) an initial condition 𝑥(𝑡0) ≡ 𝑥0

evolves as

𝑥(𝑡) = e− 𝑘
𝛾
𝐵(𝑡−𝑡0)

𝑥(𝑡0) + 1
𝛾

∫︁ 𝑡

𝑡0
d𝜏 e− 𝑘

𝛾
𝐵(𝑡−𝜏) (𝐹 + 𝜉(𝜏)) . (2.7)

2.1.1 Steady state

If the connectivity matrix is positive definite, 𝐵 > 0, then the exponentials in eq. (2.7) are all

decaying. Long after the initialization (i.e. for 𝑡0 → −∞) the system thus reaches steady state,

where

𝑥(𝑡) = 𝛾

𝑘
𝐵−1𝐹 + 1

𝛾

∫︁ ∞

0
d𝜏 e− 𝑘

𝛾
𝐵𝜏

𝜉(𝑡− 𝜏) . (2.8)
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Mean and covariance in steady state are now easily identified as

⟨𝑥⟩ss = 𝛾

𝑘
𝐵−1𝐹 , (2.9)

𝒥 ≡
⟨
𝑥⊗ 𝑥𝑇

⟩
c, ss

= 1
𝛾2

∫︁ ∞

0
d𝜏 e− 𝑘

𝛾
𝐵𝜏
𝑆e− 𝑘

𝛾
𝐵𝑇 𝜏 *= (2𝛾𝑘𝐵)−1 𝑆 , (2.10)

where * signifies the condition 𝑆𝐵𝑇 = 𝐵𝑆. This condition is an interesting special case, since

it implies that the adopted steady state is in fact equilibrium (section 2.2.1).

Unfortunately, 𝐵 > 0 is not the generic case: e.g. the connectivity matrix (2.5) for a free

linear polymer is, in fact, not positive definite, but has a zero eigenvector 𝑣0 = (1, 1, . . . , 1)𝑇 .

The corresponding degree of freedom 1
𝑁 𝑣𝑇0 𝑥(𝑡) is the center of mass of the chain—which indeed

we would not expect to reach steady state, but just keep diffusing freely. From eq. (2.7) it is clear

that this is a general phenomenon: the degrees of freedom associated with zero eigenvectors of

the connectivity matrix (“free” degrees of freedom) undergo drift–diffusion dynamics, instead of

reaching steady state. However, we can still represent the steady state of the internal degrees

of freedom (those corresponding to non-zero eigenvectors) in a form like eqs. (2.9) and (2.10)

by replacing the inverse 𝐵−1 by the Moore-Penrose inverse1 𝐵+. This effectively pins all “free”

degrees of freedom to the origin, instead of allowing them to diffuse indefinitely, thus giving a

well-defined steady state. Finally, the steady state distributions for the degrees of freedom that

do reach steady state can always be calculated from eqs. (2.9) and (2.10), as long as we employ

the Moore-Penrose inverse 𝐵+ where necessary.

The conformational auto-correlation in steady state is given by

⟨
𝑥(𝑡+ Δ𝑡)⊗ 𝑥𝑇 (𝑡)

⟩
c

= 1
𝛾2

∫︁ ∞

0
d𝜏 d𝜏 ′ e− 𝑘

𝛾
𝐵𝜏
⟨
𝜉(𝑡+ Δ𝑡− 𝜏)⊗ 𝜉𝑇 (𝑡− 𝜏 ′)

⟩
e− 𝑘

𝛾
𝐵𝑇 𝜏 ′

(2.11)

= 1
𝛾2

∫︁ ∞

0
d𝜏 e− 𝑘

𝛾
𝐵(𝜏+Δ𝑡)

𝑆e− 𝑘
𝛾
𝐵𝑇 𝜏 (2.12)

(2.10)= e− 𝑘
𝛾
𝐵Δ𝑡𝒥 . (2.13)

1The Moore-Penrose (pseudo-)inverse of a diagonal matrix 𝐷 = diag(𝑑1, . . . , 𝑑𝑁 ) is the diagonal matrix
𝐷+ = diag(𝑑+

1 , . . . , 𝑑
+
𝑁 ) with 𝑑+

𝑖 = 1/𝑑𝑖 for all 𝑑𝑖 ̸= 0 and 𝑑+
𝑖 = 0 if 𝑑𝑖 = 0. The Moore-Penrose inverse of a

general diagonalizable matrix 𝑀 = 𝐴𝐷𝐴−1 is then defined as 𝑀+ = 𝐴𝐷+𝐴−1.
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2.1.2 Two-monomer MSD

As mentioned, the main use to which the classical (discrete chain, continuous time) formulation

of the Rouse model will be put in this work is to make the connection between the computational

(fully discrete) and analytical (fully continuous) formulations. We do so by studying the MSD

for the relative coordinate of two fixed loci on the polymer.

We extend the model in eq. (2.6) to an infinite chain of discrete monomers, such that the

connectivity matrix 𝐵 becomes a Toeplitz operator with 𝐵𝑛𝑛 = 2, 𝐵𝑛,𝑛±1 = −1, and all other

𝐵𝑚𝑛 = 0. As such it is diagonalized by the Fourier transform, with eigenvalues given by the

discrete cosine transform (DCTIII) of the diagonal entries:

𝐵𝑛𝑚 =
∫︁ 𝜋

−𝜋
d𝜔 𝑒*(𝑛, 𝜔)𝑒(𝑚,𝜔)𝜆(𝜔) , (2.14)

with 𝜆(𝜔) = 2(1− cos𝜔), the Fourier basis 𝑒(𝑛, 𝜔) = 1√
2𝜋 ei𝑛𝜔, and * denoting complex conju-

gation. Note that while technically 𝐵 is still not invertible (since 𝜆(0) = 0), the infinite chain

takes infinite time to reach the coil diffusion regime. Mathematically this has the consequence

that {𝜔 ∈ [−𝜋, 𝜋] : 𝜆(𝜔) = 0} = {0} ⊂ [−𝜋, 𝜋] is a subset of measure zero, such that the

integrals below are well-defined, allowing us to mostly ignore this problem.

The system is driven by homogeneous thermal noise, 𝑆 = 2𝛾𝑘B𝑇1. For convenience, we

introduce 𝐷 ≡ 𝑘B𝑇
𝛾 .

We calculate the MSD 𝜇(Δ𝑡) ≡
⟨
(𝑦(𝑡+ Δ𝑡)− 𝑦(𝑡))2

⟩
of a linear observable 𝑦(𝑡) ≡

𝑤𝑇𝑥(𝑡):

𝜇(Δ𝑡) = 𝑤𝑇
⟨
𝑥(𝑡+ Δ𝑡)⊗ 𝑥𝑇 (𝑡+ Δ𝑡)− 𝑥(𝑡+ Δ𝑡)⊗ 𝑥𝑇 (𝑡)

−𝑥(𝑡)⊗ 𝑥𝑇 (𝑡+ Δ𝑡) + 𝑥(𝑡)⊗ 𝑥𝑇 (𝑡)
⟩
𝑤

(2.15)

(2.13)= 2𝑤𝑇
(︂

1− e− 𝑘
𝛾
𝐵Δ𝑡

)︂
𝒥𝑤 (2.16)

(2.10)= 2𝐷𝛾
𝑘

𝑤𝑇
(︂

1− e− 𝑘
𝛾
𝐵Δ𝑡

)︂
𝐵−1𝑤 (2.17)

(2.14)= 𝐷𝛾

𝑘

∫︁ 𝜋

−𝜋
d𝜔

⃒⃒⃒⃒
⃒∑︁
𝑛

𝑤(𝑛)𝑒(𝑛, 𝜔)
⃒⃒⃒⃒
⃒
2 1− e− 2𝑘

𝛾
Δ𝑡(1−cos𝜔)

1− cos𝜔 . (2.18)

We are interested in the relative position of two monomers 𝑎 and 𝑏 on the chain, meaning

21



10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Lag time [γk ]

10
−1

10
0

10
1

10
2

M
SD

 [D
γ k

]
2J

2Γ
√ Δt

4D
Δt

γ
k

γ
πk

γL2

π2k
Rouse
time

πγL2

4k

Figure 2.1: Three scaling regimes for the two-
particle MSD of an infinite discrete Rouse poly-
mer. Numerical evaluation of eq. (2.21) in blue,
asymptotes (2.22), (2.30) and (2.34) in red. Note
the width of the crossover regimes: the intersec-
tion of the diffusive and Rouse asymptotes is given
by 𝛾

𝜋𝑘 , but the Rouse scaling is a good approxima-
tion only for Δ𝑡 > 𝛾

𝑘 . Similarly, Rouse scaling is a
good approximation until the Rouse time 𝛾𝐿2

𝜋2𝑘 , but
the asymptotes cross only at 𝜋𝛾𝐿2

4𝑘 ; full equilibration
takes yet another order of magnitude in time.

𝑤(𝑛) = 𝛿𝑎𝑛 − 𝛿𝑏𝑛. We thus find

∑︁
𝑛

𝑤(𝑛)𝑒(𝑛, 𝜔) = 1√
2𝜋

(︁
ei𝜔𝑎 − ei𝜔𝑏

)︁
=
√︂

2
𝜋

iei𝜔 𝑎+𝑏
2 sin𝜔𝑎− 𝑏2 , (2.19)

such that the expression for the MSD becomes

𝜇(Δ𝑡) = 2𝐷𝛾
𝜋𝑘

∫︁ 𝜋

−𝜋
d𝜔 1− e− 2𝑘

𝛾
Δ𝑡(1−cos𝜔)

1− cos𝜔 sin2 (𝑎− 𝑏)𝜔
2 (2.20)

≡ 2𝐷𝛾
𝜋𝑘

∫︁ 𝜋
2

−𝜋
2

d𝑧 sin2 𝐿𝑧

sin2 𝑧

(︂
1− e− 4𝑘

𝛾
Δ𝑡 sin2 𝑧

)︂
, (2.21)

where we utilized 1 − cos𝜔 = 2 sin2 𝜔, substituted 𝑧 ≡ 𝜔
2 , and introduced the tether length

𝐿 ≡ 𝑎− 𝑏.

Equation (2.21) exhibits three scaling regimes (fig. 2.1):

• at very short times we expand the exponential to first order and find

𝜇(Δ𝑡≪ 𝛾

4𝑘 ) ≈ 2𝐷𝛾
𝜋𝑘

∫︁ 𝜋
2

−𝜋
2

d𝑧 4𝑘
𝛾

Δ𝑡 sin2 𝐿𝑧 = 4𝐷Δ𝑡 = 2𝜇single free monomer(Δ𝑡) , (2.22)

in accordance with the intuition that at short times the monomers do not feel their

neighbors and thus diffuse freely.

• at long times, we have that e− 4𝑘
𝛾

Δ𝑡 sin2 𝑧 → 0 ∀𝑧 ∈
[︀
−𝜋

2 ,
𝜋
2
]︀
∖ {0}. We thus obtain

𝜇(Δ𝑡→∞) = 2𝐷𝛾
𝜋𝑘

∫︁ 𝜋
2

−𝜋
2

d𝑧 sin2 𝐿𝑧

sin2 𝑧
= 2𝐷𝛾

𝑘
𝐿 , (2.23)
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where we prove the last equality by induction over 𝐿 ∈ N0: the induction hypothesis∫︀ 𝜋
2

−𝜋
2

d𝑧 sin2 𝐿𝑧
sin2 𝑧

= 𝜋𝐿 is trivially true for 𝐿 = 0 and 𝐿 = 1; we then use standard trigonom-

etry to show that

sin2(𝐿+ 1)𝑧 + sin2(𝐿− 1)𝑧 = (sin𝐿𝑧 cos 𝑧 + cos𝐿𝑧 sin 𝑧)2

+ (sin𝐿𝑧 cos 𝑧 − cos𝐿𝑧 sin 𝑧)2 (2.24)

= 2 sin2 𝐿𝑧
(︁
1− sin2 𝑧

)︁
+ 2 cos2 𝐿𝑧 sin2 𝑧 (2.25)

= 2 sin2 𝐿𝑧 + 2 sin2 𝑧 cos 2𝐿𝑧 , (2.26)

such that, using the induction hypothesis for 𝐿 and 𝐿− 1, we find

∫︁ 𝜋
2

−𝜋
2

d𝑧 sin2(𝐿+ 1)𝑧
sin2 𝑧

= 2
∫︁ 𝜋

2

−𝜋
2

d𝑧 sin2 𝐿𝑧

sin2 𝑧
−
∫︁ 𝜋

2

−𝜋
2

d𝑧 sin2(𝐿− 1)𝑧
sin2 𝑧

+ 2
∫︁ 𝜋

2

−𝜋
2

d𝑧 cos 2𝐿𝑧 (2.27)

= 𝜋(2𝐿− (𝐿− 1)) (2.28)

= 𝜋(𝐿+ 1) , (2.29)

where the integral in the third term runs over full periods of the cosine and thus vanishes.

Finally, we restate the result as

𝜇(Δ𝑡→∞) = 2𝐷𝛾
𝑘
𝐿 ≡ 2𝐽 . (2.30)

• to find the scaling behavior at intermediate times, where the local chain connectivity is

relevant, but the full tether has not equilibrated yet (such that the loci effectively “do not

know that they are connected”), we take that tether to be infinitely long, 𝐿 → ∞. In

this limit, sin2 𝐿𝑧 oscillates arbitrarily fast, such that
∫︀

d𝑧 𝑓(𝑧) sin2 𝐿𝑧 = 1
2
∫︀

d𝑧 𝑓(𝑧) for
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continuous 𝑓(𝑧). Consequently, eq. (2.21) becomes

𝜇(Δ𝑡) = 𝐷𝛾

𝜋𝑘

∫︁ 𝜋
2

−𝜋
2

d𝑧 1− e− 4𝑘
𝛾

Δ𝑡 sin2 𝑧

sin2 𝑧
(2.31)

= 𝐷𝛾

𝜋𝑘

∫︁ 1

−1
d𝜁 1− e− 4𝑘

𝛾
Δ𝑡𝜁2

𝜁2
√︀

1− 𝜁2 (2.32)

= 4𝐷Δ𝑡 e− 2𝑘
𝛾

Δ𝑡
[︂
𝐼0

(︂2𝑘
𝛾

Δ𝑡
)︂

+ 𝐼1

(︂2𝑘
𝛾

Δ𝑡
)︂]︂

, (2.33)

where we substitute 𝜁 := sin 𝑧 and 𝐼𝛼(𝑧) are the modified Bessel functions of the first kind,

which have the asymptotic expansion 𝐼𝛼(𝑧) = e𝑧√
2𝜋𝑧

[︁
1 +𝒪

(︁
1
𝑧

)︁]︁
. Thus, for Δ𝑡→∞ we

find

𝜇(Δ𝑡) ≈ 4𝐷

√︃
𝛾Δ𝑡
𝜋𝑘
≡ 2Γ

√
Δ𝑡 , (2.34)

with Γ ≡ 2𝐷
√︁

𝛾
𝜋𝑘 . We will refer to this intermittent regime as the Rouse regime.

We can define the crossovers between the three regimes by equating the asymptotes, yielding

𝜏𝐷→Γ = 𝛾

𝜋𝑘
and 𝜏Γ→𝐽 = 𝜋𝛾

4𝑘 𝐿
2 (2.35)

for the diffusive-to-Rouse and Rouse-to-equilibrium transitions respectively. Note that 𝜏Γ→𝐽 is

a factor 𝜋3

4 ≈ 7.75 greater than the commonly quoted Rouse time of 𝛾𝐿2

𝜋2𝑘 . The latter should

not be interpreted as the location of the crossover, but as the time where the MSD starts

deviating markedly from the Rouse scaling; similarly, while 𝜏𝐷→Γ marks the position of the

crossover, numerical evaluation shows that the Rouse scaling remains a good approximation

only for Δ𝑡 ≳ 𝛾
𝑘 = 𝜋𝜏𝐷→Γ (fig. 2.1).

2.2 Computational: discrete chain in discrete time

From eq. (2.7) we can calculate

𝑥(𝑡+ Δ𝑡) = e− 𝑘
𝛾
𝐵Δ𝑡

𝑥(𝑡) +
∫︁ Δ𝑡

0
d𝜏 e− 𝑘

𝛾
𝐵𝜏 [𝐹 + 𝜉(𝑡+ Δ𝑡− 𝜏)] (2.36)

≡ 𝐴𝑥(𝑡) + 𝐺 + 𝜂 , (2.37)

i.e. we can evolve the solution in discrete time steps. Note that this is not a discretization of

the equations of motion, but of the solution to those. Therefore, the conformations 𝑥(𝑡) we
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obtain at discrete time points from this equation are simply samples from the exact solution to

eq. (2.6), not an approximation.

To make the discrete nature of time more explicit, we rewrite:

𝑥𝑛 = 𝐴𝑥𝑛−1 + 𝐺 + 𝜂𝑛 , ⟨𝜂𝑚 ⊗ 𝜂𝑛⟩ = Σ𝛿𝑚𝑛 . (2.38)

By discretizing time, we have reformulated the stochastic differential equation eq. (2.6) as an

AR(1) process (“auto-regressive of order 1”). The connection to the continuous-time formulation

(2.6) is given by

𝐴 = e− 𝑘
𝛾
𝐵Δ𝑡

, (2.39)

𝐺 =
∫︁ Δ𝑡

0
d𝜏 e− 𝑘

𝛾
𝐵𝜏

𝐹
*= 𝛾

𝑘
(1−𝐴)𝐵−1𝐹 , (2.40)

Σ =
∫︁ Δ𝑡

0
d𝜏 e− 𝑘

𝛾
𝐵𝜏
𝑆e− 𝑘

𝛾
𝐵𝑇 𝜏 **= 𝛾

2𝑘 (1−𝐴2)𝐵−1𝑆 , (2.41)

where for * we assumed 𝐵 to be non-singular, for ** we need 𝐵 non-singular and 𝑆𝐵𝑇 = 𝐵𝑆.

Note that the integrals are finite in either case; the non-singularity condition is necessary only

for the compact notation in terms of 𝐵−1.

Again, we can solve the model starting from an initial condition 𝑥𝑛0 :

𝑥𝑛 = 𝐴𝑛−𝑛0𝑥𝑛0 +
𝑛−𝑛0−1∑︁
𝑘=0

𝐴𝑘(𝐺 + 𝜂𝑛−𝑘) . (2.42)

Similarly to section 2.1.1, if all the eigenvalues of 𝐴 are within the unit circle, a steady state

exists and we can take 𝑛0 → −∞:

𝑥𝑛 = (1−𝐴)−1𝐺 +
∞∑︁
𝑘=0

𝐴𝑘𝜂𝑛−𝑘 . (2.43)

From this we can immediately read off the steady state distribution:

⟨𝑥⟩ss = (1−𝐴)−1𝐺 , (2.44)

𝒥 ≡ ⟨𝑥⊗ 𝑥𝑇 ⟩c, ss =
∞∑︁
𝑘=0

𝐴𝑘Σ
(︁
𝐴𝑇
)︁𝑘 *= (1−𝐴2)−1Σ , (2.45)

where for * we assume Σ𝐴𝑇 = 𝐴Σ. Since the model is driven by Gaussian noise, the steady
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state distribution is Gaussian and thus fully determined by the first two moments, eqs. (2.44)

and (2.45). Unsurprisingly, using eqs. (2.39) to (2.41) these expressions are identical to eqs. (2.9)

and (2.10); similarly, eq. (2.13) translates as

⟨
𝑥𝑚 ⊗ 𝑥𝑇𝑛

⟩
= 𝐴𝑚−𝑛𝒥 . (2.46)

2.2.1 Entropy production

Since eq. (2.38) is a fully discrete model, we can calculate the expected entropy production per

step in steady state. For now we specialize to the case 𝐺 = 0 (no external forcing). For a step

from 𝑥1 to 𝑥2, the entropy production is given by

Δ𝑆(𝑥1,𝑥2) = log 𝑃 (𝑥1 → 𝑥2)
𝑃 (𝑥2 → 𝑥1) = log 𝑃 (𝜂 = 𝑥2 −𝐴𝑥1)

𝑃 (𝜂 = 𝑥1 −𝐴𝑥2) (2.47)

= tr
[︃
− 1

2
(︁
Σ−1 −𝐴𝑇Σ−1𝐴

)︁ (︁
𝑥2 ⊗ 𝑥𝑇2 − 𝑥1 ⊗ 𝑥𝑇1

)︁

+
(︁
𝐴𝑇Σ−1 − Σ−1𝐴

)︁
𝑥2 ⊗ 𝑥𝑇1

]︃
, (2.48)

where the distribution of the innovations 𝜂 is a Gaussian with covariance Σ:

𝑃 (𝜂) = |2𝜋Σ|−
1
2 e− 1

2 𝜂𝑇Σ−1𝜂 ; log𝑃 (𝜂) = −1
2 log |2𝜋Σ| − 1

2 tr
[︁
Σ−1𝜂 ⊗ 𝜂𝑇

]︁
. (2.49)

The expected entropy production in steady state is now found by taking an expectation

value of eq. (2.48). Since we are in steady state,
⟨
𝑥2 ⊗ 𝑥𝑇2

⟩
=
⟨
𝑥1 ⊗ 𝑥𝑇1

⟩
= 𝒥 and the first

two terms cancel. For the third term we substitute
⟨
𝑥2 ⊗ 𝑥𝑇1

⟩
= 𝐴𝒥 according to eq. (2.46)

and finally find

⟨Δ𝑆⟩ss = tr
(︁
𝐴𝑇Σ−1 − Σ−1𝐴

)︁
𝐴𝒥 (2.50)

= tr
[︁(︁

1−𝐴2
)︁
𝒥Σ−1 − 1

]︁
, (2.51)

where the last step utilizes that the steady state covariance is stable under propagation: 𝐴𝒥𝐴𝑇+

Σ = 𝒥 . In eq. (2.45) we saw that if Σ𝐴𝑇 = 𝐴Σ then 𝒥 = (1−𝐴2)−1Σ. In this case we clearly

get ⟨Δ𝑆⟩ = 0, i.e. we are dealing with an equilibrium system.

Note that Σ𝐴𝑇 = 𝐴Σ (or, equivalently in terms of the continuous-time formulation of
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section 2.1, 𝑆𝐵𝑇 = 𝐵𝑆) is a sufficient, but not necessary condition for an equilibrium steady

state.

2.2.2 Likelihood function for state trajectories in a multi-state Rouse model

One of the main uses of the fully discretized model (2.38) is its amenability to numerical

computation, and the fact that the connectivity matrix 𝐵 is not constrained to a linear polymer.

This is thus the version of the Rouse model that we employ in chapter 4 for looping inference

from super-resolution live-cell microscopy data. The core of this Bayesian inference algorithm

is the calculation of the likelihood ℒ(𝜃) ≡ 𝑝 (𝑦 | 𝜃) of observing a given trajectory 𝑦, given a

Loopingprofile 𝜃. The present section details these calculations.

Let us consider a collection of 𝑛 discrete Rouse models that differ only by their connectivity

matrices 𝐵. We will call these different models looping states (in the original work, this was

just one open/linear, and one looped state) and label them with an index 𝜃 = 1, . . . , 𝑛. The

continuous-time equation of motion (2.6) then becomes

𝛾�̇�(𝑡) = −𝑘𝐵(𝜃(𝑡))𝑥(𝑡) + 𝜉(𝑡) ,
⟨︀
𝜉(𝑡)⊗ 𝜉(𝑡′)

⟩︀
= 2𝐷𝛾21𝑁𝛿(𝑡− 𝑡′) , (2.52)

where 𝑥(𝑡) is the 𝑁 -dimensional vector of monomer positions, we introduce 𝐷 ≡ 𝑘B𝑇/𝛾 as

before, 1𝑁 denotes the 𝑁 -dimensional identity matrix, and 𝐵(𝜃(𝑡)) is the connectivity matrix

pertaining to the state 𝜃(𝑡).

We constrain switches between states to occur only at discrete times 𝑡 = 𝑞Δ𝑡, 𝑞 ∈ Z, for

some fundamental time step Δ𝑡 (for the application in chapter 4 this is the frame rate of the

data). Over intervals 𝑡 ∈ [𝑞Δ𝑡, (𝑞 + 1)Δ𝑡) the coefficients of eq. (2.52) are then constant, such

that its solution is given by eq. (2.7) as before. This allows us to discretize the propagation like

in eq. (2.38), such that

𝑥𝑞+1 = 𝐴(𝜃(𝑡𝑞))𝑥𝑞 + 𝜂𝑞 , ⟨𝜂𝑝 ⊗ 𝜂𝑞⟩ = 𝑆(𝜃(𝑡𝑞))𝛿𝑝𝑞 , (2.53)

with 𝐴(𝜃) and 𝑆(𝜃) given in terms of 𝐵(𝜃) by eqs. (2.39) and (2.41), respectively:

𝐴(𝜃) = e− 𝑘
𝛾
𝐵(𝜃)Δ𝑡

, 𝑆(𝜃) = 2𝐷𝛾2
∫︁ Δ𝑡

0
d𝜏 e− 𝑘

𝛾
𝐵(𝜃)𝜏e− 𝑘

𝛾
𝐵𝑇 (𝜃)𝜏

. (2.54)

Note that in this section we use the symbol 𝑆 instead of Σ for the discretized noise covariance.
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We will generally assume that 𝐵(𝜃) is symmetric and positive semi-definite (as connectivity

matrix of a passive spring network with unconstrained center of mass motion).

Equation (2.53) describes a linear model driven by Gaussian noise. As such, we can calculate

the trajectory likelihood 𝑝 (𝑦 | 𝜃) efficiently via the Kalman filter equations [23,24].

Let us assume that at time 𝑡𝑞 ≡ 𝑞Δ𝑡 the system is described by a Gaussian ensemble with

mean 𝜇𝑞 and covariance Σ𝑞, which we write as 𝑝(𝑥𝑞) = 𝒩 (𝑥𝑞; 𝜇𝑞,Σ𝑞). We consider a linear

observable 𝑦𝑞 ≡ 𝑤𝑇𝑥𝑞 (for our application in chapter 4 this will be the relative position of

two monomers 𝑖 and 𝑗 on the chain: (𝑤)𝑘 = 𝛿𝑗𝑘 − 𝛿𝑖𝑘), associated with a certain (Gaussian)

measurement error 𝜎2; the probability density for 𝑦𝑞 given the initial ensemble 𝑝(𝑥𝑞) can then

be expressed as

𝑝 (𝑦𝑞 | 𝜇𝑞,Σ𝑞) =
∫︁ ∞

−∞
d𝑥𝑞 𝑝 (𝑦𝑞 | 𝑥𝑞) 𝑝 (𝑥𝑞) (2.55)

= 𝒩
(︁
𝑦𝑞; 𝑤𝑇𝜇𝑞,𝑤

𝑇Σ𝑞𝑤 + 𝜎2
)︁
, (2.56)

where the second line exploits the fact that the integral in the first line is a convolution of

Gaussians.

Given an actual observation 𝑦𝑞 now allows us to update our knowledge about the state

ensemble. To that end, we calculate the optimal Kalman gain

𝑘 = Σ𝑞𝑤

𝑤𝑇Σ𝑞𝑤 + 𝜎2 (2.57)

in terms of which the Kalman update is expressed as

𝜇post
𝑞 = 𝜇𝑞 + 𝑘

(︁
𝑦𝑞 −𝑤𝑇𝜇𝑞

)︁
(2.58)

Σpost
𝑞 =

(︁
1𝑁 − 𝑘𝑤𝑇

)︁
Σ𝑞 . (2.59)

This updated ensemble can now be propagated under eq. (2.53) to find

𝜇𝑞+1 = 𝐴(𝜃(𝑡𝑞))𝜇𝑞 (2.60)

Σ𝑞+1 = 𝐴(𝜃(𝑡𝑞))Σ𝑞𝐴
𝑇 (𝜃(𝑡𝑞)) + 𝑆(𝜃(𝑡𝑞)) , (2.61)

which then allows us to repeat the whole procedure for timepoint 𝑡𝑞+1.

The above procedure allows us to recursively compute 𝑝 (𝑦𝑞 | 𝜇𝑞,Σ𝑞) for all 𝑞, once we
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specify an initial ensemble to start from. Quite naturally, for this initial ensemble we choose

the steady state associated with the initial looping state 𝜃(0), which we can easily calculate as

described in and below eq. (2.10). The prior ensemble (𝜇𝑞,Σ𝑞) is then nothing but a convenient

encoding of all the observations {𝑦𝑝 | 𝑝 < 𝑞} up to time 𝑡𝑞, as well as the assumed trajectory of

state trajectories 𝜃(𝑡), such that we can rewrite the conditioning in the above expression as

𝑝 (𝑦𝑞 | 𝜇𝑞,Σ𝑞) ≡ 𝑝 (𝑦𝑞 | 𝑦𝑞−1, . . . , 𝑦1, 𝜃) . (2.62)

The likelihood of observing the whole trajectory {𝑦𝑞} is now given by

logℒ(𝜃) ≡ log 𝑝 (𝑦 | 𝜃) (2.63)

=
∑︁
𝑞

log 𝑝 (𝑦𝑞 | 𝑦𝑞−1, . . . , 𝑦1, 𝜃) . (2.64)

This Rouse likelihood is the center piece of the Bayesian inference framework developed in

chapter 5 and applied in chapter 4.

Note that instead of using the Kalman filter to calculate the Rouse likelihood in eq. (2.63),

we could also have exploited the fact that the full ensemble of conformations 𝑋 ≡ (𝑥1, . . . ,𝑥𝑇 )

for a given looping profile 𝜃(𝑡) is always Gaussian, and just evaluate the likelihood directly. This

however would require assembling the full 𝑇𝑁 ×𝑇𝑁 covariance matrix of that distribution and

therefore scales quadratically in the trajectory length 𝑇 . The calculation via the Kalman filter

on the other hand scales only linearly in trajectory length and is thus computationally more

efficient.

2.3 Analytical: continuous chain in continuous time

We now transition from the discrete to a continuous, infinitely long chain; this turns out to be

more convenient for analytical treatment; the infinite chain is also a good approximation for our

application to chromosomes. To that end, we replace the vector 𝑥(𝑡) of 𝑁 discrete monomer

coordinates with conformations 𝑥(𝑠, 𝑡) for a continuous backbone coordinate 𝑠 ∈ R. In this

continuum limit, the connectivity matrix (2.5) for the free linear polymer becomes a negative
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Laplacian, −𝜕2
𝑠 , such that the equation of motion reads

𝛾�̇�(𝑠, 𝑡) = 𝜅𝜕2
𝑠𝑥(𝑠, 𝑡) + 𝐹 (𝑠, 𝑡) + 𝜉(𝑠, 𝑡) , (2.65)⟨︀

𝜉(𝑠, 𝑡)𝜉(𝑠′, 𝑡′)
⟩︀

= 2𝛾𝑘B𝑇𝛿(𝑠− 𝑠′)𝛿(𝑡− 𝑡′) . (2.66)

As before, 𝜉(𝑠, 𝑡) is a zero-mean Gaussian field representing the thermal noise, whose amplitude

is given by the Einstein relation (fluctuation dissipation theorem). For convenience we introduce

𝐷 ≡ 𝑘B𝑇
𝛾 .

Equation (2.65) is a heat equation, whose solution is given by a Weierstrass transform of

the inhomogeneity 𝐹 + 𝜉:

𝑥(𝑠, 𝑡) =
∫︁

R
d𝜎
∫︁ 𝑡

0
d𝜏 e− 𝛾(𝜎−𝑠)2

4𝜅(𝑡−𝜏)√︀
4𝜋𝛾𝜅(𝑡− 𝜏)

(𝐹 (𝜎, 𝜏) + 𝜉(𝜎, 𝜏)) (2.67)

= 1
𝛾

∫︁
R

d𝜎
∫︁ 𝑡

0
d𝜏 𝒩

(︂
𝜎; 𝑠, 2𝜅

𝛾
(𝑡− 𝜏)

)︂
(𝐹 (𝜎, 𝜏) + 𝜉(𝜎, 𝜏)) , (2.68)

where we assumed the collapsed initial condition 𝑥(𝑠, 0) = 0∀𝑠.

Clearly the expected response to an external force 𝐹 (𝑠, 𝑡) is given by

⟨𝑥(𝑠, 𝑡)⟩ =
∫︁

R
d𝜎
∫︁ 𝑡

0
d𝜏 e− 𝛾(𝜎−𝑠)2

4𝜅(𝑡−𝜏)√︀
4𝜋𝛾𝜅(𝑡− 𝜏)

𝐹 (𝜎, 𝜏) , (2.69)

which we will further explore in sections 2.3.4 and 2.4.
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2.3.1 Covariance structure

The solution (2.68) allows us to calculate the full covariance structure of 𝑥(𝑠, 𝑡) in real space.

Without loss of generality we assume 𝑡′ ≡ 𝑡+ Δ𝑡 ≥ 𝑡, such that we can write

⟨︀
𝑥(𝑠′, 𝑡′)𝑥(𝑠, 𝑡)

⟩︀
c = 1

𝛾2

∫︁
d𝜎′d𝜎

∫︁ 𝑡′

0
d𝜏
∫︁ 𝑡

0
d𝜏 ′𝒩

(︂
𝜎′; 𝑠′,

2𝜅
𝛾

(𝑡′ − 𝜏 ′)
)︂

×𝒩
(︂
𝜎; 𝑠, 2𝜅

𝛾
(𝑡− 𝜏)

)︂ ⟨︀
𝜉(𝜎′, 𝜏 ′)𝜉(𝜎, 𝜏)

⟩︀
(2.70)

= 2𝐷
∫︁

d𝜎
∫︁ 𝑡

0
d𝜏 𝒩

(︂
−𝜎; 𝑠′ − 𝑠, 2𝜅

𝛾
(𝑡− 𝜏)

)︂
𝒩
(︂
𝜎; 0, 2𝜅

𝛾
(𝑡′ − 𝜏)

)︂
(2.71)

= 2𝐷
∫︁ 𝑡

0
d𝜏 𝒩

(︂
0; 𝑠′ − 𝑠, 2𝜅

𝛾
(𝑡′ + 𝑡− 2𝜏)

)︂
(2.72)

= 2𝐷
∫︁ 𝑡

0

√
𝛾 d𝜏√︂

8𝜋𝜅𝑡
(︁

Δ𝑡
2𝑡 + 1− 𝜏

𝑡

)︁ exp

⎛⎝− 𝛾Δ𝑠2

8𝜅𝑡
(︁

Δ𝑡
2𝑡 + 1− 𝜏

𝑡

)︁
⎞⎠ , (2.73)

where we first use the noise correlations ⟨𝜉(𝜎′, 𝜏 ′)𝜉(𝜎, 𝜏)⟩ = 2𝐷𝛾2𝛿(𝜎′ − 𝜎)𝛿(𝜏 ′ − 𝜏), then

transform 𝜎 ← 𝑠 − 𝜎, and finally execute the integral over 𝜎, which is a convolution of two

Gaussians. In the last step, we expand the expression for the Gaussian and introduce Δ𝑠 ≡ 𝑠′−𝑠

and Δ𝑡 ≡ 𝑡′ − 𝑡. We now substitute 𝑧 ≡ 1 − 𝜏
𝑡 and employ the incomplete Gamma function

Γ(𝜈, 𝑧) ≡
∫︀∞
𝑧 𝑡𝜈−1e−𝑡d𝑡 to rewrite the resulting integral as

⟨︀
𝑥(𝑠′, 𝑡′)𝑥(𝑠, 𝑡)

⟩︀
c = 2𝐷

∫︁ 1

0

√
𝛾𝑡d𝑧√︂

8𝜋𝜅
(︁
𝑧 + Δ𝑡

2𝑡

)︁ exp

⎛⎝− 𝛾Δ𝑠2

8𝜅𝑡
(︁
𝑧 + Δ𝑡

2𝑡

)︁
⎞⎠ (2.74)

= 2𝐷 𝛾 |Δ𝑠|
8𝜅
√
𝜋

[︃
Γ
(︃
−1

2 ,
𝛾Δ𝑠2

4𝜅(2𝑡+ Δ𝑡)

)︃
− Γ

(︃
−1

2 ,
𝛾Δ𝑠2

4𝜅Δ𝑡

)︃]︃
. (2.75)

Ultimately we are interested in the equilibrium behavior of the chain. We therefore aim to

expand eq. (2.75) for large 𝑡, while holding Δ𝑡 and Δ𝑠 constant. To that end we note the

following representation of the incomplete Gamma function2: Γ
(︁
−1

2 , 𝑧
)︁

= 2e−𝑧
√
𝑧
−2
√
𝜋 erfc

√
𝑧,

which for small 𝑧 expands as Γ
(︁
−1

2 , 𝑧
)︁

= 2√
𝑧
− 2
√
𝜋 +𝒪(

√
𝑧). Expanding the first term and

2http://functions.wolfram.com/06.06.03.0006.01; also easily checked by differentiation
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substituting the exact expression for the second one we find

⟨︀
𝑥(𝑠′, 𝑡′)𝑥(𝑠, 𝑡)

⟩︀
c = 2𝐷

[︃√︂
𝛾𝑡

2𝜋𝜅 −

√︃
𝛾Δ𝑡
4𝜋𝜅 exp

(︃
−𝛾Δ𝑠2

4𝜅Δ𝑡

)︃
− 𝛾 |Δ𝑠|

4𝜅 erf

√︃
𝛾Δ𝑠2

4𝜅Δ𝑡

]︃

+𝒪

⎛⎝√︃Δ𝑡
𝑡
,

√︃
𝛾Δ𝑠2

𝜅𝑡

⎞⎠ (2.76)

≡ 𝐴
√
𝑡 + 𝐶0(Δ𝑠,Δ𝑡) +ℛ , (2.77)

Note that the first term 𝐴
√
𝑡 describes the continuing expansion of the chain, and accordingly

diverges as 𝑡→∞. This means that the system as a whole actually never equilibrates, agreeing

with the intuition that an infinite polymer with an initially completely collapsed conformation

would not reach a steady state, but just keep expanding (note that since the chain is infinitely

long, there is no whole coil diffusion at long times). However, for quantities that do not depend

on the absolute position of the chain (like two-locus MSD) this term drops out, such that they

do reach a steady state on time scales 𝑡≫ 𝛾
𝜅Δ𝑠2.

Two-point correlations in steady state (and thus, due to Gaussianity, the whole steady state

distribution) are thus determined by

𝐶0(Δ𝑠,Δ𝑡) ≡
⟨︀
𝑥(𝑠′, 𝑡′)𝑥(𝑠, 𝑡)

⟩︀
c −𝐴

√
𝑡 (2.78)

= − 2𝐷

⎡⎣√︃𝛾Δ𝑡
4𝜋𝜅 exp

(︃
−𝛾Δ𝑠2

4𝜅Δ𝑡

)︃
+ 𝛾 |Δ𝑠|

4𝜅 erf

√︃
𝛾Δ𝑠2

4𝜅Δ𝑡

⎤⎦ . (2.79)

We will demonstrate the utility of this expression in section 2.3.2, where we calculate the two-

point MSD and compare it to the expressions obtained for the discrete chain in section 2.1.2.
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2.3.2 MSD of linear observables in the continuous model

Consider the linear observable 𝑦(𝑡) ≡
∫︀

d𝑠𝑤(𝑠)𝑥(𝑠, 𝑡). We can use eq. (2.77) to calculate its

MSD in steady state:

MSD𝑦(Δ𝑡) =
⟨
[𝑦(𝑡+ Δ𝑡)− 𝑦(𝑡)]2

⟩
(2.80)

=
∫︁
𝑤(𝑠′)d𝑠′𝑤(𝑠)d𝑠

⟨︀[︀
𝑥(𝑠′, 𝑡+ Δ𝑡)− 𝑥(𝑠′, 𝑡)

]︀
[𝑥(𝑠, 𝑡+ Δ𝑡)− 𝑥(𝑠, 𝑡)]

⟩︀
(2.81)

(2.77)=
∫︁
𝑤(𝑠′)d𝑠′𝑤(𝑠)d𝑠

[︁
2𝐶0(Δ𝑠, 0)− 2𝐶0(Δ𝑠,Δ𝑡)

]︁
+ℛ (2.82)

𝑡→∞−−−→
∫︁
𝑤(𝑠′)d𝑠′𝑤(𝑠)d𝑠MSD0(Δ𝑠,Δ𝑡) , (2.83)

with

MSD0(Δ𝑠,Δ𝑡) = 2𝐶0(Δ𝑠, 0)− 2𝐶0(Δ𝑠,Δ𝑡) (2.84)

= 𝐷

√︃
𝛾Δ𝑡
𝜋𝜅

E 3
2

(︃
𝛾Δ𝑠2

4𝜅Δ𝑡

)︃
≡ 1

2Γ
√

Δ𝑡E 3
2
(𝑧) . (2.85)

The exponential integral E 3
2

has the representation

E 3
2
(𝑧) = 2e−𝑧 − 2

√
𝜋𝑧 erfc

√
𝑧 ; (2.86)

Since E 3
2
(0) = 2 we can immediately write the MSD of a single locus (𝑤(𝑠) = 𝛿(𝑠)) as Γ

√
Δ𝑡.

In fact, eqs. (2.83) and (2.85) allow us to quickly calculate MSDs for a host of interesting

observables:

• As noted above, for a single locus on the polymer, we simply have

MSDsingle locus(Δ𝑡) = Γ
√

Δ𝑡 (2.87)

with Γ = 2𝐷
√︁

𝛾
𝜋𝜅 = 2𝑘B𝑇√

𝜋𝛾𝜅 .

• For the relative position of two particles separated by a backbone distance 𝐿 (analogous

to section 2.1.2) we set 𝑤(𝑠) = 𝛿(𝑠− 𝐿)− 𝛿(𝑠) and find (after some algebra)

MSDtwo loci(Δ𝑡) = 2Γ
√

Δ𝑡
(︁
1− e− 𝜏

Δ𝑡
)︁

+ 2𝐽 erfc
√︂

𝜏

Δ𝑡 , (2.88)
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Figure 2.2: Two-particle MSD of the continuous
Rouse model. Plot of eq. (2.88) in blue, asymptotes
in red, with the time scale 𝜏 indicated. Note the
absence of the third, early time scaling regime of the
discrete model (cf. fig. 2.1).

with Γ ≡ 2𝐷
√︁

𝛾
𝜋𝜅 as before, 𝐽 ≡ 𝐷𝛾

𝜅 𝐿 =
⟨︀
𝑦2⟩︀ the mean squared distance between the

two loci in steady state, and the crossover time scale 𝜏 ≡ 𝛾𝐿2

4𝜅 = 1
𝜋

(︁
𝐽
Γ

)︁2
. Equation (2.88)

and its asymptotes are shown in fig. 2.2

• The center of mass of of a stretch of polymer of length 𝐿 is described by 𝑤(𝑠) =
1
𝐿Θ (𝐿− 𝑠) Θ (𝑠). For any function 𝑓(𝑧) of 𝑧 ≡ Δ𝑠2

4𝜅Δ𝑡 the integral in eq. (2.83) can

then be transformed as

∫︁
𝑤(𝑠′)d𝑠′𝑤(𝑠)d𝑠 𝑓(𝑧) = 2𝜅Δ𝑡

𝐿2

∫︁ 𝜁

0

d𝑎√
𝑎

∫︁ 𝑎

0

d𝑧√
𝑧
𝑓(𝑧) , (2.89)

with 𝜁 ≡ 𝐿2

4𝜅Δ𝑡 , analogous to the definition of 𝑧. Plugging into eqs. (2.83) and (2.85) then

gives

MSDCOM(𝐿)(Δ𝑡) = 𝜅Γ
𝐿2 (Δ𝑡)

3
2

∫︁ 𝜁

0

d𝑎√
𝑎

∫︁ 𝑎

0

d𝑧√
𝑧

E 3
2
(𝑧) (2.90)

= 𝜅Γ
𝐿2 (Δ𝑡)

3
2

[︂
E 3

2
(𝜁)− E 5

2
(𝜁)− 4

3 + 2
√︀
𝜋𝜁

]︂
. (2.91)

To make sense of the term in square brackets, note the series expansion

E 3
2
(𝑧)− E 5

2
(𝑧) = 4

3 − 2
√
𝜋𝑧 + 4𝑧 − 4

3
√
𝜋𝑧

3
2 +𝒪(𝑧2) (2.92)

for small 𝑧 and asymptotic expansion E𝜈 → 1
𝑧 e−𝑧 as 𝑧 → ∞. With these we find the
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expected limiting behavior

MSDCOM(𝐿)(Δ𝑡)→
2𝐷
𝐿

Δ𝑡 as Δ𝑡→ 0, and (2.93)

MSDCOM(𝐿)(Δ𝑡)→ Γ
√

Δ𝑡 as Δ𝑡→∞. (2.94)

Note that this is (unsurprisingly) exactly the behavior of a single monomer in the discrete

model, c.f. section 2.1.2. We can thus establish the discrete model as appropriate coarse-

graining of the continuous one, by dividing the continuous chain into contiguous “blobs”

and using their center of mass as monomer coordinate.

• So far we were concerned with tracer particles that are stationary on the polymer. In the

context of molecular motors—such as cohesin—it might be interesting to consider a tracer

that moves along the polymer backbone with some velocity 𝑣, such that 𝑤(𝑠) = 𝛿(𝑠−𝑣𝑡).

Note that now 𝑤(𝑠) has become time-dependent, such that the formulation (2.81) is not

valid anymore; the appropriate modifications are, however, straightforward and one finds

that in this case

MSDmotor(𝑣)(Δ𝑡) = − 2𝐶0(𝑣Δ𝑡,Δ𝑡) (2.95)

= Γ
√

Δ𝑡 e− 𝛾𝑣2
4𝜅 Δ𝑡 + 𝐷𝛾

𝜅
𝑣Δ𝑡 erf

√︃
𝛾𝑣2

4𝜅 Δ𝑡 . (2.96)

Intuitively, at short times the polymer fluctuations dominate the tracer movement, such

that it behaves just like a stationary tracer with MSD(Δ𝑡) = Γ
√

Δ𝑡. At long times, the

tracer outruns the polymer motion and moves linearly along the chain—which is ideal and

thus adopts a random walk conformation. The tracer thus becomes effectively diffusive,

since it “walks deterministically along a random path”.

2.3.3 Correspondence between discrete and continuous chain

In section 2.1.2 we found three scaling regimes for the two-particle MSD 𝜇(Δ𝑡) of an infinite,

discrete Rouse chain: at very short times monomers diffuse freely, such that 𝜇(Δ𝑡) = 4𝐷Δ𝑡. At

intermediate times, monomers start feeling the local chain they are connected to, but the tether

between the two loci under study has not yet equilibrated. Correspondingly, 𝜇(Δ𝑡) = 2Γ
√

Δ𝑡,

with Γ = 2𝐷
√︁

𝛾
𝜋𝑘 (eq. (2.34)). At long times, the chain between the two monomers under
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Figure 2.3: Comparison of continuous and dis-
crete Rouse models. Two-particle MSD for analyt-
ical (thin black) and computational (thick colored;
as indicated) Rouse models. While the analytical
model considers a subchain embedded in an infinite
polymer, in the computational model this embedding
chain contains 𝑁 <∞ monomers. For this example,
the subchain of interest (𝐿 bonds) is always embed-
ded symmetrically, such that for 𝑁 = 𝐿 + 1 we are
tracking the loose ends of the chain; clearly in this
case the infinite chain of the analytical model is a
bad approximation (blue vs. black curves). As the
embedding chain grows longer, this finite-size effect
diminishes. At early times, the monomers of the
computational model are diffusive, while the contin-
uous model maintains Rouse scaling.

study equilibrates, such that the MSD plateaus at 𝜇(Δ𝑡) = 2𝐽 with 𝐽 = 𝐷𝛾
𝑘 𝐿 (eq. (2.30)).

For the continuous, infinite chain, section 2.3.2 provides a closed analytical expression for

the two-particle MSD:

𝜇(Δ𝑡) = 2Γ
√

Δ𝑡
(︁
1− e− 𝜏

Δ𝑡
)︁

+ 2𝐽 erfc
√︂

𝜏

Δ𝑡 (2.97)

with Γ = 2𝐷
√︁

𝛾
𝜋𝜅 , 𝐽 = 𝐷𝛾

𝑘 𝐿, and 𝜏 ≡ 1
𝜋

(︁
𝐽
Γ

)︁2
(eq. (2.88)).

We can thus connect the completely discrete (“computational”) model of section 2.2 to

the completely continuous (“analytical”) one studied in this section. There are precisely two

differences between them, illustrated in fig. 2.3:

• the discrete chain has a third scaling regime at short times, where monomers diffuse freely.

This is an artifact of the discrete model, owed to the precise microscopic dynamics assumed

here (which in fact are quite unphysical; a real polymer is certainly not composed of point

particles and harmonic springs). In applying the discrete model to physical situations, care

should thus be taken to not consider time scales Δ𝑡 ≲ 𝛾
𝑘 .

• the computational model necessarily has to work with a finite chain, while the analytical

treatment (in continuous as well as discrete case) works in the limit of an infinitely long

chain. Finite chain effects thus should always be considered; in the case of the looping

inference of chapters 4 and 5 we do so by always considering a chain that is at least three

times as long as the subchain of interest. This ensures that up to the equilibration time

of that subchain the dynamics are close to those of an infinite chain; see fig. 2.3.
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2.3.4 Pulling on a locus

Inspired by the experiments presented in chapter 3, let us consider an external force pulling on

a specific genomic locus.

For a start, consider pulling with a constant point force 𝐹 (𝑠, 𝑡) ≡ 𝐹𝛿(𝑠). Using the solution

(2.68) we can immediately write the expected conformation of the polymer:

⟨𝑥(𝑠, 𝑡)⟩ = 𝐹

∫︁ 𝑡

0
d𝜏 e− 𝛾𝑠2

4𝜅(𝑡−𝜏)√︀
4𝜋𝛾𝜅(𝑡− 𝜏)

≡ 𝐹
√
𝑡

√
𝜋𝛾𝜅

𝜒

(︂√︂
𝛾

𝜅𝑡
𝑠

)︂
, (2.98)

where

𝜒(𝑧) ≡
∫︁ 1

0
d𝜏 e− 𝑧2

4𝜏
√

4𝜏
= e− 1

4 𝑧
2 −
√
𝜋

2

(︂
|𝑧| − 𝑧 erf

(︂
𝑧

2

)︂)︂
(2.99)

is the characteristic shape of the conformation in terms of the rescaled backbone coordinate

𝑧 ≡
√︁

𝛾
𝜅𝑡𝑠.

Along the same lines, we can calculate the behavior of a finite size locus under uniform force

application, i.e. 𝐹 (𝑠, 𝑡) = 𝐹
𝑙 Θ

(︁⃒⃒⃒
𝑙
2 − 𝑠

⃒⃒⃒)︁
:

⟨𝑥(𝑠, 𝑡)⟩ = 𝐹
√
𝑡

√
𝜋𝛾𝜅

∫︁ 1
2

− 1
2

d𝑎𝜒
(︂√︂

𝛾

𝜅𝑡
(𝑠− 𝑎𝑙)

)︂
≡ 𝐹

√
𝑡

√
𝜋𝛾𝜅

𝜒𝐿(𝑧) , (2.100)

with the rescaled locus length 𝐿 =
√︁

𝛾
𝜅𝑡 𝑙 and backbone coordinate 𝑧 =

√︁
𝛾
𝜅𝑡𝑠, and

𝜒𝐿(𝑧) ≡ 1
𝐿

[︂
𝜓

(︂
𝐿+ 2𝑧

4

)︂
+ 𝜓

(︂
𝐿− 2𝑧

4

)︂]︂
−
√
𝜋

2

⎧⎪⎪⎨⎪⎪⎩
𝐿
4 + 𝑧2

𝐿 , for |𝑧| ≤ 𝐿
2

|𝑧| , for |𝑧| > 𝐿
2

(2.101)

𝜓(𝜁) = 𝜁e−𝜁2 +
√
𝜋

(︂
𝜁2 + 1

2

)︂
erf 𝜁 . (2.102)

We aim to understand this solution better by considering the long and short time limits. Note

that 𝑧, 𝐿, and thus 𝜁± ≡ 𝐿±2𝑧
4 all scale as 𝑡− 1

2 , such that they become small at long times. We

then expand 𝜓(𝜁) = 2𝜁 +𝒪(𝜁3) to find

𝜒𝐿(𝑧) = 1−
√
𝜋

2

⎧⎪⎪⎨⎪⎪⎩
𝐿
4 + 𝑧2

𝐿 , for |𝑧| ≤ 𝐿
2

|𝑧| , for |𝑧| > 𝐿
2

+ 𝑜
(︁
𝑡−1
)︁
, (2.103)
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such that

⟨𝑥(𝑠, 𝑡)⟩ = 𝐹
√
𝑡

√
𝜋𝛾𝜅

− 𝐹𝑙

2𝜅

⎧⎪⎪⎨⎪⎪⎩
1
4 + 𝑠2

𝑙2 , for |𝑠| ≤ 𝑙
2

|𝑠|
𝑙 , for |𝑠| > 𝑙

2

+ 𝑜
(︁
𝑡−

1
2
)︁
. (2.104)

For short times, consider the asymptotic expansion

𝜓(𝜁) =
√
𝜋

(︂
𝜁2 + 1

2

)︂
sign 𝜁 + 𝑜

(︁
𝜁−1e−𝜁2)︁ (2.105)

and let 𝑧 ≥ 0 without loss of generality (since 𝜒𝐿(𝑧) is symmetric in 𝑧). Equation (2.101) then

becomes

𝜒𝐿(𝑧) =
√
𝜋

𝐿

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝜁2

+ + 𝜁2
− + 1− 𝐿2

8 −
𝑧2

2 , for 0 ≤ 𝑧 < 𝐿
2

𝜁2
+ + 1

2 −
𝐿2

4 , for 𝑧 = 𝐿
2

𝜁2
+ − 𝜁2

− − 𝐿𝑧
2 , for 𝑧 > 𝐿

2

+𝒪
(︁√

𝑡e− 1
𝑡

)︁
(2.106)

=
√
𝜋

𝐿

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , for 0 ≤ 𝑧 < 𝐿

2

1
2 , for 𝑧 = 𝐿

2

0 , for 𝑧 > 𝐿
2

+𝒪
(︁√

𝑡e− 1
𝑡

)︁
. (2.107)

Resolving 𝐿 ≡
√︁

𝛾
𝜅𝑡 𝑙 and re-inserting into eq. (2.100), we find

⟨𝑥(𝑠, 𝑡)⟩ = 𝐹𝑡

𝛾𝑙

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 , for |𝑠| < 𝑙

2

1
2 , for |𝑠| = 𝑙

2

0 , for |𝑠| > 𝑙
2

+𝒪
(︁√

𝑡e− 1
𝑡

)︁
. (2.108)

Summarizing, at early times, the system behaves as if there was no connection between the

forced locus and the rest of the chain: the locus itself moves uniformly with a velocity of 𝐹
𝛾𝑙 ,

while the rest of the chain is unperturbed (eq. (2.108)). Once the locus moves far enough, the

attachment to the surrounding chain starts deforming it from the edges; furthermore, having to

drag along increasing amounts of surrounding chain starts slowing down the motion. At long

times, the conformation at the tip of the pulled chain reaches a steady state: the parts of the

chain that are just pulled along become linearly stretched, while the locus adopts a parabolic

configuration, thus achieving a linear increase in chain tension towards both edges (eq. (2.104)).
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Similar to section 2.3.3, note how the locus with finite extent behaves exactly like a monomer

in the discrete model would. Furthermore, note that after the initial phase (roughly: once the

locus has translocated about its own size), the finite extent of the locus does not matter anymore

and its motion is exactly the same as if we had exerted a point force. This is seen easily by

evaluating eqs. (2.98) and (2.100) at 𝑠 = 0: according to eq. (2.98) we have ⟨𝑥(0, 𝑡)⟩ = 𝐹
√
𝑡√

𝜋𝛾𝜅

while from the long time limit of eq. (2.100) we find

⟨𝑥(0, 𝑡)⟩ = 𝐹
√
𝑡

√
𝜋𝛾𝜅

− 𝐹𝑙

8𝜅 + 𝑜
(︁
𝑡−

1
2
)︁

𝑡→∞−−−→ 𝐹
√
𝑡

√
𝜋𝛾𝜅

. (2.109)

Why does the finite size (and thus increased viscous drag) of the locus not matter at long

times? Once a significant amount of surrounding chain gets dragged along, the pulling force is

dissipated mainly there, not at the locus itself. It is thus largely irrelevant how large the locus is

itself; once it starts moving significantly, its dynamics is determined by the surrounding chain.

2.4 Specialized: continuous chain in discrete time

In chapter 3 we analyze chromosome pulling experiments through the lens of the continuous-

chain force response eq. (2.69), investigated in some detail for constant forces in section 2.3.4.

The experimental data is based on movies with a fixed frame rate and as such inherently discrete

in time; taking this into account in the analytical treatment leads us to the force inference method

developed in this chapter.

2.4.1 Modeling the experimental system

The system in chapter 3 is a genomically defined 4 Mb locus embedded in human chromosome

1, which itself is 249 Mb long. The locus gets coated with nano particles which are

• fluorescent, such that the locus can be tracked in the microscope;

• magnetic dipoles, which enables force application; and

• multi-valent, which means that with the nano particles the locus should be understood as

a big (∼ 500 nm diameter), solid (i.e. crosslinked) ball.

The locus being such a big object, one might expect that its motion is affected by friction with

the surrounding medium; in fact, however, we find this contribution to be negligible. This is in
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line with a numerical estimate of the friction caused by this object: for a nucleoplasmic viscosity

𝜂 ≲ 10 cP [25,26], radius of 𝑅 ≈ 250 nm, and peak velocity of 𝑣 ≈ 0.1 µm/s (at 2 pN of force),

the Stokes friction due to the compacted locus itself is

𝐹drag = 6𝜋𝜂𝑅𝑣 ≲ 5× 10−2 pN , (2.110)

i.e. negligible against the pN forces exerted by the pulls. In line with this estimate, we also do

not observe the diffusive slowdown one would expect in the force free MSD of the locus.

In summary, the model we will consider in this section simply treats the locus as a single

point on an infinitely long polymer, subject to a time-varying force 𝐹 (𝑡). The system thus obeys

eq. (2.65), with 𝐹 (𝑠, 𝑡) = 𝐹 (𝑡)𝛿(𝑠).

2.4.2 Force inference with a compact locus

The expected trajectory of the locus (𝑠 = 0 on the polymer) under a time dependent force

𝐹 (𝑠, 𝑡) = 𝐹 (𝑡)𝛿(𝑠) is given by eq. (2.69) as

⟨𝑥(0, 𝑡)⟩ =
∫︁ 𝑡

0
d𝜏 𝐹 (𝜏)√︀

4𝜋𝛾𝜅(𝑡− 𝜏)
, (2.111)

Note that this formulation assumes that 𝑥(0, 0) = 0, i.e. at the beginning of the experiment,

where the chain is (assumed to be) in equilibrium, the locus is positioned at 𝑥0 = 0.

Since the motion of the locus is measured directly in the experiments, we are interested

in solving this relationship for 𝐹 (𝑡); which is a functional degree of freedom, so this inference

problem is underdetermined for any finite amount of experimental data, where we know the

position of the locus only at discrete times {𝑡𝑖}𝑖=0,...,𝑁 . To make the problem well-defined, we

assume that 𝐹 (𝑡) is piecewise constant:

𝐹 (𝑡) = 𝑓𝑖 ∀𝑡 ∈ [𝑡𝑖−1, 𝑡𝑖) , 𝑖 = 1, . . . , 𝑁 , (2.112)

where 𝑡0 ≡ 0 is the beginning of the experiment and 𝑓0 ≡ 𝐹 (𝑡 < 𝑡0) = 0 is the assumption

that the system is in equilibrium before the experiment. Within the intervals of constant force,
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eq. (2.111) can be integrated easily, from which we find

𝑥(𝑡𝑖) = 1
√
𝜋𝛾𝜅
ℜ

𝑁∑︁
𝑗=1

(︀√︀
𝑡𝑖 − 𝑡𝑗−1 −

√︀
𝑡𝑖 − 𝑡𝑗

)︀
𝑓𝑗 . (2.113)

The symbol ℜ signifies “real part”, such that ℜ
√
𝑥 = 0 for 𝑥 < 0; this is nothing but a convenient

encoding of the fact that the integral in eq. (2.111) is exactly such that negative radicands

never appear. Now, introducing the full position and force trajectories 𝑥 ≡ (𝑥1, . . . , 𝑥𝑁 ),

𝑓 ≡ (𝑓1, . . . , 𝑓𝑁 ), respectively, eq. (2.113) simply amounts to a linear transformation between

the two:

𝑥 = 1
√
𝜋𝛾𝜅

𝑀𝑓 , (2.114)

where

𝑀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
𝑡1

√
𝑡2 −

√
𝑡2 − 𝑡1

√
𝑡2 − 𝑡1

√
𝑡3 −

√
𝑡3 − 𝑡1

√
𝑡3 − 𝑡1 −

√
𝑡3 − 𝑡2

√
𝑡3 − 𝑡2

... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.115)

Solving for the force profile in terms of the observed trajectory is now reduced to a straight-

forward matrix inverse:

𝑓 = √𝜋𝛾𝜅𝑀−1𝑥 . (2.116)

Finally, to apply this force inference in practice, we have to calibrate the prefactor √𝜋𝛾𝜅,

which determines the absolute magnitude of the force. Conveniently (and as expected by

fluctuation–dissipation), eq. (2.87) shows that the same combination of constants governs the

thermal fluctuations of the locus in the force free case: MSD(Δ𝑡) = Γ
√

Δ𝑡 with Γ = 2𝑑𝑘B𝑇√
𝜋𝛾𝜅 .

This allows us to calibrate
√
𝜋𝛾𝜅 = 2𝑑𝑘B𝑇

Γ , (2.117)

with 𝑑 the number of spatial dimensions in the MSD measurement.

Interestingly, eq. (2.117) provides a good fit to the data (modulo the additional hindrance

described below; see also chapter 3), using the incubation chamber temperature of 37 °C. Within

the experiments presented in chapter 3 we thus find no evidence for an “effectively higher

temperature” due to active fluctuations, as one might have expected within a living cell.
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2.4.3 Uncertainty in force estimate

Note that eq. (2.111) relates the expected trajectory of the locus to the applied force; a point we

mostly chose to neglect in the previous section. Furthermore, any real experiment is associated

with some error, such that we do not measure 𝑥𝑖 directly, but 𝑦𝑖 ≡ 𝑥𝑖 + 𝜉𝑖, with a given

localization uncertainty ⟨𝜉𝑖𝜉𝑗⟩ = 𝜎2𝛿𝑖𝑗 . This section gives a quick treatment of these second

order effects, which will provide us with an uncertainty estimate for the inferred force.

Given an applied force profile 𝑓 , the trajectory of the locus is sampled from a Gaussian

ensemble whose mean is given by eq. (2.114). The corresponding variance is given by thermal

fluctuations and can be determined from eq. (2.79). Together with the localization error 𝜎2,

one finds

𝑆𝑖𝑗 ≡ ⟨𝑦𝑖𝑦𝑗⟩ (2.118)

= ⟨[𝑥(0, 𝑡𝑖) + 𝜉𝑖 − 𝑥(0, 0)− 𝜉0] [𝑥(0, 𝑡𝑗) + 𝜉𝑗 − 𝑥(0, 0)− 𝜉0]⟩ (2.119)

= 𝑘B𝑇√
𝜋𝛾𝜅

[︂√
𝑡𝑖 +

√︀
𝑡𝑗 −

√︁
|𝑡𝑖 − 𝑡𝑗 |

]︂
+ 𝜎2 (𝛿𝑖𝑗 + 1) . (2.120)

For the purpose of inferring the force profile 𝑓 , the covariance matrix 𝑆 should be considered

as “measurement uncertainty” of the observed trajectory 𝑦. The corresponding uncertainty in

the inferred force profile 𝑓 is then given by simple error propagation through the inference

(eq. (2.116)):

Cov(𝑓) = 𝜋𝛾𝜅𝑀−1 Cov(𝑦)𝑀−𝑇 = 𝜋𝛾𝜅𝑀−1𝑆𝑀−𝑇 , (2.121)

where 𝑀−𝑇 is the inverse transpose of 𝑀 .

In summary, given a sequence of observations {(𝑦𝑖, 𝑡𝑖)}𝑖=0,...,𝑁 of the locus position at

defined time points, the posterior distribution over the force profile 𝑓 ≡ (𝑓1, . . . , 𝑓𝑁 ) is a

normal distribution with mean

⟨𝑓⟩ = √𝜋𝛾𝜅𝑀−1𝑦 (2.122)

and covariance ⟨
𝑓 ⊗ 𝑓𝑇

⟩
c

= 𝜋𝛾𝜅𝑀−1𝑆𝑀−𝑇 , (2.123)

with 𝑀 and 𝑆 defined in eqs. (2.115) and (2.118), respectively.
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2.4.4 Force inference with additional hindrance

In chapter 3 we find that, while the initial behavior of the locus is well captured by the approach

outlined in section 2.4.2, the farther it moves through the nucleus, the more resistance it seems to

encounter. We explore multiple possibilities for how this could come about, the technical details

of which are treated here. Figure 2.4 illustrates the performance of each of these variations in

the experimental context of chapter 3.

Viscoelastic medium

Instead of the purely viscous solvent that we assumed so far, it has been suggested that the

nucleoplasm itself is a viscoelastic medium [25,27]. This can be incorporated in the Rouse model

by replacing the time derivative in the equation of motion (2.65) by a fractional derivative, thus

introducing an appropriate memory kernel. This model has been studied previously [28]; for our

purposes, however, it turns out to be sufficient to apply dimensional analysis to generalize our

force inference.

For reference, recall eqs. (2.87) and (2.111), giving the MSD in the absence of force, as well

as the force response of our locus:

MSD (Δ𝑡) = 2𝑘B𝑇√
𝜋𝛾𝜅

√
Δ𝑡 , (2.124)

⟨𝑥(𝑡)⟩ = 1
√
𝜋𝛾𝜅

∫︁ 𝑡

0

𝐹 (𝑡)d𝜏
2
√
𝑡− 𝜏

. (2.125)

A viscoelastic medium is usually taken to cause subdiffusive motion of free tracer particles, i.e.

MSD ∝ (Δ𝑡)𝛼 with 0 < 𝛼 ≤ 1. For loci on a polymer, this translates as MSD ∝ (Δ𝑡)
𝛼
2 [28].

Now, the only model constant entering eqs. (2.124) and (2.125) is the combination 𝜆 ≡ √𝜋𝛾𝜅;

to achieve an MSD scaling of 𝛼
2 , the model should thus be adjusted such that 𝜆 has units of

[𝜆] = mass
(time)2−𝛼

2
, (2.126)

such that the MSD in eq. (2.124) can still have units of length. Since eq. (2.125) depends on

this same model constant 𝜆, it would now be dimensionally inconsistent, unless the square root

kernel
√
𝑡− 𝜏 in the integral is replaced by (𝑡 − 𝜏)1−𝛼

2 . We thus find that in a viscoelastic
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Figure 2.4: Variations of force inference for locus pulling. Equation (2.122) establishes a one-to-one
correspondence between the observed trajectory (green) and the time profile of the applied force (orange).
We can thus (A) predict the trajectory for a given force profile, or (B) infer the force profile from the
observed trajectory. (C) Force inference results with different variations of the underlying model (gray),
compared to the magnetically applied force (orange). Note how the latter increases over time, since
the locus moves towards the magnetic pillar. (i) a pure Rouse model fits the initial behavior (first two
pulls) and all releases, but does not capture the progressive increase in force. Incorporating interactions
with the surrounding chromatin fibers through sticking ((ii); fig. 2.5, C) or obstruction (one- or two-
sided “glove”, (iii), (iv); fig. 2.5, A, B) provides a qualitatively improved fit. Additional elastic response
in the system—either through a viscoelastic solvent ((v); eq. (2.128)) or by tethering one end of the
chromosome to an immovable object ((vi); eq. (2.130))—does not qualitatively improve the fit over the
vanilla Rouse model. On the contrary, now we are inferring a positive force upon release, meaning the
observed recoil of the locus is slower than expected.
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medium eqs. (2.124) and (2.125) become

MSD (Δ𝑡) ∝ 𝑘B𝑇

𝜆
(Δ𝑡)

𝛼
2 , (2.127)

⟨𝑥(𝑡)⟩ ∝ 1
𝜆

∫︁ 𝑡

0

𝐹 (𝜏)d𝜏
(𝑡− 𝜏)1−𝛼

2
. (2.128)

Note that both equations contain numerical prefactors that might depend on the exponent 𝛼

and can thus not be determined from this dimensional argument. However, up to this constant

prefactor, we can run the inference scheme based on eq. (2.128) just like before (outlined in

section 2.4.2). For the purposes of chapter 3 this heuristic treatment is sufficient, since the

observed hindrance in the data is qualitatively not consistent with a viscoelastic medium, as

illustrated in fig. 3.3.

Finite tether

In the vanilla inference scheme, we assume that the chromosome in which the locus is embedded

stretches infinitely far in both directions. This seems to be a good approximation, as long as the

whole chromosome indeed moves like a free polymer. However, this does not necessarily have

to be the case; for example some parts of it might be fixed at the lamina (Lamina Associated

Domains, LADs), or at other points in the nucleus. For this reason, we ask how our inference

scheme changes if we assume the polymer on one side of the locus to have a finite extent, its

end being fixed in space.

We still position the locus at 𝑠 = 0 and assume the chain to extend to infinity for 𝑠 < 0. In

the positive direction, we add the boundary condition that 𝑥(𝐿, 𝑡) = 0 ∀𝑡. Mathematically, we

can explicitly take this boundary condition into account by modifying the fundamental solution

according to the method of images. Equation (2.68) then becomes

𝑥(𝑠, 𝑡) =
∫︁ 𝐿

−∞
d𝜎

∫︁ 𝑡

0
d𝜏 1√︀

4𝜋𝛾𝜅(𝑡− 𝜏)

×
[︃
exp

(︃
−𝛾(𝑠− 𝜎)2

4𝜅(𝑡− 𝜏)

)︃
− exp

(︃
−𝛾(𝑠− 2𝐿+ 𝜎)2

4𝜅(𝑡− 𝜏)

)︃]︃
(2.129)

× (𝜉(𝜎, 𝜏) + 𝐹 (𝜎, 𝜏)) ,
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which then for 𝐹 (𝑠, 𝑡) = 𝐹 (𝑡)𝛿(𝑠) gives the analog of eq. (2.111):

⟨𝑥(0, 𝑡)⟩ =
∫︁ 𝑡

0
d𝜏 𝐹 (𝜏)√︀

4𝜋𝛾𝜅(𝑡− 𝜏)

[︃
1− exp

(︃
− 𝛾𝐿2

𝜅(𝑡− 𝜏)

)︃]︃
. (2.130)

Now following the same discretization scheme as before, we write

𝑀𝑖𝑗 = Θ(𝑡𝑖 − 𝑡𝑗)
∫︁ 𝑡𝑗

𝑡𝑗−1

d𝜏
2
√
𝑡𝑖 − 𝜏

[︃
1− exp

(︃
− 𝐿2

𝜅(𝑡𝑖 − 𝜏)

)︃]︃
(2.131)

= Θ(𝑡𝑖 − 𝑡𝑗)
(︃√︀

𝑡𝑖 − 𝑡𝑗−1

[︃
1− exp

(︃
− 𝜋2𝜏𝐿
𝑡𝑖 − 𝑡𝑗−1

)︃]︃
+ 𝜋

3
2
√
𝜏𝐿 erfc

√︃
𝜋2𝜏𝐿

𝑡𝑖 − 𝑡𝑗−1

−
√︀
𝑡𝑖 − 𝑡𝑗

[︃
1− exp

(︃
− 𝜋2𝜏𝐿
𝑡𝑖 − 𝑡𝑗

)︃]︃
+ 𝜋

3
2
√
𝜏𝐿 erfc

√︃
𝜋2𝜏𝐿
𝑡𝑖 − 𝑡𝑗

)︃
, (2.132)

where Θ is the Heaviside function (with the convention that Θ(0) = 1) and we introduced

𝜏𝐿 ≡ 𝐿2

𝜋2𝜅 which is the Rouse time of a chain of length 𝐿. With this modified expression for the

matrix 𝑀 , we can then proceed to run the inference as outlined before (sections 2.4.2 and 2.4.3).

Note that for an infinitely long tether—𝜏𝐿 →∞—eq. (2.132) reproduces 𝑀 in eq. (2.115).

Dragging along surrounding chromatin

The Rouse model assumes that the pulled locus does not interact in any way with other parts of

the chromosome (aside from the backbone connectivity) or other chromosomes in the nucleus.

This is the phantom chain assumption; it is obviously a serious simplification. Here we will

consider three ways that the pulled locus could be interacting with the surrounding chromatin,

and how we can take that into account in the inference (fig. 2.5)

The idea behind the first type of models is that when moving, the locus has to push the

surrounding chromatin out of the way, which will accumulate in front of the locus as shown in

fig. 2.5, A. This is reminiscent of a baseball being caught in a catcher’s glove, which is why we

refer to these models as “glove models”. In these models the locus is held back by the “glove”

of accumulated chromatin in front of it, but is completely free to move backwards out of it (and

will do so upon force release); the glove itself will then relax according to Rouse dynamics. This

completely free recoil might appear reasonable, if we assume that the chromatin in the locus’

path has already been pushed out of the way on the pull. If this is not the case, or the locus

upon recoil takes a different path, we should expect a similar glove to build up behind the locus,

as depicted in fig. 2.5, B.
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A B C

D E F

Figure 2.5: Three models for dragging surrounding chromatin. (A–C) Cartoons representing the
one-sided glove, two-sided glove, and sticky model, respectively. (D–F) Corresponding illustrations of
virtual particles attaching to the locus at various time points. A few virtual particles were chosen for
representation; when running the actual inference we attach a virtual particle at every time point.

A different type of model assumes that chromatin has strong non-specific interactions, mean-

ing it will stick to the locus as it moves through the nucleus (fig. 2.5, C). In this case we will

simply assume that at each point in time, some of the surrounding chromatin attaches to the

locus and then moves with it.

The additional restoring forces generated by all of these models are then calculated using

the same inference scheme as for the main locus itself. For every point (𝑥𝑖, 𝑡𝑖) in the given

trajectory we generate a trajectory for a virtual particle that attaches to the locus at that point

in time (fig. 2.5, D–F). Consequently, for 𝑡 < 𝑡𝑖 this virtual particle is at rest at 𝑥𝑖, while for

𝑡 > 𝑡𝑖 it follows the motion of the locus. How exactly this works depends on the model we use:

• for the sticky chromatin model (fig. 2.5, F), the trajectory for 𝑡 > 𝑡𝑖 is simply exactly the

one of the locus.3

• for the one-sided glove model (fig. 2.5, D), the virtual particle only stays attached as long

as the locus is moving forward. As soon as it starts recoiling, we calculate the relaxation

of the virtual particle according to the Rouse model. This relaxation proceeds until the

virtual particle comes back into contact with the locus, at which point the procedure starts

again. This ensures that the virtual particle always stays ahead of the locus, and relaxes

according to Rouse dynamics if it loses contact.
3One could also imagine a finite lifetime for this stickiness, or a critical force that would break it, etc. For

simplicity, we restrict ourselves to the basic model described.
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• the two-sided glove model (fig. 2.5, E) works similarly to the one-sided one, except that

particles that attach when the locus moves backwards will stay behind instead of ahead

of it. Apart from that the procedure for obtaining their trajectories is exactly the same.

Finally, we use the force inference on these trajectories to infer the additional restoring forces

exerted by the dragged chromatin. We weight the individual contributions by the local chromatin

density at the point of attachment and introduce an overall prefactor that is used to adjust the

overall strength of attachment.
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Chapter 3

Live-cell micromanipulation of a

genomic locus reveals interphase

chromatin mechanics
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3.1 Abstract

Our understanding of the physical principles organizing the genome in the nucleus is limited

by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo

and probe their material nature. Here, we present a novel approach to actively manipulate a

genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We

observe viscoelastic displacements over microns within minutes in response to near-picoNewton

forces, which are well captured by a Rouse polymer model. Our results highlight the fluidity

of chromatin, with a moderate contribution of the surrounding material, revealing the minor

role of crosslinks and topological effects and challenging the view that interphase chromatin is

a gel-like material. Our new technology opens avenues for future research, from chromosome

mechanics to genome functions.

3.2 Introduction

Recent progress in observing and perturbing chromosome conformation has led to an unprece-

dented understanding of the physical principles at play in shaping the genome in 4 dimensions

(4D) [29]. From genomic loops and topologically associating domains (TADs) to spatially segre-

gated A/B compartments and chromosome territories, the different levels of organization of the

eukaryotic genome are thought to arise from various physical phenomena, including phase separa-

tion [30–32], ATP-dependent motors [32,33], and polymer topological effects [34]. Nonetheless,

the physical nature of chromatin and chromosomes inside the nucleus and its functional impli-

cations for mechanotransduction remain an active area of investigation [35, 36]. Observation-

based studies assessing the mobility of the genome in living cells, from single loci [37–39] and

small regions [40] to large domains [16], underline the possible existence of different material

states of chromatin (liquid, solid, gel-like). Extra-nuclear mechanical perturbations, including

whole-nucleus stretching [41, 42], micro-pipette aspiration [43], and application of local pres-

sures [43, 44] or torques [45] onto a cell, all affect the overall geometry of the nucleus and

reveal global viscoelastic properties. Intra-nuclear mechanical manipulation of the genome, on

the other hand, is rare and technically challenging [36]. Viscoelasticity measurements using a

microinjected 1 µm bead suggested that interphase chromatin may be a crosslinked polymer net-

work (i.e. gel) [46]. Recently, intra-nuclear mechanics was elegantly probed by monitoring the

fusion of both artificial [47] and naturally occurring [48] droplet-like structures. Active mechan-
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ical manipulation of an intra-nuclear structure was recently achieved using an optical tweezer

to displace a whole nucleolus in oocytes [49] and using optically induced thermophoretic flows

within prophase [50] or interphase nuclei [51]. However, these approaches are limited to the

manipulation of large structures or do not apply forces directly on chromatin. These limitations

have made it difficult to disentangle various effects (mechanical response of the nucleus vs.

chromatin itself; hydrodynamics vs. polymer viscoelasticity), leading to contradictory results.

Hence, an approach for the direct and active mechanical manipulation of specific genomic loci

inside living cells is needed. To meet this need, we developed a technique for targeted micro-

manipulation of a specific genomic locus in the nucleus of a living cell, allowing us to probe

the physical properties of an interphase chromosome by measuring its response to a controlled

point force.

3.3 Results

Mechanical manipulation of a genomic locus in a living cell

Our approach relies on tethering magnetic nanoparticles (MNPs) to a genomic locus and apply-

ing an external magnetic field (fig. 3.1, A). We chose ferritin MNPs for their small size [53,54]:

12 nm in diameter for ferritin (PDB 1GWG), 28 nm for the full MNP [54]. We produced ferritin

MNPs by synthesizing in vitro recombinant eGFP-labeled ferritin cages and loading them with a

magnetic core (see Methods). We microinjected MNPs into the nuclei of living human U-2 OS

cells previously engineered to contain an artificial array inserted at a single genomic location in a

subtelomeric region of chromosome 1 (band 1p36) [52]. This genomic array contains 200 copies

of a 20 kb genetic construct, each including 96 tetO binding sites and a transgene. It has been

extensively used in the past to study the function of several chromatin modifications, RNA poly-

merase II (Pol II) recruitment, and RNA synthesis during induction of the transgene [52,55,56].

Hence, although we used it here uninduced, this array can recapitulate functional chromatin-

based processes, such as transcriptional activation. MNPs were targeted to the array using a

constitutively expressed fusion protein (TetR, mCherry and anti-GFP nanobody) serving as a

tether (fig. 3.1, A). Upon injection, MNPs diffused through the nucleus and accumulated at the

array, forming a fluorescent spot in both eGFP and mCherry channels. Quantification of the

fluorescence signals indicated that MNPs were at nanomolar concentrations in the nucleus fol-

lowing injection and accumulated at the genomic locus in the range of hundreds to thousands of

51



0

2

4

6

10 min

P
o

s
iti

o
n

 (
μ

m
)

Pull: 30 min Release: 30 min

10 min
0

2

4

6

P
o

s
iti

o
n

 (
μ

m
)

Time (min)
0 10 20 30 40 50 60

0

0.4

F
o

rc
e

 (
p

N
)

Fx Fy Fz0.8

B

4 μm

Ferritin-GFP
SiR-DNA

FFA C

D

E

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Pulls:
Releases:

100"
100"

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

F

F

Pull 1 Release 1 Pull 3 Pull 8 Release 10

F F
... ... ...

4 μm

Ferritin-GFP
SiR-DNA

pillar

10 μm

ON/OFF
magnetic pillar

ON/OFF
magnetic pillar

Force

Micro-injection
of ferritin-GFP

TetR

mCherry

anti-GFP
nanobody

tetO array
Chr1

Force
on genomic
locus (pN)

0.1

1

Time (sec)

0 200 600 800 1000 2600 3000

0
2

F
o

rc
e

 (
p

N
)

Fx Fy

400 28002400220020001800160014001200

4
6

Figure 3.1: Mechanical micro-manipulation of a genomic locus in living cells. (A) Magnetic
nanoparticles (MNPs) of GFP-labeled ferritin are microinjected into the cell nucleus and targeted to a
genomic array containing ~19,000 tetO binding sites [52] with a linker protein. Cells are imaged on
a coverslide with microfabricated magnetic pillars that produce a local magnetic field and attract the
genomic locus. (B) The force exerted onto the locus depends on its position relative to the pillar and is
characterized using a pre-calculated force map (see Methods), here shown for 1000 MNPs at the locus.
(C) Example of a pull–release experiment showing the locus being displaced during the 30 min of force
exertion and recoiling during the 30 min of force release (30’-PR scheme). (D) Kymograph of the same
experiment showing each time frame, along with the force time profile calculated using the force map.
(E) Experiment where pulls and releases are 100 s and the pull–release cycle is repeated 10× (100”-PR
scheme). Images are time projections, i.e. showing in green all the positions of the center of mass of
the locus over the periods represented on the timeline. The arrows indicate the direction of the motion.
(F) Kymograph of the same experiment, showing the displacement of the locus and the spatial patterns
of DNA density in the nucleus, along with the force time profile. All SiR-DNA images are band-passed
(see Methods). On (D, F), dotted lines: nuclear periphery, white arrows: feature of interest in the spatial
distribution of DNA density.
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MNPs (median 1500 MNPs). The locus should be regarded as a condensed and heterochromatic

4 Mb region (1.6% of chromosome 1) residing in a euchromatic genomic context, as previously

reported [52], with small MNPs (each being ~2-3 times [54] the size of a nucleosome) sparsely

decorating chromatin (1 MNP per ~2.7 kb). Consistently, we observed that the locus typically

resided in low to intermediate DNA density regions and is itself relatively condensed and that

binding of MNPs to the locus did not substantially affect its morphology. Microinjection and

attraction of unbound MNPs did not substantially alter chromatin distribution and densities

inside the nucleus. Cells were imaged on a coverglass with custom-made microfabricated pil-

lars [57, 58], which behave as local magnets only when subjected to an external magnetizing

field. Hence, ON/OFF modulation of the local force field could be achieved while imaging

by placing/removing an external magnet on the microscope stage. The shape and orientation

of the pillars were chosen to maximize the magnetic field gradient and hence the force. We

performed magnetic simulations and experimental calibrations using two independent methods

to determine the magnitude and orientation of the force applied onto the genomic locus, as a

function of the number of MNPs bound to it and its position relative to the magnetic pillar

(fig. 3.1, B). The typical forces applied onto the locus were in the sub-picoNewton (pN) range,

occasionally reaching a few pN (median force = 0.45 pN). These values are in the range of forces

exerted by molecular motors in the nucleus, e.g. comparable to the stalling force of ~0.5 pN for

the structural maintenance of chromosomes (SMC) complex condensin [10] and a few pN for

RNA polymerase II (Pol II) [59].

Force induced movement of a genomic locus reveals viscoelastic properties of chromatin

We first applied the magnetic force for 30 min and released it for another 30 min, while performing

low-illumination 3D imaging with a 2 min interval (30’-PR scheme). We observed a clear motion

of the locus toward the magnet upon application of the force and a slow and partial recoil

when the force stopped (fig. 3.1, C–D). This indicates that a sub-pN force, when applied in

a sustained and unidirectional manner on a genomic locus, elicits a displacement of that locus

by several microns over minutes. It also shows that the chromosomal locus can move across

the nuclear environment, which is believed to be crowded and entangled. We also applied

the force periodically—pulling for 100 s, releasing for 100 s and repeating this cycle 10 times

(100”-PR scheme)—while performing fast 2D imaging with a 5 s interval (fig. 3.1, E–F). Several

observations from these two experiments hinted at the material properties of chromatin. First,

53



the trajectories showed recoils during release periods and a gradual slow-down during both

pulls and releases, characteristic of a viscoelastic material. Second, spatial heterogeneities in

the trajectories were visible and appeared to relate to the spatial distribution of DNA density

(fig. 3.1, D,F; white arrows; the motion of the locus was hindered where the DNA density varied).

Third, recoil after force release was seen even after collision with the nuclear periphery, indicating

that the material there (peripheral heterochromatin, nuclear lamina) was not sticky enough to

fully retain the locus. Fourth, the spatial distribution of DNA density in the nucleus does not

show large-scale deformations, indicating that the locus did not drag along large amounts of

material. Together, the force-induced displacements we observed are consistent with viscoelastic

and non-confining chromatin and constitute a basis to further develop and test physical models

of interphase chromosomes.

Quantitative force response and scaling laws of interphase chromatin mechanics

To quantify viscoelastic properties of chromatin, we analyzed the trajectories of the locus in

35 cells undergoing the 30’-PR scheme (corrected for cell motion and force orientation, see

Methods). We observed a range of behaviors in both pulls and releases, regarding initial speed,

total distance travelled, and shape of time profiles (fig. 3.2, A–B). Most traces showed a

displacement that was clearly distinguishable from diffusion (fig. 3.2, A–B, hatched areas; see

Methods). Collision with the nuclear periphery (open symbols on fig. 3.2, A–B) happened in 9

out of 35 traces and hence the total displacement during the pull is most often not limited by the

nuclear periphery. The initial force applied onto the locus largely predicted the variability seen in

the initial motion (fig. 3.2, C). The recoil motion after force release was in part predicted by the

total distance over which the locus had been displaced during the pull (fig. 3.2, D), with a simple

linear relationship highlighting the elastic nature of chromatin. Deviations from these simple

proportionality relationships indicate that the specific nuclear context or the state of the genomic

locus might influence its response. In particular, we observed that when the locus moved slower

than expected, it was less DNA dense, and when the locus moved faster than expected, it was

more DNA dense, suggesting that the compaction state of the locus itself affected its response to

the force. Absolute nuclear position of the locus did not correlate with its response to the force,

but if the locus reached the periphery during the pull, it often recoiled slower than expected.

Despite the variability between traces, double logarithmic plots of all the pulls and releases from

the 30’-PR and 100”-PR trajectories, together with 3 additional high-framerate (dt = 0.5”)
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Figure 3.2: Quantitative analysis of locus movement in response to force. (A) Trajectories of
the genomic locus in the direction of the applied force for 35 different cells during force exertion with
the 30’-PR scheme. A selection of trajectories, representative of the breadth of observed behaviors, are
highlighted and color-coded by force. Hatched areas in A to D correspond to the null model of pure
diffusion based on MSD measurement (see Methods). (B) Recoil trajectories relative to the time and
position at the start of the release are shown for the same loci as in A. Curve R10 is the last release
of the 100”-PR trajectory. (C) Displacements measured at Δt = 5 min of force exertion on all the
traces from A, plotted against the magnitude of the force. Coordinates are interpolated between the
frames before/after Δt. The green line/triangle correspond to the envelope of the 100”-PR trajectory.
Reported forces are the average over Δt. Displacements are also expressed in µm/s0.5 (right axis),
allowing us to place pull P1 from the 100”-PR trace, measured at Δt = 100 s (dark green triangle). The
red line indicates the expected relationship from Rouse theory, solely based on an MSD measurement.
(D) Recoil after Δt = 5 min of force release on all the traces from B and the last release of the 100”-PR
trajectory (R10, green triangle), plotted against the total displacement during the pull. The red line
indicates the expected relationship from Rouse theory. Open symbols on A–D indicate when loci are
within 1.5 µm of the nuclear periphery (at the moment of measurement on A–C, at the moment of force
release on D). (E) Displacement and recoil trajectories, aligned on the time and position at the moment
of force switching, are represented as double logarithmic plots for pull–release experiments imaged with
different frame intervals: Δt = 0.5 s (see Methods), Δt = 5 s (from the 100”-PR trace; fig. 3.1, F), and
Δt = 2 min (all 30’-PR traces; panels A and B). For the latter, average trajectories (right plots) were
calculated over all displacements where the applied force remains ≤ 2 pN (28/35 traces) and over all the
recoils after a displacement of ≤ 5 µm (21/35 traces). Red dotted lines indicate the power-law behavior,
with exponent 0.5, predicted by Rouse theory.
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pull–release trajectories, revealed linear portions in the curves with a slope of 0.5, over more

than three orders of magnitude in time (fig. 3.2, E). This behavior suggests that the different

levels of the hierarchical genome organization are not characterized by vastly distinct mechanical

properties. In addition, displacements that scale with time as 𝑡0.5 can be empirically described

by a ‘fractional speed’, i.e., a single value in µm/s0.5 capturing how the motion evolves over

time (fig. 3.2, C–D). The first pull of the 100”-PR trace, represented in this unit, indeed follows

the same relationship as the 30’-PR traces (dark green triangle on fig. 3.2, C) and the slope

of the resulting force–displacement plot yields a unique factor of 0.158± 0.014 µm/s0.5/pN,

characterizing the dynamic response of chromatin to force. Together, these results indicate that

a large part of the response of chromatin to force can be described by simple laws.

Chromatin force response is well described by a free polymer model (Rouse chain)

We then sought a model of chromatin that best explains our quantitative measurement of force-

induced locus displacement. Several features in our data suggest a classical polymer model

known as a Rouse polymer [18] as a first approximation to describe the response of chromatin

to forces. The Rouse model represents a polymer in which each monomer diffuses by thermal

motion in a viscous medium and is connected to its two neighbors by elastic bonds. Importantly,

Rouse ignores steric effects (contact, hindrance), crosslinks (affinity, stickiness), and topological

effects (fibers can pass through each other). This model is frequently invoked for chromatin

dynamics since it predicts the characteristic power-law scaling—i.e. a linear relationship on a

log–log plot—of the mean squared displacement (MSD) vs. time, with exponent 0.5, as ob-

served here and for other genomic loci in eukaryotes [60–62]. We extended Rouse theory to

study how a polymer responds to a point force (section 2.4). Our calculations predict a power-

law behavior with exponent 0.5 for displacements and recoils in response to force, consistent

with our experimental observations (fig. 3.2, E). These two power laws have the same physical

origin, so the diffusion coefficient obtained independently from the MSD (1627± 19 nm2/s0.5)

directly relates to—and predicts—the slope of the force–displacement plot (fig. 3.2, C, red line),

i.e. 1627 nm2/s0.5 / 2kBT = 0.190± 0.003 µm/s0.5/pN. This agreement between two indepen-

dent passive and active measurements (diffusion and force response, i.e. red vs. gray lines on

fig. 3.2, C) supports the Rouse model to explain our chromatin dynamics data. Inspected on a

cell-by-cell basis, the force-free MSD of the locus before and after the pull–release experiments

appears very moderately reduced in most cases. Its natural variability between cells does not
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appear to explain the variability of the response to force. After force release, the Rouse model

also predicts a recoil proportional to the total displacement during the pull. However, in many

cases, the locus recoiled somewhat slower than predicted by the Rouse theory. Instead, the

theoretical prediction appears to define an upper bound for the recoils (fig. 3.2, D, red line)

and deviations from Rouse theory are more pronounced at the nuclear periphery. Together, this

analysis suggests that the dynamic response of the chromosome to the force can be described

by the Rouse polymer model, with additional effects from the nuclear environment.

Model-based trajectory analysis reveals moderate hindrance by surrounding chromatin

To further understand the physical nature of chromatin, we asked how alternative polymer

models are able to capture the 100”-PR trace (fig. 3.3, A–D). The approach is to use the

displacement trajectory and infer, assuming a given polymer model, the time profile of the force

that produced the measured trajectory (fig. 2.4). Disagreement between predicted and actual

force profiles indicates when models are incorrect or incomplete, allowing one to select and

refine the best model(s). With this approach, we compared a series of models (fig. 2.4, C).

First, a simple Rouse model without any adjustable parameters (i.e. calibrated using the MSD

vs. time plot) predicts well the first pull and all the release periods (fig. 3.3, B). However, the

prediction leaves some of the applied force unexplained (gray area between curves, fig. 3.3, B),

suggesting a missing component in the model that would additionally slow down or hinder

the progression of the locus. This residual unexplained force did not scale with speed and

hence could not be explained as an additional viscous drag on the locus. Instead, it increased

progressively across successive pulls, suggesting an accumulation of hindrance as the locus moved

through the nucleus. To represent this, we added a capacity for the locus to interact with the

surrounding chromatin, represented as extra Rouse chains that are either attached to or pushed

by the locus along its path (fig. 3.3, C and fig. 2.4, C). These models better predicted the force

profile throughout the trajectory compared to a pure Rouse model. The only free parameter in

fig. 3.3, C is the frequency at which the locus interacts with other polymers, which we found very

low (fig. 2.4, C), indicating that the interaction with the surrounding chromatin was moderate.

This is also consistent with the small but detectable reduction in mobility of the locus before and

after pull–release experiments and the subtle redistribution of DNA densities around the pulled

locus. Taken together, these modeling results suggest that, upon force application and release

on our genomic locus, chromatin is well described as a Rouse polymer—i.e. a free polymer in
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Figure 3.3: Model-based analysis and hypothesis testing. (A) Trajectory of the locus shown in the
direction of the force (green curve) and orthogonal to the force in the imaging plane (blue curve) for
the 100”-PR experiment. Arrows indicate apparent obstacle (see also * and # in panels C, E and F).
(B–D) Evaluation of different models in their capacity to reproduce the experimentally measured force
time profile (orange curve) by inferring it from the trajectory (gray curve). Models shown here are (B) a
simple Rouse polymer [18], (C) the same model with extra polymer chains being pushed by the locus
to represent the surrounding chromatin, and (D) a gel-like material, represented as a Rouse polymer in
a viscoelastic environment. See full list in fig. 2.4. (E) The residual unexplained force from the second
model (area between curves in C) is plotted along the trajectory of the locus, highlighting an obstacle
(*) and an elastic region near the nuclear periphery (#) for which physical parameters are measured
and which are visible in panels A, C and F. (F) Time projection images, respectively before the first pull
and during pulls P4 and P8, showing how the spatial distribution of DNA density in the nucleus relates
to the identified obstacles. SiR-DNA images are band-passed (see Methods). (G) Hypotheses on how
the lateral mobility of the locus may change depending on its force-induced displacement. (H–I) Mean
square displacement (MSD) of the lateral movement of the locus, calculated as a function of both time
delay and velocity in the direction of the force. Solid lines on both the MSD–delay (H) and the MSD–
velocity (I) representations correspond to a single-parameter fit describing how lateral mobility increase
with velocity in the direction of the force.
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a viscous environment—with moderate interactions from the surrounding chromatin, indicating

that hindrance, crosslinks, and topological effects play a minor role.

Interphase chromatin does not behave as a gel in force-response experiments

Interphase chromatin was proposed to be a gel-like material [39, 40, 46]. A gel is a highly

crosslinked polymer, i.e. unlike a linear polymer where monomers are linked to two neighbors,

extra links between non-adjacent monomers form an interconnected mesh, giving the gel solid-

like properties. For chromatin, this could in principle arise from affinity between nucleosomes, as

well as loops/bridges formed by proteins/complexes/condensates and topological entanglement

between chromatin fibers. First, in such an interconnected mesh structure, short paths effectively

linking the pulled locus to all other loci in the nucleus would result in long-range deformation

of the spatial pattern of DNA density, which we do not observe (fig. 3.1, D,F). Second, if the

chromatin surrounding the locus were gel-like, it would effectively act as a viscoelastic medium.

This assumption does not recapitulate well the experimental data (even with two free parameters,

fig. 3.3, D and fig. 2.4, C) and is inconsistent with the observed scaling of 0.5 in the MSD,

which argues for a simply viscous and non-elastic medium. Finally, if the locus was part of

an interconnected mesh, short series of links would tether it to large structures (e.g. periphery,

nucleoli). A Rouse model that includes a finite tether does not recapitulate the experimental

data (fig. 2.4, C) and is inconsistent with the linear behavior observed in fig. 3.2, E up to several

microns. These results again suggest minor effects of crosslinks and topological constraints and

argue against the view that interphase chromatin behaves like a gel at the spatial and temporal

scale of our observations.

Heterogeneities in the trajectory reveal obstacles in the nuclear interior and a soft elastic

material at the nuclear periphery

Even the models that best capture the data leave part of the force unexplained (fig. 3.3, C,

gray area). We thus plotted this residual unexplained force as a function of spatial position

(fig. 3.3, E). This revealed an accumulation of non-null residual forces at specific locations,

matching visible features in the trajectory and in spatial distribution of DNA density in the

nucleus. First, the residual force in pulls P3 to P5 corresponds to an apparent obstacle in the

trajectory (* on fig. 3.3, A,C) occurring at a high-to-low transition of DNA density (fig. 3.3, F

and fig. 3.1, F). It appears as a spatially defined barrier of residual force (fig. 3.3, E), requiring
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an energy of ∼ 46𝑘B𝑇 to overcome. This suggests that, while DNA dense regions are not

obstacles per se, the interface between high- and low-density regions may constitute a barrier.

The energy we estimated suggests that such barriers may be overcome by ATP-dependent

molecular motors [10,59] but unlikely by spontaneous thermal fluctuations. Second, the residual

force in pulls P8 to P10 (# on fig. 3.3, A,C) corresponds to the collision with structures near

the nuclear periphery (fig. 3.1, F and # on fig. 3.3, F). The observed linear force–distance

relationship (fig. 3.3, E) indicates a solid-like elastic behavior for these structures, over at least

600 nm and with a spring constant of 4.81 pN/µm. This is much softer than what was measured

by whole-nucleus stretching experiments [41,42], which could be explained by the small size of

the locus and/or the existence of a soft layer of elastic peripheral components (heterochromatin,

nuclear lamina) rather than the material directly contributing to the structural rigidity of the

nucleus.

Lateral mobility of the locus reflects transient collisions with obstacles in the nucleo-

plasm

To further investigate the material encountered by the locus, we analyzed the lateral motion

of the locus as it was pulled and released (fig. 3.3, A, blue curve). We hypothesized that,

on one hand, collisions with obstacles could increase lateral mobility or, on the other hand,

the locus being dragged into a more constraining and entangled environment could result in

a reduction of its mobility (fig. 3.3, G). After computing the MSD of the lateral motion as a

function of both time delay 𝑡 and velocity 𝑣𝑦 along the direction of the force (fig. 3.3, H–I),

we observed a clear increase of lateral mobility when the locus moved (for both forward and

backward movements; fig. 3.3, I), suggesting the existence of obstacles that deflected the motion.

This additional mobility in the MSD is captured by a term proportional to 𝑣𝑦, as expected for

collisions, and proportional to 𝑡 (not 𝑡0.5), as expected if the force due to the collision with

obstacles persists in the same direction across several frames, indicating the existence of large

obstacles. Indeed, in P3 for instance, the lateral motion clearly shows a directional behavior

(fig. 3.1, E and fig. 3.3, A). However, the relationships we observed on fig. 3.3, H–I held even

when excluding all the timepoints before P4, indicating that the collision with obstacles was

widespread throughout the nucleus. These results, together with our observation that very

few chromatin fibers appeared to be carried along with the locus, indicate that obstacles are

frequently encountered by the locus, but most interactions are weak and transient.
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3.4 Discussion

Our measurements of how a genomic locus inside the nucleus of a living cell responds to a

point force indicates that interphase chromatin has fluid-like properties and behaves as a free

polymer. This contrasts with previous studies depicting chromatin as a stiff, crosslinked polymer

gel with solid-like properties [39, 40, 46]. Our observation that near-pN forces can easily move

a genomic locus across the nucleus over a few minutes (fig. 3.1, D,F) also contrasts with

a previous study reporting confined sub-micron displacements over seconds upon application

of 65 to 110 pN forces to a 1 µm bead [46]. We propose that our results may be reconciled

with previous experiments in several ways. First, unlike a micron-size bead, the locus in our

experiments is small and may be deformable enough to pass through the surrounding chromatin.

Second, chromatin may contain many small, gel-like patches, embedded in a structure with

liquid, Rouse-like properties at a larger scale. This is also in line with our observation that the

transiting locus frequently encounters obstacles. Third, chromatin may be a weak gel, i.e. with

short-lived crosslinks [39]. Such a gel could continuously maintain a stiff, globally connected

network that resists stresses over large length scales, while permitting fluid-like motions at smaller

scales. Future experiments perturbing chromatin state and chromatin associated proteins will

be important to reconcile observed micro- and mesoscale mechanics.

Organization of chromosomes that allows movement of genomic loci across large distances

by weak forces could have implications for a range of genome functions. Large-scale move-

ments of chromosomes occur during nuclear inversion in rod cell differentiation for nocturnal

mammals [63]. Specific genes undergo long-range directional motion upon transcriptional ac-

tivation [64, 65]. Long and highly transcribed genes can form ~5 µm giant loops, believed to

be due to chromosome fiber stiffening [66]. Certain double strand break sites undergo large-

scale, nuclear F-actin dependent relocation to the nuclear periphery [67]. These DNA-based

biological processes require a nuclear organization in which such movements are possible. Our

results reveal mechanical properties of chromatin where such large-scale movements would only

require weak (near pN) forces. Although sustained unidirectional forces are unlikely to occur

naturally in the nucleus, the magnitude of the forces and the timescale of force exertion in our

experiments are comparable to those of molecular motors like SMC complexes and Pol II—i.e.

in the sub-pN [10] or low-pN [59] ranges and applied over minutes (e.g. 10 min for Pol II to

elongate through a 25 kb gene, 5-30 min for SMC complexes). Hence, some molecular motors
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in the nucleus operate in a force range that is sufficient to substantially reorganize the genome

in space.

Future work will be important to expand and complement our results. Although the genomic

array we used here is known to be chromatinized and has been used extensively to recapitulate

and study functional chromatin-based processes [52,55,56], we cannot exclude that its repetitive

and artificial nature might prevent some of our measurements from being applicable to non-

repetitive and native regions. Manipulating loci other than a subtelomeric locus on the longest

chromosome (chromosome 1), in other genomic contexts (hetero-/euchromatin), and in different

cell types will be important to assess the generalizability of our findings in various biological

contexts.

Our approach to mechanically manipulate and relocate genomic loci in the nuclear space

opens many avenues for future research, from the study of interphase chromosome mechanics to

the perturbation of genome functions, including transcription, replication, DNA damage repair

and chromosome segregation. By giving access to physical parameters and revealing fundamental

scaling laws to describe chromatin mechanics, our work provides a foundation for future theories

of genome organization.
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Chapter 4
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4.1 Abstract

Animal genomes are folded into loops and topologically associating domains (TADs) by CTCF

and loop extruding cohesins, but the live dynamics of loop formation and stability remain un-

known. Here, we directly visualize chromatin looping at the Fbn2 TAD in mouse embryonic

stem cells using super-resolution live-cell imaging and quantify looping dynamics by Bayesian

inference. Surprisingly, the Fbn2 loop is both rare and dynamic, with a looped fraction of ~3-

6.5% and a median loop lifetime of ~10-30 minutes. Our results establish that the Fbn2 TAD is

highly dynamic, where ~92% of the time cohesin-extruded loops exist within the TAD without

bridging both CTCF boundaries. This suggests that single CTCF boundaries rather than the

fully CTCF–CTCF looped state may be the primary regulators of functional interactions.

4.2 Main Text

Mammalian genomes are folded into loops and domains known as topologically associating

domains (TADs) by the proteins CTCF and cohesin [68]. Mechanistically, cohesin is thought

to load on DNA and bidirectionally extrude loops until it is blocked by CTCF such that CTCF

establishes TAD boundaries [8, 10, 69–71]. Functionally, CTCF- and cohesin-mediated looping

and TADs play critical roles in multiple nuclear processes including regulation of gene expression,

somatic recombination, and DNA repair [68]. For example, TADs are thought to regulate gene

expression by increasing the frequency of enhancer–promoter interactions within a TAD, and

decreasing enhancer–promoter interactions between TADs [72]. However, to understand how

TADs and loops are formed and maintained, and how they function, it is necessary to understand

the dynamics of CTCF/cohesin-mediated loop formation and loop lifetime.

Though recent advances in single-cell genomics and fixed-cell imaging have made it possible

to generate static snapshots of 3D genome structures in single cells [15,73–77], live-cell imaging

is required to understand the dynamics of chromatin looping [78]. Furthermore, previous studies

have yielded conflicting results as to whether loops are well-defined in single cells [15,73–77], per-

haps due to the difficulty associated with distinguishing bona fide CTCF- and cohesin-mediated

loops from mere proximity that emerges stochastically [78]. Recent pioneering work has visual-

ized enhancer–promoter interactions [79–81] and long-range V(D)J–chromatin interactions [39]

in live cells. However, the dynamics of loop formation and lifetime of CTCF/cohesin loops have

not yet been quantified in living cells.
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Figure 4.1: Endogenous labeling and tracking of the Fbn2 loop with super-resolution live cell
imaging. (A) Fluorescent labeling of Fbn2 loop anchors does not perturb the Fbn2 TAD. Micro-C
contact map comparing the parental untagged (C59, top left) and tagged (C36, bottom right) cell lines.
Red triangles: CTCF motifs with orientation. C36 ChIP-seq shows CTCF (GSM3508478) and cohesin
(SMC1A; GSM3508477) binding as compared to Input (GSM3508475). Fbn2 is not expressed (RNA-seq
GSE123636; annotation: GRCm38). Genome coordinates: mm10. (B) Overview of tagging and readout
using 3D distance. (C) Overview of the genome-edited cell lines (left) and a representative maximum
intensity projection (MIP) of a cell nucleus showing two pairs of “dots” (right). (D) Representative 3D
trajectory over time of a dot pair. MIPs of the 3D voxels centered on the mScarlet dot (top) and 3D
distances between dots (bottom) are shown. (E) 3D distance probability density functions of dot pairs
(n=32,171; n=46,163; n=13,566 distance measurements for C27, C36, C65 respectively) (F) Localization
error corrected 2-point mean squared displacement (MSD) plots (n=358; n=491; n=147 trajectories in
C27; C36; C65 respectively).

To visualize the dynamics of CTCF/cohesin looping, we chose as our model system the

loop holding together the two CTCF-bound boundaries of the 505 kb Fbn2 TAD in mouse

embryonic stem cells (mESCs). This TAD is verified to be CTCF dependent [82] and relatively

simple as it contains a single gene, Fbn2, which is not expressed in mESCs (fig. 4.1, A). We

used genome-editing to homozygously label the left and right CTCF sites of the Fbn2 TAD

with TetO and Anchor3 arrays, which we then visualized by co-expressing the fluorescently

tagged binding proteins TetR-3x-mScarlet and EGFP-OR3 [83] (clone C36) (fig. 4.1, B–D). We

developed a comprehensive image analysis framework, ConnectTheDots, to extract trajectories

of 3D loop anchor positions from the acquired movies. By optimizing 3D super-resolution live-

65



cell imaging conditions [78], we could track Fbn2 looping dynamics at 20 second resolution for

over 2 hours (fig. 4.1, D). After DNA replication in S/G2 phase, it is no longer possible to

reliably distinguish intrachromosomal from sister-chromosomal interactions [78]. We therefore

filtered out replicated and low-quality dots using a convolutional neural network. Thus, we only

consider G1 and early S-phase cells.

To validate our system for tracking Fbn2 loop dynamics, we carried out a series of control

experiments. First, we confirmed using Micro-C [84, 85] that our locus labeling approach did

not measurably perturb the Fbn2 loop (fig. 4.1, A). Second, to ‘mimic’ the looped state,

we deleted the 505 kb between the CTCF sites, generating clone C27 (“ΔTAD”; fig. 4.1, C).

As expected, this significantly reduced the 3D distance (fig. 4.1, E; the non-zero 3D distance

distribution for C27 is expected due to localization noise and the 5 kb tether between CTCF sites

and fluorescent labels). Third, as a negative control for CTCF-mediated looping, we generated

clone C65 (“ΔCTCFsites”; fig. 4.1, C) by homozygously deleting the 3 CTCF motifs in the Fbn2

TAD (L1, L2, R1; fig. 4.1, A) and validated that this resulted in loss of CTCF binding and cohesin

co-localization by ChIP-Seq. As expected, the 3D distance was significantly increased in C65

(fig. 4.1, E). Next, we calculated mean-squared displacements (MSDs) of the relative position

of the two loci (2-point MSD), which is unaffected by cell movement. Chromatin dynamics was

consistent with Rouse polymer dynamics with a scaling of MSD ∼ 𝑡0.5 for all three clones [62]

(fig. 4.1, F). We conclude that our approach faithfully reports on CTCF looping dynamics in

live cells without noticeable artifacts.

To elucidate the specific roles of CTCF and cohesin, we endogenously tagged RAD21, CTCF,

and the cohesin unloader WAPL with mAID in the C36 line, allowing for degradation with Indole-

3-acetic acid (IAA) [86]. For RAD21 and CTCF, we achieved near-complete depletion in 2 hours,

long-term depletion led to cell death, Micro-C analysis revealed loss of the Fbn2 loop or cor-

ner peak as expected [87–90] (fig. 4.2, A), and ChIP-Seq analysis showed loss of chromatin

binding. For WAPL, depletion took 4 hours and was less complete, long-term depletion occa-

sionally yielded visibly compacted “vermicelli” chromosomes [91], and Micro-C analysis revealed

increased corner peak strength (27, 28, 30) (fig. 4.2, A). All three AID lines exhibited lower

protein abundance likely due to leaky protein depletion.

Having validated the AID cell lines, we next performed live-imaging to study the specific

roles of RAD21, CTCF, and WAPL in loop extrusion in vivo. Consistent with RAD21 being

required for loop extrusion, RAD21 depletion strongly increased the 3D distances (fig. 4.2, B–C).

66



RAD21
depletion

CTCF
depletion

WAPL
depletion

D Localization error corrected MSD

Sample trajectories +/- auxin-induced degradation

10-2

10-1

1

M
ea

n 
sq

ua
re

d 
di

sp
la

ce
m

en
t [

μm
2 ]

<R²> ~ tether C
on

ta
ct

 fr
eq

ue
nc

y 
[a

rb
]

C

E

3D distance distributions (PDF)Auxin induced degradation of chromosome structural factorsA

B
3D polymer simulations of structural factor depletion

57.5

58.0

58.5

59.0G
en

om
e 

po
si

tio
n 

[M
b]

3D
 d

is
ta

nc
e 

[n
m

]

ΔRAD21
(3 hr IAA)

C
on

ta
ct

 fr
eq

. (
ar

b)

10
−4

10
−3

10
−2

2000

1500

1000

500

0
0 20 40 60 80 100 120

Time [mins]
0 20 40 60 80 100 120

Time [mins]
0 20 40 60 80 100 120

Time [mins]

ΔCTCF (2 hr) ΔWAPL (4 hr) ΔRAD21 (2 hr)
No IAA No IAA No IAA

102 103 104

Time [sec]

10-1

1

M
SD

 [μ
m

²]

ΔCTCF (2 hr)
Polymer sim

loop size ~ 150 kb
density ~ 1/300 kb

loop extrusion rate
~ 80-125 bp/s

102 103

Time [s]

0.82 μm2 
0.44 μm2 
0.31 μm2 

steady-state

104 105 106

Genomic distance [bp]

10-2

10-1

1

RAD21 depletion simulation CTCF depletion simulation

F 3D polymer simulations infer loop extrusion parameters

F1 RAD21-mAID-BFP-V5 C40 HA-BFP-mAID-WAPLClone: C58 FLAG-BFP-mAID-CTCF
Control

ΔCTCF
(3 hr IAA)

Control

ΔWAPL
(3 hr IAA)

Control

Distance R [nm]

Pr
ob

ab
ilit

y 
de

ns
ity

 [n
m

--1
]

Fbn2 dot

0 250 500 750 1000 1250 1500
0.000

0.001

0.002

0.003

0.004
No IAA means = 375-398 nm 
WAPL (4 hr) mean = 337 nm 
CTCF (2 hr) mean = 447 nm 
RAD21 (2 hr) mean = 588 nm 

ΔWAPL
ΔCTCF
ΔRAD21

Effective tether length
(as fraction of chain):
wt C36: 200 kb (39%)
ΔCTCF: 280 kb (54%)

Estimating the effective tether length

Extruded 
Unextruded 

2<R²>
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tagged clone. (C) 3D distance probability density functions of dot pairs (n=45,379; n=10,469; n=18,153
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Consistent with CTCF being the boundary factor required for Fbn2 loop formation (fig. 4.1, B),

but not required for loop extrusion, CTCF depletion increased 3D distances albeit significantly

less than RAD21 depletion [8]. Finally, consistent with prior observations that WAPL depletion

increases cohesin residence time and abundance on chromatin [91] potentially allowing it to

extrude longer and more stable loops [89, 92], WAPL depletion decreased the 3D distances

(fig. 4.2, B–C).

To quantify the extent of loop extrusion of the Fbn2 TAD, we turned to polymer physics

theory. The Rouse model predicts a linear relationship between chain length and mean squared

distance (
⟨︀
𝑅2⟩︀) between the fluorescent labels (dashed lines in fig. 4.2, D; see eq. (2.88)).

By assuming that ΔRAD21 represents the fully unextruded state with a genomic separation

of 515 kb (fig. 4.1, C), we can then assign an “effective tether length” (i.e. the unextruded

fraction) to each condition. We find an effective tether of ~200 kb in C36 (WT) and ~280 kb

in ΔCTCF, corresponding to ~39% and ~54% of the full genomic separation, respectively. By

subtraction, the genomic separation between the two labels shortens by ~46% due to extrusion

alone (ΔRAD21 vs. ΔCTCF) and ~61% due to extrusion with boundaries (ΔRAD21 vs. C36).

This shows that by blocking extruding cohesins, CTCF increases the fraction extruded between

the two CTCF boundaries. Overall, we estimate that on average just over half of the Fbn2 TAD

is extruded.

By combining these measurements (fig. 4.2, B–D) with our Micro-C data (fig. 4.2, A),

we were then able to determine dynamic parameters of our polymer model of loop extrusion

(fig. 4.2, E,F): the spacing between cohesins and their processivity, as well as the total strength

of the CTCF boundaries. Consistent with our ΔRAD21 data, our polymer simulations resulted

in chromosome decompaction after near-complete RAD21 depletion (fig. 4.2, E) and accurately

matched our experimental data (fig. 4.2, F).

Next, we sought to identify where and when CTCF–CTCF loops occur in our trajectories.

Due to localization noise and substantial temporal correlations in the data, simple analysis

methods failed when benchmarked on simulations (section 5.1). We thus developed Bayesian

inference of looping dynamics (BILD; chapter 5). In BILD, we coarse-grain the possible con-

formations of the TAD (fig. 4.3, A) into two states: 1) a state of sustained contact between

the CTCF sites, presumably mediated by cohesin (the ‘looped state’) and 2) all other possible

conformations, including partial extrusion, random contacts, and the fully unlooped conforma-

tion (the ‘unlooped state’). While the looped state relies on CTCF activity, the unlooped state
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reflects extrusion without bridged CTCF boundaries, resembling the ΔCTCF condition. Based

on the MSD ∼ 𝑡0.5 scaling observed in fig. 4.2, D we model the unlooped state as a free Rouse

chain calibrated to the ΔCTCF data (fig. 5.4). To model the looped state, we introduce an

additional bond between the two CTCF sites (fig. 4.3, B); this bond is switchable allowing tran-

sitions between the looped and the unlooped states. The length of the bond is set to reproduce

the 10 kb distance between the fluorophores, using ΔRAD21 as reference for a free 515 kb chain

(section 5.8). Finally, by employing a hierarchical Bayesian model [24], BILD then uses the

different spatiotemporal dynamics of the looped state to infer which segments of each trajectory

were in the looped state (purple segment in fig. 4.3, A). When tested on 3D polymer simulations

with experimentally realistic noise, BILD accurately inferred both the looped fraction and loop

lifetime (fig. 4.2, E–F; see also figs. 5.5 and 5.6). In summary, BILD allows us to distinguish

CTCF-/cohesin-mediated looping from mere proximity.

We next used BILD to infer looping in our experimental trajectory data (fig. 4.3, C–F).

BILD revealed that the Fbn2 TAD is fully looped ~6.5% (~3%) of the time, but spends ~93.5%

(97%) of the time in a fully unlooped or partially extruded conformation (fig. 4.3, E). We use

brackets to indicate the looped fraction after false positive correction (fig. 5.6; the corrected

looped fraction is ~6% if we calibrate BILD using a 15 kb fluorophore distance). In contrast, we

observed a minimal looped fraction of ~2% (~0%) in ΔRAD21 and ΔCTCF, and ~4% (~1%) in

C65 (ΔCTCFsites), whereas the looped fraction was significantly increased to ~10% (~6%) in

ΔWAPL, consistent with WAPL unloading cohesin from chromatin [91]. Finally, we estimated

the lifetime of the looped state (fig. 4.3, D,F). Accurate measurement of loop lifetimes from

finite trajectories can be challenging when trajectories begin or end in the looped state, such that

it is unclear how long the looped period truly lasts (e.g. the looped state in ΔWAPL trajectory

in fig. 4.3, D existed an unknown time before the start of the movie). This problem, known in

medical statistics as “censoring”, can be solved using the Kaplan-Meier estimator. Using this

approach, we obtained censoring-corrected survival curves (fig. 4.3, D) of the looped state, from

which we estimated the median loop lifetime (fig. 4.3, F). Orthogonal to this non-parametric

analysis, we also fitted an exponential model, yielding similar estimates. Together, these give

an estimate of the median loop lifetime of ~10-30 min in C36 (WT) (fig. 4.3, F; fig. 5.6, D).

These results reveal the fully looped state to be both rare (~3-6%) and quite dynamic (median

~10-30 min; mean ~15-45 min). Thus, during an average ~12 hour mESC cell cycle, the looped

state will occur ~1-2 times lasting cumulatively ~20-45 min, but the remaining ~11.5 hours will
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Figure 4.4: Comprehensive picture of the Fbn2 TAD. (A) Comparison of Micro-C data for the C36
line to in silico Micro-C of our best-fit simulation, map (left) and contact probability scaling (right).
(B) BILD applied to the same simulation (green), comparing to C36 (WT) experimental data (blue).
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the Fbn2 TAD. Quantitative description of the Fbn2 TAD using both real data (blue) and our best-fit
simulation (green). Cohesin processivity and density and CTCF stalling probability and lifetime boost are
simulation parameters. Fraction of time in different conformations was extracted from simulation ground
truth, using effective tether lengths of 1.1 kb and 505 kb as cutoffs to define “fully looped” and “fully
unlooped”, respectively. Fraction of TAD unextruded was calculated using the mean tether length over
the full simulation.

be in the partially extruded or fully unlooped conformations.

To understand if a low looped fraction of ~3% is consistent with a clear and strong corner

peak in the Micro-C map, we set up polymer simulations with loop extrusion. Consistent with

recent reports [93,94], we found that CTCF-mediated stabilization of cohesin was necessary to

reproduce both these features in our simulations (fig. 4.4) [93,94]. We confirmed this effect using

iFRAP of cohesin, finding that CTCF depletion decreases cohesin residence time. Incorporating

this effect, we then simulated loop extrusion with a cohesin density of 1/240 kb and processivity

of 150 kb (processivity = lifetime x extrusion speed). When cohesin reaches a CTCF site, it

has a probability of 12.5% to stall, which, using the estimate of 50% CTCF occupancy [95],

translates to a ~25% capture efficiency of CTCF. Once stalled on one side by CTCF, cohesin

is stabilized 4-fold beyond its base lifetime of ~20 min [96], facilitating the formation of longer

loops since the other side of cohesin may continue to extrude. These simulations reproduced

both our experimental Micro-C maps (fig. 4.4, A) and the median loop lifetime and low looped

fraction (fig. 4.4, B).

Together, these results allow us to paint a comprehensive mechanistic picture of the Fbn2

TAD (fig. 4.4, C–D): most of the time (~92%), the TAD is partially extruded, with ~57-61% of

the Fbn2 region captured in ~1-3 extruding cohesin loops, while ~39-43% remain unextruded.
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The fully unlooped conformation, as it would be found in the absence of cohesin, occurs only

~6% of the time, while the fully looped state is even more rare at ~3% (~2% in simulations) and

has a median lifetime of ~10-30 min. Interestingly, our simulations reveal that the looped state

is sometimes held together by multiple cohesins (fig. 4.4, C), which also explains why the loop

lifetime can be substantially shorter than the CTCF-stabilized cohesin lifetime. Nevertheless, we

stress that both the mechanistic assumptions of our polymer simulations and the experimental

data constraining them are associated with uncertainty, resulting in uncertainty of the inferred

parameters (fig. 4.4, D). For example, if we allow extruding cohesins to bypass each other in our

simulations [12, 97], our estimates of the fold-stabilization of cohesin by CTCF would change

from ~4 to ~2, the CTCF stalling probability from 12.5% to 25%, and the looped state would

now be held together by a single cohesin. We also note that TADs smaller than the 505 kb Fbn2

TAD as well as TADs with stronger CTCF boundaries may have a higher looped fraction [98].

Furthermore, we propose that our absolute quantification of the Fbn2 looped fraction may now

allow calibrated inference of absolute looped fractions genome-wide, based on Micro-C [77].

Our findings reveal the CTCF/cohesin-mediated looped state that holds together CTCF

boundaries of TADs to be rare, dynamic, and transient. A key limitation of our study is that it

represents just one loop in one cell type. Nevertheless, the Fbn2 loop is among the strongest

quartile of “corner peaks” in Micro-C maps, suggesting that most other similarly sized loops in

mESCs are likely weaker than Fbn2. Our results thus rule out static models of TADs, where

TADs exist in either a fully unlooped state or a fully looped state stably bridged by one cohesin

(fig. 4.1, B). Instead, we show that the Fbn2 TAD most often exists in a partially extruded

state formed by a few cohesins in live cells (~92%; fig. 4.4, D), and that when the rare looped

state is formed, it is transient (~10-30 min median lifetime; fig. 4.4, B). Since the partially

extruded state dominates, this may be the functionally important TAD state. Thus, we suggest

that CTCF-mediated transcriptional insulation may be more mediated by individual extrusion-

blocking CTCF boundaries rather than the rare fully looped state. Similarly, this suggests that

frequent cohesin-mediated contacts within a TAD rather than rare CTCF–CTCF loops may

therefore be more important for regulatory interactions, such as those between enhancers and

promoters. This dynamic picture of TADs in live cells (fig. 4.4, D), may also help explain cell-to-

cell variation in 3D genome structure, and consequently stochasticity in downstream processes

such as gene expression and cell differentiation.
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Chapter 5

Bayesian Inference of Looping

Dynamics (BILD)

BILD was designed to call chromatin looping from fluorescence microscopy data (fig. 5.1). We

employed it in chapter 4 to infer the looping dynamics of the Fbn2 TAD in mouse embryonic

stem cells. This chapter contains a detailed treatment of the method; an implementation in

python is available in the bild package [99].

Fluorophores

Cohesin(s)

CTCF

CTCF site
looping 

dynamics?

Figure 5.1: Identifying chromatin looping by fluorescence microscopy.

This chapter builds directly on the experimental data presented in chapter 4 and thus uses

the terminology of that specific system.

5.1 Thresholding and mixture models fail to quantify looping

The question that ultimately prompted us to develop BILD is how to accurately quantify both

the fraction of time spent in the looped state and the duration of individual looping events

(fig. 5.1). Before developing the Bayesian inference method BILD (section 5.3) to achieve these

goals, we initially explored a range of simpler and more direct analysis methods, including popular
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Figure 5.2: Mixture modelling is not adequate to infer looped fractions. (A) Trying to represent
the distribution of distances observed in the WT (C36) cell line as a mixture of the positive (ΔTAD;
C27) and negative (ΔCTCF) looping controls, one finds a best fit looping fraction of ~40 %. To judge
whether this estimate is reliable, we simulated this procedure; (C) gives an overview over the simulated
2034 kb stretch of chromatin that we simulated and the CTCF sites located within. Black bar indicates
the simulated Fbn2 TAD, whose boundaries are tracked to obtain the simulated “WT”. Note that we
include neither the 5 kb offset between TAD boundaries and fluorophores, nor localization error. Grey bar
indicates the loci used to emulate the ΔCTCF control, by choosing loci that are not in the vicinity of
CTCF sites. (C) shows the distance distributions obtained from these simulations. Due to the idealized
simulation setting, the “WT” distribution (blue) is bimodal and appears amenable to a mixture model.
Note, however, that the negative looping control (red) does not match the second lobe of the WT
distribution (see text). (D) adding realistic tether length and localization error to the simulation system
recapitulates the 40 % looping fraction estimate from the real data. The simulations have a ground truth
looped fraction of 14 %.

choices such as thresholding and mixture modeling. Both of these failed when we benchmarked

them on 3D polymer simulations and thus do not provide adequate means to measure looping

in real trajectories; this section explains why that is.

We first consider a mixture model to measure the looped fraction (fraction of time spent

in the looped state). Given the experimentally observed distance distributions (fig. 5.2, A) in

the WT (C36) cell line, the positive looping control ΔTAD (C27), and the negative looping

control ΔCTCF, one might be tempted to model the wild-type (C36) data (whose trajectories

we assume to be composed of looped and unlooped segments) as a linear mixture of ΔTAD

and ΔCTCF, according to

𝑝WT(𝑟) = 𝑓looped𝑝ΔTAD(𝑟) + (1− 𝑓looped)𝑝ΔCTCF(𝑟) . (5.1)

The best-fit looped fraction can then be found by minimizing a suitable metric, such as the sum
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of squared residuals or the Kolmogorov-Smirnov distance between the mixture distribution and

the observed WT (C36) distribution. This approach yields a looped fraction of ∼ 40 % on our

real data (fig. 5.2, A).

To illustrate why this analysis approach fails, we turn to polymer simulations where we know

the ground truth looping behavior (fig. 5.2, B,C). We consider a simulation that resembles WT,

but exhibits a ground truth looped fraction of ∼14 %. We consider an idealized setting where

there is no localization uncertainty and the tracked loci are exactly the CTCF sites (no tether

length between CTCF sites and fluorescent labels). As negative looping control, we consider

loci far from the CTCF sites; as positive looping control, we consider simply two neighboring

monomers (i.e. 1 kb separation). With this setup (no localization error, no tether length between

CTCF sites and fluorescent labels, and looping control from the same simulation) we should be

as close as possible to the ideal situation for the mixture analysis approach of eq. (5.1). We

obtain the distance distributions shown in fig. 5.2, C.

Due to the lack of localization error and finite tether (see also fig. 5.3), we obtain a clearly

bimodal distribution for the distances of the TAD boundaries. However, this distribution is not

a mixture of the positive and negative looping controls, as the “unlooped” mode is clearly at

significantly shorter distances than the negative looping control. This is due to strong temporal

correlations in the data, introduced by polymer dynamics. The presence of the looped state in

WT (C36) does not only affect the distances measured while the loop is present, but also means

that during unlooped periods the loci will on average be closer together than in ΔCTCF, because

the last looping event happened a finite time ago. This memory is stored in the conformation of

the polymer, which takes considerable time to relax. This is why a mixture analysis fails here.

For completeness, we note that if we add localization error and finite tether, the mixture

analysis recapitulates the ∼ 40 % looped fraction found with this method in the real data

(fig. 5.2, D). This is of course a significant overestimate of the 14 % true looped fraction in this

simulation.

Finally, if we were faced with a bimodal distribution like in the idealized simulation setting

illustrated in fig. 5.2, C, we might consider a simple distance threshold to discriminate between

the looped and unlooped states, e.g. by matching the minimum between the two modes in the

distribution. In the shown example we would use the threshold shown by the dashed line at

75 nm, finding a looped fraction of 19 %, somewhat more in line with the ground truth. This

approach, however, fails in the presence of localization error and finite tether, where we expect
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Figure 5.3: Simulated distance distributions illustrate the effects of label placement and local-
ization error. Simulations were performed with a ground truth looped fraction of 14 % for illustrative
purposes. Left to right: increasing the separation between the CTCF sites and tracked loci. The tracer
particles (fluorescent labels) on both sides of the TAD were each offset from the true CTCF site by half
the indicated total distance. Top to bottom: increasing localization error. Gaussian noise with a standard
deviation indicated as “noise” was added to x and y components of each tracked locus; for z the standard
deviation was twice the indicated value, reflecting experimental reality. The experiments in chapter 4
were performed with a tether length of 10 kb and localization error of ~40 nm.

this distribution to become unimodal, as illustrated in fig. 5.3.

In summary, simple analysis approaches to infer the looped fraction from real data fail due to

strong correlations in the data, as well as localization error. Accurately measuring the lifetime of

single looped intervals is even harder, facing the problem of splitting intervals due to fluctuations

(issue 2 in section 5.2). These difficulties prompted us to develop BILD, a rigorous Bayesian

loop inference method.

5.2 Overview

BILD aims to infer looping in experimental 3D distance trajectories. To that end, we partition

the possible conformations of the TAD into two states:
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• the looped state, where presumably cohesin bridges the two CTCF sites, thereby forming

a loop complex

• the unlooped state, which contains all other possible conformations. This includes the

fully unlooped conformation (no cohesins within the TAD), random (diffusion-mediated)

contacts between the CTCF sites, as well as the partially extruded conformations where

cohesin(s) is/are present in the TAD, but not specifically bridging the CTCF boundaries.

This state should thus not be thought of as just the fully unlooped conformation, but rather

as “all conformations minus the looped state”. As such, it is best captured experimentally

by the ΔCTCF condition, which exactly abolishes stabilized CTCF/cohesin-mediated in-

teractions between the CTCF sites. Meanwhile, extrusion itself is still active, giving rise

to partially extruded conformations just like in the wild-type (C36) cell line. Note that

the 2-point MSD in ΔCTCF still follows the characteristic Δ𝑡0.5 scaling, such that we

can capture the temporal correlation structure in these data by modelling the chain as an

effectively free Rouse polymer.

With each trajectory of 3D distances 𝑦(𝑡) we now associate a binary trajectory 𝜃(𝑡), where 𝜃 = 1

indicates the looped state, and 𝜃 = 0 indicates the unlooped state (fig. 5.1 and fig. 4.3, B).

We will refer to such a time series of loop states as a looping profile. The inference task is now

to find an accurate looping profile 𝜃(𝑡) for a given trajectory 𝑦(𝑡), thus segmenting trajectories

into looped and unlooped periods. In doing so, we face two main challenges:

1. Strong temporal correlations in the data, due to the polymeric nature of chromatin, render

purely data-driven approaches unreliable, as we discuss in section 5.1. For example, one

might expect that unlooped periods in the WT (C36) data should be statistically similar

to ΔCTCF (which serves as our definition of the unlooped state afterall). This is not true,

since the polymer chain needs time to relax after a looping event.

2. Due to random fluctuations in the data (true polymer motion or localization error), even in

a bona fide looped state we may measure relatively large distances, which might look like

a loop breakage. This is very problematic, since we are trying to measure loop lifetimes;

if we incorrectly infer a loop breakage in the middle of a long looped period, we obtain

two intervals of half the original length, even though as little as a single data point might

have been inferred wrongly. This would clearly constitute a strong bias towards shorter

lifetimes.
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We employ a Rouse model (chapter 2) to capture the temporal correlation structure of our

experimental data, thus addressing the first issue. The Rouse model being analytically solvable

also conveniently provides us with a likelihood function 𝑝 (𝑦 | 𝜃) over possible looping profiles

𝜃(𝑡), given a trajectory 𝑦(𝑡) (section 2.2.2; specifically eq. (2.63)). The problem in point 2 above

can then be understood as overfitting: in absence of any penalization of profile complexity, the

“best” profile (in the maximum likelihood sense) will be one that captures every fluctuation

in the data, regardless of whether it is due to random fluctuations or an actual change in the

state of the system. This is very similar to the problem of fitting a polynomial curve to 𝑛

data points: as long as we do not constrain the degree of the polynomial, we can always find

one of degree at most 𝑛 − 1 that matches all data points perfectly. Similarly, if we allow

arbitrary switching between looped and unlooped states in the looping profile inference, profiles

can become arbitrarily complex. We will thus solve point 2 above by running a Bayesian model

selection scheme over the number of state changes (switches) in the profile, as described in

more detail in section 5.3. These two points—capturing correlations by use of the Rouse model

and penalizing profile complexity by Bayesian model selection—constitute the core of the BILD

method.

The method as outlined above infers looping with high recall, but low precision (i.e. many

false positive detections; fig. 5.5, B). We thus introduced an additional parameter Δ𝐸 (see

eq. (5.5) and surrounding text for details), allowing us to tune the precision/recall trade-off

(fig. 5.5, J). Throughout this work, if not stated otherwise, we set Δ𝐸 = 2, a value that we

found to give accurate inferences in simulations (fig. 5.5, K).

The remainder of this section is organized as follows: with the conceptual approach out-

lined above, section 5.3 provides technical details on the method. Section 5.4 describes how

we calibrated the Rouse model that the inference is based on to our experimental data. Sec-

tion 5.5 then displays our benchmarks of the method on simulated data, showing that we can

indeed reliably infer loop lifetime and looped fraction. Finally, section 5.6 describes downstream

processing of the inference output to generate the final results in fig. 4.3, D,E,F.

5.3 Method

To set up a well-defined inference problem, we parametrize the space of looping profiles Θ ≡

{𝜃 : [0, 𝑇 ] ↦→ {0, 1}} as follows:
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• 𝜃0 ≡ 𝜃(0) ∈ {0, 1} is the initial state,

• 𝑘 ∈ N0 counts the number of switches (0 to 1 or vice versa),

• 0 < 𝑠1 < 𝑠2 < . . . < 𝑠𝑘 < 𝑇 are the positions of the 𝑘 switches.

These parameters fully and uniquely describe any possible looping profile. Clearly the number of

parameters needed to describe a given profile depends on the number of switches 𝑘. It therefore

appears natural to regard 𝑘 as a hyperparameter and define the one-parameter model family

𝑀𝑘 ≡ (Θ𝑘,ℒ𝑘, 𝜋𝑘) , (5.2)

where Θ𝑘 ⊂ Θ is the subspace of profiles with 𝑘 switches, ℒ𝑘(𝜃, 𝑦) = ℒ(𝜃, 𝑦) ≡ 𝑝 (𝑦 | 𝜃) is the

Rouse likelihood from section 2.2.2, and 𝜋𝑘(𝜃) = UniformΘ𝑘(𝜃) = 𝑘!
2𝑇𝑘 is a uniform prior over

profiles with 𝑘 switches.

We have thereby set up the problem as a hierarchical Bayesian model, which can be inferred

by the evidence approximation [24,100,101]: first we fix the hyperparameter (number of switches

𝑘) by maximizing the evidence, then we find the posterior distribution for the actual profile 𝜃(𝑡)

with that fixed number of switches. Directly following this procedure, we infer looping with

high recall, but low precision (section 5.5). In order to control this precision–recall trade-off, we

introduce the evidence tolerance Δ𝐸 as described below. We find that a small Δ𝐸 > 0 increases

precision, while only marginally decreasing recall (fig. 5.5, J), and set Δ𝐸 = 2 throughout the

analysis presented in the main text (cf. section 5.5). A complete overview over our inference

scheme follows.

The inference task is to find the best profile 𝜃 for a given observed trajectory 𝑦. To estimate

the hyperparameter 𝑘 we calculate the log-evidences

𝐸𝑘 ≡ log 𝑝 (𝑦 | 𝑘) = log
∫︁

Θ𝑘
d𝜃 𝑝 (𝑦 | 𝜃)𝜋𝑘(𝜃) (5.3)

and maximize, subject to the tolerance Δ𝐸. Specifically, we find the minimal 𝑘 such that the

log-evidence is within Δ𝐸 of the true maximum:

𝐸* := max
𝑘

𝐸𝑘 = max
𝑘

𝑝 (𝑦 | 𝑘) (5.4)

𝑘 := min {𝑘 : 𝐸* − 𝐸𝑘 ≤ Δ𝐸} . (5.5)
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Having thus identified the appropriate model 𝑀𝑘, we then calculate the posterior distribution

over looping profiles under 𝑀𝑘

𝑝𝑘 (𝜃 | 𝑦) =
𝑝 (𝑦 | 𝜃)𝜋𝑘(𝜃)
𝑝
(︁
𝑦
⃒⃒⃒
𝑘
)︁ (5.6)

and pick the maximum a posterior (MAP) profile as a point estimate of the best profile for the

given trajectory 𝑦:

�̂�(𝑦) = argmax
𝜃

𝑝𝑘 (𝜃 | 𝑦) . (5.7)

The remainder of this section describes our technical implementation of eqs. (5.3) and (5.7).

We estimate the integral (5.3) by Adaptive Multiple Importance Sampling (AMIS; [102]).

In the following, 𝑘 remains fixed and is often suppressed to declutter notation. AMIS utilizes

a family of proposal distributions 𝑞𝜓(𝜃), parametrized by some set of parameters 𝜓, and then

alternates between evaluating the target function 𝑓(𝜃) ≡ 𝑝 (𝑦 | 𝜃)𝜋𝑘(𝜃) at points sampled from

the proposal, and updating the proposal based on past samples. The key advantage of this

approach is that samples from past steps are reweighted appropriately instead of discarded,

such that we build up a properly weighted sample relatively quickly, without discarding any of

the evaluations (which greatly contributes to computational feasibility). The 𝑛-th step in this

sampling scheme is described in algorithm 5.1, while we refer to the original work [102] for more

details.

To implement this scheme for our problem, we recall that since the number of switches 𝑘 is

fixed, a looping profile is parametrized by its initial value 𝜃0 and the switch positions 𝑠1, . . . , 𝑠𝑘.

We rewrite the latter in terms of the fractions 𝑢𝑎 ≡ 𝑠𝑎+1−𝑠𝑎
𝑇 ∈ [0, 1] with 𝑠𝑘+1 ≡ 𝑇 (the total

trajectory length) and 𝑠0 ≡ 0, and write them collectively as 𝑢 ≡ (𝑢0, . . . , 𝑢𝑘). This allows us

to employ the proposal distribution

𝑞𝑚,𝛼 (𝜃0,𝑢) := Bernoulli𝑚 (𝜃0)⊗ Dirichlet𝛼 (𝑢) , (5.11)

where Bernoulli𝑚 (𝜃0) ≡ 𝑚𝜃0 (1−𝑚)1−𝜃0 and Dirichlet𝛼 (𝑢) ≡ 1
𝐵(𝛼)

∏︀𝑘
𝑎=0 𝑢

𝛼𝑎−1
𝑎 are, respec-

tively, a Bernoulli distribution with mean 𝑚 and a Dirichlet distribution with concentration

parameters 𝛼. For initialization of the recursive AMIS scheme we choose the uniform distribu-

tion, given by the parameter values 𝑚0 = 1
2 and 𝛼𝑎 = 1∀𝑎. In the sampling step, we choose

𝑅𝑛 = 100∀𝑛. For the updating step we estimate the proposal parameters by the method of
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Input: the sample size 𝑅𝑛, proposal parameters 𝜓𝑛
1 draw 𝑅𝑛 new samples {𝜃𝑛𝑟 }𝑟=1,...,𝑅𝑛 from the current proposal 𝑞𝜓𝑛(𝜃)
2 let 𝑁sample ≡

∑︀𝑛
𝑖=0𝑅𝑛 (the total number of samples)

3 evaluate on all samples
{︀
𝜃𝑖𝑟
}︀
𝑟=1,...,𝑅𝑖
𝑖=1,...,𝑛

the importance weights

𝜔𝑖𝑟 = 𝑁sample𝑓(𝜃𝑖𝑟)∑︀𝑛
𝑗=0𝑅𝑗𝑞𝜓𝑗 (𝜃𝑖𝑟)

(5.8)

4 estimate the evidence as

𝑃 (𝑦 | 𝑘) =
∫︁

Θ𝑘
d𝜃 𝑓(𝜃) ≈ 1

𝑁sample

𝑛∑︁
𝑖=0

𝑅𝑖∑︁
𝑟=1

𝜔𝑖𝑟 ≡ �̄� (5.9)

5 calculate the estimates for log-evidence �̂�𝑛𝑘 and its standard error Δ�̂�𝑛𝑘 as

�̂�
𝑛
𝑘 = log �̄� , Δ�̂�𝑛𝑘 = Δ�̄�

�̄�
= 1
�̄�𝑁sample

⎯⎸⎸⎷ 𝑛∑︁
𝑖=0

𝑅𝑖∑︁
𝑟=1

(𝜔𝑖𝑟 − �̄�)2 (5.10)

6 find the new proposal parameters 𝜓𝑛+1 by fitting the proposal to the current sample{︀(︀
𝜃𝑖𝑟, 𝜔

𝑖
𝑟

)︀}︀
Algorithm 5.1: The 𝑛-th step in AMIS. See [102] for more details. Note that at each
iteration, on top of the actual evidence we also get an estimate of the standard error.
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moments, setting

𝑚𝑛+1 = ⟨𝜃0⟩𝑛 , (5.12)

𝛼𝑛+1 = ⟨𝑢⟩𝑛
𝑘

(︃
𝑘∑︁
𝑎=0

⟨𝑢𝑎⟩𝑛 (1− ⟨𝑢𝑎⟩𝑛)
Var𝑛 𝑢𝑎

− 𝑘
)︃
, (5.13)

where ⟨·⟩𝑛 are expectation values under the sample at step 𝑛, and similarly

Var𝑛 𝑢𝑎 ≡
1∑︀
𝑖,𝑟 𝜔

𝑖
𝑟

𝑛∑︁
𝑖=0

𝑅𝑖∑︁
𝑟=1

𝜔𝑖𝑟

(︁
(𝑢𝑎)𝑖𝑟 − ⟨𝑢𝑎⟩𝑛

)︁2
(5.14)

is the variance of 𝑢𝑎 at step 𝑛. To prevent overfitting of the proposal distribution to small samples

at the beginning of the iterative scheme (the first proposal update happens after 𝑅0 = 100

samples are drawn), we introduce two braking parameters 𝑏𝑚 and 𝑏𝛼. Whenever parameters are

updated, these limit the difference to the previous value:

|𝑚𝑛+1 −𝑚𝑛| ≤ 𝑅𝑛𝑏𝑚 , (5.15)⃒⃒⃒⃒
⃒log |𝛼𝑛+1|1

|𝛼𝑛|1

⃒⃒⃒⃒
⃒ ≤ 𝑅𝑛𝑏𝛼 , (5.16)

(5.17)

where |𝛼|1 ≡
∑︀
𝑎 𝛼𝑎 is the total concentration. In practice we use 𝑏𝑚 = 10−3 and 𝑏𝛼 = 10−2.

With this, we now have all the ingredients to initialize AMIS, run individual sampling steps using

algorithm 5.1, and perform well-regulated updates of the proposal parameters.

Finally, we have to provide a stopping criterion for the iterative AMIS scheme. To that end,

we take a step back and consider the problem of 𝑘 selection as a whole. For 𝑘 = 0 there are

only two possible profiles (completely looped or completely unlooped), so we can calculate the

evidence exactly with two likelihood evaluations. For 𝑘 = 1, taking into account our constraining

switch positions to integer frames (section 2.2.2), we can still completely enumerate all possible

profiles with 2𝑇 ∼ 102 evaluations of the likelihood. For 𝑘 = 2 we would have to enumerate

2𝑇 (𝑇−1) ∼ 104 profiles, while the sampling approach usually converges with ∼ 103 evaluations,

so for 𝑘 ≥ 2 we resort to sampling. However, taking this iterative approach, when sampling at

𝑘 we can assume to already have an estimate or exact value for 𝐸𝑘 for all 𝑘 < 𝑘. Importantly,

the sampling also gives us estimates of the standard error Δ�̂�𝑘, so after each AMIS iteration we
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can check which of the estimates still has a realistic chance of being the best one. We formalize

this approach in algorithm 5.2, thus ultimately obtaining all relevant estimates �̂�𝑘.

Input: 𝑘max = 10, 𝑛init = 20, 𝐶close = 5, Δ𝑘lookahead = 2
Output: posterior samples and evidence estimates �̂�𝑘

1 calculate 𝐸0 and 𝐸1 by complete enumeration
2 for 𝑘 ≤ 𝑘max do
3 run 𝑛init AMIS samples to get initial estimate of 𝐸𝑘
4 repeat // relevance resolution
5 find 𝑘* ≡ argmax𝑘 �̂�𝑘
6 find all 𝑘 that are reasonably close to this maximum:

𝐼 ≡

⎧⎪⎪⎨⎪⎪⎩𝑘 : �̂�𝑘* − �̂�𝑘√︂(︁
Δ�̂�𝑘

)︁2
+
(︁
Δ�̂�𝑘*

)︁2
≤ 𝐶close

⎫⎪⎪⎬⎪⎪⎭ (5.18)

7 find the 𝑘Δ ∈ 𝐼 where the estimated error on the evidence is highest
8 run one more AMIS iteration for 𝑘 = 𝑘Δ
9 until |𝐼| = 1 or 𝑘 + 1−Δ𝑘lookahead ∈ 𝐼

10 end
11 run through the relevance resolution once more

Algorithm 5.2: Scheme for successive AMIS sampling, focussed on sampling the
relevant 𝑘 values.

Having estimated the evidences 𝐸𝑘 and found the optimal number of switches 𝑘 via eq. (5.5),

we now turn to the question of finding the optimal profile 𝜃 with that given number of switches.

To that end we note that in calculating the evidences via AMIS, we already generated extensive

posterior samples for all relevant 𝑘. We can therefore simply pick the profile 𝜃𝑖𝑟 with the highest

posterior weight 𝜔𝑖𝑟 as point estimate. We note that on top of this point estimate we actually

obtain a full (weighted) posterior sample

𝑆 ≡
{︁(︁
𝜃𝑖𝑟, 𝜔

𝑖
𝑟

)︁}︁
, (5.19)

which will be used in some of the downstream analysis in section 5.6.

Summarizing, we have shown in this section how we infer the looping profile 𝜃 from an ob-

served trajectory, using the Rouse likelihood (2.63), hierarchical Bayesian inference, and Adaptive

Multiple Importance Sampling (AMIS) [102]. We refer to this approach as Bayesian Inference

of Looping Dynamics (BILD).
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Figure 5.4: Overview of the model used for Bayesian Inference of Looping Dynamics (BILD).
(A) Cartoon of the two-state Rouse model used by BILD. Black circles represent monomers with individual
diffusivity 𝐷, connected by springs with constant 𝑘. Tracer particles are at positions 𝑎 and 𝑏, bounding
the “chain of interest” of length 𝐿 = 𝑎 − 𝑏 (wlog 𝑎 > 𝑏). In the looped state an additional bond of
relative strength 𝑟 is introduced between monomers 𝑚 and 𝑛. (B) Top: parameter values obtained by
following the calibration scheme outlined in the text. Bottom: MSDs of the looped and unlooped model
states overlaid on top of experimental data. MSDs for the model states are obtained from eq. (2.16).

5.4 Calibration of the inference model

To run the inference scheme described in section 5.3, we have to make sure that the underlying

model (section 2.2.2) accurately captures the behavior we expect for the looped and unlooped

states, i.e. we have to find numerical values for the constants such that the model captures our

data most accurately (fig. 5.4, B).

In a first step, we calibrate the model for the unlooped state. Following fig. 4.3, A, the

unlooped state should capture the behavior of the chain in the absence of sustained looping.

It is thus a coarse-grained representation, capturing not only the fully unlooped conformations,

but also partial extrusion and random transient contacts (“everything except the looped state”).

Our experimental realization of this situation is the CTCF-AID cell line, in which the dynamics

of the Fbn2 loci should be mostly the same as in the wild-type cell line, except for the absence of

sustained looping. We find that we can capture the dynamics of this condition well with an MSD

of the form (2.88), our expectation for two loci on a linear polymer. We stress that this does

not amount to the assumption that chromatin in the absence of CTCF is unlooped, but we are

simply subsuming all the conformations associated with the unlooped state into an “effectively

free” chain. One important consequence is that from this calibration of the unlooped state we

cannot yet assemble the looped state (see below). To capture the physical parameters of this
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coarse-grained model, we use bayesmsd (chapter 6) to fit the MSD (2.88) to the CTCF-AID

data, thus obtaining numerical values for the phenomenological parameters Γ and 𝐽 . We now

utilize the correspondence between the continuous and discrete Rouse model (section 2.3.3) to

assemble the discrete model needed for BILD from the continuous model we use to capture the

dynamics of the calibration data.

The model for the unlooped state is specified by eqs. (2.38) and (2.56), from which we

identify the following parameters: diffusivity 𝐷 and friction constant 𝛾 of individual monomers;

the spring constant 𝑘 determining the strength of the backbone bonds; the number 𝑁 of

monomers, and positions 𝑎 and 𝑏 of the tracked loci on the chain (fig. 5.4, A). First of all, we

note that eq. (2.38) can always be rescaled by 1
𝛾 , such that our effective degrees of freedom

are 𝐷, 𝑘𝛾 ∈ R+, 𝑁 ∈ N, and 𝑎, 𝑏 ∈ {1, . . . , 𝑁} (wlog 𝑎 > 𝑏). We also use the auxiliary variable

𝐿 ≡ 𝑎− 𝑏. From the fits to the experimental data we know

Γ = 2𝐷
√︂

𝛾

𝜋𝑘
and 𝐽 = 𝐷𝛾

𝑘
𝐿 . (5.20)

Together with the constraint that we should not observe the freely diffusive regime of the Rouse

monomers (fig. 2.1 and section 2.3.3), this reads

𝐽

Γ =
√︂
𝜋𝛾

4𝑘 𝐿 ,
Γ2

𝐽
= 4𝐷
𝜋𝐿

, and Δ𝑡frame >
𝛾

𝑘
. (5.21)

Using only the first two equations to fix the microscopic parameters, we would have one degree

of freedom left, since we can always add more monomers to the chain (increase 𝐿), if we rescale

𝐷 and 𝑘 appropriately. For computational efficiency we prefer 𝐿 to be as small as possible,

which in this context means that we aim to satisfy the bound provided by the last inequality as

tightly as possible (with integer 𝐿). We therefore find

𝐿 =
⌈︃√︂

4
𝜋

𝐽

Γ
√

Δ𝑡frame

⌉︃
, 𝐷 = 𝜋𝐿Γ2

4𝐽 ,
𝑘

𝛾
= 𝜋

4

(︂
𝐿Γ
𝐽

)︂2
, (5.22)

where ⌈𝑥⌉ indicates the smallest integer larger than 𝑥. The remaining parameters for the

unlooped state are now the total length of the chain 𝑁 and the positions 𝑎, 𝑏 ≡ 𝑎 − 𝐿 of the

tracked monomers. We choose

𝑁 = 3𝐿+ 1 , 𝑎 = 2𝐿+ 1 , 𝑏 = 𝐿+ 1 , (5.23)
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such that on both ends of the “chain of interest” of length 𝐿 we have chains of equal length 𝐿,

resulting in a total chain long enough to emulate an infinite polymer up to the relaxation time

scale of the chain of interest (fig. 2.3). This concludes our calibration of the unlooped state,

which finally is determined by eqs. (5.22) and (5.23), in terms of Γ and 𝐽 of eq. (5.20), which

we find by fitting the CTCF-AID data (fig. 5.4, B).

For the looped state of our inference model we now have only the parameters associated with

the extra bond left to determine. These are its strength 𝑟 relative to a backbone bond (such that

its spring constant is 𝑟𝑘) and the two monomers 𝑚 and 𝑛 it connects to (fig. 5.4, A). Assuming

the chain in the loop to be much longer than the single extra bond (thus not contributing to

the steady state variance in the looped state), the effective tether length in the looped state is

given by 𝐿looped = 𝑎−𝑚+ 1
𝑟 + 𝑛− 𝑏 (fig. 5.4, A), such that we find the steady state variance

as

𝐽looped = 𝐷𝛾

𝑘
𝐿looped . (5.24)

Experimentally, we can access 𝐽looped via our RAD21-AID cell line and genomic information.

For RAD21-AID (and only there) we can assume that the chain length 𝐿ΔRAD21, which we can

extract from fitting the steady state variance 𝐽ΔRAD21, matches the known genomic separation

of our tracers of 515 kb. Under the Rouse model (e.g. eq. (2.88)) 𝐽 ∝ 𝐿, such that we get

𝐽looped = 10 kb
515 kb𝐽ΔRAD21 , (5.25)

where 10 kb is the combined distance of the tracked loci from the CTCF sites, i.e. the effective

tether length in the looped state. This allows us to calculate 𝐿looped from eq. (5.24) and

the previously determined constants 𝐷 and 𝑘
𝛾 , as well as the ΔRAD21 steady state variance

𝐽ΔRAD21. We then convert the real-valued 𝐿looped into the parameters of the extra bond as

outlined in algorithm 5.3, which is designed to achieve two goals: first, place the extra bond as

symmetrically as possible between the tracked monomers. Second, keep 𝑟 and 1
𝑟 as close to 1

as possible, such that the extra bond is as similar to a backbone bond as possible. We realize

this latter goal by choosing 𝑟 ∈
[︁

1
𝜙 , 𝜙

]︁
, with the golden ratio 𝜙 = 1 + 1

𝜙 = 1+
√

5
2 .

In summary, to calibrate our inference model to experimental data we

• fit the unlooped state to our CTCF-AID data, then

• match strength and position of the extra bond to the RAD21-AID steady state, rescaled
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Input: 𝐿looped ∈ R+, positions 𝑎, 𝑏 of the tracked monomers
Output: parameters 𝑚, 𝑛, 𝑟 of the extra bond

1 if 𝐿looped ≥ 1
𝜙 then

2 find �̄� ∈ N0, 𝑟 ∈
[︁

1
𝜙 , 𝜙

]︁
such that 𝐿 = �̄�+ 1

𝑟

3 else
4 �̄�← 0
5 𝑟 ← 𝐿−1

looped
6 end
7 𝑚← 𝑎−

⌈︁
�̄�
2

⌉︁
8 𝑛← 𝑏+

⌊︁
�̄�
2

⌋︁
Algorithm 5.3: Splitting the real-valued 𝐿looped into proper parameters for the extra
bond.

by the known genomic separations (see also section 5.8).

This allows us to fully calibrate the model (fig. 5.4, B), and thus run BILD (section 5.3).

5.5 Benchmarking BILD on simulations

We benchmarked BILD by comparing its output on simulated data (for details on the simulations

see [13]) to the corresponding ground truth, i.e. the intervals where the (simulated) CTCF

sites were truly bridged by (simulated) cohesin (fig. 5.5, A). We begin by investigating the

performance of the “raw inference”, setting the evidence bias parameter Δ𝐸 (introduced in

eq. (5.5)) to zero. To combat the high false positive rate uncovered through this analysis, we

then proceed to study Δ𝐸 > 0 (see also section 5.7). Where appropriate below, we use standard

terminology for binary classification tasks, including true positive (TP), false positive (FP; type

I error), false negative (FN; type II error), the performance scores

Recall ≡ TP
TP + FN and Precision ≡ TP

TP + FP , (5.26)

and the prevalence, which is defined as the fraction of ground truth positive data in the whole

data set. In the context of this study, we also refer to the prevalence as the looped fraction, the

fraction of time the locus spends in the looped state. We now study the inference performance

from two perspectives

• First, the point-wise view: at each time point in each trajectory, the inference is a binary
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Figure 5.5: Validation of BILD on simulated trajectories. (A) Example inferences on randomly
selected trajectories. Trajectories were randomly selected from all that had either at least 10 frames
truly looped, or at least 10 frames inferred looped. (B) Counting true intervals overlapping each inferred
interval. Counts higher than one are collectively labelled “many”. (C) Counting inferred intervals over-
lapping each true interval. Counts higher than one are collectively labelled “many”. (D) For each inferred
interval, the length of the overlapping true interval, or zero if no true interval overlaps. In the rare cases
where multiple intervals overlap, their length is summed. Green overlay is an adaptive Gaussian kernel
density estimate, where each scatter point supports a Gaussian density with standard deviation equal to
the distance to the tenth nearest neighbor or 2, whichever is greater. (E) Same as (D), but applied to
each true interval, showing the length of the overlapping inferred interval. (F) Scatter plots of false pos-
itive intervals (i.e. inferred intervals not overlapping any true interval) at different settings of Δ𝐸. The
axes are length of the interval (horizontal) and minimum value of the ground truth effective tether length
attained during the interval. (G) True vs. inferred looped fraction. Linear regression curves were fit by
least squares. (H) Distribution of lengths of true and inferred intervals (left) and quantile–quantile plot
(right). (J) Precision–Recall curves for the inference from point-wise and interval-wise points of view.
See text for details. (K) Kolmogorov-Smirnov distance (maximum difference between the cumulative
distributions) of true and inferred lifetime distributions, at different Δ𝐸.
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classification task, calling “looped” or “unlooped” states. Overall we find a recall of 96%,

at 54% precision (cf. fig. 5.4, J), meaning the inference reliably identifies looping, but

roughly half of the data that is inferred as looped are false positives. We thus expect to

overestimate the prevalence (looped fraction) by a factor Recall/Precision ≈ 1.8. In fact,

however, we find (fig. 5.4, G)

𝑓 inferred
looped ≈ 1.34𝑓 true

looped + 2.8% , (5.27)

leading us to assume two distinct error mechanisms: any true looping in the trajectory

will be overestimated by a factor ∼ 1.34, and on top of that ∼ 2.8% of the trajectory

will be called “looped” just due to random fluctuations. Importantly, while the former is

stable under our evidence bias parameter Δ𝐸, the second effect shows some sensitivity

to Δ𝐸 (fig. 5.4, G,J), which we can therefore use to control this error contribution. In

summary the point-wise perspective shows that most looping is indeed detected, but there

is a significant number of false positives. We can quantify the overall effect on the inferred

looped fraction relatively well and thus correct for this overestimate.

• Second, the interval-wise view (based on [103]): since ultimately we are most interested

in the lifetime of the looped state, we have to ensure that whole looping intervals are

inferred correctly. The biggest concern here is that of cardinality: a single true interval

might be split in the inference, leading to (say) three different inferred intervals that,

even though they might collectively cover the true interval completely and accurately, by

themselves would have a lifetime approximately three times shorter than the true interval.

Conversely, a single inferred interval might cover multiple true intervals and thus have

a much longer inferred lifetime than the individual true intervals. We term the number

of true intervals overlapping with each inferred interval the type I cardinality ; similarly,

the type II cardinality labels the number of inferred intervals overlapping with each true

interval. We find both cardinalities to be 0 or 1 for almost all intervals, with cardinality

> 1 occuring in only 0.79 % and 1.6 % of the cases for type I and type II respectively

(fig. 5.4, B,C). We therefore conclude that cardinality is not a significant problem in this

study.

Having established that most inferred intervals correspond to at most one true interval,

we can immediately study how well we capture the lifetime of these true intervals; we
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generally find that if the inferred interval corresponds to a true one, it also captures the

lifetime well (fig. 5.4, D). We therefore arrive again at the picture of a binary classifier,

but now at the interval level: generally, an inferred interval will either accurately capture

an interval in the true profile, or it will be a false positive altogether. This binary picture

is reinforced by fig. 5.4, E showing that each true interval is either inferred correctly, or

missed completely.

On the interval level, we find a high false positive rate of 61 %. These false positive

inferences are composed of two populations (fig. 5.4, F): first, we find intervals that

correspond to “almost looped” events, where the effective tether length between the

CTCF sites becomes very short, but does not quite cross the threshold of 1.1 monomers

that we use to define the looped state. This population is robust under variation of Δ𝐸.

Second, we find a population of short (≲ 10 frames) false positive detections that are

independent of the extrusion state of the locus. These are random fluctuations of the

polymer/noise that happen to resemble the looped state and show a strong dependence

on Δ𝐸, which we can thus use to control these erroneous inferences.

Having seen that we can use our evidence bias Δ𝐸 to control the false positive inferences,

we now study how it affects the lifetime distribution we infer from our data (fig. 5.4, H). As

expected, high Δ𝐸 mostly removes short intervals from the inference, thus reducing the false

positive fraction (increasing precision; fig. 5.4, J). At the same time though, recall is reduced

as some truly short intervals are not found anymore. It is a priori not clear how best to balance

these effects, so ultimately Δ𝐸 remains a free parameter. From the precision–recall curves in

fig. 5.4, J we conclude that 0 < Δ𝐸 < 5 improves overall inference quality (higher increase in

precision than decrease in recall). A reasonable value within that range seems to be Δ𝐸 ≈ 2,

for which the Kolmogorov-Smirnov distance between the true and inferred lifetime distributions

on our validation data set becomes minimal (fig. 5.4, K). We emphasize, however, that this is

essentially a rule of thumb, and any final results of the inference should be checked for their

variation with Δ𝐸. Corresponding analysis of our results from chapter 4 (fig. 4.3, E,F) can be

found in fig. 5.6.
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5.6 Downstream processing: estimation of looped fraction and

loop lifetime

In this section we describe how we use the results of the inference (section 5.3) to measure

looped fraction and loop lifetimes, the latter either non-parametrically with the Kaplan-Meier

estimator, or with an exponential fit.

We define the looped fraction 𝑓looped as

looped fraction = time spent in looped state
total trajectory length , (5.28)

which is straight-forward to calculate from the inferred looping profiles 𝜃(𝑡). To also obtain an

error estimate, we bootstrap an ensemble of mean looped fractions as described in algorithm 5.4.

We finally report the mean of this bootstrapped ensemble as point estimate and its 2.5th and

97.5th percentiles as 95% confidence interval.

Input: 𝑁traj, the number of trajectories in the data set
for each trajectory 𝑦𝑛, the posterior ensemble 𝑆𝑛 of eq. (5.19)
𝑁bootstrap = 1000,

Output: a list 𝐹 of 𝑁bootstrap evaluations of the mean looped fraction ⟨𝑓looped⟩
1 initialize an empty array 𝐹 , of length 𝑁bootstrap
2 for 𝑖 ∈ {1, . . . , 𝑁bootstrap} do
3 𝐿← 0 // counts number of (L)ooped frames
4 𝑇 ← 0 // counts (T)otal number of frames
5 for 𝑁traj repeats do
6 draw 𝑛 ∈ {1, . . . , 𝑁traj} uniformly at random
7 draw a profile from 𝑆𝑛
8 𝐿← 𝐿+ number of looped frames in profile
9 𝑇 ← 𝑇 + total number of frames in profile

10 end
11 𝐹 [𝑖]← 𝐿/𝑇

12 end
13 return F

Algorithm 5.4: Bootstrapping the distribution of mean looped fractions

In calculating a characteristic lifetime of the looped state, we encounter the problem of

censoring (cf. fig. 5.5, A). This means that many of the inferred looping intervals start or

end with the trajectory, such that we do not observe them fully. Simply calculating mean

lifetimes from the inferred intervals in this scenario would provide a heavy underestimate of the
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true lifetime. This censoring problem is well-known in the medical literature and customarily

addressed by using the Kaplan-Meier estimator for the survival function [104]. We follow that

standard procedure: from the MAP looping profiles provided by BILD (section 5.3) we compute

the set {(𝑡𝑖, 𝑐𝑖)} of loop lifetimes 𝑡𝑖 and corresponding boolean variables 𝑐𝑖 indicating whether

the observation 𝑡𝑖 was censored or not. We then use the Kaplan-Meier estimator

�̂�(𝜏) =
∏︁
𝑡𝑖<𝜏

(︂
1− 𝑑𝑖

𝑁𝑖

)︂
(5.29)

for the survival function 𝑆(𝜏) := 𝑃 (𝑡 ≥ 𝜏). Here, 𝑑𝑖 is the number of uncensored events of

length 𝑡𝑖, while 𝑁𝑖 is the total number of events of length greater than 𝑡𝑖, censored or uncensored.

Confidence intervals (at confidence level 1− 𝛼) for this estimator are given by the exponential

Greenwood formula

e𝑧𝛼/2
√
𝑉 (𝑡) log �̂�(𝑡) < log𝑆(𝑡) < e−𝑧𝛼/2

√
𝑉 (𝑡) log �̂�(𝑡) , (5.30)

𝑉 (𝑡) ≡
(︁
log �̂�(𝑡)

)︁−2 ∑︁
𝑡𝑖<𝑡

𝑑𝑖
𝑁𝑖 (𝑁𝑖 − 𝑑𝑖)

, (5.31)

with 𝑧𝛼/2 the 𝛼
2 th quantile of the normal distribution [105, 106]. Note that generally 𝑧𝛼/2 < 0

and specifically for 95% confidence intervals we have 𝑧0.025 = −1.96.

Finally, we also provide an estimate of the median lifetime from an exponential fit to the

lifetime distribution. Starting from the same set {(𝑡𝑖, 𝑐𝑖)} as for the Kaplan-Meier estimate, we

aim to fit the distribution

𝑝(𝑡) = 1
𝜏

e− 𝑡
𝜏 . (5.32)

The likelihood contributions for uncensored (𝑐𝑖 = 0) and censored (𝑐𝑖 = 1) intervals are respec-

tively

𝑝 (𝑡𝑖 | 𝜏, 𝑐𝑖 = 0) = 1
𝜏

e− 𝑡𝑖
𝜏 , 𝑝 (𝑡𝑖 | 𝜏, 𝑐𝑖 = 1) =

∫︁ ∞

𝑡𝑖

d𝑡 𝑝(𝑡) = e− 𝑡𝑖
𝜏 . (5.33)

The total log-likelihood of observing the given data from a model with mean lifetime 𝜏 is then

the sum of these contributions:

log 𝑝 (𝑡 | 𝜏, 𝑐) = −𝑁uncensored log 𝜏 − 1
𝜏

∑︁
𝑖

𝑡𝑖 , (5.34)

where we introduce the number of uncensored observations 𝑁uncensored. Taking the derivative
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and finding its root gives the MLE point estimate

𝜏 = 1
𝑁uncensored

∑︁
𝑖

𝑡𝑖 . (5.35)

To find confidence intervals (at confidence level 1−𝛼) on this estimate, we numerically find the

roots 𝜏± of

log 𝑝 (𝑡 | 𝜏±, 𝑐) != log 𝑝 (𝑡 | 𝜏 , 𝑐)− 1
2𝜒

2
1,1−𝛼 , (5.36)

where 𝜒2
𝑛,𝑝 is the 𝑝th percentile of the 𝜒2 distribution with 𝑛 degrees of freedom. Specifically,

𝜒2
1,0.95 ≈ 3.84.

Note that 𝜏 is an estimate for the mean of the distribution, but from our non-parametric

approach via the Kaplan-Meier curves we can estimate only medians. We thus finally also report

not the mean 𝜏 of the fitted exponential, but its median 𝜏 log 2 ≈ 0.7𝜏 .

5.7 Variation in inference results with evidence bias

As shown in section 5.5, the final results of our looping inference depend on the free parameter

Δ𝐸. We found from simulations that Δ𝐸 > 0 helps to combat false positives, but what exactly

this parameter should be remained unclear. Based on those simulations, a reasonable range

is 0 < Δ𝐸 < 5, with Δ𝐸 ≈ 2 performing well overall. We proceed in a manner similar to

section 5.5, first taking a point-wise perspective and studying the looped fraction, then moving

on to an interval-based point of view and loop lifetimes.

In fig. 5.5, G we saw that the relationship between true looped fraction 𝑓 true
looped and inferred

looped fraction 𝑓 inferred
looped is captured well by a linear relationship, whose prefactor (relative over-

estimation of looped fraction) is nearly independent of Δ𝐸, while the offset (random inference

of looping without correspondence to ground truth) decreases with Δ𝐸. A fuller picture of

this relationship is shown in fig. 5.6, A, left panel, where we perform that linear regression for

Δ𝐸 ∈ [0, 10]. This relationship being comparatively robust allows us to use it for correction

of looped fractions at all Δ𝐸. On our simulated data set, this leads to a corrected inferred

looped fraction 𝑓 corrected
looped that is now nearly independent of Δ𝐸 and deviates from the ground

truth looped fraction by a few percentage points at most (fig. 5.6, A, middle). This corrected

looped fraction now shows a strong correlation with the ground truth value (fig. 5.6, A, right).

We then applied this same correction to our real data. We find that we do not abolish all vari-
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Figure 5.6: Variation of inference results with Δ𝐸. (A) Left: quantifying the relationship between
true and inferred looped fraction at different Δ𝐸; cf. fig. 5.5, G. Middle & Right: using the results
displayed on the left to correct the inferred looped fractions gives stable values over a wide range of Δ𝐸,
reproducing the ground truth to within two percentage points. “Corrected” values on the right are means
over the curves shown in the middle, dashed line indicates identity. (B) Applying the same correction
to our experimental data. (C) Inferred median lifetime vs. Δ𝐸 on all simulations in the validation data
set. We normalize to the corresponding ground truth median lifetime, defined as the median of the
Kaplan-Meier survival curve of the true intervals. Similarly, we match the horizontal coordinates to the
Δ𝐸 value reproducing that true median lifetime for each simulation. (D) Variation of inferred median
lifetimes with Δ𝐸 on the experimental data shown in fig. 4.3. Note that for C65, ΔRAD21, and ΔCTCF
there are very few intervals inferred as looped in the first place, such that the inferred lifetimes are
not necessarily particularly meaningful (cf. (B), (E)). (E) Number of inferred looped intervals for each
condition at different Δ𝐸. This plot shows the total number of looped intervals for each dataset without
normalizing for the total number and length of trajectories.
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ation with Δ𝐸, hinting that the real data contains errors not accounted for in the simulations.

Nevertheless, we find a corrected looped fraction for our WT (C36) cell line of 2 − 4%, with

the WAPL degron generally exhibiting an increased looped fraction of three percentage points

above WT. The correction also places the looped fractions for the CTCF and RAD21 degrons

close to zero, which shows that indeed in these degron conditions there is very little looping, if

any at all (fig. 5.6, B).

We then investigated the lifetime inference outlined in section 5.6. Specifically, we asked

how Δ𝐸 affects the median lifetime as estimated from the Kaplan-Meier survival curves, which

is our main estimate of loop life time. For each simulation in our validation data set we find the

value of Δ𝐸 that makes the inferred median lifetime match the ground truth median, measured

from the Kaplan-Meier survival curve of the true intervals in the data set. In fig. 5.6, C we then

show how the inferred lifetime deviates from the true one if Δ𝐸 deviates from its optimal value.

We find that while too small Δ𝐸 can lead to heavy underestimation of the lifetime, with a Δ𝐸

somewhat higher than optimal we estimate a lifetime that is at most a factor 2 higher than the

true one. We therefore aim to err on the side of high Δ𝐸.

Plotting the inferred lifetime of the real data against Δ𝐸 reveals the change to be mod-

est over the region 1 ≤ Δ𝐸 ≤ 3 (fig. 5.6, D), matching our prior expectation of Δ𝐸 ≈ 2

(fig. 5.5, K). Within that range we find a median loop lifetime in WT (C36) of 10-20 min.

5.8 Epilogue: Choosing a positive looping control to calibrate

BILD

To calibrate BILD to infer looped states in trajectories, we need two controls. First, we used

ΔCTCF to calibrate the unlooped state: while the looped state is by definition absent, the

partially extruded, fully unloped, and transient stochastic proximity states remain. Second, we

considered two methods of defining and calibrating the looped state for BILD. We considered

using the ΔTAD (C27) control cell line, but ultimately employed a rescaling argument based

on the ΔRAD21 condition as mentioned in section 5.4. Here we describe why we chose the

rescaling approach over C27 (ΔTAD).
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C27 is ill-suited as looping control

The Root-Mean-Square (RMS) distance between the two loci in our C27 data, after subtracting

localization error, is 214 nm). This is a considerable distance, given the 10 kb tether between

the two loci: using 50 bp/nm as a low estimate for chromatin compaction [107], the tether in

C27 would have a contour length of only 200 nm, such that even fully extended it would not

reach the observed separation between the probes.

C27
small persistence length

C27
large persistence length

looped state
small persistence length

looped state
large persistence length

Even if the fiber was locally somewhat decom-

pacted, the large separation observed in C27 would still

imply a large persistence length. Critically, this by it-

self invalidates the use of C27 to measure separation

between the probes in the looped state, as illustrated

by the sketch on the right.

In designing C27 as an approximation for the looped

state we assumed a small persistence length, such that

the spatial separation of the two loci is independent of

whether they are 10 kb apart on a continuous chromatin fragment or whether there is actually

a loop complex in the middle of this tether, to which the 505 kb Fbn2 loop is “attached” (as in

the true looped state; see left column of the sketch). However, if the persistence length were

large, the CTCF/cohesin loop complex can affect separation between the probes by determing

the direction in which chromatin fibers emanate from the complex. This would further make

C27—with its single 10 kb fiber—a problematic proxy for the looped state.

While this argument shows that C27 could not be used to estimate the separation between

the probes in the true looped state, even in the absence of other confounding factors, we note

that there might also be biological reasons for the large distance in C27, such as epigenetic

modifications due to the two fluorescent arrays being in permanent proximity, or detrimental

downstream effects of the excision of the whole Fbn2 TAD.

In conclusion, we found that C27 does not provide a good control for the actual looped

state we should expect to see in other cell lines, where the Fbn2 TAD has not been excised. We

therefore calibrated our inference method as described in section 5.4, following the considerations

below, and ultimately work with a looped state that has reduced RMS distance compared to

C27.
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Finding another proxy for the looped state

In determining how to calibrate the looped state in our inference, if not by C27, we followed

two orthogonal approaches and found compatible estimates for the spatial separation of the two

probes in the looped state.

First, one of the most recent estimates of chromatin fiber structure in eukaryotes (bud-

ding yeast) found plausible ranges of 52-82 bp/nm and 53-65 nm for compaction ratio 𝐶 and

persistence length 𝑙𝑝, respectively, given available live- and fixed-cell imaging, as well as Hi-C

data [107]. Within the worm-like chain model (WLC; the model in which the quoted parame-

ters were estimated), the mean square spatial separation 𝑅2(𝑠) for some loci separated by the

genomic distance 𝑠 is given by

𝑅2(𝑠) = 2𝑙2𝑝
[︂
𝑠

𝜌
− 1 + e− 𝑠

𝜌

]︂
, (5.37)

where 𝜌 ≡ 𝐶𝑙𝑝 is the persistence length in bp. Following the argument outlined in the previous

section we should take into account the presence of the loop complex if we want to estimate the

distance in the looped state, as opposed to a continuous chromatin fiber (C27-like conformation).

The mean square separation for the two loci, given that the chain has a sharp pinch in the middle

(cf. sketch above, right column) is given by

𝑅2
𝜃(𝑠) = 2𝑙2𝑝

[︂
𝑠

𝜌
− 2− cos 𝜃 + 2(1 + cos 𝜃)e− 𝑠

2𝜌 − cos 𝜃e− 𝑠
𝜌

]︂
, (5.38)

where 𝜃 ∈ [0, 𝜋] denotes the pinch angle, i.e. the angle between the two tangent vectors

at the pinch / between two fibers emanating from the CTCF/cohesin complex (note how

𝜃 = 𝜋 reproduces the un-pinched fiber of eq. (5.37)); for a derivation of this expression see

below. Using the ranges for compaction and persistence quoted above, we find RMS distances√︁
𝑅2
𝜃=0(10 kb) = 62− 82 nm for maximal pinching (𝜃 = 0) and

√︁
𝑅2
𝜃=𝜋(10 kb) = 104− 137 nm

without pinching (i.e. straight 10 kb tether like in C27). We conclude that 70-100 nm should

be a reasonable range for the RMS separation in the looped state given this model, taking into

account that the pinch due to the looped state is likely not completely sharp.

Second, we used the Rouse model to estimate the RMS distance across a 10 kb tether

from the measured distance between the loci in the ΔRAD21 condition. ΔRAD21 is the only

condition where this is a viable line of argument, since loop extrusion shortens the chain in all
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other conditions. The measured RMS distance of 637 nm for the 515 kb tether in ΔRAD21

rescales to 89 nm for 10 kb. Scaling down even further, we find an RMS separation of 12.6 nm

for a tether of 200 bp, corresponding very closely to one nucleosome. Our measurements in

the ΔRAD21 condition are thus consistent with chromatin as a random walk of nucleosomes,

yielding an estimate for the looped state that is comparable to the WLC estimate in the previous

paragraph.

Finally, we benchmarked the choice of looped state on our simulation data. As shown in

fig. 4.2, F, our 3D polymer simulations faithfully reproduce the experimentally observed contact

scaling and can thus serve as a proxy for chromatin structure in the real data. We found that with

the looped state calibrated by rescaling the probe distance for simulated ΔRAD21 condition,

we were able to capture the true time scale of looping in the simulated WT. On the other hand,

calibrating e.g. to C27 lead to significant overestimates of both the looped fraction and loop

lifetime. We thus conclude that the calibration based on rescaling ΔRAD21 is an appropriate

representation of the looped state, given our (lack of) knowledge of chromatin structure on the

10 kb scale.

Derivation of eq. (5.38)

r1 r2

r0

v2v1

θ

We aim to derive the mean squared distance between two loci 𝑟1(𝜎)

and 𝑟2(𝜎) on a worm-like chain with compaction 𝐶 (in bp/nm) and

persistence length 𝜌 (in bp), given that they are equidistant (but on

opposite sides) from the pinch at 𝑟0. At the pinch, the unit length

tangent vector 𝑣1 pointing towards 𝑟1 stands at a fixed angle 𝜃 to

the tangent vector 𝑣2 pointing towards 𝑟2, and the chains on both

sides of the pinch are independent from each other.

By definition of the WLC, the tangent vectors along the chain are exponentially correlated

with correlation length 𝜌. Thus, given the tangent vector 𝑣 at a position 𝑟0, the mean position

for a locus 𝑟 a distance 𝜎 further along the chain is

⟨𝑟(𝜎)− 𝑟0⟩ = 𝜌

𝐶

(︁
1− e−𝜎

𝜌

)︁
𝑣 . (5.39)
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We then find the mean squared distance MS12 between loci 1 and 2 as

MS12 =
⟨
(𝑟1(𝜎)− 𝑟0 + 𝑟0 − 𝑟2(𝜎))2

⟩
(5.40)

=
⟨
(𝑟1(𝜎)− 𝑟0)2

⟩
+
⟨
(𝑟2(𝜎)− 𝑟0)2

⟩
− 2 ⟨(𝑟1 − 𝑟0) (𝑟2 − 𝑟0)⟩ (5.41)

=2𝜌2

𝐶2

[︂2𝜎
𝜌
− 2− cos 𝜃 + 2(1 + cos 𝜃)e−𝜎

𝜌 − cos 𝜃e− 2𝜎
𝜌

]︂
. (5.42)

In the last line we utilized that the mean square separation between 𝑟1(𝑟2) and 𝑟0 follows

the usual formula (5.37) for the WLC in the first two terms, and the expectation value in the

third term factorizes into the product of mean positions since the conformations on the two

sides of the pinch are independent; the two factors are then given by eq. (5.39). Substituting

𝑣1 ·𝑣2 ≡ cos 𝜃 and simplifying yields the stated result. Finally, we substitute 𝑠 ≡ 2𝜎 and 𝑙𝑝 ≡ 𝜌
𝐶

to obtain eq. (5.38).

5.9 Multi-state inference: the Conflict-Free Categorical (CFC)

BILD as presented in this chapter infers binary looping profiles: the system can be in a looped

or an unlooped state. However, neither of these states is particularly special: at the end of the

day, both are simply defined in terms of a specific connectivity matrix 𝐵 for the Rouse model

(section 5.4). As such, it should be quite straight-forward to generalize this inference method

to work for an arbitrary collection of states of the associated Rouse model.

Let us consider an inference model with 𝑛 states, labelled 𝜃 = 1, . . . , 𝑛. Possible transitions

between these states are encoded in the boolean matrix 𝑆, where 𝑆𝜃𝜓 = 1 if and only if

the transition 𝜃 → 𝜓 is allowed. This allows to enforce for example progressive iteration

through the states, if so desired. Note that self-transitions are ill-defined (or lead to ill-defined

parametrizations below), such that we always require 𝑆𝜃𝜃 = 0∀𝜃.

While this setup does resemble a hidden Markov model, we point out that the model is

manifestly not Markovian: memory about past states is stored in the polymer conformation.

That this memory is indeed essential for accurate inference is demonstrated in section 5.1.

Furthermore, we do not assume first order dynamics between the different states, though this

is a minor point.

To implement this multi-state approach, we need to make only a few changes to the original

(two-state) BILD method as laid out in section 5.3:

99



• Looping profiles now have to include 𝑛 states. The space of all possible looping profiles

thus becomes

Θ ≡
{︁
𝜃 : [0, 𝑇 ] ↦→ {0, . . . , 𝑛− 1}

⃒⃒⃒
𝑆𝜃(𝑡−)𝜃(𝑡+) = 1∀jump times 𝑡

}︁
, (5.43)

where we call the condition that state changes in the profile have to be allowed by the

transition matrix 𝑆 conflict-free.

• The parametrization in terms of 𝑘 switches at positions 𝑠1, . . . , 𝑠𝑘 remains the same,

except that now we have to explicitly specify the full state trajectory (𝜃0, . . . , 𝜃𝑘), i.e. the

state assumed during each of the intervals. The full looping profile is then given by

𝜃(𝑡) = 𝜃𝑖 ∀𝑡 ∈ [𝑠𝑖, 𝑠𝑖+1) , 𝑖 = 0, . . . , 𝑘 , (5.44)

where 𝑠0 ≡ 0 and 𝑠𝑘+1 ≡ 𝑇 is the trajectory length.

The conflict-free condition requires 𝑆𝜃𝑖𝜃𝑖+1 = 1∀𝑖; the number of possible state trajectories

for 𝑘 switches is then given by

𝑁states =
𝑛∑︁

𝜃0=1
· · ·

𝑛∑︁
𝜃𝑘=1

𝑆𝜃0𝜃1𝑆𝜃1𝜃2 · · ·𝑆𝜃𝑘−1𝜃𝑘 ≡
∑︁

𝑆𝑘 , (5.45)

where the last sum should be understood to run over all entries of the matrix exponential

𝑆𝑘.

• The Rouse likelihood as described in section 2.2.2 natively works for 𝑛 > 2 states; thus,

no modification is needed.

• The uniform prior over profiles with 𝑘 switches now becomes

𝜋𝑘(𝜃) = 𝑘!
𝑇 𝑘𝑁states

= 𝑘!
𝑇 𝑘
∑︀
𝑆𝑘

. (5.46)

• We need a well-defined proposal distribution for state trajectories. Due to the conflict-free

condition this turns out to require some thought and constitutes the rest of this section.

With these minor changes, BILD can be used as inference scheme for arbitrary numbers of

states, as implemented in [99].
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As noted above, the main challenge for multi-state inference is in the AMIS proposal distri-

bution (5.11). While for two states the state trajectory is fully determined by the initial state 𝜃0

and we could thus simply use a Bernoulli distribution over 𝜃0, with 𝑛 > 2 states this becomes

more complicated. For one, the state space is now bigger; this is easily incorporated by gener-

alizing the Bernoulli to a categorical distribution. Additionally, however, we have to make sure

to respect the transition matrix 𝑆; we thus introduce the Conflict-Free Categorical distribution

CFC𝑝;𝑆(𝜃).

The Conflict-Free Categorical (CFC) has to meet two objectives:

• it has to be flexible enough to be a useful proposal distribution in AMIS, and

• it has to respect the transition matrix 𝑆, i.e. be a distribution over conflict-free state

trajectories.

In practice we need to be able to execute the following tasks:

• sample from the distribution,

• evaluate the distribution at a fixed point (i.e. calculate likelihoods), and

• estimate the parameters of the distribution from a given (weighted) sample.

We meet the flexibility criterion by starting from independent categorical distributions over

each 𝜃𝑖 separately:

𝑝(𝜃𝑖 = 𝜓) =: 𝑝𝜓𝑖 ,
∑︁
𝜓

𝑝𝜓𝑖 = 1 . (5.47)

The 𝑝𝜓𝑖 now define a distribution over state trajectories that does not necessarily respect the

conflict-free condition. To achieve this second objective, we proceed by causal sampling:

• draw 𝜃0 according to the weights 𝑝0;

• check which transitions are allowed from 𝜃0 and obtain their weights: �̃�𝜓1 = 𝑆𝜃0𝜓𝑝
𝜓
1 ;

• sample 𝜃1 according to the renormalized weights �̃�1∑︀
𝜓
�̃�𝜓1

;

• repeat until end of state trajectory is reached.

This procedure ensures the conflict-free property; obviously it also provides us with a sampling

scheme, which was the first of three tasks we need to be able to execute.
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The second task is likelihood evaluation, which is straight-forward by inspection of the

sampling scheme:

𝑝(𝜃) = 𝑝 (𝜃𝑘 | 𝜃𝑘−1) · · · 𝑝 (𝜃1 | 𝜃0) 𝑝 (𝜃0) (5.48)

= 𝑝𝜃𝑘𝑘∑︀
𝜓 𝑆𝜃𝑘−1𝜓𝑝

𝜓
𝑘

· · · 𝑝𝜃1
1∑︀

𝜓 𝑆𝜃0𝜓𝑝
𝜓
1
𝑝𝜃0

0 (5.49)

= 𝑝𝜃𝑘𝑘 · · · 𝑝
𝜃1
1 𝑝

𝜃0
0∑︀

𝜓 𝑆𝜃𝑘−1𝜓𝑝
𝜓
𝑘 · · ·

∑︀
𝜓 𝑆𝜃0𝜓𝑝

𝜓
1
, (5.50)

where we assume that 𝜃 is from the domain of the CFC and thus fulfills the conflict-free condition

(otherwise we would just have to add appropriate factors of 𝑆).

So finally, we are left with estimation from a weighted sample. To that end, we adapt the

commonly used method of moments into a “method of marginals”: we define an estimator �̂�𝜓𝑖
for the parameters of the CFC by matching the marginals to the experimentally observed ones;

the latter are straight-forward to compute from a weighted sample. Consider the CFC-marginals

𝑓𝜓𝑖 ≡ 𝑝 (𝜃𝑖 = 𝜓) . (5.51)

The causal sampling allows us to propagate marginals forward, such that one finds

𝑓𝜓0 = 𝑝𝜓0 ; 𝑓𝜓𝑖 = 𝑝𝜓𝑖
∑︁
𝜒

𝑓𝜒𝑖−1𝑆𝜒𝜓∑︀
𝜙 𝑆𝜒𝜙𝑝

𝜙
𝑖

∀𝑖 ≥ 1 . (5.52)

Given sample marginals 𝑓𝑖, we can then numerically find estimates �̂�𝑖 by fixed point iteration:

starting from �̂�𝑖;(0) = 𝑓𝑖, update

�̂�𝑖;(𝑟+1) = 𝑓𝑖

(︃∑︁
𝜒

𝑓𝜒𝑖−1𝑆𝜒𝜓∑︀
𝜙 𝑆𝜒𝜙�̂�

𝜙
𝑖;(𝑟)

)︃−1

. (5.53)

This provides us with a method to estimate the parameters 𝑝𝜓𝑖 from a weighted sample.

We have thus managed to define a suitable AMIS proposal distribution, which we can

evaluate, sample from, and estimate. As outlined above, this allows us to generalize BILD to

arbitrary number of states 𝑛 > 2. Along the way we could even incorporate free choice of the

admissible transitions between these states.
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Chapter 6

Bayesian MSD fitting

The Mean Squared Displacement (MSD)1 of a particle (fig. 6.1) is among the most central

quantifications of any single particle tracking experiment. It is frequently reported to resemble

a powerlaw, MSD(Δ𝑡) ∼ Δ𝑡𝛼, which then renders the exponent 𝛼 a central object of interest,

since it characterizes the nature of the observed motion (fig. 6.1, B). If 𝛼 = 1 we talk about

normal diffusion, i.e. a random walk: between any two time points, the particle simply picks a

random direction to move in. In a cellular context one frequently observes 𝛼 < 1, indicating

that the motion is somewhat recurrent, i.e. whenever the particle takes a step, it has a tendency

to reverse direction on the next step. The extreme case 𝛼 = 0 is the white noise process, which

just fluctuates about zero; this would be, for example, the behavior of a trapped particle (over

long lag times). Similarly, for a particle on a polymer one would expect 𝛼 ≈ 0.5 (eq. (2.87)),

since whenever the particle moves somewhere, the rest of the chain tries to pull it back to its

original position. 𝛼 > 1 indicates so-called superdiffusion, which is rarely observed in the cellular

contexts of interest in this thesis, but occurs has been observed e.g. in the foraging behaviors of

albatrosses [108] and spider monkeys [109]. Finally, the limiting case of superdiffusion is ballistic

behavior with 𝛼 = 2. This indicates perfect correlations in the particle motion, such that it

moves in a straight line.

As illustrated, the exponent 𝛼 carries qualitative information about the type of motion and is

therefore widely reported whenever a particle is tracked. Despite this widespread use, significant

issues remain:

• Current SPT data does often not have the dynamic range to convincingly show powerlaw
1In this work we will always consider the time-averaged MSD, sometimes denoted TA-MSD.
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Figure 6.1: Mean Squared Displacement (MSD). (A) Definition and calculation of the (time-
averaged) MSD. Top: a toy example trajectory (gray). Different points on the MSD curve (blue, bottom)
are computed as squared average of the displacement over all possible windows with a given fixed lag time
Δ𝑡. For MSD curves calculated from finite data, points at longer lag time (red) thus include markedly
fewer samples than points at short times (orange). Note also that due to the time averaging any point
on the MSD curve depends on all experimental data; we should thus expect highly correlated errors.
(B) Example trajectories (gray, bottom) for powerlaw MSDs with different exponents (blue, top). The
black scale bar in the trajectory plots has the same “physical” length for all trajectories, relative to the
step size used in sampling. These trajectories are sampled from Gaussian processes with powerlaw MSD,
which are known as fractional Brownian motion. (C) Examples of non-powerlaw MSDs and trajectories
sampled from the associated Gaussian process.
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scalings, rendering the central assumption that MSD(Δ𝑡) ∼ Δ𝑡𝛼 questionable.

• Localization error and (potentially) motion blur cause systematic shifts in the MSD curve

(section 6.5); they should be properly accounted for. In fact, it is often possible to deter-

mine the localization error from the observed data, reducing the reliance on orthogonal

experiments for localization error determination (which often struggle to capture the exact

acquisition conditions in production).

• Proper parameter inference from MSDs is statistically non-trivial, due to strong error

correlations. To this end, note that because of the time averaging, any point of the MSD

curve has a dependence on all the data (fig. 6.1, A). The field has therefore adopted

heuristics like “only fit the first 10 data points of the MSD curve” [110]. Another instance

of this correlation effect is described in [111]: for a diffusive process, the best estimator

of the diffusion constant is exactly the first point of the MSD; fitting more of the curve

makes the estimator worse.

• In line with the previous point, the statistical properties of MSD-based estimators are

currently under so little control, that results are customarily reported without any error

estimates. This makes it impossible to judge the significance of experimental discrepancies.

It thus seems desirable to get a better understanding of what we can and cannot learn from

SPT data in terms of their MSD. This chapter lays out a rigorous approach to this question,

based on the theory of Gaussian processes [112]. The basic idea is that for a suitably stationary

Gaussian process (section 6.3), the MSD is a sufficient statistic (section 6.3.3). If the stationarity

assumption is warranted, the MSD thus captures all relevant information about the data, up to

second order; it should thus indeed be the central object of interest, e.g. for fitting parametric

models to the data. Assuming that the data is well represented by a Gaussian process, we then

lay out a Bayesian scheme for parameter inference (section 6.6). Since this approach fits the

full correlation structure of the data, instead of just the plot of the MSD curve, it naturally

takes into account the error correlations mentioned above. We can thus be confident about the

statistical properties of the estimator; in fact, the Bayesian approach allows calculating credible

intervals for all parameter estimates, which are quite notably lacking from the current literature.

Most of the treatment here does not rely on the Gaussianity assumption; that is needed

“only” to define the likelihood for the actual inference in section 6.6 (which, of course, makes it
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a central assumption in the inference part). To clearly distinguish where we do and do not need

to assume Gaussianity, most of the chapter is formulated using the term “Gaussian-equivalent

process” (definition 4). This should be thought of simply as a stochastic process that is defined

only up to second order, i.e. we are agnostic about higher order moments.

A python implementation of the method developed in this chapter is provided in the package

bayesmsd [113].

6.1 Overview

We are concerned with the inference problem for Gaussian-equivalent processes: given some

trajectory data {𝑥𝑖(𝑡) | 𝑖 = 1, . . . , 𝑁}, what are the best fit mean function 𝜇(𝑡) and covariance

kernel Σ(𝑡, 𝑠)? That parameter space—as characterized by theorem 1—has multiple functional

degrees of freedom and is thus significantly larger than would be feasible to handle in practice.

We therefore introduce additional assumptions to restrict the inference to a manageable set of

parameters a priori.

In a first step we make a stationarity assumption, which can take one of two forms:

• we might want to assume the process 𝑋(𝑡) itself to be stationary (e.g. Ornstein-Uhlenbeck:

particle in a harmonic potential; distance between two points on a fluctuating polymer;

etc.), or

• assume only the increments of the process 𝑋(𝑡) to be stationary (e.g. freely diffusing

tracer particle; individual chromosomal loci moving subdiffusively; etc.)

To clearly distinguish these two cases—while at the same time treating them under the same

framework as far as possible—we refer to these as stationarity at level 0 and 1, respectively2.

Either of these stationarity assumptions will reduce the parameter space to a single functional

degree of freedom, which turns out to be the MSD. In a second step, we can then introduce

parametric expressions for the MSD to reduce this functional degree of freedom to a finite

number of real parameters.
2The idea here is to count differencing operations: level 0 means 𝑋(𝑡) is stationary, level 1 means Δ𝑋(𝑡) is

stationary; in principle one might even consider higher level stationarity (e.g. stationary ΔΔ𝑋(𝑡)), but for those
cases the MSD might not be the appropriate quantification anymore, since it relies on first differences. Since
processes with stationarity at level > 1 also do not seem to have much (or any?) practical relevance, we will
concern ourselves with levels 0 and 1 only.
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Finally, we define a likelihood function over these remaining parameters by choosing for each

Gaussian-equivalent process the corresponding Gaussian process as representative. This allows

us to run standard Bayesian inference over the chosen parameter space.

Let us begin our theoretical treatment with the following central definition:

Definition 1 (MSD). The mean square displacement (MSD) of a stochastic process 𝑋(𝑡) is

the function

𝜓(Δ𝑡) :=
⟨
(𝑋(𝑡+ Δ𝑡)−𝑋(𝑡))2

⟩
. (6.1)

Note that we implicitly assumed that the expectation value on the right hand side will be

independent of absolute time 𝑡; this will be true (by construction) for level 0 and 1 stationary

processes as considered below, but does not hold in general. This definition is thus of limited

use until we introduce the rest of the framework below.

6.2 Gaussian-equivalent processes

Definition 2. For a stochastic process 𝑋(𝑡), we define the

mean function 𝜇(𝑡) ≡ ⟨𝑋(𝑡)⟩ and (6.2)

covariance kernel Σ(𝑡, 𝑠) ≡ ⟨𝑋(𝑡)𝑋(𝑠)⟩c . (6.3)

Definition 3. We say two stochastic processes 𝑋 and 𝑌 are equivalent to second order and

write 𝑋 ∼ 𝑌 , if they have the same mean function and covariance kernel.

Definition 4. A Gaussian-equivalent process is an equivalence class of stochastic processes

under the “equivalence to second order” of definition 3.

By construction, any Gaussian-equivalent process is given by its mean function and covari-

ance kernel. While essentially any function can be the mean of a Gaussian-equivalent process,

the covariance kernel is more tightly constrained.

Definition 5 (Positive definite function; following [112]). A function 𝑓 : R2 → R is said to be

positive (semi-)definite if, for any finite set {𝑡𝑖 | 𝑖 = 1, . . . , 𝑛}, 𝑛 ∈ N, the matrix

𝑓𝑖𝑗 ≡ 𝑓(𝑡𝑖, 𝑡𝑗) (6.4)
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is positive (semi-)definite.

Theorem 1. The covariance kernel of a stochastic process 𝑋(𝑡) is a symmetric, positive definite

function Σ(𝑡, 𝑠). Conversely, any pair (𝜇(𝑡),Σ(𝑡, 𝑠)) with 𝜇 : R → R arbitrary and Σ : R2 → R

symmetric positive definite uniquely defines a Gaussian-equivalent process.

Proof. The proof relies on actual Gaussian processes as representatives of Gaussian-equivalent

processes, cf. definition 11 and theorem 6. We will therefore only sketch it here.

• Σ(𝑡, 𝑠) being symmetric and positive definite for any 𝑋(𝑡) directly follows from the defi-

nition of Σ(𝑡, 𝑠).

• By definition of Gaussian-equivalent process, if the pair (𝜇(𝑡),Σ(𝑡, 𝑠)) do define a Gaussian-

equivalent process, then it is unique.

• What remains to be shown, then, is that indeed for any (𝜇(𝑡),Σ(𝑡, 𝑠)) satisfying the

constraints of the theorem, a Gaussian-equivalent process exists. This is where we take

recourse to Gaussian processes as representatives of Gaussian-equivalent processes: quite

unsurprisingly, each Gaussian-equivalent process has exactly one representative that is ac-

tually a Gaussian process (theorem 6). By construction, Σ(𝑡, 𝑠) being positive definite

guarantees positive definiteness of the covariance matrix for any finite dimensional dis-

tribution, which is thus a well-defined Gaussian. Thus, the Gaussian process with 𝜇(𝑡)

and Σ(𝑡, 𝑠) as in the theorem is well-defined and represents the corresponding Gaussian-

equivalent process.

6.3 Stationarity assumptions

The key results of this section are theorems 2 and 5, which establish that stationary (at level

0 or 1) Gaussian-equivalent processes are fully specified by their MSD 𝜓(Δ𝑡) (plus a constant

and—for level 1 stationarity—a random variable; both of these will mostly be set identically

zero such that we are not particularly concerned with them).

6.3.1 Level 0

Definition 6 (Level 0 stationarity). A stochastic process 𝑋(𝑡) is stationary (at level 0) if all

its finite dimensional distributions are independent of absolute time. That is, for any finite
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collection {(𝑡𝑖, 𝑥𝑖)}𝑖∈𝐼 , |𝐼| <∞ and Δ𝑡 ∈ R we have

𝑃 {𝑋(𝑡𝑖 + Δ𝑡) = 𝑥𝑖 ∀𝑖 ∈ 𝐼} = 𝑃 {𝑋(𝑡𝑖) = 𝑥𝑖 ∀𝑖 ∈ 𝐼} . (6.5)

Definition 7 (Stationarity of Gaussian-equivalent processes3). A Gaussian-equivalent process

is called stationary (at level 0) if its mean function and covariance kernel are independent of

absolute time:

𝜇(𝑡) = 𝑚 ∀ 𝑡 , (6.6)

Σ(𝑡, 𝑠) = 𝛾 (|𝑡− 𝑠|) ∀ 𝑡, 𝑠 . (6.7)

In this work, we will always assume decaying correlations: limΔ𝑡→∞ 𝛾(Δ𝑡) = 0. This allows

us to avoid pathological cases like this

Example 1 (Non-ergodic, level 0 stationary Gaussian process). Consider the process 𝑋(𝑡) :=

𝑌 ∀𝑡, with 𝑌 ∼ 𝒩 (𝜇, 𝜎2) some normally distributed random variable. This is a level 0 stationary

Gaussian process with mean 𝑚 = 𝜇 and covariance 𝛾(Δ𝑡) = 𝜎2.

Theorem 2. A level 0 stationary Gaussian-equivalent process with decaying correlations is fully

specified by its mean 𝑚 and MSD 𝜓(Δ𝑡). Furthermore, 𝜓(∞) <∞.

Proof. Writing out the expectation values shows that 𝜓(Δ𝑡) = 2𝛾(0)− 2𝛾(Δ𝑡). Decaying cor-

relations then allow us to identify 𝜓(∞) = 2𝛾(0) <∞, such that 𝛾(Δ𝑡) = 1
2 (𝜓(∞)− 𝜓(Δ𝑡)).

For future reference, we also note the following relation, which is similarly obtained by simple

expansion of the terms in the expected value and application of 𝛾(Δ𝑡) = 1
2 (𝜓(∞)− 𝜓(Δ𝑡)):

𝐶𝜏1,𝜏2(Δ𝑡) ≡
⟨[︁
𝑋(𝑡+ Δ𝑡+ 𝜏1)−𝑋(𝑡+ Δ𝑡)

]︁[︁
𝑋(𝑡+ 𝜏2)−𝑋(𝑡)

]︁⟩
c

(6.8)

= −𝛾(Δ𝑡+ 𝜏1)−𝛾(Δ𝑡− 𝜏2)+𝛾(Δ𝑡)+𝛾(Δ𝑡+ 𝜏1 − 𝜏2)

= 1
2
[︁
𝜓(Δ𝑡+ 𝜏1)+𝜓(Δ𝑡− 𝜏2)−𝜓(Δ𝑡)−𝜓(Δ𝑡+ 𝜏1 − 𝜏2)

]︁
. (6.9)

3This is often called second-order stationarity ; second-order stationary processes (i.e. representatives of a
stationary Gaussian-equivalent process) are not necessarily stationary under definition 6 (“strictly stationary”),
since higher order moments might depend on time.
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6.3.2 Level 1

Definition 8 (Increment process). For a stochastic process 𝑋(𝑡) and time lag 𝜏 ∈ R we define

the increment process (Δ𝜏𝑋) (𝑡) as

(Δ𝜏𝑋) (𝑡) ≡ 𝑋(𝑡+ 𝜏)−𝑋(𝑡) . (6.10)

Definition 9 (Increment stationarity). A process 𝑋(𝑡) is called increment stationary (stationary

at level 1) if all finite dimensional increment distributions are independent of absolute time. That

is, for any set {(𝜏𝑖, 𝑡𝑖,Δ𝑥𝑖) | 𝑖 ∈ 𝐼} , |𝐼| <∞ and Δ𝑡 ∈ R we have

𝑃 {(Δ𝜏𝑖𝑋) (𝑡𝑖 + Δ𝑡) = Δ𝑥𝑖 ∀ 𝑖 ∈ 𝐼} = 𝑃 {(Δ𝜏𝑖𝑋) (𝑡𝑖) = Δ𝑥𝑖 ∀ 𝑖 ∈ 𝐼} . (6.11)

Definition 10 (Gaussian-equivalent increment stationarity). A Gaussian-equivalent process𝑋(𝑡)

is called increment stationary (stationary at level 1) if its mean increments

𝑣𝜏 (𝑡) ≡ ⟨(Δ𝜏𝑋) (𝑡)⟩ (6.12)

and covariance structure

𝐶𝜏1,𝜏2(𝑡, 𝑠) ≡ ⟨(Δ𝜏1𝑋) (𝑡) (Δ𝜏2𝑋) (𝑠)⟩c (6.13)

are independent of absolute time 𝑡. In that case, we write

𝑣𝜏 (𝑡) ≡ 𝑣𝜏 , (6.14)

𝐶𝜏1,𝜏2(𝑡, 𝑠) ≡ 𝐶𝜏1,𝜏2(|𝑡− 𝑠|) . (6.15)

Theorem 3. The drift 𝑣𝜏 of an increment stationary process 𝑋(𝑡) is a linear function of the

lag time 𝜏 .

Proof. Consider

𝑣𝜏1+𝜏2 = ⟨𝑋(𝑡+ 𝜏1 + 𝜏2)−𝑋(𝑡+ 𝜏1) +𝑋(𝑡+ 𝜏1)−𝑋(𝑡)⟩ = 𝑣𝜏1 + 𝑣𝜏2 ∀ 𝜏1, 𝜏2 . (6.16)

Thus, 𝑣𝜏 is linear in the argument 𝜏 .
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We can thus without loss of generality write 𝑣𝜏 ≡ 𝑣𝜏 . A similarly strong constraint holds

for the covariance structure (see also eq. (6.9)):

Theorem 4. The covariance structure 𝐶𝜏1,𝜏2(Δ𝑡) of an increment stationary process 𝑋(𝑡) is

equivalent to its MSD 𝜓(Δ𝑡):

𝜓(Δ𝑡) = 𝐶Δ𝑡,Δ𝑡(0) , (6.17)

𝐶𝜏1,𝜏2(Δ𝑡) = 1
2
[︁
𝜓(Δ𝑡+ 𝜏1) + 𝜓(Δ𝑡− 𝜏2)− 𝜓(Δ𝑡)− 𝜓(Δ𝑡+ 𝜏1 − 𝜏2)

]︁
. (6.18)

Proof. Trivial by writing out the expectation values; we will show eq. (6.18) for reference. For

notational simplicity, we introduce 𝑡𝑖 ≡ 𝑡 + Δ𝑡, 𝑡𝑖+1 ≡ 𝑡 + Δ𝑡 + 𝜏1 = 𝑡𝑖 + 𝜏1, 𝑡𝑗 ≡ 𝑡, and

𝑡𝑗+1 ≡ 𝑡+ 𝜏2 = 𝑡𝑗 + 𝜏2. Then

𝐶𝜏1,𝜏2(Δ𝑡) ≡
⟨[︁
𝑋(𝑡𝑖+1)−𝑋(𝑡𝑖)

]︁[︁
𝑋(𝑡𝑗+1)−𝑋(𝑡𝑗)

]︁⟩
c

(6.19)

=
⟨
𝑋(𝑡𝑖+1)𝑋(𝑡𝑗+1)−𝑋(𝑡𝑖)𝑋(𝑡𝑗+1)−𝑋(𝑡𝑖+1)𝑋(𝑡𝑗) +𝑋(𝑡𝑖)𝑋(𝑡𝑗)

⟩
c

(6.20)

=

1
2
⟨
2𝑋(𝑡𝑖+1)𝑋(𝑡𝑗+1) −𝑋(𝑡𝑖+1)2 −𝑋(𝑡𝑗+1)2

−2𝑋(𝑡𝑖)𝑋(𝑡𝑗+1) +𝑋(𝑡𝑖)2 +𝑋(𝑡𝑗+1)2

−2𝑋(𝑡𝑖+1)𝑋(𝑡𝑗) +𝑋(𝑡𝑖+1)2 +𝑋(𝑡𝑗)2

+2𝑋(𝑡𝑖)𝑋(𝑡𝑗) −𝑋(𝑡𝑖)2 −𝑋(𝑡𝑗)2
⟩

c

(6.21)

= 1
2
[︁
− 𝜓(𝑡𝑖+1 − 𝑡𝑗+1) + 𝜓(𝑡𝑖 − 𝑡𝑗+1) + 𝜓(𝑡𝑖+1 − 𝑡𝑖)− 𝜓(𝑡𝑖 − 𝑡𝑖)

]︁
(6.22)

= 1
2
[︁
𝜓(Δ𝑡+ 𝜏2) + 𝜓(Δ𝑡− 𝜏1)− 𝜓(Δ𝑡)− 𝜓(Δ𝑡+ (𝜏2 − 𝜏1))

]︁
. (6.23)

This finally brings us to our desired

Theorem 5. A level 1 stationary Gaussian-equivalent process 𝑋(𝑡) is fully specified by its initial

value 𝑋(0), drift 𝑣, and MSD 𝜓(Δ𝑡).

Proof. 𝑋(𝑡) is given by its initial value and increment processes: 𝑋(𝑡) = 𝑋(0) +
(︀
Δ𝑡𝑋

)︀
(0).

The increment processes in turn are fully specified by 𝑣 and 𝜓(Δ𝑡), according to theorems 3

and 4.

Note that 𝑋(0) in the above theorem is still a random variable in principle. For the purpose
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of this work, however, we will just set 𝑋(0) ≡ 0. Similarly, we will mostly work with 𝑣 = 0, but

include it here for completeness.

6.3.3 Level 0 vs. Level 1

Summarizing theorems 2 and 5, we see that a Gaussian-equivalent process is mostly specified

in terms of its MSD 𝜓(Δ𝑡); we will set the remaining terms to zero for this section (for level 0:

𝑚 = 0; level 1: 𝑣 = 0 and 𝑋(0) ≡ 0). So given a specific MSD 𝜓(Δ𝑡), can we judge whether

we should think of this in terms of a level 0 or level 1 stationary process?

Essentially, yes:

• level 0 stationarity requires 𝜓(∞) <∞, so any MSD that grows indefinitely (𝜓(∞) =∞)

can only describe a level 1 stationary process.

• MSDs with 𝜓(∞) <∞ can describe level 0 or level 1 stationary processes. The difference

then lies in the initial value, which for level 1 stationarity is independent of the process

at other times (and we usually fix it to 0). This means we can think about a level 1

stationary process with 𝜓(∞) <∞ as sampling from the corresponding level 0 stationary

process and then shifting the trajectory to match the specified value at 𝑡 = 0. So while

possible in principle, this seems quite unnatural.

So in summary, while not technically a strict statement, the intuition is that

𝜓(∞) <∞ ⇔ level 0 , (6.24)

𝜓(∞) =∞ ⇔ level 1 ; (6.25)

technically accurate are only ⇐ in the first and ⇒ in the second line.

6.4 Parametrizations

In section 6.3 we established that stationary (level 0 or 1) Gaussian-equivalent processes are

mostly specified by their MSD 𝜓(Δ𝑡). This is still a functional degree of freedom, i.e. the

parameter space is infinite dimensional4. We therefore customarily restrict this parameter space
4The parameter space is infinite dimensional, but not completely unconstrained: the MSD 𝜓(Δ𝑡) still has to

be such that the resulting covariance kernel Σ(𝑡, 𝑠) is positive definite. This is an opaque constraint, in that we
are not aware of a more elementary formulation in general. Only for specific parametrizations this might translate
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to a subset of MSD curves that can be described by a finite number of real parameters (e.g.

powerlaws). Which parametrization to use is a modelling choice; bayesmsd therefore provides

a few default parametrizations that might be useful in different scenarios, but also facilitates

implementation of custom parametrizations depending on the problem at hand.

This section will describe the parametrizations included in the bayesmsd package [113].

6.4.1 SplineFit

This is a problem-agnostic (or “model-free”) parametrization of MSD functions 𝜓(Δ𝑡). We

choose a number 𝑛 of spline nodes, use their coordinates as parameter set, and define 𝜓(Δ𝑡)

by the cubic spline interpolation through these points.

Parameters. We define the spline interpolation (and the supporting nodes) in the transformed

coordinates

𝑥 ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
𝜋

arctan log Δ𝑡− log Δ𝑇min
log Δ𝑇max − log Δ𝑇min

(level 0 stationarity)

log Δ𝑡− log Δ𝑇min
log Δ𝑇max − log Δ𝑇min

(level 1 stationarity)
, 𝑦 ≡ log𝜓(Δ𝑡) , (6.26)

where Δ𝑇min is the minimum time between two frames (i.e. the inverse frame rate), while Δ𝑇max

is the maximum time between two frames (i.e. the maximum trajectory length).

Note the following special values for the coordinate 𝑥 as function of Δ𝑡:

𝑥 (Δ𝑇min) = 0 , 𝑥 (Δ𝑇max) = 1 , 𝑥 (∞) =

⎧⎪⎪⎨⎪⎪⎩
2 (level 0 stationarity)

∞ (level 1 stationarity)
. (6.27)

In principle, we need to describe 𝜓(Δ𝑡) only for Δ𝑡 ∈ [Δ𝑇min,Δ𝑇max], i.e. 𝑥 ∈ [0, 1]. For level 0

stationarity, however, 𝜓(Δ𝑡→∞) <∞ is an important additional fit parameter, meaning that

Δ𝑡 = ∞ has to be accessible numerically. This motivates the parametrization in eq. (6.26),

which ensures that Δ𝑡 =∞⇔ 𝑥 = 2 for level 0 stationarity.

Finally, the parameters for this fit are simply the coordinates {(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, . . . , 𝑛} for the

to bounds or constraints on the parameters: e.g. for powerlaw MSDs 𝜓(Δ𝑡) = Γ |Δ𝑡|𝛼, positive definiteness
constrains 𝛼 ∈ [0, 2).
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𝑛 spline nodes. To ensure coverage of the whole domain, we fix

𝑥1 = 0 𝑥𝑛 =

⎧⎪⎪⎨⎪⎪⎩
2 (level 0 stationarity)

1 (level 1 stationarity)
, (6.28)

such that ultimately we are left with 2𝑛− 2 independent fit parameters.

Boundary conditions. In addition to the nodes {(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, . . . , 𝑛}, the spline interpola-

tion needs two more constraints, which are usually written as boundary conditions; we require

the following:

𝜕2𝑦

𝜕𝑥2

⃒⃒⃒⃒
⃒
𝑥=0

= 0 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕𝑦

𝜕𝑥

⃒⃒⃒⃒
𝑥=2

= 0 (level 0 stationarity)

𝜕2𝑦

𝜕𝑥2

⃒⃒⃒⃒
⃒
𝑥=1

= 0 (level 1 stationarity)
. (6.29)

For level 1 stationarity, the boundary conditions in eq. (6.29) can be summarized as requiring

a vanishing second derivative5, which means that 𝑦(𝑥) is naturally extrapolated beyond the

domain 𝑥 ∈ [0, 1] by linear functions on both ends. Since the coordinates 𝑥 and 𝑦 in this

case are essentially the logarithms log Δ𝑡 and log𝜓, this means that we choose the boundary

conditions such that the MSD is naturally extrapolated beyond the existing data by powerlaws

both for shorter and longer lag times.

For level 0 stationarity, the MSD has to plateau for Δ𝑡 → ∞, which in terms of our

coordinates 𝑥 and 𝑦 means vanishing derivative of 𝑦(𝑥) at 𝑥 = 2. On the short lag time end of

the curve, we simply retain the natural boundary condition from level 1 stationarity.

Definition of 𝜓(Δ𝑡). Given the spline points {(𝑥𝑖, 𝑦𝑖) | 𝑖 = 1, . . . , 𝑛} and boundary conditions

(6.29), we can define a continuous function 𝑦(𝑥) by cubic spline interpolation [114, 115]. We

then simply set

𝜓(Δ𝑡) ≡ exp 𝑦
(︀
𝑥(Δ𝑡)

)︀
. (6.30)

Note that the interpolation is performed in the coordinate space (𝑥, 𝑦), i.e. the different

sections of 𝜓(Δ𝑡) will not be cubic polynomials themselves.
5often called “natural boundary condition” in the context of splines
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Model selection. One major application of splines for MSD fitting is dimensionality reduction,

i.e. understanding which features of an empirically calculated MSD curve are significant and

which are just noise. To that end, one can perform model selection over the number of spline

points 𝑛, thereby finding the “best” representation of the data, trading off model complexity

(number of spline points) with goodness of fit (model likelihood). We commonly use the Akaike

Information Criterion (AIC) for this purpose, though other methods could be considered.

6.4.2 NPXFit

“NPX” stands for “Noise + Powerlaw + arbitrary” and fundamentally constitutes a powerlaw

MSD. The “arbitrary” part refers to a spline extension at long times, which allows representing

MSDs that are assumed to match a powerlaw only at short times (e.g. if we want to fit a level

0 stationary process, where the MSD has to plateau at long times).

Noise. This refers to localization error and motion blur, and follows the generic treatment

presented in section 6.5. With the fractional exposure time 𝑓 fixed experimentally, this is

described by the single parameter 𝜎, the localization error.

Powerlaw. The central component of this parametrization is the powerlaw, i.e.

𝜓(Δ𝑡) = Γ |Δ𝑡|𝛼 . (6.31)

The two parameters for this part are the prefactor (“anomalous diffusion constant”) Γ ∈ R+

and the exponent 𝛼 ∈ [0, 2).

X: arbitrary. This parametrization allows to specify a number 𝑛 of spline points that are be

used to describe deviations from the powerlaw behavior (6.31) at long times. This reuses much

of the SplineFit framework described in section 6.4.1, specifically the coordinates 𝑥 and 𝑦

defined in eq. (6.26).

Given the number 𝑛, we construct a spline with 𝑛+1 points, which are given by coordinates

{(𝑥𝑖, 𝑦𝑖) | 𝑖 = 0, . . . , 𝑛}. Since now the spline should cover only part of the time domain (at

early times we have the powerlaw behavior of eq. (6.31)), 𝑥0 is now free and determines the

transition from powerlaw to spline.
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At the transition point 𝑥0, we can use the spline coordinate 𝑦0 and the early time boundary

condition to enforce continuity of the MSD and its first derivative. This gives

𝑦0 = log Γ + 𝛼 log Δ𝑡|𝑥=𝑥0
(6.32)

for continuity of the MSD and

𝛼
!= 𝜕 log𝜓
𝜕 log Δ𝑡

⃒⃒⃒⃒
𝑥=𝑥0

=
[︂
Δ𝑡𝜕𝑦

𝜕𝑥

𝜕𝑥

𝜕Δ𝑡

]︂
𝑥=𝑥0

(6.33)

for continuity of the first derivative. Taking into account the different coordinate transformations

𝑥(Δ𝑡) for level 0 and 1 stationary processes from eq. (6.26) we reformulate eq. (6.33) as proper

boundary condition:

𝜕𝑦

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝑥0

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜋𝛼

4

[︃
1 +

(︂
tan 𝜋𝑥0

4

)︂2
]︃

log Δ𝑇max
Δ𝑇min

(level 0 stationarity)

𝛼 log Δ𝑇max
Δ𝑇min

(level 1 stationarity)
. (6.34)

Summary. Taking all three parts together, this parametrization has a total of 3 + 2𝑛 parame-

ters, 𝑛 ∈ N0. These are the localization error 𝜎, the prefactor Γ, exponent 𝛼, and spline points

{(𝑥𝑖, 𝑦𝑖) | 𝑖 = 0, . . . , 𝑛} with 𝑦𝑖 and 𝑥𝑛 fixed as outlined above.

6.4.3 TwoLocusRouseFit

This is an example of a fully model-driven MSD parametrization and in fact the origin of this

Bayesian approach to MSDs. We used it in chapter 4 to fit a Rouse model to two-locus tracking

data.

For a polymer with time dependent conformation 𝑅(𝑡, 𝑠) (𝑠 being the coordinate along the

backbone of the polymer), we are interested in the dynamics of the two loci 𝑠1 and 𝑠2 relative

to each other. Thus, the stochastic process of interest is 𝑋(𝑡) ≡ 𝑅(𝑡, 𝑠2) − 𝑅(𝑡, 𝑠1). Under

the Rouse model of polymer dynamics (section 2.3), this is a Gaussian process and its MSD is

given by eq. (2.88), reproduced here for convenience:

𝜓(Δ𝑡) = 2Γ
√

Δ𝑡
(︁
1− e− 𝑡

𝜏

)︁
+ 2𝐽 erfc

√︂
𝑡

𝜏
, (6.35)

where Γ and 𝐽 are free parameters, while 𝜏 ≡ 1
𝜋

(︁
𝐽
Γ

)︁2
is just notational convenience.
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On top of this model we add imaging artifacts (localization error and motion blur) following

section 6.5, thus bringing the total parameter count up to three: 𝜎 (localization error), Γ, and

𝐽 .

6.5 Imaging artifacts

In general, when analyzing SPT data, we are looking at a convolution of the physical process

of interest with imaging artifacts like localization error (due to finite photon count) and motion

blur (due to finite exposure time). Both of these mean that the process we use to model the

observed data should be slightly modified from the theoretical—“physical”—process we would

usually want to model on the data. For a Gaussian-like process this means that the MSD will

be modified from the shapes given in section 6.4; this section aims at understanding what these

modifications should be.

Let us assume that we image the stochastic process 𝑋(𝑡) at discrete times {𝑡𝑛}, thus

obtaining the collection of random variables

𝑌𝑛 ≡
∫︁ Δ𝑇

0
d𝜃 𝜁(𝜃)𝑋(𝑡𝑛 − 𝜃) + 𝜎𝜉𝑛 , (6.36)

where Δ𝑇 ≡ min𝑚,𝑛|𝑚 ̸=𝑛 |𝑡𝑚 − 𝑡𝑛| is the minimum separation between time points, the shutter

function6 𝜁 : [0,Δ𝑇 ]→ R+ satisfies
∫︀Δ𝑇

0 d𝜃 𝜁(𝜃) = 1, 𝜎 is the standard deviation of localization

error, and 𝜉𝑛 are uncorrelated standard normal random variables.

Note that we did not assume even spacing of the {𝑡𝑛}, although this is overwhelmingly the

most common imaging modality. However, experimental data may have gaps (missing frames),

which makes the spacing uneven (though still integral multiples of Δ𝑇 ). For sake of generality

we then simply assume fully unevenly spaced {𝑡𝑛}. We then, however, have to take care of a

few details; the following list should be taken as footnotes to the calculations below.

We define 𝜏𝑚𝑛 ≡ 𝑡𝑚 − 𝑡𝑛 and note that

• 𝜏𝑘𝑚 + 𝜏𝑚𝑛 = 𝜏𝑘𝑛, since the 𝜏 are signed.

• We require 𝜏𝑚𝑛 ̸= 0∀𝑚 ̸= 𝑛, i.e. differently indexed times should be different.
6Here we are assuming that light emission by the fluorophore is continuous in time. However, considering single

photons arriving as inhomogeneous Poisson process with time dependent rate 𝜆(𝜏) reproduces this treatment in
expectation, with the shutter function 𝜁(𝜏) ∝ 𝜆(𝜏). We omit the discrete treatment here for brevity.
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• For 𝑛 ̸= 𝑚, the integration domains for 𝑌𝑚 and 𝑌𝑛 in eq. (6.36) should not overlap,

otherwise the localization error term would pick up correlations. This motivates the choice

of Δ𝑇 = min𝑚,𝑛|�̸�=𝑛 |𝜏𝑚𝑛|.

• Make sure to distinguish continuous time variables and discrete indices. This will be

especially important in the following study of increments, where clearly the “increment

process” should be defined with a lagtime, not a lagindex ; but this lagtime will only be

allowed to take values from subsets of {𝜏𝑚𝑛}.

• Below we will write Kronecker 𝛿’s over the time indices; note that with the above re-

quirement that 𝜏𝑚𝑛 ̸= 0 ∀𝑚 ̸= 𝑛 these can be expressed purely in terms of 𝜏𝑚𝑛, since

𝛿𝑚𝑛 = 1 ⇔ 𝜏𝑚𝑛 = 0.

6.5.1 Exact calculation of imaging artifacts for general MSD

Since eq. (6.36) is a linear transform, the increments of the process transform similarly:

(Δ𝜏𝑚𝑛𝑌 )𝑛 ≡ 𝑌𝑚 − 𝑌𝑛 =
∫︁ Δ𝑇

0
d𝜃 𝜁(𝜃)

[︁
𝑋(𝑡𝑚 − 𝜃)−𝑋(𝑡𝑛 − 𝜃)

]︁
+ 𝜎 (𝜉𝑚 − 𝜉𝑛) . (6.37)

If 𝑋(𝑡) is stationary (at level 0 or 1), its increment correlation takes the form 𝐶𝜏1,𝜏2
𝑋 (Δ𝑡).

We can similarly calculate

𝐶𝜏𝑘𝑙,𝜏𝑚𝑛𝑌 (𝜏𝑙𝑛) ≡
⟨

(Δ𝜏𝑘𝑙𝑌 )𝑙 (Δ
𝜏𝑚𝑛𝑌 )𝑛

⟩
c

(6.38)

≡
⟨

(𝑌𝑘 − 𝑌𝑙) (𝑌𝑚 − 𝑌𝑛)
⟩

c
(6.39)

=
∫︁ Δ𝑇

0
d𝜃 d𝜃′ 𝜁(𝜃)𝜁(𝜃′)

×
⟨[︁
𝑋(𝑡𝑘 − 𝜃)−𝑋(𝑡𝑙 − 𝜃)

]︁[︁
𝑋(𝑡𝑚 − 𝜃′)−𝑋(𝑡𝑛 − 𝜃′)

]︁⟩
c

+ 𝜎2
⟨

(𝜉𝑘 − 𝜉𝑙) (𝜉𝑚 − 𝜉𝑛)
⟩

c

(6.40)

=
∫︁ Δ𝑇

0
d𝜃 d𝜃′ 𝜁(𝜃)𝜁(𝜃′)𝐶𝜏𝑘𝑙,𝜏𝑚𝑛𝑋 (𝜏𝑙𝑛 + 𝜃′ − 𝜃)

+ 𝜎2 (𝛿𝑘𝑚 − 𝛿𝑙𝑚 − 𝛿𝑘𝑛 + 𝛿𝑙𝑛) .

(6.41)
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We transform the integration variables as

𝜗 ≡ 𝜃′ − 𝜃 ∈ [−Δ𝑇,Δ𝑇 ] , (6.42)

�̄� ≡ 𝜃′ + 𝜃

2 ∈
[︂ |𝜗|

2 ,Δ𝑇 − |𝜗|2

]︂
(6.43)

and use theorem 4 (for level 1 stationarity; but the same relations hold for level 0, cf. eq. (6.9))

to rewrite eq. (6.41) in terms of the MSDs 𝜓𝑋 and 𝜓𝑌 , for Δ𝑡 > 0:

𝜓𝑌 (Δ𝑡) = 𝐶Δ𝑡,Δ𝑡
𝑌 (0) (6.44)

= 2𝜎2 +
∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝐶Δ𝑡,Δ𝑡

𝑋 (𝜗) (6.45)

= 2𝜎2 + 1
2

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)

[︁
𝜓𝑋(𝜗+ Δ𝑡) + 𝜓𝑋(𝜗−Δ𝑡)− 2𝜓𝑋(𝜗)

]︁
, (6.46)

where

𝑍(𝜗) ≡
∫︁ Δ𝑇− |𝜗|

2

|𝜗|
2

d�̄� 𝜁
(︂
�̄� + 𝜗

2

)︂
𝜁

(︂
�̄� − 𝜗

2

)︂
. (6.47)

Note that 𝑍(−𝜗) = 𝑍(𝜗) and
∫︀Δ𝑇

−Δ𝑇 d𝜗𝑍(𝜗) = 1 by the normalization of 𝜁(𝜃). Furthermore,

by definition 𝜓(−Δ𝑡) = 𝜓(Δ𝑡), so we can exploit these parity symmetries and the symmetric

𝜗-integration domain to write

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓(𝜗−Δ𝑡) =

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓(Δ𝑡− 𝜗) =

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓(Δ𝑡+ 𝜗) , (6.48)

such that finally we find

𝜓𝑌 (Δ𝑡) = 2𝜎2 +
∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓𝑋(Δ𝑡+ 𝜗)−

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓𝑋(𝜗) . (6.49)

Below we will study the individual contributions to this expression in more detail. For intuition,

note that

• The first term is the standard additive constant due to localization error

• The second term is a “washed-out” version of the original MSD 𝜓𝑋 . Since 𝑍(𝜗) is

normalized, a first approximation for this term is
∫︀Δ𝑇

−Δ𝑇 d𝜗𝑍(𝜗)𝜓𝑋(Δ𝑡 + 𝜗) = 𝜓𝑋(Δ𝑡).

For common use cases, this approximation is actually accurate to within 2.5%; below we

will improve upon this rough approximation.
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• The third term does not depend on Δ𝑡 and thus presents another—negative—additive

constant. Note that it depends only on the MSD at 𝜗 ∈ [−Δ𝑇,Δ𝑇 ], i.e. lag times below

a single frame.

6.5.2 Solution for powerlaw MSDs and “all-or-nothing” illumination

To investigate the behavior of eq. (6.49) in more detail, let us consider MSDs of the shape

𝜓𝑋(Δ𝑡) = Γ |Δ𝑡|𝛼, 𝛼 ∈ [0, 2) and shutter functions of the shape

𝜁(𝜏) = 1
𝑓Δ𝑇 Θ (𝑓Δ𝑇 − 𝜏) ≡

⎧⎪⎪⎨⎪⎪⎩
1

𝑓Δ𝑇 𝜏 ∈ [0, 𝑓Δ𝑇 ] ,

0 else ,
(6.50)

with 𝑓 ∈ [0, 1] the fractional exposure time. Direct calculation then shows that

𝑍(𝜗) = 1
𝑓Δ𝑇

(︂
1− |𝜗|

𝑓Δ𝑇

)︂
Θ (𝑓Δ𝑇 − |𝜗|) ∀𝑓 > 0 , (6.51)

while for 𝑓 = 0 (ideal stroboscopic illumination) we find 𝑍(𝜗) = 𝛿(𝜗).

Having found an expression for 𝑍(𝜗) then allows us to calculate the integrals in eq. (6.49):

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓𝑋(Δ𝑡+ 𝜗) = Γ

∫︁ 𝑓Δ𝑇

−𝑓Δ𝑇

d𝜗
𝑓Δ𝑇

(︂
1− |𝜗|

𝑓Δ𝑇

)︂
|Δ𝑡+ 𝜗|𝛼 (6.52)

let 𝜙 ≡ 𝑓Δ𝑇
Δ𝑡 and substitute 𝑥 ≡ 𝜗

𝑓Δ𝑇 (6.53)

= Γ |Δ𝑡|𝛼
∫︁ 1

−1
d𝑥 (1− |𝑥|) |1 + 𝜙𝑥|𝛼 (6.54)

= Γ |Δ𝑡|𝛼 |1 + 𝜙|𝛼+2 + |1− 𝜙|𝛼+2 − 2
𝜙2(𝛼+ 1)(𝛼+ 2) (6.55)

≡ 𝜓𝑋(Δ𝑡)𝑏(Δ𝑡, 𝑓, 𝛼) . (6.56)

Clearly the integral in the third term of eq. (6.49) is just the same expression, evaluated at

Δ𝑡 = 0. It can straightforwardly be calculated from eq. (6.52), or obtained as the 𝜙→∞ limit
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of eq. (6.55). Taking the latter route here gives

∫︁ Δ𝑇

−Δ𝑇
d𝜗𝑍(𝜗)𝜓𝑋(𝜗) = Γ |Δ𝑡|𝛼 2 |𝜙|𝛼

(𝛼+ 1)(𝛼+ 2) (6.57)

= 2Γ |𝑓Δ𝑇 |𝛼

(𝛼+ 1)(𝛼+ 2) (6.58)

≡ 2𝐵 (Γ, 𝛼, 𝑓) . (6.59)

Finally, eq. (6.49)—for powerlaw MSDs—reads

𝜓𝑌 (Δ𝑡) = 𝜓𝑋(Δ𝑡)𝑏(Δ𝑡)− 2𝐵 + 2𝜎2 , (6.60)

where we suppressed the dependence on Γ, 𝛼, 𝑓 of the correction factors 𝑏 and 𝐵.

6.5.3 Approximation for non-powerlaw MSD

In analyzing eq. (6.60), we note that the term 𝐵 ≡ 1
2
∫︀

d𝜗𝑍(𝜗)𝜓𝑋(𝜗) only depends on the

“true” MSD 𝜓𝑋 at very short time lags, namely time lags shorter than the exposure time 𝑓Δ𝑇

(since 𝑍(𝜗) ̸= 0 only for 𝜗 ∈ (−𝑓Δ𝑇, 𝑓Δ𝑇 )). In fitting experimental data, therefore, by

construction we cannot give a good estimate for 𝐵, unless we make some assumption about

how the MSD we are currently fitting extrapolates to lag times shorter than the exposure time.

We will assume that on these sub-frame time scales, the “true” MSD 𝜓𝑋 is well described by

a powerlaw with an effective short time scaling exponent 𝛼0 ≡ limΔ𝑡→0
(︁
Δ𝑡 𝜕

𝜕Δ𝑡 log𝜓𝑋(Δ𝑡)
)︁
.

The correction term 𝐵 in eq. (6.60) then in general reads

𝐵 = 𝜓𝑋(𝑓Δ𝑇 )
(𝛼0 + 1)(𝛼0 + 2) . (6.61)

At first sight, this simple treatment in terms of an effective short time scaling exponent 𝛼0

should not work for the 𝑏(Δ𝑡) correction term in eq. (6.60), since this expression manifestly

depends on the MSD at finite lag times. However, evaluating 𝑏(𝜙, 𝛼) numerically (fig. 6.2)

shows that it is quite close to unity in general. Furthermore, relevant contributions essentially

decay completely over the first 10 exposure times (note that this might be significantly shorter

than 10 frames, if 𝑓 < 1); so while in principle this term should be calculated from the local

behavior of the MSD 𝜓𝑋 at Δ𝑡, we can quite reasonably replace that with just the short time

behavior, since the term is irrelevant elsewhere anyways. Thus, also for non-powerlaw MSDs,
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Figure 6.2: The correction term 𝑏(Δ𝑡, 𝑓, 𝛼). Equation (6.64) as function of 𝜙−1 ≡ Δ𝑡
𝑓Δ𝑇 for various

𝛼 (right) and exponent 𝛼 for fixed 𝜙 = 1 (left). Note how 𝑏 is generally close to unity and in either case
decays quickly over a few exposure times 𝜙−1 = 𝒪(1).

we use the same correction term 𝑏(Δ𝑡) as we would obtain for a powerlaw with exponent 𝛼0:

𝑏(Δ𝑡) ≈ |1 + 𝜙|𝛼0+2 + |1− 𝜙|𝛼0+2 − 2
𝜙2(𝛼0 + 1)(𝛼0 + 2) , with 𝜙 ≡ 𝑓Δ𝑇

Δ𝑡 . (6.62)

6.5.4 Summary

If we observe particles whose dynamics are described by a stochastic process 𝑋(𝑡) (stationary

at level 0 or 1) at discrete time points spaced by at least Δ𝑇 , the MSD of the observed process

𝑌 is given by eq. (6.49). Further assuming that illumination is constant over the exposure time

𝑓Δ𝑇 (𝑓 ∈ [0, 1]) and making minor approximations for simplicity, this reduces to

𝜓𝑌 (Δ𝑡) = 𝑏(Δ𝑡)𝜓𝑋(Δ𝑡)− 2𝐵 + 2𝜎2 , (6.63)

with

𝑏(Δ𝑡) ≡ |1 + 𝜙|𝛼0+2 + |1− 𝜙|𝛼0+2 − 2
𝜙2(𝛼0 + 1)(𝛼0 + 2)

(︂
𝜙 ≡ 𝑓Δ𝑇

Δ𝑡

)︂
, (6.64)

𝐵 ≡ 𝜓𝑋(𝑓Δ𝑇 )
(𝛼0 + 1)(𝛼0 + 2) , (6.65)

𝛼0 ≡
𝜕 log𝜓𝑋
𝜕 log Δ𝑡

⃒⃒⃒⃒
Δ𝑡→0

. (6.66)

Note that eq. (6.63) applies only for Δ𝑡 > 0. By definition of MSD, 𝜓𝑌 (0) = 0, even though

we might have limΔ𝑡→0 𝜓𝑌 (Δ𝑡) ̸= 0 according to eq. (6.63); the observed MSD 𝜓𝑌 (Δ𝑡) does

not have to (and usually will not) be continuous at Δ𝑡 = 0.
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6.6 Bayesian inference of parametrized MSDs

In section 6.3 we saw that stationary (level 0 or 1) Gaussian-equivalent processes are essen-

tially characterized in terms of their MSD 𝜓(Δ𝑡). We then introduced different parametriza-

tions of such MSD functions in section 6.4, such that for the purpose of this section we can

always assume a finite set of parameters 𝜃; we will write 𝜓 = Ψ(𝜃). Here we are now con-

cerned with inferring the parameters 𝜃 from observed data 𝐷, i.e. a set of 𝑁 trajectories

𝐷 ≡
{︁
𝑥𝑖(𝑡𝑖𝑗)

⃒⃒⃒
𝑗 = 1, . . . , 𝑛𝑖 , 𝑖 = 1, . . . , 𝑁

}︁
(𝑛𝑖 denoting the number of frames for trajectory

𝑖).

The logic of this section is quite straight-forward: we first establish theorem 6, which states

that any Gaussian-equivalent process has exactly one representative that is actually a Gaussian

process. We then utilize the likelihood function derived from these Gaussian processes to perform

Bayesian parameter inference.

Definition 11 (Gaussian Process). A stochastic process𝑋(𝑡) is a Gaussian process, if all its finite

dimensional distributions are Gaussian. That is, for any finite collection {(𝑡𝑖, 𝑥𝑖)}𝑖∈𝐼 , |𝐼| <∞

we have

𝑃 {𝑋(𝑡𝑖) = 𝑥𝑖 ∀𝑖 ∈ 𝐼} = 𝒩
(︁
𝑥
⃒⃒⃒
𝜇𝐼 ,Σ𝐼

)︁
, (6.67)

where 𝒩 (𝑥 | 𝜇,Σ) is the normal distribution with

mean 𝜇𝐼𝑖 ≡ ⟨𝑋(𝑡𝑖)⟩ ≡ 𝜇(𝑡𝑖) and (6.68)

covariance Σ𝐼
𝑖𝑗 ≡ ⟨𝑋(𝑡𝑖)𝑋(𝑡𝑗)⟩c ≡ Σ(𝑡𝑖, 𝑡𝑗) . (6.69)

Theorem 6. A Gaussian-equivalent process 𝑋(𝑡) has exactly one representative 𝑋𝐺(𝑡) that is

a Gaussian process.

Proof. By construction, mean function 𝜇(𝑡) and covariance kernel Σ(𝑡, 𝑠) of any Gaussian-

equivalent process define a valid Gaussian process. In turn, assume there are two Gaussian

process representatives 𝑋𝐺1(𝑡) and 𝑋𝐺2(𝑡) for the same Gaussian-equivalent process 𝑋(𝑡),

i.e. 𝜇𝐺1 ≡ 𝜇𝐺2 and Σ𝐺1 ≡ Σ𝐺2 . Since Gaussian processes are defined in terms of their

finite dimensional distributions, which are in turn given by 𝜇 and Σ, these two processes are

identical.

Definition 12. For a stationary (level 0 or 1) Gaussian-equivalent process with MSD 𝜓(Δ𝑡),
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we denote its unique Gaussian representative by 𝑋𝐺
𝜓 (𝑡).

We can now directly write the likelihood of observing the data 𝐷, given MSD parameters 𝜃:

𝑃 (𝐷 | 𝜃) =
𝑁∏︁
𝑖=1

𝑃
(︁
𝑥𝑖
⃒⃒⃒
𝜃
)︁

=
𝑁∏︁
𝑖=1

𝑃
(︁
𝑥𝑖
⃒⃒⃒
𝑋𝐺

Ψ(𝜃)

)︁
, (6.70)

where 𝑃
(︁
𝑥𝑖
⃒⃒⃒
𝑋𝐺

Ψ(𝜃)

)︁
signifies evaluation of the finite dimensional distributions (6.67) pertaining

to the process 𝑋𝐺
Ψ(𝜃) on the trajectories 𝑥𝑖 in the dataset 𝐷.

Suppressing the dependence on data 𝐷, we finally introduce the log-likelihood function

logℒ(𝜃) as

logℒ(𝜃) ≡ log𝑃 (𝐷 | 𝜃) =
𝑁∑︁
𝑖=1

log𝑃
(︁
𝑥𝑖
⃒⃒⃒
𝑋𝐺

Ψ(𝜃)

)︁
. (6.71)

Prior. For given parametrization, we introduce a prior 𝜋(𝜃) over the parameters 𝜃. By default

we just use a flat prior; note, however, that this statement depends on the details of the

parametrization. For example, in practice we parametrize the powerlaw part of NPXFit not

by prefactor Γ and exponent 𝛼, but by log Γ and 𝛼. The flat prior over log Γ then becomes

a log-flat prior over Γ, appropriate for a positive variable with unknown scale (since Γ carries

units, its numerical value could be 10−5 just as well as 105).

Posterior. According to Bayes’ rule, the posterior 𝑝(𝜃) over the parameters 𝜃 is now given by

𝑝(𝜃) = ℒ(𝜃)𝜋(𝜃)∫︀
d𝜃ℒ(𝜃)𝜋(𝜃) . (6.72)

The integral in the denominator is a normalization constant and has no influence on the shape

of the posterior. The maximum posterior (MAP) parameter estimate �̂� can thus be found by

numerical optimization of ℒ(𝜃)𝜋(𝜃):

�̂� = argmax
𝜃
ℒ(𝜃)𝜋(𝜃) . (6.73)

Credible intervals. Beyond the point estimate (6.73), the Bayesian approach allows us to

calculate credible intervals for the estimated parameters. This is especially useful when using

an interpretable parametrization, such as a powerlaw or the Rouse model.

There are multiple ways to estimate credible intervals, with different use cases and compu-

tational feasibility:
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• The theoretically most straight-forward approach is to evaluate the unnormalized posterior

ℒ(𝜃)𝜋(𝜃) over the full parameter space, calculate the normalization factor in eq. (6.72) and

delegate all further analysis to the true posterior distribution 𝑝(𝜃). This would allow for

example to calculate exact credible intervals by finding the region in parameter space over

which the posterior integrates to (say) 0.95. This approach is usually computationally not

feasible, because it requires too many evaluations of the likelihood function ℒ(𝜃) (which

is expensive)7

• An analytical approach to calculate asymptotically exact credible intervals employs Wilks’

theorem, which asserts that the likelihood ratio statistic is asymptotically 𝜒2 distributed:

−2 log Λ = −2 log ℒ(𝜃)𝜋(𝜃)
ℒ(�̂�)𝜋(�̂�)

𝐷→ 𝜒2
𝑑 , (6.74)

where 𝑑 is the dimensionality of the parameter space, i.e. the number of independent

fit parameters. A 1 − 𝛼 credible interval can then be found by moving each parameter

independently and finding the boundaries where

logℒ(𝜃)𝜋(𝜃) = logℒ(�̂�)𝜋(𝜃)− 1
2𝜒

2
𝑑,𝛼 . (6.75)

Naïvely applying this prescription, one finds credible intervals for the parameter 𝜃𝑖, condi-

tional on all other 𝜃𝑗 , 𝑗 ̸= 𝑖 taking the point estimate values. Usually, the more interesting

question is “which values of 𝜃𝑖 are consistent with the data, when we adjust everything

else properly?” This question can be answered by using the profile likelihood approach

instead: for parameter 𝜃𝑖, define the profile likelihood

ℒ𝑖(𝜃𝑖) ≡ max
𝜃𝑗 , 𝑗 ̸=𝑖

ℒ(𝜃)𝜋(𝜃) ; (6.76)

The corresponding credible interval boundaries are then given by

logℒ𝑖(𝜃𝑖) = logℒ𝑖(�̂�𝑖)−
1
2𝜒

2
1,𝛼 . (6.77)

Note that now the 𝜒2-percentiles are evaluated for a single degree of freedom; also, by
7One could imagine getting this to work with some smart sampling scheme like AMIS [102]. We do not further

pursue this avenue for now.
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definition of the MAP estimate �̂� we have ℒ𝑖(�̂�𝑖) ≡ ℒ(�̂�)𝜋(�̂�).

In practice, usually the profile likelihood credible intervals are the relevant ones.

• Finally, we can directly estimate the credible intervals by sampling. To that end we run

(e.g.) a Markov chain Monte Carlo (MCMC) scheme to generate a posterior sample{︁
𝜃𝑘
⃒⃒⃒
𝑘 = 1, . . . ,𝐾

}︁
, from which we can estimate marginal posterior distributions over

each individual parameter 𝜃𝑖. We can then give credible intervals from these marginal

distributions.

A handy way to parametrize the MCMC is to set the step size in each parameter direction

equal to the size of the profile likelihood credible interval. This means that each MCMC

sample is close to independent from the previous one, thus essentially setting the burn-in

time to zero.
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Chapter 7

Scale-free models of chromosome

structure, dynamics, and mechanics

This chapter was co-authored by Myself, Antoine Coulon, and Leonid Mirny.

It has been submitted for peer review; in the meantime, a pre-print is available online at the

bioRxiv, doi: 10.1101/2023.04.14.536939

7.1 Abstract

Scale-free, or fractal, models are prevalent in the study of chromosome structure, dynamics,

and mechanics. Recent experiments suggest the existence of scaling relationships; but currently

there is no single model consistent with all observed exponents. We present a simple argument

characterizing the space of scale-free models for chromosome structure, dynamics, and mechan-

ics and discuss the implications for a consistent treatment. Our framework helps reconciling

seemingly contradictory data and identifies specific experimental questions to be addressed in

future work.
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7.2 Main Text

The nucleus of a eukaryotic cell contains its genetic information in the form of chromatin—a

composite polymer of DNA and associated proteins. The physical nature of this polymer, and

specifically the local chromosomal context of a given locus, play crucial roles in determining

how the information encoded on the DNA is processed [116]. So-called enhancer elements for

example are thought to activate their target genes by “looping in” and physically contacting the

target promoter to initiate transcription [117–119]. How this interaction is regulated between

elements that can be separated by millions of base pairs remains an open question [120–122]; in

fact, the structure and dynamics of even the “bare” chromatin polymer itself—without additional

elements like enhancers and promoters—remain topics of active research [16,123,124].

Our understanding of the 3D structure of chromosomes has increased dramatically over the

last decade, primarily due to experimental techniques like Hi-C [7, 125] (measuring pairwise

contacts across the genome) and multiplexed FISH methods [15, 126] (visualizing chromosome

conformations in 3D space). Both techniques show that the chromatin fiber adopts a space-

filling conformation: two loci at a genomic separation 𝑠 are on average separated in space by a

distance 𝑅(𝑠) ∼ 𝑠
1
3 [123], corresponding to a confining volume 𝑉 (𝑠) ∼ 𝑅3(𝑠) ∼ 𝑠 [14]—thus

the term “space-filling”. The probability 𝑃 (𝑠) of finding these two loci in contact is then given

by the mean field approximation 𝑃 (𝑠) ∼ 1/𝑉 (𝑠) [127]; 𝑃 (𝑠) ∼ 𝑠−1 was broadly observed in

Hi-C experiments across vertebrate chromosome systems [7, 125]. Notably, this space-filling

spatial organization is more compact than one would expect for an ideal chain in equilibrium,

which should adopt a random walk conformation with 𝑅(𝑠) ∼ 𝑠
1
2 , corresponding to 𝑉 (𝑠) ∼ 𝑠

3
2

and 𝑃 (𝑠) ∼ 𝑠− 3
2 [20].

The study of chromosome dynamics has not seen a breakthrough comparable to Hi-C yet

and is therefore more heterogeneous. One main mode of investigation is fluorescent labelling

and tracking of individual genomic loci in live cells, allowing for characterization of the particles’

motion by the Mean Squared Displacement (MSD)

MSD(Δ𝑡) :=
⟨
(𝑥(𝑡+ Δ𝑡)− 𝑥(𝑡))2

⟩
∼ (Δ𝑡)𝜇 . (7.1)

While a freely diffusive particle would exhibit a linear MSD curve (𝜇 = 1), a chromosomal locus

(i.e. point on a long polymer) is expected to move subdiffusively (𝜇 < 1) due to the chain

connectivity. Indeed, experiments show 𝜇 ≈ 0.5 − 0.6 in eukaryotic cells [13, 98]. Notably—
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and in contrast to the spatial structure—this is consistent with an ideal chain (𝑅(𝑠) ∼ 𝑠
1
2 ,

𝑃 (𝑠) ∼ 𝑠− 3
2 ), for which the Rouse polymer model predicts 𝜇 = 1

2 [18, 19].

Taking an orthogonal angle on the question of chromatin dynamics, the present authors,

together with others, recently developed an experimental system to measure the force response

of a single genomic locus [128]. In response to a constant force switched on at 𝑡 = 0 the locus

displaced as 𝑥(𝑡; 𝑓) ∼ 𝑡0.5, consistent with the same (Rouse) model for polymer dynamics that

predicted the MSD scaling 𝜇 = 0.5—but which is inconsistent with the structure 𝑅(𝑠) ∼ 𝑠
1
3 of

real chromatin.

A model consistent with the space-filling structure of real chromatin is the fractal globule,

which describes crumpling of the chain due to topological constraints [129]. This, however,

predicts an MSD scaling of 𝜇 = 2
5 [17], markedly lower than the 𝜇 ≈ 0.5 − 0.6 observed in

experiments. Within the context of commonly used polymer models for chromatin, we are

thus left with two mutually contradictory observations: a fractal globule would reproduce the

compact structure, but with slower dynamics1; the fast dynamics are consistent with the Rouse

model, but that assumes an unrealistically open, equilibrium conformation. Does this point to

some fundamental inconsistency in structural vs. dynamical observations, or is it simply that

both models are wrong? If so, how can we reconcile all observations?

Chromosome structure and organization spans multiple orders of magnitude: from single

nucleosomes (∼11 nm) to whole nuclei (∼2–20 µm). As such, scale-free models—such as Rouse

or fractal globule—constitute useful null models for the description of chromosomes. Indeed, all

the observables mentioned above—contact probability 𝑃 (𝑠), spatial separation 𝑅(𝑠), MSD(Δ𝑡),

force response 𝑥(𝑡; 𝑓)—are expected to exhibit scaling behavior (read: are powerlaws), exactly

because of this scale-free nature of the null model. The point we aim to highlight with this

letter is that within the context of scale-free models, not only are these observables governed

by powerlaws, but their exponents also have to satisfy hyperscaling relations that are a direct

consequence of the scale-free assumption. These relations enable an informed discussion of the

mismatch between structure, dynamics, and mechanics highlighted above; awareness of these

relations is lacking in the literature [130].

Let us assume we have a scale-free model for chromatin structure, dynamics, and mechanics.

Such a model should predict the behavior of the observables outlined in the introduction and

because of the absence of finite length scales we expect to find powerlaws. Explicitly, we assume
1“slower” here technically meaning “more recurrent”, i.e. a lower exponent.
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Figure 7.1: Summary of the exponents considered in the text and what part of the system
they relate to. Left to right: 𝛼 controls the viscoelasticity of the solvent, i.e. the MSD of a free tracer
particle. Considering an isolated polymer coil as such a tracer particle, 𝛿 governs the dependence of its
(anomalous) diffusivity on the chain length; 𝜈 gives the scaling of the physical radius of the coil. The
motion of individual loci within the coil is characterized by 𝜇. Upon application of an external force,
such loci exhibit a powerlaw response with exponent 𝜌; the (fractional) velocity of this response is force
dependent, as indicated by 𝜓. Colors indicate which constitutive relation an exponent is associated with:
red for eq. (7.2), teal for eq. (7.3), orange for eq. (7.4), and blue for eq. (7.5).
*: “anomalous diffusivity” if 𝛼 ̸= 1

“fractional velocity” if 𝜌 ̸= 1.

the forms

𝑅(𝑠) = 𝐺𝑠𝜈 (7.2)

for the spatial distance between two loci at a genomic separation 𝑠;

MSD(Δ𝑡) = Γ (Δ𝑡)𝜇 (7.3)

for the MSD of a single genomic locus; and

𝑥(𝑡; 𝑓) = 𝐴𝑓𝜓𝑡𝜌 (7.4)

for displacement in response to a constant force 𝑓 switched on at time 𝑡 = 0 (red, teal, and

orange in fig. 7.1). Note how the equations concerning dynamics and force response consider

only a single locus, while the structural scaling refers to a finite stretch of chromatin. To bridge

this gap and connect structure and dynamics, we consider the whole-coil diffusion of a finite

and isolated stretch of chromatin. Over timescales longer than the internal relaxation time, we
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expect this coil to diffuse like a free particle, quantified by an MSD of the form

MSDcoil(Δ𝑡; 𝑠) = 𝐷𝑠−𝛿 (Δ𝑡)𝛼 (7.5)

(blue in fig. 7.1). Since we expect a free coil to undergo normal diffusion, 𝛼 = 1 seems like the

most natural choice; however, allowing 𝛼 < 1 incorporates the possibility of a viscoelastic solvent,

such that even a free tracer particle would undergo subdiffusion—which has been observed for

the nucleoplasm, though estimates for 𝛼 vary broadly (𝛼 ≈ 0.5− 1) [131–133]. The exponent

𝛿 can be understood as incorporating long-range spatial interactions of different loci on the

polymer. For a freely draining chain (such as the Rouse model), monomers are independent

from each other; whole-coil diffusivity is thus simply inversely proportional to chain length,

yielding 𝛿 = 1. The Zimm model [19], in contrast, incorporates hydrodynamic interactions

between the loci, which results in a hydrodynamic radius 𝑅hydro ∼ 𝑅(𝑠). MSDcoil ∼ 𝑅−1
hydro

then implies 𝛿 = 𝜈.

The observables described by eqs. (7.2) to (7.5) all have units of length. But we assume

that the underlying model itself does not have any finite length scale; this assumption would be

inconsistent, if we could construct such a finite length scale from the constants in the model,

i.e. from the prefactors in eqs. (7.2) to (7.5) and the thermal energy 𝑘B𝑇 . Their respective

dimensions are
[𝑘B𝑇 ] = 𝐿𝐹 , [𝐺] = 𝐿𝑆−𝜈 , [Γ] = 𝐿2𝑇−𝜇 ,

[𝐴] = 𝐿𝐹−𝜓𝑇−𝜌 , [𝐷] = 𝐿2𝑆𝛿𝑇−𝛼 ,

(7.6)

where we use the symbols 𝐿, 𝐹 , 𝑆, 𝑇 to denote length, force, genomic distance, and time,

respectively.

A quantity

𝑋 := (𝑘B𝑇 )𝑎𝐺𝑏Γ𝑐𝐴𝑑𝐷𝑒 (7.7)

now has units

[𝑋] = 𝐿𝑎+𝑏+2𝑐+𝑑+2𝑒𝐹 𝑎−𝜓𝑑𝑆−𝜈𝑏+𝛿𝑒𝑇−𝜇𝑐−𝜌𝑑−𝛼𝑒 ; (7.8)

setting [𝑋] = 𝐿—attempting to construct a length scale—gives a system of four equations for

the five variables 𝑎, 𝑏, 𝑐, 𝑑, 𝑒. Elementary substitutions reduce this system to one equation for

two variables, (︂
1 + 2𝜈

𝛿
− 2𝛼𝜈

𝛿𝜇

)︂
𝑏+

(︂
1 + 𝜓 − 2𝜌

𝜇

)︂
𝑑 = 1 , (7.9)
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which has a one-parameter family of solutions (𝑏, 𝑑)—unless both terms in brackets vanish. The

scale-free assumption is thus only self-consistent if the exponents obey the two constraints

2𝜈𝛼
2𝜈 + 𝛿

= 𝜇 = 2𝜌
1 + 𝜓

. (7.10)

These two constraints ensure that both brackets in eq. (7.9) vanish, thus preventing the emer-

gence of a finite length scale [𝑋] = 𝐿. The first relation has been reported previously, in the

special cases 𝛼 = 1, 𝛿 = 1 [17, 134]; 𝜈 = 1
2 , 𝛿 = 1 [28]; and 𝛿 = 1 [135]. The second relation

connecting dynamics and force-response is satisfied explicitly by the Rouse model [128,136], but

has not been studied in generality.

Consider the force response experiments of [128], where we determined 𝜌 ≈ 0.5, 𝜓 ≈ 1,

and 𝜇 ≈ 0.5, fully consistent with eq. (7.10). Notably, just the linear force response (𝜓 = 1)

suffices to predict 𝜌 = 𝜇; our measurement of the force response exponent 𝜌 ≈ 0.5 can thus be

interpreted as an independent validation of earlier experiments finding 𝜇 ≈ 0.5 [137].

The first relation in eq. (7.10) connects the structural and dynamical scalings 𝜈 and 𝜇,

both of which have been investigated in various experimental systems (see table 7.1). While

specifically yeast seems consistent with the Rouse expectations 𝜇 = 0.5, 𝜈 = 0.5, and 𝛼 =

1 [140], multicellular eukaryotes like fruit fly, mouse, or human, seem to behave differently.

For the purpose of this discussion, let us consider the case 𝜇 = 0.5, 𝜈 = 0.33 (fig. 7.2);

this seems consistent with best estimates, but is of course an idealization of the experimental

situation. Importantly, eq. (7.10) holds true for any value of these exponents. As outlined in

the introduction, 𝜇 = 0.5 matches our expectations from the Rouse model, while 𝜈 = 0.33

indicates a fractal globule; to the best of our knowledge, there is currently no consistent model

reproducing both. Reformulating the first relation in eq. (7.10) as

𝛿 = 2𝜈
(︂
𝛼

𝜇
− 1

)︂
(7.11)

shows that we should expect a 1-parameter family of models with different 𝛼 and 𝛿 that exhibit

the desired scalings in 𝜇 and 𝜈. We discuss a few of these options:

• In a freely draining chain (blue lines in fig. 7.2), individual monomers are independent,

such that 𝛿 = 1. This assumption is made in the Rouse model and in [17] for dynamics

of the fractal globule. Equation (7.11) then becomes 𝛼 = 5
4 > 1, i.e. we would need
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Organism 𝜇 𝜈 Ref. Notes
H. sapiens

HCT-116 - 0.3-0.41 [87] ΔRad21
- 0.3-0.42 [15]

HeLa 0.5 - [137] Telomeric probes
U2OS 0.55 - [137] Telomeric probes
MF 0.7 - [137] Telomeric probes

M. musculus
mESC 0.53 - [13] WT and ΔRAD21

0.63 - [98] WT and ΔRAD21
- 0.33-0.41 [90] ΔRAD21
- 0.15-0.42 [123]

hepatocytes - 0.41 [138] ΔNIPBL
3T3 0.4 - [137] Telomeric probes

D. melanogaster 0.583 0.313 [130] 𝜇 and 𝜈 determined
in same system

S. cerevisiae - 0.51 [139]
0.5 - [62]

E. coli 0.4 - [27]
Caulobacter 0.4 - [27]

1from Hi-C contact probability 𝑃 (𝑠) ∼ 𝑠−3𝜈 [127]
2direct measurement from multiplexed FISH
3two-locus live-cell measurement

Table 7.1: Measured scalings for MSD(Δ𝑡) ∼ (Δ𝑡)𝜇 and 𝑅(𝑠) ∼ 𝑠𝜈 . Chromosome structure is
frequently not strictly fractal due to loop extrusion; therefore we here focus on experiments where loop
extruding factors (Rad21, a component of the cohesin complex) or their loaders (Nipbl) were acutely
degraded, where possible. This overview is not exhaustive.
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Figure 7.2: Experimental results in the context of eq. (7.10). Shaded regions are consistent
with experimental determinations of structure 𝜈 (orange; directly from chromosome tracing or inferred
from Hi-C, the latter densely shaded) or dynamics 𝜇 (green; from SPT; dense shade indicates eukaryotic
estimate 𝜇 ≈ 0.5 − 0.6, light shade extends to bacterial estimate 𝜇 ≈ 0.4) respectively. Black error
bars indicate estimate from [130]. Red circle marks 𝜈 = 0.33, 𝜇 = 0.5, which serves as example for
discussion in the main text. Outlines show theoretically plausible regions (eq. (7.10)) for different 𝛼, as
indicated. The top (red) edge of these regions is given by the Zimm condition 𝛿 = 𝜈, while the bottom
(blue) edge is given by the freely draining chain (𝛿 = 1); the points inbetween correspond to 𝜈 < 𝛿 < 1.
Horizontal cutoffs (gray lines) are chosen for visual appeal. Common polymer models: Rouse chain and
fractal globule are indicated as black circles; both are instances of a freely draining chain with 𝛼 = 1
(blue curve).
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a medium in which free tracers undergo superdiffusion. This appears unrealistic for the

nucleoplasm. While it might in principle be achieved by energy dependent processes like

transcription or loop extrusion, we will not further pursue this point here.

• Including hydrodynamic interactions between different monomers amounts to 𝛿 = 𝜈, such

that 𝜇 = 2
3𝛼 independent of 𝜈 (red lines in fig. 7.2). This would allow matching 𝜇 ≈ 0.5

by tuning 𝛼 ≈ 0.75. While this is within current estimates for nucleoplasm viscosity, these

estimates scatter quite broadly (𝛼 ≈ 0.5 − 1), such that this consistency statement is

rather weak. Furthermore, due to crowding we should expect hydrodynamic interactions

to be screened in the nucleus [141,142], such that 𝛿 = 𝜈 appears questionable in the first

place.

• Between the two canonical values of 𝛿 = 1 (freely draining chain) and 𝛿 = 𝜈 (hydrody-

namic interactions), it is conceivable that chromatin loci in the nucleus do exhibit some

(effective) long-range interaction with 𝜈 < 𝛿 < 1. In a purely viscous nucleoplasm (𝛼 = 1),

eq. (7.11) would then imply 𝛿 = 2𝜈 = 2
3 , i.e. a whole-coil hydrodynamic radius scaling

as 𝑅hydro ∼ 𝑅2(𝑠) (cf. discussion below eq. (7.5)). While we are currently not aware of

a physical model producing this behavior, this is an interesting possibility that certainly

warrants further investigation.

Experimentally, there are two avenues to further narrow down the above 1-parameter family

to a single, scale-free null model of chromatin in the nucleus: measuring 𝛼 or 𝛿. Observation of

free particle diffusion in the nucleus has so far yielded conflicting results as to the viscoelastic

properties of the nucleoplasm: while [132] report 𝛼 = 0.5 − 0.6, [143] measure 𝛼 ≈ 0.75 in

yeast; [25,133] find normal diffusion 𝛼 = 1 on large scales (relative to multimeric GFP tracers),

with intermediate behavior strongly probe dependent; most recently, [140] reported 𝛼 ≈ 0.9 in

yeast and 𝛼 ≈ 0.86 in mammalian (hPNE) cells. Consensus about nucleoplasm viscosity is thus

outstanding. Furthermore, the material whose viscoelasticity is probed here is a solution contain-

ing chromatin, which presumably contributes some (if not all) of the observed elastic response;

it is thus even unclear what these results would imply for solvent viscoelasticity when modelling

chromatin explicitly. We thus suggest that measuring 𝛿 (long-range interactions) instead of

𝛼 (medium viscoelasticity) provides an orthogonal avenue towards a consensus model. Such

measurements would require observing the diffusion of free chromatin chains (e.g. nucleosome

arrays) of different length in the nucleus, which is feasible with current techniques. A major
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challenge in such experiments would be to ensure that the probes still obey the same structural

scaling 𝜈 as the rest of the genome. Early experimental work found 𝛿 ≈ 0.72 for naked DNA in

aqueous solution [144]; we are not aware of similar measurements for chromatinized DNA inside

the nucleus.

Our derivation of the exponent relations (7.10) strongly relied on the absence of finite length

scales; of course, no real system is truly scale-free. So what would be implied by experimental

data contradicting eq. (7.10)? First of all, it would simply mean that those data are not well

approximated by a single, consistent, scale-free model. It then stands to reason that a more

detailed model is required, which will most likely not predict powerlaws for the observables

under study in the first place (in which case there are of course also no exponent relations to

be satisfied). If any of the observables does indeed exhibit manifestly powerlaw scaling (a claim

that is generally quite hard to justify rigorously [145]), the underlying reason might be quite

interesting and should be investigated in detail. From a pragmatic point of view, eq. (7.10)

might thus be interpreted simply as a check on the appropriateness of powerlaw fits to multiple

observables.

To obtain the connection between unperturbed dynamics and response to an external force,

we included the thermal energy 𝑘B𝑇 in the set of model constants, because we assume the

unperturbed dynamics to be driven by thermal fluctuations. This does not immediately imply

an assumption about thermal equilibrium: 𝑘B𝑇 in our treatment does not necessarily have to

correspond to physical temperature, but should just be some energy scale of the fluctuations.

However, many active processes act over a finite length scale, such that in presence of active

fluctuations, the scale-free assumption might be questionable. In fact, assuming 𝑇 = 37 ∘C (the

physical temperature in the incubation chamber), we found good agreement between MSD and

force response in our earlier work [128], suggesting that chromosome fluctuations are indeed

largely driven by thermal noise.

We presented a streamlined version of the argument leading to eq. (7.10), tailored towards

the application to polymer structure, dynamics, and mechanics; a more systematic approach to

the dimensional analysis is given in chapter 8. Furthermore, the approach through dimensional

analysis is of course nothing but a reformulation of the more classical approach based on the

consideration of a finite subchain, as given e.g. in [17] for the freely draining chain; we provide

that reformulation below.
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7.3 Scaling of a finite subchain

The argument in section 7.2 is formulated in terms of dimensional analysis to emphasize that

it is a necessary conclusion of the scale-free assumption. It is easily reformulated in a more

physical language by considering a finite subchain of length s.

Equation (7.2) gives the physical size of this subchain as

l = 𝑅(s) = 𝐺s𝜈 . (7.12)

This allows for two independent definitions of a time scale: by setting MSD(Δ𝑡) = l2 we find

t =
(︃
𝐺2

Γ

)︃ 1
𝜇

s
2𝜈
𝜇 ; (7.13)

letting instead MSDcoil(Δ𝑡; 𝑠) = l2 yields

𝜏 =
(︃
𝐺2

𝐷

)︃ 1
𝛼

s
2𝜈+𝛿
𝛼 . (7.14)

Physically, both describe the relaxation time scale of the coil and should thus be equal (up to

a numerical prefactor). This requires that the exponents on s be the same, yielding the first

relation in eq. (7.10).

Similarly, eqs. (7.3) and (7.4) and the thermal energy 𝑘B𝑇 allow the construction of two

orthogonal force scales associated with our subchain, both of which should exhibit the same

scaling behavior with s (or in this case l):

f ≡ 𝑘B𝑇

l
!∼
(︂

l

𝐴t𝜌

)︂ 1
𝜓

=
(︃

Γ
𝜌
𝜇

𝐴

)︃ 1
𝜓

l
1
𝜓

− 2𝜌
𝜓𝜇 . (7.15)

Again equating the exponents (on l) yields the second relation in eq. (7.10).

While the formulation in terms of a finite subchain can aid physical intuition, the core

argument remains the same: if eq. (7.10) does not hold, a finite length scale emerges. To see

this, consider:

𝑞(s) := 𝜏(s)
t(s) = 𝐺

2
𝛼

− 2
𝜇𝐷− 1

𝛼Γ
1
𝜇 s

2𝜈+𝛿
𝛼

− 2𝜈
𝜇 . (7.16)

Since 𝑞 is a dimensionless ratio, if the scaling with s were non-trivial, the combination of
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constants in front would have units of 𝑆 to some power, translating to a length scale through

eq. (7.2). Thus, within the framework of scale-free models, any finite scale (length, force, or

otherwise) associated with the subchain s has to be unique. This is ultimately what drives the

scaling argument outlined here.
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Chapter 8

Dimensional analysis in scale-free

models of chromatin organization

In chapter 7 we developed a dimensional analysis argument to survey the space of scale-free

models for chromatin organization. In order to put more focus on the conceptual implications

there, we kept the dimensional analysis itself to a bare minimum and derived only the key

relations (eq. (7.10)) in isolation. This chapter outlines a more systematic approach to the

dimensional analysis that might also be useful in other contexts. We begin by developing some

general machinery in section 8.1, apply these strategies to free particles (section 8.3), and

subsequently polymers (section 8.4).

8.1 Machinery

Assume we have constants 𝐴1, . . . , 𝐴𝑛 with dimensions [𝐴𝑖] = 𝐷
𝛾1

1
1 · · ·𝐷

𝛾1
𝑚
𝑚 . Then we can build

a constant 𝑋 with dimension [𝑋] = 𝐷𝜉1
1 · · ·𝐷𝜉𝑚

𝑚 by solving the linear system

𝐶𝑎 ≡

⎛⎜⎜⎜⎜⎝
𝛾1

1 · · · 𝛾𝑛1
... . . . ...

𝛾1
𝑚 · · · 𝛾𝑛𝑚

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝑎1
...

𝑎𝑛

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝜉1
...

𝜉𝑚

⎞⎟⎟⎟⎟⎠ ≡ 𝜉 . (8.1)

We ensure that this system is unique for given constants by requiring that 𝐶 does not have

any all-zero rows (which would correspond to unused dimensions). Then the image space of

𝐶 has well-defined dimension 𝑚, such that a sufficient criterion for solvability of eq. (8.1) is
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rank𝐶 = 𝑚.

The key argument in the context of polymer scalings is then to set 𝑋 to have units of

length and ensure that eq. (8.1) is not solvable, such that no finite length scale emerges from

the observed scaling laws. This means that we use the inverse of the previous statement:

rank𝐶 < 𝑚 is necessary to prevent solvability of eq. (8.1). This will usually also be sufficient,

unless 𝜉 just so happens to lie in the restricted image space; it is usually quite straight-forward

to check whether this is the case.

So, at the end of the day, the main condition we need to ensure to prevent solvability of

eq. (8.1) is rank𝐶 < 𝑚. Since by construction 𝐶 does not have any all-zero rows, this is

equivalent to requiring that any matrix �̃� built from 𝑚 columns of 𝐶 has determinant zero.

The matrices we will consider are usually somewhat sparse; the following inductive reasoning

might thus be useful: consider an 𝑁 -by-𝑁 matrix where some row has only one non-zero entry;

by Laplace expansion, the determinant of the matrix is zero if and only if the determinant of

the (𝑁 − 1)-by-(𝑁 − 1) submatrix obtained by removing the row and column corresponding to

the non-zero entry is zero. This is visualized by the following example: let

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

𝑗 𝑘 𝑙

𝑚 𝑛 𝑜

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (8.2)

where zero entries are left empty to better visualize the structure. From this matrix, we would

derive constraints as follows:

• choose columns 1, 3, 5, 6; row 2 then contains only one non-zero entry (𝑔), so we can

restrict to columns 3, 5, 6 with row 2 removed. Then the new row 2 has only one non-zero

entry (𝑘), so we can further restrict to columns 5 and 6, yielding the constraint

0 !=

⃒⃒⃒⃒
⃒⃒⃒𝑒 𝑓

𝑛 𝑜

⃒⃒⃒⃒
⃒⃒⃒ = 𝑒𝑜− 𝑓𝑛 . (8.3)

• next, choose columns 1, 2, 3, 4, note that row 4 has three zeros; restricting to columns
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2, 3, 4 then gives

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
𝑏 𝑐 𝑑

ℎ 𝑖

𝑘 𝑙

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = 𝑑ℎ𝑘 − 𝑏𝑖𝑘 − 𝑐ℎ𝑙 . (8.4)

• finally, pick columns 1, 2, 3, 5, which does not reduce any further, so we calculate the

determinant explicitly by Laplace expansion along the first row:

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝑎 𝑏 𝑐 𝑒

𝑔 ℎ

𝑗 𝑘

𝑚 𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

= 𝑎ℎ𝑘𝑛− 𝑏𝑔𝑘𝑛− 𝑐ℎ𝑗𝑛− 𝑒ℎ𝑘𝑚 . (8.5)

These three constraints ensure that at least three columns of 𝐶 can be written as linear com-

bination of the others, such that we are left with rank𝐶 ≤ 𝑛− 3 = 3 < 4 = 𝑚. We can then

check explicitly that 𝜉 /∈ im𝐶 for whatever 𝜉 we are aiming to prevent.

Note that each constraint obtained this way amounts to a linearly dependent set of column

vectors; this translates to a dimensionless combination 𝑞 of constants. So, for each exponent re-

lation obtained from this construction we expect a corresponding relation between the constants

𝐴𝑖.

8.2 Notes

In the following, we will use the dimensions length (𝐿), force (𝐹 ), time (𝑇 ), and size (𝑆), the

latter being a utility to describe polymeric systems (see below).

We generally require that no finite length scale emerges from the heuristic constants intro-

duced, i.e. in the language of section 8.1 we set [𝑋] = 𝐿.

All exponents are assumed to be strictly positive.

8.3 Free particle

Consider a (for now point-like) particle in a dissipative medium, at equilibrium at position 𝑥 = 0,

i.e. 𝑥(𝑡) = 0 ∀ 𝑡 ≤ 0. In response to a constant force 𝑓 switched on at time 𝑡 = 0, we expect
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the particle to move as

𝑥(𝑡) = 𝐴𝑓𝜙𝑡𝜎 , [𝐴] = 𝐿𝐹−𝜙𝑇−𝜎 . (8.6)

Motivated by the fluctuation–dissipation theorem, in the absence of the force 𝑓 we expect this

particle to undergo fluctuations, characterized by

MSD(𝑡) ≡
⟨
𝑥2(𝑡)

⟩
= 𝐷𝑡𝛼 , [𝐷] = 𝐿2𝑇−𝛼 . (8.7)

Note that so far the dimensions 𝐿, 𝐹 , and 𝑇 do not have much physical meaning, but just

keep track of the exponents with which 𝑥, 𝑓 , and 𝑡 enter the equations, respectively. We now

explicitly add some of that physical meaning by requiring—again motivated by the FDT—the

existence of an energy scale, i.e. a constant with dimensions (length) · (force), which we call

temperature:

[𝑘B𝑇 ] = 𝐿𝐹 . (I)

This constant provides a connection between the force in eq. (8.6) and the fluctuations in

eq. (8.7). Accordingly, we now find a dimensional constraint:

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

1 2 1

−𝜙 0 1

−𝜎 −𝛼 0

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = −2𝜎 + 𝜙𝛼+ 𝛼 ⇔ 𝛼 = 2𝜎

1 + 𝜙
, (8.8)

along with the dimensionless quantity 𝑞1 satisfying

(𝑘B𝑇 )𝜙 = 𝑞1𝐴
−1𝐷

1+𝜙
2 . (8.9)

So far our test particle was a featureless point, i.e. all its properties and their interplay with

the medium were lumped together in the constants 𝐴 and 𝐷. In this framework, different

particles would be characterized by the values of these constants; but so far we cannot make

any statement about how the constants for different particles should be related to each other.

In our simple scaling description, test particles can differ by the material they are made of

and how that interacts with the dissipative medium (which we will not describe in more detail),

and by how much of that material there is; we call the latter the size 𝑠 of the particle. Clearly
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we expect the physical extent of the particle to change with its size, described by the relation

𝑅(𝑠) = 𝐺𝑠𝜈 , [𝐺] = 𝐿𝑆−𝜈 , (II)

where 𝑅(𝑠) has the same units as 𝑥(𝑡) (length 𝐿) and the size 𝑠 has an independent dimension

𝑆. Note that e.g. for a spherical particle we would usually identify its size and radius, such that

𝜈 = 1 and eq. (II) is a simple conversion from the artificial unit 𝑆 to physical length 𝐿. We

introduce eq. (II) in this form mainly for later use, where we will characterize the “size” of a

polymer coil by the length 𝑠 of the chain contained, which is connected to the physical extent

of the coil exactly through eq. (II), with the exponent 𝜈 indicative of the coil structure. Note,

however, that this is also conceptually clearer: a priori it is not clear why particle size 𝑠 and

displacement 𝑥 should have the same units, so we introduce them as independent and fix their

relationship through eq. (II).

We now expect the constants 𝐴 and 𝐷 to depend on the just introduced particle size 𝑠. In

a slight abuse of notation we will write 𝐴 ≡ 𝐴(𝑠) ≡ 𝐴𝑠−𝜀 and 𝐷 ≡ 𝐷(𝑠) ≡ 𝐷𝑠−𝛿; note how

eq. (8.9) now becomes

(𝑘B𝑇 )𝜙 = 𝑞1𝐴(𝑠)−1𝐷(𝑠)
1+𝜙

2 = 𝑞1𝐴
−1𝐷

1+𝜙
2 𝑠𝜀−

1+𝜙
2 𝛿 . (8.10)

At this point we add another physical condition to our description: test-particles of different

size should experience the same (effective) temperature, i.e. we set the above exponent on 𝑠 to

zero, leading to

𝜀 = 1 + 𝜙

2 𝛿 . (8.11)

We will rely on this relation for the remainder of this discussion and thus mostly omit 𝜀 from

discussion.

Incorporating the size-dependence into eqs. (8.6) and (8.7), these equations become

𝑥(𝑡) = 𝐴𝑠−𝜀𝑓𝜙𝑡𝜎 , [𝐴] = 𝐿𝑆𝜀𝐹−𝜙𝑇−𝜎 , (III)

MSD(𝑡) = 𝐷𝑠−𝛿𝑡𝛼 , [𝐷] = 𝐿2𝑆𝛿𝑇−𝛼 . (IV)
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The dimensional constraint resulting from eqs. (I) to (IV) then reads

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

1 1 1 2

0 −𝜈 𝜀 𝛿

1 0 −𝜙 0

0 0 −𝜎 −𝛼

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

= −𝜙𝛼𝜈 − 𝜀𝛼+ 2𝜈𝜎 + 𝜎𝛿 − 𝜈𝛼 ⇔ 𝛼 = 2𝜈 + 𝛿

(1 + 𝜙) 𝜈 + 𝜖
𝜎 ,

(8.12)

which upon application of eq. (8.11) clearly reduces to eq. (8.8).

In summary, we can describe a test particle in dissipative medium by eqs. (I) to (IV), where

the existence of a thermal energy scale (eq. (I)) and its independence of particle size (eq. (8.10))

are two physical assumptions about the system. The latter results in eq. (8.11), which together

with the dimensional constraint eq. (8.12) can be summarized as the exponent relations

𝛼 = 2
1 + 𝜙

𝜎 , 𝜖 = 1 + 𝜙

2 𝛿 . (8.13)

The dimensional constraint also enforces the existence of a dimensionless constant (eq. (8.9)),

given by

𝑞1 = 𝐷
1+𝜙

2

𝐴 (𝑘B𝑇 )𝜙 . (8.14)

For e.g. a Brownian particle (spherical particle in viscous solution) we have 𝜙 = 1, 𝜀 = 𝛿 = 1,

and 𝛼 = 𝜎 = 1, while the Einstein relation gives 𝑞1 = 2 (note that the symbol 𝐷 in our

equations corresponds to twice the diffusion constant of the particle, since the MSD of a freely

diffusing particle with diffusion constant �̃� is usually given by MSD(𝑡) = 2�̃�𝑡).

8.4 Polymer dynamics

Let us consider a quite specific type of test particle: a coil of polymer. A free (finite size) coil

can be treated as a point particle and thus follows the treatment of the previous section, which

accordingly is now interpreted as characterizing the interplay of the dissipative medium and the

polymer. To access the internal dynamics of the polymer, we now connect infinitely many of

these “test particle coils” together, such that we obtain an infinite polymer following the same

structural scaling (II) as the individual particles. This last statement implies that the whole

system is fractal, such that the scale of the initial coil is irrelevant and the following treatment

applies on all scales (specifically, it also describes the internal dynamics of our original test
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particle coil).

As mentioned before, we now take the size 𝑠 of a finite (sub-)chain to be its length along

the backbone, which relates to the physical extent 𝑅 of the coil through eq. (II).

The internal dynamics of the coil are described by the behavior of a single locus on the chain.

Similar to eqs. (8.6) and (8.7), this locus can respond to direct force application or fluctuations,

resulting in the constitutive relations

𝑥(𝑡) = 𝐵𝑓𝜓𝑡𝜌 , [𝐵] = 𝐿𝐹−𝜓𝑇−𝜌 , (V)

MSD(𝑡) = Γ𝑡𝜇 , [Γ] = 𝐿2𝑇−𝜇 . (VI)

Due to the algebraic similarity to eqs. (8.6) and (8.7) we expect that upon coupling these

two equations by the constant 𝑘B𝑇 , we obtain the exponent relation

𝜇 = 2
1 + 𝜓

𝜌 . (8.15)

The full treatment of the complete system reads as follows. We assemble the matrix 𝐶

(eq. (8.1)) from the constants in the constitutive relations (I) to (VI), giving

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 2 1 2

0 −𝜈 𝜀 𝛿 0 0

1 0 −𝜙 0 𝜓 0

0 0 −𝜎 −𝛼 −𝜌 −𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (8.16)

where the dimensions are sorted top to bottom as 𝐿, 𝑆, 𝐹 , 𝑇 . As outlined in section 8.1, the

exponent relations then follow by setting all 4-by-4 sub-determinants to zero:

• Using columns 1 through 4 gives

𝛼 = 2𝜈 + 𝛿

(1 + 𝜙)𝜈 + 𝜀
𝜎 , (8.17)

which splits into

𝛼 = 2
1 + 𝜙

𝜎 , 𝜖 = 1 + 𝜙

2 𝛿 (8.18)

upon requiring a particle size independent temperature (eq. (8.10)). This implies the
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existence of a dimensionless constant 𝑞1, such that

𝐷
𝜎
𝛼

(︁
𝐺

1
𝜈

)︁ 𝜎
𝛼
𝛿−𝜀

= 𝐷
1+𝜙

2 = 𝑞1𝐴 (𝑘B𝑇 )𝜙 , (8.19)

where the first expression corresponds to eq. (8.17), which simplifies to the second one

upon applying eq. (8.18). This is a summary of section 8.3.

• Columns 1, 5, and 6—as expected—yield

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
1 1 2

1 𝜓 0

0 −𝜌 −𝜇

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = −𝜓𝜇− 2𝜌+ 𝜇 ⇔ 𝜇 = 2

1 + 𝜓
𝜌 . (8.20)

This also implies the existence of a dimensionless constant 𝑞2, satisfying

Γ
1+𝜓

2 = 𝑞2𝐵 (𝑘B𝑇 )𝜓 . (8.21)

• Finally, we find a third constraint from columns 2, 4, and 6:

0 !=

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒

1 2 2

−𝜈 𝛿 0

0 −𝛼 −𝜇

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = −𝜇𝛿 + 2𝜈𝛼− 2𝜈𝜇 ⇔ 𝜇 = 2𝜈𝛼

2𝜈 + 𝛿
. (8.22)

We define the corresponding dimensionless quantity 𝑞3 such that

Γ
1
𝜇 = 𝑞3𝐺

𝛿
𝜈𝛼𝐷

1
𝛼 . (8.23)

From eqs. (8.19), (8.21) and (8.23) we see that we can express, respectively: 𝐴 in terms of

𝐷 and 𝑘B𝑇 ; 𝐵 in terms of Γ and 𝑘B𝑇 ; and 𝐷 in terms of 𝐺 and Γ. In terms of the matrix 𝐶

of eq. (8.16) this means that a maximal linearly independent subset of coulmns can be found
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by eliminating the columns corresponding to 𝐴, 𝐵, and 𝐷, such that we are left with

𝑐1 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑐2 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

−𝜈

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
𝑐6 ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2

0

0

−𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (8.24)

Since 𝜈 ̸= 0 ̸= 𝜇 by assumption, clearly �̂� ≡ (1, 0, 0, 0)T /∈ span {𝑐1, 𝑐2, 𝑐6} = im𝐶, such that

indeed the three constraints (8.18), (8.20) and (8.22) are not only necessary, but also sufficient

to ensure that no length scale emerges.

8.5 Summary

We consider a system described by the constitutive relations

[𝑘B𝑇 ] = 𝐿𝐹 , (I)

𝑅(𝑠) = 𝐺𝑠𝜈 [𝐺] = 𝐿𝑆−𝜈 , (II)

(free coil) 𝑥(𝑡) = 𝐴𝑠−𝜀𝑓𝜙𝑡𝜎 [𝐴] = 𝐿𝑆𝜀𝐹−𝜙𝑇−𝜎 , (III)

(free coil) MSD(𝑡) = 𝐷𝑠−𝛿𝑡𝛼 [𝐷] = 𝐿2𝑆𝛿𝑇−𝛼 , (IV)

(locus) 𝑥(𝑡) = 𝐵𝑓𝜓𝑡𝜌 [𝐵] = 𝐿𝐹−𝜓𝑇−𝜌 , (V)

(locus) MSD(𝑡) = Γ𝑡𝜇 [Γ] = 𝐿2𝑇−𝜇 . (VI)

The six constants 𝑘B𝑇 , 𝐺, 𝐴, 𝐷, 𝐵, and Γ can be combined into a length scale𝑋—contradictory

to our assumption of a scale-free model—unless

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 2 1 2

0 −𝜈 𝜀 𝛿 0 0

1 0 −𝜙 0 𝜓 0

0 0 −𝜎 −𝛼 −𝜌 −𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(8.25)
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has rank ≤ 3. Together with the physical requirement that temperature be independent of test

particle size (eqs. (8.10) and (8.11)), this yields the exponent relations

𝛼 = 2
1 + 𝜙

𝜎 , (8.26)

𝜀 = 1 + 𝜙

2 𝛿 , (8.27)

𝜇 = 2
1 + 𝜓

𝜌 , (8.28)

𝜇 = 2𝜈
2𝜈 + 𝛿

𝛼 . (8.29)

Except for the physical constraint (8.27), these imply dimensionless quantities 𝑞𝑖, such that

𝐷
1+𝜙

2 = 𝑞1𝐴 (𝑘B𝑇 )𝜙 , (8.30)

Γ
1+𝜓

2 = 𝑞2𝐵 (𝑘B𝑇 )𝜓 , (8.31)

Γ
1
𝜇 = 𝑞3𝐺

𝛿
𝜈𝛼𝐷

1
𝛼 . (8.32)

If we are interested predominantly in the internal polymer dynamics, we can summarize

eqs. (8.28), (8.29), (8.31) and (8.32) as

2𝜈𝛼
2𝜈 + 𝛿

= 𝜇 = 2𝜌
1 + 𝜓

, (8.33)(︁
𝑞3𝐺

𝛿
𝜈𝛼𝐷

1
𝛼

)︁𝜇
= Γ =

(︁
𝑞2𝐵 (𝑘B𝑇 )𝜓

)︁ 2
1+𝜓 . (8.34)
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8.6 Examples

The Rouse model of polymer dynamics (chapter 2) has

(single locus dynamics) 𝜇 = 1
2 , (8.35)

(single locus force response) 𝜌 = 1
2 , 𝜓 = 1 , (8.36)

(whole coil diffusion) 𝛿 = 1 , 𝛼 = 1 , (8.37)

(free coil force response) 𝜖 = 1 , 𝜙 = 1 , 𝜎 = 1 , (8.38)

(structure) 𝜈 = 1
2 ; (8.39)

𝑞1 = 2 , 𝑞2 = 2 , 𝑞3 = 2
𝜋
.

(8.40)
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Chapter 9

Conclusion and Outlook

Within the context of this thesis, chromosome structure can be subdivided into three aspects:

structure, dynamics, and mechanics. While chromosome structure is by now a well-established

area of research, studies of dynamics and mechanics are just growing out of their infancy.

The present thesis presents my contributions to this program: we investigated the dynamics

of chromatin loops with Anders Hansen, Christoph Zechner, and colleagues [13]; we probed

the mechanical response of interphase chromatin with Antoine Coulon and colleagues [128];

and finally, we provided a scaling argument to connect structure, dynamics, and mechanics

and devised a future path towards a unified model [146]. Multiple tools and techniques were

developed along the way and made accessible to the community [21,22,99,113,147]. So, where

do we go from here?

Starting from the end, I think one of the central goals to strive for over the next years is

the development of a consistent null model of chromatin as a physical object—or the realization

that no such thing exists in a useful way. Currently, depending on the use case and, frankly,

what happens to fit the data best, one of a small set of scale-free models is often employed to

“explain” experimental observations. The fact that the models used in the study of structure

(fractal globule) and dynamics (Rouse) are mutually inconsistent is usually acknowledged, but

otherwise ignored. As outlined in chapter 7, I believe that experiments in the not-too-distant

future should be able to determine whether we can reconcile these models and build a single,

consistent, scale-free null model of chromosome organization. Note that the counterfactual

in this case is equally, if not even more exciting: if we find manifest violations of eq. (7.10),

we might be forced to develop more detailed models of chromatin, moving the field beyond
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its current obsession with powerlaw scalings. It then becomes an interesting question whether

there even is such a thing as a useful null model of chromatin as a simple polymer, or whether

it would be more fruitful to include more of the biological context in our descriptions.

On the applied side, both the locus pulling (chapter 3) as well as the loop quantification

(chapter 4) projects provide initial forays into uncharted experimental territory and will lead to

much exciting future work.

Our study of cohesin-mediated CTCF–CTCF-looping was the first to put a time scale to

these loops, clearly pointing out their dynamic nature. Similar works have been published

since then [98] or are in the works [148]; we expect these ongoing efforts to eventually lead

to a comprehensive understanding of looping dynamics throughout the genome. Not least, of

course, we also hope to further contribute to this field ourselves: the actual extrusion dynamics

still evaded us in [13]. In fact, preliminary investigation with Henrik Pinholt showed that the

data in that study seem to be symmetric under time reversal, indicating that loop extrusion

as an active process might be mostly masked by experimental noise. Future improvements in

the experimental system are expected to enable detection of this activity. More broadly, having

established the statistical tools for looping inference (BILD; chapter 5), we now aim to move

beyond studying purely structural features and investigate the interactions of enhancers and

promoters. This should lead to major improvements in our mechanistic understanding of gene

regulation.

Pulling on a genomic locus in interphase (chapter 3) has similarly not been achieved before,

though here as well, exciting new developments are in the works [149]. Our study [128] was

a proof of principle, opening the stage for more systematic exploration of biological questions.

How is transcription impacted by these mechanical perturbations? Can we forcefully separate

enhancer and promoter pairs, thus preventing transcription of target genes in the pulled part of

the chromosome? This would provide an orthogonal—and quite unique—angle on enhancer–

promoter interaction mentioned already above. In turn, how does transcription modify the

mechanical properties of chromatin [66]? More mechanistically, how does strand passing (or

the absence of it) affect the observed force response? We observed a response consistent with

the Rouse model, which assumes a phantom chain (unhindered strand passing). Surprisingly

enough, this process is actually possible in the nucleus, catalyzed by topoisomerase-II; inhibiting

this enzyme would allow us to study to what extent the Rouse model is simply a useful effective

description of the data, and to what extent it actually captures some of the underlying physics.
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In a similar direction, what is the conformation of the pulled chain, and does it match the model

predictions? In the existing data, we could label only the pulled locus itself; utilizing recent

advances in imaging, we should be able to trace the conformation of the chromosome after the

pulling, or potentially even track some parts of it during the pull. I believe that future studies

of in vivo chromosome mechanics will lead to a host of valuable insights and therefore become

firmly established as the third pillar in the study of chromosome organization, next to structure

and dynamics.

Personally, I am excited to further explore these molecular, biological worlds. Much of

what is so foundational to us as living beings is governed by physics that we have little natural

intuition for, due to the vast mismatch of length scales—a human is about 105 times larger

than a typical eukaryotic nucleus, and 108 times larger than a nucleosome, the smallest unit

of genome structure (beyond the double helix itself). As such, studying any of these systems

is usually indirect to some extent and requires rigorous data analysis and statistical treatment;

often the fundamental task is not “go measure this, and see what it looks like”, but rather “given

these data, which part of it even contains any useful signal? What information is contained here

and how do we access it?”. In this regime, the region between what we can rigorously infer and

what is fundamentally not knowable from a given data set is often just a thin ridge. Stringent

method development then becomes imperative; this is where I see my comparative advantage

as a theorist. Indeed, the biggest joy of working in an interdisciplinary field is that everyone

has their comparative advantage: all my colleagues know things that I do not; and it is only by

joining all our distinct expertise that major progress can be made.
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