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Character Sheaves on Symmetric Spaces

I. GROINOWSKI

Massachusetts Institute of Technology, Cambridge. MA 02139

INTRODUCTION

This thesis is concerned with the study of a class of K-equivariant perverse sheaves on the
symmetric space X = G/H. In order to motivate their study, we briefly highlight some properties
of Lusztig’s theory of character sheaves on G.

Let G be a connected reductive group defined over a finite field Fy, G(Fy) the finite group of its
rational points. One can then ask, what is the character table of G(F,).

This problem is now almost completely solved (there only remains some ambiguity of multiplica-
tion by small roots of unity in some characters) as a result of work of Lusztig and Deligne-Lusztig.

One of the key ingredients of this is the theory of character sheaves. These are certain perverse
sheaves on G, equivariant with respect to conjugation. Some subset of the character sheaves will
be defined over F,, and for these we can take trace of the Frobenius map F at the points of GF
to give class functions on GF (a priori, these are only well defined up to homothety, but they can
be normalised almost canonically). These characteristic functions of the character sheaves give a
basis of the class functions on GF, closely related to the basis of characters of GF. The change
of basis matrix is “almost” diagonal—there are very few off diagonal entries, and these are known
explicitly.

These characteristic functions can be explicitly calculated at all points of GF. This is an involved
process, but the fact that it is possible is a consequence of certain geometric properties of the
character sheaves—they are the intersection cohomology extension of local systems which come
from finite coverings, and these extensions can be calculated in terms of the homology of varieties
caved by affine vector spaces.

If 9: G—G is an involutory automorphism, K = GY, we can ask what are the characters of the

algebra of double cosets KF\GF/KF. This includes the problem of finding the characters of the
finite groups GF as the special case (G x G,8), where 6(z,y) = (y, 7).

In my thesis I study a class of K-equivariant perverse sheaves on the symmetric space X = G/K.
These sheaves, also called character sheaves, have characteristic functions very closely related to
the characters of the algebra KF\GF/KF and so we obtain results about the character table of
this algebra.

In the special case (G x G, 8), these character sheaves are the same as those defined by Lusztig,
but for a general symmetric space the geometric properties of these character sheaves are very
different from those on a group. The least group-like symmetric spaces are the “split” ones. For
these spaces, the character sheaves involve cohomology along a family of beautiful non-rational
varieties—in sharp contrast to the group case, which essentially reduces to that of a point. For
sxample, for SL3/S0O3, a family of elliptic curves enters the picture.

As a consequence, there are no “elementary” formulas for the values of the characters of this
algebra (in contrast with the group case, where we get sums of polynomials in ¢ times roots of

unity).
Despite this interesting new feature, many other things remain the same. For example, though

the generic character sheaves do not occur as the intersection cohomology extension of a local
system obtained from a finite covering, these local systems do have the same rank (if G/K is
split), namely the order of the Weyl group. However the monodromy of such local systems is large,
and gives representations of the affine Hecke algebra at ¢ = —1.

Also these character sheaves are (conjecturally) classified in an analogous way to the group case.
i have some results in this direction. In particular, I have a short proof of Lusztig’s partition of
-haracter sheaves into cells, which avoids the case by case consideration of [L1].



We briefly describe the contents of this thesis, section by section.
Let 8, 0 : G — G be two commuting involutions, K = G%, H = G°. This data defines a

eal symmetric space: G is the complexification of a real group, 8 is the Cartan involution, and
7 the involution defining the symmetric space structure. We begin the study of certain K x H-
equivariant perverse sheaves on G, the character sheaves. If K = H, these were defined by Ginsburg
(G], generalising the definition of [L1]. Our definition is the same as in [G], we merely observe
certain diagrams are equivariant in this more general setup.

Section 1 is concerned with the definition of these character sheaves. In section 2 we introduce
induction functors.

In section 3 we describe the partition of character sheaves by two sided cells in K\B, and
zonjecture a parametrisation of the character sheaves in a cell, along the lines of [L7]. It is perhaps
surprising that the partition of character sheaves by two sided cells should be so easy to define.

We then begin a detailed study of generic character sheaves in section 4; this is the heart of this
shesis. It is possible to give Lie algebra versions of all these results—one considers the class of
perverse sheaves on the Lie algebra obtained from the equivariant perverse sheaves supported on
a single orbit closure [L6]. The results are analogous to those of section 4, and the proofs easier.

We make some connections between character sheaves on (G x G,G) and those on (G, K) in
section 5; this gives some insight into the algebra KF\GF/KF.

Finally, some small examples are calculated in section 7.
If the base field is C, we have the possibility of using microlocal techniques. As [G], [MV] show,

this can simplify proofs significantly. Throughout this thesis, we mention simplifications over C
where appropriate. However, this is in the nature of a sideline. It would be an interesting problem
;0 study the characteristic varieties of character sheaves, but I have not yet attempted this.

NOTATION

0.1 Let k be an algebraically closed field; all algebraic varieties will be over k. We shall fix a
prime number [ invertible in k. Let X be an algebraic variety. We denote by DX the bounded
derived category of constructible Q;-sheaves on X, a triangulated category with ¢-structure. We
denote by MX the heart of DX, the abelian category of l-adic perverse sheaves on X [BBD].

If A€ DX, we denote by HA its i’th cohomology sheaf, and by PH* A its ’th perverse cohomol-
ogy, a complex in MX. If f: X — Y is a morphism, we have the usual functors f,, fi : DX — DY,
f* : DY — DX. We define f° = f*[dimX — dimY]; so if f is smooth and all the fibres of f have
the same dimension, fO restricts to give f0 : MY — MX.

If we have a stratification of X into finitely many locally closed smooth subvarieties, X = [] X4,
and A € DX has the property that H*A|X, is a local system or zero for all i, a, we say 4 is

constructible with respect to the stratification [| Xo.
Given A € DX, by the constituents or perverse constituents of A, we mean the set of isomorphism

classes of simple perverse sheaves which appear as subquotients of @; PH* A. This is a finite set.

0.2 Now suppose K is a linear algebraic group defined over k, acting on the variety X. We do
not suppose K is connected or reductive. Then denote by Dg (X) the equivariant derived category
of X, a triangulated category with t-structure, and by Mg (X) its heart [MV Appendix]. If L is
a subgroup of K, Dg (X) comes equipped with a canonical forgetful functor Dg (X) — Dr(X);
if L = 1, there is a canonical equivalence of categories D(X) — DX. If K is connected, then
Mg (X) identifies under the forgetful functor with the full subcategory of MX defined in [L1,1.9]

If L is a subgroup of K, and L acts on the variety X, we may form the induced space Y = Kx X.
Let i : X — Y be the embedding z — image of (1,z) in Y. Then there is a functor I' (“induction”)
[: Dp(X) — Dk (Y) such that T, i® are inverse equivalences of categories [MV,1.4].

if f: X —Y is a proper map of K-spaces, and A € Dg(X) is a split semisimple complex of
geometric origin, then fiA is also. This follows from the decomposition theorem [BBD,6.2.5].

0.3 If k is the algebraic closure of a finite field F,; with q elements, and K and X are defined over
Fy, one can define the category D(X) of mixed complexes in Dg (X) asin [BBD]. If A € DE(X),
PH*A carries a weight filtration. Denote the j’th piece of the associated graded complex PHtA;
chis 1s pure of weight 7.



Let KX denote the Grothendieck group of the abelian category Mg (X). By the mized Grothendieck
group of X we mean KX ®z Z[q'/?,q=1/?], where ¢!/? is a formal symbol. If A € DR(X), put

A] = &gt;i (“DH PHIA) ®¢’/2, where {A’} denotes the image of the pure perverse sheaf A’ in KX.
Write K’X for the subring of KX spanned by the simple perverse sheaves in DR(X). If f :

X — Y is a morphism defined over F,;, we get maps between K'X ®z Z[q*/?, q~ 1/7 and K'Y ®z
Z[q 2, q=1/7, by defining f* [A] = [f* A], fi[4] rer [£14], ‘se

If F*A ~ A, where F is the Frobenius morphism defining the F,-rational structure, and if ¢:
F* AS A is some given isomorphism, we define x44: X(F,) — Qi by xa,4(z) = Y_(=1)'tr(¢, HL A),
the characteristic function of A.

3.4 Suppose a torus T acts freely on X. Let £ be a rank one local system on T, and D*(X)
the full subcategory of DX with objects those complexes A € DX such that there exists some
isomorphism a*A ~ LX A. Then it is easy to check that if A € D*(X), PH'A € D(X); and that
if Ae D(X), A’ € D*'(X) with £, £’ distinct local systems on T, that Extpx(A, A’) = 0.

Also, if T acts freely on the variety Y, f : X — Y is a T-morphism, the usual functors f*, f*, fi, f.
reserve these subcategories.

We call objects of D*(X) T-monodromic sheaves with weight £. If now K x T acts on X, T
acting freely, define D4 (X) as the full subcategory of D(X) with objects those A € D(X) such
that the image of A in DX is in D*(X).

0.5 Let X’ be a closed subset of X, 7: X' — X, j: X \ X’ — X the inclusions. For each
A € DX, we get a distinguished triangle (jijA,A,i1i*A)inDX,and hence a long exact sequence
in perverse cohomology. If now X = X; [[---]] Xn is a partition of X into finitely many locally
zlosed pieces such that the inclusion X; — U;&lt;iX; is the the inclusion of a closed set, then by
iterating this construction we get a sequence of long exact sequences which allow us to compute
the constituents of A € DX in terms of the constituents of A|X; for each ¢. This is the technique
of [L1,2-3]; and we will just refer to it as the long eract sequence of a partition. We likewise use
the technique of [L1, 12.6-12.7] without comment.

0.6 Let {Ao} be a set of simple perverse sheaves on Y. By the subcategory they generate we
mean the full subcategory C of Dg (Y') whose objects are those complexes with perverse constituents
contained in the set {Ay}. If F : D(X) — Dk (Y) is some functor with FA € C for all simple
perverse sheaves A, then FA € C for all complexes A € Dk (X). This follows from repeated use of
the distinguished triangle (PH®[—a], Pr29, Pr&gt;%), where Pr2% denotes the truncation functor with
respect to the t-structure.

0.7 Throughout this thesis, G will denote a connnected reductive group defined over k. If L is
a subgroup of G, we denote by L° the identity component of L, by Z the center of L, write ULo
for its unipotent radical, Zg(L) = {g€ G | gl = lg, for allie L}, Ng(L) = {9 € G | gLg~! = L}.
Write 9z for gzg~!.

If Sis a torus of L, write W(S, L) = N(S)/Zr(S). In particular, ifTis a maximal torus of G,
W(T, G) is isomorphic to the Weyl group W of G. Write B = Bg for the flag variety of G. If X is
a subvariety of GG, write X,; for the variety of unipotent elements of X.

If : G — G is an automorphism of G, write G® = {g € G | 8g = g}. If 0 is an involutory
automorphism, 62 = 1, we say (G, 8) is split if there exists a maximal torus T of G with 6t = t—1
for all t € T. We say (G, 0) is essentially split if (G/Z2, 0) is split. When we consider an involutory
automorphism, we will always assume it is semisimple, i.e. that char k # 2.

If £ is a rank one local system on T', write W, = {w € W(T,G) | w*£ ~ L}.

0.8 Write g for the Lie algebra of G, g’ (resp. g=?) for the +1 (resp. —1) eigenspace of df on g.
if bh is a vector subspace of g, write N(h) for the cone of nilpotent elements in b.

Suppose k = C. If M is a g-module, write Ass(M) for its associated variety. If A € DX is a
complex on a variety X defined over C, write SS(A) C T*X for its characteristic variety.

0.9 Suppose p(z) is a polynomial. Then we write p(q)|s—a for p(A) (g, A € Z).



i. DEFINITIONS

In this section, we define character sheaves and state some of their basic properties. With
the exception of (1.6), all the basic notions and results are that of Lusztig [L1], who considered
character sheaves on a group. In [G], Ginsburg generalises this to character sheaves on a “complex”
symmetric space G/K; we take this slightly further by considering character sheaves in Dg (G/H),
i.e. on a “real” symmetric space. The results of this section are thus slight generalisations of well
xnown results.

We recover Lusztig’s character sheaves as the diagonal case (GxG,Ga, Ga), where Ga — GxG,
9 — (9,9)

1.1 For the remainder of this section, we fix a maximal torus T, and a Borel subgroup B
containing T' with unipotent radical U. Let T act on G/U x G/U by (zU,yU).t = (ztU,ytU),
denote the quotient by this (free) action as (G/U x G/U)/T. It is possible to give a definition of
(G/U x G/U)/T which does not involve a choice of U, T'; we do not need this.

We suppose given two groups K, H, and homomorphisms K — G, H — G. Usually K, H
will be subgroups of G, but it is sometimes notationally convenient to consider this more general
situation. Define functors che : Dxxu((G/U x G/U)/T) — Dgxu(G), hcg : Drxxu(G) —
Dk xu((G/U x G/U)/T) by chg = p1q°, hcg = qp°, where p : G x B — G, (g9,hB) — g¢, and

1:GxB— (G/U xGJ/U)/T, (g,hB) — (ghU, hU)T. (The notation is Ginsburg’s).
Here K x H acts on G x B by (k,h).(g,zB) = (kgh~!, hzB), on G by (k,h).g = kgh~!, and on

(G/U x G/U)/T by (k,h).(zU,yU)T = (kzU, hyU)T; so p, q are K x H-equivariant maps. Also
p, ¢ are smooth, and p is proper.

When there is no possibility for confusion we write hc, ch for hcg, che.
Now, T acts freely on (G/U x G/U)/T by t.(zU,yU)T = (ztU,yU)T; so we can apply the

discussion of (0.4) to define T-monodromic sheaves with weight £, £ a (rank one) local system on
T. Throughout this thesis, we assume £®" ~ Q, for some integer n invertible in the ground field
k; when we refer to a local system on T' we always mean such a “tame” local system.

In this way we get the category D%  ,((G/U x G/U)/T) =~ D&amp;  gx7(G/U x G/U).

1.2 PROPOSITION. hcoch: Dg, n((G/U x G/U)/T) — @uweww.Di5((G/UxG/U)/T)

PROOF: Let Z =GxBxB,q;: Z —(G/UxG/U)/T, (g,h1B,haB) — (gh;U,h;U)T, fori = 1,2.
Then K x H acts on Z by (k,h).(g,hiB,hsB)=(kgh™!,hhB,hhyB)soqi,q2areequivariant,
and hco ch = (q1)192° : Dkxu((G/UxG/U)/T)—Dkxu((G/UxG/U)/T)(basechange).

Weights of the torus action are defined in the (non-equivariant) derived category, and the image
of (q1):1g2° there is the usual (g1):q2°, so we need only show (q1)1g2° : D*(G/U x G/U)/T) —

Swew/w, DV E(G/U x G/U)/T).
Partition Z by the G-orbits on B x B; i.e. put Z, = {(g,h1B,h2B) | h{'hs € BwB}. Then

applying the long exact sequence in perverse cohomology to this partition, we see it is enough to
show (g14)193, : DX(G/U x GJU)/T — D¥ 4(G/U x G/U)/T), where gis denotes the restriction
of ¢; to Z,,.

Let Z!, = {((zU, yU)T, (aU, bU)T) € (G/U xG/U)/Tx(G/UxGJU)/T|Uz~aU=Uy~1bUC
BwB}. Then under the map Z, — Z., (g,h1B,h2B) — ((gh1U, hiU)T, (ghoU, hoU)T), Zy
becomes an affine space bundle over Z], with fibres isomorphic to U N vw”: and if Qh © Zo —
(G/U x G/U)/T denotes the i’th projection (i = 1,2), we have (1v)195y = (91 )1(¢2)* [—2d])(—d),
where d = dim(U N¥™'U).

Finally, define a T-action on Z/, by t.((zU, yU)T, (aU, bU)T) = ((zw™ tw, yU)T, (atU, bU)T).
Then gq is T-equivariant, and gq; is also, with respect to the “twisted by w” T-action: t.(zU, yU)T =
‘zw 1twU, yU)T. The proposition is immediate from the remarks following the definition of 7T-
monodromic.

The next proposition is precisely [G,8.5.1], [MV,3.6] in our K x H-equivariant setting. The
proof is the same (one must only check the diagrams used can be made K x H-equivariant).



PROPOSITION. The identity functor is a direct summand of cho he : Dxxy(G)—Dkxu(G).

Indeed, for A € Dx xg(G), ch o he(A) ~ A+ Spr, where Spr is the complex in Dg(G) given by
mnQy, for 7 : {(9,B’) € G*™ x B | g € B'} — G"™, (g,B') — g the Springer resolution of the
mipotent variety, G acts on G by conjugation, and #* is the convolution defined below.

1.3 Define (G, K, H)} to be the full subcategory of Dg xg (G) consisting of those complexes
whose perverse constituents are the constituents of the complexes {ch(A) | A € DY5(G/Ux
G/U)/T),w € W}. It is clear that if (A, B,C) is a distinguished triangle in Dg xg (G) with
4,C € (G,K,H)} then B € (G,K,H)?.

Write M(G, K, H)} for the abelian subcategory of equivariant perverse sheaves in (G, K, H)?%;
we call the simple sheaves the character sheaves of (G, K, H). For a fixed £ there are only finitely
many (isomorphism classes of) character sheaves, as there are only finitely many isomorphism
classes of simple perverse sheaves in D&amp;, ((G/U x G/U)/T). Also, every simple character sheaf
arises as a constituent of ch(A) for some simple perverse sheaf 4, and hence as a summand of

ch(A) (decomposition theorem).
The following proposition follows from the definition and the above two propositions.

PROPOSITION. i) (G,K, H)} depends only on the Weyl group orbit of L. ii) The functors ch,
he restrict to give functors between (G, K, H)7 and ®uew/w: DY5,((G/UxG/U)/T).iii)If
WL # WL', Exte((G,K,H)%?,(G,K,H)},) = 0, where C is the category DG or Dg xu(G). iv)
The Verdier dual D takes (G,K,H)? to (G, K, H)2v, where LY is the dual local system to L

For notational simplicity we write (G, K)2, M(G, K)? for (G, K,K);, M(G, K, K)%; and GZ,
MG?% for (G x G,Ga)2, M(G x G,Ga); (here Gao — G x G is the diagonal embedding). This
notation is in slight contradiction with the notation of [L1], where G% denotes the simple objects
of what we write MG?2.

We call the complexes ch(A), for A € D&amp;, (G/U x G/U)/T), standard sheaves.
We say a character sheaf in (G, K, H)? has central character L. If the base field is C, this can

be defined in terms of the action of Z(g) on global sections of the D-module corresponding to the
character sheaf [G], hence the name— Z(g) will have weights in an affine Weyl group orbit on t*
corresponding to LC.

1.4 Define a functor, “convolution”, * : D(G/U x G/U) x D(G/U x G/U) — D(G/U x G/U), by
Aq * A, = a (PY Ax ® pIAa), where Dij G/U x G/U x G/U — G/U X G/U, pij (MU, ho U, hsU) =
{h;U,h;U), and py = p12, p2 = P23, ¢ = p13. This is an associative operation.

For the remainder of this paragraph, we will write Dx for Dx (G/U x G/U), where X is a group
acting on G/U x G/U. Then the multiplication * gives multiplication functors Dg, x Dg xx —
Dixxn, Dkxu x Dg, — Dixg by composing the forgetful functor Dg, — Dk, with * ( and
making K x H act on G/U x G/U x G/U so as to make py, p2, ¢ K x H-equivariant), as well

as multiplications Dg, x Dg, — Dg,, Dxkxk Xx Dxxk — Dxxk. Denote by DEX those Ga-
equivariant complexes which have LX £’ monodromy weight with respect to the T' x T-action. It is
clear that this category is empty unless £, £’ are in the same W-orbit, and that there are precisely
W{ simple perverse sheaves in this category if £L € WL’. Then @, c.)ewexwe Dy forms
a tensor category with respect to *, with Dgf a tensor subcategory. The mixed Grothendieck
group of this category, and the induced algebra structure, is almost precisely that of the algebra
of [MS,3.3]; that of the subcategory is almost that of the Hecke algebra H}. of [L1,6.1]. Likewise,
we can write explicit formulae for the action of these algebras on the mixed Grothendieck group
of Dx xu (when K, H are as in (1.5)), generalising [LV,3.5] and [MS,3.3]. We do not need these
formulae, except in special cases. Observe D143 x D%3:£4 = ( unless £; = L3.

We can also define a multiplication functor * : DG x DG — DG, by A; * Az = mi(A; B Ay),
where m : G x G — G (z,y) — zy is the multiplication map. This also gives multiplications
Dg 4(G) x Dga(G) — Dg,(G), Dga(G) x Dkxu(G) = Dkxu(G), Drxu(G) x Des(G) —
Di xu(G), Dx xk (G) x Dx xk(G) — Dr xk (G). These in fact preserve the category of character
sheaves, giving functors Gi xG} — G%, G2 x(G,K,H)2xG} — (G,K,H)%, (G,K): x(G,K)} —
(G, K)%. (This follows from the last proposition of (1.2) and the lemma below).



As a consequence of [L9] one can compute the multiplication G} x G2 — G7} explicitly on
the level of mixed Grothendieck groups. (Characters are mutually orthogonal idempotents for
the multiplication, so by using the relation between characters and the characteristic functions of
character sheaves [L1,3,4,9], one can describe the multiplication of character sheaves).

The following lemma, and its obvious variants, are easy.

LEMMA. i) If A, € G2, Aq € (G,K, H)2, then A;xAq~AsxAy. iI) If A, € G2, Ag € (G, K, H)2,
then he( Ay * Ag) = he(A1)*he(Ag). iii) If Cy € Dg, Cy € Dikyy,thench(Cy+Ca)=ch(Cy#Ch).
iv) IfC € D§*, A€ (G,K, H)}, then C + hc(A) = he(A) + C. (Regarding D((G/U x G/U)/T) ~
Dr(G/U x G/U) for the purposes of multiplication).

Unfortunately we are unable to exploit this structure on the character sheaves in any interesting

vay.

1.5 We suppose given two commuting involutions 8,0 : G — G, such that K (resp. H) is a
subgroup of finite index in the fixpoints of 4 (resp. 0), i.e. (G?)° &lt; K &lt; GY, (G°)° &lt; H &lt; G°.
Let X ={z€G|0z=2z"1}'~G\G, X'={z€G|oz=2z"1}"~G/G".

Consider the disconnected group C2G obtained as the semidirect product of G with the cyclic
group of order 2 with generator fo ( with G normal, and fo.g.(60)~! = 6o(g)). Let G! be the
10n-identity component of CoG. Then in [L2,2] there is defined a partition of G! into finitely many
constructible sets, each piece of which is smooth and G-invariant for conjugation. The intersection
of 80.X with the pieces of the partition of G! give a partition of X. Taking the inverse image
of the pieces of this partition under the map G — 60.X, g — 60.9" 0g, we get a partition of G
into finitely many constructible sets, each of which is smooth and K x H-invariant. Taking the
connnected components of this partition, we get a stratification of G, the Lusztig stratification of
‘G,K,H).

We could also define a K x H-invariant stratification using X’ rather than X; these two strati-
fications coincide, as gog~1.00 is conjugate to (6o.g~10g)~!, and the map g — g~! permutes the
pieces of the partition of G!.

PROPOSITION. Character sheaves are constructible with respect to the Lusztig stratification.

ProoF: If k = C, this follows immediately from (1.7) below. In general, the proof is exactly the
same, but one uses the vanishing cycles functor ¢; rather than the characteristic variety. For lack
of a reference, we sketch the details; I’m grateful to M. Finkelberg for significant help with them.

Let A be a character sheaf, Y a piece of the Lusztig stratification, g¢ € Y. If f is a function
defined on a Zariski neighborhood of g, such that f(g) = 0 and f is smooth at g, then we want to
show that (¢;.A), # 0 implies df(g) € Ty X. If this is so for all such g, Y, f, it follows that A is
constructible with respect to the Lusztig stratification.

As every character sheaf is a summand of a standard sheaf ch(A’), A’ € D&amp;, 4 ((G/U xG/U)/T),
it is enough to show this for ch(A’) = pig* A’. In what follows, to simplify notation we assume
the central character C is trivial; this is no restriction—what matters is that A’ is locally constant
along the T-orbits.

Now, p is proper, so ¢;(p1q* A")y = (pdsp(q* A’))g. We assume ¢s(ch(A’))y # 0. Then there is
a B' € B with ¢7,(¢*A")(y,p) #0, and as p is smooth, fp is smooth at (g, B).

Also, gq is smooth and ¢,(¢* A’)(y py) # 0. It follows there is some function f’ on a neighbor-
hood of (#B’, B’) in B x B such that f'(¢B’,B’) = 0, f' is smooth at (¢B’, B’), d(f'q)(g9,B’) =
d(fp)(9, B), and ¢7¢(¢"A’)(g,B')=95(A')(sp'By#0.

Finally, A’ is K x H-equivariant on B x B, so locally constant along the K x H-orbits, and
hence (¢:A")(p»py#0impliesdf(B”, B’) is in the conormal bundle to the orbit of (B”, B’). To
finish the proof one merely calculates these conormal bundles, and checks that this simple estimate
implies df (xz) € Ty X. If the characteristic of k is good for G, this is precisely as in the complex
case (see (1.6)). If the characteristic of k is bad, one must be slightly careful; I’ve yet to do this
computation.

1.6 Suppose the base field k is C. We recall (and slightly generalise) the results of [G], [MV]



f f:Y — X is a map, we denote as in [KS,4.3] by *f’, fx the induced maps

1.6.1) ry Lv xxx Ix
[dentify g with the left invariant vector fields on G, so TG ~ G x g, and identify g ~ g* via
a non-degenerate G-invariant symmetric bilinear form, so T*G ~ G x g. Write N(g) for the
nilpotents of G, and u : G x g — g for the second projection—the moment map. Then T*B ~
{(\,B) € N(g) x B| A € Lie(B)} = gn. Also, if X = {z € G | 8z = z~!}° ~ G®\G,
X' ={z e€G| or =z" ~ G/G’ then we have T*X ~ {(z,£) € X x g | 06 = -"¢},
I*X' ~ {(z,) € X' x g| 0€ = —%¢} as subbundles of TG.

Let p:GxB—G,(9,B)—g,¢q:GxB—BxB,(9,B)— (*B,B),n:G—X,ggl4g
v:G— X', gw gog~l.

LEMMA. For each of the maps p, q, «, n’', the diagram (1.6.1) becomes i) G xX g x gn &gt;

GxgxB LH Gxg (9,)0,B)) — (g,\ B) — (9,A). ii) Gx gx an — {(g,B,n1,n2) €

G x Bx N(g) x N(g) | n1 € Lie?B, ny € LieB} il gn X On, (9,9 ny, (na,B))—(9,B,n1,n2)—

((n1,9B),(nq,B)).iii)Gxg— {(g9,2) | 6X = —97'09)} ni T° X, (9,20) «~ (9,2) —

(9710g,2). iv) G xg 2 {lg3) | 603 = —297'a)5 Tox, (9,-297'0)) — (g,)) —
(gog™t, A).

As a consequence of the lemma (i), (ii), and the estimates for the behaviour of SS under direct
image by a proper map and inverse image by a smooth map [KS,5.4.4,5.4.5], we get SS(ch(A)) C
{(9,A) € G x N(g) | (A) = —9)}. By considering pig} = i*pi¢*, where i : G — G, g — g7!,
and ¢; : G x B — B x B, (9,B) — (B,9B) we get analogously SS(ch(A)) C G x N(g~?). So if
A € (G,K,H)} is a character sheaf, SS(A) C A§4,whereAG4= {(g,1) € G x N(g) | (4) =
=IX, 0A = =A}.

If K = G% H = G’, and we identify Dgxg(G) with Dg(X) (resp. Dg(X')), then the
‘haracteristic variety of a character sheaf is contained in AX = {(z,A) € X x N(g) | 6()) =
—ZXA, 0X = =A} (resp. AX = {(z,)) € X' x N(g) | 6(A) = =), 0X = —*1}). Alternately, we
could identify G' with the symmetric space (G x G,G), so T*G is isomorphic to the subbundle
{(971,9,61,62) EG x Gxgxgl|9€ = —£} of T*(G x G). Then the characteristic variety of a
-haracter sheaf is contained in AES = G x G x N(g=%) x N(g=?)nT*G.

1.7 Write A for the union of the conormal bundles to the Lusztig stratification. It is easily
shown that A§ ;; C A, so [KS,8.4.1] character sheaves are constructible with respect to the Lusztig
stratification.

Character sheaves are K x H-equivariant perverse sheaves with characteristic variety contained

in Af pr. As in [G], this implies the corresponding D(K\G)-module (resp. D(G/H)-module)
M of a character sheaf is “admissible” in the sense of [G], and that if V C T'(K\G, M) (resp.
V C T(G/H,M)) is a finitely generated U(g)-submodule of T'(M), then it is actually a (g, h)-
module (resp. a (g, ¢)-module), and Ass(V) = p(SS(M)) if V generates M as a D-module, and G
is of adjoint type.

Or, identifying G with G x G/G, a D(G)-module M corresponding to a character sheaf is
admissible, and if V C I'(G, M) is a finitely generated U(g x g)-submodule of I'(M), then it is
actually a (g x g,® x h)-module, with Ass(V) = p(SS(M)) if V generates M as a D-module, and
G is of adjoint type.

Also arguing as in [G], we know the converse of these statements. In particular, a K x H-
equivariant perverse sheaf on G with characteristic variety contained in Af yg 1s necessarily a
character sheaf. We can clearly weaken this to: a K x H-equivariant perverse sheaf A with
SS(A) C G x N(g) is necessarily a character sheaf; or (as in [MV]) to: If K, H are connected
and simply connected, and A is an irreducible perverse sheaf with SS(A) C AZ gy then Ais a
character sheaf.

We will make a more interesting observation about the characteristic variety of a character sheaf
in section 3.

iO



2. INDUCTION

In this section we define certain “induction functors” from character sheaves on Levi subgroups
L with 8L = L, cL = L to character sheaves on GG. In the diagonal case these include the induction

functors defined by Lusztig [L1]; they take perverse sheaves to perverse sheaves, and monodromy
comes from finite covers. In general, we need the condition W; C L to obtain perverse sheaves;
and monodromy, even for induction from a torus, can be very large. Nonetheless, this is enough
to give a bijection between (L,8)2 and (G,8) for such £; and hence to reduce the classification
of character sheaves to the classification of those with central character in a finite set.

2.1 Throughout this section, let G be a connected reductive group, B = TUp a Borel subgroup,
T a maximal torus of B, P OD B a parabolic subgroup with P = LUp its Levi decomposition,
T C L. Write W, C W for the Weyl groups of L, G respectively, and pr; : P — L, lu — [ for the
projection onto L. We further suppose given two groups K, H and amap K x H = Gx G asin
1.1). We then get groups Kp, Hp as the inverse image of P x P under the map K x H — G x G,

and hence data (L, Kp, Hp), (P, Kp, Hp).
If KNUp, HNUp are connected, and we set Ki = pr; (Kp), Hy = pry (Hp) then Dg, xup.(L) ~

Dk, xH,(L), as then Ky, Hy differ from Kp, Hp by a connected unipotent group which acts
trivially on L. This is the case when K, H are the fixpoints of involutions.

The following lemma is straightforward.

LEMMA. i) The map K xg, P/Ug — KP/Up induced by (k,pUg) — kpUp is a K x T-equivariant
isomorphism. ii) The map H xg, P/Ug — HP/Up induced by (h,pUg) — hpUp is a H x T-
equivariant isomorphism. iii) The map (K x H) X(kpxtp)y L — (KP/Up x HP[Up)/L induced
by (k,h,l) — (klUp,hUp)L is a K x H-equivariant isomorphism.

As a result of (i) and (ii), we get an equivalence of categories Dixuxr(KP/Up x HP/Up) —
DkpxtpxT(P/Up x P/Up), given by restriction (and shift). Write this A — A. As a result of
iii), we get an equivalence of categories Dk. xHp(L) — Dx xu((KP/Up x HP/Up)/L), given by
the induction functor (0.2). Write this A — TA.

2.2 DEFINITION. Write Ind p : Dg pxHp(L) = Dix(G)forthecomposition(pr,)1q°j:I'where
pr q J

G —- Gx G/P = (G/Up x G/Up)/L — (KP/Up x HP/Up)/L

and pr, is the first projection, j the inclusion, and q(g, hP) = (ghUp,hUp)L.

PROPOSITION (TRANSITIVITY OF INDUCTION). Ind§ p och o™ = chg

PROOF: Consider the following commutative cartesian diagram, where the second row is obtained
from the first by applying the functor (K x H) X(kpxHp) (*)-

pry pry q'
——— P — Px P/B — (P/Up x P/UB)/T

‘KP/Up x HPJUp)/L «

|r,
G

Here Z1 = {(g,hP) | (9hP,hP)€ KP/P x HP/P}, Z, = {(9,hB) | (§hP,hP) € KP/PxHP/P},
and q(g, hB) = (ghUp, hUB)T, ¢'(g9,hB) = (ghUs, hUB)T, a(g, hP) = (ghUp, hUp)L, n(g, hB) =
(9,hP), i0(l) = (IUp,Up)L, i1(p) = (p, P), i2, i3 are the obvious inclusions, and pr; is projection
onto the first factor.

Now we wish to compare a®T'chr(A) with mq®A, for A € Dx xuxT(KP/Ug x HP/Ug). As i:
Dr xi(Z1) = Dkpxup(P) is an equivalence of categories, it is enough to compare i{a’Tchy (A)
with i9mq°A. But i%a’Tchr (A) = pridTchr(A) = prlchr(A), as i, T' are inverse equivalences
of categories. Also i9mq®A = (pr )i3¢°A = (pr) i34 = chp(A), as A = i3A, by definition.
Finally, prichr A = chpA.

{ 3



COROLLARY. [ ndf p takes character sheaves to complexes whose perverse constituents are char-

acter sheaves. More precisely, Ind§ p :(L,Kp,Hp); — (G,K,H)}.

We also have the following variant of the proposition.

PROPOSITION. IfQ= MUgq is a parabolic subgroup with Q C P, M C L, then

Ind§ p 0 Indy on = Ind§ q

Now suppose A € Dgxuxt(KP/Ug x HP/Upg) is such that jiA is perverse, where j is the
inclusion KP/Up x HP[/Up — G/Up xG/Ug. Then chg(j: A) is semisimple, chr (A) is semisimple
‘both by the decomposition theorem), and so if A’ is a summand of chy (A), Indg pA’ is semisimple.
[f in fact we have ji : M&amp; gr (KP/Up x HP/Ug) — M%, y«7(G/Up x G/Up) then we say
fP,L) is good induction data. If this is the case we clearly have

Ind p : (L,Kp,Hp); — (G, K, H)} takes semisimple complexes to semisimple complexes
as then every semisimple complex in (L, Kp, Hp)% is a summand of some chr (A), with jiAsimple
perverse on G/Ug x G/Up.

2.3 Write dp = dim(Up)—dim(K/Kp)—dim(H/Hp). We define an adjoint functor to induction.
Define

Res{p: Dkxi(G) = Dkpxip(L)

as the composition i"*j* qipri[dp], where

G Gx G/P 2% (G/Up x G/Up)/L &amp; (KP[Up x HP/Up)/L — L

is as in (2.2), and ¢(I) = (IUp,Up)L. Then it is clear that Res p = (pry )1i*[dp], where i :
P — G is the inclusion, and that if (P,£) is good (so j1 = j.), that Hom(Res{ pA’, A) =

Hom(A’, Ind{ pA) for all A € Dp xnp(L), A’ € Dxxn(G).

PROPOSITION. Resfp: (G,K, H)2 — @yew.\w(L Kp, Hp):

PROOF: It is enough to show for all A € D%, ;((G/U x G/U)/T) that Res{ pchgA has perverse
constituents character sheaves on (L, Kp, Hp) with central characters of the form w*L. Hence (by

base change) we are calculating piq* A, where L 2 px G/B 2 (G/Ug x G/UB)/T, pri(p) —
(,9B) — (pgUs, gUB)T.

Partition G/B into P-orbits, P\G/B ~ W.\W which we identify with the elements of shortest
length in each coset of W.. For each such w € W,\W, consider the diagram of Kp x Hp spaces

PwB/B —- « 2  —&gt;. (PwB/Ug x PwB/Ug)/T —&gt;— (G/Us x G/Us)/1

K bu
pT, B

——— Lx L/B, —— (L/Up, x L/UB,)]/T

where B, = pr;(YBNP)isaBorelofL,Ug,=pr;(“UpNP)isits unipotent radical, B(li, 12B.) =
(h12UB,)T, bu (p1wUs, p2wUp) = (pr (p1)Us., pri(p2)Us.), (af)(p1,p2wB) = (p1p2wUs, p2wUs)T,
(vf)(p1,p2wB) = (pri(p1),prr(p2)Us,. Here, Z is the fibre product of g with é,, and f
is a locally trivial fibration with fibres isomorphic to Up N ¥Up, an affine space of dimension
d= dim(Up) — l(w).

We wish to understand ®,4 = pi(af)*il,A.Asp = pryvf, and fif*A’ = A'[-2d](—d) for
A" € D(Z) (f is a locally trivial fibration with affine space fibres of dimension d), we have ®,A =
(pr1)1B*(bwrityA[—2d)(—d)=chip(6wit,A)[—2d](—d).Butitisclearthat6,,i%:Dy((G/Ux
G/U)/T) = Dg Ss mpxr(L/UB, x L]Up,). So ®,A € (L, Kp, Hp)p-(-

The proposition is immediate from the long exact sequence in perverse cohomology.

la



REMARK. If W. C W.,, then the long exact sequence in perverse cohomology associated to this
partition degenerates into a sequence of short exact sequences.

We now consider a similar analysis of Resf p Indg p. This is the functor pig* jiT'[dp], where j, T
p q : cr

are as in (2.1), and p, gare asin L — P x G/P — (G/Up x G/Up)/L. Again, partition G/P by
P orbits which we index by the shortest length coset representatives in W,\W/W,. We can then
study the diagram

r
J

ull P x PwP/P —+(PwP/Up x PwP/Up)/(* PAL) —' + (G/Up x G/Up)/L

| 5.
[, x L/P, Zz. (L/Up. x LUp,)/Lu

where P, = pr; (PNY P) is a parabolic of L, P, = L.Up, with L, = LN“L,Up,= LN“ Up. Then
this diagram is again “almost” cartesian—P x PwP/P is a locally trivial fibration over the actual
fibre product of3and §,,, with fibres isomorphic to Up N*Up. Thus yia* = 3*6,[—2d](—d), with
d = dim(Up N*Up). So we need to understand é,3},. This is rather complicated, and for our
purposes the following will be enough.

PropPOSITION. Put ®, = pr, ,(iya)*jil'[dp] : Dkpxtp(L) — Dgpxup(L). Then ®, maps
'L,Kp,Hp)} to ®vew.ww.(L, Kp, Hp))... Further, ®, is the identity functor.

PrOOF: The last statement is clear. As to the first, it is enough to show that ®,, och lands in the
claimed category. This will follow if we show hep, o ®,, o chy maps D%, wupox1(L/UB. x L/Us,)

0 Pvew. ww. DYE, ho xr(L/UB, x L/Up,), as by the definition of character sheaves, chy takes
this last category to the desired category of character sheaves, and ®, o chy is a constituent of
chpher®ychr.

We omit the rest of the proof, as it merely consists of a routine sequence of base changes and the
ong exact sequence of a partition; the key point is the partition PwP/B = [{,cw.,w. BvB/B.
The previous propositions give ample description of this technique.

As a consequence, we get the following (compare [L1,17.12]).

THEOREM. If W. C W., and (P, L) is good induction data, then

Ind§ p: (L,Kp,Hp)2 — (G,K,H)}

is an equivalence of categories with t-structures. In particular, the simple perverse sheaves corre-
spond.

PROOF: First, suppose W,zW, and W,yW, are distinct double cosets. Then (L, Kp, Hp)2.,,
(L,Kp, Hp). are distinct. For, if not, z*£ and y*£ are in the same W, orbit; say w*z*L = y*L
for w € W,. Then zw = vy for some v € W} C Wi, contradicting W,zW, # W,yW.,. Hence
Ext(®:A, ®yA) = 0, where ®,, is as in the previous proposition, and the long exact sequence in per-
verse cohomolgy for PH *Res§ pl ndf p associated to the partition of P x G/P by P-orbits breaks
up into a sequence of short exact sequences. In other words, Res§ pl ndf pA = Buew w/w. PA
(a direct sum) where ®}, is a map between the two categories of character sheaves in the propo-
sition, and PH*®!A= PH'®,A.However, for A split, we also have ®{A = ®, 4, as a com-
plex A’ with PH*A’ = 0 for all i # 0 has A’ = PH®A’. We can now conclude that for A split

Hom(Indf pA’, Ind§ pA) = Hom(A4’, Res pIndf pA) = Hom(A’, ®®,,A) = Hom(4', A).
So Ind§ p is fully faithful on the heart M(L, Kp, Hp)?. But further, as we assume (P, £) is

good, if A is simple perverse, | ndf pA is semisimple, and this calculation shows I ndf pA is simple
perverse, up to shift. But PH’ ndf pA=PH™ I] ndf pA (relative hard Lefschetz theorem); so in
fact there must be no shift. From this we can conclude I nd§ p sends arbitrary perverse sheaves
to perverse sheaves. Finally, if A’ is a simple in (G, K, H)%, then transitivity of induction shows



it is a constituent of Ind§ pA for some simple A in (L, Kp, Hp)? (as (P,L) is good). But then
Ind§ pA is simple, so Ind§ pA =A.

This shows Ind p is an equivalence of categories between M(L, Kp, Hp)? and M(G, K, H)}.
We deduce the theorem from this and [B,1.4].

This result, together with the following results, reduces the classification of character sheaves
with arbitrary central character to the classification of character sheaves with central character
in a small finite set. This is unsatisfactory—the results of [L1] show that one should be able to
reduce to the case £ = Q.

REMARK. If W; € W, we usually have Ind§ pA # Ind p/A, if P, P’ are distinct parabolic
subgroups with Levi subgroup L, and A € (G, K, H)%.

2.4 Let G" be the derived group of G, &amp; a rank one local system in Dg yxg(G/G%"). Then
if £ is the pullback of £&amp; under G — G/G9", and € the pullback of &amp; under the map (G/Up x
G/Ug)/T — G/G%", (Up, hUg)T + gh~1G*" we have

LEMMA [L1, 17.9]. i) A — A®E defines an equivalence of categories (G,K, HH): — (G,K, H) coe.
ii) A’ — A’ ® £ defines an equivalence of categories D% (G/U x GJU)/T) — D2. (G/U x
G/U)/T). iii) chg(A') ® £ = chg(A' @ £), heg(A) @ € = heg(AR £).

Here, we've written LQ &amp; for LQ (E|T).

2.5 Now suppose we are given two commuting involutions 8,0 : G — G, such that K (resp. H)
is a subgroup of finite index in the fixpoints of8(resp. 0), i.e. (G*)° &lt; K &lt;G?, (G°)° &lt; HG’.
The following result allows us to apply the theorem.

PROPOSITION. Let P = LUp be any parabolic subgroup with Levi subgroup L, where 6L = L,
oL = L. Let £ be a local system with W; C W.. Then (P, L) is good.

ProoF: This follows from the calculation of the perverse extensions of local systems in D%(G/U).
The case of (G x G,G) is due to Lusztig, in [L4]; the general case is due to Vogan.

3. UNIPOTENT CHARACTER SHEAVES

We would like to understand (G, K, H)?%; in particular to parameterise the simple objects. In
this section we partition the character sheaves according to two sided cells in K\B. When the
symmetric space is (G x G, G), we recover the partition of [L1]; our proof is simpler. For simplicity
we state everything for £ = Qj, i.e. for “unipotent character sheaves”. The results however have
{[obvious) generalisations true at any central character.

We also state a conjecture about the parametrisation of character sheaves, after [L7].
We suppose given two commuting involutions 4,0 : G — G, and subgroups K, H such that K

(resp. H) is a subgroup of finite index in the fixpoint set of 8 (resp. o), i.e. (G?)? &lt; K &lt; G?,
(G°)° &lt; H &lt; G°?. Also fix £ = Q; throughout this section.

3.1 We first recall the structure of D&amp; (G/U) ~ Dk(B). The results are due to [LV], [V1]
when the base field is C, and are (almost certainly) true for arbitrary algebraically closed fields of
characteristic different from 2, though no published proofs exist.

We define several orders on the simple perverse sheaves in D%(G/U). Let £1, &amp;; be two irre-
ducible local systems in D4(G/U), supported on the orbits O;, QO respectively, and write El, £}
for their perverse extensions. Define £l &lt; gl if their exists an ¢ such that H ENO, contains &amp;;
as a constituent. The partial order this induces (it must be made transitive in general) is called
G-Bruhat order.

Define £! &lt;pp &amp;! if there exists a perverse sheaf A in Dg(B x B) such that £! is a perverse
constituent of A * £}. (In general, when £ # Qj, replace Dg(B x B) with the tensor category
of (1.4)). The equivalence classes of simple perverse sheaves defined by the preorder &lt;pg are
called (two-sided) cells. For a two sided cell c, write D*(&lt; c) for the subcategory generated by
the perverse sheaves &amp;l with £l &lt;tr c¢. This category is stable under the Hecke algebra action
«. (Recall that given a collection of simple perverse sheaves in Dx (G/U), by the “subcategory



they generate” we mean the full subcategory of Dk(G/U) whose objects are those complexes with
perverse constituents among the given collection.)
If Ae D*(&lt; c), but A ¢ DA(&lt; ¢!), forall ¢/ &lt;pgrc, ¢ # c, wesay A is a complex in the cell c.
These two orders &lt;, &lt;prdefine two graphs on the simple objects in D&amp; (G/U), which may have

many connected components. However,

ProposITION [LV,V1]. The connected components of the &lt;r and of the &lt; graph agree. Given
a component, call the subcategory it generates a block. Then if B, B’ are two distinct blocks, we
have Extp,(g/u)(B,B") = 0. Conversely, a block is indecomposable—the graph on the simple
objects ofBgiven by joining A to A’ if Extp, (c/v)(A, A’) # 0 is connected.

In the diagonal case (G x G,G) there is only one block. Combinatorial descriptions of &lt;, two
sided cells and the structure of blocks can be found in the works of Vogan. We summarise some
of this information. Given a cell c, we define a W-graph associated to ¢, giving a representation
of W with basis corresponding to the simple perverse sheaves in ¢, as in [LV]. For each cell c,
its W-graph contains precisely one special representation of W, conjecturally with multiplicity
one. All the representations carried by such a W-graph belong to a single two-sided cell of W. In
particular, we have a map from cells ¢ of Dg (B) to two sided cells of Dg(B x B). (Recall that
'n the case of (G x G,G), distinct cells carry distinct representations; and the partition of W*" so
obtained is called the partition by two-sided cells of W).

3.2 We apply the above discussion to (G x G, K x H). The partition of D&amp;, ;((G/U x G/U)/T)
into blocks gives a partition of (G, K, H)} into “flag manifold blocks”; this is well defined as
heoch(B') C B’, for B' a block of Df,x((G/UxG/U)/T).WealsohaveExtp,.,,,()(A4,A’)=0
if A, A’ are in different flag manifold blocks of (G, K, H)?. However, the flag manifold blocks
of (G, K, H)? are not indecomposable. For example, the indecomposable summands of G} are
parametrised by pairs (L,€) (up to conjugacy), where L is a Levi subgroup of G and £ is a
:uspidal local system on L/Z? with unipotent central character [L1].

3.3 Write M for the mixed Grothendieck group of Dgxg(BxB),HforthatofDg(Bx B). H is
an Z[q!/2, g~1/?]-algebra with respect to *, the Jwahori-Hecke algebra, and M is a H® H°P-module.
Then we have

(3.3.1) hecoch =(m) = &gt; MT, mT,
weW vo

as a consequence of the proof of proposition (1.2) (the partition of Z in the proposition is a
partition into K x H-spaces). If we further identify M with Mx ® My, where Mg (resp. My)
is the mixed Grothendieck group of Dk(B) (resp. Dg(B)), then hi(mi ® ma)hT = him ® hama,
where T : H — HP is the algebra anti-automorphism T}, — T,-1, and H acts on Mg, My on the

left as in [LV]. Then hcoch(m, ® m3) = A(m; @m3), where A=3" "WT, T, e HOH.
Observe hy @ haA = Aho @ h;.

For E an irreducible H-module, let rg = 3° ¢~'@htr(Ty, EYTyy-1 € H (note tr(T,,E) €
Z[q'/2,¢q=1/?]). Then rg is central; if E, E’ are distinct irreducible H-modules rgrg: = rgirg = 0,

and r% = (3° ¢'®))Dg(q)~! dim(E)rg, where Dg(q) is the formal degree of E. In particular, rg
acts as a non-zero scalar on FE, and as 0 on E’, for E’ % E; and the elements rg form a basis for
the center of H. Also, if E occurs in the W-graph of a two sided cell ¢c of W, then rg represents
a complex in the cell c.

Now, as ch(hm) = ch(mh) for all m € M,h € H (1.4), it is clear that on the level of mixed

Grothendieck groups, ch factors M Kado MT M “2, (Grothendieck group of character sheaves),
where M — MY 'm — m'"" is the projection onto the isotypical component of the trivial (Lie
algebra) H-module, with H acting on M by ad(h)m = hm — mh.

In particular, if A, A’ € Dix (B x B) have [A]'"*? = [A']'"*?, where [A] denotes the image of
A in the mixed Grothendieck group, then a character sheaf X appears with non-zero coefficient in
ch[A] if and only if it appears with non-zero coefficient in ch[A’].



If A is a simple perverse sheaf, then X is a constituent of ch(.A) if and only if it appears with
non-zero coefficent in [ch(A)] = ch[A] (as by the decomposition theorem, ch(.A) is pure split
semisimple).

As a consequence, if my, ..., m, is a basis of M*™?, every unipotent character sheaf occurs with

non-zero coefficient in ch(m;) for some i (compare [L1,14.12]), as we can always find perverse
sheaves Aj, ..., A; with [4], ..., [4,]'"*¥ spanning Mr".

The following special case of this will be used in section 7: If A, A’ are simple perverse sheaves
in the cell ¢; X ez, and the W-graph for this cell carries the representation EE ® FE, with FE an
irreducible W-module, then the set of constituents of ch(.4) are the same as the set of constituents
for ch(A’), modulo character sheaves that arise as constituents of ch(C), for C in a cell strictly
LR-smaller then ¢; ® cy. (This is immediate, as (EF ® FE)!" is one dimensional).

We also conclude

PROPOSITION. Suppose ¢; Bc, is a cell of Dx «g(B x B), and ¢;, cz are associated to distinct
two sided cells of W. Then if A is a constituent of ch(A'), with A' € D*(&lt; ¢, ® c3), there are
cells ¢/, ¢4, with ¢{ Rc) &lt;pr cy Rey, (c,h) # (c1,c2), and a complex A” € D*(&lt; ¢| ®c}) such
that A Is a perverse constituent of ch(A").

PROOF: Let M&lt;¢18¢3 (resp. M&lt;c18¢3) be the mixed Grothendieck group of the category generated
by the perverse sheaves £' with &amp; &lt;p c¢; Rc, (resp. &amp;! &lt;pr cy Bc and E84; pe) Bey), and
write M182 for the H ® H°P-module M &lt;€18¢3 /pf&lt;ciBes By assumption, M€18€ ~ M1 @ M©3
for H-modules M1, M? which carry disjoint representations of H. So (MSi1®e3)iriv. — (and
‘MSaBeytriv — (pr&lt;eiBeaytriv The proposition follows from the discussion preceding it. (Note
shat although it is clear that A(M S183) C M&lt;&lt;18¢2 we cannot use this to prove the proposition).

3.4 Write (G, K, H);.forthe full subcategory of (G, K, H)? generated by the simple character
sheaves A such that he(A) € D*(&lt;L c). If A’ € (G, K, H)? &lt;c then he(A') € D*(&lt; ¢) (this follows
irom the distinguished triangles (PH®A'[—a], Pr2° A’, Pr&gt;3 4").

We say X € (G, K, H)?&lt;.isa character sheaf in the cell c if X ¢ (G, K, H)? for all cells
¢/ &lt;tr c with ¢/ # c¢. If XY € (G, K, H)} is simple, then X is in the cell ¢ if and only if he(X) is
in the cell ¢ of D4,4;((G/UxG/U)/T).

THEOREM. i) Let X € (G, K, H); be a simple character sheaf. Then there exists a (unique) cell c
with he(X) in the cell c. This gives a partition of the simple character sheaves by two sided cells; X
is in the cell c if and onlyif a) there exists a simple perverse sheafA€D%., ;((G/U x G/U)/T) in
he cell ¢ with X a summand of ch(A), and b) ifA'€D% , ;((G/U x G/U)/T) is a simple perverse
sheaf such that X is a summand of ch(A’), then A &lt;pr A’. ii) There exists a character sheaf in
the cell ¢ if and only if Homw (E.,, Ec,) # 0, where ¢ = cy Rc, and E., is the representation of
W carried by the W-graph of ¢;; i.e. if and only if the two sided cell of W associated to c; is the
same as the two sided cell of W associated to c,.

PRrooF: First observe that hcoch(D*(&lt; ¢)) C D*(&lt; c). This follows from the proof of proposition
{1.2) and the definition of D(X c) (see (3.3.1)). Then ifA€D4,5((G/UxG/U)/T)isasimple
perverse sheaf in the cell c and X is a constituent of ch(A), we have he(X) € D*(&lt; c) (as ch(A)
is semisimple, so hc(X') is a summand of he o ch(A)). Now, if X is any simple character sheaf, X
is a constituent of ch(hc(X)), so X is a constituent of ch(A) for some perverse constituent A of
he(X). Thus he(X) € DX(&lt; c), where c is the cell containing A; and indeed hc(X) is in the cell c.

This proves (i), and (ii) is immediate from the preceding proposition.

In the case of the symmetric space (G x G, G, G), this coincides with the partition of [L1]: there
A is in the cell c if and only if X occurs as a constituent of ch(rg) for some representation E in
the W-graph of ¢. As rg is a complex in the cell ¢, this coincides with our partition. However,
Lusztig’s description is more precise than ours: he essentially decomposes M as a H ® H°P-module
in such a way that if My, M; are distinct summands, then ch(m;), ch(mz) have no constituents in
common for all my € My, ma € My. Such a decomposition is not possible in general—it already
fails for (SLo, SO4, SO5).



3.5 Suppose k = C. We describe a cruder partition of the character sheaves than that into cells.
We suppose that G is of adjoint type, and K = G%, H = G°.

First recall the situation on the flag variety. If A € Dg(B x B) is a perverse sheaf in the
two sided cell ¢, then u(SS(A)) is the closure of a single nilpotent G-orbit on g (embedded in
g Xx g by z — (z,—z)). This nilpotent orbit is the special nilpotent associated by the Springer
correspondence to the unique special representation in the W-graph of c. In particular, there is a
1-1 correspondence between two sided cells of W and special nilpotents in g.

If now A € Dg(B) is an irreducible perverse sheaf, u(SS(A)) C N(g~?). It is not true that
u(SS(A)) is irreducible; however if u(SS(A)) = OU ---U O,, for some K-orbits O; on N(g~*%)
with m minimal, we have that Oy,...,O,, are all contained in a single G-orbit on N(g), and if the
codimension of O; \ 0; is at least two for some (equivalently any) O;, then m = 1; i.e. u(SS(A)) is
‘rreducible. Further, the G-orbits in N(g) obtained in this way are special nilpotent orbits. More
precisely, if A € Dk(B) is in the cell ¢, then the G-orbit obtained from u(SS(A)) corresponds to
she two sided cell of W which corresponds to ¢ [V2].

Also recall that if A; € Dg(B) is a perverse sheaf in the cell ¢;, i = 1,2, and ¢; &lt;pgr c2, then
u(SS(A1)) C u(SS(Az2)), and hence if ¢; = cp that u(SS(A1)) = u(SS(A2)). However the maps
from cells in Dg(B) to subsets of K-orbits in N(g~?) is not injective in general. (For example, if
‘G,K) = (SL3, SO3) there are two cells which map to the subregular nilpotents; see (7.2)).

We further recall that if V is a (g, t)-module, then Ass(V) = u(SS(V)), where V is the Beilinson-
Bernstein localisation of V', a complex in Dg(G/U).

Let us call a collection {Oy,...,0n} a special K-subset of nilpotent orbits if there is some
‘rreducible A € Dg (B) with u(SS(A)) = O1U---UO,,, m minimal.

PROPOSITION. Suppose A is an irreducible unipotent character sheaf, regarded as a sheaf on
G°\G (resp. on G/G°). Then u(SS(A)) = OL U---U Op, (resp. p(SS(A)) = OL U---u0..,)
where {Oy,...,0n} (resp. {Of,...,0...}) is a special H-subset of nilpotent orbits (resp. special
K -subset). Moreover, Oy U---UQO0, UO{U---UQ!, is contained in a single G-orbit in N(g).

PROOF: Let M be the D(K\G)-module corresponding to the character sheaf A. We can choose an
irreducible finitely generated U(g)-submodule of T'(K\G, M) (choose any f.g. submodule; it must
contain an irreducible submodule). Now, as remarked in (1.7), it follows that u(SS(A)) = Ass(V).
But V is an irreducible (g, h)-module, so Ass(V') is a special H-subset. We can repeat this argument
for G/H or G x G/G. Doing it for G x G/G we obtain the last statement of the proposition.

REMARK. D(K\G) ~ @E;, for some finite dimensional g-modules E; [G]. Hence we have a
surjective homomorphism of g-modules, &gt;(E; ® V) — I'(K\G, M), where V C T(K\G, M) is an
irreducible i (g)-module. Then Ass(E;®V) = Ass(V), so one can deduce Ass(V') = Ass(V) if V' C
C(K\G, M) is another irreducible 2/(g)-submodule. Then [G,4.3.3] explains this phenomenon.

We consider the relation between this partition of character sheaves and the one into two sided
cells, restricting attention to the case (G x G, G, G) out of sheer laziness.

LEMMA. Let A € G, regarded as a perverse sheaf on GxG, viag — (g~1,g). Let A’ € Dg(BxB).
Having thus identified T*G as a subbundle of T*(G x G) we have 1) u(SS(ch(A’'))) C p(SS(A'))
ii) p(SS(he(A))) C u(SS(A)).

The lemma is immediate from (1.6) and [MV,B2] (recall hc involves direct image for a non-
proper map). As a consequence, ifA€G2, as A is a summand of ch o he(A), we get u(SS(A)) C
u(SS(ch o he(A))) C p(SS(he(A))) C p(SS(A)). As the map from cells to nilpotent orbits is
injective, the partition defined in this way coincides with that defined in (3.4) (and hence with
Lusztig’s).

3.6 We suppose again that k is arbitrary.

CONJECTURE. Given a cell ¢ = ¢; Rey of D&amp;, x((G/U x G/U)/T) with (G,K,H)}.# 0, let
Ge be the small finite group associated in [L1] to the two-sided cell associated to ci. Then we
conjecture there exist subgroups Hc, Ke of Ge x Ge such that the simple objects in (G, K, H )2.c
are in 1-1 correspondence with the irreducible Ko x Hc-equivariant vector bundles on Gc x Ge.



For the symmetric space (G x G,G,G) this conjecture is precisely theorem [L1,17.8.3] in the
reautiful reformulation of [L7].

4. GENERIC CHARACTER SHEAVES

In this section K is a connected reductive group, # : G — G an involutory automorphism, and
K a group of finite index in the fixpoints of 8; (G?)? &lt; K &lt; G®. We also fix a maximal 6-split
torus A, and a maximal torus T' containing A. Write L = Zg(A), and W. for the Weyl group of
L. Alsowrite Tk = Kr =TNK.

A local system £ on T such that W is contained in the Weyl group of L (we write this as
Wi C L) and Dg kp (T) is non-empty is called generic. Throughout this section we suppose
ixed a generic local system L. A character sheaf in (G, K)} is also called generic.

4.1 Let P = LUp be any parabolic with Levi subgroup L. The results of section 2 imply that,
for £ generic,

Ind p: (L, KL); — (G, K)}

is an equivalence of categories, sending simple perverse sheaves to simple perverse sheaves.
The following lemma, applied to (L, K), gives a complete description of (L, KL)?%.

LEMMA. Let (G, K) be such that G%" C K, so Dg xk (G) ~ Dg(T/T), where K acts trivially
on T/Tk. Then for A € Df, k.(T), chg(A) = Ind§ (A) = H*(B) ® A, where the image of
A under the forgetful functor Dk(T/Tk) — Dk (T/Tk) is A, and H*(B) is the pure complex of
constant sheaves given by p*p1Qi, where p : B — pt is the projection to a point.

As a consequence, if B is any Borel contained in P, A C B, then Indf p = Ind p o Ind} par oe
H*(BL) ® Indf p, and PHOIndg p : Dg wk. (T) — (G,K)? takes simple perverse sheaves to
simple character sheaves bijectively. In particular, there are [Tk /T%|? simple character sheaves
with central character £, for £ generic.

1.2 THEOREM. The restriction of a generic character sheaf A to the strata of regular semisimple
elements of X (i.e. to the g € G such that Z2(g~'0g) is conjugate to L) is a local system of rank
|W(A, K)|. Moreover, if (G, K) is split, then

Y (-1)f dim HA = (~1)4m EY (1) dim HY (By-14,)

We will determine the local system explicitly below. Also, if (G, K) is not split, we will obtain
more precise information about the stalks of generic character sheaves by reducing to the split
case.

PROOF: As we know character sheaves are constructible with respect to the Lusztig stratification,
che first statement is equivalent to showing &gt;i (1) +m G dim HA = |W(A, K)|, for g in the
generic strata. As the irreducible character sheaves in (L, K)% are rank one local systems with
{inite monodromy, this alternating sum is (up to sign) the Euler characteristic of 9 “K P/PNKP/P,
where P is any parabolic subgroup with Levi subgroup L. (By the definition of I ndf p, and (4.1)).
Choose a parabolic P so PNP = L. Then a parabolic P, € G/P is in the K-orbit of P if and
only if P; is opposed to 4P;.

Write P' = §P € G/P, and put Z = {(z, P,, P) € GxG/PxG/P | P, opposed to Py, P, opposed to * " P;}
7 = {(z,h Up, hoUp:) € G x G/Up x G/Up: | hth, € PP’ h;'zh; € P'P}. Define maps
G 20 zl z2 L, where pr, is the first projection, = is the obvious morphism making Z—Z
an L x L-bundle, a(z,h Up, hUp:) = B1(h7 h2)B2(h5 zh), where B; : PP! — L, uly’ — |,
and B3 : P'P — L, w'lu — I. Also define involutions ¥ : G — G, g — 8g~'; ¢¥ : 2 — Z,

(z, hiUp, hoUp/) — (0z=1,0h,Up, 6h Ups), Yv:4—Z, (z, Py, Pp) — (0z~1,0P,,0P), Y:L— L,
g — 6g~1. Then 1 intertwines pr, 7, a; i.e. this is a diagram of Z/2-spaces.

Then GY = X, and the fibres of the the map Z¥ — X at z = g~'0g € X, which we will denote

ZY, are isomorphic to s'KP/P N KP/P. Also observe a(Z¥) C Z2.



Let £ be the local system on Z? obtained by restricting £ from T to Z}; regard L as a complex
on L by extension by zero. It is clear that v*L ~ LC, so if £ denotes the unique G-equivariant local
system on Z such that 79 = aL, we have 5 (=1)'tr(, Hi((pri):L)) = S(=1)itr(1, HY(ZY))
which is the Euler characteristic we are trying to calculate.

Now.

(4.2.1) (pr)iL ~ IndS(nd; C,

where Ind§ is the induction functor of conjugation equvariant sheaves on the group G [L1,4.1].
Assuming this for the moment, we proceed as follows. The complex I nd§ C is equal to the intersec-

tion cohomology extension of prg* L, where G i= {(g,hL) | hgh € 227%} wh Z9,q(g,hL) =
h=lgh, p(g,hL) = g [L2,2.6], and p is a Ng(L)/L Galois cover, with action (g,hL).w = (9, hwl),
w€ Ng(L)/L.

Define actions 4 : Z — Z, (g,hL) — (8g~,0hL), ¢ : Z0 — Z2, z+ 621. Again ¢ intertwines
p, ¢ and the Ng(L)/L action on Z commutes with the action of ¥.

Nowif z is regular semisimple in X, ((pr;):£): =~ (p1q* £)= as ()-modules, and so 3 tr(s, Hz(p1g* £)) -
I(Ng(L)/L)®|, the fixpoints of § on Ng(L)/L. But W(A, K) = Ngo(A)/Zko(A) = (Ng(L)/L)?,
and so the first assertion of the theorem holds.

For the second assertion, we assume (G, K) is split, i.e. T = L, L=CL, W(A,K)=W(T,G). As
C is a local system with finite monodromy, tr(, (IndsL);) = tr(, (Ind$ Qi):). Choose a rational
structure on G so that T becomes an Fy-split torus: FT =T and Ft = t? for allt € TF. Then there

is a canonical isomorphism ¢ : F*I nd$ QI nd$ Q;, which comes from the obvious isomorphism
F*Q;=Q;. We thus get isomorphisms (WF)*Ind$ Q1 = IndS Oy; write tr(YF?, Ind$ Q)) for the
characteristic function on G¥F" so obtained.

We will calculate tr(y, IndSQ;) by calculating tr(¢F*, Inds Q;) for all i; tr(y, Ind5Q) =
 iMoo3tr(YFF,IndsQE.

Now, 9 F is the Frobenius morphism for a rational structure on G with G¥¥ not a group—
YF = F' oi, where F(z) = Ff(z) is a group homomorphism, and i(z) = z~!. We can consider
GY¥F as the symmetric space (Gx G, G) with the Frobenius (z,y) — (F'y, F'z). Then the argument
sketched here is repeated in (7.4.5-7.4.9) below, perhaps with more detail. Regardless, the results
of [L1,8-10,24] on the properties of the characteristic functions of character sheaves require very
little modification to this twisted situation—we have for example that

(4.2.2) ): ir J

UEGVYF (¥F, (IndF, Q1)u)? = ITF 21 |Na(T))F |G

for T} any iF-stable maximal torus.
We also have an analogue of the character formula [L1,8.5]. As a consequence of this, and the

actual [L1,8.5] applied to tr(F, I nds Q)), we see that if we can prove the second assertion of the
theorem for g~!6g = z unipotent, it will follow for general g. _

To do this, we use the fact that the “orthogonality relations” between the constituents of I nd$ Q
determine their characteristic function [L1,24.4]. Let ¢,i' denote two 1 F-stable irreducible con-

stituents of Ind Qy, wior) their inner product with respect to YF (= 2ueG?r Xi (uw) Xr (uw), where
X; is the characteristic function of i, X;; that of D#’ ), and let w;i denote the inner product
of 4,i’ with respect to the split Frobenius F' [L1,24.2-24.3]. It is then clear from (4.2.2) that

($F) _ (_1\dimT,,.
odKU (-1) Wi,it |g —g-

This means that if Yu = u, Fu = u, there exists some u’ in the same conjugacy class as u,

with Fu' = u/, and tr(¢F, (IndSQ1)u) = (=1)4m Ctr(F, (Ind$ Qu) gm —g (Ennola duality). The
second assertion of the theorem follows.

It remains to prove (4.2.1). In the case (G, K) is split (or even quasi-split), £ is a character
sheaf on L = T, W; = 1, and (4.2.1) is immediate from [L1,2.12-2.15]. In general, £ is not a
character sheaf on L (in the language of [L2] it is a “quasi-admissible” complex). Nonetheless, the



proof of [L3, 4.6] applies word for word to give (4.2.1), with the following modifications. Instead
of [L3,4.7b] one should use

Let © be a good P — P double coset such that for some y € 2, PNYP contains a common

Levi subgroup conjugate to L. (L = Zg(A), P as above). Then if dim(P\2) &gt; 0, there exists a
sequence Q!,...,Q™~! of elementary P — P double cosets such that Q! * (Q2 x (---*Q™~1))...)
is defined and equal to 2.

This also follows from [H] because of the assumptions on L. The point is that for an elementary
good P — P double coset 2, Jz, #*L = 0 (notation as in [L3,3.5], applied to the group generated
by YP, P,y€ Q'; with g € (YP, P)).

4.3 It is clear that the preceding result is significantly simpler when (G, K) is split. We now
describe a reduction to the split case.

Choose a Borel B’ containing T', so B’ N #B’ has maximal possible dimension. Then the dense
K-orbit on B is a vector bundle over the orbit KB’/B’, and there is a unique minimal #-stable
parabolic P’ containing B’. Then P' = L'Up:/, T C L' with L'/ZL. split, 6P' = P’. Note L’
is usually different from L above; it is the Levi subgroup with root system the real roots of T,
whereas L is the Levi subgroup with roots the compact imaginary roots of 7". Also, in general
we cannot find a Borel subgroup By DO T such that L, L’ are both standard Levi subgroups with
respect to Bo; i.e. we cannot find parabolics Py = LUp,, Py = L'Up: with Py N Py containing a
Borel subgroup of G.

Despite this, we still have

"HO Ind§ gp : D&amp;,wk,(T)= (G, K)2

takes simple perverse sheaves to simple character sheaves bijectively.
Indeed, write Indg pg = Ind, p, 0 Ind% gap, and observe that Ind% pny : Dg wx (T) —

(L', K NL"); is an equivalence of categories, as W; C W,, and W. NL’ = 1. As L' is essentially
split, we need to study Ind§, pi.

As KP'/P’ is a closed orbit in G/P’, (P’, £) is good induction data for any local system CL; i.e.
Ind, pr takes semisimple complexes to semisimple complexes.

LEMMA. Fixz € A, put Y, = {hP' € KP'/P' |z € PP}. I) Y, = Uwew(ax)Zxo(c)wP’'[P!
ii) Ifz € A™9, ie. if Z2(z) = L, then Zgo(z)wP'/P’' ~ Br, and so Y, is the disjoint union of
(W(A, K)/W(A,K)N L'| copies of Br. iii) If g~'0g = z € A, then Y, ~ {hP' € KP'/P' | ghP' €
KP'/P'}
ProoF: In (i), it is clear that the right hand side is in Y;. Conversely, suppose z € *P’, h € K.
Then h~!zh is contained in some maximal 6-split torus of P’; all such are conjugate to A C P’
by some element k € K NP’, so for such a k, k=*h~'zhk € A. Two elements of A which
are conjugate are conjugate under some element of Ng(A), so hk € Zg(z)Nk(A). Hence h €
Zk (z)Nk(A)K NP") = Zgo(z)Ngo(A)(K NP’), as K = K°(K Nn A).

For (ii), L DO Zko(z) DO L%", so Zxo(z)wP' = LwP’. So the result follows if we know LN YP’
is a Borel of L; which is equivalent to LN P’ being a Borel of L (as ¥L= L) which is clear (LN P’
is a parabolic of L with Levi subgroup LNL' = T).

Finally, in (iii), write (G/P')? = 0, [| O3, where ©; = KP'/P’ and O; is a (possibly empty)
collection of K-orbits, all of which are closed. Put Y} = {hP' € KP'/P' | ghP' € O;},i=1,2.
[t is clear that Y2[[Y2 = Yi, as §(*P') = 9" P' &lt;= z € "P’, and that each Y; is a union
of connected components of Y;. But we can write z = t~10t, with t € A, gt~! € K, and then
twP = wP € Oy, for w € K. So, by (i), each component of Y; lies in Y}, so Y; = Y...

Recall that by the regular semisimple elements of (G, K), denoted X™®, (respectively the regular
semisimple elements of (L’, K NL’), denoted XT) we mean those g € G (resp. g € L') such that
g~10g is semisimple and Zg(g~'0g) has minimal dimension. It follows from the lemma and the
definition of Ind$,p,thatifA€ (L', KNL')% is a simple character sheaf, then (PH Ind$, pi A)| XT



is obtained as if from an unramified |W(A, K)/W(A, K)N L'| cover of X™%, by inducing the local
system A|X[% (which is of rank |W(A4, K)N L|).

As we know the generic character sheaves are perverse extensions of their restrictions to the

regular semisimple elements, and that these restrictions are local systems of rank |W (A, K)|, it
follows that PHO Ind, pA is irreducible. Hence PHO Ind§ p. : Dioxin (T) — (G,K)% takes
simple perverse sheaves to simple perverse sheaves bijectively.

Alternately, if we explicitly know the monodromy representation of A|X7%, we know that of
"HOInd: pi A, and we can verify that it is irreducible directly. This will in fact follow just from
knowing A| X73 as a representation of 71 (T") (see below). This is our claimed reduction to the split
“ase.

4.4 We assume (G, K) is split; T a maximal @-split torus, B = TU a Borel containing it,
W(A, K) ~ W. We will calculate the monodromy representation of the local system obtained by
-estricting a generic character sheaf to the regular semisimple elements of X.

The following refinement of the results of (2.3) in this case is the key lemma in this calculation;
it is a slight variant of the key point of [L8], that the Euler characteristic of KB/BNUwoB/B is
'—1)dimU [1,8.5.4] (where wy is the longest element in WW).

Identify Dk. x. (T) ~ Df x (KB/U x KB/U) via T as in (2.1).

LEMMA. IfL€ D%. «x.(T) is a simple local system, L generic, we have

heo ch(L) ~ Res§ gInd§ pL ~ Bueww*L

PROOF: We use the notation of proposition 1.2. As £ is generic, hcoch(L) ~ Gwew (¢hy, )1(ghy)* £[2 dim U-
2d, ](~dy,), where gl, is as in (1.2), dy, = dim(U NU), and (¢},)1(ghy)*£ € DE5 (G/U x
G/U)/T). So the lemma follows if we show (¢},)i(¢5,)"L = w*£[2dy, — 2dimU](dy, — dim U).
(Note that it is clear that this complex is supported on KB/U x KB/U).

This follows by induction on I(w); writing Z;, as a bundle over Z;,, with fibres isomorphic to
Z! in the usual way, where (ws) = [(w) — 1, I(s) = 1. (Roughly, (¢14,)1(¢54,)*L = TwLTy-1).
[t then suffices to understand (¢),)i(¢5,)*L for s € W simple. As KB/B is the open orbit, and
(G, K) is split, this reduces to a calculation in (SLs, S02), and ultimately to the computation of
H*(P'\3 points, £), where £ is a local system on P'\3 points with non-trivial monodromy around
cach of the points. We omit the details.

CoRroOLLARY. IfT C L; is any Levi subgroup, B C P; a parabolic with Levi subgroup Li, Wi the
Weyl group of Ly, and L € Dg. k.(T) a simple local system with L generic; then

Resf, p, Ind§ gC ~ Duew,\w Indfig  w'L

Proor: If A € (G,K)?} is a generic character sheaf such that hc(A) ~ dw"L,thenA ~ ch(L),
by the lemma. The corollary is then immediate from the first proposition of (2.3), transitivity of
restriction, and the lemma.

5. RELATION TO THE CHARACTERS oF KF\GF/KF

If GF is a finite group, and KF is subgroup, one can consider the algebra K¥\GF /K¥ of double
cosets, equivalently the algebra of KF x KF-equivariant functions from GF to Q;, with convolution
as multiplication. It is well known that the characters of this algebra are obtained by averaging
the characters of GF: if x is a character of GF, then g — &gt; kek X(gk) is either 0 or a character
of KF\G¥ /K¥F, and all characters are obtained in this way.

For this reason it is natural to study the behaviour of character sheaves on G when averaged by
 XK

5.1 Consider the map = : G — K\G, g — Kg. This is a K-equivariant map, where K-acts
on G by conjugation and on K\G by right multiplication. We thus get a functor m : Dg(G) —
Dg (K\G) by first mapping Dg(G) — Dk(G) via the forgetful functor.



PROPOSITION. n’m : G2 — (G, K)%

Proor: The proposition is immediate over C, as a consequence of (1.7). In general, it is enough
to show m0mch’(A) € (G,K)% for A € D5((G/U x G/U)/T) (where ch’ refers to the functor
ch for (G x G,G)). By base change, this is equivalent to showing (p1)iqiA € (G, K)%, where
GL KxGxBL (G/UxGJU)T, p(k,g,hB) = g, q(k,g,hB) = (kghU, hU)T. We “factor”
this into the following diagram

KxGxB —— Kx (G/UxGJU)T —" + (GJU x G/U)/T

2
GxB —1. (G/UxG/JU)T

where p, ¢ are the maps in the definition of chg; m1(k,g9,hB) = (g,hB), B(k,(91U, g2U)T) =

‘91U, 92U0)T, q2(k, 9g, hB) = (k, (ghU, hU)T), a(k, (910, 92U)T) = (kg U, 92U)T.
Then p; = pm, ¢1 = qq, and the diagram is Cartesian, so (p1)1q}.A = chg(fra* A). But it is

:lear that ifA€ D5((G/U x G/U)/T), then Bia*A € D%,x((G/UxG/U)/T).Theproposition
is immediate.

Let us write Av = Bia* : D5((G/U x G/U)/T) — D%,xk((G/UxG/U)/T).Wehaveshown
mOmch' (A) = chg(Av(A)). It is easy to check that Av intertwines the (left and right) Hecke
algebra actions of (1.4). As a consequence of this and (3.4) we get

CoRrOLLARY. If X € GZ &lt;. is a character sheaf in the two sided cell c of W, then the perverse
constituents of °mX belong to cells in K\B x K\B whose associated two sided cells of W are
LR-smaller (rr) than c.

If the base field is C, it is also clear that the nilpotents attached to #°m.4 are in the closure of
she nilpotent orbits in N(g=%) associated to c.

Also, if we do this for the symmetric space (G x G,G) then m(A; ® Ay) = A; x 1* Ay, where
Ai, A2 € G2 and i: G — G, g — g~! is the inverse map.

We calculate 7mInd$Lmore explicitly, where I nd$ L € G? is the character sheaf on the group
G defined in [L1,4.1].

Given a v € G with 8(*T) = YT, consider the complex on (G/U x G/U)/T obtained as rs*L,

where (G/U x GJU)/T — Y, — T, with ¥, = (K/K N°U x K/K N*U)/(K NT) x T, and
r((kyvU, kovU), t) = (kyvtU, kovU)T, s((kyvU, kovU), t) = I.

If C|(TN vT KO # Qi, then rs*L = 0 (It is enough to show that the fibre at every point is
0, and this is clear as it involves the homology of a torus with coefficients in a non-constant local
system). If LT NY" K)O ~ Qi, then rs*L ~ H((*TNK)°)® L,, where L, is a local system on
the orbit (KvB x KvB)/T, of rank (*T'N K)/(*TNnK)°.

ProposITION. In the mixed Grothendieck group of (G, K)%, we have

r°mIndfL =) H:((*BNK)°) ®ch(L,)[dim(K N°U)]

where the sum is over all orbits v € K\G/B such that L|(*T NK)? ~ Q,

PROOF: Regard C as a sheaf A on (G/U x G/U)/T supported on the closed Ga-orbit (via GX T —
(G/U xG/U)/T, (g,t) — (gtU, gU)T). Then ch’(A) = Ind$L.Itisclear that the support of Av(.A)
is contained in [JO xO, as O runs through the K x T-orbits on G/U. Given such an O, pickav € G
with (*T) = *T and vU € O. It is then easy to see, after identifying O@ with K x T/K NB (where
KN"B is embedded k + (k, prp(v='kv))) that Av(A)|O xO ~ HI (KN"U)®rs* L[dim(KN°U)].
Che proposition is immediate from the identity #°mch’(A) = chg(Av(A)).
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For example, if (G, K) is split, T a split torus, and we denote the simple character sheaves in
(G,K)% as AL Xi € TE, then 7°mInd$L ~ Byer AZ (an isomorphism in Dk (G)). It is also
sasy to see that in this case

= aid { if x2#XsX1X2 X3X4 H!(K) ® H:(T) ® AL. if X2 = X3.

where H}(K) ® H?(T) is the complex p*p1Qi, p the map from the open K x T orbit to a point.
So the generic character sheaves multiply “almost” like matrix units.

Now suppose G,K are defined over a finite field Fy, and let F' denote the Frobenius morphism.
If go : F*LL is an isomorphism, we can define ¢ : F*IndS£5Ind$L,andLusztigproves[L3]
that Xnagc,¢ = R$(xc,4,)- If in addition L is generic, then RE(xc 4.) is an irreducible character
of GF.

This gives an alternate approach to the results of [L8]. Of more interest, this implies that if
{G, K) is split, a generic character of the double coset algebra KF\GF/KF when evaluated at a
regular semisimple element, is the sum of |W||TE| complex numbers of absolute value one. These
aumbers are not roots of unity, though some power of ¢ times them will be algebraic integers,
and there are no “elementary” formulae for them. (See section 7 for examples). This is in sharp
contrast to the characters of a group.

7. EXAMPLES

In this section we explicitly compute a few small examples. Each example arises as the complex-
ification of some real group (K is the complexification of a maximal compact) and will be labelled
by this real group.

After this section was written, J. Sax! informed me of the results of R. Lawther on the structure

of (Es, Fy), and (Dp, Bp—1), the two symmetric spaces, other than (G x G, G) and (A2,, Cp), which
nave one conjugacy class of §-stable tori. It is then an easy exercise to describe both the character
sheaves, and the change of basis matrix to the irreducible characters in these cases. This will be
done in an expository paper after this thesis is finished. Honest.

In that paper, we will also prove the following (reassuring) triviality. If (G, K) is a symmetric
space with G = GL,, and G, K are defined over F, and F,-split, and if A € G3, is the unique
character sheaf in the cell ¢, then }°, fr xa(k) is the multiplicity of the W-module E in the
W-graph of the flag manifold Dg(B), where E is the W-graph carried by c.

7.1 SLy(R)
Let (G,K) = (SL2,803). There are 3 K-orbits on B =~ P!: two closed orbits pi, pz (these are

points), and the dense orbit 2. The dense orbit supports a non-constant local system, denoted £,
which is its own perverse extension. It forms a block on its own. There are three cells in the block
of the constant sheaf on B.

There are 10 = 1 + 32? unipotent character sheaves: the constant sheaf, the constant sheaf on

each component of Xyni U (—1).Xuni (these are of the form ch(pip;), 1 &lt; ¢,j &lt; 2), ch(£€) which
is the perverse extension of a rank 2 local system on X™# and the four sheaves ch(Ep;), ch(pi€)
(¢ = 1,2), which have support all of X, and are rank one local systems with Z/2-monodromy where
shey are non-zero (ch(Ep;) is zero on the support of ch(p1p;) ® ch(p2p;), and ch(p;€) is zero on the
support of ch(pip1) ® ch(pip2)). _

If C is a local system on T with £L®2 # Q;, the L is a generic central character. We get 4
character sheaves for each such £. If £ is a local system with £ # Q;, £L®2 ~ Q;, then we still get
4 character sheaves at this central character.

If we choose a rational structure on G, K so that both G, K are F-split, then there are 2q + 6
KF -orbits in XF. The characteristic functions of the character sheaves fixed by Frobenius form a
basis (which is not orthogonal) of the K¥-invariant functions on X¥

7.2 SL3(R)
Let (G,K) = (SL3, SOs). There are 4 K-orbits on B, and 7 irreducible perverse sheaves in

Dg (B). We describe them geometrically. The quadratic form defining SO3 gives a quadric in



P2. Then the orbits are cl = {(p CC) |p QI || Q} PL, vy ={(pC |p ¢ Q,1| Q},
ve={PC)|pe@,l}Q},Q2={(Pcl)|p¢ Ql} Q}, where pe P? lis aline in P?, and we
write { || @ to mean [ is tangential to Q. This picture of the orbits is due to Lusztig.

The open orbit Q supports four local systems. These are £;, obtained from the double cover
(pc Ll)|pCl,l'|| @}, &amp;, obtained from the double cover {(p C I,p') | p’ € INQ}, &amp;, obtained
from the fibre product of these two covers, and the constant local system. From this description it
is clear that ifgl denotes the perverse extension of &amp;;, we have gl =&amp; +, EV =E.

There are 5 cells, £', cl, {v},&amp;!}, {4}, £}}, Q', whose W-graphs carry (respectively) the trivial,
trivial, reflection, reflection and sign representations of W.

There are 9 = 22 + 22 + 1 unipotent character sheaves, one for each pair of cells in K\B which
sarry the same W-graph. There is ch(cl® el), which is the perverse extension of the constant local
system on the strata of regular elements of X which are neither unipotent or semisimple. This
sheaf, when restricted to the unipotent variety, is the perverse extension of the constant sheaf on
the regular unipotents. The other unipotent character sheaves have support all of X. The sheaf
associated to {} , eh X {v} : en, t = 1,2, has rank 3 and finite monodromy, though the covering it
arises from is not Galois. The sheaf associated to {v!,£!} ® {v}, eh, i # j, has rank 2 and large
monodromy—the fibre over a point g¢ € G is H!(9%; Nv}, Q;) and 99; Nv; is an elliptic curve for
generic g (v; = v; Ul). The sheaves ch(cI KE), ch(E Bl), ch(E ®VE), all have rank 6 and large
monodromy. Finally, there is the constant sheaf.

7.3 Spa(R)
Let (G,K) = (Sps,GL,). We describe the unipotent character sheaves in the flag manifold

block of the constant sheaf. There are six cells in this block; 34, f—, whose W-graph carries the
trivial representation, py, po, p—, whose W-graph carries the relection representation plus the one
dimensional representation (s; — —1, so +— 1), where s; is the short simple reflection in W, s; the
long simple reflection, and Q which carries the sign representation.

Let reg, reg_ denote the two K-orbits of regular unipotents in X, subs, subg, sub_ the three
orbits of subregular unipotents, with Tegz DO subs U subg. Write short, (resp. short.) for the
strata of elements of X with Jordan decomposition z = su, such that Zg(s) is K-conjugate to
a Levi subgroup with roots the short simple roots, and u is a minimal unipotent in egy (resp.

ego).
Let € denote a semisimple element of X with Zg(e) ~ SLy x SL; write eu for the strata K.cu

there are 9 such). Write u;4(resp. u__) for an element of Zg(e) N sub; (resp. Zg(€) Nsudb_),
and u4—, u_4 for some representatives of the Zk (¢) orbits of Zk (€) N subg (normalised so that if
g~109 = euty, then gfg=! = euy_).

Write longg for the strata of elements of X with Jordan decomposition z = su, such that Zg(s)
is K-conjugate to a Levi subgroup with roots the long simple roots, and u € subg.

We list the cells, followed by the character sheaves in that cell. If Y is a subvariety of X, we
write Y to mean the perverse extension of the constant sheaf on Y.

QQ: X, By By : regs, B-PB4+ : —l.regy, B-B- : reg_, B+B- : —l.reg_, pypy : suby,shorty,
p-py : —l.suby,—1.shorty, p_p_ : sub_,short_, ppp : —l.sub_,—1l.short_, pops : €uyy, Ar,
Pop- : €U—_, As, pepo: €uy_, As, p-po : €u_4, Aq, where A;,..., Aq are the perverse extensions
of rank 1 local systems with Z/2 monodromy on the regular semisimple elements of X; and popo
which contains two character sheaves. One is the perverse extension of a rank two local system on

the regular semisimple elements, with generic stalk given by H! of an elliptic curve; the other is
che perverse extension of a rank one local system on longg.

7.4 GL,(H).
In the remainder of this section, G is a direct product of general linear groups, G = [1GL2n;,

K = J] Sp2n; and 6 : G — G is an involution with fixpoints K. Put L = [[GLyn, X GLq,, a Levi
subgroup of G with 0(z;, ¥;) = (%, z;) for (zi, 3) € L, and let P be a 0-stable parabolic of G with
Levi subgroup L. Then X; = Kj = [[GLg,.

We also suppose given a rational structure such that G, L, P, K are all split groups defined over

F,, and write F for the corresponding Frobenius morphism.



We summarise the known structure theory for (G, K), for simplicity stating it only when
(G,K) = (GL2n, Span). Conjugacy classes in G intersect X = {g € G | 0g = ¢g~!} in a sin-
gle K-orbit (or not at all), and every K-orbit in X intersects X; in a single Kj-orbit. Likewise,
conjugacy classes in GF intersect XF in at most a single K¥-orbit, and every KF-orbit in XF
intersects xf in a single K[-orbit. [Kl]. For every z € X, Zk (zx) is connected. In particular,
unipotent orbits in X or XF are parametrised by the partitions of n, P,; £ € Xun; corresponds to
the partition X if it has Jordan blocks of size A2 = (A; &gt; A; &gt; Aa &gt; Ap &gt; +1).

There is only one K-conjugacy class of #-stable maximal tori in G. If A is a maximal §-split
torus of L, then it is a maximal 6-split torus of G also, and the small Weyl groups coincide:

W(A,K;) =W(A,K) = Sy.
There are 1.3.5...(2n — 1) K-orbits on the flag variety Bg. The cells in K\Bg are in 1-1

correspondence with the cells of K;\Bj, i.e. with the two sided cells of GL. Recall such cells
are parametrised by partitions of n, where a cell has partition A if its W-graph is the irreducible
representation of S,, with partition A (normalised so the trivial representation has partition (n)).
If this is so the Springer correspondence associates to this representation the unipotent class in
GL, with partition A.

A cell in K\Bg corresponds to the partition A if its W-graph carries the irreducible repre-
sentation of Sp, with partition A2. If this is so the Springer correspondence in G associates
‘o this representation the unipotent class in X with partition A. Moreover, under the functor
Dk ,(L/B) — Dk(KP/B) — Dg(G/B) (for B a Borel of P, see (2.1) the perverse sheaves in
the cell in Kj\Bj corresponding to A become (some of) the perverse sheaves in the cell in K\Bg
rorresponding to A. This follows from [T].

With this background, we can state the following theorem, inspired by [BKS], which is joint work
with Lusztig. We will consider the character sheaves in (G, K)% as livingon X via Dg (X)=Dgxk(G)
and those in (L, K})} as living on Xj.

7.4.1 THEOREM. i) The functor ® = PH Ind§;: M(L,K})} — M(G, K)} induces a bijec-
tion between the simple character sheaves of (L, K;) and those of (G, K). This correspondence
commutes with the ones described above (for example, if A is a unipotent character sheaf of Xj
associated to a cell ¢, then ®A Is associated to the cell corresponding to c¢). ii) Moreover, if
A € (L,K;)3, é : F*ASAan isomorphism, then we can define ¢' : F*®AS®A so that for

ze Xf
X24,6/(2) = XA,6(2)|gsg2

In particular, the character sheaves of (G, K) have support all of X, and the cohomology sheaves
of a character sheaf, when restricted to the Lusztig stratification, are local systems with finite
monodromy.
7.4.2 COROLLARY. Let C be a unipotent conjugacy class in Xj, &amp; the intersection cohomology
extension of the constant sheaf on C, and £ the intersection cohomology extension of the constant
sheaf on ®C, where ®C is the unipotent conjugacy class in X corresponding to the class C in Xj.
Then we have, for unipotent classes C’ in Xj

: ; n_ [0 if i is odd
dim(}'8 | C7) = { dim(Hi/%2&amp;, | C'), if is even.

REMARK. 1) In [BKS], “basic functions” are defined. These are precisely the characteristic

functions of ®1 ndy. anil for £ a local system on T'. 2) Though the characteristic functions of the
character sheaves of X; are the characters of XfF , those of (G, K) are not always the characters of
KF\GF /KF—indeed for unipotent character sheaves they need not even be orthogonal. For the
precise relation, see [BKS] and (7.4.8), (7.4.9) below. One may also use the functor Av of section
5 to investigate this relation; I will expand on this in the expository paper mentioned above.

7.4.3 ProoF: The proof is by induction on dim G, and will occupy the rest of this section. We
may assume the central character £ comes from a local system on T/Tk, for otherwise (L, Kj)? =

(G,K)% = 0.
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We first suppose £ is such that W. # W. Then W,. = Wy, the Weyl group of a proper Levi
subgroup M which is the centraliser of a #-split torus. Then (M, Kur) = ([] GLa, II Span’) with

 im M &lt; dim G. Consider the diagram

Ind$ o
(M, Kp)% - (G,K)%

IE | 2

Indyntgint
— (L, Kj)?

where Q = MUg is any parabolic of G with Levi subgroup M, and Q' C P is a parabolic

subgroup of GG with Levi subgroup M NL. We do not know this diagram commutes. However, the
horizontal arrows are equivalences of categories, as W. C Wy, W. NL C Wj = Wy NL; and
Par = PHO Ind} pape Induces a bijection between the simple perverse sheaves, by our induction

hypothesis. Hence there are the same number of simple character sheaves in (G, K)4 asin (L, K})%,
and so to show ® induces a bijection between the simple perverse sheaves of (L, K;)2 and those

of (G, K)% it is enough to show &amp;|X™° takes irreducible local systems on X7* to irreducible local
systems on X™° bijectively. But is is clear from (4.3) applied to P that for a local system A on

XF°, ®A|XF® = A. This proves (i) in case W; # W. (Note that Indf ; AIX # H*(BL)® A in
general—W(A,K)monodromycancreep in.)
If W; = W, then L arises from a local system on G/G%r, and by (2.4) applied to (G, K) and

(L, Kj) we reduce to the case when L is the constant local system; i.e. unipotent central character.
We may further assume G is simple, (G, K) = (GLa2n, Span). }

Pick a f-stable maximal torus T' C L, and a 6-stable Borel subgroup B of G, with T C B C P.
We show all unipotent characters are summands of I ndg p21. The unipotent character sheaves
are precisely the constituents of chg(Oc BO), as ¢ runs through the cells of K\B, where for each
cell ¢, Oc is some (arbitarily chosen) perverse sheaf in ¢ (3.3). We can always choose O, so that it
omes from a perverse sheaf on K;\B; via Dk,(P/B) — Dg(G/B). Then Ind§ 5 ochy = chg,

so the character sheaves in (G,K)3,occur as the constituents of I nd§ pA, as A runs through

the character sheaves of (L,KALK Finally, every unipotent character sheaf of (IL,K£)g,is a
constituent of ndz. Bri @, [L1], so the unipotent character sheaves of (G, K) are the constituents

of Ind§ pO = Indf 5 o Indk Bai Ql
From this we further see there are at least |W(A, K)"| unipotent character sheaves, namely the

perverse extensions of ®.A4|X™* as A runs through the character sheaves in (L,K£)g,: These
sheaves have support all of G, and are summands of PHOT ndg. 591. So to finish the proof of (i),
we need only show there are no other constituents of I nd 59.

Put Z' = {(z,kB) € X x B® | k~'zk € B}, Z = {(z,kB) € p x B® | z € Lie* B}, where p is the
(—1)-eigenspace of df on g, and let n#’ : Z/ — X, 7 : Z — p be the projections onto the first factor.

Then Z' is an open subset of Z via the embedding G = GLan — g = glan, g — g — 1, and so to
prove Ind§ 5 Qs = m;Q; has only |W (A, K)*| distinct constituents, it suffices to prove mQ; has at
most |W (4, K)*| distinct constituents.

We deduce this from the following lemma, due to Lusztig, whose proof is a variant of results in,
for example, [L6] or [S]. Let N(p) denote the variety of nilpotent elements of p, and F : Dg (p) —
Dg(p) the Deligne-Fourier transform, an equivalence of categories preserving t-structures. (We
identify p and p* by the Killing form.)

LEMMA. F(mQi|N(p)) = mQi[—2r)(—r), where r = dim(Up N X).

As a consequence of the lemma, F(m@;) is supported on the nilpotent cone N(p). But N(p)
is a union of [P,| = |[W(A, K)"| K-orbits, each of which supports only the trivial K-equivariant
wocal system. Hence F(mQ;), and so mQy, can have at most |W(A, K)"| irreducible constituents.

This completes the proof of (1).
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7.4.4 We now know the character sheaves are the constituents of Ind$ gL, as L runs through

:he local systems on A. To prove (ii), we give another model for Ind gC.
Put Y = {(z,kL)e X™* x K/(KNL)|k~zk € L}, pry: Y — X™ (z,kL) — z, a W(A, K)-

Galois cover, and q : Y — A, (z,kL) + k~!zk. Here A is a maximal #-split torus, as always, and
L = Zg(A). Then (pr,)q*L is a semisimple local system on X™*, and we have:

LEMMA. Ind§ gC = IC((pry)q*L) ® H*(BL), where IC denotes the intersection cohomology
extension, here normalised so as to give a perverse sheaf.

PROOF: By the results of (i), to prove the lemmait is enough to show Ind§ pL|X™ = (pri q*L®
H*(Br) (up to shift). This follows from the isomorphism {(z,kB) € X™ x B® | k~'zk € B} =
Y x Br, whose proof we omit.

So to define I ndg. gL we need only the maximal #-split torus A C T. We continue to denote
this sheaf I ndg. gL, even when we have not chosen a maximal torus T or Borel B containing A.

Now suppose FA = A, and there exists an isomorphism of local systems ¢¢ : F*LSL. We
normalise ¢¢ so that it induces the identity map on the stalk £. at e € A. Then the varieties

L, Br, Y are all defined over Fy, and by the functorality of IC-extension we can define isomor-

phisms ¢ : F*Ind§pLIndSoC,¢':F*PHOIndS5LPHIndgpL.WehaveXrnag_c(2)=
BE |x sHOIndg c,¢(2), for all z € XF.

The following sequence of results (and their proofs) are exact analogues of those of [L1,8-10] in
the case of a torus. This method of proof (of 7.4(ii)) is very similar to that of [BKS].

7.4.5 LEMMA. Ifz€ XF, © unipotent, then XIndg _c6(2) is independent of the choice of L
(having normalised ¢o as above). Denote this function Qa = Qs : Xr — 9.

We also denote the function X ndt - (XE — Q; by Qua; it too is independent of the

choice of £ [L1,8.3.2].

7.4.6 PROPOSITION. Ifz € XF, x = su is its Jordan decomposition, then

— Z2(s _

Xinaz,2.62)=1ZX(FITXYQE(w)xc,g0(k™sk)
keKF

k= lskeA

7.4.7 PROPOSITION. Suppose we have two maximal 8-split F-stable tori A;, Az; and local systems
C; on A; with given isomorphisms ¢o;: F*L£;5LC; inducing the identity at the stalks over e € A;
Put L; = Zg(Ai), W(Ai, K) = Nk(Ai)/Zk(Ai). Pick T; an Fy-split maximal torus of L;. Then

W (AL KT)" (KFILF |Z YIBE |, ifAyis KF -conjugate to A,
 D&gt; Qu, (0Qur() = { (W(Ar, KI Tag| (IK HLT |, 7)IBE,| 1 is g

we XE. 0. otherwise.

if)2, Xindg, , £,6:(2)X1nag , c,6,(2)
TE

— (1kF - = == (IKF|ILE|;)IBE,I(&gt; TEI ST Xe gon (@)Xca,p0(nan™))
n€Nk(L3,L1)/([10K) a€AfFn=n

where Nk(La, L1) = {n € K | "A; = A,}, and |al|, denotes the highest power ofpto divide |a|.
Further, |BE| = |1AF | a /IAF|, ITE| = 1A, and |KF||LF|;=|X]jmqa-
We can also apply the discussion of [L1,10.1-10.6.1], word for word, to the complex PHI ndg. gL

and to its endomorphism algebra. This algebra, isomorphic to the group algebra of W = {w €
WN (A, K) | w*L =~ L}, is also naturally isomorphic to the endomorphism algebra of I ndy, an



As a consequence,if A is an irreducible summand of Indy, nil and ®A the corresponding char-

acter sheaf on (G, K) then Hom(A, Ind}; pri L)—Hom(®A, Ind gL). Denote this vector space
Va. Then if ¢4 : F* ASA is an isomorphism, we can define an isomorphism ¢g4 : F*®ASPA,
and

[7.4 5

XA,pa = Iw] &gt; tr((0uwoa)™, Va)X pat £0,
T,BnL™"Y

weW

(8a,604 = WITH D tr((Buoa)™, Vax PHO INAS £0.04"
weEW

where ay, : V4 — V4 are certain maps defined in [L1,10.4], and 6, are the basis of the endomor-

phism algebra of Indl p ; L defined in [L1,10.2].

Now, by the character formula (7.4.6), its analogue for Ind} po;L, and the identities (7.4.8),
tt suffices to show (7.4ii) for unipotent elements; i.e. to show Xo ¢e4(T) = XA4,64(Z)|q=q2 for
r € (X;)EF,. So we can assume £ is Q;.

Arguing as in [L1,10.9] we get from (7.4.71) that

(7.4.9) &gt; X®A1 04, (U)XDAs 004, (1)
wEXE,

W(A, K)|™! &gt; tr((Bwoa,) Va tr(Buwopa,)™h Voa,) (AG 7 HG [Vg ga
weEW(A.K)

pay XA1,04, (O09)
= Lani gr+q3

where DA, is the Verdier dual of A,, and A, is an F-stable maximal #-split torus on which F
acts as t — “9. (The second equality is a consequence of [L1,10.9].)

To finish the proof we proceed as in [L1,24]. We need to know ®A|Xyni is a perverse sheaf,
the IC-extension of the constant sheaf on the orbit corresponding to the support of Al XE. This
follows from what we have done above.

The orthogonality relations (7.4.9) completely determine the characteristic functions of ®.A|Xni
‘analogue of [L1,24.4]) and Alx pn ([L1,24.4]); and it is clear that with the identifications of orbits
and sheaves as above that xe4,454 (2) = X 4,64 (Z)]gqz for z € (Xj), as desired.

The corollary (7.4.2) follows immediately from the above discussion and the analogue of [L.1,24.8].

)&amp;
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