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Abstract

In the rst several hundred million years after the Big Bang, the rst stars and galax-
ies transformed the Universe. These ancient systems launched the creation of every
galaxy we see today, including the Milky Way. Ever since, for the last 13 billion
years, the Milky Way has grown through galaxy mergers. Several of these merg-
ers were with other similarly-sized galaxies and possibly a hundred of these mergers
were with small dwarf galaxies. The smallest dwarf galaxies accreted by the Milky
Way, the ultra-faint dwarfs (UFDs), are relics of the rst galaxies in the Universe
and provide important insight into early galaxy formation and chemical enrichment.
Currently, though, accreted UFDs are poorly understood and we lack ways to identify
stars that accreted from UFDs. By utilizing a simulation suite of 35 Milky Way-mass
galaxies forming, I nd that chemical tagging with -process elements and cluster-
ing in kinematic phase space can help us identify stars that accreted together from
these dwarf galaxies. Kinematic clustering only identies recently accreted UFDs
(  05), so we recommend chemical tagging as the more robust method to identify
these stars. I also present an analytic model of collapsar enrichment that can self-
consistently explain the observed scatter in -process chemical elements of old stars.
I am expanding on these studies with highly-resolved hydrodynamic simulations of
the earliest dwarf galaxies, the Aeos simulations. The methodology and initial results
for these simulations are also presented.

Thesis Supervisor: Anna Frebel
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Galactic Archaeology: Studying the History of

our Galaxy

The goal of galactic archaeology is to study the history of our home galaxy, the Milky

Way. Like traditional archaeologists who study the history of humanity by nding and

analyzing ancient artifacts, galactic archaeologists study the history of the Milky Way

by observing and analyzing ancient stars and stellar systems. Galactic archaeologists

aim to contextualize our galaxy’s past, present, and future in the Universe.

1.1.1 Galaxy Formation

The standard cosmological model, called "ΛCDM" or "Big Bang cosmology", is the

simplest model in general agreement with observations of the Universe. The "Λ"

represents the cosmological constant of dark energy and "CDM" stands for "Cold

Dark Matter". Together, dark energy and dark matter compose the majority of

the Universe, while "baryonic matter", e.g. normal matter like ourselves, composes

less than 5%. This model has been incredibly successful at explaining the large-

scale structure of galaxies, abundances of chemical elements, the cosmic microwave

background, and more.

According to ΛCDM, the rst galaxies formed 200-300 million years after the

17



Figure 1-1: Large galaxies grow over time through mergers with many smaller dwarf
galaxies. The formation history of a galaxy can be summarized through a "merger
tree" such as the one depicted here. The merger history of the Milky Way is a major
unsolved problem in galactic archaeology. Source: ESO/L. Calçada

Big Bang. During initial galaxy formation, baryonic matter was too hot to form

gravitationally-bound objects, so dark matter was necessary to form large structures.

Halos of dark matter arose from tiny initial density perturbations that grew under the

eect of gravity until they collapsed. Galaxies then grew hierarchically, merging with

other galaxies to grow larger over cosmic time. This hierarchical growth continues

today, over 13 billion years since the rst galaxies formed [White and Rees, 1978,

Davis et al., 1985].

To understand the formation history of a galaxy, we thus must understand its

merger history. Characterizing the galaxy mergers (how many galaxies of dierent

masses, what times the mergers occurred, and more) experienced by the Milky Way is

a major goal of galactic archaeology. The merger history of a galaxy can be visualized

as a "merger tree" as shown in Figure 1-1.
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a) One of the rst known maps of the Milky Way, a drawing from astronomer
William Herschel in 1785. Source: [Herschel, 1785]

b) The most complete map of the Milky Way to-date, a 2020 star map from the
European Space Agency’s Gaia mission. Source: ESA/Gaia/DPAC

Figure 1-2: Our image of the Milky Way has been revolutionized by the Gaia mission.
Gaia is a space observatory which has observed over a billion stars, roughly 1% of the
total number of stars in the Galaxy.

1.1.2 The Milky Way

The Milky Way is a large galaxy with a mass of about a trillion solar masses [Fragione

and Loeb, 2017] that formed from dozens of mergers over cosmic time. Recently,

astronomers have made incredible advances in mapping the MilkyWay. The European

Space Agency’s Gaia mission has observed 1.8 billion stars over the last several years,

forming the most complete map of our Galaxy to-date (see Figure 1-2b). This is

an extreme leap from the days of astronomers drawing the locations of stars and
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Figure 1-3: Diagram of the Milky Way from an external point of view. This diagram
looks into the plane of the Galaxy, so the spiral arms are not visible. The outskirts
of the Galaxy (the "stellar halo") contain many accreted stars left over from merger
events.

mapping the Milky Way by hand (see Figure 1-2a), allowing us to identify subtle

structures left over from merger events in the past. For example, the identication of

the Gaia Sausage or Gaia-Enceladus structure (so-named because of its sausage-like

shape in velocity space) is a signicant recent nding indicating that the Milky Way

experienced a major galaxy merger about 8-11 billion years ago [Belokurov et al.,

2018, Helmi et al., 2018]. Stellar kinematic data from the Gaia mission has also lead

to a better understanding of several other major mergers (e.g., Sequoia, Myeong et al.

2019; Kraken, Kruijssen et al. 2019, 2020, Forbes 2020; and more, Naidu et al. 2020).

A schematic of the Milky Way can be seen in Figure 1-3. The majority of stars

are located in the plane of the Galaxy, in the disks and the bulge. The Sun is located

in the thin disk about 8 kpc from the center. The disk is where star formation occurs,

so the in situ stars that formed in the Milky Way are mostly found in these areas.

On the other hand, the accreted stars – the stars that formed in other galaxies which

merged into the Milky Way – can be found all over the Galaxy. When dwarf galaxies

merge with the Milky Way, they are stripped apart and their stars are scattered

throughout the Galaxy. In particular, the stellar halo, the extended outskirts of the

Galaxy, is home to old metal-poor stars which largely accreted from now-destroyed

dwarf galaxies [Bell et al., 2008, Bullock and Johnston, 2005]. The stars in the stellar

halo thus form a fossil record of the many galaxy mergers throughout the Milky Way’s

formation history.

When we observe stars in the Milky Way today, we can obtain two primary cat-
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egories of stellar data: stellar kinematics (e.g., through parallax measurements like

Gaia) and stellar chemical abundances (e.g., through spectral analysis). Astronomers

have collected kinematic data on over a billion Milky Way stars and chemical abun-

dances on thousands to millions of Milky Way stars (depending on which chemical

elements). Obtaining detailed chemical abundances is dicult because it requires

high-resolution spectra and careful analysis, but the chemical abundances of a star are

important because they reveal information about the star’s origins. This is because

chemical composition of any unevolved star we observe has been roughly constant un-

til now, so observations of the present-day composition in a 13 billion year old star are

actually measurements of the chemical composition of their birth gas cloud 13 billion

years ago [Freeman and Bland-Hawthorn, 2002]. In this way, chemical abundances

of old stars are windows into the early Universe and an important tool in galactic

archaeology.

1.2 The Origins of Chemical Elements

In the Big Bang, only hydrogen (H), helium (He), and trace amounts of lithium

(Li) were created. All other chemical elements (called "metals" in astronomy) had

to be synthesized through other processes. The basic nucleosynthetic processes are

described in Burbidge et al. [1957]. Elements up to iron (Fe) are synthesized in the

cores of massive stars and expelled into the Universe when the star dies in a core-

collapse supernova. Lower mass stars can only synthesize elements up to carbon and

oxygen before they become white dwarfs after having exhausted their nuclear fuel.

White dwarfs can then accrete material until they explode in a Type Ia supernova,

producing iron-peak elements (elements around Fe). The lightest elements (Li, Be,

B) are created when a high energy cosmic ray collides with heavier nuclei in the

interstellar medium, fragmenting them into lighter nuclei.

When elements lighter than iron (Fe) fuse, the process produces energy because the

fusion creates a nucleus that is lighter than the two initial nuclei combined. Producing

elements heavier than iron would require excess energy, however. All heavier elements
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thus must be made through "neutron-capture" processes [e.g., Sneden et al., 2008].

In neutron-capture processes, nuclei are bombarded with free neutrons, producing

heavier nuclei that decay to stability through beta decay. There are two primary

neutron-capture processes: the slow neutron capture process (-process) and the rapid

neutron capture process (-process). The -process occurs when densities of neutrons

are low (  108 cm−3), primarily in asymptotic giant branch (AGB) stars [Busso

et al., 1999]. The -process occurs when densities of neutrons are suciently high

( ∼ 1024 cm−3) that multiple neutron captures occur before a beta decay. Following

observations of the neutron star merger GW170817 in 2017 [Abbott et al., 2017a,b],

neutron star mergers have been conrmed as an astrophysical site of the -process.

A periodic table summarizing the astrophysical origins of every chemical element in

shown is Figure 1-4.

The amount of "metals" in the Universe increases with time. The Universe begins

essentially metal-free, and then stars and stellar remnants synthesize metals over

time. “Metallicity” is thus often treated as a rough proxy for time; metal-poor stars

are generally older than metal-rich stars. Fe is the typical reference element used

to quantify a star’s metallicity because it is both relatively easy to measure and

produced in nearly all supernovae. By convention, chemical abundance ratios are

typically dened in relation to the Sun: [A/B] ≡ log10( )* − log10( )⊙

for elements A and B, where  represents the abundance of A. Therefore, a star

with [Fe/H] = −2 has 1/100th the metallicity of the Sun and is likely billions of years

older.

1.2.1 Rapid Neutron Capture Process (-Process)

As one of the two main neutron capture processes, the -process produces around

half of the isotopes of the heaviest elements in the periodic table. Gold, platinum,

and silver are all formed primarily by the -process. Because the -process requires

extremely neutron-dense, high-energy environments, however, it can only occur in

specic astrophysical sites. There has been debate over which astrophysical sites

produce -process material since the 1950s. Thanks to the detection of an optical
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Figure 1-4: This periodic table is color coded to indicate humanity’s best guess as to
the nuclear origin of all known elements. Source: NASA/CXC/K. Divona; Reference:
SDSS blog, J. Johnson

transient associated with the neutron star merger GW170817, one conrmed astro-

physical site is neutron star mergers [Abbott et al., 2017a,b]. When two neutron

stars collide, neutron-rich ejecta is blown out into space, hosting the production of

radioactive heavy nuclei whose decay is visible through a "kilonova" associated with

the merger [e.g., Drout et al., 2017, Pian et al., 2017]. Neutron star mergers are thus

one source of the -process, but it is unclear if other signicant sources exist.

In particular, neutron star mergers may be unable to explain observations of -

process material in metal-poor stars. Neutron star binaries take time to form and

coalesce, and it is unclear if this occurs suciently quickly to enrich the gas which

forms metal-poor ([Fe/H]  −25) stars [e.g., Argast et al., 2004, Skúladóttir et al.,

2019, Cescutti et al., 2015, Wehmeyer et al., 2015, Haynes and Kobayashi, 2019].

Furthermore, when a neutron stars form during supernova explosions, they receive

natal kicks that could send them ying out of small, early galaxies [Bramante and

Linden, 2016, Beniamini et al., 2016, Bonetti et al., 2019]. Collapsing massive stars

(“collapsars") could be an alternative source of -process material, but this remains

observationally unconrmed. The astrophysical sites of the -process remain a source

of debate, especially in early, small galaxies. Chapter 3 investigates this problem in
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more detail.

1.3 Relics of the First Galaxies: Ultra-Faint Dwarf

Galaxies

The smallest, earliest galaxies only formed stars from redshift  ∼ 20 until  ∼ 6

when they were quenched by reionization [Brown et al., 2014]. Because of this, they

are primitive systems that are frozen in time with ancient stars from 13 billion years

ago. Over time, many of these small galaxies merged to help form the galaxies we

observe today, including the Milky Way [Frebel, 2010]. Stars from these tiny galaxies

(“ultra-faint dwarfs”,  < 105⊙) thus are relics from the era of the rst stars and

galaxies, preserving clean signatures of early chemical enrichment. They are also vital

ingredients in our own formation history. The stars from these accreted ultra-faint

dwarf galaxies (UFDs) are found largely in the extended outskirts of our galaxy, the

stellar halo [Bell et al., 2008]. The stars in the stellar halo thus reveal information

about the assembly history of the galaxy. However, we currently lack ways to reliably

identify which stars originated in which dwarf galaxies. This is particularly dicult

for ultra-faint dwarfs, the smallest dwarf galaxies, because even though they represent

> 90% of all accreted galaxies in the Milky Way, they contributed fewer than 1% of the

total number of stars [e.g., Brauer et al., 2022]. They only contribute signicantly at

stellar metallicities [Fe/H]  −25 (see Figure 1-5). These poorly-understood building

blocks of the stellar halo are important examples of some of the rst galaxies in the

Universe, but we are unable to identify their remnants. Chapters 2 and 4 tackle this

problem, investigating both chemical tagging and kinematic clustering as methods to

identify stars from ultra-faint dwarfs.

Surviving ultra-faint dwarf galaxies can also be found orbiting the Milky Way

today. In the past 15 years, dozens of UFDs have been discovered in the Local

Group [e.g., Bechtol et al., 2015]. High-resolution spectroscopy has provided chemical

abundances of over 15 of these dwarfs, with dozens to come in the next decade.
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Figure 1-5: Contribution by galaxy mass to a Milky Way-mass stellar halo at dierent
[Fe/H]. This plot shows results for an example simulated accreted stellar halo of a
Milky Way-mass galaxy (see Chapter 3). High [Fe/H] is dominated by a few massive
satellites (Sagittarius- and Fornax-mass accreted galaxies) and low [Fe/H] is domi-
nated by many smaller satellites (Sculptor-, Ursa Minor-, and UFD-mass accreted
galaxies). UFDs do not contribute signicantly until [Fe/H]  −25.

Simultaneously, chemical abundances of millions of stars in the Milky Way stellar

halo are being obtained through wide-eld spectroscopic programs such as GALAH

(De Silva et al. 2015), H3 (Conroy et al. 2019), APOGEE (Majewski et al. 2017),

RAVE (Steinmetz et al. 2006), SEGUE (Yanny et al. 2009), and LAMOST (Cui et al.

2012), with more to come from WEAVE (Dalton et al. 2014), DESI (Allende Prieto

et al. 2020), 4MOST (de Jong et al. 2019), SDSS-V (Kollmeier et al. 2017), and the

Rubin Observatory (Ivezić et al. 2019).

The problem is that observations of stars in dwarf galaxies and our stellar halo are

outpacing theoretical models. We have a wealth of data, but we cannot leverage the

full detail within it. Observations show scatter around the mean trends of chemical

abundances in dwarf stellar populations [e.g., Ji et al., 2020]. Current state-of-the-art

chemical evolution models can explain mean trends in the data, but are incapable

of modeling the scatter and full distribution because they assume instantaneous for-

mation of clusters of stars with homogeneous mixing of yields [e.g., Côté and Ritter,

2018]. New, more detailed models are necessary to fully utilize the data to explore
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complex galaxy formation processes including source-dependent metal mixing, hierar-

chical galaxy merging, bursty star formation, and variations across dierent galaxies.

This is especially vital for stars from small, high-redshift galaxies because even JWST

cannot directly observe these faint objects [Boylan-Kolchin et al., 2016], meaning our

only path forward is to take full advantage of the dwarf stellar populations around

us. Chapter 5 describes a novel cosmological simulation of early galaxy formation

that will allow star-by-star comparison with the UFD populations in and around the

Milky Way.

1.4 Overview of Thesis

The goal of this thesis is to study the evolution of the rst galaxies, their contribu-

tions to the Milky Way, and the origins of heavy chemical elements. The remaining

chapters comprise several published papers, the methodology for a new cosmological

simulation, and a conclusion. All of the work in this thesis is theoretical and compu-

tational, mostly using cosmological simulations. The theoretical results are put into

context with observational data.

Chapter 2 reproduces the paper The Origin of -process Enhanced Metal-Poor

Halo Stars in Now-Destroyed Ultra-Faint Dwarf Galaxies [Brauer et al., 2019]. In

this paper, I investigate the possibility of using observations of -process chemical

elements in old stars as a method of identifying accreted stars that originated in

ultra-faint dwarf galaxies. Using the Caterpillar simulation suite – a dark-matter-

only suite of 35 Milky Way-mass galaxies forming in a cosmological setting [Grien

et al., 2016] – and analytical prescriptions for baryonic matter, I simulate producing

-process stars exclusively in accreted ultra-faint dwarfs. I then compare the fraction

of simulated stars with -process enhancement to the fraction of real stars in the

Milky Way stellar halo with -process enhancement to determine whether metal-poor

-process stars may have largely originated in accreted ultra-faint dwarfs.

Chapter 3 reproduces the paper Collapsar -process Yields Can Reproduce [Eu/Fe]

Abundance Scatter in Metal-Poor Stars [Brauer et al., 2021]. In this paper, I study
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whether collapsars could be the primary astrophysical site of -process material in

the early Universe. Neutron star mergers are a conrmed site of the -process [Drout

et al., 2017, Abbott et al., 2017a], but it is unclear if they are able to produce the

material observed in metal-poor stars. Collapsars are a possible alternative. We

produce an analytic model to study whether collapsars can reproduce observed -

process abundance scatter in old stars.

Chapter 4 reproduces the paper Possibilities and Limitations of Kinematically

Identifying Stars from Accreted Ultra-Faint Dwarf Galaxies [Brauer et al., 2022]. In

this paper, I quantify the success of dierent clustering algorithms at kinematically

identifying remnants of ultra-faint dwarfs in the stellar halos of Milky Way-mass

galaxies. Identifying clusters of stars in kinematic phase space has been a useful

method of studying recent high-mass galaxy mergers, but tiny ultra-faint dwarf galax-

ies have signicantly weaker kinematic signatures. Using a suite of 32 Milky Way-mass

galaxies, I run 10,000 clustering tests with dierent algorithms, radial cuts, hyperpa-

rameter choices, and more. I quantify the possibilities and limitations of this method

with regards to ultra-faint dwarfs.

Chapter 5 describes ongoing work to produce, for the rst time, a high-resolution

cosmological simulation of galaxy formation with individual star particles, individual

stellar feedback with detailed stellar yields, and adaptive grids to capture detailed

metal mixing in the interstellar medium from the rst stars. The simulation is called

Aeos, and its value is its detailed tracing of 13 chemical elements associated with dif-

ferent nucleosynthetic channels in individual star particles. Using a modied version

of Enzo adaptive mesh renement simulation code [Bryan et al., 2014], the simula-

tion has currently been run to redshift  = 145 with 124 star-forming halos and over

140,000 star particles. I present the methodology, initial results, and planned next

steps.

Chapter 6 concludes and summarizes all results.
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Chapter 2

The Origin of -Process Enhanced

Metal-Poor Halo Stars In

Now-Destroyed Ultra-Faint Dwarf

Galaxies

This chapter is based on work previously published in The Astrophysical Journal

(Brauer et. al 2019).

2.1 Introduction

In the favored cosmological paradigm, galaxies grow hierarchically over time [White

and Rees, 1978, Davis et al., 1985]. Dark matter halos (and the galaxies inside

them) merge together to form larger and larger galaxies, resulting in a nal galaxy

comprising both stars that formed in situ and stars that formed in the now-destroyed

progenitor galaxies. The in situ stars are found primarily in the disk and bulge of

the galaxy, where star formation is ongoing. The accreted stars are found primarily

in the extended outskirts of the galaxy: the stellar halo [Bell et al., 2008]. The stars

in a galaxy’s stellar halo thus preserve information about the now-destroyed building

blocks of that galaxy [Bullock and Johnston, 2005].
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The stellar halo can include a signicant number of in situ stars as well, though

[Monachesi et al., 2018]. Furthermore, even among the stars that are believed to

have been accreted, the properties of the galaxies in which they formed are largely

a mystery. To decode the information stored in stellar halo stars, we must identify

the stars that were accreted and determine the types of galaxies from which they

accreted. One way to do this is by looking for stars with kinematic signatures of

accretion [Johnston et al., 1996, Johnston, 1998, Helmi et al., 1999, Venn et al.,

2004]. Many galaxy mergers occurred early in the history of the galaxy, however, and

by the time we observe the stellar halo, many of these kinematic signatures can be

dicult to observe.

Selecting stars with specic chemical signatures provides another way forward.

The Milky Way’s accreted stellar halo is composed of long-ago destroyed galaxies

covering a wide range of stellar masses. Those disrupted galaxies formed their stars

at dierent rates, imprinting dierent chemical signatures on their most metal-poor

stars [e.g., Kirby et al., 2011a, Lee, 2014, Ishimaru et al., 2015]. In particular, early -

process (rapid neutron-capture process) nucleosynthesis events in small dwarf galaxies

would imprint a clean -process signature on the subsequently formed stars in those

galaxies.

The -process is responsible for producing around half of the abundances of the

heaviest elements in the periodic table [Burbidge et al., 1957, Cameron, 1957]. For

more information, see the recent review papers by Frebel [2018], Thielemann et al.

[2017], and Arcones et al. [2017]. Recently, it has become apparent that the majority

of -process material in the universe is likely synthesized in neutron star mergers

(NSMs) [Hotokezaka et al., 2015, Ji et al., 2016b, Abbott et al., 2017a,b]. Because

neutron star mergers appear to have a long coalescence timescale (100 Myr) and

the metallicity of a stellar system increases with each new stellar generation, NSM

events should only result in metal-poor stars with an -process signature if those stars

formed in dwarf galaxies with low star formation eciencies (i.e., galaxies that form

new generations of stars slowly relative to larger galaxies like the Milky Way or LMC)

[Ishimaru et al., 2015, Ojima et al., 2018]. This is supported by observations of the
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surviving ultra-faint dwarf galaxy Reticulum II. The metal-poor stars in Reticulum

II formed from gas that was enriched by a prolic -process event, believed to be a

neutron star merger [Ji et al., 2016b].

In this paper, we investigate the possibility that metal-poor stellar halo stars with

strong -process signatures originated primarily in now-destroyed ultra-faint dwarf

galaxies (UFDs) similar to Reticulum II. If this is true, the -process stars we observe

today could play a key role in understanding how the smallest building blocks of the

Milky Way contribute to the Galaxy’s formation.

This work is a rst attempt to investigate this origin scenario of metal-poor -

process halo stars. We use cosmological models based on hierarchical galaxy formation

simulations of Milky-Way-mass galaxies. This is described in Section 2.2, wherein we

discuss our simulations and compare them to observed stellar halos (i.e., those of MW,

M31, and GHOSTS galaxies). Star formation and chemical enrichment in low-mass

galaxies is a eld still under development (e.g., it is still dicult for semi-analytic

models to reproduce even the mass-metallicity relation, Lu et al. 2017). We thus

use empirical relations and parameterized models. In Section 2.3, we describe our

simple, empirically motivated treatment of -process enrichment of early low-mass

UFDs. Our results and a detailed discussion of the limitations of our model are found

in Section 3.4. Our conclusions are summarized in Section 3.6.

2.2 Simulations

We analyze 31 dark-matter-only cosmological simulations of Milky Way-mass halos

from the Caterpillar Project [Grien et al., 2016]. The zoom-in simulations in this

suite have an eective resolution of 16,3843 particles of mass 3×104 M⊙ in and around

the galaxies of interest, resolving halos down to total mass ∼106 M⊙. The temporal

resolution is 5 Myrs/snapshot from z = 31 to z = 6 and 50 Myrs to  = 0. The

simulated halos in the suite span an unbiased range of accretion histories. For our

analysis, we selected the simulated halos that were most Milky-Way-like, removing

the halos that experienced late major mergers.
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We briey summarize details of how the simulations were developed [for a more

extensive explanation, see Grien et al., 2016]. The halos in the zoom-in simulations

were selected from a larger, lower resolution parent simulation in which structure

evolved in a periodic box of comoving length 100 ℎ−1 Mpc with 1,0243 particles of

mass 122 × 107 M⊙. The cosmological parameters were adopted from Planck 2013

ΛCDM cosmology: Ω = 032, ΩΛ = 068, Ω = 005, 8 = 083,  = 096, and

H = 100 ℎ km s-1 Mpc-1 = 67.11 km s-1 Mpc-1 [Planck Collaboration et al., 2014].

Initial conditions were constructed using MUSIC [Hahn and Abel, 2011]. In the zoom-

in simulations, care was taken to ensure that only the high-resolution volume of

the Milky Way at  > 10 is studied and that no halos are contaminated with low-

resolution particles. Dark matter subhalos were identied using a modied version

of ROCKSTAR [Behroozi et al., 2013b, Grien et al., 2016] and mergers trees were

constructed by CONSISTENT-TREES [Behroozi et al., 2013c]. The halos were assigned

a virial mass  and radius  using the evolution of the virial relation from

Bryan and Norman [1998]. For our cosmology, this corresponds to an overdensity of

∆ = 104 at  = 0.

To dene the “main branch" and “destroyed subhalos" of a nal  = 0 halo (called

the “host halo"), we trace back the progenitors of the host halo at each simulation

time step. At a given time step, the most massive progenitor of the host halo is a

member of the “main branch" and all other direct progenitors that merge into main

branch halos are the “destroyed subhalos". A subhalo is considered destroyed when

it is no longer found by the halo nder.

2.2.1 Assigning Stellar Mass and Metallicity to Subhalos

Since the Caterpillar halos only include a dark matter component, we incorporate

luminous material through empirical relations, following Deason et al. [2016]. For the

results shown in this paper, we use the  − relation derived by Garrison-

Kimmel et al. [2017a] to estimate the stellar mass in each destroyed subhalo.  is

dened as the peak virial mass from a subhalo’s history. We also test the−

relations derived by Garrison-Kimmel et al. [2014], Brook et al. [2014], Moster et al.
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[2013], and Behroozi et al. [2013a] [see Dooley et al., 2017]. The eects of the dierent

relations are discussed in Section 2.4.4.

We also use empirical relations to estimate the metallicity of the stellar mass in

the destroyed subhalos. We adopt a mass-metallicity ( − ⟨[Fe/H]⟩)1 relation

based on the  = 0 relation determined by Kirby et al. [2013b] for dwarf galaxies:

⟨[Fe/H]⟩ = (−169± 004) + (030± 002) log

(

106⊙

)
(2.1)

This  = 0 relation is combined with the redshift evolution found by Ma et al.

[2016] from hydrodynamical simulations: ∆[Fe/H] = 067[−0.5 − 1]. This redshift

evolution is consistent with observations [Leethochawalit et al., 2018]. For the de-

stroyed subhalos that are suciently massive to form stars after reionization, we use

the redshift of their destruction () as the redshift at which to determine their

mean metallicity. Determining their metallicity at other redshifts (e.g., the redshift

at which they reach peak mass, , or the redshift at rst infall, ) does not

signicantly aect results. For subhalos that form stars before reionization but have

their star formation permanently suppressed (e.g., UFDs; for our full denition of

UFDs see Section 2.3.1), we use  = 0 as the redshift at which to determine their

mean metallicity. This is because the UFDs observed today at  = 0 also stopped

forming stars long ago and thus will appear similar (at least in metallicity) to the

UFDs that were destroyed.

After determining the mean metallicity of each subhalo, we assume a Gaussian

distribution about the mean with standard deviation of 0.4 dex. This standard de-

viation aligns with the observed intrinsic scatter for dwarfs at  = 0 [Deason et al.,

2016]. The metallicity distribution function (MDF) of each individual destroyed sub-

halo is weighted by the stellar mass of the halo and combined to form the MDF of

the accreted portion of the stellar halo. Our resolution supports metallicities down

to about [Fe/H] ∼ −45; below this metallicity, the MDF receives a greater than 1%

contribution from unresolved halos.
1For elements A and B, [A/B] ≡ log() − log()⊙, where  represents the abun-

dance of .
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Table 2.1: Values For Model Parameters
Fiducial Values Justication

 8 6, 8, 10, 12 From radiation-hydrodynamic simulation1, ⟨⟩ = 78
 5× 107 ⊙ 108 ⊙ Atomic cooling threshold2, corresponds to  ∼ 104 K

5× 107 ⊙ Results in ∼120 surviving UFDs3 when  = 8
 2× 109 ⊙ 6× 109 ⊙ From hydrodynamical simulations4, corresponds to  ∼ 25 km/s

2× 109 ⊙ From radiation-hydrodynamic simulations of reionization5

 10% 5− 15% Percentage of UFDs observed to be -process enhanced6

, 109 ⊙ varied Max mass for a halo to be highly enriched after a single -process event7
1see Aubert et al. [2018]; 2see Bromm and Yoshida [2011]; 3see Section 2.2.2 and

Newton et al. [2018];
4see Okamoto et al. [2008]; 5see Ocvirk et al. [2016]; 6see Section 2.3.2; 7see Section

2.3.1

These methods of assigning stellar mass and metallicity to the destroyed subha-

los are nearly the same methods used by Deason et al. [2016]. The two signicant

dierences are (1) our use of an updated  −  relation that assumes in-

creased scatter about the relation for lower mass halos and (2) our use of  = 0 as the

redshift at which to determine the metallicity of destroyed UFDs. While they used

 instead of  = 0 for UFD metallicity, they acknowledge that  = 0 is likely the

appropriate redshift to use. They only did not use  = 0 because the metallicity of

the UFDs did not aect the bulk properties they were interested in.

2.2.2 Mass Scales for Star Formation

To determine which destroyed subhalos have their star formation permanently sup-

pressed by reionization, which subhalos restart star formation after reionization, and

which subhalos never form stars, we adopt cutos at dierent halo mass scales [e.g.,

Dooley et al., 2017]. These mass scales,  and , are summarized in Table 2.1.

We also assume instantaneous reionization. The choice of reionization redshift is

most important for the stellar mass of low-mass halos. Using a radiation-hydrodynamics

simulation of Milky-Way-like galaxies, Aubert et al. [2018] found that progenitor halos

with ( = 0) < 1011 ⊙ reionized around the globally averaged 50% reionization

at ⟨⟩ = 78. We therefore assume  ∼ 8, but investigate several possible

reionization redshifts ( = 6, 8, 10, 12).

 is the minimum halo mass needed to form stars. One option for  is 108
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⊙, corresponding to  ∼ 104 K. This is motivated by the atomic cooling threshold

a halo must exceed before star formation can be eciently sustained [Bromm and

Yoshida, 2011]. We also investigate a slightly lower choice for . Our choice of

signicantly changes the number of surviving satellite UFDs at  = 0.  = 108

⊙ results in only ∼40 surviving UFDs. About 40 surviving UFDs around the Milky

Way have already been discovered and many more are expected to be found, so this

number is low [Dooley et al., 2017]. Graus et al. [2018] also recently found that the

threshold for  must be lowered to match the observed number of satellites. We

therefore adopt = 5×107 ⊙. This choice results in each simulation having∼120

surviving UFDs at  = 0 (assuming  = 8), which is roughly the number expected

to exist around the Milky Way [Newton et al., 2018]. We also tested  = 7× 107

⊙, but this choice results in each simulation having ∼70 surviving UFDs at  = 0,

which is too few.

 is the ltering mass, the mass below which galaxies are signicantly aected

by the photoionizing background. A halo must surpass this mass scale to continue

star formation after reionization [Gnedin, 2000]. Using hydrodynamical simulations

of low mass halos in an ionizing background, Okamoto et al. [2008] found that halos

with circular velocities below ∼25 km s-1 (corresponding to  ∼ 6 × 109 ⊙)

lose a signicant amount of their gas due to photoheating. More recent radiation-

hydrodynamic simulations of reionization by Ocvirk et al. [2016] nd that photoheat-

ing suppresses the star formation of halos below  ∼ 2 × 109 ⊙. The ltering

mass scale is still uncertain, so we try both of these thresholds.

Of the around 20,000 resolved subhalos that are destroyed into each of our 31

host halos, fewer than 100 subhalos become massive enough to ever form stars. If

a subhalo has  <  at reionization and  < , it does not form

stars prior to reionization and has its star formation permanently suppressed by

reionization, meaning it does not ultimately contribute to a stellar halo. Subhalos

that form after reionization but remain low mass (never surpassing the mass threshold

for star formation;  >  ) also do not form stars.

These mass scales only aect low-mass halos. Because the stellar halo is domi-
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Figure 2-1: The average metallicity and total stellar mass of the Caterpillar stellar
halos compared to the stellar halos of the Milky Way, M31, and galaxies in the
GHOSTS survey. The span of the Caterpillar stellar halos well captures the bulk
properties of these galaxies and their relative dierences.

nated by only a few high-mass destroyed halos, these mass scales do not aect bulk

properties of the stellar halo. They are signicant for the low-metallicity portion of

the stellar halo that we are interested in, however.

2.2.3 Simulated Stellar Halos vs. Observed Stellar Halos

To verify that our stellar mass and metallicity estimations are reasonable, we compare

the properties of the simulated stellar halos to those of real, observed stellar halos.

Despite the similarities between the Caterpillar stellar halos and the observed stellar

halos, however, we caution that our simulated stellar halos are formed exclusively

from accreted stars while actual stellar halos are not. Some accreted stars inevitably

end up in the disk/bulge and some in situ disk/bulge stars inevitably end up being

thrown into the stellar halo [e.g., Cooper et al., 2015, Gómez et al., 2017]. Thus while

we will use the terms “stellar halo" and “accreted stars" somewhat interchangeably,

there is a dierence. Our simulated stellar halos are approximations of actual stellar

halos. We discuss the eects of this approximation in Section 2.4.4.

Figure 2-1 compares the average metallicity and total stellar mass of each of the
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(a)  = 5× 107 ⊙,  = 2× 109 ⊙ (b)  = 5× 107 ⊙,  = 6× 109 ⊙

Figure 2-2: Cumulative metallicity distribution functions for stellar halo stars with
[Fe/H] < −2. The Caterpillar halos are compared to the Milky Way stellar halo
[Schörck et al., 2009]. Results do not noticeably change for  = 108 ⊙. Assumes
 = 8.

Caterpillar stellar halos (composed entirely of ex situ stars) to those of observed

stellar halos. We compare to galaxies in the GHOSTS survey [NGC253, NGC891,

M81, NGC4565, NGC4945, and NGC7814; Monachesi et al., 2016, Harmsen et al.,

2017], the Milky Way (,ℎ ∼ 37 ± 12 × 108 ⊙, Bell et al. 2008; ⟨[Fe/H]⟩ ∼
−13 to − 22, Carollo et al. 2010), and M31 (,ℎ ∼ 2± 1× 109 ⊙, Williams

et al. [2015]; ⟨[Fe/H]⟩ ∼ −05 to − 13, Kalirai et al. [2006]). Given the simplicity of

the model, the span of the Caterpillar stellar halos matches the properties of these

observed halos and their relative dierences remarkably well. Figure 2-1 is a recreation

of Figure 8 from Deason et al. [2016], which also reproduces the relative dierence

between the Milky Way and M31.

We also compare the cumulative metallicity distribution function of the Caterpil-

lar stellar halos to that of the Milky Way. In Figure 2-2 we compare to the cumu-

lative distribution function from Schörck et al. [2009] for metal-poor halo stars with

metallicity [Fe/H] < −2. Below [Fe/H] < −35, the Caterpillar distributions dier

signicantly from the Milky Way distribution. This is likely because the Gaussians

composing the MDFs have a weaker metal-poor tail than the actual distributions in

each destroyed subhalo. However, the composite Gaussian MDFs provide a much

37



better t than other physically motivated MDFs (e.g., Extra Gas model, power laws),

so we keep the Gaussian MDFs for this analysis. We discuss the limitations of these

empirical relations and xed [Fe/H] distributions in Section 2.4.4.

2.3 Treatment of -Process Enrichment in Early UFDs

We assume that some fraction (see Section 2.3.2) of now-destroyed UFDs experience

an early neutron star merger (NSM) or another rare prolic -process event that

enriches the gas from which subsequent stars form. Looking specically at low-mass

UFDs, i.e. dwarf galaxies small enough to form highly -process enhanced stars

after only one -process event, we consider the stars formed in these galaxies to

be r-II stars. r-II stars are stars that are highly enhanced in -process elements:

[Eu/Fe] > +1, [Ba/Eu] < 0 [Beers and Christlieb, 2005]. This follows the example

set by Reticulum II. We note that the mass range of UFDs is not universally dened,

but when creating our denition of UFDs we focus on the low-mass end (see Section

2.3.1) to look specically at the smallest galaxies that helped form the Milky Way.

In each simulation, we then trace all the galaxies that disrupt into each host

galaxy to  = 0 and compare the fraction of simulated r-II stars from destroyed

UFDs (−,; see Section 2.3.3) to the observed fraction of r-II stars in the Milky

Way’s stellar halo (−,). In this way, we investigate how much of the observed

fraction of r-II halo stars may have originated in destroyed ultra-faint dwarfs.

This treatment only considers putative r-II stars that form from gas enriched by a

single -process event in a low-mass destroyed galaxy. Actual r-II halo stars can also

form through other pathways, e.g., a higher-mass destroyed galaxy that experiences

more than one NSM event could form r-II stars, or r-II stars could form in situ through

inhomogeneous mixing and later get thrown into the stellar halo [Shen et al., 2015,

van de Voort et al., 2015, Naiman et al., 2018]. To specically investigate the origins

of r-II halo stars in low-mass UFDs, though, we do not simulate r-II stars with other

origins. We discuss the limitations of this analysis in more depth in Section 2.4.4.
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2.3.1 Denition of Ultra-Faint Dwarf

We dene an ultra-faint dwarf as a halo that forms stars early in the Universe’s history

( >  before reionization), but has its star formation permanently suppressed

by reionization ( < ). This is the “fossil" denition of UFDs [e.g., Bovill

and Ricotti, 2011]. We also require that UFDs have a nal  < 2 × 105 ⊙

(corresponding to   28 × 109 ⊙2). When identifying now-destroyed UFDs

(the smallest building blocks of the galaxy), we consider both UFDs that disrupted

directly into the main branch of the host halo and UFDs that disrupted into other

dwarf galaxies before merging with the host halo.

Furthermore, we constrain our denition of UFDs to only include halos in which

a single prolic -process event can enrich the gas to produce subsequent r-II stars as

dened by high [Eu/Fe]. This excludes “high mass" UFDs because of dilution. We

dene , as the maximum mass a UFD can reach while it is forming stars

(before reionization). More massive subhalos would dilute the chemical enrichment

products too much to still yield r-II stars after a single NSM event. The calculations

to determine , are uncertain, however.

For example, in Reticulum II, the prolic -process event resulted in stars with

[Eu/H] ∼ −13 [Ji et al., 2016b]. This corresponds to ∼10−4.5 ⊙ of Eu being injected

into ∼106 ⊙ of gas (possibly an order of magnitude higher or lower; in a ∼107−8

⊙ halo). Such an event produces r-II stars at [Fe/H]  −23. Using proportionality

arguments, a halo’s mixing mass can be related to its virial mass:  ∼ 1.25


[e.g., Ji et al., 2015b]. Increasing the virial mass by an order of magnitude would

increase the mixing mass by 101.25, producing r-II stars at lower metallicities: around

[Fe/H]  −23−125 = −355. It is therefore unreasonable to assume all of the stellar

mass below [Fe/H] < −25 in “high mass" UFDs would be highly -process enhanced

following one NSM event.

We caution that the mixing mass numbers are highly uncertain and based on

order-of-magnitude arguments. We thus try several dierent maximum mass cutos:

, = 2× 108, 5× 108, 109, and 2× 109 ⊙. Of these, 2× 108 in particular is
2Using the  − relation derived by Garrison-Kimmel et al. [2017a]
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quite low because the minimum mass of a UFD is  ∼ 108 ⊙, but we include it

to encompass the possible parameter values. We use the intermediate choice of 109

⊙ for our ducial model.

2.3.2 Neutron Star Merger Fraction, 

We empirically determine the fraction of UFDs that experienced r-process enhance-

ment simply by comparing the number of known r-process UFDs to normal UFDs.

There are now high-resolution spectroscopic abundances for stars in 15 surviving

UFDs: Bootes I [Feltzing et al., 2009, Frebel et al., 2016], Bootes II [Koch and Rich,

2014, Ji et al., 2016d], Canes Venatici II [François et al., 2016], Coma Berenices [Frebel

et al., 2010], Grus I [Ji et al., 2018], Hercules [Koch et al., 2013], Horologium I [Naga-

sawa et al., 2018], Leo IV [Simon et al., 2010], Reticulum II [Ji et al., 2016b], Segue 1

[Frebel et al., 2014], Segue 2 [Roederer and Kirby, 2014], Triangulum II [Venn et al.,

2017, Kirby et al., 2017], Tucana II [Ji et al., 2016c], Tucana III [Hansen et al., 2017],

and Ursa Major II [Frebel et al., 2010].

Of these, Reticulum II has denitely been enriched by a prolic -process event,

assumed to be a neutron star merger [Ji et al., 2016b]. Tucana III also exhibits -

process enhancement [Hansen et al., 2017], though it is still unclear if this is a tidally

disrupted UFD or a globular cluster [Li et al., 2018]. It thus seems that there are

1− 2 UFDs aected by an -process event out of 14− 15 UFDs, or 7.1% to 13.3%.

For the purposes of this analysis, we therefore assume 5 − 15% of now-destroyed

UFDs experience an early neutron star merger (NSM) or some other rare prolic -

process event. Our default NSM fraction is  ∼ 10%. This fraction is agnostic to

the actual nature of the -process event; it directly relates to the fraction of surviving

UFDs that have been observed to be -process enhanced.

2.3.3 r-II Star Fraction, −

The simulated r-II star fraction, −,, is the amount of low-metallicity, highly

-process enhanced stars that we assume originated in now-destroyed low-mass UFDs
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compared to all low-metallicity stars now present in the accreted stellar halo.

−, =
metal-poor r-II halo stars that formed in UFDs

all metal-poor halo stars
(2.2)

We dene “metal-poor” as [Fe/H] < −25. For the simulated fraction, the nu-

merator and denominator are both in units of stellar mass as opposed to numbers of

stars. Our methodology directly estimates the amount of stellar mass in each galaxy,

not the number of stars in each galaxy, but this makes little dierence for old stellar

populations. To determine how much of the stellar mass in a galaxy is metal-poor,

we integrate the MDF below [Fe/H] = −25.

The “as observed" r-II star fraction, −,, includes all currently known r-II

stars in the Milky Way’s stellar halo.

−, =
metal-poor r-II halo stars
all metal-poor halo stars

(2.3)

Observed r-II stars are stars which display strong -process enhancement ([Eu/Fe] > 1

and [Ba/Eu] < 0). For the observed fraction, the numerator and denominator are

both in terms of the number of observed stars.

2.4 Results and Discussion

2.4.1 Simulated Fraction of r-II Stars in the Stellar Halo

Using the treatment of -process enrichment described in the previous section, we cal-

culate the simulated r-II star fraction, −,, for dierent  and mass thresh-

olds. Figure 2-3 and Table 2.2 show these results.

The simulated r-II fraction is ∼13% for our ducial parameter values ( = 8,

, = 109 ⊙,  = 5 × 107 ⊙,  = 2 × 109 ⊙,  = 10%). The

fraction varies somewhat with all the parameters, as seen in Figure 2-3. It scales

linearly with the NSM fraction,  . If we consider  = 5 − 15% with our

ducial model, the r-II fraction is ∼07 − 2%. If we consider the scatter between

the simulations, the r-II fraction is ∼1 − 2%. Varying all of the parameters to the
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Figure 2-3: The simulated r-II star fraction, −,, as it varies with dierent mass
thresholds and reionization redshifts. For each set of parameters, the mean −,
is shown as a white circle and the median is shown as a white line. The colored
boxes correspond to 68% scatter between simulations, and the error bars shown the
minimum and maximum −,. Our ducial model is highlighted in light green,
and single-parameter variations on the ducial model are shown in blue. The currently
observed fraction of r-II stars in the Milky Way stellar halo (−, ∼ 2 − 4%) is
shown in grey. See Section 2.3.3 for denitions of the r-II fractions and Table 2.1 for
explanations of the dierent parameters.

determine the minimum and maximum simulated r-II fraction gives a range of ∼001−
4% with the favored value being around 1− 2%.

For comparison, the observed fraction, −, diers a bit from sample to sample
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Table 2.2: The simulated r-II star fraction, −,, for dierent mass thresholds and
reionization redshifts. The reported values are averaged across simulations and the
uncertainties correspond to 68% scatter. The ducial model is bolded. Variations of
 are not explicitly shown because −, scales linearly with  .

 = 5× 107 ⊙  = 5× 107 ⊙  = 108 ⊙  = 108 ⊙
 = 2× 109 ⊙  = 6× 109 ⊙  = 2× 109 ⊙  = 6× 109 ⊙

, = 2× 109 ⊙
 = 6 17+0.9

−0.5 % 24+0.8
−0.8 % 15+0.8

−0.7 % 21+0.8
−0.6 %

 = 8 19+1.0
−0.6 % 27+0.9

−0.8 % 15+0.9
−0.6 % 22+0.8

−0.7 %
 = 10 15+0.8

−0.5 % 23+0.7
−0.7 % 10+0.3

−0.3 % 15+0.6
−0.4 %

 = 12 09+0.4
−0.2 % 16+0.4

−0.4 % 04+0.3
−0.2 % 08+0.2

−0.2 %
, = 109 ⊙

 = 6 12+0.5
−0.4 % 16+0.6

−0.5 % 09+0.5
−0.3 % 14+0.5

−0.5 %
 = 8 13+0.6

−0.4 % 16+0.7
−0.7 % 09+0.4

−0.3 % 15+0.5
−0.4 %

 = 10 10+0.6
−0.4 % 14+0.6

−0.5 % 05+0.2
−0.1 % 09+0.4

−0.3 %
 = 12 05+0.1

−0.2 % 09+0.4
−0.3 % 02+0.1

−0.1 % 04+0.2
−0.1 %

, = 5× 108 ⊙
 = 6 07+0.2

−0.2 % 11+0.4
−0.3 % 05+0.2

−0.2 % 09+0.4
−0.2 %

 = 8 08+0.2
−0.3 % 13+0.4

−0.4 % 05+0.2
−0.1 % 09+0.3

−0.3 %
 = 10 05+0.2

−0.2 % 10+0.3
−0.3 % 02+0.1

−0.1 % 05+0.2
−0.1 %

 = 12 02+0.1
−0.1 % 04+0.2

−0.1 % 01+0.1
−0.1 % 02+0.1

−0.1 %
, = 2× 108 ⊙

 = 6 033+0.12
−0.10 % 047+0.25

−0.19 % 015+0.06
−0.05 % 022+0.11

−0.07 %
 = 8 029+0.14

−0.12 % 052+0.20
−0.12 % 011+0.03

−0.03 % 024+0.10
−0.07 %

 = 10 016+0.04
−0.06 % 032+0.05

−0.05 % 005+0.02
−0.03 % 009+0.06

−0.04 %
 = 12 007+0.03

−0.03 % 013+0.04
−0.04 % 002+0.01

−0.01 % 002+0.02
−0.01 %

(e.g., 3.3%, Jacobson et al. 2015; 2.2%, Roederer et al. 2014c; 2.9%, Barklem et al.

2005). We also note that these fractions depend on the specically chosen limit

[Eu/Fe] > 1 and general sample selections that are not completeness corrected. A

recent study from Hansen et al. [2018] found −, ∼ 10%, but a larger sample

has reduced the fraction by about half and data is still being collected (T. Hansen,

priv. comm.). This study was also specically looking for -process stars and may

not be representative of the true r-II fraction. Aggregating the surveys and individual

reports in the literature without attempting to account for observational bias gives

3.2% [Abohalima and Frebel, 2017, Hansen et al., 2018]. We note that r-II stars are

preferentially likely to be reported in literature over other metal-poor stars, however,

so r-II stars are probably overrepresented. Currently, −, appears to be ∼2−4%,

but the true fraction is likely lower.

Comparing the simulated −, ∼ 1 − 2% and the observed −, ∼ 2 −
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Figure 2-4: The simulated r-II fraction for the individual Caterpillar halos as a func-
tion of their total accreted stellar mass. Three models are shown as examples: the
ducial model, a variation of , and a variation of ,. As in Figure 2-3,
the currently observed fraction of r-II stars in the Milky Way stellar halo is shown
in grey. The error bars correspond to uncertainty in the empirical relations. There
is a tendency for stellar halos with more accreted stellar mass to have a higher r-II
fraction.

4%, around half of the low-metallicity r-II halo stars could have originated in now-

destroyed UFDs following a single -process event. Considering the 68% scatter be-

tween simulations and the eects of varying  and  in the ducial model,

−, ∼ 06 − 23 can account for ∼20 − 80% of the current −,. Varying

, from 5× 108 ⊙ to 2× 109 ⊙ expands the range to ∼20− 100% of the

current “as observed” −,. Furthermore, because the true −, is likely lower,

the amount of the true −, that −, can account for is likely closer to ∼80%

than 20%. This implies that a signicant fraction of the metal-poor r-II halo stars

likely originated in now-destroyed UFDs. This is only considering the contribution of

“low-mass” UFDs. Including other r-II star creation pathways (e.g., more than one

NSM or inhomogeneous mixing in higher-mass UFDs) would increase the fraction.

The caveats to this result are discussed in Section 2.4.4. This result is supported by

recent kinematic evidence that implies r-II stars were largely accreted. For more on

this, see Section 3.6.
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(a) Accreted stellar mass that originated in UFDs (b) MDF of destroyed UFDs

Figure 2-5: Left: The percentage of accreted stellar mass at dierent metallicities
that originated in now-destroyed UFDs. The mean percentage is shown as a white
circle and the median is shown as a white line. The colored boxes correspond to 68%
scatter between simulations, and the error bars shown the minimum and maximum
percentages across simulations. From [Fe/H] = −25 to −2, stars from UFDs make up
a few percent of the stellar halo. Right: The averaged metallicity distribution function
of now-destroyed UFDs. Shaded region shows 68% scatter between simulations. Both
plots show results from our ducial model.

We note that there appears to be a tendency for more massive stellar halos (stellar

halos which formed from more massive destroyed galaxies) to have a higher −,.

Figure 2-4 shows this. Because the Milky Way stellar halo is on the lower mass end

of the range of Caterpillar stellar halos (see Figure 2-1), the simulated r-II fraction

is slightly lowered if we only consider the six stellar halos with masses closest to the

MW halo: −,, ∼ 1− 15% for the ducial model. This apparent trend could

also be due to the large scatter, though.

2.4.2 Fraction of Stars from Now-Destroyed UFDs

In Figure 2-5, we plot the total fraction of accreted stellar mass at dierent metallic-

ities that originated in now-destroyed UFDs, -process enhanced or not. The gure

also shows the metallicity distribution function of all of the now-destroyed UFDs

averaged across all simulations.
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If we assume an -process event occurs in approximately 10% of UFDs, approx-

imately 90% of the now-destroyed UFDs produced low neutron-capture stars (stars

that exhibit low abundances of neutron-capture elements such as Sr and Ba). Low

neutron-capture (low n-cap) could thus be another key signature to identify stars

from now-destroyed UFDs. If low n-cap stars at intermediate and low metallicities

come primarily from UFDs, the fraction of low n-cap stars in the halo should look

roughly like the fractions shown in Figure 2-5a (multiplied by ∼09).

Figure 2-5b shows that the number of stars from now-destroyed UFDs peaks

around [Fe/H] ∼ −2. These stars make up only a few percent of the halo stars

around this metallicity, though (Figure 2-5a). From [Fe/H] ∼ −25 to −2, they are

about as rare as r-II stars at low metallicities: −, ∼ 2 − 3%. While rare,

nding low n-cap stars in this metallicity range could help us identify stars from now-

destroyed UFDs. Based on observations of the Milky Way’s satellite galaxies, below

[Fe/H]  −3, low n-cap stars are found in both UFDs and more massive satellite

galaxies, but from [Fe/H] ∼ −25 to −2, UFDs appear to be the primary source.

Figure 2-6 shows some of the neutron-capture element abundances ([Sr/Fe] and

[Ba/Fe]) of stars in surviving UFDs relative to stars from the more luminous satellite

galaxies around the Milky Way, the dwarf spheroidal galaxies (dSph). Halo stars

are also shown in gray for comparison. Excluding the surviving UFDs that appear

to have experienced an -process event (Reticulum II and Tucana III), the UFD

stars have lower Sr and Ba abundances than the dSph stars, most noticeably above

[Fe/H] ∼ −3. The UFD Bootes I is highlighted because it displays dierent behavior

from other UFDs: its [Ba/Fe] ratios are higher and increase slightly with [Fe/H]. The

other 12 UFDs clearly contain low n-cap stars relative to more luminous galaxies.

In the Roederer et al. [2014c] sample of 313 metal-poor halo stars, the percentage

of stars with [Ba/H] < −35 from [Fe/H] = −25 to −2 is 2.8% and the percentage

from [Fe/H] = −3 to −25 is 17.1%, in rough agreement with Figure 2-5a. As always,

though, more observations are needed. Upcoming halo star surveys without metal-

licity bias such as 4MOST and WEAVE [de Jong et al., 2012, Dalton et al., 2012]

will expand on observations and allow us to study this question more in depth. For
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Figure 2-6: Neutron-capture element abundances (Sr and Ba) for stars in surviving
UFDs and in surviving dwarf spheroidal galaxies (dSph). The -process UFDs (Retic-
ulum II and Tucana III) and the UFD Bootes I are highlighted because they exhibit
dierent behavior in their Sr and Ba abundances. Halo stars are shown in grey for
comparison. The other 12 UFDs (shown in yellow) exhibit low [Sr/Fe] and [Ba/Fe]
compared to the dSph (shown in blue).
References: [Aoki et al., 2007, 2009, Cohen and Huang, 2009, 2010, François et al.,
2016, Frebel, 2010, Frebel et al., 2010, 2014, 2016, Fulbright et al., 2004, Geisler et al.,
2005, Hansen et al., 2017, 2018, Jablonka et al., 2015, Kirby and Cohen, 2012, Kirby
et al., 2017, Shetrone et al., 2001, 2003, Simon et al., 2010, 2015, Skúladóttir et al.,
2015, Tafelmeyer et al., 2010, Tsujimoto et al., 2015, 2017, Ural et al., 2015, Chiti
et al., 2018, Feltzing et al., 2009, Gilmore et al., 2013, Lai et al., 2011, Ishigaki et al.,
2014, Ji et al., 2016b,d, 2018, Roederer and Kirby, 2014, Roederer et al., 2016b, Koch
et al., 2008, 2013, Koch and Rich, 2014, Nagasawa et al., 2018, Norris et al., 2010,
2017, Venn et al., 2012, 2017]
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now, we merely note that low n-cap signatures are likely another key way to identify

stars from now-destroyed UFDs, and we expect them to constitute a few percent of

the stellar halo stars with [Fe/H] ∼ −25 to −2.

2.4.3 Number of Now-Destroyed -Process Galaxies

From the Caterpillar simulations we can estimate the number of UFDs that merged

to help form the Milky Way stellar halo. The Caterpillar stellar halos are formed

from 260 ± 60 UFDs on average. This includes both UFDs that merged directly

into the host halo (roughly 1/3 of now-destroyed UFDs) and the UFDs that merged

with other galaxies before merging with the host halo (roughly 2/3 of now-destroyed

UFDs). Since ∼10% of UFDs appear to be -process-enhanced, this means that

∼20− 30 -process UFDs may have contributed directly (∼10) or indirectly (∼20) to

our stellar halo.

2.4.4 Limitations

There are potential issues with directly comparing Caterpillar stellar halos to the

Milky Way stellar halo. As mentioned in Section 2.2.3, we are conating “accreted

stars" with “stellar halo", but actual stellar halos are not exclusively and compre-

hensively composed of accreted material. In our analysis, we do not consider in situ

stars. For simplicity’s sake, we also do not consider that accreted stars can end up in

the disk/bulge [as in, e.g., Gómez et al., 2017]. If a large portion of the metal-poor

stellar halo originated in situ or a large portion of the accreted material ended up in

the disk, it would signicantly aect the r-II fraction. The fraction of halo stars that

formed in situ can be large, and it is unclear how large [Monachesi et al., 2018]. In

situ halo stars are more metal-rich than accreted stars [Bonaca et al., 2017], however,

so metal-poor halo stars — the focus of our analysis — appear to be largely accreted.

This is supported by both observations and hydrodynamics simulations [Cooper et al.,

2015, Bonaca et al., 2017, El-Badry et al., 2018]. Bonaca et al. [2017] kinematically

identied accreted and in situ halo stars in the Gaia DR1 + RAVE-on catalog, nding
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a bimodality about [Fe/H] = −1 with the accreted stars being more metal-poor than

the in situ stars. Their interpretation is supported by the Latte simulation from the

FIRE project. Using more FIRE simulations, El-Badry et al. [2018] found that 80%

of the stellar halo stars below [Fe/H] ∼ −25 are accreted (see their Figure 7). If none

of the in situ stars are highly -process enhanced, this would increase −, relative

to −, by at most a factor of ∼12. Given the uncertainty around the fractions

and the likely overestimation of −, due to observational bias, though, this would

not change our nding that around half of r-II halo stars formed in now-destroyed

UFDs.

We also do not consider the r-II stars that originate in situ [as in, e.g., Shen

et al., 2015, ?, Naiman et al., 2018] or in more massive dwarfs. This is because we

are specically interested in how many of the observed r-II stellar halo stars may

have originated in the low-mass UFDs. In theory, adding up the r-II fractions that

result from each of these dierent possible r-II star channels should add up to 100%

of the observed fraction. Simulating these more complex r-II origins requires more

sophisticated modeling than what is in the scope of this paper, however, so this will

have to be investigated more in future work. The observed fraction must also be

determined more accurately to better determine the overlap of −, and −,.

Furthermore, depending on the denition of “ultra-faint dwarf," the r-II fraction from

now-destroyed UFDs will be dierent. By considering only UFDs that can become

strongly enriched from a single NSM, we limit ourselves to only the contributions from

low-mass UFDs. This is a conservative choice, and if we included the contributions

from r-II origin channels in more massive UFDs (e.g., r-II stars can form in more

massive halos that experience more than one NSM event or inhomogenous mixing),

the r-II fraction from UFDs would increase.

Additionally, we assume that  ∼ 10% of UFDs experience a NSM event (or

other prolic -process event), but this fraction is based on a small number of known

UFDs. It may also make sense to determine  in terms of total stellar mass that

has been enriched by a prolic -process event. Reticulum II and Tucana III are on

the lower stellar mass end of UFDs, so weighting by stellar mass when determining
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 signicantly lowers the contribution of now-destroyed UFDs to r-II halo stars.

In this case,  ∼ 2− 3% and the simulated r-II fraction (−, ∼ 03%) would

only account for around ∼10% of the observed fraction.

Whether we determine  by the number of UFDs that experience an -process

event or by the amount of stellar mass enriched by an -process event is dependent

on whether the NSM rate is dominated by a retention fraction or a production rate.

If the NSM rate is dominated by a retention fraction, it would depend more on the

total halo mass than the stellar mass. Because UFDs are in roughly the same halo

mass range [Strigari et al., 2008, Jethwa et al., 2018], determining  as we did

in Section 2.3.2 should be more appropriate than weighting by stellar mass. On the

other hand, if the NSM rate is dominated by a production rate, weighting by stellar

mass is likely more appropriate. We note that the current LIGO rate is ten times

higher than what is needed to produce all the -process material in the Milky Way

[Ji and Frebel, 2018, Belczynski et al., 2018, Abbott et al., 2017a, Côté et al., 2018a],

suggesting that the retention fraction is likely dominant and our determination in

Section 2.3.2 is more appropriate. This remains uncertain for now, however. Future

LIGO measurements will give clarity to this.

Furthermore, the [Fe/H] distributions have a xed, simplistic shape. The individ-

ual Gaussians representing each destroyed halo have a physically motivated standard

deviation and are able to reproduce similar bulk properties to those of observed stel-

lar halos [Deason et al., 2016], but we know they are not the true distributions. For

example, the cumulative distribution functions of the Caterpillar stellar halos dier

from that of the Milky Way stellar halo, particularly at the very lowest metallicities.

The Gaussian [Fe/H] distributions used in this analysis are thus a simple choice to

produce reasonable stellar halo MDFs, but they are insucient to completely cap-

ture the true distribution of the Milky Way stellar halo and its satellites. We use

the Gaussians in this analysis because we are unable to nd a physically motivated

distribution that better matches observations.

Additionally, our choice of  − relation aects our results for −,.

Using the Garrison-Kimmel et al. [2017a] relation (GK17) or Garrison-Kimmel et al.
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[2014] relation (GK14) produces nearly the same r-II fractions, but using the Moster

et al. [2013] relation produces r-II fractions that are roughly half as large. Using

the Behroozi et al. [2013a] relation more than doubles the r-II fraction (producing

unreasonably high fractions), and using the Brook et al. [2014] relation gives fractions

that are roughly one-fourth of those produced by GK17 or GK14. The disagreement

between these dierent relations displays the uncertainty that abundance matching

relations have regarding low-mass halos such as UFDs. We focus on the most up-

to-date  − relation, GK17, but the potential issues with using abundance

matching relations to assign mass to low-mass halos should be kept in mind.

If future work continues to use empirical relations, the work could potentially be

improved by using a [Fe/H] distribution with a more pronounced metal-poor tail.

Having used empirical relations here to obtain an initial idea of what is reasonable in

our model, however, we believe semi-analytic modeling will provide a better avenue

for future investigation into this and similar questions.

Lastly, subhalos passing close to the host galaxy’s center should probably be

destroyed by the host galaxy’s disk, but are not because the Caterpillar simulations

are dark matter only [Garrison-Kimmel et al., 2017c]. Including surviving subhalos

in the stellar halo does not signicantly change the r-II fractions, though, so this does

not appear to be signicant to our results on r-II fractions.

2.5 Conclusions

We investigate the possibility that highly -process enhanced metal-poor stars (metal-

poor r-II stars) largely originated in the smallest, earliest galaxies (early analogs of

ultra-faint dwarfs, UFDs) that merged into the Milky Way over the course of its

formation history. Our results support this possible connection between r-II stars

and the smallest building blocks of our galaxy. We nd that around half of r-II

stars may have originated in now-destroyed ultra-faint dwarfs that experienced a rare

prolic -process event such as a neutron star merger.

We reach this conclusion by simulating what fraction of low-metallicity stellar halo
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stars could have become highly -process enhanced in now-destroyed UFDs. This

fraction is the simulated r-II fraction, −,. We compare this to the observed

r-II fraction, the fraction of low-metallicity stellar halo stars that have been observed

to be highly -process enhanced. Assuming the most likely values for parameters in

our model ( ∼ 8, intermediate mass thresholds,  ∼ 10%) gives a simulated

−, ∼ 1 − 2%, accounting for around half of the observed −, ∼ 2 − 4%.

In cases where we choose the most extreme parameter values, −, ranges from

∼001 − 4%. Considering scatter between simulations and less extreme variation of

model parameters, −, can account for ∼20−80% of −,. Due to incomplete

sampling, though, −, likely overrepresents the fraction of r-II halo stars. This

means the percentage of −, that −, can account for is likely closer to ∼80%

than ∼20%.

To determine the simulated − , we use high-resolution dark-matter cosmological

simulations (the Caterpillar suite), empirical relations linking dark matter mass to

stellar mass and metallicity, and a simple, empirically motivated -process treatment.

Our -process treatment assumes that 5−15%, or ∼10%, of early UFDs experience an

early prolic -process event that enriches all of the gas from which their subsequent

stars form with -process elements. The -process event is most likely a neutron star

merger, but the model is agnostic to the specics of the event. The ∼10% fraction

comes from the fraction of surviving UFDs that have been observed to be -process

enhanced.

Intriguingly, there is some recent evidence that -process-enhanced stars may have

kinematics associated with accretion. Abundances of high-velocity stars in Gaia DR1

[Herzog-Arbeitman et al., 2018] and Gaia DR2 [Hawkins and Wyse, 2018] have found

2/10 such stars appear to have [Eu/Fe] > 1, a much higher fraction than is found for

random metal-poor stars in the halo. The high velocities suggest these stars originate

in accreted satellites. Additionally, Roederer et al. [2018] recently studied the kine-

matics of all known -process-enhanced stars in Gaia DR2, also nding evidence that

these stars appear to have an accretion origin from UFDs or low-luminosity classical

dwarf spheroidals. The statistics in these studies are still low, but they support our
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hypothesis of an accretion origin for -process-enhanced stars. The kinematics of r-II

Milky Way halo stars are currently being studied in more detail (e.g., Ji et al. in

prep).

Stars with low abundances (or no detection) of -process elements (low neutron-

capture stars, or low n-cap stars) could be another way to identify stars that originated

in now-destroyed UFDs. If an -process event occurs in ∼10% of UFDs, ∼90% of

UFDs should produce low n-cap stars. Our model predicts that ∼2% of the halo

stars with [Fe/H] = −25 to −2 should be low n-cap stars from UFDs. This is in

rough agreement with the sample of metal-poor halo stars from Roederer et al. [2014c],

but more data from upcoming halo star surveys such as 4MOST and WEAVE will

allow this to be studied more in depth.

There are a number of limitations in this model, including how we determine

 and the imperfections of the empirical relations. Future work on predicting the

actual number of r-II halo stars or their distribution in the stellar halo will require

more detail than we go into here. The results of this initial investigation, however,

support a strong connection between metal-poor r-II stars and now-destroyed UFDs.

Neutron-capture element abundances of Milky Way halo stars may thus allow us

to quantify how much these small, relic galaxies contribute to the formation of our

Galaxy.

The software used in this analysis includes numpy [van der Walt et al., 2011], scipy

[Jones et al., 2001], matplotlib [Hunter, 2007].
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Chapter 3

Collapsar -Process Yields Can

Reproduce [Eu/Fe] Abundance

Scatter in Metal-Poor Stars

This chapter is based on work previously published in The Astrophysical Journal

(Brauer et. al 2021).

3.1 Introduction

Around half of the abundances of the heaviest isotopes in the periodic table, in-

cluding gold and europium, are produced through the rapid neutron-capture process

[-process, Burbidge et al., 1957, Cameron, 1957]. Since the rst discussion of the

-process in the 1950s, there has been debate over which astrophysical sites produce

-process material. Recently, the detection of an optical transient associated with the

neutron star merger GW170817 [Abbott et al., 2017a, Coulter et al., 2017] provided

strong evidence for -process production in neutron star mergers [e.g., Drout et al.,

2017, Pian et al., 2017]. Neutron star mergers thus appear to be a source of -process

elements, but it is unclear if they are the dominant source in the early universe.

One concern stems from observations of -process abundances in metal-poor ([Fe/H]

< −25) stars in the Galactic halo.
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It is unclear whether the delay time to form and coalesce a binary neutron star

system is too long to provide -process material to near-pristine gas before the for-

mation of metal-poor stars [e.g., Argast et al., 2004, Skúladóttir et al., 2019, Cescutti

et al., 2015, Wehmeyer et al., 2015, Haynes and Kobayashi, 2019, Kobayashi et al.,

2020]. Possible solutions include processes like inhomogeneous metal mixing or ine-

cient star formation mitigating the delay time [e.g., Ishimaru et al., 2015, Shen et al.,

2015, van de Voort et al., 2015, Ramirez-Ruiz et al., 2015, Ji et al., 2016b, Dvorkin

et al., 2020] or common envelope producing a large number of rapidly merging neu-

tron star binaries [e.g., Beniamini et al., 2016, Safarzadeh et al., 2019b, Zevin et al.,

2019, Andrews et al., 2020], but concerns have not been eradicated.

Natal kicks received from the supernova explosions that give birth to neutron

stars may have also made it unlikely for small, early galaxies to retain neutron star

binaries [Bramante and Linden, 2016, Beniamini et al., 2016, Bonetti et al., 2019].

For example, the highly -process-enriched metal-poor stars in the ultra-faint dwarf

galaxy Reticulum II could potentially be explained by a neutron star merger [Ji et al.,

2016b], but the natal kick would have to have been very small ( <  ∼ 10 − 20

km s-1) and/or the merger time extremely short to avoid kicking the binary out of

the tiny galaxy [Tarumi et al., 2020, Safarzadeh et al., 2019a, Bramante and Linden,

2016]. This is in contrast to larger estimates of 20 − 140 km s−1 based on the oset

distribution of short-duration -ray bursts from their host galaxies [Fong and Berger,

2013], and 5 − 5450 km s−1 from galactic double neutron star systems [Wong et al.,

2010].

In light of these concerns — coupled with the inference that the ejecta from

GW170817 was dominated by an accretion disk wind, rather than dynamical tidal

tails [e.g. Siegel, 2019] — Siegel et al. [2019] revived the idea that collapsars (the

supernova- and -ray-burst-triggering collapse of rapidly rotating massive stars) may

be an important source of -process material (see also, e.g., MacFadyen and Woosley

1999, McLaughlin and Surman 2005). In particular, the accretion disks formed in

collapsars can have similar conditions to the -process producing disk of GW170817.

Siegel et al. [2019] found that for accretion rates  10−3 M⊙ s−1, these disks produce
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neutron-rich outows that synthesize heavy -process nuclei. They also found that

collapsars can yield sucient -process material to explain over 80% of the -process

content of the Universe. Although the electron fraction in collapsar disk winds is

still debated [Surman et al., 2006, Miller et al., 2019], this is currently one of the

most promising ways for core-collapse supernovae (CCSN) to make -process elements

(other than magnetorotationally driven CCSN, e.g., Nishimura et al. 2015, but see

Mösta et al. 2018).

The scatter in the abundances of metal-poor stars is a useful probe of dierent

-process origins. In this paper, we investigate collapsars as a source of the -process

in the early universe by investigating whether they can self-consistently reproduce

the scatter of europium (Eu, Z = 63) in the most metal-poor stars. Our results also

hold for any prompt -process site with a power law distribution of eective -process

yields. As our representation was directly inspired by collapsar properties for the

purposes of studying -process collapsars, though, we call the -process site in our

model “collapsars" and discuss alternative interpretations in more detail in Section

3.5.4.

Our model assumes the -process material in metal-poor stars was formed ex-

clusively in collapsars with stochastic -process yields. Previous stochastic models

primarily assume the -process is produced in xed amounts, but comes from mul-

tiple dierent sources and/or mixes into dierent environments [e.g., Tsujimoto and

Shigeyama, 2014, Cescutti et al., 2015, Wehmeyer et al., 2015, Shen et al., 2015].

In contrast, our model assumes the -process source has an intrinsically stochastic

production: each collapsar synthesizes a dierent amount of -process material.

In Section 3.2, we outline our stochastic collapsar enrichment model in which

we assume each collapsar contributes an -process yield that is independently drawn

from a power law distribution, inspired by models of collapsar jet ts to -ray burst

data. Our model is constrained using stellar abundance data described in Section

3.3, and the parameter constraints are described in Section 3.4. The implications of

these results are discussed in Section 3.5, where we put our results in context with

collapsar jet property distributions, dierent types of core-collapse supernovae, and
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(a) Schematic of our model. Core-collapse
supernovae explode into the total gas,
yielding iron (Fe), and some fraction of
these are collapsars which also yield

stochastic amounts of europium (Eu). This
produces stars with dierent [Eu/Fe] and

[Fe/H] abundances.
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(b) The -process abundance scatter in
the RPA data. The data is shown as
dots (Eu detections) and triangles (Eu
upper limits). The grey boxes show the

estimated IQREu (the abundance
scatter) in several metallicity bins,
which decreases with increasing

metallicity.

Figure 3-1: Schematic of our theoretical model and scatter plot of the stellar data
our models attempts to reproduce. Our model attempts to reproduce the observed
Eu scatter at low metallicity by assuming all Eu is produced by collapsars, which are
a fraction of all core-collapse supernovae.

dierent estimates for the amounts of -process material which may be produced by

collapsars. Our conclusions are summarized in Section 3.6.

3.2 Collapsar -Process Yield Model

The purpose of our model is to determine the distribution of -process abundances (as

measured by [Eu/Fe]) in a xed metallicity bin (as measured by [Fe/H]). A schematic

of the model can be seen in Figure 3-1a. The novel feature of our model is that

we explicitly study whether variable -process yields from a single class of r-process

events could produce observed abundance scatter. This is in contrast to previous

models [e.g., Cescutti et al., 2015, Ojima et al., 2018, Shen et al., 2015, van de Voort

et al., 2015] which generally had a xed yield per event and produced scatter through

dierent -process sites and/or dierent galactic environments.
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3.2.1 Dening “Collapsar”

The term “collapsar” typically refers to the collapse of a massive, rapidly-rotating

star in which accretion onto a central black hole can produce a beamed jet, com-

monly evoked as the progenitors of long-duration -ray bursts (LGRBs). In the

model described below, we more broadly use the term to encompass a population

of core-collapse supernovae that produce heavy r-process material with a power-law

distribution of yields. This denition is motivated by the traditional collapsar pic-

ture in which rapid accretion onto a compact object launches a collimated outow

wherein both the duration and luminosities of LGRBs are well-described by power

laws [Petropoulou et al., 2017, Sobacchi et al., 2017]. Connecting jet properties to -

process production is inspired by the possible connection between the accretion phase

during which -process material is produced (due to a suciently high accretion rate

that neutronizes the disk) and the phase during which the collapsar jet is launched.

In particular, Siegel et al. [2019] nds that the production of heavy r-process ma-

terial requires ̇  10−3 M⊙ s−1, closely matched to the accretion rates required

for jet production [MacFadyen and Woosley, 1999]. The results described below also

hold for any prompt -process site (e.g., occurring roughly concurrently with CCSN;

this could potentially include fast-merging neutron stars) that lead to a power law

distribution of heavy -process material. We discuss other interpretations in Section

3.5.4.

In addition, our model does not require that a jet successfully breaks out of the

progenitor star. While the most extreme -process producing events require large fall-

back accretion disks and are likely associated with LGRBs, our model also includes

events that eject smaller amounts of -process material. Such systems may pro-

duce weaker outows/jets and be observed as low-luminosity GRBs [ll-GRBs; e.g.,

Bromberg et al., 2011, Petropoulou et al., 2017], relativistic supernovae [e.g., Soder-

berg et al., 2010, Margutti et al., 2014], or broad-lined Type Ic supernovae [Type

Ic-BL; e.g., Milisavljevic et al., 2015, Modjaz et al., 2016].
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3.2.2 Basic Physical Set-up and Model Parameters

We analytically model the abundance distribution as arising from a burst of core-

collapse supernova enrichment, some fraction of which are collapsars that produce

non-zero -process yields. Each core-collapse supernova produces an iron yield and

each collapsar also produces an -process yield that is independently and identically

drawn from a power law distribution. We assume the typical star formed in these

galaxies forms after the metal yields from all of the supernovae fall into and mix

within the hydrogen gas of the system. During this process, some fraction of the

metals are permanently lost from the galaxy due to gas outows.

This model has ve free parameters:

1. SN: the number of core-collapse supernovae enriching the gas.

2. ⟨⟩: the average number of collapsars (i.e. supernovae that produce non-zero

amounts of -process material).

3. ,min: the minimum mass of -process material that can be produced by a

collapsar.

4. : the power law exponent for our power law distribution of -process yield

produced per collapsar.

5. F, : the eective iron yield per supernovae per unit gas mass. F, =

Feretainedgas, where Fe is the iron yield per supernova, retained is the fraction

of iron retained in the galaxy and not carried out of the system by gas outows,

and  is the total gas mass in the system.

These parameters combine to yield the mean gas metallicity, the the fraction of

supernovae that are collapsars (), and the average yield per collapsar (⟨⟩), as
described below.
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3.2.3 Gas Enrichment

We determine the distribution of europium abundances produced by this model at

a given metallicity. The mean metallicity of our stars is found from FeH =

SNF, . The mass of iron and hydrogen is converted to [Fe/H] using a mean

molecular weight of Fe = 56 for Fe, log ⊙(Fe) = 750, and log ⊙(H) = 1200

[Asplund et al., 2009], where we use the stellar spectroscopist notation [X/Y] ≡
logXY − log (XY)⊙ = log(XY

YX
)− (log ⊙(X)− log ⊙(Y)).

In order to determine the distribution of europium values, we enrich this gas with

 collapsars, which we draw stochastically from a Poisson distribution with mean

⟨⟩ = SN. Each collapsar contributes an -process yield that is independently

drawn from a power law distribution.

() ∝
(


,min

)−
 ≥ ,min (3.1)

The -process yield for a single explosion, , can be converted to Eu by using

the solar -process mass fraction of europium compared to all nuclei with mass number

A > 70. The mass fraction, Eu, is approximately 10−3 (175× 10−3, Arnould et al.

2007; 977 × 10−4, Sneden et al. 2008). When converting total europium mass to

[Eu/Fe], we use a mean molecular weight of Fe = 152 for Eu and log ⊙(Eu) = 052.

We also assume that europium and iron have the same retention fraction, retained,

meaning the same fraction of both is lost from the galaxy.

Note that if  ≤ 2, then the average yield produced per collapsar diverges and

our model would also require an upper cuto to the amount of r-process material

that can be produced by a single collapsar, ,max. However, when we compare to

observed data in Section 3.4, it will turn out our results imply  > 2, in which case

the average yield per collapsar is:

⟨⟩ = ,min
− 1

− 2
(3.2)

While in principle Fe is also stochastic, for simplicity we hold it constant. This

is ne as long as  is small, since variations in the Fe yield will average out.
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Operationally, we create a model [Eu/Fe] distribution by considering several thou-

sand instances of supernova enrichment. Each instance is a single data point in our

modeled cumulative distribution function. For each instance, we draw an  value

and then draw  for each of the  collapsars. The total europium and iron masses

retained in the galaxy in each instance are transformed into a [Eu/Fe] measurement.

We also add a 0.1 dex Gaussian uncertainty to mimic observational errors.

3.2.4 Constraining Model Parameters: Literature Estimates

for Eective Iron Yields

The eective iron yield of core-collapse supernova per unit gas mass cannot be directly

constrained from a sample of stellar abundance data. We constrain its value by

combining estimates for each component parameter (recall F, = Feretainedgas)

from the literature.

The fraction of retained metals is set to retained = 10−2±0.5, assuming that metal-

poor stars form early in small galaxies. Observationally, individual faint galaxies have

retained in this range: the Milky Way’s moderately faint dSphs (e.g., Ursa Minor)

have kept less than 1% of their metals [Kirby et al., 2011b]; while the faint but

still star-forming galaxy Leo P has kept about 5% of its metals [McQuinn et al.,

2015]. Theoretically, retaining about 1% of metals in small galaxies reproduces the

slope and normalization of the mass-metallicity relation [e.g., Dekel and Woo, 2003,

Robertson et al., 2005]. The retention fraction is also borne out in hydrodynamic

galaxy simulations [e.g., Emerick et al., 2018].

gas is set by models of how supernovae dilute metals into a mixing mass of

gas. For small, early galaxies that form metal-poor stars, the mixing mass is gas ∼
106⊙ [Ji et al., 2015a]. The strict lower limit on this mass is the mass contained

in a single nal supernovae remnant, a minimum of around ∼ 104.5 ⊙ [e.g., Magg

et al., 2020, Macias and Ramirez-Ruiz, 2018], with a range of average mixing masses

for metal-poor stars of 105 to 108⊙ of gas. For systems with higher gas, more

metals are retained, resulting in a higher retention fraction retained (and vice versa).
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To estimate an average iron yield from CCSN, we calculate a weighted average

between observations of H-rich CCSN and H-poor CCSN. A detailed discussion can

be found in Appendix 3.7, but nd that the average yield is Fe ≈ 01⊙, with the

uncertainty in retained and gas far outweighing that of Fe.

Altogether, F, has a wide range of possible values (10−10−10−7), but our ducial

choice is F, = 10−9. This choice is validated by an independent estimation of the

frequency of -process events in ultra-faint dwarf galaxies in Section 3.4.2. We note,

however, that there is tension between the values expected for F, in very low mass

galaxies based on the theoretical breakdown described in this section and comparisons

to several external constraints. For example, the number of supernovae predicted in an

ultra-faint dwarf galaxy using the Salpeter initial mass function suggests an eective

iron yield closer to ∼ 10−7.5, and a simulation of extremely metal-poor ([Fe/H] =

−342) stars forming after a single supernova gives an estimated eective iron yield

as high as ∼ 10−6.5 [Chiaki and Wise, 2019]. This is not fully unexpected as F,

diers in dierent galaxies and the lowest mass galaxies will have the highest eective

yields, but we note that this parameter remains uncertain and may trend higher than

its ducial value.

3.2.5 Constraining Model Parameters: Fitting Stellar Abun-

dance Data

After xing the eective iron yield, stellar abundances are used to constrain the other

model parameters. The stellar abundance data provides us eectively four observable

quantities of interest:

1. the mean metallicity of the stars, ⟨[Fe/H]⟩,

2. the mean -process abundance, ⟨[Eu/Fe]⟩,

3. the estimated fraction of stars that formed from gas not enriched by an -process

event, 0,

4. the observed scatter in -process abundance between stars, IQREu.
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Rather than quantifying scatter with standard deviation, (Eu), we use the more

robust interquartile range, a measure of statistical dispersion equal to the dierence

between the 75th and 25th percentiles, denoted IQREu. Model parameters are then

determined as follows:

⟨⟩ and : The average number of collapsars, ⟨⟩, and the exponent of the

-process yield power law distribution, , are determined by comparing the observed

0 and -process scatter, IQREu, to those predicted by our models with varying ⟨⟩
and . In a small metallicity bin, the shape of the [Eu/Fe] distribution function is

dependent on only these two parameters. The other potentially relevant parameters

contribute only to shifting the distribution to higher or lower [Eu/Fe]. By focusing

on only the shape of the distribution, we can avoid making assumptions about any

additional parameters when determining ⟨⟩ and .

 and : The number of SN enriching the gas,  , is determined from

the mean metallicity of the stars and the eective iron yield using ⟨FeH⟩ =

 × F, . The fraction of supernova that are collapsars,  = ⟨⟩  , is then
found by combining  and the average number of collapsars, ⟨⟩, from above.

,min and ⟨⟩: We rst determine the average -process yield produced per

collapsar, ⟨⟩, using the relationship: ⟨⟩ retainedEu ≈ ⟨Eu⟩  ⟨⟩. In this

equation, ⟨Eu⟩ is found by considering the mean -process abundance ⟨[Eu/Fe]⟩ and
mean metallicity ⟨[Fe/H]⟩ in combination with H ≈ gas. The minimum -process

yield is then ,min = ⟨⟩ −2
−1

.

We do not attempt to model higher moments of the [Eu/Fe] distribution beyond

the mean and scatter because we expect selection eects in the data to dominate. We

also do not attempt to model the shape of the distribution tails for both observational

and theoretical reasons. Observationally, the low end of the [Eu/Fe] distribution

cannot be well known without a robust selection function. Theoretically, the low and

high ends of our distribution are not robust due to our assumption that model stars

form after all of the supernova yields have fallen into and mixed with the hydrogen

gas. This is because our assumption precludes outlier stars that, for example, could

have more or less europium due to inhomogeneous mixing.
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Future work will address these concerns through a more detailed treatment of en-

richment that incorporates our variable-yield work into a more complete picture that

includes scatter due to dierences in galaxy formation (e.g., dierent environments

or metal mixing). This will allow for a better determination of whether our assump-

tion of a power law is an appropriate shape for the -process yield distribution and

improved constraints on  and .

3.3 Stellar Abundance Samples

3.3.1 Sample Selection

We use a stellar abundance sample from the -process Alliance (RPA), a collection

of detailed abundances of 601 halo stars [Hansen et al., 2018, Sakari et al., 2018,

Ezzeddine et al., 2020b, Holmbeck et al., 2020b]. The RPA stars are bright (V <

13.5), metal-poor ([Fe/H]  −2) red giant stars in the Milky Way stellar halo. They

were observed with a focus on obtaining a statistically complete sample of europium

abundances. To verify the RPA data, we also consider a sample of 228 metal-poor red

giant halo stars from Roederer et al. [2014b] [henceforth R14]. Both of these samples

report europium measurements or upper limits for every star.

The R14 sample has [Eu/Fe] abundances that are 022 dex lower and [Fe/H]

abundances that are 019 dex lower from other samples due to using a much cooler

eective temperature scale and isochrone-based surface gravities [Roederer et al.,

2014a]. We thus shift the reported measurements up by these amounts when plotting

in Figure 3-2 and reporting values in Table 3.1.

We restrict most of our analysis to very metal-poor ([Fe/H] < −25) stars, and

the highest metallicity we consider is [Fe/H] < −175 (when analyzing the evolution

of the Eu scatter with increasing metallicity in Section 3.4.1). We only consider stars

with barium-to-europium abundance ratios that could be produced by the -process

(−09  [Ba/Eu]  −04). [Ba/Eu] higher than ∼ −04 indicates contamination

from the -process, another nucleosynthetic process which forms europium. The solar
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-process barium-to-europium ratio is [Ba/Eu] ≈ −08 [Sneden et al., 2008], and stars

with much lower [Ba/Eu] cannot be explained by the -process pattern. We note that

small variations in these purity cuts do not signicantly change our results.

Taking into account these restrictions (with [Fe/H] < −25), the RPA sample

includes 83 stars with Eu measurements and an additional 11 stars with Eu upper

limits. The R14 sample includes 36 stars with Eu measurements and 4 with Eu upper

limits. The RPA sample (up to [Fe/H] < −175) and its IQREu in dierent metallicity

bins can be seen in Figure 3-1b.

3.3.2 Construction of Statistical Distributions

Figure 3-2: Cumulative distribution functions for the RPA and R14 samples. Both
CDFs are determined using the Kaplan-Meier estimator, which takes into account
detections and upper limits to estimate the true distribution. The shaded regions
show 95% condence on the CDF estimate. Grey lines outline the interquartile range
(25%-75%) for the RPA Kaplan-Meier CDF. The CDFs have been extended to the
y-axis to show the estimated fraction of stars in each sample that have no -process
elements.

To combine the mixture of measurements and upper limits into a statistical dis-

tribution of europium for each sample, we employ survival statistics, a branch of

statistics that deals with censored datasets, e.g., upper limits. The most general sin-

gle variate survival statistic is the Kaplan-Meier estimator (KME), which provides a
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Table 3.1: Interquartile ranges and fraction of stars formed from gas with no -process
enrichment for dierent [Eu/Fe] CDFs from observational stellar samples with [Fe/H]
< −25. The distributions can be seen in Figure 3-2. IQREu uncertainties are due
to both KME condence levels and uncertain observations. The 0 values are upper
limits as the distribution could continue to lower [Eu/Fe] with lower 0.

Stellar Abundance Sample IQREu 0 ⟨[Eu/Fe]⟩ ⟨[Fe/H]⟩
RPA 050+0.15

−0.10 004+0.10
−0.04 03+0.1

−0.1 −27+0.1
−0.1

R14 038+0.51
−0.14 004+0.11

−0.04 02+0.2
−0.2 −29+0.1

−0.1

non-parametric maximum likelihood estimate of a distribution from observed data.

The Kaplan-Meier estimator and survival statistics have been used extensively in

astronomical literature [e.g. Feigelson and Nelson, 1985, Schmitt, 1985, Wardle and

Knapp, 1986, Simcoe et al., 2004]. We use the KaplanMeierFitter from the survival

analysis python package lifelines [Davidson-Pilon et al., 2020]. For this estimate

to be valid, two assumptions about the distribution of upper limits must hold. First,

the upper limits should be independent of each other, which is true here as the stars

are independent. Second, the upper limits should be random – i.e., the probabil-

ity that a measurement will be censored should not correlate with the measurement

value itself. This assumption may not hold because lower [Eu/Fe] values are more

likely to be censored. Ideally, we would fully forward model and censor our theoreti-

cal results, but that requires many additional assumptions including a completeness

function (probability of measuring any value given [Eu/Fe]), an error function (the

value we measure for [Eu/Fe] given its true value), and an upper limit function (the

probability of setting a [Eu/Fe] upper limit at a specic value given its true value).

Fully forward modeling the observational sample is beyond the scope of this paper.

We thus use the Kaplan-Meier estimate while keeping in mind that this may not be

a perfect estimate.

Figure 3-2 shows the [Eu/Fe] cumulative distribution functions for the RPA and

R14 samples. The interquartile range, IQREu, diers slightly for the dierent samples

but is consistent within the uncertainty. The mean [Eu/Fe] and [Fe/H] also dier

slightly. The zero-limit 0, the estimated fraction of stars that formed from gas that

was not enriched by an -process event, is the same in both samples. In our model,
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0 is the fraction of stars with no europium enrichment ([Eu/Fe] = −∞), but we

cannot identify if real stars have no -process enrichment (and stars could receive trace

amounts of europium enrichment through other processes despite the [Ba/Eu] cuts we

applied to purify our sample). We thus estimate 0 in the data by taking the lowest

CDF value from the observed distribution as estimated by survival statistics. This

assumes that the CDF immediately plateaus at lower [Eu/Fe] instead of continuing

to decrease. Because the distribution could continue to decrease with lower [Eu/Fe],

the observed 0 values are upper limits. Realistically, the real distribution certainly

does not fully plateau even if our 0 estimate is correct because of the possible other

trace sources of europium, but for the purposes of this analysis and because we cannot

estimate the CDF to extremely low [Eu/Fe] regardless, we ignore those minor eects.

These values are shown in Table 3.1.

3.4 Results

We use the stellar abundance data to constrain the model parameters. The results

are summarized in Table 3.2.

Table 3.2: Model parameters determined from observations. The wide ranges of SN,
,min, and F, encompass broad uncertainty in the fraction of metals retained in
each galaxy and each galaxy’s gas mass. To be thorough we include these full ranges.
We also validate our ducial values for F, , , and ⟨⟩ (which also validates SN,
,min, and ⟨⟩). For , the full range of values produce similar distribution shapes.
Derived parameter values are shown below the double line.

Description Range Fiducial Value
SN Number of core-collapse supernovae 30− 30000 3000
⟨⟩ Average number of -process collapsars 2− 4 3
,min Minimum -process yield produced per collapsar (see Eq. 3.1) 3× 10−4 − 3× 10−1 3× 10−2

 Power law exponent of  distribution (see Eq. 3.1) 22− 6 28
F,

1 Eective supernovae iron yield into the total gas mass, Feretainedgas 10−10 − 10−7 10−9

 Fraction of supernovae that are collapsars, ⟨⟩ SN 10−4 − 10−1 10−3

⟨⟩ Average -process yield produced per collapsar 7× 10−4 − 7× 10−1 7× 10−2

3.4.1 ⟨⟩ and 

We use the model described in Section 3.2 to calculate theoretical cumulative distri-

bution functions (CDF) of stellar [Eu/Fe] abundances. CDFs resulting from dierent
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representative choices of ⟨⟩ and  can be seen in Figure 3-3. Each model CDF

has an arbitrary oset that shifts the CDF left or right for plotting purposes. Recall

that ⟨⟩ and  can be constrained using only the shape of the distribution (i.e.,

the IQREu and 0). A higher ⟨⟩ causes both a lower 0 since fewer stars will form

from un-enriched gas and a narrower distribution due to the central limit theorem.

A higher  also narrows the distribution by increasing the rarity of high . When

constraining these parameters with the IQREu, a higher ⟨⟩ thus corresponds to a

lower  and vice versa.

Figure 3-3: Stellar [Eu/Fe] abundance cumulative distribution functions (colored
lines) for models with dierent ⟨⟩ and  values. The observed [Eu/Fe] CDF for the
RPA sample is shown in black with grey uncertainty. Our ducial model, ⟨⟩ = 3
and  = 28, is shown in solid blue in both plots. When either ⟨⟩ or  is not
specied, the ducial value is used. The model CDFs have an arbitrary oset to shift
the distribution left or right for plotting purposes, so only the shape (i.e., the IQR
and zero-fraction) is relevant.

⟨⟩, the average number of -process collapsars enriching our stellar population,

is constrained by the estimated fraction of stars which formed from gas not enriched

by an -process event, 0. For 0 = 004, ⟨⟩ = 3 is the best t value. Figure 3-4a

shows how the value of 0 changes with ⟨⟩, independently of . In this gure, the

black boxes outline the parameter values which explain the observed 0 or IQREu.

⟨⟩ = 2 to 4 can also explain observations. Note that the observed 0 is an upper

limit as the distribution could smoothly continue to lower [Eu/Fe] with a lower 0.

The constraint on ⟨⟩ from 0 is thus a lower bound.
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(a) Values of the zero-fraction, 0, for
dierent models. The heat map colors
are normalized to 0 = 004+0.10

−0.04, the 0
of the RPA stellar abundance sample
(see Table 3.1). Red is higher than

observed 0, blue is lower. ⟨⟩ alone
aects the 0 value.

(b) Values of the IQR for dierent
models. The heat map colors are

normalized to IQREu = 050+0.15
−0.10, the

IQR of the RPA stellar abundance
sample (see Table 3.1). Red is higher
than observed IQR, blue is lower. For
⟨⟩ = 1, we determined the IQR by
assuming symmetry and doubling the

50%-75% range (because the
distribution is always above 25%).

Figure 3-4: Heat maps showing how the cumulative distribution IQR and zero-
fractions of our model vary with ⟨⟩ and . Black boxes outline the parameter
combinations that can explain the stellar data within observational uncertainty (us-
ing the RPA sample; see Table 3.1). Note: The plotted  values increase by 0.2 until
 = 30, at which point they increase by 0.5 due to increasingly slower variation in
IQREu.

To validate our ducial value of ⟨⟩ = 3, we also reproduce the evolution in

europium scatter with increasing metallicity. This gives an upper bound to the con-

straint. We examine the RPA stellar abundance sample in several metallicity bins

(up to [Fe/H] = −165; see Figure 3-5). We compare model scatter to the scatter

of the RPA distribution as determined by both the Kaplan-Meier estimator (which

takes into account europium detections and upper limits) and as determined by only

europium detections. The R14 sample is excluded from this plot because it has too

few stars in each bin to determine distributions.
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(a) The evolution of the Eu scatter with
increasing metallicity can be well explained
by our ducial model choices of ⟨⟩ = 3 at
⟨[Fe/H]⟩ = −27 (the mean metallicity of

our RPA sample) and  = 28.

(b) If ⟨⟩ is increased to ⟨⟩ = 30 at
⟨[Fe/H]⟩ = −27, no single choice of  well
explains the evolution of the Eu scatter.
Higher ⟨⟩ choices result in poorer

matches to observations.

Figure 3-5: The decrease in the [Eu/Fe] scatter with higher metallicity seen in the data
(hollow circles and squares) is reproduced by our model (colored dots). Each [Fe/H]
bin of 0.3 dex corresponds to approximately a factor of 2 increase in supernovae,
hence why we double the number of -process collapsars in each bin. Reproducing
the evolution in the scatter at higher metallicity as well as low metallicity increases
condence in our ducial model choices of ⟨⟩ and .

As metallicity increases, ⟨⟩ should increase linearly, but the scatter should de-

crease with
√
⟨⟩. Reproducing the IQREu in several metallicity bins thus sug-

gests our model uses the correct ⟨⟩. When binning on metallicity, our model with

⟨⟩ = 3 at ⟨[Fe/H]⟩ = −27 well reproduces the observed decrease in scatter. If

we increase ⟨⟩ by a factor of 10 or more, our model no longer well reproduces the

observed decrease in scatter unless  is allowed to vary with metallicity. Considering

all uncertainty from the Kaplan Meier Estimator, the upper bound is ⟨⟩ ≈ 50, but

the model favors a much lower ⟨⟩. This suggests our ducial ⟨⟩ = 3 is roughly

correct despite being a lower bound.

To be thorough, we also explore the extreme case where all core-collapse su-

pernovae result in -process collapsars – i.e., all core-collapse supernovae form an

accretion disk that is able to synthesize a non-zero amount of -process material

(⟨⟩ = SN and  = 1). We consider the case where ⟨⟩ = 3000, where 3000 is

our ducial value of SN (see Section 3.4.2). In this extreme case, the vast majority

71



Figure 3-6: Distribution for an extreme model where all core-collapse supernovae pro-
duce some -process material ( = 1). This extreme model can explain the observed
IQREu. It cannot well explain the evolution of scatter with increasing metallicity,
however (e.g., Figure 3-5). It also cannot well explain the low [Eu/Fe] tail. For this
model, the minimum amount of -process material per collapsar is extremely small,
,min ≈ 10−6⊙.

of collapsars would produce extremely small amounts of -process material. As seen

in Figure 3-6, this extreme case can explain the observed IQREu with a scatter of

IQREu = 045 for  = 18. The upper bound set on ⟨⟩ by the evolution of scatter

with metallicity (Figure 3-5) disfavors this model, however. The situation where all

core-collapse supernovae produce -process is only favored if SN is below 30, lower

than even our most extreme SN value. This extreme model also does not reproduce

the observed distribution at low [Eu/Fe] as well as the ducial model, though we note

that the tails of the observed distribution are less trustworthy than the IQREu. We

thus keep ⟨⟩ = 3 for our results.

, the exponent of the -process yield power law distribution, is constrained by the

IQREu value of the distribution, which varies with both  and ⟨⟩ as shown in Figure

3-4b. For ⟨⟩ = 3 and IQREu = 050+0.15
−0.10, the constrained value is  = 28+4.2

−0.6.
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3.4.2 SN and 

The number of supernovae, SN, is linearly related to F, . To explain the mean

metallicity ⟨[Fe/H]⟩ = −27 ± 01 (using the method described in Section 3.2.5), on

the extreme ends of F, values we need anywhere from 30 to 30,000 supernovae;

lower F, corresponds to higher SN as more supernovae are needed to explain the

mean metallicity. For our ducial value of F, = 10−9, SN ≈ 3000.

With values for ⟨⟩ (from Section 3.4.1) and SN, we can determine the fraction

of supernovae that result in -process material producing collapsars,  = ⟨⟩ SN.

Considering the extremes of the possible values of F, ,  ≈ 00001 to 01. For our

ducial values (⟨⟩ = 3 and F, = 10−9),  ≈ 0001.

To validate our ducial choice of F, , we also estimate  using observations

of ultra-faint dwarf galaxies around the Milky Way. There are now high-resolution

spectroscopic abundances for stars in 19 surviving ultra-faint dwarfs. Of these, three

of the dwarfs (Grus II, Reticulum II, and Tucana III) exhibit -process enrichment

[Hansen et al., 2020, Ji et al., 2016b, Hansen et al., 2017]. Since these are extremely

small systems, we assume each of these three dwarfs experienced one -process event

(as in Ji et al. 2016b, Brauer et al. 2019), and then estimate the total number of

supernovae that contributed to all of their stellar populations to estimate . We

combined literature values of their absolute magnitudes  [Muñoz et al., 2018,

Torrealba et al., 2018, Drlica-Wagner et al., 2015, Bechtol et al., 2015, Mutlu-Pakdil

et al., 2018] with a Salpeter individual mass function that predicts 0020 supernovae

where 0 is the present-day luminosity in ⊙ [Ji et al., 2016b]. The ultra-faint dwarfs

cumulatively experienced about 1800 supernovae. The fraction of supernovae that

result in -process material producing collapsars is thus  ∼ 31800 = 0002. This

validates our ducial model values of  ≈ 0001 and F, ≈ 10−9. We note again,

however, that there is tension between our ducial estimate of F, and several

external constraints in very low mass galaxies, as discussed in Section 3.2.4, so we

continue to report the full uncertainty in these parameters.
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3.4.3 ,min

The minimum -process yield produced per collapsar, ,min (see Eq. 3.1), depends

on  and varies linearly with F, . To transform between total -process yield (nuclei

with A ≥ 70) and europium yield, we use the solar -process europium mass fraction

Eu ≈ 10−3. To explain the observed mean europium-iron abundance ratio ⟨[Eu/Fe]⟩,
on the extreme ends of F, values, we nd that ,min ≈ 00003 − 03⊙; lower

F, corresponds to higher ,min both because a lower retained causes less europium

to be retained in the galaxy and because higher gas requires a higher mass of iron

and europium to explain the mean [Fe/H] and [Eu/Fe] abundances. For our ducial

values of F, = 10−9, ⟨⟩ = 3, and  = 28, we nd ,min ≈ 003⊙, or a mean

-process yield per collapsar of ⟨⟩ ≈ 007⊙.

In the extreme case where all core-collapse supernovae produce a nonzero amount

of -process material (Figure 3-6), the minimum amount of -process material per

collapsar would be extremely small, ,min ≈ 10−6⊙ for ⟨⟩ ≈ 3000. This situation

is disfavored because it does not reproduce the observed decrease of Eu scatter with

increasing metallicity unless F, is much higher than our ducial value.

3.5 Discussion

Using stellar abundance data to constrain parameters in our stochastic collapsar

chemical enrichment model produces a self-consistent physical picture, which was

not guaranteed a priori. We now discuss this in more detail and place our results in

context with other potentially physically relevant values. We also discuss the limita-

tions of this model in Section 3.5.5.

3.5.1 Implications of : The Fraction of CCSN that Produce

Collapsars

What fraction of core-collapse supernovae (CCSN) produce collapsars? Recall that

our denition of collapsar is motivated by physical picture in which a rapid fallback
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Figure 3-7: Constraints on ⟨⟩, , and  from our model (blue) in context of poten-
tially physically relevant values (black dotted lines). For descriptions of the reference
values, see Section 3.5. Our ducial model values are plotted as a blue dot, while
the dark blue shaded region represents an order of magnitude uncertainty around our
ducial values and the light blue shaded region represents the full uncertainty.

accretion onto a black hole simultaneously produces heavy r-process material via

accretion disk winds and launches a collimated outow, but does not require that a

jet successfully break out of the progenitor star. The power law distribution yields

adopted in Section 3.2 naturally includes less extreme explosions that produce smaller

amounts of -process material via disk outows.

To reproduce the observed scatter in [Eu/Fe] abundances at low metallicity with

a collapsar-like model, we require that the fraction of CCSN producing -process

material is between 10−4 and 10−1 with a ducial value of 10−3. We now compare

these values to the observed rates for various classes of transients that have previously

been proposed to be powered by collapsars or jet-driven explosions.

We begin with long-duration -ray bursts (LGRBs). Current measurements of the

local (z=0) rate for LGRBs beamed towards Earth from the Swift satellite range from

13+0.6
−0.7 Gpc−3 yr−1 for L>1050 ergs [Wanderman and Piran, 2010] to 042+0.9

−0.4 Gpc−3

yr−1 accounting for complex Swift trigger criteria [Lien et al., 2014]. Correcting these
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for a canonical beaming factor of 50 [Guetta et al., 2005], results in inferred intrinsic

rates of 65+0.30
−0.35 Gpc−3 yr−1 and 21+4.5

−2 Gpc−3 yr−1, respectively. Comparing these to

the local CCSN rate from the Lick Observatory SN Search (LOSS) of 0.705 (±0.089)

×10−4 Mpc−3 yr−1 [Li et al., 2011a] yields RLGRB/RCCSN values of (2−9)×10−4. This

range of values is only slightly lower than our ducial value of . LGRBs could thus

be linked to -process production. Our uncertainty on  errs toward a higher value

for the -process fraction, though, so  could very well be larger than LGRB. In that

case, we would require that massive stars beyond those that launch successful GRBs

form accretion disks with physical conditions capable of producing heavy -process

material.

In particular, Type Ic-BL supernovae are a class of hydrogen-poor SN that display

high ejecta velocities (hence “broad-lined”) and kinetic energies (∼1052 ergs) for which

central engines are commonly evoked. While the nature of the central engine is still

debated [Thompson et al., 2004, MacFadyen and Woosley, 1999, Barnes et al., 2018],

the fact that all SN observed in association with LGRBs have been Type Ic-BL

supernovae has lead to the hypothesis that all events of this class are powered by jets.

Dierences in the detailed manifestation of these explosions (LGRBs, low-luminosity

GRBs, relativistic SN, or “ordinary” Ic-BL SN) would then be driven by a distribution

of engine timescales or progenitor radii [e.g. Lazzati et al., 2012, Margutti et al.,

2014]. We therefore compare our constraints on  to the rates of Type Ic-BL SN to

investigate if they are consistent with all Type Ic-BL SN harboring collapsar engines.

Based on the full LOSS sample, Shivvers et al. [2017] nd that Type Ic-BL SN

account for a fraction of (1.1 ± 0.8) ×10−2 of CCSN. However, the LOSS sample was

a targeted survey, biased towards high metallicity galaxies and it is well established

that Type Ic-BL SN show a preference for low metallicity environments [e.g. Modjaz

et al., 2020]. It is therefore possible that Type Ic-BL SN represent a higher fraction

of all CCSN at low metallicity, which is what our parameter  actually constrains.

Unfortunately, to date, there has been no untargeted, volume-limited study that

examines the fraction of CCSN that are Type Ic-BL at low-metallicity. Graur et al.

[2017b] and Arcavi et al. [2010] examine relative rates of dierent core collapse SN
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subtype in “high” and “low” mass galaxies for the LOSS and early PTF samples,

respectively. Graur et al. [2017b] nd no signicant dierence in the Type Ic-BL

fraction (1-2%), while Arcavi et al. [2010] nd that Type Ic-BL may make up a

signicantly higher fraction of all SN (∼ 10 − 13%) in low luminosity galaxies. We

caution, however, that both samples contain only 2-3 Type Ic-BL events and are

therefore dominated by low number statistics. More recently, Schulze et al. [2020]

investigate the host galaxies of the full sample of 888 SN identied by PTF, including

36 Type Ic-BL. They nd that Type Ic-BL production is signicantly stied above a

galaxy mass of log⊙ = 10, with Type Ic-BL comprising  5% of their observed

CCSN sample below this threshold compared to  2% above.

RIc−BL/RCCSN values of 0.01–0.1 fall within the range of  found by our model

(see Figure 3-7). However, the latter is at the extreme high end, implying that while

our model is consistent with all Type Ic-BL SNe producing europium, it favors a

scenario in which 10% do. We note that this would not preclude the possibility

that all Type Ic-BL SNe harbor jets, but rather require that some lack the accretion

disk properties necessary for the production of heavy r-process material. This could

imply that a subset of Type Ic-BL SNe (a) harbor accreting black holes, but do

not reach suciently high accretion rates (> 10−3 M⊙ s−1) to proceed past 56Ni-

rich outows [Siegel et al., 2019], or (b) harbor magnetar central engines for which

neutrino irradiation can limit neucleosynthesis from disk ejecta to the light r-process

[e.g. Margalit and Metzger, 2017, Radice et al., 2018].

For comparison, we also calculate a rough eective rate of neutron star mergers

per CCSN. The cosmic NSM rate from the second LIGO-Virgo gravitational wave

transient catalog is 320+490
−240 Gpc−3 yr−1 [The LIGO Scientic Collaboration et al.,

2020]. When comparing this to the LOSS rate of galactic CCSN, the estimated NSM

fraction is 45+7.0
−3.4 × 10−3. This is higher than our ducial value of , but within

model uncertainties. The LIGO rate of NSMs could thus potentially account for the

rate of -process events required by our model to explain metal-poor star abundances,

though it is not favored by our ducial results. We also note that the rate of NSMs in

the early universe likely diers from the rate found by LIGO, and that NSMs would
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need to be fast-merging to be described by our model.

3.5.2 Implications of ⟨⟩: The Amount of -Process Yield

Produced per Collapsar

Our determination of the minimum and average amounts of -process yield produced

per collapsar (,min ≈ 003⊙ and ⟨⟩ ≈ 007⊙, respectively) is based entirely on

our analysis of RPA stellar abundance data, independent of any previous estimates in

literature of the amount of -process material that might be produced by such events.

To place our results in context, we compare them to several reference estimates of -

process yields from single events (see Figure 3-7). Note again that we dene -process

yield as the yield of nuclei with mass number A ≥ 70.

Siegel et al. [2019] demonstrated that accretion disk outows in collapsars could

produce signicant amounts of -process material. For dierent presupernova models,

they found the amount of europium varied from 60× 10−6⊙ to 58× 10−4⊙, or

 = 0006 to 0579⊙ (for our denition ). Their ducial model corresponds

to  = 027⊙. Their ducial yield is about four times larger than our ducial

average yield, but our ,min and ⟨⟩ values fall within their range of yields. In

Figure 3-7, the shaded region correspond to the spread of -process yields found by

the Siegel et al. [2019] simulations.

Furthermore, if we assume that the isotropic energy of a -ray burst roughly

traces the amount of -process yield, we can compare the energies of LGRBs to

that of GW170817 to estimate the  from collapsars in which the associated jet

successfully breaks out of the progenitor star. This assumption predicates on the

ideas that (1) the same physical processes act in both short and long GRBs and (2)

the accretion phase during which europium is produced roughly coincides with the

phase during which the GRB occurs in the source frame, matching assumptions of

Siegel et al. [2019]. Côté et al. [2018b] infer that ∼ 3 − 15 × 10−6⊙ of europium

was ejected from the post-merger accretion disk of GW170817. This translates to

∼ 001⊙ of heavy -process material for a europium mass fraction of Eu = 10−3.
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The istropic -ray energy of GW170817 was ,,170817 = 21+6.4
−1.5 × 1052 ergs

[Hajela et al., 2019], and from a sample of 468 LGRBs, the mean istropic energy of

LGRBs is ,, ≈ 26+2.7
−0.5 × 1053 ergs [Wang et al., 2020]. With these values:

, ∼ ,170817
,,
,,170817

∼ 01⊙

(see also Siegel 2020). This aligns with our ducial value of ⟨⟩. In particular, our

ducial results lie near the intersection of the -process yield expected per LGRB and

the fraction of LGRBs per CCSN (see Figure 3-7). This supports the possibility that

LGRBs are linked to -process production.

For the nal reference mass, we compare to the amount of -process yield that was

produced in the -process event that enriched the ultra-faint dwarf galaxy Reticulum

II [Ji et al., 2016b]. This galaxy preserves -process enrichment from a single prolic

event in the early universe. To explain the europium abundances of its stars, it likely

experienced an event with a europium yield of 10−4.3 to 10−4.6⊙ [Ji et al., 2016b].

With Eu = 10−3, this corresponds to  ∼ 004⊙. Our ⟨⟩ value is only slightly

higher than this mass. This yield is also consistent with that expected for neutron star

mergers [e.g., the yield estimated from GW170817, Siegel, 2019, Côté et al., 2018b].

3.5.3 Implications of : Learning About Collapsar Properties

from -Process Abundance Scatter

Unfortunately, the current precision on the shape of the [Eu/Fe] distribution does

not provide tight constraints on , the exponent of our -process yield power law

distribution. For ⟨⟩ = 3, any  = 22 − 60 can explain the observed scatter.

Our ducial value of  = 28 best ts the data, but the full range of possible values

produces similar distribution widths (see Figure 3-4b).

The  constraints from metal-poor stars can be compared to power law distribu-

tions of long -ray burst (LGRB) engine duration, engine luminosity, and isotropic

energy. Figure 3-7 shows our constraints on  in context with the exponents from

these distributions.
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Petropoulou et al. [2017] modeled the central engines which power LGRBs, deter-

mining power law distributions for both the engine luminosities and engine activity

times: () ∝ − and () ∝ − . By assuming that more powerful

engines can more quickly break out of the collapsing star to produce -ray signals

(with a breakout time that scales with jet luminosity as −), they show that the

shape of the -ray duration distribution can be uniquely determined by the observed

GRB luminosity function. In particular, they determine the power law indexes of the

 and  distributions by connecting them with the observed distributions

of luminosities and durations of LGRBs. For  = 13, Petropoulou et al. [2017] nd

 = 24 and  = 35, while for  = 12, they constrain  = 24 and  = 46. In

addition, by assuming a single breakout time, Sobacchi et al. [2017] nd a power law

distribution for  consistent with  ∼ 4.

Furthermore, we can determine the isotropic energy distribution of LGRBs since

 ∝  × . Because both  and  draw from power law distributions, the

distribution of their product follows the distribution of the variable with a smaller ,

in this case  = 24.

Our  constraint overlaps with all of these values, with the ducial value falling

closer to  or . Any of these properties could therefore potentially trace the

-process yield. For a better constraint on , we need a signicantly lower uncertainty

on the observed IQREu. Figure 3-8 shows how tightly IQREu must be measured for

the stellar samples to improve the  constraint. This plot was constructed assuming

the IQREu is centered on IQREu = 050, as found for the RPA sample. To dierentiate

between the distributions for  and  or , the IQREu must be measured

with uncertainty < 005 dex. This abundance precision is better than what current

measurements can achieve in metal-poor stars, though it may become achievable in

the future as stellar spectroscopy methods improve.

The IQREu is a robust but very inecient estimator of the distribution shape. Al-

ternatively, we could use the full distribution shape. This requires a reliable selection

function, but would likely not demand 0.05 dex precision.
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Figure 3-8: To improve our constraint on , we must improve our measurement of the
stellar IQREu for metal-poor stars. Here we show how the  constraint is improved
for several dierent IQREu uncertainties.

3.5.4 Neutron Star Mergers vs. Collapsars

Here we focused on collapsars, demonstrating that a -process production site with

a power law distribution inspired by LGRB jet properties can self-consistently repro-

duce the abundances and scatter observed in metal-poor stars. These results would

also apply to another prompt -process site ejecting a Solar -process abundance

pattern that scales with a power law, however.

The possibility that collapsars produce -process material is debated. For example,

earlier semi-analytic work on collapsar disk winds by Surman et al. [2006] found

that collapsar outows are too neutron-poor to produce heavy -process isotopes. A

recent study by Miller et al. [2019] that investigated the Siegel et al. [2019] results

with more detailed modeling of neutrino transport also found that collapsar outows

are incapable of producing third peak -process material. Furthermore, Macias and

Ramirez-Ruiz [2019] found that any -process site that also produces large amounts of

iron is disfavored by observations of metal-poor stars. Collapsars that do not produce

large amounts of iron (e.g., LGRBs without an associated supernovae; Fynbo et al.

2006) would avoid the dilution problems discussed by Macias & Ramirez-Ruiz, but

the topic is unsettled.

81



Neutron star mergers are a demonstrated source of -process material thanks to

GW170817 and, in principle, their europium yields can vary as well with dierent

neutron star binary masses, mass ratios [Korobkin et al., 2012, Bauswein et al., 2013,

Hotokezaka et al., 2013, Dietrich et al., 2015, Sekiguchi et al., 2016], and eccentricities

[Chaurasia et al., 2018, Papenfort et al., 2018]. Furthermore, the ,min and ⟨⟩
values in our model are roughly consistent with the -process yield estimated for

GW170817 [Siegel, 2019, Côté et al., 2018b]. Because of this, variable-yield neutron

star mergers could also potentially explain the -process scatter in metal-poor stars

via a similar model to that presented in this paper. More work is needed to deter-

mine a reasonable distribution of -process eective yields from neutron star mergers,

combining input distributions of binary neutron star properties and yields (e.g., those

from the numerical simulations cited above) and kick velocities [e.g., Tarumi et al.,

2020, Safarzadeh et al., 2019a, Bonetti et al., 2019].

3.5.5 Limitations of Initial Model

Our initial model is purposefully simple in order to act as a focused exploration of

variable-yield collapsars. In particular, the model assumes all abundance scatter is

due to variable stellar populations. This assumption allows us to expressly investigate

variable yields as a source of scatter, but it does not consider possible eects due to

dierences in galaxy formation. Real dwarf galaxies have dierences in their hier-

archical assembly, small amounts of cross-pollution, and experience inhomogeneous

mixing [e.g., Venn et al., 2004, Ji et al., 2015b, Grien et al., 2018]. Abundance

scatter is likely aected by these complexities. Inhomogeneous enrichment has been

included in some previous models [e.g., Cescutti et al., 2015, Wehmeyer et al., 2015],

but it is not a solved problem. In this very metal-poor regime, theoretical work has

not yet given a simple way to model the amount of scatter from galaxy formation

eects.

This model also assumes that each star probes an independent gas reservoir. For

every star in our model, we assume that it originates from a dierent dwarf galaxy

in which a number of SN exploded over some time, the metals fell back down into

82



the galaxy and fully mixed, and then our model star formed from the mixed gas.

This approximates the average star that formed in a given gas reservoir. Real stellar

samples likely contain stars that originated together, though. Observational work

that studies the accretion origin of stars through, for example, analysis of stellar

streams and kinematic clustering will inform the quality of this assumption in the

future.

To transcend the limitations of this initial model, future models will consider

scatter due to dierences in galaxy formation and include a more detailed treatment of

chemical enrichment and star formation. We are currently developing high-resolution

hydrodynamic simulations of dwarf galaxy evolution that will study these eects and

further explore the origins of -process material.

3.6 Conclusions

We have produced a self-consistent model in which collapsars synthesize all of the

-process material in the early universe. By assuming the -process material in metal-

poor ([Fe/H] < −25) stars was formed exclusively in collapsars with stochastic yields,

we can reproduce the observed distribution of europium abundances with parameter

values that are consistent with other independently determined reference values. This

was not guaranteed a priori.

This is not evidence that collapsars dominantly produce -process material in

the early universe, however. Neutron star mergers with variable eective europium

yields may also be able to explain the -process scatter. More work is needed on the

eective europium yields of neutron star mergers. In particular, the retention fraction

is important for the collapsar model, but it becomes even more important for neutron

star mergers with dierent natal kick velocities and coalescence times.

Abundance scatter of metal-poor stars is an important window into the dier-

ent mechanisms producing -process elements. Individual mechanisms can produce

scatter without the need for multiple sources. In this paper, we assume a power law

distribution of collapsar -process yields. The range of constrained values for the
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exponent  is comparable to those of the distributions for long -ray burst isotropic

energies, engine luminosities, and engine times (Section 3.5.3). Improved constraints

on  could allow us to investigate which, if any, of these collapsar properties trace

-process yield.

Lastly, in our model, the fraction of core-collapse supernovae that result in -

process collapsars, , is comparable to the fraction of core-collapse supernovae that

result in long -ray bursts. This could indicate a link between LGRBs and -process.

The uncertainty in our model errs to higher , though, and if  is higher then

we would require a signicant number of -process collapsars that do not produce

long -ray bursts. Our model also favors a scenario in which  10% of Type Ic-BL

supernovae produce europium. This does not preclude all Ic-BL SNe from harboring

choked jets, but would imply that some Ic-BL SNe lack the accretion disk properties

to synthesize heavy -process isotopes.

3.7 Appendix: Average Iron Yield from Core-collapse

Supernovae

To estimate an average iron yield from core-collapse supernovae (CCSN), we calcu-

late a weighted average between observations of H-rich CCSN and H-poor CCSN.

The majority of the iron comes from the Ni-56 → Co-56 → Fe-56 decay chain, so we

adopt mean Ni-56 yields for both Type II SN and Type IIb/Ib/Ic SN as measured

from modeling their bolometric light curves, and account for the relative rate between

these two broad classes. The mean Ni-56 yield from H-rich CCSN is 0044±0044⊙

[Anderson, 2019]. The mean Ni-56 yield from Type II CCSN is 012±012⊙ [Afsari-

ardchi et al., 2020]. For the relative rates of stripped envelope to Type II CCSN, we

adopt the results of the Lick Observatory SN Search (LOSS; Li et al. 2011b). While

LOSS was a targeted survey, it remains the most complete volume-limited supernova

search completed to date. We consider two cases: (1) Based on the entire LOSS sam-

ple, Shivvers et al. [2017] nd the relative fractions of Type II and stripped envelope
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SN of 696+6.7
−6.7% and 304+5.0

−4.9%, respectively. This implies an average iron yield of

0067⊙. (2) However, the ratio of Type II to stripped envelope SN is metallicity

dependent. Graur et al. [2017a] examined the relative rates the LOSS sample as a

function of host galaxy mass and metallicity. In their lowest metallicity bin, the ratio

of SESN and Type II SN specic rates is  = 013+0.09
−0.08, a factor of three lower

than the overall LOSS sample above. Adopting this value, and making the (rather

large) assumption that the the average nickel yield of each class is not a function of

metallicity, we nd an average CCSN iron yield of 0053⊙. In both (1) and (2),

the average yield is slightly below the order of Fe ≈ 01⊙, with the uncertainty of

 and  far outweighing that of Fe.
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Chapter 4

Possibilities and Limitations of

Kinematically Identifying Stars from

Accreted Ultra-Faint Dwarf Galaxies

This chapter is based on work previously published in The Astrophysical Journal

(Brauer et. al 2022).

4.1 Introduction

Throughout its formation history over billions of years, the Milky Way grew through

mergers with many dwarf galaxies. The smallest and oldest of these accreted systems

are the ultra-faint dwarf galaxies (UFDs), which were among the rst galaxies in the

Universe [Frebel, 2010, Simon, 2019]. These systems provide insight into the earliest

stages of galaxy formation and are important components of the assembly history of

the Milky Way.

Due to low star formation eciency and quenching from reionization, UFDs pre-

serve information about early chemical enrichment and can display clean signatures

of important nucleosynthetic processes such as the rapid neutron-capture process (the

-process, which produces around half of the isotopes of the heaviest chemical ele-

ments; see Burbidge et al. [1957], Cameron [1957], Frebel [2018], Cowan et al. [2021]).
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For example, the surviving UFD Reticulum II contains highly -process enhanced

stars, implying it was enriched by a prolic early -process event such as a neutron

star merger [Ji et al., 2016a,b, Roederer et al., 2016a]. Tucana III and Grus II also

exhibit -process enhancement [Hansen et al., 2017, 2020]. Satellite galaxies like these

are located over 25 kpc away from the Sun [Drlica-Wagner et al., 2015], however, so

studying their stars to learn about early chemical enrichment can be dicult.

Because the Milky Way was assembled hierarchically from many neighboring sys-

tems including UFDs, bona-de dwarf galaxy stars can also be found located through-

out our galaxy today, including near the Sun. Chemical tagging, i.e. using stellar

chemical abundances to identify stars that formed together, is a promising way to

identify dispersed UFD stars. Utilizing the Caterpillar simulation suite [Grien et al.,

2016] and a simple model for star formation and parametrized element enrichment,

Brauer et al. [2019] suggested that the population of galactic metal-poor -process

enhanced halo stars could have largely originated in UFDs. This idea stems from

both observations of surviving UFDs such as Reticulum II, and kinematic studies of

-process stars [Roederer et al., 2018, Gudin et al., 2021] that appear to be chemically

and dynamically linked. Further evidence in support of chemically tagging -process

enhanced halo stars remains limited due to small sample size of known stars, but the

-Process Alliance [Hansen et al., 2018, Sakari et al., 2018, Ezzeddine et al., 2020a,

Holmbeck et al., 2020a] is continuing to discover more of these stars which should

soon provide a rich sample for study. Low-mass galaxies, especially UFDs, also host

a higher percentage of metal-poor stars compared to higher-mass galaxies [e.g., Kirby

et al., 2013a]. Chemical tagging with -process elements and/or low-metallicity stars

may thus help astronomers identify stars from UFDs.

Alongside chemical tagging, stellar dynamics also retain important information

about the disrupted galaxies accreted by the Milky Way. In particular, the orbital

actions and energy of a star are quasi-conserved quantities which can, in principle,

be used to identify stars that were accreted together (see Section 4.2.3). While these

quantities are not truly conserved in the galaxy on long timescales, clustering in

 − −  −  phase space (or a subset of this space) is a common, useful method
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to search for accreted structure. Thanks to the Gaia mission, detailed 6D phase space

information is now available for millions of stars [Gaia Collaboration et al., 2018]. This

inux of data has already lead to a better understanding of the major mergers that

the Milky Way experienced (e.g., the Gaia Sausage, Belokurov et al. 2018, Helmi

et al. 2018, Sequoia, Myeong et al. 2019, Kraken, Kruijssen et al. 2019, 2020, Forbes

2020, and more, Naidu et al. 2020, Mardini et al. 2022). However, the low-mass

galaxy mergers are far less understood because far fewer stars are contributed to the

galaxy from each accreted UFD, rendering the associated dynamic signatures less

pronounced and more dicult to isolate.

Currently, several groups are using kinematics to identify groups of stars that

may have originated in UFDs. Roederer et al. [2018] explored the possibility of iden-

tifying groups of stars that possibly originated together in UFDs by clustering stars

with -process enhancement (“-process stars”) in dynamic phase space. Gudin et al.

[2021] expanded on this idea with a much larger data set of 446 stars. Both papers

found multiple dynamically linked groups of stars, suggesting that these groups may

represent dissolved UFD remnants and that dynamic clustering is indeed a promising

method to identify groups of stars from tidally disrupted UFDs. Similarly, Limberg

et al. [2021] and Yuan et al. [2020] used clustering algorithms to identify dynamically

linked groups among very metal-poor ([Fe/H] < −2) stars, several of which have

similar dynamics to -process enhanced stars.

This area of research is continuously expanding as more groups explore clustering

with stellar dynamics – both with and without chemical tagging – as a means to

identify possible groups of accreted stars from dwarf galaxies. And as astronomers

continue to gather kinematics for millions of stars in our Galaxy, the search for these

dwarf galaxy remnants is a dicult but worthwhile endeavor. It is unclear, however,

to what degree we can trust the clusters identied by dierent clustering algorithms,

and which clusters are most likely to correspond to real UFD remnants.

In this paper, we explore the possibilities and challenges of kinematically iden-

tifying stars from tidally disrupted UFDs in the Milky Way by analyzing a set of

32 cosmological zoom simulations of Milky Way-mass galaxies. Using the Caterpillar
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simulation suite [Grien et al., 2016], we trace tagged particles from accreted UFDs to

 = 0 and test dierent clustering algorithms in dynamic phase space. Specically, we

explore what fraction of remnant UFDs can be expected to be recovered using basic

clustering algorithms, which clustering algorithms work best and most reliably, and

which identied dynamically linked groups are most likely to correspond to real UFD

remnants. In this work, we focus exclusively on UFDs because prior work has investi-

gated more massive accretion events [e.g., Wu et al., 2022], but UFDs remain poorly

understood. While most cosmological simulations do not properly resolve UFDs, the

Caterpillar simulation suite provides us the unique ability to investigate many dif-

ferent Milky Way-mass galaxies forming in a cosmological context while resolving

UFDs.

Section 4.2 describes how we created simulated stellar halos from dark matter cos-

mological simulations, focusing on the methodology of tagging dark matter particles

as tracers of stellar material and measuring the corresponding dynamics at  = 0.

Section 4.3 describes seven dierent clustering algorithms and how we test them on

dierent data sets. Section 4.4 discusses our clustering results and their implications

for kinematically identifying UFD remnants in real data sets. Section 4.5 discusses

the properties of real clusters and how to identify which clusters are most likely to

correspond to real accreted UFD remnants. Section 4.6 summarizes the takewaways

for clustering observational data sets to best identify stars from accreted UFDs.

4.2 Simulated Stellar Halos

4.2.1 Cosmological Simulations

We simulate stellar halos using 32 dark-matter-only cosmological simulations from

the Caterpillar Project [Grien et al., 2016]. Each zoom-in simulation models the

formation of a Milky Way-mass dark matter halo down to  = 0. The eective

resolution is 16, 3843 particles of mass 3 × 104 ⊙ in and around the galaxies of

interest, resolving subhalos down to total mass ∼ 106 ⊙. We limit our analysis to
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simulated Milky Way-mass halos that experienced no recent major merger; all other

aspects of the accretion history are unbiased.

The simulations are fully described in Grien et al. [2016]. The halos in the zoom-

in simulations were selected from a larger, lower resolution parent simulation with

cosmological parameters from Planck 2013 ΛCDM cosmology: Ω = 032, ΩΛ = 068,

Ω = 005, 8 = 083,  = 096, and H = 100 ℎ km s-1 Mpc-1 = 67.11 km s-1

Mpc-1 [Planck Collaboration et al., 2014]. Initial conditions were constructed using

MUSIC [Hahn and Abel, 2011]. Dark matter subhalos were identied using a modied

version of ROCKSTAR [Behroozi et al., 2013b, Grien et al., 2016] and merger trees were

constructed by CONSISTENT-TREES [Behroozi et al., 2013c]. The halos were assigned

a virial mass  and radius  using the evolution of the virial relation from

Bryan and Norman [1998]. For our cosmology, this corresponds to an overdensity of

∆ = 104 at  = 0.

4.2.2 Dark Matter Particles as Tracers of Stellar Material

Since the Caterpillar simulations do not directly simulate stars, we tag dark matter

(DM) particles as tracers of the stellar material of each accreted galaxy. Stars form

tightly bound to their halos and move within the same potential as the dark matter,

so a fraction of the most bound DM particles are expected to trace the phase-space

distribution of the stars [e.g., Bullock and Johnston, 2005, Cooper et al., 2010]. We

refer to the tagged particles as “star particles” and trace their phase-space distribution

down to  = 0.

There is debate over what fraction of DM particles should be tagged as tracers.

The fraction generally ranges from the most bound 1-3% [Cooper et al., 2010, Rashkov

et al., 2012, Bailin et al., 2014], to 5% [Le Bret et al., 2017, Cooper et al., 2017, Dooley

et al., 2016], to 10% [De Lucia and Helmi, 2008, Morinaga et al., 2019, Tumlinson,

2010, Gómez et al., 2012]. Cooper et al. [2017] nds that a fractions of 1-10% all

provide a good approximation to accreted halos of Milky Way analogs, implying that

results for accreted galaxies are holistically insensitive to the exact fraction. Our

analysis in this paper focuses on ultra-faint dwarf galaxies (ℎ ≤ 109⊙), so to
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ensure a sucient number of particles to assess clustering, we tag the 5% most bound

particles. At this resolution, each tagged particle in an accreted ultra-faint dwarf

galaxy corresponds to ∼ 10⊙ of stellar material. We note that having a single,

xed fraction is a simplifying assumption that breaks down in regions dominated by

the baryonic potential and having signicant angular momentum, such as the Milky

Way disk [Cooper et al., 2017]. However, given that we focus on dwarf galaxies in our

analysis which are dark-matter dominated and elliptical, assuming a xed fraction is

not a principal concern.

We tag the 5% most bound DM particles at the snapshot where the accreted

halo reaches its peak mass. Alternative methods include tagging the particles at the

snapshot before the halo is accreted or “live” tagging where stellar mass is added at

each snapshot while the galaxy is star-forming. Our analysis focuses on small galaxies

that are generally no longer forming stars at the time of their accretion, so we choose

the peak mass as the snapshot at which to tag DM particles. We use a  ∼ 

relation to estimate the amount of stellar material represented by each tagged particle

[Garrison-Kimmel et al., 2017b]. We note for completeness that live tagging would

likely produce a more accurate phase space distribution but the signicantly increased

computational expense is beyond the scope of this work.

While particle tagging is an imperfect method, it has repeatedly been shown to

qualitatively capture trends and produce accreted stellar populations with proper-

ties (e.g., metallicities, spatial distribution, velocity dispersions) in agreement with

observations around the Milky Way [e.g., Cooper et al., 2017, Rashkov et al., 2012].

Given that this study is concerned with the qualitative situations in which kinematic

clustering of accreted stars does or does not excel, particle tagging of dark-matter

cosmological simulations is an ideal technique as a means to explore such clustering

eects in our set of many dierent Milky Way-mass simulations. Moreover, a simula-

tion with a disk would result in enhanced tidal disruption and phase space diusion

[Errani et al., 2017, Maone et al., 2018], but because our results highlight the dif-

culty of identifying UFD remnants via clustering, our point is merely strengthened

by our use of N-body simulations without an added disk potential.
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Figure 4-1: Left:  = 0 dynamics (energy and -angular momentum) of all accreted
star particles within 50 kpc of the Sun in simulation Cat-14, one of the 32 simulated
Milky Way-mass galaxies. The color of each particle corresponds to the mass of the
galaxy in which it formed. Star particles from the smallest galaxies, the UFDs, are
seen in red. Right: , , and  orbital actions summarized in an action circle for
the same star particles.

4.2.3 Stellar Dynamics

We determine the dynamics of each accreted star particle (tagged DM particle) at  =

0. In axisymmetric galactic potentials, stellar orbits are described by three integrals

of motion called the orbital actions: , , and  [see Binney and Tremaine, 2008,

§3.5]. Energy is another constant of motion for time-invariant potentials which, while

not independent of the orbital actions, is useful during clustering searches. These

four quantities are not conserved in realistic, time-varying galactic potentials, and

the galactic potentials in the Caterpillar simulations, for example, are approximately

constant for only the last 5 Gyr or so (  05) [Grien et al., 2016]. Despite this, these

quantities provide a useful phase space in which to search for dynamically-similar stars

that is currently being used by several groups in the search for stars from UFDs. We

thus explore the possibilities of using these dynamics. These integrals of motion are

dened as [Binney, 2012]:

1. : the specic orbital energy, the total orbital energy of the star divided by its
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mass.

2. : the orbital action that quanties oscillations of an orbit along the radial

direction.  is non-negative and increases for more eccentric orbits.

3. : the orbital action that quanties oscillations about the equatorial plane.

 is non-negative and increases for orbits that rise more out of the equatorial

plane.

4. : the azimuthal orbital action, equal to the angular momentum out of the

equatorial plane ( = ).

To estimate orbital actions, one rst needs an initial estimate of the gravita-

tional potential. For each of our 32 simulations, we use the AGAMA software library

[Vasiliev, 2019] to construct an estimated axisymmetric gravitational potential. The

potential is built via multipole expansion in spherical harmonics with  = 8, using

the locations and masses of all N-body particles at  = 0. We validate the esti-

mated potential by comparing it to the value of the potential stored for each particle

from the original Caterpillar simulation, conrming the same relative potential en-

ergy between particles. After constructing the axisymmetric potential, we use the

galactocentric positions and velocities of each accreted star particle to compute the

associated actions within AGAMA.

As an illustrative example, the  = 0 phase space distribution for the accreted

star particles in one of our simulations can be seen in Figure 4-1. The particles in

these plots are colored based on the peak mass of the galaxy in which each of them

formed: UFD (* ≤ 105⊙), Ursa Minor-mass (* = 105 to 106⊙), Sculptor-

mass (* = 106 to 107⊙), and Fornax-mass (* = 107 to 108⊙). Note that this

example galaxy did not accrete more massive dwarfs such as those with masses similar

to that of the Large Magellanic Cloud.

In Figure 4-1, the particles from UFDs are only 9% of all the accreted particles

within this radial cut, but they are still identiable in the outskirts of the phase space

diagram because virtually all of the particles from more massive dwarfs are overlap
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Figure 4-2:  = 0 dynamics of star particles that originated from UFDs in one of our
simulations (with a 50 kpc radial cut; see Section 4.2.4). The color of each particle
corresponds to how long ago it was accreted by the Milky Way-mass host galaxy.
Stars that were accreted more recently are, generally, of higher energy and less phase
mixed. Over time, the stars mix more in the phase space and are less identiable by
clustering algorithms.

signicantly in phase space. This implies we may be able to more easily identify some

UFD remnants at, for example, high energy.

Specically considering the particles from UFDs, in Figure 4-2, we show that

any identiable remnants are from relatively recent accretion events, while the most

phase-mixed particles are from accretion events that occurred over 8 Gyr ago. This

is to be expected, since more recent accretion events will have maintained a stronger

dynamic signature at  = 0 compared to stars that have been relaxing in the stellar

halo for many gigayears [e.g., Gómez et al., 2010].
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4.2.4 The Dierent Data Sets We Consider

We consider how well clustering works for data sets with three dierent radial cuts

at varying distances from the Sun:

1. All accreted star particles, no radial cut. This is a complete data set which

cannot be produced with real observations.

2. All accreted star particles within 50 kpc of the Sun. This is an idealistic data

set that extends to roughly where the stellar halo drops o.

3. All accreted star particles within 5 kpc of the Sun. This is a more realistic data

set that includes stars for which we can obtain decent parallax measurements

from Gaia.

The location of the “Sun” in each simulation is a consistent, randomly chosen

location in the equatorial plane 8 kpc from the galactic center.

We also consider data sets with:

1. Only accreted star particles from UFDs. This data set is idealistic. To pur-

sue it observationally, one could focus on limiting to only stars with certain

chemical signatures (e.g., low metallicity, -process enhancement, deciency in

neutron-capture element abundances) and/or removing stars that are known to

be associated with larger mergers.

2. All accreted star particles.

After matching each radial cut with UFD-only and all-stars data sets, we have

a total of six data sets. Each data set includes stellar dynamics from 32 simula-

tions (though not all simulations are used when performing clustering analysis of the

larger radial cuts due to computational limitations). We then quantify how well each

clustering algorithm performs in these six situations.

For the data set without a radial cut, Milky Way-mass galaxies accrete on av-

erage 187+69
−65 UFDs. This is 91+1

−1% of the total number of accreted systems that

Milky Way-mass galaxies will ever accrete. Despite UFDs being the vast majority of
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Figure 4-3: Across all 32 simulations, ∼ 91% of the galaxies accreted by Milky Way-
mass galaxies are ultra-faint dwarf galaxies. These small galaxies only contribute
∼ 7% of the accreted star particles, however. These fractions are roughly constant
with radial cut.

accreted galaxies, though, they only contribute ∼ 7% of the accreted star particles.

These fractions are shown in Figure 4-3. These results align with Monachesi et al.

[2019], which estimated that the accreted stellar halo had only a handful of signicant

progenitors. For the data set with a 5 kpc radial cut, the total average number of

accreted UFDs seen in the data set drops to 99+45
−30 but the percentage representation

remains the same. We note here that all uncertainty values provided represent 16th

– 84th percentile scatter across all the simulations.

4.3 Clustering Methodology

4.3.1 Clustering Algorithms

We apply seven dierent clustering algorithms on the four-dimensional energy-action

space of each simulated Milky Way-like halo. The algorithms studied in this work are

HDBSCAN [Campello et al., 2015, McInnes et al., 2017], Gaussian mixture models

[GMM; Dempster et al., 1977], agglomerative clustering [Ward Jr, 1963], K-means

[Lloyd, 1982, Vassilvitskii and Arthur, 2006], anity propagation [Frey and Dueck,

2007], mean-shift [Comaniciu and Meer, 2002, Derpanis, 2005], and friends-of-friends

[Huchra and Geller, 1982, Press and Davis, 1982, Davis et al., 1985, Gibbons, 2020].
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Before running any clustering alogithms on our simulations, we normalize each of the

4D energy-action variables into the range [0, 1]. Here, we briey comment on each of

these algorithms.

HDBSCAN (Hierarchical DBSCAN) is a hierarchical extension of the density-

based approach of DBSCAN. It measures the density around each point, constructs a

hierarchical cluster tree based on this density information, and returns clusters that

are persistent across dierent density thresholds. As a result, it is sensitive to datasets

having true groups at varying densities. It also scales well for massive datasets. Hunt

and Reert [2021] found that, compared to DBSCAN and GMM, it performs best at

recovering open clusters in a massive sample of Gaia data. This was also the preferred

clustering algorithm of Gudin et al. [2021] and Limberg et al. [2021], two papers that

identied dynamically linked groups that may correspond to UFDs.

Agglomerative clustering forms clusters from the bottom up. It starts with each

particle as its own cluster. Clusters that are separated by the least linkage distance (in

our case, Euclidean distance) are then hierarchically merged until the pre-set number

of clusters is reached. Because it has a time complexity of (3) and requires Ω(2)

of memory, it is too slow and memory-intensive for large datasets.

K-means is a distance-based algorithm that returns a pre-set number of k clus-

ters, each of equal variance. Starting with k randomly generated initial means, it

rst assigns each particle to the mean with the least sum-of-squares distance. Parti-

cles associated with the same mean form a cluster. The mean (or centroid) of each

cluster—and consequently, cluster membership—is then continually updated until

convergence.

A Gaussian mixture model can be thought of as a generalization of K-means in that

it returns distance-based clusters which may be at dierent variances. It decomposes

the sample into a mixture of a pre-set number of n Gaussian distributions and upon

convergence, returns the Gaussian components as separate clusters.

Unlike K-means, agglomerative clustering, and Gaussian mixture models, anity

propagation does not require a pre-set number of clusters before running. Its goal is

to nd “exemplars” or prototype particles that are representative of a cluster. First,
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each particle begins as a potential exemplar. Pairs of particles then pass “messages”

to each other about suitability of one particle to be the exemplar of the other. These

messages are passed until a stable set of exemplars and, thus, clusters emerge.

Mean-shift is a centroid-based algorithm that treats each particle as a kernel with

a pre-set bandwidth. It then performs a gradient ascent on the kernel peaks until

convergence. Gómez et al. [2010] used mean-shift on the  −− space of a mock

Gaia catalogue of the solar neighborhood and recovered roughly 50% of all satellite

galaxies. We note that this diers from our results because this work focused on a

smaller quantity of larger-mass satellites as compared to our UFD-focused analysis.

Friends-of-friends (FoF) is commonly used to identify gravitationally bound halos

in cosmological simulations. Particles that are separated by a distance less than a

pre-set linking length are linked as “friends,” forming a networked cluster of particles.

Networks that have no mutual friends are designated as separate clusters. Helmi and

Tim de Zeeuw [2000] applied this algorithm on the  −− space of a mock Gaia

catalog to identify simulated Milky Way accretion events.

Other groups have used custom clustering algorithms, e.g. StarGo [Yuan et al.,

2018, 2020], Enlink [Sharma and Johnston, 2009, Wu et al., 2022], and other hierar-

chical clustering techniques [Soe Lövdal et al., 2022, Ruiz-Lara et al., 2022]. We do

not test all of these algorithms, but expect our UFD-focused results to holistically

hold for them as well (see Section 4.4.5).

4.3.2 Hyperparameter Choices

All the algorithms included in this paper except anity propagation require a pre-

selected hyperparameter in order to begin clustering. To explore dierent hyperpa-

rameter choices, for each algorithm we:

1. Create a hyperparameter search space consisting of about 20 trial values. For

instance, to select the min_cluster_size hyperparameter for HDBSCAN, we

create a search space composed of integers from 3 to 20 inclusive, and for FoF

we explore from 0.001 to 0.2.
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2. Run the clustering algorithm with each trial hyperparameter on each simulation

in each data set.

3. For every clustering run, count the number of pure and complete clusters. A

cluster is “pure” if ≥ 2
3
of the stars in that cluster accreted together from a

UFD. A cluster is also “complete” if ≥ 1
2
of the stars from that accreted UFD

are found together in that cluster.

4. For every simulation on which a particular hyperparameter is tested, calculate

a recovery rate and a realness rate. The recovery rate is dened as:

number of pure and complete clusters
number of accreted UFDs in the data set

× 100%

Meanwhile, the realness rate is dened as:

number of pure clusters
number of clusters found by the algorithm

× 100%

When calculating these rates, we only consider clusters and remnants with at

least 5 particles.

5. For each data set, determine the optimal hyperparameter by assigning a score to

each hyperparameter choice. To assign the score, normalize all of the recovery

rates and realness rates using a min max scaler, and then add the normalized

median recovery and realness rates together. The optimal hyperparameter thus

balances the highest UFD recovery rate and the highest realness of its clusters.

We choose an optimal hyperparameter value for each algorithm on each data set.

Since we are testing six algorithms that each require hyperparameters on six dierent

data sets, we make a total of 36 optimized hyperparameter selections. A summary of

the optimal hyperparameter choices are in the Appendix.
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Figure 4-4: Strength of association between actions (, , , ) and the true
cluster labels. Higher 2 values indicate a stronger association.  has the highest
2 values, implying it is the most important variable when seeking to nd clustered
stars that accreted together. Note that  here is equivalent to .

4.3.3 Association of Dierent Observables with the True Clus-

ter Labels

To help identify which observable variables are most likely to be important during

clustering, we perform one-way analysis of variance (ANOVA) tests on the stellar

kinematics of each simulation. The ANOVA test assesses the association between a

categorical (e.g., the label of each true cluster) and a continuous variable (e.g., each

of the kinematic variables) [e.g., McDonald, 2014, Gómez et al., 2014]. If a given

kinematic variable is strongly associated with the true cluster labels, it is likely to be

important during clustering in situations where we do not know the true labels.

We use the stats.f_oneway ANOVA test from the scipy python package [Virta-

nen et al., 2020]. This F-test analyzes whether the means of the continuous variable

diers between groups.  = (variation between cluster means) / (variation within

the clusters), so high  values for our data signify that a given observable varies more

between clusters than within. For these tests, the clusters we are using are the true

UFD remnant groups because we take the labels directly from the simulations. To

quantify the level of the eect, we also calculate the 2 value of each test [e.g., Olejnik

and Algina, 2003]. This metric is similar to 2 in the context of regression analysis

while also accounting for the degrees of freedom in the model. 2 can vary from −1
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Figure 4-5: Strength of association between dierent kinematic observables and the
true cluster labels. Higher 2 values indicate a stronger association.  has con-
sistently high 2 values, implying it is an important variable when seeking to nd
clustered stars that accreted together. , ,  and , ,  are the radius and veloc-
ity in cylindrical coordinates, respectively. The importance of  and  is due to their
correlation with total energy.

to +1; values far from zero imply a stronger eect.

The ANOVA test results are shown visually in Figures 4-4 and 4-5. Figure 4-4

shows the four axisymmetric actions we use in clustering. All four actions show corre-

lation with the true cluster labels, with energy consistently being the most important

observable. Figure 4-5 shows the correlations of other potentially useful observables,

demonstrating the high correlation of total angular momentum, . These results

support our choice to cluster in --- phase space. They also imply that -

phase space can be useful to nd UFD remnants in cases where the full axisymmetric

actions are unknown. This has been known previously [e.g., Helmi and Tim de Zeeuw,

2000, Gómez et al., 2010].

Figure 4-5 shows that total velocity is likely important at parallax-level cuts (e.g.,

5 kpc) and total distance from the galaxy’s center is important for data sets with no

radial cut. This is simply due to the relationship between velocity, radius, and total

energy. All of the test results are summarized in the Appendix in Table 4.2. As an

additional check, we also include ANOVA tests for , the redshift at which the

particles were accreted by the Milky Way. This variable perfectly aligns with the true

cluster labels and thus should have 2 = 1, which we nd.
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4.4 Quantifying the Abilities and Limitations of Clus-

tering Algorithms

We run each clustering algorithms (HDBSCAN, Gaussian Mixture Models, Agglom-

erative Clustering, Mean-Shift Clustering, K-Means, Friends-of-Friends, and Anity

Propagation; see Section 4.3.1) on each simulation in each of the six data sets (see

Section 4.2.4). The hyperparameters of each algorithm are chosen as described in

Section 4.3.2. All clustering is done in 4D energy-action space (, , , and )

as supported by the association results presented in Section 4.3.3. Given the seven

algorithms, six data sets, up to 32 simulations per data set, and roughly twenty

hyperparameter choices per algorithm, we run over 10,000 clustering tests.

The results from these tests are largely a cautionary tale. All of these algorithms

have signicant limitations when it comes to identifying UFD remnant groups. Hence,

in this section, we analyze the possibilities and limitations of the algorithms with a

focus on how the results can inform the search for UFD remnants in real data sets

since there currently exist no better methods to identify tidally disrupted ultra-faint

dwarf galaxies from survey data. In future work, fully modeling the phase-space

distribution of all accreted systems simultaneously could oer an alternative method

to learn about accreted UFDs as compared to the current method of individually

picking out a handful of dynamic clusters that may or may not correspond to UFDs.

For now, though, kinematic clustering is one of the few available methods.

The basic problem is that, due to phase mixing and background, most star par-

ticles that accreted into the Milky Way-mass galaxies from the small UFD remnants

overlap too much with other particles in phase space at  = 0 to be reliably identied

as coherent remnant groups. This is true for all algorithms across all data sets. The

clustering algorithms also frequently return clusters that do not correspond to any

true UFD remnant (“false positives”). However, some algorithms work better than

others and some identied clusters are more likely to be real than others. We now

give more details on algorithm usability.
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4.4.1 Example Clustering Results

Figure 4-6 shows example clustering results from each of the seven algorithms. These

results use a single Milky Way-mass simulation (simulation Cat-14) from one data

set (accreted star particles from UFDs within 50 kpc of the Sun). The left shows

the true UFD remnants in phase space; each star particle is colored according to the

UFD it was born in (note that each color repeats several times). The star particles

in this example originated in 124 dierent UFDs. The panels on the right show how

well each clustering algorithm performs. All clustering algorithms perform poorly in

the high density region of phase space and only consistently identify several isolated,

high-energy clusters. These high-energy clusters do, in fact, correspond to real UFD

remnants. The majority of the rest of the clusters found by these algorithms do

not actually correspond to real UFD remnants. This is unsurprising given the high

density of overlapping structure in the high density region.

For all of our clustering results, we use the metrics of “realness rate” and “recovery

rate” to evaluate the ndings. Realness rate is dened as the fraction of clusters which

are “pure”, dened as clusters for which at least 23 of the stars accreted together.

Recovery rate is dened as the fraction of UFD remnants which are recovered. A

remnant is recovered if (1) its stars are clustered into a pure cluster and (2) that cluster

is “complete”, dened as clusters for which at least 12 of the stars from a remnant are

identied together in a single cluster. When determining these rates, we only consider

clusters or remnants with at least 5 particles. The purity and completeness thresholds

(2/3 and 1/2, respectively) are chosen with a stricter requirement on the “realness” of

a cluster as our priority is identifying stars that accreted together. These thresholds

can both be varied, though, and are simply chosen as example metrics. The holistic

takeaways of this paper remain consistent even if you vary these thresholds.

As an illustrative example, the realness and recovery rates for each algorithm on

the Cat-14 simulation are reported in Table 4.1. The example HDBSCAN results are

shown in Figure 4-7.
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Figure 4-6: Example of clustering results for one simulation (Cat-14) from one data
set (accreted star particles from UFDs within 50 kpc of the Sun). Far left: Star
particles from true UFD remnants in dynamic phase space. Many of the particles are
phase mixed. Right: Results from each of the seven clustering algorithms tested in
this paper. Most of the clusters found by these algorithms, especially those at lower
energy, do not correspond to true UFD remnants.

Algorithm Realness Rate Recovery Rate
HDBSCAN 67% (12 pure clusters / 18 total clusters) 4% (5 pure & complete clusters)
Friend-of-Friends 34% (61 pure clusters / 176 total clusters) 5% (6 pure & complete clusters)
Gaussian Mixture Models 18% (29 pure clusters / 160 total clusters) 5% (6 pure & complete clusters)
K-Means 12% (27 pure clusters / 230 real clusters) 5% (6 pure & complete clusters)
Agglomerative Clustering 13% (32 pure clusters / 248 total clusters) 6% (8 pure & complete clusters)
Mean-Shift 22% (24 pure clusters / 100 total clusters) 3% (4 pure & complete clusters)
Anity Propagation 5% (52 pure clusters / 989 total clusters) 2% (3 pure & complete clusters)

Table 4.1: For the example simulation shown in Figure 4-6, the realness and recovery
rates of dierent clustering algorithms. The recovery rate is determined by comparing
the number of pure & complete clusters to the total number of accreted UFDs in this
simulation, 124 UFDs.
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Figure 4-7: Example of the HDBSCAN clustering results for one simulation (Cat-14)
from one data set (accreted star particles from UFDs within 50 kpc of the Sun). The
clustering is done in 4D energy-action space (, , , ). Grey points are particles
not associated with any cluster. For this simulation, HDBSCAN nds eighteen clus-
ters. Twelve of them are real groups of accreted UFD stars, and ve of those twelve
are fully “recovered” UFD remnants.

4.4.2 Comparing Clustering Algorithms

Throughout this work, we test seven common clustering algorithms (described in

Section 4.3.1). For the UFD-only data sets, we test all seven algorithms on every

data set. For the all-stars data sets, the larger radial cuts (50 kpc and entire halo)

are extremely large, so we only test the more scalable algorithms: HDBSCAN, Friend-

of-Friends, Gaussian Mixture Models, and K-Means.

The results for all UFD-only data sets are shown in Figure 4-8. Each line rep-

resents the results for a single Milky Way-mass galaxy simulation with the given

radial cut. The median result for each algorithm is shown as a circle. The scatter

in results across dierent simulations is signicant because Milky Way-mass galaxies

with a higher number of recent UFD accretions have higher rates. The results for the

all-stars data sets are shown in Figure 4-9.

Even with UFD-only data sets, all algorithms have low UFD remnant recovery

rates and cluster realness rates. The local radial cut, 5 kpc, has the worst results; the

number of UFD remnants recovered from these simulations is frequently just one.
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(a) UFD + 5 kpc data sets: All algorithms recover similarly low numbers of UFD
remnants. HDBSCAN and FoF have the highest cluster realness rates.
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(b) UFD + 50 kpc data sets: Once again, HDBSCAN and FoF have the best
balance of UFD remnant recovery and cluster realness rates.
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(c) UFD + entire halo data sets: HDBSCAN has the best balance of UFD recovery
and cluster realness. FoF has a similar realness rate but recovers far fewer remnants.

Figure 4-8: Results for the UFD-only data sets. Each line represents a single Milky
Way-mass galaxy simulation and each circle is the median rate across all simulations.
See Section 4.2.4 for descriptions of the dierent data sets and Section 4.3.2 for
denitions of recovery and realness rates. Generally, HDBSCAN and FoF perform
better than the other algorithms and are also signicantly faster. For results with the
all-stars data sets, see Figure 4-9.
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(a) All stars + 5 kpc data sets: Algorithms nd real clusters accreted from dwarf
galaxies, but almost none of them are UFD remnants.
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(b) All stars + 50 kpc data sets: Recovery rates are once again low, but realness
rates can be high as clusters from larger mass dwarfs are identied. HDBSCAN has

highest realness rate, but all recovery rates are low.
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(c) All stars + entire halo data sets: HDBSCAN once again has the best balance of
recovery and realness.

Figure 4-9: Results for the all-stars data sets. Each line represents a single Milky
Way-mass galaxy simulation and each circle is the median rate across all simulations.
On the large data sets, HDBSCAN and FoF are much faster than K-means and
Gaussian Mixture Models.
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Overall, all algorithms only recover about 2% of UFD remnants within 5 kpc of

the Sun. HDBSCAN and FoF have the highest realness rates for the clusters they

nd, with around 20% of their clusters corresponding to tagged star particles that

accreted together.

This clearly implies, in no uncertain terms, that the vast majority of clusters found

by these algorithms do not actually represent any truly accreted groups!

In the larger data sets, the clustering algorithms perform better, recovering ∼
3−6% of UFD remnants and, for HDBSCAN and FoF, having a ∼ 40−60% realness

rate. Even with these idealized data sets and specially chosen hyperparameters,

though, the rates are still low. We thus discuss how to identify real clusters vs. false

positives in Section 4.5.

Generally for the UFD-only data sets, HDBSCAN is the most reliable algorithm

choice. FoF also often has a relatively high realness rate. These two algorithms are

also the fastest choices for large data sets.

For the all-stars data sets (Figure 4-9), realness rates are higher than the UFD-

only data sets because clusters of stars from larger dwarf galaxy remnants are easier to

identify than the small clusters of stars from UFD remnants. UFD remnant recovery

rates are universally worse in the all-stars data sets, though, because the non-UFD

stars act as signicant noise during the search for UFD clusters. This is discussed in

more detail in Section 4.4.3. Similar to the UFD-only data sets, HDBSCAN is once

again generally a reliable choice to balance recovery rates and realness rates in the

all-stars data sets. For the largest data sets, computational constraints also become

important, and HDBSCAN and FoF scale well computationally.

Overall, HDBSCAN tends to be the most reliable clustering algorithm across dif-

ferent data sets. Currently, it is also a popular clustering algorithm used in astronomy

research (see Section 4.3.1). We thus focus on HDBSCAN for most of the rest of our

text.
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Figure 4-10: Comparing UFD remnant recovery rates and cluster realness rates with
HDBSCAN for the data sets with only UFD stars and the data sets with all stars.
As expected, the UFD-only data sets result in higher UFD recovery rates. Realness
rates for the all-stars data sets include real clusters from larger dwarfs, which are
principally easier to identify, so overall realness rates are not improved by using a
UFD-only data set. Error bars show 16%-84% scatter across all simulations.

4.4.3 Comparing UFD-Only Data Sets to All-Stars Data Sets

As discussed in Section 4.2.4, we have data sets with (1) only accreted star particles

from UFDs and (2) all accreted star particles. The former data set is unrealistic

because in real data we cannot know a priori which stars accreted from UFDs. The

UFD-only data set can be imperfectly pursued observationally through the use of

chemical tagging, however. Stars that formed in UFDs tend to have a lower metal-

licity distribution function, lower abundances in neutron-capture elements, and may

preferentially have strong -process enrichment [e.g., Kirby et al., 2013a, Brauer et al.,

2019, Gudin et al., 2021, Ji et al., 2016a]. Additionally, as we identify kinematic struc-
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tures associated with larger-mass accretion events such as Gaia-Enceladus, removing

those stars from observational data sets could also help towards creating a UFD-only

data set. All these methods are imperfect, but as no more sophisticated and reliable

methods exist to date to identify UFD stars e.g., in observed survey data, we must

do the best we can with the methods available to us.

In Figure 4-10, we demonstrate the need to nd ways to exclude stars from higher-

mass accreted dwarfs if we hope to identify UFD remnants. At every radial cut, UFD

remnant recovery rates are higher for UFD-only data sets. Realness rates are higher

for all-stars data sets, but this is only because structures from higher-mass dwarfs

are principally easier to identify than those from UFDs and because pure clusters

are generally more common for higher-mass dwarfs since they contribute more stars.

This underscores how dicult it is to identify UFD structures even among UFD-only

samples. If we hope to identify UFD remnants, though, pursuing data sets with stars

from UFDs will be, unsurprisingly, very benecial.

111



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

2

4

6

8

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

20

40

60

80
UFD + 5 kpc
UFD + 50 kpc
UFD + entire halo

Hyperparameter Hyperparameter

Re
co
ve
ry
Ra
te
[%
]

Re
al
ne
ss

Ra
te
[%
]

(a) Recovery rates and realness rates for dierent choices of min_cluster_size for
HDBSCAN.
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(b) Recovery rates for dierent choices of linking_length for FoF.

Figure 4-11: For these data sets, the FoF results dier more with varying hyperparam-
eter choices than the HDBSCAN result. The hyperparameter choice is important for
all algorithms, however. This causes additional diculty when using these algorithms
to identify UFD remnants. Error bars show 16%-84% scatter across all simulations.

4.4.4 Comparing Hyperparameter Choices

One downfall of most of these clustering algorithms is their dependence on hyperpa-

rameters. Each algorithm other than Anity Propagation requires users to pre-select

a value for a hyperparameter, and it is generally not obvious which values are best.

In this work, we already know the true labels, and thus have the unique privilege of

selecting our hyperparameters to optimize our clustering results (see Section 4.3.2).

For observational data sets, however, this is not possible.

The results in all other subsections use optimal hyperparameter values. In this

subsection, we vary the hyperparameter choices to illustrate how results dier. Fig-

ure 4-11 shows results for dierent hyperparameter choices of HDBSCAN and FoF.

HDBSCAN requires an integer choice for min_cluster_size and thus has a smaller

reasonable range of choices. Results can vary signicantly with min_cluster_size
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choice, but generally results are roughly stable across several integer choices. As ex-

pected, the best choice of min_cluster_size tends to increase for data sets with larger

radial cuts. For FoF, we tested many possible choices for linking_length and results

were more unstable than for HDBSCAN.

Thus, for these data sets, the results from HDBSCAN are more stable with vari-

ations in hyperparameter choice. The hyperparameter choice is important for all

algorithms, however. This remains a diculty of automating the search for UFD

remnants with these clustering algorithms. Some groups are developing algorithms

without a hyperparameter dependence [e.g., Ruiz-Lara et al., 2022] to alleviate these

concerns.

Still, for HDBSCAN, the hyperparameter value greatly aects the number of clus-

ters. For too large of min_cluster_size, the algorithm nds no remnants. For exam-

ple, for the 5 kpc data sets, min_cluster_size > 5 causes, on average, fewer than ve

total clusters returned by the algorithm, none of which are real UFD remnants. For

the larger radial cuts, too small of min_cluster_size leads to too many clusters. For

these data sets, min_cluster_size < 9 causes 200 to 2000 clusters while the number

of recovered remnants remains constant or decreases. When selecting this hyperpa-

rameter, a balance must be struck to avoid the identication of an unreasonably small

or large number of clusters in a given sample.

4.4.5 Why Clustering Algorithms Struggle

Due to their small size, the dynamic signatures of tidally-disrupted UFDs are, over

90% of the time, weak and signicantly out-numbered by other overlapping accreted

structures. The limitations found in this paper are not unique to these clustering

algorithms; we expect any clustering algorithm to struggle.

To illustrate this, we estimate signal-to-total ratios (similar to signal-to-noise ra-

tios) for all the tidally-disrupted UFD remnants in our data sets. Normalized his-

tograms of the signal-to-total ratios from dierent data sets are shown in Figure 4-12.

To determine these ratios, for each remnant we draw a 4D sphere in phase space that

is exactly large enough to enclose 50% of the particles from that remnant.
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Figure 4-12: Normalized histograms of estimated signal-to-total ratios (similar to
signal-to-noise ratios) for all UFD remnants in all data sets. For the vast majority of
remnants, the ratio is tiny because the UFD remnant particles signicantly overlap
with all the other particles. The signal is very weak. For context, the dotted line
shows 67%, our purity threshold. Depending on the data set, 92 − 97% of UFD
remnants have a signal-to-total ratio below this threshold. The all-stars data sets
(bottom plot) have particularly low UFD signals – the median ratio is one UFD
remnant particle to 1000 non-remnant particles.
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We then compare the number of remnant particles in that volume to the total

number of particles in that volume. The maximum value is thus 1 for the case where

the tidally-disrupted UFD is isolated from other particles. These ratios are similar to

our purity metric, so we plot our purity threshold (67%) as a dotted line on Figure

4-12 for reference. We also note that remnants are generally not spherical in 4D phase

space, so this is merely an estimate.

For the vast majority of UFD remnants, the dynamic signature is completely

washed out by the other particles in that volume. For UFD-only data sets, the

typical remnant has a ratio of one UFD remnant particle to 30 other particles, 1:30.

For the all-stars data sets, the typical remnant has a ratio of 1:1000. In the best case

scenario, the UFD-only data set with the entire halo, only 8% of remnants have a

signal-to-total ratio higher than our purity threshold of 67%.

The remnants with the highest signal-to-total ratios are the remnants that are

successfully identied by the clustering algorithms. Most of the other remnants are

simply too dicult to nd in this dense 4D space, due to a combination of phase-

mixing as the stellar dynamics relax over time and/or accreting with dynamics that

are already similar to other star particles. We can thus optimize clustering searches

to try to nd the greatest number of UFD remnants, but most will never be found

by these methods. The ones that are kinematically identiable are those that (1)

accreted with outlying dynamics, e.g., higher energy than usual, and (2) recently

accreted so that the star particles have not had time to phase-mix.

We also note that an additional diculty of analyzing only star particles in the

inner volume, e.g. our 5 kpc data sets, is that you cannot sample full satellites within

this small volume. This issue is described in more detail in Gómez et al. [2010].

4.5 Properties of Real Clusters in Simulations

Even in the best cases, the clustering algorithms nd many clusters that do not

correspond to real accreted remnant groups. Hence, we compare the properties of

real clusters vs. “false positive” clusters to help inform which clusters are more likely
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Figure 4-13: Median dynamics for clusters that correspond to real UFD remnants
(i.e., pure and complete clusters) compared to other clusters. Clusters with higher
actions are more likely to be real. Error bars show 16%-84% scatter across all clusters.
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Figure 4-14: Median  (redshift at which a given dwarf galaxy was accreted)
for recovered UFD remnants compared to all unrecovered remnants. As expected, the
UFD remnants that are recovered by HDBSCAN (and other algorithms) were more
recently accreted. Error bars show 16%-84% scatter across all remnants.

to be real in observational data sets.

Figure 4-13 shows the , , , and  of real recovered clusters (i.e., pure and

complete clusters – clusters that correspond to an accreted UFD remnant) compared

to the dynamics of clusters that do not correspond to UFD remnants. These results

use HDBSCAN, but the plots are holistically similar for other algorithms. All dy-

namics are normalized relative to the median of all clusters in the sample. For each

cluster, its energy (or , , ) is determined from the median of all star particles

in that cluster.

Compared to all clusters, clusters that correspond to real UFD remnants have

higher energy and axisymmetric actions. High energy and  are most important for

distinguishing between real UFD clusters and all other clusters, especially in local

(5 kpc) data sets. Of the action variables,  is the least important dynamic when

determining which clusters are more likely to be real. This aligns with results from

the ANOVA tests in Figure 4-4.

Based on these results, clusters with high energy and high  are signicantly

more trustworthy. For example, clusters with median energy higher than twice the

median of all clusters in a local sample are pure and complete over 90% of the time.

This is true for both UFD-only data sets and all-stars data sets.
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The UFD remnants recovered in these real clusters are UFDs that, generally,

accreted relatively recently. Figure 4-14 shows the median accretion redshift 

for UFDs recovered by HDBSCAN compared to all unrecovered remnants. UFDs that

were accreted at redshift  = 1 and higher are virtually never recovered by any of these

clustering algorithms. The dynamic signature of these small dwarfs is completely lost

as the stars phase-mix in the dense region of action space, and the remnants are no

longer identiable. This is not surprising because energy and orbital actions are only

truly conserved in static potentials, and realistic, time-varying galactic potentials

cause the stellar dynamics to relax over time.

As discussed in Section 4.4.5, for a UFD remnant to be reliably identied through

kinematic clustering, it needs to both have had outlying dynamics at the time of

accretion and also have a recent accretion time,   05, so that its stars have

not had time to signicantly phase-mix. Not all recently accreted UFD remnants

are identiable through kinematics (recently accreted UFDs can still end up in the

dense regions of phase space; see Figure 4-2), but of the identiable UFD remnants,

virtually all are recently accreted.

4.6 Recommendations for Using Cluster Algorithms

Our study has clearly shown that using clustering algorithms with stellar dynamics

to search for accreted UFD remnants is a challenging task, that, unfortunately, does

not deliver reliable results a majority of the time.

Dynamically-linked clusters identied by any clustering algorithms should thus

not be blindly trusted but amply questioned and investigated, and results presented

in a careful manner to avoid the presentation of numerically articially created re-

sults. Case in point is our idealized situations in which we limit our data sets to

only accreted UFD star particles and optimize our hyperparameter choices. The re-

sulting UFD recovery rates are around ∼ 6% at best, and the majority of clusters

found by all algorithms are not real. Only stars from fairly recently accreted UFDs

(  05) can retain suciently strong dynamic signatures to be identied by
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these algorithms.

While these ndings are unfortunate and must be taken into account in future

searches, not all is lost. Clustering with stellar dynamics remains one of the few

methods presently available to identify accreted structure in observed Milky Way

survey data, and while not all UFDs can be found this way, identifying real remnants

is possible.

To ensure that results are as reliable and trustworthy as possible, we recommend

that researchers:

• Among these out-of-the-box clustering algorithms, choose HDBSCAN. Across

our dierent data sets, HDBSCAN consistently balances the highest UFD rem-

nant recovery rates and cluster realness rates. It is also more computationally

scalable than all algorithms other than Friend-of-Friends.

• UFD dynamic signatures are frequently weak, so incorporate chemical tagging

when identifying groups of accreted stars. This can be done, for example, by

focusing on low-metallicity stars and/or -process enhanced stars. Successfully

limiting a data set to UFD stars increases your remnant recovery rate by around

3× on average. Chemical abundances can also be used to help validate dynamic

clusters.

• Assume most clusters identied by clustering algorithms do not correspond to

real UFD remnants. Focus on clusters with higher than average energy and .

• Recognize that only recently accreted UFDs in lower-density areas of phase

space are consistently found by these clustering algorithms, so you generally

only recover 1−6% of the UFD remnants in a given sample. Samples limited to

the region around the Sun have lower recovery rates than samples with larger

radial cuts.

• Vary your hyperparameter choices and consider the stability of the clustering

results across several hyperparameter values. For HDBSCAN, the best hy-

perparameter values are the ones which produce fewer than several hundred
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clusters (in our samples, requires min_cluster_size  9 for our large radial

cuts) and produce more than just a few clusters (in our samples, requires

min_cluster_size  6 for our 5 kpc radial cut). This will depend on your

sample, so test dierent hyperparameter choices to avoid hyperparameters that

result in an unreasonably large or small number of clusters.

This work made extensive use of the python libraries numpy [van der Walt et al.,

2011], scipy [Virtanen et al., 2020], sqlite3 [Häring, 2006], and plotly [Plotly Tech-

nologies Inc., 2015].
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Table 4.2: Results for the one-way ANOVA tests. Each continuous variable in the
table is tested for its level of association to the true cluster labels. The 2 values
estimate the strength of the association; a high 2 value (e.g., near 1) implies that
this variable is likely to be important in clustering. Uncertainty values represent 16th
– 84th percentile scatter across the 32 simulations.
Variable Radial Cut  2 −value Variable Radial Cut  2 −value

5 kpc 2+1
−1 014+0.04

−0.05 2e-10+6e-8
−2e-10 5 kpc 2+1

−1 012+0.05
−0.04 6e-11+3e-4

−6e-11
 50 kpc 186+93

−45 038+0.10
−0.06 < 1e-300  50 kpc 28+23

−7 009+0.04
−0.03 < 1e-300

entire halo 460+407
−97 056+0.13

−0.07 < 1e-300 entire halo 71+75
−21 015+0.13

−0.04 < 1e-300
5 kpc 1+1

−1 002+0.06
−0.02 3e-2+4e-1

−3e-2 5 kpc 4+1
−1 021+0.09

−0.07 2e-25+3e-13
−2e-25

 50 kpc 13+4
−3 004+0.01

−0.01 < 1e-300  50 kpc 31+20
−7 010+0.04

−0.02 < 1e-300
entire halo 33+13

−5 007+0.03
−0.01 < 1e-300 entire halo 98+158

−45 019+0.20
−0.08 < 1e-300

5 kpc 2+1
−1 005+0.03

−0.03 7e-4+2e-1
−7e-4 5 kpc 3+2

−1 020+0.08
−0.08 2e-25+2e-8

−2e-25
 50 kpc 27+9

−6 008+0.03
−0.01 < 1e-300  50 kpc 110+101

−41 028+0.13
−0.09 < 1e-300

entire halo 161+147
−61 031+0.14

−0.10 < 1e-300 entire halo 243+170
−101 040+0.11

−0.14 < 1e-300
5 kpc 2+2

−1 015+0.04
−0.05 1e-10+3e-8

−1e-10 5 kpc 10+9
−3 051+0.06

−0.07 2e-93+1e-42
−2e-93

 50 kpc 244+137
−50 045+0.13

−0.05 < 1e-300  50 kpc 392+111
−69 058+0.04

−0.07 < 1e-300
entire halo 525+466

−63 059+0.12
−0.07 < 1e-300 entire halo 600+382

−198 060+0.11
−0.10 < 1e-300

5 kpc 2+1
−1 014+0.05

−0.05 2e-11+1e-6
−2e-11 5 kpc 22+30

−12 074+0.08
−0.25 3e-166+6e-72

−3e-166
 50 kpc 15+9

−4 005+0.03
−0.01 < 1e-300  50 kpc 373+360

−122 057+0.13
−0.09 < 1e-300

entire halo 28+10
−9 007+0.02

−0.02 < 1e-300 entire halo 760+565
−298 066+0.10

−0.14 < 1e-300
5 kpc 2+1

−1 011+0.06
−0.04 2e-13+3e-4

−2e-13 5 kpc 7+8
−3 040+0.13

−0.16 4e-55+1e-26
−4e-55

 50 kpc 1+1
−1 000+0.00

−0.00 3e-4+10e-1
−3e-4  50 kpc 229+61

−68 044+0.07
−0.08 < 1e-300

entire halo 2+1
−1 000+0.00

−0.00 7e-7+9e-1
−7e-7 entire halo 362+245

−98 049+0.16
−0.10 < 1e-300

5 kpc 3+2
−1 019+0.09

−0.07 4e-21+1e-8
−4e-21 5 kpc 22+11

−9 068+0.07
−0.13 6e-156+2e-77

−6e-156
 50 kpc 35+15

−7 010+0.04
−0.02 < 1e-300  50 kpc 934+755

−319 077+0.07
−0.08 < 1e-300

entire halo 43+14
−8 009+0.03

−0.01 < 1e-300 entire halo 1489+1031
−567 080+0.07

−0.10 < 1e-300
5 kpc 12+7

−4 056+0.06
−0.12 2e-98+5e-51

−2e-98 5 kpc (6+11
−5 )× 1027 1.00+0.00

−0.00 < 1e-300
 50 kpc 117+39

−37 028+0.07
−0.07 < 1e-300  50 kpc (5+5

−4)× 1027 1.00+0.00
−0.00 < 1e-300

entire halo 67+38
−22 014+0.06

−0.03 < 1e-300 entire halo (4+3
−3)× 1027 1.00+0.00

−0.00 < 1e-300
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Table 4.3: Trial hyperparameter values for all algorithms
Algorithm Hyperparameter Hyperparameter Search Space
HDBSCAN min_cluster_size 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20
K-means n_clusters 60, 70, 80, 90, 100, 110, 120,

Gaussian mixture models n_clusters 130, 140, 150, 160, 170, 180, 190,
Agglomerative clustering n_clusters 200, 210, 220, 230, 240, 250

0.001, 0.003, 0.005, 0.01, 0.015, 0.02, 0.025,
Friend-of-friends linking_length 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065,

0.07, 0.075, 0.08, 0.1, 0.125, 0.15, 0.175, 0.2
Mean shift bandwidth 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13,

0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2
Anity propagation - -
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Table 4.4: Optimal hyperparameter values for all datasets

Chosen Hyperparameters
only UFD particles UFD and non-UFD particles

Algorithm Hyperparameter 5 kpc 50 kpc no radial cut 5 kpc 50 kpc no radial cut
HDBSCAN min_cluster_size 4 10 15 3 10 19
K-means n_clusters 60 230 180 200 230 150

Gaussian mixture models n_clusters 90 160 210 70 220 240
Agglomerative clustering n_clusters 80 250 250 170 too slow too slow

Friend-of-friends linking_length 0.065 0.015 0.01 0.065 0.015 0.01
Mean shift bandwidth 0.11 0.06 0.06 0.16 too slow too slow

Anity propagation - - - - - - -
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Chapter 5

Aeos: Star-by-Star Cosmological

Simulation

The work in this chapter was completed by myself, Jennifer Mead, Andrew Emerick,

Greg Wise, John Wise, Alexander P. Ji, Mordecai-Mark Mac Low, Benoit Côté, and

Anna Frebel.

5.1 Introduction

The rst galaxies formed 200-300 million years after the Big Bang, hosting many

of the rst stars and seeding the creation of every structure in the Universe. The

smallest of these early galaxies were quenched by reionization (Brown et al. [2014]),

so those that survived until now are composed of ancient stars from 13 billion years

ago. Over time, many of these small galaxies merged to form the galaxies we observe

today, including the Milky Way. Stars from these ultra-faint dwarf galaxies thus are

relics from the era of the rst stars and galaxies, preserving clean signatures of early

chemical enrichment. They are also vital ingredients in our own formation history.

In the past 15 years, dozens of these ultra-faint dwarf galaxies have been discovered

in the Local Group (e.g., Bechtol et al. [2015]). High-resolution spectroscopy has

provided chemical abundances of over 15 of these dwarfs, with much more to come

in the next decade. Simultaneously, chemical abundances of millions of stars in the
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Milky Way stellar halo are being obtained through wide-eld spectroscopic programs

such as H3, GALAH, and APOGEE, with much more to come from SDSS-5, WEAVE,

DESI, and others.

The problem is that observations of stars in dwarf galaxies and our stellar halo are

outpacing theoretical models. We have a wealth of data, but we cannot leverage the

full detail within it. Observations show scatter around the mean trends of chemical

abundances in dwarf stellar populations (e.g., Ji et al. [2020]). Current state-of-the-

art chemical evolution models can explain mean trends in the data, but are incapable

of modeling the scatter and full distribution because they assume instantaneous for-

mation of clusters of stars with homogeneous mixing of yields (e.g., Côté and Ritter

[2018]). New, more detailed models are necessary to fully utilize the data to explore

complex galaxy formation processes including source-dependent metal mixing, hierar-

chical galaxy merging, bursty star formation, and variations across dierent galaxies.

This is especially vital for stars from small, high-redshift galaxies because even JWST

cannot directly observe these faint objects (Boylan-Kolchin et al. [2016]), meaning our

only path forward is to take full advantage of the dwarf stellar populations around

us.

Cosmological simulations of dwarf galaxies with individual stars, detailed chemical

yields, and highly-resolved metal mixing are now necessary to interpret chemical

abundance data to learn how early galaxies evolved and how they contributed to the

formation of the Milky Way. And now is the time to do it because advances in high

performance computing and the wealth of stellar abundance data are, for the rst

time, making such a simulation both feasible and necessary.

The Aeos simulation is the rst cosmological simulation with individual star par-

ticles, individual stellar feedback with detailed stellar yields, and adaptive grids to

capture metal mixing in the interstellar medium from the rst stars. This chapter

describes the methods and initial results.
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5.2 Methods

The Aeos simulation is a hydrodynamic cosmological simulation with individual stars

developed using a modied version of Enzo, a community-developed adaptive mesh

renement simulation code [Bryan et al., 2014]. The framework was used in Emerick

et al. [2019] to simulate a single isolated dwarf galaxy, and here we expand the models

and scope of the simulation. We refer the reader to Emerick et al. [2019] for a

detailed description of the methods used in this work and limit our discussion to

a summary of the relevant physics and a description of the updated models. This

includes the addition of a Pop III star formation and stellar feedback model, which

can be considered to be an updated version from what was used in Wise et al. [2012b],

and a new set of stellar yields. These are discussed in more detail below.

5.2.1 Radiative Cooling and Chemistry

We use a slightly modied version of the Grackle [Smith et al., 2017] to follow both

the nine species non-equilibrium chemistry network (H, H+, He, He+, He++, e−,

H−, H2, and H+
2 ) and the eects of radiative heating and cooling from metals and

a UVB. Following Emerick et al. [2019], we include the eects of H2 formation on

dust using a broken-power law dust-to-gas ratio from [Rémy-Ruyer et al., 2014] and a

Haardt and Madau [2012] UV metagalactic background accounting for self-shielding

in the HI band and propagating its impact self-consistently on other photoionization

/ photodissociation reaction rates and metal line cooling (see Emerick et al. [2019] for

more details). We include a photoelectric heating model from FUV radiation from

both individual stars using the same dust to gas ratio scaling mentioned above, and

a local attenuation approximation.

New in these simulations is: 1) the additional contribution of the UVB to the

FUV band, 2) the use of a constant  eciency parameter ( = 005) instead of one

that depends on local gas density in computing the photoelectric heating rate (see

Emerick et al. [2019]), 3) the eects both FUV and IR band radiation (new in these

simulations, see Section 5.2.3) have on H2 and H− reaction rates, and 4) a UVB that
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has been extended to high redshift in all bands adopting rates assuming black-body

radiation spectrum at 3× 104 K that turns on at z = 50 and is scaled to be continuous

with HM2012 at z = 10. In addition, we use an updated LW background model from

both Emerick et al. [2019] and Wise et al. [2012a], adopting the rates from Qin et al.

[2020].

5.2.2 Star Formation

Stars in our simulation form stochastically in cold, dense gas that exhibits a con-

verging ow ( ·  < 0) assuming the local star formation rate is proportional to

an eciency per free-fall time (), which we take to be  = 2%. In this work,

we allow star formation below thrsh = 500 K and adopt a high density threshold

thrsh = 104 cm−3. We distinguish between Pop III and Pop II star formation based

on total gas metallicity. Gas enriched with  > 10−5 is capable of forming Pop II

stars, while gas below this threshold forms Pop III stars. For Pop III star formation,

we place an additional constraint that the molecular hydrogen fraction (H2) is above

0.005, as consistent with H2 in high-resolution simulations of Pop III star formation

at our adopted thrsh [Susa et al., 2014]. We describe the behaviors for each channel

in more detail below.

Our cosmological simulations are star-by-star for both Pop III and Pop II stars.

This means that in each star formation event, stellar masses are sampled from an

adopted initial mass function (IMF) and assigned to individual, distinct stellar par-

ticles.

Pop III Star Formation

The initial mass function (IMF) for Pop III stars is still highly uncertain. We adopt

the same IMF as used in Wise et al. [2012b], which behaves as a Salpeter [Salpeter,

1955] IMF with power-law slope  = 23 above a characteristic mass (char), and has

an exponential cut-o below char. Motivated by the work in Wise et al. [2012b] and

our own trials with varying parameter choices, we adopt a char = 10 M⊙, with a
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minimum and maximum Pop III stellar mass of 1 M⊙ and 100 M⊙ respectively for

our ducial simulation. All Pop III star particles represent individual stars over this

mass range. Pop III stars are assigned lifetimes from [Schaerer, 2002].

Pop II Star Formation

Above the C and Fe abundance threshold outlined above, gas is considered to be

metal-rich enough to form Pop II stars as sampled from a Kroupa [2001] IMF with

a minimum mass of 0.08 M⊙ and maximum of 120 M⊙. Due to computational con-

straints, we restrict which stars over this mass range are followed individually to those

with * > 2 M⊙. All stars below this threshold in a star formation event are aggre-

gated together into a single particle. These stars are those that do not have signicant

feedback or metal enrichment on the timescale of these simulations (∼ 1 Gyr), but

are key tracers of stellar abundances in present-day low mass dwarf galaxies. As in

Paper I, we use the zero-age main sequence properties from the PARSEC [Bressan

et al., 2012, Tang et al., 2014] stellar evolution data set to assign stellar radii, eective

temperature, surface gravity, lifetimes, and AGB-phase length (when relevant).

5.2.3 Stellar Feedback

We follow the detailed multi-channel stellar feedback from each of our stars, including

CCSN and PISN from Pop III stars, CCSN, Type Ia SN, AGB winds, and massive star

winds from Pop II stars, and stellar radiation followed in three optically-thin bands

(IR, FUV, and Lyman-Werner radiation) and HI, HeI, and HeII ionizing radiation

followed with an adaptive ray-tracing radiative transfer method including radiation

pressure on HI. These methods are discussed in greater detail below.

Stellar Winds and Supernovae

Stellar winds and supernovae are the two sources of both mass and energy feedback

included in these simulations. We consider two distinct types of stellar winds, AGB

winds and winds from massive stars, and various types of supernovae (core collapse,
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Type Ia, and pair instability). The exact mass, metal abundances, and energy de-

posited for each of these is discussed in separate sections below. Here we discuss how

each is deposited onto the computational grid.

We have suciently high resolution (1 pc) in these simulations to reliably resolve

the Sedov-Taylor phase of a majority of our supernovae for the typical gas densities

in which they explode (see Emerick et al. [2019], and also Smith et al. [2018], Hu

[2019]). For this reason, we include only the thermal energy deposition from these

events. Each particle deposits mass and energy feedback over a 2 pc radius spherical

region centered on each particle. We use a Monte-Carlo volume overlap calculation

to approximately compute (to high accuracy) the fractional deposition of mass and

energy to grid cells that sit on the boundary of the spherical region.

Similarly, stellar winds are deposited in the same 2 pc radius region. The mass loss

rates for both AGB stars and massive star winds are adopted from stellar evolution

models (discussed below), but are assumed to have xed velocities over their lifetime.

As discussed in Emerick et al. [2019], the computational expense of fully resolving

fast (103 km s−1), hot (106 K) gas that is continually injected onto the grid is too

onerous for long-timescale, galaxy-scale simulations. For that reason, we x the wind

velocity for all massive stars to a maximum value of 100 km s−1, and fully thermalize

the kinetic energy before injection. While this model would reduce the dynamical

impact of winds on the evolution of our galaxies, we expect that stellar winds are

subdominant to both stellar radiation feedback and supernovae, and argue this is a

reasonable approximation to make.

Stellar Radiation

In addition to the UV background, we follow the star-by-star radiation in six bands,

separated by photon energy ph. Due to computational constraints, we limit the

number of radiation sources – while capturing a majority of the photon energy budget

of our stars – by restricting radiation to massive stars only (* >8 M⊙).

We follow the HI (ph > 136 eV), HeI (ph > 256 eV), and HeII (ph > 544 eV)

ionizing photons using the ENZO+MORAY adaptive ray-tracing radiative transfer
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model described in detail in Wise and Abel [2011] and Bryan et al. [2014]. Briey,

this method integrates the full equations of radiative transfer propogating photons

mapped onto a HEALPix grid, adaptive rening once the separation angle between

photon packages becomes large.

In addition, we track the stellar IR (076 eV < ph < 56 eV), FUV ( 56 eV <

ph < 112 eV), and LW (112 eV < ph < 136 eV) radiation using an optically thin

approximation. This allows us to follow local variations in the 2 (LW), +
2 (IR,

FUV, and LW), and − (IR) photo-dissociation rates from each band, in addition to

the localized photo-electric heating from stellar FUV radiation. These processes are

discussed in more detail in Section 5.2.1.

Pop III Stellar Feedback

We use the table of binned photon counts from Heger and Woosley [2010] with the

lifetimes in Schaerer [2002] to compute the constant photon uxes for our Pop III stars

in each radiation bin (IR, FUV, and LW, and HI, HeI, and HeII ionizing radiation)

as a function of stellar mass. In practice, this is implemented using a piece-wise

polynomial t to these tables. Stars above 100 M⊙ are assumed to have a constant

mass to light ratio (see Fig. 1 of Heger and Woosley [2010]).

Pop III core collapse SNe (10 M⊙ < * < 100 M⊙) explode with a xed energy

of 1051 erg, while PISNe (when present, 140 M⊙ < * < 260 M⊙) energies are

determined by the t produced in Eq. 3 of Wise et al. [2012b]. Over this mass range,

PISNe explode with energies ranging from about ∼6×1051 erg to ∼ 93 × 1051 erg.

Further details and the yields for each of these events are given in Section 5.2.4.

Pop II Stellar Feedback

Our Pop II stellar feedback model is the same as implemented in Emerick et al.

[2019], with the exception of the stellar yields detailed in Section 5.2.4, the addition

of IR-band radiation, and an updated Type Ia model. In short, we use the PARSEC

[Bressan et al., 2012] grid of stellar evolution tracks to set the lifetime of each star and

the start time and length of the AGB phase (if present). This is also used to set the
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stellar eective temperature, surface gravity, and radius – each of which remain xed

at their zero age main sequence values – which are in turn used to set the radiation

properties of each star. Photon uxes in each radiation band are determined using the

OSTAR2002 [Lanz and Hubeny, 2003] grid of O-type stellar models. However, this

table does not have complete coverage over all possible stellar properties encounted

in these simulations (mainly for stars below about 15 M⊙ and very massive stars with

sub-solar metallicity). For the stars o of the grid, we adopt a black-body spectrum

with rates scaled to be continuous with the OSTAR2002 grid (see Appendix B of

Emerick et al. [2019]). Ionizing photon energies are taken to be the average ionizing

photon energy for the corresponding black body spectrum of each star. Stellar wind

velocities are xed to 20 km s−1 for AGB stars (* < 8 M⊙), and 100 km s−1

(our wind velocity ceiling, see Section 5.2.3) for massive stars (* > 8 M⊙). Core

collapse supernovae occur for stars between 8 - 25 M⊙ with an energy of 1051 erg, and

we assume stars more massive than 25 M⊙ direct collapse with no mass or energy

feedback.

In Emerick et al. [2019] we used a power-law delay time distribution Type SNIa

model assuming a single SNIa channel. We update this model adopting the delay

time distribution in Ruiter et al. [2011] (their "standard" model, A1) which gives the

total SNIa delay time distribution as the sum of four dierent channels: 1) double

degenerate scenario (DDS), 2) single degenerate scenario (SDS), 3) helium-rich donor

scenario (HeRS), and 4) a sub-Chandresekhar mass scenario (sub-Mch). In our model,

when stars below 8 M⊙ reach the end of their lives they form white dwarf particles

using the initial mass nal mass relation of Cummings et al. [2019]. Following Emerick

et al. [2019], we assume that stars with initial masses between 3 M⊙ and 8 M⊙ form

white dwarfs capable of exploding as SNIa. Given this, the DTD, and our IMF, the

fraction of stars capable of forming SNIa progenitors that will explode in a Hubble

time is  = 01508 (see Eq. 2 in Emerick et al. [2019]). We pre-tabulate the cumulative

probability distribution for both the total DTD and each underlying DTD’s. When

a WD forms, use a random number draw over the total DTD to set the time (if any)

that each SNIa candidate will explode and a separate random number draw to decide
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which type. For simplicity, we treat the total energy output for each SNIa the same

(1051 erg) and dierentiate them only by their yields (see Section 5.2.4).

5.2.4 Stellar Yields

We pay careful attention to capturing the detailed chemical evolution driven by nu-

cleosynthesis from distinct yield channels in both Pop III and PopII stars, as detailed

below. In total, we track 10 individual metal abundances (in addition to H, He, and

the total metallicity): C, N, O, Na, Mg, Ca, Mn, Fe, Sr, and Ba. This well-samples

elements from each nucleosynthetic channel, in addition to capturing elements with

dierent mass / metallicity dependence in a given channel. O, Mg, and Ca are

produced predominately in CCSN and show a noticeable evolution with supernova

progenitor mass, tracing short-timescale (10 Myr) chemical evolution. Fe is produced

in both core collapse and Type Ia supernova, and the relative abundances of O, Mg,

and Ca to Fe traces the evolution between these two yields sources on timescales

of 100 Myr to 1 Gyr. N, Sr, and Ba trace s-process enrichment in low-mass AGB

stars on timescales of 100 Myr to 1 Gyr. N and Ba trace the most massive (4-8 M⊙)

AGB stars, while Sr traces the less massive (< 4 M⊙) AGB stars. C has signicant

production in both low-mass AGB stars and CCSN, but the C to Fe ratio is an im-

portant tracer of early Pop III enrichment. All of these elements are readily observed

in stellar spectra, with the exception of O, which is the primary tracer of gas-phase

abundances.

In addition, we follow tracers tracking the total metal mass in each cell from each

yield source in our chemical evolution model: Pop III CCSN, Pop III PISN, AGB

winds, massive star (M > 8 M⊙) winds, Pop II CCSN, and Type Ia SN. Our Type

Ia model (discussed in more detail in Section 5.2.4) includes four metal tracers for

dierent Ia progenitor types. We additionally include an r-process yield tracer to

post-process r-process abundances. In total – counting the total metallicity eld – we

follow 20 metal tracer elds.
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Pop III Yields

Our Pop III yields are consistent with their feedback properties described above. For

the CCSNe from Pop III stars (10 M⊙ < * < 100 M⊙), we adopt the yields from

Heger and Woosley [2010] and use the PISNe yields from Heger and Woosley [2002].

While the exact fate of Pop III stars in the range ∼70 M⊙-120 M⊙ is uncertain –

with some possibly exploding as CCSN, some as PISN, and others undergoing direct

collapse with no yield return – it is reasonable to approximate that all of these stars

(at least up to 100 M⊙) end their life in a CCSN event [Woosley, 2017].

Much more massive Pop III stars are the likely sources of PISN. In our models

that include these events, we follow the Heger and Woosley [2002] model, and assume

they occur in stars between 140 M⊙ and 260 M⊙.

Pop II Yields

For AGB winds (* < 8 M⊙) we adopt the yields of Cristallo et al. [2015], with 8

grid points in *  [13, 60] M⊙ and 10 in *  [1 × 10−4, 002]. For the winds and

CCSNe yields of massive stars, we adopt Limongi and Chie [2018], with 9 grid points

oevr *  [13, 120] M⊙ and four in   [3236 × 10−5, 001345]. Stellar yields are

interpolated linearly between mass and metallicity grid points in each of the tables.

For stars with masses outside the mass range sampled by the yield tables, we adopt

the abundance ratios of the nearest grid point and scale the yield mass linearly with

stellar mass. Yields for stars with metallicities outside the covered range are taken

to be the same as the yield of the closest grid point with no extrapolation in . This

occurs most often at very low metallicities for stars that may have sucient C and

Fe abundance to be considered a Pop II star, but insucient total metallicity to be

beyond the rst grid point in the adopted yield set.

The yields models from Limongi and Chie [2018] are presented for three dierent

stellar rotations. Rather than accounting for these dierences live in our simulations,

we adopt a pre-computed mixture model representing a population-averaged yield set

using the metallicity-dependent stellar rotation population fractions from Prantzos
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et al. [2018]. In order to fully sample the variations in Prantzos et al. [2018] with

metallicity, we pre-compute an interpolated mixture model using an additional 3

evenly log-spaced metallicities in between the 4 existing grid points for a total of 13

metallicities.

We adopted this particular set of yield tables based on comparing the results

of a one-zone galactic chemical evolution model as applied to a Milky Way mass

galaxy. While these yields generally produced reasonable agreement in this model as

compared to observations in [X/Fe] vs. [Fe/H] space, Mg is noticeably under-produced

in [Mg/Fe] at all [Fe/H], while other  elements tend to agree well. Since one of our

primary goals of these simulations is to make detailed observational comparisons, we

articially boost the Mg yield from all massive stars uniformly by a factor of 2.2.

SN Ia Yields

As discussed in 5.2.3, we use a combined delay time distribution from four dierent

sources of Type Ia SNe, each with potentially unique abundance signatures. However,

given the uncertainty in yields from each of these sources, we opt instead to make the

assumption that there is one yield pattern for each source. This allows us to post-

process the abundance patterns from each channel separately. Live in the simulation

we assume a single abundance pattern for all Type Ia SNe from [Thielemann et al.,

1986] and track the contribution of each SN Ia type to the total metallicity as a

separate passive scalar tracer eld. Given this, and knowing the total number of

each SN Ia type that has occurred in the simulation, one can arbitrarily re-scale the

abundance patterns for each SN Ia type. Doing so implicitly assumes that the yields

for each SN Ia do not aect the dynamical evolution of our galaxies (which it may, for

example, by inuencing cooling through the Fe abundance), but we do not account

for local cooling variations from individual elemental abundances in our simulations

anyway.
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Dark Matter Halos and Merger Trees

Dark matter subhalos are identied using ROCKSTAR [Behroozi et al., 2013b] and

mergers trees are constructed by CONSISTENT-TREES [Behroozi et al., 2013c]. The

halos were assigned a virial mass  and radius  using the evolution of the

virial relation from Bryan and Norman [1998]. To dene the “main branch" of a given

halo, we trace back the progenitors of the host halo at each simulation time step. At

a given time step, the most massive progenitor of the host halo is a member of the

“main branch" and all other direct progenitors that merge into main branch halos

are the “destroyed subhalos". A subhalo is considered destroyed when it is no longer

found by the halo nder.

5.3 Initial Results

The current Aeos simulation is a co-moving 1 Mpc wide volume, simulated from

redshift 130 to, presently, 14.5. It has a root-grid resolution of 2563, a dark matter

resolution of 1840 ⊙, and a 1 pc resolution of the gas at the nest scales. Each star

greater than 2 ⊙ is represented by a single star particle. The stars and gas have 20

metal tracer elds tracing 10 individual metal abundances and several yield sources

(see Section 5.2.4).

5.3.1 Galaxies in the Full Box

At redshift 14.5, the full volume contains 124 star-forming halos of at least  >

106⊙ with a total of about 220, 000 star and stellar remnant particles (see Figure

5-1). Pop III star formation begins at  ∼ 28 and Pop II star formation begins a

bit after  ∼ 22 (see Figure 5-2). Pop II stars, dened as stars with total metals

 ≥ 10−5⊙, overtake Pop III star formation around  ∼ 17.

Of the 124 galaxies, the vast majority are tiny, containing stellar masses of a

hundred solar masses or fewer. Only one galaxy has a stellar mass greater than

* > 106⊙ (see Figure 5-3). 18 of the galaxies have begun forming Pop II stars.
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Figure 5-1: Gas projection of the full box simulation at redshift  = 145. At this
redshift, 124 halos contain stars. Each halo is circled in red and the stars are shown
as white dots.

For each of these galaxies, the distribution of Pop II vs. Pop III stellar mass is shown

in Figure 5-4. Two of these galaxies, Halo 53 and Halo 101, were externally enriched

in metals by the larger galaxy they are orbiting. This caused their star formation to

begin with Pop II stars.
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Figure 5-2: Star formation history of the full box simulation at redshift  = 145.

Figure 5-3: Stellar masses of every star-forming halo in the simulation at redshift
 = 145. Only one galaxy has stellar mass * > 106⊙.
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Figure 5-4: For every star-forming halo with Pop II stars, the distribution of Pop II
vs. Pop III stellar mass throughout the history of the simulation. Two halos (halo 53
and halo 101) were externally enriched in metals by Halo 0.

5.3.2 Overview of Biggest Galaxy

The majority of the star formation occurs in and around the largest galaxy, henceforth

called "Halo 0". This galaxy is the central galaxy in a cluster of several galaxies,

including Halo 53 and Halo 101 (the externally enriched satellite galaxies). At  =

145, Halo 0 has a halo mass of 54× 107⊙ and a stellar mass of 65× 106⊙. The

median metallicity is [Fe/H] = −21+0.1
−0.2 (with error bars representing 16th to 84th

percentile); see Figure 5-5 for the stellar metallicity distribution. See Figure 5-6 for

the star formation history and for the halo mass history. Halo 0 started forming stars

at redshift  = 24 and began Pop II star formation at redshift  = 17.

Figure 5-7 top left shows a gas projection of the main galaxy cluster at  = 145.

Top right shows a temperature slice centered on Halo 0. While temperatures around

the galaxies can reach higher than 106, within the galaxy, temperatures are as low

as tens of Kelvin. The bottom two panels show slices of the [Fe/H] and [Mg/Fe] gas

abundances as examples of some of the metal elds we trace. The star-forming regions

reach metallicities as high as [Fe/H] ∼ −2. Many of the metals formed in Halo 0 are

lost to outows (e.g., Figure 5-8), however, hence the external metal enrichment of

some of its satellite galaxies.
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Figure 5-5: Stellar metallicity distribution of the largest galaxy. This plot excludes a
single Pop III star which still survives at  = 145.

a) Star formation history of Halo 0 b) Halo mass history of Halo 0’s main branch

Figure 5-6: Stellar and halo mass histories of the largest galaxy, Halo 0.
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Figure 5-7: Projections and slices of the main galaxy cluster at  = 145 The largest
galaxy, Halo 0, is in the center. The externally enriched galaxies, Halos 53 and
101, are satellites. Top left shows a gas density projection. The top right shows a
temperature slice centered on Halo 0. The bottom panels show slices of the [Fe/H]
and [Mg/Fe] gas abundances, centered on Halo 0.
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Figure 5-8: Time evolving [Mg/Fe] gas abundances in and directly around Halo 0.
Recently formed stars (formed in last 1 Myr) are shown as black dots. The slice is
centered on the main galaxy and zoomed in until the 1 pc gas resolution is visible.
Magnesium is formed in a supernova and is largely lost from the galaxy through
outows.

5.3.3 Evolution of Chemical Abundances

As discussed in Section 5.2.4, we track 10 individual metal abundances (in addition

to H, He, and total metallicity): C, N, O, Na, Mg, Ca, Mn, Fe, Sr, and Ba. This

samples from dierent nucleosynthetic channels and at dierent mass / metallicity

dependence within given channels.

At redshift  = 145, the main galaxy is primarily forming stars with metallicities

between [Fe/H]= −25 and = −2. Many of the metals and some of the gas reservoir

are being lost to outows, resulting in some unexpected evolution in the stellar chem-

ical abundances. For example, several of the more recently formed stars decrease in

[Fe/H] and increase in [Mg/Fe] (see Figure 5-9).

There are several clear structures in chemical abundance space. In the [Sr/Fe]

stellar abundances (from chemicals formed by AGB stars, see Figure 5-9 and [Ba/Fe]

as well), there are three vertical structures at low metallicity. These correspond

to three dierent star-forming clusters within the host galaxy. Also, the horizontal

structure from [Fe/H]= −4 to = −2 forms in the same cluster as the lowest metallicity

vertical structure, just a bit later while the metallicity is changing. Structures also

exists in the [C/Fe] vs. [Fe/H] stellar abundance space, but with a very low spread
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Figure 5-9: Chemical abundances of each star particle in the largest galaxy, colored
by their birth time. The top panels show [Mg/Fe] and [C/Fe] vs. [Fe/He], and the
bottom panels show [Sr/Fe] and [Ba/Fe] vs. [Fe/H]. The three low [Fe/H] clumps in
each panel originate from three dierent star-forming clusters within the host galaxy.

in [C/Fe]. We expect this is primarily due to the ratio of C and Fe in our Pop III

supernovae yield tables.

We note that these plots are somewhat misleading because the vast majority of

stars, approximately 100,000 of them, are found in the more recent “blob” located

between [Fe/H]= −25 and = −2. See the histogram of stellar metallicities in Figure

5-5.

5.4 Planned Future Work

Using this simulation, I will quantify how metals mix in the interstellar medium of

these galaxies, how this aects star formation, and how this varies with dierent

elements and dierent nucleosynthetic channels to reveal how chemical enrichment

proceeds in ultra-faint dwarfs. I will also compare this simulation with individual
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star particles to an identical simulation with star cluster particles to determine the

eect of dierent levels of particle resolution on scientic results.

One specic science goal is to determine the origin of chemical abundance scatter

in ultra-faint dwarfs. Observations of ultra-faint dwarf galaxy stars reveal scatter in

the chemical abundances (e.g., Simon [2019]), but the origin of this scatter is not

known. The scatter could be primarily due to dierences in galaxy formation history

or primarily due to dierences in nucleosynthetic yields. Either way, determining the

origin of abundance scatter will allow me to use existing data to learn about galaxy

formation or chemical enrichment in the early Universe.

For this analysis, I will analyze simulated spreads of abundance patterns in the

context of dwarf galaxy observations. This simulation is capable of providing the

most realistic ultra-faint dwarf galaxy chemical abundances to-date. This will allow

me to answer the important question: what information about early galaxy formation

is contained in spreads of stellar abundance patterns observed today? I will explain

the stellar abundance scatter we observe and provide new insight into how the dwarf

galaxies around us formed.

For each simulated dwarf galaxy stellar population, I will determine the distri-

bution of stellar abundances across the 10 dierent metals in the simulation. I will

compare how the scatter in these distributions dier with variations in galaxy evolu-

tion (e.g., merger history, star formation history). I will also quantify the amount of

scatter in the distributions that can be explained by dierences in the nucleosynthetic

yields (e.g., dierent amounts of barium produced in s- vs. r-process or stochastic

dierences in yields from single sources). After I quantify the origins of scatter in

chemical abundances, I will create physically-motivated analytic models to articially

incorporate scatter in simulations that do not highly-resolve star formation and metal

mixing.

Thinking even farther out, additional future analysis will include quantifying the

low-mass end of the Milky Way assembly history. The smallest galaxies contributed

fewer stars and have far weaker kinematic signatures than larger accreted galaxies

(e.g., Chapter 4). To study their remains, we thus must rely mostly on stellar chemi-
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cal abundances (e.g., Chapter 2). In particular, the full chemical abundance ratio dis-

tributions (CARDs) in the stellar halo should contain information about the Galaxy’s

assembly history [Cunningham et al., 2022, Lee et al., 2015]. The Aeos simulation is

ideal to create signicantly more realistic chemical abundance ratio distributions for

comparison to distributions in the Milky Way stellar halo.

Previous work created templates of CARDs corresponding to dierent mass galax-

ies at dierent redshifts, but used N-body simulations [Lee et al., 2015] or hydrody-

namic simulations that do not resolve star formation and metal mixing in small galax-

ies [Cunningham et al., 2022]. My highly-resolved simulation will provide the oppor-

tunity to overcome these previous caveats and create much more realistic simulated

chemical abundance distribution templates for small dwarf galaxies. The templates

will be produced by directly measuring multi-dimensional chemical abundance ratios

of every star particle in dierent simulated galaxies at dierent redshifts. These tem-

plates will be linearly combined with templates for higher-mass dwarfs to determine

which combinations of accreted systems can reproduce observations of the Milky Way

stellar halo. Through this, I will estimate the number and properties of dwarf galaxies

that merged to form our Milky Way.
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Chapter 6

Conclusions

Despite an inux of data on the Milky Way’s stellar halo, astronomers still lack ways

to reliably identify which stars originated in which dwarf galaxies. This is particularly

dicult for the ultra-faint dwarfs (UFDs) because even though they represent > 90%

of all accreted galaxies in the Milky Way, they contributed fewer than 1% of the total

number of stars (e.g., Brauer et al. [2022]). These poorly-understood building blocks

of the Milky Way are important examples of some of the rst galaxies in the Universe,

but we are unable to identify their remnants. This thesis determines and explores

methods of identifying UFD stars in the Milky Way through chemical abundances and

stellar kinematics. I nd that stellar chemical abundances are the most promising way

to identify UFD stars, especially -process chemical abundances. Stellar kinematics

of stars from accreted UFDs generally have signatures that are too weak to identify.

This thesis also investigates collapsars as an alternative source of -process material

and produces a novel cosmological simulation of early galaxy formation with detailed

chemical abundances.

6.1 Ultra-Faint Dwarfs and R-Process Enrichment

Because ultra-faint dwarf galaxies contained little gas and formed stars ineciently,

their stars likely have unique chemical abundance signatures. This is supported by

observations of highly r-process enhanced surviving UFDs such as Reticulum II (Ji
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Figure 6-1: Accreted UFD galaxies may have contributed a signicant fraction of
highly r-process enhanced stars. (Brauer et al. [2019])

et al. [2016a]). In Chapter 2, I explored the possibility of using r-process chemical

abundances as a way to identify UFD remnants in the Milky Way stellar halo. Using

the Caterpillar simulation suite (Grien et al. [2016]), I modeled the formation of 35

Milky Way stellar halos in which r-process enrichment only occurs in UFDs. I then

determined what fraction of metal-poor r-process stars can be accounted for through

this single formation pathway.

By only forming highly r-process enhanced stars in UFDs, we accounted for around

half of the observed r-process stars in the Milky Way stellar halo. Our simulations

produced r-II fractions (− = number of metal-poor r-process stars
number of metal-poor stars ) of ∼ 15%, compared

to the observed Milky Way r-II fraction of ∼ 3% (see Figure 6-1). This implies high

r-process enrichment may be strongly linked to small galaxies. R-process enrichment

is thus a promising way to identify stars from UFDs to study early galaxy formation

and the assembly of the Milky Way.
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Figure 6-2: Left: A schematic demonstrating my model for europium (Eu) enrichment
from collapsars. Right: Observed europium abundances of metal-poor stars and their
scatter in dierent metallicity bins. My model reproduced the observed scatter by
assuming enrichment from a single source (collapsars) with stochastic r-process yields.
(Brauer et al. [2021])

6.2 -Process Enrichment in the Early Universe

Neutron star mergers are a conrmed site of the r-process (GW170817; Abbott et al.

[2017a]), but it is unclear if they can reproduce observed abundances in metal-poor

stars. Concerns around the delay time distribution of neutron star mergers and natal

kicks from supernovae imply that neutron star mergers may be incapable of suciently

enriching early, small galaxies. Collapsars (the supernova- and -ray-burst-triggering

collapse of rapidly rotating massive stars) are a promising alternative (e.g., Siegel

et al. [2019]).

In Chapter 3, I produced a self-consistent analytic model (see Figure 6-2) in which

collapsars with stochastic europium yields synthesize all the r-process material in

metal-poor ([Fe/H]< −25) stars. This model successfully reproduced the observed

europium (Eu) scatter across dierent metallicities. In contrast to other models

that produce scatter through dierent r-process sources, the scatter in this model is

produced by a single source (collapsars) with stochastic yields. Fast-merging neutron

stars could potentially also t this model, but these results imply that collapsars

could be the dominant source of r-process in the early Universe.
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Figure 6-3: Kinematics of simulated stars from accreted ultra-faint dwarfs. The color
of each particle corresponds to how long ago it was accreted by the Milky Way-
mass host galaxy. Over time, the stars mix more in the phase space and become
unidentiable. (Brauer et al. [2022])

6.3 Ultra-Faint Dwarf Stellar Kinematics

In addition to chemical abundances, stellar kinematics are another way to identify

accreted structure in the Milky Way. The orbital actions and energy of a star are

quasi-conserved quantities that can, in principle, be used to identify stars that were

accreted together. Thanks to Gaia and other large surveys, this method has been

extremely successful in recent years in identifying large accreted galaxies (e.g., Be-

lokurov et al. [2018], Helmi et al. [2018], Naidu et al. [2020]). Several groups have

also started to use this method to try to identify accreted ultra-faint dwarfs (e.g.,

Roederer et al. [2018], Gudin et al. [2021]).

In Chapter 4, I explored the possibilities and diculties of kinematically identify-

150



ing stars that accreted from UFDs by producing 32 simulated stellar halos of Milky

Way-mass galaxies from the Caterpillar suite. Each accreted galaxy was tagged and

traced to redshift  = 0. I then ran clustering algorithms on 4D stellar dynamics to

determine how well the remnant galaxies can be recovered. I found that even in highly

idealized cases, we only recover 2 − 6% of UFDs remnants. These are UFDs which

accreted relatively recently,   05 (see Figure 6-3). Based on our results, we made

recommendations to help guide the search for kinematic groups of tidally-disrupted

UFDs. Because the kinematic signatures of these small galaxies are generally uniden-

tiable, we strongly recommend the use of chemical abundances in future searches

for remnants of UFDs.

6.4 Simulating Individual Stars with Detailed Chem-

ical Abundances in Early Galaxies

To study early galaxy formation, we must understand how stellar feedback aects

star formation and galaxy evolution in ultra-faint dwarf galaxies. We also must

understand how metals mix in the low-metallicity gas of the rst galaxies. Current

cosmological galaxy simulations do not capture realistic star formation and mixing

of the interstellar medium, however. Generally, cosmological simulations represent

clusters of stars with a single particle that forms instantaneously and do not resolve

metals mixing or detailed metal yields.

To address these problems and produce the most realistic picture of early dwarf

galaxy formation to-date, in Chapter 5 I have been extending my previous work to

produce, for the rst time, a high-resolution cosmological simulation of galaxy for-

mation with individual star particles, individual stellar feedback with detailed stellar

yields, and adaptive grids to capture detailed metal mixing in the interstellar medium

from the rst stars. The simulation is called Aeos. Projections and slices of the main

galaxy cluster can be seen in Figure 6-4. This is the only simulation that tracks de-

tailed metal yields from individual stars. Currently, we have run a 1 Mpc volume from
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Figure 6-4: Projections and slices of the main galaxy cluster in Aeos at  = 145 The
largest galaxy, Halo 0, is in the center and several satellite galaxies are also shown.
Stars are shown as white dots. The bottom panels show slices of the [Fe/H] and
[Mg/Fe] gas abundances. Fe and Mg are two of the 12 metal abundances tracked in
the simulation.
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redshift  = 130 to  = 145 and run initial analysis on stellar chemical abundances

in the largest galaxy at that time. We identied structures from dierent progenitor

clusters in chemical abundance space and prepared for future work to identify the

primary underlying origins of chemical abundance scatter and quantify the low-mass

end of the Milky Way assembly history.
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