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Industrial Internet of Things (IIoT) networks (e.g., a smart grid industrial control system) are increasingly on the rise,
especially in smart cities around the globe. They contribute to meeting the day-to-day needs (e.g., power, water, manufacturing,
transportation) of the civilian society, alongside making societal businesses more eicient, productive, and proitable. However,
it is also well known that IoT devices often operate on poorly conigured security settings. This increases the chances of
occurrence of (nation-sponsored) stealthy spread-based APT malware attacks in IIoT networks that might go undetected over
a considerable period of time. Such attacks usually generate a negative irst-party QoS impact with inancial consequences for
companies owning such IIoT network infrastructures. This impact spans (i.e., aggregates) space (i.e., the entire IIoT network
or a sub-network) and time (i.e., duration of business disruption), and is a measure of signiicant interest to managers running
their businesses atop such networks. It is of little use to network resilience boosting managers if they have to wait for a
cyber-attack to happen to gauge this impact. Consequently, one of the questions that intrigues us is: can managers estimate

this irst-party impact prior to APT cyber-attack(s) causing inancial damage to companies?

In this paper, we propose the irst computationally eicient and quantitative network theory framework to (a) characterize this
irst-party impact apriori as a statistical distribution over multiple attack conigurations in a family of malware-driven APT
cyber-attacks speciically launched on businesses running atop IIoT networks, (b) accurately compute the statistical moments
(e.g., mean) of the resulting impact distribution, and (c) tightly bound the accuracy of worst-case risk estimate of such a
distribution - captured through the tail of the distribution, using the Conditional Value at Risk (CVaR) metric. In relation to (a)
above, our methodology extends the seminal Factor Analysis of Information Risk (FAIR) cyber-risk quantiication methodology
that does not explicitly account for network interconnections among system-risk contributing variables. We validate the
efectiveness of our theory using trace-driven Monte Carlo simulations based upon test-bed experiments conducted in the FIT
IoT-Lab. We further illustrate quantitatively that even if spread-based APT cyber-attacks induce a statistically light-tailed
irst-party cyber-loss distribution on an IIoT networked enterprise in the worst case, the aggregate multi-party cyber-risk
distribution incurred by the same enterprise in supply-chain ecosystems could be heavy-tailed. This will pose signiicant
market scale-up challenges to cyber-security improving commercial cyber (re-)insurance businesses. We subsequently propose
managerial action items to mitigate the irst-party cyber-risk exposure emanating from any given IIoT driven enterprise.
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Fig. 1. Illustration of IIoT Features and Application Sectors (Source: Google Images)

1 INTRODUCTION

Cloud and sensor network driven machine-to-machine (M2M) communication is triggering a paradigm shift in
the way various industrial (decision-making) processes are conducted and managed. The aggressive adoption
of this M2M communication for service applications in smart grids, and across various (critical) industries and
industry verticals such as automotive, utilities, home automation, healthcare, and security (see Figure 1), is
expected to rapidly accelerate the industrial Internet of Things (IIoT) market. To drive home our point, the global
IIoT market, as of 2021, is worth a USD 100+ billion dollars (projected to reach a trillion USD by 2028), with a
steady yearly growth rate, i.e., a CAGR of ≈ 22.8%, according to a recent report by Grand View Research, Inc.
The efectiveness of an industrial Internet of Things (IIoT) network (e.g., a smart grid, a smart factory) solely

relies upon the reliable and resilient functioning of networked IoT devices that operate collaboratively in collecting,
transmitting, relaying, and intelligently processing application information. However, the last half a decade has
seen (nation-state sponsored) attacks with increasing frequency both on IoT-driven industrial control systems
(ICS) and on the operational technology (OT) side of the IIoT. The prime set of reasons (see [125]) attributed to
this trend are (a) the increase in the density and scale of sensor networks associated with an organization’s IIoT
forming a large cyber-attack surface that has sub-optimal OT/IT air-gaps, (b) hard-to-replace old but Internet
exposed OT and control equipment modestly capable of being robust to cyber-attacks, (c) IoT-equipped machines
(e.g., HMI computers, SCADAmaster computers, PLCs) from multiple vendors running a patchwork of proprietary,
heterogeneous, and non-updatable software, (d) poor or absent (behavioral) organizational cyber-security practices
(e.g., poorly conigured default security IoT device settings), (e) organizational C-suites allocating insuicient
budget to implement cyber-security awareness, monitoring, and prevention technology, (f) a rise in hybrid and
in-secure remote work environments post the COVID outbreak, and (g) a signiicant rise in the number, type,
and quality of cyber-attackers.
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The above set of reasons increase the chances of occurrence of stealthy but popular advanced persistent
threat (APT) attacks in IIoT network systems that (a) spear-phish IT administrators or other employees to gain
persistent high level IT network access within the target industrial site via (but not limited to) user accounts,
hardware and software assets, (b) consequentially, move laterally inside the site to ind and exploit insecure
devices and machines (e.g., botnets discovering open RDP ports using the Shodan search engine), (c) usually go
undetected (due to weak security monitoring) over a considerable period of time (e.g., via a timed logic bomb in a
malware that might delay activation of speciied maximal adverse impact event(s)) - consequently not allowing
the defender(s) to segment and isolate the network, and (d) result in cascading IoT device (and machine) failures
that disrupt device and employee networked communication systems, and cause signiicant physical and/or
service quality damage in the long-run.
The quantitative measure of such an adverse impact in an arbitrary IIoT network is usually a time-dependent

and non-deterministic (random) variable relecting a loss (usually converted to tangible economic units) rooted
on the quality-of-service (QoS) provided through the network. As an example of an outcome of such a random
variable, consider a modern cyber-inspired version of the Northeast power blackout of 2003 that was triggered by
a transmission line failure and cascaded into a massive power failure afecting 55 million people in the northeast
region of the USA, and resulted in an economic (irst and third-party damage) of USD 6 billion [72]. Today,
multiple transmission lines within an IIoT-controlled power grid network can be simultaneously compromised
by an APT and can potentially cause far greater economic and physical damage to in time and space than one
can imagine.
Popular examples of APT attacks on various IIoT systems in multiple application sectors include NotPetya,

Stuxnet, Ramnit, Shamoon, BlackEnergy, Triton, and NightDragon [125], most of which have accrued signiicant
monetary damage to system managers [126]. Though these examples primarily cover state-sponsored attacks on
critical infrastructure, we imply a broader space of APT attacks on IIoT systems beyond critical infrastructure
and those that are not state-sponsored. Henceforth, ‘IoT devices’ will refer to the broader class of devices and
machines equipped with IoT technology.

1.1 Research Motivation

Two strong practical scenarios motivate our research in this paper.
Scenario 1 - It is often the case in recent years, in the wake of major cyber-attacks in the past decade, that an ICS
enterprise management (e.g., CEO, CISO, board) is interested to tangibly estimate apriori statistical metrics (e.g.,
mean, tail-risk) related to the cyber-loss impact post a cyber-attack (e.g., via an APT) event. After all, managers
cannot wait for a cyber-attack to cause inancial damage to an enterprise to start the cyber-risk management
process.

In addition, note that it is usual in practice for managers to ind it diicult to estimate the hypothetical impact
of an adverse cyber-incident [24]. This diiculty is aggravated via uncertainties in the knowledge of the cyber-risk
terrain, system complexity, lack of cyber-incident data and cyber-loss impact metrics, and the inability to predict
future cyber-incidents [47, 55]. Add to this is the role of cognitive biases that prevent even the most experienced
of system managers to assess the impact of cyber-risk accurately enough [66, 108, 111].
Hence, managers should prioritize to ‘simulate’ in advance multiple cyber-attack coniguration scenarios to

apriori derive attack impact statistics showcasing the likelihood of best, average, and worst possible inancial
impact events rather than work with a faulty perception of exact cyber-risk impact. This it prioritizes to minimize
tangible (e.g., monetary, stock value) and non-tangible (e.g., reputation) multi-party losses post an inevitable
future cyber-attack event through investing efectively in cyber-protection mechanisms. As management guru
Peter Drucker once famously said: łif you cannot measure it, you cannot manage it".
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Scenario 2 - A (standalone) cyber (re-)insurance market to mitigate adverse inancial impacts for the multiple
(IIoT driven) societal end-user vertical sectors has grown signiicantly in the last decade, to a point where it
will soon move beyond the US$10 billion annual mark globally. However, the market is severely sparse with a
supply-demand gap of approximately hundreds of billions of dollars [16][102]. In other words, the supply is far
less than the coverage demand from the IIoT sectors.

One primary reason for this wide gap is the lack of robust quantitative estimates of adverse non-binary impact
distributions in IIoT networks post (APT) cyber-attack events. More speciically, cyber-insurers, through internal
audit processes, are interested to get accurate-enough estimates of (a) statistical moments (e.g., mean, variance)
of the adverse non-binary impact of a cyber-attack for an IIoT network client, and (b) the statistics of worst �-th
(usually between 5 and 10) percentile of the associated adverse impact. A non-robust estimate of such statistical
metrics might expose cyber-insurers to unwanted tail risks they will be blind about. In risk theory and popular
industry parlance, the latter statistics (i.e., that in (b)) is often measured through the Conditional-Value-at-Risk
(CVaR) metric [70] (see a concise background in Section 5), which in our current work moulds itself into a measure
of the APT risk in an IIoT network. The values of these moments and APT risk are (a) a suitable proxy to a
measure of the cyber (in)security in an IIoT network, and (b) essential (if not suicient) to the design of suitable
commercially viable coverage policy parameters (e.g., premiums, deductibles) for the IIoT network client.

To the best of our knowledge, a general event apriori systematic quantiication and formal analysis of network and
time dependent cyber-risk statistics arising from a family of stealthy spread-based APT malware attacks is absent
from the managerial toolbox and the (I)IoT security literature (see more details in Section 7).
Research Goals - Our main research goal in this paper is to develop a cyber-risk quantiication methodology
serving two purposes. Our irst purpose is to accurately estimate, alongside providing rigorous performance
bounds, the vital statistics of the irst-party time-dependent adverse impact distribution generated by a family of
spread-based APT malware attack in an IIoT network. Our second purpose is to tightly bound the APT risk, i.e.,
the CVaR, of the said distribution. Our obtained statistics and bounds are event apriori estimates and relect (among
best and average estimates) the worst case cyber-loss impact incurred by an enterprise post the occurrence of an APT
cyber-attack.

As an important side goal, we aim to study how an aggregate of such cyber-risks sourced from multiple inter-
dependent IIoT-driven organizations (enterprises) that are part of networked service supply chain ecosystems
afect the market sustainability of coverage solutions provided by residual cyber-risk managers (e.g., cyber-
insurers) tasked upon managing aggregate cyber-risk.
Broader Impact of Our Research on Cyber-Security - The inability of a cyber (re-)insurer to derive ro-
bust estimates of irst-party cyber-risk inside an IIoT network post an APT cyber-breach event will (a) drive
the latter to remain conservative in pricing attractive risk coverage policies for its clients, (b) consequently
prevent the current cyber insurance market to grow more dense, (c) subsequently disallow the transference
of appropriate cyber-hygiene liability upon IIoT network managers, and (d) inally, adversely impact cyber-
security in the IIoT network simply because dense cyber-insurance markets necessarily promote cyber-security
[6][61][18][84][83][86][107][133][16] [102]). Our proposed research methodology to assess APT (tail) cyber-risk
impact will also enable the C-suite of IT/ICS driven organizations (enterprises) invest appropriate amount of time
and money on securing ‘central’ adversary targets (e.g., processes, humans, hardware) within the organization
afected by APTs to boost cyber-resilience and reduce tail risk. Examples of such investment products include
(but not limited to) (a) perimeter security elements (such as irewalls, antivirus, intrusion detection systems [IDS],
proxy servers, and Remote Authentication Dial-In User Service [RADIUS] servers) to secure critical hardware
and software processes in operation in an IIoT network, (b) internal IT auditing, business continuity and disaster
recovery (BCP/DR) processes inside the IIoT network if critical resources are compromised, (c) IT governance
measures, which mandate that efective management, policies, controls, and procedures are in place to ensure
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that IIoT information systems support the business organizations’ objectives, control access to network assets,
and minimize IoT-related risk on ‘central’ organization (enterprise) targets.

1.2 Research Contributions

We make the following research contributions in this paper.

(1) We design a novel stealthy cyber-malware spreading framework for a parameterized family of APT-type
cyber-attacks in IIoT networks, that captures the time-varying attack-defense-impact trio as an outcome
of a time-dependent Markov-Feller (MF) continuous stochastic process. This stochastic process is ideally
suited for an enterprise manager to broadly model, apriori, multiple stealthy infection spread paths from a
parameterized family of APTs across a network topology, and their impact launching time periods for each
path. Our proposed model extends a huge literature on attack-defense type models that omit providing a
systematic framework to quantify the adverse impact on organizational (wireless) network assets when
modeling cyber-malware spread as a time-dependent continuous stochastic process only, without modeling
cyber-loss impact (see Section 2).

(2) We investigate the existence of malware spread process stability conditions for an IIoT network under
which the number of infected network nodes will completely die out. We show that such a condition is not
achievable in practice (primarily due to imperfect security technology), and that there will always be a
mix of IIoT network nodes some of which will be susceptible to APT attacks when the MF spread process
converges, and the others will be in an infected state.
We provide tight upper and lower bounds on process parameters (such as the mean of malware infection
rates) as a function of individual node security strength. These bounds serve as tangible guidelines to
network security managers and the organizational C-suite on ways (e.g., with respect to driving optimal
resource investments) to improve node level (and consequently network level) security. Furthermore,
for the MF malware spread process, we provide a closed-form analysis of the non-deterministic time-
aggregate adverse impact of an APT attack on the entire IIoT network. The non-deterministic outcome
represents a statistical distribution that is a result of considering multiple cyber-attack conigurations
within a parameterized family of APT cyber-attacks via the MF stochastic process.
This ‘time-space’ adverse impact value represents irst-party cyber-risk impact and is equivalent to the
output of the traditional FAIR model [43] extended to settings where the network connection between
cyber-risk factors is explicitly accounted for, and calculated apriori over a family of APT attacks. In other
words, our research extends the traditional network oblivious FAIR model to a network aware FAIR model and
applied to an IIoT network (see Section 3).

(3) Evaluating the expectation moment of time-aggregate adverse impact distribution in an enterprise IIoT
network is computationally intractable for C-suites (e.g., a CISO) and cyber-risk managers - requiring the
solution of an exponential number of ordinary diferential equations (ODEs). However, the mean statistic
of this distribution is a bare necessity for a cyber-risk manager. We mitigate this intractability challenge by
enabling cyber-risk managers to construct a simple but accurate-enough and tractable approximation of
the mean value of total network-wide adverse impact distribution due to an APT cyber-attack. We use the
irst-order mean-ield approximation (MFA) procedure to obtain such an estimate (see Section 4).

(4) We derive tight error bounds of empirical Conditional-Value-at-Risk (CVaR), i.e., a measure of APT risk, with
respect to the true theoretical CVaR estimates of the time and space aggregate adverse impact distribution
in an IIoT network. More speciically, the CVaR is a measure of worst-case cyber-risk and represents the
tail of the time-space aggregate cyber-risk distribution. It is often the most important industry-popular risk
assessment metric to risk managers after the statistical mean.
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Since cyber-risk managers will only have access to empirical estimates of CVaR from loss impact samples
collected over time, the former’s accuracy is of paramount importance to their business. To this end, we
conduct the derivation of error bounds of CVaR estimated empirically vs the ground truth using a rigorous
analysis based upon the theory of large deviations (TLD) in probability theory. We derive tight upper and
lower bound of the CVaR (our measure of worst case APT risk) estimation error using properties of the
Chernof-Hoefding and the McDiarmid concentration inequalities from TLD, respectively.
The analysis novelty is in the tight empirical estimation of error bounds obtained in theory as a function of the
inite number of empirical data samples of the cyber-loss impact distribution that a cyber-risk manager might
have practical access to. The theory also states the threshold number of empirical samples from the loss
impact distribution a cyber-risk manager (e.g., insurer) should demand of the IIoT network manager to
satisfy its estimation error tolerance (see Section 5).

(5) An important question business managers might ask is: do the theories that (a) ensure the stability of the
APT infection spread process, and (b) promise accurate-enough estimation of the statistical mean value of the
space-time adverse impact in the IIoT network, work in practice?
We run real-world IoT testbed experiments conducted in the (Future Internet Testing) FIT-IoT Lab to
validate that (a) the model parameter space under which theoretical results derived in Section 2 hold,
and (b) accurate-enough MFA estimates of the true mean of the adverse impact distribution, are indeed
realizable in practice for IIoT networks. Large-scale Monte Carlo simulations conducted atop the FIT-IoT
Lab experimental setup indicate that irst-party cyber-losses within an enterprise IIoT network (with
monitoring capabilities) due to an APT cyber-breach are most likely light-tailed (see Section 6).

(6) In order to bring out the real-world practical relevance of our research, we provide an ICS case study
illustrating the applicability of the Pipedream APT cyber-attack on cascading cyber-impact inside an
organizational IIoT network.
To showcase the society-facing impact of such cyber-breaches, we then formalize and analyze the aggre-
gate cyber-risk such intra-organization breaches might inlict on a networked society of diverse inter-
dependent IIoT industries/enterprises in supply-chain environments. We show via theory that despite
intra-organization breaches inducing a light-tailed irst-party cyber-loss distribution on an organization,
aggregate (irst and/or third-party) losses incurred by the same in supply chain service ecosystems could be
heavy-tailed. This will pose signiicant market scale-up challenges (as already evident from current market
valuation data) to cyber-security improving commercial stand-alone cyber-insurance businesses.
We subsequently propose managerial action items to mitigate the irst-party cyber-risk exposure emanating
from IIoT driven businesses that further mitigates supply chain induced aggregate multi-party cyber-risk
exposure (see Sections 7, 8, and 9).

The Generality of our Methodology - We emphasize that our contributions are general enough to be applied
to non-IoT (wireless) communication networks that do not face the Internet. However, loss measures (e.g, revenue
loss due to business disruption, total business/service downtime, i.e, unavailability) directly derived from APT
malware induced and space-time dependent adverse impact on system and/or device performance (as modeled
and discussed in Section 3), is mostly a characteristic of modern day society-serving IIoT networks such as
industrial control systems that usually face the Internet. Throughout the paper, we use the following event terms
inter-changeably: cyber-attack, cyber-breach, cyber-incident, signifying adversaries successfully bypassing IIoT
network defense and causing an adverse impact with inancial consequences for an enterprise.

1.3 Contribution Novelty and Their Implications to Cyber-Risk Management

Our proposed research is technically novel and/or diferent than existing related research in the following ive
signiicant ways - each with signiicant implications to cyber-risk management.
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(1) Our proposed model (in Section 2) overcomes modeling shortcomings of a huge literature on attack-defense
only type models (see Section 10). These existing models, unlike our attack-defense-impact type in this
work, omit quantifying any non-binary adverse impact measure (e.g., cost incurred to company per unit of
downtime multiplied by the total downtime) on organizational network assets/sub-systems while modeling
cyber-malware spread as a time-dependent continuous stochastic process. As is often said in the enterprise
management circles: if you cannot quantify loss impact, you cannot manage it.

(2) We are the irst (to the best of knowledge) to overcome (in Section 4) the computational intractability
challenge that is characteristic of ODE-based statistical mean ield models trying to output the statistical
mean of a performance measure (e.g, in our work - the total time-aggregate network-wide adverse impact
distribution generated by an spread-based APT malware cyber-attack).
We propose a tractable approximation method (i.e., algorithm) to tightly approximate the mean of our
time-aggregate adverse impact measure for both light-tailed and heavy-tailed adverse impact distributions,
and empirically validate the accuracy. The statistical mean of a loss-impact distribution is a basic operational
unit of cyber-risk management.

(3) Using concentration inequalities from the theory of large deviation in probability theory, we are the irst
to provide mathematical guarantees (in Section 5) on the accuracy of empirically obtained worst-case
tail-risk (measured via CVaR) induced by a time-aggregate network-wide APT-generated adverse impact
distribution, with respect to its non-empirical ground truth value of the relevant CVaR measure. In practice,
cyber-risk managers will only have empirically obtained samples of network and time aggregate cyber-loss
post a cyber-attack event to estimate CVaR.While some existing literature on cyber-risk characterization
(but not in networked settings like ours) provides model-based estimates of the CVaR - they make no efort
to characterize the accuracy between model and empirical estimates, leave alone providing mathematical
guarantees of the accuracy measure.

(4) We are the irst to formally analyze (in Section 7) the role of a network of IIoT networks (e.g., an inter-
connected society of ICSs) on the sustainability of cyber (re-)insurance solutions commercially managing
accumulative tail risk. Such a risk extent is derived from an aggregate (sourced out of multiple IIoT net-
works) of irst/third-party IIoT cyber-risks - a characteristic of service supply chain ecosystems, when the
latter are impacted due to the cascading impact of spread-based APT malware cyber-attacks on certain IIoT
networks.
While some existing literature has studied the problem of sustainably managing aggregate cyber-risk in
inter-dependent service network settings, they have not explicitly modeled the topological structure of
underlying network of networks.

(5) Our proposed research is diferent and orthogonal to all existing research focused on analyzing epidemic
cyber-risk spreading and recovery models in sensor-driven communication networks (see Section 10 for
details). Unlike these works, our goal is not to analyze and compare which spreading and recovery model
will result in better system (network) performance. Moreover, these works do not comment of system loss
impact.
In contrast, our main goal is to irst ix a particular APT malware spread and recovery model that is
practically relevant (e.g., SIS in our case). Now having done that, we extend all related existing research by
proposing the irst mathematical framework with provable performance guarantees to apriori evaluate,
compute, and tail-bound for enterprise managers - the cyber-risk statistics of space-time aggregated cyber-
loss impact sampled over a family of malware spread based APT cyber-attacks. This task will aid managerial
cyber-protection budget planning to boost enterprise cyber-resilience in the future event of a cyber-attack.
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(a) (b)

Fig. 2. An Illustration of (a) Steps Associated with a General APT Cyber-Atack, and (b) the Markov Chain (state transitions)
of an Infected/Susceptible IIoT Node

2 THE APT MALWARE SPREAD PROCESS SPECIFICS

In this section, we propose models to (a) capture stealthy malware spread dynamics in an IIoT network character-
ized by an APT attack, and (b) formulate the node and time aggregate adverse impact of the spread in the IIoT
network. Henceforth, we synonymize the term ‘adverse’ with ‘cyber-loss’ throughout the paper. Wherever appli-
cable, we complement modeling elements with real-world parallels borrowed from popular cyber-attacks conducted
on IIoT-driven organizations. Table I showcases important notations frequently used in this paper.

2.1 The Spread Model

Network Model - We consider an IIoT network of IoT devices labeled 1, · · · , � on a simple unweighted
bidirectional graph. Each IoT device (inside an IoT-driven ICS subnet and/or across subnets) is capable of getting
infected (a) indirectly, i.e., by malware transmission (e.g., via emails, AUTORUN, open port exploitation through
message broadcasting) from neighboring infected nodes (e.g., post the event when a DMZ inside an ICS is
breached), and (b) directly, for example via it downloading malicious code from the Internet or the code being
injected on them via a backdoor (e.g., the event when the DMZ is breached due to social engineering attacks
or due to infected plug-able external devices). The network is represented by a symmetric adjacency matrix
� ∈ {0, 1}�×� , with ��� = 0 for all � , and �� � = 1 indicates a connection between network nodes � and � , and
�� � = 0 indicates otherwise.

As examples1 of a direct cyber-infection from popular cyber-attacks, we have (a) phishing-driven BlackEnergy3
malware infecting CPS components (acting as nodes) of the Ukraine power grid (in 2015) via which login
credentials for these components were obtained by hackers, (b) camera software vulnerabilities exploited by
hackers to get entry into computers (both cameras and the computers acting as nodes) of the SCADA systems
of a Turkish oil pipeline (in 2008), and (c) the Stuxnet worm utilizing four zero-day exploits to iniltrate the
Supervisory Control and Data Acquisition (SCADA) systems controlling uranium centrifuges (acting as nodes
among other CPS components that include PLC-controlled variable frequency drives (VFDs) and print spoolers)

1As mentioned in Section I, our examples are not restricted to critical infrastructure networks.
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Table 1. Table of Important Notations for Sections 2-4

� number of nodes in the IIoT network
deg(v) degree of node �
�� susceptible/infected state of node �
� node probability of direct infection
� rate of a node getting infected indirectly
� rate of a node getting cured
� Pr[susceptible � getting infected by neighbor �]
� adjacency matrix of the IIoT network graph �
�� (�) probability of node � being infected at time �
�∗� lim�→∞ �� (�)
lim�→∞�� (�) lower bound of �∗�
� � -dimensional APT infection stochastic process
lim�→∞�� (�) upper bound of �∗�
� � -dimensional adverse impact stochastic process
� counting process of number of infected nodes
�(�) stochastic intensity of�
��,� �-th eigen value of matrix �
� (�1, . . . , �� ) node-aggregate adverse impact function

in an Iranian nuclear plant. As examples of corresponding indirect cyber-infection (post the direct infection)
from the above-mentioned cyber-attacks, we have (a) hackers opening switches that distribute power to the
Ukrainian power grid and overwriting switch-controlling irmware controlling serial-to-ethernet controllers,
(b) causing the Turkish oil pipeline to become over-pressurized via control commands on the IoT-controlled
SCADA computers, and (c) causing the uranium centrifuges to slow up and down, crossing through mechanical
resonances, till their failure via compromised PLC controller controlled VFDs. More generally, the direct-indirect
nature of cyber-attacks on ICSs have been studies in [47, 56, 67, 105, 135].
Threat Model - We consider cyber-threats that are representative of the malware-induced advanced persistent
threat (APT) family (e.g, WannaCry, NotPetya) popularly afecting many IIoT networks today. The initial stage of
an APT, i.e., the spread of cyber-infection (malware such as the BlackEnergy3) through an IIoT network (e.g.,
by open port scanning of vulnerable IoT devices) post initial malicious code injection on a set of devices (see
Figure 2a.), is (often) dynamically modelled using the seminal susceptible-infected-susceptible (SIS) methodology
[95]. WLOG, we adopt the SIS model in our work. The rationale being that (a) it is intractable to plug all security
deiciencies in a computer device, leave alone a system of devices [97], and (b) consequently, IoT device � in the
network is never immune, i.e., always eventually susceptible to infection in the cyber-world, despite measures taken
via technology and/or human eforts to repair it post attack or prevent it from being attacked [6]. The latter point is
because IIoT network security is primarily about the use of IDSs and security-monitoring driven alarm systems
that are merely detective measures, and not preventive measures (though all existing preventive measures are
inevitably imperfect).

2.2 The Spread Dynamics

State Evolutions - The state of a node � at time � is denoted by �� (�), where �� (�) = 1 indicates that � is
infected at time � , and �� (�) = 0 indicates that it is susceptible. Each node can be infected by its neighbors but is
cured independently of all other nodes in the network[40]. Each node in the IoT network is endowed with an
independent exponential clock and changes its states when the exponential clock rings. The rate of state changes

ACM Trans. Manag. Inform. Syst.



10 • Ranjan Pal, Rohan Xavier Sequeira, Xinlong Yin, Sander Zeijlemaker, and Vineeth Kotala

by node � is given as a Markov chain (see Figure 2b.):

�� : 0 → 1, with rate

(
1

�
+ �

�︁

�=1

�� �� � (�)
)

�� : 1 → 0, with rate �,

(1)

for �, �, � > 0. Here (a) � is the probability that a node becomes infected directly, e.g., by downloading malicious
code from the Internet [127]; (b) � =

1
��� (� ) , where � is the probability of a susceptible node � being infected by

an infected neighbor �, i.e., ��� = 1; �� (�) is the probability that node � is infected at time � ; and (c) � is the rate at
which a node becomes susceptible from the infected state [129] (due to detection and response activities). The
state evolution logic adheres to reality that IDS and security-monitoring alarm-triggered incident response are
imperfect, and takes time within which cyber-adversaries take network control.
We assume, for the main purpose of analytical tractability that � , � , � , and � are uniform for all the nodes in

the network (similar to many of our predecessors modeling malware spread in theory). However, we relax this
assumption in our simulation exercise in Section 6. Having uniform values of �, �,�, � across all nodes do not afect
the insights obtained via theory - only the scale of parameter and quantitative expression values difer between
uniform and non-uniform settings.
How Much Do the Managers Need to Estimate the ‘Greeks’? - We emphasize that a network manager only
needs to know the range (upper and lower bound) of values for �, �,�, � to run large scale simulations that would
provide it with apriori estimates of the extent of irst-party cyber-risk within an IIoT network. The range relects
the set of feasible values for the ‘greek’ parameters. After all, the manager planning ahead to boost enterprise
cyber-resilience cannot aford to wait for the cyber-attack to happen to estimate and work with real-time values of
�,�, � that can provide it with high-accuracy loss-impact estimates post incident. The manager can simply conduct
a simulation exercise much ahead of an incident by sampling the ‘greeks’ from within an interval and generate
apriori loss-impact distributions to aid its cyber-protection budget planning tasks. The range of �,�, � can be
estimated by a manager from a dataset of historical internal measurements and observations through network
telemetry using market products such asWyebot telemetry solutions. However, unlike �,�, � , it is relatively much
diicult to have access to the range of � . Having a proper estimate of � would imply that the defender has perfect
knowledge of the ability of the attacker - something not true in practice. Hence, the best a manager could do
to work with � for generating apriori cyber-risk statistics is to assume bounds obtained from historical data.
However, it is possible that the upper bound of � obtained from historical data is lower than that induced by an
attacker with signiicantly higher potency than observed historically. To account for such attackers in simulation
studies, the upper bound of � during such studies should be made higher than that observed from historically
obtained data.
The Underlying Stochastic Process - We irst provide an intuition, based on the work by [40], for the general
audience of the � -dimensional Markov process � stitched out by the above-mentioned one-dimensional Markov
chain, where � is the number of nodes in the IIoT network. More speciically, at any time instant � , � (�) is the
vector of random variables �� (�)’s - capturing the I/S state of each node in the IIoT network. Hence, � (�) is an
� -dimensional random function over time, where each random instance of the single-dimensional �� (�) over �
evolves according to one-dimensional Markov chain �� . Geometrically, at each time instant � , the � -dimensional
function represents a random (I/S) coniguration of the entire IIoT network. Each such random instance of the
� -dimensional function � (�) evolves according to a special � -dimensional Markov chain (contributing to special
stochastic process known as a Feller process [101]) that is decomposable using the one-dimensional Markov
chains �� .
This intuition can be formally represented as follows. Let (Ω, F , �) be a probability space with iltration F

= F� |� ≥ 0, where F is right continuous and F0 contains all the �-null sets [98]. Ω is the sample space, and �
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is the probability function mapping each event in � to [0, 1]. Intuitively, F� can be thought of as the family
of all � -dimensional random functions � (�) charted out till time � , with F0 consisting of all functions whose
probability measure of occurrence is zero (e.g., a point function in � dimensions, where the points are random
initial (I/S) conigurations of the � -node IIoT network). The process � is a Markov process with state space
� = {0, 1}� with �0 = � ∈ �. We assume that � is a Feller process with generator � : � (�) → R, notated by
� (� (�)) | � ∈� (� ),�∈� and expressed as:

�︁

�=1

(
(1 − �� )

1

�
+ � (1 − �� )

�︁

�=1

�� �� � + ���

)
(� (�� ) − � (�)),

where state transitions ��� = � � for � ≠ � and ��� = 1 − �� .
The family � (�) consists of all cadlag functions on � (these are � -dimensional random functions admitting

jumps, i.e., discontinuities, in the stochastic process {�� }), but form a Skorohod space on which probability
measures are always deined [62]. The concept of the jump is relevant in the � -dimensional setting because
the (I/S) network coniguration changes over time may have abrupt changes. The cadlag functions lying on the
Skorohod space just enables us to be able to quantify the probability mass of a collection of random functions.
The Markov process� has exponential waiting times between jumps and an exponential state space of cardinality
2� .
Why Does the MF Process Cover the Entire Malware Spread Space? - A thing of importance to note is that
for any ixed �, �,�, � instance, a (APT) malware can take numerous attack paths inside the IIoT network. This is
simply because an attack spread can start at any point within the network, and there are possibly an exponential
number of spread paths in a connected network from a source to a destination(s). Each attack path will result in
a binary vector � (�) = [�1 (�), . . . , �� (�)] of I/S states at any given time instant � with the dynamics of vector
� (�) evolving with � . In other words, each attack path over time is a dynamically changing � -dimensional
vector of I/S states. Now each attack path evolving over time is also a single sample path of the MF process. Note
that any stochastic process by mathematical deinition is a large collection of sample paths (attack paths) that
captures all possible (possibly exponential in number) variations over time in the states of a dynamically evolving
system modeled through the stochastic process. In our paper, the system is the combination of IIoT network with
embedded I/S node states. Each attack path then represents the infection dynamics of nodes in the IIoT network
over time, with multiple paths relecting a variation in the system dynamics for any ixed �, �,�, � instance. We
selected the MF process (due to the above-mentioned attractive mathematical properties of C(E)) to capture the
infection dynamics of all possible attack paths given any ixed �, �,�, � instance. Hence, the MF process successfully
covers the entire malware spread attack path space in an � -node IIoT network for any ixed �, �,�, � instance.

2.3 The Adverse (Cyber-Loss) Impact Model

Adverse Impact Generating Stochastic Processes - The end goal of an APT is to cause system-wide damage
(e.g., revenue loss via business disruption) in the IIoT network, after it has stealthily infected (a subset of) nodes
in its initial stage, where infection does not imply node/device damage that is left for later. More speciically, at
certain times post its infection stage, the APT attack decides to launch damage on certain infected nodes making
them dysfunctional (incapable of providing QoS). These times, unknown to a a system manager, are denoted
by (��)�∈N. The corresponding number of cumulative damage launches by these time instants are counted
through by a stochastic process� = (� (�))�≥0 (from [40]). The size of the negative/adverse impact on infected
nodes becoming dysfunctional at any time instant � is modeled by another � -dimensional stochastic process
� = (�(�))�≥0, where �(�) = (�1 (�), . . . , �� (�))T, where each dimension represents the adverse impact on a given
node in the IIoT network. The value �� (�) for node � is zero if it is either not infected at time � or the APT attack
does not launch damage on � at � .
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Fig. 3. Conditional Value-at-Risk (CVaR) is a measure of one-sided tail risk of the random variable � =

∫ �

0 � (� ;�(�) ◦
� (�))�(�)�� . For this continuous bounded random variable � representing a cost and � ∈ (0, 1], we illustrate CVaR� (� ) as
the APT risk measure. The area of the shaded region is � . The expectation of � , the Value-at-Risk of � at level � (the smallest
cost in the � · 100% worst cases), and the essential supremum of � are also shown.

Note that � is a left-continuous counting stochastic process with a deterministic and non-deterministic
component (according to the seminal Doob-Meyer decomposition theorem [21]), and adapted to the iltration
F, i.e., random functions spanned upto � (�) is inside the family of functions F� . One of the components is its
stochastic intensity (�(�))�≥0, where � is a non-negative F-predictable process (because it is a continuous time-

adapted process that is left-continuous). The other component,� (� ∧��) −
∫ �∧��
0

�(�)�� , is the martingale, i.e.,
the non-deterministic component for all � ∈ N. The martingale property ensures that the conditional expectation,
� ′ (� + ��) − E[� ′ (� + ��)] |F� , equals� ′ (�) for a stochastic process� ′ (�). In our setting, since� is a counting
process, it is a sub-martingale by the Doob-Meyer decomposition theorem. In practical jargon, the sub-martingale
property simply and evidently implies that the expected number of launched damages by the APT at time � + Δ�

given time history is greater than the number of launched damages by time � . � is predictable (again due to it
being a time-adapted process that is left-continuous) and non-negative. Both� and � are independent from the
Markovian infection spread process � .
Network and Time Aggregate Adverse Impact - We (e.g., cyber-loss managers) are concerned with the expected
network aggregate adverse impact of the APT attack over a ixed time window [0,� ] with � > 0, where we assume
that the tangible impact units are the same for all the nodes. In practice, such units can be mapped to the loss in
quality of experience (QoE) derived from dysfunctional nodes (e.g., dysfunctional IoT-embedded CNC industrial
machines) [109][73][106]. Consider a measurable function � (·; ·) : R+ × R

�
+ → R+, where the irst argument

refers to the time, and the second - to the � -dimensional (for � nodes) adverse impact (i.e., FAIR for networks)
generated by an APT cyber-attack. The expected aggregate impact (adapted from [40]) incurred over the period

[0,� ], given by E
[ ∫ �

0
� (� ;�(�) ◦ � (�))�� (�)

]
, obey the following equivalent equalities:

E

[ ∫ �

0
� (� ;�(�) ◦ � (�))�� (�)

]
= E

[ ∫ �

0
� (� ;�(�) ◦ � (�−))�� (�)

]
,

E

[ ∫ �

0
� (� ;�(�) ◦ � (�))�� (�)

]
= E

[ ∫ �

0
� (� ;�(�) ◦ � (�−))�(�)��

]
,

E

[ ∫ �

0
� (� ;�(�) ◦ � (�))�� (�)

]
= E

[ ∫ �

0
� (� ;�(�) ◦ � (�))�(�)�� .

]

Here, the ◦ operator denotes the component-wise Hadamard product of vectors. The irst equality is due to the
fact that � and � are independent and never jump at the same time with probability 1 (in practical terms an
IIoT node is not infected and launched an attack upon at the same time). The second equality follows from the
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F-predictability of the integrand [21] (because� is left-continuous), and the third equality holds since the paths
of � , i.e., the � -dimensional random functions, possess at most countably many jumps in [0,� ] and constitute a
Lebesgue null set, i.e., a set with a probability measure zero, for each path (because in practice there are countably
many malware spread paths and the probability of the individual occurrence of each is zero amongst an ininite
continuum of possible paths). Speciic practical forms of � (·) will be discussed in Section 6. Of equal importance as

the mean, are the tail properties of the distribution
∫ �

0
� (� ;�(�) ◦� (�))�(�)�� that relects the statistical spread of

the adverse impact (risk) distribution (the probability that network aggregate adverse impacts of an APT attack
exceeds a certain percentile). The spread metric will characterize the notion of APT risk that we model in our

work with the widely popular Conditional-Value-at-Risk (CVaR) risk measure of
∫ �

0
� (� ;�(�) ◦ � (�))�(�)�� (see

Figure 3 for an illustration) from risk theory [70]. A detailed analysis of this CVaR metric characterizing APT risk
is deferred till Section 5.
One could argue the feasibility of quantifying the adverse impact over time and space if the attack type and

parameter space is (partially) unknown. However, the aim of this paper is not to quantify this impact post an (APT)
attack event. We want to quantify (for cyber-protection budget planning CISOs and CEOs) how much cyber-risk
(induced by statistics of the adverse impact) an ICS can potentially be subject to if it were to be afected by a family
(characterized by all feasible �, �,�, �, � ) of malware-spreading APT cyber-attacks.

To complement our contribution rationale, note that it is usual in practice for managers to ind it diicult to
estimate the hypothetical impact of an adverse cyber-incident [24]. This diiculty is aggravated via uncertainties
in the knowledge of the cyber-risk terrain, system complexity, lack of cyber-incident data and cyber-loss impact
metrics, and the inability to predict future cyber-incidents [47, 55]. Add to this is the role of cognitive biases that
prevent even the most experienced of system managers to assess the impact of cyber-risk accurately enough
[66, 108, 111]. In such environments, it is best that managers consider worst case cyber-risk impact (the analysis
of which needs to consider a family of parameters) into account rather than work with a faulty perception of
exact cyber-risk impact.

3 ON ACCURATELY ASSESSING APT ATTACK IMPACT OVER ‘SPACE’ AND TIME

In this section, we provide a closed form analysis of the (M)arkov-(F)eller malware-spread process in an APT
compromised IIoT network towards enabling a cyber-risk manager to accurately assess the network-wide and
time-aggregate attack impact. More speciically, we irst study and derive conditions under which the spread will
become stable. Once this condition is achieved, we then derive a closed form expression for the network aggregate
adverse impact, for a pre-speciied time period of duration � . Given that IoT device dysfunctions contribute to
loss in QoS/E, we associate the term ‘adverse impact’ with the term ‘cyber-loss impact’ throughput the rest of the
paper.

3.1 Will the APT Malware Spread Process Stabilize Over Time?

An important irst question any cyber-risk manager would be interested to know is: will the APT malware spread
process stabilize over time, and in what manner? More speciically, the question simpliies to: will the infection
spread die out, and if and when it does how many IIoT network nodes will be compromised for the risk manager to
ideate a coverage budget? The stability condition for the Markov-Feller malware-spread process is mathematically
deined via the condition that lim�→∞ �� (�) = �∗� holds for � = 1, . . . , � , regardless of the number of initially
malware-infected nodes in an IIoT network. Here, �� (�) is the probability that network node � is infected at time � .
Intuitively, this implies that the fraction of the network nodes in an infected state at any time � is (asymptotically)
constant over time. The following result, spinning from [127], gives a suicient condition for the malware-spread
process to be asymptotically stable.
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Theorem 3.1. Let� = max�∈�={1,...,� } deg(�). Also let �1,�, . . . , ��,� be the eigenvalues of the adjacency matrix

� of IIoT network � with �1,� ≥ . . . ��,� (in modulus). In the case when 1
�
< (1 − �) 1+(1−� )

�

2 , if �1, A <
�+ 1

�

� (1−� ) .
then the APT malware-spread in the IIoT network will become asymptotically stable (i.e., will have a ixed number

of nodes in (I/S) states) regardless of the initial number of infected nodes. In the case when 1
�
≥ (1 − �) 1+(1−� )

�

2 ,

if �1, A <
1− 1

� +(1−� ) (1−� )�
� (1−� ) , then the malware-spread process will become asymptotically stable irrespective of

the initial number of infected nodes. Moreover, let lim�→∞�� (�) denote the upper bound of the limit of �� (�), and
lim�→∞�� (�) denote the lower bound of the limit of �� (�).
Then, we have lim�→∞�� (�) ≤ �+� and lim�→∞�� (�) ≥ �−� ,

�+� =
1−(1−� ) (1−� )deg(�)

min{1+ 1
� −(1−� ) (1−� )deg(�) ,1}

�−� =




1−(1−� ) (1−�� )deg(�) |{(1−� ) (1−�� )deg(�) ≥ 1
�
}

1+ 1
� −(1−� ) (1−�� )deg(�)(

� − 1
�

)
�+� + 1 − � |�− 1

�
< 0

with, � = min{1 − 1
�
, �} � = (1 − �) (1 − ��)deg(�) .

Implications for Cyber-Risk Management - The theorem states that for any general IIoT network, irrespective
of the number of initially APT infected nodes, malware spread will eventually converge (under weak assumptions)
to an equilibrium state where infected nodes necessarily do not die out - a practically reality in all IT (networked)
systems. In other words, a certain fraction (less than 1) of nodes (in absolute number and not in identity) will always
be infected (as is usual practice due to imperfect security technology) at any point in time. To make things more
clear, we can never have a situation where all network nodes will be in an ideal susceptible state. i.e., the infection
dies out. As malware spreads and susceptible nodes get infected, some nodes that had been infected at a prior
time step might have recovered (due to detection and response activities) to the susceptible state, while some
will still remain in an infected state with some getting newly infected, and this behavior will be invariant over
time. Hence, at any point in time there will be some nodes (not a constant number but one that is increasing and
decreasing over time) in the network that will be in an infected state while the others will be in a susceptible
state.
We also observe that when the infection rate ≪ 1, the lower bound of the limit �� (�) is tighter; on the other

hand when the infection rate is near 1, the upper bound is tighter. Since the infection spread process is not
necessarily always convergent to a static limit value of �� (�), it is challenging to quantify the exact thresholds
at which such behavior is observed. In such scenarios, characterizing upper and lower bounds of this variable
will provide cyber-risk managers with precise-enough estimates of an equilibrium value of �� (�). As a practical
takeaway, the bound variables are clearly a function of the node vulnerability, that can be mitigated through investing
in strong organizational cyber-security practices by the IIoT managers. This will further tighten the bounds.

3.2 A Cyber-Risk Manager’s Closed-Form Expression for Aggregate Cyber-Loss

A closed form expression is often a necessary irst step for cyber-risk managers to accurately estimate space-time
aggregate cyber-loss in any part of the IIoT network. To this end, we irst propose a framework, adapted from

[40], to derive a closed form expression for the node-aggregate cyber-loss impact,
∫ �

0
� (� ;�(�) ◦ � (�))�(�)�� ,

in a given time period for an APT compromised IIoT network. We will irst propose a method for a cyber-risk
manager to accurately approximate any general � in closed form as a polynomial function for analysis tractability
(for ease of taking an integral), and follow that up with theoretically bounding the function approximation error.
Assumptions - Though � is a Markov process with cadlag paths, we assume that all � ∈ � (�) are continuous
functions over time, i.e., � (� ;�(�) ◦ � (�) is continuous. However, it is a challenging problem to compute aggregate
(over time and space) loss values directly on top of general continuous loss functions. Thankfully, the applicability
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of the Stone-Weierstrass theorem [22] allows us to work with polynomial loss functions that are outcomes of
uniformly approximating arbitrary continuous functions deined over a compact (closed and bounded) set in R

� -
as in our case, with the Hadamard product lying in a compact set. We also assume that time-aggregated loss
function � will map into a one-dimensional tangible scalar value, as is usual in practice. For a multi-variate � , we
convert its range to a single dimensional output, i.e., � : R�+ → R+, via the transformation:

� (�1, . . . , �� ) = � (Λ (�1, . . . , �� )) ,
where we assume Λ : R�+ → R+ to be a linear increasing aggregation function, and � : R+ → R+ to be continuous
and increasing. � is also assumed to be bounded on [0, ∥Λ(�)∥∞), where ∥ · ∥∞ denotes the �∞ norm. An example
of Λ is Λ(�1, . . . , �� ) =

∑�
�=1 �1�� , �� ≥ 0. �, for example, could be of the form � (Λ (�1, . . . , �� )) = Λ (�1, . . . , �� ).

Polynomial Approximation of a Continuous � - As mentioned above, it can be quite cumbersome for a
cyber-risk manager to accurately evaluate any general � (and consequently the aggregate space-time cyber-loss
within an IIoT network) for a given IIoT network. It would be good if any given � could be approximated through
a polynomial function that is much amenable to computational and analysis ease. In view of recent developments
in function approximation theory following [30], a polynomial closed form approximation to a general � can
indeed be constructed via the following steps. This approximation to � is the irst extension of the traditional FAIR
metric [43] (that does not explicitly model the underlying infrastructure network structure) for evaluating cyber-loss
through a closed form expression, applied to networked settings.

(1) Choose (a) � ∈ N - a pre-speciied choice for the degree of the polynomial, and (b) a bound � > 0.
(2) Select a constant � ∈ R+ (based on prior network and cyber-loss impact knowledge) such that the node-

aggregated cyber-loss impact is bounded as per the following relation:

P(Λ(�) > �) ≤ �.

(3) From the space of all degree-� polynomials, choose the best uniform
approximation �� (�) :=

∑�
ℓ=0 �ℓ�

ℓ (�0, �1, . . . , �� ∈ R) [30] of � on the compact interval [0, �]. The subse-
quent function approximation error is denoted by �� (�), and given as

�� (�) =: max
�∈[0,� ]

|�(�) − �� (�) | = ∥� − �� ∥∞,[0,� ] ,

where the �∞ norm is used to extract out the maximum possible error.

How Much is the Approximation Error for a Cyber-Risk Manager? - We now quantify the ‘cost’ (error) of
the approximation borne by the cyber-risk manager as an outcome of approximating � . The optimal degree-�
polynomial approximation of � (� ◦ � ) obtained from Steps 1-3 above is given by

�̄� (� ◦ � ) :=
{
�� (Λ(� ◦ � )), if Λ(�) ≤ �
0, if Λ(�) > �

We then have the following result following developments in [30][40] in relation to the approximation error
induced by the polynomial �̄� .

Theorem 3.2. The function approximation error for � = � (�1, . . . , �� ) incurred by the cyber-risk manager is
deined through the following inequation



� (� ) − �̄� (� )



�1

≤ �� (�) +� · �, where � = � ◦� , and� is a real number

that satisies

|� (� ◦ � ) | = |�(Λ(� ◦ � )) | ≤ |�(Λ(�)) | ≤ �,

for all possible realizations of �, where the �1 prevents amplifying outlier efects during function approximation.

Implications for Cyber-Risk Management - The theorem implies that there always exists a closed form
expression for approximate tangible space-time aggregate cyber-loss impact post an APT cyber-attack event
on an ICS network guaranteed through polynomial approximation mathematics. The �1 norm of the function
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approximation error induced by �̄� is (a) tightly bounded from above by �� (�) +� · �, and (b) is very low for small
enough � . From the viewpoint of cyber-risk management, the theorem results are useful as they simply denote
that it is within the scope of the IIoT cyber-risk manager to inluence the quality of its approximate for aggregate
space-time cyber-loss by controlling its risk appetite (via �).

4 THE CHALLENGE TO EVALUATE MOMENTS OF AGGREGATE CYBER-RISK

Thus far, we derived a math formula for managers that relects the statistical mean of space-time aggregate
cyber-risk within an IIoT network due to a malware driven APT cyber-attack. However, computing this mean is
non-trivial due to some nuances in the above-mentioned closed form formula. In this section, we irst state the
mathematical nuances that make the mean computation task diicult. We then derive a mathematical framework,
the outcome of which will help managers obtain a provably accurate enough approximation of the statistical
mean value (see Theorem 4.1).
Nuances to Compute Statistical Mean - Once a cyber-risk manager has a tight accurate approximation of a
general � an IIoT network instance may throw up, its next step is to evaluate the expectation moment of the time

integral of that � (also known as expectation of the APT risk distribution), i.e., E
[ ∫ �

0
� (� ;�(�) ◦ � (�))�(�)�� .

]
.

In other words, a cyber-risk manager wants an estimate of the much important expected value of aggregate
APT-induced cyber-risk in the IIoT network.

However, this requires individually computing the moments E[��1 (�)], E[��1 (�)��2 (�)], . . ., E[��1 (�)...��� (�)],
that necessitates the solution of 2� − 1 ODEs induced by the Markov process � . This is clearly an intractable
task for large � . To mitigate this challenge and ensure computational tractability, we approximate all these
moments using the seminal irst-order � -intertwined mean-ield approximation technique, NIMFA, a widely
popular interacting particle (node) method proposed by Van Mieghem et.al. [113].
The Mean-Field Approximation (MFA) - The fundamental intuition behind the MFA is to split the expression
E[��1 (�)...��� (�)] using probabilistic independence arguments. To achieve this, the MFA seeds from the following
time-variant ininitesimal dynamics, Δ� (�� (�)) | F� of �� (�) between getting infected and getting cured during
time Δ� . Speciically, Δ� (�� (�)) | F� equates to

(
(1 − �� (�)) �

�︁

�=1

�� �� � (�) − ��� (�)
)
Δ� + � (Δ�),

where intuitively, dividing by Δ� and taking the expectation on both Δ� (�� (�)) | F� , and its expanded expression;
and letting Δ� → 0, we obtain the following exact expression for the derivative of the probability E [�� (�)] =
� (�� (�) = 1):

�E [�� (�)]
��

= −�E [�� (�)] + �

�︁

�=1

�� �E
[
� � (�)

]
− �

�︁

�=1

�� �E
[
�� (�)� � (�)

]
, (2)

for � = 1, . . . , � . This follows from Kolmogorov’s forward equations for Markov process �� of IIoT network node
� .

The approximation relies on inding a function � : [0, 1] → [0, 1] that splits mixed terms of the form
E

[
�� (�)� � (�)

]
as

E
[
�� (�)� � (�)

]
≃ � (E[�� (�)]) · � (E[� � (�)]).

This split, motivated by the principle of independence of expectations, results in the approximation:

�E [�� (�)]
��

≈ −�E [�� (�)] + �

�︁

�=1

�� �E
[
� � (�)

]
− �

�︁

�=1

�� �� (E [�� (�)]) · �
(
E

[
� � (�)

] )
. (3)
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We denote by � (1)� (�) the corresponding irst-order approximation of E [�� (�)] and get the following system of
ODEs:

��
(1)
� (�)
��

= −�� (1)� (�) + �

�︁

�=1

�� ��
(1)
� (�) − �

�︁

�=1

�� ��
(
�
(1)
� (�)

)
· �

(
�
(1)
� (�)

)
, (4)

for � = 1, . . . , � , (similar to [57]) solving which helps us easily compute the irst-order mean-ield approximation

of the moment, E
[ ∫ �

0
� (� ;�(�) ◦ � (�))�(�)�� .

]
, corresponding to the mean-ield function � . It has been shown

in [40] that the solution to this set of ODEs always exist. Now suppose � (�) = � (a popular choice from [113]),
then NIMFA results in

E
[
�� (�)� � (�)

]
≃ � (E[�� (�)]) · � (E[� � (�)]) = Π�E[�� (�)],

that eases out the computation of E[��1 (�)...��� (�)].
Practical Importance of the Existence and Uniqueness of MFA - A topic of immense practical importance
for cyber-risk management is investigating the existential and uniqueness properties of the MFA post solving (4).
The existential argument is necessary for a cyber-risk manager’s conidence to be able to derive an accurate-
enough approximation of the mean time and network aggregate cyber-loss for any IIoT network. The uniqueness
argument is necessary to provide conidence to a cyber-risk manager that the existing above-mentioned mean
estimate is indeed the best possible estimate. We irst have from (3), the following relation upper-bounding
�E[�� (� ) ]

��
, given E

[
�� (�)� � (�)

]
= E [�� (�)] E

[
� � (�)

]
+ Cov

(
�� (�), � � (�)

)
with Cov

(
�� (�), � � (�)

)
≥ 0:

�E [�� (�)]
��

≤ −�E [�� (�)] + �

�︁

�=1

�� �E
[
� � (�)

]
− �

�︁

�=1

�� �E [�� (�)] E
[
� � (�)

]
, (5)

for � = 1, . . . , � . Setting � := (�1, �2, . . . , �� )⊤ , where �� (�) := �
(1)
� (�), the system of new ODEs can be written in

matrix notation (for ease of subsequent analysis) as follows:

�

��
� = (�� − �I)� − � diag(� )��, (6)

where diag(� ) denotes the diagonal matrix with entries �1, �2, . . . , �� and I ∈ R�×� denotes the identity matrix.
We now have the following result, derived and adapted from [40], related to the existence and uniqueness of the
MFA, and its accuracy with respect to the theoretical ground truth.

Theorem 4.1. A cyber-risk manager always has access to a mean ield approximation (MFA) of the expected value
of time and network aggregate cyber-risk in an IIoT network. This MFA solves (6) for any choice of parameters �
and � with arbitrary non-negative initial conditions. Moreover, the MFA is unique in � ( [0,∞) : R� ). In terms of
the accuracy of the MFA estimate, let (a) �� (�) := E [�� (�)] − �� (�) and (b) �̂ the largest eigenvalue of the adjacency
matrix �. Then, for any � ≥ 0, we have (in line with [114],that focuses on the time-varying covariance matrix as a
rough measure for representing MFA accuracy)

∥� (�)∥2 ≤ � (−2�+4��̂+� )��
∫ �

0
∥�(�)∥2��,

where � (�) = (�1 (�), .., �� (�)) and �(�) = (�1 (�), .., �� (�)) with �(�) satisfying

�

��
E [�� (�)] = −�E [�� (�)] + � (1 − E [�� (�)])

�︁

�=1

���E [�� (�)] − ��� (�). (7)
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Table 2. Important Notations for Section 5

� #empirical samples of cyber-loss impact
� r.v. characterizing aggregate cyber-loss
� maximum value of �
� tail percentile/quantile
� a probability marker
� precision/accuracy amount
CVaR� (� ) CVaR for r.v. � at an �-quantile
�CVaR� (� ) empirical CVaR for r.v. � at an �-quantile
APTRisk� (� ) CVaR� (� )
�APTRisk� (� ) �CVaR� (� )

�(�) captures the time-dependent accuracy (measured as the diference between the exact and approximate dy-
namics of E [�� (�)] )of the instantaneous MFA estimate of mean APT cyber-risk, where the error term �� (�) :=∑�

�=1 ��� Cov (�� (�), �� (�)).

Implications for Cyber-Risk Management - The theorem guarantees the existence of a unique irst-order
MFA solving (6), and makes computing approximate statistics of node and time aggregate cyber-loss impact
moments analytically tractable for IIoT and cyber-risk managers. Note that if �� (�), �� (�) are independent, the
MFA of the instantaneous (and time-aggregate) cyber-loss impact moments are identical to the true moments.

The theorem also states that with small �

�
ratios - indicating a high curing rate compared to the infection rate,

the MFA accuracy is high, and the approximation error decays exponentially. In practice, this evidently implies
that cyber-risk managers (e.g., cyber-insurance agencies) will only gain value from their estimated cyber-loss impact
approximations when a strong cyber-security posture exists in the IoT network. Hence, from a policy perspective,
the C-suite of IIoT-driven organizations should be made to signiicantly invest in strong technical and behavioral
cyber-security practices.

5 ANALYZING TAIL APT RISK (CVAR) IN AN IIOT NETWORK

Thus far, we derived analytical and tractable closed-form solutions to the irst moment, i.e., expectation, of the
node-aggregate cyber-loss distribution in an IIoT network. While this metric is useful to a cyber-risk manager, in
practice, it is interested, both, in expected cyber-loss estimates, as well as in the knowledge of the tail, i.e., loss
spread, of a cyber-loss distribution. An industry standard cyber-risk metric to measure this tail is the Conditional-
Value-at-Risk (CVaR) metric. In our paper, we synonymously term this metric as the APT risk, and provide accuracy
guarantees of empirically estimating the APT risk, when compared to the theoretical ground-truth. This is because
any cyber-risk manager can only have access to discrete samples of cyber-loss to infer tail cyber-risk.
To do so, we propose a rigorous framework based on the theory of large deviations (TLD) that (a) irst uses

concentration inequalities [20] to analyse the deviations of empirical estimates of the APT risk from the empirical
mean of the cyber-loss impact, and (b) subsequently provides upper and lower bounds of the deviations of the
empirical estimates of the APT risk from theoretical ground truth (see Theorems 5.3, 5.6, and 5.8). Concentration
inequalities in the TLD deal with deviations of functions of independent random variables from their expectation.
A table of important notations for this section is showcased in Table II.

5.1 Background for Analyzing Empirical CVaR

Here, we provide a background on empirically analysing the sample-driven CVaR metric of any risk distribution
simply because the empirical version of the CVaR metric is what a cyber-risk manager will have access to. The
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CVaR at level � ∈ (0, 1] of a random variable � is

CVaR� (� ) ≜ inf
�

{
� + 1

�
E

[
(� − �)+

]}
.

It is well known from [100] that, when � has a continuous distribution, that
CVaR� (� ) = E [� | � ⩾ VaR� (� )] , where VaR� (� ) ≜ sup� {� | P(� ⩾ �) ⩾ �} is the �-quantile (or VaR) of � .

While this relation does not necessarily hold if � has a discontinuous distribution, we can nonetheless roughly
interpret CVaR� (� ) as the expected loss over the �% worst cases. We now make the following assumption
necessary for deriving tight bounds of inite sample CVaR on aggregate network cyber-loss impact.

Assumption 1. The random variable � satisies supp(� ) ⊆ [0,� ], and its samples �1, . . . , �� are independent.
Suppose one were to map the outcome of a stochastic process modeling the aggregate cyber-loss over time and

space in an IIoT network, the loss values obtained on multiple sample paths of the stochastic process would be
independent. This would closely map empirical estimates of such aggregate loss estimates from the real network
at diferent points in time - thereby justifying the ‘independence’ aspect of the assumption. An upper bound
criterion (as stated in the assumption) is common to the application of many concentration inequalities, and
without loss of generality we use supp (� ) ⊆ [0,� ], to relect the fact that the minimum loss impact value is zero.

For the case of CVaR� , we denote the simple empirical CVaR estimator by �CVaR� , and express it as:

�CVaR� (�1, . . . , ��) ≜ inf
�

{
� + 1

��

�︁

�=1

(�� − �)+
}
, (8)

where (�)+ = max(�, 0). This empirical estimator is an intuitive and typically popular one [100] based on the
method of moments. Such estimators are eiciently computed for large � and most convex loss functions - the
CVaR function, CVaR� , being one having a piece-wise linear loss function [13]. In the analysis to follow, we denote
� = �� to the random variable instantiating the node-aggregate cyber-loss upto a pre-speciied time period � in an
IIoT network.

5.2 The Lower Bound of (Empirical APT Risk - True APT Risk)

A powerful result from McDiarmid [69][23] allows us to quantify the probability of the empirical estimates of the
CVaR of the aggregate space-time cyber-loss in an IIoT network exceeding the true value of CVaR atleast by an
error margin, as a function of the margin and quantity of empirical samples.

Theorem 5.1. (McDiarmid [69]). Consider a function � : �� → R which satisies

sup�1,..,��,� ′
� ∈�

��� (�1, . . . , ��) − �
(
�1, .., �

′
� , .., ��

) �� ⩽ ��

for all � = 1, . . . , �. Let �1, . . . , �� be independent random variables taking values in S. Then

P ( |� (�1, . . . , ��) − E [� (�1, . . . , ��)] | ⩾ �) ⩽ 2e
−2�2∑�
�=1 �

2
�

McDiarmid’s inequality says we need on the order of �� ≜ (∑�
�=1 �

2
� /�2) log(1/�) samples to estimate the

sample mean within a precision of � with probability at least 1 − �. Using this above theorem, we have the
following result that will be used (alongside McDiarmid’s result) to derive the main result in this section.

Lemma 5.2. The estimator, �CVaR� , satisies the following:

E

[
�CVaR� (�1, . . . , ��))

]
⩽ CVaR� (�1, . . . , ��) .

The result states that that estimator �CVaR� lower bounds CVaR� in expectation, and is used in conjunction
with McDiarmid’s result to derive our following main result.
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Theorem 5.3. Consider a cyber-risk manager having access to � = (�1 . . . ��) - a vector of � samples of the node
and time aggregate cyber-loss impacts in an IIoT network. Then

P

(
�CVaR� (� ) ⩾ CVaR� (� ) + �

)
⩽ e−2

�2�2

� 2 ·�
, (9)

or, with APTRisk� (� )= CVaR� (� ),

P

(
�APTRisk� (� ) ⩾ APTRisk� (� ) + �

)
⩽ e−2

�2�2

� 2 ·�
,

where �APTRisk� (� ) = �CVaR� (� ).
Implications for Cyber-Risk Management - The result provides a closed form expression of the lower bound
of the deviation in empirical APT risk (measured as empirical CVaR) with the theoretical true value of the APT
risk, as a function of sample count. In practice, a higher sample count reduces the deviation, and hence a cyber-risk
manager (e.g., enterprise cyber-risk oicer, cyber-insurer) should ideally get access to suicient number of samples
prior to policy under-writing to reduce cyber-risk estimation uncertainty.

5.3 The Upper Bound of (Empirical APT Risk - True APT Risk)

A powerful result from Hoefding [45][23] allows us to quantify the probability of the empirical estimates of the
CVaR of the aggregate space-time cyber-loss in an IIoT network exceeding the true value of CVaR atleast by an
error margin, as a function of the margin and quantity of empirical samples.

Theorem 5.4. (Hoefding [45]). Let �1, . . . , �� be i.i.d. random variables with supp(� ) ⊆ [0,� ] . Then, for any
� ⩾ 0, we have P

(�� 1
�

∑�
�=1�� − E[� ]

�� ⩾ �
)
⩽ 2e−2(

�
� )2�

Hoefding’s inequality states that we need on the order of �� ≜ (� /�)2 log(1/�) samples to estimate the
sample mean within a precision of � with probability at least 1 − �. Given that CVaR of a distribution requires a
conditional expectation evaluation of its �-tail, we would expect for CVaR� to need on the order of ��/� samples,
and approximately �% samples falling in the � -tail. Using the Hoefding’s theorem, we have the following result
that will be used to derive the main result in this section.

Lemma 5.5. The inequality �CVaR� (�1, . . . , ��) ⩾ 1
��

∑⌊�� ⌋
�=1 � (� ) holds, where � (� ) are the decreasing order

statistics � � �� , i.e., � (1) ⩾ � (2) ⩾ · · · ⩾ � (�) .

The result states that that estimator �CVaR� upper bounds CVaR� in expectation, and is used in conjunction
with Hoefding’s result to derive our following main result.

Theorem 5.6. Consider a cyber-risk manager having access to � = (�1 . . . ��) be a vector of � samples of the
node and time aggregate cyber-loss impacts in an IIoT network. Then for any � ⩽ 0,

P

(
�CVaR� (� ) ⩽ CVaR� (� ) − �

)
⩽ 3e(−

1
5 )� ( �

� )2 ·� (10)

or, with APTRisk� (� )= CVaR� (� ),
P

(
�APTRisk� (� ) ⩽ APTRisk� (� ) − �

)
⩽ 3e(−

1
5 )� ( �

� )2 ·�,

where �APTRisk� (� ) = �CVaR� (� ).
Implications to Cyber-Risk Management - The result provides a closed form expression of the upper bound
of the deviation in empirical APT risk (measured as empirical CVaR) with the theoretical true value of the
APT risk, as a function of sample count. In practice, a higher sample count reduces the deviation, and hence a
cyber-risk manager (e.g., cyber-insurer) should ideally get access to suicient number of samples prior to policy
under-writing to reduce cyber-risk estimation uncertainty.
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5.4 Two-Sided Bound of (Empirical APT Risk - True APT Risk)

It would always be best for a cyber-risk manager to have access to simultaneous two-sided (in comparison to the
abover-mentioned one-sided bounds) CVaR bounds from a vector of � samples of aggregate cyber-loss estimates.
One could obtain a single powerful and tighter two-sided bound of (Empirical APT Risk - True APT Risk), using
the Wasserstein (Kantorovich-Rubinstein) distance metric [115]. More speciically, we provide such a two-sided
concentration bound for the empirical APT risk estimate by the following steps based on [15]: (a) drawing a

mathematical relationship between the estimation error,
��� �CVaR� −����� (� )

���, and the Wasserstein distance

between the true and empirical cyber-loss impact distribution functions, and (b) subsequently bounding the
Wasserstein distance between these two distributions. However, before going through these steps, we need the
following assumption.

Assumption 2. There exist � > 1 and � > 0 such that E
(
exp

(
� |� |�

) )
< ⊤ < ∞.

The assumption states that a r.v. � , in our case relective of a node-aggregate cyber-loss random variable for
IIoT networks over a given time period, satisies an exponential moment bound. We now deine the Wasserstein
(Kantorovich-Rubinstein) distance [115].

Deinition 5.7. The Wasserstein (Kantorovich-Rubinstein) distance between two cumulative distribution func-
tions (CDFs) �1 and �2 on R is deined by

��=1 (�1, �2) ≜
[

inf
� ∈Γ (�1,�2 )

∫

R2
|� − � |�� (�,�)

]
, (11)

where Γ(�1, �2) is the set of all joint distributions on R2 having �1 and �2 as marginals. The function � : R→ R
is �-Lipschitz if it is �-Hölder of order 1, and consequently, a function � : R → R is �-Hölder of order � if
|� (�) − � (�) | ≤ � |� − � |� for all �,� ∈ R.
Theorem 5.8. Consider a cyber-risk manager having access to � = (�1 . . . ��) be a vector of � samples of the

node and time aggregate cyber-loss impacts in an IIoT network. Suppose � be the node-aggregate cyber-loss r.v. with
CDF � and mean � satisfying Assumption 2, for some � > 1. Then, for any � > 0, we have

P

(��� �APTRisk� (� ) − APTRisk� (� )
��� > �

)
≤ � (�, �1, �2, �, �, �), (12)

where � (�, �1, �2, �, �, �) is given by the expression

�1

[
exp

[
−�2�(1 − �)2�2

]
I{(1 − �)� ≤ 1} + exp

[
−�3�(1 − �)���

]
I{(1 − �)� > 1}

]
.

Here, the constants �1, �2 and �3 obey

P (�1 (��, � )) > �) ≤ �(�, �, �),
where �(�, �, �) is denoted by the following expression:

�1

(
exp

(
−�2��2

)
I{� ≤ 1} + exp

(
−�3���

)
I{� > 1}

)
,

for some �1, �2, and �3 that depend on the parameters �,� and ⊤ in Assumption 2.

Implications for Cyber-Risk Management - The result provides a closed form expression of the two-sided
bound of the deviation in empirical APT risk (measured as empirical CVaR) with the theoretical true value of the
APT risk, as a function of sample count. Similar to the implications of theorems 5.3 and 5.6, a higher sample count
in practice reduces the deviation, and hence a cyber-risk manager (e.g., enterprise cyber-risk oicer, cyber-insurer)
should ideally get access to suicient number of samples prior to policy under-writing. It is also the case that the
two-bound scenario needs more amount of samples to guarantee error performance bounds on the two sides
when compared to the number of samples required for one-sided bounds.
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5.5 Providing Bounds When Cyber-Loss Distribution is Heavy-Tailed

Thus far we have derived concentration bounds for the network-aggregate cyber-loss distribution, speciically
suited for the latter being statistically light-tailed. However, such results do not hold when these distributions are
heavy-tailed, i.e., higher loss moments might not exist, even if the mean might exist. In practice, such a possibility
can arise if (novel and) extremely sophisticated APT cyber-attacks can cause ICS business disruption for months,
leading to an outlier-high irst-party cyber-loss amount.

In such scenarios, estimates of empirical mean of network-aggregate cyber-loss gathered by managers will not
converge to the true mean. In such scenarios, we can adopt the seminal methodology developed in [68] to replace
sample mean with robust proxies, and obtain high-conidence bounds for the excess risk of aggregate cyber-loss
estimators. We have the following result, borrowed and adapted from [68] that provides a robust proxy of an
empirical sample mean estimate of a possible heavy-tailed aggregate cyber-loss distribution. The proxy estimate
converges exponentially fast towards zero error with large sample size.

Theorem 5.9 (Adapted from Mathieu and Minsker, 2021). Assume that we have � empirical samples of the
network and time aggregate cyber-loss distribution and that � (ℓ, F ) < ∞. Then, for appropriately set � and Δ,

E( �̂�) ≤ � +� (F , �)
(

�

�2/3
+

(O
�

)2/3)

with probability at least 1 − �−� for all � ≲ � . Moreover, if sup� ∈F E
1/4 (ℓ (� (� )) − Eℓ (� (� )))4 < ∞, then

E( �̂�) ≤ � +� (F , �)
(

�

�3/4
+

(O
�

)3/4)
,

again with probability at least 1 − �−� for all � ≲ � simultaneously. Now assume that sup� ∈F E
1/4 (ℓ (� (� )) −

Eℓ (� (� )))4 < ∞. There exists an estimator �̂ ′′� such that

E
(
�̂ ′′�

)
≤ � +� (F , �, �)

(O
�

+ �

�

)

with probability at least 1 − �−� for all 1 ≤ � ≤ �max where �max → ∞ as � → ∞. Here, � is the quantity that often
coincides with the optimal rate for the excess risk [4, 65].

Understanding the Theorem - Our goal is to robustly estimate in an empirical fashion - the irst moment (i.e.,
statistical mean) of the network aggregate cyber-loss (risk) distribution when the latter is heavy-tailed. The main
contribution through this theorem is the proof of high-conidence bounds for an accurate measure of the excess
risk, E(� ) := Eℓ (� (� )) − Eℓ (�∗ (� )) of the empirical estimators (when compared to the theoretical ground truth)

�̂� and �̂ �� (as a function of sample size �), where � denotes the stochastic network-aggregate cyber-loss function,

�∗ is its best empirical estimate, �̂ �� is the U-statistic variant of �̂� , and � is a loss function.
First, we observe from the theorem that convergence rates of order �−1/2 are achieved with exponentially high

probability if � (ℓ, F ) = sup� ∈F �
2 (ℓ, � ) < ∞ and E sup� ∈F

1√
�

∑�
�=1 (ℓ (� (� � ))−

Eℓ (� (� ))) < ∞. This relects achieving high accuracy on empirical estimates of the statistical with a small
number of samples. The latter is true if the class {ℓ (� ), � ∈ F } is P-Donsker [36], in other words, if the empirical
process � ↦→ 1√

�

∑�
�=1 (ℓ (� (� � )) − Eℓ (� (� ))) converges weakly to a Gaussian limit.

Next, the theorem demonstrates that under additional assumption requiring that any � ∈ F with small excess

risk must be close to �∗ that minimizes the expected loss, �̂� and �̂ �� attain fast rates; the theorem states the

bounds only for �̂� while the results for �̂ �� are similar, up to the change in absolute constants. Moreover, there
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is the design of a two-step estimator based on �̂� that is capable of achieving faster rates whenever � ≪ �−3/4.
Estimator �̂ ′′� is based on a two-step procedure, where �̂� serves as an initial approximation that is reined on the

second step via the risk minimization restricted to a łsmall neighborhoodž of �̂� .

6 EXPERIMENTAL EVALUATION

Thus far, we have derived theory relevant to a cyber-risk manager interested in an accurate estimate of the
network and time aggregate adverse impact, i.e., cyber-loss, in an IIoT network due to an APT cyber-attack. We
now run real-world test-bed experiments in the FIT IoT-Lab [2] to study salient aspects of our proposed theory
that cannot be inferred via the proposed theory. More speciically, we investigate the following questions under the
inluence of popular malware families:

(1) Do parameters that ensure the stability of the malware-spread process in theory, exist in practice?
(2) Do (network/time) aggregate cyber-loss distributions signiicantly difer for IIoT networks of various sizes?
(3) How accurate are theoretical MFA estimates of mean aggregate cyber-loss, compared to empirical estimates?
(4) How do empirical CVaR estimates for aggregate cyber-loss distributions vary over time in an IIoT network?

We organize this section in two parts: in the irst part, we describe our experimental setup; in the second part, we
analyze our experimental results with respect to questions (i)-(iv).

Fig. 4a: IoT-LAB A8-M3 Fig. 4b: IoT-LAB A8-M3 Architecture

6.1 Experimental Setup

Testbed - We ran experiments in Future Internet Testing (FIT) IoT-Lab, that provides access to a very large scale IoT
testbed. We experimented on the Grenoble site, that provided us access to 228 IoT-LAB A8-M3 boards (see Figures
4a. and 4b.), and allowed us to create the standard mesh (e.g., as in industry campuses, smart homes, low-range
wireless networks), star (e.g., as in factories, oilields, LPWANs), and cluster (e.g., as in a smart grid) wireless
communication topologies (see Figure 5.) using these devices. The IoT-LAB A8-M3 boards are equipped with
ARM Cortex-A8 microprocessors having 256 MB of RAM, and radio chips enabling the former to communicate
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with other IEEE 802.15.4 compliant (low power) objects within wireless radio range. They are installed with Yocto
OS, that can be used to create tailored Linux images for embedded and IoT devices. We created a WPAN using 10,
50, 100, and 200 IoT-LAB A8-M3 boards (and for each topology type), and let them communicate with each other
using the 6LoWPAN (IPv6 over low-power WPANs) technology. Apart from the fact that we did not have access
to a real testbed of more than 228 nodes, current ICSs are known to have a count of the number of communication
devices (ield devices) that are orders of magnitude lesser than traditional mobile and wireless IT systems (that
could have tens of 1000s of communication devices in a dynamic network). This is because ICS networks are
relatively more static in size and software/irmware conigurations, when compared to these IT system networks.

Fig. 5: Illustration of IoT Network Topology Types

Staging Malware Attacks - Summarizing from [78][77][7], malware-based IoT attacks (the focus of our paper)
operate in three stages: injection, infection, and attack. The injection stage involves gaining łcontrol" of the
IoT device (primarily via root access) through popular mechanisms that include credential hijacking, password
brute-forcing, dictionary attacks, or utilizing known device/system/irmware vulnerabilities [7][124]. In line
with [78], we simulate diferent variants of IoT malware and built a comprehensive dataset using 1000 malware
samples from the most popular malware families: Zorro, Gayfgt, Mirai, Hajime, IoTReaper, Bashlite, nttpd, and
linux.wifatch. The malware samples are collected from IoTPOT [82], VirusTotal, and OpenMalware sources, and
replicated (injected) into arbitrarily pre-selected nodes in lab-created WPAN IoT networks. As an example, the
Mirai botnet used its capability of password brute-forcing behind the modus operandi to gain directly gain control
(as part of the injection stage) of an IoT device. This injection stage was followed by the infection stage where
the attacker set up communication with the bot master (C&C server). We reserved certain number of nodes
on the FIT IoT-Lab necessary to act as the C&C servers that implemented the infection stage throughout the
communication network - similar to the classic Mirai botnet operation. More speciically, via the use of these
servers, Mirai downloaded the required toolkit having information about the C&C servers, and copied into the
compromised nodes - as part of the infection phase in the IoT network and taking full control of compromised
nodes. Finally, once a malware has full control of certain nodes in the network, it launches the attack stage
through which it irst stops security services on telnet compromised network nodes and executes cyber-attacks
such as denial of service (DoS) attacks, ransomware attacks, and their likes [116]. In this paper, we showcase
service unavailability-led łQoE degradationž attacks. The attack stage comprises of launching time-controlled
synchronous device malfunction attacks, on each infected network node, that follow, (a) a Poisson attack arrival
process (mean (per-unit of time) attack rate of � = 3) [w.l.o.g.], and (b) a renewal attack arrival process (with
inter-arrival times following a Weibull distribution with parameters � = 5, and � = 1.5)[w.l.o.g.] [103]. Device
malfunction is executed via changes in the the password of the device using the passwd command in Linux, that
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Fig. 6: Illustrating for IoT network topologies (cluster, star, mesh) of size 10, (a) node-aggregate cyber-loss distributions

for Exponential andWeibull cyber-atack inter-arrival distributions, and (b) CVaR time series for Exponential andWeibull

cyber-atack inter-arrival distributions, with loss-coverage every 200 time units. The star topology is the most eficient in
terms of IIoT first party cyber-risk management.

locks up the device and does not allow legitimate users (ourselves) to access it. We conduct a total of 100,000 fresh
Monte Carlo runs of the three-staged process on these popular malwares.
Per-Node Cyber-Loss Impact - We assume QoE/S loss impact (e.g., business downtime) in the IIoT network
due to a node becoming dysfunctional (e.g., an exploding turbine post a successful cyber-attack) maps to a
loss-normalized scale of (0, 1], and is proportional to the Bonacich centrality [19] of the node. The rationale
behind this assumption lies in the fact that a network central IIoT device (e.g., SCADA controller) controls multiple
devices connected to this node, and a reliability hit on the latter increases the likelihood of the failure of multiple
devices together (amplifying business downtime). Assuming that the reliability/resilience of an IIoT network is a
function of the sum of the reliability/reliability of its individual nodes, a central node in the IIoT going down
adversely impacts network-wide QoE/S loss impact more when compared to the same when a non-central node
becomes dysfunctional.
Empirically Estimating Spread/Loss Parameters - We estimate the values of rates 1

�
, � , and 1

�
for each of

the 100,000 Monte Carlo runs of our three-staged malware launch experiment. We observe that for all nodes, �
values lie in the range [0.3, 0.4], 1

�
values lie in the range [0.25, 0.35], and the � ’s lie in the range [0.12, 0.129]. In

the interest of space, and w.l.o.g., we plot results for the ‘median’ setting where � = 0.35, 1
�
= 0.3, and � = 0.125.

We arrive at the � values in a two-stage process: (i) in the irst stage, we borrow system set-up ideas from the
ML-driven anomaly detection framework in [77][78] to design a similar ML framework in the FIT IoT Lab that
efectively detects infected IoT boards from system log data, and (ii) in the second stage, we reboot/cure the
infected IoT board. The reciprocal of the time taken for (i)+(ii) gives us values of � . The empirical node-aggregate
cyber-loss per instant of time in the IoT network is captured by two function types: (i) � (�1, . . . , �� ) =

∑�
�=1 �� ,

and (ii) � (�1, . . . , �� ) :=
(∑�

�=1 �� − �
)+

−
(∑�

�=1 �� − �
)+
), where � is the minimum loss amount a coverage agency

decides to provide coverage for, and � −� > 0 is the upper coverage limit set by the agency. Note that the situation
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Fig. 7: Illustrating for IoT network topologies (cluster, star, mesh) of size 10, (a) node-aggregate cyber-loss distributions

for Exponential andWeibull cyber-atack inter-arrival distributions, and (b) CVaR time series for Exponential andWeibull

cyber-atack inter-arrival distributions, with loss-coverage every 200 time units. The star topology is the most eficient in
terms of IIoT first party cyber-risk management.

Fig. 8: Illustrating for IoT network topologies (cluster, star, mesh) of size 10, (a) node-aggregate cyber-loss distributions

for Exponential andWeibull cyber-atack inter-arrival distributions, and (b) CVaR time series for Exponential andWeibull

cyber-atack inter-arrival distributions, with loss-coverage every 200 time units. The star topology is the most eficient in
terms of IIoT first party cyber-risk management.

ACM Trans. Manag. Inform. Syst.



How Should Enterprises uantify and Analyze (Multi-Party) APT Cyber-Risk Exposure in their Industrial IoT Network? • 27

Fig. 9: Illustrating for IoT network topologies (cluster, star, mesh) of size 200, (a) node-aggregate cyber-loss distributions

for Exponential andWeibull cyber-atack inter-arrival distributions, and (b) CVaR time series for Exponential andWeibull

cyber-atack inter-arrival distributions, with loss-coverage every 200 time units. The star topology is the most eficient in
terms of IIoT first party cyber-risk management.

when � = 0 (no lower coverage limit) and � =
∑�

�=1 �� indicates a full coverage clause by a coverage agency. Both
(i) and (ii) are standard functions in the loss coverage industry; satisfy the mathematical assumptions behind � as
described in Section 2.2; and are continuous, linear, and increasing in �1, . . . , �� . We plot our results for the case
when � = 0, and � is 70% of � (w.l.o.g.), for each network coniguration.

6.2 Results and their Practical and Policy Connotations

We observe from Figures 6-9 that for nearly all samples from each parameter’s (e.g., 1
�
, � , 1

�
) empirically observed

interval span, Theorem 3.1 holds. In the jargon of practice, the spread parameters that we observe from a real-
world malware spread at an empirical spread equilibrium satisfy the parameter conditions derived from theory
in Theorem 3.1 that ensure spread stability. Hence, we validate our theory showcased in Theorem 3.1 w.r.t., our
experimental setup.

In relation to the shape of the intra-network space-time aggregate irst party cyber-loss distribution over a time
period of 200 units (Figures 6a-9a) for the various network topologies, we observe that the tail size (light-tailed
in shape) does not increase with network sizes, thanks to the ‘balanced’ infection-cure dynamics of malware
spread as achieved in practice. This is a good result when keeping in mind the success of third-party cyber-risk
coverage markets (e.g., cyber-insurance) that would prefer light-tailed cyber-risks to provide coverage for irst-party
losses, and promote targeted policy measures that incentivize organizations to establish and maintain a balanced
infection-cure dynamics. It is evident and intuitive to note that the star network topology is least susceptible
to large aggregate cyber-losses. However, we put forward the following word of caution regarding the tail of our
reported and experimentally-derived aggregate cyber-risk distributions. It is not always the case that intra-network
irst party aggregate cyber-losses will be light-tailed in shape. Certain form of cyber-attacks are very sophisticated
(e.g., targeted ransomware, sophisticated versions of the Ukraine cyber-attack) and can render an ICS (or some of
its important sub-divisions) crippled for days (upto a month) without it functioning, i.e., the time to recovery.
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TABLE III: Empirical Estimation Error (%) of Mean Aggregate Cyber-Loss w.r.t. its MFA Estimates Obtained from

Theory in Section 4

This is because ICS technology is customized, proprietary, and often run regressive software and irmware. A
large compromised network section equipped with such technology will usually need a high recovery time to
get back to normal production regime. In our experimental FIT laboratory setup, we could not consider a very
low rate of recovery due to scheduling constraints. In practice days of service dysfunctions might lead to very
high costs in loss of production (e.g., energy, water) incurred by an ICS, and subsequently will contribute to
heavy-tailed aggrgegate irst party cyber-risk.
In relation to the accuracy of the empirical MFA estimate of mean aggregate irst party cyber-loss within an

IIoT network, with respect to the true theory estimate, we observe (see Table III) the accuracy to be distributed
around the [85.5% - 92.5%] for 100,000 Monte Carlo trials (for each topology type). The accuracy gap (from 100%)
is primarily due to MFA not being able to capture network asymmetries inherent in practical networked systems.
Through this we claim the irst-order estimates from the NIMFA methodology to be fairly accurate, conditioned (as

per Theorem 4.1) on the �

�
ratios (an indication of the cyber-security strength of the network) in our practical

setup. The main message we put forward is: there exists real-world malware spread parameters for IoT networks
for which MFA provides fairly accurate estimates of cyber-loss moments. This has a signiicant implication for
cyber-risk managers who would want to apply targeted intervention policies on IIoT network managers to

maintain appropriate �

�
ratios for their networks, not only to lower their chances of covering large losses, but

to ensure that they have access to MFA estimates in theory that are close to empirical estimates they may not
always have access to. The latter point is relevant in environments where the absence of cyber-information
disclosure regulatory policies might hamper efective cyber-risk auditing.
We observe from CVaR time series dynamics (see Figures 6b-9b) that it increases at a linear rate till 200 time

units (loss mitigation happens every 200 time units), for each topology type and IIoT network size. This pattern
has two positive implications for a cyber-coverage agency (e.g., an insurer): (i) the marginal loss growth rate is
constant over time - hence a strong incentive for the agency to deploy coverage contract policies that perennially
maintain low values of such constants for an organization, and (ii) loss estimates are time-predictable in advance.
It needs to be emphasized that even though aggregate loss sizes and their probability of occurrence might be
predictable, the timing of such losses might not, depending on the strategic play between the attacker and the
defender [112][58][85] - not the focus of this work.
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Overall, we observe from Figures 6-9 that the aggregate irst party cyber-loss distributions in an intra-
organizational IIoT network follow a light-tailed distribution. This is primarily due to the local nature of the
IIoT network combined with the fact that a certain fraction of the number of network nodes are periodically
monitored and recovered, if compromised by APT malware. This latter condition, satisfying a certain recovery
threshold (not modeled in this work) is necessary to prevent cyber-loss distributions to become heavy-tailed.

7 AN ICS CASE STUDY

In this section, we irst lay out a case study illustrating the applicability of APT breaches in real world IIoT
networks through a recent example of the Pipedream malware (built to target machine automation devices)
developed to execute on IIoT-driven industrial control systems (ICSs). Our case study helps us connect the proposed
theory in this paper with the real world. The generality of Pipedream is that it can interact with speciic industrial
equipment embedded in diferent types of machinery leveraged across multiple industries.
The Basic Elements of the Pipedream Malware - The functioning basis of industrial automation networks
are IIoT-driven equipment enabling network operators to translate digital information into manual actions in
an automated fashion. Such equipment, due to their hardware and irmware diversity, typically speak diferent
communication languages across diferent portions of the network using standard communication protocols.
Pipedream includes the TAGRUN, CODECALL, and OMSHELL modules allowing a cyber-attacker to send
instructions to ICS components using industrial network protocols such as OPC UA,Modbus, and Codesys. Though
these modules are general enough for ICS components, Pipedream developers developed them speciically for
controllers from Schneider Electric and Omron - in other words, the TAGRUN, CODECALL, and OMSHELL
modules were targeted at (a) OPC servers, (b) Schneider Electric Modicon M251, Modicon M258, and Modicon
M221 Nano PLCs, and (c) Omron NX1P2, NJ501 PLCs, and R88D-1SN10F-ECT servo drive. These elements
characterize tools to conduct direct and indirect, i.e., spread-based, cyber-attacks on IIoT-networked ICS components.
The APT Functioning Methodology - An APT cyber-breach executes through the orchestrated functioning of
TAGRUN, CODECALL, and OMSHELL modules. TAGRUN performs a reconnaissance role through its ability to
scan for and enumerate OPC UA servers. OPC UA acts as a central communications protocol to collect and
store data from ICS assets in industrial environments promoting the functioning of production systems and
control processes, and forwards them to hackers for their access and subsequent modiication. In addition,
TAGRUN helps brute forcing IIoT device credentials, and outputting log iles. CODECALL communicates with
IIoT-driven ICS devices using the Modbus protocol, that enables CODECALL to interact with devices from
diferent manufacturers. However, the tool contains a speciic module to interact with, scan, and attack (using
brute-force, DDoS) Schneider Electric’s Modicon M251 (TM251MESE) PLC using Codesys, which is used by
the company’s proprietary EcoStruxure Machine Expert protocol. OMSHELL is designed to obtain shell access to
Omron PLCs, that include Omron NX1P2, NJ501, and R88D-1SN10F-ECT servo drive. The tool primarily operates
using the HTTP and FINS over UDP protocols for (a) scanning and device identiication, (b) wiping a device’s
program memory and resetting the device, (c) connecting to a device backdoor to enable arbitrary command
execution, (d) capturing network traic, and (e) killing arbitrary processes running on an IIoT device. TAGRUN,
CODECALL, and OMSHELL are illustrated in Figure 10. Syncing with each other, TAGRUN, CODECALL, and
OMSHELL can disrupt controllers to cascadingly shutdown device operations, reprogram controllers to sabotage
industrial processes, and disable safety controllers to cause physical damage (see Figure 11).

8 MULTI-PARTY SUPPLY CHAIN IMPACT OF FIRST-PARTY CYBER-RISK

APT breaches have cyber-loss implications beyond the irst-party impact on an intra-organizational setting -
especially when a said organization is part of a service supply chain ecosystem. It is common knowledge (courtesy
Dragos OT-CERT reports) that big IT driven businesses have multiple small/medium supplier organizations in
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Fig. 10: The TAGRUN, CODECALL, and OMSHELL Modules (Source: Mandiant)

the supply chain, and a cyber-hit on any one of them could result in multi-millions US dollars in revenue loss
for the source organization. Given also the fact that most small and medium businesses (SMBs) do not focus on
cyber-security, it is quite likely that a (nation state) cyber-adversary could indit relatively easy to target big
organizations indirectly via disrupting the services of small suppliers in the supply chain (as was done in the case
of SolarWinds and Kaseya cyber-attacks).

A question of signiicant cyber-risk management (CRM) interest post establishing (via model-based simulations)
the light-tailed nature of intra-organizational irst-party loss impact due an APT breach is: what is the nature of
multi-party aggregate cyber-loss impact incurred in a supply chain environment of inter-dependent IIoT-networked
ICSs? We provide insights on this question via a general rigorous model-based analysis. In this paper, we only
consider the supply chain impact due to an APT cyber-attack on one organization. In reality, the unique thing about
an IIoT setting is that multiple organizations/enterprises can be afected simultaneously via a cyber-attack causing
concurrent supply chain impacts. As an example this could happen when irmware, i.e., software embedded in IoT
device’s hardware or circuit board, that is often made by the same vendor for many IoT devices across an entire
supply chain and quite vulnerable to cyber-attack due to unsecured code, is exploited by corporate adversaries or
nation states. Our results in this section will show that the aggregate cyber-risk impact in networked supply
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Fig. 11: Three APT Atack Scenarios of the Pipedream Malware (Source: Mandiant)

chain settings due to an APT cyber-attack on a single enterprise is suicient to assess the aggregate cyber-risk
impact due to simultaneous APT cyber-attacks on multiple enterprises.
An Interdependent Supply Chain Network-Wide QoS Model - Inspired by the contribution in [64], let the
tangible performance output (covers the span of general organizational performance metrics) of any individual
IIoT-driven organization � in an inter-dependent service network relect the quality of service (QoS) for � . Let this

performance output be modeled by the Cobb-Douglas function �� = ��� �
�
� Π

�
�=1�

(1−� )�� �
� � , where �� is the amount of

human resources employed by �; �� � is the amount of QoS � receives from the functioning of � (is directly a function
of �’s intra-organizational cyber-security posture) on which the former is reliant upon; �� � ≥ 0 denotes the degree
of reliance of � on � with

∑
� �� � = 1; �� is the adverse impact on organization �’s QoS of an APT cyber-breach event

on organization � , where �� is assumed to be independently distributed across � through �� ≡ log(�� ); and � is the
output elasticity of resource invested to generate performance (QoS). The rationale for using the Cobb-Douglas
function to derive an organization’s output metric stems from labor studies that use it as a standard model. An
example of QoS �� for � is the service-driven revenue for organization � . We deine the weighted centrality vector
for each organization in the service network of IIoT-driven organizations through � ≡ �

�
[� − (1−�)�� ]−1®1, where

[� − (1 − �)�� ]−1 is the Leontief inverse. We also assume that E[�� ] = 0 (normalization), and Var[�� ] is inite (we
will revisit the implication of this assumption later) for each organizations � , where �� is the pdf of the adverse
impact distribution on � caused by cyber-breach incident(s). It is evident that the variation in the system-wide
QoS is given by � = �� � , where � = [�1, .., ��]. In this paper, we are interested to investigate

︁
Var[�].

Supply Chain Cyber-Risk Management Scalability - We have the following result from our proposed model

analyzing
︁
Var[�] (an aggregate cyber-risk manager’s indicator of management scalability in an economic

sense).

ACM Trans. Manag. Inform. Syst.



32 • Ranjan Pal, Rohan Xavier Sequeira, Xinlong Yin, Sander Zeijlemaker, and Vineeth Kotala

Theorem 8.1. Let � be an inter-dependent organizational service network driven by IIoT-driven ICS enterprises.
Under the event of cyber-breach event(s) whose irst-party adverse impact on individual organizations is independently
governed by �� for each � , the standard deviation of the adverse impact distribution on the network-wide QoS, denoted

by
︁
Var[�] follows the relation:

︁
Var[�] = Ω

(
1+ 1

�̄

√
1

�−1
∑�

�=1 (��−�̄ )2√
�

)
, where �̄ is average degree of all organizational

nodes, and �� =
∑

� � �� is the degree of organizational node � . Moreover, if there exists a constant � ∈ (1, 2), a function
� (·) such that lim�→∞� (�)�� = ∞ and lim�→∞� (�)�−� = 0 for all � > 0; a constant � ; all � < �max = Θ(�

1
� ; and

� (�) = 1
�
��−�� (�), then

︁
Var[�] = Ω

(
�

−(�−1)
�−�

)
for arbitrary � > 0.

Theoretical Implications to Cyber-Risk Management - First and foremost, the theorem suggests that in
the most ideal case when �� ’s are independent, the standard deviation in the network-wide QoS is signiicantly
afected post an APT cyber-breach event (only on one organization) if the distribution of inter-liability (measured
through the individual node degrees of graph induced by matrix C) between organizations have a heavy tail. In
other words, in the absence of the said heavy-tailed property, aggregate cyber-loss coverage contracts post claims
made as an aftermath of APT cyber-breach incidents are information asymmetry resilient.
Alternatively, if the organizational client span of a cyber-risk manager (e.g., a cyber (re-)insurer) forms a

supply chain network with a degree distribution that is not heavy-tailed, the aggregate CRM business will be
network scalable (in an economic sense) under independent �� ’s - irrespective of whether the cyber-risk manager
has perfect information on intra-organizational cyber-loss distributions or otherwise. Here, the heavy-tailed
property is ensured through the conditions: the existence of a function � (·) such that lim�→∞� (�)�� = ∞ and

lim�→∞� (�)�−� = 0 for all � > 0; a constant �; all � < �max = Θ(�
1
� ; and � (�) = 1

�
��−�� (�). Note here that

� ∈ (1, 2) conservatively only captures the family of power-law distributions, that are speciic milder instances of
heavy-tailed distributions.
Practical Implications to Cyber-Risk Management - The independence assumption behind the �� ’s is a
conservative one when assesses the real world. In reality the �� ’s are statistically dependent. i.e., correlated, and
might result in high values of

︁
Var[�] even for non-heavy tailed inter-liability cyber-risk distributions (ones

that are ‘normal’ and not catastrophic). In the context of IIoTs, the �� ’s will be quite dependent under the efect of
common vulnerability driven APTs launched on IIoT-driven ICSs. In addition, and realistically enough, an APT
cyber-attack launched on one organization due to irmware vulnerabilities mentioned above can very likely be
concurrently launched on other IIoT driven organizations (on the same supply chain or on diferent ones) with
common irmware. This would cause multiple �� ’s on multiple supply chains to arise at the same time and all
being mutually dependent to some degree.
These network-centric results extend and complement the aggregate cyber-risk coverage feasibility results

for general non-networked settings, as discussed in [88][89][87]. We summarize our complete formally-driven
insights on the economic scalability of aggregate CRM for IIoT (networked) supply chain environments in Figure
12. We infer that a suicient condition for economically scalable aggregate CRM to be feasible is for to-be-aggregated
cyber-loss impact distributions sourcing from multiple IIoT-networked organizations to be (a) few in number, (b)
independent, and (c) moderately heavy-tailed. This is probably too ideal a situation cyber-insurers could hope
for. This leads us to the next section where we discuss action items for managers of IIoT driven enterprises to
mitigate irst-party cyber-risk exposure so as to result in a situation where supply chain ecosystems expose cyber
(re-)insurers to aggregate light-tailed cyber-risks.
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Fig. 12: Illustrating the case-based economic feasibility of scaling aggregate cyber-risk management businesses (as a function
of the number of risk sources of various statistical types and dependencies) for a supply chain network of IIoT-driven ICSs
when (a) the network is not explicitly modeled, (b) the degree distribution of the network is not heavy-tailed, and (c) the
degree distribution of the network is heavy-tailed.

9 ACTION ITEMS FOR IIOT DRIVEN ENTERPRISE MANAGEMENT

In this section, we propose action items for the managerial suite of IIoT-networked ICS organizations to minimize
the adverse cyber-loss impact of an APT cyber-breach on organizational and supply chain business performance
metrics. Many of our action items also extends to IT driven enterprises.
Action Items for Technology Management - Technology management within an ICS involves ‘managing’ the
workings of (a) the communication protocols of the IIoT network, (b) the IIoT devices and associated architectures,
and (c) adversary modules to minimize chances of cyber-breach events and their impact. More speciically, ICS
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managers should broadly adopt the following cyber-risk management strategies: (i) perimeter hardening, (ii)
network hardening, (iii) workstation hardening, and (iv) device protection and hardening.
Perimeter hardening includes limiting outsider access to networks comprising ICS IIoT devices, placing these

IIoT devices behind irewalls, extra-secure ICS IIoT devices facing the Internet, and continually monitoring for
events that might indicate attempted unauthorized access. This includes inspecting traic between systems
within a data center or cloud service, and traic seeking access to them.

Network hardening includes implementing secure access controls, disabling unused communication ports
and protocols, segmenting networks to reduce an adversary’s ability to move laterally across the network and
compromise assets, using secure methods for remote access (especially in the work-from-home (WFH) age), and
setting up measures (e.g., IDSs, IPSs, antivirus, usage logs) to detect network compromises. Both perimeter and
network hardening should involve the implementation of a robust zero trust solution.
ICS workstation hardening includes implementing strong authentication controls (e.g., changing default pass-

words, using multi-factor authentication, implementing the account lockout feature on multiple wrong password
guesses. enhance application and browser controls for improved protection), setting blocklists and allowlists to
deny access to suspicious and/or malicious entities and to keep ICSs safe from unwanted software, respectively,
and encourage safe and secure workstation use habits (e.g., scanning external hard drives and USB devices,
storing sensitive workstation data on servers/cloud, locking workstation screens when idle).
IIoT device protection and hardening includes installing physical control to prevent unauthorized access, and

tracking operation modes (e.g., keeping PLCs in RUN mode, otherwise overseeing whether alarms informing ICS
operators are working). In addition, both workstation and device protection and hardening processes should (a)
ideally use passwordless solutions (meeting the Faster Identity Online, i.e., FIDO, Alliance standard) that binds
sign-on credentials in the Trusted Platform Module (TPM), (b) perform timely cleanup of stale executables on
individual devices, (c) enable irmware scanning tools, memory integrity, and Secure Boot to shield from advanced
irmware attacks, (d) enable memory access protection to prevent malicious hardware/software plug-ins, and (e)
use dashboards related to security information and event management (SIEM) and security orchestration and
response (SOAR) to monitor for anomalous or unauthorized behaviors.
Action Items for General Management - Identifying the government to be the ‘highest general manager’
overseeing enterprise cyber-risk management, we recommend the following action items for the general govern-
ments to be imposed upon enterprises and vendors around the globe: (i) mandatory cyber-reporting of incidents
within the irst 24-72 hours, (ii) implementing cyber-security contingency and response plan to ransomware
and other major threats to to IT and OT systems, (iii) requiring software vendors to leverage a secure software
development lifecycle and providing a software bill of materials (SBOM), (iv) mandating device manufacturers to
coordinate vulnerability disclosure processes for released products.
With respect to action items on a higher managerial, i.e., board and upper management, level, as its most

important broad action items to minimize the adverse cyber-loss impact of (APT) cyber-breach incidents on ICSs
and their contributed supply chains, a CPS-driven ICS organization’s leadership should (1) make security a just
cause by building a strong and compliant cyber-security culture, (2) invest high in residual cyber-risk mitigation
methods by forming a cyber-risk division that always mandates buying insurance, and (3) encourage systemic
cyber-risk resilience.
In order to make security a just cause within a CPS-driven ICS organization, its leadership must hardwire

cyber-risk thinking in OT/IT strategy by integrating security features in the design of CPS/Cloud components
and processes, instead of just bolting security as an ad-on property. As an example, the security design of
CPS elements should adhere to NIST guidelines. The enterprise leadership should fortify employee security
knowledge through (a) a required multi-phased training reinforcement approach to support desired behavior
outcomes, (b) preparing employees to handle or be resilient to business disrupting cyber-attacks via efectively
designed business continuity and disaster recovery exercises, and (c) more importantly, educating business
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owners about cyber-risk and its impact on business process and performance so that they can take appropriate
accountability for such risks. It should also promote a one-stop centralized web resource for best practices and
internal cyber-incident reporting. Moreover, the enterprise leadership should have a mechanism in place to
measure the eicacy (i.e., quality) and maximize the eiciency (i.e., quantity) of cyber-security skilling programs
and their outcomes. At the same time, it is well-known that security is often inversely proportional to service
appeal on customers (and hence is often viewed as an obstacle or afterthought in business processes) ś hence the
organization must strike a good proit and security culture tradeofs by identifying only the most important IIoT
driven CPS elements, i.e., the ICS chokepoints, to integrate security within design.

The C-suite and board should also budget high on investing in tech-security controls such as (a) hiring few but
high quality and experienced security engineers to design and manage (basing upon STAMP [53], COA matrix,
and CARVER frameworks) software-deined cyber-resilience processes covering the entire span of an ICS, (b)
ensure IoT elements within an ICS do not run on default passwords and are periodically updated and security
patched, (c) enable the proper use of antivirus, irewalls, and password managers, and (d) identifying critical
business assets. Finally, the C-suite and board should promote security leadership to embrace security as a fun
‘to-do’ controls exercise (via incentives and gamiication exercises) for employees at all levels of a CPS-driven
organization. Speciic to CPS settings, these controls would include employees using strong passwords and
antiviruses for IoT devices; using secure communication settings while operating organization CPS elements
over the Internet and/or the cloud while working remotely (e.g., as in the COVID age); maintaining software
patch and coniguration management spanning CPS components and processes; ensuring system backups with
periodic data restores; and conducting periodic internal security audits and penetration scanning.
The C-suite and the board of a CPS-driven ICS organization should necessarily invest in the formation of a

cyber-risk division to accurately access and mitigate the organization’s exposure to cyber-risk and subsequently
attract favorable coverage policies from a cyber-insurer. This initiative would involve (a) hiring a specialist chief
risk oicer (CRO) who should oversee periodic audit and security benchmarking activities on the CPS components
inside an ICS that closely embrace NIST, CARVER, and STAMP-like cyber-safety frameworks, (b) hiring few
specialized CPS cyber-risk quantiication experts capable of formally accounting for component and process
interdependencies and risk correlations in (large) CPS network settings to derive long-term cyber-damages, i.e.,
risk estimates post CPS attacks, (c) post conducting analysis on (b), adjudicating whether an organizational re-
insurer would ind it feasible to diversify aggregate irst and third-party cyber-risks incurred by the organization
post a cyber-attack event, and subsequently (d) working with the C-Suite, HR, and organizational psychologists to
promote security best practices among employees handling CPS components and processes to reduce aggregate
cyber-risk incurred, via methods of gamiication and incentives.

Cyber-vulnerability information sharing by individual organizations is a must for cyber-insurers to appropri-
ately price supply chain induced systemic risk in a society formed due to the networked interaction of multiple
ICS networks serving diverse application sectors. To this end the C-suite should promote their organization
sharing best cyber-risk governance practices among business partners; encourage various management divisions
to participate in CPS cyber-threat information sharing platforms; and cooperate with insurers to release to the
relevant public ś accurate CPS cyber-vulnerability information in easy-to-understand, structured, and quantiiable
formats using the MITRE ATT&CK framework as an example. The USA in particular has already started to take
(CPS) cyber-vulnerability information sharing seriously in sectors with critical infrastructure with the recent
introduction of a law signed by US President Joe Biden on March 15, 2022. According to this law, organizations
must report cyber-incidents to the Cybersecurity and Infrastructure Security Agency (CISA) of the US Department
of Homeland Security (DHS) within 72 hours, with an obligation to report ransomware payments within 24
hours.
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10 RELATED WORK

The practical importance of cyber-risk quantiication activities for IIoT networks is a recent phenomenon,
especially post the wake of major targeted cyber-attacks in the last few years [126][125]. To the best of our
knowledge, we are not aware of any research efort till date that undertakes a rigorous formal characterization of
APT cyber-risk measures (e.g., APT risk measured via a CVaR metric) for (I)IoT networks through providing
provable risk performance guarantees. To this end, ours is the irst efort illing this gap.

Though four recent research eforts [90][93][87][88][92], that are focused on analytically analyzing cyber-risk
in IoT societies might look quite related, there is a signiicant diference in their goal and ours in this paper. Our
main focus in this paper is accurately estimating the APT risk apriori due to the time and node aggregate malware-
induced cyber-loss distribution in an IIoT network. On the other hand, the authors in [90][93][87][88][92][91]
study statistical, algorithmic, and economic feasibility conditions under which aggregate cyber-risk management
services like re-insurance can be proitable. Moreover, the main focus of our work deals with intra-organizational
IIoT networks, whereas [90][93][87][88][92] mainly deal with supply-chain service networks between diferent
intra-organizational IIoT networks.

Given the inter-disciplinary building blocks to our methodology, we briely survey related work covering the
four broad areas much related to our research: (i) cyber-epidemic spread processes, (ii) analytical characterization
of cyber-risk, and (iii) cyber-risk characterization in critical IIoT-driven systems, and (iv) the FAIR model to
characterize enterprise cyber-risk.
Cyber-Epidemic Spread Processes - The use of the network-based SIS model (also known as contact processes),
as a continuous time Markov chain, to model an epidemic spread is a standard in computer epidemiology studies,
and has been used and analyzed in multiple research eforts [62][63][14][37][76][9][113][114][95][122] - be it
related to cyber-infections, or otherwise. There has been other considerable literature (not necessarily on SIS
dynamics) on the dynamics of spread of computer malware in (a) homogeneous networks, i.e., complete graphs,
[52][28], (ii) speciic heterogeneous (e.g., power-law) networks [12][79][11][41][121][120][25][81][80][74][75],
and (iii) arbitrary heterogeneous networks [118][44][27]. In recent years, there has been a number of eforts
modeling the spread of stealthy cyber-malware (e.g., APTs) in arbitrary communication networks using approaches
seeded by the SIS methodology [131][132][130][129][127][128][123].
However, none of these above-mentioned works on the dynamics of spread processes account for the time and

node aggregate cyber-loss impact post a cyber-breach incident. In this paper, we integrate the epidemic modeling
of stealthy cyber-attacks with an rigorous formal characterization of the time and node aggrgegate cyber-loss
impact post an APT cyber-attack event.
Analytical Characterization of Cyber-Risk - With respect to analytically characterizing moments of the
cyber-loss impact due to a Markovian spread process, a mean-ield approximation approach, as in our work, has
been proposed in [113]. The beneit of using such as an approach is its power to capture the complete structure
of the IIoT network, rather than only average degrees - as formalized in degree-based mean ield approaches
[96][17]. Moreover, such a complete network-based approach enables us to analyze the inluence of the network
topology on the spread of the infection and also on the total cyber-loss impact accrued in an IIoT network.
In addition, unlike us, the works in [96][17][114] do not characterize the time-dependent accuracy of mean-ield
approximation estimates.
It is widely known from general risk management studies that though statistical variance may be a suitable

cyber-risk measure when the corresponding risk distribution is close to be symmetric, it is not an appropriate
measure in the general case where the distribution may be asymmetric (as in our work), as it equally penalizes
losses and gains. The reader is referred to extensive literature on the shortcomings of the expected value risk
measure [3][38][50][100]. To overcome this limitation, we adopt shortfall-based or quantile-based risk measures
that have rapidly gained wide popularity during the irst decade of the 21st century. The most used of such measures
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is the conditional value-at-risk (CVaR), irst developed by the authors in [100], and its powerful mathematical
properties investigated in [1][8]. While the asymptotic convergence properties of various estimators for CVaR
have been investigated in [1], less is known about inite-sample convergence properties for estimators. The authors
in [110] have shown some inite empirical convergence results for CVaR; although these results apply to the case
of optimization of CVaR, the bounds rely on statistical learning and, as a result, sufer from the conservatism of their
theory.
In contrast, our proposed(one-sided and two-sided) bounds based on empirical inite samples do not rely

on statistical learning inputs. On providing two-sided concentration bounds for empirical inite-sample CVaR
estimation, since the latter is a weighted average of the underlying distribution quantiles, one could employ
concentration results for quantiles such as in [54].While such an approach can provide bounds with better constants,
the resulting bounds also involve distribution-dependent quantities. In contrast, our approach provides a uniied
method of proof that is distribution-agnostic.
Characterization of Cyber-Risk in Critical IIoT-Driven Systems - There have been quite a few works
speciically related to characterizing failure risks in (IIoT-driven) critical infrastructure hosting organizations. The
authors in [10] propose the cellular automata driven Abelian sandpile model that can be used to estimate the loss
impact of cascading failures in critical infrastructure systems. Using the sandpile model, the authors in [26] show
that (cyber-)loss impact post a cyber-breach event in an industrial power grid will exhibit a statistical power-law
distribution. However, the major drawbacks of the analysis in [26] is that (a) it does not generalize to a setting where
multiple nodes within an IIoT network are directly (cyber-)infected to start with, and (b) it does not explicitly model
recovery strength of network nodes post detection of their (cyber-)failure. It is in fact the recovery dynamics that
increases the likelihood of an IIoT-driven network system to incur a light-tailed irst-party cyber-loss distribution
post an APT cyber-breach event (that we show in our work), when compared to a heavy-tailed power-law
distribution aforementioned.

The authors in [71] use the OPA theory proposed in [29][31][99], speciic to electrical distribution systems, to
derive irst-party (cyber-)loss related performance statistics post a cascading failure event. Though the authors in
[71] do not conclude on particular irst party cyber-loss statistics, two major drawbacks of their work are that (a) it
does not generalize to a setting where multiple nodes within an IIoT network are directly (cyber-)infected to start with,
and (b) it does not explicitly model recovery strength of network nodes post detection of their (cyber-)failure. In [33],
the authors propose the CASCADE framework that accounts for multiple (IoT) components inside an industrial
system being directly (cyber-)infected initially through a uniform distribution, and derive statistics pertaining
to the number of non-functioning components post a cascading impact of direct and indirect cyber-infection
dynamics related to a (cyber-)breach event. In [32], the authors extend the CASCADE framework to model the
initial distribution of directly cyber-infected components to be a Poisson distribution, and subsequently derive
statistics pertaining to the number of non-functioning components post a cascading impact in an industrial
system. However, the major drawbacks of the contributions in [32][33] is (a) the lack of a dynamic time-dependent
analysis that generally characterizes cascading processes in practice, and (b) the lack of statistics pertaining to the
cyber-loss impact that commercial cyber-risk managers (e.g., cyber-insurance companies) are interested in.

The authors in [34] model time dependency of cascading cyber-infections in an industrial (IIoT) network, and
derive the probability distribution of the total number of failed components. However, like [32][33], [34] does not
derive statistics pertaining to the cyber-loss impact that commercial cyber-risk managers might be interested in. In
[39], the authors (in sync with our vision of quantifying ICS cyber-risk) present a system that calculates Cyber
Value-at-Risk of an organisation. CVaR is a probabilistic density function for losses (not to be confused with
the traditional CVaR metric) from cyber-incidents, for any given threats of interest and risk control practice. It
takes into account varying efectiveness of security controls, the consequences for risk propagation through
infrastructures, and the cyber-harms that result.
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The major drawback of the contribution in [39] is the lack of generalization through a rigorous formal analysis
to quantify cyber-risk for a broad family of intra-networked ICSs of diferent shapes, i.e., network structure, and
sizes. More speciically, the authors in [39] do not model the recovery-induced spread process of cyber-malwares
as a function of the size and shape of an ICS network (leave alone generalizing across a broad space of ICS
networks) to derive network-aggregate cyber-loss impact, and its tail properties. The fallout of this drawback is
a lack of principled insight on the statistics of quantiied cyber-risk for general-enough ICSs. In this paper we
explicitly model (a) a broadly generalized intra-organizational IIoT network as a function of its size and shape, (b)
multiple initial directly infected nodes, and (c) the time-dependent cascading behavior of (cyber-)infection to
derive cyber-loss impact statistics.
The FAIR Model to Characterize Enterprise Cyber-Risk - The Factor Analysis of Information Risk (FAIR)
model is a cyber risk assessment tool that connects the cyber domain to the ield of operational risk management
and allows to calculate an expected losses following value at risk calculation approach [48]. FAIR provides a
framework, an ontology and taxonomy supported with statistical means to do cyber risk quantiication [49, 117]
The core of this model is focused on the frequency of adversarial threat and the magnitude of impacted assets
while considering the presence of vulnerabilities, the strength of the adversary, and the defenses in place [48, 119].
FAIR as cyber risk assessment tool is both accepted in practice [46] and science [35, 59, 60, 94, 104] It has been
applied in many including Government-to-Citizen (G2C) e-services [35] cloud computing [104], smart grid
[59, 60] and malware on mobile systems [94].
The traditional FAIR model is not without its potential limitations. The model may introduce inaccuracies

when using diferent distributions for input parameters [5, 42, 117] and does not handle heavy-tailed distributions.
Moreover, FAIR does not fully account for either the dynamic complex nature of cyber risk [134], or the networked
efects between cyber-risk targets.

Recent work solves some of these limitations by using a complementary Bayesian network approach [117] or
applying the FAIR Controls Analytics Model (FAIR-CAM) [51]. A complementary Bayesian network approach
allows for using data sets with diferent distributions for input and increases goals and modelling purpose
[117]. However, this approach does not handle heavy-tailed cyber-risk distributions and does not account
for the networked efects between cyber-risk targets. FAIR-CAM allows to include a more detailed level of
security controls relevant only to speciic types of loss event scenarios [51]. These controls relate to quality in
decision-making, managing the variance in operational performance, and afecting the magnitude of a loss [51].

In contrast to all the above-mentioned works, our novel version of the FAIR model handles heavy-tailed distributions,
accounts for either dynamic complex nature of cyber risk, and captures the networked efects between cyber-risk
targets.

11 SUMMARY

According to management guru Peter Drucker, there is no efective (cyber-risk) management without an accurate-
enough (cyber-)risk assessment. The success (or lack thereof) of the entire cyber-risk management industry
is pivoted upon the latter fact. In this paper, we proposed the irst theoretical framework for ICS enterprise
managers to accurately estimate apriori (to the occurrence of cyber-attack events) and tightly bound APT risk
in general IIoT driven ICS networks for a parametric family of stealthy spread-based APT cyber-attacks. We
irst modeled the time-varying attack-defense-impact trio pertaining to our threat model as a Markov-Feller
continuous stochastic process. We then rigorously evaluated and tightly bounded the mean of spread parameters
at an equilibrium of the spread process. Subsequently, we provided (a) a closed form expression for the node and
time aggregate cyber-loss impact in an IIoT network due to a spread-based APT cyber-attack - a random variable
of interest to cyber-risk managers (e.g., insurers) and a novel extension of the FAIR model for networked settings,
and (b) a computationally tractable irst-order mean-ield approximation method to scalably and accurately
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estimate the mean value of the aggregate cyber-loss impact distribution (we call it the APT risk distribution) in
the network when the number of nodes in an IIoT network is large.
The mean metric is often not enough for a cyber-risk manager who also wants to study the tail of a cyber-

risk distribution to gauge catastrophic cyber-risk impact efects. The popular metric in the risk management
industry to study the tail is CVaR, which we synonymized in our work with the tail estimate of the APT cyber-risk
distribution. To this end, we proposed a rigorous analysis motivated by concentration bounds from large deviation
theory in probability, to derive tight non-asymptotic bounds of the diference between the empirical estimation
of the APT risk measure (evaluated as the sample CVaR of the node and time aggregate cyber-loss impact
distribution) and the true (ground truth) value of the APT risk. We complemented our theory with trace-driven
Monte Carlo simulations based upon IoT test-bed experiments run on the FIT IoT-Lab.

To illustrate the society-facing impact of APT cyber-breaches on IIoT-driven industries, we showed via theory
that despite intra-organization breaches inducing a light-tailed irst-party cyber-loss distribution on a single
IIoT-networked organization, aggregate multi-party losses incurred by the same in supply chain service settings of
interdependent IIoT-networked organizations could be heavy-tailed - posing signiicant challenges to commercial
cyber-risk management businesses such as stand-alone cyber-insurance. We subsequently proposed managerial
action items tomitigate the non-aggregate cyber-risk exposure emanating from any given IIoT-driven organization
to minimize supply chain induced aggregate cyber-risk incurred by an IIoT society.
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