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Abstract
Language is one of the hallmarks of intelligence, demanding explanation in a theory of
human cognition. However, language presents unique practical challenges for quantitative
empirical research, making many linguistic theories difficult to test at naturalistic scales.
Artificial neural network language models (LMs) provide a new tool for studying language
with mathematical precision and control, as they exhibit remarkably sophisticated linguistic
behaviors while being fully intervenable. While LMs differ from humans in many ways,
the learning outcomes of these models can reveal the behaviors that may emerge through
expressive statistical learning algorithms applied to linguistic input.

In this thesis, I demonstrate this approach through three case studies using LMs to
investigate open questions in language acquisition and comprehension. First, I use LMs
to perform controlled manipulations of language learning, and find that syntactic gener-
alizations depend more on a learner’s inductive bias than on training data size. Second,
I use LMs to explain systematic variation in scalar inferences by approximating human
listeners’ expectations over unspoken alternative sentences (e.g., “The bill was supported
overwhelmingly” implies that the bill was not supported unanimously). Finally, I show that
LMs and humans exhibit similar behaviors on a set of non-literal comprehension tasks which
are hypothesized to require social reasoning (e.g., inferring a speaker’s intended meaning
from ironic statements). These findings suggest that certain aspects of linguistic knowledge
could emerge through domain-general prediction mechanisms, while other aspects may
require specific inductive biases and conceptual structures.

Thesis Supervisor: Roger P. Levy
Title: Professor
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Chapter 1

Introduction

Language is one of the hallmarks of human intelligence. Our societies are built upon

relationships cultivated through collaboration and debate; our cumulative knowledge as a

species is documented through written and oral histories; and the most fantastical reaches of

our imagination are expressed through poetry and literature. Language learning, production,

and comprehension seem to unfold effortlessly and successfully, supporting a rich set of

behaviors that characterize human mental life. And yet, these abilities also pose significant

computational challenges, requiring inference and generalization in the presence of noise and

cognitive resource constraints. How, then, do children generalize from the linguistic stimulus

with which they are presented? And how do interlocutors arrive at shared understanding so

flexibly and efficiently? These questions touch upon foundational challenges in cognition,

intertwined with the general problems of learning, reasoning, and collaboration.

For millennia, scholars across cultures and civilizations have been puzzled by the nature

of language. Egyptian pharaohs and Holy Roman Emperors alike performed language

deprivation experiments in order to uncover the language that children would know from

birth (Herodotus, 440 B.C.; Coulton, 1972). In the Western tradition, philosophical investi-

gations of language date as far back as Plato’s Cratylus and Aristotle’s De Interpretatione.

Language became the focal point of analytical philosophy in the “linguistic turn” of the

1800s (Rorty, 1993), spawning a rich inquiry into meaning, reference, and the relationship

between language and thought. The prominence of language in the study of the mind,

coupled with the rise of experimental psychology in the 20th century, sparked a new gener-

17



ation of debate about the cognitive principles of language. In response to the behaviorist

movement (Skinner, 1957), Chomsky (1959) proposed that language does not arise through

reinforcement of behaviors. Instead, he argued, humans are biologically predisposed to learn

language through genetically inherited mechanisms, and the core of language is knowledge

of an underlying generative grammar (Chomsky, 1957, 1965). Chomsky’s proposal kindled

a “cognitive revolution” in linguistics (McGilvray, 2014), establishing a tradition of inquiry

that, for the first time, mirrored the goals and methods of the natural sciences.

Despite tremendous progress in the past century, many linguistic theories remain difficult

to test with mathematical precision at naturalistic scales. In many ways, language presents

unique practical challenges for quantitative empirical research. At the same time, recent ad-

vances in engineering have enabled computational models that use language with incredible

sophistication. These models take on many different forms, but share the same underlying

artificial neural network (ANN) architecture. Importantly, ANNs are fully intervenable –

their training environments, learning mechanisms, and internal representations can be freely

manipulated – and can provide predictions over arbitrary linguistic contexts. In this thesis, I

argue that ANN language models are well-suited to address many of the unique challenges

of studying language. Through three case studies focusing on syntactic generalizations and

pragmatic inferences, I demonstrate how psycholinguistic evaluation of ANNs can offer

new insights into human linguistic behaviors.

In the remainder of the Introduction, I discuss prominent challenges of studying language

(Section 1.1), introduce ANNs as a tool for addressing these challenges (Section 1.2),

and outline the conceptual framework for applying ANNs to investigate human language

(Section 1.3). I then conclude with an outline of the thesis in Section 1.4.

1.1 Practical challenges in the study of language

Challenge 1: Controlled manipulations of language learning

Children in a particular language community receive varied and sparse input, but converge

on the same generalizations about the permissible structures in the language (Chomsky,

1965). Do these generalizations arise from domain-general or language-specific learning
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mechanisms? What are the relative contributions of input size and inductive biases?

Many positions in this debate have been based on logical arguments and toy grammars

(e.g., Chomsky, 1980). Gaining empirical insights has been challenging, as controlled

experiments on language learning are infeasible to perform in organisms. In other domains

of cognition, such as visual perception, animal models have been critical for testing and

advancing cognitive and neuroscientific theories (Hubel and Wiesel, 1962; Logothetis and

Sheinberg, 1996; Zoccolan et al., 2009; Rajalingham et al., 2015). While animal models have

been proposed to study low-level aspects of language such as speech (e.g., Fitch and Tallal,

2003; Helekar, 2013; Konopka and Roberts, 2016), it is unclear whether any non-human

species can yield insights into higher-level phenomena such as the acquisition of syntax (see

Hauser et al., 2002; Suzuki et al., 2016; Townsend et al., 2018; Suzuki and Zuberbühler,

2019; Schlenker et al., 2023, for discussion). The thinkers of the past – like Pharaoh Psamtik

I and Holy Roman Emperor Frederick II – turned to human children as their experimental

subjects, depriving them of linguistic interaction from birth. These manipulations clearly

raise ethical and practical concerns. Furthermore, even with access to animal models, it

would be unclear how to control key aspects of language learning, such as enforcing a

preference for learning linear structures.

Challenge 2: Estimating expectations about the unsaid

One of the primary functions of language is to faciliate efficient information exchange

(Hurford et al., 1998; Hurford, 2007; Kirby et al., 2015; Gibson et al., 2019; Hahn et al.,

2020). However, the thoughts in speakers’ minds are not simply transferred to listeners

– noise, errors, and ambiguity are pervasive in everyday communication (Garrett, 1975;

Levelt, 1983; Bock and Miller, 1991; Altmann, 1998). As such, the tools of probability

theory have been productive in characterizing language comprehension (e.g., Jurafsky, 2002;

Chater and Manning, 2006), mirroring the success of Bayesian models in other domains of

cognition (Anderson, 1990; Griffiths et al., 2010; Tenenbaum et al., 2011). Probabilistic

models of language understanding propose that listeners infer speakers’ intended meanings

by integrating expectations over multiple sources of information (e.g., Goodman and Frank,

2016; Degen, 2023). In many cases, a central component of this inference process is the
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set of utterances that the speaker chose not to say – that is, the unspoken alternatives (e.g.,

Degen, 2013; Repp and Spalek, 2021).

Empirical studies suggest that listeners maintain context-driven probabilistic expectations

over alternatives (Degen and Tanenhaus, 2015, 2016). However, it is difficult to estimate

these expectations with enough precision to capture fine-grained variation in pragmatic

inferences. While prior studies have measured expectations deployed in real-time reading

using corpus-based relative frequency estimation (e.g., Levy, 2008; Smith and Levy, 2013),

these methods may not work as well for capturing expectations over unspoken alternatives.

Since alternatives are not produced, frequency-based models may be ill-suited to estimate

the probability of an intended alternative, given the speaker’s utterance. Furthermore, some

theories propose that alternatives operate at the conceptual level instead of at the level

of linguistic forms (Buccola et al., 2021). Frequency-based models, which primarily use

discrete token representations, might struggle to capture the conceptual similarity structures

that listeners may be using to make inferences about alternatives.

Challenge 3: Isolating Theory of Mind in pragmatic comprehension

A large body of work has shown that humans consider other agents’ mental states when

deciding how to produce or comprehend an utterance (Brennan et al., 2010a; Heller et al.,

2012; Mozuraitis et al., 2018; Enrici et al., 2019; Clark and Marshall, 1981). However,

reasoning about others’ beliefs, goals, and preferences has been characterized as a type

of “System 2” reasoning, which is slow and cognitively effortful (Apperly and Butterfill,

2009). As a result, a prominent view is that these Theory of Mind (ToM) mechanisms are

too cognitively demanding to underlie real-time processing (e.g., Gallagher, 2001; Pickering

and Garrod, 2004). To address this tension, researchers have proposed a distinction between

ToM abilities and “full-blown” ToM cognition (Butterfill and Apperly, 2013; Geurts and

Rubio-Fernández, 2015), suggesting that ToM abilities can be approximated through a

minimal set of heuristics (e.g., Heyes, 2014; Borg, 2018; Rubio-Fernández et al., 2019).

In the context of pragmatic language understanding, one specific proposal is that many

implicatures are conventionalized and computed by default (e.g., Levinson, 2000). How-

ever, it is not straightforward to test the contributions of ToM and language experience in
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pragmatic language understanding, as behavioral experiments cannot cleanly manipulate the

presence of ToM reasoning in humans (or other living organisms). In principle, it would

be possible to compare human pragmatic inference behaviors against statistical language

models, which embody experience with linguistic forms and lack any form of explicit ToM

(see Challenge 2). In practice, however, this is challenging, as many pragmatic understand-

ing tasks (such as irony or metaphor) also require basic language processing, knowledge of

cultural and social norms (Trosborg, 2010), and commonsense world knowledge – all of

which are lacking even in relatively sophisticated computational models.

1.2 Artificial neural networks

This thesis demonstrates how artificial neural network (ANN) language models provide an

important tool for addressing the challenges presented above. In the current section, I give

an overview of ANNs and modern ANN-based language models. I highlight how ANNs can

address the challenges described in Section 1.1, as well as their limitations for illuminating

the human mind. In Section 1.3, I then discuss a conceptual framework for using ANNs to

investigate questions in syntax acquisition and pragmatic language understanding.

1.2.1 ANNs and cognition

The significance of artificial neural networks traces back to early musings about the architec-

ture of intelligence. Enlightenment philosophers were drawn to the idea that human thought

could be seen as a logical sequence of rule-based operations on atomic units. Hobbes

(1651) described reasoning as “nothing but reckoning (that is, adding and subtracting) of the

consequences of general names agreed upon for the marking and signifying of our thoughts”;

Leibniz argued that human reasoning could be described as the combination of an “alphabet

of human thoughts” (Jourdain, 1916). As interest in artificial intelligence began to develop,

this view became the basis of symbolism, or the idea that intelligence is based on knowledge

abstractions that are manipulated through reasoning and learning (e.g., Newell and Simon,

1976; Simon, 1980; Fodor, 1975). On the other hand, the framework of connectionism

argued that high-level cognitive phenomena can be explained by the activity of simultaneous,
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distributed signals (Hinton et al., 1986), and the connections can be numerically modified

based on experience (Rumelhart et al., 1987; McClelland and Rogers, 2003; Rogers and

McClelland, 2004).

Artificial neural networks (ANNs) are a class of models that implement the connectionist

hypothesis with mathematical precision and intervenability. ANNs are formed by intercon-

nected computational units (Rosenblatt, 1958) typically arranged in a series of layers. Each

unit receives real numbers as input, and outputs a non-linear function of the sum of the

inputs. The weights of the connections between units get gradually updated according to a

learning rule and error signal, typically through the backpropagation algorithm (Rumelhart

et al., 1986). For example, an ANN might learn to perform visual object recognition by

taking example images and updating its weights in a way that maximizes the probability of

previously-labeled ground-truth classes. At the end of this training process, the weights of

the ANN represent an approximately optimal solution for the object recognition task (given

the appropriate distribution of inputs). These learned weights can then be used to classify

new images that the model has never encountered before.

In this sense, one type of scientific insight that ANNs can provide is illustrating the

behaviors and representations that emerge through task optimization in a given environment.

In other words, ANNs allow us to test the hypothesis that a certain mental or neural

phenomenon arises as an optimal solution to a specific computational problem that an

organism may face (Kanwisher et al., 2023). This optimization-based view of ANNs has

proven to be productive for testing theories of brain function and organization (e.g., Khaligh-

Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Zhuang et al., 2017; Rajalingham et al.,

2018; Kell et al., 2018; Schrimpf et al., 2021; Dobs et al., 2022; Doerig et al., 2022; Jain

et al., 2023) and answering questions about why minds and brains look the way they do

(Yamins and DiCarlo, 2016; Kanwisher et al., 2023). For example, deep convolutional

neural networks (CNNs) trained on a visual object recognition task match primates’ fine-

grained behavioral patterns (Rajalingham et al., 2018) and neural activations (e.g., Yamins

et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014), despite never having been trained

to explicitly fit primate behaviors or brains. This suggests that optimization for visual

classification is a computational principle that shapes the brain’s visual algorithms and
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organization.

1.2.2 (Large) language models

The traditional use of the term “language model” refers to a probability distribution over

strings (i.e., sequences of tokens). Early 𝑛-gram language models estimated full-string

probabilities by decomposing the joint probability of tokens into the product of conditional

probabilities (Jurafsky and Martin, 2023). However, these models suffer from the curse of

dimensionality: with large vocabularies, the number of possible token sequences increases

exponentially. This poses significant data sparsity problems for estimating 𝑛-gram probabil-

ities from corpora of natural text. Bengio et al. (2003) addressed this problem by proposing

a language model based on ANNs and continuous word representations. Since then, ANN

language models have achieved incredible success on next-word prediction (e.g., Brown

et al., 2020) and are critical to applications such as machine translation (e.g., Brants et al.,

2007; Gulcehre et al., 2017; Baziotis et al., 2020) and speech recognition (e.g., Bahl et al.,

1989; Kuhn and De Mori, 1990; Jelinek et al., 1991; Toshniwal et al., 2018).

The nascent era of “large language models” (LLMs) has marked a dramatic shift in

the size and capabilities of ANN language models (Bommasani et al., 2021).1 While the

architectures and learning algorithms underlying LLMs have existed for decades, the massive

scale of modern language models has given rise to emergent abilities that are qualitatively

different from what was possible before (Wei et al., 2022b). Beyond just generating fluent

text, LLMs have been shown to learn from few-shot demonstrations (Brown et al., 2020),

produce ordered outputs that mimic sequential reasoning (Nye et al., 2021; Wei et al., 2022c),

synthesize scientific knowledge (Taylor et al., 2022), and generate effective code (Chen

et al., 2021; Austin et al., 2021). These remarkable behaviors suggest that studying ANN

models – the same way cognitive scientists might study other complex organisms – could

1In the current AI landscape, the term “language model” is often loosely used to describe any model whose
inputs and outputs are natural language. These models may perform a variety of tasks beyond incremental
word prediction, such as masked language modeling (Devlin et al., 2019) or span infilling (Raffel et al.,
2020). Importantly, many new “language models” are also fine-tuned on non-linguistic tasks and receive
reinforcement from human feedback (Ouyang et al., 2022; Wei et al., 2022a). Whereas traditional language
models implement prediction based on the distribution of linguistic forms, the connection between newer
models and core cognitive motifs is less clear. Since my goal is to test ANNs as cognitive models, this thesis
will primarily use autoregressive and bidirectional language models (except in Chapter 4).
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potentially reveal the mechanisms supporting human linguistic knowledge.

In particular, I argue that ANN language models provide a useful tool for addressing

the challenges discussed in Section 1.1. First, ANNs can be used to perform in silico ex-

periments which manipulate the mechanisms supporting language acquisition. Researchers

can manipulate ANN models’ inductive biases, training inputs, and learning algorithms, en-

abling controlled experiments that would be infeasible to perform in humans or other living

organisms (Chapter 2). Second, ANN-derived linguistic predictions are better aligned with

human comprehension than probabilities derived from non-neural models (e.g., Goodkind

and Bicknell, 2018). ANNs also use dense input representations, which could be useful

for capturing conceptual similarity effects in language understanding. The predictive distri-

butions of ANNs could therefore approximate human expectations over unspoken content

in pragmatic inferences (Chapter 3). Finally, large language models display incredible

knowledge about basic lexical meaning, social norms, and commonsense, while having

no explicit representations of other agents’ mental states. In this sense, they may capture

many of the mechanisms that are involved in pragmatic language understanding, while

lacking explicit Theory of Mind. This makes them uniquely suited to investigate the role of

mentalizing in non-literal language understanding tasks (Chapter 4).

1.2.3 Limitations of ANNs as cognitive models

The central question of language acquisition is not whether language can be learned in the

limit of infinite data, but rather how it arises in naturalistic settings. However, modern ANN

language models are often trained on orders of magnitude more data (i.e., number of word

tokens) than is typically available to a human child. For example, Warstadt and Bowman

(2022) estimate that a ten-year-old child receives 100 million word tokens, whereas GPT-3

(Brown et al., 2020) receives 200 billion. As such, one concern about the relevance of

ANNs to linguistic theory is the discrepancy between ANNs’ and children’s input data.

Several studies have sought to address this by performing systematic investigations of

models trained on more realistic amounts of data (e.g., Warstadt et al., 2020b). However, the

child-likeness of input data depends not only on size, but also in genre and modality – two
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other dimensions where models differ from humans. ANN language models are typically

trained through passive exposure to static text corpora, whereas human language learning

involves social interaction (Baldwin et al., 1996) and perceptual grounding (e.g., Geeraerts,

2006; Vigliocco et al., 2014; Bisk et al., 2020; Bender and Koller, 2020) in addition to

experience with linguistic forms. Furthermore, children typically observe continuous

streams of child-directed speech (Rowe, 2008, 2012), whereas models typically learn from

pre-segmented text scraped from books, encyclopedias, news archives, and internet forums

(but see Huebner et al., 2021). This suggests that the task of generalizing from linguistic

input is a different computational challenge for children than for models – although the

extent of these differences, and how they affect the overall difficulty of the learning problem,

remains unclear.

The issue of ecological validity is perhaps even more pronounced when using ANNs

to study pragmatic language comprehension. In conversation, interaction is critical for

supporting joint activities such as grounding (Clark and Brennan, 1991), alignment (Picker-

ing and Garrod, 2004; Fusaroli et al., 2012), convention formation (Hawkins et al., 2021),

and repair (Micklos and Woensdregt, 2022). Static ANN language models therefore are

not a faithful approximation of human language comprehension, which typically unfolds

as a cooperative act with a speaker, and relies on extra-linguistic shared context. Recent

work has criticized ANN language models for their disconnect from a shared, interactive

experience with other agents, with some arguing that this renders them unable to capture

language understanding (Bisk et al., 2020; Bender and Koller, 2020) – and therefore limits

their usefulness as cognitive models.

Clearly, ANNs differ in many ways from humans: they receive orders of magnitude

more training data (Warstadt and Bowman, 2022), learn through biologically implausible

mechanisms (Crick, 1989), and lack the rich grounded interactions that characterize human

social life (Bisk et al., 2020; Bender and Koller, 2020). Given these limitations, how should

one go about studying ANNs? What conclusions are researchers licensed to draw about

humans, based on model behaviors? In Section 1.3, I briefly lay out a high-level conceptual

approach to using ANNs to study human language, which will be the framework guiding

the rest of the thesis.
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1.3 Conceptual approach of thesis

This thesis takes the following approach to drawing conclusions about the human mind

based on ANN behaviors. In each case study, I use ANN language models (see Section 1.2.2

for a note on terminology) trained on naturalistic English text as models of human language

processing. I use psycholinguistic methods to measure the linguistic knowledge implicitly

learned by ANNs. When ANN language models demonstrate positive behavioral results

(e.g., human-like syntactic generalizations), this suggests a lower bound on the information

that humans might learn through experience with language. Humans certainly integrate

information from non-linguistic sources (see Section 1.2.3), but positive evidence from

models can reveal what is, in principle, discoverable from linguistic signal without language-

specific learning algorithms or symbolic representations. As such, the case studies in this

thesis are designed to reveal models’ capacities and potential knowledge, instead of revealing

models’ weaknesses when presented with adversarially-designed inputs (e.g., Nie et al.,

2020b; Kiela et al., 2021).

More broadly, this approach treats ANNs as implementations of the hypothesis that

linguistic knowledge arises as an emergent phenomenon through experience with language

(e.g., Baroni, 2022; Warstadt and Bowman, 2022; Wilcox et al., 2022b). This connects

to a long-standing debate about symbolic structures in language, and whether such repre-

sentations might emerge through connectionist learning architectures. Indeed, Fodor and

Pylyshyn (1988) themselves write that “a connectionist neural network can perfectly well

implement a classical architecture at the cognitive level” (see also Lovering and Pavlick,

2022). Whether – and how – this occurs in language processing remains an empirical

question that ANNs are well-suited to address.

1.4 Overview of thesis

In Chapter 2, I use ANNs to investigate how syntactic generalizations are acquired. We

conduct a systematic evaluation of the syntactic knowledge of neural language models,

testing 20 combinations of model types and data sizes on 34 English-language test suites.
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We find substantial differences in syntactic generalization performance by model architecture,

with sequential models underperforming architectures with hierarchical biases. This suggests

that domain-general ANNs can learn syntactic generalizations through exposure to linguistic

forms, contrary to strong nativist claims; however, inductive bias plays a more important role

than size of input data, especially in small-data settings. This chapter is based on published

materials from Hu et al. (2020b).

In Chapter 3, I study how ANN-derived linguistic expectations can explain systematic

variation in scalar inferences (SI). Empirical studies have shown that human SI rates are

highly variable, both within (Degen, 2015) and across scales (e.g., van Tiel et al., 2016).

However, there have been few proposals explaining both cross- and within-scale variation.

Furthermore, while it is generally assumed that SIs arise through reasoning about unspoken

alternatives, it remains debated whether humans reason about alternatives as linguistic

forms, or at the level of concepts. We test a shared mechanism explaining SI rates within

and across scales: context-driven expectations about the unspoken alternatives (Degen

and Tanenhaus, 2015). Using neural language models to approximate human predictive

distributions, we find that SI rates are captured by the expectedness of the strong scalemate as

an alternative. Crucially, however, expectedness robustly predicts cross-scale variation only

under a meaning-based view of alternatives. Our results suggest that pragmatic inferences

arise from context-driven expectations over alternatives, and these expectations operate at

the level of concepts. This chapter is based on published materials from Hu et al. (2023b).

In Chapter 4, I use large language models to investigate the mechanisms underlying

a broad set of non-literal language understanding tasks. We compare ANNs to humans

on seven pragmatic phenomena, asking which pragmatic behaviors may arise through

experience with language without explicit models of other agents or the world. We find

that the largest models achieve high accuracy and match human error patterns: within

incorrect responses, models favor the literal interpretation of an utterance over heuristic-

based distractors. Through behavioral experiments, we also find preliminary evidence

that models and humans are similarly sensitive to linguistic cues that make a non-literal

interpretation more or less likely. Our results suggest that pragmatic behaviors can emerge

in models without explicitly constructed representations of mental states. However, models
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tend to struggle with phenomena relying on social expectation violations. This chapter is

based on materials to appear at ACL (Hu et al., 2023a).

Finally, I conclude by discussing the implications of these findings for cognitive science

and artificial intelligence, and highlight directions for future research (Chapter 5).

28



Chapter 2

A systematic assessment of syntactic

generalization in neural language models

2.1 Introduction

A growing body of work advocates that assessment of neural language models should

include both information-theoretic metrics, such as perplexity, as well as targeted linguistic

evaluation. Benchmarks such as GLUE (Wang et al., 2019a,b) have demonstrated that

neural language models trained on naturalistic corpora for next-word prediction learn rep-

resentations that can yield remarkable performance on many semantic tasks. Targeted

syntactic evaluations have shown that these models also implicitly capture many syntactic

generalizations, ranging from subject–verb agreement to long-distance filler–gap depen-

dencies (Linzen et al., 2016; Marvin and Linzen, 2018; Futrell et al., 2018; Wilcox et al.,

2019b). This paper aims to bring targeted evaluations of syntactic performance to scale,

complementing similar developments in semantic evaluation (McCoy et al., 2019).

Because the most widespread currency of evaluation for language models is perplexity—

how well, on average, a model predicts a word in its context—a primary focus of this paper is

the relationship between a model’s perplexity and its performance on targeted syntactic eval-

uations. As perplexity improves, can we expect more human-like syntactic generalization?

How do training dataset size and model architecture jointly affect syntactic generalization?

And what picture of models’ syntactic generalization emerges when evaluation is brought to
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scale, across dozens of controlled syntactic tests?

In this paper we offer initial answers to these questions, systematically assessing the

syntactic generalization abilities of neural language models on 34 targeted test suites (33

adapted from previously published work, and 1 novel) covering a wide range of syntactic

phenomena. Test suites are written using a standard format that allows for flexible predictions

which more closely resemble those used in psycholinguistic studies, specifically allowing

for predictions about interactions among multiple testing conditions. Performance on each

test suite is reported as a Syntactic Generalization (SG) score. We group test suites into six

syntactic circuits based on the linguistic representations needed to achieve high performance

on each suite.

We train four classes of neural models and one baseline 𝑛-gram model on four datasets

derived from a newswire corpus, consisting of 1, 5, 14, and 42 million tokens. While previous

work has compared model architectures for a fixed dataset size (e.g. Wilcox et al., 2019b)

and network sizes for a fixed architecture (e.g. van Schijndel et al., 2019), our controlled

regime allows us to make an apples-to-apples comparison across model architectures on a

range of sizes. In addition, we evaluate several off-the-shelf models which were trained on

datasets ranging up to 2 billion tokens.

Our results address the three questions posed above: First, for the range of model

architectures and dataset sizes tested, we find a substantial dissociation between perplexity

and SG score. Second, we find a larger effect of model inductive bias than training data size

on SG score, a result that accords with van Schijndel et al. (2019). Models afforded explicit

structural supervision during training outperform other models: One structurally supervised

model is able to achieve the same SG scores as a purely sequence-based model trained on

∼100 times the number of tokens. Third, we find that architectures have different relative

advantages across types of syntactic tests, suggesting that the tested syntactic phenomena

tap into different underlying processing capacities in the models.
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2.2 Background

2.2.1 Perplexity

Standard language models are trained to predict the next token given a context of previous

tokens. Language models are typically assessed by their perplexity, the inverse geometric

mean of the joint probability of words 𝑤1, . . . , 𝑤𝑁 in a held-out test corpus 𝐶:

PPL(𝐶) = 𝑝(𝑤1, 𝑤2, . . . 𝑤𝑁)− 1
𝑁 (2.1)

Models with improved perplexity have also been shown to better match various human

behavioral measures, such as gaze duration during reading (Frank and Bod, 2011; Fossum

and Levy, 2012; Goodkind and Bicknell, 2018; Wilcox et al., 2020). However, a broad-

coverage metric such as perplexity may not be ideal for assessing human-like syntactic

knowledge for a variety of reasons. In principle, a sentence can appear with vanishingly

low probability but still be grammatically well-formed, such as Colorless green ideas sleep

furiously (Chomsky, 1957). While perplexity remains an integral part of language model

evaluation, fine-grained linguistic assessment can provide both more challenging and more

interpretable tests to evaluate neural models.

2.2.2 Targeted tests for syntactic generalization

Alternatively, a language model can be evaluated on its ability to make human-like general-

izations for specific syntactic phenomena (Linzen et al., 2016; Lau et al., 2017; Gulordava

et al., 2018). The targeted syntactic evaluation paradigm (Marvin and Linzen, 2018; Futrell

et al., 2019) incorporates methods from psycholinguistic experiments, designing sentences

which hold most lexical and syntactic features of each sentence constant while minimally

varying features that determine grammaticality or surprise characteristics of the sentence.

For example, given the two strings The keys to the cabinet are on the table and *The keys

to the cabinet is on the table, a model that has learned the proper subject–verb number

agreement rules for English should assign a higher probability to the grammatical plural

verb in the first sentence than to the ungrammatical singular verb in the second (Linzen
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et al., 2016).

Although some targeted syntactic evaluations, such as the example discussed above,

involve simple comparisons of conditional probabilities of a word in its context, other

evaluations are more complex. We can demonstrate this with an evaluation of models’

“garden-pathing” behavior (Futrell et al., 2019). For example, the sentence The child kicked

in the chaos found her way back home yields processing disruption for humans at the

word found. This is because, up to right before that word, the part-of-speech ambiguous

kicked is preferentially interpreted as the main verb of the sentence, whereas it turns out

to be a passive participle in a reduced relative clause modifying child. This garden-path

disambiguation effect is ameliorated by replacing kicked with forgotten, which is not part-of-

speech ambiguous (B below; Trueswell et al., 1994) or by using an unreduced relative clause

(C below; Ferreira and Clifton, 1986). In probabilistic language models, these garden-path

disambiguation effects are well captured by word negative log probabilities, or SURPRISALS

(Hale, 2001): 𝑆(𝑤|𝐶) = − log2 𝑝(𝑤|𝐶), which are independently well-established to

predict human incremental processing difficulty over several orders of magnitude in word

probability (Smith and Levy, 2013). A targeted syntactic evaluation for garden-pathing

is provided by comparing surprisals at the disambiguating word found in the set of four

examples below (Futrell et al., 2019):

(A) The child kicked in the chaos found . . .

(B) The child forgotten in the chaos found . . .

(C) The child who was kicked in the chaos found . . .

(D) The child who was forgotten in the chaos found . . .

Successful human-like generalization involves three criteria: (i) found should be less surpris-

ing (i.e., more probable) in B than A; (ii) found should be more probable in C than A; (iii)

the C–D surprisal difference should be smaller than the A–B surprisal difference—a 2 × 2

interaction effect on surprisal—because the syntactic disambiguation effect of not reducing

the relative clause was achieved by using a part-of-speech unambiguous verb.

We will use these controlled tests to help us describe and test for human-like syntactic
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knowledge in language models.

2.2.3 Related work

The testing paradigm presented here differs in several crucial ways from recent, related

syntactic assessments and provides complementary insights. Unlike Warstadt et al. (2019),

our approach does not involve fine-tuning, but rather assesses what syntactic knowledge is

induced from the language modeling objective alone. The most closely related work is the

Benchmark of Linguistic Minimal Pairs (Warstadt et al., 2020a), which is a challenge set

of automatically-generated sentence pairs also designed to test language models on a large

set of syntactic phenomena. Our approach differs in important ways: we compare critical

sentence regions instead of full-sentence probabilities, and employ a 2 × 2 paradigm with a

strict, multi-fold success criterion inspired by psycholinguistics methodology. This allows

us to factor out as many confounds as possible, such as the lexical frequency of individual

tokens and low-level 𝑛-gram statistics.

2.3 Methods

We designed a controlled paradigm for systematically testing the relationship between two

design choices — model class and dataset size — and two performance metrics — perplexity

and syntactic generalization capacity. Section 2.3.1 describes the test suites collected for our

evaluation, and Sections 2.3.2 and 2.3.3 describe the datasets and model classes investigated.

2.3.1 Test suites

We assemble a large number of test suites inspired by the methodology of experimental

sentence-processing and psycholinguistic research. Each test suite contains a number of

ITEMS (typically between 20 and 30), and each item appears in several CONDITIONS:

across conditions, a given item will differ only according to a controlled manipulation

designed to target a particular feature of grammatical knowledge. Each test suite contains

at least one PREDICTION, which specifies inequalities between surprisal values at pairs
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of regions/conditions that should hold if a model has learned the appropriate syntactic

generalization.1

We expect language models which have learned the appropriate syntactic generalizations

from their input to satisfy these inequalities without further fine-tuning. We compute

accuracy on a test suite as the proportion of items for which the model’s behavior conforms

to the prediction. Most of our test suites involve 2×2 designs and a success criterion

consisting of a conjunction of inequalities across conditions, as in the garden-pathing

example described in Section 2.2.2.2 Random baseline accuracy varies by test suite and is

∼25% overall. Most of these test suites and criteria are designed so that 𝑛-gram models

cannot perform above chance for 𝑛 = 5 (sometimes greater).

Syntactic coverage In order to assess the coverage of our test suites, we manually in-

spected the phenomena covered in Carnie (2012), a standard introductory syntax textbook.

Of the 47 empirical phenomena reviewed in the summary sections at the end of each chapter,

our tests target 16 (∼34%). These are evenly distributed across the whole range of subject

matter, with tests targeting phenomena in 11 of the 15 chapters (∼73%).3

Modifiers Five test suites include paired modifier versions, where extra syntactically

irrelevant (but semantically plausible) content, such as a prepositional phrase or relative

clause, is inserted before the critical region being measured. We use these paired test suites

to evaluate models’ stability to intervening content within individual syntactic tests.

Circuits The test suites are divided into 6 syntactic circuits, based on the type of algorithm

required to successfully process each construction. We give a brief overview of each circuit

below.

• Agreement is a constraint on the feature values of two co-varying tokens. For

example, the number feature of a verb must agree with the number feature of its

1A full overview of our test suites is given in Appendix A.1.
2The exception is Center Embedding, which features a 2-condition design with a single-inequality criterion.
3For more details on this analysis, see Appendix A.2.
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upstream subject. We include 3 Subject-Verb Number Agreement suites from Marvin

and Linzen (2018).

• Licensing occurs when a particular token must exist within the scope of an upstream

licensor token. Scope is determined by the tree-structural properties of the sentence.

Test suites include Negative Polarity Item Licensing (NPI) (4 suites) and Reflexive

Pronoun Licensing (6 suites), both from Marvin and Linzen (2018).

• Garden-Path Effects are well-studied syntactic phenomena that result from tree-

structural ambiguities that give rise to locally-coherent but globally implausible

syntactic parses. Garden-path test suites include Main Verb / Reduced Relative Clause

(MVRR) (2 suites) and NP/Z Garden-paths (NPZ) (4 suites), both from Futrell et al.

(2018).

• Gross Syntactic Expectation is a processor’s expectation for large syntactic chunks

such as verb phrases or sentences, and are often set up by subordinating conjunctions

such as while, although and despite. Our tests for gross syntactic expectation include

Subordination (4 suites) from Futrell et al. (2018).

• Center Embedding sentences are sentences recursively nested within each other.

Subject and verbs must match in a first-in-last-out order, meaning models must

approximate a stack-like data-structure in order to successfully process them. Our 2

suites of Center Embedding sentences come from the items presented in Wilcox et al.

(2019a).

• Long-Distance Dependencies are co-variations between two tokens that span long

distances in tree depth. Test suites include Filler-Gap Dependencies (FGD) (6 suites)

from Wilcox et al. (2018) and Wilcox et al. (2019b), and 2 novel Cleft suites, described

in detail below.

Novel test suite: Cleft We introduce one novel test suite that assesses models’ ability to

process pseudo-cleft constructions, which are used to put a particular syntactic constituent

into focus via passive transformation. Consider Example (1):
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BLLIP sizes: XS SM MD LG

# sentences 40K 200K 600K 1.8M
# tokens 1M 4.8M 14M 42M
# non-UNK types 24K 57K 100K 170K
# UNK types 68 70 71 74

Table 2.1: Statistics of training set for each corpus size.

(1) a. What he did after coming in from the rain was eat a hot meal. [DO/VP]

b. *What he devoured after coming in from the rain was eat a hot meal. [LEX/VP]

c. *What he did after coming in from the rain was a hot meal. [DO/NP]

d. What he devoured after coming in from the rain was a hot meal. [LEX/NP]

When this constituent is a verb, it must be replaced in the wh-clause that heads the sentence

with the DO verb, as in (1a), below. However, when it is a noun, the lexical verb for which

it serves as an object must be preserved, as in (1d). If models have properly learned the

pseudo-cleft construction, then DO verbs should set up expectations for VPs (the region in

bold should have a lower surprisal in (1a) than in (1b)) and lexicalized verbs should set up

expectations for NPs (the region in bold should have a lower surprisal in (1d) than in (1c)).

2.3.2 Model training data

Corpora We train and evaluate models on English newswire corpora of four different

sizes, obtained by randomly sampling sections from the Brown Laboratory for Linguistic

Information Processing 1987-89 Corpus Release 1 (BLLIP; Charniak et al., 2000). The

corpora are sampled such that the training set of each corpus is a proper subset of each larger

corpus. We call these four corpora BLLIP-XS (40K sentences, 1M tokens); BLLIP-SM

(200K sentences, 5M tokens); BLLIP-MD (600K sentences, 14M tokens); and BLLIP-LG

(2M sentences, 42M tokens). Table 2.1 summarizes statistics of the training set for each

corpus.

To ensure consistency in perplexity evaluation across datasets, we report perplexity

scores achieved by the models on a shared held-out test set. We additionally use a shared

held-out validation for tuning and early stopping.
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We use the NLTK implementation of the Penn Treebank tokenizer to process all datasets

(Bird and Loper, 2004; Marcus et al., 1993).

Out-of-vocabulary tokens For each corpus, we designate a token as OOV if the token

appears fewer than two times in the training set. Our larger training datasets thus contain

larger vocabularies than our smaller training datasets. This allows larger-training-set models

to learn richer word-specific information, but may also harm perplexity evaluation because

they have vocabulary items that are guaranteed to not appear in the BLLIP-XS test set. This

means that perplexity scores across training dataset sizes will not be strictly comparable: if a

larger-training-set model does better than a smaller-training-set model, we can be confident

that it has meaningfully lower perplexity, but the reverse is not necessarily the case. The

exception to the above is GPT-2, which uses sub-words from byte-pair encoding and has no

OOVs (see also Footnote 6).

Unkification We follow the convention used by the Berkeley parser (Petrov and Klein,

2007), which maps OOVs to UNK classes which preserve fine-grained information such as

orthographic case distinctions and morphological suffixes (e.g. UNK-ed, UNK-ly). Before

training, we verified that the UNK classes in the test and validation sets were all present in

the training set.

2.3.3 Model classes

In order to study the effects of model inductive bias and dataset size, we trained a fleet of

models with varying inductive biases on each corpus. Because many of our test suites exploit

ambiguities that arise from incremental processing, we restrict evaluation to left-to-right

language models; future work could involve evaluation of bidirectional models (Devlin et al.,

2019; Yang et al., 2019) on an appropriate subset of our test suites, and/or adaptation of our

suites for use with bidirectional models (Goldberg, 2019). Training ran until convergence of

perplexity on a held-out validation set. Wherever possible, we trained multiple seeds of each

model class and corpus size. We use the model sizes and training hyperparameters reported
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# layers # hidden units Embedding size

LSTM 2 256 256
ON-LSTM 3 1150 400
RNNG 2 256 256
GPT-2 12 768 768

Table 2.2: Size of neural models in our controlled experiments.

BLLIP sizes: XS SM MD LG

LSTM 13.4M 30.5M 52.2M 88.1M
ON-LSTM 30.8M 44.2M 61.2M 89.2M
RNNG 22.8M 48.4M 81.1M 134.9M
GPT-2 124.4M 124.4M 124.4M 124.4M

Table 2.3: Parameter counts for neural models in our controlled experiments.

in the papers introducing each model (Table 2.2).4 The full parameter counts and perplexity

scores for each model × corpus combination are given in Tables 2.3 and 2.4, respectively.

LSTM Our baseline neural model is a vanilla long short-term memory network (LSTM;

Hochreiter and Schmidhuber, 1997) based on the boilerplate PyTorch implementation

(Paszke et al., 2017).

Ordered-Neurons We consider the Ordered-Neurons LSTM architecture (ON-LSTM;

Shen et al., 2019), which encodes an explicit bias towards modeling hierarchical structure.

RNNG Recurrent neural network grammars (RNNG; Dyer et al., 2016) model the joint

probability of a sequence of words and its syntactic structure. RNNG requires labeled

trees that contain complete constituency parses, which we produce for BLLIP sentences

with an off-the-shelf constituency parser (Kitaev and Klein, 2018).5 To compute surprisals

from RNNG, we use word-synchronous beam search (Stern et al., 2017) to approximate the

conditional probability of the current word given the context.

4Due to computational constraints, we performed only minimal tuning past these recommended hyperparame-
ters.

5While the BLLIP corpus already contains Treebank-style parses, we strip the terminals and re-parse in order
to obtain more accurate, up-to-date syntactic parses.
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BLLIP sizes: XS SM MD LG

LSTM 98.19 65.52 59.05 57.09
ON-LSTM 71.76 54.00 56.37 56.38
RNNG 122.46 86.72 71.12 69.57
GPT-2 529.90 183.10 95.03 60.40
𝑛-gram 240.21 158.60 125.58 106.09

Table 2.4: Perplexity averages achieved by each controlled model on each corpus. Perplexity
scores across training dataset sizes are not always strictly comparable (see Section 2.3.2).

Transformer Transformer models (Vaswani et al., 2017) have recently gained popularity

in language processing tasks. We use GPT-2 (Radford et al., 2019) as a representative

Transformer model and train it from scratch on our BLLIP corpora.6

𝑛-gram As a baseline, we consider a 5-gram model with modified Kneser-Ney smoothing.

2.3.4 Off-the-shelf models

We also test five off-the-shelf models: GRNN, trained on 90M tokens from Wikipedia

(Gulordava et al., 2018); JRNN, trained on 800M tokens from the 1 Billion Word Benchmark

(Jozefowicz et al., 2016); Transformer-XL, trained on 103M tokens from WikiText-103

(Dai et al., 2019); and the pre-trained GPT-2 and GPT-2-XL, trained on 40GB of web text

(Radford et al., 2019). These models are orders of magnitude larger than our controlled ones

in parameter count and/or training set size.

2.4 Results

Figure 2-1 shows the average accuracy of all models on the complete set of SG test suites.

Asterisks denote off-the-shelf models. With sufficient training data, all neural models

achieve a SG score significantly greater than a random baseline (dashed line). However,

the range within neural models is notable, with the best-performing model (GPT-2-XL)

6Our GPT-2 code is based on nshepperd/gpt-2. The model vocabulary consists of byte-pair encoded sub-
words extracted from the GPT-2 pre-trained model, not from the BLLIP training corpora. To calculate GPT-2
perplexities, we divide the sum of all sub-word conditional log-probabilities by the total number of words in
the corpus.
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Figure 2-1: Average SG score by model class. Asterisks denote off-the-shelf models. Error
bars denote bootstrapped 95% confidence intervals of the mean.

scoring over twice as high as the worst-performing model (LSTM). Also notable is the

controlled RNNG model, which achieve comparable performance to Transformer-XL and

JRNN, despite being trained on significantly smaller data sizes.

We now return to the three major issues presented in Section 2.1. In 2.4.1 we present

evidence that SG score is dissociated from perplexity. In 2.4.2 we argue that model architec-

ture accounts for larger gains in SG score than amount of training data. And in 2.4.3 we

show that this cross-architecture difference is due largely to variance on a handful of key

test suites.

2.4.1 Syntactic generalization and perplexity

Figure 2-2 shows the relationship between SG score and perplexity on the BLLIP test set

across models and training set sizes. As expected, 𝑛-gram models never rise appreciably

above chance in SG score. Among neural models which exceed chance performance, there

is no simple relationship between perplexity and SG score, especially once training dataset

size is controlled for (comparing points in Figure 2-2 of the same color). For example,

there is a remarkable amount of variance in the SG score of models trained on BLLIP-LG

not explained by perplexity. This suggests that targeted syntactic evaluation can reveal

information that may be orthogonal to perplexity.
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Figure 2-2: Relationship between SG score and perplexity on our held-out BLLIP test set
for each model.

2.4.2 Inductive bias and data scale

In order to decouple the effects of model class and data scale from test suite difficulty, we

represent a particular trained model’s performance on each test suite as a delta relative to the

average performance of all models on this test suite. Unless noted otherwise, the remainder

of the figures in this section plot a score delta, aggregating these deltas within model classes

or corpus types.

Figure 2-3 tracks the influence of model class and data scale across the model types

tested in our experiments, with SG score deltas on the y-axis. The left-hand panel shows the

difference in SG score by model class. We find that model class clearly influences SG score:

for example, the error bars (bootstrapped 95% confidence intervals of the mean) for RNNG

and LSTM do not overlap. The right-hand panel shows the difference in SG score delta by

training dataset, and shows a much more minor increase in mean SG score as training data

increases.

We tested the influence of these factors quantitatively using a linear mixed-effects

regression model, predicting suite-level performance as a feature of model architecture and
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Figure 2-3: Main results of our controlled evaluation of model class and dataset size. SG
score varies more by model class (left) than by training dataset size (right).
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Figure 2-4: Controlled evaluation results, split across test suite circuits. Circuit-level
differences in SG score vary more by model class (left) than by training dataset size (right).

training dataset size (represented as log-number of words). Both features made statistically

significant contributions to SG score (both 𝑝 < 0.001). However, predictor ablation indicates

that architecture affects regression model fit more (AIC=–809 when dataset size is ablated;

AIC=–822 when architecture is ablated).7

2.4.3 Circuit-level effects on SG score

Figure 2-4 shows the breakdown at the circuit level by model architecture (left) and training

dataset size (right). The right panel demonstrates little effect of dataset size on SG score delta

7𝑛-grams and/or GPT-2 could arguably be expected to have qualitatively different sensitivity to training dataset
size (the latter due to byte-pair encoding), so we repeated the analyses here and in Section 2.4.3 excluding
both architectures individually as well as simultaneously. In all cases the same qualitative patterns described
in the main text hold.
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Figure 2-5: Evaluation results on all models, split across test suite circuits.

within most circuits, except for Agreement, on which the models trained on our smallest

dataset fare poorly. In the left panel we find substantial between-circuit differences across

architectures. Linear mixed-effects analyses support this finding: interactions with circuit

are significant for both training dataset size and model architecture, but stronger for the

latter (AIC=–890 and AIC=–868 when size and architecture are respectively ablated).

While model inductive biases separate clearly in performance on some circuits, they

have little effect on performance on Licensing. This minimally suggests that Licensing taps

into a distinct syntactic process within language models. One potential explanation for this

is that the interactions tested by Licensing involve tracking two co-varying tokens where the

downstream token is optional (see e.g. Hu et al., 2020a).

We show the circuit-level breakdown of absolute SG scores for all models (including

off-the-shelf) in Figure 2-5. In general, the models that obtain high SG scores on average

(as in Figure 2-1) also perform well across circuits: pre-trained GPT-2 and GPT-2-XL

outperform all other models on each circuit, including Licensing, on which JRNN, GRNN,

and most of our custom-trained models perform particularly poorly. Again, we highlight the

impressive performance of RNNG: it achieves comparable average performance to GRNN

on all circuits, despite being trained on a fraction of the data size.

2.4.4 Stability to modifiers

We separately investigate the degree to which models’ syntactic generalizations are robustly

stored in memory. For five test suites (Center Embedding, Cleft, MVRR, NPZ-Ambiguous,
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Figure 2-6: SG score on the pairs of test suites with and without intervening modifiers:
Center Embedding, Cleft, MVRR, NPZ-Ambiguous, and NPZ-Object.

NPZ-Object), we designed minimally edited versions where syntactically irrelevant interven-

ing content was inserted before the critical region. An ideal model should robustly represent

syntactic features of its input across these modifier insertions.

In Figure 2-6 we plot models’ average scores on these five test suites (dark bars) and their

minimally edited versions (light bars), evaluating how robust each model is to intervening

content. Among models in our controlled experiments, we see that model class clearly

influences the degree to which predictions are affected by intervening content (compare e.g.

the stability of RNNG to that of ON-LSTM). Some off-the-shelf models, such as GPT-2-XL,

perform near ceiling on the original five test suites and are not affected at all by intervening

content.

2.4.5 GPT-2 model performance

The GPT-2 models trained from scratch in these experiments exhibit an especially strong

disconnect between SG score and perplexity. Comparing the models trained on BLLIP-

MD and BLLIP-LG, we see a 36% improvement in average perplexity with negligible

improvement (3% on average) in SG score.

This trend does not hold globally for the GPT-2 model, however: we have evidence

that changes in both data scale and model inductive bias can improve GPT-2’s performance.
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First, the pretrained GPT-2 model (equal in parameters to our own GPT-2 models) achieves

near state-of-the-art performance in SG score. This demonstrates that, between the data

scale of our experiments and the extreme data scale of the pretrained GPT-2 model, further

improvements in perplexity likely correlate with improvements in SG score. Second, there

appears to be evidence that small modifications to the GPT-2 model’s inference regime can

yield a correlated SG score–perplexity relationship. While our GPT-2 models were trained

with input context windows of 1024 tokens, Qian et al. (2021) trained a GPT-2 architecture

with input context windows containing only single sentences. Their models achieve both

good perplexity and high SG score, with average SG score 0.665 and perplexity 49.0 for

models trained on BLLIP-LG, and average SG score 0.666 and perplexity 67.6 for models

trained on BLLIP-MD. This suggests that constraining the context window size may help

Transformer models generalize when the data scale is relatively small.

2.5 Discussion

This work addresses multiple open questions about syntactic evaluations and their relation-

ship to other language model assessments. Our results dissociate model perplexity and

performance in syntactic generalization tests, suggesting that the two metrics capture com-

plementary features of language model knowledge. In a controlled evaluation of different

model classes and datasets, we find model architecture plays a more important role than

training data scale in yielding correct syntactic generalizations. Our circuit-level analysis

reveals consistent failure on Licensing but inconsistent behavior on other circuits, suggesting

that different syntactic circuits make use of different underlying processing capacities. In

addition to the insight these results provide about neural NLP systems, they also bear on

questions central to cognitive science and linguistics, putting lower bounds on what syntactic

knowledge can be acquired from string input alone.

Targeted syntactic evaluation is just one in a series of complementary methods being

developed to assess the learning outcomes of neural language processing models. Other

methods include classifying sentences as grammatical or ungrammatical (Warstadt et al.,

2019), decoding syntactic features from a model’s internal state (Belinkov et al., 2017;
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Giulianelli et al., 2018), or transfer learning to a strictly syntactic task such as parsing or

POS tagging (Hewitt and Manning, 2019). As each task brings an explicit set of assumptions,

complementary assessment methods can collectively provide greater insight into models’

learning outcomes.

Although this paper, together with Warstadt et al. (2020a), report what is to our knowl-

edge the largest-scale targeted syntactic evaluations to date, we emphasize that they are

only first steps toward a comprehensive understanding of the syntactic capabilities of con-

temporary language models. This understanding will be further advanced by new targeted-

evaluation test suites covering a still wider variety of syntactic phenomena, additional trained

models with more varied hyperparameters and randomization seeds, and new architectural

innovations. Humans develop extraordinary grammatical capabilities through exposure to

natural linguistic input. It remains to be seen to just what extent contemporary artificial

systems do the same.
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Chapter 3

Expectations over unspoken alternatives

predict pragmatic inferences

3.1 Introduction

Much of the richness of linguistic meaning arises from what is left unsaid (e.g., Grice,

1975; Sperber and Wilson, 1986; Horn, 1989). For example, if Alice says “Some of the

students passed the exam”, Bob can infer that Alice means not all students passed the

exam, even though Alice’s utterance would still be logically true if all students had passed.

One explanation of this inference is that Bob reasons about the unspoken alternatives that

were available to the speaker. Under the assumptions that (1) speakers generally try to be

informative, (2) Alice has full knowledge of the situation, and (3) it would have been relevant

and more informative for Alice to say “All of the students passed the exam”, Alice’s choice

to say “some” suggests that she believes the sentence with “all” is false. This inference

pattern is more generally known as scalar inference (SI), which arises from orderings

between linguistic items (scales).

SI has often been treated as a categorical phenomenon: when a speaker utters a weaker

(less informative) item on a scale, a listener rules out the meaning of stronger (more

informative) items on that scale (e.g., Levinson, 2000). However, empirical studies have

demonstrated substantial variability in the rates at which humans draw SIs, both within

instances of a single scale (Degen, 2015; Eiteljoerge et al., 2018; Li et al., 2021) and across
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Figure 3-1: (a) Distribution of human scalar inference (SI) ratings (on scale of 1-7) across
instances of the ⟨some, all⟩ scale (reproduction of Fig. 1, Degen 2015). (b) Average SI rates
across scales formed by different lexical items (reproduction of Fig. 2, van Tiel et al. 2016).

scales formed by different lexical items (e.g., Doran et al., 2009; Beltrama and Xiang, 2013;

van Tiel et al., 2016; Gotzner et al., 2018; Pankratz and van Tiel, 2021; Ronai and Xiang,

2022). For example, consider the following instances of the scale ⟨some, all⟩:

(1) a. I like some country music.

b. I like some, but not all, country music.

(2) a. It would certainly help them to appreciate some of the things that we have here.

b. It would certainly help them to appreciate some, but not all, of the things that

we have here.

Degen (2015) finds that humans are highly likely to consider (1a) as conveying a similar

meaning as (1b), but unlikely to consider (2a) as conveying a similar meaning as (2b)

(Figure 3-1a). Similarly, consider the following instances of the scales ⟨possible, certain⟩

and ⟨ugly, hideous⟩, which both consist of adjectives ordered by entailment:

(3) a. Success is possible.

b. Success is not certain.
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(4) a. The painting is ugly.

b. The painting is not hideous.

van Tiel et al. (2016) find that humans are highly likely to conclude that (3a) implies (3b),

but unlikely to conclude that (4a) implies (4b) (Figure 3-1b).

While cross-scale and within-scale variation have typically been studied as distinct

empirical phenomena, they both reflect gradedness in listener inferences based on alterna-

tives and context. It therefore seems desirable to explain these empirical findings with a

shared account, but there have been few proposals that quantitatively explain both within-

and cross-scale variation. For example, cross-scale variation can be explained by intrinsic

properties of the scale (e.g., whether the strong scalemate refers to an extreme endpoint; van

Tiel et al., 2016), but these factors cannot explain variation within instances of a single scale.

On the other hand, many factors explaining within-scale variance are scale-specific (e.g., the

partitive “of the” for ⟨some, all⟩; Degen, 2015) and may not generalize to new scales.

Here, we investigate a shared account of SI rates within and across scales. Since the

alternatives are not explicitly produced (by definition), the listener has uncertainty over

which alternatives the speaker could have used – and therefore, which strong scalemates

ought to be negated through SI. Building upon constraint-based accounts of human language

processing (Degen and Tanenhaus, 2015, 2016), we test the hypothesis that SIs depend on

the availability of alternatives, which depend on context-driven expectations maintained

by the listener. For example, if a speaker says “The movie was good”, the listener might

predict that amazing is a more likely alternative than funny to the weak term good. An

expectation-based view predicts that the listener would be thus be more likely to infer

that the movie is not amazing (according to the speaker), and less likely to infer that the

movie is not funny. However, while Degen and Tanenhaus (2015, 2016) have argued that

listeners maintain context-driven expectations over alternatives, these studies have primarily

investigated a single scale (⟨some, all⟩) in small domains, arguing from qualitative patterns

and in the absence of a formal theory.

Furthermore, while it is generally assumed that SIs arise based on reasoning about

unspoken alternatives, it remains debated whether humans reason about alternatives as
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Dataset Type of variation # participants # scales # contexts per scale # data points per item

Degen (2015) Within-scale 243 1 1363 ∼ 10

Ronai and Xiang (2022) Cross-scale 40 57 1 40
Pankratz and van Tiel (2021) Cross-scale 1970 50 1 ∼ 40
Gotzner et al. (2018) Cross-scale 220 67 1 40
van Tiel et al. (2016) Cross-scale 28 39 3 10

Table 3.1: Details of human data used in our analyses. An item is a unique (scale, context)
combination.

linguistic structures (e.g., Katzir, 2007; Fox and Katzir, 2011), or at the level of concepts

(e.g., Gazdar, 1979; Buccola et al., 2021). Returning to the earlier example, if the weak

scalemate is good, listeners may reason about a concept like VERYGOOD instead of a

specific linguistic expression like amazing. In this sense, the listener’s uncertainty about

alternatives might arise from uncertainty about both the scale itself (Is the speaker implying

the plot wasn’t amazing, or that the jokes weren’t funny?), as well as the exact word forms

under consideration by the speaker (Is the speaker implying the movie wasn’t amazing,

fantastic, or wonderful?). Despite theoretical debates about the nature of alternatives,

however, the role of concept-based alternatives in SI has not been tested in a systematic,

quantitative way.

We provide a formalization of an expectation-based account of alternatives and test it on

both string-based and concept-based views of alternatives. Instead of empirically estimating

human expectations over alternatives (cf. Ronai and Xiang, 2022), we use neural language

models as an approximation, which allows us to generate predictions for arbitrary sentences

and contexts. We test the account’s predictions on human SI rates within the ⟨some, all⟩

scale (Degen, 2015), and across 148 scales from four datasets (van Tiel et al., 2016; Gotzner

et al., 2018; Pankratz and van Tiel, 2021; Ronai and Xiang, 2022). We find support for the

expectation-based account, and also provide the first evidence that concept-based alternatives

may be underlying a wide range of SIs. Our results suggest that pragmatic inferences may

arise from context-driven expectations over unspoken alternatives, and these expectations

operate at the level of concepts.
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3.2 Background

3.2.1 Within-scale variation

Within-scale variation refers to the variation in SI rates across instances of a single scale,

such as ⟨some, all⟩. To explore SI variation within the scale ⟨some, all⟩, we use the dataset

collected by Degen (2015), which features 1363 naturalistic sentences containing a “some”-

NP from the Switchboard corpus of telephone dialogues (Godfrey et al., 1992) (Table 3.1).

For each sentence, SI rates were measured using a sentence-similarity paradigm. On each

trial, participants saw two sentence variants: the original sentence containing “some”, and

a minimally differing sentence where “, but not all,” was inserted directly after “some”.

Participants were asked, “How similar is the statement with ‘some, but not all’ to the

statement with ‘some’?” and indicated responses (similarity judgments) on a seven point

Likert scale. If the speaker’s originally intended meaning clearly includes an implicature,

then making the implicature explicit by inserting “, but not all,” should not change the

meaning of the sentence, so similarity judgments should be high. Thus, a higher similarity

judgment indicates a stronger SI.

Degen (2015) finds substantial variation in SI rates across contexts, challenging the idea

that the “some, but not all” inference arises reliably without sensitivity to context (Horn,

1989; Levinson, 2000). She also reports several features that predict SI rates, such as whether

“some” occurs with the partitive “of the”, or whether the “some”-NP is in subject position.

However, these features may be highly specific to the ⟨some, all⟩ scale, and it is unclear

whether a more general mechanism may also explain variation within or across other scales.

3.2.2 Cross-scale variation (scalar diversity)

Cross-scale variation refers to the variation in SI rates across scales formed by different

lexical items. To explore this, we use SI rates across 148 unique scales from four datasets,

summarized in Table 3.1. Each scale involves a pair of English words (adjectives, adverbs,

or verbs) of the form ⟨[WEAK], [STRONG]⟩, where [WEAK] is less informative than [STRONG]
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(e.g., ⟨intelligent, brilliant⟩).1 For each dataset, SI rates were measured through a binary

choice task. Participants saw a character make a short, unembedded statement consisting

of a simple noun phrase subject and a predicate with a weak scalar item (e.g., “John says:

This student is intelligent.”). Their task was to indicate (Yes or No) whether they would

conclude that the speaker believes the negation of a strong scalar item (e.g., “Would you

conclude from this that, according to John, she is not brilliant?”). The SI rate for a scale is

the proportion of Yes responses.

This method has revealed large variation in SI rates, ranging from 4% (⟨ugly, hideous⟩)

to 100% (⟨sometimes, always⟩) (van Tiel et al., 2016). van Tiel et al. (2016) test two

classes of factors that might predict SI rates: the availability of the strong scalemate given

the weak scalemate, and the degree to which scalemates can be distinguished from each

other. They find SI rates are predicted by measures of scalemate distinctness (e.g., whether

the strong scalemate forms a fixed endpoint on the scale), but not by availability (but see

Westera and Boleda, 2020; Ronai and Xiang, 2022). Other studies have proposed additional

scale-intrinsic factors (e.g., Gotzner et al., 2018; Sun et al., 2018; Pankratz and van Tiel,

2021). However, structural properties of a scale cannot explain variablity in SI rates within a

scale, as these properties do not change across contexts.

While others have proposed context-dependent factors – which could, in principle,

explain both cross- and within-scale variation – these factors often lack explanatory power

in practice. For example, Ronai and Xiang (2021) find that the prominence of the Question

Under Discussion (Roberts, 2012) is correlated with SI rates, but only for unbounded scales

(i.e., scales where neither scalemate has a fixed, extreme meaning).

3.3 An expectation-based account of SI

Theoretically, it is the set of alternative utterances – utterances that the speaker could have

used, but didn’t – that drive scalar implicature, and in principle every possible utterance

in a language might be an alternative to every other. However, at an algorithmic level

(Marr, 1982), it would be intractable for listeners to perform inference over this entire set.

1We excluded scales where one of the items was formed by a multi-word expression (e.g., ⟨may, have to⟩).
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Furthermore, the signature pattern of SI would not arise without restrictions on the alterna-

tives: otherwise, “[WEAK], but not [STRONG]” and “[STRONG]” would both be alternatives to

“[WEAK]”, leading to contradictory inferences without a mechanism for breaking symmetry

(Kroch, 1972; Katzir, 2007; Breheny et al., 2018).

To solve this symmetry problem, some approaches restrict alternatives based on structural

complexity through grammar-internal mechanisms (e.g., Katzir, 2007; Fox and Katzir,

2011). However, these theories do not capture the uncertainty that listeners maintain, and

are difficult to test quantitatively. Here, we test the view that listeners form probabilistic

expectations over alternatives, given information from their interaction with the speaker. In

the remainder of this section, we first discuss the conceptual predictions of an expectation-

based account of SI, and then describe how we operationalize these predictions using neural

language models.

Suppose that a listener hears a sentence with a weak scalar term [WEAK] (e.g., “This

student is intelligent”). To rule out the meaning of a particular strong scalemate [STRONG]

(e.g., the student is not brilliant), the listener must have reason to believe that the speaker

would have said [STRONG] if they had intended to convey the strong meaning. However,

since the alternatives are not explicitly produced, the listener has some degree of uncertainty

over what alternatives were considered by the speaker. If it is likely that the speaker would

have said [STRONG] to convey the strong meaning, then their choice to say [WEAK] suggests

that they did not have grounds to say [STRONG] – and thus, an SI should be more likely to

arise.

The key question, then, is how listeners estimate which alternatives are likely to be

considered by the speaker. An expectation-based account proposes that listeners integrate

contextual and grammatical cues to maintain probabilistic expectations over these alterna-

tives. A scalemate that is more probable (given these cues) should be more likely to enter

the scalar inference computation. Thus, this account predicts that the more expected the

strong scalemate is as an alternative to the weak scalemate, the higher SI rates should be.
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3.3.1 String-based view of alternatives

When an alternative is likely to be a strong scalemate, listeners should be more likely

to rule out its meaning, resulting in higher SI rates. Conditioned on the context and the

speaker’s choice to use [WEAK], the listener must estimate the probability of [WEAK] and

[STRONG] being contrasted in a scalar relationship. Since it is difficult to directly estimate

this probability, we construct a sentence frame where the probability of [STRONG] – at the

level of forms – approximates the probability of [STRONG] being in a scalar relationship with

a weak scalemate [WEAK]. This approach allows us to re-frame the problem of estimating

listeners’ expectations over strong scalemates into a word prediction problem.

To do this, we use the scalar construction “X, but not Y”, which in many cases suggests

that Y is a strong scalemate to X (Hearst, 1992; de Melo and Bansal, 2013; van Miltenburg,

2015; Pankratz and van Tiel, 2021). For a given utterance [CONTEXT] [WEAK] [CONTEXT]

and hypothesized scale ⟨[WEAK], [STRONG]⟩, we form a sentence that explicitly states the

SI:

[CONTEXT] [WEAK], but not [STRONG],⏟  ⏞  
scalar construction

[CONTEXT] (3.1)

To test how expected [STRONG] is as an alternative to [WEAK], we need to estimate how

likely a human would predict [STRONG] to appear in the [STRONG] position in (3.1).2 Instead

of attempting to directly measure these predictions (cf. Ronai and Xiang, 2022, see (3.3)),

we approximate this with neural language models. We measure how unexpected [STRONG]

is by computing its surprisal (negative log probability) under a language model, conditioned

on the rest of the sentence. Since surprisal measures unexpectedness, we predict a negative

relationship between SI rate and the surprisal of the strong scalemate.

This predictor is closely related to the notion of an SI’s “relevance” (Pankratz and van

Tiel, 2021). Under usage-based theories of language (e.g., Tomasello, 2003; Bybee and

Beckner, 2015), if a weak scalar term is encountered frequently in a scalar relationship with

2Another approach would be to measure the expectedness of [STRONG] in the template [CONTEXT] [STRONG]
[CONTEXT] – that is, by replacing [WEAK] with [STRONG] in the speaker’s original utterance. This template
would instantiate the theory that listeners determine alternatives based on the context. In contrast, the template
we use in (3.1) instantiates the theory that listeners form expectations over alternatives based on the context
as well as the speaker’s usage of [WEAK]. We return to this topic in Section 3.7.1.

54



a particular strong term, then the scalar relationship between these items will be enforced.

Thus, Pankratz and van Tiel (2021) measure the relevance of an SI by counting corpus

frequencies of the scalemates in the string “[WEAK], but not [STRONG].” This is conceptually

aligned with our setup, where we might expect higher corpus frequencies to correspond

to lower surprisal under a language model. However, our predictor differs from Pankratz

and van Tiel’s in an important way: they aim to measure the “general relevance” of an SI,

which they define as “relevance even in the absence of a situated context.” It is unclear how

general relevance can explain variation in SI rates within instances of a scale. By using

context-conditioned probabilities from a language model, our predictor could account for

both the general frequency of “[WEAK], but not [STRONG]” as well as expectations driven by

the context in which the scale occurs.

3.3.2 Concept-based view of alternatives

The method described above implicitly treats linguistic forms as the alternatives driving

scalar inferences. However, recent proposals have advanced the view that alternatives are

not linguistic objects, but instead operate at the level of more general reasoning preferences

(Buccola et al., 2021). On this view, alternatives are constructed by replacing primitives of

the concept expressed by the speaker with primitives of equal or less complexity.

Here, we test a generalization of this concept-based view of alternatives. Suppose, for

example, a speaker uses the weak scalar term big. On a concept-based view, the listener

may infer that the speaker is contrasting big with a concept like VERYBIG instead of a

particular linguistic expression like enormous. However, in the experiments mentioned

in Section 3.2.2, the SI process likely needs to be grounded in linguistic forms before

the listener makes a judgment about a particular strong scalemate (in string form). One

hypothesis is that upon hearing an expression with a weak scalemate, a stronger conceptual

alternative is activated, which in turn probabilistically activates all the strings that could

reflect it. Returning to our earlier example, if the conceptual alternative is VERYBIG, and

huge, massive, and enormous are string-based realizations of that alternative, they may be

assigned a high likelihood. When asked about a specific string-form alternative (e.g., “The
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elephant is big. Would you conclude that it is not enormous?”), humans may endorse the SI

if the probability of conceptually similar linguistic alternatives is sufficiently high, even if

the probability of the tested alternative (here, enormous) is low.

If SIs involve reasoning about conceptual alternatives, then surprisal values estimated

from assumed string-form alternatives may be poor estimates of the true relevant surprisal, as

a single concept could be expressed with multiple forms. Therefore, in addition to assessing

whether expectedness of specific linguistic forms predicts SI rates (Section 3.3.1), we also

test a second predictor which approximates the expectedness of conceptual alternatives. To

do this, we need a set of alternatives 𝒜 that could serve as potential linguistic scalemates.

As described in more detail in Sections 3.4.3 and 3.5.3, we obtain 𝒜 by taking a fixed set of

words with the same part of speech as the weak scalemate, inspired by grammatical theories

of alternatives (e.g., Rooth, 1985; Katzir, 2007).3

Using this alternative set 𝒜, we compute the weighted average surprisal of 𝒜 using

weights determined by the conceptual similarity between each alternative and the tested

strong scalemate. We use GloVe embeddings (Pennington et al., 2014) as an approximation

for conceptual representations of scalar items, and cosine similarity between GloVe vectors

to approximate conceptual similarity.

For each scale ⟨[WEAK], [STRONG]⟩, we obtain weights by computing the cosine similar-

ity between the GloVe embeddings for [STRONG] (𝑣[STRONG]) and each potential alternative 𝑎

(𝑣𝑎) in the alternative set 𝒜. We compute the weighted average probability over 𝒜 using

these weights, and then take the negative log to obtain the weighted average surprisal:

− log
(︃∑︀

𝑎∈𝒜 𝑃 (𝑎) · cossim(𝑣[STRONG], 𝑣𝑎)∑︀
𝑎∈𝒜 cossim(𝑣[STRONG], 𝑣𝑎)

)︃
(3.2)

If there are many conceptually similar alternatives with low surprisal, then the weighted

average surprisal will be low, even if the surprisal of the tested scalemate is high. Therefore,

weighted average suprisal forms a proxy for concept-based surprisal, which we compare to

string-based suprisal.

3We adopt a liberal view of alternatives to avoid undergeneration. However, an important open question is how
alternatives are determined, which we leave for future work.
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3.4 Predicting variation within ⟨some, all⟩

3.4.1 Human data

To investigate variation within the scale ⟨some, all⟩, we use human SI strength ratings

collected by Degen (2015). These ratings were measured by asking participants to rate the

similarity (1-7) between a sentence with “some” and a minimally differing sentence with

“some, but not all”. See Section 3.2.1 for details.

3.4.2 Model

Following the experiment conducted by Degen (2015), we construct scalar templates by

inserting “, but not all,” after the occurrence of “some” in each sentence from the dataset.

Since this scalar construction (“some, but not all,”) often occurs in the middle of the

sentence, we use the bidirectional language model BERT (Devlin et al., 2019) to measure

model expectations at the position of the strong scalemate. Concretely, we replace “all” with

the [MASK] token and measure BERT’s probability distribution at that token. All models in

our study are accessed via the Huggingface transformers library (Wolf et al., 2020).

3.4.3 Candidate alternatives

For our string-based surprisal predictor (Section 3.3.1), we are only concerned with the

surprisal of the alternative all in the [STRONG] position in (3.1). However, to compute our

concept-based surprisal predictor (Section 3.3.2), we need a set of candidate alternatives

that could potentially serve as the strong scalemates implied by the speaker. Since the

alternatives to some are highly constrained by the grammar, we manually constructed a set

of English quantifiers that can be used in contrast to some: each, every, few, half, much,

many, most, and all.

3.4.4 Results

Figure 3-2 shows the relationship between our predictors and human SI ratings for Degen’s

(2015) dataset of variation within ⟨some, all⟩. We find that both string-based and concept-
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Figure 3-2: Relationship between human SI strength ratings within ⟨some, all⟩ scale (Degen,
2015) and BERT-derived predictors: (a) surprisal of scalemate all in the scalar construction,
and (b) weighted average surprisal over the full set of candidate alternatives (Section 3.4.3).
Each point represents a sentence. Shaded region denotes 95% CI.

based surprisal are indeed negatively correlated with human similarity judgments (string-

based: Figure 3-2a, Pearson 𝜌 = −0.400, 𝑝 < 0.0001; concept-based: Figure 3-2b, 𝜌 =

−0.432, 𝑝 < 0.0001).4

We additionally conducted a multivariate analysis including our two new predictors

(string- and concept-based surprisal) among the predictors investigated in Degen’s original

study. We centered and transformed all variables according to Degen’s original analyses. The

results are summarized in Table 3.2. We find that the original predictors remain statistically

significant, and that concept-based surprisal (but not string-based surprisal) is a significant

predictor in the full model. This suggests that listeners draw stronger scalar inferences when

all – or a conceptually similar alternative – is more expected in a given context.

3.5 Predicting variation across scales

3.5.1 Human data

To investigate variation across scales, we use human SI rates collected by four studies (Ronai

and Xiang, 2022; Pankratz and van Tiel, 2021; Gotzner et al., 2018; van Tiel et al., 2016). SI

4We note that the relationship between surprisal and SI ratings appears highly non-linear in Figure 3-2a. We
expect this is due to the fact that the scalemate all is highly expected in most contexts, so the surprisal
values of all are concentrated near zero. There is a stronger linear relationship between SI ratings and raw
probabilities (𝜌 = 0.482, 𝑝 < 0.0001).

58



Predictor 𝛽 𝑝

DEGEN (2015) PREDICTORS
Partitive 0.658 < 0.0001
Strength −0.470 < 0.0001
Mention 0.287 < 0.0001
Subjecthood 0.495 < 0.0001
Modification 0.157 < 0.01
Log sentence length 0.189 < 0.0001

OUR PREDICTORS
String-based surprisal 0.008 0.960
Concept-based surprisal −0.782 < 0.001

Table 3.2: Summary of full regression model predicting variation within ⟨some, all⟩, includ-
ing original predictors from Degen (2015) (see the original study for a detailed description
of each of the predictors).

POS # unique Form of original sentence Form of scalar construction Example

Adj 120 [NP] is [WEAK] [NP] is [WEAK], but not
[STRONG]

The elephant is big, but
not enormous

Adv 12 [NP] is [WEAK] [ADJ] [NP] is [WEAK] [ADJ], but
not [STRONG]

The director is some-
times late, but not always

Verb 16 [NP] [WEAK]-ed [NP] [WEAK]-ed, but did not
[STRONG]

The runner started, but
did not finish

Table 3.3: Scalar construction templates for different parts of speech (for cross-scale
variation).

rates were measured by showing participants a sentence with the weak scalemate (e.g., “The

student is intelligent”), and asking whether they would endorse the negation of the strong

scalemate (e.g., “The student is not brilliant”). See Section 3.2.2 for details.

3.5.2 Model

We construct scalar templates following the pattern summarized in Table 3.3. Since in

each case the strong scalemate is the final word in the sentence,5 we use an autoregressive

language model to measure expectations over potential scalemates in the [STRONG] position.

We use the base GPT-2 model (Radford et al., 2019) via Huggingface and obtain model

surprisals through the SyntaxGym command-line interface (Gauthier et al., 2020).

5For a small number of verbal scales, the strong scalemate is followed with the pronoun “it” to make the
sentence grammatical. We don’t expect this to matter for our purposes.
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3.5.3 Candidate alternatives

Recall from Section 3.3.2 that we need a set of potential linguistic alternatives to compute

the weighted average surprisal. We take this set of alternatives to be a set of words with the

same part of speech (POS) as the weak scalemate and obtain these candidate alternative sets

by extracting lists of English adjectives, adverbs, and verbs from WordNet (Miller, 1995).

We then used NLTK (Loper and Bird, 2002) to find the words satisfying finer-grained POS

tags (JJ for adjectives, RB for adverbs, and VB for verbs), and sorted each POS set according

to word frequencies from the OpenSubtitles corpus (Lison and Tiedemann, 2016).6,7 We

excluded words in the POS sets that were not in the frequency corpus, resulting in 3204

adjectives, 1953 adverbs, and 226 verbs. We restricted each POS set to its 1000 highest-

frequency words, and performed some manual exclusions (e.g., removing “do” and “be”

from the verb set, which are unlikely to form scales with any of the tested items and follow

different syntactic rules). This finally resulted in our three alternative sets: 1000 adjectives,

960 adverbs, and 224 verbs.8

3.5.4 Results

String-based analyses

Figure 3-3a shows our results for cross-scale variation, under a string-based view of alter-

natives. We find that surprisal is a significant predictor only for Ronai and Xiang’s dataset

(Pearson 𝜌 = −0.361, 𝑝 = 0.006).9

Model surprisal vs. human completions. For the dataset where we do find a relationship

between surprisal and SI rates, we ask whether model surprisals are correlated with human-

derived measurements of how “accessible” the strong scalemate is. If model surprisals and

human accessibility scores are strongly linked, this would suggest that models and humans

6https://github.com/hermitdave/FrequencyWords
7http://www.opensubtitles.org
8Most words in the alternative sets occur with low frequency, but we chose to be liberal when including
alternatives to ensure broad coverage over potential scalemates.

9We repeated this analysis after removing an outlier from Gotzner et al.’s dataset, and again found a lack of
relationship between SI rate and surprisal (𝜌 = −0.0452, 𝑝 = 0.719).
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Figure 3-3: Relationship between human SI rates and GPT-2-derived predictors across
scales, for four datasets. Each point represents a single scale. Shaded region denotes 95% CI.
(a) SI rate vs. surprisal of strong scalemate in the scalar construction. (b) SI rate vs. weighted
average surprisal over the full set of candidate alternatives (Section 3.5.3).

are aligned at the level of predictive distributions over alternatives, validating our approach

of using language models to approximate human predictions.

To this end, we use data from Ronai and Xiang’s Experiment 2, which measured

the accessibility of scalemates through a Cloze task. Humans were presented with a short

dialogue featuring a sentence with the weak scalemate, as in (3.3), and then asked to generate

a completion of the dialogue in the blank. The “accessibility” of the strong scalemate is

taken to be the frequency with which it is generated in this paradigm.

Sue: The movie is good. (3.3)

Mary: So you mean it’s not .

We find that model surprisals are negatively correlated with accessibility scores (Figure 3-
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Figure 3-4: GPT-2-derived surprisal of strong scalemate vs. accessibility rating of strong
scalemates (Ronai and Xiang, 2022).

Dataset Full model ANOVA
Predictor 𝛽 𝑝 𝐹 𝑝

Ronai and Xiang (2022) String-based surprisal −1.538 0.215 3.247 0.012Concept-based surprisal −4.503 0.065

Pankratz and van Tiel (2021) String-based surprisal 0.460 0.694 3.198 0.050Concept-based surprisal −9.491 0.036

Gotzner et al. (2018) String-based surprisal 0.384 0.545 2.751 0.019Concept-based surprisal −8.010 0.0005

van Tiel et al. (2016) String-based surprisal 0.293 0.858 1.016 0.422Concept-based surprisal −3.340 0.291

Table 3.4: Summary of full regression model (middle columns) and ANOVA comparing full
model against intercept-only model (right columns) for each cross-scale variation dataset.

4; 𝜌 = −0.357, 𝑝 = 0.006), suggesting that our method of estimating expectations over

alternatives using artificial language models aligns with direct measurements in humans.

Concept-based analyses

Turning to a conceptual view of alternatives, Figure 3-3b shows the relationship between

human SI rates and weighted average surprisals (Equation 3.2). We find a significant negative

correlation for all but one of the tested datasets (Ronai and Xiang: 𝜌 = −0.400, 𝑝 = 0.002;

Pankratz and van Tiel: 𝜌 = −0.342, 𝑝 = 0.015; Gotzner et al.: 𝜌 = −0.415, 𝑝 = 0.0005;

van Tiel et al.: 𝜌 = −0.167, 𝑝 = 0.310), demonstrating that similarity-weighted surprisal

captures more variation than raw surprisal (cf. Figure 3-3a; Section 3.5.4).

We additionally included both (centered) string-based and concept-based surprisal as

predictors in a multivariate model, summarized in Table 3.4 (middle columns). As in the
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Figure 3-5: Probability assigned by GPT-2 to top 5 candidate strong alternatives (y-axis)
for 3 example weak scalar items: big, largely, and hard (Ronai and Xiang, 2022). The full
scalar construction is shown above each subplot, with the original tested strong scalemate
underlined in red.

within-scale analysis, for three of the four datasets we find that concept-based surprisal is a

stronger predictor than string-based surprisal. With that said, we find only a marginal effect

of concept-based surprisal in Ronai and Xiang’s data, and no effect of either predictor in

van Tiel et al.’s data. However, for Ronai and Xiang’s data, this does not mean that there is

no value in either predictor – rather, the predictors are too closely correlated to definitively

favor one over the other. To demonstrate this, for each dataset we performed an analysis

of variance (ANOVA) comparing the full model to a null intercept-only model (Table 3.4,

right columns). We find that for all datasets except that of van Tiel et al., the model with

both surprisal predictors explains significantly more variance than the null model. In sum,

our results suggest that the expectedness of the strong scalemate can capture significant

cross-scale SI variation, but these expectations may operate over groups of semantically

similar linguistic forms instead of individual strings.

Qualitative analysis. As a follow-up analysis, we identified cases where GPT-2 assigns

low probability to the tested strong scalemate, but high probability to near synonyms.

We analyzed the top 5 alternatives from the full alternative set (Section 3.5.3) that were

assigned highest probability as strong scalemates under GPT-2. Figure 3-5 shows three

examples from Ronai and Xiang’s dataset. The title of each subplot shows the scalar

construction, with the weak scalemate highlighted in teal and the tested strong scalemate

underlined in red. The y-axis shows the top 5 candidate scalemates, and the x-axis shows

the probability assigned by the model. For the weak scalemate big (left), GPT-2 assigns
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highest probability to the alternative huge, which semantically conveys similar information

to the empirically tested alternative enormous. We see a similar pattern for weak scalemate

largely and alternatives completely and totally (middle), as well as for weak scalemate hard

and alternative impossible (right). This is consistent with the hypothesis that surprisal of a

specific string may not capture surprisal of the underlying concept.

Taken together, these analyses suggest that a concept-based view of alternatives is better

aligned with human inferences than treating alternatives as specific linguistic forms. Testing

additional ways of operationalizing concept-based alternatives is a promising direction for

future work.

3.6 Related work

Prior work has evaluated the ability of computational models to capture scalar inferences.

For example, the IMPPRES benchmark (Jeretic et al., 2020) frames SI as a natural language

inference problem: the weak scalar expression (e.g., “Jo ate some of the cake”) is the

premise, and the negated strong scalar expression (e.g., “Joe didn’t eat all of the cake”)

is the hypothesis. Under this setup, an interpretation consistent with the strictly logical

reading would assign a neutral relationship between the premise and hypothesis, whereas a

pragmatic reading would assign an entailment relationship. Models are evaluated based on

how often they assign the entailment label across items, which treats SIs as a homogeneous

phenomenon and does not capture SI variation.

Another line of work has attempted to predict within-scale SI variation through a

supervised approach (Schuster et al., 2020; Li et al., 2021). This approach takes a sentence

with a weak scalar item, and attempts to directly predict the human SI strength through

a prediction head on top of a sentence encoder. This differs from our approach in that it

requires training directly on the SI-rate-prediction task, whereas we probe the predictive

distribution that emerges from language modeling with no task-specific representations.

This allows us to compare model probability distributions to the expectations deployed by

humans during pragmatic inferences, building upon a literature linking language models

to predictive processing (e.g., Frank and Bod, 2011; Smith and Levy, 2013; Wilcox et al.,
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2020; Merkx and Frank, 2021).

There have also been several studies extracting scalar orderings from corpora or language

model representations. For example, de Marneffe et al. (2010) use distributional information

from a web corpus to ground the meanings of adjectives for an indirect question answering

task. Similarly, Shivade et al. (2015) use scalar constructions like “X, but not Y” to identify

scales from a corpus of biomedical texts. Others have found that adjectival scale orderings

can be derived from static word embeddings (Kim and de Marneffe, 2013) and contextualized

word representations (Garí Soler and Apidianaki, 2020, 2021).

3.7 Discussion

We tested a shared mechanism explaining variation in SI rates across scales and within

⟨some, all⟩, based on the hypothesis that humans maintain context-driven expectations about

unspoken alternatives (Degen and Tanenhaus, 2015, 2016). We operationalized this in two

ways using neural language models: the expectedness of a linguistic alternative as a scale-

mate (string-based surprisal), and the expectedness of a conceptual alternative (weighted

average surprisal). We found that for both within-scale and cross-scale variation, expect-

edness captures human SI rates. Crucially, however, expectedness of the strong scalemate

is a robust predictor of cross-scale variation only under a conceptual view of alternatives

(Buccola et al., 2021). Our results support the idea that the strength of pragmatic inferences

depends on the availability of alternatives, which depends on in-context predictability.

One open question is the source of variability across the tested human behavioral datasets

– in particular, the lack of surprisal effect for van Tiel et al.’s data (Section 3.5.4). While

we cannot be certain about why the results vary, we identified a few differences that might

affect data quality across datasets (see Table 3.1). van Tiel et al.’s study has the smallest

number of participants (28), smallest number of ratings per scale (10), and smallest number

of scales (39). In addition, their experiments presented multiple sentence contexts per scale,

whereas the other experiments only presented one sentence per scale. Other experimental

factors, such as participant recruitment and exclusion criteria, may have also contributed to

differences in data reliability.
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3.7.1 How do listeners restrict the alternatives?

We now return to the issue raised in Footnote 2: what information do listeners use to form

expectations about alternatives? To illustrate potential hypotheses, consider the item “The

soup is warm/hot” from van Tiel et al.’s experimental materials. In our framework described

in Section 3.3.1, [CONTEXT] = “The soup is”, [WEAK] = “warm”, and [STRONG] = “hot”.

One hypothesis is that listeners form expectations over relevant scalar expressions given

[CONTEXT] alone. On this view, expectations over strong scalemates could be measured

by computing the probability of [STRONG] in the template [CONTEXT][STRONG]; i.e., “The

soup is [STRONG]”. In contrast, in this paper we test expectations of [STRONG] in the

template “The soup is warm, but not [STRONG]”, which instantiates an alternate theoretical

position: that listeners use not only the context, but also [WEAK] as information for forming

expectations over alternatives.

We adopt this view for several reasons. First, it could be the case that the context does

not provide enough information for the listener to narrow down alternatives. Returning to the

running example, “The soup is” could be followed by many continuations, some potentially

relating to the taste or size of the soup in addition to its temperature. Taking the weak

scalar term “warm” into account allows the listener to restrict the relevant alternatives to a

smaller, more tractable set, which presents an algorithmic solution to the computationally

challenging inference problem. However, the underinformativity of the context may be a

problem unique to the simple stimuli used in the behavioral experiments. It is plausible that

listeners could sufficiently restrict alternative sets given more naturalistic contexts, which

likely provide more cues to the Question Under Discussion (Roberts, 2012).

In addition, there could be cues from [WEAK] that provide information about likely

alternatives, independent of the context. For example, listeners might prefer strong scale-

mates that match [WEAK] in register or formality, or in shared phonological features. This

motivates why we chose template (3.1) to measure expectations over alternatives, instead of

[CONTEXT][STRONG]. However, the extent to which listeners tune their predictions based

on [WEAK] above and beyond the context remains an open empirical question.
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3.7.2 From alternatives to inference

Conceptually, computing an SI involves two steps: (1) determining the suitable alternatives,

and (2) ruling out the meaning of alternatives to arrive at a strengthened interpretation of the

weak scalar term. Our results primarily shed light on the first step, providing evidence that

expectations play a role in determining alternatives, and that alternatives are likely based on

meanings in addition to linguistic forms.

When considering the higher-level reasoning process, many factors beyond alternatives

play a causal role in SI. One view is that humans use alternatives in a cooperative reasoning

process, such as that formalized by the Rational Speech Act framework (RSA; Frank and

Goodman, 2012; Goodman and Frank, 2016). In an RSA model, a pragmatic listener

𝐿1(𝑚 | 𝑢) uses a speaker’s utterance 𝑢 to update their prior beliefs 𝑃 (𝑚) over which

meaning 𝑚 the speaker is trying to convey. The listener does this by computing the

likelihood of a pragmatic speaker 𝑆1 producing 𝑢 given each potential meaning. The

pragmatic 𝑆1 speaker corresponds to the utility 𝑈 of the utterance 𝑢 to convey 𝑚, relative to

the utility of the alternative utterances in the set of alternatives 𝒜:

𝐿1(𝑚 | 𝑢) = 𝑆1(𝑢 | 𝑚)𝑃 (𝑚)∑︀
𝑚′ 𝑆1(𝑢 | 𝑚′)𝑃 (𝑚′) (3.4)

𝑆1(𝑢 | 𝑚) = 𝑈(𝑢, 𝑚)∑︀
𝑢′∈𝒜 𝑈(𝑢′, 𝑚) (3.5)

Our findings appear compatible with RSA: listeners reason about a speaker that normal-

izes over alternatives. However, it remains an open question how variable expectations over

alternatives should be operationalized in an RSA model. One option, as recently proposed

by Zhang et al. (2023), is that the pragmatic speaker is conditioned on the alternative set

𝒜. The pragmatic listener has beliefs over different sets of 𝒜 and marginalizes over these

beliefs when drawing an inference:

𝐿1(𝑚 | 𝑢) =
∑︁
𝒜

𝑃 (𝒜) 𝑆1(𝑢 | 𝑚, 𝒜)𝑃 (𝑚)∑︀
𝑚′ 𝑆1(𝑢 | 𝑚′, 𝒜)𝑃 (𝑚′) (3.6)
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Another possibility is that the variable expectations are not inputs to the model, but

instead fall out of reasoning about how likely speakers are to use the weaker versus stronger

terms, given variable contextual priors over meanings and questions under discussion (see,

e.g., Goodman and Lassiter, 2015; Qing et al., 2016). We leave a detailed exploration of

such a model to future work.

The role of priors. Pragmatic influences are influenced by the prior probabilities of the

world states compatible with the weak and strong meanings Degen et al. (2015); Sikos et al.

(2021). For example, consider the scale ⟨start, finish⟩. If a human were asked “The movie

started at 2:30. Would you conclude that the movie did not finish at 2:30?”, they would

likely answer Yes. This Yes response would count as an SI under the experimental paradigm,

but does not reflect pragmatic reasoning over scalar alternatives: it is simply implausible for

a movie to start and finish at the same time, given our knowledge of the world.10

These priors have an important connection to our analyses. As outlined in Section 3.3.1,

we approximate the expectedness of a strong scalemate by measuring the expectedness of

its linguistic form. This approach can be seen as reflecting an implicit assumption that the

more likely a certain meaning is, the more likely it is to be expressed linguistically. This

is likely to be wrong in certain cases – for example, if a certain meaning is so likely that it

is obvious without being said, then speakers may avoid the effort of explicitly producing

the linguistic expression (and thus, the linguistic expression would have low probability).

This could potentially be the case for relatively common SIs. For example, a speaker might

be able to get away with only saying some and expecting a listener to recover the meaning

some but not all.

With that said, we believe our estimation method may minimize this issue, as we

measure expectations conditioned on an explicit scalar contrast with the weak scalemate

(i.e., “[WEAK], but not”). Thus, our approach can be seen as approximating listeners’

expectations about upcoming linguistic material, given that the speaker has already chosen

to produce a scalar contrast. Nevertheless, a complete account of scalar inferences will need

to account for the influence of the prior probabilities over world states, which may explain

10This example is due to Lassiter (2022).
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some of the variance not captured by our expectedness predictors.

3.7.3 Implications for NLP

While the main role of language models in our analyses was to systematically test a cognitive

theory, we believe this work also has implications for NLP evaluation. A growing body of

work uses controlled assessments to evaluate the linguistic knowledge of NLP models. Many

studies test whether models exhibit a categorical pattern of behavior that reflects a particular

linguistic generalization. For example, in syntactic evaluations, a model is successful if it

satisfies certain inequality relationships between grammatical and ungrammatical sentences

(e.g., Linzen et al., 2016; Futrell et al., 2019; Hu et al., 2020b). SI (and other types of

implicatures) have largely been treated the same way (see Section 3.6).

In contrast, we do not evaluate whether language models exhibit a categorical pattern

of behavior (“Do models interpret SIs pragmatically?”). Instead, based on the empirical

evidence for scalar variation, we test whether models capture systematic variability in

human inferences (“Are models sensitive to the factors that modulate human pragmatic

inferences?”). We urge other NLP researchers to consider variability in human behaviors

instead of relying on categorical generalizations (see also Pavlick and Kwiatkowski, 2019;

Jiang and de Marneffe, 2022; Baan et al., 2022; Webson et al., 2023). Through this approach,

we can build models that capture the rich variability of human language, and use these

models to refine our theories about the human mind.
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Chapter 4

A fine-grained comparison of pragmatic

language understanding in humans and

language models

4.1 Introduction

Non-literal language understanding is an essential part of communication. For example, in

everyday conversations, humans readily comprehend the non-literal meanings of metaphors

(My new coworker is a block of ice), polite deceits (I love the gift), indirect requests (It’s a

bit cold in this room), and irony (Classy pajamas, dude!). These phenomena fall under the

broad label of pragmatics, which encompasses the aspects of meaning that go beyond the

literal semantics of what is said (Horn, 1972; Grice, 1975; Yule, 1996; Levinson, 2000).

A long-standing challenge for NLP is to build models that capture human pragmatic

behaviors. The remarkable abilities of modern language models (LMs) have triggered a

recent effort to investigate whether such models capture pragmatic meaning, both through

philosophical arguments (Bisk et al., 2020; Bender and Koller, 2020; Potts, 2020; Michael,

2020) and empirical evaluations (Jeretic et al., 2020; Zheng et al., 2021; Tong et al., 2021;

Liu et al., 2022; Ruis et al., 2022; Stowe et al., 2022). However, prior empirical studies have

primarily evaluated LMs based on a binary distinction between pragmatic and non-pragmatic
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responses, providing limited insights into models’ weaknesses. A model could fail to reach

the target pragmatic interpretation in multiple ways – for example, by preferring a literal

interpretation, or by preferring a non-literal interpretation that violates certain social norms.

Understanding these error patterns can suggest specific directions for improving the models,

and foreshadow where pragmatics might go awry in user-facing settings (e.g., Saygin and

Cicekli, 2002; Dombi et al., 2022; Kreiss et al., 2022).

From a cognitive perspective, understanding the pragmatic abilities of LMs could also

offer insights into humans. Human pragmatic language comprehension involves a variety of

mechanisms, such as basic language processing, knowledge of cultural and social norms

(Trosborg, 2010), and reasoning about speakers’ mental states (Brennan et al., 2010b; Enrici

et al., 2019; Rubio-Fernández, 2021). However, it remains an open question when language

understanding relies on explicit mentalizing – which may be cognitively effortful – versus

lower-cost heuristics (e.g., Butterfill and Apperly, 2013; Heyes, 2014). Since LMs lack

explicit, symbolic representations of mental states, they can serve as a tool for investigating

whether pragmatic phenomena arise without full-blown mentalizing (e.g., belief updates in

the Rational Speech Act framework; Frank and Goodman, 2012).

In this paper, we perform a fine-grained comparison of humans and LMs on pragmatic

language understanding tasks. Adopting the approach of targeted linguistic evaluation

(e.g., Linzen et al., 2016; Futrell et al., 2019; Hu et al., 2020b), our analysis serves two

goals: assessing the pragmatic capabilities of modern LMs, and revealing whether pragmatic

behaviors emerge without explicitly constructed mental representations. Our test materials

are a set of English multiple-choice questions curated by expert researchers (Floyd et al.,

In prep), covering seven diverse pragmatic phenomena. We use zero-shot prompting to

evaluate models with varying sizes and training objectives: GPT-2 (Radford et al., 2019),

T𝑘-Instruct (Wang et al., 2022), Flan-T5 (Chung et al., 2022), and InstructGPT (Ouyang

et al., 2022).

Through model analyses and human experiments, we investigate the following questions:

(1) Do models recover the hypothesized pragmatic interpretation of speaker utterances?

(2) When models do not select the target response, what errors do they make – and how

do these error patterns compare to those of humans? (3) Do models and humans use
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similar cues to arrive at pragmatic interpretations? We find that Flan-T5 (XL) and OpenAI’s

text-davinci-002 achieve high accuracy and mirror the distribution of responses selected

by humans. When these models are incorrect, they tend to select the incorrect literal

(or straightforward) answer instead of distractors based on low-level heuristics. We also

find preliminary evidence that models and humans are sensitive to similar linguistic cues.

Our results suggest that some pragmatic behaviors emerge in models without explicitly

constructed representations of agents’ mental states. However, models perform poorly on

humor, irony, and conversational maxims, suggesting a difficulty with social conventions

and expectations.

4.2 Related work

Prior work has evaluated LMs’ ability to recognize non-literal interpretations of linguistic

input, such as scalar implicature (Jeretic et al., 2020; Schuster et al., 2020; Li et al., 2021) or

figurative language (Tong et al., 2021; Liu et al., 2022; Gu et al., 2022; Stowe et al., 2022).

In a broad-scale evaluation, Zheng et al. (2021) test five types of implicatures arising from

Grice’s (1975) conversational maxims, and evaluate their models after training on the task.

In our work, we consider Gricean implicatures as one of seven phenomena, and we evaluate

pre-trained LMs without fine-tuning on our tasks.

Similar to our work, Ruis et al. (2022) also use prompting to evaluate LMs on pragmatic

interpretation tasks. They formulate implicature tests as sentences ending with “yes” or

“no” (e.g., “Esther asked “Can you come to my party on Friday?” and Juan responded “I

have to work”, which means no.”). A model is considered pragmatic if it assigns higher

probability to the token that makes the sentence consistent with an implicature. In our work,

models must select from multiple interpretations, enabling a detailed error analysis and

comparison to humans. Ruis et al.’s materials also focus on indirect question answering as

an implicature trigger, whereas we consider a broader range of pragmatic phenomena and

utterance types.

Since pragmatic language understanding often draws upon knowledge of social relations,

our tasks are conceptually related to benchmarks for evaluating social commonsense (e.g.,
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Sap et al., 2019; Zadeh et al., 2019). These evaluations focus on the interpretation of

actions and events, whereas we focus on the interpretation of speaker utterances. Another

hypothesized component of pragmatics is Theory of Mind (ToM; Leslie et al., 2004; Apperly,

2011), or the ability to reason about others’ mental states. Benchmarks for evaluating ToM

in models (e.g., Nematzadeh et al., 2018; Le et al., 2019; Sap et al., 2022) primarily focus on

false-belief tasks (Baron-Cohen et al., 1985), which assess whether a model can represent

the beliefs of another agent that are factually incorrect but consistent with that agent’s

observations. LMs have been shown to succeed on some ToM tests (Kosinski, 2023) while

failing on others (Sap et al., 2022; Ullman, 2023).

4.3 Evaluation materials

4.3.1 Overview of stimuli

Our evaluation materials are taken from Floyd et al.’s (In prep) experiments,1 covering seven

phenomena. Each item is a multiple choice question, with answer options representing

different types of interpretation strategies. For most of the tasks, the question has three

parts: a short story context (1-3 sentences), an utterance by one of the characters, and a

question about what the character intended to convey.2 Table 4.1 shows an example item

for each task, with annotated answer options. Green labels indicate the target pragmatic

interpretation.3 Blue labels indicate the literal interpretation. Red labels indicate incorrect

non-literal interpretations, which are based on heuristics such as lexical similarity to the

story, thus serving as distractor options.

Each task has 20-40 items, which were manually curated by expert researchers to cover

a broad range of non-literal phenomena and elicit individual differences among humans.

The stimuli were not specifically designed to require Theory of Mind reasoning (ToM).

However, behavioral and neural evidence suggests that many of the tested phenomena rely

1https://osf.io/6abgk/?view_only=42d448e3d0b14ecf8b87908b3a618672
2The exceptions are Humor and Coherence.
3We refer to these answer options as “Correct” throughout the paper. However, these answers are only “correct”
in the sense of a normative evaluation. We acknowledge the wide variation in individual humans’ abilities
and tendencies to use non-literal language, which is not captured in our analyses. We thank an anonymous
reviewer for highlighting this point.
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Task Example query Example answer options

Deceits Henry is sitting at his desk
and watching TV, and reluctantly
switches off the TV with the re-
mote control and picks up a text-
book. Shortly after, his mother
comes in the room and asks,
"What have you been doing up
here?" Henry responds: "Read-
ing." Why has Henry responded
in such a way?

1. Correct He does not want to get into trouble for not studying.
2. Literal He has been reading for some time.
3. DistractorLexicalOverlap He does not want to offend his mom by not reading

the books that she gave him.
4. DistractorSocialConvention He wants his mom to believe that he has been

watching TV.

Indirect
speech

Nate is about to leave the house.
His wife points at a full bag of
garbage and asks: "Are you going
out?" What might she be trying to
convey?

1. Correct She wants Nate to take the garbage out.
2. Literal She wants to know Nate’s plans.
3. DistractorAssociative She wants Nate to bring his friends over.
4. DistractorLexicalOverlap She wants Nate to spend more time with the family.

Irony It is a holiday. Stefan and Kim
are sitting in the backseat of the
car. They are fighting all the time.
Their father says: "Oh, it is so
pleasant here." What did the fa-
ther want to convey?

1. Correct He does not want to listen to his kids’ arguments.
2. Literal He enjoys listening to his kids fighting.
3. DistractorAssociative AC gives them some needed cool.
4. DistractorNonSequitur He remembers about his wife’s birthday.

Maxims Leslie and Jane are chatting at a
coffee shop. Leslie asks, "Who
was that man that I saw you with
last night?" Jane responds, "The
latte is unbelievable here." Why
has Jane responded like this?

1. Correct She does not want to discuss the topic that Leslie has raised.
2. Literal She thinks that it is the best latte in the town.
3. DistractorAssociative The man who Leslie saw makes unbelievable lattes.
4. DistractorNonLiteral A coffee break is not a good time to discuss men.

Metaphor Andrew and Bob were discussing
the investment company where
Andrew works. Bob said: “The
investors are squirrels collecting
nuts.” What does Bob mean?

1. Correct They buy stocks hoping for future profit.
2. Literal Squirrels were hired to work in the company.
3. DistractorNonLiteral The investors dress and eat well.
4. DistractorNonSequitur Bob is allergic to nuts.
5. DistractorPlausibleLiteral The investors enjoy picking nuts as much as squir-

rels do.

Humor Martha walked into a pastry shop.
After surveying all the pastries,
she decided on a chocolate pie.
"I’ll take that one," Martha said to
the attendant, "the whole thing."
"Shall I cut it into four or eight
pieces?" the attendant asked.

1. Correct Martha said, "Four pieces, please; I’m on a diet."
2. Literal Martha said: "Well, there are five people for dessert tonight, so

eight pieces will be about right."
3. DistractorAssociative Martha said, "You make the most delicious sweet rolls

in town."
4. DistractorFunny Then the attendant squirted whipped cream in Martha’s

face.
5. DistractorNeutral Martha said, "My leg is hurting so much."

Coherence Cleo brushed against a table with
a vase on it. She decided to study
harder to catch up.

1. Correct Incoherent
2. Incorrect Coherent

Table 4.1: Sample item from each task in our evaluation. All items are originally curated by
Floyd et al. (In prep).
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on mentalizing processes. In Section 4.3.2, we briefly describe the role of ToM for each

tested phenomenon, and how LMs’ training corpora may provide linguistic cues to perform

the tasks.

4.3.2 Tested phenomena

Deceits. Humans produce polite deceits (“white lies”) in the service of social and personal

relationships (e.g., Camden et al., 1984). Behavioral studies in young children suggest that

understanding white lies requires interpretive ToM, or the ability to allow different minds to

interpret the same information in different ways (Hsu and Cheung, 2013). Furthermore, the

tendency to produce white lies is linked to emotional understanding abilities, (Demedardi

et al., 2021), and moral judgments about white lies are linked to second-order false-belief

understanding (Vendetti et al., 2019).

The Deceits task presents a story with a white lie, and asks why the speaker has used

this utterance. The underlying intentions behind polite deceits are rarely explicitly explained

in text. As a result, it is unlikely that LMs learn a direct connection between the utterance

and the speaker’s intention during training on static texts. However, instances of polite

deceits in text corpora may be accompanied by descriptions of characters’ emotional states,

which may indicate that speakers’ intentions differ from what is literally conveyed by their

utterance. This highlights the importance of context in interpreting deceits, which we return

to in Section 4.5.3.

Indirect speech. Humans often use language in a performative sense, such as indirectly

requesting an action from other individuals (e.g., Austin, 1975; Searle, 1975). Indirect or

polite speech comprehension has been captured by Rational Speech Act (RSA; Frank and

Goodman, 2012) models, which characterize listeners as performing Bayesian inference

about a speaker who chooses utterances based on a tradeoff between epistemic and social

utility (Brown and Levinson, 1987; Yoon et al., 2016, 2020; Lumer and Buschmeier, 2022).

The IndirectSpeech task presents a story with an indirect request, and asks what the

speaker intends to convey. Like deceits, it’s unlikely that indirect speech acts are explained

in text data. However, indirect requests may be followed by descriptions of the completion of
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the implied request – for example, that someone closed a window after hearing the utterance

“It’s cold in here”. Therefore, models may learn relationships between the utterances and

desired outcomes through linguistic experience.

Irony. Humans use irony to convey the opposite of the semantic content of their utterance

(Booth, 1974; Wilson and Sperber, 1992; Attardo, 2000; Wilson and Sperber, 2012). As such,

irony has long been hypothesized to rely on social reasoning and perspective-taking (e.g.,

Happé, 1993; Andrés-Roqueta and Katsos, 2017). Indeed, human irony comprehension

behaviors are captured by Bayesian reasoning models that take into account speakers’

affective goals (Kao and Goodman, 2014). In addition, neuroimaging studies suggest that

irony interpretation relies on brain regions that are implicated in classic ToM tasks (Spotorno

et al., 2012).

The Irony task presents a story with an ironic statement, and asks what the character

intends to convey. While ironic statements are also rarely explained in text, models could

leverage accompanying cues such as descriptions of characters’ emotional states or a

mismatch in sentiment.

Maxims of conversation. Grice (1975) proposes that communication follows a set of

maxims: be truthful; be relevant; be clear, brief, and orderly; and say as much as needed, and

no more. A prevailing theory is that listeners derive implicatures by expecting speakers to

be cooperative (i.e., abide by the maxims) and reasoning about speakers’ beliefs and goals.

Indeed, there is extensive evidence for RSA models capturing these implicatures, such as

those arising from the maxims of quantity (Potts et al., 2016; Frank et al., 2018; Degen,

2023) and manner (Bergen et al., 2016; Franke and Jäger, 2016; Tessler and Franke, 2018).

The Maxims task presents a story with a character flouting one of Grice’s maxims, and

asks why the character has responded in such a way. Based on linguistic input, it may be

easy for LMs to recognize when a speaker is flouting a maxim – for example, if an utterance

is particularly long, features an uncommon syntactic construction, or diverges semantically

from the context. However, it is unclear whether LMs will be able to recover the speaker’s

underlying intentions.
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Metaphor. Metaphors (Lakoff and Johnson, 1980) are used to draw comparisons between

entities in a non-literal sense. Metaphor understanding has been hypothesized to require

mentalizing (Happé, 1993), and fine-grained metaphor comprehension behaviors are cap-

tured by RSA models where listeners and speakers reason about each others’ beliefs and

goals (Kao et al., 2014).

The Metaphor task presents a story with a metaphor, and asks what the speaker intends

to convey. For models, the challenges of metaphor comprehension include accessing world

knowledge and forming abstract relationships between domains. However, it’s possible that

the relevant properties of the entities under comparison could emerge through linguistic

experience.

Humor. Humor is one of the most distinctive aspects of human conversation, reflecting

communicative goals with complex social function (Veatch, 1998; Martin and Ford, 2018).

Neuroimaging studies suggest that joke understanding is supported by regions in the ToM

brain network (Kline Struhl et al., 2018). Behavioral tests also reveal associations between

ToM and humor abilities (Aykan and Nalçacı, 2018; Bischetti et al., 2019).

The Humor task presents a joke and asks which punchline makes the joke the funniest.4

Some theories argue that humor is triggered by linguistic incongruency effects (e.g., Deckers

and Kizer, 1975), which might be straightforward for LMs to detect. Recent work has also

shown that LMs can explain certain jokes (Chowdhery et al., 2022). However, some of

Floyd et al.’s Humor items require complex world knowledge – for example, that slicing a

pie into four versus eight pieces does not change the total amount of pie (see Table 4.1). As

such, selecting the funniest punchline is a nontrivial task.

Coherence inferences. Humans also make pragmatic inferences beyond the sentence

level – for example, by assuming that consecutive sentences form a logical or sequential

relationship. Moss and Schunn (2015); Jacoby and Fedorenko (2020) find that constructing

these discourse relationships loads on regions of the ToM brain network, suggesting a role

of ToM in coherence inferences.

4Unlike the other tasks, there is no speaker utterance.
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The Coherence task presents a pair of sentences, and asks whether the pair forms a

coherent story.5 We assume that LMs’ training data, which consists of naturalistic text, is

primarily coherent. Therefore, we expect LMs to be able to distinguish between coherent

and incoherent sentence pairs (for an in-depth study, see Beyer et al., 2021).

4.4 Experiments

4.4.1 Evaluation paradigm

Our evaluation paradigm uses zero-shot prompting. Prompting can easily be adapted to all of

our seven tasks, allowing us to compare performance across tasks within a model. Prompting

also allows us to present models with inputs that are nearly identical to the stimuli seen by

humans in Floyd et al.’s experiments, whereas other methods would require converting the

stimuli into task-specific formats. We choose zero-shot prompts in order to evaluate the

knowledge that emerges through training, and not through in-context adaptation to the task.

Prompt structure. Each prompt consisted of two parts: task instructions, and a query.

The instructions were nearly identical to the instructions presented to humans in Floyd

et al.’s experiments, prepended with the keyword “Task:”. The only other modification was

that the original instructions had a final sentence of “Please answer as quickly as possible”,

which we replaced with a sentence like “The answer options are 1, 2, 3, or 4”.6

For all tasks except Humor, the query consisted of the scenario (prepended with key-

word “Scenario:”) and question, and then the numbered answer options (prepended with

“Options:”).7 The prompt concluded with the keyword “Answer:”. Full example prompts are

given in Appendix B.1.

Evaluation. To evaluate a model on a given item, we feed the prompt to the model, and

measure the model’s probability distribution over tokens conditioned on the prompt. We
5This task differs from the others in that there is no speaker utterance, and the answer options are identical
across items (“Coherent” or “Incoherent”).

6The exact answer options changed according to the task.
7For the Humor task, the joke was prepended with “Joke:”, and the answer options were prepended with
“Punchlines:”.
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Model # parameters Training

GPT-2 117M Autoregressive LM
Tk-Instruct (3B) 3B Multitask
Tk-Instruct (11B) 11B Multitask
Flan-T5 (base) 250M Multitask
Flan-T5 (XL) 3B Multitask
InstructGPT-3 (ada) 350M (est.) Multitask, human feedback
text-davinci-002 Unknown FeedME

Table 4.2: Models tested in our experiments.

compare the probabilities of each answer token (e.g., “1”, “2”, “3”, or “4”) under this

distribution. The model is considered correct on a given item if it assigns highest probability

to the correct answer token, among all the possible answer tokens for that item.

We generated 5 versions of each item by randomizing the order of answer options. This

was done to control for the base probabilities of the answer tokens. Since we do not analyze

generated text, the model results themselves are deterministic.

4.4.2 Models

We test seven models across four model families, summarized in Table 4.2.8 As a baseline,

we first test a base GPT-2 model (117M parameters; Radford et al., 2019), which is trained

on an autoregressive language modeling objective.

Second, we test a set of models which are based on T5 (Raffel et al., 2020) and instruction-

finetuned on a diverse collection of tasks (Wei et al., 2022a). This set of models consists of

two T𝑘-Instruct models (3B and 11B; Wang et al., 2022), which were fine-tuned on 1.6K

tasks, and two Flan-T5 models (base: 250M parameters; XL: 3B parameters; Chung et al.,

2022), which were fine-tuned on 1.8K tasks. The fine-tuning tasks cover a wide range of

categories, such as commonsense reasoning, translation, mathematics, and programming.

Finally, we test two InstructGPT-based models (Ouyang et al., 2022) via the OpenAI

API: text-ada-001 (350M parameters), which we refer to as InstructGPT-3 (ada); and

text-davinci-002, which comes from the GPT-3.5 family of models.9,10 These models are

8All non-OpenAI models were accessed via Huggingface (Wolf et al., 2020) and run on a single NVIDIA
A100 GPU.

9Parameter estimates come from https://blog.eleuther.ai/gpt3-model-sizes/. Although the size
of text-davinci-002 is unknown, we assume that it is larger than InstructGPT-3 (ada).

10The OpenAI models are not fully reproducible, but timestamps of model runs can be found in Appendix B.2.
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fine-tuned to follow instructions and align with human feedback.

We compare models to a baseline from 374 humans, collected by Floyd et al. (In prep).

Their experiments presented multiple choice questions to humans in nearly identical format

to our prompts.

4.5 Results

We now return to the three questions posed in the Introduction, in each of the following

subsections.

4.5.1 Do models choose the target pragmatic interpretation?

Figure 4-1 shows the proportion of trials where models and humans select the pragmatic

answer. The smallest models (GPT-2, Flan-T5 (base), InstructGPT-3 (ada)) fail to perform

above chance. The largest models (T𝑘-Instruct (11B), Flan-T5 (XL), text-davinci-002)

perform above chance on all tasks (except T𝑘-Instruct (11B) on Maxims), and in some cases

near human-level. Overall, models perform worst at the Humor, Irony, and Maxims tasks.

Interestingly, these phenomena involve speakers violating listeners’ expectations in some

way: producing a funny punchline to a mundane story (Humor), stating the direct opposite

of the speaker’s belief (Irony), or disobeying one of the assumed rules of conversation

(Maxims). It may be that models fail to represent certain social expectations that are

maintained by human listeners.

Next, we investigated the relationship between model size and accuracy. Figure 4-2

shows the mean accuracy achieved by each model (averaged across tasks) vs. millions of

parameters.11 The line and error bars denote the mean and 95% CIs, while points represent

individual models. We find a coarse effect of model size: there is a stark jump in accuracy

after 1B parameters (dashed line). However, model size does not fully explain variance

in accuracy: all models with <1B parameters achieve similar accuracy, and Flan-T5 (XL)

outperforms T𝑘-Instruct (3B), despite both having 3B parameters.

11text-davinci-002 was excluded from this analysis, as the number of parameters is unknown.
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Figure 4-1: Accuracy for each task. Error bars denote 95% CI. Dashed line indicates
task-specific random baseline.
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Figure 4-2: Mean accuracy vs. millions of parameters. Vertical dashed line indicates 1
billion parameters.

4.5.2 Do models and humans make similar types of errors?

Recall from Section 4.3 that each item has a set of answer options that correspond to different

strategies (Table 4.1).12 In addition to the target pragmatic answer (Correct), each item also

has a plausible but unlikely literal answer (Literal), as well as distractors based on lexical

overlap or semantic associations (Distractor*). For each item, we computed the human

empirical distribution over answer choices, and compared it to models’ probability assigned

to the answer tokens (e.g., “1”, “2”, “3”, and “4”).

Figure 4-3 shows the answer distributions across models and humans for each task.

Across tasks, humans primarily select the Correct option, occasionally select the Literal

option, and rarely select the distractors. We find a similar pattern for text-davinci-002,

although the model is more likely to select the Literal option in general. The other large

models (T𝑘-Instruct (11B) and Flan-T5 (XL)) also generally assign highest probability to the

Correct and Literal options, although the distribution looks less human-like. The next-largest

models (T𝑘-Instruct (3B) and Flan-T5 (base)) prefer the Literal option, and the remaining

12The exception is Coherence, which is excluded here.
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Figure 4-3: Response distributions across models and humans. Answer options for each
task are shown on the x-axis. For models, y-axis denotes probability assigned to each
answer option. For humans, y-axis denotes empirical frequency of each answer option being
selected. Error bars denote 95% CI. Dashed line indicates random baseline.

models (GPT-2 and InstructGPT-3 (ada)) are at chance. These results suggest that, for our

test items, larger models satisfy the basic language processing component of pragmatic

comprehension: when these models fail, they strongly prefer the literal interpretation over

semantically and lexically related distractors.

However, even highly performing models occasionally do select the distractor answers,

revealing interesting behaviors. For example, in the Metaphor task, text-davinci-002 and

Flan-T5 (XL) prefer the DistractorPlausibleLiteral option – which is a figurative reading of

the utterance – over the Literal option – which is completely non-figurative. Similarly, in the

Humor task, text-davinci-002 is much more likely to select the DistractorFunny option over

the other (non-humorous) distractors. This suggests a coarse sensitivity to humor, even if

the model selects the human-preferred punchline only 55% of the time (see Figure 4-1). We

take this analysis to illustrate the value of looking beyond binary pragmatic/non-pragmatic

response distinctions, and using controlled distractor items to evaluate models’ abilities
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(e.g., McCoy et al., 2019).

4.5.3 Are models and humans sensitive to similar linguistic cues?

Having found qualitatively similar response patterns between humans and models, we now

ask how models and humans arrive at pragmatic interpretations, and whether they use similar

types of information. We begin with a broad evaluation of the extent to which models and

humans rely on linguistic context (Section 4.5.3). Finally, we take a more granular approach

and ask whether model and human performance is correlated at the item level – i.e., if models

and humans exhibit similar sensitivity to the cues that make a non-literal interpretation more

or less likely (Section 4.5.3).

The role of context

Many cues for enriched language understanding come from the context in which the speaker

makes their utterance. However, some aspects of non-literal comprehension might arise

given the utterance in isolation, while others are highly sensitive to specific contextual

details (e.g., Levinson, 2000). Therefore, we expect that the degree to which humans rely

on context to select non-literal interpretations will vary across the tested tasks.

To investigate this variation, we created a new set of stimuli by removing the context

stories, leaving only the speaker utterance and final question (e.g., Dan says, “The dog

knocked it over.” Why has Dan responded in such a way?).13 We re-ran the human

experiment on 30 participants, following the protocols of Floyd et al. (In prep)’s original

experiment using the no-context modified materials.14 We also re-ran the three models

that achieved highest accuracy on the original items: T𝑘-Instruct (11B), Flan-T5 (XL), and

text-davinci-002.

Figure 4-4 shows the mean accuracy difference on the original versus no-context versions

of each item.15 We find that models and humans exhibit a similar qualitative pattern:

13This manipulation is not compatible with the Humor and Coherence tasks, so they are excluded from this
analysis.

14Details can be found in Appendix B.3.1.
15See Figure B-1 in Appendix B.3.2 for comparison of raw accuracy scores on the original and no-context

items.
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Figure 4-4: Mean by-item difference in accuracy once story context was removed.

removing the story leads to the largest degradation for Irony, followed by Deceits and

Maxims. This aligns with our intuitions, because in these cases, speakers’ utterances can be

interpreted either literally or as the complete opposite, based on the specific social situation

(e.g., “It is so pleasant here”). In contrast, there are smaller degradations for IndirectSpeech

and Metaphor. This suggests that some indirect requests are conventionalized (e.g., “I am

getting cold”), although their interpretations may be facilitated by context (e.g., Gibbs,

1979). Similarly, this suggests that metaphor interpretation may draw more upon global

knowledge than local context.

Scrambling. Next, we tested whether models rely on syntactic and discourse-level infor-

mation from the context, or whether they can perform the tasks when ordering cues are

removed. We constructed two scrambled versions of each item by randomizing the order

of sentences and words. In both versions, the instructions, final question (e.g., Why has

Dan responded in such a way?), and answer options were unmodified and remained in their

original positions. Again, we only tested the best-performing models on these items.

We found that the models maintain reasonable performance for most tasks, with the

notable exception of Metaphor (Figure B-2; Appendix B.4). This accords with prior work

showing that models often rely on lexical information without human-like compositionality

(e.g., Dasgupta et al., 2018; Nie et al., 2019; McCoy et al., 2019). We expect that scrambling,

especially at the word-level, would likely disrupt human performance, but this remains an

open empirical question. We leave an in-depth investigation of human performance to future

work.
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Item-level alignment

Up to this point, we analyzed differences across phenomena by averaging over items.

However, there is also variance within each phenomenon in the types of cues that suggest how

the utterances should be interpreted. For example, some items contain explicit descriptions

of characters’ emotional states (e.g., “Sarah becomes angry”). If models and humans

leverage these cues in similar ways, then we would expect to see correlations between model

and human performance at the item level.

For each task and model, we compute the Pearson correlation between by-item mean

accuracy achieved by humans and by-item mean probability that models assigned to the

correct answer (Figure 4-5). In general, the larger models (T𝑘-Instruct (11B), Flan-T5 (XL),

text-davinci-002) are better aligned with humans, and the strongest correlations occur for

IndirectSpeech, Irony, Maxims, and Metaphor. This suggests that for those tasks, models

and humans are similarly sensitive to cues that make a non-literal interpretation likely.

4.6 Discussion

We used an expert-curated set of materials (Floyd et al., In prep) to compare LMs and

humans on seven pragmatic phenomena. We found that Flan-T5 (XL) and text-davinci-002

achieve high accuracy and match human error patterns: within incorrect responses, these

models tend to select the literal interpretation of an utterance over heuristic-based distractors.
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We also found preliminary evidence that LMs and humans are sensitive to similar linguistic

cues: model and human accuracy scores correlate at the item-level for several tasks, and

degrade in similar ways when context is removed.

Our results suggest that language models can consistently select the pragmatic interpre-

tation of a speaker’s utterance – but how? The models tested in our experiments reflect a

variety of learning processes through which pragmatic knowledge could emerge. GPT-2

is trained to learn the distribution of linguistic forms; the T𝑘-Instruct and Flan-T5 models

are pre-trained on a denoising task and fine-tuned on thousands of instruction-based tasks;

and the OpenAI models receive signal from human feedback. Our experiments are not

designed to tease apart the contributions of these training procedures to models’ behaviors.

Therefore, we do not intend to make strong claims about the mechanisms by which models

learn pragmatics.

A shared feature of our tested models is the lack of explicitly constructed mental state

representations. In this sense, our results are potentially compatible with two hypotheses.

One possibility is that the models do not have an ability that can be considered an analog of

Theory of Mind (ToM). This view is supported by evidence that language models perform

poorly on social commonsense and false-belief tasks (Sap et al., 2022), and are remarkably

brittle to small perturbations of classic tests (Ullman, 2023). If models truly lack ToM, then

their pragmatic behaviors might be explained by inferences based on low-level linguistic

cues. Taken a step further, this could potentially suggest that certain human pragmatic

behaviors arise through inferences based on language statistics, with no need for mental

state representations.

A second possibility is that models do have a heuristic version of ToM, which is

not explicitly engineered but instead emerges as a by-product of optimizing for other

objectives (such as linguistic prediction). Since language contains many descriptions of

agents’ beliefs, emotions, and desires, it may be beneficial – perhaps even necessary –

to induce representations of these mental states in order to learn a generative model of

linguistic forms. Indeed, Andreas (2022) argues that whereas language models have no

explicit representation of communicative intents, they can infer approximate representations

of the mental states of the agents that produce a given linguistic context. If this hypothesis
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is true, however, it would still remain unclear whether ToM is necessary to support the

pragmatic behaviors tested in our evaluation materials.

Our experiments do not differentiate between these two hypotheses. However, fine-

grained behavioral evaluations – such as those presented in this work – are important for

revealing models’ capabilities and weaknesses, and offer a first step toward understanding

how pragmatic behaviors could emerge. A promising direction for future work is to test

models with a wider range of training objectives, or even new architectures, such as distinct

language and reasoning modules (see Mahowald et al., 2023). In addition, while there is

evidence for the role of mentalizing in our tested pragmatic phenomena (see Section 4.3.1),

one limitation of our stimuli is that they were not specifically designed to require ToM.

New datasets that perform targeted manipulations of ToM alongside tests of language

comprehension could help shed light on how linguistic experience and ToM jointly support

pragmatic behaviors.
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Chapter 5

Conclusion

This thesis presents three case studies using artificial neural networks (ANNs) to investigate

questions about language learning and comprehension. In particular, we use ANNs to test

the idea that experience with linguistic forms – and the induced probabilistic expectations –

can support the emergence of complex linguistic abilities. Our findings demonstrate that

ANNs capture many human language behaviors, which adds plausibility to the idea that

certain aspects of linguistic competence could, in principle, emerge through domain-general

probabilistic learning. However, our experiments also reveal areas where optimizing for

word-prediction might not be enough: for example, hierarchical inductive biases appear to

support human-like syntactic generalizations in small-data settings (Chapter 2), and scalar

inference rates are better captured by treating unspoken alternatives as concepts instead of

raw string forms (Chapter 3).

Importantly, these studies do not provide direct evidence that humans are acquiring

or processing language in any particular way. As discussed in Section 1.2.3, models and

humans differ drastically in many respects, such as the quantity, genre, and modality of

their training data. As such, positive evidence that a model possess a particular linguistic

ability does not license the conclusion that models and humans achieve that outcome in

similar ways. Nonetheless, the question posed above – whether experience with linguistic

forms can support the emergence of complex linguistic abilities – remains relevant from

a cognitive perspective. For example, it is not obvious whether experience with linguistic

forms enables a learner to formulate distributional categories over abstract categories of
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words, or whether speaker intentions can be inferred at all without built-in representations of

communicative goals. Furthermore, if it is the case that human linguistic abilities do emerge

through statistical learning and prediction, this would support the broader views that humans

are tuned to their environments (Anderson, 1990; Anderson and Schooler, 1991; Tomasello,

2003; Bybee and Beckner, 2015) and that prediction serves as a core motif in the mind

and brain (Bar, 2009; Bubic et al., 2010; Den Ouden et al., 2012). Orthogonally, ANNs

enable us to systematically investigate these questions in a way that would be infeasible in

humans. In this sense, even if our results do not provide a mechanistic explanation of human

linguistic abilities, the type of evidence offered by our experiments – for example, favoring

a certain inductive bias over another (Chapter 2) – marks a methodological contribution in

approaching long-standing questions about language learning and understanding.

In the remainder of this chapter, I discuss broader implications of ANN language

models for understanding the human mind (Section 5.1), as well as for developing artificial

intelligence systems with language abilities (Section 5.2).

5.1 Implications for cognitive science

LMs as scientific theories. A growing movement proposes that ANN language models

(LMs) should be treated as implemented theories of language acquisition and processing

(e.g., Baroni, 2022; Wilcox et al., 2022a; Contreras Kallens et al., 2023; Piantadosi, 2023).

Many of these studies focus on the implications of LMs for nativism, or arguments that

human linguistic knowledge relies on innate, language-specific learning mechanisms (e.g.,

Chomsky, 1965). At face value, LMs appear to challenge the predictions made by this

theoretical approach: they use language with remarkable fluency and sophistication, while

having very different primitives from those postulated in generative linguistics. For example,

LMs have continuous and gradient representations, typically lack built-in language-specific

machinery, and optimize for objectives related to distribution learning (e.g., next-word

prediction, masked language modeling, or infilling, occasionally with additional supervision

from human preferences). Indeed, Piantadosi (2023) goes so far as to claim that LMs

“refute” Chomsky’s foundational assumptions about the way language is acquired and
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represented. The mechanisms of LMs, Piantadosi argues, reflect a deep integration of syntax

and semantics, as well as a central role for probabilistic prediction, in contrast to prior

proposals about the autonomy of syntax and irrelevance of probabilities (e.g,. Chomsky,

1957, 1968; Adger, 2018).

Piantadosi’s argument (and similar perspectives) has been criticized from several angles,

such as its conflation of likelihood and grammaticality (Katzir, 2023), its misinterpration of

Chomsky’s key claims (Milway, 2023), and even its logical basis (Rawski and Baumont,

2023; Milway, 2023). Perhaps the most prominent critique is that LMs are fundamentally

limited in their relevance to scientific theory, as they do not explain key traits of the human

language faculty. For example, Milway (2023) and Chomsky1 argue that LMs do not

differentiate between natural languages and “impossible languages”, or languages with

grammatical features that would not be easily acquired by humans. Similarly, LMs do

not explain linguistic “universals”, such as the regularity of phonological processes and

hierarchical dependencies in syntax (Katzir, 2023). In this sense, LMs fall short as linguistic

theories, as they do not predict which features are (un)attested in human languages, let alone

why these features are (dis)preferred.

Another criticism is that LMs conflate competence and performance, which linguists

have argued to be distinct components of human language (Yngve, 1960; Chomsky, 1965;

Dupre, 2021; Katzir, 2023). For example, Katzir (2023) claims that “[LMs’] behavior

directly reflects their competence, and when they fail it is their competence that is at

fault”; furthermore, he argues, “it is never the case” that an LM’s competence supports the

correct underlying generalization, while its behavior reflects a “failure” due to performance

constraints. However, many researchers have highlighted a functional distinction between

performance and competence in LMs (e.g., Miracchi, 2019; Firestone, 2020). For both

models and humans, any method of evaluating linguistic knowledge will pose its own

set of task demands, which will necessarily influence the behaviors measured under that

paradigm. Indeed, in many cases, LMs’ performance failures can be ameliorated with

evaluation methods that better “motivate” the model or expand its contextual resources,

such as few-shot or chain-of-thought prompting (e.g., Wei et al., 2022c; Lampinen, 2023;

1https://www.youtube.com/watch?v=PBdZi_JtV4c; see pages 2-3 of Milway (2023) for details.
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Moghaddam and Honey, 2023). In this sense, contrary to Katzir’s claim, a model could

represent the correct generalization, while producing behaviors that depend on task demands

and environmental pressures.

Clearly, it remains debated which aspects of generative linguistics are challenged by LMs.

It may be fruitful to consider hybrid perspectives, combining algebraic linguistic formalisms

with data-driven, bottom-up statistical learning. For example, behavioral tests (such as those

in Chapter 2) have highlighted the promise of neuro-symbolic language models, such as

recurrent neural network grammars (Dyer et al., 2016) and Transformer grammars (Sartran

et al., 2022). Indeed, while one potential conclusion from Piantadosi’s argument is that LMs

support connectionist views of language (e.g., Rumelhart and McClelland, 1986; Rumelhart

et al., 1987), the empirical landscape is compatible with alternate views: for example,

that structural inductive biases are necessary early during learning, but certain syntactic

computations become amortized and can later be gleaned from language statistics. Another

consideration is that it may be misguided to treat LMs as blank-slate learners, as is done

in many studies to provide a theoretical counterpoint to nativist approaches (see Baroni,

2022, for examples). Instead, Baroni (2022) argues that LMs embody specific inductive

biases, which should be seen as testable scientific theories. On this view, a particular

model architecture (e.g., LSTM or Transformer) can be seen as defining a space of possible

grammars, and a model trained on data from a particular language can be seen as a system

that predicts whether an input utterance is acceptable in that language.

Regardless of one’s theoretical position, the surprising capabilities of LMs warrant at

least a re-examination of traditional assumptions regarding the inductive biases, cognitive

architectures, and learning processes that support human language. Furthermore, LMs allow

us to generate and test predictions through systematic, large-scale simulations given precise

architectural and environmental assumptions. In this sense, the type of evidence contributed

by LMs marks a qualitative shift in the way we can test theories of language acqusition and

processing. It appears promising to continue probing LMs as scientific theories, combining

psycholinguistic methods and linguistic theory to advance our understanding of human

language.
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LMs as quantity estimation tools. While many recent studies have focused on LMs and

language acquisition, another way that LMs can inform linguistic theory is by estimating

quantities that enable theory-testing at new scales. One of the most successful examples

of this approach is the theory of expectation-based language comprehension. A body

of empirical work has demonstrated a tight link between human reading times and LM-

derived next-word probabilities (e.g., Levy, 2008; Smith and Levy, 2013; Shain et al.,

2022). In addition, Chapter 3 of this thesis shows that context-sensitive expectations also

explain variation in pragmatic inferences. Together, these findings provide large-scale

evidence for predictive mechanisms during language comprehension – a type of evidence

that, crucially, relies on models that can estimate string probabilities in arbitrary contexts

with fine granularity.

A relatively underexplored way of using LMs to operationalize theories at naturalistic

scales is in the domain of pragmatics. Many researchers have proposed computational

accounts of pragmatics that formalize Grice’s (1975) idea of rational communication using

game theory and Bayesian inference. These proposals could have profound implications for

describing language with broader cognitive principles, framing communication as a rational,

inferential process. However, the proposed modeling frameworks are often difficult to test

beyond toy domains. One challenge is that these models are highly sensitive to quantities

such as costs and prior likelihoods of world states, which are typically specified by hand.

Recent work has leveraged ANNs to address this challenge – for example, by estimating

utterance costs in pragmatic speaker models through statistical learning (Nie et al., 2020a).

Another major challenge for many pragmatics models is specifying the literal meanings

of linguistic expressions, or a function that describes how semantically compatible a certain

expression is with a certain meaning (the “lexicon” function). Prior work has addressed

this challenge by training ANNs to parameterize this function (e.g., Andreas and Klein,

2016; Monroe et al., 2017), providing new support for pragmatic reasoning in scaled up,

non-toy domains. This demonstrates how ANNs can enable pragmatic-theory-testing in

naturalistic settings, but unfortunately requires large amounts of labeled data and new models

for each new task. A promising future direction is to derive lexicon functions from large

language models (LLMs), which can output vast semantic knowledge without the need for
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additional fine-tuning datasets or gradient updates. For example, LLMs can be prompted

to provide semantics in color and spatial domains through few-shot in-context learning

(Patel and Pavlick, 2022). Using unstructured data-driven knowledge from LMs as the

semantic inputs to a Bayesian reasoning process (such as the Rational Speech Act model;

Frank and Goodman, 2012; Goodman and Frank, 2016) could allow us to test the hypothesis

that humans engage in a hybrid reasoning process, where some information is implicit in

data-driven statistical knowledge, and other information is derived through probabilistic

symbolic reasoning. This also connects to prior work using LMs to provide primitives in

a probabilistic language of thought (Goodman et al., 2015) to solve structured reasoning

problems (Lew et al., 2020).

There are many promising ways that ANNs could inform theories about human language

and cognition. With that said, there are still many open questions about how existing models

work the way they do. For example, why are models trained on next-word prediction so

effective at capturing human language comprehension behaviors? One approach (known as

“probing”) has investigated this question by analyzing the information encoded in model

representations using simple readout functions. Many studies have demonstrated that LMs

represent syntactic parse trees (Hewitt and Manning, 2019; Manning et al., 2020) and

incremental syntactic parse states (Eisape et al., 2022), suggesting that incremental syntactic

inferences may underlie next-word prediction. But to what extent do these representations of

symbolic structures play a causal role in model dynamics, versus simply reflecting a property

of the probing functions? Another open puzzle is that LMs capture human behavioral trends

in targeted syntactic assessments, and yet they consistently underpredict the magnitude of

human processing difficulties (Wilcox et al., 2021; van Schijndel and Linzen, 2021). This

tension – predicting qualitative processing difficulties, while systematically misestimating

the magnitude of syntactic violations – reveals a misalignment between the way humans

and ANNs process incremental linguistic content. If models are misaligned with humans

in this way, then how do they produce language that sounds so fluent and human-like?

These questions merely scratch the surface of a trove of mysteries about the successes and

limitations of modern LMs. Reaching a deeper understanding of these models – through a

combination of behavioral and representational analyses – can help us gain even sharper
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Benchmarking Targeted evaluation

Design What are the downstream tasks that
we want our model to succeed at?

What are the behavioral or represen-
tational signatures of the knowledge
that we want our model to learn?

Methods When we probe/prompt the model,
what type of information falls out?

Which analysis method is best
suited to measure the information
of interest?

Interpretation of results Does the model improve upon state-
of-the-art task performance?

Which hypotheses are supported by
the model results?

Table 5.1: Contrast between traditional NLP benchmarking and targeted evaluation.

insights into the mechanisms of the mind.

5.2 Implications for natural language processing

In this thesis, the primary role of ANNs is to investigate theoretical questions about human

language learning and understanding. However, the studies presented in Chapters 2 to 4 also

contribute new tests for evaluating human-like linguistic knowledge in ANNs. As one of

the goals of natural language processing (NLP) is to build models that use language like

humans do, a critical enterprise for NLP research is to develop evaluation paradigms that

measure a model’s ability to capture key features of human language.

Currently, the dominant paradigm for NLP model evaluation is benchmarking. Bench-

marks use large collections of items to measure how well a model performs on a certain

task (e.g., Williams et al., 2018; Wang et al., 2019b,a; Nie et al., 2020b; Srivastava et al.,

2022). Typically, models are pre-trained on a general objective (such as language modeling),

and then fine-tuned and evaluated on the downstream task of interest. Many popular bench-

marks have garnered criticsm for being solvable based on spurious heuristics (e.g., McCoy

et al., 2019), being quickly saturated by modern models (Kiela et al., 2021), over-rewarding

low-bias architectures (Linzen, 2020), and harboring biases and poor design (Bowman and

Dahl, 2021). This has inspired new approaches such as adversarially constructed items

(Kiela et al., 2021) and massive collections of tasks (Srivastava et al., 2022), but the general

paradigm remains fundamentally the same.

This thesis demonstrates a complementary approach: using controlled assessments
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to measure whether models exhibit behavioral signatures of human linguistic knowledge.

Table 5.1 highlights the primary contrasts between benchmarking and targeted evaluation,

which I discuss in more detail in the remainder of the section.

Task design. As NLP technologies are widely deployed in consumer-facing products

(e.g., Dale, 2019; Le Glaz et al., 2021), there is broad interest in evaluating NLP models on

tasks that are “downstream” (i.e., closer to an end-point application) from a general training

objective like language modeling. This task-driven approach also influences benchmarks

that are meant to measure more abstract linguistic abilities. For example, the *GLUE family

of benchmarks – which are intended to measure “general-purpose language understanding”

(Wang et al., 2019b,a) – consist of tasks like question answering, natural language inference,

and paraphrasing.

Instead of asking which tasks a model should succeed on, targeted evaluation asks:

what are the behavioral or representational signatures of the knowledge we’re interested in

evaluating? For example, suppose we are interested in evaluating whether a model captures

generalizations about English syntax. One approach would be to define a benchmark based

on an acceptability classification task, training classifier models on top of sentence encoders

to output the probability of a sentence being grammatical or ungrammatical (e.g., Warstadt

et al., 2019). In contrast, a targeted evaluation approach would identify the signatures

of the knowledge that the model should learn: a model that has captured the relevant

generalizations should assign higher probability to grammatical strings than minimally

different ungrammatical counterparts (see Chapter 2; also Warstadt et al., 2020a). This

approach measures the knowledge implicit in the model, without direct experience with the

evaluation setup.

Another important aspect of task design is specifying how model outputs should be

compared to human behavior. Many benchmarks compare models’ task performance to a

human-level baseline that averages performance over a large number of human crowdwork-

ers. However, in many cases, there is systematic variation in human behaviors that may

complicate such categorical generalizations (Pavlick and Kwiatkowski, 2019; Jiang and

de Marneffe, 2022; Baan et al., 2022; Webson et al., 2023), or should be directly captured
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by the model (see Chapter 3).

Methods & linking functions. Like humans and other intelligent systems, modern NLP

models produce sophisticated patterns of behavior, but their underlying mechanisms cannot

be directly observed. The past decades have produced a variety of methods for analyzing the

knowledge and abilities of NLP models (for review, see Belinkov and Glass, 2019). Many

NLP studies select an analysis method – such as prompting, behavioral testing, or probing –

and apply it to a phenomenon of interest, without explicitly stating (1) the type of knowledge

that, in principle, can be revealed by that method; and (2) assumptions that the method makes

about the relationship between behavior and representations. This issue of linking functions

is central in cognitive science, where a major research goal is to link observable behaviors to

underlying mental models (e.g., Jasbi et al., 2019) or neurobiological representations (e.g.,

Ivanova et al., 2022). However, few NLP benchmarks explicitly describe the hypothesized

link between model outputs and underlying representations. In contrast, targeted evaluation

should clearly specify the assumptions made by the analysis method, and choose a method

that is best suited to measure the behavioral or representational phenomenon of interest.

As an example, suppose we are interested in whether LMs exhibit human-like linguistic

predictions. One could design a benchmark that queries models’ internal expectations

through prompts. Figure 5-1 shows an example interaction with ChatGPT (circa December

2022) with the following prompt: “what are probable candidates for the next word of the

sentence ‘the dog barked because’?” While the model clearly has the ability to produce

probable candidates for the next word of the sentence – that is precisely the task it has

been pre-trained on – it responds to the prompt by stating that it is “not able to provide

a list of ‘probable’ candidates”.2 In contrast, evaluating the model’s output logits after

consuming the sentence prefix would allow us to directly measure probable candidates for

continuations under the distribution learned by the model. Clearly, this second approach is

a more robust way to measure LMs’ expectations than the prompting method. But it still

isn’t as simple as it seems. If we want to compare model-derived probabilities to human

linguistic predictions, then we would need to specify a link between probabilities and human

2Source: https://twitter.com/yoavgo/status/1598360581496459265
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Figure 5-1: Example interaction with ChatGPT, asking the model about probable candidates
for the continuation of the sentence “the dog barked because”. Source: https://twitter.
com/yoavgo/status/1598360581496459265

behaviors. For example, if we want to compare model-derived next-word probabilities

with human word-by-word reading times, then we need to justify the assumed functional

relationship between these quantities. If we want to compare model sentence-completions

with human sentence-completions (e.g., in a Cloze task), then we need to justify the assumed

decoding method that produces samples from the underlying distribution. More broadly,

NLP researchers should motivate the choice of analysis method, as well as any assumed

links between variables of interest, in order to frame the interpretation of the empirical

findings.

Interpretation & statistical analysis. The goal of the targeted evaluation paradigm is

to use model data to adjudicate between competing hypotheses, whereas benchmarking

is typically used to test whether a model improves upon the state-of-the-art on a certain

task. This distinction has connections to a broader theme in the changing NLP landscape:

the shift from engineering to science. Now that NLP researchers and practicians have

created models that are capable of incredible feats and tasks, there has been an outpouring

of attempts to reverse-engineer the inner workings of these models, spawning new subfields

like “BERT-ology” (e.g., Rogers et al., 2021). These changes are making the research

goals of NLP – to understand the mechanisms of a complex system by observing its
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behaviors and representations – increasingly aligned with the research goals of (cognitive)

science. However, the methods of NLP – especially with respect to experiment design and

interpretation of results – haven’t shifted to align with the methods of science in the same way.

Many proposals have advocated for using the tools of natural and psychological sciences

to improve the scientific rigor of NLP research. For example, van Miltenburg et al. (2021)

argue for using preregistration in NLP research, which allows researchers to distinguish

between exploratory hypothesis generation and confirmatory hypothesis testing (Nosek

et al., 2018). Others have advocated for designing evaluations with sufficient statistical

power (Card et al., 2020) and performing significance testing for appropriate interpretation

of results (Yeh, 2000; Koehn, 2004; Riezler and Maxwell, 2005; Berg-Kirkpatrick et al.,

2012; Søgaard et al., 2014; Dror et al., 2018; Sadeqi Azer et al., 2020).

Returning to the broader picture, targeted evaluation is not a replacement for bench-

marking – instead, it should be a complementary tool. There is certainly value in having

massive amounts of test items (e.g., to control for lexical confounds), or being able to easily

compare models using a single metric for specific downstream applications. Indeed, the

points highlighted above – carefully designing tasks, methods, and statistical analyses that

measure the signatures of human-like linguistic knowledge – can also be integrated into

traditional benchmarking paradigms. Nevertheless, recent benchmarks seem to primarily

follow the trend of getting larger (e.g., Srivastava et al., 2022), which is orthogonal to the

suggestions described in this section. Continuing to develop targeted evaluations, grounded

in what we know about the human language faculty, is a promising direction for building

artificial models with human-like linguistic abilities.
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Appendix A

Supplementary material for Chapter 2

A.1 Description of test suites

In this work we have assembled a large number of test suites inspired by the methodology of

experimental sentence-processing and psycholinguistic research. Each test suite contains a

number of ITEMS, and each item appears in several CONDITIONS: across conditions, a given

item will differ only according to a controlled manipulation designed to target a particular

feature of grammatical knowledge. For each suite we define a SUCCESS CRITERION, which

stipulates inequalities among conditional probabilities of sentence substrings.

In the main paper, a model’s accuracy for a test suite is computed as the percentage of

the test suite’s items for which it satisfies the criterion. In this appendix, we briefly describe

each test suite and the criterion used to determine whether a given model succeeds on each

item of the test suite.

A.1.1 Notation

Sentence status

Following and building on linguistic traditions, we annotate examples as follows. Examples

marked with a * violate a well-established grammatical constraint, and are ungrammatical.

Examples marked with ? or ?? are not necessarily ungrammatical, but are marginal: for

example, they may require an unusual interpretation of a word in order for the sentence

101



to be grammatical. (More ?’s is roughly intended to indicate more severe marginality).

Examples marked with ! are not ungrammatical, but induce severe processing difficulty

that is measurable in real-time human sentence processing. For all test suites, we include

references to established literature on the relevant grammatical and/or sentence-processing

phenomena.

Success criteria

Criteria involve inequalities among conditional probabilities of sentence substrings given

the complete sentence context preceding the substring. In describing criteria, we use 𝑃 (·)

for raw probabilities and 𝑆(·) for surprisals (negative log-probabilities), and leave the

conditioning on preceding context implicit. For concision, we use subscripts on 𝑃 and 𝑆

to indicate the variant of the sentence within the test suite that we are referring to. In the

first described test suite, CENTER EMBEDDING (Appendix A.1.2), we show the criterion in

both concise and fully spelled-out forms, to help clarify the conventions we are using in the

concise form. All items within a given test suite share the same criterion for success.

We provide chance accuracy on the assumption that the order of probabilities among

conditions for a given item is random. In some cases, exactly determining chance accuracy

may require further assumptions about the distribution of these probabilities; in this case we

provide an upper bound on chance accuracy.

A.1.2 Center embedding

Center embedding, the ability to embed a phrase in the middle of another phrase of the same

type, is a hallmark feature of natural language syntax. Center-embedding creates NESTED

SYNTACTIC DEPENDENCIES, which could pose a challenge for some language models. To

succeed in generating expectations about how sentences will continue in the context of

multiple center embedding, a model must maintain a representation not only of what words

appear in the preceding context but also of the order of those words, and must predict that

upcoming words occur in the appropriate order. In this test suite we use verb transitivity and

subject–verb plausibility to test model capabilities in this respect. For example, A below is a
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correct center-embedding, but B is not:

(A) The paintingN1 that the artistN2 paintedV2 deterioratedV1 . [correct]

(B) ??The paintingN1 that the artistN2 deterioratedV1 paintedV2 . [incorrect]

Here, N𝑖 and 𝑉𝑖 correspond to matched subject–verb pairs.

In the WITH-MODIFIER version of the test suite, we postmodify N2 with a relative

clause to increase the linear distance over which the nested dependencies must be tracked,

potentially leading to a harder test suite:

(A) The paintingN1 that the artistN2 who lived long ago paintedV2 deterioratedV1 . [cor-

rect]

(B) #The paintingN1 that the artistN2 who lived long ago deterioratedV1 paintedV2 . [incor-

rect]

Criterion The probability of the verb sequence in the correct variant should be higher

than the probability of the verb sequence in the incorrect variant:

𝑃A(V2V1) > 𝑃B(V1V2)

In full form, this criterion for the example item in the no-modifier version of this test suite

would be:

𝑃 (painted deteriorated|The painting that the artist) >

𝑃 (deteriorated painted|The painting that the artist)

Chance performance on these center-embedding test suites would be 50%.

References Miller and Chomsky (1963);Wilcox et al. (2019a)

A.1.3 Pseudo-clefting

The pseudo-cleft construction involves (i) an extraction of a TARGETED CONSTITUENT

from a sentence and (ii) a constituent that provides the semantic contents of the targeted
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constituent and must match it in syntactic category, where (i) and (ii) are linked by the

copula. The pseudo-cleft construction can target both NPs and VPs; in the latter case, the VP

of the free relative becomes an inflected form of do. This means that a free relative subject

plus the copula can set up a requirement for the syntactic category that comes next. If the

free relative clause has a do VP without a direct object, then the main-clause postcopular

predicate can be a VP (A below). Otherwise, the postcopular predicate must be an NP (C

below):

(A) What the worker did was
VP⏞  ⏟  

board the plane.

(B) ?What the worker did was
NP⏞  ⏟  

the plane.

(C) What the worker repaired was
NP⏞  ⏟  

the plane.

(D) *What the worker repaired was
VP⏞  ⏟  

board the plane.

Criterion The postcopular predicate should be more surprising when its syntactic category

mismatches the cleft, averaging across VP and NP postcopular predicates:

𝑆D(VP) + 𝑆B(NP) > 𝑆C(NP) + 𝑆A(VP)

Chance is 50%. A more stringent criterion would be to apply this requirement separately for

each of NP and VP postcopular predicates:

𝑆D(VP) > 𝑆A(VP) ∧ 𝑆B(NP) > 𝑆C(NP)

However, it is often possible to use an NP postcopular predicate with a do cleft through

semantic coercion (e.g., in B “did” can be interpreted as “fixed” or “was responsible for”),

so we felt that this latter criterion might be too stringent.

References Higgins (1973)
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A.1.4 Filler–gap dependencies

Consider the following sentence, in which all arguments and adjuncts appear “in situ” (in

the syntactic position at which they are normally interpreted semantically):

I know that our uncle grabbed the food in front of the guests at the holiday

party.

A FILLER–GAP DEPENDENCY can be created by EXTRACTING any of a number of elements

from the subordinate clause, including our uncle (subject extraction), the food (object

extraction) or the guests (extraction from a prepositional phrase). These possibilities serve

as the basis for several test suites on filler–gap dependencies.

References Ross (1967); Crain and Fodor (1985); Stowe (1986); Wilcox et al. (2018);

Chowdhury and Zamparelli (2018); Chaves (2020)

Subject extractions

(A) I know that
𝛼⏞  ⏟  

our uncle grabbed the food in front of the guests at the holiday party.

[THAT, NO GAP]

(B) *I know who
𝛼⏞  ⏟  

our uncle grabbed the food in front of the guests at the holiday party.

[WH, NO GAP]

(C) *I know that
𝛽⏞  ⏟  

grabbed the food in front of the guests at the holiday party. [THAT,

GAP]

(D) I know who
𝛽⏞  ⏟  

grabbed the food in front of the guests at the holiday party. [WH, GAP]

Criterion We require that a model successfully pass a two-part criterion for each item: the

wh-filler should make the unextracted subject 𝛼 more surprising in the NO-GAP conditions

and should make the post-gap material 𝛽 less surprising in the GAP conditions:

𝑆B(𝛼) > 𝑆A(𝛼) ∧ 𝑆C(𝛽) > 𝑆D(𝛽)
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Chance is 25%.

Object extractions

The logic of this test suite is the same as that for subject extraction above. Note that we

use obligatorily transitive embedded verbs, so that omitting a direct object should be highly

surprising when there is no filler, as in C.

(A) I know that our uncle grabbed
𝛼⏞  ⏟  

the food in front of the guests at the holiday party.

[THAT, NO GAP]

(B) *I know what our uncle grabbed
𝛼⏞  ⏟  

the food in front of the guests at the holiday party.

[WH, NO GAP]

(C) ??I know that our uncle grabbed
𝛽⏞  ⏟  

in front of the guests at the holiday party. [THAT,

GAP]

(D) I know what our uncle grabbed
𝛽⏞  ⏟  

in front of in front of the guests at the holiday party.

[WH, GAP]

Criterion

𝑆B(𝛼) > 𝑆A(𝛼) ∧ 𝑆C(𝛽) > 𝑆D(𝛽)

Extraction from prepositional phrases

The logic of this test suite is the same as that for subject and object extractions above.

(A) I know that our uncle grabbed the food in front of
𝛼⏞  ⏟  

the guests at the holiday party.

[THAT, NO GAP]

(B) *I know who our uncle grabbed the food in front of
𝛼⏞  ⏟  

the guests at the holiday party.

[WH, NO GAP]

(C) *I know that our uncle grabbed the food in front of
𝛽⏞  ⏟  

at the holiday party. [THAT,

GAP]

106



(D) I know who our uncle grabbed the food in front of
𝛽⏞  ⏟  

at the holiday party. [WH, GAP]

Criterion

𝑆B(𝛼) > 𝑆A(𝛼) ∧ 𝑆C(𝛽) > 𝑆D(𝛽)

Tests for unboundedness

Filler–gap dependencies are “unbounded” in the sense that there is no limit to how many

clausal levels above the gap the filler can be extracted. This serves as the basis for harder ver-

sions of the object-extracted test suites, involving three or four levels of clausal embedding.

Example [THAT, NO GAP] sentences are given below:

I know that our mother said her friend remarked that the park attendant reported

your friend threw the plastic into the trash can. [3 levels of embedding]

I know that our mother said her friend remarked that the park attendant reported

the cop thinks your friend threw the plastic into the trash can. [4 levels of

embedding]

These base sentences give rise to 4-condition test suites using the same manipulations

as for the basic object-extraction test suite (Section D), and the criterion for success is the

same.

A.1.5 Main-verb/reduced-relative garden-path disambiguation

This is one of the best-studied instances of syntactic garden-pathing in the psycholinguistics

literature. An example 4-condition item is given below:

(A) !The child kicked in the chaos
V*⏞  ⏟  

found her way back home. [REDUCED, AMBIG]

(B) The child who was kicked in the chaos
V*⏞  ⏟  

found her way back home.

(C) The child forgotten in the chaos
V*⏞  ⏟  

found her way back home.
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(D) The child who was forgotten in the chaos
V*⏞  ⏟  

found her way back home.

Criterion Relative to the [REDUCED, AMBIG] condition, not reducing the relative clause

should make V* less surprising, as should changing the participial verb to one that is the same

form as a simple past-tense verb. Additionally, the effect of not reducing the relative clause

on V* surprisal should be smaller for unambiguous participial verbs than for participial

verbs:

𝑆A(V*) > 𝑆B(V*) ∧ 𝑆A(V*) > 𝑆C(V*)∧

𝑆A(V*) − 𝑆B(V*) > 𝑆C(V*) − 𝑆D(V*)

Chance is somewhere below 25%.

References Bever (1970); Ferreira and Clifton (1986); Trueswell et al. (1994); van Schijn-

del and Linzen (2018); Futrell et al. (2019)

A.1.6 Negative Polarity Licensing

The words any and ever, in their most common uses, are “negative polarity items” (NPIs):

they can only be used in an appropriate syntactic-semantic environment—to a first approx-

imation, in the scope of negation. For example, the determiner no can license NPIs, but

its NP has to structurally command the NPI. Below, A and D are acceptable, because no

is the determiner for the subject noun managers. There is no negation in C so the NPI is

unlicensed and the sentence is unacceptable; crucially, however, B is unacceptable despite

the presence of no earlier in the sentence, because no is embedded inside a modifier of the

main-clause subject and thus does not command the NPI.

(A) No managers that respected the guard have had
NPI⏞ ⏟ 
any luck. [+NEG,–DISTRACTOR]

(B) *The managers that respected no guard have had
NPI⏞ ⏟ 
any luck. [–NEG,+DISTRACTOR]

(C) *The managers that respected the guard have had
NPI⏞ ⏟ 
any luck. [–NEG,–DISTRACTOR]
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(D) No managers that respected no guard have had
NPI⏞ ⏟ 
any luck. [+NEG,+DISTRACTOR]

In the above test suite, the “distractor” position for no is inside a subject-extracted relative

clause modifying the main-clause subject. We also used a variant test suite in which these

relative clauses are object-extracted:

(A) No managers that the guard respected have had
NPI⏞ ⏟ 
any luck. [+NEG,–DISTRACTOR]

(B) *The managers that no guard respected have had
NPI⏞ ⏟ 
any luck. [–NEG,+DISTRACTOR]

(C) *The managers that the guard respected have had
NPI⏞ ⏟ 
any luck. [–NEG,–DISTRACTOR]

(D) No managers that no guard respected have had
NPI⏞ ⏟ 
any luck. [+NEG,+DISTRACTOR]

The above two test suites use any as the NPI; we also use test suites with ever as the NPI.

Subject-extracted relative clause example:

(A) No managers that respected the guard have
NPI⏞ ⏟ 

ever gotten old. [+NEG,–DISTRACTOR]

(B) *The managers that respected no guard have
NPI⏞ ⏟ 

ever gotten old. [–NEG,+DISTRACTOR]

(C) *The managers that respected the guard have
NPI⏞ ⏟ 

ever gotten old. [–NEG,–DISTRACTOR]

(D) No managers that respected no guard have
NPI⏞ ⏟ 

ever gotten old. [+NEG,+DISTRACTOR]

Object-extracted relative clause example:

(A) No managers that the guard respected have
NPI⏞ ⏟ 

ever gotten old. [+NEG,–DISTRACTOR]

(B) *The managers that no guard respected have
NPI⏞ ⏟ 

ever gotten old. [–NEG,+DISTRACTOR]

(C) *The managers that the guard respected have
NPI⏞ ⏟ 

ever gotten old. [–NEG,–DISTRACTOR]

(D) No managers that no guard respected have
NPI⏞ ⏟ 

ever gotten old. [+NEG,+DISTRACTOR]

Criterion Changing the main-clause subject’s determiner from The to No should increase

the probability of the NPI where it appears, regardless of whether there is a distractor no

in the subject-modifying relative clause. Furthermore, when there is exactly one no in the

sentence, the NPI should be higher-probability when it is in a licensing position rather than
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in a distractor position:

𝑃A(NPI) > 𝑃C(NPI) ∧ 𝑃D(NPI) > 𝑃B(NPI)∧

𝑃A(NPI) > 𝑃B(NPI)

Chance is 5
32 .

References Ladusaw (1979); Vasishth et al. (2008); Giannakidou (2011); Marvin and

Linzen (2018); Futrell et al. (2018)

A.1.7 NP/Z garden-path ambiguity

This is another well-studied syntactic garden-pathing configuration. In A below, the NP the

waters introduces a local syntactic ambiguity: it could be (1) the direct object of crossed,

in which case the sentence-initial subordinate clause has not yet ended, or (2) the subject

of the main clause, in which case crossed is used intransitively and is the last word of

the sentence-initial subordinate clause. (This was dubbed “NP/Z” by Sturt et al. (1999)

because the subordinate-clause verb might have either an NP object or a Z(ero), i.e. null,

object.) The next word, remained, is only compatible with (2); the ruling out of (1) generally

yields increased processing difficulty for human comprehenders. Marking the end of the

subordinate clause with a comma, as in B, makes the sentence easier at V*, as does an

obligatorily intransitive subordinate-clause verb, as in C.

(A) !As the ship crossed the waters
V*⏞  ⏟  

remained blue and calm. [TRANS,NO COMMA]

(B) As the ship crossed, the waters
V*⏞  ⏟  

remained blue and calm. [TRANS,COMMA]

(C) As the ship drifted the waters
V*⏞  ⏟  

remained blue and calm. [INTRANS,NO COMMA]

(D) As the ship drifted, the waters
V*⏞  ⏟  

remained blue and calm. [INTRANS,COMMA]

Criterion Similar to the main-verb/reduced-relative garden-pathing ambiguity, a model

must pass a three-part criterion. Relative to A, either marking the subordinate-clause end
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with a comma or using an obligatorily intransitive verb in the subordinate clause should

reduce the surprisal of V*. Furthermore, the surprisal-reduction effect of the comma should

be smaller when the subordinate-clause verb is intransitive than when it is transitive:

𝑆A(V*) > 𝑆B(V*) ∧ 𝑆A(V*) > 𝑆C(V*)∧

𝑆A(V*) − 𝑆B(V*) > 𝑆C(V*) − 𝑆D(V*)

We also use an NP/Z test suite where the second means of disambiguation is not changing

the subordinate-clause verb to an intransitive, but rather giving the transitive subordinate-

clause verb an overt direct object. For the above example item, the first two conditions are

the same and the other two conditions would be:

(C) As the ship crossed the sea the waters
V*⏞  ⏟  

remained blue and calm.

(D) As the ship crossed the sea, the waters
V*⏞  ⏟  

remained blue and calm.

The success criterion remains the same.

Finally, we create harder versions of both the above test suites by adding a postmodifier

to the main-clause subject (in the above example, the waters becomes the waters of the

Atlantic Ocean).

References Frazier and Rayner (1982); Mitchell (1987); Pickering and Traxler (1998);

Sturt et al. (1999); Staub (2007)

A.1.8 Subject–verb number agreement

This task tests a language model for how well it predicts the number marking on English

finite present-tense verbs (whether it should be the third-person singular form, or the non-

third-person-singular form, generally referred to as the plural form for simplicity, although

technically this is the form for first- and second-person singular as well). In controlled,

targeted versions of this test, multiple NP precede the verb: the verb’s actual subject, as well

as a DISTRACTOR NP with number that is different from that of the subject. A successful

language model should place higher probability on the verbform matching that of the subject,
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not the distractor. We have three versions of this test suite: one where the distractor is in a

prepositional phrase postmodifier of the subject:

(A) The farmer near the clerks knowsVsg many people.

(B) *The farmer near the clerks knowVpl many people.

(C) The farmers near the clerk knowVpl many people.

(D) *The farmers near the clerk knowsVsg many people.

one in which the distractor is in a subject-extracted relative clause postmodifier of the

subject:

(A) The farmer that embarrassed the clerks knowsVsg many people.

(B) *The farmer that embarrassed the clerks knowVpl many people.

(C) The farmers that embarrassed the clerk knowVpl many people.

(D) *The farmers that embarrassed the clerk knowsVsg many people.

and one in which the distractor is in an object-extracted relative clause postmodifier of the

subject:

(A) The farmer that the clerks embarrassed knowsVsg many people.

(B) *The farmer that the clerks embarrassed knowVpl many people.

(C) The farmers that the clerk embarrassed knowVpl many people.

(D) *The farmers that the clerk embarrassed knowsVsg many people.

Criterion Following Linzen et al. (2016) and Marvin and Linzen (2018), we require

successful discrimination of the preferred upcoming verbform of the given lemma (rather

than, for example, successful discrimination of the better context given a particular verbform).

For success we require that a model successfully predicts the preferred verbform for both

the singular- and plural-subject versions of an item:

𝑃A(Vsg) > 𝑃B(Vpl) ∧ 𝑃C(Vpl) > 𝑃D(Vsg)
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Chance performance is thus 25%, though a context-insensitive baseline that places

different probabilities on Vsg and Vpl would score 50%.

References Bock and Miller (1991); Linzen et al. (2016); Marvin and Linzen (2018)

A.1.9 Reflexive pronoun licensing

The noun phrase with which a reflexive pronoun (herself, himself, themselves) corefers must

command it in a sense similar to that relevant for negative-polarity items (Section A.1.6). In

the below example, the reflexive pronoun ending the sentence can only corefer to the subject

of the sentence, author, with which it must agree in number: a singular subject requires a

singular reflexive Rsg, and a plural subject requires a plural reflexive Rpl.

(A) The author next to the senators hurt herselfRsg.fem .

(B) *The authors next to the senator hurt herselfRsg.fem .

(C) The authors next to the senator hurt themselvesRpl .

(D) *The authors next to the senator hurt themselvesRpl .

We generated a pair of test suites—one in which the singular reflexive is herself, and another

where the singular reflexive is himself, on the template of the above example, where the

distractor NP is in a prepositional-phrase postmodifier of the subject NP. We also generated

a similar pair of test suites where the distractor NP is inside a subject-extracted relative

clause modifying the subject:

(A) The author that liked the senators hurt herselfRsg.fem .

(B) *The authors that liked the senator hurt herselfRsg.fem .

(C) The authors that liked the senator hurt themselvesRpl .

(D) *The authors that liked the senator hurt themselvesRpl .

and a pair of test suites where the distractor NP is inside an object-extracted relative clause

modifying the subject:

(A) The author that the senators liked hurt herselfRsg.fem .
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(B) *The authors that the senator liked hurt herselfRsg.fem .

(C) The authors that the senator liked hurt themselvesRpl .

(D) *The authors that the senator liked hurt themselvesRpl .

Criterion For each item in each test suite, we require that for both the singular and the

plural versions of the reflexive pronoun the model assign higher conditional probability in

the correct licensing context than in the incorrect licensing context:

𝑃A(Rsg) > 𝑃B(Rsg) ∧ 𝑃C(Rpl) > 𝑃D(Rpl)

Chance is 25%.

References Reinhart (1981); Marvin and Linzen (2018)

A.1.10 Subordination

Beginning a sentence with As, When, Before, After, or Because, implies that an immediately

following clause is not the main clause of the sentence, as would have otherwise been the

case, but instead is a SUBORDINATE CLAUSE that must be followed by the main clause.

Ending the sentence without a main clause, as in B, is problematic. Conversely, following

an initial clause with a second clause MC (without linking it to the initial clause with and,

but, despite, or a similar coordinator or subordinator), as in C below, is unexpected and odd.

(A) The minister praised the building

END⏞ ⏟ 
.

(B) *After the minister praised the building

END⏞ ⏟ 
.

(C) ??The minister praised the building

MC⏞  ⏟  
, it started to rain.

(D) After the minster praised the building

MC⏞  ⏟  
, it started to rain.
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In addition to the base test suite exemplified by the item above, we include three versions

with longer and more complex initial clauses, which may make the test suite more difficult.

In the first of these versions, we postmodify both the subject and object of the initial clauses

with prepositional phrases:

the minister praised the building

↓

the minister in the dark suit and white tie praised the new building on the town’s main

square

In the second of these versions, the postmodifiers are subject-extracted relative clauses:

the minister praised the building

↓

the minister who wore a black suit praised the new building that was built by the square

In the third of these versions, the postmodifiers are object-extracted relative clauses:

the minister praised the building

↓

the minister who the mayor had invited praised the new building that the businessman

had built downtown

Criterion Introducing a subordinator at the beginning of the sentence should make an

ending without a second clause less probable, and should make a second clause more

probable:

𝑃A(END) > 𝑃B(END) ∧ 𝑃D(MC) < 𝑃C(MC)

References Futrell et al. (2018)

A.2 Syntactic coverage of test suites

In order to assess the coverage of our syntactic tests, we manually inspected the “Ideas,

Rules and Constraints introduced in this Chapter” section for each chapter in Carnie (2012),
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CHAPTER 1: GENERATIVE GRAMMAR Lexical gender
Number X
Person
Case

CHAPTER 2: PARTS OF SPEECH Parts of Speech X
Plurality X
Count vs. Mass Nouns
Argument Structure of Verbs X

CHAPTER 3: CONSTITUENCY, TREES, RULES Constituency Tests
Hierarchical Structure X

CHAPTER 4: STRUCTURAL RELATIONS c-command X
Government

CHAPTER 5: BINDING THEORY 𝑅-expression vs. Pronominals
Anaphoric expressions and their antecedents X
Co-reference and co-indexation
Binding Principles (𝐴, 𝐵, 𝐶) X
Locality Constraints X

CHAPTER 6: X-BAR THEORY One Replacement
Do-so Replacement

CHAPTER 7: EXTENDING X-BAR THEORY Fundamental Phrase Types of DP/CP/TP
TO FUNCTIONAL CATEGORIES Genitives: of-genitives and ’s genitives

Subjects and Predicates
Clausal Embedding X
Clausal
Tense/Finiteness and its restrictions
Yes/No Questions
Subject-Auxilliary Inversion

CHAPTER 8: CONSTRAINING X-BAR THEORY: Thematic Relations X
THE LEXICON Internal Theta role vs. External Theta Roles

Expletive Pronouns and Expletive Insertion
Extended Projection Principle

CHAPTER 9: HEAD-TO-HEAD MOVEMENT V → T Movement
T → C movement X
Do-Support

CHAPTER 10: DP MOVEMENT Passive Constructions X
DP-Raising

CHAPTER 11: WH-MOVEMENT Wh-Movement X
Structural Constraints on Wh-Movement (Island Constraints) X
Wh in-Situ and Echo Questions

CHAPTER 12: A UNIFIED THEORY Universal Quantifiers vs. Existential Quantifiers
OF MOVEMENT Quantificational Scope and Quantifier Raising

CHAPTER 13: EXTENDED VPS Light Verbs
Object Shift (and end weight)
Ellipsis
Pseudogapping

CHAPTER 14: RAISING CONTROL AND Control, Subject-to-Subject and Subject-to-Object Raising (ECM)
EMPTY CATEGORIES

CHAPTER 15: ADVANCED TOPICS IN Binding Principle 𝐴 and 𝐵 X
BINDING THEORY

Table A.1: Test suite coverage of syntactic phenomena presented in Carnie (2012).
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a standard introductory syntax textbook. We included entries from these sections which are

theory-neutral and refer to observable linguistic data. For example, we do not include affix

lowering (Chapter 7) or theta criterion (Chapter 8) because these phenomena presuppose a

commitment to one particular syntactic analysis.

We found that our tests covered 16 of the 47 phenomena presented (∼34%). Of the 15

chapters surveyed, our tests assessed phenomena in 11 (∼73%). We did not assess coverage

from the last two chapters of the book, which explore alternative syntactic formalisms. The

outcome of our manual inspection is given in Table A.1.

A Xindicates that some aspect of that phenomena was tested in one or more of our suites.

Xdoes not necessarily mean that the test suite was designed explicitly for the purpose of

testing that phenomena, but merely that the phenomena was implicated in model success.

For example, we place a Xnext to Parts of Speech because differentiation between verbs

and nouns is necessary for models to succeed in the Cleft Structure tests.
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Appendix B

Supplementary material for Chapter 4

B.1 Example prompts

This section contains example prompts for each task in our experiments. See Section 4.3

and Table 4.1 for details on the materials, and Section 4.4.1 for discussion of how prompts

were constructed.

B.1.1 Deceits

Task: You will read short stories that describe two characters interacting with each other. Each story will be

followed by a multiple-choice question. Read each story and choose the best answer to each question. Your

task is to decide why the character in the story responds in a certain way. The answer options are 1, 2, 3, or 4.

Scenario: Henry is sitting at his desk and watching TV, and reluctantly switches off the TV with the remote

control and picks up a textbook. Shortly after, his mother comes in the room and asks, "What have you been

doing up here?" Henry responds: "Reading." Why has Henry responded in such a way?

Options:

1) He has been reading for some time.

2) He does not want to offend his mom by not reading the books that she gave him.

3) He does not want to get into trouble for not studying.

4) He wants his mom to believe that he has been watching TV.

Answer:
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B.1.2 IndirectSpeech

Task: You will read short stories that describe everyday situations. Each story will be followed by a multiple-

choice question. Read each story and choose the best answer. Your task is to decide what the character in the

story is trying to convey. The answer options are 1, 2, 3, or 4.

Scenario: Nate is about to leave the house. His wife points at a full bag of garbage and asks: "Are you going

out?" What might she be trying to convey?

Options:

1) She wants Nate to spend more time with the family.

2) She wants to know Nate’s plans.

3) She wants Nate to take the garbage out.

4) She wants Nate to bring his friends over.

Answer:

B.1.3 Irony

Task: You will read short stories that describe everyday situations. Each story will be followed by a multiple-

choice question. Read each story and choose the best answer. Your task is to decide what the character in the

story is trying to convey. The answer options are 1, 2, 3, or 4.

Scenario: It is a holiday. Stefan and Kim are sitting in the backseat of the car. They are fighting all the time.

Their father says: "Oh, it is so pleasant here." What did the father want to convey?

Options:

1) He enjoys listening to his kids fighting.

2) He remembers about his wife’s birthday.

3) He does not want to listen to his kids’ arguments.

4) AC gives them some needed cool.

Answer:

B.1.4 Maxims

Task: You will read short stories that describe everyday situations. Each story will be followed by a multiple-

choice question. Read each story and choose the best answer. Your task is to decide why the character in the

story responds in a certain way. The answer options are 1, 2, 3, or 4.

Scenario: Leslie and Jane are chatting at a coffee shop. Leslie asks, "Who was that man that I saw you with

last night?" Jane responds, "The latte is unbelievable here." Why has Jane responded like this?

Options:

1) She does not want to discuss the topic that Leslie has raised.
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2) The man who Leslie saw makes unbelievable lattes.

3) She thinks that it is the best latte in the town.

4) A coffee break is not a good time to discuss men.

Answer:

B.1.5 Metaphor

Task: You will read short stories that describe everyday situations. Each story will be followed by a multiple-

choice question. Read each story and choose the best answer to each question. The answer options are 1, 2, 3,

4, or 5.

Scenario: Andrew and Bob were discussing the investment company where Andrew works. Bob said: "The

investors are squirrels collecting nuts." What does Bob mean?

Options:

1) The investors dress and eat well.

2) Squirrels were hired to work in the company.

3) Bob is allergic to nuts.

4) They buy stocks hoping for future profit.

5) The investors enjoy picking nuts as much as squirrels do.

Answer:

B.1.6 Humor

Task: You will read jokes that are missing their punch lines. A punch line is a funny line that finishes the joke.

Each joke will be followed by five possible endings. Please choose the ending that makes the joke funny. The

answer options are 1, 2, 3, 4, or 5.

Joke: Martha walked into a pastry shop. After surveying all the pastries, she decided on a chocolate pie. "I’ll

take that one," Martha said to the attendant, "the whole thing." "Shall I cut it into four or eight pieces?" the

attendant asked.

Punchlines:

1) Martha said, "My leg is hurting so much."

2) Martha said, "Four pieces, please; I’m on a diet."

3) Martha said: "Well, there are five people for dessert tonight, so eight pieces will be about right."

4) Then the attendant squirted whipped cream in Martha’s face.

5) Martha said, "You make the most delicious sweet rolls in town."

Answer:
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B.1.7 Coherence

Task: You will read pairs of sentences. Reach each pair and decide whether they form a coherent story. The

answer options are 1 or 2.

Scenario: Cleo brushed against a table with a vase on it. She decided to study harder to catch up.

Options:

1) Incoherent

2) Coherent

Answer:

B.2 Timestamps of OpenAI model queries

Table B.1 shows timestamps of requests sent to the OpenAI API.

Model Phenomenon Timestamp

text-ada-001 Coherence 2022-10-11 12:28 -0400
text-ada-001 Deceits 2022-10-11 12:28 -0400
text-ada-001 IndirectSpeech 2022-10-11 12:28 -0400
text-ada-001 Irony 2022-10-11 12:28 -0400
text-ada-001 Humor 2022-10-11 12:28 -0400
text-ada-001 Maxims 2022-10-11 12:29 -0400
text-ada-001 Metaphor 2022-10-11 12:29 -0400

text-davinci-002 Coherence 2022-10-11 11:56 -0400
text-davinci-002 Deceits 2022-10-11 11:55 -0400
text-davinci-002 IndirectSpeech 2022-10-11 11:55 -0400
text-davinci-002 Irony 2022-10-11 11:54 -0400
text-davinci-002 Humor 2022-10-11 11:53 -0400
text-davinci-002 Maxims 2022-10-11 11:56 -0400
text-davinci-002 Metaphor 2022-10-11 11:57 -0400

Table B.1: Timestamps of OpenAI API model queries.

B.3 No-context analysis

B.3.1 Details of human experiments

Below, we discuss details of the no-context human experiments described in Section 4.5.3.

This study was approved by the Institutional Review Board at the home institution of the

authors (protocol 2010000243).
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Participants. We collected data from 30 participants using Amazon.com’s Mechanical

Turk. All participants were recruited from IP addresses in the US, Canada, and other

English-speaking countries and passed a brief English proficiency task to participate. We

pre-screened participants using a qualification task in which they were asked to perform

10 simple sentence completions, which were judged for basic levels of coherence and

grammaticality. Participants were paid 7 USD for completing the study, which took around

20 minutes to complete. The resulting hourly rate was around 21 USD, which is well above

federal minimum wage in the United States.

Procedure. Participants completed these tests during one individual testing session. After

giving informed consent, which included assurance of anonymity, participants were shown

instructions and a training trial, in which they were told they would be answering questions

about a character in a short interaction. They then saw 105 trials (similar to those described

in Appendix B.1), without the scenario context. For example:

Bob said: "The investors are squirrels collecting nuts." What does Bob mean?

1) The investors dress and eat well.

2) Squirrels were hired to work in the company.

3) Bob is allergic to nuts.

4) They buy stocks hoping for future profit.

5) The investors enjoy picking nuts as much as squirrels do.

Items were presented within blocks according to their phenomenon, as in Floyd et al.’s (In

prep) original experiments. Blocks and items were presented in a random order.

B.3.2 Raw accuracy scores

Figure B-1 shows accuracy scores achieved by humans and the three best-performing models

on the original (shaded bars) and no-context (empty bars) versions of the test items.
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Figure B-1: Proportion of items where humans and models select the correct pragmatic
answer, on both original (shaded bars) and no-context (empty bars) versions.
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B.4 Sentence- and word-level scrambling

Figure B-2 shows accuracy scores achieved by the three best-performing models on each

task, across three scrambling conditions: none (original, unmodified items), sentence-level,

and word-level. Example prompts are provided below.

B.4.1 Sentence-level scrambled prompt

Task: You will read short stories that describe two characters interacting with each other. Each story will be

followed by a multiple-choice question. Read each story and choose the best answer to each question. Your

task is to decide why the character in the story responds in a certain way. The answer options are 1, 2, 3, or 4.

124



Scenario: Dan says,"The dog knocked it over." The vase falls down on the floor and breaks. He brushes against

his mother’s vase. When Dan’s mother comes home, she asks Dan: "What happened to my vase?" Dan is

playing in the living room. Why has Dan responded in such a way?

Options:

1) Dan does not want his mom to be angry with him for breaking the vase.

2) Dan finds this vase ugly and wants to get rid of it.

3) Dan wants his mom to know that he knocked it over.

4) Dan thinks that the dog has knocked over the vase.

Answer:

B.4.2 Word-level scrambled prompt

Task: You will read short stories that describe two characters interacting with each other. Each story will be

followed by a multiple-choice question. Read each story and choose the best answer to each question. Your

task is to decide why the character in the story responds in a certain way. The answer options are 1, 2, 3, or 4.

Scenario: to happened Dan "The against in it she comes "What living Dan the vase floor on down The Dan:

He dog my brushes vase?" mother When falls breaks. vase. and playing room. his asks knocked says, home,

over." the mother’s is Dan’s Why has Dan responded in such a way?

Options:

1) Dan does not want his mom to be angry with him for breaking the vase.

2) Dan finds this vase ugly and wants to get rid of it.

3) Dan wants his mom to know that he knocked it over.

4) Dan thinks that the dog has knocked over the vase.

Answer:
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